Science.gov

Sample records for inhibitor suberoylanilide hydroxamic

  1. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, attenuates postoperative cognitive dysfunction in aging mice

    PubMed Central

    Jia, Min; Liu, Wen-Xue; Sun, He-Liang; Chang, Yan-Qing; Yang, Jiao-Jiao; Ji, Mu-Huo; Yang, Jian-Jun; Feng, Chen-Zhuo

    2015-01-01

    Postoperative cognitive dysfunction (POCD) is a recognized clinical entity characterized with cognitive deficits after anesthesia and surgery, especially in aged patients. Previous studies have shown that histone acetylation plays a key role in hippocampal synaptic plasticity and memory formation. However, its role in POCD remains to be determined. Here, we show that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, attenuates POCD in aging Mice. After exposed to the laparotomy, a surgical procedure involving an incision into abdominal walls to examine the abdominal organs, 16- but not 3-month old male C57BL/6 mice developed obvious cognitive impairments in the test of long-term contextual fear conditioning. Intracerebroventricular (i.c.v.) injection of SAHA at the dose of (20 μg/2 μl) 3 h before and daily after the laparotomy restored the laparotomy-induced reduction of hippocampal acetyl-H3 and acetyl-H4 levels and significantly attenuated the hippocampus-dependent long-term memory (LTM) impairments in 16-month old mice. SAHA also reduced the expression of cleaved caspase-3, inducible nitric oxide synthase (iNOS) and N-methyl-D-aspartate (NMDA) receptor-calcium/calmodulin dependent kinase II (CaMKII) pathway, and increased the expression of brain-derived neurotrophic factor (BDNF), synapsin 1, and postsynaptic density 95 (PSD95). Taken together, our data suggest that the decrease of histone acetylation contributes to POCD and may serve as a target to improve the neurological outcome of POCD. PMID:26441515

  2. The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid (SAHA) Confers Acute Neuroprotection After Intracerebral Hemorrhage in Mice.

    PubMed

    Sukumari-Ramesh, Sangeetha; Alleyne, Cargill H; Dhandapani, Krishnan M

    2016-04-01

    Spontaneous intracerebral hemorrhage (ICH) is a stroke subtype with no effective treatment. Though ICH is known to induce severe neurological damage, the molecular mechanisms of neurological injury after ICH remain largely unclear. Given the emerging role of epigenetic mechanisms in neurodegeneration, the present study evaluated whether suberoylanilide hydroxamic acid (SAHA: vorinostat), a clinically well-tolerated pan-histone deacetylase inhibitor (HDACi), would attenuate neurological injury and improve functional outcomes in a preclinical model of ICH. Mice were administered with SAHA or vehicle after an induction of ICH and acute neuronal death, glial activation, and neurological outcomes were assessed. SAHA-treated mice exhibited less neurodegeneration with concomitant improvement in neurological outcomes than vehicle-treated mice. Furthermore, SAHA downregulated glial activation and the expression of heme oxygenase-1, a stress-inducible enzyme that plays critical roles in neurological damage after ICH. Altogether, the data strongly suggest the role of epigenetic mechanisms in inducing neurological injury after ICH and raise the possible clinical utility of SAHA for therapeutic intervention after ICH. PMID:26338677

  3. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis, down-regulates the CXCR4 chemokine receptor and impairs migration of chronic lymphocytic leukemia cells

    PubMed Central

    Stamatopoulos, Basile; Meuleman, Nathalie; De Bruyn, Cécile; Delforge, Alain; Bron, Dominique; Lagneaux, Laurence

    2010-01-01

    Background Chronic lymphocytic leukemia is a neoplastic disorder that arises largely as a result of defective apoptosis leading to chemoresistance. Stromal cell-derived factor-1 and its receptor, CXCR4, have been shown to play an important role in chronic lymphocytic leukemia cell trafficking and survival. Design and Methods Since histone acetylation is involved in the modulation of gene expression, we evaluated the effects of suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, on chronic lymphocytic leukemia cells and in particular on cell survival, CXCR4 expression, migration, and drug sensitization. Results Here, we showed that treatment with suberoylanilide hydroxamic acid (20 μM) for 48 hours induced a decrease in chronic lymphocytic leukemia cell viability via apoptosis (n=20, P=0.0032). Using specific caspase inhibitors, we demonstrated the participation of caspases-3, -6 and -8, suggesting an activation of the extrinsic pathway. Additionally, suberoylanilide hydroxamic acid significantly decreased CXCR4 mRNA (n=10, P=0.0010) and protein expression (n=40, P<0.0001). As a result, chronic lymphocytic leukemia cell migration in response to stromal cell-derived factor-1 (n=23, P<0.0001) or through bone marrow stromal cells was dramatically impaired. Consequently, suberoylanilide hydroxamic acid reduced the protective effect of the microenvironment and thus sensitized chronic lymphocytic leukemia cells to chemotherapy such as fludarabine. Conclusions In conclusion, suberoylanilide hydroxamic acid induces apoptosis in chronic lymphocytic leukemia cells via the extrinsic pathway and down-regulates CXCR4 expression leading to decreased cell migration. Suberoylanilide hydroxamic acid in combination with other drugs represents a promising therapeutic approach to inhibiting migration, chronic lymphocytic leukemia cell survival and potentially overcoming drug resistance. PMID:20145270

  4. In silico modification of suberoylanilide hydroxamic acid (SAHA) as potential inhibitor for class II histone deacetylase (HDAC)

    PubMed Central

    2011-01-01

    Background The cervical cancer is the second most prevalent cancer for the woman in the world. It is caused by the oncogenic human papilloma virus (HPV). The inhibition activity of histone deacetylase (HDAC) is a potential strategy for cancer therapy. Suberoylanilide hydroxamic acid (SAHA) is widely known as a low toxicity HDAC inhibitor. This research presents in silico SAHA modification by utilizing triazole, in order to obtain a better inhibitor. We conducted docking of the SAHA inhibitor and 12 modified versions to six class II HDAC enzymes, and then proceeded with drug scanning of each one of them. Results The docking results show that the 12 modified inhibitors have much better binding affinity and inhibition potential than SAHA. Based on drug scan analysis, six of the modified inhibitors have robust pharmacological attributes, as revealed by drug likeness, drug score, oral bioavailability, and toxicity levels. Conclusions The binding affinity, free energy and drug scan screening of the best inhibitors have shown that 1c and 2c modified inhibitors are the best ones to inhibit class II HDAC. PMID:22373132

  5. Suppression of IL-12p40-related regulatory cytokines by suberoylanilide hydroxamic acid an inhibitor of histone deacetylases.

    PubMed

    Dobreva, Zlatka Georgieva; Grigorov, Boncho Grigorov; Stanilova, Spaska Angelova

    2016-08-01

    Small molecule inhibitors of histone deacetylases (HDACs) are a new class drugs used in clinical trials for the treatment of various malignancies. Emerging evidence suggest that HDAC inhibitors may also have anti-inflammatory properties, although the molecular mechanisms remain poorly defined. Our study investigates the effect of the HDACs inhibitor suberoylanilide hydroxamic acid (SAHA) on the expression of IL-12p40-related cytokines. For this purpose, human peripheral blood mononuclear cells (PBMC) were stimulated with LPS and C3bgp with or without SAHA. IL-12p40, IL-12p35 and IL-23p19 mRNA was determined at 6 h by qRT-PCR. Cytokine levels were determined in culture supernatants at 6 and 24 h, by ELISA. SAHA significantly inhibited IL-12p40 and IL-23p19 mRNA synthesis and did not change IL-12p35 mRNA transcription. Early at 6 h, we detected significantly decreased IL-12p40 and IL-23, but not IL-12p70 protein production in cultures treated with SAHA. Results also showed that the suppression of IL-12p40-related cytokines was clearly defined at 24 h. However, this suppression was less pronounced regarding IL-12p70. The present study showed that SAHA suppressed the gene expression of IL-23p19 stronger than the expression of IL-12p35, as well as the synthesis of IL-23 compared to that of IL-12p70. We suggest that this inhibitory effect of SAHA may be beneficial during treatment of inflammatory and autoimmune diseases mediated by Th17 immune response. PMID:27240992

  6. Synthesis, Biological Evaluation, and Computer-Aided Drug Designing of New Derivatives of Hyperactive Suberoylanilide Hydroxamic Acid Histone Deacetylase Inhibitors.

    PubMed

    Zhang, Song; Huang, Weibin; Li, Xiaonan; Yang, Zhicheng; Feng, Binghong

    2015-10-01

    The synthesis and biological evaluation of a novel series of compounds based on suberoylanilide hydroxamic acid (SAHA) had been designed as potential histone deacetylase inhibitors (HDACis). Molecular docking studies indicated that our derivatives had better fitting in the binding sites of HDAC8 than SAHA. Compounds 1-5 were synthesized through the synthetic routes. In biological test, compounds also showed good inhibitory activity in HDAC enzyme assay and more potent growth inhibition in human glioma cell lines (MGR2, U251, and U373). A representative compound, N3F, exhibited better inhibitory effect (HDAC, IC50  = 0.1187 μm; U251, IC50  = 0.8949 μm) and lower toxicity for human normal cells (LO2, IC50  = 172.5 μm and MRC5, IC50  = 213.6 μm) compared with SAHA (HDAC, IC50  = 0.8717 μm; U251, IC50  = 8.938 μm; LO2, IC50  = 86.52 μm and MRC5, IC50  = 81.02 μm). In addition, N3F obviously increased Beclin-1 and Caspase-3 and 9 as well as inhibited Bcl-2 in U251 cells. All of our results indicated that these SAHA cap derivatives could serve as potential lead compounds for further optimization. In addition, N3F and N2E both displayed promising profile as antitumor candidates for the treatment of human glioma. PMID:25763653

  7. Suberoylanilide Hydroxamic Acid, an Inhibitor of Histone Deacetylase, Induces Apoptosis in Rheumatoid Arthritis Fibroblast-Like Synoviocytes.

    PubMed

    Chen, Hui; Pan, Jing; Wang, Jin-dan; Liao, Qiu-mei; Xia, Xiao-ru

    2016-02-01

    Here, we explored the effects of suberoylanilide hydroxamic acid (SAHA) on the viability and apoptosis of rheumatoid arthritis of fibroblast-like synoviocytes (rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS)). FLS obtained from RA patients were treated with SAHA. SAHA significantly inhibited the viability of RA FLS in a concentration-dependent manner up to 5 μM. SAHA-treated FLS showed a significant increase in the percentage of apoptosis and the expression and activity of caspase-3 and higher intracellular ROS levels. N-acetyl-l-cysteine (NAC) pretreatment significantly attenuated SAHA-induced apoptosis, decreasing the percentage of apoptosis by about 60 %. A significant decline in phosphorylated IκBα and nuclear factor kappa B (NF-κB) p65 and concomitant increase in total IκBα were shown in SAHA-treated FLS. Additionally, the levels of anti-apoptotic Bcl-2 proteins (Bcl-xL and Mcl-1) were significantly reduced by SAHA. Collectively, SAHA induces apoptosis of RA FLS, at least partially, through generation of ROS and suppression of NF-κB activation and Bcl-xL and Mcl-1 expression. PMID:26228975

  8. (7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity.

    PubMed

    Ieda, Naoya; Yamada, Sota; Kawaguchi, Mitsuyasu; Miyata, Naoki; Nakagawa, Hidehiko

    2016-06-15

    Histone deacetylases (HDACs) are involved in epigenetic control of the expression of various genes by catalyzing deacetylation of ε-acetylated lysine residues. Here, we report the design, synthesis and evaluation of the (7-diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid (AC-SAHA) as a caged HDAC inhibitor, which releases the known pan-HDAC inhibitor SAHA upon cleavage of the photolabile (7-diethylaminocoumarin-4-yl)methyl protecting group in response to photoirradiation. A key advantage of AC-SAHA is that the caged derivative itself shows essentially no HDAC-inhibitory activity. Upon photoirradiation, AC-SAHA decomposes to SAHA and a 7-diethylaminocoumarin derivative, together with some minor products. We confirmed that AC-SAHA inhibits HDAC in response to photoirradiation in vitro by means of chemiluminescence assay. AC-SAHA also showed photoinduced inhibition of proliferation of human colon cancer cell line HCT116, as determined by MTT assay. Thus, AC-SAHA should be a useful tool for spatiotemporally controlled inhibition of HDAC activity, as well as a candidate chemotherapeutic reagent for human colon cancer. PMID:27143132

  9. Mechanisms of suberoylanilide hydroxamic acid inhibition of mammary cell growth

    PubMed Central

    Said, Thenaa K; Moraes, Ricardo CB; Sinha, Raghu; Medina, Daniel

    2001-01-01

    The mechanism of suberoylanilide hydroxamic acid in cell growth inhibition involved induction of pRb-2/p130 interaction and nuclear translocation with E2F-4, followed by significant repression in E2F-1 and PCNA nuclear levels, which led to inhibition in DNA synthesis in mammary epithelial cell lines. PMID:11250759

  10. Redox-Mediated Suberoylanilide Hydroxamic Acid Sensitivity in Breast Cancer

    PubMed Central

    Chiaradonna, Ferdinando; Barozzi, Iros; Miccolo, Claudia; Bucci, Gabriele; Palorini, Roberta; Fornasari, Lorenzo; Botrugno, Oronza A.; Pruneri, Giancarlo; Masullo, Michele; Passafaro, Alfonso; Galimberti, Viviana E.; Fantin, Valeria R.; Richon, Victoria M.; Pece, Salvatore; Viale, Giuseppe; Di Fiore, Pier Paolo; Draetta, Giulio; Pelicci, Pier Giuseppe

    2015-01-01

    Abstract Aims: Vorinostat (suberoylanilide hydroxamic acid; SAHA) is a histone deacetylase inhibitor (HDACi) approved in the clinics for the treatment of T-cell lymphoma and with the potential to be effective also in breast cancer. We investigated the responsiveness to SAHA in human breast primary tumors and cancer cell lines. Results: We observed a differential response to drug treatment in both human breast primary tumors and cancer cell lines. Gene expression analysis of the breast cancer cell lines revealed that genes involved in cell adhesion and redox pathways, especially glutathione metabolism, were differentially expressed in the cell lines resistant to SAHA compared with the sensitive ones, indicating their possible association with drug resistance mechanisms. Notably, such an association was also observed in breast primary tumors. Indeed, addition of buthionine sulfoximine (BSO), a compound capable of depleting cellular glutathione, significantly enhanced the cytotoxicity of SAHA in both breast cancer cell lines and primary breast tumors. Innovation: We identify and validate transcriptional differences in genes involved in redox pathways, which include potential predictive markers of sensitivity to SAHA. Conclusion: In breast cancer, it could be relevant to evaluate the expression of antioxidant genes that may favor tumor resistance as a factor to consider for potential clinical application and treatment with epigenetic drugs (HDACis). Antioxid. Redox Signal. 23, 15–29. PMID:25897982

  11. Synergistic effects of combined treatment with histone deacetylase inhibitor suberoylanilide hydroxamic acid and TRAIL on human breast cancer cells

    PubMed Central

    Zhou, Weiqiang; Feng, Xiuyan; Han Han; Guo, Shanchun; Wang, Guangdi

    2016-01-01

    Previous studies showed that either histone deacetylase (HDAC) inhibitors or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in tumor cells including breast cancer. However, the underling mechanisms of combining HDAC inhibitors with TRAIL in the treatment of breast cancer are poorly understood. In this study, we determined the ability of SAHA and TRAIL as single agents or in combination to inhibit the growth and survival of MCF-7 and MDA-MB-231 breast cancer cells. Our results demonstrate that the distinct effects of SAHA or TRAIL individually and in combination on the proliferation, cell viability, apoptosis, cell cycle distribution, and morphological changes of MDA-MB-231 and MCF-7 cells. We further determined the different effects of SAHA or TRAIL alone and combining SAHA with TRAIL on the expression of a number of apoptosis-related molecules, cell cycle, growth factors and their receptors in cancer cells. Our results demonstrated that the combinatorial treatment of SAHA and TRAIL may target multiple pathways and serve as an effective therapeutic strategy against breast cancer. An improved understanding of the molecular mechanisms may facilitate either SAHA or TRAIL targeted use and the selection of suitable combinations. PMID:27292433

  12. In silico modification of Zn2+ binding group of suberoylanilide hydroxamic acid (SAHA) by organoselenium compounds as Homo sapiens class II HDAC inhibitor of cervical cancer

    NASA Astrophysics Data System (ADS)

    Sumo Friend Tambunan, Usman; Bakri, Ridla; Aditya Parikesit, Arli; Ariyani, Titin; Dyah Puspitasari, Ratih; Kerami, Djati

    2016-02-01

    Cervical cancer is the most common cancer in women, and ranks seventh of all cancers worldwide, with 529000 cases in 2008 and more than 85% cases occur in developing countries. One way to treat this cancer is through the inhibition of HDAC enzymes which play a strategic role in the regulation of gene expression. Suberoyl Anilide Hydroxamic Acid (SAHA) or Vorinostat is a drug which commercially available to treat the cancer, but still has some side effects. This research present in silico SAHA modification in Zinc Binding Group (ZBG) by organoselenium compound to get ligands which less side effect. From molecular docking simulation, and interaction analysis, there are five best ligands, namely CC27, HA27, HB28, IB25, and KA7. These five ligands have better binding affinity than the standards, and also have interaction with Zn2+ cofactor of inhibited HDAC enzymes. This research is expected to produce more potent HDAC inhibitor as novel drug for cervical cancer treatment.

  13. Proteins implicated in the increase of adhesivity induced by suberoylanilide hydroxamic acid in leukemic cells.

    PubMed

    Grebeňová, D; Röselová, P; Pluskalová, M; Halada, P; Rösel, D; Suttnar, J; Brodská, B; Otevřelová, P; Kuželová, K

    2012-12-21

    We have previously shown that suberoylanilide hydroxamic acid (SAHA) treatment increases the adhesivity of leukemic cells to fibronectin at clinically relevant concentrations. Now, we present the results of the proteomic analysis of SAHA effects on leukemic cell lines using 2-DE and ProteomLab PF2D system. Histone acetylation at all studied acetylation sites reached the maximal level after 5 to 10 h of SAHA treatment. No difference in histone acetylation between subtoxic and toxic SAHA doses was observed. SAHA treatment induced cofilin phosphorylation at Ser3, an increase in vimentin and paxillin expression and a decrease in stathmin expression as confirmed by western-blotting and immunofluorescence microscopy. The interaction of cofilin with 14-3-3 epsilon was documented using both Duolink system and coimmunoprecipitation. However, this interaction was independent of cofilin Ser3 phosphorylation and the amount of 14-3-3-ε-bound cofilin did not rise following SAHA treatment. SAHA-induced increase in the cell adhesivity was associated with an increase in PAK phosphorylation in CML-T1 cells and was abrogated by simultaneous treatment with IPA-3, a PAK inhibitor. The effects of SAHA on JURL-MK1 cells were similar to those of other histone deacetylase inhibitors, tubastatin A and sodium butyrate. The proteome analysis also revealed several potential non-histone targets of histone deacetylases. PMID:23022583

  14. Suberoylanilide hydroxamic acid (SAHA) at subtoxic concentrations increases the adhesivity of human leukemic cells to fibronectin.

    PubMed

    Kuzelová, Katerina; Pluskalová, Michaela; Brodská, Barbora; Otevrelová, Petra; Elknerová, Klára; Grebenová, Dana; Hrkal, Zbynek

    2010-01-01

    Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) which is being introduced into clinic for the treatment of hematological diseases. We studied the effect of this compound on six human hematopoietic cell lines (JURL-MK1, K562, CML-T1, Karpas-299, HL-60, and ML-2) as well as on normal human lymphocytes and on leukemic primary cells. SAHA induced dose-dependent and cell type-dependent cell death which displayed apoptotic features (caspase-3 activation and apoptotic DNA fragmentation) in most cell types including the normal lymphocytes. At subtoxic concentrations (0.5-1 microM), SAHA increased the cell adhesivity to fibronectin (FN) in all leukemia/lymphoma-derived cell lines but not in normal lymphocytes. This increase was accompanied by an enhanced expression of integrin beta1 and paxillin, an essential constituent of focal adhesion complexes, both at the protein and mRNA level. On the other hand, the inhibition of ROCK protein, an important regulator of cytoskeleton structure, had no consistent effect on SAHA-induced increase in the cell adhesivity. The promotion of cell adhesivity to FN seems to be specific for SAHA as we observed no such effects with other HDAC inhibitors (trichostatin A and sodium butyrate). PMID:19911379

  15. Effects of suberoylanilide hydroxamic acid on rat cytochrome P450 enzyme activities

    PubMed Central

    Lin, Kezhi; Zhang, Qingwei; Liu, Zezheng; Yang, Suping; Lin, Yingying; Wen, Congcong; Zheng, Yuancai

    2015-01-01

    Vorinostat (suberoylanilide hydroxamic acid, SAHA) is the first approved histone deacetylase (HDAC) inhibitor for the treatment of cutaneous T-cell lymphoma after progressive disease following two systemic therapies. The rats were randomly divided into SAHA groups (low, medium and high dosage) and control group. The SAHA group rats were given 12.3, 24.5, and 49 mg/kg SAHA, respectively, by continuous intragastric administration for 7 days. The influence of SAHA on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C19, CYP2D6 and CYP2C9 were evaluated by cocktail method, they were responsed by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metroprolol and omeprazole. The five probe drugs were given to rats through intragastric administration, and the plasma concentration were determined by UPLC-MS/MS. The result of SAHA group compared to control group, there were statistical pharmacokinetics difference for bupropion, phenacetin, tolbutamide and metroprolol. Continuous intragastric administration for 7 days may induce the activities of CYP2C19 of rats, inhibit CYP1A2 and slightly inhibit CYP2B6 and CYP2D6 of rats. This may give advising for reasonable drug use after co-used with SAHA. The results indicated that drug co-administrated with SAHA may need dose adjustment. Furthermore, continuous intragastric administration of SAHA for 7 days, liver cell damaged, causing liver cell edema, in liver metabolism process. PMID:26191268

  16. Effects of suberoylanilide hydroxamic acid on rat cytochrome P450 enzyme activities.

    PubMed

    Lin, Kezhi; Zhang, Qingwei; Liu, Zezheng; Yang, Suping; Lin, Yingying; Wen, Congcong; Zheng, Yuancai

    2015-01-01

    Vorinostat (suberoylanilide hydroxamic acid, SAHA) is the first approved histone deacetylase (HDAC) inhibitor for the treatment of cutaneous T-cell lymphoma after progressive disease following two systemic therapies. The rats were randomly divided into SAHA groups (low, medium and high dosage) and control group. The SAHA group rats were given 12.3, 24.5, and 49 mg/kg SAHA, respectively, by continuous intragastric administration for 7 days. The influence of SAHA on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C19, CYP2D6 and CYP2C9 were evaluated by cocktail method, they were responsed by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metroprolol and omeprazole. The five probe drugs were given to rats through intragastric administration, and the plasma concentration were determined by UPLC-MS/MS. The result of SAHA group compared to control group, there were statistical pharmacokinetics difference for bupropion, phenacetin, tolbutamide and metroprolol. Continuous intragastric administration for 7 days may induce the activities of CYP2C19 of rats, inhibit CYP1A2 and slightly inhibit CYP2B6 and CYP2D6 of rats. This may give advising for reasonable drug use after co-used with SAHA. The results indicated that drug co-administrated with SAHA may need dose adjustment. Furthermore, continuous intragastric administration of SAHA for 7 days, liver cell damaged, causing liver cell edema, in liver metabolism process. PMID:26191268

  17. Suberoylanilide hydroxamic acid synergistically enhances the antitumor activity of etoposide in Ewing sarcoma cell lines.

    PubMed

    Unland, Rebekka; Clemens, Dagmar; Heinicke, Ulrike; Potratz, Jenny C; Hotfilder, Marc; Fulda, Simone; Wardelmann, Eva; Frühwald, Michael C; Dirksen, Uta

    2015-09-01

    Ewing sarcomas (ES) are highly malignant tumors arising in bone and soft tissues. Given the poor outcome of affected patients with primary disseminated disease or at relapse, there is a clear need for new targeted therapies. The HDAC inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA, Vorinostat) inhibits ES tumor growth and induces apoptosis in vitro and in vivo. Thus, SAHA may be considered a novel treatment. However, it is most likely that not a single agent but a combination of agents with synergistic mechanisms will help improve the prognosis in high-risk ES patients. Therefore, the aim of the present study was to assess a putative synergistic effect of SAHA in combination with conventional chemotherapeutic agents. The antitumor activity of SAHA in combination with conventional chemotherapeutics (doxorubicin, etoposide, rapamycin, topotecan) was assessed using an MTT cell proliferation assay on five well-characterized ES cell lines (CADO-ES-1, RD-ES, TC-71, SK-ES-1, SK-N-MC) and a newly established ES cell line (DC-ES-15). SAHA antagonistically affected the antiproliferative effect of doxorubicin and topotecan in the majority of the ES cell lines, but synergistically enhanced the antiproliferative activity of etoposide. In functional analyses, pretreatment with SAHA significantly increased the effects of etoposide on apoptosis and clonogenicity. The in-vitro analyses presented in this work show that SAHA synergistically enhances the antitumor activity of etoposide in ES cells. Sequential treatment with etoposide combined with SAHA may represent a new therapeutic approach in ES. PMID:26053276

  18. Single Conformation Spectroscopy of Suberoylanilide Hydroxamic Acid: a Molecule Bites its Tail

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Dean, Jacob; Zwier, Timothy S.

    2012-06-01

    Suberoylanilide hydroxamic acid (C_6H_5NHCO(CH_2)_6CONHOH, SAHA) is a histone deacetylase inhibitor approved by the FDA for the treatment of cutaneous T-cell lymphoma. With one hydrogen bonding group adjacent to ring and the other at the end of a long C_6 hydrocarbon tail, SAHA possesses an interesting potential energy landscape to be probed by single-conformation methods. A large number of extended structures favored by entropy are offset by a few structures in which head-to-tail or tail-to-head H-bonds close a large loop between the two groups separated by the C_6 chain. We use laser desorption to bring SAHA into the gas phase and cool it in a supersonic expansion before interrogation with resonant two-photon ionization. Single-conformation UV spectra in the S_0-S_1 region and infrared spectra in the hydride stretch region were recorded using IR-UV hole-burning and resonant ion-dip infrared (RIDIR) spectroscopies, respectively. Four different conformers were observed and spectroscopically characterized. Comparison of the experimental IR spectra with density functional theory (DFT) calculations leads to assignments for two of the major conformers, which adopt head-to-tail and tail-to-head binding patterns. The implication of the observed structures for the folding landscape and configuration preference of SAHA will be discussed.

  19. Suberoylanilide Hydroxamic Acid (SAHA) enhances olaparib activity by targeting homologous recombination DNA repair in ovarian cancer

    PubMed Central

    Konstantinopoulos, Panagiotis A.; Wilson, Andrew J.; Saskowski, Jeanette; Wass, Erica; Khabele, Dineo

    2015-01-01

    Objectives Approximately 50% of serous epithelial ovarian cancers (EOC) contain molecular defects in homologous recombination (HR) DNA repair pathways. Poly(ADP-ribose) polymerase inhibitors (PARPi) have efficacy in HR-deficient, but not HR-proficient, EOC tumors as a single agent. Our goal was to determine whether the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), can sensitize HR-proficient ovarian cancer cells to the PARPi AZD-2281 (olaparib). Methods Ovarian cancer cell lines (SKOV-3, OVCAR-8, NCI/ADR-Res, UWB1.289 BRCA1null and UWB1.289 + BRCA1 wild-type) were treated with saline vehicle, olaparib, SAHA or olaparib/SAHA. Sulforhodamine B (SRB) assessed cytotoxicity and immunofluorescence and Western blot assays assessed markers of apoptosis (cleaved PARP) and DNA damage (pH2AX and RAD51). Drug effects were also tested in SKOV-3 xenografts in Nude mice. Affymetrix microarray experiments were performed in vehicle and SAHA-treated SKOV-3 cells. Results In a microarray analysis, SAHA induced coordinated down-regulation of HR pathway genes, including RAD51 and BRCA1. Nuclear co-expression of RAD51 and pH2AX, a marker of efficient HR repair, was reduced approximately 40% by SAHA treatment alone and combined with olaparib. SAHA combined with olaparib induced apoptosis and pH2AX expression to a greater extent than either drug alone. Olaparib reduced cell viability at increasing concentrations and SAHA enhanced these effects in 4 of 5 cell lines, including BRCA1 null and wild-type cells, in vitro and in SKOV-3 xenografts in vivo. Conclusions These results provide preclinical rationale for targeting DNA damage response pathways by combining small molecule PARPi with HDACi as a mechanism for reducing HR efficiency in ovarian cancer. PMID:24631446

  20. Suberoylanilide Hydroxamic Acid Restores Estrogen Reduced-cTnI Expression in Neonatal Hearts of Mice.

    PubMed

    Peng, Chang; Luo, Xiaomei; Xing, Qianlu; Sun, Huichao; Huang, Xupei

    2016-10-01

    Diastolic cardiac dysfunction can be caused by abnormality in cTnI expression during cardiogenesis. In this study, we investigated the effects of estrogen on the abnormal expression of cTnI in the hearts of neonatal mice and its potential epigenetic mechanisms. We then evaluated suberoylanilide hydroxamic acid (SAHA), a HDAC inhibitor, as a new target treatment of diastolic cardiac dysfunction. Postnatal day 0.5 C57BL/6 mice were injected with estrogen for 1 week, then the hearts of 7-day-old neonatal mice were retrieved for examination. The activities of HDAC and HAT were assayed by colorimetry, and the interaction of cTnI with HDAC5 in mice hearts were examined using chromatin immunoprecipitation assays. The expression of cTnI was tested by quantitative real-time RT-PCR and Western blot. Estrogen treated groups displayed a significantly increased HDAC activity in the hearts of neonatal mice while HAT activity remained unchanged. Additionally, HDAC5 was higher at the cTnI promoter, as compared to the saline treated control groups. The acetylation of histone H3K9ac on cTnI promoter significantly decreased in the hearts of neonatal mice treated with estrogen, and the expression of cTnI at transcriptional and protein levels also decreased. SAHA was shown to increase the acetylation of histone H3K9ac and upregulate the expression of cTnI. The data demonstrated that SAHA can correct cTnI expression abnormality caused by estrogen through inhibiting the binding of HDAC5 to the promoter of cTnI. J. Cell. Biochem. 117: 2377-2384, 2016. © 2016 Wiley Periodicals, Inc. PMID:27379430

  1. Treatment of chronically FIV-infected cats with suberoylanilide hydroxamic acid

    PubMed Central

    McDonnel, Samantha J; Liepnieks, Molly L.; Murphy, Brian G

    2014-01-01

    Feline immunodeficiency virus (FIV) is a naturally-occurring, large animal model of lentiviral-induced immunodeficiency syndrome, and has been used as a model of HIV pathogenesis and therapeutic interventions. HIV reservoirs in the form of latent virus remain the primary roadblock to viral eradication and cure, and FIV has been previously established an animal model of lentiviral latency. The goal of this study was to determine whether administration of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) to aviremic, chronically FIV-infected cats would induce latent viral reactivation in vivo. A proof-of-concept experiment in a Transwell co-culture system demonstrated the ability of SAHA to reactivate latent virus which was replication competent and able to infect naïve cells. Oral SAHA (250 mg/m2) was administered with food to four asymptomatic, experimentally FIV-infected cats and one uninfected control cat, and a limited pharmacokinetic and pharmacodynamic analysis was performed. A statistically significant increase in cell-associated FIV RNA was detected in the cat with the greatest serum SAHA exposure, and cell-free viral RNA was detected at one time point in the three cats that achieved the highest levels of SAHA in serum. Interestingly, there was a significant decrease in viral DNA burden at 2 hours post drug administration in the same three cats. Though the sample size is small and the drug response was modest, this study provides evidence that in vivo treatment of FIV-infected cats with the HDACi SAHA can induce viral transcriptional reactivation, which may be dependent upon the concentration of SAHA achieved in blood. Importantly, alternative putative antilatency therapy drugs, and multimodal drug combinations, could be studied in this in vivo system. The FIV/cat model provides a unique opportunity to test novel therapeutic interventions aimed at eradicating latent virus in vivo. PMID:24954265

  2. Suberoylanilide hydroxamic acid (SAHA; vorinostat) causes bone loss by inhibiting immature osteoblasts

    PubMed Central

    McGee-Lawrence, Meghan E.; McCleary-Wheeler, Angela L.; Secreto, Frank J.; Razidlo, David F.; Zhang, Minzhi; Stensgard, Bridget A.; Li, Xiaodong; Stein, Gary S.; Lian, Jane B.; Westendorf, Jennifer J.

    2011-01-01

    Histone deacetylase (Hdac) inhibitors are used clinically to treat cancer and epilepsy. Although Hdac inhibition accelerates osteoblast maturation and suppresses osteoclast maturation in vitro, the effects of Hdac inhibitors on the skeleton are not understood. The purpose of this study was to determine how the pan-Hdac inhibitor, suberoylanilide hydroxamic acid (SAHA; a.k.a. vorinostat or Zolinza™) affects bone mass and remodeling in vivo. Male C57BL/6 mice received daily SAHA (100 mg/kg) or vehicle injections for three to four weeks. SAHA decreased trabecular bone volume fraction and trabecular number in the distal femur. Cortical bone at the femoral midshaft was not affected. SAHA reduced serum levels of P1NP, a bone formation marker, and also suppressed tibial mRNA levels of type I collagen, osteocalcin and osteopontin, but did not alter Runx2 or osterix transcripts. SAHA decreased histological measures of osteoblast number but interestingly increased indices of osteoblast activity including mineral apposition rate and bone formation rate. Neither serum (TRAcP 5b) nor histological markers of bone resorption were affected by SAHA. P1NP levels returned to baseline in animals which were allowed to recover for four weeks after four weeks of daily SAHA injections, but bone density remained low. In vitro, SAHA suppressed osteogenic colony formation, decreased osteoblastic gene expression, induced cell cycle arrest, and caused DNA damage in bone marrow-derived adherent cells. Collectively, these data demonstrate that bone loss following treatment with SAHA is primarily due to a reduction in osteoblast number. Moreover, these decreases in osteoblast number can be attributed to the deleterious effects of SAHA on immature osteoblasts, even while mature osteoblasts are resistant to the harmful effects and demonstrate increased activity in vivo, indicating that the response of osteoblasts to SAHA is dependent upon their differentiation state. These studies suggest that

  3. Suberoylanilide hydroxamic acid increases progranulin production in iPSC-derived cortical neurons of frontotemporal dementia patients.

    PubMed

    Almeida, Sandra; Gao, Fuying; Coppola, Giovanni; Gao, Fen-Biao

    2016-06-01

    Mutations in the granulin (GRN) gene cause frontotemporal dementia (FTD) due to progranulin haploinsufficiency. Compounds that can increase progranulin production and secretion may be considered as potential therapeutic drugs; however, very few of them have been directly tested on human cortical neurons. To this end, we differentiated 9 induced pluripotent stem cell lines derived from a control subject, a sporadic FTD case and an FTD patient with progranulin S116X mutation. Treatment with 1 μM suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, increased the production of progranulin in cortical neurons of all subjects at both the mRNA and protein levels without affecting their viability. Microarray analysis revealed that SAHA treatment not only reversed some gene expression changes caused by progranulin haploinsufficiency but also caused massive alterations in the overall transcriptome. Thus, histone deacetylase inhibitors may be considered as therapeutic drugs for GRN mutation carriers. However, this class of drugs also causes drastic changes in overall gene expression in human cortical neurons and their side effects and potential impacts on other pathways should be carefully evaluated. PMID:27143419

  4. Altering histone acetylation status in donor cells with suberoylanilide hydroxamic acid does not affect dog cloning efficiency.

    PubMed

    Kim, Min Jung; Oh, Hyun Ju; Kim, Geon A; Suh, Han Na; Jo, Young Kwang; Choi, Yoo Bin; Kim, Dong Hoon; Han, Ho Jae; Lee, Byeong Chun

    2015-10-15

    Although dog cloning technology has been applied to conservation of endangered canids, propagation of elite dogs, and production of transgenic dogs, the efficiency of cloning is still very low. To help overcome this problem, we evaluated the effect of treating donor cells with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on dog cloning efficiency. Relative messenger RNA expressions of the bax1/bcl2 ratio and Dnmt1 in fibroblasts treated with different concentrations (0, 1, 10, 50 μM) of SAHA and durations (0, 20, 44 hours) were compared. Treatment with 1 μM for 20 hours showed significantly lower bax1/bcl2 and Dnmt1 transcript abundance. Acetylation of H3K9 was significantly increased after SAHA treatment, but H4K5, H4K8 and H4K16 were not changed. After SCNT using control or donor cells treated with SAHA, a total of 76 and 64 cloned embryos were transferred to seven and five recipients, respectively. Three fetuses were diagnosed in both control and SAHA-treated groups by ultrasonography 29 days after the embryo transfer, but there was no significant difference in the pregnancy rate (4.2% vs. 4.3%). In conclusion, although SAHA treatment as used in this study significantly decreased bax1/bcl2 and Dnmt1 transcripts of donor nuclei, as well as increased H3 acetylation, it was not enough to increase in vivo developmental competence of cloned dog embryos. PMID:26259535

  5. The levels of HDAC1 and thioredoxin1 are related to the death of mesothelioma cells by suberoylanilide hydroxamic acid.

    PubMed

    You, Bo Ra; Park, Woo Hyun

    2016-05-01

    Mesothelioma is an aggressive tumor which is mainly derived from the pleura of lung. In the present study, we evaluated the anticancer effect of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor on human mesothelioma cells in relation to the levels of HDAC1, reactive oxygen species (ROS) and thioredoxin (Trx). While 1 µM SAHA inhibited cell growth in Phi and ROB cells at 24 h, it did not affect the growth in ADA and Mill cells. Notably, the level of HDAC1 was relatively overexpressed among Phi, REN and ROB cells. SAHA induced necrosis and apoptosis, which was accompanied by the cleavages of PARP and caspase-3 in Phi cells. This agent also increased the loss of mitochondrial membrane potential (MMP, ΔΨm) in Phi cells. All the tested caspase inhibitors attenuated apoptosis in SAHA-treated Phi cells whereas HDAC1 siRNA enhanced the apoptotic cell death. SAHA increased intracellular ROS levels including O2•- in Phi cells. N-acetyl cysteine (NAC) and vitamin C (Vit.C) significantly reduced the growth inhibition and death of Phi cells caused by SAHA. This drug decreased the mRNA and protein levels of Trx1 in Phi and ROB cells. Furthermore, Trx1 siRNA increased cell death and O2•- level in SAHA-treated Phi cells. In conclusion, SAHA selectively inhibited the growth of Phi and ROB mesothelioma cells, which showed the higher basal level of HDAC1. SAHA-induced Phi cell death was related to oxidative stress and Trx1 levels. PMID:26936390

  6. Enhanced suppression of tumor growth by concomitant treatment of human lung cancer cells with suberoylanilide hydroxamic acid and arsenic trioxide

    SciTech Connect

    Chien, Chia-Wen; Yao, Ju-Hsien; Chang, Shih-Yu; Lee, Pei-Chih; Lee, Te-Chang

    2011-11-15

    The efficacy of arsenic trioxide (ATO) against acute promyelocytic leukemia (APL) and relapsed APL has been well documented. ATO may cause DNA damage by generating reactive oxygen intermediates. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, modulates gene and protein expression via histone-dependent or -independent pathways that may result in chromatin decondensation, cell cycle arrest, differentiation, and apoptosis. We investigated whether ATO and SAHA act synergistically to enhance the death of cancer cells. Our current findings showed that combined treatment with ATO and SAHA resulted in enhanced suppression of non-small-cell lung carcinoma in vitro in H1299 cells and in vivo in a xenograft mouse model. Flow cytometric analysis of annexin V+ cells showed that apoptotic cell death was significantly enhanced after combined treatment with ATO and SAHA. At the doses used, ATO did not interfere with cell cycle progression, but SAHA induced p21 expression and led to G1 arrest. A Comet assay demonstrated that ATO, but not SAHA, induced DNA strand breaks in H1299 cells; however, co-treatment with SAHA significantly increased ATO-induced DNA damage. Moreover, SAHA enhanced acetylation of histone H3 and sensitized genomic DNA to DNase I digestion. Our results suggest that SAHA may cause chromatin relaxation and increase cellular susceptibility to ATO-induced DNA damage. Combined administration of SAHA and ATO may be an effective approach to the treatment of lung cancer. -- Highlights: Black-Right-Pointing-Pointer ATO and SAHA are therapeutic agents with different action modes. Black-Right-Pointing-Pointer Combination of ATO and SAHA synergistically inhibits tumor cell growth. Black-Right-Pointing-Pointer SAHA loosens chromatin structure resulting in increased sensitivity to DNase I. Black-Right-Pointing-Pointer ATO-induced DNA damage and apoptosis are enhanced by co-treatment with SAHA.

  7. Suberoylanilide Hydroxamic Acid Treatment Reveals Crosstalks among Proteome, Ubiquitylome and Acetylome in Non-Small Cell Lung Cancer A549 Cell Line

    PubMed Central

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-01-01

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level. PMID:25825284

  8. Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line.

    PubMed

    Wu, Quan; Cheng, Zhongyi; Zhu, Jun; Xu, Weiqing; Peng, Xiaojun; Chen, Chuangbin; Li, Wenting; Wang, Fengsong; Cao, Lejie; Yi, Xingling; Wu, Zhiwei; Li, Jing; Fan, Pingsheng

    2015-01-01

    Suberoylanilide hydroxamic acid (SAHA) is a well-known histone deacetylase (HDAC) inhibitor and has been used as practical therapy for breast cancer and non-small cell lung cancer (NSCLC). It is previously demonstrated that SAHA treatment could extensively change the profile of acetylome and proteome in cancer cells. However, little is known about the impact of SAHA on other protein modifications and the crosstalks among different modifications and proteome, hindering the deep understanding of SAHA-mediated cancer therapy. In this work, by using SILAC technique, antibody-based affinity enrichment and high-resolution LC-MS/MS analysis, we investigated quantitative proteome, acetylome and ubiquitylome as well as crosstalks among the three datasets in A549 cells toward SAHA treatment. In total, 2968 proteins, 1099 acetylation sites and 1012 ubiquitination sites were quantified in response to SAHA treatment, respectively. With the aid of intensive bioinformatics, we revealed that the proteome and ubiquitylome were negatively related upon SAHA treatment. Moreover, the impact of SAHA on acetylome resulted in 258 up-regulated and 99 down-regulated acetylation sites at the threshold of 1.5 folds. Finally, we identified 55 common sites with both acetylation and ubiquitination, among which ubiquitination level in 43 sites (78.2%) was positive related to acetylation level. PMID:25825284

  9. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    SciTech Connect

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-09-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  10. Structural Requirements of Histone Deacetylase Inhibitors: SAHA Analogs Modified on the Hydroxamic Acid.

    PubMed

    Bieliauskas, Anton V; Weerasinghe, Sujith V W; Negmeldin, Ahmed T; Pflum, Mary Kay H

    2016-05-01

    Histone deacetylase (HDAC) proteins have emerged as targets for anti-cancer therapeutics, with several inhibitors used in the clinic, including suberoylanilide hydroxamic acid (SAHA, vorinostat). Because SAHA and many other inhibitors target all or most of the 11 human HDAC proteins, the creation of selective inhibitors has been studied intensely. Recently, inhibitors selective for HDAC1 and HDAC2 were reported where selectivity was attributed to interactions between substituents on the metal binding moiety of the inhibitor and residues in the 14-Å internal cavity of the HDAC enzyme structure. Based on this earlier work, we synthesized and tested SAHA analogs with substituents on the hydroxamic acid metal binding moiety. The N-substituted SAHA analogs displayed reduced potency and solubility, but greater selectivity, compared to SAHA. Docking studies suggested that the N-substituent accesses the 14-Å internal cavity to impart preferential inhibition of HDAC1. These studies with N-substituted SAHA analogs are consistent with the strategy exploiting the 14-Å internal cavity of HDAC proteins to create HDAC1/2 selective inhibitors. PMID:27062198

  11. The safety profile of vorinostat (suberoylanilide hydroxamic acid) in hematologic malignancies: A review of clinical studies.

    PubMed

    Duvic, Madeleine; Dimopoulos, Meletios

    2016-02-01

    Histone acetyltransferases and histone deacetylases (HDACs) are multifunctional enzymes that posttranslationally modify both histone and nonhistone acetylation sites, affecting a broad range of cellular processes (e.g., cell cycle, apoptosis, and protein folding) often dysregulated in cancer. HDAC inhibitors are small molecules that directly interact with HDAC catalytic sites preventing the removal of acetyl groups, thereby counteracting the effects of HDACs. Since the first HDAC inhibitor, valproic acid, was investigated as a potential antitumor agent, there have been a number of other HDAC inhibitors developed to improve efficacy and safety. Despite significant progress in the management of patients with hematologic malignancies, overall survival is still poor. The discovery that HDACs may play a role in hematologic malignancies and preclinical studies showing promising activity with HDAC inhibitors in various tumor types, led to clinical evaluation of HDAC inhibitors as potential treatment options for patients with advanced hematologic malignancies. The Food and Drug Administration has approved two HDAC inhibitors, vorinostat (2006) and romidepsin (2009), for the treatment of cutaneous T-cell lymphoma. This review highlights the safety of HDAC inhibitors currently approved or being investigated for the treatment of hematologic malignancies, with a specific focus on the safety experience with vorinostat in cutaneous T-cell lymphoma. PMID:26827693

  12. Pyridoxine hydroxamic acids as novel HIV-integrase inhibitors.

    PubMed

    Stranix, Brent R; Wu, Jinzi J; Milot, Guy; Beaulieu, Françis; Bouchard, Jean-Emanuel; Gouveia, Kristine; Forte, André; Garde, Seema; Wang, Zhigang; Mouscadet, Jean-François; Delelis, Olivier; Xiao, Yong

    2016-02-15

    A series of pyridoxine hydroxamic acid analog bearing a 5-aryl-spacers were synthesized. Evaluation of these novel HIV integrase complex inhibitors revealed compounds with high potency against wild-type HIV virus. PMID:26826732

  13. Combined Effects of Suberoylanilide Hydroxamic Acid and Cisplatin on Radiation Sensitivity and Cancer Cell Invasion in Non-Small Cell Lung Cancer.

    PubMed

    Feng, Jianguo; Zhang, Shirong; Wu, Kan; Wang, Bing; Wong, Jeffrey Y C; Jiang, Hong; Xu, Rujun; Ying, Lisha; Huang, Haixiu; Zheng, Xiaoliang; Chen, Xufeng; Ma, Shenglin

    2016-05-01

    Lung cancer is a leading cause of cancer-related mortality worldwide, and concurrent chemoradiotherapy has been explored as a therapeutic option. However, the chemotherapeutic agents cannot be administered for most patients at full doses safely with radical doses of thoracic radiation, and further optimizations of the chemotherapy regimen to be given with radiation are needed. In this study, we examined the effects of suberoylanilide hydroxamic acid (SAHA) and cisplatin on DNA damage repairs, and determined the combination effects of SAHA and cisplatin on human non-small cell lung cancer (NSCLC) cells in response to treatment of ionizing radiation (IR), and on tumor growth of lung cancer H460 xenografts receiving radiotherapy. We also investigated the potential differentiation effect of SAHA and its consequences on cancer cell invasion. Our results showed that SAHA and cisplatin compromise distinct DNA damage repair pathways, and treatment with SAHA enhanced synergistic radiosensitization effects of cisplatin in established NSCLC cell lines in a p53-independent manner, and decreased the DNA damage repair capability in cisplatin-treated primary NSCLC tumor tissues in response to IR. SAHA combined with cisplatin also significantly increased inhibitory effect of radiotherapy on tumor growth in the mouse xenograft model. In addition, SAHA can induce differentiation in stem cell-like cancer cell population, reduce tumorigenicity, and decrease invasiveness of human lung cancer cells. In conclusion, our data suggest a potential clinical impact for SAHA as a radiosensitizer and as a part of a chemoradiotherapy regimen for NSCLC. Mol Cancer Ther; 15(5); 842-53. ©2016 AACR. PMID:26839308

  14. Effect of Suberoylanilide Hydroxamic Acid (SAHA) Administration on the Residual Virus Pool in a Model of Combination Antiretroviral Therapy-Mediated Suppression in SIVmac239-Infected Indian Rhesus Macaques

    PubMed Central

    Del Prete, Gregory Q.; Shoemaker, Rebecca; Oswald, Kelli; Lara, Abigail; Trubey, Charles M.; Fast, Randy; Schneider, Douglas K.; Kiser, Rebecca; Coalter, Vicky; Wiles, Adam; Wiles, Rodney; Freemire, Brandi; Keele, Brandon F.; Estes, Jacob D.; Quiñones, Octavio A.; Smedley, Jeremy; Macallister, Rhonda; Sanchez, Rosa I.; Wai, John S.; Tan, Christopher M.; Alvord, W. Gregory; Hazuda, Daria J.; Piatak, Michael

    2014-01-01

    Nonhuman primate models are needed for evaluations of proposed strategies targeting residual virus that persists in HIV-1-infected individuals receiving suppressive combination antiretroviral therapy (cART). However, relevant nonhuman primate (NHP) models of cART-mediated suppression have proven challenging to develop. We used a novel three-class, six-drug cART regimen to achieve durable 4.0- to 5.5-log reductions in plasma viremia levels and declines in cell-associated viral RNA and DNA in blood and tissues of simian immunodeficiency virus SIVmac239-infected Indian-origin rhesus macaques, then evaluated the impact of treatment with the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA; Vorinostat) on the residual virus pool. Ex vivo SAHA treatment of CD4+ T cells obtained from cART-suppressed animals increased histone acetylation and viral RNA levels in culture supernatants. cART-suppressed animals each received 84 total doses of oral SAHA. We observed SAHA dose-dependent increases in acetylated histones with evidence for sustained modulation as well as refractoriness following prolonged administration. In vivo virologic activity was demonstrated based on the ratio of viral RNA to viral DNA in peripheral blood mononuclear cells, a presumptive measure of viral transcription, which significantly increased in SAHA-treated animals. However, residual virus was readily detected at the end of treatment, suggesting that SAHA alone may be insufficient for viral eradication in the setting of suppressive cART. The effects observed were similar to emerging data for repeat-dose SAHA treatment of HIV-infected individuals on cART, demonstrating the feasibility, utility, and relevance of NHP models of cART-mediated suppression for in vivo assessments of AIDS virus functional cure/eradication approaches. PMID:25182644

  15. Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency.

    PubMed

    White, Cory H; Johnston, Harvey E; Moesker, Bastiaan; Manousopoulou, Antigoni; Margolis, David M; Richman, Douglas D; Spina, Celsa A; Garbis, Spiros D; Woelk, Christopher H; Beliakova-Bethell, Nadejda

    2015-11-01

    Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a "shock and kill" strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA ("shock"), treatment with SAHA did not result in a reduction of reservoir size ("kill"). We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and proteome to dissect its mechanisms of action that may explain its limited success in "shock and kill" strategies. CD4+ T cells from HIV seronegative donors were treated with 1μM SAHA or its solvent dimethyl sulfoxide (DMSO) for 24h. Protein expression and post-translational modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional liquid chromatography-tandem mass spectrometry. Gene expression was assessed by Illumina microarrays. Using limma package in the R computing environment, we identified 185 proteins, 18 phosphorylated forms, 4 acetylated forms and 2982 genes, whose expression was modulated by SAHA. A protein interaction network integrating these 4 data types identified the HIV transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and acetylated protein levels. Further functional category assessment of proteins and genes modulated by SAHA identified gene ontology terms related to NFκB signaling, protein folding and autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous host cell transcripts, proteins and post-translational modifications of proteins, which would be expected to have very mixed effects on the induction of HIV-specific transcription and protein function. Proteome profiling highlighted a number of potential counter-regulatory effects of SAHA with respect to viral induction, which transcriptome profiling alone would not have identified. These observations could lead to a more informed selection and design of other HDACi with a more refined targeting profile, and

  16. Pyridone Methylsulfone Hydroxamate LpxC Inhibitors for the Treatment of Serious Gram-Negative Infections

    SciTech Connect

    Montgomery, Justin I.; Brown, Matthew F.; Reilly, Usa; Price, Loren M.; Abramite, Joseph A.; Arcari, Joel; Barham, Rose; Che, Ye; Chen, Jinshan Michael; Chung, Seung Won; Collantes, Elizabeth M.; Desbonnet, Charlene; Doroski, Matthew; Doty, Jonathan; Engtrakul, Juntyma J.; Harris, Thomas M.; Huband, Michael; Knafels, John D.; Leach, Karen L.; Liu, Shenping; Marfat, Anthony; McAllister, Laura; McElroy, Eric; Menard, Carol A.; Mitton-Fry, Mark; Mullins, Lisa; Noe, Mark C.; O’Donnell, John; Oliver, Robert; Penzien, Joseph; Plummer, Mark; Shanmugasundaram, Veerabahu; Thoma, Christy; Tomaras, Andrew P.; Uccello, Daniel P.; Vaz, Alfin; Wishka, Donn G.

    2012-11-09

    The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.

  17. Suberoylanilide hydroxamic acid (SAHA) promotes the epithelial mesenchymal transition of triple negative breast cancer cells via HDAC8/FOXA1 signals.

    PubMed

    Wu, Shao; Luo, Zhi; Yu, Peng-Jiu; Xie, Hui; He, Yu-Wen

    2016-01-01

    Inhibitor of histone deacetylases (HDACIs) have great therapeutic value for triple negative breast cancer (TNBC) patients. Interestingly, our present study reveals that suberoyl anilide hydroxamic acid (SAHA), one of the most advanced pan-HDAC inhibitor, can obviously promote in vitro motility of MDA-MB-231 and BT-549 cells via induction of epithelial-mesenchymal transition (EMT). SAHA treatment significantly down-regulates the expression of epithelial markers E-cadherin (E-Cad) while up-regulates the mesenchymal markers N-cadherin (N-Cad), vimentin (Vim) and fibronectin (FN). However, SAHA has no effect on the expression and nuclear translocation of EMT related transcription factors including Snail, Slug, Twist and ZEB. While SAHA treatment down-regulates the protein and mRNA expression of FOXA1 and then decreases its nuclear translocation. Over-expression of FOXA1 markedly attenuates SAHA induced EMT of TNBC cells. Further, silence of HDAC8, while not HDAC6, alleviates the down-regulation of FOXA1 and up-regulation of N-Cad and Vim in MDA-MB-231 cells treated with SAHA. Collectively, our present study reveals that SAHA can promote EMT of TNBC cells via HDAC8/FOXA1 signals, which suggests that more attention should be paid when SAHA is used as anti-cancer agent for cancer treatment. PMID:26431101

  18. Structure of 'linkerless' hydroxamic acid inhibitor-HDAC8 complex confirms the formation of an isoform-specific subpocket.

