Science.gov

Sample records for inhibitor sorafenib induces

  1. Sorafenib, a multikinase inhibitor, induces formation of stress granules in hepatocarcinoma cells

    PubMed Central

    Adjibade, Pauline; St-Sauveur, Valérie Grenier; Huberdeau, Miguel Quevillon; Fournier, Marie-Josée; Savard, Andreanne; Coudert, Laetitia; Khandjian, Edouard W.; Mazroui, Rachid

    2015-01-01

    Stress granules (SGs) are cytoplasmic RNA multimeric bodies that form under stress conditions known to inhibit translation initiation. In most reported stress cases, the formation of SGs was associated with the cell recovery from stress and survival. In cells derived from cancer, SGs formation was shown to promote resistance to either proteasome inhibitors or 5-Fluorouracil used as chemotherapeutic agents. Despite these studies, the induction of SGs by chemotherapeutic drugs contributing to cancer cells resistance is still understudied. Here we identified sorafenib, a tyrosine kinase inhibitor used to treat hepatocarcinoma, as a potent chemotherapeutic inducer of SGs. The formation of SGs in sorafenib-treated hepatocarcionoma cells correlates with inhibition of translation initiation; both events requiring the phosphorylation of the translation initiation factor eIF2α. Further characterisation of the mechanism of sorafenib-induced SGs revealed PERK as the main eIF2α kinase responsible for SGs formation. Depletion experiments support the implication of PERK-eIF2α-SGs pathway in hepatocarcinoma cells resistance to sorafenib. This study also suggests the existence of an unexpected complex regulatory balance between SGs and phospho-eIF2α where SGs dampen the activation of the phospho-eIF2α-downstream ATF4 cell death pathway. PMID:26556863

  2. STAT3-mediated attenuation of CCl4-induced mouse liver fibrosis by the protein kinase inhibitor sorafenib.

    PubMed

    Deng, Yan-Ru; Ma, Hong-Di; Tsuneyama, Koichi; Yang, Wei; Wang, Yin-Hu; Lu, Fang-Ting; Liu, Cheng-Hai; Liu, Ping; He, Xiao-Song; Diehl, Anna Mae; Gershwin, M Eric; Lian, Zhe-Xiong

    2013-10-01

    There have been major advances in defining the immunological events associated with fibrosis in various chronic liver diseases. We have taken advantage of this data to focus on the mechanisms of action of a unique multi-kinase inhibitor, coined sorafenib, on CCl4-induced murine liver fibrosis, including the effects of this agent in models of both acute and chronic CCl4-mediated pathology. Importantly, sorafenib significantly attenuated chronic liver injury and fibrosis, including reduction in liver inflammation and histopathology as well as decreased expression of liver fibrosis-related genes, including α-smooth muscle actin, collagen, matrix metalloproteinases and the tissue inhibitor of metalloproteinase-1. Furthermore, sorafenib treatment resulted in translocation of cytoplasmic STAT3 to the nucleus in its active form. Based on this observation, we used hepatocyte-specific STAT3 knockout (STAT3(Hep-/-)) mice to demonstrate that hepatic STAT3 was critical for sorafenib-mediated protection against liver fibrosis, and that the upregulation of STAT3 phosphorylation was dependent on Kupffer cell-derived IL-6. In conclusion, these data reflect the clinical potential of the multi-kinase inhibitor sorafenib for the prevention of fibrosis as well as the treatment of established liver fibrosis and illustrate the immunological mechanisms that underlie the protective effects of sorafenib. PMID:23948302

  3. Sorafenib induced eruptive melanocytic lesions.

    PubMed

    Uhlenhake, Elizabeth E; Watson, Alice C; Aronson, Peter

    2013-05-01

    Sorafenib is a multikinase inhibitor FDA-approved for the treatment of advanced renal cell and hepatocellular carcinoma. Dermatologic side effects include hand-foot skin reaction, facial and scalp erythema and desquamation, splinter subungual hemorrhages, alopecia, pruritus, xerosis, keratoacanthomas, and squamous cell carcinomas. We report sudden eruption of melanocytic nevi diffusely in a patient receiving sorafenib. PMID:24011281

  4. Radiation-induced hemorrhagic duodenitis associated with sorafenib treatment.

    PubMed

    Yanai, Shunichi; Nakamura, Shotaro; Ooho, Aritsune; Nakamura, Shigeo; Esaki, Motohiro; Azuma, Koichi; Kitazono, Takanari; Matsumoto, Takayuki

    2015-06-01

    Sorafenib, an oral inhibitor of multiple tyrosine kinase receptors, has been widely used as a standard medical treatment for advanced hepatocellular carcinoma (HCC). Here, we report a 66-year-old male patient who developed gastrointestinal bleeding due to radiation-induced hemorrhagic duodenitis associated with sorafenib treatment. We started oral administration of sorafenib because of the recurrence of HCC with lung metastases. The patient had been treated by radiotherapy for para-aortic lymph node metastases from HCC 4 months before the bleeding. Esophagogastroduodenoscopy (EGD) revealed edematous reddish mucosa with friability and telangiectasia in the second portion of the duodenum. Computed tomography and capsule endoscopy revealed that the hemorrhagic lesions were located in the distal duodenum. After discontinuation of sorafenib, the bleeding disappeared and a follow-up EGD confirmed improvement of duodenitis. Based on these findings, the diagnosis of radiation-induced hemorrhagic duodenitis associated with sorafenib was made. PMID:25832768

  5. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    SciTech Connect

    Honma, Yuichi; Harada, Masaru

    2013-08-15

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation.

  6. Sorafenib-induced defective autophagy promotes cell death by necroptosis

    PubMed Central

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Björklund, Ann-Charlotte; Zhivotovsky, Boris; Grandér, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-01-01

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencing ULK1 and Beclin1 rescues DU145 cells from cell death indicating that, in this setting, autophagy promotes cell death. Re-expression of Atg5 restores the lipidation of LC3 and rescues DU145 and MEF atg5−/− cells from sorafenib-induced cell death. Despite the lack of Atg5 expression and LC3 lipidation, DU145 cells form autophagosomes as demonstrated by transmission and immuno-electron microscopy, and the formation of LC3 positive foci. However, the lack of cellular content in the autophagosomes, the accumulation of long-lived proteins, the presence of GFP-RFP-LC3 positive foci and the accumulated p62 protein levels indicate that these autophagosomes may not be fully functional. DU145 cells treated with sorafenib undergo a caspase-independent cell death that is inhibited by the RIPK1 inhibitor, necrostatin-1. Furthermore, treatment with sorafenib induces the interaction of RIPK1 with p62, as demonstrated by immunoprecipitation and a proximity ligation assay. Silencing of p62 decreases the RIPK1 protein levels and renders necrostatin-1 ineffective in blocking sorafenib-induced cell death. In summary, the formation of Atg5-deficient autophagosomes in response to sorafenib promotes the interaction of p62 with RIPK leading to cell death by necroptosis. PMID:26416459

  7. The Raf Kinase Inhibitor Sorafenib Inhibits JAK-STAT Signal Transduction in Human Immune Cells.

    PubMed

    Martin del Campo, Sara E; Levine, Kala M; Mundy-Bosse, Bethany L; Grignol, Valerie P; Fairchild, Ene T; Campbell, Amanda R; Trikha, Prashant; Mace, Thomas A; Paul, Bonnie K; Jaime-Ramirez, Alena Cristina; Markowitz, Joseph; Kondadasula, Sri Vidya; Guenterberg, Kristan D; McClory, Susan; Karpa, Volodymyr I; Pan, Xueliang; Olencki, Thomas E; Monk, J Paul; Mortazavi, Amir; Tridandapani, Susheela; Lesinski, Gregory B; Byrd, John C; Caligiuri, Michael A; Shah, Manisha H; Carson, William E

    2015-09-01

    Sorafenib is an oral multikinase inhibitor that was originally developed as a Raf kinase inhibitor. We hypothesized that sorafenib would also have inhibitory effects on cytokine signaling pathways in immune cells. PBMCs from normal donors were treated with varying concentrations of sorafenib and stimulated with IFN-α or IL-2. Phosphorylation of STAT1 and STAT5 was measured by flow cytometry and confirmed by immunoblot analysis. Changes in IFN-α- and IL-2-stimulated gene expression were measured by quantitative PCR, and changes in cytokine production were evaluated by ELISA. Cryopreserved PBMCs were obtained from cancer patients before and after receiving 400 mg sorafenib twice daily. Patient PBMCs were thawed, stimulated with IL-2 or IFN-α, and evaluated for phosphorylation of STAT1 and STAT5. Pretreatment of PBMCs with 10 μM sorafenib decreased STAT1 and STAT5 phosphorylation after treatment with IFN-α or IL-2. This inhibitory effect was observed in PBMCs from healthy donors over a range of concentrations of sorafenib (5-20 μM), IL-2 (2-24 nM), and IFN-α (10(1)-10(6) U/ml). This effect was observed in immune cell subsets, including T cells, B cells, NK cells, regulatory T cells, and myeloid-derived suppressor cells. Pretreatment with sorafenib also inhibited PBMC expression of IFN-α- and IL-2-regulated genes and inhibited NK cell production of IFN-γ, RANTES, MIP1-α, and MIG in response to IFN-α stimulation. PBMCs from patients receiving sorafenib therapy showed decreased responsiveness to IL-2 and IFN-α treatment. Sorafenib is a Raf kinase inhibitor that could have off-target effects on cytokine-induced signal transduction in immune effector cells. PMID:26238487

  8. Interstitial pneumonia induced by sorafenib in a patient with hepatocellular carcinoma: An autopsy case report

    PubMed Central

    YAMAGUCHI, TAKASHI; SEKI, TOSHIHITO; MIYASAKA, CHIKA; INOKUCHI, RYOSUKE; KAWAMURA, RINAKO; SAKAGUCHI, YUUTAKU; MURATA, MIKI; MATSUZAKI, KOICHI; NAKANO, YORIKA; UEMURA, YOSHIKO; OKAZAKI, KAZUICHI

    2015-01-01

    Sorafenib is a multikinase inhibitor currently approved in Japan for the treatment of unresectable hepatocellular carcinoma. Interstitial pneumonia induced by sorafenib may have a fatal outcome, and therefore, has recently been the focus of many studies. The current report presents an autopsy case of diffuse alveolar damage (DAD) that occurred in a 59-year-old male, who had been treated with sorafenib. The patient had been given sorafenib for six months and had exhibited no respiratory symptoms during this time. However, 19 days after sorafenib treatment was resumed, acute interstitial pneumonia developed. In previously reported cases, the first symptoms of pulmonary toxicity appeared following a limited treatment duration with sorafenib; this was in contrast to the patient in the current study, who developed the first symptoms after eight months. We therefore conclude that physicians must be aware of interstitial pneumonia as a potential pulmonary toxicity associated with sorafenib treatment when treatment with sorafenib is resumed, even after prolonged use. In addition, to best of our knowledge, this is the first case of a postmortem examination reported in patient with interstitial pneumonia induced by sorafenib treatment. PMID:25789013

  9. Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1.

    PubMed

    Huber, S; Oelsner, M; Decker, T; zum Büschenfelde, C Meyer; Wagner, M; Lutzny, G; Kuhnt, T; Schmidt, B; Oostendorp, R A J; Peschel, C; Ringshausen, I

    2011-05-01

    Chronic lymphocytic leukemia (CLL) has a high prevalence in western countries and remains incurable to date. Here, we provide evidence that the multikinase inhibitor sorafenib induces apoptosis in primary CLL cells. This strong pro-apoptotic effect is not restricted to any subgroup of patients, based on Binet stage and the expression of ZAP70 or CD38. Mechanistically, sorafenib-induced cell death is preceded by a rapid downregulation of Mcl-1 through the inhibition of protein translation. Subsequently, the cell intrinsic apoptotic pathway is activated, indicated by destabilization of the mitochondrial membrane potential and activation of caspase-3 and -9. In contrast to sorafenib, the monoclonal vascular epidermal growth factor (VEGF)-antibody bevacizumab failed to induce apoptosis in CLL cells, suggesting that sorafenib induces cell death irrespectively of VEGF signalling. Notably, although sorafenib inhibits phosphorylation of the Scr-kinase Lck, knock-down of Lck did not induce apoptosis in CLL cells. Of note, the pro-apoptotic effect of sorafenib is not restricted to cell-cycle arrested cells, but is also maintained in proliferating CLL cells. In addition, we provide evidence that sorafenib can overcome drug resistance in CLL cells protected by microenvironmental signals from stromal cells. Conclusively, sorafenib is highly active in CLL and may compose a new therapeutic option for patients who relapse after immunochemotherapy. PMID:21293487

  10. Sorafenib induces autophagic cell death and apoptosis in hepatic stellate cell through the JNK and Akt signaling pathways.

    PubMed

    Hao, Huiyao; Zhang, Di; Shi, Junli; Wang, Yan; Chen, Lei; Guo, Yongze; Ma, Junji; Jiang, Xiaoyu; Jiang, Huiqing

    2016-03-01

    Increasing hepatic stellate cell (HSC) death is an attractive approach for limiting liver fibrosis. We investigated the molecular mechanisms underlying the effects of sorafenib on HSCs. LX2 cells were incubated with sorafenib and a variety of inhibitors of apoptosis, autophagy, and necrosis. Electron microscopy was used to observe autophagosomes. Inhibitors and siRNA were used to examine the role of the Akt/mTOR/p70S6K and JNK pathways. Ultrastructural analysis revealed that rat HSCs treated with 5 μmol/l sorafenib accumulated residual digested material and empty or autophagic vacuoles. Incubating LX2 cells with lysosomal protease inhibitors increased the accumulation of LC3-II, indicating that sorafenib enhances autophagic flux in HSCs. Autophagy may precede apoptosis. Lower concentrations of sorafenib and a shorter treatment time resulted in the dominance of autophagic cell death over apoptosis. Further analysis showed that Beclin 1 is inactivated by the caspases induced by sorafenib during apoptosis. Inhibition of autophagy in LX2 cells using 3-methyladenine treatment or siRNA-mediated knockdown of Atg5 resulted in a marked increase in apoptosis. Finally, sorafenib induced programmed cell death by attenuation and activation of Akt/mTOR/p70S6K and JNK signaling. Sorafenib-induced cell death is mediated by both autophagy and apoptosis. Elucidation of the signaling pathways activated by sorafenib could potentially lead to novel antifibrosis therapies for chronic liver diseases. PMID:26629768

  11. Sorafenib induces apoptosis in HL60 cells by inhibiting Src kinase-mediated STAT3 phosphorylation.

    PubMed

    Zhao, Wei; Zhang, Tao; Qu, Bingqian; Wu, Xingxin; Zhu, Xu; Meng, Fanyu; Gu, Yanhong; Shu, Yongqian; Shen, Yan; Sun, Yang; Xu, Qiang

    2011-01-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively active in approximately 50% of acute myeloid leukemia (AML) cases and mediates multiple cellular processes including cell resistance to apoptosis. Inhibition of constitutively active STAT3 has been shown to induce AML cell apoptosis. Our aim was to ascertain if sorafenib, a multikinase inhibitor, may also inhibit STAT3 signaling and, therefore, be efficacious for AML. We found that sorafenib inhibited proliferation and induced apoptosis in human AML cell line (HL60) cells. In addition, sorafenib exposure reduced constitutive STAT3 phosphorylation in HL60 cells and repressed STAT3 DNA-binding activity and Mcl-1 and Bcl-2 expression. Similar results were obtained with the Src kinase inhibitor I, suggesting that sorafenib suppresses STAT3 phosphorylation by inhibiting Src-kinase activity. Furthermore, significant inhibition of Src kinase activity by sorafenib was observed in the kinase assay. In addition, Src could be co-immunoprecipitated with STAT3, and the phosphorylation of STAT3 was significantly inhibited by sorafenib only in cell lines in which phosphorylated Src is highly expressed. Taken together, our study indicates that sorafenib blocks Src kinase-mediated STAT3 phosphorylation and decreases the expression of apoptosis regulatory proteins Mcl-1 and Bcl-2, which are associated with increased apoptosis in HL60 cells. These findings provide a rationale for the treatment of human AML. PMID:20881478

  12. Sorafenib

    MedlinePlus

    ... of the body and cannot be treated with radioactive iodine. Sorafenib is in a class of medications ... as well as any products such as vitamins, minerals, or other dietary supplements. You should bring this ...

  13. Effects of the multikinase inhibitors Sorafenib and Regorafenib in PTEN deficient neoplasias.

    PubMed

    Mirantes, Cristina; Dosil, Maria Alba; Eritja, Núria; Felip, Isidre; Gatius, Sònia; Santacana, Maria; Matias-Guiu, Xavier; Dolcet, Xavier

    2016-08-01

    The phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) axis is frequently dysregulated in cancer due to mutations in different nodes of the pathway or constitutive activation of receptor tyrosine kinases. Multikinase inhibitors as sorafenib and regorafenib represent a therapeutic approach for the treatment of these types of tumours. In the present study, we have evaluated the anti-tumoural effects of Sorafenib and Regorafenib on endometrial, prostate and thyroid neoplasias. Both inhibitors reduced cell viability in vitro and lead to a disruption of the PI3K/AKT/mTOR pathway. In vivo, we have demonstrated that Sorafenib and Regorafenib reduce thyroid hyperplasias induced by the loss of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), although none of the treatments eliminated the disease. Altogether, we present the first study that correlates the response to multikinase inhibitors with a specific mutation. Moreover, this is the first report characterising the response to Regorafenib in thyroid, prostate and endometrial neoplasias. PMID:27288872

  14. Successful treatment for sorafenib-induced liver dysfunction: a report of case with liver biopsy.

    PubMed

    Kuroda, Daisuke; Hayashi, Hiromitsu; Nitta, Hidetoshi; Imai, Katsunori; Abe, Shinya; Hashimoto, Daisuke; Chikamoto, Akira; Ishiko, Takatoshi; Beppu, Toru; Baba, Hideo

    2016-12-01

    Sorafenib is an oral multikinase inhibitor with anti-proliferative and anti-angiogenic effects and is used worldwide for the treatment of advanced or metastatic hepatocellular carcinoma (HCC). While the significant survival benefit of sorafenib in patients with advanced HCC was demonstrated, various treatment-related adverse events might happen. Of them, the incidence of drug-related severe liver dysfunction rarely occurs (<1 %) but is one of the serious adverse events by sorafenib. The authors highlight the case of a 71-year-old man with metastatic HCC with sorafenib-related fatal liver dysfunction (T-Bil 28.6 mg/dL, AST 1611 IU/L, ALT 1098 IU/L) 2 months later even without either intrahepatic viable HCC or hepatitis B virus (HBV) reactivation. Then, the liver dysfunction was improved following aggressive treatment using hyperbaric oxygen. A liver biopsy demonstrated cholestasis, degeneration, and necrosis in hepatocytes with lymphocyte infiltration. Thus, sorafenib rarely can induce liver dysfunction characterized by cholestatic and hepatocellular injury types, and it could be a fatal event. Clinicians should pay attention to any increase in the liver enzymes in these patients. PMID:26943680

  15. Inhibition of doxorubicin-induced autophagy in hepatocellular carcinoma Hep3B cells by sorafenib--the role of extracellular signal-regulated kinase counteraction.

    PubMed

    Manov, Irena; Pollak, Yulia; Broneshter, Rinata; Iancu, Theodore C

    2011-09-01

    A multikinase inhibitor of the Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, sorafenib, is increasingly being used in the management of hepatocellular carcinoma, and its combination with conventional chemotherapeutics has stimulated particular interest. Although the combination of sorafenib with doxorubicin (DOX) is presently being investigated in a phase III randomized trial, little is known about the molecular mechanisms of their interaction. Because DOX causes cell death through upregulation of the MEK/ERK pathway, and sorafenib has an opposite influence on the same cascade, we hypothesized that co-treatment with these drugs may lead to an antagonistic effect. DOX treatment arrested proliferation and induced autophagic cell death in Hep3B cells, whereas apoptotic changes were not conspicuous. Sorafenib alone affected viability and caused massive mitochondrial degradation. However, when added together with DOX, sorafenib facilitated cell cycle progression, increased survival, and reduced autophagy. To evaluate the molecular mechanisms of this phenomenon, we examined the expression of ERK1/2, protein kinase B (Akt), and cyclin D1, as well as the members of Bcl-2 family. ERK1/2 activation induced by DOX was suppressed by sorafenib. Similarly, ERK targeting with the selective inhibitor U0126 impaired DOX-induced toxicity. Treatment with sorafenib, either alone or in combination with DOX, resulted in Akt activation. The role of sorafenib-induced degradation of cyclin D1 in the suppression of DOX efficiency is discussed. In conclusion, MEK/ERK counteraction, stimulation of survival via Akt and dysregulation of cyclin D1 could contribute to the escape from DOX-induced autophagy and thus promote cancer cell survival. The use of MEK/ERK inhibitors in combination with chemotherapeutics, intended to enhance anticancer efficacy, requires the consideration of possible antagonistic effects. PMID:21790999

  16. Effect of CYP3A-inducing anti-epileptics on sorafenib exposure: results of a phase II study of sorafenib plus daily temozolomide in adults with recurrent glioblastoma

    PubMed Central

    Vredenburgh, James J.; Desjardins, Annick; Peters, Katherine; Gururangan, Sridharan; Sampson, John H.; Marcello, Jennifer; Herndon, James E.; McLendon, Roger E.; Janney, Dorothea; Friedman, Allan H.; Bigner, Darell D.; Friedman, Henry S.

    2011-01-01

    Sorafenib, an oral VEGFR-2, Raf, PDGFR, c-KIT and Flt-3 inhibitor, is active against renal cell and hepatocellular carcinomas, and has recently demonstrated promising activity for lung and breast cancers. In addition, various protracted temozolomide dosing schedules have been evaluated as a strategy to further enhance its anti-tumor activity. We reasoned that sorafenib and protracted, daily temozolomide may provide complementary therapeutic benefit, and therefore performed a phase 2 trial among recurrent glioblastoma patients. Adult glioblastoma patients at any recurrence after standard temozolomide chemoradiotherapy received sorafenib (400 mg twice daily) and continuous daily temozolomide (50 mg/m2/day). Assessments were performed every eight weeks. The primary endpoint was progression-free survival at 6 months (PFS-6) and secondary end points were radiographic response, overall survival (OS), safety and sorafenib pharmacokinetics. Of 32 enrolled patients, 12 (38%) were on CYP3-A inducing anti-epileptics (EIAEDs), 17 (53%) had 2 or more prior progressions, 15 had progressed while receiving 5-day temozolomide, and 12 (38%) had failed either prior bevacizumab or VEGFR inhibitor therapy. The most common grade ≥ 3 toxicities were palmer-planter erythrodysesthesia (19%) and elevated amylase/lipase (13%). Sorafenib pharmacokinetic exposures were comparable on day 1 regardless of EIAED status, but significantly lower on day 28 for patients on EIAEDs (P = 0.0431). With a median follow-up of 93 weeks, PFS-6 was 9.4%. Only one patient (3%) achieved a partial response. In conclusion, sorafenib can be safely administered with daily temozolomide, but this regimen has limited activity for recurrent GBM. Co-administration of EIAEDs can lower sorafenib exposures in this population. PMID:20443129

  17. Combination therapy for hepatocellular carcinoma: Additive preclinical efficacy of the HDAC inhibitor panobinostat with sorafenib

    PubMed Central

    Lachenmayer, Anja; Toffanin, Sara; Cabellos, Laia; Alsinet, Clara; Hoshida, Yujin; Villanueva, Augusto; Minguez, Beatriz; Tsai, Hung-Wen; Ward, Stephen C.; Thung, Swan; Friedman, Scott L.; Llovet, Josep M.

    2012-01-01

    Background & Aims Hepatocellular carcinoma (HCC) is a heterogeneous cancer in which sorafenib is the only approved systemic therapy. Histone deacetylases (HDAC) are commonly dysregulated in cancer and therefore represent promising targets for therapies, however their role in HCC pathogenesis is still unknown. We analyzed the expression of 11 HDACs in human HCCs and assessed the efficacy of the pan-HDAC inhibitor panobinostat alone and in combination with sorafenib in preclinical models of liver cancer. Methods Gene expression and copy number changes were analyzed in a cohort of 334 human HCCs, while the effects of panobinostat and sorafenib were evaluated in 3 liver cancer cell lines and a murine xenograft model. Results Aberrant HDAC expression was identified and validated in 91 and 243 HCCs, respectively. Upregulation of HDAC3 and 5 mRNAs were significantly correlated with DNA copy number gains. Inhibiting HDACs with panobinostat led to strong anti-tumoral effects in vitro and vivo, enhanced by the addition of sorafenib. Cell viability and proliferation declined, while apoptosis and autophagy increased. Panobinostat increased Histone H3 and HSP90 acetylation, downregulated BIRC5 (survivin) and upregulated CDH1. Combination therapy with panobinostat and sorafenib significantly decreased vessel density, and most significantly decreased tumor volume and increased survival in HCC xenografts. Conclusions Aberrant expression of several HDACs and copy number gains of HDAC3 and HDAC5 occur in HCC. Treatment with panobinostat combined with sorafenib demonstrated the highest preclinical efficacy in HCC models, providing the rationale for clinical studies with this novel combination. PMID:22322234

  18. Perifosine and sorafenib combination induces mitochondrial cell death and antitumor effects in NOD/SCID mice with Hodgkin lymphoma cell line xenografts.

    PubMed

    Locatelli, S L; Giacomini, A; Guidetti, A; Cleris, L; Mortarini, R; Anichini, A; Gianni, A M; Carlo-Stella, C

    2013-08-01

    The effects of the Akt inhibitor perifosine and the RAF/MEK/ERK inhibitor sorafenib were investigated using two CD30(+)Hodgkin lymphoma cell lines (L-540 and HDLM-2) and the CD30(-)HD-MyZ histiocytic cell line. The combined perifosine/sorafenib treatment significantly inhibited mitogen-activated protein kinase and Akt phosphorylation in two of the three cell lines. Profiling of the responsive cell lines revealed that perifosine/sorafenib decreased the amplitude of transcriptional signatures that are associated with the cell cycle, DNA replication and cell death. Tribbles homolog 3 (TRIB3) was identified as the main mediator of the in vitro and in vivo antitumor activity of perifosine/sorafenib. Combined treatment compared with single agents significantly suppressed cell growth (40-80%, P<0.001), induced severe mitochondrial dysfunction and necroptotic cell death (up to 70%, P<0.0001) in a synergistic manner. Furthermore, in vivo xenograft studies demonstrated a significant reduction in tumor burden (P<0.0001), an increased survival time (81 vs 45 days, P<0.0001), an increased apoptosis (2- to 2.5-fold, P<0.0001) and necrosis (2- to 8-fold, P<0.0001) in perifosine/sorafenib-treated animals compared with mice receiving single agents. These data provide a rationale for clinical trials using perifosine/sorafenib combination. PMID:23360848

  19. Sorafenib Enhances Radiation-Induced Apoptosis in Hepatocellular Carcinoma by Inhibiting STAT3

    SciTech Connect

    Huang, Chao-Yuan; Lin, Chen-Si; Tai, Wei-Tien; Hsieh, Chi-Ying; Shiau, Chung-Wai; Cheng, Ann-Lii; Chen, Kuen-Feng

    2013-07-01

    Purpose: Hepatocellular carcinoma (HCC) is one of the most common and lethal human malignancies. Lack of efficient therapy for advanced HCC is a pressing problem worldwide. This study aimed to determine the efficacy and mechanism of combined sorafenib and radiation therapy treatment for HCC. Methods and Materials: HCC cell lines (PLC5, Huh-7, Sk-Hep1, and Hep3B) were treated with sorafenib, radiation, or both, and apoptosis and signal transduction were analyzed. Results: All 4 HCC cell lines showed resistance to radiation-induced apoptosis; however, this resistance could be reversed in the presence of sorafenib. Inhibition of phospho-STAT3 was found in cells treated with sorafenib or sorafenib plus radiation and subsequently reduced the expression levels of STAT3-related proteins, Mcl-1, cyclin D1, and survivin. Silencing STAT3 by RNA interference overcame apoptotic resistance to radiation in HCC cells, and the ectopic expression of STAT3 in HCC cells abolished the radiosensitizing effect of sorafenib. Moreover, sorafenib plus radiation significantly suppressed PLC5 xenograft tumor growth. Conclusions: These results indicate that sorafenib sensitizes resistant HCC cells to radiation-induced apoptosis via downregulating phosphorylation of STAT3 in vitro and in vivo.

  20. Antitumor effect of the novel sphingosine kinase 2 inhibitor ABC294640 is enhanced by inhibition of autophagy and by sorafenib in human cholangiocarcinoma cells

    PubMed Central

    Ding, Xiwei; Chaiteerakij, Roongruedee; Moser, Catherine D.; Shaleh, Hassan; Boakye, Jeffrey; Chen, Gang; Ndzengue, Albert; Li, Ying; Zhou, Yanling; Huang, Shengbing; Sinicrope, Frank A.; Zou, Xiaoping; Thomas, Melanie B.; Smith, Charles D.; Roberts, Lewis R.

    2016-01-01

    Sphingosine kinase 2 (Sphk2) has an oncogenic role in cancer. A recently developed first-in-class Sphk2 specific inhibitor ABC294640 displays antitumor activity in many cancer models. However, the role of Sphk2 and the antitumor activity of its inhibitor ABC294640 are not known in cholangiocarcinoma. We investigated the potential of targeting Sphk2 for the treatment of cholangiocarcinoma. We found that Sphk2 is overexpressed in five established human cholangiocarcinoma cell lines (WITT, HuCCT1, EGI-1, OZ and HuH28) and a new patient-derived cholangiocarcinoma cell line (LIV27) compared to H69 normal cholangiocytes. Inhibition of Sphk2 by ABC294640 inhibited proliferation and induced caspase-dependent apoptosis. Furthermore, we found that ABC294640 inhibited STAT3 phosphorylation, one of the key signaling pathways regulating cholangiocarcinoma cell proliferation and survival. ABC294640 also induced autophagy. Inhibition of autophagy by bafilomycin A1 or chloroquine potentiated ABC294640-induced cytotoxicity and apoptosis. In addition, ABC294640 in combination with sorafenib synergistically inhibited cell proliferation of cholangiocarcinoma cells. Strong decreases in STAT3 phosphorylation were observed in WITT and HuCCT1 cells exposed to the ABC294640 and sorafenib combination. These findings provide novel evidence that Sphk2 may be a rational therapeutic target in cholangiocarcinoma. Combinations of ABC294640 with sorafenib and/or autophagy inhibitors may provide novel strategies for the treatment of cholangiocarcinoma. PMID:26956050

  1. Multikinase inhibitor sorafenib exerts cytocidal efficacy against Non-Hodgkin lymphomas associated with inhibition of MAPK14 and AKT phosphorylation.

    PubMed

    Chapuy, Bjoern; Schuelper, Nikolai; Panse, Melanie; Dohm, Andrea; Hand, Elisabeth; Schroers, Roland; Truemper, Lorenz; Wulf, Gerald G

    2011-02-01

    Intracellular signal transduction by kinase-mediated phosphorylation is essential for the survival and growth of lymphoma cells. This study analysed the multikinase inhibitor sorafenib for its cytotoxic activity against lymphoma cells. We found that sorafenib reduced cell viability at low micromolar concentrations in a time-dependent manner in cell lines and primary cell suspensions representing major types of aggressive B- and T-cell lymphomas. In cells surviving short term exposure, proliferative arrest occurred leading to complete loss of in vitro clonogenicity. Previously described sorafenib targets within the RAF kinase family were found to be expressed and phosphorylated in all cell lines, and sorafenib perturbed the activation of classical RAF/MEK/ERK pathway targets. However, using a global phoshoprotein array, the most consistent downstream effect of sorafenib in NHL cells was the inhibition of mitogen-activated protein kinase 14 (MAPK14) and panAKT phosphorylation. In conclusion, sorafenib has significant in vitro efficacy against aggressive B- and T-cell lymphoma cells, associated with inhibition of MAPK14 and panAKT. PMID:21689083

  2. Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo.

    PubMed

    Coriat, Romain; Nicco, Carole; Chéreau, Christiane; Mir, Olivier; Alexandre, Jérôme; Ropert, Stanislas; Weill, Bernard; Chaussade, Stanislas; Goldwasser, François; Batteux, Frédéric

    2012-10-01

    Sorafenib is presently the only effective therapy in advanced hepatocellular carcinoma (HCC). Because most anticancer drugs act, at least in part, through the generation of reactive oxygen species, we investigated whether sorafenib can induce an oxidative stress. The effects of sorafenib on intracellular ROS production and cell death were assessed in vitro in human (HepG2) and murine (Hepa 1.6) HCC cell lines and human endothelial cells (HUVEC) as controls. In addition, 26 sera from HCC patients treated by sorafenib were analyzed for serum levels of advanced oxidation protein products (AOPP). Sorafenib significantly and dose-dependently enhanced in vitro ROS production by HCC cells. The SOD mimic MnTBAP decreased sorafenib-induced lysis of HepG2 cells by 20% and of Hepa 1.6 cells by 75% compared with HCC cells treated with 5 mg/L sorafenib alone. MnTBAP significantly enhanced by 25% tumor growth in mice treated by sorafenib. On the other hand, serum levels of AOPP were higher in HCC patients treated by sorafenib than in sera collected before treatment (P < 0.001). An increase in serum AOPP concentration ≥0.2 μmol/L chloramine T equivalent after 15 days of treatment is a predictive factor for sorafenib response with higher progression free survival (P < 0.05) and overall survival rates (P < 0.05). As a conclusion, sorafenib dose-dependently induces the generation of ROS in tumor cells in vitro and in vivo. The sera of Sorafenib-treated HCC patients contain increased AOPP levels that are correlated with the clinical effectiveness of sorafenib and can be used as a marker of effectiveness of the drug. . PMID:22902857

  3. SC-2001 Overcomes STAT3-mediated Sorafenib Resistance through RFX-1/SHP-1 Activation in Hepatocellular Carcinoma☆☆☆

    PubMed Central

    Su, Jung-Chen; Tseng, Ping-Hui; Wu, Szu-Hsien; Hsu, Cheng-Yi; Tai, Wei-Tien; Li, Yong-Shi; Chen, I-Ting; Liu, Chun-Yu; Chen, Kuen-Feng; Shiau, Chung-Wai

    2014-01-01

    Hepatocellular carcinoma is the fifth most common solid cancer worldwide. Sorafenib, a small multikinase inhibitor, is the only approved therapy for advanced HCC. The clinical benefit of sorafenib is offset by the acquisition of sorafenib resistance. Understanding of the molecular mechanism of STAT3 overexpression in sorafenib resistance is critical if the clinical benefits of this drug are to be improved. In this study, we explored our hypothesis that loss of RFX-1/SHP-1 and further increase of p-STAT3 as a result of sorafenib treatment induces sorafenib resistance as a cytoprotective response effect, thereby, limiting sorafenib sensitivity and efficiency. We found that knockdown of RFX-1 protected HCC cells against sorafenib-induced cell apoptosis and SHP-1 activity was required for the process. SC-2001, a molecule with similar structure to obatoclax, synergistically suppressed tumor growth when used in combination with sorafenib in vitro and overcame sorafenib resistance through up-regulating RFX-1 and SHP-1 resulting in tumor suppression and mediation of dephosphorylation of STAT3. In addition, sustained sorafenib treatment in HCC led to increased p-STAT3 which was a key mediator of sorafenib sensitivity. The combination of SC-2001 and sorafenib strongly inhibited tumor growth in both wild-type and sorafenib-resistant HCC cell bearing xenograft models. These results demonstrate that inactivation of RFX/SHP-1 induced by sustained sorafenib treatment confers sorafenib resistance to HCC through p-STAT3 up-regulation. These effects can be overcome by SC-2001 through RFX-1/SHP-1 dependent p-STAT3 suppression. In conclusion, the use of SC-2001 in combination with sorafenib may constitute a new strategy for HCC therapy. PMID:25047655

  4. Differential modulatory effects of GSK-3β and HDM2 on sorafenib-induced AIF nuclear translocation (programmed necrosis) in melanoma

    PubMed Central

    2011-01-01

    Background GSK-3β phosphorylates numerous substrates that govern cell survival. It phosphorylates p53, for example, and induces its nuclear export, HDM2-dependent ubiquitination, and proteasomal degradation. GSK-3β can either enhance or inhibit programmed cell death, depending on the nature of the pro-apoptotic stimulus. We previously showed that the multikinase inhibitor sorafenib activated GSK-3β and that this activation attenuated the cytotoxic effects of the drug in various BRAF-mutant melanoma cell lines. In this report, we describe the results of studies exploring the effects of GSK-3β on the cytotoxicity and antitumor activity of sorafenib combined with the HDM2 antagonist MI-319. Results MI-319 alone increased p53 levels and p53-dependent gene expression in melanoma cells but did not induce programmed cell death. Its cytotoxicity, however, was augmented in some melanoma cell lines by the addition of sorafenib. In responsive cell lines, the MI-319/sorafenib combination induced the disappearance of p53 from the nucleus, the down modulation of Bcl-2 and Bcl-xL, the translocation of p53 to the mitochondria and that of AIF to the nuclei. These events were all GSK-3β-dependent in that they were blocked with a GSK-3β shRNA and facilitated in otherwise unresponsive melanoma cell lines by the introduction of a constitutively active form of the kinase (GSK-3β-S9A). These modulatory effects of GSK-3β on the activities of the sorafenib/MI-319 combination were the exact reverse of its effects on the activities of sorafenib alone, which induced the down modulation of Bcl-2 and Bcl-xL and the nuclear translocation of AIF only in cells in which GSK-3β activity was either down modulated or constitutively low. In A375 xenografts, the antitumor effects of sorafenib and MI-319 were additive and associated with the down modulation of Bcl-2 and Bcl-xL, the nuclear translocation of AIF, and increased suppression of tumor angiogenesis. Conclusions Our data demonstrate a

  5. Biological evaluation of a novel sorafenib analogue, t-CUPM.

    PubMed

    Wecksler, Aaron T; Hwang, Sung Hee; Liu, Jun-Yan; Wettersten, Hiromi I; Morisseau, Christophe; Wu, Jian; Weiss, Robert H; Hammock, Bruce D

    2015-01-01

    Sorafenib (Nexavar®) is currently the only FDA-approved small molecule targeted therapy for advanced hepatocellular carcinoma. The use of structural analogues and derivatives of sorafenib has enabled the elucidation of critical targets and mechanism(s) of cell death for human cancer lines. We previously performed a structure-activity relationship study on a series of sorafenib analogues designed to investigate the inhibition overlap between the major targets of sorafenib Raf-1 kinase and VEGFR-2, and an enzyme shown to be a potent off-target of sorafenib, soluble epoxide hydrolase. In the current work, we present the biological data on our lead sorafenib analogue, t-CUPM, demonstrating that this analogue retains cytotoxicity similar to sorafenib in various human cancer cell lines and strongly inhibits growth in the NCI-60 cell line panel. Co-treatment with the pan-caspase inhibitor, Z-VAD-FMK, failed to rescue the cell viability responses of both sorafenib and t-CUPM, and immunofluorescence microscopy shows similar mitochondrial depolarization and apoptosis-inducing factor release for both compounds. These data suggest that both compounds induce a similar mechanism of caspase-independent apoptosis in hepatoma cells. In addition, t-CUPM displays anti-proliferative effects comparable to sorafenib as seen by a halt in G0/G1 in cell cycle progression. The structural difference between sorafenib and t-CUPM significantly reduces inhibitory spectrum of kinases by this analogue, and pharmacokinetic characterization demonstrates a 20-fold better oral bioavailability of t-CUPM than sorafenib in mice. Thus, t-CUPM may have the potential to reduce the adverse events observed from the multikinase inhibitory properties and the large dosing regimens of sorafenib. PMID:25413440

  6. The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing

    PubMed Central

    Tesori, Valentina; Piscaglia, Anna Chiara; Samengo, Daniela; Barba, Marta; Bernardini, Camilla; Scatena, Roberto; Pontoglio, Alessandro; Castellini, Laura; Spelbrink, Johannes N.; Maulucci, Giuseppe; Puglisi, Maria Ausiliatrice; Pani, Giovambattista; Gasbarrini, Antonio

    2015-01-01

    Although the only effective drug against primary hepatocarcinoma, the multikinase inhibitor Sorafenib (SFB) usually fails to eradicate liver cancer. Since SFB targets mitochondria, cell metabolic reprogramming may underlie intrinsic tumor resistance. To characterize cancer cell metabolic response to SFB, we measured oxygen consumption, generation of reactive oxygen species (ROS) and ATP content in rat LCSC (Liver Cancer Stem Cells) -2 cells exposed to the drug. Genome wide analysis of gene expression was performed by Affymetrix technology. SFB cytotoxicity was evaluated by multiple assays in the presence or absence of metabolic inhibitors, or in cells genetically depleted of mitochondria. We found that low concentrations (2.5–5 μM) of SFB had a relatively modest effect on LCSC-2 or 293 T cell growth, but damaged mitochondria and increased intracellular ROS. Gene expression profiling of SFB-treated cells was consistent with a shift toward aerobic glycolysis and, accordingly, SFB cytotoxicity was dramatically increased by glucose withdrawal or the glycolytic inhibitor 2-DG. Under metabolic stress, activation of the AMP dependent Protein Kinase (AMPK), but not ROS blockade, protected cells from death. We conclude that mitochondrial damage and ROS drive cell killing by SFB, while glycolytic cell reprogramming may represent a resistance strategy potentially targetable by combination therapies. PMID:25779766

  7. A Dosing/Cross-Development Study of the Multikinase Inhibitor Sorafenib in Patients With Pulmonary Arterial Hypertension

    PubMed Central

    Gomberg-Maitland, M; Maitland, ML; Barst, RJ; Sugeng, L; Coslet, S; Perrino, TJ; Bond, L; LaCouture, ME; Archer, SL; Ratain, MJ

    2012-01-01

    Pulmonary arterial hypertension (PAH) and cancer share elements of pathophysiology. This provides an opportunity for the cross-development of anticancer agents that can be used in improving PAH care. The adaptation of new drugs across these disease populations warrants a structured approach. This study was a 16-week, phase Ib, single-center, open-label trial of the multikinase/angiogenesis inhibitor sorafenib. In order to assess the safety of sorafenib in PAH, patients with advanced but stable disease on parenteral prostanoids (with or without oral sildenafil) were initiated on treatment at the lowest active dosage administered to cancer patients: 200 mg daily. Patients underwent weekly clinical evaluations and monthly functional testing and dose escalations to a final dosage of 400 mg twice daily. Among 12 patients (10 of them women), sorafenib was well tolerated at 200 mg twice daily. The most common adverse events were moderate skin reactions on the hands and feet and alopecia. Our conclusion was therefore that this is a tolerable dosing regimen for testing the therapeutic activity of sorafenib in PAH patients. PMID:20010555

  8. Inhibition of Autophagy by Chloroquine Enhances the Antitumor Efficacy of Sorafenib in Glioblastoma.

    PubMed

    Liu, Xiangyu; Sun, Kangjian; Wang, Handong; Dai, Yuyuan

    2016-10-01

    Glioblastoma multiforme (GBM) is the most aggressive and common brain tumor in adults. Sorafenib, a multi-kinase inhibitor, has been shown to inhibit cell proliferation and induce apoptosis through inhibition of STAT3 signaling in glioblastoma cells and in intracranial gliomas. However, sorafenib also induces cell autophagy. Due to the dual roles of autophagy in tumor cell survival and death, the therapeutic effect of sorafenib on glioblastoma is uncertain. Here, we combined sorafenib treatment in GBM cells (U373 and LN229) and tumors with the autophagy inhibitor chloroquine. We found that blockage of autophagy further inhibited cell proliferation and migration and induced cell apoptosis in vitro and in vivo. These findings suggest the possibility of combination treatment with sorafenib and autophagy inhibitors for GBM. PMID:26971793

  9. Vitamin K enhancement of Sorafenib-mediated HCC cell growth inhibition in vitro and in vivo

    PubMed Central

    Wei, Gang; Wang, Meifanf; Hyslop, Terry; Wang, Ziqiu; Carr, Brian I.

    2010-01-01

    The multi-kinase inhibitor Sorafenib, is the first oral agent to show activity against human hepatocellular carcinoma (HCC). Apoptosis has been shown to be induced in HCC by several agents, including Sorafenib, as well as by the naturally occurring K vitamins (VKs). Since few non toxic agents have activity against HCC growth, we evaluated the activity of Sorafenib and K vitamins, both independently and together on the growth in vitro and in vivo of HCC cells. We found that when VK was combined with Sorafenib, the concentration of Sorafenib required for growth inhibition was substantially reduced. Conversely, VK enhanced Sorafenib effects in several HCC cell lines on growth inhibition. Growth could be inhibited at doses of VK plus Sorafenib that were ineffective with either agent alone,using vitamins K1, K2 and K5. Combination VK1 plus Sorafenib induced apoptosis on FACS, TUNEL staining and caspase activation. Phospho-ERK levels were decreased, as was Mcl-1, an ERK target. Sorafenib alone inhibited growth of transplantable HCC in vivo. At sub-effective Sorafenib doses in vivo, addition of VK1 caused major tumor regression, with decreased phospho-ERK and Mcl-1 staining. Thus, combination VK1 plus Sorafenib strongly induced growth inhibition and apoptosis in rodent and human HCC and inhibited the RAF/MEK/ERK pathway. VK1 alone activated PKA, a mediator of inhibitory Raf phosphorylation. Thus, each agent can antagonize Raf; Sorafenib as a direct inhibitor and VK1 through inhibitory Raf phosphorylation. Since both agents are available for human use, the combination has potential for improving Sorafenib effects in HCC. PMID:21351273

  10. Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment

    PubMed Central

    Maitland, Michael L.; Kasza, Kristen E.; Karrison, Theodore; Moshier, Kristin; Sit, Laura; Black, Henry R.; Undevia, Samir D.; Stadler, Walter M.; Elliott, William J.; Ratain, Mark J.

    2009-01-01

    Purpose Hypertension is a mechanism-based toxicity of sorafenib and other cancer therapeutics that inhibit the vascular endothelial growth factor (VEGF) signaling pathway (VSP). This prospective, single center, cohort study characterized ambulatory blood pressure (BP) monitoring (ABPM) as an early pharmacodynamic biomarker of VSP inhibition by sorafenib. Experimental Design Fifty-four normotensive advanced cancer patients underwent 24-hour ABPM prior to and between days 6 and 10 of sorafenib therapy. After BP changes were detected among the first cohort within 10 days, ABPM was performed during the first 24 hours of treatment for the second cohort. Results For the entire patient population the BP increase (mean systolic +10.8 mmHg [95% CI, 8.6 to 13.0], range −5.2 to +28.7 mmHg; mean diastolic +8.0 mmHg [95% CI, 6.3 to 9.7], range −4.4 to +27.1mmHg) was detected between days 6 and 10 (P <0.0001 for both) and plateaued thereafter. Variability in BP change did not associate with: age, body size, sex, self-reported race, baseline BP, or steady state sorafenib plasma concentrations. In the second cohort the BP elevation was detected during the first 24 hours (mean systolic +8.2 mmHg [95% CI, 5.0 to 11.3]; mean diastolic +6.5 mmHg [95% CI, 4.7 to 8.3] P <0.0001 for both). Conclusions ABPM detects the BP response to VSP inhibition by sorafenib during the first 24 hours of treatment. The magnitude of BP elevation is highly variable and unpredictable, but could be important in optimizing the therapeutic index of VSP inhibitor therapy. PMID:19773379

  11. The Effect of Sorafenib, Tadalafil and Macitentan Treatments on Thyroxin-Induced Hemodynamic Changes and Cardiac Abnormalities

    PubMed Central

    Saad, Nancy S.; Floyd, Kyle; Ahmed, Amany A. E.; Mohler, Peter J.

    2016-01-01

    Multikinase inhibitors (e.g. Sorafenib), phosphodiesterase-5 inhibitors (e.g. Tadalafil), and endothelin-1 receptor blockers (e.g. Macitentan) exert influential protection in a variety of animal models of cardiomyopathy; however, their effects on thyroxin-induced cardiomyopathy have never been investigated. The goal of the present study was to assess the functional impact of these drugs on thyroxin-induced hemodynamic changes, cardiac hypertrophy and associated altered responses of the contractile myocardium both in-vivo at the whole heart level and ex-vivo at the cardiac tissue level. Control and thyroxin (500 μg/kg/day)-treated mice with or without 2-week treatments of sorafenib (10 mg/kg/day; I.P), tadalafil (1 mg/kg/day; I.P or 4 mg/kg/day; oral), macitentan (30 and 100 mg/kg/day; oral), and their vehicles were studied. Blood pressure, echocardiography and electrocardiogram were non-invasively evaluated, followed by ex-vivo assessments of isolated multicellular cardiac preparations. Thyroxin increased blood pressure, resulted in cardiac hypertrophy and left ventricular dysfunction in-vivo. Also, it caused contractile abnormalities in right ventricular papillary muscles ex-vivo. None of the drug treatments were able to significantly attenuate theses hemodynamic changes or cardiac abnormalities in thyroxin-treated mice. We show here for the first time that multikinase (raf1/b, VEGFR, PDGFR), phosphodiesterase-5, and endothelin-1 pathways have no major role in thyroxin-induced hemodynamic changes and cardiac abnormalities. In particular, our data show that the involvement of endothelin-1 pathway in thyroxine-induced cardiac hypertrophy/dysfunction seems to be model-dependent and should be carefully interpreted. PMID:27082116

  12. The Effect of Sorafenib, Tadalafil and Macitentan Treatments on Thyroxin-Induced Hemodynamic Changes and Cardiac Abnormalities.

    PubMed

    Saad, Nancy S; Floyd, Kyle; Ahmed, Amany A E; Mohler, Peter J; Janssen, Paul M L; Elnakish, Mohammad T

    2016-01-01

    Multikinase inhibitors (e.g. Sorafenib), phosphodiesterase-5 inhibitors (e.g. Tadalafil), and endothelin-1 receptor blockers (e.g. Macitentan) exert influential protection in a variety of animal models of cardiomyopathy; however, their effects on thyroxin-induced cardiomyopathy have never been investigated. The goal of the present study was to assess the functional impact of these drugs on thyroxin-induced hemodynamic changes, cardiac hypertrophy and associated altered responses of the contractile myocardium both in-vivo at the whole heart level and ex-vivo at the cardiac tissue level. Control and thyroxin (500 μg/kg/day)-treated mice with or without 2-week treatments of sorafenib (10 mg/kg/day; I.P), tadalafil (1 mg/kg/day; I.P or 4 mg/kg/day; oral), macitentan (30 and 100 mg/kg/day; oral), and their vehicles were studied. Blood pressure, echocardiography and electrocardiogram were non-invasively evaluated, followed by ex-vivo assessments of isolated multicellular cardiac preparations. Thyroxin increased blood pressure, resulted in cardiac hypertrophy and left ventricular dysfunction in-vivo. Also, it caused contractile abnormalities in right ventricular papillary muscles ex-vivo. None of the drug treatments were able to significantly attenuate theses hemodynamic changes or cardiac abnormalities in thyroxin-treated mice. We show here for the first time that multikinase (raf1/b, VEGFR, PDGFR), phosphodiesterase-5, and endothelin-1 pathways have no major role in thyroxin-induced hemodynamic changes and cardiac abnormalities. In particular, our data show that the involvement of endothelin-1 pathway in thyroxine-induced cardiac hypertrophy/dysfunction seems to be model-dependent and should be carefully interpreted. PMID:27082116

  13. Multikinase Inhibitors Induce Cutaneous Toxicity through OAT6-Mediated Uptake and MAP3K7-Driven Cell Death.

    PubMed

    Zimmerman, Eric I; Gibson, Alice A; Hu, Shuiying; Vasilyeva, Aksana; Orwick, Shelley J; Du, Guoqing; Mascara, Gerard P; Ong, Su Sien; Chen, Taosheng; Vogel, Peter; Inaba, Hiroto; Maitland, Michael L; Sparreboom, Alex; Baker, Sharyn D

    2016-01-01

    The use of multikinase inhibitors (MKI) in oncology, such as sorafenib, is associated with a cutaneous adverse event called hand-foot skin reaction (HFSR), in which sites of pressure or friction become inflamed and painful, thus significantly impacting quality of life. The pathogenesis of MKI-induced HFSR is unknown, and the only available treatment options involve dose reduction or discontinuation of therapy, which have negative effects on primary disease management. To investigate the underlying mechanisms by which sorafenib promotes keratinocyte cytotoxicity and subsequent HFSR induction, we performed a transporter-directed RNAi screen in human epidermal keratinocytes and identified SLC22A20 (OAT6) as an uptake carrier of sorafenib. Further investigations into the intracellular mechanism of sorafenib activity through in situ kinome profiling identified the mitogen-activated protein kinase MAP3K7 (TAK1) as a target of sorafenib that induces cell death. Finally, we demonstrate that sorafenib induced keratinocyte injury in vivo and that this effect could be reversed by cotreatment with the OAT6 inhibitor probenecid. Collectively, our findings reveal a novel pathway that regulates the entry of some MKIs into keratinocytes and explains the basis underlying sorafenib-induced skin toxicity, with important implications for the therapeutic management of HFSR. PMID:26677977

  14. Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling

    PubMed Central

    Zhang, P-F; Li, K-S; Shen, Y-h; Gao, P-T; Dong, Z-R; Cai, J-B; Zhang, C; Huang, X-Y; Tian, M-X; Hu, Z-Q; Gao, D-M; Fan, J; Ke, A-W; Shi, G-M

    2016-01-01

    Galectin-1 (Gal-1) is involved in several pathological activities associated with tumor progression and chemoresistance, however, the role and molecular mechanism of Gal-1 activity in hepatocellular carcinoma (HCC) epithelial–mesenchymal transition (EMT) and sorafenib resistance remain enigmatic. In the present study, forced Gal-1 expression promoted HCC progression and sorafenib resistance. Gal-1 elevated αvβ3-integrin expression, leading to AKT activation. Moreover, Gal-1 overexpression induced HCC cell EMT via PI3K/AKT cascade activation. Clinically, our data revealed that Gal-1 overexpression is correlated with poor HCC survival outcomes and sorafenib response. These data suggest that Gal-1 may be a potential therapeutic target for HCC and a biomarker for predicting response to sorafenib treatment. PMID:27100895

  15. Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling.

    PubMed

    Zhang, P-F; Li, K-S; Shen, Y-H; Gao, P-T; Dong, Z-R; Cai, J-B; Zhang, C; Huang, X-Y; Tian, M-X; Hu, Z-Q; Gao, D-M; Fan, J; Ke, A-W; Shi, G-M

    2016-01-01

    Galectin-1 (Gal-1) is involved in several pathological activities associated with tumor progression and chemoresistance, however, the role and molecular mechanism of Gal-1 activity in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT) and sorafenib resistance remain enigmatic. In the present study, forced Gal-1 expression promoted HCC progression and sorafenib resistance. Gal-1 elevated αvβ3-integrin expression, leading to AKT activation. Moreover, Gal-1 overexpression induced HCC cell EMT via PI3K/AKT cascade activation. Clinically, our data revealed that Gal-1 overexpression is correlated with poor HCC survival outcomes and sorafenib response. These data suggest that Gal-1 may be a potential therapeutic target for HCC and a biomarker for predicting response to sorafenib treatment. PMID:27100895

  16. Comprehensive overview of the efficacy and safety of sorafenib in advanced or metastatic renal cell carcinoma after a first tyrosine kinase inhibitor.

    PubMed

    Afonso, F J; Anido, U; Fernández-Calvo, O; Vázquez-Estévez, S; León, L; Lázaro, M; Ramos, M; Antón-Aparicio, L

    2013-06-01

    We performed a literature search that shed light on the signaling pathways involved in the sorafenib activity as first- or subsequent-line treatment, taking into account its toxicity profile. Sorafenib appears to have better tolerability when compared with other agents in the same indication. Cross-resistance between tyrosine kinase inhibitors (TKIs) may be limited, even after failure with a previous VEGFR inhibitor, but the optimal sequence with TKIs remains to be determined. Randomized trials of second-line treatment options have showed either modest or no differences in terms of progression-free and overall survival (OS). Direct comparison between sorafenib and axitinib demonstrated differences in terms of PFS in favor of axitinib, but not in terms of OS as second-line treatment. In contrast, a phase III study showed a benefit in OS, favoring sorafenib when compared with temsirolimus. In conclusion, after using other VEGF inhibitor such as sunitinib, sorafenib is active and safe for the treatment of patients with advanced or metastatic RCC. PMID:23401018

  17. Activation of phosphatidylinositol 3-kinase/Akt signaling mediates sorafenib-induced invasion and metastasis in hepatocellular carcinoma.

    PubMed

    Wang, Haiyong; Xu, Litao; Zhu, Xiaoyan; Wang, Peng; Chi, Huiying; Meng, Zhiqiang

    2014-10-01

    Sorafenib, an antiangiogenic agent, can promote tumor invasion and metastasis. The phosphatidylinositol 3-kinase (PI3K)/Akt/Snail-dependent pathway plays an important role in tumor invasion and metastasis. Yet, little is known concerning the role of the PI3K/Akt/Snail-dependent pathway in sorafenib‑induced invasion and metastasis of hepatic carcinoma (HCC). A human HCC orthotopic xenograft model was established, and sorafenib (30 mg/kg/day) was administered orally. Tumor growth and intrahepatic metastasis were assessed, and immunohistochemistry was applied to analyze the activation of the PI3K/Akt/Snail-dependent pathway. HCC cell lines were treated with sorafenib (1, 5 and 10 µM), and proliferation, migration and invasion were assessed. Western blotting and real-time polymerase chain reaction (RT-PCR) were used to examine the related gene expression of epithelial-mesenchymal transition (EMT) markers and the PI3K/Akt/Snail-dependent pathway. Sorafenib inhibited tumor growth and promoted intrahepatic invasion and metastasis of the orthotopic tumors grown from SMMC7721-GFP cells in vivo. Additionally, sorafenib promoted EMT and invasion and metastasis of HCC cells in vitro. Importantly, sorafenib enhanced PI3K and Akt activation and upregulation of the expression of transcription factor Snail, a critical EMT mediator. The upregulation of transcription factor Snail expression by sorafenib may be related to activation of the PI3K/AKT signaling pathway. The PI3K/Akt/Snail-dependent pathway may mediate the pro-invasive and pro-metastatic effects of sorafenib on HCC by inducing EMT. PMID:25070581

  18. Valproic acid overcomes transforming growth factor-β-mediated sorafenib resistance in hepatocellular carcinoma

    PubMed Central

    Matsuda, Yasunobu; Wakai, Toshifumi; Kubota, Masayuki; Osawa, Mami; Hirose, Yuki; Sakata, Jun; Kobayashi, Takashi; Fujimaki, Shun; Takamura, Masaaki; Yamagiwa, Satoshi; Aoyagi, Yutaka

    2014-01-01

    Sorafenib is a multi-kinase inhibitor approved for hepatocellular carcinoma, but rarely causes tumor regression in patients with chronic liver diseases. To investigate whether growth factor-mediated signaling is involved in sorafenib resistance, HepG2 and PLC/PRF/5 hepatoma cells were exposed to epidermal growth factor (EGF), hepatocyte growth factor (HGF) or transforming growth factor-β (TGF-β) prior to treatment with sorafenib. Furthermore, to identify an effective combination treatment with sorafenib, growth factor-sensitized cells were treated with sorafenib alone or in combination with celecoxib, lovastatin or valproic acid (VPA). Trypan blue staining and Annexin V assays showed that the cytotoxic effect of sorafenib was inhibited by 15-54% in cells sensitized to TGF-β (P<0.05). Western blotting analysis showed that TGF-β significantly activated extracellular signal-regulated kinase (ERK)-mediated AKT signaling, and sorafenib failed to suppress both ERK and AKT in TGF-β-sensitized cells. The decreased anti-tumor effect of sorafenib was rescued by chemical inhibition of ERK and AKT. When TGF-β-sensitized cells were treated with sorafenib plus VPA, the levels of phosphorylated ERK and AKT were considerably suppressed and the numbers of dead cells were increased by 3.7-5.7-fold compared with those exposed to sorafenib alone (P<0.05). Moreover, low dose sorafenib-induced cell migration was effectively suppressed by combination treatment with sorafenib and VPA. Collectively, TGF-β/ERK/AKT signaling might play a critical role in sorafenib resistance in hepatoma cells, and combination treatment with VPA may be effective against this drug resistance. PMID:24817927

  19. Modulation of Autophagy by Sorafenib: Effects on Treatment Response.

    PubMed

    Prieto-Domínguez, Nestor; Ordóñez, Raquel; Fernández, Anna; García-Palomo, Andres; Muntané, Jordi; González-Gallego, Javier; Mauriz, José L

    2016-01-01

    The multikinase inhibitor sorafenib is, at present, the only drug approved for the treatment of hepatocellular carcinoma (HCC), one of the most lethal types of cancer worldwide. However, the increase in the number of sorafenib tumor resistant cells reduces efficiency. A better knowledge of the intracellular mechanism of the drug leading to reduced cell survival could help to improve the benefits of sorafenib therapy. Autophagy is a bulk cellular degradation process activated in a broad range of stress situations, which allows cells to degrade misfolded proteins or dysfunctional organelles. This cellular route can induce survival or death, depending on cell status and media signals. Sorafenib, alone or in combination with other drugs is able to induce autophagy, but cell response to the drug depends on the complex integrative crosstalk of different intracellular signals. In cancerous cells, autophagy can be regulated by different cellular pathways (Akt-related mammalian target of rapamycin (mTOR) inhibition, 5' AMP-activated protein kinase (AMPK) induction, dissociation of B-cell lymphoma 2 (Bcl-2) family proteins from Beclin-1), or effects of some miRNAs. Inhibition of mTOR signaling by sorafenib and diminished interaction between Beclin-1 and myeloid cell leukemia 1 (Mcl-1) have been related to induction of autophagy in HCC. Furthermore, changes in some miRNAs, such as miR-30α, are able to modulate autophagy and modify sensitivity in sorafenib-resistant cells. However, although AMPK phosphorylation by sorafenib seems to play a role in the antiproliferative action of the drug, it does not relate with modulation of autophagy. In this review, we present an updated overview of the effects of sorafenib on autophagy and its related activation pathways, analyzing in detail the involvement of autophagy on sorafenib sensitivity and resistance. PMID:27375485

  20. Modulation of Autophagy by Sorafenib: Effects on Treatment Response

    PubMed Central

    Prieto-Domínguez, Nestor; Ordóñez, Raquel; Fernández, Anna; García-Palomo, Andres; Muntané, Jordi; González-Gallego, Javier; Mauriz, José L.

    2016-01-01

    The multikinase inhibitor sorafenib is, at present, the only drug approved for the treatment of hepatocellular carcinoma (HCC), one of the most lethal types of cancer worldwide. However, the increase in the number of sorafenib tumor resistant cells reduces efficiency. A better knowledge of the intracellular mechanism of the drug leading to reduced cell survival could help to improve the benefits of sorafenib therapy. Autophagy is a bulk cellular degradation process activated in a broad range of stress situations, which allows cells to degrade misfolded proteins or dysfunctional organelles. This cellular route can induce survival or death, depending on cell status and media signals. Sorafenib, alone or in combination with other drugs is able to induce autophagy, but cell response to the drug depends on the complex integrative crosstalk of different intracellular signals. In cancerous cells, autophagy can be regulated by different cellular pathways (Akt-related mammalian target of rapamycin (mTOR) inhibition, 5′ AMP-activated protein kinase (AMPK) induction, dissociation of B-cell lymphoma 2 (Bcl-2) family proteins from Beclin-1), or effects of some miRNAs. Inhibition of mTOR signaling by sorafenib and diminished interaction between Beclin-1 and myeloid cell leukemia 1 (Mcl-1) have been related to induction of autophagy in HCC. Furthermore, changes in some miRNAs, such as miR-30α, are able to modulate autophagy and modify sensitivity in sorafenib-resistant cells. However, although AMPK phosphorylation by sorafenib seems to play a role in the antiproliferative action of the drug, it does not relate with modulation of autophagy. In this review, we present an updated overview of the effects of sorafenib on autophagy and its related activation pathways, analyzing in detail the involvement of autophagy on sorafenib sensitivity and resistance. PMID:27375485

  1. Paradoxical exacerbation of chronic plaque psoriasis by sorafenib.

    PubMed

    Yiu, Z Z N; Ali, F R; Griffiths, C E M

    2016-06-01

    Vascular endothelial growth factor (VEGF) antagonists have been investigated as a potential treatment for psoriasis, but there have been reports of VEGF antagonists triggering and/or exacerbating pre-existing psoriasis. We present the case of a 61-year old-man with exacerbation of pre-existing psoriasis after treatment with sorafenib, a small molecule inhibitor of the tyrosine kinase domain of the VEGF receptor, and we review the literature for other published cases of sorafenib-induced or sorafenib-exacerbated psoriasis. Clinicians, including both dermatologists and oncologists, should be aware of this potential side-effect of sorafenib in addition to the other cutaneous side effects reported for this drug. PMID:26667599

  2. Novel sorafenib analogues induce apoptosis through SHP-1 dependent STAT3 inactivation in human breast cancer cells

    PubMed Central

    2013-01-01

    Introduction Signal transducers and activators of transcription 3 (STAT3) signaling is constitutively activated in various cancers including breast cancer and has emerged as a novel potential anti-cancer target. STAT3 has been demonstrated to be a target of sorafenib, and a protein tyrosine phosphatase Src homology 2-domain containing tyrosine phosphatase 1 (SHP-1) has been demonstrated to downregulate p-STAT3 via its phosphatase activity. Here, we tested the efficacy of two sorafenib analogues, SC-1 and SC-43, in breast cancer cells and examined the drug mechanism. Methods Breast cancer cell lines were used for in vitro studies. Cell viability was examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was examined by flow cytometry and western blot. Signal transduction pathways in cells were assessed by western blot. In vivo efficacy of sorafenib, SC-1 and SC-43 was tested in xenografted nude mice. Results SC-1 and SC-43 induced more potent apoptosis than sorafenib, in association with downregulation of p-STAT3 and its downstream proteins cyclin D1 and survivin in a dose-dependent manner in breast cancer cell lines (HCC-1937, MDA-MB-468, MDA-MB-231, MDA-MB-453, SK-BR3, MCF-7). Overexpression of STAT3 in MDA-MB-468 cells protected the cells from apoptosis induced by sorafenib, SC-1 and SC-43. Moreover, SC-1 and SC-43 upregulated SHP-1 activity to a greater extent than sorafenib as measured by in vitro phosphatase assays. Knockdown of SHP-1 by siRNA reduced apoptosis induced by SC-1 and SC-43. Importantly, SC-1 and SC-43 showed more efficacious antitumor activity and p-STAT3 downregulation than sorafenib in MDA-MB-468 xenograft tumors. Conclusions Novel sorafenib analogues SC-1 and SC-43 induce apoptosis through SHP-1 dependent STAT3 inactivation and demonstrate greater potency than sorafenib in human breast cancer cells. PMID:23938089

  3. Sorafenib suppresses the cell cycle and induces the apoptosis of hepatocellular carcinoma cell lines in serum-free media

    PubMed Central

    TOMIZAWA, MINORU; SHINOZAKI, FUMINOBU; SUGIYAMA, TAKAO; YAMAMOTO, SHIGENORI; SUEISHI, MAKOTO; YOSHIDA, TAKANOBU

    2010-01-01

    To suppress the invasion of hepatocellular carcinoma (HCC) cells into surrounding connective tissues during metastasis, we investigated the usefulness of sorafenib. In order to search for model cell lines, cell numbers were counted to reveal cell lines with the potential to proliferate in serum-free media. Cell proliferation and cell motility were analyzed with the MTS and wound assay, respectively. 5-Bromo-2′-deoxyuridine (BrdU) labeling and mitotic and apoptotic indices were analyzed to assess the cell cycle and apoptosis. The expression levels of cyclin D1 and the cleavage of caspase-3 were analyzed by Western blotting. HLF cells exhibited growth in the serum-free medium, while the other cell lines examined did not. Sorafenib suppressed the cell proliferation and motility of the HLF cells in the serum-free media. Both indices of BrdU and mitotic potential decreased and the apoptotic index was increased in the serum-free media with sorafenib, suggesting that the cell cycle was suppressed and apoptosis was induced. The expression levels of cyclin D1 decreased and the cleavage of caspase-3 was noted in the serum-free media with sorafenib. Sorafenib may be suitable for molecular therapy to suppress the metastasis of HCC. PMID:22993610

  4. Sorafenib suppresses JNK-dependent apoptosis through inhibition of ZAK.

    PubMed

    Vin, Harina; Ching, Grace; Ojeda, Sandra S; Adelmann, Charles H; Chitsazzadeh, Vida; Dwyer, David W; Ma, Haiching; Ehrenreiter, Karin; Baccarini, Manuela; Ruggieri, Rosamaria; Curry, Jonathan L; Ciurea, Ana M; Duvic, Madeleine; Busaidy, Naifa L; Tannir, Nizar M; Tsai, Kenneth Y

    2014-01-01

    Sorafenib is U.S. Food and Drug Adminstration-approved for the treatment of renal cell carcinoma and hepatocellular carcinoma and has been combined with numerous other targeted therapies and chemotherapies in the treatment of many cancers. Unfortunately, as with other RAF inhibitors, patients treated with sorafenib have a 5% to 10% rate of developing cutaneous squamous cell carcinoma (cSCC)/keratoacanthomas. Paradoxical activation of extracellular signal-regulated kinase (ERK) in BRAF wild-type cells has been implicated in RAF inhibitor-induced cSCC. Here, we report that sorafenib suppresses UV-induced apoptosis specifically by inhibiting c-jun-NH(2)-kinase (JNK) activation through the off-target inhibition of leucine zipper and sterile alpha motif-containing kinase (ZAK). Our results implicate suppression of JNK signaling, independent of the ERK pathway, as an additional mechanism of adverse effects of sorafenib. This has broad implications for combination therapies using sorafenib with other modalities that induce apoptosis. PMID:24170769

  5. [A case of advanced hepatocellular carcinoma successfully treated by liver resection after complete response induced by sorafenib administration].

    PubMed

    Kim, Yongkook; Hosoda, Yohei; Kakita, Naruyasu; Yamada, Yukinori; Yamasaki, Masaru; Nishino, Masaya; Okano, Miho; Nagai, Kenichi; Yasui, Masayoshi; Tsujinaka, Toshimasa

    2014-11-01

    A 50-year-old man presented to our hospital with the chief complaint of right hypochondriac pain and a palpable tumor. Advanced hepatocellular carcinoma (HCC) and chronic hepatitis B infection were diagnosed and treated by twice-repeated transcatheterarterial chemoembolization (TACE) followed by administration of entecavir. Two months after the last TACE, alpha-fetoprotein(AFP)and protein induced by vitamin K absence or antagonistII (PIVKA-II) levels had elevated, and multiple small early enhancing nodules were detected on computed tomography(CT)scan. Based on his age and liver function (Child-Pugh score A5), a full dose of sorafenib (800 mg/day) was administered. The sorafenib dose was decreased after one month to 400mg/day because of hand-foot syndrome. Following sorafenib administration, the lesions shrank markedly, and complete response (CR) according to modified Response Evaluation Criteria In Solid Tumors(mRECIST)was achieved within 4 months. Six months after sorafenib treatment was begun, recurrent HCC was detected in segment 6, near the previously treated lesion. The decreased size of the main tumor and normalization of AFP levels allowed curative surgical resection. The patient was discharged 5 days after surgery and is currently treated with a half dose of sorafenib. Thirteen months after surgery, a small early enhancing lesion is visible on postoperative CT scan, but AFP and PIVKA-II levels are still keeping in a normal range. This case demonstrates that if sorafenib treatment is effective, then subsequent surgical treatment can be reconsidered in patients with advanced HCC responding to this combined therapy. PMID:25731444

  6. Activation of AMP-activated protein kinase by retinoic acid sensitizes hepatocellular carcinoma cells to apoptosis induced by sorafenib

    PubMed Central

    Ishijima, Naoki; Kanki, Keita; Shimizu, Hiroki; Shiota, Goshi

    2015-01-01

    To improve the outcome of cancer chemotherapy, strategies to enhance the efficacy of anticancer drugs are required. Sorafenib is the only drug to prolong overall survival of the patients with hepatocellular carcinoma (HCC), however, the outcome is still not satisfactory. Retinoids, vitamin A derivatives, have been known to exhibit inhibitory effects on various cancers including HCC. In this study, we investigated the effects of combined treatment using sorafenib and retinoids including all-trans retinoic acid (ATRA), NIK-333, and Am80 on HCC cells. Cell viability assays in six HCC cell lines, HepG2, PLC/PRF/5, HuH6, HLE, HLF, and Hep3B, revealed that 5 and 10 μM ATRA, concentrations that do not exert cytotoxic effects, enhanced the cytotoxicity of sorafenib, being much more effective than NIK-333 and Am80. We found that ATRA induced AMP-activated protein kinase activation, which was followed by reduced intracellular ATP level. Gene expression analysis revealed that ATRA decreased the expression of glycolytic genes such as GLUT-1 and LDHA. In the combination treatment using ATRA and sorafenib, increased apoptosis, followed by the activation of p38 MAPK and JNK, the upregulation and translocation of Bax to mitochondria, and the activation of caspase-3, was observed. Suppression of AMP-activated protein kinase by siRNA restored the viability of the cells treated with ATRA and sorafenib. Our results thus indicate that ATRA is useful for enhancing the cytotoxicity of sorafenib against HCC cells by regulating the energy metabolism of HCC cells. PMID:25683251

  7. Activation of AMP-activated protein kinase by retinoic acid sensitizes hepatocellular carcinoma cells to apoptosis induced by sorafenib.

    PubMed

    Ishijima, Naoki; Kanki, Keita; Shimizu, Hiroki; Shiota, Goshi

    2015-05-01

    To improve the outcome of cancer chemotherapy, strategies to enhance the efficacy of anticancer drugs are required. Sorafenib is the only drug to prolong overall survival of the patients with hepatocellular carcinoma (HCC), however, the outcome is still not satisfactory. Retinoids, vitamin A derivatives, have been known to exhibit inhibitory effects on various cancers including HCC. In this study, we investigated the effects of combined treatment using sorafenib and retinoids including all-trans retinoic acid (ATRA), NIK-333, and Am80 on HCC cells. Cell viability assays in six HCC cell lines, HepG2, PLC/PRF/5, HuH6, HLE, HLF, and Hep3B, revealed that 5 and 10 μM ATRA, concentrations that do not exert cytotoxic effects, enhanced the cytotoxicity of sorafenib, being much more effective than NIK-333 and Am80. We found that ATRA induced AMP-activated protein kinase activation, which was followed by reduced intracellular ATP level. Gene expression analysis revealed that ATRA decreased the expression of glycolytic genes such as GLUT-1 and LDHA. In the combination treatment using ATRA and sorafenib, increased apoptosis, followed by the activation of p38 MAPK and JNK, the upregulation and translocation of Bax to mitochondria, and the activation of caspase-3, was observed. Suppression of AMP-activated protein kinase by siRNA restored the viability of the cells treated with ATRA and sorafenib. Our results thus indicate that ATRA is useful for enhancing the cytotoxicity of sorafenib against HCC cells by regulating the energy metabolism of HCC cells. PMID:25683251

  8. Sneddon-Wilkinson disease induced by sorafenib in a patient with advanced hepatocellular carcinoma.

    PubMed

    Tajiri, Kazuto; Nakajima, Takahiko; Kawai, Kengo; Minemura, Masami; Sugiyama, Toshiro

    2015-01-01

    Sorafenib is the standard treatment for patients with advanced hepatocellular carcinoma (HCC), although it is known to cause a variety of dermatologic adverse events. Subcorneal pustular dermatosis (SCPD), also known as Sneddon-Wilkinson disease, is a rare skin eruption that accompanies various systemic disorders and may become chronically progressive. We herein describe the case of a patient who developed SCPD after sorafenib administration. The dermatologic reaction was improved by the cessation of sorafenib and worsened by its readministration. Clinicians treating HCC patients with sorafenib should be aware of the possibility of SCPD. PMID:25786448

  9. Association of toxicity of sorafenib and sunitinib for human keratinocytes with inhibition of signal transduction and activator of transcription 3 (STAT3).

    PubMed

    Yamamoto, Kazuhiro; Mizumoto, Atsushi; Nishimura, Kohji; Uda, Atsushi; Mukai, Akira; Yamashita, Kazuhiko; Kume, Manabu; Makimoto, Hiroo; Bito, Toshinori; Nishigori, Chikako; Nakagawa, Tsutomu; Hirano, Takeshi; Hirai, Midori

    2014-01-01

    Hand-foot skin reaction is a most common multi-kinase inhibitor-related adverse event. This study aimed to examine whether the toxicity of sorafenib and sunitinib for human keratinocytes was associated with inhibiting signal transduction and activator of transcription 3 (STAT3). We studied whether STAT3 activity affects sorafenib- and sunitinib-induced cell growth inhibition in HaCaT cells by WST-8 assay. Stattic enhanced the cell-growth inhibitory and apoptotic effects of sorafenib and sunitinib. HaCaT cells transfected with constitutively-active STAT3 (STAT3C) were resistant to the sorafenib- and sunitinib-induced cell growth inhibition. STAT3 activity decreased after short-term treatment with sorafenib and sunitinib in a dose-dependent manner and recovered after long-term treatment with sorafenib and sunitinib at low doses. Moreover, the expression of survivin and bcl-2 decreased after treatment with sorafenib and sunitinib was concomitant with variations in STAT3 activity. Sorafenib-induced STAT3 inhibition was mediated by regulation via MAPK pathways in HaCaT cells, while sunitinib-induced STAT3 inhibition was not. Thus, STAT3 activation mediating apoptosis suppressors may be a key factor in sorafenib and sunitinib-induced keratinocyte cytotoxicity. PMID:25013907

  10. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways.

    PubMed

    Xu, Yanmin; Huang, Ji; Ma, Leina; Shan, Juanjuan; Shen, Junjie; Yang, Zhi; Liu, Limei; Luo, Yongli; Yao, Chao; Qian, Cheng

    2016-02-28

    Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC), but the clinical response to sorafenib is seriously limited by drug resistance. In this study, we investigated the molecular mechanisms of sorafenib resistance in HCC cells. Our miRNA microarray data indicate that liver-specific miR-122 expression was significantly reduced in sorafenib-resistant cells. Overexpression of miR-122 made drug-tolerant cells sensitive to sorafenib and induced apoptosis. Insulin-like growth factor 1 receptor (IGF-1R) was validated as a target of miR-122 and was repressed by this miRNA. miR-122-induced apoptosis was repressed by the IGF-1R activator IGFI or IGFII. Conversely, the IGF-1R inhibitor PPP or NVP-AEW541 in combination with sorafenib significantly induced cell apoptosis and disrupted tolerance to drugs in vitro. These results indicated that activation of IGF-1R by ectopic down-regulation of miR-122 counteracted the effects of sorafenib-induced apoptosis, thus conferring sorafenib resistance. Further study revealed that activation of IGF-1R by miR-122 down-regulation contributed to activation of RAS/RAF/ERK signaling, which was associated with drug resistance. Our data imply that an intimate correlation between miR-122 and IGF-1R abnormal expression is a critical determinant of sorafenib tolerance. PMID:26655273

  11. NMR-Based Metabolic Profiling Reveals Neurochemical Alterations in the Brain of Rats Treated with Sorafenib.

    PubMed

    Du, Changman; Shao, Xue; Zhu, Ruiming; Li, Yan; Zhao, Qian; Fu, Dengqi; Gu, Hui; Kong, Jueying; Luo, Li; Long, Hailei; Deng, Pengchi; Wang, Huijuan; Hu, Chunyan; Zhao, Yinglan; Cen, Xiaobo

    2015-11-01

    Sorafenib, an active multi-kinase inhibitor, has been widely used as a chemotherapy drug to treat advanced clear-cell renal cell carcinoma patients. In spite of the relative safety, sorafenib has been shown to exert a negative impact on cognitive functioning in cancer patients, specifically on learning and memory; however, the underlying mechanism remains unclear. In this study, an NMR-based metabolomics approach was applied to investigate the neurochemical effects of sorafenib in rats. Male rats were once daily administrated with 120 mg/kg sorafenib by gavage for 3, 7, and 28 days, respectively. NMR-based metabolomics coupled with histopathology examinations for hippocampus, prefrontal cortex (PFC), and striatum were performed. The (1)H NMR spectra data were analyzed by using multivariate pattern recognition techniques to show the time-dependent biochemical variations induced by sorafenib. Excellent separation was obtained and distinguishing metabolites were observed between sorafenib-treated and control rats. A total of 36 differential metabolites in hippocampus of rats treated with sorafenib were identified, some of which were significantly changed. Furthermore, these modified metabolites mainly reflected the disturbances in neurotransmitters, energy metabolism, membrane, and amino acids. However, only a few metabolites in PFC and striatum were altered by sorafenib. Additionally, no apparent histological changes in these three brain regions were observed in sorafenib-treated rats. Together, our findings demonstrate the disturbed metabonomics pathways, especially, in hippocampus, which may underlie the sorafenib-induced cognitive deficits in patients. This work also shows the advantage of NMR-based metabolomics over traditional approach on the study of biochemical effects of drugs. PMID:26233726

  12. The ruthenium compound KP1339 potentiates the anticancer activity of sorafenib in vitro and in vivo☆

    PubMed Central

    Heffeter, Petra; Atil, Bihter; Kryeziu, Kushtrim; Groza, Diana; Koellensperger, Gunda; Körner, Wilfried; Jungwirth, Ute; Mohr, Thomas; Keppler, Bernhard K.; Berger, Walter

    2013-01-01

    KP1339 is a promising ruthenium-based anticancer compound in early clinical development. This study aimed to test the effects of KP1339 on the in vitro and in vivo activity of the multi-kinase inhibitor sorafenib, the current standard first-line therapy for advanced hepatoma. Anticancer activity of the parental compounds as compared to the drug combination was tested against a panel of cancer cell lines with a focus on hepatoma. Combination of KP1339 with sorafenib induced in the majority of all cases distinctly synergistic effects, comprising both sorafenib-resistant as well as sorafenib-responsive cell models. Several mechanisms were found to underlie these multifaceted synergistic activities. Firstly, co-exposure induced significantly enhanced accumulation levels of both drugs resulting in enhanced apoptosis induction. Secondly, sorafenib blocked KP1339-mediated activation of P38 signalling representing a protective response against the ruthenium drug. In addition, sorafenib treatment also abrogated KP1339-induced G2/M arrest but resulted in check point-independent DNA-synthesis block and a complete loss of the mitotic cell populations. The activity of the KP1339/sorafenib combination was evaluated in the Hep3B hepatoma xenograft. KP1339 monotherapy led to a 2.4-fold increase in life span and, thus, was superior to sorafenib, which induced a 1.9-fold prolonged survival. The combined therapy further enhanced the mean survival by 3.9-fold. Synergistic activity was also observed in the VM-1 melanoma xenograft harbouring an activating braf mutation. Together, our data indicate that the combination of KP1339 with sorafenib displays promising activity in vitro and in vivo especially against human hepatoma models. PMID:23790465

  13. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer.

    PubMed

    Gao, Dong-Yu; Lin, Ts-Ting; Sung, Yun-Chieh; Liu, Ya Chi; Chiang, Wen-Hsuan; Chang, Chih-Chun; Liu, Jia-Yu; Chen, Yunching

    2015-10-01

    Sorafenib, a multikinase inhibitor, has been used as an anti-angiogenic agent against highly vascular hepatocellular carcinoma (HCC) - yet associated with only moderate therapeutic effect and the high incidence of HCC recurrence. We have shown intratumoral hypoxia induced by sorafenib activated C-X-C receptor type 4 (CXCR4)/stromal-derived factor 1α (SDF1α) axis, resulting in polarization toward a tumor-promoting microenvironment and resistance to anti-angiogenic therapy in HCC. Herein, we formulated sorafenib in CXCR4-targeted lipid-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with a CXCR4 antagonist, AMD3100 to systemically deliver sorafenib into HCC and sensitize HCC to sorafenib treatment. We demonstrated that CXCR4-targeted NPs efficiently delivered sorafenib into HCCs and human umbilical vein endothelial cells (HUVECs) to achieve cytotoxicity and anti-angiogenic effect in vitro and in vivo. Despite the increased expression of SDF1α upon the persistent hypoxia induced by sorafenib-loaded CXCR4-targeted NPs, AMD3100 attached to the NPs can block CXCR4/SDF1α, leading to the reduced infiltration of tumor-associated macrophages, enhanced anti-angiogenic effect, a delay in tumor progression and increased overall survival in the orthotopic HCC model compared with other control groups. In conclusion, our results highlight the clinical potential of CXCR4-targeted NPs for delivering sorafenib and overcoming acquired drug resistance in liver cancer. PMID:26218745

  14. Early Sorafenib-Induced Toxicity Is Associated with Drug Exposure and UGTIA9 Genetic Polymorphism in Patients with Solid Tumors: A Preliminary Study

    PubMed Central

    Golmard, Jean Louis; Thomas-Schoemann, Audrey; Mir, Olivier; Taieb, Fabrice; Durand, Jean-Philippe; Coriat, Romain; Dauphin, Alain; Vidal, Michel; Tod, Michel; Loriot, Marie-Anne; Goldwasser, François; Blanchet, Benoit

    2012-01-01

    Background Identifying predictive biomarkers of drug response is of key importance to improve therapy management and drug selection in cancer therapy. To date, the influence of drug exposure and pharmacogenetic variants on sorafenib-induced toxicity remains poorly documented. The aim of this pharmacokinetic/pharmacodynamic (PK/PD) study was to investigate the relationship between early toxicity and drug exposure or pharmacogenetic variants in unselected adult outpatients treated with single-agent sorafenib for advanced solid tumors. Methods Toxicity was recorded in 54 patients on days 15 and 30 after treatment initiation and sorafenib exposure was assessed in 51 patients. The influence of polymorphisms in CYP3A5, UGT1A9, ABCB1 and ABCG2 was examined in relation to sorafenib exposure and toxicity. Clinical characteristics, drug exposure and pharmacogenetic variants were tested univariately for association with toxicities. Candidate variables with p<0.1 were analyzed in a multivariate analysis. Results Gender was the sole parameter independently associated with sorafenib exposure (p = 0.0008). Multivariate analysis showed that increased cumulated sorafenib (AUCcum) was independently associated with any grade ≥3 toxicity (p = 0.037); UGT1A9 polymorphism (rs17868320) with grade ≥2 diarrhea (p = 0.015) and female gender with grade ≥2 hand-foot skin reaction (p = 0.018). Using ROC curve, the threshold AUCcum value of 3,161 mg/L.h was associated with the highest risk to develop any grade ≥3 toxicity (p = 0.018). Conclusion In this preliminary study, increased cumulated drug exposure and UGT1A9 polymorphism (rs17868320) identified patients at high risk for early sorafenib-induced severe toxicity. Further PK/PD studies on larger population are warranted to confirm these preliminary results. PMID:22912756

  15. Low-dose taxotere enhances the ability of sorafenib to induce apoptosis in gastric cancer models.

    PubMed

    Tesei, Anna; Leonetti, Carlo; Zupi, Gabriella; Scarsella, Marco; Brigliadori, Giovanni; Ulivi, Paola; Fabbri, Francesco; Arienti, Chiara; Amadori, Dino; Passardi, Alessandro; Silvestrini, Rosella; Zoli, Wainer

    2011-02-01

    Despite the low efficacy of conventional antitumour drugs, chemotherapy remains an essential tool in controlling advanced gastric and oesophageal cancers. We aimed to provide a biological rationale based on the sorafenib-taxotere interaction for the clinical treatment of gastric cancer. In vitro experiments were performed on four human gastric cancer cell lines (GK2, AKG, KKP and NCI-N87). Cytotoxicity was evaluated by sulforhodamine B (SRB) assay, cell cycle perturbations, apoptosis and mitotic catastrophe were assessed by flow cytometric and microscopic analyses, and protein expression was studied by Western blot. In the in vivo experiments, nude mice xenografted with the most resistant line were treated with sorafenib and docetaxel singly or in association. Sorafenib inhibited cell growth (IG(50) values ranged from 3.4 to 8.1 μM) and caused down-regulation of MAP-K/ERK phosphorylation and of mcl-1 and p-bad expression after a 48-hr exposure. Apoptosis induction was associated with caspase-3 and -9 activation and mitochondrial membrane depolarization. The drug combination enhanced apoptosis (up to 80%) and produced a synergistic interaction when low doses of the taxane preceded administration of the antityrosine kinase. This synergism was probably due to the induction of an anomalous multidiploid G0-G1 peak and to consequent mitotic catastrophe, which increased sensitivity to sorafenib. Consistent with in vitro results, the docetaxel-sorafenib sequence exhibited high therapeutic efficacy in NCI-N87 mouse xenografts producing tumour weight inhibition (> 65%), tumour growth delay (up to 25 days) and increased mouse survival (30%). Our findings suggest the potential clinical usefulness of treatment with sorafenib and docetaxel for advanced gastric cancer. PMID:20015197

  16. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells.

    PubMed

    Firtina Karagonlar, Zeynep; Koc, Dogukan; Iscan, Evin; Erdal, Esra; Atabey, Neşe

    2016-04-01

    Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the third leading cause of cancer-related deaths worldwide. Limitations in HCC treatment result due to poor prognosis and resistance against traditional radiotherapy and chemotherapies. The multikinase inhibitor sorafenib is the only FDA approved drug available for advanced HCC patients, and development of second-line treatment options for patients who cannot tolerate or develop resistance to sorafenib is an urgent medical need. In this study, we established sorafenib-resistant cells from Huh7 and Mahlavu cell lines by long-term sorafenib exposure. Sorafenib-resistant HCC cells acquired spindle-shape morphology, upregulated mesenchymal markers, and showed significant increase in both migration and invasion abilities compared to their parental counterparts. Moreover, after long-term sorafenib treatment, HCC cells showed induction of hepatocyte growth factor (HGF) synthesis and secretion along with increased levels of c-Met kinase and its active phosphorylated form, indicating autocrine activation of HGF/c-Met signaling. Importantly, the combined treatment of the resistant cells with c-Met kinase inhibitor SU11274 and HGF neutralizing antibody significantly reversed the increased invasion ability of the cells. The combined treatment also significantly augmented sorafenib-induced apoptosis, suggesting restoration of sorafenib sensitivity. These results describe, for the first time, compensatory upregulation of HGF synthesis leading to autocrine activation of HGF/c-Met signaling as a novel cellular strategy in the acquisition of sorafenib resistance. Therefore, we suggest that combinatorial therapeutic strategies with HGF and c-Met inhibitors comprise promising candidates for overcoming sorafenib resistance. PMID:26790028

  17. Sorafenib inhibits tumor growth and vascularization of rhabdomyosarcoma cells by blocking IGF-1R-mediated signaling

    PubMed Central

    Maruwge, Wessen; D’Arcy, Pádraig; Folin, Annika; Brnjic, Slavica; Wejde, Johan; Davis, Anthony; Erlandsson, Fredrik; Bergh, Jonas; Brodin, Bertha

    2008-01-01

    The growth of many soft tissue sarcomas is dependent on aberrant growth factor signaling, which promotes their proliferation and motility. With this in mind, we evaluated the effect of sorafenib, a receptor tyrosine kinase inhibitor, on cell growth and apoptosis in sarcoma cell lines of various histological subtypes. We found that sorafenib effectively inhibited cell proliferation in rhabdomyosarcoma, synovial sarcoma and Ewing’s sarcoma with IC50 values <5 μM. Sorafenib effectively induced growth arrest in rhabdomyosarcoma cells, which was concurrent with inhibition of Akt and Erk signaling. Studies of ligand-induced phosphorylation of Erk and Akt in rhabdomyosarcoma cells showed that insulin-like growth factor-1 is a potent activator, which can be blocked by treatment with sorafenib. In vivo sorafenib treatment of rhabdomyosarcoma xenografts had a significant inhibitory effect on tumor growth, which was associated with inhibited vascularization and enhanced necrosis in the adjacent tumor stroma. Our results demonstrate that in vitro and in vivo growth of rhabdomyosarcoma can be suppressed by treatment with sorafenib, and suggests the possibilities of using sorafenib as a potential adjuvant therapy for the treatment of rhabdomyosarcoma. PMID:21127754

  18. Convection-enhanced delivery of sorafenib and suppression of tumor progression in a murine model of brain melanoma through the inhibition of signal transducer and activator of transcription 3.