    PubMed

    Tabackman, Alexa A; Frankson, Rochelle; Marsan, Eric S; Perry, Kay; Cole, Kathryn E

    2016-09-01

    Histone deacetylases (HDACs) catalyze the hydrolysis of acetylated lysine side chains in histone and non-histone proteins, and play a critical role in the regulation of many biological processes, including cell differentiation, proliferation, senescence, and apoptosis. Aberrant HDAC activity is associated with cancer, making these enzymes important targets for drug design. In general, HDAC inhibitors (HDACi) block the proliferation of tumor cells by inducing cell differentiation, cell cycle arrest, and/or apoptosis, and comprise some of the leading therapies in cancer treatments. To date, four HDACi have been FDA approved for the treatment of cancers: suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza®), romidepsin (FK228, Istodax®), belinostat (Beleodaq®), and panobinostat (Farydak®). Most current inhibitors are pan-HDACi, and non-selectively target a number of HDAC isoforms. Six previously reported HDACi were rationally designed, however, to target a unique sub-pocket found only in HDAC8. While these inhibitors were indeed potent against HDAC8, and even demonstrated specificity for HDAC8 over HDACs 1 and 6, there were no structural data to confirm the mode of binding. Here we report the X-ray crystal structure of Compound 6 complexed with HDAC8 to 1.98Å resolution. We also describe the use of molecular docking studies to explore the binding interactions of the other 5 related HDACi. Our studies confirm that the HDACi induce the formation of and bind in the HDAC8-specific subpocket, offering insights into isoform-specific inhibition. PMID:27374062

  19. Cytotoxic effects of Jay Amin hydroxamic acid (JAHA), a ferrocene-based class I histone deacetylase inhibitor, on triple-negative MDA-MB231 breast cancer cells.

    PubMed

    Librizzi, Mariangela; Longo, Alessandra; Chiarelli, Roberto; Amin, Jahanghir; Spencer, John; Luparello, Claudio

    2012-11-19

    The histone deacetylase inhibitors (HDACis) are a class of chemically heterogeneous anticancer agents of which suberoylanilide hydroxamic acid (SAHA) is a prototypical member. SAHA derivatives may be obtained by three-dimensional manipulation of SAHA aryl cap, such as the incorporation of a ferrocene unit like that present in Jay Amin hydroxamic acid (JAHA) and homo-JAHA [ Spencer , et al. ( 2011 ) ACS Med. Chem. Lett. 2 , 358 - 362 ]. These metal-based SAHA analogues have been tested for their cytotoxic activity toward triple-negative MDA-MB231 breast cancer cells. The results obtained indicate that of the two compounds tested, only JAHA was prominently active on breast cancer cells with an IC(50) of 8.45 μM at 72 h of treatment. Biological assays showed that exposure of MDA-MB231 cells to the HDACi resulted in cell cycle perturbation with an alteration of S phase entry and a delay at G(2)/M transition and in an early reactive oxygen species production followed by mitochondrial membrane potential (MMP) dissipation and autophagy inhibition. No annexin binding was observed after short- (5 h) and longer (24 and 48 h) term incubation with JAHA, thereby excluding the promotion of apoptosis by the HDACi. Although caution must be exercised in extrapolation of in vitro results to the in vivo situation for which research on animals and human trials are needed, nevertheless JAHA treatment possesses the potential for its development as an agent for prevention and/or therapy of "aggressive" breast carcinoma, thus prompting us to get more insight into the molecular basis of its antibreast cancer activity. PMID:23094795

  20. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors

    PubMed Central

    Goracci, Laura; Deschamps, Nathalie; Randazzo, Giuseppe Marco; Petit, Charlotte; Dos Santos Passos, Carolina; Carrupt, Pierre-Alain; Simões-Pires, Claudia; Nurisso, Alessandra

    2016-01-01

    The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development. PMID:27404291

  1. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors.

    PubMed

    Goracci, Laura; Deschamps, Nathalie; Randazzo, Giuseppe Marco; Petit, Charlotte; Dos Santos Passos, Carolina; Carrupt, Pierre-Alain; Simões-Pires, Claudia; Nurisso, Alessandra

    2016-01-01

    The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development. PMID:27404291

  2. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors

    NASA Astrophysics Data System (ADS)

    Goracci, Laura; Deschamps, Nathalie; Randazzo, Giuseppe Marco; Petit, Charlotte; Dos Santos Passos, Carolina; Carrupt, Pierre-Alain; Simões-Pires, Claudia; Nurisso, Alessandra

    2016-07-01

    The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development.

  3. HDACi Valproic Acid (VPA) and Suberoylanilide Hydroxamic Acid (SAHA) Delay but Fail to Protect against Warm Hepatic Ischemia-Reperfusion Injury

    PubMed Central

    Ruess, Dietrich A.; Probst, Moriz; Marjanovic, Goran; Wittel, Uwe A.; Hopt, Ulrich T.; Keck, Tobias; Bausch, Dirk

    2016-01-01

    Background Histone deacetylases (HDAC) catalyze N-terminal deacetylation of lysine-residues on histones and multiple nuclear and cytoplasmic proteins. In various animal models, such as trauma/hemorrhagic shock, ischemic stroke or myocardial infarction, HDAC inhibitor (HDACi) application is cyto- and organoprotective and promotes survival. HDACi reduce stress signaling, cell death and inflammation. Hepatic ischemia-reperfusion (I/R) injury during major liver resection or transplantation increases morbidity and mortality. Assuming protective properties, the aim of this study was to investigate the effect of the HDACi VPA and SAHA on warm hepatic I/R. Material and Methods Male Wistar-Kyoto rats (age: 6–8 weeks) were randomized to VPA, SAHA, vehicle control (pre-) treatment or sham-groups and underwent partial no-flow liver ischemia for 90 minutes with subsequent reperfusion for 6, 12, 24 and 60 hours. Injury and regeneration was quantified by serum AST and ALT levels, by macroscopic aspect and (immuno-) histology. HDACi treatment efficiency, impact on MAPK/SAPK-activation and Hippo-YAP signaling was determined by Western blot. Results Treatment with HDACi significantly enhanced hyperacetylation of Histone H3-K9 during I/R, indicative of adequate treatment efficiency. Liver injury, as measured by macroscopic aspect, serum transaminases and histology, was delayed, but not alleviated in VPA and SAHA treated animals. Importantly, tissue destruction was significantly more pronounced with VPA. SAPK-activation (p38 and JNK) was reduced by VPA and SAHA in the early (6h) reperfusion phase, but augmented later on (JNK, 24h). Regeneration appeared enhanced in SAHA and VPA treated animals and was dependent on Hippo-YAP signaling. Conclusions VPA and SAHA delay warm hepatic I/R injury at least in part through modulation of SAPK-activation. However, these HDACi fail to exert organoprotective effects, in this setting. For VPA, belated damage is even aggravated. PMID:27513861

  4. Molecular design and structural optimization of potent peptide hydroxamate inhibitors to selectively target human ADAM metallopeptidase domain 17.

    PubMed

    Wang, Zhengting; Wang, Lei; Fan, Rong; Zhou, Jie; Zhong, Jie

    2016-04-01

    Human ADAMs (a disintegrin and metalloproteinases) have been established as an attractive therapeutic target of inflammatory disorders such as inflammatory bowel disease (IBD). The ADAM metallopeptidase domain 17 (ADAM17 or TACE) and its close relative ADAM10 are two of the most important ADAM members that share high conservation in sequence, structure and function, but exhibit subtle difference in regulation of downstream cell signaling events. Here, we described a systematic protocol that combined computational modeling and experimental assay to discover novel peptide hydroxamate derivatives as potent and selective inhibitors for ADAM17 over ADAM10. In the procedure, a virtual combinatorial library of peptide hydroxamate compounds was generated by exploiting intermolecular interactions involved in crystal and modeled structures. The library was examined in detail to identify few promising candidates with both high affinity to ADAM17 and low affinity to ADAM10, which were then tested in vitro with enzyme inhibition assay. Consequently, two peptide hydroxamates Hxm-Phe-Ser-Asn and Hxm-Phe-Arg-Gln were found to exhibit potent inhibition against ADAM17 (Ki=92 and 47nM, respectively) and strong selectivity for ADAM17 over ADAM10 (∼7-fold and ∼5-fold, S=0.86 and 0.71, respectively). The structural basis and energetic property of ADAM17 and ADAM10 interactions with the designed inhibitors were also investigated systematically. It is found that the exquisite network of nonbonded interactions involving the side chains of peptide hydroxamates is primarily responsible for inhibitor selectivity, while the coordination interactions and hydrogen bonds formed by the hydroxamate moiety and backbone of peptide hydroxamates confer high affinity to inhibitor binding. PMID:26709988

  5. Effects of hydroxamate metalloendoprotease inhibitors on botulinum neurotoxin A poisoned mouse neuromuscular junctions

    PubMed Central

    Thyagarajan, Baskaran; Potian, Joseph G.; Garcia, Carmen C.; Hognason, Kormakur; Čapková, Kateřina; Moe, Scott T.; Jacobson, Alan R.; Janda, Kim D.; McArdle, Joseph J.

    2010-01-01

    Summary Currently the only therapy for botulinum neurotoxin A (BoNT/A) poisoning is antitoxin. Antidotes that are effective after BoNT/A has entered the motor nerve terminals would dramatically benefit BoNT/A therapy. Inhibition of proteolytic activity of BoNT/A light chain by metalloendoprotease inhibitors (MEIs) is under development. We tested the effects of MEIs on in vitro as well as in vivo BoNT/A poisoned mouse nerve muscle preparations (NMPs). The Ki for inhibition of BoNT/A metalloendoprotease was 0.40 and 0.36 μM, respectively, for 2, 4 – dichlorocinnamic acid hydroxamate (DCH) and its methyl derivative, ABS 130. Acute treatment of nerve muscle preparations with 10 pM BoNT/A inhibited nerve evoked muscle twitches, reduced mean quantal content, and induced failures of endplate currents (EPCs). Bath application of 10 μM DCH or 5 μM ABS 130 reduced failures, increased the quantal content of EPCs, and partially restored muscle twitches after a delay of 40 to 90 min. The restorative effects of DCH and ABS 130, as well as 3,4 diaminopyridine (DAP) on twitch tension were greater at 22 °C compared to 37 °C. Unlike DAP, neither DCH nor ABS 130 increased Ca2+ levels in cholinergic Neuro 2a cells. Injection of MEIs into mouse hind limbs before or after BoNT/A injection neither prevented the toe spread reflex inhibition nor improved muscle functions. We suggest that hydroxamate MEIs partially restore neurotransmission of acutely BoNT/A poisoned nerve muscle preparations in vitro in a temperature dependent manner without increasing the Ca2+ levels within motor nerve endings. PMID:20211192

  6. Structure-based rational design of peptide hydroxamic acid inhibitors to target tumor necrosis factor-α converting enzyme as potential therapeutics for hepatitis.

    PubMed

    Wu, Dan; Gu, Qiuhong; Zhao, Ning; Xia, Fei; Li, Zhiwei

    2015-12-01

    The human tumor necrosis factor-α converting enzyme (TACE) has recently been raised as a new and promising therapeutic target of hepatitis and other inflammatory diseases. Here, we reported a successful application of the solved crystal structure of TACE complex with a peptide-like ligand INN for rational design of novel peptide hydroxamic acid inhibitors with high potency and selectivity to target and inhibit TACE. First, the intermolecular interactions between TACE catalytic domain and INN were characterized through an integrated bioinformatics approach, with which the key substructures of INN that dominate ligand binding were identified. Subsequently, the INN molecular structure was simplified to a chemical sketch of peptide hydroxamic acid compound, which can be regarded as a linear tripeptide capped by a N-terminal carboxybenzyl group (chemically protective group) and a C-terminal hydroxamate moiety (coordinated to the Zn(2+) at TACE active site). Based on the sketch, a virtual combinatorial library containing 180 peptide hydroxamic acids was generated, from which seven samples were identified as promising candidates by using a knowledge-based protein-peptide affinity predictor and were then tested in vitro with a standard TACE activity assay protocol. Consequently, three designed peptide hydroxamic acids, i.e. Cbz-Pro-Ile-Gln-hydroxamic acid, Cbz-Leu-Ile-Val-hydroxamic acid and Cbz-Phe-Val-Met-hydroxamic acid, exhibited moderate or high inhibitory activity against TACE, with inhibition constants Ki of 36 ± 5, 510 ± 46 and 320 ± 26 nM, respectively. We also examined the structural basis and non-bonded profile of TACE interaction with a designed peptide hydroxamic acid inhibitor, and found that the inhibitor ligand is tightly buried in the active pocket of TACE, forming a number of hydrogen bonds, hydrophobic forces and van der Waals contacts at the interaction interface, conferring both stability and specificity for TACE-inhibitor complex

  7. Hydroxamic acid derivatives of mycophenolic acid inhibit histone deacetylase at the cellular level.

    PubMed

    Batovska, Daniela I; Kim, Dong Hoon; Mitsuhashi, Shinya; Cho, Yoon Sun; Kwon, Ho Jeong; Ubukata, Makoto

    2008-10-01

    Mycophenolic acid (MPA, 1), an inhibitor of IMP-dehydrogenase (IMPDH) and a latent PPARgamma agonist, is used as an effective immunosuppressant for clinical transplantation and recently entered clinical trials in advanced multiple myeloma patients. On the other hand, suberoylanilide hydroxamic acid (SAHA), a non-specific histone deacetylase (HDAC) inhibitor, has been approved for treating cutaneous T-cell lymphoma. MPA seemed to bear a cap, a linker, and a weak metal-binding site as a latent inhibitor of HDAC. Therefore, the hydroxamic acid derivatives of mycophenolic acid having an effective metal-binding site, mycophenolic hydroxamic acid (MPHA, 2), 7-O-acetyl mycophenolic acid (7-O-Ac MPHA, 3), and 7-O-lauroyl mycophenolic hydroxamic acid (7-O-L MPHA, 4) were designed and synthesized. All these compounds inhibited histone deacetylase with IC50 values of 1, 0.9 and 0.5 microM, and cell proliferation at concentrations of 2, 1.5 and 1 microM, respectively. PMID:18838793

  8. A Scalable Synthesis of the Difluoromethyl-allo-threonyl Hydroxamate-Based LpxC Inhibitor LPC-058.

    PubMed

    Liang, Xiaofei; Gopalaswamy, Ramesh; Navas, Frank; Toone, Eric J; Zhou, Pei

    2016-05-20

    The difluoromethyl-allo-threonyl hydroxamate-based compound LPC-058 is a potent inhibitor of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) in Gram-negative bacteria. A scalable synthesis of this compound is described. The key step in the synthetic sequence is a transition metal/base-catalyzed aldol reaction of methyl isocyanoacetate and difluoroacetone, giving rise to 4-(methoxycarbonyl)-5,5-disubstituted 2-oxazoline. A simple NMR-based determination of enantiomeric purity is also described. PMID:27128325

  9. Fragment based G-QSAR and molecular dynamics based mechanistic simulations into hydroxamic-based HDAC inhibitors against spinocerebellar ataxia.

    PubMed

    Sinha, Siddharth; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Somvanshi, Pallavi; Grover, Abhinav

    2016-10-01

    Expansion of polyglutamine (CAG) triplets within the coding gene ataxin 2 results in transcriptional repression, forming the molecular basis of the neurodegenerative disorder named spinocerebellar ataxia type-2 (SCA2). HDAC inhibitors (HDACi) have been elements of great interest in polyglutamine disorders such as Huntington's and Ataxia's. In this study, we have selected hydroxamic acid derivatives as HDACi and performed fragment-based G-QSAR, molecular docking studies and molecular dynamics simulations for elucidating the dynamic mode of action of HDACi with His-Asp catalytic dyad of HDAC4. The model was statistically validated to establish its predictive robustness. The model was statistically significant with r(2) value of .6297, cross-validated co-relation coefficient q(2) value of .5905 and pred_r(2) (predicted square co-relation coefficient) value of .85. An F-test value of 56.11 confirms absolute robustness of the model. Two combinatorial libraries comprising of 3180 compounds were created with hydroxamate moiety as the template and their pIC50 activities were predicted based on the G-QSAR model. The combinatorial library created was screened on the basis of predicted activity (pIC50), with two resultant top scoring compounds, HIC and DHC. The interaction of the compounds with His-Asp dyad in terms of H-bond interactions with His802, Asp840, Pro942, and Gly975 residues of HDAC4 was evaluated by docking and 20 ns long molecular dynamics simulations. This study provides valuable leads for structural substitutions required for hydroxamate moiety to exhibit enhanced inhibitory activity against HDAC4. The reported compounds demonstrated good binding and thus can be considered as potent therapeutic leads against ataxia. PMID:26510381

  10. Hybrids from 4-anilinoquinazoline and hydroxamic acid as dual inhibitors of vascular endothelial growth factor receptor-2 and histone deacetylase.

    PubMed

    Peng, Fan-Wei; Wu, Ting-Ting; Ren, Zi-Wei; Xue, Jia-Yu; Shi, Lei

    2015-11-15

    A series of hybrids derived from 4-anilinoquinazoline and hydroxamic acid were designed, synthesized, and evaluated as dual inhibitors of vascular endothelia growth factor receptor-2 (VEGFR-2) tyrosine kinase and histone deacetylase (HDAC). Most of these compounds exhibited potent HDAC inhibition and moderate VEGFR-2 inhibition. Among them, compound 6l exhibited the most potent inhibitory activities against VEGFR-2 (IC50=84 nM) and HDAC (IC50=2.8 nM). It also showed the most potent antiproliferative ability against MCF-7, a human breast cancer line, with IC50 of 1.2 μM. Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction of compound 6l at the active binding sites of VEGFR-2 and HDAC. PMID:26475519

  11. Molecular and cellular effects of a novel hydroxamate-based HDAC inhibitor - belinostat - in glioblastoma cell lines: a preliminary report.

    PubMed

    Kusaczuk, Magdalena; Krętowski, Rafał; Stypułkowska, Anna; Cechowska-Pasko, Marzanna

    2016-10-01

    Histone deacetylase (HDAC) inhibitors are now intensively investigated as potential cytostatic agents in many malignancies. Here, we provide novel information concerning the influence of belinostat (Bel), a hydroxamate-based pan-HDAC inhibitor, on glioblastoma LN-229 and LN-18 cells. We found that LN-229 cells stimulated with 2 μmol/L of Bel for 48 h resulted in 70 % apoptosis, while equivalent treatment of LN-18 cells resulted in only 28 % apoptosis. In LN-229 cells this effect was followed by up-regulation of pro-apoptotic genes including Puma, Bim, Chop and p21. In treated LN-18 cells only p21 was markedly overexpressed. Simultaneously, LN-229 cells treated with 2 μmol/L of Bel for 48 h exhibited down-regulation of molecular chaperones GRP78 and GRP94 at the protein level. In contrast, in LN-18 cells Western blot analysis did not show any marked changes in GRP78 nor GRP94 expression. Despite noticeable overexpression of p21, there were no signs of evident G1 nor G2/M cell cycle arrest, however, the reduction in number of the S phase cells was observed in both cell lines. These results collectively suggest that Bel can be considered as potential anti-glioblastoma agent. To our knowledge this is the first report presenting the effects of belinostat treatment in glioblastoma cell lines. PMID:27468826

  12. [Prevention of infected urinary stones by urease inhibitor. IV. Treatment of infection stones in rats by a new hydroxamic acid and cefalexin].

    PubMed

    Takeuchi, H; Tomoyoshi, T; Okada, Y; Yoshida, O; Kobashi, K

    1983-03-01

    We investigated the combined effectiveness of a new urease inhibitor, N-( pivaroyl ) glycinohydroxamic acid, with Cefalexin in the treatment of infection stones in rats. Combination therapy with the hydroxamic acid and Cefalexin inhibited bladder stone formation, and dissolved the stone dose dependently, while separate therapy was not significantly effective against stone formation or bacterial growth. This compound may become a useful medicine for the treatment of infection stones. PMID:6375315

  13. Substitution of the phosphonic acid and hydroxamic acid functionalities of the DXR inhibitor FR900098: an attempt to improve the activity against Mycobacterium tuberculosis.

    PubMed

    Andaloussi, Mounir; Lindh, Martin; Björkelid, Christofer; Suresh, Surisetti; Wieckowska, Anna; Iyer, Harini; Karlén, Anders; Larhed, Mats

    2011-09-15

    Two series of FR900098/fosmidomycin analogs were synthesized and evaluated for MtDXR inhibition and Mycobacterium tuberculosis whole-cell activity. The design rationale of these compounds involved the exchange of either the phosphonic acid or the hydroxamic acid part for alternative acidic and metal-coordinating functionalities. The best inhibitors provided IC(50) values in the micromolar range, with a best value of 41 μM. PMID:21824775

  14. Dual-Mode HDAC Prodrug for Covalent Modification and Subsequent Inhibitor Release

    PubMed Central

    2016-01-01

    Histone deacetylase inhibitors (HDACi) target abnormal epigenetic states associated with a variety of pathologies, including cancer. Here, the development of a prodrug of the canonical broad-spectrum HDACi suberoylanilide hydroxamic acid (SAHA) is described. Although hydroxamic acids are utilized universally in the development of metalloenzyme inhibitors, they are considered to be poor pharmacophores with reduced activity in vivo. We developed a prodrug of SAHA by appending a promoiety, sensitive to thiols, to the hydroxamic acid warhead (termed SAHA-TAP). After incubation of SAHA-TAP with an HDAC, the thiol of a conserved HDAC cysteine residue becomes covalently tagged with the promoiety, initiating a cascade reaction that leads to the release of SAHA. Mass spectrometry and enzyme kinetics experiments validate that the cysteine residue is covalently appended with the TAP promoiety. SAHA-TAP demonstrates cytotoxicity activity against various cancer cell lines. This strategy represents an original prodrug design with a dual mode of action for HDAC inhibition. PMID:25974739

  15. Synthesis/biological evaluation of hydroxamic acids and their prodrugs as inhibitors for Botulinum neurotoxin A light chain

    PubMed Central

    Seki, Hajime; Pellett, Sabine; Šilhár, Peter; Stowe, G. Neil; Blanco, Beatriz; Lardy, Matthew; Johnson, Eric A.; Janda, Kim D.

    2014-01-01

    Botulinum neurotoxin A (BoNT/A) is the most potent toxin known. Unfortunately, it is also a potential bioweapon in terrorism, which is without an approved therapeutic treatment once cellular intoxication takes place. Previously, we reported how hydroxamic acid prodrug carbamates increased cellular uptake, which translated to successful inhibition of this neurotoxin. Building upon this research, we detail BoNT/A protease molecular modeling studies accompanied by the construction of small library of hydroxamic acids based on 2,4-dichlorocinnamic hydroxamic acid scaffold and their carbamate prodrug derivatization along with the evaluation of these molecules in both enzymatic and cellular models. PMID:24360826

  16. Design, synthesis, and evaluation of hydroxamic acid-based molecular probes for in vivo imaging of histone deacetylase (HDAC) in brain.

    PubMed

    Wang, Changning; Eessalu, Thomas E; Barth, Vanessa N; Mitch, Charles H; Wagner, Florence F; Hong, Yijia; Neelamegam, Ramesh; Schroeder, Frederick A; Holson, Edward B; Haggarty, Stephen J; Hooker, Jacob M

    2013-01-01

    Hydroxamic acid-based histone deacetylase inhibitors (HDACis) are a class of molecules with therapeutic potential currently reflected in the use of suberoylanilide hydroxamic acid (SAHA; Vorinostat) to treat cutaneous T-cell lymphomas (CTCL). HDACis may have utility beyond cancer therapy, as preclinical studies have ascribed HDAC inhibition as beneficial in areas such as heart disease, diabetes, depression, neurodegeneration, and other disorders of the central nervous system (CNS). However, little is known about the pharmacokinetics (PK) of hydroxamates, particularly with respect to CNS-penetration, distribution, and retention. To explore the rodent and non-human primate (NHP) brain permeability of hydroxamic acid-based HDAC inhibitors using positron emission tomography (PET), we modified the structures of belinostat (PXD101) and panobinostat (LBH-589) to incorporate carbon-11. We also labeled PCI 34051 through carbon isotope substitution. After characterizing the in vitro affinity and efficacy of these compounds across nine recombinant HDAC isoforms spanning Class I and Class II family members, we determined the brain uptake of each inhibitor. Each labeled compound has low uptake in brain tissue when administered intravenously to rodents and NHPs. In rodent studies, we observed that brain accumulation of the radiotracers were unaffected by the pre-administration of unlabeled inhibitors. Knowing that CNS-penetration may be desirable for both imaging applications and therapy, we explored whether a liquid chromatography, tandem mass spectrometry (LC-MS-MS) method to predict brain penetrance would be an appropriate method to pre-screen compounds (hydroxamic acid-based HDACi) prior to PET radiolabeling. LC-MS-MS data were indeed useful in identifying additional lead molecules to explore as PET imaging agents to visualize HDAC enzymes in vivo. However, HDACi brain penetrance predicted by LC-MS-MS did not strongly correlate with PET imaging results. This underscores the

  17. Design, synthesis, and evaluation of hydroxamic acid-based molecular probes for in vivo imaging of histone deacetylase (HDAC) in brain

    PubMed Central

    Wang, Changning; Eessalu, Thomas E; Barth, Vanessa N; Mitch, Charles H; Wagner, Florence F; Hong, Yijia; Neelamegam, Ramesh; Schroeder, Frederick A; Holson, Edward B; Haggarty, Stephen J; Hooker, Jacob M

    2014-01-01

    Hydroxamic acid-based histone deacetylase inhibitors (HDACis) are a class of molecules with therapeutic potential currently reflected in the use of suberoylanilide hydroxamic acid (SAHA; Vorinostat) to treat cutaneous T-cell lymphomas (CTCL). HDACis may have utility beyond cancer therapy, as preclinical studies have ascribed HDAC inhibition as beneficial in areas such as heart disease, diabetes, depression, neurodegeneration, and other disorders of the central nervous system (CNS). However, little is known about the pharmacokinetics (PK) of hydroxamates, particularly with respect to CNS-penetration, distribution, and retention. To explore the rodent and non-human primate (NHP) brain permeability of hydroxamic acid-based HDAC inhibitors using positron emission tomography (PET), we modified the structures of belinostat (PXD101) and panobinostat (LBH-589) to incorporate carbon-11. We also labeled PCI 34051 through carbon isotope substitution. After characterizing the in vitro affinity and efficacy of these compounds across nine recombinant HDAC isoforms spanning Class I and Class II family members, we determined the brain uptake of each inhibitor. Each labeled compound has low uptake in brain tissue when administered intravenously to rodents and NHPs. In rodent studies, we observed that brain accumulation of the radiotracers were unaffected by the pre-administration of unlabeled inhibitors. Knowing that CNS-penetration may be desirable for both imaging applications and therapy, we explored whether a liquid chromatography, tandem mass spectrometry (LC-MS-MS) method to predict brain penetrance would be an appropriate method to pre-screen compounds (hydroxamic acid-based HDACi) prior to PET radiolabeling. LC-MS-MS data were indeed useful in identifying additional lead molecules to explore as PET imaging agents to visualize HDAC enzymes in vivo. However, HDACi brain penetrance predicted by LC-MS-MS did not strongly correlate with PET imaging results. This underscores the

  18. Succinyl hydroxamates as potent and selective non-peptidic inhibitors of procollagen C-proteinase: design, synthesis, and evaluation as topically applied, dermal anti-scarring agents.

    PubMed

    Bailey, Simon; Fish, Paul V; Billotte, Stephane; Bordner, Jon; Greiling, Doris; James, Kim; McElroy, Andrew; Mills, James E; Reed, Charlotte; Webster, Robert

    2008-12-15

    Succinyl hydroxamates 1 and 2 are disclosed as novel series of potent and selective inhibitors of procollagen C-proteinase (PCP) which may have potential as anti-fibrotic agents. Carboxamide 7 demonstrated good PCP inhibition and had excellent selectivity over MMPs involved in wound healing. In addition, 7 was effective in a cell-based model of collagen deposition (fibroplasia model) and was very effective at penetrating human skin in vitro. Compound 7 (UK-383,367) was selected as a candidate for evaluation in clinical studies as a topically applied, dermal anti-scarring agent. PMID:18945617

  19. Hydroxamic Acid and Benzoic Acid-Based STAT3 Inhibitors Suppress Human Glioma and Breast Cancer Phenotypes In Vitro and In Vivo.

    PubMed

    Yue, Peibin; Lopez-Tapia, Francisco; Paladino, David; Li, Yifei; Chen, Chih-Hong; Namanja, Andrew T; Hilliard, Tyvette; Chen, Yuan; Tius, Marcus A; Turkson, James

    2016-02-01

    STAT3 offers an attractive target for cancer therapy, but small-molecule inhibitors with appealing pharmacologic properties have been elusive. Here, we report hydroxamic acid-based and benzoic acid-based inhibitors (SH5-07 and SH4-54, respectively) with robust bioactivity. Both inhibitors blocked STAT3 DNA-binding activity in vitro and in human glioma, breast, and prostate cancer cells and in v-Src-transformed murine fibroblasts. STAT3-dependent gene transcription was blocked along with Bcl-2, Bcl-xL, Mcl-1, cyclin D1, c-Myc, and survivin expression. Nuclear magnetic resonance analysis of STAT3-inhibitor complexes defined interactions with the SH2 and DNA-binding domains of STAT3. Ectopic expression of the SH2 domain in cells was sufficient to counter the STAT3-inhibitory effects of SH4-54. Neither compound appreciably affected STAT1 or STAT5 DNA-binding activities, STAT3-independent gene transcription, or activation of a panel of oncogenic kinases in malignant cells. Each compound decreased the proliferation and viability of glioma, breast, and prostate cancer cells and v-Src-transformed murine fibroblasts harboring constitutively active STAT3. Further, in mouse xenograft models of glioma and breast cancer, administration of SH5-07 or SH4-54 effectively inhibited tumor growth. Our results offer preclinical proof of concept for SH5-07 and SH4-54 as candidates for further development as cancer therapeutics. PMID:26088127

  20. Complex structure of a bacterial class 2 histone deacetylase homologue with a trifluoromethylketone inhibitor

    SciTech Connect

    Nielsen, Tine Kragh; Hildmann, Christian; Riester, Daniel; Wegener, Dennis; Schwienhorst, Andreas; Ficner, Ralf

    2007-04-01

    The crystal structure of HDAH FB188 in complex with a trifluoromethylketone at 2.2 Å resolution is reported and compared to a previously determined inhibitor complex. Histone deacetylases (HDACs) have emerged as attractive targets in anticancer drug development. To date, a number of HDAC inhibitors have been developed and most of them are hydroxamic acid derivatives, typified by suberoylanilide hydroxamic acid (SAHA). Not surprisingly, structural information that can greatly enhance the design of novel HDAC inhibitors is so far only available for hydroxamic acids in complex with HDAC or HDAC-like enzymes. Here, the first structure of an enzyme complex with a nonhydroxamate HDAC inhibitor is presented. The structure of the trifluoromethyl ketone inhibitor 9,9,9-trifluoro-8-oxo-N-phenylnonanamide in complex with bacterial FB188 HDAH (histone deacetylase-like amidohydrolase from Bordetella/Alcaligenes strain FB188) has been determined. HDAH reveals high sequential and functional homology to human class 2 HDACs and a high structural homology to human class 1 HDACs. Comparison with the structure of HDAH in complex with SAHA reveals that the two inhibitors superimpose well. However, significant differences in binding to the active site of HDAH were observed. In the presented structure the O atom of the trifluoromethyl ketone moiety is within binding distance of the Zn atom of the enzyme and the F atoms participate in interactions with the enzyme, thereby involving more amino acids in enzyme–inhibitor binding.

  1. Utilization of Boron Compounds for the Modification of Suberoyl Anilide Hydroxamic Acid as Inhibitor of Histone Deacetylase Class II Homo sapiens

    PubMed Central

    Bakri, Ridla; Parikesit, Arli Aditya; Satriyanto, Cipta Prio; Kerami, Djati; Tambunan, Usman Sumo Friend

    2014-01-01

    Histone deacetylase (HDAC) has a critical function in regulating gene expression. The inhibition of HDAC has developed as an interesting anticancer research area that targets biological processes such as cell cycle, apoptosis, and cell differentiation. In this study, an HDAC inhibitor that is available commercially, suberoyl anilide hydroxamic acid (SAHA), has been modified to improve its efficacy and reduce the side effects of the compound. Hydrophobic cap and zinc-binding group of these compounds were substituted with boron-based compounds, whereas the linker region was substituted with p-aminobenzoic acid. The molecular docking analysis resulted in 8 ligands with ΔGbinding value more negative than the standards, SAHA and trichostatin A (TSA). That ligands were analyzed based on the nature of QSAR, pharmacological properties, and ADME-Tox. It is conducted to obtain a potent inhibitor of HDAC class II Homo sapiens. The screening process result gave one best ligand, Nova2 (513246-99-6), which was then further studied by molecular dynamics simulations. PMID:25214833

  2. Metal complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid and benzohydroxamic acid. Crystal and molecular structure of [Cu(phen)2(Cl)]Cl x H2Sha, a model for a peroxidase-inhibitor complex.

    PubMed

    O'Brien, E C; Farkas, E; Gil, M J; Fitzgerald, D; Castineras, A; Nolan, K B

    2000-04-01

    Stability constants of iron(III), copper(II), nickel(II) and zinc(II) complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid (HAha) and benzohydroxamic acid (HBha) have been determined at 25.0 degrees C, I=0.2 mol dm(-3) KCl in aqueous solution. The complex stability order, iron(III) > copper(II) > nickel(II) approximately = zinc(II) was observed whilst complexes of H2Sha were found to be more stable than those of the other two ligands. In the preparation of ternary metal ion complexes of these ligands and 1,10-phenanthroline (phen) the crystalline complex [Cu(phen)2(Cl)]Cl x H2Sha was obtained and its crystal structure determined. This complex is a model for hydroxamate-peroxidase inhibitor interactions. PMID:10830846

  3. Hydroxamate-induced spectral perturbations of cobalt Aeromonas aminopeptidase.

    PubMed

    Wilkes, S H; Prescott, J M

    1987-06-25

    The absorption spectrum of cobalt(II)-substituted Aeromonas aminopeptidase is markedly perturbed by the presence of equimolar concentrations of D-amino acid hydroxamates and acyl hydroxamates that have previously been shown to be powerful inhibitors of this enzyme (Wilkes, S. H., and Prescott, J. M. (1983) J. Biol. Chem. 258, 13517-13521). D-Valine hydroxamate produces the most distinctive perturbation, splitting the characteristic 527 nm absorption peak of the cobalt enzyme to form peaks at 564, 520, and 487 nm with molar extinction values of 126, 98, and 67 M-1 cm-1, respectively. A qualitatively similar perturbation, albeit with lower extinction values, results from the addition of D-leucine hydroxamate, whereas D-alanine hydroxamate perturbs the spectrum, but does not evoke the peak at 564 nm. In contrast, hydroxamates of L-valine and L-leucine in concentrations equi-molar to that of the enzyme produce only faint indications of change in the spectrum, but the hydroxamates of several other L-amino acids perturb the spectrum essentially independently of the identity of the side chain and in a qualitatively different manner from that of D-valine hydroxamate and D-leucine hydroxamate. At the high enzyme:substrate ratios used in the spectral experiments, L-leucine hydroxamate and L-valine hydroxamate proved to be rapidly hydrolyzed, hence their inability to perturb the spectrum of the cobalt-substituted enzyme during the time course of a spectral experiment. Values of kcat for L-amino acid hydroxamates, all of which are good reversible inhibitors of the hydrolysis of L-leucine-p-nitroanilide by Aeromonas aminopeptidase, were found to range from 0.01 min-1 to 5.6 min-1 for the native enzyme and from 0.27 min-1 to 108 min-1 for the cobalt-substituted enzyme; their km values toward the cobalt aminopeptidase range from 1.2 X 10(-7) M to 1.9 X 10(-5) M. The mutual exclusivity of binding for hydroxamate inhibitors and 1-butaneboronic acid, previously shown by kinetics

  4. A hybrid of thiazolidinone with the hydroxamate scaffold for developing novel histone deacetylase inhibitors with antitumor activities.

    PubMed

    Yang, Feifei; Peng, Shihong; Li, Yunqi; Su, Liqiang; Peng, Yangrui; Wu, Jing; Chen, Huang; Liu, Mingyao; Yi, Zhengfang; Chen, Yihua

    2016-02-01

    A series of novel histone deacetylase (HDAC) inhibitors were designed, synthesized and evaluated based on the strategies of a hybrid of the classic pharmacophore of HDAC inhibitors with the thiazolidinone scaffold. Some of the compounds 12i showed potent HDAC1 inhibition with nM IC50 values, more importantly, compound displayed much better anti-metastatic effects than vorinostat (SAHA) against migration of the A549 cell line. Further mechanism exploration implied that compound 12i may inhibit tumor metastasis via modulating the epithelial-mesenchymal transition (EMT) and upregulating the acetylation of α-tubulin. PMID:26732459

  5. Synthesis of N-hydroxycinnamides capped with a naturally occurring moiety as inhibitors of histone deacetylase.

    PubMed

    Huang, Wei-Jan; Chen, Ching-Chow; Chao, Shi-Wei; Lee, Shoei-Sheng; Hsu, Fen-Lin; Lu, Yeh-Lin; Hung, Ming-Fang; Chang, Chung-I

    2010-04-01

    Histone deacetylase (HDAC) inhibitors are regarded as promising therapeutics for the treatment of cancer. All reported HDAC inhibitors contain three pharmacophoric features: a zinc-chelating group, a hydrophobic linker, and a hydrophobic cap for surface recognition. In this study we investigated the effectiveness of osthole, a hydrophobic Chinese herbal compound, as the surface recognition cap in hydroxamate-based compounds as inhibitors of HDAC. Nine novel osthole-based N-hydroxycinnamides were synthesized and screened for enzyme inhibition activity. Compounds 9 d, 9 e, 9 g exhibited inhibitory activities (IC(50)=24.5, 20.0, 19.6 nM) against nuclear HDACs in HeLa cells comparable to that of suberoylanilide hydroxamic acid (SAHA; IC(50)=24.5 nM), a potent inhibitor clinically used for the treatment of cutaneous T-cell lymphoma (CTCL). While compounds 9 d and 9 e showed SAHA-like activity towards HDAC1 and HDAC6, compound 9 g was more selective for HDAC1. Compound 9 d exhibited the best cellular effect, which was comparable to that of SAHA, of enhancing acetylation of either alpha-tubulin or histone H3. Molecular docking analysis showed that the osthole moiety of compound 9 d may interact with the same hydrophobic surface pocket exploited by SAHA and it may be modified to provide class-specific selectivity. These results suggest that osthole is an effective hydrophobic cap when incorporated into N-hydroxycinnamide-derived HDAC inhibitors. PMID:20209563

  6. Antimalarial Activity of the Anticancer Histone Deacetylase Inhibitor SB939

    PubMed Central

    Sumanadasa, Subathdrage D. M.; Goodman, Christopher D.; Lucke, Andrew J.; Skinner-Adams, Tina; Sahama, Ishani; Haque, Ashraful; Do, Tram Anh; McFadden, Geoffrey I.; Fairlie, David P.

    2012-01-01

    Histone deacetylase (HDAC) enzymes posttranslationally modify lysines on histone and nonhistone proteins and play crucial roles in epigenetic regulation and other important cellular processes. HDAC inhibitors (e.g., suberoylanilide hydroxamic acid [SAHA; also known as vorinostat]) are used clinically to treat some cancers and are under investigation for use against many other diseases. Development of new HDAC inhibitors for noncancer indications has the potential to be accelerated by piggybacking onto cancer studies, as several HDAC inhibitors have undergone or are undergoing clinical trials. One such compound, SB939, is a new orally active hydroxamate-based HDAC inhibitor with an improved pharmacokinetic profile compared to that of SAHA. In this study, the in vitro and in vivo antiplasmodial activities of SB939 were investigated. SB939 was found to be a potent inhibitor of the growth of Plasmodium falciparum asexual-stage parasites in vitro (50% inhibitory concentration [IC50], 100 to 200 nM), causing hyperacetylation of parasite histone and nonhistone proteins. In combination with the aspartic protease inhibitor lopinavir, SB939 displayed additive activity. SB939 also potently inhibited the in vitro growth of exoerythrocytic-stage Plasmodium parasites in liver cells (IC50, ∼150 nM), suggesting that inhibitor targeting to multiple malaria parasite life cycle stages may be possible. In an experimental in vivo murine model of cerebral malaria, orally administered SB939 significantly inhibited P. berghei ANKA parasite growth, preventing development of cerebral malaria-like symptoms. These results identify SB939 as a potent new antimalarial HDAC inhibitor and underscore the potential of investigating next-generation anticancer HDAC inhibitors as prospective new drug leads for treatment of malaria. PMID:22508312

  7. Stereospecificity of amino acid hydroxamate inhibition of aminopeptidases.

    PubMed

    Wilkes, S H; Prescott, J M

    1983-11-25

    Hydroxamates of amino acids and aliphatic acids are effective inhibitors of Aeromonas proteolytica amino-peptidase (EC 3.4.11.10) and of both the cytosolic (EC 3.4.11.1) and microsomal (EC 3.4.11.2) aminopeptidases of swine kidney. Cytosolic leucine aminopeptidase and the Aeromonas enzyme were inhibited to a greater extent by D isomers than by the L enantiomorphs, manganese-activated kidney cytosolic leucine aminopeptidase being inhibited 10 times more effectively by D-leucine and D-valine hydroxamic acids than by the L isomers. The D isomers of these two compounds inhibited Aeromonas aminopeptidase to an even greater extent with Ki values of 2 X 10(-9) and 5 X 10(-9), respectively, whereas the corresponding L isomers were bound 150 times less tightly. With the Aeromonas enzyme, a comparison of inhibition by racemic mixtures with that of the corresponding L isomers indicated that in all cases the contribution of the D isomer was predominant. Isocaproic hydroxamic acid inhibited this enzyme equally well as L-leucine hydroxamic acid, indicating that the amino group orientation in the D isomer contributes to the binding efficacy. Swine kidney microsomal aminopeptidase was also inhibited by D isomers of leucine and valine hydroxamic acids but in contrast to the other two enzymes, the inhibition was 10-fold less than that observed for the corresponding L isomers. Cytosolic leucine aminopeptidase with either 6 g atoms of zinc per mol or 12 g atoms of zinc per mol was inhibited only slightly by any of the hydroxamic acid compounds; evidently enzyme-bound manganese (or magnesium) is specific for hydroxamate binding to this aminopeptidase. PMID:6643439

  8. An appraisal of cinnamyl sulfonamide hydroxamate derivatives (HDAC inhibitors) for anti-cancer, anti-angiogenic and anti-metastatic activities in human cancer cells.

    PubMed

    Reddy, Neetinkumar D; Shoja, M H; Biswas, Subhankar; Nayak, Pawan G; Kumar, Nitesh; Rao, C Mallikarjuna

    2016-06-25

    Multiple genetic mutations along with unusual epigenetic modifications play a major role in cancer development. Histone deacetylase (HDAC) enzyme overexpression observed in the majority of cancers is responsible for tumor suppressor gene silencing and activation of proto-oncogenes to oncogenes. Cinnamic acid derivatives exhibit anti-cancer potential through HDAC enzyme inhibition. We have synthesized a few cinnamyl sulfonamide hydroxamate derivatives (NMJ-1, -2 and -3) by already published in-house procedures and their purity, and chemical characterization were performed by NMR, mass spectrometry and elemental analysis. The anti-cancer activities were also evaluated against colon cancer. The rationale for synthesis was based on bioisosterism concept. To take the work forward, these compounds were considered for in vitro anti-angiogenic and anti-metastatic activities in cancer cells. The effectiveness of these compounds was determined by SRB assay. The compounds showed cancer cell cytotoxicity (IC50 range of 5.7 ± 0.43 to 20.5 ± 1.9 μM). The mechanism of compound-induced cell death involves an intrinsic apoptosis pathway which was supported by the following: increase in apoptotic index, arrest in cell cycle at G2/M phase, increase in annexin V binding and induction of p21(Waf1/Cip1) expression in the treated cells. Further, their target modulating effect, measured as the expression of acetyl-H3 histone and acetyl α-tubulin was determined by Western blots. Hyper acetylation of H3 histone and α-tubulin were observed. Furthermore, increased expression of cleaved caspase-3, cleaved PARP, total Bad was estimated by ELISA. The anti-angiogenic effect was examined through cobalt (II) chloride (CoCl2)-induced HIF-1α expression, where the compounds reduced the expression of induced HIF-1α. In addition, their anti-metastatic ability was determined through phorbol-12-myristate-13-acetate (PMA)-induced expression of MMP-2 and -9 by Western blotting and gelatin

  9. Hydroxamic acids in asymmetric synthesis.

    PubMed

    Li, Zhi; Yamamoto, Hisashi

    2013-02-19

    Metal-catalyzed stereoselective reactions are a central theme in organic chemistry research. In these reactions, the stereoselection is achieved predominantly by introducing chiral ligands at the metal catalyst's center. For decades, researchers have sought better chiral ligands for asymmetric catalysis and have made great progress. Nevertheless, to achieve optimal stereoselectivity and to catalyze new reactions, new chiral ligands are needed. Because of their high metal affinity, hydroxamic acids play major roles across a broad spectrum of fields from biochemistry to metal extraction. Dr. K. Barry Sharpless first revealed their potential as chiral ligands for asymmetric synthesis in 1977: He published the chiral vanadium-hydroxamic-acid-catalyzed, enantioselective epoxidation of allylic alcohols before his discovery of Sharpless asymmetric epoxidation, which uses the titanium-tartrate complex as the chiral reagent. However, researchers have reported few highly enantioselective reactions using metal-hydroxamic acid as catalysts since then. This Account summarizes our research on metal-catalyzed asymmetric epoxidation using hydroxamic acids as chiral ligands. We designed and synthesized a series of new hydroxamic acids, most notably the C2-symmetric bis-hydroxamic acid (BHA) family. V-BHA-catalyzed epoxidation of allylic and homoallylic alcohols achieved higher activity and stereoselectivity than Sharpless asymmetric epoxidation in many cases. Changing the metal species led to a series of unprecedented asymmetric epoxidation reactions, such as (i) single olefins and sulfides with Mo-BHA, (ii) homoallylic and bishomoallylic alcohols with Zr- and Hf-BHA, and (iii) N-alkenyl sulfonamides and N-sulfonyl imines with Hf-BHA. These reactions produce uniquely functionalized chiral epoxides with good yields and enantioselectivities. PMID:23157425

  10. Hydroxamic Acids in Asymmetric Synthesis

    PubMed Central

    Li, Zhi; Yamamoto, Hisashi

    2012-01-01

    Metal-catalyzed stereoselective reactions are a central theme in organic chemistry research. In these reactions, the stereoselection is achieved predominantly by introducing chiral ligands at the metal catalyst’s center. For decades, researchers have sought better chiral ligands for asymmetric catalysis and have made great progress. Nevertheless, to achieve optimal stereoselectivity and to catalyze new reactions, new chiral ligands are needed. Due to their high metal affinity, hydroxamic acids play major roles across a broad spectrum of fields from biochemistry to metal extraction. Dr. K. Barry Sharpless first revealed their potential as chiral ligands for asymmetric synthesis in 1977: He published the chiral vanadium-hydroxamic-acid-catalyzed, enantioselective epoxidation of allylic alcohols before his discovery of Sharpless Asymmetric Epoxidation, which uses titanium-tartrate complex as the chiral reagent. However, researchers have reported few highly enantioselective reactions using metal-hydroxamic acid as catalysts since then. This Account summarizes our research on metal-catalyzed asymmetric epoxidation using hydroxamic acids as chiral ligands. We designed and synthesized a series of new hydroxamic acids, most notably the C2-symmetric bis-hydroxamic acid (BHA) family. V-BHA-catalyzed epoxidation of allylic and homoallylic alcohols achieved higher activity and stereoselectivity than Sharpless Asymmetric Epoxidation in many cases. Changing the metal species led to a series of unprecedented asymmetric epoxidation reactions, such as (i) single olefins and sulfides with Mo-BHA, (ii) homoallylic and bishomoallylic alcohols with Zr- and Hf-BHA, and (iii) N-alkenyl sulfonamides and N-sulfonyl imines with Hf-BHA. These reactions produce uniquely functionalized chiral epoxides with good yields and enantioselectivities. PMID:23157425

  11. Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.

    PubMed

    Chen, Yong; Wang, Xiaoyan; Xiang, Wei; He, Lin; Tang, Minghai; Wang, Fang; Wang, Taijin; Yang, Zhuang; Yi, Yuyao; Wang, Hairong; Niu, Ting; Zheng, Li; Lei, Lei; Li, Xiaobin; Song, Hang; Chen, Lijuan

    2016-06-01

    In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer. PMID:27186676

  12. Blocking TH17-polarizing cytokines by histone deacetylase inhibitors in vitro and in vivo

    PubMed Central

    Bosisio, Daniela; Vulcano, Marisa; Del Prete, Annalisa; Sironi, Marina; Salvi, Valentina; Salogni, Laura; Riboldi, Elena; Leoni, Flavio; Dinarello, Charles A.; Girolomoni, Giampiero; Sozzani, Silvano

    2008-01-01

    Histone deacetylase (HDAC) inhibitors are small molecules inducing cell-cycle arrest, differentiation, and apoptosis, currently undergoing clinical trials as anticancer drugs. In addition, emerging evidence suggests HDAC inhibitors may have anti-inflammatory and immunomodulatory properties as well, although the molecular mechanisms remain poorly defined. Given the central role of dendritic cells (DC) in the induction and maintenance of the inflammatory and immune response, we investigated the effects of HDAC inhibitors on the maturation and activation of human monocyte-derived DC in the presence of LPS and IFN-γ. Our results show that the production of TH1- and TH17-inducing cytokines, namely IL-12 and IL-23, was inhibited by trichostatin A (72% and 52%, respectively) and suberoylanilide hydroxamic acid (86% and 83%). Strikingly, HDAC inhibitors were effective if added simultaneously as well as after the proinflammatory challenge, and their effect was not associated to a reduction of expression or function of LPS/IFN-γ receptors. These findings were confirmed in two different murine models. In addition, HDAC inhibitors selectively blocked the production of TH1-attracting chemokines CXCL9, CXCL10, and CXCL11. The reduction of TH1- and TH17-inducing cytokines as well as TH1-attracting chemokines may represent relevant mechanisms through which HDAC inhibitors at nonproapoptotic doses exert their immunomodulatory properties. PMID:18780875

  13. Amidation inhibitors 4-phenyl-3-butenoic acid and 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester are novel HDAC inhibitors with anti-tumorigenic properties.

    PubMed

    Ali, Amna; Burns, Timothy J; Lucrezi, Jacob D; May, Sheldon W; Green, George R; Matesic, Diane F

    2015-08-01

    4-Phenyl-3-butenoic acid (PBA) is an inhibitor of peptidylglycine alpha-amidating monooxygenase with anti-inflammatory properties that has been shown to inhibit the growth of ras-mutated epithelial and human lung carcinoma cells. In this report, we show that PBA also increases the acetylation levels of selected histone subtypes in a dose and time dependent manner, an effect that is attributable to the inhibition of histone deacetylase (HDAC) enzymes. Comparison studies with the known HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) using high resolution two-dimensional polyacrylamide gels and Western analysis provide evidence that PBA acts as an HDAC inhibitor within cells. PBA and a more potent amidation inhibitor, 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester (AOPHA-Me), inhibit HDAC enzymes in vitro at micromolar concentrations, with IC50 values approximately 30 fold lower for AOPHA-Me than PBA for selected HDAC isoforms. Overall, these results indicate that PBA and AOPHA-Me are novel anti-tumorigenic HDAC inhibitors. PMID:26065689

  14. The heat shock protein 90 inhibitor SNX5422 has a synergistic activity with histone deacetylase inhibitors in induction of death of anaplastic thyroid carcinoma cells.

    PubMed

    Kim, Si Hyoung; Kang, Jun Goo; Kim, Chul Sik; Ihm, Sung-Hee; Choi, Moon Gi; Yoo, Hyung Joon; Lee, Seong Jin

    2016-02-01

    The influence of the heat shock protein 90 (hsp90) inhibitor SNX5422 alone or in combination with the histone deacetylase (HDAC) inhibitors PXD101, suberoylanilide hydroxamic acid (SAHA), and trichostatin A (TSA) on survival of anaplastic thyroid carcinoma (ATC) cells was investigated. In 8505C and CAL62 cells, SNX5422 caused cell death with concomitant changes in the expression of hsp90 client proteins. After treatment of both SNX5422 and PXD101, SAHA and TSA, compared with treatment of SNX5422 alone, cell viability was diminished, whereas inhibition rate and cytotoxic activity were enhanced. All of the combination index values were lower than 1.0, suggesting the synergism between SNX5422 and PXD101, SAHA and TSA in induction of cell death. In cells treated with both SNX5422 and PXD101, SAHA and TSA, compared with cells treated with SNX5422 alone, the protein levels of Akt, phospho-4EBP1, phospho-S6 K, and survivin were diminished, while those of γH2AX, acetyl. histone H3, acetyl. histone H4, cleaved PARP, and cleaved caspase-3 were enhanced. In conclusion, these results demonstrate that SNX5422 has a cytotoxic activity in conjunction with alterations in the expression of hsp90 client proteins in ATC cells. Moreover, SNX5422 synergizes with HDAC inhibitors in induction of cytotoxicity accompanied by the suppression of PI3K/Akt/mTOR signaling and survivin, and the overexpression of DNA damage-related proteins in ATC cells. PMID:26219406

  15. Histone Deacetylase Inhibitors Antagonize Distinct Pathways to Suppress Tumorigenesis of Embryonal Rhabdomyosarcoma

    PubMed Central

    Vleeshouwer-Neumann, Terra; Phelps, Michael; Bammler, Theo K.; MacDonald, James W.; Jenkins, Isaac; Chen, Eleanor Y.

    2015-01-01

    Embryonal rhabdomyosarcoma (ERMS) is the most common soft tissue cancer in children. The prognosis of patients with relapsed or metastatic disease remains poor. ERMS genomes show few recurrent mutations, suggesting that other molecular mechanisms such as epigenetic regulation might play a major role in driving ERMS tumor biology. In this study, we have demonstrated the diverse roles of histone deacetylases (HDACs) in the pathogenesis of ERMS by characterizing effects of HDAC inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; also known as vorinostat) in vitro and in vivo. TSA and SAHA suppress ERMS tumor growth and progression by inducing myogenic differentiation as well as reducing the self-renewal and migratory capacity of ERMS cells. Differential expression profiling and pathway analysis revealed downregulation of key oncogenic pathways upon HDAC inhibitor treatment. By gain-of-function, loss-of-function, and chromatin immunoprecipitation (ChIP) studies, we show that Notch1- and EphrinB1-mediated pathways are regulated by HDACs to inhibit differentiation and enhance migratory capacity of ERMS cells, respectively. Our study demonstrates that aberrant HDAC activity plays a major role in ERMS pathogenesis. Druggable targets in the molecular pathways affected by HDAC inhibitors represent novel therapeutic options for ERMS patients. PMID:26636678

  16. Long-Term Culture of Porcine Induced Pluripotent Stem-Like Cells Under Feeder-Free Conditions in the Presence of Histone Deacetylase Inhibitors.

    PubMed

    Petkov, Stoyan; Glage, Silke; Nowak-Imialek, Monika; Niemann, Heiner

    2016-03-01

    The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a complex process that involves significant epigenetic alterations in the reprogrammed cells. Epigenetic modifiers such as histone deacetylase (HDAC) inhibitors have been shown to increase the efficiency of derivation of iPSCs in humans and mice. In this study, we used three HDAC inhibitors, valproic acid, sodium butyrate, and suberoylanilide hydroxamic acid, together with ascorbic acid, for derivation and long-term feeder-free culture of porcine iPS-like cells. In the absence of exogenous growth factors and/or small molecules, these inhibitors were able to maintain the expression of key pluripotency markers, including genes known to be specific for naive pluripotent state in mouse stem cells, for over 60 passages under feeder-free conditions. Surprisingly, the cells became dependent on HDAC inhibitors for the maintenance of proliferation. Moreover, despite showing successful integration into blastocysts upon injection, the cells were unable to undergo normal differentiation in vitro and in vivo in the form of teratomas. Our results suggest that HDAC inhibitors maintain pluripotency gene expression of porcine iPSC-like cells in long-term culture, but prevent lineage specification, requiring further optimization of culture conditions for porcine iPSC derivation. PMID:26691930

  17. Suberoylanilide Hydroxamic Acid in Treating Patients With Metastatic and/or Locally Advanced or Locally Recurrent Thyroid Cancer

    ClinicalTrials.gov

    2014-07-23

    Insular Thyroid Cancer; Recurrent Thyroid Cancer; Stage II Follicular Thyroid Cancer; Stage II Papillary Thyroid Cancer; Stage IV Follicular Thyroid Cancer; Stage IV Papillary Thyroid Cancer; Thyroid Gland Medullary Carcinoma

  18. Designing Hydroxamates and Reversed Hydroxamates to Inhibit Zinc-containing Proteases but not Cytochrome P450s: Insights from Quantum Mechanics and Protein-ligand Crystal Structures.

    PubMed

    Barker, Charlotte; Lukac, Iva; Leach, Andrew G

    2015-09-01

    The Hydroxamate is a useful functional group that binds to metals in a range of enzymes, notably zinc in matrix metalloproteases and histone deacetylases. The group is also able to form interactions with iron leading to inhibition of the cytochromes P450, particularly the 3A4 isoform. We have studied the available crystal structures of zinc-containing proteins bound to hydroxamates and compared the observed geometries with those found by quantum mechanical calculations. This has revealed the likely binding mode preferences for neutral and anionic protonation states and highlighted the importance of electrostatic complementarity. Calculations were also performed for the interaction of the hydroxamate with iron in a heme environment, as found in the cytochromes P450. These reveal that the preferred binding mode of hydroxamates in this environment involves the s-trans conformation. These calculations provide design guidelines for those interested in designing inhibitors of metalloenzymes that do not block metabolism of other drugs. The ability to predict the geometries and energies of binding modes that cannot be studied experimentally is an advantage offered by this kind of study. PMID:27490712

  19. A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance

    PubMed Central

    Tian, Ze; D’Arcy, Padraig; Wang, Xin; Ray, Arghya; Tai, Yu-Tzu; Hu, Yiguo; Carrasco, Ruben D.; Richardson, Paul; Linder, Stig; Anderson, Kenneth C.

    2014-01-01

    Proteasome inhibitors have demonstrated that targeting protein degradation is effective therapy in multiple myeloma (MM). Here we show that deubiquitylating enzymes (DUBs) USP14 and UCHL5 are more highly expressed in MM cells than in normal plasma cells. USP14 and UCHL5 short interfering RNA knockdown decreases MM cell viability. A novel 19S regulatory particle inhibitor b-AP15 selectively blocks deubiquitylating activity of USP14 and UCHL5 without inhibiting proteasome activity. b-AP15 decreases viability in MM cell lines and patient MM cells, inhibits proliferation of MM cells even in the presence of bone marrow stroma cells, and overcomes bortezomib resistance. Anti-MM activity of b-AP15 is associated with growth arrest via downregulation of CDC25C, CDC2, and cyclin B1 as well as induction of caspase-dependent apoptosis and activation of unfolded protein response. In vivo studies using distinct human MM xenograft models show that b-AP15 is well tolerated, inhibits tumor growth, and prolongs survival. Combining b-AP15 with suberoylanilide hydroxamic acid, lenalidomide, or dexamethasone induces synergistic anti-MM activity. Our preclinical data showing efficacy of b-AP15 in MM disease models validates targeting DUBs in the ubiquitin proteasomal cascade to overcome proteasome inhibitor resistance and provides the framework for clinical evaluation of USP14/UCHL5 inhibitors to improve patient outcome in MM. PMID:24319254

  20. A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance.

    PubMed

    Tian, Ze; D'Arcy, Padraig; Wang, Xin; Ray, Arghya; Tai, Yu-Tzu; Hu, Yiguo; Carrasco, Ruben D; Richardson, Paul; Linder, Stig; Chauhan, Dharminder; Anderson, Kenneth C

    2014-01-30

    Proteasome inhibitors have demonstrated that targeting protein degradation is effective therapy in multiple myeloma (MM). Here we show that deubiquitylating enzymes (DUBs) USP14 and UCHL5 are more highly expressed in MM cells than in normal plasma cells. USP14 and UCHL5 short interfering RNA knockdown decreases MM cell viability. A novel 19S regulatory particle inhibitor b-AP15 selectively blocks deubiquitylating activity of USP14 and UCHL5 without inhibiting proteasome activity. b-AP15 decreases viability in MM cell lines and patient MM cells, inhibits proliferation of MM cells even in the presence of bone marrow stroma cells, and overcomes bortezomib resistance. Anti-MM activity of b-AP15 is associated with growth arrest via downregulation of CDC25C, CDC2, and cyclin B1 as well as induction of caspase-dependent apoptosis and activation of unfolded protein response. In vivo studies using distinct human MM xenograft models show that b-AP15 is well tolerated, inhibits tumor growth, and prolongs survival. Combining b-AP15 with suberoylanilide hydroxamic acid, lenalidomide, or dexamethasone induces synergistic anti-MM activity. Our preclinical data showing efficacy of b-AP15 in MM disease models validates targeting DUBs in the ubiquitin proteasomal cascade to overcome proteasome inhibitor resistance and provides the framework for clinical evaluation of USP14/UCHL5 inhibitors to improve patient outcome in MM. PMID:24319254

  1. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma

    PubMed Central

    Landreville, Solange; Agapova, Olga A.; Matatall, Katie A.; Kneass, Zachary T.; Onken, Michael D.; Lee, Ryan S.; Bowcock, Anne M.; Harbour, J. William

    2011-01-01

    Purpose Metastasis is responsible for the death of most cancer patients, yet few therapeutic agents are available which specifically target the molecular events that lead to metastasis. We recently showed that inactivating mutations in the tumor suppressor gene BAP1 are closely associated with loss of melanocytic differentiation in uveal melanoma and metastasis (UM). The purpose of this study was to identify therapeutic agents that reverse the phenotypic effects of BAP1 loss in UM. Experimental Design In silico screens were performed to identify therapeutic compounds predicted to differentiate UM cells using Gene Set Enrichment Analysis and Connectivity Map databases. Valproic acid, trichostatin A, LBH-589 and suberoylanilide hydroxamic acid were evaluated for their effects on UM cells using morphologic evaluation, MTS viability assays, BrdU incorporation, flow cytometry, clonogenic assays, gene expression profiling, histone acetylation and ubiquitination assays, and a murine xenograft tumorigenicity model. Results HDAC inhibitors induced morphologic differentiation, cell cycle exit, and a shift to a differentiated, melanocytic gene expression profile in cultured UM cells. Valproic acid inhibited the growth of UM tumors in vivo. Conclusions These findings suggest that HDAC inhibitors may have therapeutic potential for inducing differentiation and prolonged dormancy of micrometastatic disease in UM. PMID:22038994

  2. Antitumor Action of a Novel Histone Deacetylase Inhibitor, YF479, in Breast Cancer1

    PubMed Central

    Zhang, Tao; Chen, Yihua; Li, Jingjie; Yang, Feifei; Wu, Haigang; Dai, Fujun; Hu, Meichun; Lu, Xiaoling; Peng, Yi; Liu, Mingyao; Zhao, Yongxiang; Yi, Zhengfang

    2014-01-01

    Accumulating evidence demonstrates important roles for histone deacetylase in tumorigenesis (HDACs), highlighting them as attractive targets for antitumor drug development. Histone deactylase inhibitors (HDACIs), which have shown favorable anti-tumor activity with low toxicity in clinical investigations, are a promising class of anticancer therapeutics. Here, we screened our compound library to explore small molecules that possess anti-HDAC activity and identified a novel HDACI, YF479. Suberoylanilide hydroxamic acid (SAHA), which was the first approved HDAC inhibitor for clinical treatment by the FDA, was as positive control in our experiments. We further demonstrated YF479 abated cell viability, suppressed colony formation and tumor cell motility in vitro. To investigate YF479 with superior pharmacodynamic properties, we developed spontaneous and experimental breast cancer animal models. Our results showed YF479 significantly inhibited breast tumor growth and metastasis in vivo. Further study indicated YF479 suppressed both early and end stages of metastatic progression. Subsequent adjuvant chemotherapy animal experiment revealed the elimination of local-regional recurrence (LRR) and distant metastasis by YF479. More important, YF479 remarkably prolonged the survival of tumor-bearing mice. Intriguingly, YF479 displayed more potent anti-tumor activity in vitro and in vivo compared with SAHA. Together, our results suggest that YF479, a novel HDACI, inhibits breast tumor growth, metastasis and recurrence. In light of these results, YF479 may be an effective therapeutic option in clinical trials for patients burdened by breast cancer. PMID:25220594

  3. Antileukemic activity of the HSP70 inhibitor pifithrin-μ in acute leukemia.

    PubMed

    Kaiser, M; Kühnl, A; Reins, J; Fischer, S; Ortiz-Tanchez, J; Schlee, C; Mochmann, L H; Heesch, S; Benlasfer, O; Hofmann, W-K; Thiel, E; Baldus, C D

    2011-07-01

    Heat shock protein (HSP) 70 is aberrantly expressed in different malignancies and has emerged as a promising new target for anticancer therapy. Here, we analyzed the in vitro antileukemic effects of pifithrin-μ (PFT-μ), an inhibitor of inducible HSP70, in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) cell lines, as well as in primary AML blasts. PFT-μ significantly inhibited cell viability at low micromolar concentrations in all cell lines tested, with IC50 values ranging from 2.5 to 12.7 μ, and was highly active in primary AML blasts with a median IC50 of 8.9 μ (range 5.7-37.2). Importantly, higher IC50 values were seen in normal hematopoietic cells. In AML and ALL, PFT-μ induced apoptosis and cell cycle arrest in a dose-dependent fashion. PFT-μ also led to an increase of the active form of caspase-3 and reduced the intracellular concentrations of AKT and ERK1/2 in NALM-6 cells. Moreover, PFT-μ enhanced cytotoxicity of cytarabine, 17-(allylamino)-17-desmethoxygeldanamycin, suberoylanilide hydroxamic acid, and sorafenib in NALM-6, TOM-1 and KG-1a cells. This is the first study demonstrating significant antileukemic effects of the HSP70 inhibitor PFT-μ, alone and in combination with different antineoplastic drugs in both AML and ALL. Our results suggest a potential therapeutic role for PFT-μ in acute leukemias. PMID:22829184

  4. Antileukemic activity of the HSP70 inhibitor pifithrin-μ in acute leukemia

    PubMed Central

    Kaiser, M; Kühnl, A; Reins, J; Fischer, S; Ortiz-Tanchez, J; Schlee, C; Mochmann, L H; Heesch, S; Benlasfer, O; Hofmann, W-K; Thiel, E; Baldus, C D

    2011-01-01

    Heat shock protein (HSP) 70 is aberrantly expressed in different malignancies and has emerged as a promising new target for anticancer therapy. Here, we analyzed the in vitro antileukemic effects of pifithrin-μ (PFT-μ), an inhibitor of inducible HSP70, in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) cell lines, as well as in primary AML blasts. PFT-μ significantly inhibited cell viability at low micromolar concentrations in all cell lines tested, with IC50 values ranging from 2.5 to 12.7 μ, and was highly active in primary AML blasts with a median IC50 of 8.9 μ (range 5.7–37.2). Importantly, higher IC50 values were seen in normal hematopoietic cells. In AML and ALL, PFT-μ induced apoptosis and cell cycle arrest in a dose-dependent fashion. PFT-μ also led to an increase of the active form of caspase-3 and reduced the intracellular concentrations of AKT and ERK1/2 in NALM-6 cells. Moreover, PFT-μ enhanced cytotoxicity of cytarabine, 17-(allylamino)-17-desmethoxygeldanamycin, suberoylanilide hydroxamic acid, and sorafenib in NALM-6, TOM-1 and KG-1a cells. This is the first study demonstrating significant antileukemic effects of the HSP70 inhibitor PFT-μ, alone and in combination with different antineoplastic drugs in both AML and ALL. Our results suggest a potential therapeutic role for PFT-μ in acute leukemias. PMID:22829184

  5. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl–mediated drug resistance

    PubMed Central

    Carew, Jennifer S.; Nawrocki, Steffan T.; Kahue, Charissa N.; Zhang, Hui; Yang, Chunying; Chung, Linda; Houghton, Janet A.; Huang, Peng; Giles, Francis J.

    2007-01-01

    Novel therapeutic strategies are needed to address the emerging problem of imatinib resistance. The histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) is being evaluated for imatinib-resistant chronic myelogenous leukemia (CML) and has multiple cellular effects, including the induction of autophagy and apoptosis. Considering that autophagy may promote cancer cell survival, we hypothesized that disrupting autophagy would augment the anticancer activity of SAHA. Here we report that drugs that disrupt the autophagy pathway dramatically augment the antineoplastic effects of SAHA in CML cell lines and primary CML cells expressing wild-type and imatinib-resistant mutant forms of Bcr-Abl, including T315I. This regimen has selectivity for malignant cells and its efficacy was not diminished by impairing p53 function, another contributing factor in imatinib resistance. Disrupting autophagy by chloroquine treatment enhances SAHA-induced superoxide generation, triggers relocalization and marked increases in the lysosomal protease cathepsin D, and reduces the expression of the cathepsin-D substrate thioredoxin. Finally, knockdown of cathepsin D diminishes the potency of this combination, demonstrating its role as a mediator of this therapeutic response. Our data suggest that, when combined with HDAC inhibitors, agents that disrupt autophagy are a promising new strategy to treat imatinib-refractory patients who fail conventional therapy. PMID:17363733

  6. Design, synthesis, and antitumor evaluation of histone deacetylase inhibitors with l-phenylglycine scaffold

    PubMed Central

    Zhang, Yingjie; Li, Xiaoguang; Hou, Jinning; Huang, Yongxue; Xu, Wenfang

    2015-01-01

    In our previous research, a novel series of histone deacetylase (HDAC) inhibitors with l-phenylglycine scaffold were designed and synthesized, among which amides D3 and D7 and ureido D18 were far superior to the positive control (suberoylanilide hydroxamic acid [SAHA]) in HDAC inhibition, but were only comparable to SAHA in antiproliferation on tumor cell lines. Herein, further structural derivation of lead compounds D3, D7, and D18 was carried out to improve their cellular activities. Most of our newly synthesized compounds exhibited more potent HDAC inhibitory activities than the positive control SAHA, and several derivatives were even better than their parent compounds. However, compared with SAHA and our lead compounds, only secondary amine series compounds exhibited improved antiproliferative activities, likely due to their appropriate topological polar surface area values and cell permeabilities. In a human histiocytic lymphoma (U937) xenograft model, the most potent secondary amine 9d exhibited similar in vivo antitumor activity to that of SAHA. PMID:26504374

  7. SB939, a novel potent and orally active histone deacetylase inhibitor with high tumor exposure and efficacy in mouse models of colorectal cancer.

    PubMed

    Novotny-Diermayr, Veronica; Sangthongpitag, Kanda; Hu, Chang Yong; Wu, Xiaofeng; Sausgruber, Nina; Yeo, Pauline; Greicius, Gediminas; Pettersson, Sven; Liang, Ai Leng; Loh, Yung Kiang; Bonday, Zahid; Goh, Kee Chuan; Hentze, Hannes; Hart, Stefan; Wang, Haishan; Ethirajulu, Kantharaj; Wood, Jeanette Marjorie

    2010-03-01

    Although clinical responses in liquid tumors and certain lymphomas have been reported, the clinical efficacy of histone deacetylase inhibitors in solid tumors has been limited. This may be in part due to the poor pharmacokinetic of these drugs, resulting in inadequate tumor concentrations of the drug. SB939 is a new hydroxamic acid based histone deacetylase inhibitor with improved physicochemical, pharmaceutical, and pharmacokinetic properties. In vitro, SB939 inhibits class I, II, and IV HDACs, with no effects on other zinc binding enzymes, and shows significant antiproliferative activity against a wide variety of tumor cell lines. It has very favorable pharmacokinetic properties after oral dosing in mice, with >4-fold increased bioavailability and 3.3-fold increased half-life over suberoylanilide hydroxamic acid (SAHA). In contrast to SAHA, SB939 accumulates in tumor tissue and induces a sustained inhibition of histone acetylation in tumor tissue. These excellent pharmacokinetic properties translated into a dose-dependent antitumor efficacy in a xenograft model of human colorectal cancer (HCT-116), with a tumor growth inhibition of 94% versus 48% for SAHA (both at maximum tolerated dose), and was also effective when given in different intermittent schedules. Furthermore, in APC(min) mice, a genetic mouse model of early-stage colon cancer, SB939 inhibited adenoma formation, hemocult scores, and increased hematocrit values more effectively than 5-fluorouracil. Emerging clinical data from phase I trials in cancer patients indicate that the pharmacokinetic and pharmacologic advantages of SB939 are translated to the clinic. The efficacy of SB939 reported here in two very different models of colorectal cancer warrants further investigation in patients. PMID:20197387

  8. HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand?

    PubMed

    Whittle, Nigel; Singewald, Nicolas

    2014-04-01

    A novel strategy to treat anxiety and fear-related disorders such as phobias, panic and PTSD (post-traumatic stress disorder) is combining CBT (cognitive behavioural therapy), including extinction-based exposure therapy, with cognitive enhancers. By targeting and boosting mechanisms underlying learning, drug development in this field aims at designing CBT-augmenting compounds that help to overcome extinction learning deficits, promote long-term fear inhibition and thus support relapse prevention. Progress in revealing the role of epigenetic regulation of specific genes associated with extinction memory generation has opened new avenues in this direction. The present review examines recent evidence from pre-clinical studies showing that increasing histone acetylation, either via genetic or pharmacological inhibition of HDACs (histone deacetylases) by e.g. vorinostat/SAHA (suberoylanilide hydroxamic acid), entinostat/MS-275, sodium butyrate, TSA (trichostatin A) or VPA (valproic acid), or by targeting HATs (histone acetyltransferases), augments fear extinction and, importantly, generates a long-term extinction memory that can protect from return of fear phenomena. The molecular mechanisms and pathways involved including BDNF (brain-derived neurotrophic factor) and NMDA (N-methyl-D-aspartate) receptor signalling are just beginning to be revealed. First studies in healthy humans are in support of extinction-facilitating effects of HDAC inhibitors. Very recent evidence that HDAC inhibitors can rescue deficits in extinction-memory-impaired rodents indicates a potential clinical utility of this approach also for exposure therapy-resistant patients. Important future work includes investigation of the long-term safety aspects of HDAC inhibitor treatment, as well as design of isotype(s)-specific inhibitors. Taken together, HDAC inhibitors display promising potential as pharmacological adjuncts to augment the efficacy of exposure-based approaches in anxiety and trauma therapy

  9. CD1d induction in solid tumor cells by histone deacetylase inhibitors through inhibition of HDAC1/2 and activation of Sp1.

    PubMed

    Yang, Pei-Ming; Lin, Pei-Jie; Chen, Ching-Chow

    2012-04-01

    CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1. PMID:22419072

  10. Biological Effect of a Hybrid Anticancer Agent Based on Kinase and Histone Deacetylase Inhibitors on Triple-Negative (MDA-MB231) Breast Cancer Cells.

    PubMed

    Librizzi, Mariangela; Spencer, John; Luparello, Claudio

    2016-01-01

    We examined the effects of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) combined with the vascular endothelial growth factor receptor-1/2 inhibitor (3Z)-5-hydroxy-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-2-one on MDA-MB-231 breast cancer cells (triple-negative) in the form of both a cocktail of the separate compounds and a chemically synthesized hybrid (N-hydroxy-N'-[(3Z)-2-oxo-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-5-yl]octanediamide). Comparative flow cytometric and Western blot analyses were performed on cocktail- and hybrid-treated cells to evaluate cell cycle distribution, autophagy/apoptosis modulation, and mitochondrial metabolic state in order to understand the cellular basis of the cytotoxic effect. Cell cycle analysis showed a perturbation of the rate of progression through the cycle, with aspects of redistribution of cells over different cycle phases for the two treatments. In addition, the results suggest that the two distinct classes of compounds under investigation could induce cell death by different preferential pathways, i.e., autophagy inhibition (the cocktail) or apoptosis promotion (the hybrid), thus confirming the enhanced potential of the hybrid approach vs. the combination approach in finely tuning the biological activities of target cells and also showing the hybrid compound as an additional promising drug-like molecule for the prevention or therapy of "aggressive" breast carcinoma. PMID:27483253

  11. Biological Effect of a Hybrid Anticancer Agent Based on Kinase and Histone Deacetylase Inhibitors on Triple-Negative (MDA-MB231) Breast Cancer Cells

    PubMed Central

    Librizzi, Mariangela; Spencer, John; Luparello, Claudio

    2016-01-01

    We examined the effects of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) combined with the vascular endothelial growth factor receptor-1/2 inhibitor (3Z)-5-hydroxy-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-2-one on MDA-MB-231 breast cancer cells (triple-negative) in the form of both a cocktail of the separate compounds and a chemically synthesized hybrid (N-hydroxy-N'-[(3Z)-2-oxo-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-5-yl]octanediamide). Comparative flow cytometric and Western blot analyses were performed on cocktail- and hybrid-treated cells to evaluate cell cycle distribution, autophagy/apoptosis modulation, and mitochondrial metabolic state in order to understand the cellular basis of the cytotoxic effect. Cell cycle analysis showed a perturbation of the rate of progression through the cycle, with aspects of redistribution of cells over different cycle phases for the two treatments. In addition, the results suggest that the two distinct classes of compounds under investigation could induce cell death by different preferential pathways, i.e., autophagy inhibition (the cocktail) or apoptosis promotion (the hybrid), thus confirming the enhanced potential of the hybrid approach vs. the combination approach in finely tuning the biological activities of target cells and also showing the hybrid compound as an additional promising drug-like molecule for the prevention or therapy of “aggressive” breast carcinoma. PMID:27483253

  12. PLGA-PEG Nanoparticles Coated with Anti-CD45RO and Loaded with HDAC Plus Protease Inhibitors Activate Latent HIV and Inhibit Viral Spread

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Liang, Yong; Liu, Xinkuang; Zhou, Shuping; Liu, Liang; Zhang, Fujina; Xie, Chunmei; Cai, Shuyu; Wei, Jia; Zhu, Yongqiang; Hou, Wei

    2015-10-01

    Activating HIV-1 proviruses in latent reservoirs combined with inhibiting viral spread might be an effective anti-HIV therapeutic strategy. Active specific delivery of therapeutic drugs into cells harboring latent HIV, without the use of viral vectors, is a critical challenge to this objective. In this study, nanoparticles of poly(lactic-co-glycolic acid)-polyethylene glycol diblock copolymers conjugated with anti-CD45RO antibody and loaded with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and/or protease inhibitor nelfinavir (Nel) were tested for activity against latent virus in vitro. Nanoparticles loaded with SAHA, Nel, and SAHA + Nel were characterized in terms of size, surface morphology, zeta potential, entrapment efficiency, drug release, and toxicity to ACH-2 cells. We show that SAHA- and SAHA + Nel-loaded nanoparticles can target latently infected CD4+ T-cells and stimulate virus production. Moreover, nanoparticles loaded with SAHA + NEL were capable of both activating latent virus and inhibiting viral spread. Taken together, these data demonstrate the potential of this novel reagent for targeting and eliminating latent HIV reservoirs.

  13. 45Ti extraction using hydroxamate resin

    NASA Astrophysics Data System (ADS)

    Gagnon, K.; Severin, G. W.; Barnhart, T. E.; Engle, J. W.; Valdovinos, H. F.; Nickles, R. J.

    2012-12-01

    As an attractive radionuclide for positron emission tomography, this study explores the extraction and reactivity of 45Ti produced via the 45Sc(p,n)45Ti reaction on a GE PETtrace. Using a small hydroxamate column, we have demonstrated an overall recovery of >50% of 45Ti in ˜1 mL of 1M oxalic acid. Conditions for reacting with desferal were also explored, with effective specific activities up to 38 GBq/μmol obtained.

  14. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites.

    PubMed

    Engel, Jessica A; Jones, Amy J; Avery, Vicky M; Sumanadasa, Subathdrage D M; Ng, Susanna S; Fairlie, David P; Adams, Tina S; Andrews, Katherine T

    2015-12-01

    Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat(®)), romidepsin (Istodax(®)) and belinostat (Beleodaq(®)), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10-200 nM), while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4. PMID:26199860

  15. Proteasome inhibitor MG-132 enhances histone deacetylase inhibitor SAHA-induced cell death of chronic myeloid leukemia cells by an ROS-mediated mechanism and downregulation of the Bcr-Abl fusion protein

    PubMed Central

    ZHOU, WENJING; ZHU, WEIWEI; MA, LIYA; XIAO, FENG; QIAN, WENBIN

    2015-01-01

    Recently, there has been progress in the treatment of chronic myeloid leukemia (CML). However, novel therapeutic strategies are required in order to address the emerging problem of imatinib resistance. Histone deacetylase inhibitors (HDACi) and proteasome inhibitors are promising alternatives, and may be amenable to integration with current therapeutic approaches. However, the mechanisms underlying the interaction between these two agents remain unclear. The present study assessed the cytotoxic effect of the HDACi, suberoylanilide hydroxamic acid (SAHA), in combination with the proteasome inhibitor, MG-132, in imatinib-sensitive K562 and imatinib-resistant K562G cells, and investigated the mechanism underlying this effect. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and protein expression levels were determined by western blotting. Reactive oxygen species (ROS) generation levels were observed under a fluorescence microscope The results indicated that SAHA and MG-132 act in a synergistic manner to induce cell death in K562 and K562G cells. This effect was associated with Bcr-Abl downregulation and the production of ROS. Notably, the ROS scavenger, N-acetyl-L-cysteine, almost fully reversed the cell death and Bcr-Abl downregulation that was induced by the combination of SAHA and MG-132. By contrast, the pan-caspase inhibitor, z-VAD-fmk, only partially reversed the cell death induced by these two drugs in CML cells. These results indicated that increased intracellular ROS levels are important in the induction of cell death and the downregulation of Bcr-Abl. In conclusion, the present results suggested that combined SAHA and MG-132 may be a promising treatment for CML. PMID:26722260

  16. NBM-T-L-BMX-OS01, Semisynthesized from Osthole, Is a Novel Inhibitor of Histone Deacetylase and Enhances Learning and Memory in Rats

    PubMed Central

    Yang, Ying-Chen; Chen, Chia-Nan; Wu, Carol-Imei; Huang, Wei-Jan; Kuo, Tsun-Yung; Kuan, Ming-Chung; Tsai, Tung-Hu; Huang, Jing-Shi; Huang, Chung-Yang

    2013-01-01

    NBM-T-L-BMX-OS01 (BMX) was derived from the semisynthesis of osthole, isolated from Cnidium monnieri (L.) Cuss., and was identified to be a potent inhibitor of HDAC8. This study shows that HDAC8 is highly expressed in the pancreas and the brain. The function of HDAC8 in the brain has not been adequately studied. Because BMX enhances neurite outgrowth and cAMP response element-binding protein (CREB) activation, the effect of BMX on neural plasticity such as learning and memory is examined. To examine declarative and nondeclarative memory, a water maze, a passive one-way avoidance task, and a novel object recognition task were performed. Results from the water maze revealed that BMX and suberoylanilide-hydroxamic-acid-(SAHA-) treated rats showed shorter escape latency in finding the hidden platform. The BMX-treated animals spent more time in the target quadrant in the probe trial performance. An analysis of the passive one-way avoidance results showed that the BMX-treated animals stayed longer in the illuminated chamber by 1 day and 7 days after footshock. The novel object recognition task revealed that the BMX-treated animals showed a marked increase in the time spent exploring novel objects. Furthermore, BMX ameliorates scopolamine-(Sco-) induced learning and memory impairment in animals, indicating a novel role of BMX in learning and memory. PMID:23606881

  17. NBM-T-L-BMX-OS01, Semisynthesized from Osthole, Is a Novel Inhibitor of Histone Deacetylase and Enhances Learning and Memory in Rats.

    PubMed

    Yang, Ying-Chen; Chen, Chia-Nan; Wu, Carol-Imei; Huang, Wei-Jan; Kuo, Tsun-Yung; Kuan, Ming-Chung; Tsai, Tung-Hu; Huang, Jing-Shi; Huang, Chung-Yang

    2013-01-01

    NBM-T-L-BMX-OS01 (BMX) was derived from the semisynthesis of osthole, isolated from Cnidium monnieri (L.) Cuss., and was identified to be a potent inhibitor of HDAC8. This study shows that HDAC8 is highly expressed in the pancreas and the brain. The function of HDAC8 in the brain has not been adequately studied. Because BMX enhances neurite outgrowth and cAMP response element-binding protein (CREB) activation, the effect of BMX on neural plasticity such as learning and memory is examined. To examine declarative and nondeclarative memory, a water maze, a passive one-way avoidance task, and a novel object recognition task were performed. Results from the water maze revealed that BMX and suberoylanilide-hydroxamic-acid-(SAHA-) treated rats showed shorter escape latency in finding the hidden platform. The BMX-treated animals spent more time in the target quadrant in the probe trial performance. An analysis of the passive one-way avoidance results showed that the BMX-treated animals stayed longer in the illuminated chamber by 1 day and 7 days after footshock. The novel object recognition task revealed that the BMX-treated animals showed a marked increase in the time spent exploring novel objects. Furthermore, BMX ameliorates scopolamine-(Sco-) induced learning and memory impairment in animals, indicating a novel role of BMX in learning and memory. PMID:23606881

  18. Inhibitors of Histone Deacetylases Attenuate Noise-Induced Hearing Loss.

    PubMed

    Chen, Jun; Hill, Kayla; Sha, Su-Hua

    2016-08-01

    Loss of auditory sensory hair cells is the major pathological feature of noise-induced hearing loss (NIHL). Currently, no established clinical therapies for prevention or amelioration of NIHL are available. The absence of treatments is due to our lack of a comprehensive understanding of the molecular mechanisms underlying noise-induced damage. Our previous study indicates that epigenetic modification of histones alters hair cell survival. In this study, we investigated the effect of noise exposure on histone H3 lysine 9 acetylation (H3K9ac) in the inner ear of adult CBA/J mice and determined if inhibition of histone deacetylases by systemic administration of suberoylanilide hydroxamic acid (SAHA) could attenuate NIHL. Our results showed that H3K9ac was decreased in the nuclei of outer hair cells (OHCs) and marginal cells of the stria vascularis in the basal region after exposure to a traumatic noise paradigm known to induce permanent threshold shifts (PTS). Consistent with these results, levels of histone deacetylases 1, 2, and 3 (HDAC1, HDAC2 and HDAC3) were increased predominately in the nuclei of cochlear cells. Silencing of HDAC1, HDAC2, or HDAC3 with siRNA reduced the expression of the target HDAC in OHCs, but did not attenuate noise-induced PTS, whereas treatment with the pan-HDAC inhibitor SAHA, also named vorinostat, reduced OHC loss, and attenuated PTS. These findings suggest that histone acetylation is involved in the pathogenesis of noise-induced OHC death and hearing loss. Pharmacological targeting of histone deacetylases may afford a strategy for protection against NIHL. PMID:27095478

  19. Histone deacetylase inhibitors and aspirin interact synergistically to induce cell death in ovarian cancer cells.

    PubMed

    Sonnemann, Jürgen; Hüls, Isabel; Sigler, Michael; Palani, Chithra D; Hong, Le Thi Thu; Völker, Uwe; Kroemer, Heyo K; Beck, James F

    2008-07-01

    Histone deacetylase inhibitors (HDIs) as well as non-steroidal anti-inflammatory drugs including aspirin show promise as antineoplastic agents. The treatment with both HDIs and aspirin can result in hyperacetylation of proteins. In this study, we investigated whether HDIs and aspirin interacted in inducing anticancer activity and histone acetylation. We found that the HDIs, suberoylanilide hydroxamic acid and sodium butyrate, and aspirin cooperated to induce cell death in the ovarian cancer cell line, A2780. The effect was synergistic, as evidenced by CI-isobologram analysis. However, aspirin had no effect on histone acetylation, neither in the absence nor presence of HDIs. To gain insight into the mechanism underlying the synergistic action of HDIs and aspirin, we employed the deacetylated metabolite of aspirin, salicylic acid, and the cyclooxygenase-1- and -2-selective inhibitors, SC-560 and NS-398, respectively. We found that HDIs and salicylic acid interacted synergistically, albeit less efficiently than HDIs and aspirin, to induce cancer cell death, suggesting that the acetyl and the salicyl moiety contributed to the cooperative interaction of aspirin with HDIs. SC-560 and NS-398 had little effect both when applied alone or in conjunction with HDIs, indicating that the combinatorial effect of HDIs and aspirin was not the result of cyclo-oxygenase inhibition. In conclusion, our study demonstrates that HDIs and aspirin synergize to induce cancer cell death and, thus, provides a rationale for a more in-depth exploration into the potential of combining HDIs and aspirin as a strategy for anticancer therapy. PMID:18575740

  20. Photoorganocatalytic One-Pot Synthesis of Hydroxamic Acids from Aldehydes.

    PubMed

    Papadopoulos, Giorgos N; Kokotos, Christoforos G

    2016-05-10

    An efficient one-pot synthesis of hydroxamic acids from aldehydes and hydroxylamine is described. A fast, visible-light-mediated metal-free hydroacylation of dialkyl azodicarboxylates was used to develop the subsequent addition of hydroxylamine hydrochloride. A range of aliphatic and aromatic aldehydes were employed in this reaction to give hydroxamic acids in high to excellent yields. Application of the current methodology was demonstrated in the synthesis of the anticancer medicine vorinostat. PMID:27038037

  1. Identification of the hydroxamate siderophore ferricrocin in Cladosporium cladosporioides.

    PubMed

    Pourhassan, Nina; Gagnon, René; Wichard, Thomas; Bellenger, Jean-Philippe

    2014-04-01

    The hydroxamate siderophore ferricrocin was identified in Cladosporium cladosporioides growth medium by solid phase extraction and ultra high pressure liquid chromatography coupled to a time of flight mass spectrometer (UHPLC/QTOF-MS). Both desferricrocin and ferricrocin were detected in the extracellular medium assisted by high resolution mass spectrometry. This is the first identification of a hydroxamate siderophore in Cladosporium cladosporioides. This finding emphasizes the common meaning of ferricrocin in fungi. PMID:24868878

  2. Hyaluronic acid based hydroxamate and conjugates with biologically active amines: In vitro effect on matrix metalloproteinase-2.

    PubMed

    Ponedel'kina, Irina Yu; Gaskarova, Aigul R; Khaybrakhmanova, Elvira A; Lukina, Elena S; Odinokov, Victor N

    2016-06-25

    In this study, water soluble hyaluronic acid (HA) based hydroxamate and conjugates with biologically active amines and hydrazides such as p- and o-aminophenols, anthranilic, 4- and 5-aminosalicylic acids, nicotinic, N-benzylnicotinic and isonicotinic hydrazides, p-aminobenzenesulfonamide (Streptocide), p-aminobenzoic acid diethylaminoethyl ester (Procaine), and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrene) were examined as matrix metalloproteinase-2 inhibitors (MMPIs). In a dose of 0.27-270μM, the most efficient MMPIs were HA conjugates with o-aminophenol=4-aminoantipyrine>4-aminosalicylic acid>5-aminosalicylic acid. Conjugates with Streptocide, Procaine and HA hydroxamate showed 40-50% inhibitory effect at all used concentrations. Conjugates with anthranilic acid and isonicotinic hydrazide (Isoniazid) in a dose of 0.27μM inhibited enzyme activity by ∼70%, but with the concentration increase their inhibitory effect was decreased. PMID:27083788

  3. Dose-dependent effects of the caspase inhibitor Q-VD-OPh on different apoptosis-related processes.

    PubMed

    Kuželová, Kateřina; Grebeňová, Dana; Brodská, Barbora

    2011-11-01

    The effects of the pan-caspase inhibitor Q-VD-OPh on caspase activity, DNA fragmentation, PARP cleavage, 7A6 exposition, and cellular adhesivity to fibronectin were analyzed in detail in three different apoptotic systems involving two cell lines (JURL-MK1 and HL60) and two apoptosis inducers (imatinib mesylate and suberoylanilide hydroxamic acid). Q-VD-OPh fully inhibited caspase-3 and -7 activity at 0.05  µM concentration as indicated both by the measurement of the rate of Ac-DEVD-AFC cleavage and anti-caspase immunoblots. Caspase-8 was also inhibited at low Q-VD-OPh concentrations. On the other hand, significantly higher Q-VD-OPh dose (10 µM) was required to fully prevent the cleavage of PARP-1. DNA fragmentation and disruption of the cell membrane functionality (Trypan blue exclusion test) were both prevented at 2 µM Q-VD-OPh while 10 µM inhibitor was needed to inhibit the drug-induced loss of cellular adhesivity to fibronectin which was observed in JURL-MK1 cells. The exposition of the mitochondrial antigen 7A6 occurred independently of Q-VD-OPh addition and may serve to the detection of cumulative incidence of the cells which have initiated the apoptosis. Our results show that Q-VD-OPh efficiency in the inhibition of caspase-3 activity and DNA fragmentation in the whole-cell environment is about two orders of magnitude higher than that of z-VAD-fmk. This difference is not due to a slow permeability of the latter through the cytoplasmic membrane. PMID:21751237

  4. Anticolon Cancer Activity of Largazole, a Marine-Derived Tunable Histone Deacetylase InhibitorS⃞

    PubMed Central

    Liu, Yanxia; Salvador, Lilibeth A.; Byeon, Seongrim; Ying, Yongcheng; Kwan, Jason C.; Law, Brian K.; Hong, Jiyong

    2010-01-01

    Histone deacetylases (HDACs) are validated targets for anticancer therapy as attested by the approval of suberoylanilide hydroxamic acid (SAHA) and romidepsin (FK228) for treating cutaneous T cell lymphoma. We recently described the bioassay-guided isolation, structure determination, synthesis, and target identification of largazole, a marine-derived antiproliferative natural product that is a prodrug that releases a potent HDAC inhibitor, largazole thiol. Here, we characterize the anticancer activity of largazole by using in vitro and in vivo cancer models. Screening against the National Cancer Institute's 60 cell lines revealed that largazole is particularly active against several colon cancer cell types. Consequently, we tested largazole, along with several synthetic analogs, for HDAC inhibition in human HCT116 colon cancer cells. Enzyme inhibition strongly correlated with the growth inhibitory effects, and differential activity of largazole analogs was rationalized by molecular docking to an HDAC1 homology model. Comparative genomewide transcript profiling revealed a close overlap of genes that are regulated by largazole, FK228, and SAHA. Several of these genes can be related to largazole's ability to induce cell cycle arrest and apoptosis. Stability studies suggested reasonable bioavailability of the active species, largazole thiol. We established that largazole inhibits HDACs in tumor tissue in vivo by using a human HCT116 xenograft mouse model. Largazole strongly stimulated histone hyperacetylation in the tumor, showed efficacy in inhibiting tumor growth, and induced apoptosis in the tumor. This effect probably is mediated by the modulation of levels of cell cycle regulators, antagonism of the AKT pathway through insulin receptor substrate 1 down-regulation, and reduction of epidermal growth factor receptor levels. PMID:20739454

  5. Inhibition of urease activity by dipeptidyl hydroxamic acids.

    PubMed

    Odake, S; Nakahashi, K; Morikawa, T; Takebe, S; Kobashi, K

    1992-10-01

    A series of dipeptidyl hydroxamic acids (H-X-Gly-NHOH: X = amino acid residues) was synthesized, and the inhibitory activity against Jack bean and Proteus mirabilis ureases [EC 3.5.1.5] was examined. A number of H-X-Gly-NHOH inhibited Jack bean urease with an I50 of the order of 10(-6) M and inhibited Proteus mirabilis urease with an I50 of the order of 10(-5) M. The inhibition against Jack bean urease was more potent than that with the corresponding aminoacyl hydroxamic acids (H-X-NHOH). PMID:1464106

  6. Hydrolysis of aceto-hydroxamic acid under UREX+ conditions

    SciTech Connect

    Alyapyshev, M.; Paulenova, A.; Tkac, P.; Cleveland, M.A.; Bruso, J.E.

    2007-07-01

    Aceto-hydroxamic acid (AHA) is used as a stripping agent In the UREX process. While extraction yields of uranium remain high upon addition of AHA, hexavalent plutonium and neptunium are rapidly reduced to the pentavalent state while the tetravalent species and removed from the product stream. However, under acidic conditions, aceto-hydroxamic acid undergoes hydrolytic degradation. In this study, the kinetics of the hydrolysis of aceto-hydroxamic acid in nitric and perchloric acid media was investigated at several temperatures. The decrease of the concentration of AHA was determined via its ferric complex using UV-Vis spectroscopy. The data obtained were analyzed using the method of initial rates. The data follow the pseudo-first order reaction model. Gamma irradiation of AHA/HNO{sub 3} solutions with 33 kGy/s caused two-fold faster degradation of AHA. The rate equation and thermodynamic data will be presented for the hydrolysis reaction with respect to the concentrations of aceto-hydroxamic acid, nitrate and hydronium ions, and radiation dose. (authors)

  7. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    DOEpatents

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  8. Real-time monitoring of hematopoietic cell interaction with fibronectin fragment: the effect of histone deacetylase inhibitors.

    PubMed

    Obr, Adam; Röselová, Pavla; Grebeňová, Dana; Kuželová, Kateřina

    2013-01-01

    Real-time cell analysis (RTCA) system based on measurement of electrical microimpedance has been introduced to monitor adherent cell cultures. We describe its use for real-time analysis of hematopoietic cell adhesion to bone marrow stroma proteins. Cells growing in suspension do not generate any significant change in the microimpedance signal until the surface with embedded microelectrodes is coated with a cell-binding protein. We show that in this case, the microimpedance signal specifically reflects cell binding to the coated surface. The optimized method was used to monitor the effect of two histone deacetylase inhibitors, suberoylanilide hydroxamic acid (SAHA) and tubastatin A, on JURL-MK1 cell adhesion to cell-binding fragment of fibronectin (FNF). Both compounds were used in non-toxic concentrations and induced an increase in the cell adhesivity. The kinetics of this increase was markedly slower for SAHA although tubulin hyperacetylation occurred rapidly for any of the two drugs. The strengthening of cell binding to FNF was paralleled with a decrease of Lyn kinase activity monitored using an anti-phospho-Src family antibody. The inhibition of Src kinase activity with PP2 accordingly enhanced JURL-MK1 cell interaction with FNF. Actin filaments were present at the proximity of the plasma membrane and in numerous membrane protrusions. In some cells, F-actin formed clusters at membrane regions interacting with the coated surface and these clusters colocalized with active Lyn kinase. Our results indicate that the role of Src kinases in the regulation of hematopoetic cell adhesion signaling is similar to that of c-Src in adherent cells. PMID:23567296

  9. Design and synthesis of an activity-based protein profiling probe derived from cinnamic hydroxamic acid.

    PubMed

    Ai, Teng; Qiu, Li; Xie, Jiashu; Geraghty, Robert J; Chen, Liqiang

    2016-02-15

    In our continued effort to discover new anti-hepatitis C virus (HCV) agents, we validated the anti-replicon activity of compound 1, a potent and selective anti-HCV hydroxamic acid recently reported by us. Generally favorable physicochemical and in vitro absorption, distribution, metabolism, and excretion (ADME) properties exhibited by 1 made it an ideal parent compound from which activity-based protein profiling (ABPP) probe 3 was designed and synthesized. Evaluation of probe 3 revealed that it possessed necessary anti-HCV activity and selectivity. Therefore, we have successfully obtained compound 3 as a suitable ABPP probe to identify potential molecular targets of compound 1. Probe 3 and its improved analogs are expected to join a growing list of ABPP probes that have made important contributions to not only the studies of biochemical and cellular functions but also discovery of selective inhibitors of protein targets. PMID:26753813

  10. The Therapeutic Potential of AN-7, a Novel Histone Deacetylase Inhibitor, for Treatment of Mycosis Fungoides/Sezary Syndrome Alone or with Doxorubicin

    PubMed Central

    Goldfeiz, Neta; Rephaeli, Ada; Nudelman, Abraham; Weitman, Michal; Tarasenko, Nataly; Gorovitz, Batia; Maron, Leah; Yehezkel, Shiran; Amitay-Laish, Iris; Lubin, Ido; Hodak, Emmilia

    2016-01-01

    The 2 histone deacetylase inhibitors (HDACIs) approved for the treatment of cutaneous T-cell lymphoma (CTCL) including mycosis fungoides/sezary syndrome (MF/SS), suberoylanilide hydroxamic acid (SAHA) and romidepsin, are associated with low rates of overall response and high rates of adverse effects. Data regarding combination treatments with HDACIs is sparse. Butyroyloxymethyl diethylphosphate (AN-7) is a novel HDACI, which was found to have selective anticancer activity in several cell lines and animal models. The aim of this study was to compare the anticancer effects of AN-7 and SAHA, either alone or combined with doxorubicin, on MF/SS cell lines and peripheral blood lymphocytes (PBL) from patients with Sezary syndrome (SPBL). MyLa cells, Hut78 cells, SPBL, and PBL from healthy normal individuals (NPBL) were exposed to the test drugs, and the findings were analyzed by a viability assay, an apoptosis assay, and Western blot. AN-7 was more selectively toxic to MyLa cells, Hut78 cells, and SPBL (relative to NPBL) than SAHA and also acted more rapidly. Both drugs induced apoptosis in MF/SS cell lines, SAHA had a greater effect on MyLa cell line, while AN-7 induced greater apoptosis in SPBL; both caused an accumulation of acetylated histone H3, but AN-7 was associated with earlier kinetics; and both caused a downregulation of the HDAC1 protein in MF/SS cell lines. AN-7 acted synergistically with doxorubicin in both MF/SS cell lines and SPBL, and antagonistically with doxorubicin in NPBL. By contrast, SAHA acted antagonistically with doxorubicin on MF/SS cell lines, SPBL, and NPBL, leaving <50% viable cells. In conclusion, AN-7 holds promise as a therapeutic agent in MF/SS and has several advantages over SAHA. Our data provide a rationale for combining AN-7, but not SAHA, with doxorubicin to induce the cell death in MF/SS. PMID:26752418

  11. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines – An Isobolographic Analysis

    PubMed Central

    Wawruszak, Anna; Luszczki, Jarogniew J.; Grabarska, Aneta; Gumbarewicz, Ewelina; Dmoszynska-Graniczka, Magdalena; Polberg, Krzysztof; Stepulak, Andrzej

    2015-01-01

    Histone deacetylase inhibitors (HDIs) are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), alone or in combination with cisplatin (CDDP) on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic) interaction was observed for the combination of CDDP with VPA in MDA-MB-231 “triple-negative” (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative) human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers. PMID:26580554

  12. Behavioral responses of western corn rootworm larvae to naturally occurring and synthetic hydroxamic acids.

    PubMed

    Xie, Y; Arnason, J T; Philogéne, B J; Atkinson, J; Morand, P

    1992-07-01

    Hydroxamic acids have been shown to be toxic to many pest insects and pathogens. In this study, the behavioral responses of western corn rootworm larvae to naturally occurring and synthetic hydroxamic acids were investigated. In a choice test between corn roots treated with hydroxamic acids and roots treated with distilled water (control), western corn rootworm larvae chose to burrow into the control roots significantly more often than compoundtreated roots. In addition, when corn roots were treated with different hydroxamic acids in a designed searching-behavior test, neonate larvae of western corn rootworm responded by significantly reducing the number of turns, while the area searched and locomotor rate significantly increased. The responses were dependent on the concentrations of the test compounds. These results suggested that hydroxamic acids were acting as behavior-modifying and possibly feeding-deterrent chemicals. PMID:24254140

  13. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  14. Characterization of iron uptake from hydroxamate siderophores by Chlorella vulgaris

    SciTech Connect

    Allnutt, F.C.T.

    1985-01-01

    Iron uptake by Chlorella vulgaris from ferric-hydroxamate siderophores and the possible production of siderophores by these algae was investigated. No production of siderophores or organic acids was observed. Iron from the two hydroxamate siderophores tested, ferrioximine B (Fe/sup 3 +/-DFOB) and ferric-rhodotorulate (Fe/sup 3 +/-RA), was taken up at the same rate as iron chelated by citrate or caffeate. Two synthetic chelates, Fe/sup 3 +/-EDTA and Fe/sup 3 +/-EDDHA, provided iron at a slower rate. Iron uptake was inhibited by 50 ..mu..M CCCP or 1 mM vanadate. Cyanide (100 ..mu..M KCN) or 25 ..mu..M antimycin A failed to demonstrate a link between uptake and respiration. Labeled iron (/sup 55/Fe) was taken up while labeled ligands ((/sup 14/C) citrate or RA) were not accumulated. Cation competition from Ni/sup 2 +/ and Co/sup 2 +/ observed using Fe/sup 3 +/-DFOB and Fe/sup 3 +/-RA while iron uptake from Fe/sup 3 +/-citrate was stimulated. Iron-stress induced iron uptake from the hydroxamate siderophores. Ferric reduction from the ferric-siderophores was investigated with electron paramagnetic resonance (EPR) and bathophenathroline disulfonate (BPDS). Ferric reduction was induced by iron-stress and inhibited by CCCP. A close correlation between iron uptake and ferric reduction was measured by the EPR method. Ferric reduction measured by the BPDS method was greater than that measure by EPR. BPDS reduction was interpreted to indicate a potential for reduction while EPR measures the physiological rate of reduction. BPDS inhibition of iron uptake and ferricyanide interference with reduction indicate that reduction and uptake occur exposed to the external medium. Presumptive evidence using a binding dose response curve for Fe/sup 3 +/-DFOB indicated that a receptor may be involved in this mechanism.

  15. Zinc cross-linked hydroxamated alginates for pulsed drug release

    PubMed Central

    Raut, Neha S; Deshmukh, Prasad R; Umekar, Milind J; Kotagale, Nandkishor R

    2013-01-01

    Introduction: Alginates can be tailored chemically to improve solubility, physicochemical, and biological properties and its complexation with metal ion is useful for controlling the drug release. Materials And Methods: Synthesized N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were subsequently complexed with zinc to form beads. Hydroxamation of sodium alginate was confirmed by Fourier transform infra-red spectroscopy (FTIR) and differential scanning calorimetry (DSC). Results: The synthesized polymeric material exhibited reduced aqueous, HCl and NaOH solubility. The hydroxamated derivatives demonstrated pulsed release where change in pH of the dissolution medium stimulated the atenolol release. Conclusion: Atenolol loaded Zn cross-linked polymeric beads demonstrated the sustained the plasma drug levels with increased half-life. Although the synthesized derivatives greatly altered the aqueous solubility of sodium alginate, no significant differences in in vitro and in vivo atenolol release behavior amongst the N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were observed. PMID:24350039

  16. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation.

    PubMed

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Χu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-09-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS‑2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro‑inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of

  17. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation

    PubMed Central

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Xu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS-2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro-inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of RSV infection

  18. Selective flotation of phosphate minerals with hydroxamate collectors

    DOEpatents

    Miller, Jan D.; Wang, Xuming; Li, Minhua

    2002-01-01

    A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; ##STR1## wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R'--OH wherein R' is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.

  19. Suberoylanilide Hydroxyamic Acid Modification of Chromatin Architecture Affects DNA Break Formation and Repair

    SciTech Connect

    Singh, Sheetal; Le Hongan; Shih, S.-J.; Ho, Bay; Vaughan, Andrew T.

    2010-02-01

    Purpose: Chromatin-modifying compounds that inhibit the activity of histone deacetylases have shown potency as radiosensitizers, but the action of these drugs at a molecular level is not clear. Here we investigated the effect of suberoylanilide hydroxyamic acid (SAHA) on DNA breaks and their repair and induction of rearrangements. Methods and Materials: The effect of SAHA on both clonogenic survival and repair was assessed using cell lines SCC-25, MCF7, and TK6. In order to study unique DNA double-strand breaks, anti-CD95 antibody was employed to introduce a DNA double-strand break at a known location within the 11q23 region. The effects of SAHA on DNA cleavage and rearrangements were analyzed by ligation-mediated PCR and inverse PCR, respectively. Results: SAHA acts as radiosensitizer at 1 {mu}M, with dose enhancement factors (DEFs) at 10% survival of: SCC-25 - 1.24 +- 0.05; MCF7 - 1.16 +- 0.09 and TK6 - 1.17 +- 0.05, and it reduced the capacity of SCC-25 cells to repair radiation induced lesions. Additionally, SAHA treatment diffused site-specific fragmentation over at least 1 kbp in TK6 cells. Chromosomal rearrangements produced in TK6 cells exposed to SAHA showed a reduction in microhomology at the breakpoint between 11q23 and partner chromosomes. Conclusions: SAHA shows efficacy as a radiosensitizer at clinically obtainable levels. In its presence, targeted DNA strand breaks occur over an expanded region, indicating increased chromatin access. The rejoining of such breaks is degraded by SAHA when measured as rearrangements at the molecular level and rejoining that contributes to cell survival.

  20. EXPRESS: Histone hyperacetylation modulates spinal type II metabotropic glutamate receptor alleviating stress-induced visceral hypersensitivity in female rats.