    PubMed

    Zou, Zhaoxia; Yin, Yufang; Lin, Jenny; Hsu, Li-Chen J; Brandon, Vanessa L; Yang, Fan; Jove, Richard; Jandial, Rahul; Li, Gang; Chen, Mike Y

    2016-05-01

    OBJECT Despite recent advances, metastatic melanoma remains a terminal disease, in which life-threatening brain metastasis occurs in approximately half of patients. Sorafenib is a multikinase inhibitor that induces apoptosis of melanoma cells in vitro. However, systemic administration has been ineffective because adequate tissue concentrations cannot be achieved. This study investigated if convection-enhanced delivery (CED) of sorafenib would enhance tumor control and survival via inhibition of the signal transducer and activator of transcription 3 (Stat3) pathway in a murine model of metastatic brain melanoma. METHODS Melanoma cells treated with sorafenib in vitro were examined for signaling and survival changes. The effect of sorafenib given by CED was assessed by bioluminescent imaging and animal survival. RESULTS The results showed that sorafenib induced cell death in the 4 established melanoma cell lines and in 1 primary cultured melanoma cell line. Sorafenib inhibited Stat3 phosphorylation in HTB65, WYC1, and B16 cells. Accordingly, sorafenib treatment also decreased expression of Mcl-1 mRNA in melanoma cell lines. Because sorafenib targets multiple pathways, the present study demonstrated the contribution of the Stat3 pathway by showing that mouse embryonic fibroblast (MEF) Stat3 +/+ cells were significantly more sensitive to sorafenib than MEF Stat3 -/- cells. In the murine model of melanoma brain metastasis used in this study, CED of sorafenib increased survival by 150% in the treatment group compared with animals receiving the vehicle control (p < 0.01). CED of sorafenib also significantly abrogated tumor growth. CONCLUSIONS The data from this study indicate that local delivery of sorafenib effectively controls brain melanoma. These findings validate further investigation of the use of CED to distribute molecularly targeted agents. PMID:26544779

  19. Analysis of Imatinib and Sorafenib Binding to p38 Compared with c-Abl and b-Raf Provides Structural Insights for Understanding the Selectivity of Inhibitors Targeting the DFG-Out Form of Protein Kinases

    SciTech Connect

    Namboodiri, H.; Bukhtiyarova, M; Ramcharan, J; Karpusas, M; Lee, Y; Springman, E

    2010-01-01

    Protein kinases c-Abl, b-Raf, and p38{alpha} are recognized as important targets for therapeutic intervention. c-Abl and b-Raf are major targets of marketed oncology drugs Imatinib (Gleevec) and Sorafenib (Nexavar), respectively, and BIRB-796 is a p38{alpha} inhibitor that reached Phase II clinical trials. A shared feature of these drugs is the fact that they bind to the DFG-out forms of their kinase targets. Although the discovery of this class of kinase inhibitors has increased the level of emphasis on the design of DFG-out inhibitors, the structural determinants for their binding and stabilization of the DFG-out conformation remain unclear. To improve our understanding of these determinants, we determined cocrystal structures of Imatinib and Sorafenib with p38{alpha}. We also conducted a detailed analysis of Imatinib and Sorafenib binding to p38{alpha} in comparison with BIRB-796, including binding kinetics, binding interactions, the solvent accessible surface area (SASA) of the ligands, and stabilization of key structural elements of the protein upon ligand binding. Our results yield an improved understanding of the structural requirements for stabilizing the DFG-out form and a rationale for understanding the genesis of ligand selectivity among DFG-out inhibitors of protein kinases.

  20. Rapid long-lasting biochemical and radiological response to sorafenib in a case of advanced hepatocellular carcinoma.

    PubMed

    Gerardi, Assunta Maria Teresa; Stoppino, Luca Pio; Liso, Arcangelo; Macarini, Luca; Landriscina, Matteo

    2013-03-01

    The multikinase inhibitor sorafenib has demonstrated an overall survival benefit in phase III hepatocellular carcinoma (HCC) trials and has become the new standard of care for advanced stages of this disease. However, in clinical practice, the vast majority of patients obtain disease stabilization and occasionally tumor shrinkage. Furthermore, the appropriate timing of sorafenib therapy initiation, in order to maximize its clinical activity, remains under debate. We report a case of 4-year sorafenib treatment in a patient with an advanced hepatitis C virus (HCV)-related HCC with extensive infiltration of the inferior vena cava. Sorafenib treatment induced a rapid complete biochemical response and a long-term favorable outcome. Additionally, no major toxicities or detrimental effects on quality of life were observed. Thus, it is likely that a subgroup of human HCC may be highly sensitive to sorafenib; new molecular determinants are required to select those patients who may benefit from this therapy. Furthermore, a prompt initiation of treatment when the hepatic function is not compromised is a prerequisite for maximizing the clinical activity of sorafenib. PMID:23426789

  1. Rapid long-lasting biochemical and radiological response to sorafenib in a case of advanced hepatocellular carcinoma

    PubMed Central

    GERARDI, ASSUNTA MARIA TERESA; STOPPINO, LUCA PIO; LISO, ARCANGELO; MACARINI, LUCA; LANDRISCINA, MATTEO

    2013-01-01

    The multikinase inhibitor sorafenib has demonstrated an overall survival benefit in phase III hepatocellular carcinoma (HCC) trials and has become the new standard of care for advanced stages of this disease. However, in clinical practice, the vast majority of patients obtain disease stabilization and occasionally tumor shrinkage. Furthermore, the appropriate timing of sorafenib therapy initiation, in order to maximize its clinical activity, remains under debate. We report a case of 4-year sorafenib treatment in a patient with an advanced hepatitis C virus (HCV)-related HCC with extensive infiltration of the inferior vena cava. Sorafenib treatment induced a rapid complete biochemical response and a long-term favorable outcome. Additionally, no major toxicities or detrimental effects on quality of life were observed. Thus, it is likely that a subgroup of human HCC may be highly sensitive to sorafenib; new molecular determinants are required to select those patients who may benefit from this therapy. Furthermore, a prompt initiation of treatment when the hepatic function is not compromised is a prerequisite for maximizing the clinical activity of sorafenib. PMID:23426789

  2. Sorafenib inhibits lymphoma xenografts by targeting MAPK/ERK and AKT pathways in tumor and vascular cells.

    PubMed

    Carlo-Stella, Carmelo; Locatelli, Silvia L; Giacomini, Arianna; Cleris, Loredana; Saba, Elena; Righi, Marco; Guidetti, Anna; Gianni, Alessandro M

    2013-01-01

    The anti-lymphoma activity and mechanism(s) of action of the multikinase inhibitor sorafenib were investigated using a panel of lymphoma cell lines, including SU-DHL-4V, Granta-519, HD-MyZ, and KMS-11 cell lines. In vitro, sorafenib significantly decreased cell proliferation and phosphorylation levels of MAPK and PI3K/Akt pathways while increased apoptotic cell death. In vivo, sorafenib treatment resulted in a cytostatic rather than cytotoxic effect on tumor cell growth associated with a limited inhibition of tumor volumes. However, sorafenib induced an average 50% reduction of tumor vessel density and a 2-fold increase of necrotic areas. Upon sorafenib treatment, endothelial and tumor cells from SU-DHL-4V, Granta-519, and KMS-11 nodules showed a potent inhibition of either phospho-ERK or phospho-AKT, whereas a concomitant inhibition of phospho-ERK and phospho-AKT was only observed in HD-MyZ nodules. In conclusion, sorafenib affects the growth of lymphoid cell lines by triggering antiangiogenic mechanism(s) and directly targeting tumor cells. PMID:23620775

  3. Sorafenib Inhibits Lymphoma Xenografts by Targeting MAPK/ERK and AKT Pathways in Tumor and Vascular Cells

    PubMed Central

    Carlo-Stella, Carmelo; Locatelli, Silvia L.; Giacomini, Arianna; Cleris, Loredana; Saba, Elena; Righi, Marco; Guidetti, Anna; Gianni, Alessandro M.

    2013-01-01

    The anti-lymphoma activity and mechanism(s) of action of the multikinase inhibitor sorafenib were investigated using a panel of lymphoma cell lines, including SU-DHL-4V, Granta-519, HD-MyZ, and KMS-11 cell lines. In vitro, sorafenib significantly decreased cell proliferation and phosphorylation levels of MAPK and PI3K/Akt pathways while increased apoptotic cell death. In vivo, sorafenib treatment resulted in a cytostatic rather than cytotoxic effect on tumor cell growth associated with a limited inhibition of tumor volumes. However, sorafenib induced an average 50% reduction of tumor vessel density and a 2-fold increase of necrotic areas. Upon sorafenib treatment, endothelial and tumor cells from SU-DHL-4V, Granta-519, and KMS-11 nodules showed a potent inhibition of either phospho-ERK or phospho-AKT, whereas a concomitant inhibition of phospho-ERK and phospho-AKT was only observed in HD-MyZ nodules. In conclusion, sorafenib affects the growth of lymphoid cell lines by triggering antiangiogenic mechanism(s) and directly targeting tumor cells. PMID:23620775

  4. Chemotherapy for advanced hepatocellular carcinoma in the sorafenib age

    PubMed Central

    Miyahara, Koji; Nouso, Kazuhiro; Yamamoto, Kazuhide

    2014-01-01

    The kinase inhibitor sorafenib is the only systemic therapy proven to have a positive effect on survival of patients with advanced hepatocellular carcinoma (HCC). After development of sorafenib and its introduction as a therapeutic agent used in the clinic, several critical questions have been raised. Clinical parameters and biomarkers predicting sorafenib efficacy are the most important issues that need to be elucidated. Although it is difficult to know the responders in advance using conventional characteristics of patients, there are specific serum cytokines and/or gene amplification in tumor tissues that have been reported to predict efficacy of sorafenib. Risk and benefits of continuation of sorafenib beyond radiological progression is another issue to consider because no other standard therapy for advanced HCC as yet exists. In addition, effectiveness of the expanded application of sorafenib is still controversial, although a few studies have shed some light on combinational treatment with sorafenib for intermediate-stage HCC. Recently, over 50 relevant drugs have been developed and are currently under investigation. The efficacy of some of these drugs has been extensively examined, but none have demonstrated any superiority over sorafenib, so far. However, there are several drugs that have shown efficacy for treatment after sorafenib failure, and these are proceeding to further studies. To address these issues and questions, we have done extensive literature review and summarize the most current status of therapeutic application of sorafenib. PMID:24764653

  5. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma

    PubMed Central

    Stefanovic, Milica; Tutusaus, Anna; Martinez-Nieto, Guillermo A.; Bárcena, Cristina; de Gregorio, Estefania; Moutinho, Catia; Barbero-Camps, Elisabet; Villanueva, Alberto; Colell, Anna; Marí, Montserrat; García-Ruiz, Carmen; Fernandez-Checa, Jose C.; Morales, Albert

    2016-01-01

    Evasive mechanisms triggered by the tyrosine kinase inhibitor sorafenib reduce its efficacy in hepatocellular carcinoma (HCC) treatment. Drug-resistant cancer cells frequently exhibit sphingolipid dysregulation, reducing chemotherapeutic cytotoxicity via the induction of ceramide-degrading enzymes. However, the role of ceramide in sorafenib therapy and resistance in HCC has not been clearly established. Our data reveals that ceramide-modifying enzymes, particularly glucosylceramide synthase (GCS), are upregulated during sorafenib treatment in hepatoma cells (HepG2 and Hep3B), and more importantly, in sorafenib-resistant cell lines. GCS silencing or pharmacological GCS inhibition sensitized hepatoma cells to sorafenib exposure. GCS inhibition, combined with sorafenib, triggered cytochrome c release and ATP depletion in sorafenib-treated hepatoma cells, leading to mitochondrial cell death after energetic collapse. Conversely, genetic GCS overexpression increased sorafenib resistance. Of interest, GCS inhibition improved sorafenib effectiveness in a xenograft mouse model, recovering drug sensitivity of sorafenib-resistant tumors in mice. In conclusion, our results reveal GCS induction as a mechanism of sorafenib resistance, suggesting that GCS targeting may be a novel strategy to increase sorafenib efficacy in HCC management, and point to target the mitochondria as the subcellular location where sorafenib therapy could be potentiated. PMID:26811497

  6. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma.

    PubMed

    Stefanovic, Milica; Tutusaus, Anna; Martinez-Nieto, Guillermo A; Bárcena, Cristina; de Gregorio, Estefania; Moutinho, Catia; Barbero-Camps, Elisabet; Villanueva, Alberto; Colell, Anna; Marí, Montserrat; García-Ruiz, Carmen; Fernandez-Checa, Jose C; Morales, Albert

    2016-02-16

    Evasive mechanisms triggered by the tyrosine kinase inhibitor sorafenib reduce its efficacy in hepatocellular carcinoma (HCC) treatment. Drug-resistant cancer cells frequently exhibit sphingolipid dysregulation, reducing chemotherapeutic cytotoxicity via the induction of ceramide-degrading enzymes. However, the role of ceramide in sorafenib therapy and resistance in HCC has not been clearly established. Our data reveals that ceramide-modifying enzymes, particularly glucosylceramide synthase (GCS), are upregulated during sorafenib treatment in hepatoma cells (HepG2 and Hep3B), and more importantly, in sorafenib-resistant cell lines. GCS silencing or pharmacological GCS inhibition sensitized hepatoma cells to sorafenib exposure. GCS inhibition, combined with sorafenib, triggered cytochrome c release and ATP depletion in sorafenib-treated hepatoma cells, leading to mitochondrial cell death after energetic collapse. Conversely, genetic GCS overexpression increased sorafenib resistance. Of interest, GCS inhibition improved sorafenib effectiveness in a xenograft mouse model, recovering drug sensitivity of sorafenib-resistant tumors in mice. In conclusion, our results reveal GCS induction as a mechanism of sorafenib resistance, suggesting that GCS targeting may be a novel strategy to increase sorafenib efficacy in HCC management, and point to target the mitochondria as the subcellular location where sorafenib therapy could be potentiated. PMID:26811497

  7. Quantification of Sorafenib in Human Serum by Competitive Enzyme-Linked Immunosorbent Assay.

    PubMed

    Saita, Tetsuya; Yamamoto, Yuta; Noda, Satoshi; Shioya, Makoto; Hira, Daiki; Andoh, Akira; Morita, Shin-Ya; Terada, Tomohiro; Shin, Masashi

    2015-01-01

    The multikinase inhibitor sorafenib has been used in the treatment of hepatocellular carcinoma, renal cell carcinoma, and differentiated thyroid carcinoma. Here we have demonstrated the production of the first specific antibody against sorafenib. Anti-sorafenib serum was obtained by immunizing mice with an antigen conjugated with bovine serum albumin and carboxylic modified 4-(4-aminophenoxy)-N-methyl-2-pyridinecarboxamide (AMPC) using the N-succinimidyl ester method. Enzyme labeling of sorafenib with horseradish peroxidase was similarly performed using carboxylic modified AMPC. A simple competitive enzyme-linked immunosorbent assay (ELISA) for sorafenib was developed using the principle of direct competition between sorafenib and the enzyme marker for anti-sorafenib antibody, which had been adsorbed by the plastic surface of a microtiter plate. Serum sorafenib concentrations lower than 0.04 µg/mL were reproducibly measurable using the ELISA. This ELISA was specific to sorafenib and showed very slight cross-reactivity (2.5%) with a major metabolite, sorafenib N-oxide. The values of serum sorafenib levels from 32 patients measured by this ELISA were comparable with those measured by HPLC, and there was a strong correlation between the values determined by the two methods (Y=1.016X-0.137, r=0.979). The specificity and sensitivity of the ELISA for sorafenib should provide a valuable new tool for use in therapeutic drug monitoring and pharmacokinetic studies of sorafenib. PMID:26521829

  8. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma.

    PubMed

    Chen, Jiang; Jin, Renan; Zhao, Jie; Liu, Jinghua; Ying, Hanning; Yan, Han; Zhou, Senjun; Liang, Yuelong; Huang, Diyu; Liang, Xiao; Yu, Hong; Lin, Hui; Cai, Xiujun

    2015-10-10

    Sorafenib, an orally-available kinase inhibitor, is the only standard clinical treatment against advanced hepatocellular carcinoma. However, development of resistance to sorafenib has raised concern in recent years due to the high-level heterogeneity of individual response to sorafenib treatment. The resistance mechanism underlying the impaired sensitivity to sorafenib is still elusive though some researchers have made great efforts. Here, we provide a systemic insight into the potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma depending on abundant previous studies and reports. PMID:26170167

  9. Complete remission of advanced hepatocellular carcinoma by radiofrequency ablation after sorafenib therapy

    PubMed Central

    Park, Jung Gil; Park, Soo Young; Lee, Hye Won

    2015-01-01

    Sorafenib, a potent multikinase inhibitor, lead to a significant improvement in progression free survival and overall survival in patients with advanced hepatocellular carcinoma (HCC). Though sorafenib has proven its efficacy in advanced stage HCC, there are limited reports on the role of sorafenib allowing for curative treatment by down-staging. We herein report a case of advanced HCC with vascular invasion, which showed treatment response by sorafenib therapy as to allow for radiofrequency ablation as curative treatment. The patient was followed-up for 6 mo without recurrence with continued sorafenib therapy. PMID:25741170

  10. Iron depletion enhances the effect of sorafenib in hepatocarcinoma.

    PubMed

    Urano, Shinichi; Ohara, Toshiaki; Noma, Kazuhiro; Katsube, Ryoichi; Ninomiya, Takayuki; Tomono, Yasuko; Tazawa, Hiroshi; Kagawa, Shunsuke; Shirakawa, Yasuhiro; Kimura, Fumiaki; Nouso, Kazuhiro; Matsukawa, Akihiro; Yamamoto, Kazuhide; Fujiwara, Toshiyoshi

    2016-06-01

    ABSTACT Human hepatocellular carcinoma (HCC) is known to have a poor prognosis. Sorafenib, a molecular targeted drug, is most commonly used for HCC treatment. However, its effect on HCC is limited in clinical use and therefore new strategies regarding sorafenib treatment are required. Iron overload is known to be associated with progression of chronic hepatitis and increased risk of HCC. We previously reported that iron depletion inhibited cancer cell proliferation and conversely induced angiogenesis. Indeed iron depletion therapy including iron chelator needs to be combined with anti-angiogenic drug for its anti-cancer effect. Since sorafenib has an anti-angiogenic effect by its inhibitory targeting VEGFR, we hypothesized that sorafenib could complement the anti-cancer effect of iron depletion. We retrospectively analyzed the relationship between the efficacy of sorafenib and serum iron-related markers in clinical HCC patients. In clinical cases, overall survival was prolonged in total iron binding capacity (TIBC) high- and ferritin low-patients. This result suggested that the low iron-pooled patients, who could have a potential of more angiogenic properties in/around HCC tumors, could be adequate for sorafenib treatment. We determined the effect of sorafenib (Nexavar®) and/or deferasirox (EXJADE®) on cancer cell viability, and on cell signaling of human hepatocarcinoma HepG2 and HLE cells. Both iron depletion by deferasirox and sorafenib revealed insufficient cytotoxic effect by each monotherapy, however, on the basis of increased angiogenesis by iron depletion, the addition of deferasirox enhanced anti-proliferative effect of sorafenib. Deferasirox was confirmed to increase vascular endothelial growth factor (VEGF) secretion into cellular supernatants by ELISA analysis. In in vivo study sorafenib combined with deferasirox also enhanced sorafenib-induced apoptosis. These results suggested that sorafenib combined with deferasirox could be a novel combination

  11. Sorafenib enhances the therapeutic efficacy of rapamycin in colorectal cancers harboring oncogenic KRAS and PIK3CA

    PubMed Central

    Evers, B. Mark

    2012-01-01

    Activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling is associated with tumorigenesis and metastasis of colorectal cancer (CRC). The mammalian target of rapamycin (mTOR) kinase, a downstream effector of PI3K/Akt signaling, regulates tumorigenesis and metastasis of CRCs, indicating that mTOR inhibition may have therapeutic potential. Notwithstanding, many cancers, including CRC, demonstrate resistance to the antitumorigenic effects of rapamycin. In this study, we show that inhibition of mTORC1 with rapamycin leads to feedback activation of PI3K/Akt and Ras-MAPK signaling, resulting in cell survival and possible contribution to rapamycin resistance. Combination with the multikinase inhibitor, sorafenib, abrogates rapamycin-induced activation of PI3K/Akt and Ras-MAPK signaling pathways. Combination of rapamycin with sorafenib synergistically inhibits proliferation of CRC cells. CRCs harboring coexistent KRAS and PIK3CA mutations are partially sensitive to either rapamycin or sorafenib monotherapy, but highly sensitive to combination treatment with rapamycin and sorafenib. Combination with sorafenib enhances therapeutic efficacy of rapamycin on induction of apoptosis and inhibition of cell-cycle progression, migration and invasion of CRCs. We demonstrate efficacy and safety of concomitant treatment with rapamycin and sorafenib at inhibiting growth of xenografts from CRC cells with coexistent mutations in KRAS and PIK3CA. The efficacy and tolerability of combined treatment with rapamycin and sorafenib provides rationale for use in treating CRC patients, particularly those with tumors harboring coexistent KRAS and PIK3CA mutations. Abbreviations:CIcombination indexCRCcolorectal cancerIHCimmunohistochemistryMAPKmitogen activated protein kinasemTORmammalian target of rapamycinPI3Kphosphatidylinositol 3-kinase. PMID:22696593

  12. HDAC6-mediated EGFR stabilization and activation restrict cell response to sorafenib in non-small cell lung cancer cells.

    PubMed

    Wang, Zhihao; Hu, Pengchao; Tang, Fang; Xie, Conghua

    2016-05-01

    Sorafenib is a multi-targeted kinase inhibitor and has been the subject of extensive clinical research in advanced non-small cell lung cancer (NSCLC). However, sorafenib fails to improve overall survival of patients with advanced NSCLC. The molecular mechanisms that account for this phenomenon are unclear. Here we show that sorafenib treatment stabilizes epidermal growth factor receptor (EGFR) and activates EGFR pathway. Moreover, this is partly mediated by stabilization of histone deacetylase 6 (HDAC6), which has been shown to regulate EGFR endocytic trafficking and degradation. Overexpression of HDAC6 confers resistance to sorafenib in NSCLC cells. Inhibition of HDAC6 with selective inhibitors synergizes with sorafenib to kill NSCLC cells via inhibition of sorafenib-mediated EGFR pathway activation. Taken together, our findings might partly explain the failure of Phase III trial of sorafenib in improving overall survival of advanced NSCLC patients and bear possible implications for the improvement on the efficacy of sorafenib in treatment of NSCLC. PMID:27090797

  13. Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells

    PubMed Central

    Pal, Harish Chandra; Baxter, Ronald D.; Hunt, Katherine M.; Agarwal, Jyoti; Elmets, Craig A.; Athar, Mohammad; Afaq, Farrukh

    2015-01-01

    Melanoma is the most deadly form of cutaneous malignancy, and its incidence rates are rising worldwide. In melanoma, constitutive activation of the BRAF/MEK/ERK (MAPK) and PI3K/AKT/mTOR (PI3K) signaling pathways plays a pivotal role in cell proliferation, survival and tumorigenesis. A combination of compounds that lead to an optimal blockade of these critical signaling pathways may provide an effective strategy for prevention and treatment of melanoma. The phytochemical fisetin is known to possess anti-proliferative and pro-apoptotic activities. We found that fisetin treatment inhibited PI3K signaling pathway in melanoma cells. Therefore, we investigated the effect of fisetin and sorafenib (an RAF inhibitor) alone and in combination on cell proliferation, apoptosis and tumor growth. Combination treatment (fisetin + sorafenib) more effectively reduced the growth of BRAF-mutated human melanoma cells at lower doses when compared to individual agents. In addition, combination treatment resulted in enhanced (i) apoptosis, (ii) cleavage of caspase-3 and PARP, (iii) expression of Bax and Bak, (iv) inhibition of Bcl2 and Mcl-1, and (v) inhibition of expression of PI3K, phosphorylation of MEK1/2, ERK1/2, AKT and mTOR. In athymic nude mice subcutaneously implanted with melanoma cells (A375 and SK-MEL-28), we found that combination therapy resulted in greater reduction of tumor growth when compared to individual agents. Furthermore, combination therapy was more effective than monotherapy in: (i) inhibition of proliferation and angiogenesis, (ii) induction of apoptosis, and (iii) inhibition of the MAPK and PI3K pathways in xenograft tumors. These data suggest that simultaneous inhibition of both these signaling pathways using combination of fisetin and sorafenib may serve as a therapeutic option for the management of melanoma. PMID:26299806

  14. Epigastric Distress Caused by Esophageal Candidiasis in 2 Patients Who Received Sorafenib Plus Radiotherapy for Hepatocellular Carcinoma: Case Report

    PubMed Central

    Chen, Kuo-Hsin; Weng, Meng-Tzu; Chou, Yueh-Hung; Lu, Yueh-Feng; Hsieh, Chen-Hsi

    2016-01-01

    Abstract Sorafenib followed by fractionated radiotherapy (RT) has been shown to decrease the phagocytic and candidacidal activities of antifungal agents due to radiosensitization. Moreover, sorafenib has been shown to suppress the immune system, thereby increasing the risk for candida colonization and infection. In this study, we present the 2 hepatocellular carcinoma (HCC) patients suffered from epigastric distress caused by esophageal candidiasis who received sorafenib plus RT. Two patients who had received sorafenib and RT for HCC with bone metastasis presented with hiccups, gastric ulcer, epigastric distress, anorexia, heart burn, and fatigue. Empiric antiemetic agents, antacids, and pain killers were ineffective at relieving symptoms. Panendoscopy revealed diffuse white lesions in the esophagus. Candida esophagitis was suspected. Results of periodic acid-Schiff staining were diagnostic of candidiasis. Oral fluconazole (150 mg) twice daily and proton-pump inhibitors were prescribed. At 2-weak follow-up, esophagitis had resolved and both patients were free of gastrointestinal symptoms. Physicians should be aware that sorafenib combined with RT may induce an immunosuppressive state in patients with HCC, thereby increasing their risk of developing esophagitis due to candida species. PMID:26986168

  15. Epigastric Distress Caused by Esophageal Candidiasis in 2 Patients Who Received Sorafenib Plus Radiotherapy for Hepatocellular Carcinoma: Case Report.

    PubMed

    Chen, Kuo-Hsin; Weng, Meng-Tzu; Chou, Yueh-Hung; Lu, Yueh-Feng; Hsieh, Chen-Hsi

    2016-03-01

    Sorafenib followed by fractionated radiotherapy (RT) has been shown to decrease the phagocytic and candidacidal activities of antifungal agents due to radiosensitization. Moreover, sorafenib has been shown to suppress the immune system, thereby increasing the risk for candida colonization and infection. In this study, we present the 2 hepatocellular carcinoma (HCC) patients suffered from epigastric distress caused by esophageal candidiasis who received sorafenib plus RT. Two patients who had received sorafenib and RT for HCC with bone metastasis presented with hiccups, gastric ulcer, epigastric distress, anorexia, heart burn, and fatigue. Empiric antiemetic agents, antacids, and pain killers were ineffective at relieving symptoms. Panendoscopy revealed diffuse white lesions in the esophagus. Candida esophagitis was suspected. Results of periodic acid-Schiff staining were diagnostic of candidiasis. Oral fluconazole (150 mg) twice daily and proton-pump inhibitors were prescribed. At 2-weak follow-up, esophagitis had resolved and both patients were free of gastrointestinal symptoms. Physicians should be aware that sorafenib combined with RT may induce an immunosuppressive state in patients with HCC, thereby increasing their risk of developing esophagitis due to candida species. PMID:26986168

  16. The adverse effects of sorafenib in patients with advanced cancers.

    PubMed

    Li, Ye; Gao, Zu-Hua; Qu, Xian-Jun

    2015-03-01

    Sorafenib is the first multi-kinase inhibitor (TKI) approved for the treatment of advanced hepatocellular cancer (HCC) and metastatic renal cell cancer (RCC) and is increasingly being used to treat patients with well-differentiated radioiodine-resistant thyroid cancer (DTC). Sorafenib demonstrates targeted activity on several families of receptor and non-receptor tyrosine kinases that are involved in angiogenesis, tumour growth and metastatic progression of cancer. Sorafenib treatment results in long-term efficacy and low incidence of life-threatening toxicities. Although sorafenib has demonstrated many benefits in patients, the adverse effects cannot be ignored. The most common treatment-related toxicities include diarrhoea, fatigue, hand-foot skin reaction and hypertension. Most of these toxicities are considered mild to moderate and manageable to varying degrees; however, cardiovascular events might lead to death. In this MiniReview, we summarize the adverse effects of sorafenib that commonly occur in patients with advanced cancers. PMID:25495944

  17. Synergistic inhibition of characteristics of liver cancer stem-like cells with a combination of sorafenib and 8-bromo-7-methoxychrysin in SMMC-7721 cell line.

    PubMed

    Zou, Hui; Cao, Xiaozheng; Xiao, Qiao; Sheng, Xifeng; Ren, Kaiqun; Quan, Meifang; Song, Zhengwei; Li, Duo; Zheng, Yu; Zeng, Wenbin; Cao, Jianguo; Peng, Yaojin

    2016-09-01

    Sorafenib, a multi-kinase inhibitor, has shown its promising antitumor effect in a series of clinical trials, and has been approved as the current standard treatment for advanced hepatocellular carcinoma (HCC). 8-Bromo‑7-methoxychrysin (BrMC) is a novel chrysin synthetic analogue that has been reported to inhibit the growth of various tumor cells and possess properties for targeting liver cancer stem cells (LCSCs) . The present study investigated the synergistic targeting effects on the properties of liver cancer stem-like cells (LCSLCs) by a combination of sorafenib and BrMC in SMMC-7721 cell line. We also investigated whether this effect involves regulation of HIF-1α, Twist and NF-κB protein. We found that the sphere-forming cells (SFCs) from the SMMC‑7721 cells possessed the properties of LCSLCs. Sorafenib diminished the self-renewal capacity and downregulated the expression of stem cell biomarkers (CD133, CD44 and ALDH1) in a dose-dependent manner, while BrMC cooperated with sorafenib to strengthen this inhibition. Moreover, the combination of sorafenib and BrMC led to a remarkable decrease in the cellular migration and invasion, the downregulation of N-cadherin protein and upregulation of E-cadherin protein, and increase of cell apoptosis in LCSLCs. BrMC has a remarkable antagonistic effect on the upregulation of protein expression and DNA binding activity of NF-κB (p65) induced by sorafenib. In addition, our results indicated that the synergistic inhibition of sorafenib and BrMC on the characteristics of LCSLCs involves the downregulated expression of HIF-1α and EMT regulator Twist1. Collectively, the combination therapy of sorafenib and BrMC could be a new and promising therapeutic approach in the treatment of HCC. PMID:27461522

  18. MiR-338-3p Inhibits Hepatocarcinoma Cells and Sensitizes These Cells to Sorafenib by Targeting Hypoxia-Induced Factor 1α

    PubMed Central

    Fang, Qiuju; Sun, Jianmin; Zhang, Songyan; Zhan, Chao; Liu, Shujie; Zhang, Yubao

    2014-01-01

    Hypoxia is a common feature of solid tumors and an important contributor to anti-tumor drug resistance. Hypoxia inducible factor-1 (HIF-1) is one of the key mediators of the hypoxia signaling pathway, and was recently proven to be required for sorafenib resistance in hepatocarcinoma (HCC). MicroRNAs have emerged as important posttranslational regulators in HCC. It was reported that miR-338-3p levels are associated with clinical aggressiveness of HCC. However, the roles of miR-338-3p in HCC disease and resistance to its therapeutic drugs are unknown. In this study, we found that miR-338-3p was frequently down-regulated in 14 HCC clinical samples and five cell lines. Overexpression of miR-338-3p inhibited HIF-1α 3′-UTR luciferase activity and HIF-1α protein levels in HepG2, SMMC-7721, and Huh7 cells. miR-338-3p significantly reduced cell viability and induced cell apoptosis of HCC cells. Additionally, HIF-1α overexpression rescued and HIF-1α knock-down abrogated the anti-HCC activity of miR-338-3p. Furthermore, miR-338-3p sensitized HCC cells to sorafenib in vitro and in a HCC subcutaneous nude mice tumor model by inhibiting HIF-1α. Collectively, miR-338-3p inhibits HCC tumor growth and sensitizes HCC cells to sorafenib by down-regulating HIF-1α. Our data indicate that miR-338-3p could be a potential candidate for HCC therapeutics. PMID:25531114

  19. Hypothyroidism Side Effect in Patients Treated with Sunitinib or Sorafenib: Clinical and Structural Analyses.

    PubMed

    Shu, Mao; Zai, Xiaoli; Zhang, Beina; Wang, Rui; Lin, Zhihua

    2016-01-01

    Tyrosine kinase inhibitors (TKIs) provide more effective targeted treatments for cancer, but are subject to a variety of adverse effects, such as hypothyroidism. TKI-induced hypothyroidism is a highly complicated issue, because of not only the unrealized toxicological mechanisms, but also different incidences of individual TKI drugs. While sunitinib is suspected for causing thyroid dysfunction more often than other TKIs, sorafenib is believed to be less risky. Here we integrated clinical data and in silico drug-protein interactions to examine the pharmacological distinction between sunitinib and sorafenib. Statistical analysis on the FDA Adverse Event Reporting System (FAERS) confirmed that sunitinib is more concurrent with hypothyroidism than sorafenib, which was observed in both female and male patients. Then, we used docking method and identified 3 proteins specifically binding to sunitinib but not sorafenib, i.e., retinoid X receptor alpha, retinoic acid receptors beta and gamma. As potential off-targets of sunitinib, these proteins are well known to assemble with thyroid hormone receptors, which can explain the profound impact of sunitinib on thyroid function. Taken together, we established a strategy of integrated analysis on clinical records and drug off-targets, which can be applied to explore the molecular basis of various adverse drug reactions. PMID:26784451

  20. Hypothyroidism Side Effect in Patients Treated with Sunitinib or Sorafenib: Clinical and Structural Analyses

    PubMed Central

    Shu, Mao; Zai, Xiaoli; Zhang, Beina; Wang, Rui; Lin, Zhihua

    2016-01-01

    Tyrosine kinase inhibitors (TKIs) provide more effective targeted treatments for cancer, but are subject to a variety of adverse effects, such as hypothyroidism. TKI-induced hypothyroidism is a highly complicated issue, because of not only the unrealized toxicological mechanisms, but also different incidences of individual TKI drugs. While sunitinib is suspected for causing thyroid dysfunction more often than other TKIs, sorafenib is believed to be less risky. Here we integrated clinical data and in silico drug-protein interactions to examine the pharmacological distinction between sunitinib and sorafenib. Statistical analysis on the FDA Adverse Event Reporting System (FAERS) confirmed that sunitinib is more concurrent with hypothyroidism than sorafenib, which was observed in both female and male patients. Then, we used docking method and identified 3 proteins specifically binding to sunitinib but not sorafenib, i.e., retinoid X receptor alpha, retinoic acid receptors beta and gamma. As potential off-targets of sunitinib, these proteins are well known to assemble with thyroid hormone receptors, which can explain the profound impact of sunitinib on thyroid function. Taken together, we established a strategy of integrated analysis on clinical records and drug off-targets, which can be applied to explore the molecular basis of various adverse drug reactions. PMID:26784451

  1. A phase I study of the histone deacetylase (HDAC) inhibitor entinostat, in combination with sorafenib in patients with advanced solid tumors.

    PubMed

    Ngamphaiboon, Nuttapong; Dy, Grace K; Ma, Wen Wee; Zhao, Yujie; Reungwetwattana, Thanyanan; DePaolo, Dawn; Ding, Yi; Brady, William; Fetterly, Gerald; Adjei, Alex A

    2015-02-01

    Based on preclinical data demonstrating cytotoxic synergy between sorafenib and entinostat, a phase I study of this combination was conducted in patients with advanced solid tumors. Enrollment followed the traditional "3 + 3" dose escalation scheme. Entinostat was given orally once every 2 weeks, starting at a dose of 4 mg and escalating to 6 and 10 mg every 2 weeks. Sorafenib was administered as a continuous oral dose, escalating from 200 to 400 mg twice daily. A treatment cycle was 28 days. A total of 31 patients with advanced solid tumors were enrolled on the study. The three dose-limiting toxicities (DLTs) observed were grade 3 hand-foot syndrome, nausea/vomiting, and fatigue. MTD was not reached. The recommended phase II dose was defined as the full dose of the respective drugs administered individually. The most common grade 3-4 toxicities were muscle weakness (13 %), skin rash (10 %), fatigue (6 %), diarrhea (6 %), and hand-foot syndrome (3 %). One NSCLC patient achieved a partial response. Two patients (adenocarcinoma of GE junction and Hurthle cell carcinoma of the thyroid) were on the study for more than 9 months with stable disease. The combination of entinostat and sorafenib was well tolerated. Entinostat 10 mg orally once every 2 weeks in combination with sorafenib 400 mg orally twice daily, representing full single agent doses of each drug was identified as the recommended phase 2 dose (RP2D). These data support future clinical development of the combination of entinostat and sorafenib. PMID:25371323

  2. The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib.

    PubMed

    Heine, Annkristin; Schilling, Judith; Grünwald, Barbara; Krüger, Achim; Gevensleben, Heidrun; Held, Stefanie Andrea Erika; Garbi, Natalio; Kurts, Christian; Brossart, Peter; Knolle, Percy; Diehl, Linda; Höchst, Bastian

    2016-03-01

    Increased numbers of immunosuppressive myeloid derived suppressor cells (MDSCs) correlate with a poor prognosis in cancer patients. Tyrosine kinase inhibitors (TKIs) are used as standard therapy for the treatment of several neoplastic diseases. However, TKIs not only exert effects on the malignant cell clone itself but also affect immune cells. Here, we investigate the effect of TKIs on the induction of MDSCs that differentiate from mature human monocytes using a new in vitro model of MDSC induction through activated hepatic stellate cells (HSCs). We show that frequencies of monocytic CD14(+)HLA-DR(-/low) MDSCs derived from mature monocytes were significantly and dose-dependently reduced in the presence of dasatinib, nilotinib and sorafenib, whereas sunitinib had no effect. These regulatory effects were only observed when TKIs were present during the early induction phase of MDSCs through activated HSCs, whereas already differentiated MDSCs were not further influenced by TKIs. Neither the MAPK nor the NFκB pathway was modulated in MDSCs when any of the TKIs was applied. When functional analyses were performed, we found that myeloid cells treated with sorafenib, nilotinib or dasatinib, but not sunitinib, displayed decreased suppressive capacity with regard to CD8+ T cell proliferation. Our results indicate that sorafenib, nilotinib and dasatinib, but not sunitinib, decrease the HSC-mediated differentiation of monocytes into functional MDSCs. Therefore, treatment of cancer patients with these TKIs may in addition to having a direct effect on cancer cells also prevent the differentiation of monocytes into MDSCs and thereby differentially modulate the success of immunotherapeutic or other anti-cancer approaches. PMID:26786874

  3. Sorafenib synergizes with metformin in NSCLC through AMPK pathway activation

    PubMed Central

    Groenendijk, Floris H; Mellema, Wouter W; van der Burg, Eline; Schut, Eva; Hauptmann, Michael; Horlings, Hugo M; Willems, Stefan M; van den Heuvel, Michel M; Jonkers, Jos; Smit, Egbert F; Bernards, René

    2015-01-01

    The multikinase inhibitor sorafenib is under clinical investigation for the treatment of many solid tumors, but in most cases, the molecular target responsible for the clinical effect is unknown. Furthermore, enhancing the effectiveness of sorafenib using combination strategies is a major clinical challenge. Here, we identify sorafenib as an activator of AMP-activated protein kinase (AMPK), in a manner that involves either upstream LKB1 or CAMKK2. We further show in a phase II clinical trial in KRAS mutant advanced non-small cell lung cancer (NSCLC) with single agent sorafenib an improved disease control rate in patients using the antidiabetic drug metformin. Consistent with this, sorafenib and metformin act synergistically in inhibiting cellular proliferation in NSCLC in vitro and in vivo. A synergistic effect of both drugs is also seen on phosphorylation of the AMPKα activation site. Our results provide a rationale for the synergistic antiproliferative effects, given that AMPK inhibits downstream mTOR signaling. These data suggest that the combination of sorafenib with AMPK activators could have beneficial effects on tumor regression by AMPK pathway activation. The combination of metformin or other AMPK activators and sorafenib could be tested in prospective clinical trials. PMID:25080865

  4. Deferasirox, an oral iron chelator, prevents hepatocarcinogenesis and adverse effects of sorafenib

    PubMed Central

    Yamamoto, Naoki; Yamasaki, Takahiro; Takami, Taro; Uchida, Koichi; Fujisawa, Koichi; Matsumoto, Toshihiko; Saeki, Issei; Terai, Shuji; Sakaida, Isao

    2016-01-01

    Although sorafenib is expected to have a chemopreventive effect on hepatocellular carcinoma (HCC) recurrence, there are limitations to its use because of adverse effects, including effects on liver function. We have reported that the iron chelator, deferoxamine can prevent liver fibrosis and preneoplastic lesions. We investigated the influence of administering a new oral iron chelator, deferasirox (DFX), on the effects of sorafenib. We used the choline-deficient l-amino acid-defined (CDAA) diet-induced rat liver fibrosis and HCC model. We divided rats into four groups: CDAA diet only (control group), CDAA diet with sorafenib (sorafenib group), CDAA diet with DFX (DFX group), and CDAA diet with DFX and sorafenib (DFX + sorafenib group). Liver fibrosis and development of preneoplastic lesions were assessed. In addition, we assessed adverse effects such as changes in body and liver weight, skin damage (eruption, dryness, and hair loss), which is defined as hand-foot skin syndrome, in the sorafenib and DFX + sorafenib groups. The combination of DFX + sorafenib markedly prevented liver fibrosis and preneoplastic lesions better than the other treatments. Furthermore, the combination therapy significantly decreased adverse effects compared with the sorafenib group. In conclusion, the combination therapy with DFX and sorafenib may be a useful adjuvant therapy to prevent recurrence after curative treatment of HCC. PMID:27257345

  5. Prognostic significance of adverse events in patients with hepatocellular carcinoma treated with sorafenib

    PubMed Central

    Granito, Alessandro; Marinelli, Sara; Negrini, Giulia; Menetti, Saverio; Benevento, Francesca; Bolondi, Luigi

    2016-01-01

    Sorafenib is the standard treatment for patients with hepatocellular carcinoma (HCC) with advanced stage disease. Although its effectiveness has been demonstrated by randomized clinical trials and confirmed by field practice studies, reliable markers predicting therapeutic response have not yet been identified. Like other tyrosine kinase inhibitors, treatment with sorafenib is burdened by the development of adverse effects, the most frequent being cutaneous toxicity, diarrhoea, arterial hypertension and fatigue. In recent years, several studies have analysed the correlation between off-target effects and sorafenib efficacy in patients with HCC. In this review, an overview of the studies assessing the prognostic significance of sorafenib-related adverse events is provided. PMID:26929785

  6. Reversible Decrease of Portal Venous Flow in Cirrhotic Patients: A Positive Side Effect of Sorafenib

    PubMed Central

    Coriat, Romain; Gouya, Hervé; Mir, Olivier; Ropert, Stanislas; Vignaux, Olivier; Chaussade, Stanislas; Sogni, Philippe; Pol, Stanislas; Blanchet, Benoit

    2011-01-01

    Portal hypertension, the most important complication with cirrhosis of the liver, is a serious disease. Sorafenib, a tyrosine kinase inhibitor is validated in advanced hepatocellular carcinoma. Because angiogenesis is a pathological hallmark of portal hypertension, the goal of our study was to determine the effect of sorafenib on portal venous flow and portosystemic collateral circulation in patients receiving sorafenib therapy for advanced hepatocellular carcinoma. Porto-collateral circulations were evaluated using a magnetic resonance technique prior sorafenib therapy, and at day 30. All patients under sorafenib therapy had a decrease in portal venous flow of at least 36%. In contrast, no specific change was observed in the azygos vein or the abdominal aorta. No portal venous flow modification was observed in the control group. Sorafenib is the first anti-angiogenic therapy to demonstrate a beneficial and reversible decrease of portal venous flow among cirrhotic patients. PMID:21340026

  7. Monitoring Serum Levels of Sorafenib and Its N-Oxide Is Essential for Long-Term Sorafenib Treatment of Patients with Hepatocellular Carcinoma.

    PubMed

    Shimada, Miki; Okawa, Hoshimi; Kondo, Yasuteru; Maejima, Takahiro; Kataoka, Yuta; Hisamichi, Kanehiko; Maekawa, Masamitsu; Matsuura, Masaki; Jin, Yuko; Mori, Masaru; Suzuki, Hiroyuki; Shimosegawa, Tooru; Mano, Nariyasu

    2015-01-01

    Sorafenib, an oral multi-kinase inhibitor, is the final therapy prior to palliative care for advanced hepatocellular carcinoma (HCC). However, due to its adverse effects, 20% of patients must discontinue sorafenib within 1 month after first administration. To identify ways to predict the adverse effects and administer the drug for longer periods, we explored the relationship between the duration of sorafenib treatment and the pharmacokinetics of sorafenib and its major metabolite, sorafenib N-oxide. Twenty-five subjects enrolled in the study were divided into two groups: patients with dosage reduced or withdrawn due to adverse effects (n = 8), and patients with dosage maintained for 1 month after initial administration (n = 17). We evaluated early sorafenib accumulation as the area under the curve of sorafenib and sorafenib N-oxide concentrations during days 1-7 (AUC(sorafenib) and AUC(N-oxide), respectively). Inter-group comparison revealed that AUC(N-oxide) and AUC ratio (AUC(N-oxide)/AUC(sorafenib)) were significantly higher in the dosage reduction/withdrawal group (P = 0.031 and P = 0.0022, respectively). Receiver operating characteristic analysis indicated that AUC(N-oxide) and AUC ratio were reliable predictors of adverse effects. When patients were classified by cut-off points (AUC(N-oxide:) 2.0 μg ∙ day/mL, AUC ratio: 0.13), progression-free survival was significantly longer in patients with AUC(N-oxide) ≤ 2.0 μg ∙ day/mL (P = 0.0048, log-rank test). In conclusion, we recommend to simultaneously monitor serum levels of sorafenib and its N-oxide during the early stage after the first administration, which enables us to provide safe and long-term therapy for each HCC patient with sorafenib. PMID:26477611

  8. Sorafenib and sunitinib: A dermatologist's perspective

    PubMed Central

    Pragasam, Vijendran; Verma, Rajesh; Vasudevan, Biju

    2014-01-01

    Sorafenib and sunitinib are inhibitors of tumor angiogenesis have recently generated curiosity regarding its role in cutaneous toxicities, which has severely affected the daily activities resulting in interruption or dose modification of therapy in renal cell carcinoma and hepatocellular carcinomas. We discuss the pathophysiology, adverse cutaneous effects and their grading, potential high risk factors, role of gene polymorphism, critical period of hand-foot skin reaction development and their management. PMID:24616845

  9. Life Beyond Kinases: Structure-based Discovery of Sorafenib as Nanomolar Antagonist of 5-HT Receptors

    PubMed Central

    Lin, Xingyu; Huang, Xi-Ping; Chen, Gang; Whaley, Ryan; Peng, Shiming; Wang, Yanli; Zhang, Guoliang; Wang, Simon X.; Wang, Shaohui; Roth, Bryan L.; Huang, Niu

    2012-01-01

    Of great interest in recent years has been computationally predicting the novel polypharmacology of drug molecules. Here, we applied an “induced-fit” protocol to improve the homology models of 5-HT2A receptor, and we assessed the quality of these models in retrospective virtual screening. Subsequently, we computationally screened the FDA approved drug molecules against the best induced-fit 5-HT2A models, and chose six top scoring hits for experimental assays. Surprisingly, one well-known kinase inhibitor, sorafenib has shown unexpected promiscuous 5-HTRs binding affinities, Ki = 1959, 56 and 417 nM against 5-HT2A, 5-HT2B and 5-HT2C, respectively. Our preliminary SAR exploration supports the predicted binding mode, and further suggests sorafenib to be a novel lead compound for 5HTR ligand discovery. Although it has been well known that sorafenib produces anticancer effects through targeting multiple kinases, carefully designed experimental studies are desirable to fully understand whether its “off-target” 5-HTR binding activities contribute to its therapeutic efficacy or otherwise undesirable side effects. PMID:22694093

  10. Sorafenib and nilotinib resensitize tamoxifen resistant breast cancer cells to tamoxifen treatment via estrogen receptor α.