    PubMed

    Cao, Dong-Yuan; Bai, Guang; Ji, Yaping; Karpowicz, Jane M; Traub, Richard J

    2016-01-01

    Stress is often a trigger to exacerbate chronic pain including visceral hypersensitivity associated with irritable bowel syndrome, a female predominant functional bowel disorder. Epigenetic mechanisms that mediate stress responses are a potential target to interfere with visceral pain. The purpose of this study was to examine the effect of a histone deacetylase inhibitor, suberoylanilide hydroxamic acid, on visceral hypersensitivity induced by a subchronic stressor in female rats and to investigate the involvement of spinal glutamate receptors. Three daily sessions of forced swim induced visceral hypersensitivity. Intrathecal suberoylanilide hydroxamic acid prevented or reversed the stress-induced visceral hypersensitivity, increased spinal histone 3 acetylation and increased mGluR2 and mGluR3 expression. Chromatin immunoprecipitation (ChIP) analysis revealed enrichment of H3K9Ac and H3K18Ac at several promoter Grm2 and Grm3 regions. The mGluR2/3 antagonist LY341495 reversed the inhibitory effect of suberoylanilide hydroxamic acid on the stress-induced visceral hypersensitivity. In surprising contrast, stress and/or suberoylanilide hydroxamic acid had no effect on spinal NMDA receptor expression or function. These data reveal histone modification modulates mGluR2/3 expression in the spinal cord to attenuate stressinduced visceral hypersensitivity. HDAC inhibitors may provide a potential approach to relieve visceral hypersensitivity associated with irritable bowel syndrome. PMID:27385724

  1. Histone hyperacetylation modulates spinal type II metabotropic glutamate receptor alleviating stress-induced visceral hypersensitivity in female rats

    PubMed Central

    Cao, Dong-Yuan; Bai, Guang; Ji, Yaping; Karpowicz, Jane

    2016-01-01

    Stress is often a trigger to exacerbate chronic pain including visceral hypersensitivity associated with irritable bowel syndrome, a female predominant functional bowel disorder. Epigenetic mechanisms that mediate stress responses are a potential target to interfere with visceral pain. The purpose of this study was to examine the effect of a histone deacetylase inhibitor, suberoylanilide hydroxamic acid, on visceral hypersensitivity induced by a subchronic stressor in female rats and to investigate the involvement of spinal glutamate receptors. Three daily sessions of forced swim induced visceral hypersensitivity. Intrathecal suberoylanilide hydroxamic acid prevented or reversed the stress-induced visceral hypersensitivity, increased spinal histone 3 acetylation and increased mGluR2 and mGluR3 expression. Chromatin immunoprecipitation (ChIP) analysis revealed enrichment of H3K9Ac and H3K18Ac at several promoter Grm2 and Grm3 regions. The mGluR2/3 antagonist LY341495 reversed the inhibitory effect of suberoylanilide hydroxamic acid on the stress-induced visceral hypersensitivity. In surprising contrast, stress and/or suberoylanilide hydroxamic acid had no effect on spinal NMDA receptor expression or function. These data reveal histone modification modulates mGluR2/3 expression in the spinal cord to attenuate stress-induced visceral hypersensitivity. HDAC inhibitors may provide a potential approach to relieve visceral hypersensitivity associated with irritable bowel syndrome. PMID:27385724

  2. Iron Complexation to Histone Deacetylase Inhibitors SAHA and LAQ824 in PEGylated Liposomes Can Considerably Improve Pharmacokinetics in Rats

    PubMed Central

    Wang, Yan; Tu, Sheng; Steffen, Dana; Xiong, May P.

    2015-01-01

    PURPOSE The formulation of histone deacetylase inhibitors (HDACi) is challenging due to poor water solubility and rapid elimination of drugs in vivo. This study investigated the effects of complexing iron (Fe3+) to the HDACi suberoylanilide hydroxamic acid (SAHA) and LAQ824 (LAQ) prior to their encapsulation into PEGylated liposomes, and investigated whether this technique could improve drug solubility, in vitro release and in vivo pharmacokinetic (PK) properties. METHODS The reaction stoichiometry, binding constants and solubility were measured for Fe complexes of SAHA and LAQ. The complexes were passively encapsulated into PEGylated liposomes and characterized by size distribution, zeta-potential, encapsulation efficiency (EE), and in vitro drug release studies. PC-3 cells were used to verify the in vitro anticancer activity of the formulations. In vivo pharmacokinetic properties of liposomal LAQ-Fe (L-LAQ-Fe) was evaluated in rats. RESULTS SAHA and LAQ form complexes with Fe at 1:1 stoichiometric ratio, with a binding constant on the order of 104 M−1. Fe complexation improved the aqueous solubility and the liposomal encapsulation efficiency of SAHA and LAQ (29–35% EE, final drug concentration > 1 mM). Liposomal encapsulated complexes (L-HDACi-Fe) exhibited sustained in vitro release properties compared to L-HDACi but cytotoxicity on PC-3 cells was comparable to free drugs. The PK of L-LAQ-Fe revealed 15-fold improvement in the plasma t1/2 (12.11 h) and 211-fold improvement in the AUC∞ (105.7 μg·h/ml) compared to free LAQ (0.79 h, 0.5 μg·h/ml). Similarly, the plasma t1/2 of Fe was determined to be 11.83 h in a separate experiment using radioactive Fe-59. The majority of Fe-59 activity was found in liver and spleen of rats and correlates with liposomal uptake by the mononuclear phagocyte system. CONCLUSIONS We have demonstrated that encapsulation of Fe complexes of HDACi into PEGylated liposomes can improve overall drug aqueous solubility, in vitro

  3. Treatment with Histone Deacetylase Inhibitor Attenuates MAP Kinase Mediated Liver Injury in a Lethal Model of Septic Shock1

    PubMed Central

    Finkelstein, Robert A.; Li, Yongqing; Liu, Baoling; Shuja, Fahad; Fukudome, Eugene; Velmahos, George C.; deMoya, Marc; Alam, Hasan B.

    2016-01-01

    Background Despite global efforts to improve the treatment of sepsis, it remains a leading cause of morbidity and mortality in intensive care units. We have previously shown that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, markedly improves survival in a murine model of lipopolysaccharide (LPS)-induced shock. SAHA has anti-inflammatory properties that have not been fully characterized. The liver plays an important role in the production of acute phase reactants involved in the inflammatory cascade and is also one of the major organs that can become dysfunctional in septic shock. The purpose of this study was to assess the effect of SAHA treatment on MAP kinases and associated inflammatory markers in murine liver after LPS-induced injury. Methods C57B1/6J mice were randomly divided into three groups: (A) experimental-given intraperitoneal (i.p.) SAHA (50 mg/kg) in dimethyl sulfoxide (DMSO) vehicle solution (n =12); (B) control-given vehicle only (n = 12), and; (C) sham-given no treatment (n = 7). Two hours later, experimental and control mice were injected with LPS (20 mg/kg, i.p.) and experimental mice received a second dose of SAHA. Livers were harvested at 3, 24, and 48 h for analysis of inflammatory markers using Western Blot, Polymerase Chain Reaction (PCR), and Enzyme-Linked Immunosorbent Assay (ELISA) techniques. Results After 3 h, the livers of animals treated with SAHA showed significantly (P < 0.05) decreased expression of the pro-inflammatory MAP kinases phosphorylated p38, phosphorylated ERK, myeloperoxidase and interleukin-6, and increased levels of the anti-inflammatory interleukin-10 compared with controls. Phospho-p38 expression remained low in the SAHA treated groups at 24 and 48 h. Conclusion Administration of SAHA is associated with attenuation of MAPK activation and alteration of inflammatory and anti-inflammatory markers in murine liver after a lethal LPS insult. The suppression of MAPK activity is rapid (within 3 h

  4. Structures of Clostridium Botulinum Neurotoxin Serotype A Light Chain Complexed with Small-Molecule Inhibitors Highlight Active-Site Flexibility

    SciTech Connect

    Silvaggi,N.; Boldt, G.; Hixon, M.; Kennedy, J.; Tzipori, S.; Janda, K.; Allen, K.

    2007-01-01

    The potential for the use of Clostridial neurotoxins as bioweapons makes the development of small-molecule inhibitors of these deadly toxins a top priority. Recently, screening of a random hydroxamate library identified a small-molecule inhibitor of C. botulinum Neurotoxin Serotype A Light Chain (BoNT/A-LC), 4-chlorocinnamic hydroxamate, a derivative of which has been shown to have in vivo efficacy in mice and no toxicity. We describe the X-ray crystal structures of BoNT/A-LC in complexes with two potent small-molecule inhibitors. The structures of the enzyme with 4-chlorocinnamic hydroxamate or 2,4-dichlorocinnamic hydroxamate bound are compared to the structure of the enzyme complexed with L-arginine hydroxamate, an inhibitor with modest affinity. Taken together, this suite of structures provides surprising insights into the BoNT/A-LC active site, including unexpected conformational flexibility at the S1' site that changes the electrostatic environment of the binding pocket. Information gained from these structures will inform the design and optimization of more effective small-molecule inhibitors of BoNT/A-LC.

  5. Hybrid Enzalutamide Derivatives with Histone Deacetylase Inhibitor Activity Decrease Heat Shock Protein 90 and Androgen Receptor Levels and Inhibit Viability in Enzalutamide-Resistant C4-2 Prostate Cancer Cells.

    PubMed

    Rosati, Rayna; Chen, Bailing; Patki, Mugdha; McFall, Thomas; Ou, Siyu; Heath, Elisabeth; Ratnam, Manohar; Qin, Zhihui

    2016-09-01

    Histone deacetylase inhibitors (HDACIs) can disrupt the viability of prostate cancer (PCa) cells through modulation of the cytosolic androgen receptor (AR) chaperone protein heat shock protein 90 (HSP90). However, toxicities associated with their pleiotropic effects could contribute to the ineffectiveness of HDACIs in PCa treatment. We designed hybrid molecules containing partial chemical scaffolds of enzalutamide and suberoylanilide hydroxamic acid (SAHA), with weakened intrinsic pan-HDACI activities, to target HSP90 and AR in enzalutamide-resistant PCa cells. The potency of the new molecules, compounds 2-75 [4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluoro-N-(7-(hydroxyamino)-7-oxoheptyl)benzamide] and 1005 [(E)-3-(4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluorophenyl)-N-hydroxyacrylamide], as inhibitors of nuclear and cytosolic histone deacetylases was substantially lower than that of SAHA in cell-free and in situ assays. Compounds 2-75 and 1005 antagonized gene activation by androgen without inducing chromatin association of AR. Enzalutamide had no effect on the levels of AR or HSP90, whereas the hybrid compounds induced degradation of both AR and HSP90, similar to (compound 1005) or more potently than (compound 2-75) SAHA. Similar to SAHA, compounds 2-75 and 1005 decreased the level of HSP90 and induced acetylation in a predicted approximately 55 kDa HSP90 fragment. Compared with SAHA, compound 2-75 induced greater hyperacetylation of the HDAC6 substrate α-tubulin. In contrast with SAHA, neither hybrid molecule caused substantial hyperacetylation of histones H3 and H4. Compounds 2-75 and 1005 induced p21 and caused loss of viability in the enzalutamide-resistant C4-2 cells, with efficacies that were comparable to or better than SAHA. The results suggest the potential of the new compounds as prototype antitumor drugs that would downregulate HSP90 and AR in

  6. Hydantoin based inhibitors of MMP13--discovery of AZD6605.

    PubMed

    De Savi, Chris; Waterson, David; Pape, Andrew; Lamont, Scott; Hadley, Elma; Mills, Mark; Page, Ken M; Bowyer, Jonathan; Maciewicz, Rose A

    2013-08-15

    Piperidine ether and aryl piperazine hydantoins are reported as potent inhibitors of MMP13. A medicinal chemistry campaign focused on replacing the reverse hydroxamate zinc binding group associated with historical inhibitors with a hydantoin zinc binding group then optimising MMP13 potency, solubility and DMPK properties whilst maintaining good selectivity over MMP14. A number of high quality candidates were progressed and following rat and dog safety evaluation, AZD6605 (3m) was identified as a candidate drug. PMID:23810497

  7. Structures of Staphylococcus aureus peptide deformylase in complex with two classes of new inhibitors.

    PubMed

    Lee, Sang Jae; Lee, Seung-Jae; Lee, Seung Kyu; Yoon, Hye-Jin; Lee, Hyung Ho; Kim, Kyeong Kyu; Lee, Bong Jin; Lee, Byung Il; Suh, Se Won

    2012-07-01

    Peptide deformylase (PDF) catalyzes the removal of the formyl group from the N-terminal methionine residue in newly synthesized polypeptides, which is an essential process in bacteria. Four new inhibitors of PDF that belong to two different classes, hydroxamate/pseudopeptide compounds [PMT387 (7a) and PMT497] and reverse-hydroxamate/nonpeptide compounds [PMT1039 (15e) and PMT1067], have been developed. These compounds inhibited the growth of several pathogens involved in respiratory-tract infections, such as Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae, and leading nosocomial pathogens such as Staphylococcus aureus and Klebsiella pneumoniae with a minimum inhibitory concentration (MIC) in the range 0.1-0.8 mg ml(-1). Interestingly, the reverse-hydroxamate/nonpeptide compounds showed a 250-fold higher antimicrobial activity towards S. aureus, although the four compounds showed similar K(i) values against S. aureus PDF enzymes, with K(i) values in the 11-85 nM range. To provide a structural basis for the discovery of additional PDF inhibitors, the crystal structures of S. aureus PDF in complex with the four inhibitors were determined at resolutions of 1.90-2.30 Å. The inhibitor-bound structures displayed distinct deviations depending on the inhibitor class. The distance between the Zn(2+) ion and the carbonyl O atom of the hydroxamate inhibitors (or the hydroxyl O atom of the reverse-hydroxamate inhibitors) appears to be correlated to S. aureus inhibition activity. The structural information reported in this study should aid in the discovery of new PDF inhibitors that can be used as novel antibacterial drugs. PMID:22751663

  8. [The use of hydroxamic acids and sodium nitrate to enhance the antitumor effect of cyclophosphamide].

    PubMed

    Bogatyrenko, T N; Kuropteva, Z V; Sashenkova, T E; Baĭder, L M; Konovalova, N P

    2013-01-01

    It has been showed that the introduction of nitrocompounds (as nitic oxide donors) in to the compositions of cyclophosphamide and hydroxamic acids for curing animals having leukemia P-388 increased duration of life by 290%. Thereby 40% of animals have recovered. The therapeutic dose cyclophosphamide have been reduced by 6 times. PMID:23814833

  9. Salinomycin Hydroxamic Acids: Synthesis, Structure, and Biological Activity of Polyether Ionophore Hybrids.

    PubMed

    Borgström, Björn; Huang, Xiaoli; Chygorin, Eduard; Oredsson, Stina; Strand, Daniel

    2016-06-01

    The polyether ionophore salinomycin has recently gained attention due to its exceptional ability to selectively reduce the proportion of cancer stem cells within a number of cancer cell lines. Efficient single step strategies for the preparation of hydroxamic acid hybrids of this compound varying in N- and O-alkylation are presented. The parent hydroxamic acid, salinomycin-NHOH, forms both inclusion complexes and well-defined electroneutral complexes with potassium and sodium cations via 1,3-coordination by the hydroxamic acid moiety to the metal ion. A crystal structure of an cationic sodium complex with a noncoordinating anion corroborates this finding and, moreover, reveals a novel type of hydrogen bond network that stabilizes the head-to-tail conformation that encapsulates the cation analogously to the native structure. The hydroxamic acid derivatives display down to single digit micromolar activity against cancer cells but unlike salinomycin selective reduction of ALDH(+) cells, a phenotype associated with cancer stem cells was not observed. Mechanistic implications are discussed. PMID:27326340

  10. Molecular titanium-hydroxamate complexes as models for TiO2 surface binding.

    PubMed

    Brennan, Bradley J; Chen, Jeffrey; Rudshteyn, Benjamin; Chaudhuri, Subhajyoti; Mercado, Brandon Q; Batista, Victor S; Crabtree, Robert H; Brudvig, Gary W

    2016-02-18

    Hydroxamate binding modes and protonation states have yet to be conclusively determined. Molecular titanium(iv) phenylhydroxamate complexes were synthesized as structural and spectroscopic models, and compared to functionalized TiO2 nanoparticles. In a combined experimental-theoretical study, we find that the predominant binding form is monodeprotonated, with evidence for the chelate mode. PMID:26781247

  11. A `Clicked' Tetrameric Hydroxamic Acid Glycopeptidomimetic Antagonizes Sugar-Lectin Interactions On The Cellular Level

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Lin; Zang, Yi; Xie, Juan; Li, Jia; Chen, Guo-Rong; He, Xiao-Peng; Tian, He

    2014-07-01

    A tetrameric N-acetyl galactosaminyl (GalNAc) peptidomimetic was constructed by N-acetylation of repeating proline-based hydroxamic acid units, followed by a convergent `click chemistry' coupling. This novel glycopeptidomimetic was determined to effectively antagonize the interaction between a transmembrane hepatic lectin and GalNAc on the cellular level.

  12. Water-Stable, Hydroxamate Anchors for Functionalization of TiO2 Surfaces with Ultrafast Interfacial Electron Transfer

    SciTech Connect

    McNamara, W.R.; Milot, R.L.; Song, H.; Snoeberger III, R.C.; Batista, Victor S.; Schmuttenmaer, C.A.; Brudvig, Gary W; Crabtree, Robert H

    2010-01-01

    A novel class of derivatized hydroxamic acid linkages for robust sensitization of TiO{sub 2} nanoparticles (NPs) under various aqueous conditions is described. The stability of linkages bound to metal oxides under various conditions is important in developing photocatalytic cells which incorporate transition metal complexes for solar energy conversion. In order to compare the standard carboxylate anchor to hydroxamates, two organic dyes differing only in anchoring groups were synthesized and attached to TiO{sub 2} NPs. At acidic, basic, and close to neutral pH, hydroxamic acid linkages resist detachment compared to the labile carboxylic acids. THz spectroscopy was used to compare ultrafast interfacial electron transfer (IET) into the conduction band of TiO{sub 2} for both linkages and found similar IET characteristics. Observable electron injection and stronger binding suggest that hydroxamates are a suitable class of anchors for designing water stable molecules for functionalizing TiO{sub 2}.

  13. Syntheses of hydroxamic acid-containing bicyclic β-lactams via palladium-catalyzed oxidative amidation of alkenes.

    PubMed

    Jobbins, Maria O; Miller, Marvin J

    2014-02-21

    Palladium-catalyzed oxidative amidation has been used to synthesize hydroxamic acid-containing bicyclic β-lactam cores. Oxidative cleavage of the pendant alkene provides access to the carboxylic acid in one step. PMID:24483144

  14. Potent, Selective, and CNS-Penetrant Tetrasubstituted Cyclopropane Class IIa Histone Deacetylase (HDAC) Inhibitors.

    PubMed

    Luckhurst, Christopher A; Breccia, Perla; Stott, Andrew J; Aziz, Omar; Birch, Helen L; Bürli, Roland W; Hughes, Samantha J; Jarvis, Rebecca E; Lamers, Marieke; Leonard, Philip M; Matthews, Kim L; McAllister, George; Pollack, Scott; Saville-Stones, Elizabeth; Wishart, Grant; Yates, Dawn; Dominguez, Celia

    2016-01-14

    Potent and selective class IIa HDAC tetrasubstituted cyclopropane hydroxamic acid inhibitors were identified with high oral bioavailability that exhibited good brain and muscle exposure. Compound 14 displayed suitable properties for assessment of the impact of class IIa HDAC catalytic site inhibition in preclinical disease models. PMID:26819662

  15. The interaction of zinc(II) and hydroxamic acids and a metal-triggered Lossen rearrangement.

    PubMed

    Duchácková, Lucie; Roithová, Jana

    2009-12-14

    The structure and reactivity of a complex of zinc(II), water, acetic acid, and acetohydroxamic acid, in which one of the acids is deprotonated, is investigated by means of mass spectrometry, labeling studies, and density functional calculations to unravel the exceptional binding properties of hydroxamic acids towards zinc-containing enzymes at the molecular level. It is shown that acetohydroxamic acid is deprotonated in the complex, whereas acetic acid is present in its neutral form. The binding energies of the ligands towards zinc increase in the following order: waterhydroxamic acids. Furthermore, coordinatively unsaturated complexes of zinc and acetohydroxamic acid undergo a zinc-assisted Lossen rearrangement followed by elimination of water if acetohydroxamic acid is present as a neutral ligand, or by loss of methylisocyanate if acetohydroxamic acid is deprotonated. PMID:19937618

  16. Consumption and utilization of experimentally altered corn by southern armyworm: Iron, nitrogen, and cyclic hydroxamates.

    PubMed

    Manuwoto, S; Scriber, J M

    1985-11-01

    The effects of differential leaf water, leaf nitrogen and cyclic hydroxamate (DIMBOA) concentrations in corn seedlings were analyzed for a polyphagous insect, the southern armyworm (Spodoptera eridania Cram.). Six different combinations of nutrients and allelochemicals [DIMBOA = 2,4-dihydroxy-7-methoxy(2H)-benzoxazin-3(4H)-one] were generated using two corn genotypes (WF9 and CI3IA) and three fertility regimes (complete nutrient, Fe-deficient, and N-deficient solutions) in the University Biotron. Poorest larval growth was observed in the low-nitrogen treatments (1.2% and 1.7% leaf N) and was the result of both low consumption rates and high metabolic costs (low efficiency of conversion of digested food, ECD). Fastest growth rates were observed forthe larvae fed leaves from the high-nitrogen treatments (4.6% and 4.4% leaf N). It is noteworthy that these treatments also contained the highest concentration of cyclic hydroxamates, which are generally believed to be the primary defensive chemicals mediating resistance against the European corn borer,Ostrinia nubilalis (Hubner). If these hydroxamates do have any deleterious or costly effects (perhaps accounting for a large portion of metabolic expenditures), the high digestibility of the leaf tissue and the increased consumption rates more than compensate, resulting in rapid growth (growth rate = consumption rate × approximate digestibility × efficiency of conversion of the digested food). These studies illustrate that variation in key nutrients and allelochemicals within a single plant species (Zea mays L.) may have significantly different effects upon various potential leaf-chewing caterpillars, such as these armyworms versus corn borers (which cannot handle the cyclic hydroxamates, even if provided with young nutritious leaf tissues). PMID:24311240

  17. Growth of Actinobacillus pleuropneumoniae is promoted by exogenous hydroxamate and catechol siderophores.

    PubMed Central

    Diarra, M S; Dolence, J A; Dolence, E K; Darwish, I; Miller, M J; Malouin, F; Jacques, M

    1996-01-01

    Siderophores bind ferric ions and are involved in receptor-specific iron transport into bacteria. Six types of siderophores were tested against strains representing the 12 different serotypes of Actinobacillus pleuropneumoniae. Ferrichrome and bis-catechol-based siderophores showed strong growth-promoting activities for A. pleuropneumoniae in a disk diffusion assay. Most strains of A. pleuropneumoniae tested were able to use ferrichrome (21 of 22 or 95%), ferrichrome A (20 of 22 or 90%), and lysine-based bis-catechol (20 of 22 or 90%), while growth of 36% (8 of 22) was promoted by a synthetic hydroxamate, N5-acetyl-N5-hydroxy-L-ornithine tripeptide. A. pleuropneumoniae serotype 1 (strain FMV 87-682) and serotype 5 (strain 2245) exhibited a distinct yellow halo around colonies on Chrome Azurol S agar plates, suggesting that both strains can produce an iron chelator (siderophore) in response to iron stress. The siderophore was found to be neither a phenolate nor a hydroxamate by the chemical tests of Arnow and Csaky, respectively. This is the first report demonstrating the production of an iron chelator and the use of exogenous siderophores by A. pleuropneumoniae. A spermidine-based bis-catechol siderophore conjugated to a carbacephalosporin was shown to inhibit growth of A. pleuropneumoniae. A siderophore-antibiotic-resistant strain was isolated and shown to have lost the ability to use ferrichrome, synthetic hydroxamate, or catechol-based siderophores when grown under conditions of iron restriction. This observation indicated that a common iron uptake pathway, or a common intermediate, for hydroxamate- and catechol-based siderophores may exist in A. pleuropneumoniae. PMID:8975614

  18. Hydroxamate siderophore-promoted reactions between iron(II) and nitroaromatic groundwater contaminants

    NASA Astrophysics Data System (ADS)

    Kim, Dongwook; Duckworth, Owen W.; Strathmann, Timothy J.

    2009-03-01

    Recent studies show that ferrous iron (Fe II), which is often abundant in anaerobic soil and groundwater, is capable of abiotically reducing many subsurface contaminants. However, studies also demonstrate that Fe II redox reactivity in geochemical systems is heavily dependent upon metal speciation. This contribution examines the influence of hydroxamate ligands, including the trihydroxamate siderophore desferrioxamine B (DFOB), on Fe II reactions with nitroaromatic groundwater contaminants (NACs). Experimental results demonstrate that ring-substituted NACs are reduced to the corresponding aniline products in aqueous solutions containing Fe II complexes with DFOB and two monohydroxamate ligands (acetohydroxamic acid and salicylhydroxamic acid). Reaction rates are heavily dependent upon solution conditions and the identities of both the Fe II-complexing hydroxamate ligand and the target NAC. Trends in the observed pseudo-first-order rate constants for reduction of 4-chloronitrobenzene ( kobs, s -1) are quantitatively linked to the formation of Fe II species with standard one-electron reduction potentials, EH0 (Fe III/Fe II), below -0.3 V. Linear free energy relationships correlate reaction rates with the EH0 (Fe III/Fe II) values of different electron-donating Fe II complexes and with the apparent one-electron reduction potentials of different electron-accepting NACs, EH1'(ArNO 2). Experiments describing a redox auto-decomposition mechanism for Fe II-DFOB complexes that occurs at neutral pH and has implications for the stability of hydroxamate siderophores in anaerobic environments are also presented. Results from this study indicate that hydroxamates and other Fe III-stabilizing organic ligands can form highly redox-active Fe II complexes that may contribute to the natural attenuation and remediation of subsurface contaminants.

  19. Development and application of versatile bis-hydroxamic acids for catalytic asymmetric oxidation

    PubMed Central

    Barlan, Allan U.; Zhang, Wei; Yamamoto, Hisashi

    2010-01-01

    In this article, we describe the development and preliminary results of our new designed C2-symmetric bis-hydroxamic acid (BHA) ligands and the application of the new ligands for vanadium-catalyzed asymmetric epoxidation of allylic alcohols as well as homoallylic alcohols. From this success we demonstrate the versatile nature of BHA in the molybdenum catalyzed asymmetric oxidation of unfunctionalized olefins and sulfides. PMID:21152351

  20. Investigation on the ZBG-functionality of phenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase inhibitors.

    PubMed

    Musso, Loana; Cincinelli, Raffaella; Zuco, Valentina; Zunino, Franco; Nurisso, Alessandra; Cuendet, Muriel; Giannini, Giuseppe; Vesci, Loredana; Pisano, Claudio; Dallavalle, Sabrina

    2015-10-15

    A series of alternative Zn-binding groups were explored in the design of phenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Most of the synthesized compounds were less effective than the parent hydroxamic acid. However, the profile of activity shown by the analog bearing a hydroxyurea head group, makes this derivative promising for further investigation. PMID:26376355

  1. The discovery of novel tartrate-based TNF-[alpha] converting enzyme (TACE) inhibitors

    SciTech Connect

    Rosner, Kristin E.; Guo, Zhuyan; Orth, Peter; Shipps, Jr., Gerald W.; Belanger, David B.; Chan, Tin Yau; Curran, Patrick J.; Dai, Chaoyang; Deng, Yongqi; Girijavallabhan, Vinay M.; Hong, Liwu; Lavey, Brian J.; Lee, Joe F.; Li, Dansu; Liu, Zhidan; Popovici-Muller, Janeta; Ting, Pauline C.; Vaccaro, Henry; Wang, Li; Wang, Tong; Yu, W.; Zhou, G.; Niu, X.; Sun, J.; Kozlowski, J.A.; Lundell, D.J.; Madison, V.; McKittrick, B.; Piwinski, J.J.; Shih, N.Y.; Siddiqui, M. Arshad; Strickland, Corey O.

    2010-09-17

    A novel series of TNF-{alpha} convertase (TACE) inhibitors which are non-hydroxamate have been discovered. These compounds are bis-amides of L-tartaric acid (tartrate) and coordinate to the active site zinc in a tridentate manner. They are selective for TACE over other MMP's. We report the first X-ray crystal structure for a tartrate-based TACE inhibitor.

  2. Recent advances in the discovery of zinc-binding motifs for the development of carbonic anhydrase inhibitors.

    PubMed

    Winum, Jean-Yves; Supuran, Claudiu T

    2015-04-01

    In addition to the sulfonamides and their isosteres, recently novel carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) which act by binding to the metal ion from the active site were discovered. Based on the X-ray crystal structure of the CA II-trithiocarbonate adduct, dithiocarbamates, xanthates and thioxanthates were shown to potently inhibit α- and β-CAs. The hydroxamates constitute another class of recently studied CAIs both against mammalian and protozoan enzymes. Another chemotype for which CA inhibitory properties were recently reported is the salicylaldoxime scaffold. X-ray crystal structures were reported for CA II complexed with dithiocarbamates and hydroxamates, whereas the xanthates and salicylaldoximes were investigated by kinetic measurements and docking studies. The dithiocarbamates and the xanthates showed potent antiglaucoma activity in animal models of the disease whereas some hydroxamates inhibited the growth of Trypanosoma cruzii probably by inhibiting the protozoan CA. PMID:24939097

  3. A preliminary study of the hydrolysis of hydroxamic acid complexants in the presence of oxidising metal ions

    NASA Astrophysics Data System (ADS)

    Andrieux, Fabrice P. L.; Boxall, Colin; May, Iain; Taylor, Robin J.

    2010-03-01

    Simple hydroxamic acids (XHAs) are salt free, organic compounds with affinities for cations such as Np4+, Pu4+ and Fe3+. As such they have been identified as suitable reagents for the separation of either Pu and/or Np from U in modified or single cycle Purex based solvent extraction processes designed to meet the emerging requirements of Advanced Fuel Cycles. Acid catalyzed hydrolysis of free XHAs is well known and may impact negatively on reprocessing applications. The hydrolysis of metal-bound XHAs within metal ion-XHA complexes is less understood. Using a model derived for the study of hydroxamic acid hydrolysis in the presence of non-oxidising metal ions (Np (IV) and Fe(III)), we review data pertaining to the hydrolysis of hydroxamic acids in the presence of the oxidising Pu4+ ion, under conditions where the influence of the redox processes may potentially be neglected.

  4. Efficient Route to Highly Water-Soluble Aromatic Cyclic Hydroxamic Acid Ligands

    SciTech Connect

    Seitz, Michael; Raymond, Kenneth N.

    2008-02-06

    2-Hydroxyisoquinolin-1-one (1,2-HOIQO) is a new member of the important class of aromatic cyclic hydroxamic acid ligands which are widely used in metal sequestering applications and metal chelating therapy. The first general approach for the introduction of substituents at the aromatic ring of the chelating moiety is presented. As a useful derivative, the highly water-soluble sulfonic acid has been synthesized by an efficient route that allows general access to 1,2-HOQIO 3-carboxlic acid amides, which are the most relevant for applications.

  5. Bisucaberin B, a linear hydroxamate class siderophore from the marine bacterium Tenacibaculum mesophilum.

    PubMed

    Fujita, Masaki J; Nakano, Koji; Sakai, Ryuichi

    2013-01-01

    A siderophore, named bisucaberin B, was isolated from Tenacibaculum mesophilum bacteria separated from a marine sponge collected in the Republic of Palau. Using spectroscopic and chemical methods, the structure of bisucaberin B (1) was clearly determined to be a linear dimeric hydroxamate class siderophore. Although compound 1 is an open form of the known macrocyclic dimer bisucaberin (2), and was previously described as a bacterial degradation product of desferrioxamine B (4), the present report is the first description of the de novo biosynthesis of 1. To the best of our knowledge, compound 1 is the first chemically characterized siderophore isolated from a bacterium belonging to the phylum Bacteroidetes. PMID:23549298

  6. An enthalpic basis of additivity in biphenyl hydroxamic acid ligands for stromelysin-1

    PubMed Central

    Wilfong, Erin M.; Du, Yu; Toone, Eric J.

    2013-01-01

    Fragment based drug discovery remains a successful tool for pharmaceutical lead discovery. Although based upon the principle of thermodynamic additivity, the underlying thermodynamic basis is poorly understood. A thermodynamic additivity analysis was performed using stromelysin-1 and a series of biphenyl hydroxamate ligands identified through fragment additivity. Our studies suggest that, in this instance, additivity arises from enthalpic effects, while interaction entropies are unfavorable; this thermodynamic behavior is masked by proton transfer. Evaluation of the changes in constant pressure heat capacities during binding suggest that solvent exclusion from the binding site does not account for the dramatic affinity enhancements observed. PMID:22985855

  7. New beginnings for matrix metalloproteinase inhibitors: identification of high-affinity zinc-binding groups.

    PubMed

    Puerta, David T; Lewis, Jana A; Cohen, Seth M

    2004-07-14

    In an effort to identify promising non-hydroxamate inhibitors of matrix metalloproteinases (MMPs), several new zinc-binding groups (ZBGs) based on pyrone, pyrothione, hydroxypyridinone, and hydroxypyridinethione chelators have been examined. Structural studies with tris(pyrazolyl)borate model complexes show that these ligands bind to the MMP active site zinc(II) ion in a bidentate fashion, similar to that found with hydroxamate-based inhibitors. Fluorescence- and colorimetric-based enzyme assays have been used to determine the IC50 values for these ZBGs against MMP-3; mixed O,S-donor ligands were found to be remarkably potent, with IC50 values as much as 700-fold lower than that found for acetohydroxamic acid. Inhibitory activity was found to parallel metal binding affinity as determined in titrations with model complexes. These results demonstrate that MPIs based on new ZBGs are feasible and may indeed improve the overall performance of inhibitors designed against these important medicinal targets. PMID:15237990

  8. A novel collector 2-ethyl-2-hexenoic hydroxamic acid: Flotation performance and adsorption mechanism to ilmenite

    NASA Astrophysics Data System (ADS)

    Xu, Haifeng; Zhong, Hong; Tang, Qing; Wang, Shuai; Zhao, Gang; Liu, Guangyi

    2015-10-01

    In this paper, a novel collector, 2-ethyl-2-hexenoic hydroxamic acid (EHHA) was prepared and characterized by elemental analysis, infrared, 1H NMR, 13C NMR and mass spectra. The flotation performance and adsorption mechanism of EHHA to ilmenite were investigated by micro-flotation tests, density functional theory (DFT) calculations, FTIR spectra, zeta potential and solution chemistry analyses. The micro-flotation results indicated that EHHA exhibited superior flotation performance compared to isooctyl hydroximic acid (IOHA) and octyl hydroxamic acid (OHA), and floated out 84.03% ilmenite at pH 8.0 with 250 mg/L dosage. The analyses of FTIR spectra and zeta potential demonstrated that EHHA might chemisorb onto ilmenite surfaces by form of five-membered chelates. The solution chemistry analyses further inferred that at pH 6.3-10.5, both Fe and Ti species on ilmenite surfaces could chelate EHHA. DFT calculation results implied EHHA owned the strongest affinity to ilmenite among the three C8 hydroximic acids. To discern the sharply improving floatability of ilmenite at pH 8-10, a schematic co-adsorption molecule-ion model of EHHA on ilmenite surfaces was suggested.

  9. Detoxifying carcinogenic polyhalogenated quinones by hydroxamic acids via an unusual double Lossen rearrangement mechanism

    PubMed Central

    Zhu, Ben-Zhan; Zhu, Jun-Ge; Mao, Li; Kalyanaraman, Balaraman; Shan, Guo-Qiang

    2010-01-01

    Hydroxamic acids, which are best-known for their metal-chelating properties in biomedical research, have been found to effectively detoxify the carcinogenic polyhalogenated quinoid metabolites of pentachlorophenol and other persistent organic pollutants. However, the chemical mechanism underlying such detoxication is unclear. Here we show that benzohydroxamic acid (BHA) could dramatically accelerate the conversion of the highly toxic tetrachloro-1, 4-benzoquinone (p-chloranil) to the much less toxic 2,5-dichloro-3, 6-dihydroxy-1, 4-benzoquonine (chloranilic acid), with rate accelerations of up to 150,000-fold. In contrast, no enhancing effect was observed with O-methyl BHA. The major reaction product of BHA was isolated and identified as O-phenylcarbamyl benzohydroxamate. On the basis of these data and oxygen-18 isotope-labeling studies, we proposed that suicidal nucleophilic attack coupled with an unexpected double Lossen rearrangement reaction was responsible for this remarkable acceleration of the detoxication reaction. This is the first report of an unusually mild and facile Lossen-type rearrangement, which could take place under normal physiological conditions in two consecutive steps. Our findings may have broad biological and environmental implications for future research on hydroxamic acids and polyhalogenated quinoid carcinogens, which are two important classes of compounds of major biomedical and environmental interest. PMID:21076034

  10. Betulinic acid derived hydroxamates and betulin derived carbamates are interesting scaffolds for the synthesis of novel cytotoxic compounds.

    PubMed

    Wiemann, Jana; Heller, Lucie; Perl, Vincent; Kluge, Ralph; Ströhl, Dieter; Csuk, René

    2015-12-01

    The betulinic acid-derived hydroxamates 5-18, the amides 19-24, and betulin-derived bis-carbamates 25-28 as well as the carbamates 31-40 and 44-48 were prepared and evaluated for their antiproliferative activity in a photometric sulforhodamine B (SRB) assay against several human cancer cell lines and nonmalignant mouse fibroblasts (NIH 3T3). While for 3-O-acetyl hydroxamic acid 5 EC50 values as low as EC50 = 1.3 μM were found, N,O-bis-alkyl substituted hydroxamates showed lowered cytotoxicity (EC50 = 16-20 μM). In general, hydroxamic acid derivatives showed only reduced selectivity for tumor cells, except for allyl substituted compound 13 (EC50 = 5.9 μM for A2780 human ovarian carcinoma cells and EC50 > 30 μM for nonmalignant mouse fibroblasts). The cytotoxicity of betulinic acid derived amides 19-24 and of betulin derived bis-carbamates 25-28 was low, except for N-ethyl substituted 25. Hexyl substituted 39 showed EC50 = 5.6 μM (518A2 cells) while for mouse fibroblasts EC50 > 30 was determined. PMID:26547057

  11. What Makes Hydroxamate a Promising Anchoring Group in Dye-Sensitized Solar Cells? Insights from Theoretical Investigation.

    PubMed

    Li, Wei; Rego, Luis G C; Bai, Fu-Quan; Wang, Jian; Jia, Ran; Xie, Li-Ming; Zhang, Hong-Xing

    2014-11-20

    We report, from a theoretical point of view, the first comparative study between the highly water-stable hydroxamate and the widely used carboxylate, in addition to the robust phosphate anchors. Theoretical calculations reveal that hydroxamate would be better for photoabsorption. A quantum dynamics description of the interfacial electron transfer (IET), including the underlying nuclear motion effect, is presented. We find that both hydroxamate and carboxylate would have efficient IET character; for phosphate the injection time is significantly longer (several hundred femtoseconds). We also verified that the symmetry of the geometry of the anchoring group plays important roles in the electronic charge delocalization. We conclude that hydroxamate can be a promising anchoring group, as compared to carboxylate and phosphate, due to its better photoabsorption and comparable IET time scale as well as the experimental advantage of water stability. We expect the implications of these findings to be relevant for the design of more efficient anchoring groups for dye-sensitized solar cell (DSSC) application. PMID:26276483

  12. Inhibitory effect of beta-glucosyl-phenolic hydroxamic acids against urease in the presence of microfloral beta-glucosidase.

    PubMed

    Park, J B; Imamura, L; Kobashi, K; Itoh, H; Miyazaki, T; Horisaki, T

    1995-02-01

    Three glucosyl-phenolic hydroxamates, 4-O-(beta-D-glucopyranosyl) benzohydroxamic acid, 4-O-(beta-D-glucopyranosyl)hippuric hydroxamic acid, and 3-[4-O-(beta-D-glucopyranosyl)phenyl]propionohydroxamic acid (Glc-PPHA), were hydrolyzed to their corresponding aglycones by beta-glucosidase of intestinal flora of rat without any major adverse hydrolysis in vitro. Inhibitory potency of these glucosyl-hydroxamates on urease was recovered to the same extent as that of the corresponding aglycone hydroxamates by preincubation for 2h with rat intestinal flora. p-Hydroxyphenylpropionohydroxamic acid inhibited noncompetitively jack-bean urease activity and its glucose-ligated form, Glc-PPHA inhibited it competitively. A single oral dose of Glc-PPHA tended to inhibit urease activity in proximal colon contents of rat at 6 h after administration (p = 0.06). After 14C-urea was orally administered to rat, 14CO2 was collected for to measure the ureolysis in vivo. Expired 14CO2 was limited to 40% by a single oral dose of Glc-PPHA during 6 h, and 75% of intestinal ureolysis was repressed during the first 1 h in the breath test. PMID:7742785

  13. Quinolone-based HDAC inhibitors.

    PubMed

    Balasubramanian, Gopalan; Kilambi, Narasimhan; Rathinasamy, Suresh; Rajendran, Praveen; Narayanan, Shridhar; Rajagopal, Sridharan

    2014-08-01

    HDAC inhibitors emerged as promising drug candidates in combating wide variety of cancers. At present, two of the compounds SAHA and Romidepsin were approved by FDA for cutaneous T-cell lymphoma and many are in various clinical phases. A new quinolone cap structure was explored with hydroxamic acid as zinc-binding group (ZBG). The pan HDAC inhibitory and antiproliferative activities against three human cancer cell lines HCT-116 (colon), NCI-H460 (lung) and U251 (glioblastoma) of the compounds (4a-4w) were evaluated. Introduction of heterocyclic amines in CAP region increased the enzyme inhibitory and antiproliferative activities and few of the compounds tested are metabolically stable in both MLM and HLM. PMID:25019596

  14. Covalency-Driven Dimerization of Plutonium(IV) in a Hydroxamate Complex.

    PubMed

    Silver, Mark A; Cary, Samantha K; Stritzinger, Jared T; Parker, T Gannon; Maron, Laurent; Albrecht-Schmitt, Thomas E

    2016-06-01

    The reaction of formohydroxamic acid [NH(OH)CHO, FHA] with Pu(III) should result in stabilization of the trivalent oxidation state. However, slow oxidation to Pu(IV) occurs, which leads to formation of the dimeric plutonium(IV) formohydroxamate complex Pu2(FHA)8. In addition to being reductants, hydroxamates are also strong π-donor ligands. Here we show that formation of the Pu2(FHA)8 dimer occurs via covalency between the 5f orbitals on plutonium and the π* orbitals of FHA(-) anions, which gives rise to a broad and intense ligand-to-metal charge-transfer feature. Time-dependent density functional theory calculations corroborate this assignment. PMID:27228095

  15. Sorption of Pb(ll) by poly(hydroxamic acid) grafted oil palm empty fruit bunch.

    PubMed

    Haron, M J; Tiansin, M; Ibrahim, N A; Kassim, A; Wan Yunus, W M Z; Talebi, S M

    2011-01-01

    This paper describes the sorption of Pb(ll) from aqueous solution. Oil palm empty fruit bunch (OPEFB) fiber was first grafted with poly(methylacrylate) and then treated with hydroxylammonium chloride in alkaline medium to produce hydroxamic acid (PHA) grafted OPEFB. Sorption of Pb(ll) by PHA-OPEFB was maximum at pH 5. The sorption followed the Langmuir model with maximum capacityof 125.0 mg g-1 at 25 degrees C. The sorption process was exothermic, as shown by the negative value of enthalpy change, Delta H0. The free energy change (DeltaG0) for the sorption was negative, showing that the sorption process was spontaneous. A kinetic study showed that the Pb(ll) sorption followed a second order kinetic model. PMID:21866782

  16. Design, synthesis and biological evaluation of novel hydroxamic acids bearing artemisinin skeleton.

    PubMed

    Ha, Vu Thi; Kien, Vu Tuan; Binh, Le Huy; Tien, Vu Dinh; My, Nguyen Thi Thuy; Nam, Nguyen Hai; Baltas, Michael; Hahn, Hyunggu; Han, Byung Woo; Thao, Do Thi; Vu, Tran Khac

    2016-06-01

    A series of novel hydroxamic acids bearing artemisinin skeleton was designed and synthesized. Some compounds in this series exhibited moderate inhibition against the whole cell HDAC enzymes. Especially, compound 6g displayed potent cytotoxicity against three human cancer cell lines, including HepG2 (liver cancer), MCF-7 (breast cancer) and HL-60 (leukemia cancer), with IC50 values of 2.50, 2.62 and 1.28μg/mL, respectively. Docking studies performed with two potent compounds 6a and 6g using Autodock Vina showed that both compounds bound to HDAC2 with relatively high binding affinities from -7.1 to 7.0kcal/mol compared to SAHA (-7.4kcal/mol). It was found in this research that most of the target compounds seemed to be more cytotoxic toward blood cancer cells (HL-60) than liver (HepG2), and breast (MCF-7) cancer cells. PMID:27018835

  17. Self-assembly and cytotoxicity study of waterwheel-like dinuclear metal complexes: the first metal complexes appended with multiple free hydroxamic acid groups.

    PubMed

    Wang, Wen-Hua; Liu, Wei-Sheng; Wang, Ya-Wen; Li, Yang; Zheng, Li-Fang; Wang, Da-Qi

    2007-02-01

    Two waterwheel-like dinuclear complexes [M(2)(PHA)(4)(H(2)O)(2)] (M = Cu(II) (1), Zn(II) (2); HPHA = phthal-hydroxamic acid) appended with four free hydroxamic acid groups, namely, free hydroxamic acid metal complexes (FHAMCs) have been synthesized and characterized. The crystal structure of complex 1 was determined by single crystal X-ray diffraction, which adopts the paddlewheel motif with four bidentate carboxylate ligands joining two Cu(II) ions. The relative cytotoxicities of compounds 1 and 2 against SMMC-7721 and HO-8910 cell lines are similar and more predominant than HPHA (IC(50): Cu(II)>Zn(II)>HPHA). The synergic effect of the bound water molecules, multiple free hydroxamic acid groups and dimetal active sites with bridging carboxylate may have significant impacts on their pharmacological activity. As the prototype for a new class of hydroxamic acid derivatives, the self-assembly of FHAMCs presents a promising new strategy in designing multiple hydroxamic acids with remarkable bioactivities. PMID:17125839

  18. Probing the "additive effect" in the proline and proline hydroxamic acid catalyzed asymmetric addition of nitroalkanes to cyclic enones.

    PubMed

    Hanessian, Stephen; Govindan, Subramaniyan; Warrier, Jayakumar S

    2005-11-01

    The effect of chirality and steric bulk of 2,5-disubstituted piperazines as additives in the conjugate addition of 2-nitropropane to cyclohexenone, catalyzed by l-proline, was investigated. Neither chirality nor steric bulk affects the enantioselectivity of addition, which gives 86-93% ee in the presence of achiral and chiral nonracemic 2,5-disubstituted piperazines. Proline hydroxamic acid is shown for the first time to be an effective organocatalyst in the same Michael reaction. PMID:16189834

  19. Tenacibactins A-D, hydroxamate siderophores from a marine-derived bacterium, Tenacibaculum sp. A4K-17.

    PubMed

    Jang, Jae-Hyuk; Kanoh, Kaneo; Adachi, Kyoko; Matsuda, Satoru; Shizuri, Yoshikazu

    2007-04-01

    Four new hydroxamate siderophores, tenacibactins A-D (1-4), were isolated from a culture broth of the marine-derived bacterium Tenacibaculum sp. A4K-17. The structures of these tenacibactins were determined by NMR analyses and ESIMS/MS experiments. The iron-binding (chelating) activity of 1-4 was evaluated by the chrome azurol sulfonate (CAS) assay. PMID:17319723

  20. Synthesis and Evaluation of 2-Alkylthio-4-(N-substituted sulfonamide)pyrimidine Hydroxamic Acids as Anti-myeloma Agents.

    PubMed

    Xiang, Jinbao; Leung, Crystal; Zhang, Zhuoqi; Hu, Cassie; Geng, Chao; Liu, Lili; Yi, Lang; Li, Zhiwei; Berenson, James; Bai, Xu

    2016-03-01

    A series of pyrimidine hydroxamic acids with a sulfide substituent at the second position and a sulfonamide substituent at the fourth position have been synthesized and evaluated for their activity against human myeloma cell line RPMI 8226. Several compounds exhibited significant anti-cancer potency. It was found that representative compound 6a selectively killed cancerous but not normal cells. Moreover, compound 6a was effective in causing apoptosis in RPMI 8226 cells and exhibited promising HDAC-inhibitory activities. PMID:26518472

  1. Coordination compounds of hafnium(IV) with some N-substituted derivatives of unsaturated hydroxamic acids

    SciTech Connect

    Stratulat, A.A.; Batyr, D.G.

    1987-05-01

    Coordination compounds of hafnium(IV) with N-o(or m)-X-phenylacryl- and methacrylhydroxamic acids with the general formula (Hf/XC/sub 6/H/sub 4/-N(O)-C(O)-R//sub 4/), where X = 4-CH/sub 3/, H, 4-Cl, 4-Br, 4-CH/sub 3/C(O), 4-CH=CH/sub 2/, 4-CH/sub 3/OC(O), 3-CH/sub 3/, 3-Cl, and 3-Br, and R = CH=CH/sub 2/ and C(CH/sub 3/)=CH/sub 2/, have been synthesized and characterized. The type of coordination of the organic ligands and the structure of the complexes have been established on the basis of the data from IR, electronic, and PMR spectra. It has been shown that the complexation process involves the replacement of the proton of the hydroxyl group of the hydroxamic grouping by a metal ion and the coordination of the oxygen atom of the carbonyl group. The coordination compounds obtained have been assigned a square-antiprismatic structure. The introduction of a methyl radical into the vinyl grouping R results in a significant increase in the strength of the complex.

  2. Hematologic Response to Vorinostat Treatment in Relapsed Myeloid Leukemia of Down Syndrome.

    PubMed

    Scheer, Carina; Kratz, Christian; Witt, Olaf; Creutzig, Ursula; Reinhardt, Dirk; Klusmann, Jan-Henning

    2016-09-01

    Children with Down syndrome are at high risk to develop myeloid leukemia (ML-DS). Despite their excellent prognosis, children with ML-DS particularly suffer from severe therapy-related toxicities and for relapsed ML-DS the cure rates are very poor. Here we report the clinical course of one child with ML-DS treated with the histone deacetylase (HDAC) inhibitor vorinostat (suberoylanilide hydroxamic acid) after second relapse. The child had previously received conventional chemotherapy and stem cell transplantation, yet showed a remarkable clinical and hematologic response. Thus, HDAC inhibitor may represent an effective class of drugs for the treatment of ML-DS. PMID:27191354

  3. Bioactive conformation of stromelysin inhibitors determined by transferred nuclear Overhauser effects.

    PubMed Central

    Gonnella, N C; Bohacek, R; Zhang, X; Kolossváry, I; Paris, C G; Melton, R; Winter, C; Hu, S I; Ganu, V

    1995-01-01

    The transferred nuclear Overhauser effect has been used to determine the biologically active conformations of two stromelysin inhibitors. Both inhibitors used in this study were hydroxamic acids generated via chemical synthesis. These structures, representing the conformation of each inhibitor bound to stromelysin, superimposed with excellent agreement. The study also provided information on the shape and orientation of the S2' and S1' pockets of the enzyme relative to thermolysin. Comparisons were made between stromelysin and thermolysin inhibitors to critically examine thermolysin as a template for stromelysin-inhibitor design. The enzyme-bound conformations of these stromelysin inhibitors were determined for use as a template in conformationally restricted drug design. Images Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:7831311

  4. Arylsulfonamide inhibitors of aggrecanases as potential therapeutic agents for osteoarthritis: synthesis and biological evaluation.

    PubMed

    Nuti, Elisa; Santamaria, Salvatore; Casalini, Francesca; Yamamoto, Kazuhiro; Marinelli, Luciana; La Pietra, Valeria; Novellino, Ettore; Orlandini, Elisabetta; Nencetti, Susanna; Marini, Anna Maria; Salerno, Silvia; Taliani, Sabrina; Da Settimo, Federico; Nagase, Hideaki; Rossello, Armando

    2013-04-01

    Aggrecanases, in particular aggrecanase-2 (ADAMTS-5), are considered the principal proteases responsible for aggrecan degradation in osteoarthritis. For this reason, considerable effort has been put on the discovery and development of aggrecanase inhibitors able to slow down or halt the progression of osteoarthritis. We report herein the synthesis and biological evaluation of a series of arylsulfonamido-based hydroxamates as aggrecanase inhibitors. Compound 18 was found to have a nanomolar activity for ADAMTS-5, ADAMTS-4 and MMP-13 and high selectivity over MMP-1 and MMP-14. Furthermore, this compound proved to be effective in blocking ex vivo cartilage degradation without having effect on cell cytotoxicity. PMID:23376997

  5. FhuD1, a Ferric Hydroxamate-binding Lipoprotein in Staphylococcus aureus - A case of gene duplication and lateral transfer

    SciTech Connect

    Sebulsky, M. Tom; Speziali, Craig D.; Shilton, Brian H.; Edgell, David R.

    2010-11-16

    Staphylococcus aureus can utilize ferric hydroxamates as a source of iron under iron-restricted growth conditions. Proteins involved in this transport process are: FhuCBG, which encodes a traffic ATPase; FhuD2, a post-translationally modified lipoprotein that acts as a high affinity receptor at the cytoplasmic membrane for the efficient capture of ferric hydroxamates; and FhuD1, a protein with similarity to FhuD2. Gene duplication likely gave rise to fhuD1 and fhuD2. While the genomic locations of fhuCBG and fhuD2 in S. aureus strains are conserved, both the presence and the location of fhuD1 are variable. The apparent redundancy of FhuD1 led us to examine the role of this protein. We demonstrate that FhuD1 is expressed only under conditions of iron limitation through the regulatory activity of Fur. FhuD1 fractions with the cell membrane and binds hydroxamate siderophores but with lower affinity than FhuD2. Using small angle x-ray scattering, the solution structure of FhuD1 resembles that of FhuD2, and only a small conformational change is associated with ferrichrome binding. FhuD1, therefore, appears to be a receptor for ferric hydroxamates, like FhuD2. Our data to date suggest, however, that FhuD1 is redundant to FhuD2 and plays a minor role in hydroxamate transport. However, given the very real possibility that we have not yet identified the proper conditions where FhuD1 does provide an advantage over FhuD2, we anticipate that FhuD1 serves an enhanced role in the transport of untested hydroxamate siderophores and that it may play a prominent role during the growth of S. aureus in its natural environments.

  6. Consecutive enzymatic modification of ornithine generates the hydroxamate moieties of the siderophore erythrochelin.

    PubMed

    Robbel, Lars; Helmetag, Verena; Knappe, Thomas A; Marahiel, Mohamed A

    2011-07-12

    Biosynthesis of the hydroxamate-type siderophore erythrochelin requires the generation of δ-N-acetyl-δ-N-hydroxy-L-ornithine (L-haOrn), which is incorporated into the tetrapeptide at positions 1 and 4. Bioinformatic analysis revealed the FAD-dependent monooxygenase EtcB and the bifunctional malonyl-CoA decarboxylase/acetyltransferase Mcd to be putatively involved in the generation of L-haOrn. To investigate if EtcB and Mcd constitute a two-enzyme pathway for the biosynthesis of L-haOrn, they were produced in a recombinant manner and subjected to biochemical studies in vitro. Hydroxylation assays employing recombinant EtcB gave rise to δ-N-hydroxy-L-ornithine (L-hOrn) and confirmed the enzyme to be involved in building block assembly. Acetylation assays were carried out by incubating L-hOrn with recombinant Mcd and malonyl-CoA as the acetyl group donor. Substrate turnover was increased by substituting malonyl-CoA with acetyl-CoA, bypassing the decarboxylation reaction which represents the rate-limiting step. Consecutive enzymatic synthesis of L-haOrn was accomplished in coupled assays employing both the L-ornithine hydroxylase and Mcd. In summary, a biosynthetic route for the generation of δ-N-acetyl-δ-N-hydroxy-L-ornithine starting from L-ornithine has been established in vitro by tandem action of the FAD-dependent monooxygenase EtcB and the bifunctional malonyl-CoA decarboxylase/acetyltransferase Mcd. PMID:21650455

  7. Regio- and stereochemically controlled formation of hydroxamic acids from indium triflate-mediated nucleophilic ring-opening reactions with acylnitroso-Diels–Alder adducts

    PubMed Central

    Yang, Baiyuan; Miller, Marvin J.