    PubMed

    Pedersen, Astrid M; Thrane, Susan; Lykkesfeldt, Anne E; Yde, Christina W

    2014-11-01

    Tamoxifen‑resistant breast cancer is a major clinical problem and new treatment strategies are highly warranted. In this study, the multitargeting kinase inhibitors sorafenib and nilotinib were investigated as potential new treatment options for tamoxifen‑resistant breast cancer. The two compounds inhibited cell growth, reduced expression of total estrogen receptor α (ER), Ser118-phosphorylated ER, FOXA1 and AIB1 and resensitized tamoxifen‑resistant cells to tamoxifen. The ER downmodulator fulvestrant exerted strong growth inhibition of tamoxifen‑resistant cells and addition of sorafenib and nilotinib could not further suppress growth, showing that sorafenib and nilotinib exerted growth inhibition via ER. In support of this, estradiol prevented sorafenib and nilotinib mediated growth inhibition. These results demonstrate that sorafenib and nilotinib act via ER and ER-associated proteins, indicating that these kinase inhibitors in combination with tamoxifen may be potential new treatments for tamoxifen‑resistant breast cancer. PMID:25175082

  11. Connexin-dependent gap junction enhancement is involved in the synergistic effect of sorafenib and all-trans retinoic acid on HCC growth inhibition.

    PubMed

    Yang, Yan; Qin, Shu-Kui; Wu, Qiong; Wang, Zi-Shu; Zheng, Rong-Sheng; Tong, Xu-Hui; Liu, Hao; Tao, Liang; He, Xian-Di

    2014-02-01

    Increasing gap junction activity in tumor cells provides a target by which to enhance antineoplastic therapies. Previously, several naturally occurring agents, including all-trans retinoic acid (ATRA) have been demonstrated to increase gap junctional intercellular communication (GJIC) in a number of types of cancer cells. In the present study, we investigated in vitro whether ATRA modulates the response of human hepatocellular carcinoma (HCC) cells to sorafenib, the only proven oral drug for advanced HCC, and the underlying mechanisms. HepG2 and SMMC-7721 cells were treated with sorafenib and/or ATRA, and cell proliferation and apoptosis were analyzed; the role of GJIC was also explored. We found that ATRA, at non-toxic concentrations, enhanced sorafenib-induced growth inhibition in both HCC cell lines, and this effect was abolished by two GJIC inhibitors, 18-α-GA and oleamide. Whereas lower concentrations of sorafenib (5 µM) or ATRA (0.1 or 10 µM) alone modestly induced GJIC activity, the combination of sorafenib plus ATRA resulted in a strong enhancement of GJIC. However, the action paradigm differed in the HepG2 and SMMC-7721 cells, with the dominant effect of GJIC dependent on the cell-specific connexin increase in protein amounts and relocalization. RT-PCR assay further revealed a transcriptional modification of the key structural connexin in the two cell lines. Thus, a connexin-dependent gap junction enhancement may play a central role in ATRA plus sorafenib synergy in inhibiting HCC cell growth. Since both agents are available for human use, the combination treatment represents a future profitable strategy for the treatment of advanced HCC. PMID:24317203

  12. Physiologically based pharmacokinetic models for everolimus and sorafenib in mice

    PubMed Central

    Pawaskar, Dipti K.; Straubinger, Robert M.; Fetterly, Gerald J.; Hylander, Bonnie H.; Repasky, Elizabeth A.; Ma, Wen W.

    2013-01-01

    Purpose Everolimus is a mammalian target of rapamycin (mTOR) inhibitor approved as an immunosuppressant and for second-line therapy of hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC). Sorafenib is a multikinase inhibitor used as first-line therapy in HCC and RCC. This study assessed the pharmacokinetics (PK) of everolimus and sorafenib alone and in combination in plasma and tissues, developed physiologically based pharmacokinetic (PBPK) models in mice, and assessed the possibility of PK drug interactions. Methods Single and multiple oral doses of everolimus and sorafenib were administered alone and in combination in immunocompetent male mice and to severe combined immune-deficient (SCID) mice bearing low-passage, patient-derived pancreatic adenocarcinoma in seven different studies. Plasma and tissue samples including tumor were collected over a 24-h period and analyzed by liquid chromatography-tandem mass spectrometry (LC–MS/MS). Distribution of everolimus and sorafenib to the brain, muscle, adipose, lungs, kidneys, pancreas, spleen, liver, GI, and tumor was modeled as perfusion rate-limited, and all data from the diverse studies were fitted simultaneously using a population approach. Results PBPK models were developed for everolimus and sorafenib. PBPK analysis showed that the two drugs in combination had the same PK as each drug given alone. A twofold increase in sorafenib dose increased tumor exposure tenfold, thus suggesting involvement of transporters in tumor deposition of sorafenib. Conclusions The developed PBPK models suggested the absence of PK interaction between the two drugs in mice. These studies provide the basis for pharmacodynamic evaluation of these drugs in patient-derived primary pancreatic adenocarcinomas explants. PMID:23455451

  13. Deteriorated portal flow may cause liver failure in patients with hepatocellular carcinoma being treated with sorafenib

    PubMed Central

    Yamasaki, Akihiro; Umeno, Narihiro; Harada, Shigeru; Tanaka, Kosuke; Kato, Masaki

    2016-01-01

    We encountered two patients with hepatocellular carcinoma (HCC) who showed rapid progression of liver failure during sorafenib treatment. One had portal vein tumor thrombus (PVTT) and the other developed portal vein thrombosis (PVT) during the treatment, and both of them experienced the elevation of serum lactate dehydrogenase (LDH) concentration during the administration of sorafenib. Their clinical courses indicate that the liver failure might have been caused by sorafenib-induced liver hypoxia, being amplified in the circumstances with reduced portal flow. To our best knowledge, all the reported patients who achieved complete remission (CR) during sorafenib monotherapy had a condition that could decrease portal blood flow. We hypothesized that pathogenesis of disease may be similar in HCC patients who achieve CR and those who experience liver failure while on sorafenib. Sorafenib treatment of patients with HCC and deteriorated portal flow may be a double-edged sword. PMID:27284486

  14. Deteriorated portal flow may cause liver failure in patients with hepatocellular carcinoma being treated with sorafenib.

    PubMed

    Yamasaki, Akihiro; Umeno, Narihiro; Harada, Shigeru; Tanaka, Kosuke; Kato, Masaki; Kotoh, Kazuhiro

    2016-06-01

    We encountered two patients with hepatocellular carcinoma (HCC) who showed rapid progression of liver failure during sorafenib treatment. One had portal vein tumor thrombus (PVTT) and the other developed portal vein thrombosis (PVT) during the treatment, and both of them experienced the elevation of serum lactate dehydrogenase (LDH) concentration during the administration of sorafenib. Their clinical courses indicate that the liver failure might have been caused by sorafenib-induced liver hypoxia, being amplified in the circumstances with reduced portal flow. To our best knowledge, all the reported patients who achieved complete remission (CR) during sorafenib monotherapy had a condition that could decrease portal blood flow. We hypothesized that pathogenesis of disease may be similar in HCC patients who achieve CR and those who experience liver failure while on sorafenib. Sorafenib treatment of patients with HCC and deteriorated portal flow may be a double-edged sword. PMID:27284486

  15. Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model.

    PubMed

    Zhang, Chenran; Gao, Liquan; Cai, Yuehong; Liu, Hao; Gao, Duo; Lai, Jianhao; Jia, Bing; Wang, Fan; Liu, Zhaofei

    2016-04-01

    Tumor-associated macrophages (TAMs) play essential roles in tumor invasion and metastasis, and contribute to drug resistance. Clinical evidence suggests that TAM levels are correlated with local tumor relapse, distant metastasis, and poor prognosis in patients. In this study, we synthesized a TAM-targeted probe (IRD-αCD206) by conjugating a monoclonal anti-CD206 antibody with a near-infrared phthalocyanine dye. We then investigated the potential application of the IRD-αCD206 probe to near-infrared fluorescence (NIRF) imaging and photoimmunotherapy (PIT) of tumors resistant to treatment with the kinase inhibitor sorafenib. Sorafenib treatment had no effect on tumor growth in a 4T1 mouse model of breast cancer, but induced M2 macrophage polarization in tumors. M2 macrophage recruitment by sorafenib-treated 4T1 tumors was noninvasively visualized by in vivo NIRF imaging of IRD-αCD206. Small-animal single-photon emission computed tomography (SPECT)/CT and intratumoral microdistribution analysis indicated TAM-specific localization of the IRD-αCD206 probe in 4T1 tumors after several rounds of sorafenib treatment. Upon light irradiation, IRD-αCD206 suppressed the growth of sorafenib-resistant tumors. In vivo CT imaging and ex vivo histological analysis confirmed the inhibition of lung metastasis in mice by IRD-αCD206 PIT. These results demonstrate the utility of the IRD-αCD206 probe for TAM-targeted diagnostic imaging and treatment of tumors that are resistant to conventional therapeutics. PMID:26803407

  16. Quantitation of sorafenib and its active metabolite sorafenib N-oxide in human plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Li, Lie; Zhao, Ming; Navid, Fariba; Pratz, Keith; Smith, B Doug; Rudek, Michelle A; Baker, Sharyn D

    2010-11-01

    A simple and rapid method with high performance liquid chromatography/tandem mass spectrometry is described for the quantitation of the kinase inhibitor sorafenib and its active metabolite sorafenib N-oxide in human plasma. A protein precipitation extraction procedure was applied to 50 μL of plasma. Chromatographic separation of the two analytes, and the internal standard [(2)H(3)(13)C]-sorafenib, was achieved on a C(18) analytical column and isocratic flow at 0.3 mL/min for 4 min. Mean within-run and between-run precision for all analytes were <6.9% and accuracy was <5.3%. Calibration curves were linear over the concentration range of 50-10,000 ng/mL for sorafenib and 10-2500 ng/mL for sorafenib N-oxide. This method allows a specific, sensitive, and reliable determination of the kinase inhibitor sorafenib and its active metabolite sorafenib N-oxide in human plasma in a single analytical run. PMID:20870468

  17. S-Adenosyl-l-methionine-competitive inhibitors of the histone methyltransferase EZH2 induce autophagy and enhance drug sensitivity in cancer cells

    PubMed Central

    Liu, Tsang-Pai; Lo, Hsiang-Ling; Wei, Li-Shan; Hao-yun Hsiao, Heidi

    2015-01-01

    The enhancer of zeste homolog 2 (EZH2) has emerged as a novel anticancer target. Various EZH2 inhibitors have been developed in recent years. Among these, 3-deazaneplanocin A (DZNep) is known to deplete EZH2 protein expression through an indirect pathway. In contrast, GSK343 directly inhibits enzyme activity through an S-adenosyl-l-methionine-competitive pathway. Therefore, we proposed that DZNep and GSK343 may exert differential effects against cancer cells. In this study, we found that GSK343 but not DZNep induced autophagic cell death of cancer cells. Inhibition of EZH2 expression was not required for GSK343-induced autophagy. In addition, GSK343 enhanced the anticancer activity of a multikinase inhibitor, sorafenib, in human hepatocellular carcinoma cells. Our results show that GSK343 is a more potent anticancer agent than DZNep, and for the first time, we show that it acts as an autophagy inducer. PMID:25203626

  18. Clinical observation of liver cancer patients treated with axitinib and cabozantinib after failed sorafenib treatment: a case report and literature review

    PubMed Central

    Zhang, Bin; Zhang, Xia; Zhou, Tao; Liu, Jiwei

    2015-01-01

    Hepatocellular carcinoma (HCC) is a major pathological type of primary liver cancer. Sorafenib has demonstrated definite efficacy in targeted therapy for HCC. However, when treatment with sorafenib fails, suitable drugs must be found for further treatment. This article reports a case of an HCC patient who was treated with angiogenesis inhibitor axitinib and c-Met inhibitor cabozantinib following treatment with sorafenib. The report focuses on clinical treatment and toxicity. Rational application of targeted therapy is also explored. PMID:25668362

  19. Inhibition of Cell Proliferation in an NRAS Mutant Melanoma Cell Line by Combining Sorafenib and α-Mangostin.

    PubMed

    Xia, Yun; Li, Ying; Westover, Kenneth D; Sun, Jiaming; Chen, Hongxiang; Zhang, Jianming; Fisher, David E

    2016-01-01

    α-Mangostin is a natural product commonly used in Asia for cosmetic and medicinal applications including topical treatment of acne and skin cancer. Towards finding new pharmacological strategies that overcome NRAS mutant melanoma, we performed a cell proliferation-based combination screen using a collection of well-characterized small molecule kinase inhibitors and α-Mangostin. We found that α-Mangostin significantly enhances Sorafenib pharmacological efficacy against an NRAS mutant melanoma cell line. The synergistic effects of α-Mangostin and Sorafenib were associated with enhanced inhibition of activated AKT and ERK, induced ER stress, and reduced autophagy, eventually leading to apoptosis. The structure of α-Mangostin resembles several inhibitors of the Retinoid X receptor (RXR). MITF expression, which is regulated by RXR, was modulated by α-Mangostin. Molecular docking revealed that α-Mangostin can be accommodated by the ligand binding pocket of RXR and may thereby compete with RXR-mediated control of MITF expression. In summary, these data demonstrate an unanticipated synergy between α-Mangostin and sorafenib, with mechanistic actions that convert a known safe natural product to a candidate combinatorial therapeutic agent. PMID:27152946

  20. Inhibition of Cell Proliferation in an NRAS Mutant Melanoma Cell Line by Combining Sorafenib and α-Mangostin

    PubMed Central

    Xia, Yun; Li, Ying; Westover, Kenneth D.; Sun, Jiaming; Chen, Hongxiang; Zhang, Jianming; Fisher, David E.

    2016-01-01

    α-Mangostin is a natural product commonly used in Asia for cosmetic and medicinal applications including topical treatment of acne and skin cancer. Towards finding new pharmacological strategies that overcome NRAS mutant melanoma, we performed a cell proliferation-based combination screen using a collection of well-characterized small molecule kinase inhibitors and α-Mangostin. We found that α-Mangostin significantly enhances Sorafenib pharmacological efficacy against an NRAS mutant melanoma cell line. The synergistic effects of α-Mangostin and Sorafenib were associated with enhanced inhibition of activated AKT and ERK, induced ER stress, and reduced autophagy, eventually leading to apoptosis. The structure of α-Mangostin resembles several inhibitors of the Retinoid X receptor (RXR). MITF expression, which is regulated by RXR, was modulated by α-Mangostin. Molecular docking revealed that α-Mangostin can be accommodated by the ligand binding pocket of RXR and may thereby compete with RXR-mediated control of MITF expression. In summary, these data demonstrate an unanticipated synergy between α-Mangostin and sorafenib, with mechanistic actions that convert a known safe natural product to a candidate combinatorial therapeutic agent. PMID:27152946

  1. Effects of Sorafenib Dose on Acquired Reversible Resistance and Toxicity in Hepatocellular Carcinoma.

    PubMed

    Kuczynski, Elizabeth A; Lee, Christina R; Man, Shan; Chen, Eric; Kerbel, Robert S

    2015-06-15

    Acquired evasive resistance is a major limitation of hepatocellular carcinoma (HCC) treatment with the tyrosine kinase inhibitor (TKI) sorafenib. Recent findings suggest that resistance to sorafenib may have a reversible phenotype. In addition, loss of responsiveness has been proposed to be due to a gradual decrease in sorafenib plasma levels in patients. Here, the possible mechanisms underlying reversible sorafenib resistance were investigated using a Hep3B-hCG orthotopic human xenograft model of locally advanced HCC. Tissue and plasma sorafenib and metabolite levels, downstream antitumor targets, and toxicity were assessed during standard and dose-escalated sorafenib treatment. Drug levels were found to decline significantly over time in mice treated with 30 mg/kg sorafenib, coinciding with the onset of resistance but a greater magnitude of change was observed in tissues compared with plasma. Skin rash also correlated with drug levels and tended to decrease in severity over time. Drug level changes appeared to be partially tumor dependent involving induction of tumoral CYP3A4 metabolism, with host pretreatment alone unable to generate resistance. Escalation from 30 to 60 mg/kg sorafenib improved antitumor efficacy but worsened survival due to excessive body weight loss. Microvessel density was inhibited by sorafenib treatment but remained suppressed over time and dose increase. In conclusion, tumor CYP3A4 induction by sorafenib is a novel mechanism to account for variability in systemic drug levels; however, declining systemic sorafenib levels may only be a minor resistance mechanism. Escalating the dose may be an effective treatment strategy, provided toxicity can be controlled. PMID:25908587

  2. Metformin synergistically sensitizes FLT3-ITD-positive acute myeloid leukemia to sorafenib by promoting mTOR-mediated apoptosis and autophagy.

    PubMed

    Wang, Fangfang; Liu, Zuofeng; Zeng, Jisha; Zhu, Hongyan; Li, Jingjing; Cheng, Xiaomin; Jiang, Tao; Zhang, Li; Zhang, Chuanfen; Chen, Tie; Liu, Ting; Jia, Yongqian

    2015-12-01

    Mutations of Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD), accounting for approximately 30% of patients with acute myeloid leukemia (AML), results in poor therapeutic efficacy and short survival. Sorafenib, an oral multikinase inhibitor, can inhibit FLT3 and improve clinical outcome of FLT3 mutated leukemia. Our current studies have shown that, the antidiabetic drug metformin also exerts anti-leukemic effect by activating p-AMPK and synergistically sensitizes FLT3 mutated AML to sorafenib. Both agents suppress cell proliferation in a dose-dependent manner and induce apoptosis via cell cycle arrest, but does not obviously modulate autophagy marker, light chain 3 (LC3). Mechanistically, in the presence of metformin, the anticancer potential of sorafenib, accompanying with increased LC3 levels, is found to be synergistically enhanced with the remarkably reduced protein expression of the mTOR/p70S6K/4EBP1 pathway, while not appreciably altering cell cycle. Overall, these results show metformin in aid of sorafenib may represent a promising and attractive strategy for the treatment of FLT3-ITD mutated AML. PMID:26505133

  3. Management of sorafenib-related adverse events: a clinician's perspective.

    PubMed

    Brose, Marcia S; Frenette, Catherine T; Keefe, Stephen M; Stein, Stacey M

    2014-02-01

    Sorafenib, a tyrosine kinase inhibitor, is approved for the treatment of patients with unresectable hepatocellular carcinoma (HCC) and advanced renal cell carcinoma (RCC). It is being evaluated in phase II and III clinical trials, which include treatment as a single agent (locally advanced/metastatic radioactive iodine-refractory differentiated thyroid cancer [DTC]), as part of multimodality care (HCC), and in combination with chemotherapeutic agents (metastatic breast cancer). Sorafenib-related adverse events (AEs) that commonly occur across these tumor types include hand-foot skin reaction (HSFR), rash, upper and lower gastrointestinal (GI) distress (ie, diarrhea), fatigue, and hypertension. These commonly range from grade 1 to 3, per the Common Terminology Criteria for Adverse Events (CTCAE), and often occur early in treatment. The goal for the management of these AEs is to prevent, treat, and/or minimize their effects, thereby enabling patients to remain on treatment and improve their quality of life. Proactive management, along with ongoing patient education (before and during sorafenib treatment), can help to effectively manage symptoms, often without the need for sorafenib dose modification or drug holidays. Effective management techniques for common sorafenib-related AEs, as well other important disease sequelae not directly related to treatment, are presented. Recommendations and observations are based on physician/author experience and recommendations from published literature. PMID:24576654

  4. [Side effect management of tyrosine kinase inhibitors in urology : Hypertension].

    PubMed

    Sikic, D; Meidenbauer, N; Lieb, V; Keck, B

    2016-07-01

    Tyrosine kinase inhibitors like sunitinib, sorafenib, pazopanib or axintinib are regarded the standard of care in the systemic therapy of metastatic renal cell carcinoma. However, the many side effects associated with this therapy pose challenges for the treating physician and the patient. This review offers an overview of the classification and the treatment of hypertension, which is one of the major side effects induced by all tyrosine kinase inhibitors, in order to improve treatment efficacy and patient compliance. PMID:27146871

  5. MiR-101 targets DUSP1 to regulate the TGF-β secretion in sorafenib inhibits macrophage-induced growth of hepatocarcinoma

    PubMed Central

    Wei, Xufu; Tang, Chengyong; Lu, Xiuxian; Liu, Rui; Zhou, Mi; He, Diao; Zheng, Daofeng; Sun, Chao; Wu, Zhongjun

    2015-01-01

    Hepatocellular carcinoma (HCC)-associated macrophages accelerate tumor progression via growth factor release. Therefore, tumor-associated macrophages (TAMs)-initiated signaling cascades are potential therapeutic targets. To better understand anticancer effects of systemic HCC therapy, we studied sorafenib's effect on macrophage function, focusing on macrophage-related growth factor secretion. We found that dual specificity phosphatase 1 (DUSP1) is a direct target of miR-101. Transfection of miR-101 reduced DUSP1 induction in M2 macrophages and prolonged ERK1/2, p38 and JNK activation, whereas inhibition of miR-101 enhanced DUSP1 expression and decreased ERK1/2, p38 and JNK activation. miR-101 expression was decreased by sorafenib, and inhibition of PI3K/AKT blocked induction of miR-101 by LPS in M2 cells. M2 cells with greater TGF-β and CD206 mRNA expression compared to M1 cells had increased hepatoma growth, metastases and EMT. Sorafenib inhibited miR-101 expression and enhanced DUSP1 expression and lowered TGF-β and CD206 release in M2 cells, slowing macrophage-driven HCC. Our studies demonstrate miR-101 regulates macrophage innate immune responses to LPS via targeting DUSP1. Sorafenib alters macrophage polarization, reduces TGF-β driven cancer growth, metastases and EMT in vitro, and partially inhibits macrophage activation in vivo. Thus, macrophage modulation might explain the anticancer effects of sorafenib. PMID:26158762

  6. A quantitative HPLC-UV method for determination of serum sorafenib and sorafenib N-oxide and its application in hepatocarcinoma patients.

    PubMed

    Shimada, Miki; Okawa, Hoshimi; Maejima, Takahiro; Yanagi, Toshiki; Hisamichi, Kanehiko; Matsuura, Masaki; Akasaka, Kazutoshi; Tsuchiya, Masami; Kondo, Yasuteru; Shimosegawa, Tooru; Mori, Masaru; Maekawa, Masamitsu; Suzuki, Hiroyuki; Mano, Nariyasu

    2014-01-01

    Sorafenib, an oral multi-kinase inhibitor, has been approved for treatment of advanced renal-cell and hepatocellular carcinoma (HCC). However, 20% of HCC patients taking sorafenib are forced to withdraw due to adverse effects within one month after administration. Orally administered sorafenib is oxidatively metabolized, predominantly by cytochrome P450 3A4 (CYP3A4), in small-intestinal mucosa or liver. We aimed to characterize the CYP3A4-mediated metabolism of sorafenib in HCC patients and explore the contribution of the major metabolite sorafenib N-oxide to adverse effects and therapeutic efficacy. We have therefore developed a method for quantitative determination of sorafenib and its N-oxide in the present study. To optimize the preanalytical procedure, we initially ascertained the solubility of the analytes. Because they are lipophilic, solvents containing more than 40% acetonitrile were required for efficient recovery. The pretreatment procedure that we ultimately developed consists of acetonitrile precipitation, followed by extraction using octadecyl silyl-silica gel to eliminate water-soluble and hydrophilic components of serum. Application of this procedure before HPLC enabled accurate and reproducible quantitation of analytes in a linear range from 0.03 to 30 μg/mL. After characterizing the peaks in the HPLC-ultraviolet chromatogram obtained from a medicated patient by LC-tandem mass spectrometry, we applied this method to HCC patients taking sorafenib, showing large inter-individual differences in the pharmacokinetic profile. In conclusion, our assay system should be useful for follow-up of patients taking sorafenib and for exploring the association between the pharmacokinetics of sorafenib and its N-oxide and the adverse effects or therapeutic efficacy. PMID:24872323

  7. Sorafenib for Metastatic Thyroid Cancer

    Cancer.gov

    A summary of results from an international phase III trial that compared sorafenib (Nexavar®) and a placebo for the treatment of locally advanced or metastatic differentiated thyroid cancer that is no longer responding to treatment with radioactive iodine

  8. GSK-3 inhibition in vitro and in vivo enhances antitumor effect of sorafenib in renal cell carcinoma (RCC)

    SciTech Connect

    Kawazoe, Hisashi; Bilim, Vladimir N.; Ugolkov, Andrey V.; Yuuki, Kaori; Naito, Sei; Nagaoka, Akira; Kato, Tomoyuki; Tomita, Yoshihiko

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Sorafenib treatment upregulated GSK-3{beta} levels in RCC cells. Black-Right-Pointing-Pointer Pharmacologic inhibition of GSK-3 suppressed xenograft RCC tumor growth. Black-Right-Pointing-Pointer Inhibition of GSK-3 enhanced antitumor effect of sorafenib in vitro and in vivo. -- Abstract: Sorafenib is a multikinase inhibitor approved for the systemic treatment of renal cell carcinoma (RCC). However, sorafenib treatment has a limited effect due to acquired chemoresistance of RCC. Previously, we identified glycogen synthase kinase-3 (GSK-3) as a new therapeutic target in RCC. Here, we observed that sorafenib inhibits proliferation and survival of RCC cells. Significantly, we revealed that sorafenib enhances GSK-3 activity in RCC cells, which could be a potential mechanism of acquired chemoresistance. We found that pharmacological inhibition of GSK-3 potentiates sorafenib antitumor effect in vitro and in vivo. Our results suggest that combining GSK-3 inhibitor and sorafenib might be a potential new therapeutic approach for RCC treatment.

  9. NUPR1, a new target in liver cancer: implication in controlling cell growth, migration, invasion and sorafenib resistance.

    PubMed

    Emma, M R; Iovanna, J L; Bachvarov, D; Puleio, R; Loria, G R; Augello, G; Candido, S; Libra, M; Gulino, A; Cancila, V; McCubrey, J A; Montalto, G; Cervello, M

    2016-01-01

    Sorafenib, an oral multikinase inhibitor, is the only approved agent for the treatment of advanced hepatocellular carcinoma (HCC). However, its benefits are modest, and as its mechanisms of action remain elusive, a better understanding of its anticancer effects is needed. Based on our previous study results, we investigated here the implication of the nuclear protein 1 (NUPR1) in HCC and its role in sorafenib treatment. NUPR1 is a stress-inducible protein that is overexpressed in various malignancies, but its role in HCC is not yet fully understood. We found that NUPR1 expression was significantly higher in primary human HCC samples than in the normal liver. Knockdown of NUPR1 significantly increased cell sensitivity to sorafenib and inhibited the cell growth, migration and invasion of HCC cells, both in vitro and in vivo. Moreover, NUPR1 silencing influenced the expression of RELB and IER3 genes. Unsurprisingly, RELB and IER3 knockdown also inhibited HCC cell viability, growth and migration. Using gene expression profiling of HCC cells following stable NUPR1 knockdown, we found that genes functionally involved in cell death and survival, cellular response to therapies, lipid metabolism, cell growth and proliferation, molecular transport and cellular movement were mostly suppressed. Network analysis of dynamic gene expression identified NF-κB and ERK as downregulated gene nodes, and several HCC-related oncogenes were also suppressed. We identified Runt-related transcription factor 2 (RUNX2) gene as a NUPR1-regulated gene and demonstrated that RUNX2 gene silencing inhibits HCC cell viability, growth, migration and increased cell sensitivity to sorafenib. We propose that the NUPR1/RELB/IER3/RUNX2 pathway has a pivotal role in hepatocarcinogenesis. The identification of the NUPR1/RELB/IER3/RUNX2 pathway as a potential therapeutic target may contribute to the development of new treatment strategies for HCC management. PMID:27336713

  10. Inactivation of hypoxia-induced YAP by statins overcomes hypoxic resistance tosorafenib in hepatocellular carcinoma cells

    PubMed Central

    Zhou, Tian-yi; Zhuang, Lin-han; Hu, Yan; Zhou, Yu-lu; Lin, Wen-kai; Wang, Dan-dan; Wan, Zi-qian; Chang, Lin-lin; Chen, Ying; Ying, Mei-dan; Chen, Zi-bo; Ye, Song; Lou, Jian-shu; He, Qiao-jun; Zhu, Hong; Yang, Bo

    2016-01-01

    Sorafenib is a multikinase inhibitor used as a first-line treatment for advanced hepatocellular carcinoma (HCC), but it has shown modest to low response rates. The characteristic tumour hypoxia of advanced HCC maybe a major factor underlying hypoxia-mediated treatment failure. Thus, it is urgent to elucidate the mechanisms of hypoxia-mediated sorafenib resistance in HCC. In this study, we found that hypoxia induced the nuclear translocation of Yes associate-Protein (YAP) and the subsequent transactivation of target genes that promote cell survival and escape apoptosis, thereby leading to sorafenib resistance. Statins, the inhibitors of hydroxymethylglutaryl-CoA reductase, could ameliorate hypoxia-induced nuclear translocation of YAP and suppress mRNA levels of YAP target genes both in vivo and in vitro. Combined treatment of statins with sorafenib greatly rescued the loss of anti-proliferative effects of sorafenib under hypoxia and improved the inhibitory effects on HepG2 xenograft tumour growth, accompanied by enhanced apoptosis as evidenced by the increased sub-G1 population and PARP cleavage. The expression levels of YAP and its target genes were highly correlated with poor prognosis and predicted a high risk of HCC patients. These findings collectively suggest that statins utilization maybe a promising new strategy to counteract hypoxia-mediated resistance to sorafenib in HCC patients. PMID:27476430

  11. Sorafenib Sensitizes Glioma Cells to the BH3 Mimetic ABT-737 by Targeting MCL1 in a STAT3-Dependent Manner12

    PubMed Central

    Kiprianova, Irina; Remy, Janina; Milosch, Nelli; Mohrenz, Isabelle V.; Seifert, Volker; Aigner, Achim; Kögel, Donat

    2015-01-01

    The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is overactivated in malignant glioma and plays a key role in promoting cell survival, thereby increasing the acquired apoptosis resistance of these tumors. Here we investigated the STAT3/myeloid cell leukemia 1 (MCL1) signaling pathway as a target to overcome the resistance of glioma cells to the Bcl-2-inhibiting synthetic BH3 mimetic ABT-737. Stable lentiviral knockdown of MCL1 sensitized LN229 and U87 glioma cells to apoptotic cell death induced by single-agent treatment with ABT-737 which was associated with an early activation of DEVDase activity, cytochrome c release, and nuclear apoptosis. Similar sensitizing effects were observed when ABT-737 treatment was combined with the multikinase inhibitor sorafenib which effectively suppressed levels of phosphorylated STAT3 and MCL1 in MCL1-proficient LN229 and U87 glioma cells. In analogous fashion, these synergistic effects were observed when we combined ABT-737 with the STAT3 inhibitor WP-1066. Lentiviral knockdown of the activating transcription factor 5 combined with subsequent quantitative polymerase chain reaction analysis revealed that sorafenib-dependent suppression of MCL1 occurred at the transcriptional level but did not depend on activating transcription factor 5 which previously had been proposed to be essential for MCL1-dependent glioma cell survival. In contrast, the constitutively active STAT3 mutant STAT3-C was able to significantly enhance MCL1 levels under sorafenib treatment to retain cell survival. Collectively, these data demonstrate that sorafenib targets MCL1 in a STAT3-dependent manner, thereby sensitizing glioma cells to treatment with ABT-737. They also suggest that targeting STAT3 in combination with inducers of the intrinsic pathway of apoptosis may be a promising novel strategy for the treatment of malignant glioma. PMID:26297434

  12. Selective use of sorafenib in the treatment of thyroid cancer

    PubMed Central

    Pitoia, Fabián; Jerkovich, Fernando

    2016-01-01

    Sorafenib is a multiple kinase inhibitor (MKI) approved for the treatment of primary advanced renal cell carcinoma and advanced primary liver cancer. It was recently approved by several health agencies around the world as the first available MKI treatment for radioactive iodine-refractory advanced and progressive differentiated thyroid cancer. Sorafenib targets C-RAF, B-RAF, VEGF receptor-1, -2, -3, PDGF receptor-β, RET, c-kit, and Flt-3. As a multifunctional inhibitor, sorafenib has the potential of inhibiting tumor growth, progression, metastasis, and angiogenesis and downregulating mechanisms that protect tumors from apoptosis and has shown to increase the progression-free survival in several Phase II trials. This led to the Phase III trial (DECISION) which showed that there was an improvement in progression-free survival of 5 months for patients on sorafenib when compared to those on placebo. Adverse events with this drug are common but usually manageable. The development of resistance after 1 or 2 years is almost a rule in most patients who showed partial response or stabilization of the disease while on sorafenib, which makes it necessary to think of a plan for subsequent therapies. These may include the use of another MKI, such as lenvatinib, the second approved MKI for advanced differentiated thyroid cancer, or include patients in clinical trials or the off-label use of other MKIs. Given sorafenib’s earlier approval, most centers now have access to its prescription. The goal of this review was to improve the care of these patients by describing key aspects that all prescribers will need to master in order to optimize outcomes. PMID:27042004

  13. Pediatric phase I trial of oral sorafenib and topotecan in refractory or recurrent pediatric solid malignancies.

    PubMed

    Reed, Damon R; Mascarenhas, Leo; Manning, Kathleen; Hale, Gregory A; Goldberg, John; Gill, Jonathan; Sandler, Eric; Isakoff, Michael S; Smith, Tiffany; Caracciolo, Jamie; Lush, Richard M; Juan, Tzu-Hua; Lee, Jae K; Neuger, Anthony M; Sullivan, Daniel M

    2016-02-01

    Targeted kinase inhibitors and camptothecins have shown preclinical and clinical activity in several cancers. This trial evaluated the maximum tolerated dose (MTD) and dose-limiting toxicities of sorafenib and topotecan administered orally in pediatric patients with relapsed solid tumors. Sorafenib was administered twice daily and topotecan once daily on days 1-5 and 8-12 of each 28-day course. The study utilized a standard 3 + 3 dose escalation design. Three dose levels (DL) were evaluated: (1) sorafenib 150 mg/m(2) and topotecan 1 mg/m(2) ; (2) sorafenib 150 mg/m(2) and topotecan 1.4 mg/m(2) ; and (3) sorafenib 200 mg/m(2) and topotecan 1.4 mg/m(2) . Pharmacokinetics were ascertained and treatment response assessed. Thirteen patients were enrolled. DL2 was the determined MTD. Grade 4 thrombocytopenia delaying therapy for >7 days was observed in one of six patients on DL2, and grade 4 neutropenia that delayed therapy in two of three patients on DL3. A patient with preexisting cardiac failure controlled with medication developed a transient drop in the left ventricular ejection fraction that improved when sorafenib was withheld. Sorafenib exposure with or without topotecan was comparable, and the concentration-time profiles for topotecan alone and in combination with sorafenib were similar. One objective response was noted in a patient with fibromatosis. We determined MTD to be sorafenib 150 mg/m(2) twice daily orally on days 1-28 combined with topotecan 1.4 mg/m(2) once daily on days 1-5 and 8-12. While these doses are 1 DL below the MTD of the agents individually, pharmacokinetic studies suggested adequate drug exposure without drug interactions. The combination had limited activity in the population studied. PMID:26714427

  14. Sorafenib in breast cancer treatment: A systematic review and overview of clinical trials

    PubMed Central

    Zafrakas, Menelaos; Papasozomenou, Panayiota; Emmanouilides, Christos

    2016-01-01

    AIM To evaluate the current role of sorafenib, an oral multikinase inhibitor in the treatment of breast cancer. METHODS An extensive search of the literature until March 2016 was carried out in Medline and clinicaltrials.gov, by using the search terms “sorafenib” and “breast cancer”. Papers found were checked for further relevant publications. Overall, 21 relevant studies were found, 18 in advanced breast cancer (16 in stage IV and two in stages III-IV) and three in early breast cancer. RESULTS Among studies in advanced breast cancer, there were two trials with sorafenib as monotherapy, four trials of sorafenib in combination with taxanes, two in combination with capecitabine, one with gemcitabine and/or capecitabine, one with vinorelbine, one with bevacizumab, one with pemetrexed and one with ixabepilone, three trials of sorafenib in combination with endocrine therapy and two trials in women with brain metastases undergoing whole brain radiotherapy. In addition, there was one trial of sorafenib added to standard chemotherapy in the adjuvant setting, and two trials in the neoadjuvant setting. In general, sorafenib was well tolerated in breast cancer patients, though its dosage had to be adjusted in some trials, and discontinuation rates were high, particularly for the combination of sorafenib with anastrozole. Sorafenib monotherapy and combinations with taxanes, bevacizumab and ixabepilone showed inadequate efficacy, while efficacy results from combinations with gemcitabine and/or capecitabine and possibly tamoxifen were more promising. CONCLUSION At present, sorafenib should not be used for the treatment of breast cancer outside of clinical trials and more clinical data are needed in order to support its standard use in breast cancer therapy. PMID:27579253

  15. [Three Patients with Acute Myocardial Infarction Associated with Targeted Therapy of Sorafenib for Metastatic Renal Cell Carcinoma : Case Report].

    PubMed

    Takagi, Kimiaki; Takai, Manabu; Kawata, Kei; Horie, Kengo; Kikuchi, Mina; Kato, Taku; Mizutani, Kosuke; Seike, Kensaku; Tsuchiya, Tomohiro; Yasuda, Mitsuru; Yokoi, Shigeaki; Nakano, Masahiro; Ushikoshi, Hiroaki; Miyazaki, Tatsuhiko; Deguchi, Takashi

    2015-09-01

    Sorafenib is a tyrosine kinase inhibitor (TKI) of the vascular endothelial growth factor receptor (VEGFR) used for advanced renal cell carcinoma. Treatment with sorafenib prolongs progression-free survival in patients with advanced clear-cell renal cell carcinoma. However, in spite of its therapeutic efficacy, sorafenib causes a wide range of adverse events. Cardiovascular adverse events have been observed when sorafenib was used with targeted agents. Although these adverse events like hypertension, reduced left ventricular ejection fraction, cardiac ischemia or infarction were manageable with standard medical therapies in most cases, some had a poor clinical outcome. We report three cases of acute myocardial infarction associated with sorafenib in patients with metastatic renal cell carcinoma. PMID:26497860

  16. Dipeptidyl peptidase-4 inhibitor for steroid-induced diabetes

    PubMed Central

    Yanai, Hidekatsu; Masui, Yoshinori; Yoshikawa, Reo; Kunimatsu, Junwa; Kaneko, Hiroshi

    2010-01-01

    The addition of the dipeptidyl peptidase-4 (DDP-4) inhibitor has been reported to achieve greater improvements in glucose metabolism with fewer adverse events compared to increasing the metformin dose in type 2 diabetic patients. We present a patient with steroid-induced diabetes whose blood glucose levels were ameliorated by the use of the DPP-4 inhibitor, showing that the DPP-4 inhibitors may be an effective and safe oral anti-diabetic drug for steroid-induced diabetes. PMID:21537433

  17. Synergistic Inhibitory Effect of Hyperbaric Oxygen Combined with Sorafenib on Hepatoma Cells

    PubMed Central

    Peng, Hai-Shan; Liao, Ming-Bin; Zhang, Mei-Yin; Xie, Yin; Xu, Li; Zhang, Yao-Jun; Zheng, X. F. Steven; Wang, Hui-Yun; Chen, Yi-Fei

    2014-01-01

    Objectives Hypoxia is a common phenomenon in solid tumors, associated with chemotherapy and radiotherapy resistance, recurrence and metastasis. Hyperbaric oxygen (HBO) therapy can increase tissue oxygen pressure and content to prevent the resistance, recurrence and metastasis of cancer. Presently, Sorafenib is a first-line drug, targeted for hepatocellular carcinoma (HCC) but effective in only a small portion of patients and can induce hypoxia. The purpose of this study is to investigate the effect of HBO in combination with sorafenib on hepatoma cells. Methods Hepatoma cell lines (BEL-7402 and SK-Hep1) were treated with HBO at 2 atmosphere absolute pressure for 80 min per day or combined with sorafenib or cisplatin. At different time points, cells were tested for cell growth, colony formation, apoptosis, cell cycle and migration. Finally, miRNA from the hepatoma cells was detected by microRNA array and validated by qRT-PCR. Results Although HBO, sorafenib or cisplatin alone could inhibit growth of hepatoma cells, HBO combined with sorafenib or cisplatin resulted in much greater synergistic growth inhibition (cell proliferation and colony formation) in hepatoma cells. Similarly, the synergistic effect of HBO and sorafenib on induction of apoptosis was also observed in hepatoma cells. HBO induced G1 arrest in SK-Hep1 not in BEL-7402 cells, but enhanced cell cycle arrest induced by sorafenib in BEL-7402 treated cells. However, HBO had no obvious effect on the migration of hepatoma cells, and microRNA array analysis showed that hepatoma cells with HBO treatment had significantly different microRNA expression profiles from those with blank control. Conclusions We show for the first time that HBO combined with sorafenib results in synergistic growth inhibition and apoptosis in hepatoma cells, suggesting a potential application of HBO combined with sorafenib in HCC patients. Additionally, we also show that HBO significantly altered microRNA expression in hepatoma cells

  18. Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis.

    PubMed

    Eisen, T; Ahmad, T; Flaherty, K T; Gore, M; Kaye, S; Marais, R; Gibbens, I; Hackett, S; James, M; Schuchter, L M; Nathanson, K L; Xia, C; Simantov, R; Schwartz, B; Poulin-Costello, M; O'Dwyer, P J; Ratain, M J

    2006-09-01

    The effects of sorafenib--an oral multikinase inhibitor targeting the tumour and tumour vasculature--were evaluated in patients with advanced melanoma enrolled in a large multidisease Phase II randomised discontinuation trial (RDT). Enrolled patients received a 12-week run-in of sorafenib 400 mg twice daily (b.i.d.). Patients with changes in bi-dimensional tumour measurements <25% from baseline were then randomised to sorafenib or placebo for a further 12 weeks (ie to week 24). Patients with > or =25% tumour shrinkage after the run-in continued on open-label sorafenib, whereas those with > or =25% tumour growth discontinued treatment. This analysis focussed on secondary RDT end points: changes in bi-dimensional tumour measurements from baseline after 12 weeks and overall tumour responses (WHO criteria) at week 24, progression-free survival (PFS), safety and biomarkers (BRAF, KRAS and NRAS mutational status). Of 37 melanoma patients treated during the run-in phase, 34 were evaluable for response: one had > or =25% tumour shrinkage and remained on open-label sorafenib; six (16%) had <25% tumour growth and were randomised (placebo, n=3; sorafenib, n=3); and 27 had > or =25% tumour growth and discontinued. All three randomised sorafenib patients progressed by week 24; one remained on sorafenib for symptomatic relief. All three placebo patients progressed by week-24 and were re-started on sorafenib; one experienced disease re-stabilisation. Overall, the confirmed best responses for each of the 37 melanoma patients who received sorafenib were 19% stable disease (SD) (ie n=1 open-label; n=6 randomised), 62% (n=23) progressive disease (PD) and 19% (n=7) unevaluable. The overall median PFS was 11 weeks. The six randomised patients with SD had overall PFS values ranging from 16 to 34 weeks. The most common drug-related adverse events were dermatological (eg rash/desquamation, 51%; hand-foot skin reaction, 35%). There was no relationship between V600E BRAF status and disease

  19. Variability of Sorafenib Toxicity and Exposure over Time: A Pharmacokinetic/Pharmacodynamic Analysis

    PubMed Central

    Ropert, Stanislas; Mir, Olivier; Coriat, Romain; Billemont, Bertrand; Tod, Michel; Cabanes, Laure; Franck, Nathalie; Blanchet, Benoit; Goldwasser, François

    2012-01-01

    Background. Sorafenib displays major interpatient pharmacokinetic variability. It is unknown whether the pharmacokinetics of sorafenib influence its toxicity. Methods. We analyzed the severity and kinetics of sorafenib-induced toxicities in unselected consecutive patients with cancer, as well as their relationship with biological, clinical, and pharmacokinetic parameters. Toxicity was recorded bimonthly. Sorafenib plasma concentrations were assessed by liquid chromatography. Results. For 83 patients (median age, 62 years; range, 21–84 years), median sorafenib 12-hour area under the curve (AUC0–12) was 52.8 mg · h/L (range: 11.8–199.6). A total of 51 patients (61%) experienced grade 3–4 toxicities, including hand-foot skin reactions (23%), asthenia (18%), and diarrhea (11%). Sorafenib AUC0–12 preceding grade 3–4 toxicities was significantly higher than that observed in the remaining population (61.9 mg · h/L vs. 53 mg · h/L). In 25 patients treated with fixed doses of sorafenib for the first 4 months, median dose-normalized AUC0–12 on day 120 was significantly lower than on day 15 (63 vs. 102 mg · h/L). The incidence of hypertension and hand-foot skin reactions significantly decreased over time. Conclusion. Sorafenib AUC0–12 decreases over time, similarly to the incidence of hypertension and hand-foot skin reactions. Monitoring of sorafenib plasma concentrations may help to prevent acute severe toxicities and detect patients with suboptimal exposure at disease progression. PMID:22752067

  20. The effect of sorafenib on liver regeneration and angiogenesis after partial hepatectomy in rats

    PubMed Central

    Kiroplastis, K; Fouzas, I; Katsiki, E; Patsiaoura, K; Daoudaki, M; Komninou, A; Xolongitas, E; Katsika, E; Kaidoglou, K; Papanikolaou, V

    2015-01-01

    Background Liver regeneration is vital for the survival of patients submitted to extensive liver resection as a treatment of hepatocellular carcinoma (HCC). Sorafenib is a multikinase inhibitor of angiogenesis and cell division, both of which are integral components of liver regeneration. We investigated the effect of preoperative treatment with sorafenib, a drug used for the treatment of HCC, on liver regeneration and angiogenesis in healthy rats, after two-thirds partial hepatectomy (PH2/3). Methods In total 48 Wistar rats received intragastric injections of sorafenib (30 mg/kg/d) or vehicle, underwent PH2/3, and were sacrificed at 48, 96 or 168 hours after that. The regenerative index of the liver remnant was studied, as well as the mitotic index. DNA synthesis and angiogenesis were estimated by immunohistochemistry for the Ki-67 and CD34 antigens, respectively. Results Sorafenib reduced significantly the regenerative index at all time points but not the mitotic index at 48, 96 or 168 hours. Deoxyribonucleic acid (DNA) synthesis and angiogenesis were not affected significantly either. Conclusions Sorafenib, when administered preoperatively, reduces incompletely and transiently the regeneration of the liver after PH2/3 in rats. This could mean that sorafenib can be used as neoadjuvant treatment of patients with HCC prior to liver resection, but further experimental and clinical studies are needed to establish the safety of this treatment. Hippokratia 2015; 19 (3): 249-255. PMID:27418785

  1. Molecular Mechanism and Prediction of Sorafenib Chemoresistance in Human Hepatocellular Carcinoma.

    PubMed

    Nishida, Naoshi; Kitano, Masayuki; Sakurai, Toshiharu; Kudo, Masatoshi

    2015-10-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide, and prognosis remains unsatisfactory when the disease is diagnosed at an advanced stage. Many molecular targeted agents are being developed for the treatment of advanced HCC; however, the only promising drug to have been developed is sorafenib, which acts as a multi-kinase inhibitor. Unfortunately, a subgroup of HCC is resistant to sorafenib, and the majority of these HCC patients show disease progression even after an initial satisfactory response. To date, a number of studies have examined the underlying mechanisms involved in the response to sorafenib, and trials have been performed to overcome the acquisition of drug resistance. The anti-tumor activity of sorafenib is largely attributed to the blockade of the signals from growth factors, such as vascular endothelial growth factor receptor and platelet-derived growth factor receptor, and the downstream RAF/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK cascade. The activation of an escape pathway from RAF/MEK/ERK possibly results in chemoresistance. In addition, there are several features of HCCs indicating sorafenib resistance, such as epithelial-mesenchymal transition and positive stem cell markers. Here, we review the recent reports and focus on the mechanism and prediction of chemoresistance to sorafenib in HCC. PMID:26488287

  2. Sorafenib: a review of its use in patients with radioactive iodine-refractory, metastatic differentiated thyroid carcinoma.