    2010-01-01

    Treatment of acylnitroso-Diels–Alder [2.2.1] bicyclic adducts 2a–b with indium triflate in an alcohol solvent induces ring opening reactions to afford monocyclic anti-1,2-, anti-1,4- and syn-1,4-hydroxamic acids with good to excellent regio- and stereoselectivity (up to 7:86:7). Treatment of [2.2.2] bicyclic nitroso adducts 2c–d under similar reaction conditions generates only anti-1,2- and anti-1,4-hydroxamic acids with anti-1,4-product predominant (up to 17:83). PMID:20209116

  8. Synthesis and metabolism of inhibitors of ribonucleotide reductase

    SciTech Connect

    Smith, F.T.

    1985-01-01

    In an effort to prepare more effective inhibitors of ribo-nucleotide reductase a series of 2-substituted-4,6-dihydroxypyrimidines was prepared via the appropriately substituted benzamidine. None of the compounds exhibited in vivo activity against L1210 leukemia. No further testing was performed. In order to investigate the metabolism of 3,4-dihydroxybenzohydroxamic acid, a known inhibitor of ribonucleotide reductase, radiolabeled 3,4-dihydroxybenzohydroxamic acid was synthesized by a modification of the procedure of Pichat and Tostain. /sup 14/C-3,4-Dihydroxybenzoic acid was converted to the methyl ester and subsequently reacted with hydroxylamine to give the hydroxamic acid. /sup 14/C-3,4-Dihydroxybenzohydroxamic acid was given i.p. to Sprague-Dawley rats. Excretion occurred mainly (72%) via the urine. HPLC coupled with GC/MS analyses showed that the compound was excreted mainly unchanged. The compound was metabolized to 3,4-dihydroxybenzamide, 4-methoxy-3-hydroxybenzohydroxamic acid, and 4-hydroxy-3-methoxybenzohydroxamic acid. HPLC analysis also showed the lack of formation of any glucuronide or sulfate conjugates through either the hydroxamic acid or catechol functionalities.

  9. Hydroxamate-Stimulated O2 Uptake in Roots of Pisum sativum and Zea mays, Mediated by a Peroxidase 1

    PubMed Central

    Brouwer, Koos Spreen; van Valen, Ties; Day, David A.; Lambers, Hans

    1986-01-01

    Low concentrations of salicylhydroxamic acid (<5 millimolar) stimulate O2 uptake in intact roots of Pisum sativum. We demonstrate that the hydroxamate-stimulated O2 uptake does not reside in the mitochondria. We also show that the hydroxamate-stimulated O2 uptake is due to the activation of a peroxidase catalyzing reduction of O2. This peroxidase, which can use both NADH and NADPH as a substrate, is stimulated by low concentrations of monophenols, e.g. salicylhydroxamic acid and 2-methoxyphenol. It is inhibited by high (20 millimolar) concentrations of salicylhydroxamic acid, cyanide, and scavengers of the superoxide free radical ion, e.g. ascorbate, gentisic acid, and catechol. In the presence of gentisic acid, O2 uptake by intact pea roots was no longer stimulated by low concentrations of salicylhydroxamic acid. The consequence of the present finding for in vivo respiration measurements is that the use of low concentrations of salicylhydroxamic acid and uncoupler is reliable only in the presence of a suitable superoxide free radical scavenger which prevents activation of the peroxidase. It also confirms that high concentrations of salicylhydroxamic acid (20-25 millimolar) can be safely used in short-term experiments to assess the activity of the alternative path in intact roots. PMID:16664999

  10. High stability and high efficiency chemiluminescent acridinium compounds obtained from 9-acridine carboxylic esters of hydroxamic and sulphohydroxamic acids.

    PubMed

    Renotte, R; Sarlet, G; Thunus, L; Lejeune, R

    2000-01-01

    A series of hydroxamic acids and sulphohydroxamic acids were prepared and linked to 9-acridinecarboxylic acid through a pseudo-ester function. After N-methylation of the heterocyclic ring, the different compounds were tested for their chemiluminescent properties. Substituents on the hydroxamic functions have shown various effects (steric or electronic) on the luminescence yield or stability of the molecule. The most interesting derivatives were selected in terms of chemical stability and chemiluminescence efficiency. 9-[(N-hydroxysuccinimidyl-4-oxo-4-N-phenylaminobutanoate)N-carb oxylat e]-10-methyl-acridinium (FA6), 9-(N-phenylpivalamide-N-carboxylate)-10-methylacridinium (FA17) and 9-(N-phenylpivalamide N-carboxylate)-10-carboxymethyl-acridinium (FA18) iodomercurates are very promising as chemiluminescent labels. These compounds can be detected at very low levels (10(-16)-10(-17) mol/L) and in our stability evaluation, FA6, FA17 and FA18 showed similar results to the acridinium ester DMAE. Their half-lives at 20 degrees C are greater than 2 weeks. PMID:11038489

  11. Probing the structure-activity relationship of endogenous histone deacetylase complexes with immobilized peptide-inhibitors.

    PubMed

    Sindlinger, Julia; Bierlmeier, Jan; Geiger, Lydia-Christina; Kramer, Katharina; Finkemeier, Iris; Schwarzer, Dirk

    2016-05-01

    Histone deacetylases (HDACs) are key regulators of numerous cellular proteins by removing acetylation marks from modified lysine residues. Peptide-based HDAC probes containing α-aminosuberic acid ω-hydroxamate have been established as useful tools for investigating substrate selectivity and composition of endogenous HDAC complexes in cellular lysates. Here we report a structure-activity study of potential HDAC-probes containing derivatives of the hydroxamate moieties. While most of these probes did not recruit significant amounts of endogenous HDACs from cellular lysates, peptides containing Nε-acetyl-Nε-hydroxy-L-lysine served as HDAC probe. The recruitment efficiency varied between HDACs and was generally lower than that of α-aminosuberic acid ω-hydroxamate probes, but showed a similar global interaction profile. These findings indicate that Nε-acetyl-Nε-hydroxy-L-lysine might be a useful tool for investigations on HDAC complexes and the development of HDAC inhibitors. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27071932

  12. Benzyl and Methyl Fatty Hydroxamic Acids Based on Palm Kernel Oil as Chelating Agent for Liquid-Liquid Iron(III) Extraction

    PubMed Central

    Haron, Md Jelas; Jahangirian, Hossein; Silong, Sidik; Yusof, Nor Azah; Kassim, Anuar; Rafiee-Moghaddam, Roshanak; Mahdavi, Behnam; Peyda, Mazyar; Abdollahi, Yadollah; Amin, Jamileh

    2012-01-01

    Liquid-liquid iron(III) extraction was investigated using benzyl fatty hydroxamic acids (BFHAs) and methyl fatty hydroxamic acids (MFHAs) as chelating agents through the formation of iron(III) methyl fatty hydroxamate (Fe-MFHs) or iron(III) benzyl fatty hydroxamate (Fe-BFHs) in the organic phase. The results obtained under optimized conditions, showed that the chelating agents in hexane extract iron(III) at pH 1.9 were realized effectively with a high percentage of extraction (97.2% and 98.1% for MFHAs and BFHAs, respectively). The presence of a large amount of Mg(II), Ni(II), Al(III), Mn(II) and Co(II) ions did affect the iron(III) extraction. Finally stripping studies for recovering iron(III) from organic phase (Fe-MFHs or Fe-BFHs dissolved in hexane) were carried out at various concentrations of HCl, HNO3 and H2SO4. The results showed that the desired acid for recovery of iron(III) was 5 M HCl and quantitative recovery of iron(III) was achieved from Fe(III)-MFHs and Fe(III)-BFHs solutions in hexane containing 5 mg/L of Fe(III). PMID:22408444

  13. Ultra-fast photo-patterning of hydroxamic acid layers adsorbed on TiAlN: The challenge of modeling thermally induced desorption

    NASA Astrophysics Data System (ADS)

    Hemgesberg, Maximilian; Schütz, Simon; Müller, Christine; Schlörholz, Matthias; Latzel, Harald; Sun, Yu; Ziegler, Christiane; Thiel, Werner R.

    2012-10-01

    Long-chain n-alkyl terminated hydroxamic acids (HA) are used for the modification of titanium aluminum nitride (TiAlN) surfaces. HA coatings improve the hydrophobicity of this wear resistant and industrially relevant ceramic. Therefore, HAs with different structural properties are evaluated with respect to their wear resistance and their thermal desorption properties. In order to find new coatings for rewritable offset printing plates, the changes in the surface polarity, composition, and morphology are analyzed by contact angle measurements, X-ray photoemission spectroscopy (XPS), and scanning force microscopy (SFM), respectively. The results are referenced to the strongly bonding molecule n-dodecyl phosphonate (PO11M), which has been used for surface hydrophobization before but proved difficult to remove due to the high laser outputs required for thermal desorption. It is found that for certain HAs, an equally good hydrophobization compared to PO11M can be achieved. Contact angles obtained for different hydroxamic acid coatings can be correlated to their modes of adsorption. Only for selected HA species, resistance to mechanical wear is sufficient for further investigations. Photo-patterning of these hydroxamic acid layers is achieved using a high energy IR laser beam at different energy inputs. Fitting of the obtained data and further evaluation using finite element analysis (FEM) calculations reveal significantly reduced energy consumption of about 20% for the removal of a specific hydroxamic acid coating from the ceramic surface compared to PO11M.

  14. Inhibitors Incorporating Zinc-Binding Groups Target the GlcNAc-PI de-N-acetylase in Trypanosoma brucei, the Causative Agent of African Sleeping Sickness

    PubMed Central

    Abdelwahab, Nuha Z; Crossman, Arthur T; Sullivan, Lauren; Ferguson, Michael A J; Urbaniak, Michael D

    2012-01-01

    Disruption of glycosylphosphatidylinositol biosynthesis is genetically and chemically validated as a drug target against the protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. The N-acetylglucosamine-phosphatidylinositol de-N-acetylase (deNAc) is a zinc metalloenzyme responsible for the second step of glycosylphosphatidylinositol biosynthesis. We recently reported the synthesis of eight deoxy-2-C-branched monosaccharides containing carboxylic acid, hydroxamic acid, or N-hydroxyurea substituents at the C2 position that may act as zinc-binding groups. Here, we describe the synthesis of a glucocyclitol-phospholipid incorporating a hydroxamic acid moiety and report the biochemical evaluation of the monosaccharides and the glucocyclitol-phospholipid as inhibitors of the trypanosome deNAc in the cell-free system and against recombinant enzyme. Monosaccharides with carboxylic acid or hydroxamic acid substituents were found to be the inhibitors of the trypanosome deNAc with IC50 values 0.1–1.5 mm, and the glucocyclitol-phospholipid was found to be a dual inhibitor of the deNAc and the α1-4-mannose transferase with an apparent IC50 = 19 ± 0.5 μm. PMID:22222041

  15. Identification of new snake venom metalloproteinase inhibitors using compound screening and rational Peptide design.

    PubMed

    Villalta-Romero, Fabián; Gortat, Anna; Herrera, Andrés E; Arguedas, Rebeca; Quesada, Javier; de Melo, Robson Lopes; Calvete, Juan J; Montero, Mavis; Murillo, Renato; Rucavado, Alexandra; Gutiérrez, José María; Pérez-Payá, Enrique

    2012-07-12

    The majority of snakebite envenomations in Central America are caused by the viperid species Bothrops asper, whose venom contains a high proportion of zinc-dependent metalloproteinases that play a relevant role in the pathogenesis of hemorrhage characteristic of these envenomations. Broad metalloproteinase inhibitors, such as the peptidomimetic hydroxamate Batimastat, have been shown to inhibit snake venom metalloproteinases (SVMP). However, the difficulty in having open public access to Batimastat and similar molecules highlights the need to design new inhibitors of SVMPs that could be applied in the treatment of snakebite envenomations. We have chosen the SVMP BaP1 as a model to search for new inhibitors using different strategies, that is, screening of the Prestwick Chemical Library and rational peptide design. Results from these approaches provide clues on the structural requirements for efficient BaP1 inhibition and pave the way for the design of new inhibitors of SVMP. PMID:24900507

  16. Identification of New Snake Venom Metalloproteinase Inhibitors Using Compound Screening and Rational Peptide Design

    PubMed Central

    2012-01-01

    The majority of snakebite envenomations in Central America are caused by the viperid species Bothrops asper, whose venom contains a high proportion of zinc-dependent metalloproteinases that play a relevant role in the pathogenesis of hemorrhage characteristic of these envenomations. Broad metalloproteinase inhibitors, such as the peptidomimetic hydroxamate Batimastat, have been shown to inhibit snake venom metalloproteinases (SVMP). However, the difficulty in having open public access to Batimastat and similar molecules highlights the need to design new inhibitors of SVMPs that could be applied in the treatment of snakebite envenomations. We have chosen the SVMP BaP1 as a model to search for new inhibitors using different strategies, that is, screening of the Prestwick Chemical Library and rational peptide design. Results from these approaches provide clues on the structural requirements for efficient BaP1 inhibition and pave the way for the design of new inhibitors of SVMP. PMID:24900507

  17. Valproic Acid as a Potential Inhibitor of Plasmodium falciparum Histone Deacetylase 1 (PfHDAC1): An in Silico Approach

    PubMed Central

    Elbadawi, Mohamed A. Abdallah; Awadalla, Mohamed Khalid Alhaj; Abdel Hamid, Muzamil Mahdi; Mohamed, Magdi Awadalla; Awad, Talal Ahmed

    2015-01-01

    A new Plasmodium falciparum histone deacetylase1 (PfHDAC1) homology model was built based on the highest sequence identity available template human histone deacetylase 2 structure. The generated model was carefully evaluated for stereochemical accuracy, folding correctness and overall structure quality. All evaluations were acceptable and consistent. Docking a group of hydroxamic acid histone deacetylase inhibitors and valproic acid has shown binding poses that agree well with inhibitor-bound histone deacetylase-solved structural interactions. Docking affinity dG scores were in agreement with available experimental binding affinities. Further, enzyme-ligand complex stability and reliability were investigated by running 5-nanosecond molecular dynamics simulations. Thorough analysis of the simulation trajectories has shown that enzyme-ligand complexes were stable during the simulation period. Interestingly, the calculated theoretical binding energies of the docked hydroxamic acid inhibitors have shown that the model can discriminate between strong and weaker inhibitors and agrees well with the experimental affinities reported in the literature. The model and the docking methodology can be used in screening virtual libraries for PfHDAC1 inhibitors, since the docking scores have ranked ligands in accordance with experimental binding affinities. Valproic acid calculated theoretical binding energy suggests that it may inhibit PfHDAC1. PMID:25679451

  18. 1,3,4-Oxadiazole-containing histone deacetylase inhibitors: anticancer activities in cancer cells.

    PubMed

    Valente, Sergio; Trisciuoglio, Daniela; De Luca, Teresa; Nebbioso, Angela; Labella, Donatella; Lenoci, Alessia; Bigogno, Chiara; Dondio, Giulio; Miceli, Marco; Brosch, Gerald; Del Bufalo, Donatella; Altucci, Lucia; Mai, Antonello

    2014-07-24

    We describe 1,3,4-oxadiazole-containing hydroxamates (2) and 2-aminoanilides (3) as histone deacetylase inhibitors. Among them, 2t, 2x, and 3i were the most potent and selective against HDAC1. In U937 leukemia cells, 2t was more potent than SAHA in inducing apoptosis, and 3i displayed cell differentiation with a potency similar to MS-275. In several acute myeloid leukemia (AML) cell lines, as well as in U937 cells in combination with doxorubicin, 3i showed higher antiproliferative effects than SAHA. PMID:24972008

  19. Hydroxamic acid interactions with solvated cerium hydroxides in the flotation of monazite and bastnäsite-Experiments and DFT study

    NASA Astrophysics Data System (ADS)

    Sarvaramini, A.; Azizi, D.; Larachi, F.

    2016-11-01

    Density functional theory (DFT) simulations and experiments were performed to clarify the interaction mechanisms between hydroxamic acid collectors and cerium hydroxides during the flotation of bastnäsite and monazite minerals. These minerals showed considerable floatability at moderately alkaline pH which was related to the adsorption of hydroxamic acids on their surfaces as confirmed by vibrational spectroscopic and zeta potential measurements. DFT simulations showed that at moderately alkaline pH, the interactions between solvated Ce(OH)2+ and Ce(OH)2+ and heptyl-hydroxamic acid (HHA) anions resulted in the formation of, respectively, [Ce(OH)(HHA)x(H2O)y]2-x (x[y = ] = 1[6],2[3],3[1]) and [Ce(OH)2(HHA)x(H2O)y]1-x (x[y = ] = 1[5],2[1],3[0]) complexes. The collector anions were found to interact directly through formation of two covalent bonds between their two polar-head oxygen atoms and cerium in the hydroxide complexes. However, formation of such new bonds resulted in breakage of a few covalent/electrostatic bonds between cerium and water molecules initially present in the first hydration shell of the rare-earth metal cation. Building up in the electric double layer of the semi-soluble minerals, these complexes, and by extension, those from other rare-earth elements belonging to monazite and bastnäsite, are speculated to play a role in the interactions between rare-earth minerals and hydroxamic acid collectors.

  20. Breaking the dogma of the metal-coordinating carboxylate group in integrin ligands: introducing hydroxamic acids to the MIDAS to tune potency and selectivity.

    PubMed

    Heckmann, Dominik; Laufer, Burkhardt; Marinelli, Luciana; Limongelli, Vittorio; Novellino, Ettore; Zahn, Grit; Stragies, Roland; Kessler, Horst

    2009-01-01

    A suitable substitute: All integrin receptors bind their ligands, which contain an aspartate residue, in the metal-ion- dependent adhesion site (MIDAS). So far all attempts to replace the carboxyl group of aspartate with other, pharmacologically favorable isosteric groups have failed. Now it has been shown that a hydroxamic acid group can replace the carboxyl group; the resulting ligand retains its high binding activity. The picture shows one such ligand in the binding site of alphavbeta3. PMID:19343753

  1. Iron chelating active packaging: Influence of competing ions and pH value on effectiveness of soluble and immobilized hydroxamate chelators.

    PubMed

    Ogiwara, Yoshiko; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-04-01

    Many packaged foods utilize synthetic chelators (e.g. ethylenediaminetetraacetic acid, EDTA) to inhibit iron-promoted oxidation or microbial growth which would result in quality loss. To address consumer demands for all natural products, we have previously developed a non-migratory iron chelating active packaging material by covalent immobilization of polyhydroxamate and demonstrated its efficacy in delaying lipid oxidation. Herein, we demonstrate the ability of this hydroxamate-functionalized iron chelating active packaging to retain iron chelating capacity; even in the presence of competing ions common in food. Both immobilized and soluble hydroxamate chelators retained iron chelating capacity in the presence of calcium, magnesium, and sodium competing ions, although at pH 5.0 the presence of calcium reduced immobilized hydroxamate iron chelation. A strong correlation was found between colorimetric and mass spectral analysis of iron chelation by the chelating packaging material. Such chelating active packaging may support reducing additive use in product formulations, while retaining quality and shelf life. PMID:26593563

  2. Identification and quantification of hydroxamic acids in maize seedling root tissue and impact on western corn rootworm (Coleoptera: Chrysomelidae) larval development.

    PubMed

    Davis, C S; Ni, X; Quisenberry, S S; Foster, J E

    2000-06-01

    Hydroxamic acid content was analyzed in the root tissue of four maize, Zea mays L., lines using high-performance liquid chromatography (HPLC) and related to western corn rootworm, Diabrotica virgifera virgifera LeConte, larval development and survivorship. Maize lines evaluated included Mp710 (PI 596627), MpSWCB-4, (PI 550498), Sc213 (PI 548792), and Dk580 (DeKalb commercial hybrid). Maize plants from each line were grown in test tubes containing a transparent agarose gel medium in a growth chamber. After 8 d of growth, root tissue of each line was harvested and hydroxamic acid content analyzed using HPLC. Three hydroxamic acids, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), 6-methoxybenzoxazolinone (MBOA), and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), were identified in the maize roots tested. DIMBOA concentration was quantified and ranged from 246.37 +/- 70.53 micrograms to 91.84 +/- 49.82 micrograms DIMBOA per gram of root tissue. No significant difference was found among lines in D. v. virgifera larval development and survivorship. PMID:10902360

  3. Identification of the KDM2/7 Histone Lysine Demethylase Subfamily Inhibitor and its Antiproliferative Activity

    PubMed Central

    2013-01-01

    Histone Nε-methyl lysine demethylases KDM2/7 have been identified as potential targets for cancer therapies. On the basis of the crystal structure of KDM7B, we designed and prepared a series of hydroxamate analogues bearing an alkyl chain. Enzyme assays revealed that compound 9 potently inhibits KDM2A, KDM7A, and KDM7B, with IC50s of 6.8, 0.2, and 1.2 μM, respectively. While inhibitors of KDM4s did not show any effect on cancer cells tested, the KDM2/7-subfamily inhibitor 9 exerted antiproliferative activity, indicating the potential for KDM2/7 inhibitors as anticancer agents. PMID:23964788

  4. Peptide deformylase inhibitors as potent antimycobacterial agents.

    PubMed

    Teo, Jeanette W P; Thayalan, Pamela; Beer, David; Yap, Amelia S L; Nanjundappa, Mahesh; Ngew, Xinyi; Duraiswamy, Jeyaraj; Liung, Sarah; Dartois, Veronique; Schreiber, Mark; Hasan, Samiul; Cynamon, Michael; Ryder, Neil S; Yang, Xia; Weidmann, Beat; Bracken, Kathryn; Dick, Thomas; Mukherjee, Kakoli

    2006-11-01

    Peptide deformylase (PDF) catalyzes the hydrolytic removal of the N-terminal formyl group from nascent proteins. This is an essential step in bacterial protein synthesis, making PDF an attractive target for antibacterial drug development. Essentiality of the def gene, encoding PDF from Mycobacterium tuberculosis, was demonstrated through genetic knockout experiments with Mycobacterium bovis BCG. PDF from M. tuberculosis strain H37Rv was cloned, expressed, and purified as an N-terminal histidine-tagged recombinant protein in Escherichia coli. A novel class of PDF inhibitors (PDF-I), the N-alkyl urea hydroxamic acids, were synthesized and evaluated for their activities against the M. tuberculosis PDF enzyme as well as their antimycobacterial effects. Several compounds from the new class had 50% inhibitory concentration (IC50) values of <100 nM. Some of the PDF-I displayed antibacterial activity against M. tuberculosis, including MDR strains with MIC90 values of <1 microM. Pharmacokinetic studies of potential leads showed that the compounds were orally bioavailable. Spontaneous resistance towards these inhibitors arose at a frequency of < or =5 x 10(-7) in M. bovis BCG. DNA sequence analysis of several spontaneous PDF-I-resistant mutants revealed that half of the mutants had acquired point mutations in their formyl methyltransferase gene (fmt), which formylated Met-tRNA. The results from this study validate M. tuberculosis PDF as a drug target and suggest that this class of compounds have the potential to be developed as novel antimycobacterial agents. PMID:16966397

  5. Rational Design Synthesis and Evaluation of New Selective Inhibitors of Microbial Class II (Zinc Dependent) Fructose Bis-phosphate Aldolases

    SciTech Connect

    R Daher; M Coincon; M Fonvielle; P Gest; M Guerin; M Jackson; J Sygusch; M Therisod

    2011-12-31

    We report the synthesis and biochemical evaluation of several selective inhibitors of class II (zinc dependent) fructose bis-phosphate aldolases (Fba). The products were designed as transition-state analogues of the catalyzed reaction, structurally related to the substrate fructose bis-phosphate (or sedoheptulose bis-phosphate) and based on an N-substituted hydroxamic acid, as a chelator of the zinc ion present in active site. The compounds synthesized were tested on class II Fbas from various pathogenic microorganisms and, by comparison, on a mammalian class I Fba. The best inhibitor shows Ki against class II Fbas from various pathogens in the nM range, with very high selectivity (up to 105). Structural analyses of inhibitors in complex with aldolases rationalize and corroborate the enzymatic kinetics results. These inhibitors represent lead compounds for the preparation of new synthetic antibiotics, notably for tuberculosis prophylaxis.

  6. Fluorescence quenching and bonding properties of some hydroxamic acid derivatives by iron(III) and manganese(II).

    PubMed

    Senthilnithy, R; De Costa, M D P; Gunawardhana, H D

    2009-01-01

    Spectrophotometric investigations of highly fluorescent metal chelating molecules are of relevance due to their potential application in novel, selective fluorescence-based sensors. Benzene and naphthalene chromophores are highly fluorescent while hydroxamic acids are widely used as ligands for complexation of transition metals. In order to develop fluorescence probes, several phenyl derivatives of N-phenylbenzohydroxamic acid and an aminodihydroxamic acid linked with a naphthalene chromophore were synthesized and their selective ionophoric properties towards iron(III) and manganese(II) ions were investigated using fluorescence and absorption spectroscopy. Both methods confirm the formation of 1:1 and 1:2 complexes for iron(III) and a 1:1 complex for manganese(II). The complex that is formed depends on the concentration of the ligand and pH of the medium. The amino dihydroxamic acid exhibits a prominent selectivity towards iron(III) with a two-step 1:1 and 1:2 quenching mechanism at pH 3 and towards manganese(II) with a 1:1 quenching mechanism at a probe concentration of 1 x 10(-5) mol dm(-3) at pH 9.5 The logarithm of overall formation constants of 1:1 and 1:2 complexes of iron(III) were estimated as 3.30 and 9.05, respectively. PMID:18800360

  7. Charting the mechanism and reactivity of zirconium oxalate with hydroxamate ligands using density functional theory: implications in new chelate design.

    PubMed

    Holland, Jason P; Vasdev, Neil

    2014-07-14

    The reaction of [(89)Zr(C2O4)4](4-) with the tris-hydroxamate ligand desferrioxamine B (DFO) provides the basis of radiolabelling biological vectors such as antibodies and proteins with the radionuclide (89)Zr for positron emission tomography imaging. In this work, density functional theory methods were used to investigate the mechanism of reaction from [Zr(C2O4)4](4-) to Zr(MeAHA)4 by ligand substitution with N-methyl acetohydroxamate (MeAHA). Calculations were performed under simulated basic and acidic conditions. Ligand substitution under basic conditions was found to be thermodynamically feasible with an overall calculated change in solvation free energy, ΔGsol = -97 kJ mol(-1) using the B3LYP/DGDZVP methodology and a water continuum solvation model. In contrast, an acid-mediated mechanism of ligand substitution was found to be thermodynamically non-feasible. Molecular orbital analysis provides a rationale for the difference in thermodynamic stability between [Zr(C2O4)4](4-) and Zr(MeAHA)4. Overall, the DFT calculations are consistent with observed experimental (89)Zr-radiolabelling reactions and suggest that computational methods may prove useful in designing novel chelates for increasing the thermodynamic and kinetic stability of (89)Zr-complexes in vivo. PMID:24722728

  8. Molecular characterization of Haemophilus parasuis ferric hydroxamate uptake (fhu) genes and constitutive expression of the FhuA receptor.

    PubMed

    del Río, Maria Luisa; Navas, Jesús; Martín, Ana Judith; Gutiérrez, César B; Rodríguez-Barbosa, José-Ignacio; Rodríguez Ferri, Elías F

    2006-01-01

    Bacteria have evolved a set of highly specialized proteins to capture iron in iron-depleted environments. The acquisition and uptake of iron present in the extracellular milieu of eukaryotic organisms is indispensable for the growth and survival of microbial pathogens in the course of infection. Haemophilus parasuis is the causative agent of Glässer disease, which is responsible for considerable financial losses in pig-rearing worldwide. To gain insight into the mechanisms involved in siderophore-mediated iron uptake in H. parasuis, genes in the H. parasuis ferric hydroxamate uptake (Fhu) region were amplified in the work being reported here. As has been described in A. pleuropneumoniae, an Fhu genomic region was also present in H. parasuis, being composed of four potential consecutive open reading frames (ORF) designated as fhuC, fhuD, fhuB, and fhuA, respectively. By immunoblotting, using a cross-reactive polyclonal antibody raised against Actinobacillus pleuropneumoniae FhuA protein, it was demonstrated that this protein was constitutively expressed in H. parasuis and its level of expression was not modified under conditions of restricted iron availability. This is the first report describing the presence of the fhu genes in H. parasuis. Our results indicate that FhuA protein expression is not affected under iron-restricted conditions, however, it is one of the targets of the humoral immune response. PMID:16336924

  9. Inhibitors of histone deacetylase as antitumor agents: A critical review.

    PubMed

    Manal, Mohammed; Chandrasekar, M J N; Gomathi Priya, Jeyapal; Nanjan, M J

    2016-08-01

    Histone deacetylase (EC 3.5.1.98 - HDAC) is an amidohydrolase involved in deacetylating the histone lysine residues for chromatin remodeling and thus plays a vital role in the epigenetic regulation of gene expression. Due to its aberrant activity and over expression in several forms of cancer, HDAC is considered as a potential anticancer drug target. HDAC inhibitors alter the acetylation status of histone and non-histone proteins to regulate various cellular events such as cell survival, differentiation and apoptosis in tumor cells and thus exhibit anticancer activity. Till date, four drugs, namely Vorinostat (SAHA), Romidepsin (FK-228), Belinostat (PXD-101) and Panobinostat (LBH-589) have been granted FDA approval for cancer and several HDAC inhibitors are currently in various phases of clinical trials, either as monotherapy and/or in combination with existing/novel anticancer agents. Regardless of this, today scientific efforts have fortified the quest for newer and novel HDAC inhibitors that show isoform selectivity. This review focuses on the chemistry of the molecules of two classes of HDAC inhibitors, namely short chain fatty acids and hydroxamic acids, investigated so far as novel therapeutic agents for cancer. PMID:27239721

  10. Proteasome inhibitors.

    PubMed

    Teicher, Beverly A; Tomaszewski, Joseph E

    2015-07-01

    Proteasome inhibitors have a 20 year history in cancer therapy. The first proteasome inhibitor, bortezomib (Velcade, PS-341), a break-through multiple myeloma treatment, moved rapidly through development from bench in 1994 to first approval in 2003. Bortezomib is a reversible boronic acid inhibitor of the chymotrypsin-like activity of the proteasome. Next generation proteasome inhibitors include carfilzomib and oprozomib which are irreversible epoxyketone proteasome inhibitors; and ixazomib and delanzomib which are reversible boronic acid proteasome inhibitors. Two proteasome inhibitors, bortezomib and carfilzomib are FDA approved drugs and ixazomib and oprozomib are in late stage clinical trials. All of the agents are potent cytotoxics. The disease focus for all the proteasome inhibitors is multiple myeloma. This focus arose from clinical observations made in bortezomib early clinical trials. Later preclinical studies confirmed that multiple myeloma cells were indeed more sensitive to proteasome inhibitors than other tumor cell types. The discovery and development of the proteasome inhibitor class of anticancer agents has progressed through a classic route of serendipity and scientific investigation. These agents are continuing to have a major impact in their treatment of hematologic malignancies and are beginning to be explored as potential treatment agent for non-cancer indications. PMID:25935605

  11. Copper(II)-catalyzed room temperature aerobic oxidation of hydroxamic acids and hydrazides to acyl-nitroso and azo intermediates, and their Diels-Alder trapping.

    PubMed

    Chaiyaveij, Duangduan; Cleary, Leah; Batsanov, Andrei S; Marder, Todd B; Shea, Kenneth J; Whiting, Andrew

    2011-07-01

    CuCl(2), in the presence of a 2-ethyl-2-oxazoline ligand, is an effective catalyst for the room temperature, aerobic oxidation of hydroxamic acids and hydrazides, to acyl-nitroso and azo dienophiles respectively, which are efficiently trapped in situ via both inter- and intramolecular hetero-Diels-Alder reactions with dienes. Both inter- and intramolecular variants of the Diels-Alder reaction are suitable under the reaction conditions using a variety of solvents. Under the same conditions, an acyl hydrazide was also oxidized to give an acyl-azo dienophile which was trapped intramolecularly by a diene. PMID:21644530

  12. Dissecting structure-activity-relationships of crebinostat: Brain penetrant HDAC inhibitors for neuroepigenetic regulation.

    PubMed

    Ghosh, Balaram; Zhao, Wen-Ning; Reis, Surya A; Patnaik, Debasis; Fass, Daniel M; Tsai, Li-Huei; Mazitschek, Ralph; Haggarty, Stephen J

    2016-02-15

    Targeting chromatin-mediated epigenetic regulation has emerged as a potential avenue for developing novel therapeutics for a wide range of central nervous system disorders, including cognitive disorders and depression. Histone deacetylase (HDAC) inhibitors have been pursued as cognitive enhancers that impact the regulation of gene expression and other mechanisms integral to neuroplasticity. Through systematic modification of the structure of crebinostat, a previously discovered cognitive enhancer that affects genes critical to memory and enhances synaptogenesis, combined with biochemical and neuronal cell-based screening, we identified a novel hydroxamate-based HDAC inhibitor, here named neurinostat, with increased potency compared to crebinostat in inducing neuronal histone acetylation. In addition, neurinostat was found to have a pharmacokinetic profile in mouse brain modestly improved over that of crebinostat. This discovery of neurinostat and demonstration of its effects on neuronal HDACs adds to the available pharmacological toolkit for dissecting the molecular and cellular mechanisms of neuroepigenetic regulation in health and disease. PMID:26804233

  13. FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors.

    PubMed Central

    Ankenbauer, R G; Quan, H N

    1994-01-01

    The Pseudomonas aeruginosa siderophore pyochelin is structurally unique among siderophores and possesses neither hydroxamate- nor catecholate-chelating groups. The structural gene encoding the 75-kDa outer membrane Fe(III)-pyochelin receptor FptA has been isolated by plasmid rescue techniques and sequenced. The N-terminal amino acid sequence of the isolated FptA protein corresponded to that deduced from the nucleotide sequence of the fptA structural gene. The mature FptA protein has 682 amino acids and a molecular mass of 75,993 Da and has considerable overall homology with the hydroxamate siderophore receptors FpvA of P. aeruginosa, PupA and PupB of Pseudomonas putida, and FhuE of Escherichia coli. This observation indicates that homologies between siderophore receptors are an unreliable predictor of siderophore ligand class recognition by a given receptor. The fptA gene was strongly regulated by iron; fptA transcription was totally repressed by 30 microM FeCl3, as determined by Northern (RNA) blotting. The promoter of the fptA gene contained the sequence 5'-ATAATGATAAGCATTATC-3', which matches the consensus E. coli Fur-binding site at 17 of 18 positions. The -10 promoter region and transcriptional start site of the fptA gene reside within this Fur-binding site. Images PMID:8288523

  14. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells.

    PubMed

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-01

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics. PMID:26822725

  15. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells

    PubMed Central

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-01

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics. PMID:26822725

  16. Novel inhibitors of brain, neuronal, and basophilic anandamide amidohydrolase.

    PubMed

    De Petrocellis, L; Melck, D; Ueda, N; Maurelli, S; Kurahashi, Y; Yamamoto, S; Marino, G; Di Marzo, V

    1997-02-01

    Mammalian brain as well as mouse neuroblastoma (N18TG2) and rat basophilic leukaemia (RBL) cells were previously shown to contain "anandamide amidohydrolase', a membrane-bound enzyme sensitive to serine and cysteine protease inhibitors and catalyzing the hydrolysis of the endogenous cannabimimetic metabolite, anandamide (arachidonoyl-ethanolamide). With the aim of developing novel inhibitors of this enzyme, we synthesized three arachidonic acid (AA) analogues, i.e. arachidonoyl-diazo-methyl-ketone (ADMK), ara-chidonoyl-chloro-methyl-ketone (ACMK) and O-acetyl-arachidonoyl-hydroxamate (AcAHA), by adding to the fatty acid moiety three functional groups previously used to synthesize irreversible inhibitors of serine and cysteine proteases. The three compounds were purified and characterized by proton nuclear magnetic resonance and electron impact mass spectrometry. Their effect was tested on anandamide amidohydrolase partially purified from N18TG2 and RBL-1 cells and porcine brain. Pre-treatment of the enzyme with each compound produced a significant inhibition, with ADMK being the most potent (IC50 = 3, 2 and 6 microM) and AcAHA the weakest (IC50 = 34, 15 and 25 microM) inhibitors. The inactivated enzyme regained its full activity when chromatographed by anion-exchange chromatography, suggesting that none of the compounds inhibited the amidohydrolase in a covalent manner. Accordingly, Lineweaver-Burk profiles showed competitive inhibition by each compound. Conversely, the irreversible inhibitor of cytosolic phospholipase As, methyl-arachidonoyl-fluoro-phosphonate (MAFP), covalently inhibited the amidohydrolase. MAFP was active at concentrations 10(3) times lower than those reported for phospholipase A2 inhibition, and is the most potent anandamide amidohydrolase inhibitor so far described (IC50 = 1-3 nM). MAFP, ADMK and ACMK, probably by inhibiting anandamide degradation, produced an apparent increase of the in vitro formation of anandamide from its biosynthetic

  17. tert-Butylcarbamate-containing histone deacetylase inhibitors: apoptosis induction, cytodifferentiation, and antiproliferative activities in cancer cells.

    PubMed

    Valente, Sergio; Trisciuoglio, Daniela; Tardugno, Maria; Benedetti, Rosaria; Labella, Donatella; Secci, Daniela; Mercurio, Ciro; Boggio, Roberto; Tomassi, Stefano; Di Maro, Salvatore; Novellino, Ettore; Altucci, Lucia; Del Bufalo, Donatella; Mai, Antonello; Cosconati, Sandro

    2013-05-01

    Herein we report novel pyrrole- and benzene-based hydroxamates (8, 10) and 2'-aminoanilides (9, 11) bearing the tert-butylcarbamate group at the CAP moiety as histone deacetylase (HDAC) inhibitors. Compounds 8 b and 10 c selectively inhibited HDAC6 at the nanomolar level, whereas the other hydroxamates effected an increase in acetyl-α-tubulin levels in human acute myeloid leukemia U937 cells. In the same cell line, compounds 8 b and 10 c elicited 18.4 and 21.4 % apoptosis, respectively (SAHA: 16.9 %), and the pyrrole anilide 9 c displayed the highest cytodifferentiating effect (90.9 %). In tests against a wide range of various cancer cell lines to determine its antiproliferative effects, compound 10 c exhibited growth inhibition from sub-micromolar (neuroblastoma LAN-5 and SH-SY5Y cells, chronic myeloid leukemia K562 cells) to low-micromolar (lung H1299 and A549, colon HCT116 and HT29 cancer cells) concentrations. In HT29 cells, 10 c increased histone H3 acetylation, and decreased the colony-forming potential of the cancer cells by up to 60 %. PMID:23526814

  18. CFTR Inhibitors

    PubMed Central

    Verkman, Alan S.; Synder, David; Tradtrantip, Lukmanee; Thiagarajah, Jay R.; Anderson, Marc O.

    2014-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated Cl− channel whose major function is to facilitate epithelial fluid secretion. Loss-of-function mutations in CFTR cause the genetic disease cystic fibrosis. CFTR is required for transepithelial fluid transport in certain secretory diarrheas, such as cholera, and for cyst expansion in autosomal dominant polycystic kidney disease. High-throughput screening has yielded CFTR inhibitors of the thiazolidinone, glycine hydrazide and quinoxalinedione chemical classes. The glycine hydrazides target the extracellular CFTR pore, whereas the thiazolidinones and quinoxalinediones act at the cytoplasmic surface. These inhibitors have been widely used in cystic fibrosis research to study CFTR function at the cell and organ levels. The most potent CFTR inhibitor has IC50 of approximately 4 nM. Studies in animal models support the development of CFTR inhibitors for antisecretory therapy of enterotoxin-mediated diarrheas and polycystic kidney disease. PMID:23331030

  19. Pyrido[2,3-d]pyrimidin-5-ones: A Novel Class of Antiinflammatory Macrophage Colony-Stimulating Factor-1 Receptor Inhibitors

    SciTech Connect

    Huang, Hui; Hutta, Daniel A.; Rinker, James M.; Hu, Huaping; Parsons, William H.; Schubert, Carsten; DesJarlais, Renee L.; Crysler, Carl S.; Chaikin, Margery A.; Donatelli, Robert R.; Chen, Yanmin; Cheng, Deping; Zhou, Zhao; Yurkow, Edward; Manthey, Carl L.; Player, Mark R.

    2010-10-01

    A series of pyrido[2,3-d]pyrimidin-5-ones has been synthesized and evaluated as inhibitors of the kinase domain of macrophage colony-stimulating factor-1 receptor (FMS). FMS inhibitors may be useful in treating rheumatoid arthritis and other chronic inflammatory diseases. Structure-based optimization of the lead amide analogue 10 led to hydroxamate analogue 37, which possessed excellent potency and an improved pharmacokinetic profile. During the chronic phase of streptococcal cell wall-induced arthritis in rats, compound 37 (10, 3, and 1 mg/kg) was highly effective at reversing established joint swelling. In an adjuvant-induced arthritis model in rats, 37 prevented joint swelling partially at 10 mg/kg. In this model, osteoclastogenesis and bone erosion were prevented by low doses (1 or 0.33 mg/kg) that had minimal impact on inflammation. These data underscore the potential of FMS inhibitors to prevent erosions and reduce symptoms in rheumatoid arthritis.

  20. The effects of a novel aliphatic-chain hydroxamate derivative WMJ-S-001 in HCT116 colorectal cancer cell death.

    PubMed

    Huang, Yu-Han; Huang, Shiu-Wen; Hsu, Ya-Fen; Ou, George; Huang, Wei-Jan; Hsu, Ming-Jen

    2015-01-01

    Hydroxamate derivatives have attracted considerable attention due to their broad pharmacological properties and have been extensively investigated. We recently demonstrated that WMJ-S-001, a novel aliphatic hydroxamate derivative, exhibits anti-inflammatory and anti-angiogenic activities. In this study, we explored the underlying mechanisms by which WMJ-S-001 induces HCT116 colorectal cancer cell death. WMJ-S-001 inhibited cell proliferation and induced cell apoptosis in HCT116 cells. These actions were associated with AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (MAPK) activation, p53 phosphorylation and acetylation, as well as the modulation of p21(cip/Waf1), cyclin D1, survivin and Bax. AMPK-p38MAPK signaling blockade reduced WMJ-S-001-induced p53 phosphorylation. Transfection with AMPK dominant negative mutant (DN) reduced WMJ-S-001's effects on p53 and Sp1 binding to the survivn promoter region. Transfection with HDAC3-Flag or HDAC4-Flag also abrogated WMJ-S-001's enhancing effect on p53 acetylation. WMJ-S-001's actions on p21(cip/Waf1), cyclin D1, survivin, Bax were reduced in p53-null HCT116 cells. Furthermore, WMJ-S-001 was shown to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. In summary, the death of HCT116 colorectal cancer cells exposed to WMJ-S-001 may involve AMPK-p38MAPK-p53-survivin cascade. These results support the role of WMJ-S-001 as a potential drug candidate and warrant the clinical development in the treatment of cancer. PMID:26510776

  1. Development of novel ferulic acid derivatives as potent histone deacetylase inhibitors.

    PubMed

    Wang, Fang; Lu, Wen; Zhang, Tao; Dong, Jinyun; Gao, Hongping; Li, Pengfei; Wang, Sicen; Zhang, Jie

    2013-11-15

    Histone deacetylase inhibitors (HDACIs) offer a promising strategy for cancer therapy. The discovery of potent ferulic acid-based HDACIs with hydroxamic acid or 2-aminobenzamide group as zinc binding group was reported. The halogeno-acetanilide was introduced as novel surface recognition moiety (SRM). The majority of title compounds displayed potent HDAC inhibitory activity. In particular, FA6 and FA16 exhibited significant enzymatic inhibitory activities, with IC50 values of 3.94 and 2.82 μM, respectively. Furthermore, these compounds showed moderate antiproliferative activity against a panel of human cancer cells. FA17 displayed promising profile as an antitumor candidate. The results indicated that these ferulic acid derivatives could serve as promising lead compounds for further optimization. PMID:24095016

  2. [Proteasome inhibitor].

    PubMed

    Yagi, Hideo

    2014-06-01

    The ubiquitin-proteasome system plays an essential role in degradation of eukaryotic intracellular protein, including cell cycle regulation, cell growth and proliferation, and survival. Cancer cells generally have higher level of proteasome activity compared with normal cells, suggesting proteasome inhibition could be therapeutic target in oncology. Bortezomib, the first proteasome inhibitor introduced into the clinic, is approved for the treatment of patients with multiple myeloma (MM). Although it was approved as single agent in the relapsed setting, bortezomib is now predominantly used in combination with conventional and novel targeted agents because bortezomib has demonstrated additive and synergistic activity in preclinical studies. Recently, several second-generation proteasome inhibitors, such as carfilzomib and MLN9708, have been developed and entered into clinical trials. These agents were investigated in frontline MM in combination with lenalidomide and low-dose dexamethasone. These studies demonstrated positive efficacy and safety, and it is expected that they will be approved in near future. PMID:25016815

  3. 2-Benzazolyl-4-Piperazin-1-Ylsulfonylbenzenecarbohydroxamic Acids as Novel Selective Histone Deacetylase-6 Inhibitors with Antiproliferative Activity

    PubMed Central

    Wang, Lei; Kofler, Marina; Brosch, Gerald; Melesina, Jelena; Sippl, Wolfgang; Martinez, Elisabeth D.; Easmon, Johnny

    2015-01-01

    We have screened our compound collection in an established cell based assay that measures the derepression of an epigenetically silenced transgene, the locus derepression assay. The screen led to the identification of 4-[4-(1-methylbenzimidazol-2-yl)piperazin-1-yl]sulfonylbenzenecarbohydroxamic acid (9b) as an active which was found to inhibit HDAC1. In initial structure activity relationships study, the 1-methylbenzimidazole ring was replaced by the isosteric heterocycles benzimidazole, benzoxazole, and benzothiazole and the position of the hydroxamic acid substituent on the phenyl ring was varied. Whereas compounds bearing a para substituted hydroxamic acid (9a-d) were active HDAC inhibitors, the meta substituted analogues (8a-d) were appreciably inactive. Compounds 9a-d selectively inhibited HDAC6 (IC50 = 0.1–1.0μM) over HDAC1 (IC50 = 0.9–6μM) and moreover, also selectively inhibited the growth of lung cancer cells vs. patient matched normal cells. The compounds induce a cell cycle arrest in the S-phase while induction of apoptosis is neglible as compared to controls. Molecular modeling studies uncovered that the MM-GBSA energy for interaction of 9a-d with HDAC6 was higher than for HDAC1 providing structural rationale for the HDAC6 selectivity. PMID:26698121

  4. Histone deacetylase inhibitor pracinostat in doublet therapy: a unique strategy to improve therapeutic efficacy and to tackle herculean cancer chemoresistance.

    PubMed

    Ganai, Shabir Ahmad

    2016-09-01

    Context Histone deacetylase inhibitors (HDACi) have shown promising results in neurodegeneration and cancer. Hydroxamate HDACi, including vorinostat, have shown encouraging results in haematological malignancies, but the poor pharmacokinetic of these inhibitors leads to insufficient tumour concentration limiting their application against solid malignancies. Objective This article deals with novel HDAC inhibitor pracinostat (SB939) and delineates its therapeutic role in solid and haematological malignancies. The article provides rigorous details about the underlying molecular mechanisms modulated by pracinostat to exert cytotoxic effect. The article further highlights the doublet therapy that may be used to tackle monotonous cancer chemoresistance. Methods Both old and the latest literature on pracinostat was retrieved from diverse sources, such as PubMed, Science Direct, Springer Link, general Google search using both pracinostat and SB939 keywords in various ways: after thorough evaluation the topic which can fulfil the current gap was chosen. Results Pracinostat shows potent anticancer activity against both solid and haematological malignancies compared to the FDA-approved drug vorinostat. This marvellous inhibitor has better physicochemical, pharmaceutical and pharmacokinetic properties than the defined inhibitor vorinostat. Pracinostat has  >100-fold more affinity towards HDACs compared to other zinc-dependent metalloenzymes and shows maximum efficacy when used in doublet therapy. Conclusion Pracinostat shows potent anticancer activity even against therapeutically challenging cancers when used in doublet therapy. However, the triplet combination studies of the defined inhibitor that may prove even more beneficial are still undone, emphasizing the desperate need of further research in the defined gap. PMID:26853619

  5. Concerted Amidation of Activated Esters: Reaction Path and Origins of Selectivity in the Kinetic Resolution of Cyclic Amines via N-Heterocyclic Carbenes and Hydroxamic Acid Cocatalyzed Acyl Transfer

    PubMed Central

    2015-01-01

    The N-heterocyclic carbene and hydroxamic acid cocatalyzed kinetic resolution of cyclic amines generates enantioenriched amines and amides with selectivity factors up to 127. In this report, a quantum mechanical study of the reaction mechanism indicates that the selectivity-determining aminolysis step occurs via a novel concerted pathway in which the hydroxamic acid plays a key role in directing proton transfer from the incoming amine. This modality was found to be general in amide bond formation from a number of activated esters including those generated from HOBt and HOAt, reagents that are broadly used in peptide coupling. For the kinetic resolution, the proposed model accurately predicts the faster reacting enantiomer. A breakdown of the steric and electronic control elements shows that a gearing effect in the transition state is responsible for the observed selectivity. PMID:25050843

  6. Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin

    SciTech Connect

    Leissring, Malcolm A.; Malito, Enrico; Hedouin, Sabrine; Reinstatler, Lael; Sahara, Tomoko; Abdul-Hay, Samer O.; Choudhry, Shakeel; Maharvi, Ghulam M.; Fauq, Abdul H.; Huzarska, Malwina; May, Philip S.; Choi, Sungwoon; Logan, Todd P.; Turk, Benjamin E.; Cantley, Lewis C.; Manolopoulou, Marika; Tang, Wei-Jen; Stein, Ross L.; Cuny, Gregory D.; Selkoe, Dennis J.

    2010-09-20

    Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are {approx} 10{sup 6} times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-a-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's 'closed,' inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. Conclusions/Significance: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.

  7. Speciation, liquid-liquid extraction, sequential separation, preconcentration, transport and ICP-AES determination of Cr(III), Mo(VI) and W(VI) with calix-crown hydroxamic acid in high purity grade materials and environmental samples.

    PubMed

    Agrawal, Y K; Sharma, K R

    2005-07-15

    A new functionalized calix[6]crown hydroxamic acid is reported for the speciation, liquid-liquid extraction, sequential separation and trace determination of Cr(III), Mo(VI) and W(VI). Chromium(III), molybdenum(VI) and tungsten(VI) are extracted at pH 4.5, 1.5M HCl and 6.0M HCl, respectively with calixcrown hydroxamic acid (37,38,39,40,41,42-hexahydroxy7,25,31-calix[6]crown hydroxamic acid) in chloroform in presence of large number of cations and anions. The extraction mechanism is investigated. The various extraction parameters, appropriate pH/M HCl, choice of solvent, effect of the reagent concentration, temperature and distribution constant have been studied. The speciation, preconcentration and kinetic of transport has been investigated. The maximum transport is observed 35, 45 and 30min for chromium(III), molybdenum(VI) and tungsten(IV), respectively. For trace determination the extracts were directly inserted into the plasma for inductively coupled plasma atomic emission spectrometry, ICP-AES, measurements of chromium, molybdenum and tungsten which increase the sensitivity by 30-fold, with detection limits of 3ngml(-1). The method is applied for the determination of chromium, molybdenum and tungsten in high purity grade ores, biological and environmental samples. The chromium was recovered from the effluent of electroplating industries. PMID:18970144

  8. Impact of the uranium (VI) speciation in mineralised urines on its extraction by calix[6]arene bearing hydroxamic groups used in chromatography columns.

    PubMed

    Baghdadi, S; Bouvier-Capely, C; Ritt, A; Peroux, A; Fevrier, L; Rebiere, F; Agarande, M; Cote, G

    2015-11-01

    Actinides determination in urine samples is part of the analyses performed to monitor internal contamination in case of an accident or a terrorist attack involving nuclear matter. Mineralisation is the first step of any of these analyses. It aims at reducing the sample volume and at destroying all organic compounds present. The mineralisation protocol is usually based on a wet ashing step, followed by actinides co-precipitation and a furnace ashing step, before redissolution and the quantification of the actinides by the appropriate techniques. Amongst the existing methods to perform the actinides co-precipitation, alkali-earth (typically calcium) precipitation is widely used. In the present work, the extraction of uranium(VI), plutonium(IV) and americium(III) from the redissolution solutions (called "mineralised urines") on calix[6]arene columns bearing hydroxamic groups was investigated as such an extraction is a necessary step before their determination by ICP-MS or alpha spectrometry. Difficulties were encountered in the transfer of uranium(VI) from raw to mineralised urines, with yield of transfer ranging between 0% and 85%, compared to about 90% for Pu and Am, depending on the starting raw urines. To understand the origin of such a difficulty, the speciation of uranium (VI) in mineralised urines was investigated by computer simulation using the MEDUSA software and the associated HYDRA database, compiled with recently published data. These calculations showed that the presence of phosphates in the "mineralised urines" leads to the formation of strong uranyl-phosphate complexes (such as UO2HPO4) which compete with the uranium (VI) extraction by the calix[6]arene bearing hydroxamic groups. The extraction constant of uranium (VI) by calix[6]arene bearing hydroxamic groups was determined in a 0.04 mol L(-1) sodium nitrate solution (logK=4.86±0.03) and implemented in an extraction model taking into account the speciation in the aqueous phase. This model allowed to

  9. Non-coding nucleotides and amino acids near the active site regulate peptide deformylase expression and inhibitor susceptibility in Chlamydia trachomatis.

    PubMed

    Bao, Xiaofeng; Pachikara, Niseema D; Oey, Christopher B; Balakrishnan, Amit; Westblade, Lars F; Tan, Ming; Chase, Theodore; Nickels, Bryce E; Fan, Huizhou

    2011-09-01

    Chlamydia trachomatis, an obligate intracellular bacterium, is a highly prevalent human pathogen. Hydroxamic-acid-based matrix metalloprotease inhibitors can effectively inhibit the pathogen both in vitro and in vivo, and have exhibited therapeutic potential. Here, we provide genome sequencing data indicating that peptide deformylase (PDF) is the sole target of the inhibitors in this organism. We further report molecular mechanisms that control chlamydial PDF (cPDF) expression and inhibition efficiency. In particular, we identify the σ⁶⁶-dependent promoter that controls cPDF gene expression and demonstrate that point mutations in this promoter lead to resistance by increasing cPDF transcription. Furthermore, we show that substitution of two amino acids near the active site of the enzyme alters enzyme kinetics and protein stability. PMID:21719536

  10. Autophagy inhibitors.

    PubMed

    Pasquier, Benoit

    2016-03-01

    Autophagy is a lysosome-dependent mechanism of intracellular degradation. The cellular and molecular mechanisms underlying this process are highly complex and involve multiple proteins, including the kinases ULK1 and Vps34. The main function of autophagy is the maintenance of cell survival when modifications occur in the cellular environment. During the past decade, extensive studies have greatly improved our knowledge and autophagy has exploded as a research field. This process is now widely implicated in pathophysiological processes such as cancer, metabolic, and neurodegenerative disorders, making it an attractive target for drug discovery. In this review, we will summarize the different types of inhibitors that affect the autophagy machinery and provide some potential therapeutic perspectives. PMID:26658914

  11. HDAC inhibition radiosensitizes human normal tissue cells and reduces DNA Double-Strand Break repair capacity.

    PubMed

    Purrucker, Jan C; Fricke, Andreas; Ong, Mei Fang; Rübe, Christian; Rübe, Claudia E; Mahlknecht, Ulrich

    2010-01-01

    HDAC inhibitors (HDACi) are gaining increasing attention in the treatment of cancer, particularly in view of their therapeutic effectiveness and assumed mild toxicity profile. While numerous studies have investigated the role of HDACi in tumor cells, little is known about their effects on normal tissue cells. We studied the effect of suberoylanilide hydroxamic acid (SAHA), MS275, sodium-butyrate and valproic acid in healthy human fibroblasts and found HDACi-treatment to go along with increased radiosensitivity and reduced DSB repair capacity. In view of the potential genotoxic effects of HDACi-treatment, particularly when being administered long-term for chronic disease or when given to children, to women of childbearing age or their partners or in combination with radiotherapy, an extensive education of patients and prescribing physicians as well as a stringent definition of clinical indications is urgently required. PMID:19956891

  12. Screening Novel SAHA Derivatives as Anti-lung Carcinoma Agents: Synthesis, Biological Evaluation, Docking Studies and Further Mechanism Research between Apoptosis and Autophagy.

    PubMed

    Huang, Weibin; Zhang, Song; Yang, Zhicheng; Feng, Binghong

    2015-01-01

    Four suberoylanilide hydroxamic acid (SAHA) derivatives (N34, N4I, N4B, N24) were designed and synthesized on the basis of our previous studies on N25. Assays for anti-proliferative activity and histone deacetylase (HDAC) activity were performed against human lung cancer (SPC-A-1, LTEP-a-2, NCI-H1650) and normal lung cells (MRC-5), which were compared with those of SAHA. Molecular docking was used to theoretically confirm the receptor-binding ability of N34. Ultimately, N34 was validated as the best HDAC inhibitor candidate. Furthermore, the effects of N34 on the levels of apoptosis- and autophagy-associated proteins caspase-3, caspase-9, Bcl-2 and Beclin-1 in SPC-A-1 cells were evaluated. N34 exerted more evident effects on human lung cancer than the other three SAHA derivatives did. PMID:26118711

  13. Evidence for Hydroxamate Siderophores and Other N-Containing Organic Compounds Controlling (239,240)Pu Immobilization and Remobilization in a Wetland Sediment.

    PubMed

    Xu, Chen; Zhang, Saijin; Kaplan, Daniel I; Ho, Yi-Fang; Schwehr, Kathleen A; Roberts, Kimberly A; Chen, Hongmei; DiDonato, Nicole; Athon, Matthew; Hatcher, Patrick G; Santschi, Peter H

    2015-10-01

    Pu concentrations in wetland surface sediments collected downstream of a former nuclear processing facility in F-Area of the Savannah River Site (SRS), USA, were ∼2.5 times greater than those measured in the associated upland aquifer sediments; similarly, the Pu concentration solid/water ratios were orders of magnitude greater in the wetland than in the low-organic matter content aquifer soils. Sediment Pu concentrations were correlated to total organic carbon and total nitrogen contents and even more strongly to hydroxamate siderophore (HS) concentrations. The HS were detected in the particulate or colloidal phases of the sediments but not in the low molecular weight fractions (<1000 Da). Macromolecules which scavenged the majority of the potentially mobile Pu were further separated from the bulk mobile organic matter fraction ("water extract") via an isoelectric focusing experiment (IEF). An electrospray ionization Fourier-transform ion cyclotron resonance ultrahigh resolution mass spectrometry (ESI FTICR-MS) spectral comparison of the IEF extract and a siderophore standard (desferrioxamine; DFO) suggested the presence of HS functionalities in the IEF extract. This study suggests that while HS are a very minor component in the sediment particulate/colloidal fractions, their concentrations greatly exceed those of ambient Pu, and HS may play an especially important role in Pu immobilization/remobilization in wetland sediments. PMID:26313339

  14. Ethyl 2-cyano-2-(2-nitrobenzenesulfonyloxyimino)acetate (o-NosylOXY): a recyclable coupling reagent for racemization-free synthesis of peptide, amide, hydroxamate, and ester.

    PubMed

    Dev, Dharm; Palakurthy, Nani Babu; Thalluri, Kishore; Chandra, Jyoti; Mandal, Bhubaneswar

    2014-06-20

    Ubiquitousness of amide and ester functionality makes coupling reactions extremely important. Although numerous coupling reagents are available, methods of preparation of the common and efficient reagents are cumbersome. Those reagents generate a substantial amount of chemical waste and lack recyclability. Ethyl 2-cyano-2-(2-nitrobenzenesulfonyloxyimino)acetate (o-NosylOXY), the first member of a new generation of coupling reagents, produces byproducts that can be easily recovered and reused for the synthesis of the same reagent, making the method more environmentally friendly and cost-effective. The synthesis of amides, hydroxamates, peptides, and esters using this reagent is described. The synthesis of the difficult sequences, for example, the islet amyloid polypeptide (22-27) fragment (with a C-terminal Gly, H-Asn-Phe-Gly-Ala-Ile-Leu-Gly-NH2) and acyl carrier protein (65-74) fragment (H-Val-Gln-Ala-Ala-Ile-Asp-Tyr-Ile-Asn-Gly-OH), following the solid-phase peptide synthesis (SPPS) protocol and Amyloid β (39-42) peptide (Boc-Val-Val-IIe-Ala-OMe), following solution-phase strategy is demonstrated. Remarkable improvement is noticed with respect to reaction time, yield, and retention of stereochemistry. A mechanistic investigation and recyclability are also described. PMID:24849944

  15. A new class of potent reversible inhibitors of metallo-proteinases: C-terminal thiol-peptides as zinc-coordinating ligands.

    PubMed

    Peters, K; Jahreis, G; Kotters, E M

    2001-10-01

    A number of substrate analogous peptides containing a phosphoramidate, phosphonate ester, hydroxamate, carboxylate or sulfhydryl group are known to be inhibitors of thermolysin and other metalloproteinases. According to the specificity, most of the inhibitors mimic the prime site of the active center. Hitherto, peptidyl derivatives with a thiol group at the C-terminus have not been described. We have synthesized the protected cysteamides Ac-Ala-Ala-CA-SH and Z-Aa1-Aa2-CA-SH (Aa1: Ala, Pro; Aa2: Ala, Leu). The binding of these thiol peptide inhibitors to the metalloproteinases is characterized first by the coordination of the thiolate group of the inhibitor to the catalytic zinc ion and second by the subsite interaction of the peptide ligand in the active site of the enzyme. All peptide derivatives were competitive inhibitors of the zinc metalloproteinase thermolysin. The strongest inhibition was found with Z-Pro-Leu-CA-SH (Ki = 30 microM). Substitution of the N-protecting benzyloxycarbonyl residue towards the acetyl group in the peptide inhibitor, the inhibition constant decreased about 25 times. PMID:11916139

  16. Chemical intervention in bacterial lignin degradation pathways: Development of selective inhibitors for intradiol and extradiol catechol dioxygenases.

    PubMed

    Sainsbury, Paul D; Mineyeva, Yelena; Mycroft, Zoe; Bugg, Timothy D H

    2015-06-01

    Bacterial lignin degradation could be used to generate aromatic chemicals from the renewable resource lignin, provided that the breakdown pathways can be manipulated. In this study, selective inhibitors of enzymatic steps in bacterial degradation pathways were developed and tested for their effects upon lignin degradation. Screening of a collection of hydroxamic acid metallo-oxygenase inhibitors against two catechol dioxygenase enzymes, protocatechuate 3,4-dioxygenase (3,4-PCD) and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB), resulted in the identification of selective inhibitors D13 for 3,4-PCD (IC50 15μM) and D3 for MhpB (IC50 110μM). Application of D13 to Rhodococcus jostii RHA1 in minimal media containing ferulic acid led to the appearance of metabolic precursor protocatechuic acid at low concentration. Application of 1mM disulfiram, an inhibitor of mammalian aldehyde dehydrogenase, to R. jostii RHA1, gave rise to 4-carboxymuconolactone on the β-ketoadipate pathway, whereas in Pseudomonas fluorescens Pf-5 disulfiram treatment gave rise to a metabolite found to be glycine betaine aldehyde. PMID:25984987

  17. Identification of Jumonji AT-Rich Interactive Domain 1A Inhibitors and Their Effect on Cancer Cells

    PubMed Central

    2015-01-01

    Jumonji AT-rich interactive domain 1A (JARID1A), one of the jumonji C domain-containing histone demethylase (JHDM) family members, plays key roles in cancer cell proliferation and development of drug tolerance. Therefore, selective JARID1A inhibitors are potential anticancer agents. In this study, we searched for cell-active JARID1A inhibitors by screening hydroxamate compounds in our in-house library and the structural optimization based on docking study of the hit-compound to a homology model of JARID1A. As a result, we identified compound 6j, which selectively inhibits JARID1A over three other JHDM family members. Compound 7j, a prodrug form of compound 6j, induced a selective increase in the level of trimethylation of histone H3 lysine 4, a substrate of JARID1A. Furthermore, compound 7j synergistically enhanced A549 human lung cancer cell growth inhibition induced by vorinostat, a histone deacetylase inhibitor. These findings support the idea that JARID1A inhibitors have potential as anticancer agents. PMID:26101571

  18. Phosphinic peptides, the first potent inhibitors of astacin, behave as extremely slow-binding inhibitors.

    PubMed Central

    Yiallouros, I; Vassiliou, S; Yiotakis, A; Zwilling, R; Stöcker, W; Dive, V

    1998-01-01

    A series of phosphinic pseudo-peptides varying in length and composition have been designed as inhibitors of the crayfish zinc endopeptidase astacin, the prototype of the astacin family and of the metzincin superfamily of metalloproteinases. The most efficient phosphinic peptide, fluorenylmethyloxycarbonyl-Pro-Lys-PhePsi(PO2CH2)Ala-P ro-Leu-Val, binds to astacin with a Ki value of 42 nM, which is about three orders of magnitude below the corresponding values for previously used hydroxamic acid derivatives. However, the rate constants for association (kon = 96.8 M-1.s-1) and dissociation (koff = 4.1 x 10(-6) s-1) are evidence for the extremely slow binding behaviour of this compound. N-terminally or C-terminally truncated phosphinic analogues of this parent molecule are much less potent, indicating a critical role of the peptide size on the potency. In particular, omission of the N-terminal proline residue leads to a 40-fold increase in Ki which is mostly due to a 75-fold higher koff value. These findings are consistent with the previously solved crystal structure of astacin complexed with one of the phosphinic peptides, benzyloxycarbonyl-Pro-Lys-PhePsi(PO2CH2)Ala-Pro-O-methyl, Ki = 14 microM [Grams, Dive, Yiotakis, Yiallouros, Vassiliou, Zwilling, Bode and Stöcker (1996) Nature Struct. Biol. 3, 671-675]. This structure also reveals that the phosphinic group binds to the active site as a transition-state analogue. The extremely slow binding behaviour of the phosphinic peptides is discussed in the light of the conformational changes involving a unique 'tyrosine switch' in the structure of astacin upon inhibitor binding. The phosphinic peptides may provide a rational basis for the design of drugs directed towards other members of the astacin family which, like bone morphogenetic protein 1 (BMP1; i.e. the procollagen C-proteinase), have become targets of pharmacological research. PMID:9531473

  19. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases.

    PubMed

    Qi, Jun; Kizjakina, Karina; Robinson, Reeder; Tolani, Karishma; Sobrado, Pablo

    2012-06-01

    N-Hydroxylating monooxygenases (NMOs) are essential for pathogenesis in fungi and bacteria. NMOs catalyze the hydroxylation of sine and ornithine in the biosynthesis of hydroxamate-containing siderophores. Inhibition of kynurenine monooxygenase (KMO), which catalyzes the conversion of kynurenine to 3-hydroxykynurenine, alleviates neurodegenerative disorders such as Huntington's and Alzheimer's diseases and brain infections caused by the parasite Trypanosoma brucei. These enzymes are examples of flavin-dependent monooxygenases, which are validated drug targets. Here, we describe the development and optimization of a fluorescence polarization assay to identify potential inhibitors of flavin-dependent monooxygenases. Fluorescently labeled ADP molecules were synthesized and tested. An ADP-TAMRA chromophore bound to KMO with a K(d) value of 0.60 ± 0.05 μM and to the NMOs from Aspergillus fumigatus and Mycobacterium smegmatis with K(d) values of 2.1 ± 0.2 and 4.0 ± 0.2 μM, respectively. The assay was tested in competitive binding experiments with substrates and products of KMO and an NMO. Furthermore, we show that this assay can be used to identify inhibitors of NMOs. A Z' factor of 0.77 was calculated, and we show that the assay exhibits good tolerance to temperature, incubation time, and dimethyl sulfoxide concentration. PMID:22410281

  20. Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT).

    PubMed

    Carrillo, Angela K; Guiguemde, W Armand; Guy, R Kiplin

    2015-08-15

    Two of the histone deacetylases, TbDAC1 and TbDAC3, have been reported to be essential genes in trypanosomes. Therefore, we tested the activity of a panel of human histone deacetylase inhibitors (HDACi) for their ability to block proliferation of Trypanosoma brucei brucei. Among the HDACi's, the hydroxamic acid derivatives panobinostat and belinostat exhibited potency that appeared to make them viable candidates for development due to their reported pharmacokinetic characteristics. However, cellular pharmacodynamic analysis demonstrated that these drugs were unable to kill cultured parasites at exposures seen in patients at their tolerated doses and additionally failed to show any synergistic effects in combination with pentamidine, suramin, melarsoprol, or nifurtimox. Analysis of the potency of the entire HDACi panel revealed no correlations between potency against any human HDAC isoform and inhibition of T. brucei proliferation, suggesting that the trypanosome histone deacetylases possess a unique specificity. These studies confirmed that HDAC inhibitors have potential as leads against human African trypanosomiasis but that none of the current clinical candidates can be directly repurposed. Therefore, development of HDACi's with appropriate specificity and potency may be a viable route to a new class of anti-trypanosomal drugs. PMID:25637120

  1. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by glands in ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a ...

  2. Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenase–dependent DC functions and regulates experimental graft-versus-host disease in mice

    PubMed Central

    Reddy, Pavan; Sun, Yaping; Toubai, Tomomi; Duran-Struuck, Raimon; Clouthier, Shawn G.; Weisiger, Elizabeth; Maeda, Yoshinobu; Tawara, Isao; Krijanovski, Oleg; Gatza, Erin; Liu, Chen; Malter, Chelsea; Mascagni, Paolo; Dinarello, Charles A.; Ferrara, James L.M.

    2008-01-01

    Histone deacetylase (HDAC) inhibitors are antitumor agents that also have antiinflammatory properties. However, the mechanisms of their immunomodulatory functions are not known. We investigated the mechanisms of action of 2 HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and ITF 2357, on mouse DC responses. Pretreatment of DCs with HDAC inhibitors significantly reduced TLR-induced secretion of proinflammatory cytokines, suppressed the expression of CD40 and CD80, and reduced the in vitro and in vivo allostimulatory responses induced by the DCs. In addition, injection of DCs treated ex vivo with HDAC inhibitors reduced experimental graft-versus-host disease (GVHD) in a murine allogeneic BM transplantation model. Exposure of DCs to HDAC inhibitors increased expression of indoleamine 2,3-dioxygenase (IDO), a suppressor of DC function. Blockade of IDO in WT DCs with siRNA and with DCs from IDO-deficient animals caused substantial reversal of HDAC inhibition–induced in vitro suppression of DC-stimulated responses. Direct injection of HDAC inhibitors early after allogeneic BM transplantation to chimeric animals whose BM-derived cells lacked IDO failed to protect from GVHD, demonstrating an in vivo functional role for IDO. Together, these data show that HDAC inhibitors regulate multiple DC functions through the induction of IDO and suggest that they may represent a novel class of agents to treat immune-mediated diseases. PMID:18568076

  3. The new low-toxic histone deacetylase inhibitor S-(2) induces apoptosis in various acute myeloid leukaemia cells

    PubMed Central

    Cellai, C; Balliu, M; Laurenzana, A; Guandalini, L; Matucci, R; Miniati, D; Torre, E; Nebbioso, A; Carafa, V; Altucci, L; Romanelli, M N; Paoletti, F

    2012-01-01

    Abstract Histone deacetylase inhibitors (HDACi) induce tumour cell cycle arrest and/or apoptosis, and some of them are currently used in cancer therapy. Recently, we described a series of powerful HDACi characterized by a 1,4-benzodiazepine (BDZ) ring hybridized with a linear alkyl chain bearing a hydroxamate function as Zn++-chelating group. Here, we explored the anti-leukaemic properties of three novel hybrids, namely the chiral compounds (S)-2 and (R)-2, and their non-chiral analogue 4, which were first comparatively tested in promyelocytic NB4 cells. (S)-2 and partially 4– but not (R)-2 – caused G0/G1 cell-cycle arrest by up-regulating cyclin G2 and p21 expression and down-regulating cyclin D2 expression, and also apoptosis as assessed by cell morphology and cytofluorimetric assay, histone H2AX phosphorylation and PARP cleavage. Notably, these events were partly prevented by an anti-oxidant. Moreover, novel HDACi prompted p53 and α-tubulin acetylation and, consistently, inhibited HDAC1 and 6 activity. The rank order of potency was (S)-2 > 4 > (R)-2, reflecting that of other biological assays and addressing (S)-2 as the most effective compound capable of triggering apoptosis in various acute myeloid leukaemia (AML) cell lines and blasts from patients with different AML subtypes. Importantly, (S)-2 was safe in mice (up to 150 mg/kg/week) as determined by liver, spleen, kidney and bone marrow histopathology; and displayed negligible affinity for peripheral/central BDZ-receptors. Overall, the BDZ-hydroxamate (S)-2 showed to be a low-toxic HDACi with powerful anti-proliferative and pro-apototic activities towards different cultured and primary AML cells, and therefore of clinical interest to support conventional anti-leukaemic therapy. PMID:22004558

  4. The new low-toxic histone deacetylase inhibitor S-(2) induces apoptosis in various acute myeloid leukaemia cells.

    PubMed

    Cellai, C; Balliu, M; Laurenzana, A; Guandalini, L; Matucci, R; Miniati, D; Torre, E; Nebbioso, A; Carafa, V; Altucci, L; Romanelli, M N; Paoletti, F

    2012-08-01

    Histone deacetylase inhibitors (HDACi) induce tumour cell cycle arrest and/or apoptosis, and some of them are currently used in cancer therapy. Recently, we described a series of powerful HDACi characterized by a 1,4-benzodiazepine (BDZ) ring hybridized with a linear alkyl chain bearing a hydroxamate function as Zn(++)--chelating group. Here, we explored the anti-leukaemic properties of three novel hybrids, namely the chiral compounds (S)-2 and (R)-2, and their non-chiral analogue 4, which were first comparatively tested in promyelocytic NB4 cells. (S)-2 and partially 4--but not (R)-2--caused G0/G1 cell-cycle arrest by up-regulating cyclin G2 and p21 expression and down-regulating cyclin D2 expression, and also apoptosis as assessed by cell morphology and cytofluorimetric assay, histone H2AX phosphorylation and PARP cleavage. Notably, these events were partly prevented by an anti-oxidant. Moreover, novel HDACi prompted p53 and α-tubulin acetylation and, consistently, inhibited HDAC1 and 6 activity. The rank order of potency was (S)-2 > 4 > (R)-2, reflecting that of other biological assays and addressing (S)-2 as the most effective compound capable of triggering apoptosis in various acute myeloid leukaemia (AML) cell lines and blasts from patients with different AML subtypes. Importantly, (S)-2 was safe in mice (up to 150 mg/kg/week) as determined by liver, spleen, kidney and bone marrow histopathology; and displayed negligible affinity for peripheral/central BDZ-receptors. Overall, the BDZ-hydroxamate (S)-2 showed to be a low-toxic HDACi with powerful anti-proliferative and pro-apototic activities towards different cultured and primary AML cells, and therefore of clinical interest to support conventional anti-leukaemic therapy. PMID:22004558

  5. Solution structure of the catalytic domain of human stromelysin complexed with a hydrophobic inhibitor.

    PubMed Central

    Van Doren, S. R.; Kurochkin, A. V.; Hu, W.; Ye, Q. Z.; Johnson, L. L.; Hupe, D. J.; Zuiderweg, E. R.

    1995-01-01

    Stromelysin, a representative matrix metalloproteinase and target of drug development efforts, plays a prominent role in the pathological proteolysis associated with arthritis and secondarily in that of cancer metastasis and invasion. To provide a structural template to aid the development of therapeutic inhibitors, we have determined a medium-resolution structure of a 20-kDa complex of human stromelysin's catalytic domain with a hydrophobic peptidic inhibitor using multinuclear, multidimensional NMR spectroscopy. This domain of this zinc hydrolase contains a mixed beta-sheet comprising one antiparallel strand and four parallel strands, three helices, and a methionine-containing turn near the catalytic center. The ensemble of 20 structures was calculated using, on average, 8 interresidue NOE restraints per residue for the 166-residue protein fragment complexed with a 4-residue substrate analogue. The mean RMS deviation (RMSD) to the average structure for backbone heavy atoms is 0.91 A and for all heavy atoms is 1.42 A. The structure has good stereochemical properties, including its backbone torsion angles. The beta-sheet and alpha-helices of the catalytic domains of human stromelysin (NMR model) and human fibroblast collagenase (X-ray crystallographic model of Lovejoy B et al., 1994b, Biochemistry 33:8207-8217) superimpose well, having a pairwise RMSD for backbone heavy atoms of 2.28 A when three loop segments are disregarded. The hydroxamate-substituted inhibitor binds across the hydrophobic active site of stromelysin in an extended conformation. The first hydrophobic side chain is deeply buried in the principal S'1 subsite, the second hydrophobic side chain is located on the opposite side of the inhibitor backbone in the hydrophobic S'2 surface subsite, and a third hydrophobic side chain (P'3) lies at the surface. PMID:8580839

  6. 4-(1-Ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide – A new pleiotropic HDAC inhibitor targeting cancer cell signalling and cytoskeletal organisation

    SciTech Connect

    Mahal, Katharina; Kahlen, Philip; Biersack, Bernhard; Schobert, Rainer

    2015-08-15

    Histone deacetylases (HDAC) which play a crucial role in cancer cell proliferation are promising drug targets. However, HDAC inhibitors (HDACi) modelled on natural hydroxamic acids such as trichostatin A frequently lead to resistance or even an increased agressiveness of tumours. As a workaround we developed 4-(1-ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide (etacrox), a hydroxamic acid that combines HDAC inhibition with synergistic effects of the 4,5-diarylimidazole residue. Etacrox proved highly cytotoxic against a panel of metastatic and resistant cancer cell lines while showing greater specificity for cancer over non-malignant cells when compared to the approved HDACi vorinostat. Like the latter, etacrox and the closely related imidazoles bimacroxam and animacroxam acted as pan-HDACi yet showed some specificity for HDAC6. Akt signalling and interference with nuclear beta-catenin localisation were elicited by etacrox at lower concentrations when compared to vorinostat. Moreover, etacrox disrupted the microtubule and focal adhesion dynamics of cancer cells and inhibited the proteolytic activity of prometastatic and proangiogenic matrix metalloproteinases. As a consequence, etacrox acted strongly antimigratory and antiinvasive against various cancer cell lines in three-dimensional transwell invasion assays and also antiangiogenic in vivo with respect to blood vessel formation in the chorioallantoic membrane assay. These pleiotropic effects and its water-solubility and tolerance by mice render etacrox a promising new HDACi candidate. - Graphical abstract: A novel histone deacetylase inhibitor with pleiotropic anticancer effects. - Highlights: • Etacrox is a new HDACi with cytotoxic, antiangiogenic and antiinvasive activity. • Etacrox causes aberrant cancer cell signalling and cytoskeletal reorganisation. • Pro-metastatic and angiogenic matrix metalloproteinases are inhibited by etacrox. • Etacrox impairs blood vessel maturation in vivo and cancer cell

  7. Drug forecast – the peptide deformylase inhibitors as antibacterial agents

    PubMed Central

    Guay, David R P

    2007-01-01

    The relatively rapid development of microbial resistance after the entry of every new antimicrobial into the marketplace necessitates a constant supply of new agents to maintain effective pharmacotherapy. Despite extensive efforts to identify novel lead compounds from molecular targets, only the peptide deformylase inhibitors (PDIs) have shown any real promise, with some advancing to phase I human trials. Bacterial peptide deformylase, which catalyzes the removal of the N-formyl group from N-terminal methionine following translation, is essential for bacterial protein synthesis, growth, and survival. The majority of PDIs are pseudopeptide hydroxamic acids and two of these (IV BB-83698 and oral NVP LBM-415) entered phase I human trials. However, agents to the present have suffered from major potential liabilities. Their in vitro activity has been limited to gram-positive aerobes and some anaerobes and has been quite modest against the majority of such species (MIC90 values ranging from 1–8 mg/L). They have exerted bacteriostatic, not bacteriocidal, activity, thus reducing their potential usefulness in the management of serious infections in the immunocompromised. The relative ease with which microorganisms have been able to develop resistance and the multiple available mechanisms of resistance (mutations in fmt, defB, folD genes; AcrAB/TolC efflux pump; overexpression of peptide deformylase) are worrisome. These could portend a short timespan of efficacy after marketing. Despite these current liabilities, further pursuit of more potent and broader spectrum PDIs which are less susceptible to bacterial mechanisms of resistance is still warranted. PMID:18472972

  8. [Inhibitors of xanthine oxidoreductase].

    PubMed

    Okamoto, Ken

    2008-04-01

    Inhibitors of xanthine oxidoreductase decrease production of uric acid, thus they act as hypouricemic drugs. Allopurinol, a prototypical xanthine oxidoreductase inhibitor, has been widely prescribed for treatment of gout and hyperuricemia. However, severe side effects of allopurinol may occur in patients with renal insufficiency. Recently, novel nonpurine selective inhibitors of xanthine oxidoreductase have been developed as potential alternatives to allopurinol. They have different inhibition mechanisms, utilizing the enzyme structure and the reaction mechanism. Such variation of the inhibition mechanism affects/in vivo/hypouricemic effects of the inhibitors. PMID:18409526

  9. Potent dual inhibitors of Plasmodium falciparum M1 and M17 aminopeptidases through optimization of S1 pocket interactions.

    PubMed

    Drinkwater, Nyssa; Vinh, Natalie B; Mistry, Shailesh N; Bamert, Rebecca S; Ruggeri, Chiara; Holleran, John P; Loganathan, Sasdekumar; Paiardini, Alessandro; Charman, Susan A; Powell, Andrew K; Avery, Vicky M; McGowan, Sheena; Scammells, Peter J

    2016-03-01

    Malaria remains a global health problem, and though international efforts for treatment and eradication have made some headway, the emergence of drug-resistant parasites threatens this progress. Antimalarial therapeutics acting via novel mechanisms are urgently required. Plasmodium falciparum M1 and M17 are neutral aminopeptidases which are essential for parasite growth and development. Previous work in our group has identified inhibitors capable of dual inhibition of PfA-M1 and PfA-M17, and revealed further regions within the protease S1 pockets that could be exploited in the development of ligands with improved inhibitory activity. Herein, we report the structure-based design and synthesis of novel hydroxamic acid analogues that are capable of potent inhibition of both PfA-M1 and PfA-M17. Furthermore, the developed compounds potently inhibit Pf growth in culture, including the multi-drug resistant strain Dd2. The ongoing development of dual PfA-M1/PfA-M17 inhibitors continues to be an attractive strategy for the design of novel antimalarial therapeutics. PMID:26807544

  10. Novel corrosion inhibitor technology

    SciTech Connect

    Van de Ven, P.; Fritz, P.; Pellet, R.

    1999-11-01

    A novel, patented corrosion inhibitor technology has been identified for use in heat transfer applications such as automotive and heavy-duty coolant. The new technology is based on a low-toxic, virtually depletion-free carboxylic acid corrosion inhibitor package that performs equally well in mono ethylene glycol and in less toxic propylene glycol coolants. An aqueous inhibitor concentrate is available to provide corrosion protection where freezing protection is not an issue. In the present paper, this inhibitor package is evaluated in the different base fluids: mono ethylene glycol, mono propylene glycol and water. Results are obtained in both standardized and specific corrosion tests as well as in selected field trials. These results indicate that the inhibitor package remains effective and retains the benefits previously identified in automotive engine coolant applications: excellent corrosion protection under localized conditions, general corrosion conditions as well as at high temperature.

  11. Synthesis and biological evaluation of enantiomerically pure glyceric acid derivatives as LpxC inhibitors.

    PubMed

    Tangherlini, Giovanni; Torregrossa, Tullio; Agoglitta, Oriana; Köhler, Jens; Melesina, Jelena; Sippl, Wolfgang; Holl, Ralph

    2016-03-01

    Inhibitors of the UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC) represent a promising class of novel antibiotics, selectively combating Gram-negative bacteria. In order to elucidate the impact of the hydroxymethyl groups of diol (S,S)-4 on the inhibitory activity against LpxC, glyceric acid ethers (R)-7a, (S)-7a, (R)-7b, and (S)-7b, lacking the hydroxymethyl group in benzylic position, were synthesized. The compounds were obtained in enantiomerically pure form by a chiral pool synthesis and a lipase-catalyzed enantioselective desymmetrization, respectively. The enantiomeric hydroxamic acids (R)-7b (Ki=230nM) and (S)-7b (Ki=390nM) show promising enzyme inhibition. However, their inhibitory activities do not substantially differ from each other leading to a low eudismic ratio. Generally, the synthesized glyceric acid derivatives 7 show antibacterial activities against two Escherichia coli strains exceeding the ones of their respective regioisomes 6. PMID:26827141

  12. Proteomic profiling of human colon cancer cells treated with the histone deacetylase inhibitor belinostat.

    PubMed

    Beck, Hans Christian; Petersen, Jørgen; Nielsen, Søren Jensby; Morsczeck, Christian; Morszeck, Christian; Jensen, Peter B; Sehested, Maxwell; Grauslund, Morten

    2010-08-01

    The anticancer drug belinostat is a hydroxamate histone deacetylase inhibitor that has shown significant antitumour activity in various tumour models and also in clinical trials. In this study, we utilized a proteomic approach in order to evaluate the effect of this drug on protein expression in the human colon cancer cell line HCT116. Protein extracts from untreated HCT116 cells, and cells grown for 24 h in the presence of 1 and 10 muM belinostat were analysed by 2-D gel electrophoresis. Proteins were visualized by colloidal Coomassie blue staining and quantitative analysis of gel images revealed 45 unique differentially expressed proteins that were identified by LC-MSMS analysis. Among these proteins, of particular interest are the downregulated proteins nucleophosmin and stratifin, and the upregulated proteins nucleolin, gelsolin, heterogeneous nuclear ribonucleoprotein K, annexin 1, and HSP90B that all were related to the proto-oncogene proteins p53, Myc, activator protein 1, and c-fos protein. The modulation of these proteins is consistent with the observations that belinostat is able to inhibit clonogenic cell growth of HCT116 cells and the biological role of these proteins will be discussed. PMID:20717991

  13. Screening of telomerase inhibitors.

    PubMed

    Kleideiter, Elke; Piotrowska, Kamilla; Klotz, Ulrich

    2007-01-01

    Shortening of telomeres prevents cells from uncontrolled proliferation. Progressive telomere shortening occurs at each cell division until a critical telomeric length is reached. Telomerase expression is switched off after embryonic differentiation in most normal cells, but it is expressed in a very high percentage of tumors of different origin. Thus, telomerase is regarded as the best tumor marker and a promising novel molecular target for cancer treatment. Therefore, different strategies to inhibit telomerase have been developed. However, systematic screening of telomerase inhibitors has not been performed to compare their therapeutic potential. We propose a suitable strategy for estimation of the therapeutic potential of telomerase inhibitors, which is based on a systematic screening of different inhibitors in the same cell system. From the long list of compounds discussed in the literature, we have selected four telomerase inhibitors of different structure and mode of action: BRACO19 (G-quadruplex-interactive compound), BIBR1532 (non-nucleosidic reverse transcriptase inhibitor), 2'-O-methyl RNA, and peptide nucleic acids (PNAs; hTR antisense oligonucleotides). To determine minimal effective concentrations for telomerase inhibition, telomerase activity was measured using the cell-free telomerase repeat amplification protocol (TRAP) assay. We also tested inhibitors in long-term cell-culture experiments by exposing A-549 cells to non-cytotoxic concentrations of inhibitors for a period of 99 days. Subsequently, telomerase activity of A-549 cells was investigated using the TRAP assay, and telomere length of samples was assessed by telomere restriction fragment (TRF) Southern blot analysis. PMID:18369824

  14. Disarming an Electrophilic Warhead: Retaining Potency in Tyrosine Kinase Inhibitor (TKI)-Resistant CML Lines While Circumventing Pharmacokinetic Liabilities.

    PubMed

    Ali, Ahmed M; Gómez-Biagi, Rodolfo F; Rosa, David A; Lai, Ping-Shan; Heaton, William L; Park, Ji Sung; Eiring, Anna M; Vellore, Nadeem A; de Araujo, Elvin D; Ball, Dan P; Shouksmith, Andrew E; Patel, Ami B; Deininger, Michael W; O'Hare, Thomas; Gunning, Patrick T

    2016-04-19

    Pharmacologic blockade of the activation of signal transducer and activator of transcription 3 (STAT3) in tyrosine kinase inhibitor (TKI)-resistant chronic myeloid leukemia (CML) cell lines characterized by kinase-independent resistance was shown to re-sensitize CML cells to TKI therapy, suggesting that STAT3 inhibitors in combination with TKIs are an effective combinatorial therapeutic for the treatment of CML. Benzoic acid- and hydroxamic acid-based STAT3 inhibitors SH-4-054 and SH-5-007, developed previously in our laboratory, demonstrated promising activity against these resistant CML cell lines. However, pharmacokinetic studies in murine models (CD-1 mice) revealed that both SH-4-054 and SH-5-007 are susceptible to glutathione conjugation at the para position of the pentafluorophenyl group via nucleophilic aromatic substitution (SN Ar). To determine whether the electrophilicity of the pentafluorophenyl sulfonamide could be tempered, an in-depth structure-activity relationship (SAR) study of the SH-4-054 scaffold was conducted. These studies revealed that AM-1-124, possessing a 2,3,5,6-tetrafluorophenylsulfonamide group, retained STAT3 protein affinity (Ki =15 μm), as well as selectivity over STAT1 (Ki >250 μm). Moreover, in both hepatocytes and in in vivo pharmacokinetic studies (CD-1 mice), AM-1-124 was found to be dramatically more stable than SH-4-054 (t1/2 =1.42 h cf. 10 min, respectively). AM-1-124 is a promising STAT3-targeting inhibitor with demonstrated bioavailability, suitable for evaluation in preclinical cancer models. PMID:27028877

  15. Selenium-Containing Analogs of SAHA Induce Cytotoxicity in Lung Cancer Cells

    PubMed Central

    Karelia, Nilkamal; Desai, Dhimant; Hengst, Jeremy A.; Amin, Shantu; Rudrabhatla, Sairam V.; Yun, Jong

    2010-01-01

    Cancer therapy has moved beyond conventional chemotherapeutics to more mechanism-based targeted approaches. Studies demonstrate that histone deacetylase (HDAC) is a promising target for anticancer agents. Numerous, structurally diverse, hydroxamic acid derivative, HDAC inhibitors have been reported and have been shown to induce growth arrest, differentiation, autophagy and/or apoptotic cell death by inhibiting multiple signaling pathways in cancer cells. Suberoylanilide hydroxamic acid (SAHA) has emerged as an effective anticancer therapeutic agent and was recently approved by the FDA for the treatment of advanced cutaneous T- cell lymphoma. In our previous study, we reported the development of the novel, potent, selenium containing HDAC inhibitors (SelSA-1 and SelSA-2). In this study, the effects of SelSA-1 and SelSA-2 on signaling pathways and cytotoxicity were compared with the known HDAC inhibitor, SAHA, in lung cancer cell lines. After 24 hours of treatment, SelSA-1 and SelSA-2 inhibited lung cancer cell growth to a greater extent than SAHA in a dose-dependent manner with IC50 values at low micromolar concentrations. SelSA-1 and SelSA-2 inhibited ERK and PI3K-AKT signaling pathways while simultaneously increasing in autophagy in A549 cells in a time dependent manner. This preliminary study demonstrates the effectiveness of the selenium-containing analogs of SAHA, SelSA-1 and SelSA-2, as HDAC inhibitors and provides insight into the improvement and/or development of these analogs as a therapeutic approach for the treatment of lung cancer. PMID:20855208

  16. Selenium-containing analogs of SAHA induce cytotoxicity in lung cancer cells.

    PubMed

    Karelia, Nilkamal; Desai, Dhimant; Hengst, Jeremy A; Amin, Shantu; Rudrabhatla, Sairam V; Yun, Jong

    2010-11-15

    Cancer therapy has moved beyond conventional chemotherapeutics to more mechanism-based targeted approaches. Studies demonstrate that histone deacetylase (HDAC) is a promising target for anticancer agents. Numerous, structurally diverse, hydroxamic acid derivative, HDAC inhibitors have been reported and have been shown to induce growth arrest, differentiation, autophagy, and/or apoptotic cell death by inhibiting multiple signaling pathways in cancer cells. Suberoylanilide hydroxamic acid (SAHA) has emerged as an effective anticancer therapeutic agent and was recently approved by the FDA for the treatment of advanced cutaneous T-cell lymphoma. In our previous study, we reported the development of the novel, potent, selenium-containing HDAC inhibitors (SelSA-1 and SelSA-2). In this study, the effects of SelSA-1 and SelSA-2 on signaling pathways and cytotoxicity were compared with the known HDAC inhibitor, SAHA, in lung cancer cell lines. After 24 h of treatment, SelSA-1 and SelSA-2 inhibited lung cancer cell growth to a greater extent than SAHA in a dose-dependent manner with IC(50) values at low micromolar concentrations. SelSA-1 and SelSA-2 inhibited ERK and PI3K-AKT signaling pathways while simultaneously increasing in autophagy in A549 cells in a time dependent manner. This preliminary study demonstrates the effectiveness of the selenium-containing analogs of SAHA, SelSA-1, and SelSA-2, as HDAC inhibitors and provides insight into the improvement and/or development of these analogs as a therapeutic approach for the treatment of lung cancer. PMID:20855208

  17. Differences in Expression of Key DNA Damage Repair Genes after Epigenetic-Induced BRCAness Dictate Synthetic Lethality with PARP1 Inhibition.

    PubMed

    Wiegmans, Adrian P; Yap, Pei-Yi; Ward, Ambber; Lim, Yi Chieh; Khanna, Kum Kum

    2015-10-01

    The triple-negative breast cancer (TNBC) subtype represents a cancer that is highly aggressive with poor patient outcome. Current preclinical success has been gained through synthetic lethality, targeting genome instability with PARP inhibition in breast cancer cells that harbor silencing of the homologous recombination (HR) pathway. Histone deacetylase inhibitors (HDACi) are a class of drugs that mediate epigenetic changes in expression of HR pathway genes. Here, we compare the activity of the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA), the class I/IIa HDAC inhibitor valproic acid (VPA), and the HDAC1/2-specific inhibitor romidepsin (ROMI) for their capability to regulate DNA damage repair gene expression and in sensitizing TNBC to PARPi. We found that two of the HDACis tested, SAHA and ROMI, but not VPA, indeed inhibit HR repair and that RAD51, BARD1, and FANCD2 represent key proteins whose inhibition is required for HDACi-mediated therapy with PARP inhibition in TNBC. We also observed that restoration of BRCA1 function stabilizes the genome compared with mutant BRCA1 that results in enhanced polyploid population after combination treatment with HDACi and PARPi. Furthermore, we found that overexpression of the key HR protein RAD51 represents a mechanism for this resistance, promoting aberrant repair and the enhanced polyploidy observed. These findings highlight the key components of HR in guiding synthetic lethality with PARP inhibition and support the rationale for utilizing the novel combination of HDACi and PARPi against TNBC in the clinical setting. PMID:26294743

  18. Synthetic inhibitors of elastase.

    PubMed

    Edwards, P D; Bernstein, P R

    1994-03-01

    For more than two decades investigators around the world, in both academic and industrial institutions, have been developing inhibitors of human neutrophil elastase. A number of very elegant and insightful strategies have been reported. In the case of reversible peptidic inhibitors, this has resulted in the identification of some extremely potent compounds with dissociation constants in the 10(-11) M range. This is quite an accomplishment considering that these low molecular-weight inhibitors are only tri- and tetrapeptides. In the case of the heterocyclic-based inhibitors, the challenge of balancing the heterocycle's inherent reactivity and aqueous stability with the stability of the enzyme-inhibitor adduct has been meet by either using a latent, reactive functionality which is only activated within the enzyme, or by incorporating features which selectively obstruct deacylation but have little effect on the enzyme acylation step. The underlying goal of this research has been the identification of agents to treat diseases associated with HNE. Several animal models have been developed for evaluating the in vivo activity of elastase inhibitors, and compounds have been shown to be effective in all of these models by the intravenous, intratrachael or oral routes of administration. However, only a very small percentage of compounds have possessed all the necessary properties, including lack of toxicity, for progression into the clinic. The peptidyl TFMK ICI 200,880 (25-12) has many of the desired characteristics of a drug to treat the diseases associated with HNE: chemical stability, in vitro and in vivo activity, a long duration of action, and adequate metabolic stability. Currently ICI 200,880 is the only low molecular-weight HNE inhibitor known to be undergoing clinical trials, and may be the compound which finally demonstrates the clinical utility of a synthetic HNE inhibitor. PMID:8189835

  19. [STAT3 inhibitor].

    PubMed

    Kitamura, Toshio

    2011-01-01

    Clinical efficacies of various molecular-targeted drugs have been recently demonstrated. Most of these drugs are kinase inhibitors. A most successful drug Glivec is an inhibitor of Bcr-Abl fusion kinase, derived from a well-known causative chromosome translocation of chronic myeloid leukemia(CML). Although other kinase inhibitors have also proved to be useful in the therapy of malignant diseases including an ALK inhibitor for lung carcinomas, a general problem of kinase inhibitors is their lowspecificities. Therefore, the complication of these drugs must be overcome. Recently, trials to develop moleculartargeted therapy whose targets are molecules other than kinases have also been promising. Among molecular targets, STAT3 has attracted a great deal of researchers' attention because it is constitutively activated in most malignant tumors and plays important roles in carcinogenesis. This article summarizes the current situation and problems to be solved with STAT3 inhibitors as well as our recent findings on the molecular mechanisms of STAT3 activation. PMID:21368456

  20. Aromatase and its inhibitors.

    PubMed

    Brodie, A; Lu, Q; Long, B

    1999-01-01

    Inhibitors of aromatase (estrogen synthetase) have been developed as treatment for postmenopausal breast cancer. Both steroidal substrate analogs, type I inhibitors, which inactivate the enzyme and non-steroidal competitive reversible, type II inhibitors, are now available. 4-hydroxyandrostenedione (4-OHA), the first selective aromatase inhibitor, has been shown to reduce serum estrogen concentrations and cause complete and partial responses in approximately 25% of patients with hormone responsive disease who have relapsed from previous endocrine treatment. Letrozole (CGS 20, 269) and anastrozole (ZN 1033) have been recently approved for treatment. Both suppress serum estrogen levels to the limit of assay detection. Letrozole has been shown to be significantly superior to megace in overall response rates and time to treatment failure, whereas anastrozole was found to improve survival in comparison to megace. Both were better tolerated than the latter. The potential of aromatase within the breast as a significant source of estrogen mediating tumor proliferation and which might determine the outcome of inhibitor treatment was explored. Using immunocytochemistry and in situ hybridization, aromatase and mRNAarom was detected mainly in the epithelial cells of the terminal ductal lobular units (TDLU) of the normal breast and also in breast tumor epithelial cells as well as some stromal cells. Increase in proliferation, measured by increased thymidine incorporation into DNA and by PCNA immunostaining in response to testosterone was observed in histocultures of breast cancer samples. This effect could be inhibited by 4-OHA and implies that intratumoral aromatase has functional significance. An intratumoral aromatase model in the ovariectomized nude mouse was developed which simulated the hormone responsive postmenopausal breast cancer patient. This model also allows evaluation of the efficacy of aromatase inhibitors and antiestrogens in tumors of estrogen receptor positive

  1. Small-molecule caspase inhibitors

    NASA Astrophysics Data System (ADS)

    Zhenodarova, S. M.

    2010-02-01

    The review considers low-molecular weight inhibitors of caspases, cysteine proteases being key contributors to apoptosis (programmed cell death). The inhibitors with aspartic acid residues or various heterocyclic systems (both synthetic and natural) are covered. Their possible mechanisms of action are discussed. Data on inhibitor structure-activity relationship studies are systematically surveyed. The interactions of the non-peptide fragments of an inhibitor with the enzymes are examined. Examples of the use of some inhibitors for apoptosis suppression are provided.

  2. SGLT2 inhibitors.

    PubMed

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. PMID:26362302

  3. Cholinesterase inhibitors from botanicals.

    PubMed

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P; Ahmed, K K Mueen

    2013-07-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  4. Cholinesterase inhibitors from botanicals

    PubMed Central

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P.; Ahmed, K. K. Mueen

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  5. Oncogenic K-ras confers SAHA resistance by up-regulating HDAC6 and c-myc expression

    PubMed Central

    Zhang, Yi; Tan, Zhiping; Su, Bing; Li, Yu

    2016-01-01

    Histone deacetylase inhibitors (HDIs) represent a new class of anticancer drugs. Suberoylanilide hydroxamic acid (SAHA), the first HDI approved for the treatment of cutaneous T cell lymphoma (CTCL), is currently being tested in clinical trials for other cancers. However, SAHA has been ineffective against solid tumors in many clinical trials. A better understanding of molecular mechanisms of SAHA resistance may provide the basis for improved patient selection and the enhancement of clinical efficacy. Here we demonstrate that oncogenic K-ras contributes to SAHA resistance by upregulating HDAC6 and c-myc expression. We find that the high levels of HDAC6 expression are associated with activated K-ras mutant in colon cancer patients. And expressions of HDAC6 and c-myc are increased in fibroblasts transformed with activated K-ras. Surprisingly, we find that activated K-ras transformed cells are more resistant to SAHA inhibition on cell growth and anchorage-independent colony formation. We show that a K-ras inhibitor sensitizes K-ras mutated lung cancer cells to SAHA induced growth inhibition. We also find that mutant K-ras induces HDAC6 expression by a MAP kinase dependent pathway. Our study suggests that combined treatment with SAHA and K-ras inhibitors may represent an effective strategy to overcome SAHA resistance. PMID:26848526

  6. Oncogenic K-ras confers SAHA resistance by up-regulating HDAC6 and c-myc expression.

    PubMed

    Wang, Qun; Tan, Rong; Zhu, Xin; Zhang, Yi; Tan, Zhiping; Su, Bing; Li, Yu

    2016-03-01

    Histone deacetylase inhibitors (HDIs) represent a new class of anticancer drugs. Suberoylanilide hydroxamic acid (SAHA), the first HDI approved for the treatment of cutaneous T cell lymphoma (CTCL), is currently being tested in clinical trials for other cancers. However, SAHA has been ineffective against solid tumors in many clinical trials. A better understanding of molecular mechanisms of SAHA resistance may provide the basis for improved patient selection and the enhancement of clinical efficacy. Here we demonstrate that oncogenic K-ras contributes to SAHA resistance by upregulating HDAC6 and c-myc expression. We find that the high levels of HDAC6 expression are associated with activated K-ras mutant in colon cancer patients. And expressions of HDAC6 and c-myc are increased in fibroblasts transformed with activated K-ras. Surprisingly, we find that activated K-ras transformed cells are more resistant to SAHA inhibition on cell growth and anchorage-independent colony formation. We show that a K-ras inhibitor sensitizes K-ras mutated lung cancer cells to SAHA induced growth inhibition. We also find that mutant K-ras induces HDAC6 expression by a MAP kinase dependent pathway. Our study suggests that combined treatment with SAHA and K-ras inhibitors may represent an effective strategy to overcome SAHA resistance. PMID:26848526

  7. SCL/TAL1-mediated transcriptional network enhances megakaryocytic specification of human embryonic stem cells.

    PubMed

    Toscano, Miguel G; Navarro-Montero, Oscar; Ayllon, Veronica; Ramos-Mejia, Veronica; Guerrero-Carreno, Xiomara; Bueno, Clara; Romero, Tamara; Lamolda, Mar; Cobo, Marien; Martin, Francisco; Menendez, Pablo; Real, Pedro J

    2015-01-01

    Human embryonic stem cells (hESCs) are a unique in vitro model for studying human developmental biology and represent a potential source for cell replacement strategies. Platelets can be generated from cord blood progenitors and hESCs; however, the molecular mechanisms and determinants controlling the in vitro megakaryocytic specification of hESCs remain elusive. We have recently shown that stem cell leukemia (SCL) overexpression accelerates the emergence of hemato-endothelial progenitors from hESCs and promotes their subsequent differentiation into blood cells with higher clonogenic potential. Given that SCL participates in megakaryocytic commitment, we hypothesized that it may potentiate megakaryopoiesis from hESCs. We show that ectopic SCL expression enhances the emergence of megakaryocytic precursors, mature megakaryocytes (MKs), and platelets in vitro. SCL-overexpressing MKs and platelets respond to different activating stimuli similar to their control counterparts. Gene expression profiling of megakaryocytic precursors shows that SCL overexpression renders a megakaryopoietic molecular signature. Connectivity Map analysis reveals that trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), both histone deacetylase (HDAC) inhibitors, functionally mimic SCL-induced effects. Finally, we confirm that both TSA and SAHA treatment promote the emergence of CD34(+) progenitors, whereas valproic acid, another HDAC inhibitor, potentiates MK and platelet production. We demonstrate that SCL and HDAC inhibitors are megakaryopoiesis regulators in hESCs. PMID:25292191

  8. Protein protease inhibitors in insects and comparison with mammalian inhibitors.

    PubMed

    Eguchi, M

    1993-01-01

    1. Studies on insect protein protease inhibitors are summarized. Biochemical, genetic and physiological investigations of the silkworm are performed. 2. In addition, the properties and characteristics of fungal protease inhibitors from the silkworm (Bombyx mori) are described and their importance as defensive functions is emphasized. 3. This review also concerns comparative and evolutionary studies of protease inhibitors from various sources. 4. The biological significance of inhibitors is discussed in view of the extensive experimental results. PMID:8365101

  9. Constructing and Validating 3D-pharmacophore Models to a Set of MMP-9 Inhibitors for Designing Novel Anti-melanoma Agents.

    PubMed

    Medeiros Turra, Kely; Pineda Rivelli, Diogo; Berlanga de Moraes Barros, Silvia; Mesquita Pasqualoto, Kerly Fernanda

    2016-07-01

    A receptor-independent (RI) four-dimensional structure-activity relationship (4D-QSAR) formalism was applied to a set of sixty-four β-N-biaryl ether sulfonamide hydroxamate derivatives, previously reported as potent inhibitors against matrix metalloproteinase subtype 9 (MMP-9). MMP-9 belongs to a group of enzymes related to the cleavage of several extracellular matrix components and has been associated to cancer invasiveness/metastasis. The best RI 4D-QSAR model was statistically significant (N=47; r(2) =0.91; q(2) =0.83; LSE=0.09; LOF=0.35; outliers=0). Leave-N-out (LNO) and y-randomization approaches indicated the QSAR model was robust and presented no chance correlation, respectively. Furthermore, it also had good external predictability (82 %) regarding the test set (N=17). In addition, the grid cell occupancy descriptors (GCOD) of the predicted bioactive conformation for the most potent inhibitor were successfully interpreted when docked into the MMP-9 active site. The 3D-pharmacophore findings were used to predict novel ligands and exploit the MMP-9 calculated binding affinity through molecular docking procedure. PMID:27492238

  10. Sunflower trypsin inhibitor-1.

    PubMed

    Korsinczky, Michael L J; Schirra, Horst Joachim; Craik, David J

    2004-10-01

    SFTI-1 is a bicyclic 14 amino acid peptide that was originally isolated from the seeds of the sunflower Helianthus annuus. It is a potent inhibitor of trypsin, with a sub-nanomolar K(i) value and is homologous to the active site region of the well-known family of serine protease inhibitors known as the Bowman-Birk trypsin inhibitors. It has a cyclic backbone that is cross-braced by a single disulfide bridge and a network of hydrogen bonds that result in a well-defined structure. SFTI-1 is amenable to chemical synthesis, allowing for the creation of synthetic variants. Alterations to the structure such as linearising the backbone or removing the disulfide bridge do not reduce the potency of SFTI-1 significantly, and minimising the peptide to as few as nine residues results in only a small decrease in reactivity. The creation of linear variants of SFTI-1 also provides a tool for investigating putative linear precursor peptides. The mechanism of biosynthesis of SFTI-1 is not yet known but it seems likely that it is a gene-coded product that has arisen from a precursor protein that may be evolutionarily related to classic Bowman-Birk inhibitors. PMID:15544530

  11. Inhibitors of rhomboid proteases.

    PubMed

    Wolf, Eliane V; Verhelst, Steven H L

    2016-03-01

    Rhomboid proteases form one of the most widespread families of intramembrane proteases. They utilize a catalytic serine-histidine dyad located several Å below the surface of the membrane for substrate hydrolysis. Multiple studies have implicated rhomboid proteases in biologically and medically relevant processes. Several assays have been developed that are able to monitor rhomboid activity. With the aid of these assays, different types of inhibitors have been found, all based on electrophiles that covalently react with the active site machinery. Although the currently available inhibitors have limited selectivity and moderate potency, they can function as research tools and as starting point for the development of activity-based probes, which are reagents that can specifically detect active rhomboid species. Structural studies on complexes of inhibitors with the Escherichia coli rhomboid GlpG have provided insight into how substrate recognition may occur. Future synthetic efforts, aided by high-throughput screening or structure-based design, may lead to more potent and selective inhibitors for this interesting family of proteases. PMID:26166068

  12. Design, synthesis and biological evaluation of N-phenylquinazolin-4-amine hybrids as dual inhibitors of VEGFR-2 and HDAC.