    PubMed

    Blair, Hannah A; Plosker, Greg L

    2015-03-01

    Sorafenib (Nexavar®) is the first tyrosine kinase inhibitor to be approved for the treatment of radioactive iodine (RAI)-refractory differentiated thyroid carcinoma (DTC). In the pivotal phase III DECISION trial in patients with RAI-refractory, locally advanced or metastatic DTC, oral sorafenib 400 mg twice daily significantly prolonged median progression-free survival (PFS) relative to placebo. The PFS benefit of sorafenib over placebo was evident in all pre-specified clinical and genetic biomarker subgroups, and neither BRAF nor RAS mutation status was predictive of sorafenib benefit for PFS. The objective response rate was significantly higher in patients receiving sorafenib than in those receiving placebo; all objective responses were partial responses. The overall survival benefit of sorafenib is as yet unclear, with no significant benefit observed at the time of primary analysis or at 9 months following the primary analysis. Overall survival was possibly confounded by the crossover of patients in the placebo group to sorafenib upon disease progression. The adverse events associated with sorafenib in the DECISION trial were consistent with the known tolerability profile of the drug, with hand-foot skin reaction, diarrhea, and alopecia reported most commonly. Most treatment-emergent adverse events were grade 1 or 2 in severity and occurred early in treatment. However, a high proportion of patients discontinued sorafenib therapy or required dose reductions or interruptions because of toxicity. Although final overall survival data are awaited, current evidence suggests that sorafenib is a promising new treatment option for patients with RAI-refractory, metastatic DTC. PMID:25742918

  3. Bufalin Reverses Resistance to Sorafenib by Inhibiting Akt Activation in Hepatocellular Carcinoma: The Role of Endoplasmic Reticulum Stress.

    PubMed

    Zhai, Bo; Hu, Fengli; Yan, Haijiang; Zhao, Dali; Jin, Xin; Fang, Taishi; Pan, Shangha; Sun, Xueying; Xu, Lishan

    2015-01-01

    Sorafenib is the standard first-line therapeutic treatment for patients with advanced hepatocellular carcinoma (HCC), but its use is hampered by the development of drug resistance. The activation of Akt by sorafenib is thought to be responsible for this resistance. Bufalin is the major active ingredient of the traditional Chinese medicine Chan su, which inhibits Akt activation; therefore, Chan su is currently used in the clinic to treat cancer. The present study aimed to investigate the ability of bufalin to reverse both inherent and acquired resistance to sorafenib. Bufalin synergized with sorafenib to inhibit tumor cell proliferation and induce apoptosis. This effect was at least partially due to the ability of bufalin to inhibit Akt activation by sorafenib. Moreover, the ability of bufalin to inactivate Akt depended on endoplasmic reticulum (ER) stress mediated by inositol-requiring enzyme 1 (IRE1). Silencing IRE1 with siRNA blocked the bufalin-induced Akt inactivation, but silencing eukaryotic initiation factor 2 (eIF2) or C/EBP-homologous protein (CHOP) did not have the same effect. Additionally, silencing Akt did not influence IRE1, CHOP or phosphorylated eIF2α expression. Two sorafenib-resistant HCC cell lines, which were established from human HCC HepG2 and Huh7 cells, were refractory to sorafenib-induced growth inhibition but were sensitive to bufalin. Thus, Bufalin reversed acquired resistance to sorafenib by downregulating phosphorylated Akt in an ER-stress-dependent manner via the IRE1 pathway. These findings warrant further studies to examine the utility of bufalin alone or in combination with sorafenib as a first- or second-line treatment after sorafenib failure for advanced HCC. PMID:26381511

  4. Bufalin Reverses Resistance to Sorafenib by Inhibiting Akt Activation in Hepatocellular Carcinoma: The Role of Endoplasmic Reticulum Stress

    PubMed Central

    Zhai, Bo; Hu, Fengli; Yan, Haijiang; Zhao, Dali; Jin, Xin; Fang, Taishi; Pan, Shangha; Sun, Xueying; Xu, Lishan

    2015-01-01

    Sorafenib is the standard first-line therapeutic treatment for patients with advanced hepatocellular carcinoma (HCC), but its use is hampered by the development of drug resistance. The activation of Akt by sorafenib is thought to be responsible for this resistance. Bufalin is the major active ingredient of the traditional Chinese medicine Chan su, which inhibits Akt activation; therefore, Chan su is currently used in the clinic to treat cancer. The present study aimed to investigate the ability of bufalin to reverse both inherent and acquired resistance to sorafenib. Bufalin synergized with sorafenib to inhibit tumor cell proliferation and induce apoptosis. This effect was at least partially due to the ability of bufalin to inhibit Akt activation by sorafenib. Moreover, the ability of bufalin to inactivate Akt depended on endoplasmic reticulum (ER) stress mediated by inositol-requiring enzyme 1 (IRE1). Silencing IRE1 with siRNA blocked the bufalin-induced Akt inactivation, but silencing eukaryotic initiation factor 2 (eIF2) or C/EBP-homologous protein (CHOP) did not have the same effect. Additionally, silencing Akt did not influence IRE1, CHOP or phosphorylated eIF2α expression. Two sorafenib-resistant HCC cell lines, which were established from human HCC HepG2 and Huh7 cells, were refractory to sorafenib-induced growth inhibition but were sensitive to bufalin. Thus, Bufalin reversed acquired resistance to sorafenib by downregulating phosphorylated Akt in an ER-stress-dependent manner via the IRE1 pathway. These findings warrant further studies to examine the utility of bufalin alone or in combination with sorafenib as a first- or second-line treatment after sorafenib failure for advanced HCC. PMID:26381511

  5. Alpha-fetoprotein is a biomarker of unfolded protein response and altered proteostasis in hepatocellular carcinoma cells exposed to sorafenib.

    PubMed

    Houessinon, Aline; Gicquel, Albane; Bochereau, Flora; Louandre, Christophe; Nyga, Rémy; Godin, Corinne; Degonville, James; Fournier, Emma; Saidak, Zuzana; Drullion, Claire; Barbare, Jean-Claude; Chauffert, Bruno; François, Catherine; Pluquet, Olivier; Galmiche, Antoine

    2016-01-28

    Sorafenib is the treatment of reference for advanced hepatocellular carcinoma (HCC). A decrease in the serum levels of Alpha-fetoprotein (AFP) is reported to be the biological parameter that is best associated with disease control by sorafenib. In order to provide a biological rationale for the variations of AFP, we analyzed the various steps of AFP production in human HCC cell lines exposed to sorafenib. Sorafenib dramatically reduced the levels of AFP produced by HCC cells independently of its effect on cell viability. The mRNA levels of AFP decreased upon sorafenib treatment, while the AFP protein remained localized in the Golgi apparatus. Sorafenib activated the Regulated Inositol-Requiring Enzyme-1α (IRE-1α) and the PKR-like ER Kinase (PERK)-dependent arms of the Unfolded Protein Response (UPR). The inhibition of IRE-1α partially restored the mRNA levels of AFP upon treatment with sorafenib. The inhibition of both pathways partially prevented the drop in the production of AFP induced by sorafenib. The findings provide new insights on the regulation of AFP, and identify it as a biomarker suitable for the exploration of HCC cell proteostasis in the context of therapeutic targeting. PMID:26546044

  6. Sorafenib and sunitinib: novel targeted therapies for renal cell cancer.

    PubMed

    Grandinetti, Cheryl A; Goldspiel, Barry R

    2007-08-01

    Renal cell cancer (RCC) is a relatively uncommon malignancy, with 51,190 cases expected to be diagnosed in 2007. Localized disease is curable by surgery; however, locally advanced or metastatic disease is not curable in most cases and, until recently, had a limited response to drug treatment. Historically, biologic response modifiers or immunomodulating agents were tested in clinical trials based on observations that some cases of RCC can spontaneously regress. High-dose aldesleukin is approved by the United States Food and Drug Administration as a treatment for advanced RCC; however, the drug is associated with a high frequency of severe adverse effects. Responses have been observed with low-dose aldesleukin and interferon alfa, but with little effect on overall survival. Sorafenib and sunitinib are novel therapies that target growth factor receptors known to be activated by the hypoxia-inducible factor and the Ras-Raf/MEK/ERK pathways. These pathways are important in the pathophysiology of RCC. Sorafenib and sunitinib have shown antitumor activity as first- and second-line therapy in patients with cytokine-refractory metastatic RCC who have clear-cell histology. Although complete responses are not common, both drugs promote disease stabilization and increase progression-free survival. This information suggests that disease stabilization may be an important determinant for response in RCC and possibly other cancers. Sorafenib and sunitinib are generally well tolerated and are considered first- and second-line treatment options for patients with advanced clear cell RCC. In addition, sorafenib and sunitinib have shown promising results in initial clinical trials evaluating antitumor activity in patients who are refractory to other antiangiogenic therapy. The most common toxicities with both sorafenib and sunitinib are hand-foot syndrome, rash, fatigue, hypertension, and diarrhea. Research is directed toward defining the optimal use of these new agents. PMID:17655513

  7. Sorafenib/Regorafenib and Lapatinib interact to kill CNS tumor cells

    PubMed Central

    Hamed, Hossein A.; Tavallai, Seyedmehrad; Grant, Steven; Poklepovic, Andrew; Dent, Paul

    2014-01-01

    The present studies were to determine whether the multi-kinase inhibitor sorafenib or its derivative regorafenib interacted with the ERBB1/ERBB2 inhibitor lapatinib to kill CNS tumor cells. In multiple CNS tumor cell types sorafenib and lapatinib interacted in a greater than additive fashion to cause tumor cell death. Tumor cells lacking PTEN, and anoikis or lapatinib resistant cells were as sensitive to the drug combination as cells expressing PTEN or parental cells, respectively. Similar data were obtained using regorafenib. Treatment of brain cancer cells with [sorafenib + lapatinib] enhanced radiation toxicity. The drug combination increased the numbers of LC3-GFP vesicles; this correlated with a reduction in endogenous LC3II, and p62 and LAMP2 degradation. Knock down of Beclin1 or ATG5 significantly suppressed drug combination lethality. Expression of c-FLIP-s, BCL-XL or dominant negative caspase 9 reduced drug combination toxicity; knock down of FADD or CD95 was protective. Expression of both activated AKT and activated MEK1 or activated mTOR was required to strongly suppress drug combination lethality. As both lapatinib and sorafenib are FDA approved agents, our data argue for further determination as to whether lapatinib and sorafenib is a useful glioblastoma therapy. PMID:24911215

  8. Poly(lactide-co-glycolide) microspheres for MRI-monitored transcatheter delivery of sorafenib to liver tumors.

    PubMed

    Chen, Jeane; Sheu, Alexander Y; Li, Weiguo; Zhang, Zhuoli; Kim, Dong-Hyun; Lewandowski, Robert J; Omary, Reed A; Shea, Lonnie D; Larson, Andrew C

    2014-06-28

    The multi-kinase inhibitor (MKI) sorafenib can be an effective palliative therapy for patients with hepatocellular carcinoma (HCC). However, patient tolerance is often poor due to common systemic side effects following oral administration. Local transcatheter delivery of sorafenib to liver tumors has the potential to reduce systemic toxicities while increasing the dose delivered to targeted tumors. We developed sorafenib-eluting PLG microspheres for delivery by intra-hepatic transcatheter infusion in an orthotropic rodent HCC model. The particles also encapsulated iron-oxide nanoparticles permitting magnetic resonance imaging (MRI) of intra-hepatic biodistributions. The PLG microspheres (diameter≈1μm) were loaded with 18.6% (w/w) sorafenib and 0.54% (w/w) ferrofluid and 65.2% of the sorafenib was released within 72h of media exposure. In vitro studies demonstrated significant reductions in HCC cell proliferation with increasing doses of the sorafenib-eluting microspheres, where the estimated IC50 was a 29μg/mL dose of microspheres. During in vivo studies, MRI permitted intra-procedural visualization of intra-hepatic microsphere delivery. At 72h after microsphere infusion, microvessel density was significantly reduced in tumors treated with the sorafenib-eluting microspheres compared to both sham control tumors (by 35%) and controls (by 30%). These PLG microspheres offer the potential to increase the efficacy of molecularly targeted MKI therapies while reducing systemic exposures via selective catheter-directed delivery to HCC. PMID:24727059

  9. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma.

    PubMed

    Hu, Bo; Sun, Ding; Sun, Chao; Sun, Yun-Fan; Sun, Hai-Xiang; Zhu, Qing-Feng; Yang, Xin-Rong; Gao, Ya-Bo; Tang, Wei-Guo; Fan, Jia; Maitra, Anirban; Anders, Robert A; Xu, Yang

    2015-12-25

    Curcumin, a yellow polyphenol extracted from the rhizome of turmeric root (Curcuma longa) has potent anti-cancer properties in many types of tumors with ability to reverse multidrug resistance of cancer cells. However, widespread clinical application of this agent in cancer and other diseases has been limited due to its poor aqueous solubility. The recent findings of polymeric nanoparticle formulation of curcumin (NFC) have shown the potential for circumventing the problem of poor solubility, however evidences for NFC's anti-cancer and reverse multidrug resistance properties are lacking. Here we provide models of human hepatocellular carcinoma (HCC), the most common form of primary liver cancer, in vitro and in vivo to evaluate the efficacy of NFC alone and in combination with sorafenib, a kinase inhibitor approved for treatment of HCC. Results showed that NFC not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. Moreover, in combination with sorafenib, NFC induced HCC cell apoptosis and cell cycle arrest. Mechanistically, NFC and sorafenib synergistically down-regulated the expression of MMP9 via NF-κB/p65 signaling pathway. Furthermore, the combination therapy significantly decreased the population of CD133-positive HCC cells, which have been reported as cancer initiating cells in HCC. Taken together, NanoCurcumin provides an opportunity to expand the clinical repertoire of this agent. Additional studies utilizing a combination of NanoCurcumin and sorafenib in HCC are needed for further clinical development. PMID:26482853

  10. Synergistic Effect of Sorafenib and Radiation on Human Oral Carcinoma in vivo.

    PubMed

    Hsu, Fei-Ting; Chang, Betty; Chen, John Chun-Hao; Chiang, I-Tsang; Liu, Yu-Chang; Kwang, Wei-Kang; Hwang, Jeng-Jong

    2015-01-01

    Oral squamous cell carcinoma often causes bone invasion resulting in poor prognosis and affects the quality of life for patients. Herein, we combined radiation with sorafenib, to evaluate the combination effect on tumor progression and bone erosion in an in situ human OSCC-bearing mouse model. Treatment procedure were arranged as following groups: (a) normal (no tumor); (b) control (with tumor); (c) sorafenib (10 mg/kg/day); (d) radiation (single dose of 6 Gy); (e) pretreatment (sorafenib treatment for 3 days prior to radiation), and (f) concurrent treatment (sorafenib and radiation on the same day). The inhibition of tumor growth and expression level of p65 of NF-κB in tumor tissues were the most significant in the pretreatment group. EMSA and Western blot showed that DNA/NF-κB activity and the expressions of NF-κB-associated proteins were down-regulated. Notably, little to no damage in mandibles and zygomas of mice treated with combination of sorafenib and radiation was found by micro-CT imaging. In conclusion, sorafenib combined with radiation suppresses radiation-induced NF-κB activity and its downstream proteins, which contribute to radioresistance and tumorigenesis. Additionally, bone destruction is also diminished, suggesting that combination treatment could be a potential strategy against human OSCC. PMID:26487364

  11. Synergistic Effect of Sorafenib and Radiation on Human Oral Carcinoma in vivo

    PubMed Central

    Hsu, Fei-Ting; Chang, Betty; Chen, John Chun-Hao; Chiang, I-Tsang; Liu, Yu-Chang; Kwang, Wei-Kang; Hwang, Jeng-Jong

    2015-01-01

    Oral squamous cell carcinoma often causes bone invasion resulting in poor prognosis and affects the quality of life for patients. Herein, we combined radiation with sorafenib, to evaluate the combination effect on tumor progression and bone erosion in an in situ human OSCC-bearing mouse model. Treatment procedure were arranged as following groups: (a) normal (no tumor); (b) control (with tumor); (c) sorafenib (10 mg/kg/day); (d) radiation (single dose of 6 Gy); (e) pretreatment (sorafenib treatment for 3 days prior to radiation), and (f) concurrent treatment (sorafenib and radiation on the same day). The inhibition of tumor growth and expression level of p65 of NF-κB in tumor tissues were the most significant in the pretreatment group. EMSA and Western blot showed that DNA/NF-κB activity and the expressions of NF-κB-associated proteins were down-regulated. Notably, little to no damage in mandibles and zygomas of mice treated with combination of sorafenib and radiation was found by micro-CT imaging. In conclusion, sorafenib combined with radiation suppresses radiation-induced NF-κB activity and its downstream proteins, which contribute to radioresistance and tumorigenesis. Additionally, bone destruction is also diminished, suggesting that combination treatment could be a potential strategy against human OSCC. PMID:26487364

  12. [BRAF Inhibitor-Induced Erythema Nodosum-Like Lesions].

    PubMed

    Shiba, Keiko; Moriuchi, Reine; Morita, Yusuke; Nakamura, Michio; Takigami, Masayoshi; Shimizu, Satoko

    2016-05-01

    BRAF inhibitors have been licensed for the treatment of unresectable or metastatic BRAF-mutated melanomas. In Japan, the BRAF inhibitor vemurafenib has been available since December 2014. Several adverse events induced by BRAF inhibitors have been reported, such as Stevens-Johnson syndrome, toxic epidermal necrosis, squamous cell carcinoma, secondary melanoma, and hand-foot syndrome. Recently, inflammatory skin lesions clinically resembling erythema nodosum have been reported as side effects that may lead to treatment discontinuation. In this report, we described the first Japanese case of erythema nodosum-like lesions induced by vemurafenib and discussed the countermeasures to this adverse reaction. Dose reduction or interruption of BRAF inhibitors should be considered on a case-by-case basis because the condition may resolve spontaneously or under symptomatic treatment. We postulate that erythema nodosum-like lesions can be controlled by careful follow-up and supportive care. PMID:27210102

  13. Growth arrest DNA damage-inducible gene 45 gamma expression as a prognostic and predictive biomarker in hepatocellular carcinoma

    PubMed Central

    Ou, Da-Liang; Shyue, Song-Kun; Lin, Liang-In; Feng, Zi-Rui; Liou, Jun-Yang; Fan, Hsiang-Hsuan; Lee, Bin-Shyun; Hsu, Chiun; Cheng, Ann-Lii

    2015-01-01

    Growth arrest DNA damage-inducible gene 45 (GADD45) family proteins play a crucial role in regulating cellular stress responses and apoptosis. The present study explored the prognostic and predictive role of GADD45γ in hepatocellular carcinoma (HCC) treatment. GADD45γ expression in HCC cells was examined using quantitative reverse transcription-PCR (qRT-PCR) and Western blotting. The control of GADD45γ transcription was examined using a luciferase reporter assay and chromatin immunoprecipitation. The in vivo induction of GADD45γ was performed using adenoviral transfer. The expression of GADD45γ in HCC tumor tissues from patients who had undergone curative resection was measured using qRT-PCR. Sorafenib induced expression of GADD45γ mRNA and protein, independent of its RAF kinase inhibitor activity. GADD45γ induction was more prominent in sorafenib-sensitive HCC cells (Huh-7 and HepG2, IC50 6–7 μM) than in sorafenib-resistant HCC cells (Hep3B, Huh-7R, and HepG2R, IC50 12–15 μM). Overexpression of GADD45γ reversed sorafenib resistance in vitro and in vivo, whereas GADD45γ expression knockdown by using siRNA partially abrogated the proapoptotic effects of sorafenib on sorafenib-sensitive cells. Overexpression of survivin in HCC cells abolished the antitumor enhancement between GADD45γ overexpression and sorafenib treatment, suggesting that survivin is a crucial mediator of antitumor effects of GADD45γ. GADD45γ expression decreased in tumors from patients with HCC who had undergone curative surgery, and low GADD45γ expression was an independent prognostic factor for poor survival, in addition to old age and vascular invasion. The preceding data indicate that GADD45γ suppression is a poor prognostic factor in patients with HCC and may help predict sorafenib efficacy in HCC. PMID:26172295

  14. pAKT Expression and Response to Sorafenib in Differentiated Thyroid Cancer.

    PubMed

    Yarchoan, Mark; Ma, Changqing; Troxel, Andrea B; Stopenski, Stephen J; Tang, Waixing; Cohen, Aaron B; Pappas-Paxinos, Marina; Johnson, Burles A; Chen, Emerson Y; Feldman, Michael D; Brose, Marcia S

    2016-06-01

    Sorafenib has an antitumor activity in patients with radioactive iodine-refractory differentiated thyroid carcinoma (RAIR-DTC). Prior research has implicated signaling through the MAPK and AKT/PI3K pathways in the progression of DTC. To assess whether the activity of these pathways is predictive of response to sorafenib, we retrospectively studied molecular tumor markers from these two pathways from a phase 2 study of sorafenib in RAIR-DTC. Tumor samples from 40 of 53 DTC subjects obtained prior to initiation of sorafenib were immunostained with DAB-labeled antibodies to phospho-AKT (pAKT), phospho-ERK (pERK), and phospho-S6 (pS6). BRAFV600E genetic mutation analysis was performed on all samples. Expression levels and mutational status were compared to response and progression-free survival (PFS) for each patient. Low tumor expression of nuclear pAKT was associated with partial response to sorafenib (p < 0.01). Patients with nuclear pAKT expression that was below the median for our sample were more than three times as likely to have a partial response as patients with equal to or above median expression. There was no correlation between tumor expression of nuclear pERK or pS6 and response. Endothelial cell and pericyte expression of pERK, pAKT, and pS6 were not predictive of response. There was no correlation between BRAFV600E mutation status and partial response. No correlation was observed between either the expression of pAKT, pERK, or pS6, or the presence of the BRAFV600E mutation, and PFS. In conclusion, lower tumor expression of nuclear pAKT was associated with higher rate of response to sorafenib. This observation justifies evaluation of combination therapy with sorafenib and an inhibitor of the PI3K/AKT signaling pathway in RAIR-DTC. PMID:26994002

  15. Yttrium-90 Radioembolization in Patients with Hepatocellular Carcinoma Who have Previously Received Sorafenib

    PubMed Central

    Rana, Nitesh; Ju, Andrew Wenhua; Bazylewicz, Michael; Kallakury, Bhaskar; He, Aiwu Ruth; Unger, Keith R.; Lee, Justin S.

    2013-01-01

    Purpose: Yttrium-90 radioembolization (RE) is a locoregional therapy option for hepatocellular carcinoma (HCC). Sorafenib is a multikinase inhibitor used in HCC that can potentially affect the efficacy of RE by altering tumor vascularity or suppressing post-irradiation angiogenesis. The safety and efficacy of sorafenib followed by RE has not been previously reported. Materials and Methods: Patients with HCC who received RE after sorafenib were included in this retrospective review. Overall survival, toxicity, and maximal radiographic response and necrosis criteria were examined. Results: Ten patients (15 RE administrations) fit the inclusion criteria. All were Barcelona Clinic Liver Cancer (BCLC) stage C. Median follow-up was 16.5 weeks. Median overall survival and radiographic progression-free survival were 30 and 28 weeks, respectively. Significant differences in overall survival were seen based on Child-Pugh class (p = 0.002) and radiographic response (p = 0.009). Three patients had partial response, six had stable disease, and one had progressive disease. Grade 1 or 2 acute fatigue, anorexia, and abdominal pain were common. Three patients had Grade 3 ascites in the setting of disease progression. Two patients had Grade 3 biochemical toxicity. One patient was sufficiently downstaged following RE and sorafenib to receive a partial hepatectomy. Conclusion: Yttrium-90 RE in patients with HCC who have received sorafenib demonstrate acceptable toxicity and rates of radiographic response. However, the overall survival is lower than that reported in the literature on RE alone or sorafenib alone. This may be due in part to more patients in this study having advanced disease compared to these other study populations. Larger prospective studies are needed to determine whether the combination of RE and sorafenib is superior to either therapy alone. PMID:24416722

  16. In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer

    PubMed Central

    Rudalska, Ramona; Dauch, Daniel; Longerich, Thomas; McJunkin, Katherine; Wuestefeld, Torsten; Kang, Tae-Won; Hohmeyer, Anja; Pesic, Marina; Leibold, Josef; von Thun, Anne; Schirmacher, Peter; Zuber, Johannes; Weiss, Karl-Heinz; Powers, Scott; Malek, Nisar P; Eilers, Martin; Sipos, Bence; Lowe, Scott W; Geffers, Robert; Laufer, Stefan; Zender, Lars

    2015-01-01

    In solid tumors, resistance to therapy inevitably develops upon treatment with cytotoxic drugs or molecularly targeted therapies. Here, we describe a system that enables pooled shRNA screening directly in mouse hepatocellular carcinomas (HCC) in vivo to identify genes likely to be involved in therapy resistance. Using a focused shRNA library targeting genes located within focal genomic amplifications of human HCC, we screened for genes whose inhibition increased the therapeutic efficacy of the multikinase inhibitor sorafenib. Both shRNA-mediated and pharmacological silencing of Mapk14 (p38α) were found to sensitize mouse HCC to sorafenib therapy and prolong survival by abrogating Mapk14-dependent activation of Mek-Erk and Atf2 signaling. Elevated Mapk14-Atf2 signaling predicted poor response to sorafenib therapy in human HCC, and sorafenib resistance of p-Mapk14-expressing HCC cells could be reverted by silencing Mapk14. Our results suggest that a combination of sorafenib and Mapk14 blockade is a promising approach to overcoming therapy resistance of human HCC. PMID:25216638

  17. Hypoxia inducible factor pathway inhibitors as anticancer therapeutics

    PubMed Central

    Burroughs, Sarah K; Kaluz, Stefan; Wang, Danzhu; Wang, Ke

    2013-01-01

    Hypoxia is a significant feature of solid tumor cancers. Hypoxia leads to a more malignant phenotype that is resistant to chemotherapy and radiation, is more invasive and has greater metastatic potential. Hypoxia activates the hypoxia inducible factor (HIF) pathway, which mediates the biological effects of hypoxia in tissues. The HIF complex acts as a transcription factor for many genes that increase tumor survival and proliferation. To date, many HIF pathway inhibitors indirectly affect HIF but there have been no clinically approved direct HIF inhibitors. This can be attributed to the complexity of the HIF pathway, as well as to the challenges of inhibiting protein–protein interactions. PMID:23573973

  18. The Successful Complete Remission Induction by Sorafenib Monotherapy in a FLT3-D835Y-Positive Patient with Refractory Acute Monocytic Leukemia.

    PubMed

    Yue, Yanhua; Jin, Song; Xu, Ting; Zhou, Jin; Ma, Liang; Shen, Hongjie; Wu, Depei; Chen, Suning; Miao, Miao

    2016-06-01

    Sorafenib has been shown to be active in AML patients with FLT3-ITD. However, the effect of sorafenib in AML patients with FLT-TKD has never been well determined. Moreover, acquisition of secondary FLT3 TKD mutations, mainly at D835 (D835F/H/V/Y), are recognized as the major mechanisms of resistance of AML patients with FLT3-ITD to sorafenib. It has been reported that sorafenib induced death of cells that expressed the FLT3-ITD or FLT3-D835G but not cells that expressed the FLT3-D835Y point mutant or wild-type FLT3 in vitro. Here, we report the successful complete remission induction by sorafenib monotherapy in a FLT3-D835Y-positive patient with refractory AML-M5 followed by allogeneic stem cell transplantation. PMID:27408351

  19. Effects of Antitumor Drug Sorafenib on Chick Embryo Development.

    PubMed

    Cheng, Yi-Sen; Wang, Xiao-Yu; Wang, Guang; Li, Yan; Chen, Yue-Lei; Chuai, Man-Li; Lee, Kenneth Ka Ho; Ding, Xiao-Yan; Yang, Xue-Song

    2015-07-01

    Sorafenib has been used as an oral anti-cancer drug because of its ability to inhibit tumor growth. However, the pharmacological effect of sorafenib is still the lack of in vivo experimental evidence. Tumor and embryonic cells share some similar features, so we investigated the effects of sorafenib on the development of gastrulating chick embryos. We found that sorafenib exposure was markedly attributed to the number of embryonic cell in proliferation and apoptosis. We also detected sorafenib significantly interfered with epithelial-mesenchymal transition (EMT). Furthermore, sorafenib treatment impaired the production and migration of neural crest cells. PMID:25810088

  20. Mechanisms underlying skin disorders induced by EGFR inhibitors

    PubMed Central

    Holcmann, Martin; Sibilia, Maria

    2015-01-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is frequently mutated or overexpressed in a large number of tumors such as carcinomas or glioblastoma. Inhibitors of EGFR activation have been successfully established for the therapy of some cancers and are more and more frequently being used as first or later line therapies. Although the side effects induced by inhibitors of EGFR are less severe than those observed with classic cytotoxic chemotherapy and can usually be handled by out-patient care, they may still be a cause for dose reduction or discontinuation of treatment that can reduce the effectiveness of antitumor therapy. The mechanisms underlying these cutaneous side effects are only partly understood. Important questions, such as the reasons for the correlation between the intensity of the side effects and the efficiency of treatment with EGFR inhibitors, remain to be answered. Optimized adjuvant strategies to accompany anti-EGFR therapy need to be found for optimal therapeutic application and improved quality of life of patients. Here, we summarize current literature on the molecular and cellular mechanisms underlying the cutaneous side effects induced by EGFR inhibitors and provide evidence that keratinocytes are probably the optimal targets for adjuvant therapy aimed at alleviating skin toxicities. PMID:27308503

  1. Sarcopenia Predicts Early Dose-Limiting Toxicities and Pharmacokinetics of Sorafenib in Patients with Hepatocellular Carcinoma

    PubMed Central

    Mir, Olivier; Coriat, Romain; Blanchet, Benoit; Durand, Jean-Philippe; Boudou-Rouquette, Pascaline; Michels, Judith; Ropert, Stanislas; Vidal, Michel; Pol, Stanislas; Chaussade, Stanislas; Goldwasser, François

    2012-01-01

    Background Sorafenib induces frequent dose limiting toxicities (DLT) in patients with advanced hepatocellular carcinoma (HCC). Sarcopenia has been associated with poor performance status and shortened survival in cancer patients. Patients and Methods The characteristics of Child Pugh A cirrhotic patients with HCC receiving sorafenib in our institution were retrospectively analyzed. Sorafenib plasma concentrations were determined at each visit. Toxicities were recorded during the first month of treatment, and sarcopenia was determined from baseline CT-scans. Results Forty patients (30 males) were included. Eleven (27.5%) were sarcopenic. Eighteen patients (45%) experienced a DLT during the first month of treatment. Sarcopenic patients experienced significantly more DLTs than non-sarcopenic patients did (82% versus 31%, p = 0.005). Grade 3 diarrhea was significantly more frequent in sarcopenic patients than in non-sarcopenic patients (45.5% versus 6.9%, p = 0.01), but not grade 3 hand foot syndrome reaction (9% versus 17.2%, p = 1). On day 28, median sorafenib AUC (n = 17) was significantly higher in sarcopenic patients (102.4 mg/l.h versus 53.7 mg/l.h, p = 0.013). Conclusions Among cirrhotic Child Pugh A patients with advanced HCC, sarcopenia predicts sorafenib exposure and the occurrence of DLT within the first month of treatment. PMID:22666367

  2. Indole-3- carbinol enhances sorafenib cytotoxicity in hepatocellular carcinoma cells: A mechanistic study

    PubMed Central

    Abdelmageed, Mai M.; El-Naga, Reem N.; El-Demerdash, Ebtehal; Elmazar, Mohamed M.

    2016-01-01

    Sorafenib is the only chemotherapeutic agent currently approved for unresectable hepatocellular carcinoma (HCC). However, poor response rates have been widely reported. Indole-3-carbinol (I3C) is a potential chemopreventive phytochemical. The present study aimed to explore the potential chemomodulatory effects of I3C on sorafenib in HCC cells as well as the possible underlying mechanisms. I3C exhibited a greater cytotoxicity in HepG2 cells compared to Huh-7 cells (p < 0.0001). Moreover, the co-treatment of HepG2 cells with I3C and sorafenib was more effective (p = 0.002). Accordingly, subsequent mechanistic studies were carried on HepG2 cells. The results show that the ability of I3C to enhance sorafenib cytotoxicity in HCC cells could be partially attributed to increasing the apoptotic activity and decreasing the angiogenic potentials. The combination had a negative effect on epithelial-mesenchymal transition (EMT). Increased NOX-1 expression was also observed which may indicate the involvement of NOX-1 in I3C chemomodulatory effects. Additionally, the combination induced cell cycle arrest at the G0/G1 phase. In conclusion, these findings provide evidence that I3C enhances sorafenib anti-cancer activity in HCC cells. PMID:27612096

  3. Protection from noise-induced hearing loss with Src inhibitors.

    PubMed

    Bielefeld, Eric C

    2015-06-01

    Noise-induced hearing loss is a major cause of acquired hearing loss around the world and pharmacological approaches to protecting the ear from noise are under investigation. Noise results in a combination of mechanical and metabolic damage pathways in the cochlea. The Src family of protein tyrosine kinases could be active in both pathways and Src inhibitors have successfully prevented noise-induced cochlear damage and hearing loss in animal models. The long-term goal is to optimize delivery methods into the cochlea to reduce invasiveness and limit side-effects before human clinical testing can be considered. At their current early stage of research investigation, Src inhibitors represent an exciting class of compounds for inclusion in a multifaceted pharmacological approach to protecting the ear from noise. PMID:25637168

  4. Early onset of hypertension and serum electrolyte changes as potential predictive factors of activity in advanced HCC patients treated with sorafenib: results from a retrospective analysis of the HCC-AVR group

    PubMed Central

    Gardini, Andrea Casadei; Scarpi, Emanuela; Marisi, Giorgia; Foschi, Francesco Giuseppe; Donati, Gabriele; Giampalma, Emanuela; Faloppi, Luca; Scartozzi, Mario; Silvestris, Nicola; Bisulli, Marcello; Corbelli, Jody; Gardini, Andrea; Barba, Giuliano La; Veneroni, Luigi; Tamberi, Stefano; Cascinu, Stefano; Frassineti, Giovanni Luca

    2016-01-01

    Hypertension (HTN) is frequently associated with the use of angiogenesis inhibitors targeting the vascular endothelial growth factor pathway and appears to be a generalized effect of this class of agent. We investigated the phenomenon in 61 patients with advanced hepatocellular carcinoma (HCC) receiving sorafenib. Blood pressure and plasma electrolytes were measured on days 1 and 15 of the treatment. Patients with sorafenib-induced HTN had a better outcome than those without HTN (disease control rate: 63.4% vs. 17.2% (p=0.001); progression-free survival 6.0 months (95% CI 3.2-10.1) vs. 2.5 months (95% CI 1.9-2.6) (p<0.001) and overall survival 14.6 months (95% CI9.7-19.0) vs. 3.9 months (95% CI 3.1-8.7) (p=0.003). Sodium levels were generally higher on day 15 than at baseline (+2.38, p<0.0001) in the group of responders (+4.95, p <0.0001) compared to patients who progressed (PD) (+0.28, p=0.607). In contrast, potassium was lower on day 14 (−0.30, p=0.0008) in the responder group (−0.58, p=0.003) than in those with progressive disease (−0.06, p=0.500). The early onset of hypertension is associated with improved clinical outcome in HCC patients treated with sorafenib. Our data are suggestive of an activation of the renin-angiotensin system in patients with advanced disease who developed HTN during sorafenib treatment. PMID:26893366

  5. Early onset of hypertension and serum electrolyte changes as potential predictive factors of activity in advanced HCC patients treated with sorafenib: results from a retrospective analysis of the HCC-AVR group.

    PubMed

    Casadei Gardini, Andrea; Scarpi, Emanuela; Marisi, Giorgia; Foschi, Francesco Giuseppe; Donati, Gabriele; Giampalma, Emanuela; Faloppi, Luca; Scartozzi, Mario; Silvestris, Nicola; Bisulli, Marcello; Corbelli, Jody; Gardini, Andrea; La Barba, Giuliano; Veneroni, Luigi; Tamberi, Stefano; Cascinu, Stefano; Frassineti, Giovanni Luca

    2016-03-22

    Hypertension (HTN) is frequently associated with the use of angiogenesis inhibitors targeting the vascular endothelial growth factor pathway and appears to be a generalized effect of this class of agent. We investigated the phenomenon in 61 patients with advanced hepatocellular carcinoma (HCC) receiving sorafenib. Blood pressure and plasma electrolytes were measured on days 1 and 15 of the treatment. Patients with sorafenib-induced HTN had a better outcome than those without HTN (disease control rate: 63.4% vs. 17.2% (p=0.001); progression-free survival 6.0 months (95% CI 3.2-10.1) vs. 2.5 months (95% CI 1.9-2.6) (p<0.001) and overall survival 14.6 months (95% CI9.7-19.0) vs. 3.9 months (95% CI 3.1-8.7) (p=0.003). Sodium levels were generally higher on day 15 than at baseline (+2.38, p<0.0001) in the group of responders (+4.95, p <0.0001) compared to patients who progressed (PD) (+0.28, p=0.607). In contrast, potassium was lower on day 14 (-0.30, p=0.0008) in the responder group (-0.58, p=0.003) than in those with progressive disease (-0.06, p=0.500). The early onset of hypertension is associated with improved clinical outcome in HCC patients treated with sorafenib. Our data are suggestive of an activation of the renin-angiotensin system in patients with advanced disease who developed HTN during sorafenib treatment. PMID:26893366

  6. Sorafenib in radioactive iodine-refractory well-differentiated metastatic thyroid cancer

    PubMed Central

    McFarland, Daniel C; Misiukiewicz, Krzysztof J

    2014-01-01

    Recent Phase III data presented at the American Society of Clinical Oncology (ASCO) 2013 annual conference by Brose et al led to the US Food and Drug Administration (FDA) approval of sorafenib for the treatment of well-differentiated radioactive iodine-resistant metastatic thyroid cancer. This is the second drug in 40 years to be FDA approved for this indication. Recent reviews and a meta-analysis reveal a modest ability to induce a partial remission but substantial ability to halt disease progression. Given the significant activating mutations present in thyroid cancer, many of which are inhibited by sorafenib, the next logical approach may be to combine targeted rational therapies if permitted by collective toxicity profiles. This systematic review aims to summarize the recent Phase II/III data leading to the FDA approval of sorafenib for radioactive iodine therapy differentiated thyroid cancer and highlights recent novel combination therapy trials. PMID:25053887

  7. Prostaglandin synthesis inhibitors block alcohol-induced fetal hypoplasia.

    PubMed

    Pennington, S; Allen, Z; Runion, J; Farmer, P; Rowland, L; Kalmus, G

    1985-01-01

    Alcohol-induced growth retardation is a fetal effect consistently associated with maternal ethanol consumption. In humans, those infants whose mothers consume even a limited amount of ethanol during pregnancy have a significant incidence of growth inhibition. The molecular mechanism responsible for this growth deficiency is unknown, and prevention depends on maternal abstinence during pregnancy. The data reported here suggest that ethanol-mediated increases in tissue prostaglandin (PG) E levels (PGE1 plus PGE2) are correlated with the growth retardation. Further, simultaneous administration of PG synthesis inhibitors with the alcohol blocks the rise in tissue PG levels and protects against the alcohol-induced hypoplasia. PMID:3904508

  8. Improving Oral Bioavailability of Sorafenib by Optimizing the "Spring" and "Parachute" Based on Molecular Interaction Mechanisms.

    PubMed

    Liu, Chengyu; Chen, Zhen; Chen, Yuejie; Lu, Jia; Li, Yuan; Wang, Shujing; Wu, Guoliang; Qian, Feng

    2016-02-01

    Sorafenib is a clinically important oral tyrosine kinase inhibitor for the treatment of various cancers. However, the oral bioavailability of sorafenib tablet (Nexavar) is merely 38-49% relative to the oral solution, due to the low aqueous solubility of sorafenib and its relatively high daily dose. It is desirable to improve the oral bioavailability of sorafenib to expand the therapeutic window, reduce the drug resistance, and enhance patient compliance. In this study, we observed that the solubility of sorafenib could be increased ∼50-fold in the coexistence of poly(vinylpyrrolidone-vinyl acetate) (PVP-VA) and sodium lauryl sulfate (SLS), due to the formation of PVP-VA/SLS complexes at a lower critical aggregation concentration. The enhanced solubility provided a faster initial sorafenib dissolution rate, analogous to a forceful "spring" to release drug into solution, from tablets containing both PVP-VA and SLS. However, SLS appears to impair the ability of PVP-VA to act as an efficient "parachute" to keep the drug in solution and maintain drug supersaturation. Using 2D (1)H NMR, (13)C NMR, and FT-IR analysis, we concluded that the solubility enhancement and supersaturation of sorafenib were achieved by PVP-VA/SLS complexes and PVP-VA/sorafenib interaction, respectively, both through molecular interactions hinged on the PVP-VA VA groups. Therefore, a balance between "spring" and "parachute" must be carefully considered in formulation design. To confirm the in vivo relevance of these molecular interaction mechanisms, we prepared three tablet formulations containing PVP-VA alone, SLS alone, and PVP-VA/SLS in combination. The USP II in vitro dissolution and dog pharmacokinetic in vivo evaluation showed clear differentiation between these three formulations, and also good in vitro-in vivo correlation. The formulation containing PVP-VA alone demonstrated the best bioavailability with 1.85-fold and 1.79-fold increases in Cmax and AUC, respectively, compared with the

  9. Synergistic effect of sorafenib and cGvHD in patients with high-risk FLT3-ITD+AML allows long-term disease control after allogeneic transplantation.

    PubMed

    Tschan-Plessl, A; Halter, J P; Heim, D; Medinger, M; Passweg, J R; Gerull, S

    2015-11-01

    The multikinase inhibitor sorafenib has shown a strong anti-leukemic effect in FMS-like tyrosine kinase 3 (FLT3)-mutated acute myeloid leukemia (AML); however, remission is often transient. To better understand the role of sorafenib, we performed a retrospective analysis of all patients who received sorafenib in combination with allogeneic hematopoietic stem cell transplantation (HSCT) at our center. Seventeen patients with FLT3-ITD positive AML were treated with sorafenib in combination with allogeneic HSCT. Seven patients received sorafenib therapy pre- and posttransplant, and 10 patients were given sorafenib only posttransplant. Median duration of sorafenib treatment was 13 months (range 1-42); median dose was 600 mg (range 100-1200). Fourteen patients (82 %) achieved a complete remission (CR), while 5 patients (29 %) eventually developed progressive disease. Developing chronic graft-versus-host disease (GvHD) had a strong protective influence on the risk of sorafenib resistance (p = 0.028, HR 0.08, 95 % CI 0.01-0.76). In a total of 8 patients, sorafenib had to be stopped, paused or dose-reduced due to toxicity. In 5 patients with pronounced toxicity, we switched to an alternating dosing schedule with 1 month on/1 month off sorafenib. These patients subsequently remained in sustained complete molecular remission, with a median follow-up of 20 months. Our data indicate that sorafenib can achieve high rates of sustained remission in high-risk patients treated in combination with HSCT. PMID:26233683

  10. Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient.

    PubMed

    Dazert, Eva; Colombi, Marco; Boldanova, Tujana; Moes, Suzette; Adametz, David; Quagliata, Luca; Roth, Volker; Terracciano, Luigi; Heim, Markus H; Jenoe, Paul; Hall, Michael N

    2016-02-01

    Compensatory signaling pathways in tumors confer resistance to targeted therapy, but the pathways and their mechanisms of activation remain largely unknown. We describe a procedure for quantitative proteomics and phosphoproteomics on snap-frozen biopsies of hepatocellular carcinoma (HCC) and matched nontumor liver tissue. We applied this procedure to monitor signaling pathways in serial biopsies taken from an HCC patient before and during treatment with the multikinase inhibitor sorafenib. At diagnosis, the patient had an advanced HCC. At the time of the second biopsy, abdominal imaging revealed progressive disease despite sorafenib treatment. Sorafenib was confirmed to inhibit MAPK signaling in the tumor, as measured by reduced ribosomal protein S6 kinase phosphorylation. Hierarchical clustering and enrichment analysis revealed pathways broadly implicated in tumor progression and resistance, such as epithelial-to-mesenchymal transition and cell adhesion pathways. Thus, we describe a protocol for quantitative analysis of oncogenic pathways in HCC biopsies and obtained first insights into the effect of sorafenib in vivo. This protocol will allow elucidation of mechanisms of resistance and enable precision medicine. PMID:26787912

  11. Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient

    PubMed Central

    Dazert, Eva; Colombi, Marco; Boldanova, Tujana; Moes, Suzette; Adametz, David; Quagliata, Luca; Roth, Volker; Terracciano, Luigi; Heim, Markus H.; Jenoe, Paul; Hall, Michael N.

    2016-01-01

    Compensatory signaling pathways in tumors confer resistance to targeted therapy, but the pathways and their mechanisms of activation remain largely unknown. We describe a procedure for quantitative proteomics and phosphoproteomics on snap-frozen biopsies of hepatocellular carcinoma (HCC) and matched nontumor liver tissue. We applied this procedure to monitor signaling pathways in serial biopsies taken from an HCC patient before and during treatment with the multikinase inhibitor sorafenib. At diagnosis, the patient had an advanced HCC. At the time of the second biopsy, abdominal imaging revealed progressive disease despite sorafenib treatment. Sorafenib was confirmed to inhibit MAPK signaling in the tumor, as measured by reduced ribosomal protein S6 kinase phosphorylation. Hierarchical clustering and enrichment analysis revealed pathways broadly implicated in tumor progression and resistance, such as epithelial-to-mesenchymal transition and cell adhesion pathways. Thus, we describe a protocol for quantitative analysis of oncogenic pathways in HCC biopsies and obtained first insights into the effect of sorafenib in vivo. This protocol will allow elucidation of mechanisms of resistance and enable precision medicine. PMID:26787912

  12. Sorafenib

    MedlinePlus

    ... Tegretol), dexamethasone, dofetilide (Tikosyn), dronedarone (Multaq), ibutilide (Corvert), irinotecan (Camptosar), neomycin, phenobarbital, phenytoin (Dilantin, Phenytek), procainamide (Procanbid, ...

  13. Phase I Trial of Maintenance Sorafenib after Allogeneic Hematopoietic Stem Cell Transplantation for FLT3-ITD AML

    PubMed Central

    Chen, Yi-Bin; Li, Shuli; Lane, Andrew A.; Connolly, Christine; Del Rio, Candice; Valles, Betsy; Curtis, Morgan; Ballen, Karen; Cutler, Corey; Dey, Bimalangshu R.; El-Jawahri, Areej; Fathi, Amir T.; Ho, Vincent T.; Joyce, Amy; McAfee, Steven; Rudek, Michelle; Rajkhowa, Trivikram; Verselis, Sigitas; Antin, Joseph H.; Spitzer, Thomas R.; Levis, Mark; Soiffer, Robert

    2014-01-01

    The FLT3-ITD mutation is associated with a high relapse rate for patients with AML even after allogeneic hematopoietic stem cell transplantation (HSCT). Sorafenib is a tyrosine kinase inhibitor which inhibits the FLT3 tyrosine kinase and has shown encouraging activity in FLT3-ITD AML. We conducted a phase I trial of maintenance sorafenib after HSCT in patients with FLT3-ITD AML (ClinicalTrials.gov NCT01398501). Patients received a variety of conditioning regimens and graft sources. A dose escalation 3+3 cohort design was used to define the maximum tolerated dose (MTD) with an additional 10 patients treated at the MTD. Sorafenib was initiated between days 45 and 120 after HSCT continued for twelve 28-day cycles. Twenty-two patients were enrolled (status at HSCT: CR1=16, CR2=3, refractory=3). The MTD was established at 400 mg BID with one DLT observed (pericardial effusion). Two patients died of transplant-related causes, both unrelated to sorafenib. Two patients stopped sorafenib after relapse and 5 stopped due to attributable toxicities after the DLT period. Median follow-up for surviving patients is 16.7 months after HSCT (range, 8.1–35.0). There was one case of grade II acute GVHD after starting sorafenib and the 12-month cumulative incidence of chronic GVHD was 38% (90% CI, 21%–56%). For all patients, one-year progression-free survival (PFS) is 85% (90% CI, 66%–94%) and one-year overall survival (OS) is 95% (90% CI, 79%–99%) after HSCT. For patients in CR1 / CR2 prior to HSCT (n=19), one-year PFS is 95% (90% CI, 76%–99%) and one-year OS is 100% with only one patient who has relapsed. Sorafenib is safe after HSCT for FLT3-ITD AML and merits further investigation for the prevention of relapse. PMID:25239228

  14. Sorafenib treatment of radioiodine-refractory advanced thyroid cancer in daily clinical practice: a cohort study from a single center.

    PubMed

    Gallo, Marco; Michelon, Federica; Castiglione, Anna; Felicetti, Francesco; Viansone, Alessandro Adriano; Nervo, Alice; Zichi, Clizia; Ciccone, Giovannino; Piovesan, Alessandro; Arvat, Emanuela

    2015-08-01

    Treatment options for recurrent or metastatic differentiated thyroid cancer (DTC) refractory to radioactive iodine (RAI) are inadequate. Multitargeted kinase inhibitors have recently shown promising results in phase 2-3 studies. This retrospective study aimed to document our clinical experience on the effects of sorafenib in the setting of daily clinical practice. Retrospective study evaluating the efficacy and safety of sorafenib in a cohort of patients consecutively treated with sorafenib at a single center. Twenty patients with advanced RAI-refractory thyroid carcinoma were enrolled (March 2011-March 2014). Patients generally started with 400 mg of sorafenib twice daily, tapering the dose in case of side effects. Radiological response and toxicity were measured during follow-up, together with safety parameters. CT scans were performed by a single experienced radiologist every 3-4 months. Five patients stopped sorafenib within 90 days due to severe toxicities. Median progression-free survival was 248 days. Five patients had a partial response (PR), achieved in all cases within 3 months, whereas 5 had stable disease (SD) at 12 months. Durable response rate (PR plus SD) for at least 6 months was 50 %, among those who received sorafenib for at least 3 months. Commonest adverse events included skin toxicity, gastrointestinal and constitutional symptoms. In our cohort of patients with advanced RAI-refractory thyroid carcinoma, sorafenib confirmed antitumor activity leading to SD or PR in the majority of cases, at the expense of clinically relevant side effects. More effective and tolerable agents are still needed in the treatment of RAI-refractory DTC. PMID:25414068

  15. ACE inhibitor potentiation of bradykinin-induced venoconstriction

    PubMed Central

    Hecker, Markus; Blaukat, Andree; Bara, Agnieszka T; Müller-Esterl, Werner; Busse, Rudi

    1997-01-01

    Angiotensin-converting enzyme (ACE) inhibitors exert their cardiovascular effects not only by preventing the formation of angiotensin II (AII), but also by promoting the accumulation of bradykinin in or at the vessel wall. In addition, certain ACE inhibitors have been shown to augment the vasodilator response to bradykinin, presumably by an interaction at the level of the B2 receptor. We have investigated whether this is a specific effect of the ACE inhibitor class of compounds in isolated endothelium-denuded segments of the rabbit jugular vein where bradykinin elicits a constrictor response which is exclusively mediated by activation of the B2 receptor. Moexiprilat and ramiprilat (⩽ 3 nM) enhanced the constrictor response to bradykinin three to four fold. Captopril and enalaprilat were less active by approximately one and quinaprilat by two orders of magnitude. Moexiprilat and ramiprilat, on the other hand, had no effect on the constrictor response to AII or the dilator response to acetylcholine. The bradykinin-potentiating effect of the ACE inhibitors was not mimicked by inhibitors of amino-, carboxy-, metallo- or serine peptidases or the synthetic ACE substrate, hippuryl-L-histidyl-L-leucine, at a concentration which almost abolished the residual ACE activity in the vessel wall. In contrast, angiotensin-(1–7) (10 μM), an angiotensin I metabolite, significantly enhanced the constrictor response to bradykinin. Ramiprilat did not alter the binding of [3H]-bradykinin to a membrane fraction prepared from endothelium-denuded rabbit jugular veins or to cultured fibroblasts, and there was no ACE inhibitor-sensitive, bradykinin-induced cleavage of the B2 receptor in cultured endothelial cells. These findings demonstrate that ACE inhibitors selectively potentiate the B2 receptor-mediated vascular effects of bradykinin. Their relative efficacy appears to be independent of their ACE-inhibiting properties and might be related to differences in molecule structure

  16. Meloxicam combined with sorafenib synergistically inhibits tumor growth of human hepatocellular carcinoma cells via ER stress-related apoptosis.

    PubMed

    Zhong, Jingtao; Xiu, Peng; Dong, Xiaofeng; Wang, Fuhai; Wei, Honglong; Wang, Xin; Xu, Zongzhen; Liu, Feng; Li, Tao; Wang, Yong; Li, Jie

    2015-10-01

    Sorafenib (SOR) is a promising treatment for advanced hepatocellular carcinoma (HCC). However, the precise mechanisms of toxicity and drug resistance have not been fully explored and new strategies are urgently needed for HCC therapy. Meloxicam (MEL) is a selective cyclooxygenase-2 (COX-2) inhibitor which elicits antitumor effects in human HCC cells. In the present study, we investigated the interaction between MEL and SOR in human SMMC‑7721 cells and the role endoplasmic reticulum (ER) stress exerts in the combination of SOR with MEL treatment-induced cytotoxicity. Our results revealed that the combination treatment synergistically inhibited cell proliferation and enhanced apoptosis. Furthermore, the combination treatment enhanced ER stress-related molecules which involved in SMMC-7721 cell apoptosis. GRP78 knockdown by siRNA or co-treatment with MG132 significantly increased this combination treatment-induced apoptosis. In addition, we found that the combination treatment suppressed tumor growth by way of activation of ER stress in in vivo models. We concluded that the combination of SOR with MEL treatment-induced ER stress, and eventually apoptosis in human SMMC-7721 cells. Knockdown of GRP78 using siRNA or proteosome inhibitor enhanced the cytotoxicity of the combination of SOR with MEL-treatment in SMMC-7721 cells. These findings provided a new potential treatment strategy against HCC. PMID:26252057

  17. Phase I Study of Lenalidomide and Sorafenib in Patients With Advanced Hepatocellular Carcinoma

    PubMed Central

    Loehrer, Patrick J.; Clark, Romnee S.; Spittler, A. John; Althouse, Sandra K.; Chiorean, E. Gabriella

    2016-01-01

    Lessons Learned Combination therapies in patients with hepatocellular carcinoma can be associated with overlapping toxicity and are therefore poorly tolerated. Using sorafenib at the maximum tolerated dose can lead to a higher incidence of toxicities. Consequently, combination studies might evaluate sorafenib at alternative schedules or doses to improve tolerance, recognizing this could affect sorafenib efficacy. Although this combination was poorly tolerated, it does not exclude further evaluation of new-generation immunomodulator drugs or immune checkpoint inhibitors in the hope of optimizing tolerance and safety. Background. Sorafenib is the standard treatment for advanced hepatocellular carcinoma (HCC), and to date, no combination therapy has demonstrated superior survival compared with sorafenib alone. The immunosuppressive microenvironment in HCC is a negative predictor for survival. Lenalidomide is an immunomodulator and antiangiogenic agent, with limited single-agent efficacy in HCC. Based on these data, we designed a phase I study of sorafenib plus lenalidomide to determine the safety and preliminary antitumor activity of this combination. Methods. This was an open-label, phase I study with a 3+3 dose escalation/de-escalation design. The starting dose of sorafenib was 400 mg p.o. b.i.d. and of lenalidomide was 15 mg p.o. daily with a planned dose escalation by 5 mg per cohort up to 25 mg daily. Dose de-escalation was planned to a sorafenib dose of 400 mg p.o. daily combined with two doses of lenalidomide: 10 mg p.o. daily for a 28-day cycle (cohort 1) and 10 mg p.o. daily for a 21- or 28-day cycle (cohort 2). Patients with cirrhosis, a Child-Pugh score of A-B7, and no previous systemic therapy were eligible. Results. Five patients were enrolled. Their median age was 56 years (range 39–61), and the ECOG status was 0–2. Four patients were treated at dose level (DL) 1. Because of the poor tolerance to the combination associated with grade 2 toxicities

  18. A significant response to sorafenib in a woman with advanced lung adenocarcinoma and a BRAF non-V600 mutation.

    PubMed

    Sereno, María; Moreno, Victor; Moreno Rubio, Juan; Gómez-Raposo, César; García Sánchez, Sagrario; Hernández Jusdado, Rebeca; Falagan, Sandra; Zambrana Tébar, Francisco; Casado Sáenz, Enrique

    2015-10-01

    Lung adenocarcinoma includes recurrent activating oncogenic mutations (EGFR, EML4-ALK, ROS1) that have been associated with response to EGFR and ALK inhibitors. Platinum-based chemotherapy is the standard therapy for non-oncodrivers population. Sorafenib is a small molecule that blocks the activation of C-RAF, B-RAF, c-KIT, FLT-3, RET, VEGFR-2, VEGFR-3 and PDGFR approved for advanced renal cell and hepatocellular carcinoma (b, c). Many studies have evaluated sorafenib in advanced non-small-cell lung cancer (NSCLC), with different results. We present a case report of a patient with NSCLC and the BRAF G469R mutation who showed a dramatic response to sorafenib. PMID:26237499

  19. Temsirolimus combined with sorafenib in hepatocellular carcinoma: a phase I dose-finding trial with pharmacokinetic and biomarker correlates

    PubMed Central

    Kelley, R. K.; Nimeiri, H. S.; Munster, P. N.; Vergo, M. T.; Huang, Y.; Li, C.-M.; Hwang, J.; Mulcahy, M. F.; Yeh, B. M.; Kuhn, P.; Luttgen, M. S.; Grabowsky, J. A.; Stucky-Marshall, L.; Korn, W. M.; Ko, A. H.; Bergsland, E. K.; Benson, A. B.; Venook, A. P.

    2013-01-01

    Background Based upon preclinical evidence for improved antitumor activity in combination, this phase I study investigated the maximum-tolerated dose (MTD), safety, activity, pharmacokinetics (PK), and biomarkers of the mammalian target of rapamycin inhibitor, temsirolimus, combined with sorafenib in hepatocellular carcinoma (HCC). Patients and methods Patients with incurable HCC and Child Pugh score ≤B7 were treated with sorafenib plus temsirolimus by 3 + 3 design. The dose-limiting toxicity (DLT) interval was 28 days. The response was assessed every two cycles. PK of temsirolimus was measured in a cohort at MTD. Results Twenty-five patients were enrolled. The MTD was temsirolimus 10 mg weekly plus sorafenib 200 mg twice daily. Among 18 patients at MTD, DLT included grade 3 hand–foot skin reaction (HFSR) and grade 3 thrombocytopenia. Grade 3 or 4 related adverse events at MTD included hypophosphatemia (33%), infection (22%), thrombocytopenia (17%), HFSR (11%), and fatigue (11%). With sorafenib, temsirolimus clearance was more rapid (P < 0.05). Two patients (8%) had a confirmed partial response (PR); 15 (60%) had stable disease (SD). Alpha-fetoprotein (AFP) declined ≥50% in 60% assessable patients. Conclusion The MTD of sorafenib plus temsirolimus in HCC was lower than in other tumor types. HCC-specific phase I studies are necessary. The observed efficacy warrants further study. PMID:23519998

  20. The value of lactate dehydrogenase serum levels as a prognostic and predictive factor for advanced pancreatic cancer patients receiving sorafenib

    PubMed Central

    Faloppi, Luca; Bianconi, Maristella; Giampieri, Riccardo; Sobrero, Alberto; Labianca, Roberto; Ferrari, Daris; Barni, Sandro; Aitini, Enrico; Zaniboni, Alberto; Boni, Corrado; Caprioni, Francesco; Mosconi, Stefania; Fanello, Silvia; Berardi, Rossana; Bittoni, Alessandro; Andrikou, Kalliopi; Cinquini, Michela; Torri, Valter; Scartozzi, Mario; Cascinu, Stefano

    2015-01-01

    Although lactate dehydrogenase (LDH) serum levels, indirect markers of angiogenesis, are associated with a worse outcome in several tumours, their prognostic value is not defined in pancreatic cancer. Moreover, high levels are associated even with a lack of efficacy of tyrosine kinase inhibitors, contributing to explain negative results in clinical trials. We assessed the role of LDH in advanced pancreatic cancer receiving sorafenib. Seventy-one of 114 patients included in the randomised phase II trial MAPS (chemotherapy plus or not sorafenib) and with available serum LDH levels, were included in this analysis. Patients were categorized according to serum LDH levels (LDH ≤vs.> upper normal rate). A significant difference was found in progression free survival (PFS) and in overall survival (OS) between patients with LDH values under or above the cut-off (PFS: 5.2 vs. 2.7 months, p = 0.0287; OS: 10.7 vs. 5.9 months, p = 0.0021). After stratification according to LDH serum levels and sorafenib treatment, patients with low LDH serum levels treated with sorafenib showed an advantage in PFS (p = 0.05) and OS (p = 0.0012). LDH appears to be a reliable parameter to assess the prognosis of advanced pancreatic cancer patients, and it may be a predictive parameter to select patients candidate to receive sorafenib. PMID:26397228

  1. The value of lactate dehydrogenase serum levels as a prognostic and predictive factor for advanced pancreatic cancer patients receiving sorafenib.

    PubMed

    Faloppi, Luca; Bianconi, Maristella; Giampieri, Riccardo; Sobrero, Alberto; Labianca, Roberto; Ferrari, Daris; Barni, Sandro; Aitini, Enrico; Zaniboni, Alberto; Boni, Corrado; Caprioni, Francesco; Mosconi, Stefania; Fanello, Silvia; Berardi, Rossana; Bittoni, Alessandro; Andrikou, Kalliopi; Cinquini, Michela; Torri, Valter; Scartozzi, Mario; Cascinu, Stefano

    2015-10-27

    Although lactate dehydrogenase (LDH) serum levels, indirect markers of angiogenesis, are associated with a worse outcome in several tumours, their prognostic value is not defined in pancreatic cancer. Moreover, high levels are associated even with a lack of efficacy of tyrosine kinase inhibitors, contributing to explain negative results in clinical trials. We assessed the role of LDH in advanced pancreatic cancer receiving sorafenib. Seventy-one of 114 patients included in the randomised phase II trial MAPS (chemotherapy plus or not sorafenib) and with available serum LDH levels, were included in this analysis. Patients were categorized according to serum LDH levels (LDH ≤ vs.> upper normal rate). A significant difference was found in progression free survival (PFS) and in overall survival (OS) between patients with LDH values under or above the cut-off (PFS: 5.2 vs. 2.7 months, p = 0.0287; OS: 10.7 vs. 5.9 months, p = 0.0021). After stratification according to LDH serum levels and sorafenib treatment, patients with low LDH serum levels treated with sorafenib showed an advantage in PFS (p = 0.05) and OS (p = 0.0012). LDH appears to be a reliable parameter to assess the prognosis of advanced pancreatic cancer patients, and it may be a predictive parameter to select patients candidate to receive sorafenib. PMID:26397228

  2. Distinct antifibrogenic effects of erlotinib, sunitinib and sorafenib on rat pancreatic stellate cells

    PubMed Central

    Elsner, Anne; Lange, Falko; Fitzner, Brit; Heuschkel, Martin; Krause, Bernd Joachim; Jaster, Robert

    2014-01-01

    AIM: To study if three clinically available small molecule kinase inhibitors (SMI), erlotinib, sunitinib and sorafenib, exert antifibrogenic effects on pancreatic stellate cells (PSC) and analyze the basis of their action. METHODS: Cultured rat PSC were exposed to SMI. Cell proliferation and viability were assessed employing 5-bromo-2’-deoxyuridine incorporation assay and flow cytometry, respectively. 2-Deoxy-2-[18F] fluoroglucose (18F-FDG) uptake was measured to study metabolic activity. Exhibition of the myofibroblastic PSC phenotype was monitored by immunofluorescence analysis of α-smooth muscle actin (α-SMA) expression. Levels of mRNA were determined by real-time PCR, while protein expression and phosphorylation were analyzed by immunoblotting. Transforming growth factor-β1 (TGF-β1) levels in culture supernatants were quantified by ELISA. RESULTS: All three SMI inhibited cell proliferation and 18F-FDG uptake in a dose-dependent manner and without significant cytotoxic effects. Furthermore, additive effects of the drugs were observed. Immunoblot analysis showed that sorafenib and sunitib, but not erlotinib, efficiently blocked activation of the AKT pathway, while all three drugs displayed little effect on phosphorylation of ERK1/2. Cells treated with sorafenib or sunitinib expressed less interleukin-6 mRNA as well as less collagen type 1 mRNA and protein. Sorafenib was the only drug that also upregulated the expression of matrix metalloproteinase-2 and reduced the secretion of TGF-β1 protein. All three drugs showed insignificant or discordant effects on the mRNA and protein levels of α-SMA. CONCLUSION: The tested SMI, especially sorafenib, exert inhibitory effects on activated PSC, which should be further evaluated in preclinical studies. PMID:24976727

  3. Formation of Tankyrase Inhibitor-Induced Degradasomes Requires Proteasome Activity

    PubMed Central

    Pedersen, Nina Marie; Thorvaldsen, Tor Espen; Schultz, Sebastian Wolfgang; Wenzel, Eva Maria; Stenmark, Harald

    2016-01-01

    In canonical Wnt signaling, the protein levels of the key signaling mediator β-catenin are under tight regulation by the multimeric destruction complex that mediates proteasomal degradation of β-catenin. In colorectal cancer, destruction complex activity is often compromised due to mutations in the multifunctional scaffolding protein Adenomatous Polyposis Coli (APC), leading to a stabilization of β-catenin. Recently, tankyrase inhibitors (TNKSi), a novel class of small molecule inhibitors, were shown to re-establish a functional destruction complex in APC-mutant cancer cell lines by stabilizing AXIN1/2, whose protein levels are usually kept low via poly(ADP-ribosyl)ation by the tankyrase enzymes (TNKS1/2). Surprisingly, we found that for the formation of the morphological correlates of destruction complexes, called degradasomes, functional proteasomes are required. In addition we found that AXIN2 is strongly upregulated after 6 h of TNKS inhibition. The proteasome inhibitor MG132 counteracted TNKSi-induced degradasome formation and AXIN2 stabilization, and this was accompanied by reduced transcription of AXIN2. Mechanistically we could implicate the transcription factor FoxM1 in this process, which was recently shown to be a transcriptional activator of AXIN2. We observed a substantial reduction in TNKSi-induced stabilization of AXIN2 after siRNA-mediated depletion of FoxM1 and found that proteasome inhibition reduced the active (phosphorylated) fraction of FoxM1. This can explain the decreased protein levels of AXIN2 after MG132 treatment. Our findings have implications for the design of in vitro studies on the destruction complex and for clinical applications of TNKSi. PMID:27482906

  4. Histone deacetylase inhibitors block IFNγ-induced STAT1 phosphorylation.

    PubMed

    Ginter, Torsten; Bier, Carolin; Knauer, Shirley K; Sughra, Kalsoom; Hildebrand, Dagmar; Münz, Tobias; Liebe, Theresa; Heller, Regine; Henke, Andreas; Stauber, Roland H; Reichardt, Werner; Schmid, Johannes A; Kubatzky, Katharina F; Heinzel, Thorsten; Krämer, Oliver H

    2012-07-01

    Signal transducer and activator of transcription 1 (STAT1) is important for innate and adaptive immunity. Histone deacetylase inhibitors (HDACi) antagonize unbalanced immune functions causing chronic inflammation and cancer. Phosphorylation and acetylation regulate STAT1 and different IFNs induce phosphorylated STAT1 homo-/heterodimers, e.g. IFNα activates several STATs whereas IFNγ only induces phosphorylated STAT1 homodimers. In transformed cells HDACi trigger STAT1 acetylation linked to dephosphorylation by the phosphatase TCP45. It is unclear whether acetylation differentially affects STAT1 activated by IFNα or IFNγ, and if cellular responses to both cytokines depend on a phosphatase-dependent inactivation of acetylated STAT1. Here, we report that HDACi counteract IFN-induced phosphorylation of a critical tyrosine residue in the STAT1 C-terminus in primary cells and hematopoietic cells. STAT1 mutants mimicking a functionally inactive DNA binding domain (DBD) reveal that the number of acetylation-mimicking sites in STAT1 determines whether STAT1 is recruited to response elements after stimulation with IFNγ. Furthermore, we show that IFNα-induced STAT1 heterodimers carrying STAT1 molecules mimicking acetylation bind cognate DNA and provide innate anti-viral immunity. IFNγ-induced acetylated STAT1 homodimers are though inactive, suggesting that heterodimerization and complex formation can rescue STAT1 lacking a functional DBD. Apparently, the type of cytokine determines how acetylation affects the nuclear entry and DNA binding of STAT1. Our data contribute to a better understanding of STAT1 regulation by acetylation. PMID:22425562

  5. Comparative Metabolomic Profiling of Hepatocellular Carcinoma Cells Treated with Sorafenib Monotherapy vs. Sorafenib-Everolimus Combination Therapy

    PubMed Central

    Zheng, Jian-feng; Lu, Juan; Wang, Xiao-zhong; Guo, Wu-hua; Zhang, Ji-xiang

    2015-01-01

    Background Sorafenib-everolimus combination therapy may be more effective than sorafenib monotherapy for hepatocellular carcinoma (HCC). To better understand this effect, we comparatively profiled the metabolite composition of HepG2 cells treated with sorafenib, everolimus, and sorafenib-everolimus combination therapy. Material/Methods A 2D HRMAS 1H-NMR metabolomic approach was applied to identify the key differential metabolites in 3 experimental groups: sorafenib (5 μM), everolimus (5 μM), and combination therapy (5 μM sorafenib +5 μM everolimus). MetaboAnalyst 3.0 was used to perform pathway analysis. Results All OPLS-DA models displayed good separation between experimental groups, high-quality goodness of fit (R2), and high-quality goodness of predication (Q2). Sorafenib and everolimus have differential effects with respect to amino acid, methane, pyruvate, pyrimidine, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism. The addition of everolimus to sorafenib resulted in differential effects with respect to pyruvate, amino acid, methane, glyoxylate and dicarboxylate, glycolysis or gluconeogenesis, glycerophospholipid, and purine metabolism. Conclusions Sorafenib and everolimus have differential effects on HepG2 cells. Sorafenib preferentially affects glycerophospholipid and purine metabolism, while the addition of everolimus preferentially affects pyruvate, amino acid, and glucose metabolism. This phenomenon may explain (in part) the synergistic effects of sorafenib-everolimus combination therapy observed in vivo. PMID:26092946

  6. Down-regulation of Mcl-1 through GSK-3β activation contributes to arsenic trioxide-induced apoptosis in acute myeloid leukemia cells

    PubMed Central

    Wang, Rui; Xia, Lijuan; Gabrilove, Janice; Waxman, Samuel; Jing, Yongkui

    2012-01-01

    Arsenic trioxide (ATO) induces disease remission in acute promyelocytic leukemia (APL) patients, but not in non-APL acute myeloid leukemia (AML) patients. ATO at therapeutic concentrations (1-2 μM) induce APL NB4, but not non-APL HL-60, cells to undergo apoptosis through the mitochondrial pathway. The role of antiapoptotic protein Mcl-1 in ATO-induced apoptosis was determined. The levels of Mcl-1 were decreased in NB4, but not in HL-60, cells after ATO treatment through proteasomal degradation. Both GSK3β inhibitor SB216763 and siRNA blocked ATO-induced Mcl-1 reduction as well as attenuated ATO-induced apoptosis in NB4 cells. Silencing Mcl-1 sensitized HL-60 cells to ATO-induced apoptosis. Both ERK and AKT inhibitors decreased Mcl-1 levels and enhanced ATO-induced apoptosis in HL-60 cells. Sorafenib, a Raf inhibitor, activated GSK3β by inhibiting its phosphorylation, decreased Mcl-1 levels, and decreased intracellular glutathione levels in HL-60 cells. Sorafenib plus ATO augmented ROS production and apoptosis induction in HL-60 cells and in primary AML cells. These results indicate that ATO induces Mcl-1 degradation through activation of GSK3β in APL cells and provide a rationale for utilizing ATO in combination with sorafenib for the treatment of non-APL AML patients. PMID:22751450

  7. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    SciTech Connect

    Riganti, Chiara . E-mail: dario.ghigo@unito.it

    2006-05-01

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H{sub 2}O{sub 2} concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution.

  8. Tyrosine receptor kinase B silencing inhibits anoikis‑resistance and improves anticancer efficiency of sorafenib in human renal cancer cells.

    PubMed

    Zhang, Peng; Xing, Zengshu; Li, Xuechao; Song, Yarong; Zhao, Jun; Xiao, Yajun; Xing, Yifei

    2016-04-01

    Renal cell carcinoma (RCC) is the most common solid neoplasm of adult kidney, and the major treatment for metastatic RCC (mRCC) is molecular targeted therapy. Sorafenib, as a multi-targeted tyrosine kinase inhibitor (TKI), has significantly improved clinical outcomes of mRCC patients. However, complete or long-term remissions are rarely achieved due to intolerance to dose-related adverse effects. It is therefore, necessary to explore novel target molecules for treatment or to enhance the therapeutic efficiency of present TKI for mRCC treatment. Anoikis is a specific type of apoptosis that plays a vital physiological role in regulating tissue homoeostasis. Anoikis-resistance is of critical importance for metastasis of various human cancers including mRCC. However, the precise mechanisms on anoikis-resistance in mRCC are still unclear. Tyrosine receptor kinase B (TrkB) belongs to the Trk family of neurotrophin receptors. Previous investigations have implied that activation or overexpression of TrkB promoted proliferation, survival, angiogenesis, anoikis-resistance and metastasis in human cancers. Yet, the correlation between TrkB and anoikis-resistance in mRCC has rarely been reported. The aim of the present study was to explore the impact of TrkB on anoikis-resistance and targeted therapy in mRCC. Our data revealed that anoikis-resistant ACHN cells presented with tolerance to detachment-induced apoptosis, excessive proliferation and aggressive invasion, accompanied by upregulation of TrkB expression in contrast to parental cells. Furthermore, TrkB silencing caused apoptosis, inhibited proliferation, retarded invasion as well as improved anticancer efficiency of sorafenib in anoikis-resistant ACHN cells through inactivation of PI3K/Akt and MEK/ERK pathways. Our data may offer a novel potential therapeutic strategy for mRCC. PMID:26820170

  9. Serial Low Doses of Sorafenib Enhance Therapeutic Efficacy of Adoptive T Cell Therapy in a Murine Model by Improving Tumor Microenvironment

    PubMed Central

    Liu, Ren-Shyan; Hwang, Jeng-Jong

    2014-01-01

    Requirements of large numbers of transferred T cells and various immunosuppressive factors and cells in the tumor microenvironment limit the applications of adoptive T cells therapy (ACT) in clinic. Accumulating evidences show that chemotherapeutic drugs could act as immune supportive instead of immunosuppressive agents when proper dosage is used, and combined with immunotherapy often results in better treatment outcomes than monotherapy. Controversial immunomodulation effects of sorafenib, a multi-kinases inhibitor, at high and low doses have been reported in several types of cancer. However, what is the range of the low-dose sorafenib will influence the host immunity and responses of ACT is still ambiguous. Here we used a well-established E.G7/OT-1 murine model to understand the effects of serial low doses of sorafenib on both tumor microenvironment and transferred CD8+ T cells and the underlying mechanisms. Sorafenib lowered the expressions of immunosuppressive factors, and enhanced functions and migrations of transferred CD8+ T cells through inhibition of STAT3 and other immunosuppressive factors. CD8+ T cells were transduced with granzyme B promoter for driving imaging reporters to visualize the activation and distribution of transferred CD8+ T cells prior to adoptive transfer. Better activations of CD8+ T cells and tumor inhibitions were found in the combinational group compared with CD8+ T cells or sorafenib alone groups. Not only immunosuppressive factors but myeloid derived suppressive cells (MDSCs) and regulatory T cells (Tregs) were decreased in sorafenib-treated group, indicating that augmentation of tumor inhibition and function of CD8+ T cells by serial low doses of sorafenib were via reversing the immunosuppressive microenvironment. These results revealed that the tumor inhibitions of sorafenib not only through eradicating tumor cells but modifying tumor microenvironment, which helps outcomes of ACT significantly. PMID:25333973

  10. TLR3 agonist and Sorafenib combinatorial therapy promotes immune activation and controls hepatocellular carcinoma progression.

    PubMed

    Ho, Victor; Lim, Tong Seng; Lee, Justin; Steinberg, Jeffrey; Szmyd, Radoslaw; Tham, Muly; Yaligar, Jadegoud; Kaldis, Philipp; Abastado, Jean-Pierre; Chew, Valerie

    2015-09-29

    Hepatocellular carcinoma (HCC) is associated with high mortality and the current therapy for advanced HCC, Sorafenib, offers limited survival benefits. Here we assessed whether combining the TLR3 agonist: lysine-stabilized polyinosinic-polycytidylic-acid (poly-ICLC) with Sorafenib could enhance tumor control in HCC. Combinatorial therapy with poly-ICLC and Sorafenib increased apoptosis and reduced proliferation of HCC cell lines in vitro, in association with impaired phosphorylation of AKT, MEK and ERK. In vivo, the combinatorial treatment enhanced control of tumor growth in two mouse models: one transplanted with Hepa 1-6 cells, and the other with liver tumors induced using the Sleeping beauty transposon. Tumor cell apoptosis and host immune responses in the tumor microenvironment were enhanced. Particularly, the activation of local NK cells, T cells, macrophages and dendritic cells was enhanced. Decreased expression of the inhibitory signaling molecules PD-1 and PD-L1 was observed in tumor-infiltrating CD8+ T cells and tumor cells, respectively. Tumor infiltration by monocytic-myeloid derived suppressor cells (Mo-MDSC) was also reduced indicating the reversion of the immunosuppressive tumor microenvironment. Our data demonstrated that the combinatorial therapy with poly-ICLC and Sorafenib enhances tumor control and local immune response hence providing a rationale for future clinical studies. PMID:26287667

  11. Synergistic effects of ascorbate and sorafenib in hepatocellular carcinoma: New insights into ascorbate cytotoxicity.

    PubMed

    Rouleau, Lauren; Antony, Anil Noronha; Bisetto, Sara; Newberg, Andrew; Doria, Cataldo; Levine, Mark; Monti, Daniel A; Hoek, Jan B

    2016-06-01

    We investigated the mechanism of selective ascorbate-induced cytotoxicity in tumor cells, including Hep G2 cells, compared to primary hepatocytes. H2O2 formation was required for ascorbate cytotoxicity, as extracellular catalase treatment protected tumor cells. H2O2 generated by glucose oxidase treatment also caused cell killing, but treatment with a pharmacologic dose (5-20mM) of ascorbate was significantly more cytotoxic at comparable rates of H2O2 production, suggesting that ascorbate enhanced H2O2 cytotoxicity. This was further supported by the finding that ascorbate at a non-cytotoxic dose (1mM) enhanced cell killing caused by glucose oxidase. Consistent with this conclusion, ascorbate treatment caused deregulation of cellular calcium homeostasis, resulting in massive mitochondrial calcium accumulation. Ascorbate acted synergistically with the chemotherapeutic sorafenib in killing Hep G2 cells, but not primary hepatocytes, suggesting adjuvant ascorbate treatment can broaden sorafenib's therapeutic range. Sorafenib caused mitochondrial depolarization and prevented mitochondrial calcium sequestration. Subsequent ascorbate addition further deregulated cellular calcium homeostasis promoting cell death. Additionally, we present the case of a patient with hepatocellular carcinoma (HCC) who had prolonged regression of a rib metastasis upon combination treatment with ascorbate and sorafenib, indicating that these studies have direct clinical relevance. PMID:27036367

  12. Clinical experience and critical evaluation of the role of sorafenib in renal cell carcinoma

    PubMed Central

    Zustovich, Fable; Lombardi, Giuseppe; Pastorelli, Davide; Farina, Patrizia; Bianco, Massimo Dal; De Zorzi, Luca; Palma, Maurizia Dalla; Nicoletto, Ornella; Zagonel, Vittorina

    2011-01-01

    Renal cell carcinoma (RCC) is a common malignancy worldwide with approximately 95,000 new cases per year and ranks as the sixth cause of cancer deaths. Until recently, the slightly active and very toxic cytokines were available for patients with advanced RCC. Advances have been made in understanding the molecular biology of renal cancer. The introduction of targeted agents has led to promising possibilities for treating these highly vascularized tumors. Angiogenesis inhibition is likely to represent the main potential therapeutic target. Sorafenib is an oral multikinase inhibitor with activity against tyrosine kinase receptors that are responsible for blood vessel development and has shown to be active in treating advanced RCC. In this review, we summarize the pharmacology, mode of action, pharmacokinetics, and safety of sorafenib use in therapy for advanced RCC. PMID:24198638

  13. Sorafenib for Hepatocellular Carcinoma: From Randomized Controlled Trials to Clinical Practice.

    PubMed

    Cabibbo, Giuseppe; Petta, Salvatore; Maida, Marcello; Cammà, Calogero

    2015-09-01

    Hepatocellular carcinoma is a challenging malignancy of global importance. It is the sixth most common solid malignancy and the third leading cause of cancer-related death, worldwide. Curative treatments at early stages include liver transplantation, resection and percutaneous ablation, while transarterial chemoembolization can improve survival in patients with intermediate tumor stage. Patients with mild, related symptoms and/or macrovascular invasion or extrahepatic spread are classified under the advanced stage. The standard of care in this group is sorafenib, an inhibitor of Raf kinase and vascular endothelial growth factor receptor, whose effectiveness has been proven by 2 recent randomized controlled trials (RCTs). The aim of this brief review is to highlight the main concerns and pitfalls and to analyze the recent data of literature regarding the efficacy and the management of sorafenib therapy from RCTs to real practice. PMID:26398633

  14. Selective Serotonin–norepinephrine Reuptake Inhibitors-induced Takotsubo Cardiomyopathy

    PubMed Central

    Vasudev, Rahul; Rampal, Upamanyu; Patel, Hiten; Patel, Kunal; Bikkina, Mahesh; Shamoon, Fayez

    2016-01-01

    Context: Takotsubo translates to “octopus pot” in Japanese. Takotsubo cardiomyopathy (TTC) is characterized by a transient regional systolic dysfunction of the left ventricle. Catecholamine excess is the one most studied and favored theories explaining the pathophysiology of TTC. Case Report: We present the case of a 52-year-old Hispanic female admitted for venlafaxine-induced TTC with a review literature on all the cases of Serotonin–norepinephrine reuptake inhibitors (SNRI)-associated TTC published so far. Conclusion: SNRI inhibit the reuptake of catecholamines into the presynaptic neuron, resulting in a net gain in the concentration of epinephrine and serotonin in the neuronal synapses and causing iatrogenic catecholamine excess, ultimately leading to TTC. PMID:27583240

  15. Inhibitors of Histone Deacetylases Attenuate Noise-Induced Hearing Loss.

    PubMed

    Chen, Jun; Hill, Kayla; Sha, Su-Hua

    2016-08-01

    Loss of auditory sensory hair cells is the major pathological feature of noise-induced hearing loss (NIHL). Currently, no established clinical therapies for prevention or amelioration of NIHL are available. The absence of treatments is due to our lack of a comprehensive understanding of the molecular mechanisms underlying noise-induced damage. Our previous study indicates that epigenetic modification of histones alters hair cell survival. In this study, we investigated the effect of noise exposure on histone H3 lysine 9 acetylation (H3K9ac) in the inner ear of adult CBA/J mice and determined if inhibition of histone deacetylases by systemic administration of suberoylanilide hydroxamic acid (SAHA) could attenuate NIHL. Our results showed that H3K9ac was decreased in the nuclei of outer hair cells (OHCs) and marginal cells of the stria vascularis in the basal region after exposure to a traumatic noise paradigm known to induce permanent threshold shifts (PTS). Consistent with these results, levels of histone deacetylases 1, 2, and 3 (HDAC1, HDAC2 and HDAC3) were increased predominately in the nuclei of cochlear cells. Silencing of HDAC1, HDAC2, or HDAC3 with siRNA reduced the expression of the target HDAC in OHCs, but did not attenuate noise-induced PTS, whereas treatment with the pan-HDAC inhibitor SAHA, also named vorinostat, reduced OHC loss, and attenuated PTS. These findings suggest that histone acetylation is involved in the pathogenesis of noise-induced OHC death and hearing loss. Pharmacological targeting of histone deacetylases may afford a strategy for protection against NIHL. PMID:27095478

  16. MG132, a proteasome inhibitor, induces apoptosis in tumor cells.

    PubMed

    Guo, Na; Peng, Zhilan

    2013-03-01

    The balance between cell proliferation and apoptosis is critical for normal development and for the maintenance of homeostasis in adult organisms. Disruption of this balance has been implicated in a large number of disease processes, ranging from autoimmunity and neurodegenerative disorders to cancer. The ubiquitin-proteasome pathway, responsible for mediating the majority of intracellular proteolysis, plays a crucial role in the regulation of many normal cellular processes, including the cell cycle, differentiation and apoptosis. Apoptosis in cancer cells is closely connected with the activity of ubiquitin-proteasome pathway. The peptide-aldehyde proteasome inhibitor MG132 (carbobenzoxyl-L-leucyl-L-leucyl-L-leucine) induces the apoptosis of cells by a different intermediary pathway. Although the pathway of induction of apoptosis is different, it plays a crucial role in anti-tumor treatment. There are many cancer-related molecules in which the protein levels present in cells are regulated by a proteasomal pathway; for example, tumor inhibitors (P53, E2A, c-Myc, c-Jun, c-Fos), transcription factors (transcription factor nuclear factor-kappa B, IκBα, HIFI, YYI, ICER), cell cycle proteins (cyclin A and B, P27, P21, IAP1/3), MG132 induces cell apoptosis through formation of reactive oxygen species or the upregulation and downregulation of these factors, which is ultimately dependent upon the activation of the caspase family of cysteine proteases. In this article we review the mechanism of the induction of apoptosis in order to provide information required for research. PMID:22897979

  17. 2-Deoxy-d-Glucose Can Complement Doxorubicin and Sorafenib to Suppress the Growth of Papillary Thyroid Carcinoma Cells

    PubMed Central

    Wang, Shuo-Yu; Wei, Yau-Huei; Shieh, Dar-Bin; Lin, Li-Ling; Cheng, Shih-Ping; Wang, Pei-Wen; Chuang, Jiin-Haur

    2015-01-01

    Tumor cells display a shift in energy metabolism from oxidative phosphorylation to aerobic glycolysis. A subset of papillary thyroid carcinoma (PTC) is refractory to surgery and radioactive iodine ablation. Doxorubicin and sorafenib are the drugs of choice for treating advanced thyroid cancer but both induce adverse effects. In this study, we assessed the anti-cancer activity of 2-deoxy-d-glucose (2-DG) alone and in combination with doxorubicin or sorafenib in PTC cell lines with (BCPAP) and without (CG3) the BRAFV600E mutation. BCPAP cells were more glycolytic than CG3 cells, as evidenced by their higher extracellular l-lactate production, lower intracellular ATP level, lower oxygen consumption rate (OCR), and lower ratio of OCR/extracellular acidification rate. However, dose-dependent reduction in cell viability, intracellular ATP depletion, and extracellular l-lactate production were observed after 2-DG treatment. Regression analysis showed that cell growth in both cell lines was dependent on ATP generation. 2-DG increased the chemosensitivity of BCPAP and CG3 cell lines to doxorubicin and sorafenib. These results demonstrate that the therapeutic effects of low combined doses of 2-DG and doxorubicin or sorafenib are similar to those of high doses of doxorubicin or sorafenib alone in PTC cell lines regardless of the BRAFV600E mutation. PMID:26134286

  18. Alternative Mammalian Target of Rapamycin (mTOR) Signal Activation in Sorafenib-resistant Hepatocellular Carcinoma Cells Revealed by Array-based Pathway Profiling*

    PubMed Central

    Masuda, Mari; Chen, Wei-Yu; Miyanaga, Akihiko; Nakamura, Yuka; Kawasaki, Kumiko; Sakuma, Tomohiro; Ono, Masaya; Chen, Chi-Long; Honda, Kazufumi; Yamada, Tesshi

    2014-01-01

    Sorafenib is a multi-kinase inhibitor that has been proven effective for the treatment of unresectable hepatocellular carcinoma (HCC). However, its precise mechanisms of action and resistance have not been well established. We have developed high-density fluorescence reverse-phase protein arrays and used them to determine the status of 180 phosphorylation sites of signaling molecules in the 120 pathways registered in the NCI-Nature curated database in 23 HCC cell lines. Among the 180 signaling nodes, we found that the level of ribosomal protein S6 phosphorylated at serine residue 235/236 (p-RPS6 S235/236) was most significantly correlated with the resistance of HCC cells to sorafenib. The high expression of p-RPS6 S235/236 was confirmed immunohistochemically in biopsy samples obtained from HCC patients who responded poorly to sorafenib. Sorafenib-resistant HCC cells showed constitutive activation of the mammalian target of rapamycin (mTOR) pathway, but whole-exon sequencing of kinase genes revealed no evident alteration in the pathway. p-RPS6 S235/236 is a potential biomarker that predicts unresponsiveness of HCC to sorafenib. The use of mTOR inhibitors may be considered for the treatment of such tumors. PMID:24643969

  19. Valproic Acid and Other HDAC Inhibitors Induce Microglial Apoptosis and Attenuate Lipopolysaccharide- induced Dopaminergic Neurotoxicity

    PubMed Central

    Chen, Po See; Wang, Chao-Chuan; Bortner, Carl D.; Peng, Giia-Sheun; Wu, Xuefei; Pang, Hao; Lu, Ru-Band; Gean, Po-Wu; Chuang, De-Maw; Hong, Jau-Shyong

    2009-01-01

    Valproic acid (VPA), a widely prescribed drug for seizures and bipolar disorder, has been shown to be an inhibitor of histone deacetylase (HDAC). Our previous study has demonstrated that VPA pretreatment reduces lipopolysaccharide (LPS)-induced dopaminergic (DA) neurotoxicity through the inhibition of microglia over-activation. The aim of this study was to determine the mechanism underlying VPA-induced attenuation of microglia over-activation. Other HDAC inhibitors (HDACIs) were compared with VPA for their effects on microglial activity. We found that VPA induced apoptosis of microglia cells in a time and concentration-dependent manner. VPA-treated microglial cells showed typical apoptotic hallmarks including phosphatidylserine externalization, chromatin condensation and DNA fragmentation. Further studies revealed that trichostatin A (TSA) and sodium butyrate (SB), two structurally dissimilar HDACIs, also induced microglial apoptosis. The apoptosis of microglia was accompanied by the disruption of mitochondrial membrane potential and the enhancement of acetylation levels of the histone H3 protein. Moreover, pretreatment with SB or TSA caused a robust decrease in LPS-induced pro-inflammatory responses and protected DA neurons from damage in mesencephalic neuron-glia cultures. Taken together, our results shed light on a novel mechanism whereby HDACIs induce neuroprotection and underscore the potential utility of HDACIs in preventing inflammation-related neurodegenerative disorders such as Parkinson’s disease. PMID:17850978

  20. Effects of Sorafenib on C-Terminally Truncated Androgen Receptor Variants in Human Prostate Cancer Cells

    PubMed Central

    Zengerling, Friedemann; Streicher, Wolfgang; Schrader, Andres J.; Schrader, Mark; Nitzsche, Bianca; Cronauer, Marcus V.; Höpfner, Michael

    2012-01-01

    Recent evidence suggests that the development of castration resistant prostate cancer (CRPCa) is commonly associated with an aberrant, ligand-independent activation of the androgen receptor (AR). A putative mechanism allowing prostate cancer (PCa) cells to grow under low levels of androgens, is the expression of constitutively active, C-terminally truncated AR lacking the AR-ligand binding domain (LBD). Due to the absence of a LBD, these receptors, termed ARΔLBD, are unable to respond to any form of anti-hormonal therapies. In this study we demonstrate that the multikinase inhibitor sorafenib inhibits AR as well as ARΔLBD-signalling in CRPCa cells. This inhibition was paralleled by proteasomal degradation of the AR- and ARΔLBD-molecules. In line with these observations, maximal antiproliferative effects of sorafenib were achieved in AR and ARΔLBD-positive PCa cells. The present findings warrant further investigations on sorafenib as an option for the treatment of advanced AR-positive PCa. PMID:23109869

  1. Effects of sorafenib on C-terminally truncated androgen receptor variants in human prostate cancer cells.

    PubMed

    Zengerling, Friedemann; Streicher, Wolfgang; Schrader, Andres J; Schrader, Mark; Nitzsche, Bianca; Cronauer, Marcus V; Höpfner, Michael

    2012-01-01

    Recent evidence suggests that the development of castration resistant prostate cancer (CRPCa) is commonly associated with an aberrant, ligand-independent activation of the androgen receptor (AR). A putative mechanism allowing prostate cancer (PCa) cells to grow under low levels of androgens, is the expression of constitutively active, C-terminally truncated AR lacking the AR-ligand binding domain (LBD). Due to the absence of a LBD, these receptors, termed ARΔLBD, are unable to respond to any form of anti-hormonal therapies. In this study we demonstrate that the multikinase inhibitor sorafenib inhibits AR as well as ARΔLBD-signalling in CRPCa cells. This inhibition was paralleled by proteasomal degradation of the AR- and ARΔLBD-molecules. In line with these observations, maximal antiproliferative effects of sorafenib were achieved in AR and ARΔLBD-positive PCa cells. The present findings warrant further investigations on sorafenib as an option for the treatment of advanced AR-positive PCa. PMID:23109869

  2. Novel sorafenib-based structural analogues: in-vitro anticancer evaluation of t-MTUCB and t-AUCMB.

    PubMed

    Wecksler, Aaron T; Hwang, Sung Hee; Wettersten, Hiromi I; Gilda, Jennifer E; Patton, Amy; Leon, Leonardo J; Carraway, Kermit L; Gomes, Aldrin V; Baar, Keith; Weiss, Robert H; Hammock, Bruce D

    2014-04-01

    In the current work, we carried out a mechanistic study on the cytotoxicity of two compounds, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-N-methyl-benzamide (t-AUCMB) and trans-N-methyl-4-{4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy}-benzamide (t-MTUCB), that are structurally similar to sorafenib. These compounds show strong cytotoxic responses in various cancer cell lines, despite significant differences in the induction of apoptotic events such as caspase activation and lactate dehydrogenase release in hepatoma cells. Both compounds induce autophagosome formation and LC3I cleavage, but there was little observable effect on mTORC1 or the downstream targets, S6K1 and 4E-binding protein. In addition, there was an increase in the activity of upstream signaling through the IRS1/PI3K/Akt-signaling pathway, suggesting that, unlike sorafenib, both compounds induce mammalian target of rapamycin (mTOR)-independent autophagy. The autophagy observed correlates with mitochondrial membrane depolarization, apoptosis-inducing factor release, and oxidative stress-induced glutathione depletion. However, there were no observable changes in the endoplasmic reticulum-stress markers such as binding immunoglobulin protein, inositol-requiring enzyme-α, phosphorylated eukaryotic initiation factor 2, and the lipid peroxidation marker, 4-hydroxynonenal, suggesting endoplasmic reticulum-independent oxidative stress. Finally, these compounds do not have the multikinase inhibitory activity of sorafenib, which may be reflected in their difference in the ability to halt cell cycle progression compared with sorafenib. Our findings indicate that both compounds have anticancer effects comparable with sorafenib in multiple cell lines, but they induce significant differences in apoptotic responses and appear to induce mTOR-independent autophagy. t-AUCMB and t-MTUCB represent novel chemical probes that are capable of inducing mTOR-independent autophagy and apoptosis to differing

  3. PHY906(KD018), an adjuvant based on a 1800-year-old Chinese medicine, enhanced the anti-tumor activity of Sorafenib by changing the tumor microenvironment

    PubMed Central

    Lam, Wing; Jiang, Zaoli; Guan, Fulan; Huang, Xiu; Hu, Rong; Wang, Jing; Bussom, Scott; Liu, Shwu-Huey; Zhao, Hongyu; Yen, Yun; Cheng, Yung-Chi

    2015-01-01

    PHY906 (KD018) is a four-herb Chinese Medicine Formula. It has been shown to potentially enhance the therapeutic indices of different class anticancer agents in vivo. Here, PHY906 is reported to enhance the anti-tumor activity of Sorafenib in nude mice bearing HepG2 xenografts. Among the four herbal ingredients of PHY906, Scutellaria baicalensis Georgi (S) and Paeonia lactiflora Pall (P) are required; however, S plays a more important role than P in increasing tumor apoptosis induced by Sorafenib with an increase of mouse(m)FasL and human(h)FasR expression. PHY906 may potentiate Sorafenib action by increasing hMCP1 expression and enhancing infiltration of macrophages into tumors with a higher M1/M2 (tumor rejection) signature expression pattern, as well as affect autophagy by increasing AMPKα-P and ULK1-S555-P of tumors. Depletion of macrophage could counteract PHY906 to potentiate the anti-tumor activity of Sorafenib. It was reported that tumor cells with higher levels of ERK1/2-P are more susceptible to Sorafenib, and the S component of PHY906 may increase ERK1/2-P via inhibition of ERK1/2 phosphatase in HepG2 tumors. PHY906 may potentiate the anti-hepatoma activity of Sorafenib by multiple mechanisms targeting on the inflammatory state of microenvironment of tumor tissue through two major ingredients (P and S) of PHY906. PMID:25819872

  4. A novel p21 attenuator which is structurally related to sorafenib

    PubMed Central

    Wettersten, Hiromi I.; Hee Hwang, Sung; Li, Cuiwen; Shiu, Eunice Y.; Wecksler, Aaron T.; Hammock, Bruce D.; Weiss, Robert H.