    PubMed

    Peng, Fan-Wei; Xuan, Ji; Wu, Ting-Ting; Xue, Jia-Yu; Ren, Zi-Wei; Liu, Da-Ke; Wang, Xiu-Qi; Chen, Xin-Hang; Zhang, Jia-Wei; Xu, Yun-Gen; Shi, Lei

    2016-02-15

    A single agent that simultaneously inhibits multiple targets may offer greater therapeutic benefits in cancer than single-acting agents through interference with multiple pathways and potential synergistic action. In this work, a series of hybrids bearing N-phenylquinazolin-4-amine and hydroxamic acid moieties were designed and identified as dual VEGFR-2/HDAC inhibitors. Compound 6fd exhibited the most potent inhibitory activity against HDAC with IC50 of 2.2 nM and strong inhibitory effect against VEGFR-2 with IC50 of 74 nM. It also showed the most potent inhibitory activity against a human breast cancer cell line MCF-7 with IC50 of 0.85 μM. Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction at the active binding sites of VEGFR-2 and HDLP ((Histone Deacetylase-Like Protein), which demonstrates that compound 6fd is a potential agent for cancer therapy deserving further researching. PMID:26741358

  13. Design, synthesis, and antitumor evaluation of novel histone deacetylase inhibitors equipped with a phenylsulfonylfuroxan module as a nitric oxide donor.

    PubMed

    Duan, Wenwen; Li, Jin; Inks, Elizabeth S; Chou, C James; Jia, Yuping; Chu, Xiaojing; Li, Xiaoyang; Xu, Wenfang; Zhang, Yingjie

    2015-05-28

    On the basis of the strategy of creating multifunctional drugs, a novel series of phenylsulfonylfuroxan-based hydroxamates with histone deacetylase (HDAC) inhibitory and nitric oxide (NO) donating activities were designed, synthesized, and evaluated. The most potent NO donor-HDAC inhibitor (HDACI) hybrid, 5c, exhibited a much greater in vitro antiproliferative activity against the human erythroleukemia (HEL) cell line than that of the approved drug SAHA (Vorinostat), and its antiproliferative activity was diminished by the NO scavenger hemoglobin in a dose-dependent manner. Further mechanism studies revealed that 5c strongly induced cellular apoptosis and G1 phase arrest in HEL cells. Animal experiment identified 5c as an orally active agent with potent antitumor activity in a HEL cell xenograft model. Interestingly, although compound 5c was remarkably HDAC6-selective at the molecular level, it exhibited pan-HDAC inhibition in a western blot assay, which is likely due to class I HDACs inhibition caused by NO release at the cellular level. PMID:25906087

  14. Recent advances for FLAP inhibitors.

    PubMed

    Pettersen, Daniel; Davidsson, Öjvind; Whatling, Carl

    2015-07-01

    A number of FLAP inhibitors have been progressed to clinical trials for respiratory and other inflammatory indications but so far no drug has reached the market. With this Digest we assess the opportunity to develop FLAP inhibitors for indications beyond respiratory disease, and in particular for atherosclerotic cardiovascular disease. We also show how recently disclosed FLAP inhibitors have structurally evolved from the first generation FLAP inhibitors paving the way for new compound classes. PMID:26004579

  15. Metalloprotease inhibitors GM6001 and TAPI-0 inhibit the obligate intracellular human pathogen Chlamydia trachomatis by targeting peptide deformylase of the bacterium.

    PubMed

    Balakrishnan, Amit; Patel, Bhairavi; Sieber, Stephan A; Chen, Ding; Pachikara, Niseema; Zhong, Guangming; Cravatt, Benjamin F; Fan, Huizhou

    2006-06-16

    Chlamydia trachomatis is an obligate intracellular bacterium responsible for a number of human diseases. The mechanism underlying the intracellular parasitology of Chlamydiae remains poorly understood. In searching for host factors required for chlamydial infection, we discovered that C. trachomatis growth was effectively inhibited with GM6001 and TAPI-0, two compounds known as specific inhibitors of matrix metalloproteases. The inhibition was independent of chlamydial entry of the cell, suggesting that the loss of extracellular metalloprotease activities of the host cell is unlikely to be the mechanism for the growth suppression. Nucleotide sequences of candidate metalloprotease genes remained unchanged in a chlamydial variant designated GR10, which had been selected for resistance to the inhibitors. Nevertheless, GR10 displayed a single base mutation in the presumable promoter region of the gene for peptide deformylase (PDF), a metal-dependent enzyme that removes the N-formyl group from newly synthesized bacterial proteins. The mutation correlated with an increased PDF expression level and resistance to actinonin, a known PDF inhibitor with antibacterial activity, as compared with the parental strain. Recombinant chlamydial PDF was covalently labeled with a hydroxamate-based molecular probe designated AspR1, which was developed for the detection of metalloproteases. The AspR1 labeling of the chlamydial PDF became significantly less efficient in the presence of excessive amounts of GM6001 and TAPI-0. Finally, the PDF enzyme activity was efficiently inhibited with GM6001 and TAPI-0. Taken together, our results suggest that the metalloprotease inhibitors suppress chlamydial growth by targeting the bacterial PDF. These findings have important biochemical and medical implications. PMID:16565079

  16. Alpha glucosidase inhibitors.

    PubMed

    Kalra, Sanjay

    2014-04-01

    Alpha glucosidase inhibitors (AGIs) are a unique class of anti-diabetic drugs. Derived from bacteria, these oral drugs are enzyme inhibitors which do not have a pancreato -centred mechanism of action. Working to delay carbohydrate absorption in the gastrointestinal tract, they control postprandial hyperglycaemia and provide unquestioned cardiovascular benefit. Specially suited for a traditional Pakistani carbohydrate-rich diet, AGIs have been termed the 'untapped diamonds' of diabetology. The use of these oral antidiabetic drugs (OADs) that target pathophysiology in the early stages of type 2 diabetes, notably to reduce postprandial hyperglycaemia and hyperinsulinaemia will inevitably increase with time. This review describes the history of their development, mechanism of action, basic and clinical pharmacology, and suggests practical, evidence-based guidance for their optimal use. PMID:24864650

  17. [JAK2 inhibitors].

    PubMed

    Hernández Boluda, Juan Carlos; Gómez, Montse; Pérez, Ariadna

    2016-07-15

    Pharmacological inhibition of the kinase activity of JAK proteins can interfere with the signaling of immunomodulatory cytokines and block the constitutive activation of the JAK-STAT pathway that characterizes certain malignancies, including chronic myeloproliferative neoplasms. JAK inhibitors may, therefore, be useful to treat malignancies as well as inflammatory or immune disorders. Currently, the most significant advances have been made in the treatment of myelofibrosis, where these drugs may lead to a remarkable improvement in the control of hyperproliferative manifestations. However, available data suggest that this treatment is not curative of myelofibrosis. In general, JAK2 inhibition induces cytopaenias, with this being considered a class side-effect. By contrast, the extrahaematologic toxicity profile varies significantly among the different JAK inhibitors. At present, there are several clinical trials evaluating the combination of ruxolitinib with other drugs, in order to improve its therapeutic activity as well as reducing haematologic toxicity. PMID:27033437

  18. PARP inhibitors and more.

    PubMed

    Bose, Chinmoy K; Basu, Nirban

    2015-01-01

    Polyadenosine diphosphate (ADP) ribose polymerase (PARP) lends a panoramic view to the inner mystery of protection of integrity of deoxyribonucleic acid (DNA) in a cell genome. They are a balancing part of an even more dynamic equilibrium of normalcy against daily assaults. PARP finds its companion candidates in other tumor suppressors, with the most prominent and glaring one being breast cancer (BRCA) 1 and 2. The strength of both is split by PARP inhibitors, inculcating the synthetic lethality of tumor cell, which is now in the market for ovarian cancer treatment. There are many reasons for the resistance of such inhibitors, which are now becoming clinically important. These are seen along with other damage repair approaches. PMID:26097394

  19. PARP inhibitors and more

    PubMed Central

    Bose, Chinmoy K.; Basu, Nirban

    2015-01-01

    Polyadenosine diphosphate (ADP) ribose polymerase (PARP) lends a panoramic view to the inner mystery of protection of integrity of deoxyribonucleic acid (DNA) in a cell genome. They are a balancing part of an even more dynamic equilibrium of normalcy against daily assaults. PARP finds its companion candidates in other tumor suppressors, with the most prominent and glaring one being breast cancer (BRCA) 1 and 2. The strength of both is split by PARP inhibitors, inculcating the synthetic lethality of tumor cell, which is now in the market for ovarian cancer treatment. There are many reasons for the resistance of such inhibitors, which are now becoming clinically important. These are seen along with other damage repair approaches. PMID:26097394

  20. Benzoylurea Chitin Synthesis Inhibitors.

    PubMed

    Sun, Ranfeng; Liu, Chunjuan; Zhang, Hao; Wang, Qingmin

    2015-08-12

    Benzoylurea chitin synthesis inhibitors are widely used in integrated pest management (IPM) and insecticide resistance management (IRM) programs due to their low toxicity to mammals and predatory insects. In the past decades, a large number of benzoylurea derivatives have been synthesized, and 15 benzoylurea chitin synthesis inhibitors have been commercialized. This review focuses on the history of commercial benzolyphenylureas (BPUs), synthetic methods, structure-activity relationships (SAR), action mechanism research, environmental behaviors, and ecotoxicology. Furthermore, their disadvantages of high risk to aquatic invertebrates and crustaceans are pointed out. Finally, we propose that the para-substituents at anilide of benzoylphenylureas should be the functional groups, and bipartite model BPU analogues are discussed in an attempt to provide new insight for future development of BPUs. PMID:26168369

  1. Mineralization by Inhibitor Exclusion

    PubMed Central

    Price, Paul A.; Toroian, Damon; Lim, Joo Eun

    2009-01-01

    One of our goals is to understand the mechanisms that deposit mineral within collagen fibrils, and as a first step we recently determined the size exclusion characteristics of the fibril. This study revealed that apatite crystals up to 12 unit cells in size can access the water within the fibril, whereas molecules larger than a 40-kDa protein are excluded. Based on these observations, we proposed a novel mechanism for fibril mineralization: that macromolecular inhibitors of apatite growth favor fibril mineralization by selectively inhibiting crystal growth in the solution outside of the fibril. To test this mechanism, we developed a system in which crystal formation is driven by homogeneous nucleation at high calcium phosphate concentration and the only macromolecule in solution is fetuin, a 48-kDa inhibitor of apatite growth. Our experiments with this system demonstrated that fetuin determines the location of mineral growth; in the presence of fetuin mineral grows exclusively within the fibril, whereas in its absence mineral grows in solution outside the fibril. Additional experiments showed that fetuin is also able to localize calcification to the interior of synthetic matrices that have size exclusion characteristics similar to those of collagen and that it does so by selectively inhibiting mineral growth outside of these matrices. We termed this new calcification mechanism “mineralization by inhibitor exclusion,” the selective mineralization of a matrix using a macromolecular inhibitor of mineral growth that is excluded from that matrix. Future studies will be needed to evaluate the possible role of this mechanism in bone mineralization. PMID:19414589

  2. Neutrophil Elastase Inhibitors

    PubMed Central

    Groutas, William C.; Dou, Dengfeng; Alliston, Kevin R.

    2011-01-01

    Introduction Chronic obstructive pulmonary disease (COPD) constitutes a worldwide health problem. There is currently an urgent and unmet need for the development of small molecule therapeutics capable of blocking and/or reversing the progression of the disorder. Recent studies have greatly illuminated our understanding of the multiple pathogenic processes associated with COPD. Of paramount importance is the key role played by proteases, oxidative stress, apoptosis, and inflammation. Insights gained from these studies have made possible the exploration of new therapeutic approaches. Areas covered An overview of major developments in COPD research with emphasis on low molecular weight neutrophil elastase inhibitors is described in this review. Expert opinion Great strides have been made toward our understanding of the biochemical and cellular events associated with COPD. However, our knowledge regarding the inter-relationships among the multiple pathogenic mechanisms and their mediators involved is till limited. The problem is further compounded by the unavailability of suitable validated biomarkers for assessing the efficacy of potential therapeutic interventions. The complexity of COPD suggests that effective therapeutic interventions may require the administration of more than one agent such as, for instance, an HNE or MMP-12 inhibitor with an anti-inflammatory agent such as a phosphodiesterase-4 inhibitor, or a dual function agent capable of disrupting the cycle of proteolysis, apoptosis, inflammation and oxidative stress PMID:21235378

  3. Development of scale inhibitors

    SciTech Connect

    Gill, J.S.

    1996-12-01

    During the last fifty years, scale inhibition has gone from an art to a science. Scale inhibition has changed from simple pH adjustment to the use of optimized dose of designer polymers from multiple monomers. The water-treatment industry faces many challenges due to the need to conserve water, availability of only low quality water, increasing environmental regulations of the water discharge, and concern for human safety when using acid. Natural materials such as starch, lignin, tannin, etc., have been replaced with hydrolytically stable organic phosphates and synthetic polymers. Most progress in scale inhibition has come from the use of synergistic mixtures and copolymerizing different functionalities to achieve specific goals. Development of scale inhibitors requires an understanding of the mechanism of crystal growth and its inhibition. This paper discusses the historic perspective of scale inhibition and the development of new inhibitors based on the understanding of the mechanism of crystal growth and the use of powerful tools like molecular modeling to visualize crystal-inhibitor interactions.

  4. Quantum chemistry-based interpretations on the lowest triplet state of luminescent lanthanides complexes. Part 1. Relation between the triplet state energy of hydroxamate complexes and their luminescence properties.

    PubMed

    Gutierrez, Fabien; Tedeschi, Christine; Maron, Laurent; Daudey, Jean-Pierre; Poteau, Romuald; Azema, Joëlle; Tisnès, Pierre; Picard, Claude

    2004-05-01

    In this paper, we evaluate the potential use of theoretical calculations to obtain an energy scale of the lowest ligand-centred triplet excited state in luminescent terbium(III) complexes. In these complexes, non-radiative deactivation of the terbium emitting state via a back-energy transfer process (T1<--Tb(5D4)) is a common quenching process. Consequently the prediction of the energy gap between these two excited states should be useful for programming highly luminescent Tb(III) systems. We report on a strategy based upon experimental and theoretical investigations of the excited state properties of a series of four simple aromatic hydroxamate ligands coordinated to Tb(III) and Gd(III) ions. By using previously reported crystallographic data, the structural and energies properties of these systems were investigated in the ground and first excited triplet states at the density functional theory (DFT) level of calculations. Our theoretical results are consistent with a triplet excited state T1 which is localised on one ligand only and whose the energy level is independent of the lanthanide ion nature (Tb(III), Gd(III)). A good agreement between the calculated adiabatic transition energies and experimental data derived from emission spectra is obtained when a corrective term is considered. These satisfactory results are an indication that this type of modelling can lead to discriminate in terms of the position of the lowest ligand triplet energy level the best antenna among a family of chromophoric compounds. In addition this theoretical approach has provided indications that the difference between the adiabatic transition energies of all the investigated complexes can be mainly explained by metal-ligand electrostatic interactions. The influence of the number of antennae on the quantum yield and the luminescence lifetime is discussed. PMID:15252626

  5. Decitabine and SAHA-Induced Apoptosis Is Accompanied by Survivin Downregulation and Potentiated by ATRA in p53-Deficient Cells

    PubMed Central

    Brodská, Barbora; Otevřelová, Petra; Holoubek, Aleš

    2014-01-01

    While p53-dependent apoptosis is triggered by combination of methyltransferase inhibitor decitabine (DAC) and histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in leukemic cell line CML-T1, reactive oxygen species (ROS) generation as well as survivin and Bcl-2 deregulation participated in DAC + SAHA-induced apoptosis in p53-deficient HL-60 cell line. Moreover, decrease of survivin expression level is accompanied by its delocalization from centromere-related position in mitotic cells suggesting that both antiapoptotic and cell cycle regulation roles of survivin are affected by DAC + SAHA action. Addition of subtoxic concentration of all-trans-retinoic acid (ATRA) increases the efficiency of DAC + SAHA combination on viability, apoptosis induction, and ROS generation in HL-60 cells but has no effect in CML-T1 cell line. Peripheral blood lymphocytes from healthy donors showed no damage induced by DAC + SAHA + ATRA combination. Therefore, combination of ATRA with DAC and SAHA represents promising tool for therapy of leukemic disease with nonfunctional p53 signalization. PMID:25140197

  6. Histone deacetylase inhibition downregulates collagen 3A1 in fibrotic lung fibroblasts.

    PubMed

    Zhang, Xiangyu; Liu, Hui; Hock, Thomas; Thannickal, Victor J; Sanders, Yan Y

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is a deadly disease characterized by chronic inflammation and excessive collagen accumulation in the lung. Myofibroblasts are the primary collagen-producing cells in pulmonary fibrosis. Histone deacetylase inhibitor (HDACi) can affect gene expression, and some, such as suberoylanilide hydroxamic acid (SAHA), are US FDA approved for cancer treatment. In this study, we investigated SAHA's effects on the expression of collagen III alpha 1 (COL3A1) in primary human IPF fibroblasts and in a murine model of pulmonary fibrosis. We observed that increased COL3A1 expression in IPF fibroblasts can be substantially reduced by SAHA treatment at the level of transcription as detected by RT-PCR; collagen III protein level was also reduced, as detected by Western blots and immunofluorescence. The deacetylation inhibitor effect of SAHA was verified by observing higher acetylation levels of both histone H3 and H4 in treated IPF cells. Chromatin immunoprecipitation (ChIP) experiments demonstrated that the reduced expression of COL3A1 by SAHA is with increased association of the repressive chromatin marker, H3K27Me3, and decreased association of the active chromatin marker, H3K9Ac. In our murine model of bleomycin-induced pulmonary fibrosis, the SAHA treated group demonstrated significantly less collagen III, as detected by immunohistochemistry. Our data indicate that the HDACi SAHA alters the chromatin associated with COL3A1, resulting in its decreased expression. PMID:24084714

  7. NBM-T-BBX-OS01, Semisynthesized from Osthole, Induced G1 Growth Arrest through HDAC6 Inhibition in Lung Cancer Cells.

    PubMed

    Pai, Jih-Tung; Hsu, Chia-Yun; Hua, Kuo-Tai; Yu, Sheng-Yung; Huang, Chung-Yang; Chen, Chia-Nan; Liao, Chiung-Ho; Weng, Meng-Shih

    2015-01-01

    Disrupting lung tumor growth via histone deacetylases (HDACs) inhibition is a strategy for cancer therapy or prevention. Targeting HDAC6 may disturb the maturation of heat shock protein 90 (Hsp90) mediated cell cycle regulation. In this study, we demonstrated the effects of semisynthesized NBM-T-BBX-OS01 (TBBX) from osthole on HDAC6-mediated growth arrest in lung cancer cells. The results exhibited that the anti-proliferative activity of TBBX in numerous lung cancer cells was more potent than suberoylanilide hydroxamic acid (SAHA), a clinically approved pan-HDAC inhibitor, and the growth inhibitory effect has been mediated through G1 growth arrest. Furthermore, the protein levels of cyclin D1, CDK2 and CDK4 were reduced while cyclin E and CDK inhibitor, p21Waf1/Cip1, were up-regulated in TBBX-treated H1299 cells. The results also displayed that TBBX inhibited HDAC6 activity via down-regulation HDAC6 protein expression. TBBX induced Hsp90 hyper-acetylation and led to the disruption of cyclin D1/Hsp90 and CDK4/Hsp90 association following the degradation of cyclin D1 and CDK4 proteins through proteasome. Ectopic expression of HDAC6 rescued TBBX-induced G1 arrest in H1299 cells. Conclusively, the data suggested that TBBX induced G1 growth arrest may mediate HDAC6-caused Hsp90 hyper-acetylation and consequently increased the degradation of cyclin D1 and CDK4. PMID:25946558

  8. A novel class of anti-HIV agents with multiple copies of enfuvirtide enhances inhibition of viral replication and cellular transmission in vitro.

    PubMed

    Chang, Chien-Hsing; Hinkula, Jorma; Loo, Meiyu; Falkeborn, Tina; Li, Rongxiu; Cardillo, Thomas M; Rossi, Edmund A; Goldenberg, David M; Wahren, Britta

    2012-01-01

    We constructed novel HIV-1 fusion inhibitors that may overcome the current limitations of enfuvirtide, the first such therapeutic in this class. The three prototypes generated by the Dock-and-Lock (DNL) technology to comprise four copies of enfuvirtide tethered site-specifically to the Fc end of different humanized monoclonal antibodies potently neutralize primary isolates (both R5-tropic and X4-tropic), as well as T-cell-adapted strains of HIV-1 in vitro. All three prototypes show EC(50) values in the subnanomolar range, which are 10- to 100-fold lower than enfuvirtide and attainable whether or not the constitutive antibody targets HIV-1. The potential of such conjugates to purge latently infected cells was also demonstrated in a cell-to-cell viral inhibition assay by measuring their efficacy to inhibit the spread of HIV-1(LAI) from infected human peripheral blood mononuclear cells to Jurkat T cells over a period of 30 days following viral activation with 100 nM SAHA (suberoylanilide hydroxamic acid). The IgG-like half-life was not significantly different from that of the parental antibody, as shown by the mean serum concentration of one prototype in mice at 72 h. These encouraging results provide a rationale to develop further novel anti-HIV agents by coupling additional antibodies of interest with alternative HIV-inhibitors via recombinantly-produced, self-assembling, modules. PMID:22844444

  9. A Novel Class of Anti-HIV Agents with Multiple Copies of Enfuvirtide Enhances Inhibition of Viral Replication and Cellular Transmission In Vitro

    PubMed Central

    Chang, Chien-Hsing; Hinkula, Jorma; Loo, Meiyu; Falkeborn, Tina; Li, Rongxiu; Cardillo, Thomas M.; Rossi, Edmund A.; Goldenberg, David M.; Wahren, Britta

    2012-01-01

    We constructed novel HIV-1 fusion inhibitors that may overcome the current limitations of enfuvirtide, the first such therapeutic in this class. The three prototypes generated by the Dock-and-Lock (DNL) technology to comprise four copies of enfuvirtide tethered site-specifically to the Fc end of different humanized monoclonal antibodies potently neutralize primary isolates (both R5-tropic and X4-tropic), as well as T-cell-adapted strains of HIV-1 in vitro. All three prototypes show EC50 values in the subnanomolar range, which are 10- to 100-fold lower than enfuvirtide and attainable whether or not the constitutive antibody targets HIV-1. The potential of such conjugates to purge latently infected cells was also demonstrated in a cell-to-cell viral inhibition assay by measuring their efficacy to inhibit the spread of HIV-1LAI from infected human peripheral blood mononuclear cells to Jurkat T cells over a period of 30 days following viral activation with 100 nM SAHA (suberoylanilide hydroxamic acid). The IgG-like half-life was not significantly different from that of the parental antibody, as shown by the mean serum concentration of one prototype in mice at 72 h. These encouraging results provide a rationale to develop further novel anti-HIV agents by coupling additional antibodies of interest with alternative HIV-inhibitors via recombinantly-produced, self-assembling, modules. PMID:22844444

  10. Combination therapies improve the anticancer activities of retinoids in neuroblastoma

    PubMed Central

    Cheung, Belamy B

    2015-01-01

    Most therapeutic protocols for child cancers use cytotoxic agents which have a narrow therapeutic index, and resulting in severe acute and chronic toxicities to normal tissues. Despite the fact that most child cancer patients achieve complete remission after chemotherapy, death still occurs due to relapse of persistent minimal residual disease (MRD) which remaining after initial cytotoxic chemotherapy. Advanced neuroblastoma (NB) is a leading cause of cancer deaths in young children. Retinoids are an important component of advanced NB therapy at the stage of MRD, yet half of all patients treated with 13-cis-retinoic acid still relapse and die. More effective combination therapies, with a lower side-effect profile, are required to improve outcomes for NB. Fenretinide or N-4-hydroxyphenyl retinamide is a synthetic derivative of retinoic acid which works on cancer cells through nuclear receptor-dependent and -independent signalling mechanisms. Moreover, several histone deacetylase inhibitors have entered early phase trials, and, suberoylanilide hydroxamic acid has been approved for use in adult cutaneous T cell lymphoma. A number of studies suggest that retinoid signal activation is necessary for histone deacetylase inhibitor activity. A better understanding of their mechanism of actions will lead to more evidence-based retinoid combination therapies. PMID:26677433

  11. Creating zinc monkey wrenches in the treatment of epigenetic disorders.

    PubMed

    Kalin, Jay Hans; Butler, Kyle Vincent; Kozikowski, Alan Paul

    2009-06-01

    The approval of suberoylanilide hydroxamic acid by the FDA for the treatment of cutaneous T-cell lymphoma in October, 2006 sparked a dramatic increase in the development of inhibitors for the class of enzymes known as the histone deacetylases (HDACs). In recent years, a large number of combination therapies involving histone deacetylase inhibitors (HDACIs) have been developed for the treatment of a variety of malignancies and neurodegenerative disorders. Promising evidence has been reported for the treatment of pancreatic cancer, prostate cancer, and leukemia as well as a number of other previously difficult to treat cancers. Drug combination approaches have also shown promise for the treatment of mood disorders including bipolar disorder and depression. In addition to these drug combination approaches, HDACIs alone have demonstrated effectiveness in the treatment of Parkinson's disease, Alzheimer's disease, Rubinstein-Taybi syndrome, Rett syndrome, Friedreich's ataxia, Huntington's disease, multiple sclerosis, anxiety, and schizophrenia. Adverse inflammatory affects observed with traumatic brain injury and arthritis have also been alleviated by treatment with certain HDACIs. Based on the diverse utility and wide range of mechanistic actions observed with this class of drugs, the future development of better drug combination therapies and more selective HDACIs is warranted. PMID:19541531

  12. Structure of the catalytic domain of the Tannerella forsythia matrix metallopeptidase karilysin in complex with a tetrapeptidic inhibitor

    PubMed Central

    Guevara, Tibisay; Ksiazek, Miroslaw; Skottrup, Peter Durand; Cerdà-Costa, Núria; Trillo-Muyo, Sergio; de Diego, Iñaki; Riise, Erik; Potempa, Jan; Gomis-Rüth, F. Xavier

    2013-01-01

    Karilysin is the only metallopeptidase identified as a virulence factor in the odontopathogen Tannerella forsythia owing to its deleterious effect on the host immune response during bacterial infection. The very close structural and sequence-based similarity of its catalytic domain (Kly18) to matrix metallo­proteinases suggests that karilysin was acquired by horizontal gene transfer from an animal host. Previous studies by phage display identified peptides with the consensus sequence XWFPXXXGGG (single-letter amino-acid codes; X represents any residue) as karilysin inhibitors with low-micromolar binding affinities. Subsequent refinement revealed that inhibition comparable to that of longer peptides could be achieved using the tetrapeptide SWFP. To analyze its binding, the high-resolution crystal structure of the complex between Kly18 and SWFP was determined and it was found that the peptide binds to the primed side of the active-site cleft in a substrate-like manner. The catalytic zinc ion is clamped by the α-amino group and the carbonyl O atom of the serine, thus distantly mimicking the general manner of binding of hydroxamate inhibitors to metallopeptidases and contributing, together with three zinc-binding histidines from the protein scaffold, to an octahedral-minus-one metal-coordination sphere. The tryptophan side chain penetrates the deep partially water-filled specificity pocket of Kly18. Together with previous serendipitous product complexes of Kly18, the present results provide the structural determinants of inhibition of karilysin and open the field for the design of novel inhibitory strategies aimed at the treatment of human periodontal disease based on a peptidic hit molecule. PMID:23695557

  13. Dual inhibition of histone deacetylases and phosphoinositide 3-kinases: effects on Burkitt lymphoma cell growth and migration.

    PubMed

    Ferreira, Ana Carolina dos Santos; de-Freitas-Junior, Julio Cesar Madureira; Morgado-Díaz, Jose Andres; Ridley, Anne J; Klumb, Claudete Esteves

    2016-04-01

    Burkitt lymphoma is a highly aggressive non-Hodgkin lymphoma that is characterized by MYC deregulation. Recently, the PI3K pathway has emerged as a cooperative prosurvival mechanism in Burkitt lymphoma. Despite the highly successful results of treatment that use high-dose chemotherapy regimens in pediatric Burkitt lymphoma patients, the survival rate of pediatric patients with progressive or recurrent disease is low. PI3Ks are also known to regulate cell migration, and abnormal cell migration may contribute to cancer progression and dissemination in Burkitt lymphoma. Little is known about Burkitt lymphoma cell migration, but the cooperation between MYC and PI3K in Burkitt lymphoma pathogenesis suggests that a drug combination could be used to target the different steps involved in Burkitt lymphoma cell dissemination and disease progression. The aim of this study was to investigate the effects of the histone deacetylase inhibitor suberoylanilide hydroxamic acid combined with the PI3K inhibitor LY294002 on Burkitt lymphoma cell growth and migration. The combination enhanced the cell growth inhibition and cell-cycle arrest induced by the PI3K inhibitor or histone deacetylase inhibitor individually. Moreover, histone deacetylase inhibitor/PI3K inhibitor cotreatment suppressed Burkitt lymphoma cell migration and decreased cell polarization, Akt and ERK1/2 phosphorylation, and leads to RhoB induction. In summary, the histone deacetylase inhibitor/PI3Ki combination inhibits cell proliferation and migration via alterations in PI3K signaling and histone deacetylase activity, which is involved in the acetylation of α-tubulin and the regulation of RhoB expression. PMID:26561567

  14. Thymidylate synthase inhibitors.

    PubMed

    Danenberg, P V; Malli, H; Swenson, S

    1999-12-01

    Thymidylate synthase (TS) is a critical enzyme for DNA replication and cell growth because it is the only de novo source of thymine nucleotide precursors for DNA synthesis. TS is the primary target of 5-fluorouracil (5-FU), which has been used for cancer treatment for more than 40 years. However, dissatisfaction with the overall activity of 5-FU against the major cancers, and the recognition that TS still remains an attractive target for anticancer drugs because of its central position in the pathway of DNA synthesis, led to a search for new inhibitors of TS structurally analogous to 5,10-methylenetetrahydrofolate, the second substrate of TS. TS inhibitory antifolates developed to date that are in various stages of clinical evaluation are ZD 1694 and ZD9331 (Astra-Zeneca, London, UK), (Eli Lilly, Indianapolis, IN), LY231514 (BW1843U89 (Glaxo-Wellcome, Research Triangle Park, NC), and AG337 and AG331 (Agouron, La Jolla, CA). Although each of these compounds has TS as its major intracellular site of action, they differ in propensity for polyglutamylation and for transport by the reduced folate carrier. LY231514 also has secondary target enzymes. As a result, each compound is likely to have a different spectrum of antitumor activity and toxicity. This review will summarize the development and properties of this new class of TS inhibitors. PMID:10606255

  15. Synthesis of Lysine Methyltransferase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ye, Tao; Hui, Chunngai

    2015-07-01

    Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  16. [Kinase inhibitors and their resistance].

    PubMed

    Togashi, Yosuke; Nishio, Kazuto

    2015-08-01

    Kinase cascades are involved in all stages of tumorigenesis through modulation of transformation and differentiation, cell-cycle progression, and motility. Advances in molecular targeted drug development allow the design and synthesis of inhibitors targeting cancer-associated signal transduction pathways. Potent selective inhibitors with low toxicity can benefit patients especially with several malignancies harboring an oncogenic driver addictive signal. This article evaluates information on solid tumor-related kinase signals and inhibitors, including receptor tyrosine kinase or serine/threonine kinase signals that lead to successful application in clinical settings. In addition, the resistant mechanisms to the inhibitors is summarized. PMID:26281685

  17. ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing

    PubMed Central

    Zocchi, Maria Raffaella; Camodeca, Caterina; Nuti, Elisa; Rossello, Armando; Venè, Roberta; Tosetti, Francesca; Dapino, Irene; Costa, Delfina; Musso, Alessandra; Poggi, Alessandro

    2016-01-01

    ABSTRACT Hodgkin lymphoma (HL) resistant to conventional therapies is increasing, making of interest the search for new schemes of treatment. Members of the “A Disintegrin And Metalloproteases” (ADAMs) family, mainly ADAM10 or ADAM17, have been proposed as therapeutic targets in solid tumors and some ADAMs inhibitors have been shown to exert antitumor effects. We have previously described an overexpression of ADAM10 in HL, together with increased release of NKG2D ligands (NKG2D-L) and reduced activation of effector T lymphocytes with anti-lymphoma capacity. Aim of the present work was to verify whether inhibition of ADAM10 in HL cells could restore the triggering of NKG2D-dependent anti-lymphoma T cell response. As no selective ADAM10 blockers have been reported so far, we synthesized the two hydroxamate compounds LT4 and MN8 with selectivity for ADAM10 over metalloproteases (MMPs), LT4 showing higher specificity for ADAM10 over ADAM17. We show that (i) HL lymph nodes (LN) and cultured HL cells express high levels of the mature active membrane form of ADAM10; (ii) ADAM10 is the major sheddase for the NKG2D-L in HL cells; (iii) the new LT4 and MN8 compounds strongly reduce the shedding of NKG2D-L by HL cell lines and enhance the binding of NKG2D receptor; (iv) of note, these new ADAM10 inhibitors increase the sensitivity of HL cell lines to NKG2D-dependent cell killing exerted by natural killer and γδ T cells. Overall, the biologic activity of LT4 and MN8 appears to be more potent than that of the commercial inhibitor GI254023X. PMID:27467923

  18. ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing.

    PubMed

    Zocchi, Maria Raffaella; Camodeca, Caterina; Nuti, Elisa; Rossello, Armando; Venè, Roberta; Tosetti, Francesca; Dapino, Irene; Costa, Delfina; Musso, Alessandra; Poggi, Alessandro

    2016-05-01

    Hodgkin lymphoma (HL) resistant to conventional therapies is increasing, making of interest the search for new schemes of treatment. Members of the "A Disintegrin And Metalloproteases" (ADAMs) family, mainly ADAM10 or ADAM17, have been proposed as therapeutic targets in solid tumors and some ADAMs inhibitors have been shown to exert antitumor effects. We have previously described an overexpression of ADAM10 in HL, together with increased release of NKG2D ligands (NKG2D-L) and reduced activation of effector T lymphocytes with anti-lymphoma capacity. Aim of the present work was to verify whether inhibition of ADAM10 in HL cells could restore the triggering of NKG2D-dependent anti-lymphoma T cell response. As no selective ADAM10 blockers have been reported so far, we synthesized the two hydroxamate compounds LT4 and MN8 with selectivity for ADAM10 over metalloproteases (MMPs), LT4 showing higher specificity for ADAM10 over ADAM17. We show that (i) HL lymph nodes (LN) and cultured HL cells express high levels of the mature active membrane form of ADAM10; (ii) ADAM10 is the major sheddase for the NKG2D-L in HL cells; (iii) the new LT4 and MN8 compounds strongly reduce the shedding of NKG2D-L by HL cell lines and enhance the binding of NKG2D receptor; (iv) of note, these new ADAM10 inhibitors increase the sensitivity of HL cell lines to NKG2D-dependent cell killing exerted by natural killer and γδ T cells. Overall, the biologic activity of LT4 and MN8 appears to be more potent than that of the commercial inhibitor GI254023X. PMID:27467923

  19. Repositioning of DHFR Inhibitors.

    PubMed

    Lele, Arundhati Chandrashekhar; Mishra, Deepak Amarnath; Kamil, Tengku Karmila; Bhakta, Sanjib; Degani, Mariam Sohel

    2016-01-01

    Development of new drugs is a time-consuming, hugely expensive and an uncertain endeavor. The pharmaceutical industry is looking for cost-effective alternatives with reduced risks of drug failure. Validated target machinery along with established inhibitors indicates usefulness in drug design, discovery and further development. Folate metabolism, found in both prokaryotes and eukaryotes, represents an essential druggable target for chemotherapy. Numerous enzymes in the cell replication cycle use folate either as a cofactor or as a substrate. DHFR, an enzyme of the folate biosynthesis pathway is an established chemotherapeutic target, initially explored for anti-cancer drug discovery. Diaminopteridines e.g. methotrexate and aminopterin, primarily used as anti-cancer agents, are folic acid analogues, first reported in late 1940's, used to produce temporary remission of acute leukaemia in children. However, due to the toxicity of these drugs, they could not be used for other therapeutic implications such as in the treatment of infectious diseases. Development of newer diaminopteridine derivatives has helped in repositioning their therapeutic usefulness. These analogues have now been proven as anti-parasitic, immuno-suppressants, anti-bacterial agents, to enlist a few therapeutic applications. Likewise, diaminopyrimidine, diaminoquinazoline and diaminodihydrotriazines are being explored for structural modifications by which they can be repurposed from their originally developed medicinal applicability and exploited for various other infectious disease conditions. In this review, we encompass the study of DHFR inhibitors potentially to be repurposed for different infectious disease case scenario and also highlight the novel anti-infective drug discovery benefits therein. PMID:26881719

  20. Osteocompatibility of Biofilm Inhibitors

    PubMed Central

    Rawson, Monica; Haggard, Warren; Jennings, Jessica A

    2014-01-01

    The demand for infection prevention therapies has led to the discovery of several biofilm inhibitors. These inhibiting signals are released by bacteria, fungi, or marine organisms to signal biofilm dispersal or disruption in Gram-positive, Gram-negative, and fungal microorganisms. The purpose of this study was to test the biocompatibility of five different naturally-produced biofilm chemical dispersal and inhibition signals with osteoblast-like cells: D-amino acids (D-AA), lysostaphin (LS), farnesol, cis-2-decenoic acid (C2DA), and desformyl flustrabromine (dFBr). In this preliminary study, compatibility of these anti-biofilm agents with differentiating osteoblasts was examined over a 21 days period at levels above and below concentrations active against bacterial biofilm. Anti-biofilm compounds listed above were serially diluted in osteogenic media and added to cultures of MC3T3 cells. Cell viability and cytotoxicity, after exposure to each anti-biofilm agent, were measured using a DNA assay. Differentiation characteristics of osteoblasts were determined qualitatively by observing staining of mineral deposits and quantitatively with an alkaline phosphatase assay. D-AA, LS, and C2DA were all biocompatible within the reported biofilm inhibitory concentration ranges and supported osteoblast differentiation. Farnesol and dFBr induced cytotoxic responses within the reported biofilm inhibitory concentration range and low doses of dFBr were found to inhibit osteoblast differentiation. At high concentrations, such as those that may be present after local delivery, many of these biofilm inhibitors can have effects on cellular viability and osteoblast function. Concentrations at which negative effects on osteoblasts occur should serve as upper limits for delivery to orthopaedic trauma sites and guide development of these potential therapeutics for orthopaedics. PMID:25505496

  1. Biological abatement of cellulase inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bio-abatement uses a fungus to metabolize and remove fermentation inhibitors. To determine whether bio-abatement could alleviate enzyme inhibitor effects observed in biomass liquors after pretreatment, corn stover at 10% (w/v) solids was pretreated with either dilute acid or liquid hot water. The ...

  2. Proteinaceous alpha-amylase inhibitors.

    PubMed

    Svensson, Birte; Fukuda, Kenji; Nielsen, Peter K; Bønsager, Birgit C

    2004-02-12

    Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous alpha-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological approaches have been outlined for exploitation of the inhibitory function. PMID:14871655

  3. Oxidized mucus proteinase inhibitor: a fairly potent neutrophil elastase inhibitor.

    PubMed Central

    Boudier, C; Bieth, J G

    1994-01-01

    N-chlorosuccinimide oxidizes one of the methionine residues of mucus proteinase inhibitor with a second-order rate constant of 1.5 M-1.s-1. Cyanogen bromide cleavage and NH2-terminal sequencing show that the modified residue is methionine-73, the P'1 component of the inhibitor's active centre. Oxidation of the inhibitor decreases its neutrophil elastase inhibitory capacity but does not fully abolish it. The kinetic parameters describing the elastase-oxidized inhibitor interaction are: association rate constant kass. = 2.6 x 10(5) M-1.s-1, dissociation rate constant kdiss. = 2.9 x 10(-3) s-1 and equilibrium dissociation constant Ki = 1.1 x 10(-8) M. Comparison with the native inhibitor indicates that oxidation decreases kass. by a factor of 18.8 and increases kdiss. by a factor of 6.4, and therefore leads to a 120-fold increase in Ki. Yet, the oxidized inhibitor may still act as a potent elastase inhibitor in the upper respiratory tract where its concentration is 500-fold higher than Ki, i.e. where the elastase inhibition is pseudo-irreversible. Experiments in vitro with fibrous human lung elastin, the most important natural substrate of elastase, support this view: 1.35 microM elastase is fully inhibited by 5-6 microM oxidized inhibitor whether the enzyme-inhibitor complex is formed in the presence or absence of elastin and whether elastase is pre-adsorbed on elastin or not. PMID:7945266

  4. Flavivirus Entry Inhibitors.

    PubMed

    Wang, Qing-Yin; Shi, Pei-Yong

    2015-09-11

    Many flaviviruses are significant human pathogens that are transmitted by mosquitoes and ticks. Although effective vaccines are available for yellow fever virus, Japanese encephalitic virus, and tick-borne encephalitis virus, these and other flaviviruses still cause thousands of human deaths and millions of illnesses each year. No clinically approved antiviral therapy is available for flavivirus treatment. To meet this unmet medical need, industry and academia have taken multiple approaches to develop antiflavivirus therapy, among which targeting viral entry has been actively pursued in the past decade. Here we review the current knowledge of flavivirus entry and its use for small molecule drug discovery. Inhibitors of two major steps of flaviviral entry have been reported: (i) molecules that block virus-receptor interaction; (ii) compounds that prevent conformational change of viral envelope protein during virus-host membrane fusion. We also discuss the advantages and disadvantages of targeting viral entry for treatment of flavivirus infection as compared to targeting viral replication proteins. PMID:27617926

  5. Quantification of SAHA-Dependent Changes in Histone Modifications Using Data-Independent Acquisition Mass Spectrometry

    PubMed Central

    Krautkramer, Kimberly A.; Reiter, Lukas; Denu, John M.; Dowell, James A.

    2015-01-01

    Histone post-translational modifications (PTMs) are important regulators of chromatin structure and gene expression. Quantitative analysis of histone PTMs by mass spectrometry remains extremely challenging due to the complex and combinatorial nature of histone PTMs. The most commonly used mass spectrometry-based method for high-throughput histone PTM analysis is data-dependent acquisition (DDA). However, stochastic precursor selection and dependence on MS1 ions for quantification impede comprehensive interrogation of histone PTM states using DDA methods. To overcome these limitations, we utilized a data-independent acquisition (DIA) workflow that provides superior run-to-run consistency and post-acquisition flexibility in comparison to DDA methods. In addition, we developed a novel DIA-based methodology to quantify isobaric, co-eluting histone peptides that lack unique MS2 transitions. Our method enabled deconvolution and quantification of histone PTMs that are otherwise refractory to quantitation, including the heavily acetylated tail of histone H4. Using this workflow, we investigated the effects of the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid) on the global histone PTM state of human breast cancer MCF7 cells. A total of 62 unique histone PTMs were quantified, revealing novel SAHA-induced changes in acetylation and methylation of histones H3 and H4. PMID:26120868

  6. Histone Deacetylase Inhibition Promotes Osteoblast Maturation by Altering the Histone H4 Epigenome and Reduces Akt Phosphorylation*

    PubMed Central

    Dudakovic, Amel; Evans, Jared M.; Li, Ying; Middha, Sumit; McGee-Lawrence, Meghan E.; van Wijnen, Andre J.; Westendorf, Jennifer J.

    2013-01-01

    Bone has remarkable regenerative capacity, but this ability diminishes during aging. Histone deacetylase inhibitors (HDIs) promote terminal osteoblast differentiation and extracellular matrix production in culture. The epigenetic events altered by HDIs in osteoblasts may hold clues for the development of new anabolic treatments for osteoporosis and other conditions of low bone mass. To assess how HDIs affect the epigenome of committed osteoblasts, MC3T3 cells were treated with suberoylanilide hydroxamic acid (SAHA) and subjected to microarray gene expression profiling and high-throughput ChIP-Seq analysis. As expected, SAHA induced differentiation and matrix calcification of osteoblasts in vitro. ChIP-Seq analysis revealed that SAHA increased histone H4 acetylation genome-wide and in differentially regulated genes, except for the 500 bp upstream of transcriptional start sites. Pathway analysis indicated that SAHA increased the expression of insulin signaling modulators, including Slc9a3r1. SAHA decreased phosphorylation of insulin receptor β, Akt, and the Akt substrate FoxO1, resulting in FoxO1 stabilization. Thus, SAHA induces genome-wide H4 acetylation and modulates the insulin/Akt/FoxO1 signaling axis, whereas it promotes terminal osteoblast differentiation in vitro. PMID:23940046

  7. Stimulating the RIG-I pathway to kill cells in the latent HIV reservoir following viral reactivation

    PubMed Central

    Li, Peilin; Kaiser, Philipp; Lampiris, Harry W.; Kim, Peggy; Yukl, Steven A.; Havlir, Diane V.; Greene, Warner C.; Wong, Joseph K.

    2016-01-01

    The persistence of latent HIV proviruses in long-lived CD4+ T cells despite antiretroviral therapy (ART)1–3 is a major obstacle to viral eradication4–6. Because current candidate latency-reversing agents (LRAs) induce HIV transcription but fail to clear these cellular reservoirs,7–8 new approaches for killing these reactivated latent HIV reservoir cells are urgently needed. HIV latency depends upon transcriptional quiescence of the integrated provirus and circumvention of immune defense mechanisms4–6,9. These defenses include cell-intrinsic innate responses that use pattern-recognition receptors (PRR) to detect viral pathogens and subsequently induce apoptosis of the infected cell10. Retinoic acid-inducible gene I (RIG-I) forms one class of pattern-recognition receptors that mediates apoptosis and elimination of infected cells after recognition of viral RNA11–14. Here we show that acitretin, an FDA-approved retinoic-acid derivative, enhances RIG-I signaling ex vivo, increases HIV transcription, and induces preferential apoptosis of HIV-infected cells. These effects are abrogated by RIG-I knockdown. Acitretin also decreases proviral DNA levels in CD4+ T cells from HIV-infected subjects on suppressive ART, an effect amplified by combination with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor. Pharmacologic enhancement of an innate cellular defense network could provide a means to eliminate reactivated cells in the latent HIV reservoir. PMID:27294875

  8. Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis.

    PubMed

    Hutt, Darren M; Herman, David; Rodrigues, Ana P C; Noel, Sabrina; Pilewski, Joseph M; Matteson, Jeanne; Hoch, Ben; Kellner, Wendy; Kelly, Jeffery W; Schmidt, Andre; Thomas, Philip J; Matsumura, Yoshihiro; Skach, William R; Gentzsch, Martina; Riordan, John R; Sorscher, Eric J; Okiyoneda, Tsukasa; Yates, John R; Lukacs, Gergely L; Frizzell, Raymond A; Manning, Gerard; Gottesfeld, Joel M; Balch, William E

    2010-01-01

    Chemical modulation of histone deacetylase (HDAC) activity by HDAC inhibitors (HDACi) is an increasingly important approach for modifying the etiology of human disease. Loss-of-function diseases arise as a consequence of protein misfolding and degradation, which lead to system failures. The DeltaF508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) results in the absence of the cell surface chloride channel and a loss of airway hydration, leading to the premature lung failure and reduced lifespan responsible for cystic fibrosis. We now show that the HDACi suberoylanilide hydroxamic acid (SAHA) restores surface channel activity in human primary airway epithelia to levels that are 28% of those of wild-type CFTR. Biological silencing of all known class I and II HDACs reveals that HDAC7 plays a central role in restoration of DeltaF508 function. We suggest that the tunable capacity of HDACs can be manipulated by chemical biology to counter the onset of cystic fibrosis and other human misfolding disorders. PMID:19966789

  9. Reduced Histone Deacetylase 7 Activity Restores Function to Misfolded CFTR in Cystic Fibrosis

    PubMed Central

    Hutt, Darren M.; Herman, David; Rodrigues, Ana P. C.; Noel, Sabrina; Pilewski, Joseph M.; Matteson, Jeanne; Hoch, Ben; Kellner, Wendy; Kelly, Jeffery W.; Schmidt, Andre; Thomas, Philip J.; Matsumura, Yoshihiro; Skach, William R.; Gentzsch, Martina; Riordan, John R.; Sorscher, Eric J.; Okiyoneda, Tsukasa; Lukacs, Gergely L.; Frizzell, Raymond A.; Manning, Gerard; Gottesfeld, Joel M.; Balch, William E.

    2010-01-01

    Chemical modulation of histone deacetylase (HDAC) activity by HDAC inhibitors (HDACi) is an increasingly important approach to modify the etiology of human disease. Loss-of-function diseases arise as a consequence of protein misfolding and degradation leading to system failures. The ΔF508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) results in the absence of the cell surface chloride channel and a loss of airway hydration, leading to premature lung failure and reduced lifespan responsible for cystic fibrosis (CF). We now show that the HDACi suberoylanilide hydroxamic acid (SAHA) restores surface channel activity in human primary airway epithelia to levels that are 28% of wild-type CFTR. Biological silencing of all known class I and II HDACs reveals that HDAC7 plays a central role in restoration of ΔF508 function. We suggest that the tunable capacity of HDACs can be manipulated by chemical biology to counter the onset of CF and other human misfolding disorders. PMID:19966789

  10. Enhancement of Radiation Response in Osteosarcoma and Rhabomyosarcoma Cell Lines by Histone Deacetylase Inhibition

    SciTech Connect

    Blattmann, Claudia; Oertel, Susanne; Ehemann, Volker

    2010-09-01

    Purpose: Histone deacetylase inhibitors (HDACIs) can enhance the sensitivity of cells to photon radiation treatment (XRT) by altering numerous molecular pathways. We investigated the effect of pan-HDACIs such as suberoylanilide hydroxamic acid (SAHA) on radiation response in two osteosarcoma (OS) and two rhabdomyosarcoma (RMS) cell lines. Methods and Materials: Clonogenic survival, cell cycle analysis, and apoptosis were examined in OS (KHOS-24OS, SAOS2) and RMS (A-204, RD) cell lines treated with HDACI and HDACI plus XRT, respectively. Protein expression was investigated via immunoblot analysis, and cell cycle analysis and measurement of apoptosis were performed using flow cytometry. Results: SAHA induced an inhibition of cell proliferation and clonogenic survival in OS and RMS cell lines and led to a significant radiosensitization of all tumor cell lines. Other HDACI such as M344 and valproate showed similar effects as investigated in one OS cell line. Furthermore, SAHA significantly increased radiation-induced apoptosis in the OS cell lines, whereas in the RMS cell lines radiation-induced apoptosis was insignificant with and without SAHA. In all investigated sarcoma cell lines, SAHA attenuated radiation-induced DNA repair protein expression (Rad51, Ku80). Conclusion: Our results show that HDACIs enhance radiation action in OS and RMS cell lines. Inhibition of DNA repair, as well as increased apoptosis induction after exposure to HDACIs, can be mechanisms of radiosensitization by HDACIs.

  11. Enhancement of tumor initiation and expression of KCNMA1, MORF4L2 and ASPM genes in the adenocarcinoma of lung xenograft after vorinostat treatment.

    PubMed

    Kuo, Wei-Ying; Wu, Chun-Yi; Hwu, Luen; Lee, Jhih-Shian; Tsai, Cheng-Han; Lin, Kang-Ping; Wang, Hsin-Ell; Chou, Teh-Ying; Tsai, Chun-Ming; Gelovani, Juri; Liu, Ren-Shyan

    2015-04-20

    Cancer stem cells (CSCs) are usually tolerant to chemotherapy and radiotherapy and associated with tumor relapse. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor (HDACI), is currently being used in clinical trials of lung cancer. However, SAHA facilitates the formation of induced pluripotent stem cells from somatic cells. We hypothesized that SAHA would mediate the CSCs properties and subsequently confer a more malignant phenotype in lung cancer. Transfected H1299 lung cancer cells, which stably expresses a triple fused reporter gene (DsRedm-Fluc-tTKsr39) under the control of CMV promoter was used to establish a xenograft mouse model. After the treatment of SAHA, H1299 cell line and tumor xenografts were sorted by fluorescence-activated cell sorting (FACS) based on aldehyde dehydrogenase (ALDH) activity. We found that SAHA could suppress the growth of xenografted H1299 tumors with decreased proportion of ALDHbr lung cancer cells indicating that SAHA may target CSCs. However, SAHA significantly enhanced the tumor initiating capacity and the expression of malignant genes such as KCNMA1, MORF4L2 and ASPM in the remaining living ALDHbr cells. These findings suggested that SAHA treatment created a more drug-resistant state in residual ALDHbr cells. The in vivo imaging technique may facilitate searching and characterization of CSCs. PMID:25796627

  12. Quantification of SAHA-Dependent Changes in Histone Modifications Using Data-Independent Acquisition Mass Spectrometry.

    PubMed

    Krautkramer, Kimberly A; Reiter, Lukas; Denu, John M; Dowell, James A

    2015-08-01

    Histone post-translational modifications (PTMs) are important regulators of chromatin structure and gene expression. Quantitative analysis of histone PTMs by mass spectrometry remains extremely challenging due to the complex and combinatorial nature of histone PTMs. The most commonly used mass spectrometry-based method for high-throughput histone PTM analysis is data-dependent acquisition (DDA). However, stochastic precursor selection and dependence on MS1 ions for quantification impede comprehensive interrogation of histone PTM states using DDA methods. To overcome these limitations, we utilized a data-independent acquisition (DIA) workflow that provides superior run-to-run consistency and postacquisition flexibility in comparison to DDA methods. In addition, we developed a novel DIA-based methodology to quantify isobaric, co-eluting histone peptides that lack unique MS2 transitions. Our method enabled deconvolution and quantification of histone PTMs that are otherwise refractory to quantitation, including the heavily acetylated tail of histone H4. Using this workflow, we investigated the effects of the histone deacetylase inhibitor SAHA (suberoylanilide hydroxamic acid) on the global histone PTM state of human breast cancer MCF7 cells. A total of 62 unique histone PTMs were quantified, revealing novel SAHA-induced changes in acetylation and methylation of histones H3 and H4. PMID:26120868

  13. Cladribine, gemcitabine, busulfan, and SAHA combination as a potential pretransplant conditioning regimen for lymphomas: A preclinical study.

    PubMed

    Ji, Jie; Valdez, Benigno C; Li, Yang; Liu, Yan; Teo, Esmeralda C; Nieto, Yago; Champlin, Richard E; Andersson, Borje S

    2016-06-01

    Hematopoietic stem cell transplantation (HSCT) is an effective treatment for patients with refractory lymphomas. Nucleoside analogs (NAs) and DNA alkylating agents are efficacious in treating hematologic malignancies. To design an efficacious and more economical pretransplant regimen for lymphoma patients, we analyzed the cytotoxicity of cladribine (Clad), gemcitabine (Gem), busulfan (Bu), and suberoylanilide hydroxamic acid (SAHA) in lymphoma cell lines. J45.01 and U937 lymphoma cell lines were exposed to drugs, alone or in combination, for 48 hours and analyzed with the MTT and annexin V assays, Western blotting, and flow cytometry. On the basis of the IC5-10 values of the drugs, the Clad+Gem+Bu combination inhibited the proliferation of both cell lines to ∼55%-60%. Addition of SAHA to this combination decreased proliferation further to ∼30%. Exposure to the Clad+Gem+Bu+SAHA combination activated the DNA damage response and ATM-CHK2 pathway; modified histones; decreased mitochondrial membrane potential, which caused leakage of apoptosis-inducing factors; and activated apoptosis. Pretreatment of cells with the pan-caspase inhibitor Z-VAD-FMK blocked the phosphorylation of histone 2AX and cleavage of PARP-1 and caspases. The Clad+Gem+Bu+SAHA combination provides synergistic cytotoxicity in lymphoma cell lines. Our results may be a basis for using this combination as a pretransplant conditioning regimen in a clinical trial for lymphoma patients undergoing hematopoietic stem cell transplantation, replacing the more expensive nucleoside analog clofarabine. PMID:26976752

  14. Early-life stress-induced visceral hypersensitivity and anxiety behavior is reversed by histone deacetylase inhibition.