    2013-01-01

    p21 is a member of the cyclin kinase inhibitor family of proteins and plays pivotal roles in cellular proliferation as well as in the regulation of apoptosis, and thus has diverse functions in diseases as varied as cancer and atherosclerosis. In light of its pleiotropic effects and potential clinical relevance, new methods of attenuation of p21 protein levels by selective inhibitors are therefore powerful tools to probe malignant, infectious and other diseases. Here we introduce a novel p21 attenuator, UC2288, which possesses consistent and relatively selective activity for p21. UC2288 was synthesized based on the chemical model of sorafenib, a multikinase inhibitor that also attenuates p21, but unlike sorafenib, UC2288 did not inhibit Raf kinases or alter p-ERK protein levels. UC2288 decreased p21 mRNA expression independently of p53, and attenuated p21 protein levels with minimal effect on p21 protein stability. In addition, UC2288 inhibits cell growth in the kidney cancer cell lines (GI50 = approximately 10 µM) as well as multiple other cancer cell lines. Thus, this novel p21 inhibitor will be indispensable for exploring the function of p21, and upon further study may be translatable to the clinic. PMID:23298903

  5. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  6. Proton pump inhibitor-induced exfoliative dermatitis: A case report

    PubMed Central

    QIU, ZHIHONG; LIU, HONGTAO; HE, LIEN; MA, YINLING; SONG, HAOJING; BAI, WANJUN; YU, MEILING

    2016-01-01

    A 74-year-old female patient was admitted to hospital following a road accident with pains in the chest, abdomen, waist, back, nose, left wrist and lower limbs. After 1 week, the patient presented with gastrointestinal bleeding, and thus was treated with protein pump inhibitors (PPIs), including lansoprazole, esomeprazole and omeprazole enteric-coated tablets, in order to inhibit acid secretion and attenuate bleeding. However, the patient developed skin rashes on the chest and right lower limb and foot 28 days following treatment initiation. The skin rashes spread and ulcerated after 3 days, and were associated with tracheal mucosal injury and hemoptysis. Subsequently, treatment of the patient with PPIs was terminated, after which the tracheal hemoptysis and skin rashes markedly improved. In addition, no new skin rashes appeared following termination of the PPI treatment. In the present case, long-term treatment of an elderly patient with PPIs may have induced exfoliative dermatitis, due to hepatic ischemia, hypoxia and acute renal failure, which may have decreased the metabolism of PPIs, resulting in the accumulation of PPI metabolites. PMID:26893644

  7. Risk of mucocutaneous toxicities in patients with solid tumors treated with sorafenib: an updated systematic review and meta-analysis.

    PubMed

    Abdel-Rahman, Omar; Fouad, Mona

    2014-06-01

    We performed a systematic review and meta-analysis of mucocutaneous toxicities associated with sorafenib, an oral multi tyrosine kinase inhibitor. Eligible studies included randomized Phase II and III trials of patients with solid tumors on sorafenib daily describing events of hand foot skin reaction, skin rash, alopecia, stomatitis or pruritis. Patients treated with sorafenib had a significantly increased risk of all-grade mucocutaneous toxicities. The RR of all-grade hand foot skin reaction, skin rash, alopecia, stomatitis and pruritis were 4.33 (95% CI: 3.06-6.14), 2.67 (95% CI: 1.86-3.83), 3.93 (95% CI: 2.07-7.45), 2.9 (95% CI: 2.26-3.73), 2.29 (95% CI: 1.87-3.03); respectively. Exploratory subgroup analysis showed no effect of tumor types or treatment regimen (monotherapy versus combination) on the RR of mucocutaneous toxicities. Our meta-analysis has demonstrated that sorafenib is associated with a higher risk of developing all grade mucocutaneous toxicities compared with control. PMID:24666215

  8. Saturable absorption of sorafenib in patients with solid tumors: a population model.

    PubMed

    Hornecker, Marilyne; Blanchet, Benoit; Billemont, Bertrand; Sassi, Hind; Ropert, Stanislas; Taieb, Fabrice; Mir, Olivier; Abbas, Halim; Harcouet, Laura; Coriat, Romain; Dauphin, Alain; Goldwasser, François; Tod, Michel

    2012-10-01

    Sorafenib is an oral tyrosine kinase inhibitor approved for the treatment of advanced renal cell carcinoma and hepatocellular carcinoma. By using a population approach, this study aimed to characterise its pharmacokinetics. Plasma concentration-time data (n = 372) from 71 patients under sorafenib were analysed using nonlinear mixed-effect modelling to estimate population pharmacokinetic parameters, as well as relationships between these parameters and different covariates (demographic, biological). Simulations were done to compare different daily dosing regimens in a context of dose-escalation. A 1-compartment model with saturated absorption, first-order intestinal loss and elimination best described the pharmacokinetics of sorafenib. Absolute bioavailability significantly dropped with increasing daily doses of sorafenib. AUC increased less than proportionally with increasing doses [47.3 (41.3-63.3), 60.3 (56.3-64.4), 71.4 (51.3-99.1), 75.9 (45.5-100.9) mg/L.h for 400, 800, 1,200 and 1,600 mg/day, respectively]. According to the simulations, dividing the daily dose in three or four doses for daily dose >800 mg would significantly increase AUC compared with a twice daily dosing regimen (101.7 vs 81.6 mg/L.h for 400 mg q8h and 600 mg q12h respectively; 131.6 vs 91.5 mg/L.h for 400 mg q6h and 800 mg q12h, respectively). Thrice daily regimen may be most suitable in a context of dose-escalation (>800 mg/day) in non-responders to standard-dosing regimen. PMID:22006162

  9. Sorafenib in the treatment of thyroid cancer.

    PubMed

    Ferrari, Silvia Martina; Politti, Ugo; Spisni, Roberto; Materazzi, Gabriele; Baldini, Enke; Ulisse, Salvatore; Miccoli, Paolo; Antonelli, Alessandro; Fallahi, Poupak

    2015-01-01

    Sorafenib has been evaluated in several Phase II and III studies in patients with locally advanced/metastatic radioactive iodine-refractory differentiated thyroid carcinomas (DTCs), reporting partial responses, stabilization of the disease and improvement of progression-free survival. Best responses were observed in lung metastases and minimal responses in bone lesions. On the basis of these studies, sorafenib was approved for the treatment of metastatic DTC in November 2013. Few studies suggested that reduction of thyroglobulin levels, or of average standardized uptake value at the fluorodeoxyglucose-PET, could be helpful for the identification of responding patients; but further studies are needed to confirm these results. Tumor genetic marker levels did not have any prognostic or predictive role in DTC patients.The most common adverse events observed included skin toxicity and gastrointestinal and constitutional symptoms. Encouraging results have also been observed in patients with medullary thyroid cancer. Many studies are ongoing to evaluate the long-term efficacy and tolerability of sorafenib in DTC patients. PMID:26152651

  10. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  11. Novel Sorafenib-Based Structural Analogues: In Vitro Anticancer Evaluation of t-MTUCB and t-AUCMB

    PubMed Central

    Wecksler, Aaron T.; Hwang, Sung Hee; Wettersten, Hiromi I.; Gilda, Jennifer E.; Patton, Amy; Leon, Leonardo J.; Carraway, Kermit L.; Gomes, Aldrin V.; Baar, Keith; Weiss, Robert H.; Hammock, Bruce D.

    2014-01-01

    In the current study, we performed a mechanistic study on the cytotoxicity of two compounds, t-AUCMB and t-MTUCB, that are structurally similar to sorafenib. These compounds display strong cytotoxic responses in various cancer cell lines, despite significant differences in the induction of apoptotic events such as caspase activation and lactate dehydrogenase release in hepatoma cells. Both compounds induce autophagosome formation and LC3I cleavage, but there was little observable effect on mTORC1 or the downstream targets, S6K1 and 4E-BP1. In addition, there was an increase in activity of upstream signaling through the IRS1/PI3K/Akt signaling pathway, suggesting that unlike sorafenib, both compounds induce mTOR-independent autophagy. The observed autophagy correlates with mitochondrial membrane depolarization, AIF release, and oxidative stress-induced glutathione depletion. However, there were no observable changes in the ER-stress markers such as, Bip, IREα, p-eIP2, and the lipid peroxidation marker, 4-HNE, suggesting ER-independent oxidative stress. Finally, these compounds do not possess the multikinase inhibitory activity of sorafenib, which may be reflected in their difference in ability to halt cell cycle progression compared to sorafenib. Our findings indicate that both compounds have anti-cancer effects comparable to sorafenib in multiple cell line, but they induce significant differences in apoptotic responses and appear to induce mTOR-independent autophagy. t-AUCMB and t-MTUCB, represent novel chemical probes that are capable of inducing mTOR-independent autophagy and apoptosis to differing degrees, and thus may be potential tools for further understanding the link between these two cellular stress responses. PMID:24525589

  12. The Limonoids TS3 and Rubescin E Induce Apoptosis in Human Hepatoma Cell Lines and Interfere with NF-κB Signaling

    PubMed Central

    Lange, Nicole; Tontsa, Armelle Tsamo; Wegscheid, Claudia; Mkounga, Pierre; Nkengfack, Augustin Ephrem; Sass, Gabriele; Tiegs, Gisa

    2016-01-01

    Hepatocellular carcinoma (HCC) is extremely resistant towards pharmacological therapy. To date, the multi-kinase inhibitor Sorafenib is the only available therapeutic agent with the potential to prolong patient survival. Using the human hepatoma cell lines HepG2 and Huh7, we analyzed anti-cancer activities of 6 purified havanensin type limonoids isolated from the traditional African medicinal plant Trichilia rubescens Oliv. Our results show that two of the compounds, TR4 (TS3) and TR9 (Rubescin E) reduced hepatoma cell viability, but not primary hepatocyte viability, at TC50s of 5 to 10 μM. These were significantly lower than the TC50s for Sorafenib, the histone deacetylase inhibitor SAHA or 5-Fluoruracil. In comparison, TR3 (Rubescin D), a limonoid isolated in parallel and structurally highly similar to TR4 and TR9, did not interfere with hepatoma cell viability. Both, TR4 and TR9, but not TR3, induced apoptosis in hepatoma cells and interfered with NF-κB activation. TR4 as well as TR9 significantly supported anti-cancer activities of Sorafenib. In summary, the limonoids TR4 and TR9 exhibit anti-cancer activities and support Sorafenib effects in vitro, having the potential to support future HCC therapy. PMID:27518192

  13. The Limonoids TS3 and Rubescin E Induce Apoptosis in Human Hepatoma Cell Lines and Interfere with NF-κB Signaling.

    PubMed

    Lange, Nicole; Tontsa, Armelle Tsamo; Wegscheid, Claudia; Mkounga, Pierre; Nkengfack, Augustin Ephrem; Loscher, Christine; Sass, Gabriele; Tiegs, Gisa

    2016-01-01

    Hepatocellular carcinoma (HCC) is extremely resistant towards pharmacological therapy. To date, the multi-kinase inhibitor Sorafenib is the only available therapeutic agent with the potential to prolong patient survival. Using the human hepatoma cell lines HepG2 and Huh7, we analyzed anti-cancer activities of 6 purified havanensin type limonoids isolated from the traditional African medicinal plant Trichilia rubescens Oliv. Our results show that two of the compounds, TR4 (TS3) and TR9 (Rubescin E) reduced hepatoma cell viability, but not primary hepatocyte viability, at TC50s of 5 to 10 μM. These were significantly lower than the TC50s for Sorafenib, the histone deacetylase inhibitor SAHA or 5-Fluoruracil. In comparison, TR3 (Rubescin D), a limonoid isolated in parallel and structurally highly similar to TR4 and TR9, did not interfere with hepatoma cell viability. Both, TR4 and TR9, but not TR3, induced apoptosis in hepatoma cells and interfered with NF-κB activation. TR4 as well as TR9 significantly supported anti-cancer activities of Sorafenib. In summary, the limonoids TR4 and TR9 exhibit anti-cancer activities and support Sorafenib effects in vitro, having the potential to support future HCC therapy. PMID:27518192

  14. Cerebellar stroke in a low cardiovascular risk patient associated with sorafenib treatment for fibrolamellar hepatocellular carcinoma

    PubMed Central

    Vandewynckel, Yves-Paul; Geerts, Anja; Verhelst, Xavier; Van Vlierberghe, Hans

    2014-01-01

    Key Clinical Message Sorafenib is the standard treatment of hepatocellular carcinoma (HCC). However, fibrolamellar HCC was not included in sorafenib trials. The case is a 26-year-old man with fibrolamellar HCC, who had a cerebrovascular accident (CVA) while being treated with sorafenib. This illustrates a probable relationship between use of sorafenib and CVA in low cardiovascular risk patients. PMID:25356226

  15. Behavioral destabilization induced by the selective serotonin reuptake inhibitor fluoxetine

    PubMed Central

    2011-01-01

    Background Selective serotonin reuptake inhibitors (SSRIs) are widely used to treat mood and anxiety disorders. However, neuronal bases for both beneficial and adverse effects of SSRIs remain poorly understood. We have recently shown that the SSRI fluoxetine can reverse the state of maturation of hippocampal granule cells in adult mice. The granule cell "dematuration" is induced in a large population of granule cells, and greatly changes functional and physiological properties of these cells. Here we show that this unique form of neuronal plasticity is correlated with a distinct change in behavior of mice. Results We chronically treated adult male mice with fluoxetine, and examined its effect on several forms of behavior of mice. During fluoxetine treatments, mice showed a marked increase in day-to-day fluctuations of home cage activity levels that was characterized by occasional switching between hypoactivity and hyperactivity within a few days. This destabilized cage activity was accompanied by increased anxiety-related behaviors and could be observed up to 4 weeks after withdrawal from fluoxetine. As reported previously, the granule cell dematuration by fluoxetine includes a reduction of synaptic facilitation at the granule cell output, mossy fiber, synapse to the juvenile level. Mossy fiber synaptic facilitation examined electrophysiologically in acute hippocampal slices also remained suppressed after fluoxetine withdrawal and significantly correlated with the fluctuation of cage activity levels in individual mice. Furthermore, in mice lacking the 5-HT4 receptor, in which the granule cell dematuration has been shown to be attenuated, fluoxetine had no significant effect on the fluctuation of cage activity levels. Conclusions Our results demonstrate that the SSRI fluoxetine can induce marked day-to-day changes in activity levels of mice in the familiar environment, and that the dematuration of the hippocampal granule cells is closely associated with the

  16. Evaluation of aspirin metabolites as inhibitors of hypoxia-inducible factor hydroxylases.

    PubMed

    Lienard, Benoit M; Conejo-García, Ana; Stolze, Ineke; Loenarz, Christoph; Oldham, Neil J; Ratcliffe, Peter J; Schofield, Christopher J

    2008-12-21

    Known and potential aspirin metabolites were evaluated as inhibitors of oxygen-sensing hypoxia-inducible transcription factor (HIF) hydroxylases; some of the metabolites were found to stabilise HIF-alpha in cells. PMID:19048166

  17. Selective Serotonin Reuptake Inhibitor-Induced Sexual Dysfunction in Adolescents: A Review.

    ERIC Educational Resources Information Center

    Scharko, Alexander M.

    2004-01-01

    Objective: To review the existing literature on selective serotonin reuptake inhibitor (SSRI)-induced sexual dysfunction in adolescents. Method: A literature review of SSRI-induced adverse effects in adolescents focusing on sexual dysfunction was done. Nonsexual SSRI-induced adverse effects were compared in adult and pediatric populations.…

  18. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    SciTech Connect

    Sharma, Bhupesh Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  19. Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells

    PubMed Central

    Baenke, Franziska; Chaneton, Barbara; Smith, Matthew; Van Den Broek, Niels; Hogan, Kate; Tang, Haoran; Viros, Amaya; Martin, Matthew; Galbraith, Laura; Girotti, Maria R.; Dhomen, Nathalie; Gottlieb, Eyal; Marais, Richard

    2016-01-01

    BRAF inhibitors can extend progression-free and overall survival in melanoma patients whose tumors harbor mutations in BRAF. However, the majority of patients eventually develop resistance to these drugs. Here we show that BRAF mutant melanoma cells that have developed acquired resistance to BRAF inhibitors display increased oxidative metabolism and increased dependency on mitochondria for survival. Intriguingly, the increased oxidative metabolism is associated with a switch from glucose to glutamine metabolism and an increased dependence on glutamine over glucose for proliferation. We show that the resistant cells are more sensitive to mitochondrial poisons and to inhibitors of glutaminolysis, suggesting that targeting specific metabolic pathways may offer exciting therapeutic opportunities to treat resistant tumors, or to delay emergence of resistance in the first-line setting. PMID:26365896

  20. BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells

    PubMed Central

    Baker, Emma K; Taylor, Scott; Gupte, Ankita; Sharp, Phillip P; Walia, Mannu; Walsh, Nicole C; Zannettino, Andrew CW; Chalk, Alistair M; Burns, Christopher J; Walkley, Carl R

    2015-01-01

    Osteosarcoma (OS) survival rates have plateaued in part due to a lack of new therapeutic options. Here we demonstrate that bromodomain inhibitors (BETi), JQ1, I-BET151, I-BET762, exert potent anti-tumour activity against primary and established OS cell lines, mediated by inhibition of BRD4. Strikingly, unlike previous observations in long-term established human OS cell lines, the antiproliferative activity of JQ1 in primary OS cells was driven by the induction of apoptosis, not cell cycle arrest. In further contrast, JQ1 activity in OS was mediated independently of MYC downregulation. We identified that JQ1 suppresses the transcription factor FOSL1 by displacement of BRD4 from its locus. Loss of FOSL1 phenocopied the antiproliferative effects of JQ1, identifying FOSL1 suppression as a potential novel therapeutic approach for OS. As a monotherapy JQ1 demonstrated significant anti-tumour activity in vivo in an OS graft model. Further, combinatorial treatment approaches showed that JQ1 increased the sensitivity of OS cells to doxorubicin and induced potent synergistic activity when rationally combined with CDK inhibitors. The greater level of activity achieved with the combination of BETi with CDK inhibitors demonstrates the efficacy of this combination therapy. Taken together, our studies show that BET inhibitors are a promising new therapeutic for OS. PMID:25944566

  1. Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid.

    PubMed Central

    Doares, S. H.; Narvaez-Vasquez, J.; Conconi, A.; Ryan, C. A.

    1995-01-01

    Salicylic acid (SA) and acetylsalicylic acid (ASA), previously shown to inhibit proteinase inhibitor synthesis induced by wounding, oligouronides (H.M. Doherty, R.R. Selvendran, D.J. Bowles [1988] Physiol Mol Plant Pathol 33: 377-384), and linolenic acid (H. Pena-Cortes, T. Albrecht, S. Prat, E.W. Weiler, L. Willmitzer [1993] Planta 191: 123-128), are shown here to be potent inhibitors of systemin-induced and jasmonic acid (JA)-induced synthesis of proteinase inhibitor mRNAs and proteins. The inhibition by SA and ASA of proteinase inhibitor synthesis induced by systemin and JA, as well as by wounding and oligosaccharide elicitors, provides further evidence that both oligosaccharide and polypeptide inducer molecules utilize the octadecanoid pathway to signal the activation of proteinase inhibitor genes. Tomato (Lycopersicon esculentum) leaves were pulse labeled with [35S]methionine, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the inhibitory effects of SA are shown to be specific for the synthesis of a small number of JA-inducible proteins that includes the proteinase inhibitors. Previous results have shown that SA inhibits the conversion of 13S-hydroperoxy linolenic acid to 12-oxo-phytodienoic acid, thereby inhibiting the signaling pathway by blocking synthesis of JA. Here we report that the inhibition of synthesis of proteinase inhibitor proteins and mRNAs by SA in both light and darkness also occurs at a step in the signal transduction pathway, after JA synthesis but preceding transcription of the inhibitor genes. PMID:12228577

  2. DPP IV inhibitor blocks mescaline-induced scratching and amphetamine-induced hyperactivity in mice.

    PubMed

    Lautar, Susan L; Rojas, Camilo; Slusher, Barbara S; Wozniak, Krystyna M; Wu, Ying; Thomas, Ajit G; Waldon, Daniel; Li, William; Ferraris, Dana; Belyakov, Sergei

    2005-06-28

    Dipeptidyl peptidase IV (DPP IV) is a ubiquitous membrane-bound enzyme that cleaves the two N-terminal amino acids from peptides with a proline or alanine residue in the second position from the amino end. Potential substrates for DPP IV include several neuropeptides, suggesting a role for DPP IV in neurological processes. We have developed a potent DPP IV inhibitor (IC50 = 30 nM), 1-(2-amino-3-methyl-butyryl)-azetidine-2-carbonitrile (AMAC), which has shown efficacy in two established models of psychosis: mescaline-induced scratching and amphetamine-induced hyperactivity. In the mescaline-induced scratching model, AMAC treatment before mescaline administration reduced the number of scratching paroxysms by 68% (P < 0.01). The compound showed a dose-dependent effect, inhibiting significantly at 6, 20 and 60 mg/kg (37%, 39% and 68%, respectively). In the amphetamine-induced hyperactivity model, 50 and 60 mg/kg AMAC, given before injection of amphetamine, significantly reduced hyper-locomotion by 65% and 76%, respectively. Additionally, AMAC showed no significant activity in binding assays for 20 receptors thought to be involved in the pathology of schizophrenia, including dopamine, serotonin and glutamate. A structurally similar analog, 1-(2-dimethylamino-3-methyl-butyryl)-azetidine-2-carbonitrile (DAMAC), that does not inhibit DPP IV, was inactive in both models. Taken together, these data suggest that the antipsychotic effects of AMAC are the result of DPP IV inhibition. PMID:15925329

  3. Specific MAPK inhibitors prevent hyperglycemia-induced renal diseases in type 1 diabetic mouse model.

    PubMed

    Hong, Zhe; Hong, Zongyuan; Wu, Denglong; Nie, Hezhongrong

    2016-08-01

    Mitogen-activated protein kinase (MAPK) and renin-angiotensin system (RAS) play critical roles in the process of renal diseases, but their interaction has not been comprehensively discussed. In the present studies, we investigated the renoprotective effects of MPAK inhibitors on renal diseases in type 1 diabetic mouse model, and clarify the crosstalk among MAPK signaling. Type 1 diabetic mouse model was established in male C57BL/6 J mice, and treated with or without 10 mg/kg MAPK blockers, including ERK inhibitor PD98059, p38 inhibitor SB203850, and JNK inhibitor SP600125 for four weeks. Hyperglycemia induced renal injuries, but treating them with MAPK inhibitors significantly decreased glomerular volume and glycogen in renal tissues. Although slightly changed body weight and fasting blood glucose levels, MAPK inhibitors attenuated blood urea nitrogen, urea protein, and microalbuminuria. Administration also reduced the diabetes-induced RAS activation, including angiotensin II converting enzyme (c) and Ang II, which contributed to its renal protective effects in the diabetic mice. In addition, the anti-RAS of MAPK inhibitor treatment markedly reduced gene expression of tumor necrosis factor-α, interleukin-6, and inducible nitric oxide synthase, fibrotic accumulation, and transforming growth factor-β1 levels in renal tissues. Furthermore, chemical inhibitors and genetic siRNA results identified the crosstalk among the three MAPK signaling, and proved JNK signaling played a critical role in MAPK-mediated ACE pathway in hyperglycemia state. Collectively, these results support the therapeutic effects of MAPK-specific inhibitors, especially JNK inactivation, on hyperglycemia-induced renal damages. PMID:27389030

  4. Variability of Voriconazole Trough Levels in Haematological Patients: Influence of Comedications with cytochrome P450(CYP) Inhibitors and/or with CYP Inhibitors plus CYP Inducers.

    PubMed

    Cojutti, Piergiorgio; Candoni, Anna; Forghieri, Fabio; Isola, Miriam; Zannier, Maria Elena; Bigliardi, Sara; Luppi, Mario; Fanin, Renato; Pea, Federico

    2016-06-01

    Voriconazole plasma exposure greatly varies among haematological patients. The purpose of this study was to identify the magnitude of influence of comedications with CYP inhibitors and/or with CYP inhibitors plus CYP inducers on voriconazole trough level (Cmin ). Voriconazole Cmin was retrospectively assessed among haematological patients who underwent therapeutic drug monitoring (TDM). Univariate and multivariate linear mixed-effect regression analyses were performed to identify the independent predictors of normalized Cmin . Of the 83 included patients, 35 had comedications with CYP inhibitors (omeprazole or pantoprazole) and 21 with CYP inhibitors (omeprazole or pantoprazole) plus CYP inducers (methylprednisolone, dexamethasone, phenobarbital, rifampin or carbamazepine). Median Cmin value (n = 199) was 2.4 mg/L with a wide range of distribution (<0.2-13.5 mg/L). Median (IQR) normalized voriconazole Cmin value was significantly higher in the presence of CYP inhibitors (4.20 mg/L, 3.23-5.51 mg/L) than either in the absence of interacting cotreatments (2.55 mg/L, 1.54-3.47 mg/L) or in the presence of CYP inhibitors plus CYP inducers (2.16 mg/L, 1.19-3.09 mg/L). The presence of CYP inhibitors was highly significantly associated with Cmin >5.5 mg/L (OR: 23.22, 95% CI: 3.01-179.09, p = 0.003). No significant association emerged when CYP inhibitors were coadministered with CYP inducers (OR: 3.53, 95% CI: 0.36-34.95, p = 0.280). The amount of expected Cmin increase was significantly influenced by both the type and the dose of the administered proton pump inhibitor. The study highlights that the benefit from TDM of voriconazole may be maximal in those patients who are cotreated with CYP inhibitors and/or with CYP inhibitors plus CYP inducers, especially when receiving proton pump inhibitors (PPIs) at very high dosages intravenously. PMID:26572687

  5. Sorafenib plus all-trans retinoic acid for AML patients with FLT3-ITD and NPM1 mutations.

    PubMed

    Guenounou, Sarah; Delabesse, Eric; Récher, Christian

    2014-12-01

    Knowledge of the molecular basis of acute myeloid leukaemia has increased considerably in the past few years, and therapies targeting specific molecular defects of this disease are intensively investigated. Patients with both NPM1 and FLT3-ITD mutations encompass 20% of cytogenetically normal AML. The multikinase and FLT3 inhibitor, sorafenib, has shown some efficacy in patients with relapsed FLT3-ITD(+) AML. In addition, it is suggested that all-trans retinoic acid (ATRA) used in combination with chemotherapy has shown to improve outcome of patients harbouring NPM1 mutations. We report here the clinical course of three patients with refractory or relapsed FLT3-ITD(+) /NPM1(+) AML who achieved significant response upon sorafenib and ATRA combination. PMID:24689895

  6. Histone deacetylase inhibitor trichostatin A and proteasome inhibitor PS-341 synergistically induce apoptosis in pancreatic cancer cells

    SciTech Connect

    Bai Jirong . E-mail: jbai@bidmc.harvard.edu; Demirjian, Aram; Sui Jianhua; Marasco, Wayne; Callery, Mark P. . E-mail: mcallery@bidmc.harvard.ede

    2006-10-06

    Pancreatic cancer is a common and lethal malignancy. Pancreatic cancer cells overexpress multiple anti-apoptotic factors and death receptor decoys, and are strongly resistant to radiation and to 5-fluorouracil (5-FU)- or gemcitabine (Gem)-based chemotherapy regimens. We have found that low-dose proteasome inhibitor PS-341 and histone deacetylase inhibitor trichostatin A (TSA) synergistically induce cytotoxicity in a panel of eight diverse pancreatic cancer cell lines. Combining TSA with PS-341 effectively inactivated NF{kappa}B signaling, downregulated the predominant endogenous anti-apoptotic factor Bcl-XL overexpression, and disrupted MAP kinase pathway. The combined drug regimen effectively inflicted an average of 71.5% apoptotic cell death (55.2-80%) in diverse pancreatic cancer cell lines by activating the intrinsic apoptotic pathway. Conclusion: the TSA/PS-341 regimen may represent a potential novel therapeutic strategy for pancreatic cancer.

  7. Genetic and Pharmacological Screens Converge in Identifying FLIP, BCL2, and IAP Proteins as Key Regulators of Sensitivity to the TRAIL-Inducing Anticancer Agent ONC201/TIC10.

    PubMed

    Allen, Joshua E; Prabhu, Varun V; Talekar, Mala; van den Heuvel, A Pieter J; Lim, Bora; Dicker, David T; Fritz, Jennifer L; Beck, Adam; El-Deiry, Wafik S

    2015-04-15

    ONC201/TIC10 is a small-molecule inducer of the TRAIL gene under current investigation as a novel anticancer agent. In this study, we identify critical molecular determinants of ONC201 sensitivity offering potential utility as pharmacodynamic or predictive response markers. By screening a library of kinase siRNAs in combination with a subcytotoxic dose of ONC201, we identified several kinases that ablated tumor cell sensitivity, including the MAPK pathway-inducer KSR1. Unexpectedly, KSR1 silencing did not affect MAPK signaling in the presence or absence of ONC201, but instead reduced expression of the antiapoptotic proteins FLIP, Mcl-1, Bcl-2, cIAP1, cIAP2, and survivin. In parallel to this work, we also conducted a synergy screen in which ONC201 was combined with approved small-molecule anticancer drugs. In multiple cancer cell populations, ONC201 synergized with diverse drug classes, including the multikinase inhibitor sorafenib. Notably, combining ONC201 and sorafenib led to synergistic induction of TRAIL and its receptor DR5 along with a potent induction of cell death. In a mouse xenograft model of hepatocellular carcinoma, we demonstrated that ONC201 and sorafenib cooperatively and safely triggered tumor regressions. Overall, our results established a set of determinants for ONC201 sensitivity that may predict therapeutic response, particularly in settings of sorafenib cotreatment to enhance anticancer responses. PMID:25681273

  8. Efficacy and Safety of Axitinib Versus Sorafenib in Metastatic Renal Cell Carcinoma: Subgroup Analysis of Japanese Patients from the Global Randomized Phase 3 AXIS Trial

    PubMed Central

    Ueda, Takeshi; Uemura, Hirotsugu; Tomita, Yoshihiko; Tsukamoto, Taiji; Kanayama, Hiroomi; Shinohara, Nobuo; Tarazi, Jamal; Chen, Connie; Kim, Sinil; Ozono, Seiichiro; Naito, Seiji; Akaza, Hideyuki

    2013-01-01

    Objective Axitinib is a potent and selective second-generation inhibitor of vascular endothelial growth factor receptors 1, 2 and 3. The efficacy and safety of axitinib in Japanese patients with metastatic renal cell carcinoma were evaluated. Methods A subgroup analysis was conducted in Japanese patients enrolled in the randomized Phase III trial of axitinib versus sorafenib after failure of one prior systemic therapy for metastatic renal cell carcinoma. Results Twenty-five (of 361) and 29 (of 362) patients randomized to the axitinib and sorafenib arms, respectively, were Japanese and included in this analysis. Median progression-free survival in Japanese patients was 12.1 months (95% confidence interval 8.6 to not estimable) for axitinib and 4.9 months (95% confidence interval 2.8–6.6) for sorafenib (hazard ratio 0.390; 95% confidence interval 0.130–1.173; stratified one-sided P = 0.0401). The objective response rate was 52.0% for axitinib and 3.4% for sorafenib (P = 0.0001). The common all-causality adverse events (all grades) in Japanese patients were dysphonia (68%), hypertension (64%), hand–foot syndrome (64%) and diarrhea (56%) for axitinib, and hand–foot syndrome (86%), hypertension (62%) and diarrhea (52%) for sorafenib. The safety profiles of axitinib and sorafenib in Japanese patients were generally similar to those observed in the overall population, with the exceptions of higher incidences of hypertension, dysphonia, hand–foot syndrome, hypothyroidism and stomatitis. Conclusions Axitinib is efficacious and well tolerated in Japanese patients with previously treated metastatic renal cell carcinoma, consistent with the results in the overall population, providing a new targeted therapy for these Japanese patients. PMID:23630366

  9. Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors

    PubMed Central

    Bretteville, Alexis; Marcouiller, François; Julien, Carl; El Khoury, Noura B.; Petry, Franck R.; Poitras, Isabelle; Mouginot, Didier; Lévesque, Georges; Hébert, Sébastien S.; Planel, Emmanuel

    2012-01-01

    Tau hyperphosphorylation is one hallmark of Alzheimer's disease (AD) pathology. Pharmaceutical companies have thus developed kinase inhibitors aiming to reduce tau hyperphosphorylation. One obstacle in screening for tau kinase inhibitors is the low phosphorylation levels of AD-related phospho-epitopes in normal adult mice and cultured cells. We have shown that hypothermia induces tau hyperphosphorylation in vitro and in vivo. Here, we hypothesized that hypothermia could be used to assess tau kinase inhibitors efficacy. Hypothermia applied to models of biological gradual complexity such as neuronal-like cells, ex vivo brain slices and adult non-transgenic mice leads to tau hyperphosphorylation at multiple AD-related phospho-epitopes. We show that Glycogen Synthase Kinase-3 inhibitors LiCl and AR-A014418, as well as roscovitine, a cyclin-dependent kinase 5 inhibitor, decrease hypothermia-induced tau hyperphosphorylation, leading to different tau phosphorylation profiles. Therefore, we propose hypothermia-induced hyperphosphorylation as a reliable, fast, convenient and inexpensive tool to screen for tau kinase inhibitors. PMID:22761989

  10. The class-I HDAC inhibitor MGCD0103 induces apoptosis in Hodgkin lymphoma cell lines and synergizes with proteasome inhibitors by an HDAC6-independent mechanism

    PubMed Central

    Buglio, Daniela; Mamidipudi, Vidya; Khaskhely, Noor M.; Brady, Helen; Heise, Carla; Besterman, Jeffrey; Martell, Robert E.; MacBeth, Kyle; Younes, Anas

    2011-01-01

    Summary Inhibition of histone deacetylase 6 (HDAC6)-dependent aggresome function by pan HDAC inhibitors was recently reported to be a key mechanism underlying the synergistic activity between proteasome inhibitors and HDAC inhibitors in a variety of tumour types. Because these combinations induce significant thrombocytopenia in vivo, we examined whether less toxic, isotype-selective HDAC inhibitors may still synergize with proteasome inhibitors, and if so, by what mechanisms. Here, we showed that the class I HDAC inhibitor, MGCD0103, has a potent antiproliferative activity in Hodgkin lymphoma (HL) cell lines. Furthermore, MGCD0103 induced tumour necrosis factor α (TNF-α) expression and secretion, which was associated with nuclear factor (NF)-κB activation. Selective inhibition of TNF- α expression by short interfering mRNA, or inhibition of MGCD0103-induced NF-kB activation by proteasome inhibitors enhanced MGCD0103-induced cell death. Thus, our results demonstrate that MGCD0103 may synergize with proteasome inhibitors by HDAC6-independent mechanisms, providing mechanistic rationale for exploring this potentially less toxic combination for the treatment of lymphoma. PMID:20880107

  11. Angiotensin-converting enzyme inhibitors-induced angioedema treated by C1 esterase inhibitor concentrate (Berinert®): about one case and review of the therapeutic arsenal

    PubMed Central

    Lipski, Samuel Michael; Casimir, Georges; Vanlommel, Martine; Jeanmaire, Mathieu; Dolhen, Pierre

    2015-01-01

    Key Clinical Message C1 esterase inhibitor (Berinert®) is generally used to treat severe attack of hereditary angioedema. We describe here the case of a patient who presented with a severe angioedema induced by angiotensin-converting enzyme inhibitors (ACEIs) endangering her life. It could be successfully treated with that medicine. PMID:25767713

  12. Angiotensin-converting enzyme inhibitors-induced angioedema treated by C1 esterase inhibitor concentrate (Berinert®): about one case and review of the therapeutic arsenal.

    PubMed

    Lipski, Samuel Michael; Casimir, Georges; Vanlommel, Martine; Jeanmaire, Mathieu; Dolhen, Pierre

    2015-02-01

    C1 esterase inhibitor (Berinert®) is generally used to treat severe attack of hereditary angioedema. We describe here the case of a patient who presented with a severe angioedema induced by angiotensin-converting enzyme inhibitors (ACEIs) endangering her life. It could be successfully treated with that medicine. PMID:25767713

  13. Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells

    PubMed Central

    Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng

    2013-01-01

    The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581

  14. Population pharmacokinetic analysis of sorafenib in patients with solid tumours

    PubMed Central

    Jain, Lokesh; Woo, Sukyung; Gardner, Erin R; Dahut, William L; Kohn, Elise C; Kummar, Shivaani; Mould, Diane R; Giaccone, Giuseppe; Yarchoan, Robert; Venitz, Jürgen; Figg, William D

    2011-01-01

    AIMS To characterize the pharmacokinetics (PK) of sorafenib in patients with solid tumours and to evaluate the possible effects of demographic, clinical and pharmacogenetic (CYP3A4*1B, CYP3A5*3C, UGT1A9*3 and UGT1A9*5) covariates on the disposition of sorafenib. METHODS PK were assessed in 111 patients enrolled in five phase I and II clinical trials, where sorafenib 200 or 400 mg was administered twice daily as a single agent or in combination therapy. All patients were genotyped for polymorphisms in metabolic enzymes for sorafenib. Population PK analysis was performed by using nonlinear mixed effects modelling (NONMEM). The final model was validated using visual predictive checks and nonparametric bootstrap analysis. RESULTS A one compartment model with four transit absorption compartments and enterohepatic circulation (EHC) adequately described sorafenib disposition. Baseline bodyweight was a statistically significant covariate for distributional volume, accounting for 4% of inter-individual variability (IIV). PK model parameter estimates (range) for an 80 kg patient were clearance 8.13 l h−1 (3.6–22.3 l h−1), volume 213 l (50–1000 l), mean absorption transit time 1.98 h (0.5–13 h), fraction undergoing EHC 50% and average time to gall bladder emptying 6.13 h. CONCLUSIONS Overall, population PK analysis was consistent with known biopharmaceutical/PK characteristics of oral sorafenib. No clinically important PK covariates were identified. PMID:21392074

  15. The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro

    SciTech Connect

    Hasinoff, Brian B. Patel, Daywin

    2010-12-01

    Many new targeted small molecule anticancer kinase inhibitors are actively being developed. However, the clinical use of some kinase inhibitors has been shown to result in cardiotoxicity. In most cases the mechanisms by which they exert their cardiotoxicity are not well understood. We have used large scale profiling data on 8 FDA-approved tyrosine kinase inhibitors and 10 other kinase inhibitors to a panel of 317 kinases in order to correlate binding constants and kinase inhibitor binding selectivity scores with kinase inhibitor-induced damage to neonatal rat cardiac myocytes. The 18 kinase inhibitors that were the subject of this study were: canertinib, dasatinib, dovitinib, erlotinib, flavopiridol, gefitinib, imatinib, lapatinib, midostaurin, motesanib, pazopanib, sorafenib, staurosporine, sunitinib, tandutinib, tozasertib, vandetanib and vatalanib. The combined tyrosine kinase and serine-threonine kinase selectivity scores were highly correlated with the myocyte-damaging effects of the kinase inhibitors. This result suggests that myocyte damage was due to a lack of target selectivity to binding of both tyrosine kinases and serine-threonine kinases, and was not due to binding to either group specifically. Finally, the strength of kinase inhibitor binding for 290 kinases was examined for correlations with myocyte damage. Kinase inhibitor binding was significantly correlated with myocyte damage for 12 kinases. Thus, myocyte damage may be multifactorial in nature with the inhibition of a number of kinases involved in producing kinase inhibitor-induced myocyte damage.

  16. The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro.

    PubMed

    Hasinoff, Brian B; Patel, Daywin

    2010-12-01

    Many new targeted small molecule anticancer kinase inhibitors are actively being developed. However, the clinical use of some kinase inhibitors has been shown to result in cardiotoxicity. In most cases the mechanisms by which they exert their cardiotoxicity are not well understood. We have used large scale profiling data on 8 FDA-approved tyrosine kinase inhibitors and 10 other kinase inhibitors to a panel of 317 kinases in order to correlate binding constants and kinase inhibitor binding selectivity scores with kinase inhibitor-induced damage to neonatal rat cardiac myocytes. The 18 kinase inhibitors that were the subject of this study were: canertinib, dasatinib, dovitinib, erlotinib, flavopiridol, gefitinib, imatinib, lapatinib, midostaurin, motesanib, pazopanib, sorafenib, staurosporine, sunitinib, tandutinib, tozasertib, vandetanib and vatalanib. The combined tyrosine kinase and serine-threonine kinase selectivity scores were highly correlated with the myocyte-damaging effects of the kinase inhibitors. This result suggests that myocyte damage was due to a lack of target selectivity to binding of both tyrosine kinases and serine-threonine kinases, and was not due to binding to either group specifically. Finally, the strength of kinase inhibitor binding for 290 kinases was examined for correlations with myocyte damage. Kinase inhibitor binding was significantly correlated with myocyte damage for 12 kinases. Thus, myocyte damage may be multifactorial in nature with the inhibition of a number of kinases involved in producing kinase inhibitor-induced myocyte damage. PMID:20832415

  17. MEK1/2 inhibitors induce interleukin-5 expression in mouse macrophages and lymphocytes.

    PubMed

    Li, Xiaoju; Cao, Xingyue; Zhang, Xiaomeng; Kang, Yanhua; Zhang, Wenwen; Yu, Miao; Ma, Chuanrui; Han, Jihong; Duan, Yajun; Chen, Yuanli

    2016-05-13

    Uptake of oxidized low-density lipoprotein (oxLDL) by macrophages facilitates the formation of foam cells, the prominent part of atherosclerotic lesions. Interleukin-5 (IL-5) is a cytokine regulating interactions between immune cells. It also activates the production of T15/EO6 IgM antibodies in B-1 cells, which can bind oxLDL thereby demonstrating anti-atherogenic properties. We previously reported that inhibition of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by mitogen-activated protein kinase kinases 1/2 (MEK1/2) inhibitors can reduce atherosclerosis. In this study, we determined the effects of MEK1/2 inhibitors on IL-5 production both in vitro and in vivo. In vitro, MEK1/2 inhibitors (PD98059 and U0126) substantially inhibited phosphorylation of MEK1/2 and ERK1/2. Associated with inhibition of ERK1/2 phosphorylation both in vitro and in vivo, MEK1/2 inhibitors induced IL-5 protein expression in macrophages (RAW macrophages and peritoneal macrophages) and lymphocytes (EL-4 cells). In vivo, administration of mice with MEK1/2 inhibitors increased serum IL-5 levels, and IL-5 protein expression in mouse spleen and liver. At the mechanistic level, we determined that MEK1/2 inhibitors activated IL-5 mRNA expression and IL-5 promoter activity in the liver X receptor (LXR) dependent manner indicating the induction of IL-5 transcription. In addition, we determined that MEK1/2 inhibitors enhanced IL-5 protein stability. Taken together, our study demonstrates that MEK1/2 inhibitors induce IL-5 production which suggests another anti-atherogenic mechanism of MEK1/2 inhibitors. PMID:27045084

  18. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells.

    PubMed

    Lee, Hyunjung; Park, Jinyoung; Kim, Eunice EunKyeong; Yoo, Young Sook; Song, Eun Joo

    2016-05-01

    The Ubiquitin proteasome system (UPS) plays roles in protein degradation, cell cycle control, and growth and inflammatory cell signaling. Dysfunction of UPS in cardiac diseases has been seen in many studies. Cholesterol acts as an inducer of cardiac hypertrophy. In this study, the effect of proteasome inhibitors on the cholesterol-induced hypertrophic growth in H9c2 cells is examined in order to observe whether UPS is involved in cardiac hypertrophy. The treatment of proteasome inhibitors MG132 and Bortezomib markedly reduced cellular surface area and mRNA expression of β-MHC in cholesterol-induced cardiac hypertrophy. In addition, activated AKT and ERK were significantly attenuated by MG132 and Bortezomib in cholesterol- induced cardiac hypertrophy. We demonstrated that cholesterol- induced cardiac hypertrophy was suppressed by proteasome inhibitors. Thus, regulatory mechanism of cholesterol- induced cardiac hypertrophy by proteasome inhibitors may provide a new therapeutic strategy to prevent the progression of heart failure. [BMB Reports 2016; 49(5): 270-275]. PMID:26592933

  19. Lipopolysaccharide-Related Stimuli Induce Expression of the Secretory Leukocyte Protease Inhibitor, a Macrophage-Derived Lipopolysaccharide Inhibitor

    PubMed Central

    Jin, Fenyu; Nathan, Carl F.; Radzioch, Danuta; Ding, Aihao

    1998-01-01

    Mouse secretory leukocyte protease inhibitor (SLPI) was recently characterized as a lipopolysaccharide (LPS)-induced product of macrophages that antagonizes their LPS-induced activation of NF-κB and production of NO and tumor necrosis factor (TNF) (F. Y. Jin, C. Nathan, D. Radzioch, and A. Ding, Cell 88:417–426, 1997). To better understand the role of SLPI in innate immune and inflammatory responses, we examined the kinetics of SLPI expression in response to LPS, LPS-induced cytokines, and LPS-mimetic compounds. SLPI mRNA was detectable in macrophages by Northern blot analysis within 30 min of exposure to LPS but levels peaked only at 24 to 36 h and remained elevated at 72 h. Despite the slowly mounting and prolonged response, early expression of SLPI mRNA was cycloheximide resistant. Two LPS-induced proteins—interleukin-10 (IL-10) and IL-6—also induced SLPI, while TNF and IL-1β did not. The slow attainment of maximal induction of SLPI by LPS in vitro was mimicked by infection with Pseudomonas aeruginosa in vivo, where SLPI expression in the lung peaked at 3 days. Two LPS-mimetic molecules—taxol from yew bark and lipoteichoic acid (LTA) from gram-positive bacterial cell walls—also induced SLPI. Transfection of macrophages with SLPI inhibited their LTA-induced NO production. An anti-inflammatory role for macrophage-derived SLPI seems likely based on SLPI’s slowly mounting production in response to constituents of gram-negative and gram-positive bacteria, its induction both as a direct response to LPS and as a response to anti-inflammatory cytokines induced by LPS, and its ability to suppress the production of proinflammatory products by macrophages stimulated with constituents of both gram-positive and gram-negative bacteria. PMID:9596701

  20. Salicylates inhibit PAF-acether-induced rat paw oedema when cyclooxygenase inhibitors are ineffective.

    PubMed

    Cordeiro, R S; Silva, P M; Martins, M A; Vargaftig, B B

    1986-11-01

    The cyclooxygenase inhibitors indomethacin, piroxicam, ibuprofen, naproxen and flurbiprofen failed to block rat paw oedema induced by PAF-acether, whereas aspirin and sodium salicylate were effective. Two mixed cyclooxygenase and lipoxygenase inhibitors NDGA, BW 755C and dexamethasone reduced oedema in a dose - dependently. The selective PAF-acether antagonist, BN 52021, was effective against PAF-acether at 5 - 20 mg/kg. The lipoxygenase derivates may be involved in paw oedema induced by PAF-acether in the rat and the inhibition produced by aspirin and by sodium salicylate should involve mechanisms other than the cyclooxygenase pathway. PMID:3103172

  1. Icatibant in the Treatment of Angiotensin-Converting Enzyme Inhibitor-Induced Angioedema

    PubMed Central

    Crooks, Neil H.; Patel, Jaimin; Diwakar, Lavanya; Smith, Fang Gao

    2014-01-01

    We describe the case of a 75-year-old woman who presented with massive tongue and lip swelling secondary to angiotensin-converting enzyme inhibitor-induced angioedema. An awake fibre-optic intubation was performed because of impending airway obstruction. As there was no improvement in symptoms after 72 hours, the selective bradykinin B2 receptor antagonist icatibant (Firazyr) was administered and the patient's trachea was successfully extubated 36 hours later. To our knowledge this is the first documented case of icatibant being used for the treatment of angiotensin-converting enzyme inhibitor-induced angioedema in the United Kingdom and represents a novel therapeutic option in its management. PMID:25328718

  2. Microtubule inhibitors block the morphological changes induced in Drosophila blood cells by a parasitoid wasp factor.

    PubMed

    Rizki, R M; Rizki, T M

    1990-03-15

    The shape change of Drosophila melanogaster blood cells (lamellocytes) from discoidal to bipolar that is caused by a factor from the female parasitoid Leptopilina heterotoma is blocked by the tubulin inhibitors vinblastine and vincristine in vitro. The actin inhibitor, cytochalasin B, causes arborization of Drosophila lamellocytes and acts synergistically with the wasp factor to alter lamellocyte morphology. Lamellocyte aborization induced by cytochalasin B is blocked by simultaneous treatment with vinblastine. These observations indicate that the changes in lamellocyte shape induced by both the wasp factor and cytochalasin B require microtubule assembly. PMID:2311722

  3. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization.

    PubMed

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. PMID:25770423

  4. Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization

    PubMed Central

    Lavoie, Hugo; Thevakumaran, Neroshan; Gavory, Gwenaëlle; Li, John; Padeganeh, Abbas; Guiral, Sébastien; Duchaine, Jean; Mao, Daniel Y. L.; Bouvier, Michel; Sicheri, Frank; Therrien, Marc

    2016-01-01

    RAF kinases play a prominent role in cancer. Their mode of activation is complex, but critically requires dimerization of their kinase domains. Unexpectedly, several ATP-competitive RAF inhibitors were recently found to promote dimerization and transactivation of RAF kinases in a RAS-dependent manner and as a result undesirably stimulate RAS/ERK-mediated cell growth. The mechanism by which these inhibitors induce RAF kinase domain dimerization remains unclear. Here we describe BRET-based biosensors for the extended RAF family enabling the detection of RAF dimerization in living cells. Notably, we demonstrate the utility of these tools for profiling kinase inhibitors that selectively modulate RAF dimerization as well as for probing structural determinants of RAF dimerization in vivo. Our findings, which appear generalizable to other kinase families allosterically regulated by kinase domain dimerization, suggest a model whereby ATP-competitive inhibitors mediate RAF dimerization by stabilizing a rigid closed conformation of the kinase domain. PMID:23685672

  5. Activation of mPTP-dependent mitochondrial apoptosis pathway by a novel pan HDAC inhibitor resminostat in hepatocellular carcinoma cells.

    PubMed

    Fu, Meili; Shi, Wenhong; Li, Zhengling; Liu, Haiyan

    2016-09-01

    Over-expression and aberrant activation of histone deacetylases (HDACs) are often associated with poor prognosis of hepatocellular carcinoma (HCC). Here, we evaluated the potential anti-hepatocellular carcinoma (HCC) cell activity by resminostat, a novel pan HDAC inhibitor (HDACi). We demonstrated that resminostat induced potent cytotoxic and anti-proliferative activity against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, resminostat treatment in HCC cells activated mitochondrial permeability transition pore (mPTP)-dependent apoptosis pathway, which was evidenced by physical association of cyclophilin-D and adenine nucleotide translocator 1 (ANT-1), mitochondrial depolarization, cytochrome C release and caspase-9 activation. Intriguingly, the mPTP blockers (sanglifehrin A and cyclosporine A), shRNA knockdown of cyclophilin-D or the caspase-9 inhibitor dramatically attenuated resminostat-induced HCC cell apoptosis and cytotoxicity. Reversely, HCC cells with exogenous cyclophilin-D over-expression were hyper-sensitive to resminostat. Intriguingly, a low concentration of resminostat remarkably potentiated sorafenib-induced mitochondrial apoptosis pathway activation, leading to a profound cytotoxicity in HCC cells. The results of this preclinical study indicate that resminostat (or plus sorafenib) could be further investigated as a valuable anti-HCC strategy. PMID:27144317

  6. Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells.

    PubMed

    Wada, Naoko; Kawano, Yawara; Fujiwara, Shiho; Kikukawa, Yoshitaka; Okuno, Yutaka; Tasaki, Masayoshi; Ueda, Mitsuharu; Ando, Yukio; Yoshinaga, Kazuya; Ri, Masaki; Iida, Shinsuke; Nakashima, Takayuki; Shiotsu, Yukimasa; Mitsuya, Hiroaki; Hata, Hiroyuki

    2015-03-01

    Shikonin (SHK), a natural small agent (MW 288.3), reportedly induces cell death in various tumor cells. We have found that SHK also exerts potent cytocidal effects on human multiple myeloma (MM) cells, but its anticancer mechanism in MM cells remains to be elucidated. SHK at 2.5-5 µM induced apoptosis in seven MM cell lines, including the bortezomib-resistant cell line KMS11/BTZ. The IC50 value of SHK against KMS11/BTZ was comparable to that of a parental cell line KMS11 (1.1 and 1.56 µM, respectively). SHK induces accumulation of ubiquitinated proteins and activates XBP-1 in MM cells, suggesting that SHK functions as a proteasome inhibitor, eventually inducing ER stress-associated apoptosis. SHK increases levels of HSP70/72, which protects cells from apoptosis, and exerts greater cytocidal effects in combination with the HSP70/72 inhibitor VER-155008. At higher concentrations (10-20 µM), SHK induced cell death, which was completely inhibited by a necroptosis inhibitor, necrostatin-1 (Nec-1), while the cytocidal activity was unaffected by Z-VAD-FMK, strongly suggesting that cell death is induced by SHK at high concentrations through necroptosis. The present data show for the first time that SHK induces cell death in MM cells. SHK efficiently induces apoptosis and combination of heat shock protein inhibitor with low dose SHK enhances apoptosis, while high dose SHK induces necroptosis in MM cells. These findings together support the use of SHK as a potential therapeutic agent for MM. PMID:25530098

  7. COX-2 inhibitors block chemotherapeutic agent-induced apoptosis prior to commitment in hematopoietic cancer cells.

    PubMed

    Cerella, Claudia; Sobolewski, Cyril; Chateauvieux, Sébastien; Henry, Estelle; Schnekenburger, Michael; Ghelfi, Jenny; Dicato, Mario; Diederich, Marc

    2011-11-15

    Enzymatic inhibitors of pro-inflammatory cyclooxygenase-2 (COX-2) possess multiple anti-cancer effects, including chemosensitization. These effects are not always linked to the inhibition of the COX-2 enzyme. Here we analyze the effects of three COX-2 enzyme inhibitors (nimesulide, NS-398 and celecoxib) on apoptosis in different hematopoietic cancer models. Surprisingly, COX-2 inhibitors strongly prevent apoptosis induced by a panel of chemotherapeutic agents. We selected U937 cells as a model of sensitive cells for further studies. Here, we provide evidence that the protective effect is COX-independent. No suppression of the low basal prostaglandin (PG)E(2) production may be observed upon treatment by COX-2 inhibitors. Besides, the non-active celecoxib analog 2,5-dimethyl-celecoxib is able to protect from apoptosis as well. We demonstrate early prevention of the stress-induced apoptotic signaling, prior to Bax/Bak activation. This preventive effect fits with an impairment of the ability of chemotherapeutic agents to trigger apoptogenic stress. Accordingly, etoposide-induced DNA damage is strongly attenuated in the presence of COX-2 inhibitors. In contrast, COX-2 inhibitors do not exert any anti-apoptotic activity when cells are challenged with physiological stimuli (anti-Fas, TNFα or Trail) or with hydrogen peroxide, which do not require internalization and/or are not targeted by chemoresistance proteins. Altogether, our findings show a differential off-target anti-apoptotic effect of COX-2 inhibitors on intrinsic vs. extrinsic apoptosis at the very early steps of intracellular signaling, prior to commitment. The results imply that an exacerbation of the chemoresistance phenomena may be implicated. PMID:21745461

  8. Attenuation by phosphodiesterase inhibitors of lipopolysaccharide-induced thromboxane release and bronchoconstriction in rat lungs.

    PubMed

    Uhlig, S; Featherstone, R L; Held, H D; Nüsing, R; Schudt, C; Wendel, A

    1997-12-01

    Exposure of perfused rat lungs to lipopolysaccharides (LPS) causes induction of cyclooxygenase-2 followed by thromboxane (TX)-mediated bronchoconstriction (BC). Recently, phosphodiesterase (PDE) inhibitors have received much interest because they not only are bronchodilators but also can suppress release of proinflammatory mediators. In the present study, we investigated the effect of three different PDE inhibitors on TX release and BC in LPS-exposed perfused rat lungs. The PDE inhibitors used were motapizone (PDE III specific), rolipram (PDE IV specific), and zardaverine (mixed PDE III and IV specific). At 5 microM, a concentration at which all three compounds selectively block their respective PDE isoenzyme, rolipram (IC50 = 0.04 microM) and zardaverine (IC50 = 1.8 microM) largely attenuated the LPS-induced BC, whereas motapizone was almost ineffective (IC50 = 40 microM). In contrast to LPS, BC induced by the TX-mimetic U46619 was prevented with comparable strength by motapizone and rolipram. In LPS-treated lungs, the TX release was reduced to 50% of controls by rolipram and zardaverine but was unaltered in the presence of 5 microM motapizone. Increasing intracellular cAMP through perfusion of db-cAMP or forskolin (activates adenylate cyclase) also reduced TX release and BC. We conclude that PDE inhibitors act via elevation of intracellular cAMP. Although both PDE III and PDE IV inhibitors can relax airway smooth muscle, in the model of LPS-induced BC, PDE IV inhibitors are more effective because (in contrast to PDE III inhibitors) they also attenuate TX release. PMID:9400021

  9. A phase II study of TRC105 in patients with hepatocellular carcinoma who have progressed on sorafenib

    PubMed Central

    Duffy, AG; Ulahannan, SV; Cao, L; Rahma, OE; Makarova-Rusher, OV; Kleiner, DE; Fioravanti, S; Walker, M; Carey, S; Yu, Y; Venkatesan, AM; Turkbey, B; Choyke, P; Trepel, J; Bollen, KC; Steinberg, SM; Figg, WD

    2015-01-01

    Background Endoglin is an endothelial cell membrane receptor essential for angiogenesis and highly expressed on the vasculature of many tumor types, including hepatocellular carcinoma (HCC). TRC105 is a chimeric IgG1 anti-CD105 monoclonal antibody that inhibits angiogenesis and tumor growth by endothelial cell growth inhibition, ADCC and apoptosis, and complements VEGF inhibitors. Objective The aim of this phase II study was to evaluate the efficacy of anti-endoglin therapy with TRC105 in patients with advanced HCC, post-sorafenib. Methods Patients with HCC and compensated liver function (Childs-Pugh A/B7), ECOG 0/1, were enrolled to a single-arm, phase II study of TRC105 15 mg/kg IV every two weeks. Patients must have progressed on or been intolerant of prior sorafenib. A Simon optimal two-stage design was employed with a 50% four-month PFS target for progression to the second stage. Correlative biomarkers evaluated included DCE-MRI as well as plasma levels of angiogenic biomarkers and soluble CD105. Results A total accrual of 27 patients was planned. However, because of lack of efficacy and in accordance with the Simon two-stage design, 11 patients were enrolled. There were no grade 3/4 treatment-related toxicities. Most frequent toxicities were headache (G2; N = 3) and epistaxis (G1; N = 4). One patient had a confirmed partial response by standard RECIST criteria and biologic response on DCE-MRI but the four-month PFS was insufficient to proceed to the second stage of the study. Conclusions: TRC105 was well tolerated in this HCC population following sorafenib. Although there was evidence of clinical activity, this did not meet prespecified criteria to proceed to the second stage. TRC105 development in HCC continues as combination therapy with sorafenib. PMID:26535124

  10. Quinazolines as Apoptosis Inducers and Inhibitors: A Review of Patent Literature.

    PubMed

    Mehndiratta, Samir; Sapra, Sameer; Singh, Gurpreet; Singh, Manwinder; Nepali, Kunal

    2016-01-01

    Quinazoline scaffold has been successfully utilized for development of various inhibitors of tubulin, epidermal growth factor receptor (EGFR), polo like kinases (PLKs), Hedgehog-Gli signaling pathway and protein kinase B (PKB) /Akt pathway. Compounds based on quinazolines have shown efficacies in µM to nM range in various cancer cell lines and thus could be useful scaffolds for development of both apoptosis inducers as well as inhibitors. This compilation is based on various patents published till 2015 and divides the quinazolines in two main categories: Quinazolines as apoptosis inducers and as apoptosis inhibitors. These two main categories are further sub-categorized based on the use/pharmacological indications for these classes of patented compounds. This review will act as a tool for the researchers working on exploring the anticancer potential of quinazoline as a privileged heterocyclic. The promising anticancer profile of some of the quinazoline based compounds clearly highlights the clinical potential of this heterocycle. PMID:26681186

  11. A combination of sorafenib and nilotinib reduces the growth of castrate-resistant prostate cancer

    PubMed Central

    Archibald, Monica; Pritchard, Tara; Nehoff, Hayley; Rosengren, Rhonda J; Greish, Khaled; Taurin, Sebastien

    2016-01-01

    Castrate-resistant prostate cancer (CRPC) remains incurable due to the lack of effective therapies. Several tyrosine kinases have been implicated in the development and growth of CRPC, as such targeting these kinases may offer an alternative therapeutic strategy. We established the combination of two tyrosine kinase inhibitors (TKIs), sorafenib and nilotinib, as the most cytotoxic. In addtion, to improve their bioavailability and reduce their metabolism, we encapsulated sorafenib and nilotinib into styrene-co-maleic acid micelles. The micelles’ charge, size, and release rate were characterized. We assessed the effect of the combination on the cytotoxicity, cell cycle, apoptosis, protein expression, tumor spheroid integrity, migration, and invasion. The micelles exhibited a mean diameter of 100 nm, a neutral charge, and appeared highly stable. The micellar TKIs promoted greater cytotoxicity, decreased cell proliferation, and increased apoptosis relative to the free TKIs. In addition, the combination reduced the expression and activity of several tyrosine kinases and reduced tumor spheroid integrity and metastatic potential of CRPC cell lines more efficiently than the single treatments. The combination increased the therapeutic potential and demonstrated the relevance of a targeted combination therapy for the treatment of CRPC. In addition, the efficacy of the encapsulated drugs provides the basis for an in vivo preclinical testing. PMID:26811677

  12. A combination of sorafenib and nilotinib reduces the growth of castrate-resistant prostate cancer.

    PubMed

    Archibald, Monica; Pritchard, Tara; Nehoff, Hayley; Rosengren, Rhonda J; Greish, Khaled; Taurin, Sebastien

    2016-01-01

    Castrate-resistant prostate cancer (CRPC) remains incurable due to the lack of effective therapies. Several tyrosine kinases have been implicated in the development and growth of CRPC, as such targeting these kinases may offer an alternative therapeutic strategy. We established the combination of two tyrosine kinase inhibitors (TKIs), sorafenib and nilotinib, as the most cytotoxic. In addtion, to improve their bioavailability and reduce their metabolism, we encapsulated sorafenib and nilotinib into styrene-co-maleic acid micelles. The micelles' charge, size, and release rate were characterized. We assessed the effect of the combination on the cytotoxicity, cell cycle, apoptosis, protein expression, tumor spheroid integrity, migration, and invasion. The micelles exhibited a mean diameter of 100 nm, a neutral charge, and appeared highly stable. The micellar TKIs promoted greater cytotoxicity, decreased cell proliferation, and increased apoptosis relative to the free TKIs. In addition, the combination reduced the expression and activity of several tyrosine kinases and reduced tumor spheroid integrity and metastatic potential of CRPC cell lines more efficiently than the single treatments. The combination increased the therapeutic potential and demonstrated the relevance of a targeted combination therapy for the treatment of CRPC. In addition, the efficacy of the encapsulated drugs provides the basis for an in vivo preclinical testing. PMID:26811677

  13. MAP KINASE ERK 1/2 INHIBITORS INDUCE DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    ROSEN, M.B. and E. S. HUNTER. Reproductive Toxicology Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina. MAP kinase Erk1/2 inhibitors induce dysmorphology in mouse whole embryo culture.

    MAP Kinase signal transduction is associated with a variety ...

  14. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  15. Proteasome inhibitors induce apoptosis and reduce viral replication in primary effusion lymphoma cells

    SciTech Connect

    Saji, Chiaki; Higashi, Chizuka; Niinaka, Yasufumi; Yamada, Koji; Noguchi, Kohji; Fujimuro, Masahiro

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Constitutive NF-{kappa}B signaling is essential for the survival and growth of PEL cells. Black-Right-Pointing-Pointer NF-{kappa}B signaling is upregulated by the proteasome-dependent degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress NF-{kappa}B signaling and induce apoptosis in PEL cells through stabilization of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress viral replication in PEL cells during lytic KSHV infection. -- Abstract: Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV). This study provides evidence that proteasomal activity is required for both survival of PEL cells stably harboring the KSHV genome and viral replication of KSHV. We evaluated the cytotoxic effects of proteasome inhibitors on PEL cells. The proteasome inhibitors MG132, lactacystin, and proteasome inhibitor I dramatically inhibited cell proliferation and induced apoptosis of PEL cells through the accumulation of p21 and p27. Furthermore, proteasome inhibitors induced the stabilization of NF-{kappa}B inhibitory molecule (I{kappa}B{alpha}) and suppressed the transcriptional activity of NF-{kappa}B in PEL cells. The NF-{kappa}B specific inhibitor BAY11-7082 also induced apoptosis in PEL cells. The constitutive activation of NF-{kappa}B signaling is essential for the survival and growth of B cell lymphoma cells, including PEL cells. NF-{kappa}B signaling is upregulated by proteasome-dependent degradation of I{kappa}B{alpha}. The suppression of NF-{kappa}B signaling by proteasome inhibitors may contribute to the induction of apoptosis in PEL cells. In addition, proteasome activity is required for KSHV replication in KSHV latently infected PEL cells. MG132 reduced the production of progeny virus from PEL cells at low concentrations, which do not affect PEL cell growth. These findings suggest that proteasome inhibitors

  16. Ciprofloxacin-Induced Antibacterial Activity Is Attenuated by Phosphodiesterase Inhibitors

    PubMed Central

    Masadeh, Majed M.; Alzoubi, Karem H.; Khabour, Omar F.; Al-Azzam, Sayer I.

    2014-01-01

    Background Ciprofloxacin is a commonly used antibiotic for urinary tract infection that interacts with bacterial topoisomerases leading to oxidative radicals generation and bacterial cell death. Phosphodiesterase inhibitors (PDEis), on the other hand, are commonly used drugs for the management of erectile dysfunction. The group includes agents such as sildenafil, vardenafil, and tadalafil. Objectives We investigated whether PDEi could interfere with the antibacterial activity of ciprofloxacin. Methods PDEis were tested in several reference bacteria, including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, Acinetobacter baumannii, Proteus mirabilis, and Klebsiella pneumoniae utilizing a standard disc diffusion method and measuring both zones of inhibition and MIC. Results Results from both assays indicated that ciprofloxacin demonstrates potent activity against the tested reference bacteria. Additionally, when bacteria were treated with a combination of ciprofloxacin and sildenafil, tadalafil, or vardenafil, the zones of the combination inhibition were significantly reduced, whereas the MIC values were significantly greater than those of ciprofloxacin alone for all tested bacterial strains. In an attempt to examine the mechanism by which PDEis interfere with the action of ciprofloxacin, we utilized the in vitro E coli DNA gyrase cleavage assay. The results showed that PDEi drugs had no effect on ciprofloxacin’s inhibition of E coli gyrase activity. Conclusions Pretreatment of various reference bacterial cells with PDEis largely inhibited the antibacterial activity of ciprofloxacin. PMID:26649077

  17. A Phase I Study of High-Dose Interleukin-2 With Sorafenib in Patients With Metastatic Renal Cell Carcinoma and Melanoma

    PubMed Central

    Lam, Elaine; Mortazavi, Amir; Kendra, Kari; Lesinski, Gregory B.; Mace, Thomas A.; Geyer, Susan; Carson, William E.; Tahiri, Sanaa; Bhinder, Arvinder; Clinton, Steven K.; Olencki, Thomas

    2014-01-01

    This study was designed to evaluate the safety and feasibility of high-dose interleukin-2 (HD IL-2) followed by sorafenib in patients with metastatic melanoma (MM) and renal cell carcinoma (RCC). Biomarkers relevant to the antitumor effects of IL-2 that may be altered by sorafenib including the percentages of natural T-regulatory cells (Tregs), myeloid-derived suppressor cells (MDSC), and STAT5 phosphorylation (pSTAT5) in T cells were evaluated. We hypothesized that the proposed treatment schedule is feasible and safe and may lead to enhanced tumor response. A phase I dose escalation trial was conducted in patients with either metastatic RCC or MM. HD IL-2 (600,000 IU/kg IV q8h×8–12 doses) was administered on days 1–5 and 15–19, followed by sorafenib on days 29–82. The sorafenib dose was escalated. The percentage of Tregs, MDSC, and pSTAT5 in T cells were evaluated in peripheral blood by flow cytometry. Twelve of the 18 patients were evaluable for dose-limiting toxicity. No dose-limiting toxicity was observed. The treatment-related toxicity was predictable and did not seem to be additive with this schedule of administration. Partial responses were seen in 3 patients. No significant changes in the percentage of circulating Treg and MDSC were observed, whereas sorafenib did not adversely affect the ability of IL-2 to induce pSTAT5 in T cells. HD IL-2 followed by sorafenib was safe and feasible in patients with MM and RCC and did not adversely affect T-cell signaling through STAT5 in response to IL-2. PMID:24598448

  18. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling

    PubMed Central

    Heinemann, Anja; Cullinane, Carleen; De Paoli-Iseppi, Ricardo; Wilmott, James S.; Gunatilake, Dilini; Madore, Jason; Strbenac, Dario; Yang, Jean Y.; Gowrishankar, Kavitha; Tiffen, Jessamy C.; Prinjha, Rab K.; Smithers, Nicholas; McArthur, Grant A.; Hersey, Peter; Gallagher, Stuart J.

    2015-01-01

    Histone acetylation marks have an important role in controlling gene expression and are removed by histone deacetylases (HDACs). These marks are read by bromodomain and extra-terminal (BET) proteins and novel inhibitiors of these proteins are currently in clinical development. Inhibitors of HDAC and BET proteins have individually been shown to cause apoptosis and reduce growth of melanoma cells. Here we show that combining the HDAC inhibitor LBH589 and BET inhibitor I-BET151 synergistically induce apoptosis of melanoma cells but not of melanocytes. Induction of apoptosis proceeded through the mitochondrial pathway, was caspase dependent and involved upregulation of the BH3 pro-apoptotic protein BIM. Analysis of signal pathways in melanoma cell lines resistant to BRAF inhibitors revealed that treatment with the combination strongly downregulated anti-apoptotic proteins and proteins in the AKT and Hippo/YAP signaling pathways. Xenograft studies showed that the combination of inhibitors was more effective than single drug treatment and confirmed upregulation of BIM and downregulation of XIAP as seen in vitro. These results support the combination of these two classes of epigenetic regulators in treatment of melanoma including those resistant to BRAF inhibitors. PMID:26087189

  19. Degradation of topoisomerase I induced by topoisomerase I inhibitors is dependent on inhibitor structure but independent of cell death.

    PubMed

    Fu, Q; Kim, S W; Chen, H X; Grill, S; Cheng, Y C

    1999-04-01

    DNA topoisomerase I (top I) is the target of the antitumor drug camptothecin (CPT) and its analogs. CPT induces dose- and time-dependent degradation of top I. Degradation of top I also occurs in a CPT-resistant cell line and, therefore, is not a consequence of cell death. Top I degradation is preceded by the appearance of a high molecular weight ladder of top I immunoreactivity and can be blocked by specific inhibitors of the proteasome. We compared the effects of five top I poisons [CPT, topotecan, 6-N-formylamino-12,13-dihydro-1, 11-dihydroxy-13-(beta-D-glucopyranosyl)-5H-indolo[2,3-a]pyrrolo[3, 4-c]carbazole-5,7(6H)-dione (NB506), camptothecin-(para)-4beta-amino-4'-O-demethyl Epipodophyllotoxin (W1), and camptothecin-(ortho)-4beta-amino-4'-O-demethyl Epipodophyllotoxin (W2)] on cleavable complex formation and top I degradation. Although all five drugs induced cleavable complex formation, two of the drugs, NB506 and W1 did not induce top I degradation. PMID:10101025

  20. Encapsulation-Induced Stress Helps Saccharomyces cerevisiae Resist Convertible Lignocellulose Derived Inhibitors

    PubMed Central

    Westman, Johan O.; Manikondu, Ramesh Babu; Franzén, Carl Johan; Taherzadeh, Mohammad J.

    2012-01-01

    The ability of macroencapsulated Saccharomyces cerevisiae CBS8066 to withstand readily and not readily in situ convertible lignocellulose-derived inhibitors was investigated in anaerobic batch cultivations. It was shown that encapsulation increased the tolerance against readily convertible furan aldehyde inhibitors and to dilute acid spruce hydrolysate, but not to organic acid inhibitors that cannot be metabolized anaerobically. Gene expression analysis showed that the protective effect arising from the encapsulation is evident also on the transcriptome level, as the expression of the stress-related genes YAP1, ATR1 and FLR1 was induced upon encapsulation. The transcript levels were increased due to encapsulation already in the medium without added inhibitors, indicating that the cells sensed low stress level arising from the encapsulation itself. We present a model, where the stress response is induced by nutrient limitation, that this helps the cells to cope with the increased stress added by a toxic medium, and that superficial cells in the capsules degrade convertible inhibitors, alleviating the inhibition for the cells deeper in the capsule. PMID:23109889

  1. In vivo pharmacological evaluation of two novel type II (inducible) nitric oxide synthase inhibitors.

    PubMed

    Tracey, W R; Nakane, M; Basha, F; Carter, G

    1995-05-01

    Selective type II (inducible) nitric oxide synthase (NOS) inhibitors have several potential therapeutic applications, including treatment of sepsis, diabetes, and autoimmune diseases. The ability of two novel, selective inhibitors of type II NOS, S-ethylisothiourea (EIT) and 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT), to inhibit type II NOS function in vivo was studied in lipopolysaccharide (LPS) treated rats. Type II NOS activity was assessed by measuring changes in plasma nitrite and nitrate concentrations ([NOx]). Both EIT and AMT elicited a dose-dependent and > 95% inhibition of the LPS-induced increase in plasma [NOx]. The ED50 values for EIT and AMT were 0.4 and 0.2 mg/kg, respectively. In addition, the administration of LPS and either NOS inhibitor resulted in a dose-dependent increase in animal mortality; neither compound was lethal when administered alone. Pretreatment with L-arginine (but not D-arginine) prevented the mortality, while not affecting the type II NOS-dependent NO production, suggesting the toxicity may be due to inhibition of one of the other NOS isoforms (endothelial or neuronal). Thus, although EIT and AMT are potent inhibitors of type II NOS function in vivo, type II NOS inhibitors of even greater selectivity may need to be developed for therapeutic applications. PMID:7585335

  2. Amelioration of cyclosporine induced nephrotoxicity by dipeptidyl peptidase inhibitor vildagliptin.

    PubMed

    Ateyya, Hayam

    2015-09-01

    Cyclosporine A (CsA) is an immunosuppressive drug used in organ transplantation and autoimmune diseases but its clinical uses may be limited due to its dose-related nephrotoxicity. This study was carried out to evaluate the possible protective effects of vildagliptin (VLD) against CsA-induced nephrotoxicity in rats. Animals were divided into four groups treated as follows: control group (CsA & VLD vehicle); VLD group (10mg/kg/day, orally); CsA group (20mg/kg in sunflower oil, S.C.); and CsA-VLD group (CsA &VLD). Induced nephrotoxicity was evidenced by a significant elevation of serum creatinine, blood urea nitrogen (BUN), lactate dehydrogenase (LDH) and urinary micro total proteins (MTP), while serum albumin and urinary creatinine clearance were significantly decreased compared to the control group. Moreover, renal dysfunction was further confirmed by a significant increase in renal lipid peroxide that was measured as renal malondialdehyde (MDA). Renal reduced glutathione (GSH) and superoxide dismutase (SOD) were significantly decreased. Nephrotoxicity was further confirmed by renal tissue histopathology. Also, a high protein expression of Bax with decreased Bcl-2 was revealed in the renal tissue of the CsA treated group. Administration of VLD significantly ameliorated the nephrotoxic effects of CsA suggesting antioxidant, anti-inflammatory and anti-apoptotic benefits of VLD in CsA-induced nephrotoxicity. PMID:26225924

  3. Sorafenib in advanced, heavily pretreated patients with soft tissue sarcomas.

    PubMed

    Brämswig, Kira; Ploner, Ferdinand; Martel, Alexandra; Bauernhofer, Thomas; Hilbe, Wolfgang; Kühr, Thomas; Leitgeb, Clemens; Mlineritsch, Brigitte; Petzer, Andreas; Seebacher, Veronika; Stöger, Herbert; Girschikofsky, Michael; Hochreiner, Gerhard; Ressler, Sigrun; Romeder, Franz; Wöll, Ewald; Brodowicz, Thomas

    2014-08-01

    Therapeutic options for patients with advanced pretreated soft tissue sarcomas are limited. However, in this setting, sorafenib has shown promising results. We reviewed the data of 33 patients with soft tissue sarcoma treated with sorafenib within a named patient program in Austria. Twelve physicians from eight different hospitals provided records for the analysis of data. Among the 33 patients, the predominant histological subtype of sarcoma was leiomyosarcoma (n=18, 55%). Other subtypes were represented by only one or two cases. Fifteen patients presented with metastases at the time of diagnosis. Another 17 patients developed metastases later in the course of the disease (data on one patient are missing). Most of the 33 patients had undergone resection of the primary (n=29, 88%) and half of the patients had received radiotherapy (n=17, 52%). Chemotherapy for metastatic disease had been administered to 30 patients (91%). The majority had received two or more regimens of chemotherapy (n=25, 76%) before sorafenib treatment. The use of sorafenib resulted in a median time to treatment failure of 92 days in patients with leiomyosarcoma and 45 days in patients with other histological subtypes. One-third of the patients derived benefits from treatment: four patients were documented with partial response and six with stabilized disease. In terms of treatment-related toxicity, skin problems of various degrees and gastrointestinal disturbances were frequently reported. In this retrospective analysis of heavily pretreated patients with advanced soft tissue sarcomas, sorafenib was associated with some antitumor activity and an acceptable toxicity profile. PMID:24667659

  4. CXCR2 Inhibition Combined with Sorafenib Improved Antitumor and Antiangiogenic Response in Preclinical Models of Ovarian Cancer

    PubMed Central

    Devapatla, Bharat; Sharma, Ankur; Woo, Sukyung

    2015-01-01

    Antiangiogenic therapy is important for the treatment of gynecological cancer. However, the therapeutic benefit derived from these treatments is transient, predominantly due to the selective activation of compensatory proangiogenic pathways that lead to rapid development of resistance. We aimed to identify and target potential alternative signaling to anti-vascular endothelial growth factor (VEGF) therapy, with a view toward developing a combination of antiangiogenic agents to provide extended therapeutic benefits. We developed a preclinical in vivo phenotypic resistance model of ovarian cancer resistant to antiangiogenic therapy. We measured dynamic changes in secreted chemokines and angiogenic signaling in tumors and plasma in response to anti-VEGF treatment, as tumors advanced from the initial responsive phase to progressive disease. In tumors that progressed following sorafenib treatment, gene and protein expression levels of proangiogenic CXC chemokines and their receptors were significantly elevated, compared with responsive tumors. The chemokine (C-X-C motif) ligand 8 (CXCL8), also known as interleukin-8 (IL-8) increase was time-dependent and coincided with the dynamics of tumor progression. We used SB225002, a pharmacological inhibitor of chemokine (C-X-C motif) receptor 2 (CXCR2), to disrupt the CXC chemokine-mediated functions of ovarian cancer cells in in vitro assays of cell growth inhibition, spheroid formation, and cell migration. The combination of CXCR2 inhibitor with sorafenib led to a synergistic inhibition of cell growth in vitro, and further stabilized tumor progression following sorafenib in vivo. Our results suggest that CXCR2-mediated chemokines may represent an important compensatory pathway that promotes resistance to antiangiogenic therapy in ovarian cancer. Thus, simultaneous blockage of this proangiogenic cytokine pathway using CXCR2 inhibitors and the VEGF receptor (VEGFR) pathway could improve the outcomes of antiangiogenic therapy

  5. CXCR2 Inhibition Combined with Sorafenib Improved Antitumor and Antiangiogenic Response in Preclinical Models of Ovarian Cancer.

    PubMed

    Devapatla, Bharat; Sharma, Ankur; Woo, Sukyung

    2015-01-01

    Antiangiogenic therapy is important for the treatment of gynecological cancer. However, the therapeutic benefit derived from these treatments is transient, predominantly due to the selective activation of compensatory proangiogenic pathways that lead to rapid development of resistance. We aimed to identify and target potential alternative signaling to anti-vascular endothelial growth factor (VEGF) therapy, with a view toward developing a combination of antiangiogenic agents to provide extended therapeutic benefits. We developed a preclinical in vivo phenotypic resistance model of ovarian cancer resistant to antiangiogenic therapy. We measured dynamic changes in secreted chemokines and angiogenic signaling in tumors and plasma in response to anti-VEGF treatment, as tumors advanced from the initial responsive phase to progressive disease. In tumors that progressed following sorafenib treatment, gene and protein expression levels of proangiogenic CXC chemokines and their receptors were significantly elevated, compared with responsive tumors. The chemokine (C-X-C motif) ligand 8 (CXCL8), also known as interleukin-8 (IL-8) increase was time-dependent and coincided with the dynamics of tumor progression. We used SB225002, a pharmacological inhibitor of chemokine (C-X-C motif) receptor 2 (CXCR2), to disrupt the CXC chemokine-mediated functions of ovarian cancer cells in in vitro assays of cell growth inhibition, spheroid formation, and cell migration. The combination of CXCR2 inhibitor with sorafenib led to a synergistic inhibition of cell growth in vitro, and further stabilized tumor progression following sorafenib in vivo. Our results suggest that CXCR2-mediated chemokines may represent an important compensatory pathway that promotes resistance to antiangiogenic therapy in ovarian cancer. Thus, simultaneous blockage of this proangiogenic cytokine pathway using CXCR2 inhibitors and the VEGF receptor (VEGFR) pathway could improve the outcomes of antiangiogenic therapy

  6. The interaction between Helminthosporium carbonum and maize: Induced resistance and the role of an inhibitor

    SciTech Connect

    Cantone, F.A.

    1989-01-01

    Helminthosporium carbonum race 1 produces large, necrotic lesions on susceptible leaves of maize, whereas race 2 causes small, chlorotic flecks. Resistance to race 1 on susceptible leaves was induced when race 2 was inoculated for at least 10 h prior to a challenge inoculation with the pathogen and was manifest as a decrease in the number of appressoria and reduced penetration by race 1 conidia. Induced resistance was prevented or reversed when HC-toxin was added to challenge race 1 inoculum. The basis for protection appears to be a volatile, inhibitory compound produced by the host. This inhibitor was always associated with treatments that resulted in resistance, whereas no inhibitory activity was detected in diffusates from susceptible reactions. The appearance of inhibitor in diffusates coincided with the appearance of protection on the leaf. In addition to race 2 of H. carbonum, other fungi (H. victoriae, H. turcicum, and Alternaria) also induced production of the inhibitor as well as resistance to race 1. The inhibitor prevented the germination of conidia of all fungi tested. The growth of two phytopathogenic bacteria was also completely inhibited. Incorporation of {sup 3}H-leucine and {sup 14}C-uridine into protein and RNA, respectively, by conidia of H. carbonum was prevented within 15 min of exposure to inhibitor. In addition, respiration of conidia in inhibitor was reduced within 90 min to just 25% of the rate of conidia germinated in water. However, inhibitory activity of the diffusates was readily reversed when conidia were rinsed with water or when organic or amino acids were added to inhibited conidia. The addition of sodium acetate to race 2 and race 1 inocula resulted in lesion enlargement and also nullified inhibitory activity in vitro.

  7. IKK inhibitor suppresses epithelial-mesenchymal transition and induces cell death in prostate cancer.

    PubMed

    Ping, Hao; Yang, Feiya; Wang, Mingshuai; Niu, Yinong; Xing, Nianzeng

    2016-09-01

    IκB kinase (IKK)/nuclear factor κB (NF-κB) pathway activation is a key event in the acquisition of invasive and metastatic capacities in prostate cancer. A potent small-molecule compound, BMS-345541, was identified as a highly selective IKKα and IKKβ inhibitor to inhibit kinase activity. This study explored the effect of IKK inhibitor on epithelial-mesenchymal transition (EMT), apoptosis and metastasis in prostate cancer. Here, we demonstrate the role of IKK inhibitor reducing proliferation and inducing apoptosis in PC-3 cells. Furthermore, BMS345541 inhibited IκBα phosphorylation and nuclear level of NF-κB/p65 in PC-3 cells. We also observed downregulation of the N-cadherin, Snail, Slug and Twist protein in a dose-dependent manner. BMS‑345541 induced upregulation of the epithelial marker E-cadherin and phosphorylated NDRG1 at protein level. Moreover, BMS‑345541 reduced invasion and metastasis of PC-3 cells in vitro. In conclusion, IKK has a key role in both EMT and apoptosis of prostate cancer. IKK inhibitor can reverse EMT and induce cell death in PCa cells. IKK was identified as a potential target structure for future therapeutic intervention in PCa. PMID:27432067

  8. Exercise-induced ventricular arrhythmias in congestive heart failure and role of ACE inhibitors.

    PubMed

    Hasija, P K; Karloopia, S D; Shahi, B N; Chauhan, S S

    1998-02-01

    Ventricular arrhythmias are considered to be related to left ventricular (LV) dysfunction. ACE inhibitors though improve LV function their beneficial role on exercise-induced ventricular arrhythmias is not established. To study the effects of ACE inhibitors on exercise capacity vis-a-vis their role on exercise-induced ventricular arrhythmias, 25 patients of congestive heart failure (CHF) of various etiologies in NYHA Class II and III were subjected to a prospective randomised controlled trial. The control group comprising of 12 patients received conventional treatment (digitalis and diuretics) and the test group was given enalapril/captopril in addition as tolerated. They were followed up for 3 months. Exercise testing on treadmill and monitoring of clinical and biochemical parameters were done at the beginning and end of study in all cases. Ventricular arrhythmias observed during exercise and post-exercise for 10 minutes was analysed using Lown's grading for frequency and severity of ventricular arrhythmia. The mean exercise duration showed significant improvement on ACE inhibitor as compared to the control group (p < 0.05) however there was no significant change in the grades of arrhythmia. Serum electrolytes and other bio-chemical parameter were within normal range. It is concluded that effect of ACE inhibitor on improving functional capacity in CHF is independent of it's any effect on exercise-induced ventricular arrhythmias. PMID:11273109

  9. NOVEL ATYPICAL PKC INHIBITORS PREVENT VASCULAR ENDOTHELIAL GROWTH FACTOR-INDUCED BLOOD-RETINAL BARRIER DYSFUNCTION

    PubMed Central

    Titchenell, Paul M.; Lin, Cheng-Mao; Keil, Jason M.; Sundstrom, Jeffrey M.; Smith, Charles D.; Antonetti, David A.

    2013-01-01

    SYNOPSIS Pro-inflammatory cytokines and growth factors such as vascular endothelial growth factor (VEGF) contribute to the loss of the blood-retinal barrier (BRB) and subsequent macular edema in various retinal pathologies. VEGF signaling requires conventional PKC (PKCβ) activity; however, PKCβ inhibition only partially prevents VEGF-induced endothelial permeability and does not affect pro-inflammatory cytokine-induced permeability suggesting the involvement of alternative signaling pathways. Here, we provide evidence for the involvement of atypical protein kinase C (aPKC) signaling in VEGF-induced endothelial permeability and identify a novel class of inhibitors of aPKC that prevent BRB breakdown in vivo. Genetic and pharmacological manipulations of aPKC isoforms were used to assess their contribution to endothelial permeability in culture. A chemical library was screened using an in vitro kinase assay to identify novel small molecule inhibitors and further medicinal chemistry was performed to delineate a novel pharmacophore. We demonstrate that aPKC isoforms are both sufficient and required for VEGF-induced endothelial permeability. Furthermore, these specific, potent, non-competitive, small molecule inhibitors prevented VEGF-induced tight junction internalization and retinal endothelial permeability in response to VEGF in both primary culture and in rodent retina. These data suggest that aPKC inhibition with 2-amino-4-phenyl-thiophene derivatives may be developed to preserve the BRB in retinal diseases such as diabetic retinopathy or uveitis and the blood-brain barrier (BBB) in the presence of brain tumors. PMID:22721706

  10. Natural antioxidants as inhibitors of oxygen species induced mutagenicity.

    PubMed

    Minnunni, M; Wolleb, U; Mueller, O; Pfeifer, A; Aeschbacher, H U

    1992-10-01

    A ternary antioxidant vitamin mix consisting of ascorbic acid, alpha-tocopherol and lecithin as well as a rosemary extract with carnosic acid and carnosol as the two major active ingredients were shown to exhibit strong antimutagenic effects in Ames tester strain TA102. This strain has been shown to be highly sensitive to reactive oxygen species. Mutagenicity was induced by the generation of oxygen radicals by tert-butyl-hydroperoxide (tBOOH) or hydrogen peroxide (H2O2); therefore, the antimutagenic property of the above substances was attributed to their antioxidant properties. In the case of the vitamin mix, ascorbic acid was held responsible for this inhibitory property, whereas for the rosemary extract carnosic acid was identified as the antimutagenic agent. Since oxygen radicals are known to be involved in the multiprocess of carcinogenicity, it is concluded that these antioxidants might exhibit anticarcinogenic properties. PMID:1383702