    PubMed

    Moloney, R D; Stilling, R M; Dinan, T G; Cryan, J F

    2015-12-01

    Stressful life events, especially in childhood, can have detrimental effects on health and are associated with a host of psychiatric and gastrointestinal disorders including irritable bowel syndrome (IBS). Early-life stress can be recapitulated in animals using the maternal separation (MS) model, exhibiting many key phenotypic outcomes including visceral hypersensitivity and anxiety-like behaviors. The molecular mechanisms of MS are unclear, but recent studies point to a role for epigenetics. Histone acetylation is a key epigenetic mark that is altered in numerous stress-related disease states. Here, we investigated the role of histone acetylation in early-life stress-induced visceral hypersensitivity. Interestingly, increased number of pain behaviors and reduced threshold of visceral sensation were associated with alterations in histone acetylation in the lumbosacral spinal cord, a key region in visceral pain processing. Moreover, we also investigated whether the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), could reverse early-life stress-induced visceral hypersensitivity and stress-induced fecal pellet output in the MS model. Significantly, SAHA reversed both of these parameters. Taken together, these data describe, for the first time, a key role of histone acetylation in the pathophysiology of early-life stress-induced visceral hypersensitivity in a well-established model of IBS. These findings will inform new research aimed at the development of novel pharmaceutical approaches targeting the epigenetic machinery for novel anti-IBS drugs. PMID:26403543

  15. Radiosensitization by SAHA in Experimental Colorectal Carcinoma Models-In Vivo Effects and Relevance of Histone Acetylation Status

    SciTech Connect

    Folkvord, Sigurd; Ree, Anne Hansen; Furre, Torbjorn; Halvorsen, Thomas; Flatmark, Kjersti

    2009-06-01

    Purpose: Histone deacetylase inhibitors are being evaluated as antitumor agents in ongoing clinical trials, and promising preclinical results, combined with favorable toxicity profiles, have rendered the drugs as interesting candidates for combination with other treatment modalities, such as radiotherapy. The aim of the present study was to evaluate the radiosensitizing properties of suberoylanilide hydroxamic acid (SAHA) and the possible requirement of histone hyperacetylation at radiation exposure. Methods and materials: Radiosensitization by SAHA was assessed in a colorectal carcinoma cell line and in two colorectal xenograft models by analysis of clonogenic survival and tumor growth delay, respectively. Histone acetylation status at radiation exposure was evaluated by Western blot. Results: In vitro, radiosensitization was demonstrated when cells were preincubated with SAHA, and, in the xenografts, tumor growth was delayed when the mice were treated with fractionated radiation combined with daily SAHA injections compared with radiation alone. Surprisingly, the SAHA-dependent growth delay was still present when radiation was delivered at restored baseline acetylation levels compared with maximal histone hyperacetylation. Conclusion: SAHA was an effective radiosensitizer in experimental colorectal carcinoma models, suggesting that histone deacetylase inhibition might constitute a valuable supplement to current multimodal treatment strategies in rectal cancer. The presence of histone hyperacetylation at radiation was not required to obtain an increased radiation response, questioning the validity of using histone hyperacetylation as a molecular marker for radiosensitivity.

  16. Synthetic conversion of ACAT inhibitor to acetylcholinesterase inhibitor.

    PubMed

    Obata, R; Sunazuka, T; Otoguro, K; Tomoda, H; Harigaya, Y; Omura, S

    2000-06-19

    Natural product acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor pyripyropene A was synthetically converted to acetylcholinesterase (AChE) inhibitor via heterolitic cleavage of the 2-pyrone ring, followed by gamma-acylation/cyclization with several aroyl chlorides. The 4-pyridyl analogue selectively showed AChE inhibitory activity (IC50 7.9 microM) and no ACAT inhibitory activity IC50 = >1000 microM. PMID:10890154

  17. Synthesis of lysine methyltransferase inhibitors

    PubMed Central

    Hui, Chunngai; Ye, Tao

    2015-01-01

    Lysine methyltransferase which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery. PMID:26258118

  18. Targeting cancer with kinase inhibitors

    PubMed Central

    Gross, Stefan; Rahal, Rami; Stransky, Nicolas; Lengauer, Christoph; Hoeflich, Klaus P.

    2015-01-01

    Kinase inhibitors have played an increasingly prominent role in the treatment of cancer and other diseases. Currently, more than 25 oncology drugs that target kinases have been approved, and numerous additional therapeutics are in various stages of clinical evaluation. In this Review, we provide an in-depth analysis of activation mechanisms for kinases in cancer, highlight recent successes in drug discovery, and demonstrate the clinical impact of selective kinase inhibitors. We also describe the substantial progress that has been made in designing next-generation inhibitors to circumvent on-target resistance mechanisms, as well as ongoing strategies for combining kinase inhibitors in the clinic. Last, there are numerous prospects for the discovery of novel kinase targets, and we explore cancer immunotherapy as a new and promising research area for studying kinase biology. PMID:25932675

  19. Aromatase inhibitors for male infertility.

    PubMed

    Schlegel, Peter N

    2012-12-01

    Some men with severely defective sperm production commonly have excess aromatase activity, reflected by low serum testosterone and relatively elevated estradiol levels. Aromatase inhibitors can increase endogenous testosterone production and serum testosterone levels. Treatment of infertile males with the aromatase inhibitors testolactone, anastrazole, and letrozole has been associated with increased sperm production and return of sperm to the ejaculate in men with non-obstructive azoospermia. Use of the aromatase inhibitors anastrazole (1 mg/day) and letrozole (2.5 mg/day) represent off-label use of these agents for impaired spermatogenesis in men with excess aromatase activity (abnormal testosterone/estradiol [T/E] ratios). Side effects have rarely been reported. Randomized controlled trials are needed to define the magnitude of benefit of aromatase inhibitor treatment for infertile men. PMID:23103016

  20. Selective Inhibitors of Protein Methyltransferases

    PubMed Central

    2015-01-01

    Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs’ physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery. PMID:25406853

  1. [Cancer therapy by PARP inhibitors].

    PubMed

    Seimiya, Hiroyuki

    2015-08-01

    Poly(ADP-ribose) polymerases(PARP) synthesize the ADP-ribose polymers onto proteins and play a role in DNA repair. PARP inhibitors block the repair of single-strand breaks, which in turn gives rise to double-strand breaks during DNA replication. Thus, PARP inhibitors elicit synthetic lethality in cancer with BRCA1/2 loss-of-function mutations that hamper homologous recombination repair of double-strand breaks. Olaparib, the first-in-class PARP inhibitor, was approved for treatment of BRCA-mutated ovarian cancer in Europe and the United States in 2014. Other PARP inhibitors under clinical trials include rucaparib, niraparib, veliparib, and the "PARP-trapping" BMN-673. BRCA1/2 sequencing is an FDA-approved companion diagnostics, which predicts the cancer vulnerability to PARP inhibition. Together, synthetic lethal PARP inhibition is a novel promising strategy for cancer intervention even in cases without prominent driver oncogenes. PMID:26281686

  2. Lysine Acetylation in Sexual Stage Malaria Parasites Is a Target for Antimalarial Small Molecules

    PubMed Central

    Trenholme, Katharine; Marek, Linda; Duffy, Sandra; Pradel, Gabriele; Fisher, Gillian; Hansen, Finn K.; Skinner-Adams, Tina S.; Butterworth, Alice; Ngwa, Che Julius; Moecking, Jonas; Goodman, Christopher D.; McFadden, Geoffrey I.; Sumanadasa, Subathdrage D. M.; Fairlie, David P.; Avery, Vicky M.

    2014-01-01

    Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology. PMID:24733477

  3. [Pharmacology of bone resorption inhibitor].

    PubMed

    Menuki, Kunitaka; Sakai, Akinori

    2015-10-01

    Currently, bone resorption inhibitor is mainly used for osteoporosis. A number of these agents have been developed. These pharmacological action are various. Bisphosphonate inhibit functions of the osteoclasts by inducing apoptosis. On the one hand, RANK-ligand inhibitor and selective estrogen receptor modulator inhibit formation of osteoclasts. It is important to understand these pharmacological action for the selection of the appropriate medicine. PMID:26529923

  4. Adamantanyl-Histone Deacetylase Inhibitor H6CAHA Exhibits Favorable Pharmacokinetics and Augments Prostate Cancer Radiation Sensitivity

    SciTech Connect

    Konsoula, Zacharoula; Cao Hong; Velena, Alfredo; Jung, Mira

    2011-04-01

    Purpose: To evaluate pharmacological properties of H6CAHA, an adamantyl-hydroxamate histone deacetylase inhibitor, and to investigate its effect on prostate cancer cells following exposure to {gamma}-radiation in vitro and in vivo. Methods and Materials: H6CAHA was assessed for in vitro solubility, lipophilicity and growth inhibition, and in vivo plasma pharmacokinetics. The effect of H6CAHA on radiation clonogenic survival and DNA damage repair was evaluated in human prostate cancer (PC3, DU145, LNCaP) and nonmalignant control epithelial (RWPE1 and 267B1) cell lines. The effect of this agent on the growth of prostate cancer xenografts was also assessed in mice. Results: H6CAHA demonstrated good solubility and permeability profiles and preferentially inhibited the growth of prostate cancer cells over nonmalignant cells. Plasma pharmacokinetics revealed that the area under the curve of H6CAHA was 8.08 {+-} 0.91 {mu}M x h, and its half-life was 11.17 {+-} 0.87 h. Radiation clonogenic assays revealed that H6CAHA decreased the survival of prostate cancer cells at the dose that exerted limited effect on normal cells. Concomitantly, delayed DNA damage repair following combination treatment was evident in cancer cells, indicated by the prolonged appearance of {gamma}H2AX and Rad51 foci and suppression of DNA damage repair genes (ATM, BRCA1, and BRCA2). Combined modality of H6CAHA (daily intraperitoneal injections for 10 days) with {gamma}-radiation (10 x 2 Gy) completely blocked the growth of PC3 tumor xenografts (p < 0.001) over 60 days. Conclusion: These results support the potential therapeutic value of H6CAHA in combination with radiation and support the rationale for further clinical investigation.

  5. Corrosion inhibitor selection for wet pipelines

    SciTech Connect

    Buck, E.

    1995-12-31

    Selection of corrosion inhibitors for wet pipelines is based on laboratory testing and field confirmation. Both the use and selection of corrosion inhibitors are driven by economics. Economics of alternative corrosion protection methods is not treated in this paper, but the economics of proper inhibitor selection are. The key to successful inhibitor selection is careful analysis of pipeline flow conditions and experimental emulation of its corrosive environment. Transportation of inhibitor to the corroding interface must be explicitly considered in the emulation. Standard corrosion rate measurement methods are used to evaluate inhibitors. Inhibitor properties tabulated during evaluation form a core database for continuing quality control.

  6. [The synthesis of specific enzyme inhibitors].

    PubMed

    Iakovleva, G M

    1987-04-01

    The review deals with directed synthesis of specific enzyme inhibitors. They are classified within the framework of the mechanistic approach, namely, stable analogues of substrates, which form enzyme complexes mimicking the Michaelis complex or those which influence the chemical stages of enzyme catalysis; conformational inhibitors; substrate analogues participating in enzyme reactions and producing modified products; suicide inhibitors; stage inhibitors (inhibitors influencing certain stages of enzyme reaction); transition state analogues; multisubstrate analogues and collected substrates. Types of chemical modification used in synthesis of the specific inhibitors are discussed. Some possibilities of the quantity structure-activity relationship methods, computer modelling and molecular graphics in designing the optimal structure of inhibitors are mentioned. PMID:3300658

  7. Pharmacology of phosphodiesterase-5 inhibitors.

    PubMed

    Corbin, J D; Francis, S H

    2002-01-01

    The clinical properties (efficacy and safety profile) of a medicine are related not only to its mode of action, but also to its selectivity for its target (usually a receptor or enzyme) and are also influenced by its pharmacokinetic properties (absorption, distribution, metabolism and elimination). The growing number of phosphodiesterase inhibitors that are selective for phosphodiesterase-5 (PDE5) represent a promising new class of compounds that are useful for the treatment of erectile dysfunction and perhaps other disorders. Some of the basic pharmacodynamic and pharmacokinetic parameters that describe drug action are discussed with regard to the new PDE5 inhibitors. Central topics reviewed are the concentration that produces a given in vitro response, or potency (IC50), maximum plasma concentration (Cmax), time to Cmax (Tmax), half-life (t 1/2), area under the curve (AUC), bioavailability, onset and duration of action, and the balance to achieve optimum safety and efficacy. To illustrate these concepts, a group of inhibitors with varying selectivities and potencies for PDE5 (theophylline, IBMX, zaprinast, sildenafil, tadalafil and vardenafil) are discussed. Each drug has its own set of unique pharmacological characteristics based on its specific molecular structure, enzyme inhibition profile and pharmacokinetic properties. Each PDE5 inhibitor has a distinct selectivity that contributes to its safety profile. As with all new drugs, and especially those in a new class, careful evaluation will be necessary to ensure the optimal use of the PDE5 inhibitors. PMID:12166544

  8. Evolutionary families of peptidase inhibitors.

    PubMed Central

    Rawlings, Neil D; Tolle, Dominic P; Barrett, Alan J

    2004-01-01

    The proteins that inhibit peptidases are of great importance in medicine and biotechnology, but there has never been a comprehensive system of classification for them. Some of the terminology currently in use is potentially confusing. In the hope of facilitating the exchange, storage and retrieval of information about this important group of proteins, we now describe a system wherein the inhibitor units of the peptidase inhibitors are assigned to 48 families on the basis of similarities detectable at the level of amino acid sequence. Then, on the basis of three-dimensional structures, 31 of the families are assigned to 26 clans. A simple system of nomenclature is introduced for reference to each clan, family and inhibitor. We briefly discuss the specificities and mechanisms of the interactions of the inhibitors in the various families with their target enzymes. The system of families and clans of inhibitors described has been implemented in the MEROPS peptidase database (http://merops.sanger.ac.uk/), and this will provide a mechanism for updating it as new information becomes available. PMID:14705960

  9. Microbial inhibitors of cysteine proteases.

    PubMed

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted. PMID:27048482

  10. Functional characterization of Candida albicans Hos2 histone deacetylase

    PubMed Central

    Karthikeyan, G; Paul-Satyaseela, Maneesh; Dhatchana Moorthy, Nachiappan; Gopalaswamy, Radha; Narayanan, Shridhar

    2014-01-01

    Candida albicans is a mucosal commensal organism capable of causing superficial (oral and vaginal thrush) infections in immune normal hosts, but is a major pathogen causing systemic and mucosal infections in immunocompromised individuals. Azoles have been very effective anti-fungal agents and the mainstay in treating opportunistic mold and yeast infections. Azole resistant strains have emerged compromising the utility of this class of drugs. It has been shown that azole resistance can be reversed by the co-administration of a histone deacetylase (HDAC) inhibitor, suggesting that resistance is mediated by epigenetic mechanisms possibly involving Hos2, a fungal deacetylase. We report here the cloning and functional characterization of  HOS2 (High Osmolarity  Sensitive) , a gene coding for fungal histone deacetylase from  C. albicans. Inhibition studies showed that Hos2 is susceptible to pan inhibitors such as trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), but is not inhibited by class I inhibitors such as MS-275. This  in  vitro enzymatic assay, which is amenable to high throughput could be used for screening potent fungal Hos2 inhibitors that could be a potential anti-fungal adjuvant. Purified Hos2 protein consistently deacetylated tubulins, rather than histones from TSA-treated cells. Hos2 has been reported to be a putative NAD+ dependent histone deacetylase, a feature of sirtuins. We assayed for sirtuin activation with resveratrol and purified Hos2 protein and did not find any sirtuin activity. PMID:25110576

  11. Electrochemical studies of corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  12. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  13. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  14. Corrosion inhibitors from expired drugs.

    PubMed

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%. PMID:22561212

  15. Positron emitter labeled enzyme inhibitors

    SciTech Connect

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-04-03

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  16. Monoglyceride lipase: Structure and inhibitors.

    PubMed

    Scalvini, Laura; Piomelli, Daniele; Mor, Marco

    2016-05-01

    Monoglyceride lipase (MGL), the main enzyme responsible for the hydrolytic deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), is an intracellular serine hydrolase that plays critical roles in many physiological and pathological processes, such as pain, inflammation, neuroprotection and cancer. The crystal structures of MGL that are currently available provide valuable information about how this enzyme might function and interact with site-directed small-molecule inhibitors. On the other hand, its conformational equilibria and the contribution of regulatory cysteine residues present within the substrate-binding pocket or on protein surface remain open issues. Several classes of MGL inhibitors have been developed, from early reversible ones, such as URB602 and pristimerin, to carbamoylating agents that react with the catalytic serine, such as JZL184 and more recent O-hexafluoroisopropyl carbamates. Other inhibitors that modulate MGL activity by interacting with conserved regulatory cysteines act through mechanisms that deserve to be more thoroughly investigated. PMID:26216043

  17. STAT inhibitors for cancer therapy

    PubMed Central

    2013-01-01

    Signal Transducer and Activator of Transcription (STAT) proteins are a family of cytoplasmic transcription factors consisting of 7 members, STAT1 to STAT6, including STAT5a and STAT5b. STAT proteins are thought to be ideal targets for anti-cancer therapy since cancer cells are more dependent on the STAT activity than their normal counterparts. Inhibitors targeting STAT3 and STAT5 have been developed. These included peptidomimetics, small molecule inhibitors and oligonucleotides. This review summarized advances in preclinical and clinical development of these compounds. PMID:24308725

  18. SGLT2 inhibitors: new reports.

    PubMed

    2015-10-12

    A significant decrease in cardiovascular mortality has been reported with use of the SGLT2 inhibitor empagliflozin (Jardiance) to treat patients with type 2 diabetes who have established cardiovascular disease. The mechanism of this reduction is unclear, and these results may not apply to patients with type 2 diabetes and less advanced cardiovascular disease. Whether the increase in fractures reported with canagliflozin (Invokana) could also occur with empagliflozin remains to be established. All SGLT2 inhibitors are only modestly effective for treatment of diabetes. PMID:26445203

  19. Biocatalysts with enhanced inhibitor tolerance

    DOEpatents

    Yang, Shihui; Linger, Jeffrey; Franden, Mary Ann; Pienkos, Philip T.; Zhang, Min

    2015-12-08

    Disclosed herein are biocatalysts for the production of biofuels, including microorganisms that contain genetic modifications conferring tolerance to growth and fermentation inhibitors found in many cellulosic feedstocks. Methods of converting cellulose-containing materials to fuels and chemicals, as well as methods of fermenting sugars to fuels and chemicals, using these biocatalysts are also disclosed.

  20. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

    PubMed Central

    Čolović, Mirjana B; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M

    2013-01-01

    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer’s disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases. PMID:24179466

  1. Less-toxic corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1981-01-01

    Combinations of borates, nitrates, phosphates, silicates, and sodium MBT protect aluminum from corrosion in fresh water. Most effective combinations contained sodium phosphate and were alkaline. These inhibitors replace toxic chromates which are subject to governmental restrictions, but must be used in larger quantities. Experimental exposure times varied from 1 to 14 months depending upon nature of submersion solution.

  2. Evaluation of 6-([18F] fluoroacetamido)-1-hexanoic-anilide (18F-FAHA) as imaging probe in tumor xenograft mice model

    NASA Astrophysics Data System (ADS)

    Li, Fiona; Cho, Sung Ju; Yu, Lihai; Hudson, Robert H. E.; Luyt, Leonard G.; Pin, Christopher L.; Kovacs, Michael S.; Koropatnick, James; Lee, Ting-Yim

    2016-03-01

    Alteration in genetic expression is as important as gene mutation in cancer development and proliferation. Epigenetic changes affect gene expression without altering the DNA sequence. Histone deacetylase (HDAC), an enzyme facilitating histone remodelling, can lead to silencing of tumor suppressor genes making HDAC inhibitors viable anticancer drugs against tumors with increased activity of the enzyme. In this study we evaluated 18F-fluroacetamido-1-hexanoicanilide (18F-FAHA), an artificial HDAC substrate, as imaging probe of HDAC activity of human tumor xenografts in immunocompromised host mice. Human breast and melanoma cell lines, MDA-MB-468 and MDA-MB-435 respectively, known to overexpress HDAC activity were xenografted into immunocompromised mice and HDAC activity was imaged using 18F-FAHA. The melanoma group was treated with saline, SAHA (suberoylanilide hydroxamic acid, an approved anticancer HDAC inhibitor) in DMSO, or DMSO as positive control. Tracer kinetic modelling and SUV were used to estimate HDAC activity from dynamic PET data. Both breast tumor and melanoma group showed great variability in binding rate constant (BRC) of 18F-FAHA suggesting highly variable inter- and intra-tumoral HDAC activity. For the SAHA treated melanoma group, HDAC activity, as monitored by BRC of 18F-FAHA, decreased more than the two (positive and negative) control groups but not tumor growth. Our preliminary study showed that noninvasive PET imaging with 18F-FAHA has the potential to identify patients for whom treatment with HDAC inhibitors are appropriate, to assess the effectiveness of that treatment as an early marker of target reduction, and also eliminate the need for invasive tissue biopsy to individualize treatment.

  3. Histone deacetylase enzymes as drug targets for the control of the sheep blowfly, Lucilia cuprina.

    PubMed

    Kotze, Andrew C; Hines, Barney M; Bagnall, Neil H; Anstead, Clare A; Gupta, Praveer; Reid, Robert C; Ruffell, Angela P; Fairlie, David P

    2015-12-01

    The Australian sheep blowfly, Lucilia cuprina, is an ecto-parasite that causes significant economic losses in the sheep industry. Emerging resistance to insecticides used to protect sheep from this parasite is driving the search for new drugs that act via different mechanisms. Inhibitors of histone deacetylases (HDACs), enzymes essential for regulating eukaryotic gene transcription, are prospective new insecticides based on their capacity to kill human parasites. The blowfly genome was found here to contain five HDAC genes corresponding to human HDACs 1, 3, 4, 6 and 11. The catalytic domains of blowfly HDACs 1 and 3 have high sequence identity with corresponding human and other Dipteran insect HDACs (Musca domestica and Drosophila melanogaster). On the other hand, HDACs 4, 6 and 11 from the blowfly and the other Dipteran species showed up to 53% difference in catalytic domain amino acids from corresponding human sequences, suggesting the possibility of developing HDAC inhibitors specific for insects as desired for a commercial insecticide. Differences in transcription patterns for different blowfly HDACs through the life cycle, and between the sexes of adult flies, suggest different functions in regulating gene transcription within this organism and possibly different vulnerabilities. Data that supports HDACs as possible new insecticide targets is the finding that trichostatin A and suberoylanilide hydroxamic acid retarded growth of early instar blowfly larvae in vitro, and reduced the pupation rate. Trichostatin A was 8-fold less potent than the commercial insecticide cyromazine in inhibiting larval growth. Our results support further development of inhibitors of blowfly HDACs with selectivity over human and other mammalian HDACs as a new class of prospective insecticides for sheep blowfly. PMID:27120067

  4. Histone deacetylase enzymes as drug targets for the control of the sheep blowfly, Lucilia cuprina

    PubMed Central

    Kotze, Andrew C.; Hines, Barney M.; Bagnall, Neil H.; Anstead, Clare A.; Gupta, Praveer; Reid, Robert C.; Ruffell, Angela P.; Fairlie, David P.

    2015-01-01

    The Australian sheep blowfly, Lucilia cuprina, is an ecto-parasite that causes significant economic losses in the sheep industry. Emerging resistance to insecticides used to protect sheep from this parasite is driving the search for new drugs that act via different mechanisms. Inhibitors of histone deacetylases (HDACs), enzymes essential for regulating eukaryotic gene transcription, are prospective new insecticides based on their capacity to kill human parasites. The blowfly genome was found here to contain five HDAC genes corresponding to human HDACs 1, 3, 4, 6 and 11. The catalytic domains of blowfly HDACs 1 and 3 have high sequence identity with corresponding human and other Dipteran insect HDACs (Musca domestica and Drosophila melanogaster). On the other hand, HDACs 4, 6 and 11 from the blowfly and the other Dipteran species showed up to 53% difference in catalytic domain amino acids from corresponding human sequences, suggesting the possibility of developing HDAC inhibitors specific for insects as desired for a commercial insecticide. Differences in transcription patterns for different blowfly HDACs through the life cycle, and between the sexes of adult flies, suggest different functions in regulating gene transcription within this organism and possibly different vulnerabilities. Data that supports HDACs as possible new insecticide targets is the finding that trichostatin A and suberoylanilide hydroxamic acid retarded growth of early instar blowfly larvae in vitro, and reduced the pupation rate. Trichostatin A was 8-fold less potent than the commercial insecticide cyromazine in inhibiting larval growth. Our results support further development of inhibitors of blowfly HDACs with selectivity over human and other mammalian HDACs as a new class of prospective insecticides for sheep blowfly. PMID:27120067

  5. Bortezomib and SAHA synergistically induce ROS-driven caspase-dependent apoptosis of nasopharyngeal carcinoma and block replication of Epstein-Barr virus.

    PubMed

    Hui, Kwai Fung; Lam, Benjamin H W; Ho, Dona N; Tsao, Sai Wah; Chiang, Alan K S

    2013-05-01

    A novel drug combination of a proteasome inhibitor, bortezomib, and a histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), was tested in nasopharyngeal carcinoma (NPC), both in vitro and in vivo. Dose-response of different concentrations of bortezomib and SAHA on inhibition of cell proliferation of NPC was determined. Mechanisms of apoptosis and effects on lytic cycle activation of Epstein-Barr virus (EBV) were investigated. Combination of bortezomib and SAHA (bortezomib/SAHA) synergistically induced killing of a panel of NPC cell lines. Pronounced increase in sub-G1, Annexin V-positive, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cell populations were detected after treatment with bortezomib/SAHA when compared with either drug alone. Concomitantly, markedly augmented proteolytic cleavage of PARP, caspase-3, -7, -8, and -9, reactive oxygen species (ROS) generation, and caspase-8-dependent histone acetylation were observed. ROS scavenger, N-acetyl cysteine, diminished the apoptotic effects of bortezomib/SAHA, whereas caspase inhibitor Z-VAD-FMK significantly suppressed the apoptosis without decreasing the generation of ROS. Bortezomib inhibited SAHA's induction of EBV replication and abrogated production of infectious viral particles in NPC cells. Furthermore, bortezomib/SAHA potently induced apoptosis and suppressed the growth of NPC xenografts in nude mice. In conclusion, the novel drug combination of bortezomib and SAHA is highly synergistic in the killing of NPC cells in vitro and in vivo. The major mechanism of cell death is ROS-driven caspase-dependent apoptosis. Bortezomib antagonizes SAHA's activation of EBV lytic cycle in NPC cells. This study provides a strong basis for clinical testing of the combination drug regimen in patients with NPC. PMID:23475956

  6. The combination of irreversible EGFR TKIs and SAHA induces apoptosis and autophagy-mediated cell death to overcome acquired resistance in EGFR T790M-mutated lung cancer.

    PubMed

    Lee, Tae-Gul; Jeong, Eun-Hui; Kim, Seo Yun; Kim, Hye-Ryoun; Kim, Cheol Hyeon

    2015-06-01

    To overcome T790M-mediated acquired resistance of lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs), second generation TKIs such as BIBW2992 (afatinib) and third generation TKIs including WZ4002 have been developed. However, clinical data on their efficacy in treating T790M mutant tumors are lacking. Histone deacetylase (HDAC) inhibitors have been reported to arrest cell growth and to lead to differentiation and apoptosis of various cancer cells, both in vitro and in vivo. In the present study, we assessed whether the combination of suberoylanilide hydroxamic acid (SAHA, vorinostat), a potent HDAC inhibitor, and BIBW2992 or WZ4002 could overcome EGFR TKI resistance associated with T790M mutation in lung cancer cells. While treatment with BIBW2992 or WZ4002 alone slightly reduced the viability of PC-9G and H1975 cells, which possess T790M mutation, combining them with SAHA resulted in significantly decreased cell viability through the activation of the apoptotic pathway. This combination also enhanced autophagy occurrence and inhibition of autophagy significantly reduced the apoptosis induced by the combination treatment, showing that autophagy is required for the enhanced apoptosis. Caspase-independent autophagic cell death was also induced by the combination treatment with SAHA and either BIBW2992 or WZ4002. Finally, the combined treatment with SAHA and either BIBW2992 or WZ4002 showed an enhanced anti-tumor effect on xenografts of H1975 cells in vivo. In conclusion, the combination of new generation EGFR TKIs and SAHA may be a new strategy to overcome the acquired resistance to EGFR TKIs in T790M mutant lung cancer. PMID:25382705

  7. Aromatase Inhibitors and Other Compounds for Lowering Breast Cancer Risk

    MedlinePlus

    ... References Aromatase inhibitors and other compounds for lowering breast cancer risk Aromatase inhibitors (drugs that lower estrogen levels) ... day. Can aromatase inhibitors lower the risk of breast cancer? Aromatase inhibitors are used mainly to treat hormone ...

  8. Salicylanilide Inhibitors of Toxoplasma gondii

    PubMed Central

    Fomovska, Alina; Wood, Richard D.; Mui, Ernest; Dubey, Jitenter P.; Ferriera, Leandra R.; Hickman, Mark R.; Lee, Patricia J.; Leed, Susan E.; Auschwitz, Jennifer M.; Welsh, William J.; Sommerville, Caroline; Woods, Stuart; Roberts, Craig; McLeod, Rima

    2012-01-01

    Toxoplasma gondii(T. gondii) is an apicomplexan parasite that can cause eye disease, brain disease, and death, especially in congenitally infected and immune-compromised people. Novel medicines effective against both active and latent forms of the parasite are greatly needed. The current study focused on the discovery of such medicines by exploring a family of potential inhibitors whose anti-apicomplexan activity has not been previously reported. Initial screening efforts revealed that niclosamide, a drug approved for anthelmintic use, possessed promising activity in vitro against T. gondii. This observation inspired the evaluation of the activity of a series of salicylanilides and derivatives. Several inhibitors with activities in the nanomolar range with no appreciable in vitro toxicity to human cells were identified. An initial structure-activity relationship was explored. Four compounds were selected for evaluation in an in vivo model of infection, and two derivatives with potentially enhanced pharmacological parameters demonstrated the best activity profiles. PMID:22970937

  9. Macrocyclic compounds as corrosion inhibitors

    SciTech Connect

    Quraishi, M.A.; Rawat, J.; Ajmal, M.

    1998-12-01

    The influence of three macrocyclic compounds on corrosion of mild steel (MS) in hydrochloric acid (HCl) was investigated using weight loss, potentiodynamic polarization, alternating current (AC) impedance, and hydrogen permeation techniques. All the investigated compounds showed significant efficiencies and reduced permeation of hydrogen through MS in HCl. Inhibition efficiency (IE) varied with the nature and concentrations of the inhibitors, temperature, and concentrations of the acid solutions. The addition of iodide ions (I{sup {minus}}) increased IE of all the tested compounds as a result of the synergistic effect. Potentiodynamic polarization results revealed that macrocyclic compounds acted as mixed inhibitors in 1 M HCl to 5 M HCl. Adsorption on the metal surface obeyed Temkin`s adsorption isotherm. Auger electron spectroscopy (AES) of the polished MS surface, exposed with tetraphenyldithia-octaazacyclotetradeca-hexaene (PTAT) proved adsorption of this compound on the surface through nitrogen and sulfur atoms.

  10. [Proteasome inhibitors in cancer therapy].

    PubMed

    Romaniuk, Wioletta; Ołdziej, Agnieszka Ewa; Zińczuk, Justyna; Kłoczko, Janusz

    2015-01-01

    Proteasomes are multisubunit enzyme complexes. They contain three enzymatic active sites which are termed chymotrypsin-like, trypsin-like, and caspase-like. The elementary function of the proteasomes is degradation of damaged proteins. Proteasome inhibition leads to accumulation of damaged protein, which leads to caspase activation and cell death. This relationship is used in cancer therapy. Bortezomib is the first proteasome inhibitor approved by the US Food and Drug Administration for the treatment of relapsed/refractory multiple myeloma. Carfilzomib belongs to the second generation of drugs, which was approved by the US FDA in 2012. Currently in the study phase there are four new inhibitors: ixazomib (MLN9780/MLN2238), delanzomib (CEP-18770), oprozomib (ONX0912/PR-047) and marizomib (NPI-0052). PMID:27259216

  11. Thioredoxin Reductase and its Inhibitors

    PubMed Central

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  12. Carbonic anhydrase inhibitors drug design.

    PubMed

    McKenna, Robert; Supuran, Claudiu T

    2014-01-01

    Inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the field of antiglaucoma, anticonvulsant, antiobesity, and anticancer agents but is also emerging for designing anti-infectives (antifungal and antibacterial agents) with a novel mechanism of action. As a consequence, the drug design of CA inhibitors (CAIs) is a very dynamic field. Sulfonamides and their isosteres (sulfamates/sulfamides) constitute the main class of CAIs which bind to the metal ion in the enzyme active site. Recently the dithiocarbamates, possessing a similar mechanism of action, were reported as a new class of inhibitors. Other families of CAIs possess a distinct mechanism of action: phenols, polyamines, some carboxylates, and sulfocoumarins anchor to the zinc-coordinated water molecule. Coumarins and five/six-membered lactones are prodrug inhibitors, binding in hydrolyzed form at the entrance of the active site cavity. Novel drug design strategies have been reported principally based on the tail approach for obtaining all these types of CAIs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Sugar-based tails as well as click chemistry were the most fruitful developments of the tail approach. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the dithiocarbamate, phenol and carboxylate types have also been reported. PMID:24146385

  13. Bromodomains and their pharmacological inhibitors.

    PubMed

    Gallenkamp, Daniel; Gelato, Kathy A; Haendler, Bernard; Weinmann, Hilmar

    2014-03-01

    Over 60 bromodomains belonging to proteins with very different functions have been identified in humans. Several of them interact with acetylated lysine residues, leading to the recruitment and stabilization of protein complexes. The bromodomain and extra-terminal domain (BET) proteins contain tandem bromodomains which bind to acetylated histones and are thereby implicated in a number of DNA-centered processes, including the regulation of gene expression. The recent identification of inhibitors of BET and non-BET bromodomains is one of the few examples in which effective blockade of a protein-protein interaction can be achieved with a small molecule. This has led to major strides in the understanding of the function of bromodomain-containing proteins and their involvement in diseases such as cancer and inflammation. Indeed, BET bromodomain inhibitors are now being clinically evaluated for the treatment of hematological tumors and have also been tested in clinical trials for the relatively rare BRD-NUT midline carcinoma. This review gives an overview of the newest developments in the field, with a focus on the biology of selected bromodomain proteins on the one hand, and on reported pharmacological inhibitors on the other, including recent examples from the patent literature. PMID:24497428

  14. Enhancing CHK1 inhibitor lethality in glioblastoma.

    PubMed

    Tang, Yong; Dai, Yun; Grant, Steven; Dent, Paul

    2012-04-01

    The present studies were initiated to determine whether inhibitors of MEK1/2 or SRC signaling, respectively, enhance CHK1 inhibitor lethality in primary human glioblastoma cells. Multiple MEK1/2 inhibitors (CI-1040 (PD184352); AZD6244 (ARRY-142886)) interacted with multiple CHK1 inhibitors (UCN-01, AZD7762) to kill multiple primary human glioma cell isolates that have a diverse set of genetic alterations typically found in the disease. Inhibition of SRC family proteins also enhanced CHK1 inhibitor lethality. Combined treatment of glioma cells with (MEK1/2 + CHK1) inhibitors enhanced radiosensitivity. Combined (MEK1/2 + CHK1) inhibitor treatment led to dephosphorylation of ERK1/2 and S6 ribosomal protein, whereas the phosphorylation of JNK and p38 was increased. MEK1/2 + CHK1 inhibitor-stimulated cell death was associated with the cleavage of pro-caspases 3 and 7 as well as the caspase substrate (PARP). We also observed activation of pro-apoptotic BCL-2 effector proteins BAK and BAX and reduced levels of pro-survival BCL-2 family protein BCL-XL. Overexpression of BCL-XL alleviated but did not completely abolish MEK1/2 + CHK1 inhibitor cytotoxicity in GBM cells. These findings argue that multiple inhibitors of the SRC-MEK pathway have the potential to interact with multiple CHK1 inhibitors to kill glioma cells. PMID:22313687

  15. The burden of inhibitors in haemophilia patients.

    PubMed

    Walsh, Christopher E; Jiménez-Yuste, Víctor; Auerswald, Guenter; Grancha, Salvador

    2016-08-31

    The burden of disease in haemophilia patients has wide ranging implications for the family and to society. There is evidence that having a current inhibitor increases the risk of morbidity and mortality. Morbidity is increased by the inability to treat adequately and its consequent disabilities, which then equates to a poor quality of life compared with non-inhibitor patients. The societal cost of care, or `burden of inhibitors', increases with the ongoing presence of an inhibitor. Therefore, it is clear that successful eradication of inhibitors by immune tolerance induction (ITI) is the single most important milestone one can achieve in an inhibitor patient. The type of factor VIII (FVIII) product used in ITI regimens varies worldwide. Despite ongoing debate, there is in vitro and retrospective clinical evidence to support the use of plasma-derived VWF-containing FVIII concentrates in ITI regimens in order to achieve early and high inhibitor eradication success rates. PMID:27528280

  16. RuvBL2 Is Involved in Histone Deacetylase Inhibitor PCI-24781-Induced Cell Death in SK-N-DZ Neuroblastoma Cells

    PubMed Central

    Zhan, Qinglei; Tsai, Sauna; Lu, Yonghai; Wang, Chunmei; Kwan, Yiuwa; Ngai, Saiming

    2013-01-01

    Neuroblastoma is the second most common solid tumor diagnosed during infancy. The survival rate among children with high-risk neuroblastoma is less than 40%, highlighting the urgent needs for new treatment strategies. PCI-24781 is a novel hydroxamic acid-based histone deacetylase (HDAC) inhibitor that has high efficacy and safety for cancer treatment. However, the underlying mechanisms of PCI-24781 are not clearly elucidated in neuroblastoma cells. In the present study, we demonstrated that PCI-24781 treatment significantly inhibited tumor growth at very low doses in neuroblastoma cells SK-N-DZ, not in normal cell line HS-68. However, PCI-24781 caused the accumulation of acetylated histone H3 both in SK-N-DZ and HS-68 cell line. Treatment of SK-N-DZ with PCI-24781 also induced cell cycle arrest in G2/M phase and activated apoptosis signaling pathways via the up-regulation of DR4, p21, p53 and caspase 3. Further proteomic analysis revealed differential protein expression profiles between non-treated and PCI-24781 treated SK-N-DZ cells. Totally 42 differentially expressed proteins were identified by MALDI-TOF MS system. Western blotting confirmed the expression level of five candidate proteins including prohibitin, hHR23a, RuvBL2, TRAP1 and PDCD6IP. Selective knockdown of RuvBL2 rescued cells from PCI-24781-induced cell death, implying that RuvBL2 might play an important role in anti-tumor activity of PCI-24781 in SK-N-DZ cells. The present results provide a new insight into the potential mechanism of PCI-24781 in SK-N-DZ cell line. PMID:23977108

  17. Xylanase inhibitors bind to nonstarch polysaccharides.

    PubMed

    Fierens, Ellen; Gebruers, Kurt; Courtin, Christophe M; Delcour, Jan A

    2008-01-23

    This study is an in-depth investigation of the interaction between polysaccharides and the proteinaceous xylanase inhibitors, Triticum aestivum xylanase inhibitor (TAXI), xylanase inhibitor protein (XIP), and thaumatin-like xylanase inhibitor (TLXI). The binding affinities of all three known types of xylanase inhibitors from wheat are studied by measuring the residual xylanase inhibition activity after incubation of the inhibitors in the presence of different polysaccharides, such as beta-glucans and (arabino)xylans. The binding affinities of all three xylanase inhibitors for (arabino)xylans increased with a decreasing arabinose/xylose ratio (A/X ratio). This phenomenon was observed both with water-extractable and water-unextractable (arabino)xylans. The inhibitors also interacted with different soluble and insoluble beta-glucans. None of the inhibitors tested had the ability to hydrolyze the polysaccharides investigated. The present findings contribute to the unraveling of the function of xylanase inhibitors in nature and to the prediction of the effect of added xylanases in cereal-based biotechnological processes, such as bread making and gluten-starch separation. PMID:18092758

  18. Biomarkers associated with checkpoint inhibitors.

    PubMed

    Manson, G; Norwood, J; Marabelle, A; Kohrt, H; Houot, R

    2016-07-01

    Checkpoint inhibitors (CPI), namely anti-CTLA4 and anti-PD1/PD-L1 antibodies, demonstrated efficacy across multiple types of cancer. However, only subgroups of patients respond to these therapies. Additionally, CPI can induce severe immune-related adverse events (irAE). Biomarkers that predict efficacy and toxicity may help define the patients who may benefit the most from these costly and potentially toxic therapies. In this study, we review the main biomarkers that have been associated with the efficacy (pharmacodynamics and clinical benefit) and the toxicity (irAE) of CPIs in patients. PMID:27122549

  19. Monoamine Oxidase Inhibitors: Clinical Review

    PubMed Central

    Remick, Ronald A.; Froese, Colleen

    1990-01-01

    Monoamine oxidase inhibitors (MAOIs) are effective antidepressant agents. They are increasingly and effectively used in a number of other psychiatric and non-psychiatric medical syndromes. Their potential for serious toxicity (i.e., hypertensive reaction) is far less than original reports suggest, and newer reversible substrate-specific MAOIs may offer even less toxicity. The author reviews the pharmacology, mechanism of action, clinical indications, and dosing strategies of MAOIs. The common MAOI side-effects (hypotension, weight gain, sexual dysfunction, insomnia, daytime sedation, myoclonus, and hypertensive episodes) are described and management techniques suggested. Recent clinical developments involving MAOIs are outlined. PMID:21233984

  20. Oligopeptide cyclophilin inhibitors: a reassessment.

    PubMed

    Schumann, Michael; Jahreis, Günther; Kahlert, Viktoria; Lücke, Christian; Fischer, Gunter

    2011-11-01

    Potent cyclophilin A (CypA) inhibitors such as non-immunosuppressive cyclosporin A (CsA) derivatives have been already used in clinical trials in patients with viral infections. CypA is a peptidyl prolyl cis/trans isomerase (PPIase) that catalyzes slow prolyl bond cis/trans interconversions of the backbone of substrate peptides and proteins. In this study we investigate whether the notoriously low affinity inhibitory interaction of linear proline-containing peptides with the active site of CypA can be increased through a combination of a high cis/trans ratio and a negatively charged C-terminus as has been recently reported for Trp-Gly-Pro. Surprisingly, isothermal titration calorimetry did not reveal formation of an inhibitory CypA/Trp-Gly-Pro complex previously described within a complex stability range similar to CsA, a nanomolar CypA inhibitor. Moreover, despite of cis content of 41% at pH 7.5 Trp-Gly-Pro cannot inhibit CypA-catalyzed standard substrate isomerization up to high micromolar concentrations. However, in the context of the CsA framework a net charge of -7 clustered at the amino acid side chain of position 1 resulted in slightly improved CypA inhibition. PMID:21963115

  1. New proteasome inhibitors in myeloma.

    PubMed

    Lawasut, Panisinee; Chauhan, Dharminder; Laubach, Jacob; Hayes, Catriona; Fabre, Claire; Maglio, Michelle; Mitsiades, Constantine; Hideshima, Teru; Anderson, Kenneth C; Richardson, Paul G

    2012-12-01

    Proteasome inhibition has a validated role in cancer therapy since the successful introduction of bortezomib for the treatment of multiple myeloma (MM) and mantle cell lymphoma, leading to the development of second-generation proteasome inhibitors (PI) for MM patients in whom currently approved therapies have failed. Five PIs have reached clinical evaluation, with the goals of improving efficacy and limiting toxicity, including peripheral neuropathy (PN). Carfilzomib, an epoxyketone with specific chymothrypsin-like activity, acts as an irreversible inhibitor and was recently FDA approved for the response benefit seen in relapsed and refractory MM patients previously treated with bortezomib, thalidomide and lenalidomide. ONX-0912 is now under evaluation as an oral form with similar activity. The boronate peptides MLN9708 and CEP-18770 are orally bioactive bortezomib analogs with prolonged activity and greater tissue penetration. NPI-0052 (marizomib) is a unique, beta-lactone non-selective PI that has been shown to potently overcome bortezomib resistance in vitro. All of these second-generation PIs demonstrate encouraging anti-MM activity and appear to reduce the incidence of PN, with clinical trials ongoing. PMID:23065395

  2. Bisindole-PBD regulates breast cancer cell proliferation via SIRT-p53 axis.

    PubMed

    Sarma, Pranjal; Bag, Indira; Ramaiah, M Janaki; Kamal, Ahmed; Bhadra, Utpal; Pal Bhadra, Manika

    2015-01-01

    In a previous study we reported the role of potent bisindole-PBD conjugate as an inclusion in the arsenal of breast cancer therapeutics. In breast cancer cell proliferation, PI3K/AKT/mTOR pathway plays a crucial role by prosurvival mechanism that inhibits programmed cell death. Here, 2 breast cancer cells lines, MCF-7 and MDA-MB-231 were treated with Vorinostat (suberoylanilide hydroxamic acid / SAHA) and bisindole-PBD (5b). We have investigated the effect on PI3K/AKT/mTOR pathway and SIRT expression including epigenetic regulation. There was consistent decrease in the level of PI3K, AKT, mTOR proteins upon treatment of 5b in both MCF-7 and MDA-MB-231 cell lines compared to untreated controls. Treatment with caspase inhibitor (Q-VD-OPH) confirmed that the effect of 5b on PI3K signaling was ahead of apoptosis. Real time PCR and western blot analysis showed profound reduction in the mRNA and protein levels of SIRT1 and SIRT2. Molecular docking studies also supported the interaction of 5b with various amino acids of SIRT2 proteins. Treatment with 5b caused epigenetic changes that include increase of acetylated forms of p53, increase of histone acetylation at p21 promoter as well as decrease in methylation state of p21 gene. Compound 5b thus acts as SIRT inhibitor and cause p53 activation via inhibition of growth factor signaling and activation of p53 dependent apoptotic signaling. This present study focuses bisindole-PBD on epigenetic alteration putting 5b as a promising therapeutic tool in the realm of breast cancer research. PMID:26192233

  3. Epigenetic modifications by inhibiting histone deacetylases reverse memory impairment in insulin resistance induced cognitive deficit in mice.

    PubMed

    Sharma, Sorabh; Taliyan, Rajeev

    2016-06-01

    Insulin resistance has been reported as a strong risk factor for Alzheimer's disease. However the molecular mechanisms of association between these still remain elusive. Various studies have highlighted the involvement of histone deacetylases (HDACs) in insulin resistance and cognitive deficits. Thus, the present study was designed to investigate the possible neuroprotective role of HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA) in insulin resistance induced cognitive impairment in mice. Mice were subjected to either normal pellet diet (NPD) or high fat diet (HFD) for 8 weeks. HFD fed mice were treated with SAHA at 25 and 50 mg/kg i.p. once daily for 2 weeks. Serum insulin, glucose, triglycerides, total cholesterol and HDL-cholesterol levels were measured. A battery of behavioral parameters was performed to assess cognitive functions. Level of tumour necrosis factor (TNF-α) was measured in hippocampus to assess neuroinflammation. To further explore the molecular mechanisms we measured the histone H3 acetylation and brain derived neurotrophic factor (BDNF) level. HFD fed mice exhibit characteristic features of insulin resistance. These mice also showed a severe deficit in learning and memory along with reduced histone H3 acetylation and BDNF levels. In contrast, the mice treated with SAHA showed significant and dose dependent improvement in insulin resistant condition. These mice also showed improved learning and memory performance. SAHA treatment ameliorates the HFD induced reduction in histone H3 acetylation and BDNF levels. Based upon these results, it could be suggested that HDAC inhibitors exert neuroprotective effects by increasing H3 acetylation and subsequently BDNF level. PMID:26805421

  4. Xenograft models for undifferentiated pleomorphic sarcoma not otherwise specified are essential for preclinical testing of therapeutic agents

    PubMed Central

    Becker, Marc; Graf, Claudine; Tonak, Marcus; Radsak, Markus P.; Bopp, Tobias; Bals, Robert; Bohle, Rainer M.; Theobald, Matthias; Rommens, Pol-Maria; Proschek, Dirk; Wehler, Thomas C.

    2016-01-01

    Undifferentiated pleomorphic sarcoma not otherwise specified belongs to the heterogeneous group of soft tissue tumors. It is preferentially located in the upper and lower extremities of the body, and surgical resection remains the only curative treatment. Preclinical animal models are crucial to improve the development of novel chemotherapeutic agents for the treatment of undifferentiated pleomorphic sarcoma. However, this approach has been hampered by the lack of reproducible animal models. The present study established two xenograft animal models generated from stable non-clonal cell cultures, and investigated the difference in chemotherapeutic effects on tumor growth between undifferentiated pleomorphic sarcoma in vivo and in vitro. The cell cultures were generated from freshly isolated tumor tissues of two patients with undifferentiated pleomorphic sarcoma. For the in vivo analysis, these cells were injected subcutaneously into immunodeficient mice. The mice were monitored for tumor appearance and treated with the most common or innovative chemotherapeutic agents available to date. Furthermore, the same drugs were administered to in vitro cell cultures. The most effective tumor growth inhibition in vitro was observed with doxorubicin and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA), also known as vorinostat. In the in vivo xenograft mouse model, the combination of doxorubicin and the tyrosine kinase inhibitor pazopanib induced a significant tumor reduction. By contrast, treatment with vorinostat did not reduce the tumor growth. Taken together, the results obtained from drug testing in vitro differed significantly from the in vivo results. Therefore, the novel and reproducible xenograft animal model established in the present study demonstrated that in vivo models are required to test potential chemotherapeutic agents for the treatment of undifferentiated pleomorphic sarcoma prior to clinical use, since animal models are more similar

  5. New sulfur-containing corrosion inhibitor

    SciTech Connect

    Prince, P.

    2000-04-01

    No corrosion inhibitor available today is ideal in every way, but a new class of sulfur-containing compounds promises to address many field requirements. This article describes the performance characteristics of these compounds and discusses possible inhibition mechanisms. The emphasis in this work was on better understanding corrosion inhibition by sulfur-containing inhibitors under high shear-stress conditions, with special focus on localized (pitting) corrosion. The results indicate that the new sulfur-containing inhibitors (e.g., mercaptoalcohol [MA]) could be more effective in the field than currently available inhibitors.

  6. Simultaneous exposure of transformed cells to SRC family inhibitors and CHK1 inhibitors causes cell death.

    PubMed

    Mitchell, Clint; Hamed, Hossein A; Cruickshanks, Nichola; Tang, Yong; Bareford, M Danielle; Hubbard, Nissan; Tye, Gary; Yacoub, Adly; Dai, Yun; Grant, Steven; Dent, Paul

    2011-08-01

    The present studies were initiated to determine in greater molecular detail the regulation of CHK1 inhibitor lethality in transfected and infected breast cancer cells and using genetic models of transformed fibrobalsts. Multiple MEK1/2 inhibitors (PD184352, AZD6244 (ARRY-142886)) interacted with multiple CHK1 inhibitors (UCN-01 (7-hydroxystaurosporine), AZD7762) to kill mammary carcinoma cells and transformed fibroblasts. In transformed cells, CHK1 inhibitor -induced activation of ERK1/2 was dependent upon activation of SRC family non-receptor tyrosine kinases as judged by use of multiple SRC kinase inhibitors (PP2, Dasatinib; AZD0530), use of SRC/FYN/YES deleted transformed fibroblasts or by expression of dominant negative SRC. Cell killing by SRC family kinase inhibitors and CHK1 inhibitors was abolished in BAX/BAK -/- transformed fibroblasts and suppressed by over expression of BCL-XL. Treatment of cells with BCL-2/BCL-XL antagonists promoted SRC inhibitor + CHK1 inhibitor -induced lethality in a BAX/BAK-dependent fashion. Treatment of cells with [SRC + CHK1] inhibitors radio-sensitized tumor cells. These findings argue that multiple inhibitors of the SRC-RAS-MEK pathway interact with multiple CHK1 inhibitors to kill transformed cells. PMID:21642769

  7. Controlling CO{sub 2} corrosion with inhibitors

    SciTech Connect

    Dougherty, J.A.

    1998-12-31

    Transport of corrosion inhibitor to the location where they are needed is one of the primary concerns in the use of corrosion inhibitors. Two different types of inhibitors for controlling CO{sub 2} corrosion in gas well wellheads and flowlines are used as examples. In one example, the inhibitor forms a micelle in water which assists in the transport of inhibitor to the metal surface . In the other example, the inhibitor is readily dispersible in the water phase but must be stirred to ensure transport of the inhibitor to the metal surface. Field monitored corrosion rates using continuous application of inhibitor are presented for both types of inhibitor.

  8. Glycine Transporters and Their Inhibitors

    NASA Astrophysics Data System (ADS)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  9. KH-30 Parafin Inhibitor Treatment

    SciTech Connect

    Rochelle, J.

    2001-09-30

    United Energy Corporation (UNRG) and the U.S. Department of Energy personnel tested KH-30 at the Rocky Mountain Oilfield Testing Center (RMOTC) outside Casper, Wyoming on two separate occasions. KH-30 is a non-toxic, non-hazardous product, which combines the functions of a solvent dispersant, crystal modifier and inhibitor into a single solution. The first test was held in March of 2001, wherein five wells were treated with a mixture of KH-30 and brine water, heated to 180 degrees F. No increase in production was attained in these tests. In June, 2001, three shallow, low pressure RMOTC wells with 30 years of production were treated with a mixture of 40% KH-30 and 60% diesel. Increases were seen in three wells. The wells then returned to their original rates.

  10. Natural Products as Aromatase Inhibitors

    PubMed Central

    Balunas, Marcy J.; Su, Bin; Brueggemeier, Robert W.; Kinghorn, A. Douglas

    2010-01-01

    With the clinical success of several synthetic aromatase inhibitors (AIs) in the treatment of postmenopausal estrogen receptor-positive breast cancer, researchers have also been investigating also the potential of natural products as AIs. Natural products from terrestrial and marine organisms provide a chemically diverse array of compounds not always available through current synthetic chemistry techniques. Natural products that have been used traditionally for nutritional or medicinal purposes (e.g., botanical dietary supplements) may also afford AIs with reduced side effects. A thorough review of the literature regarding natural product extracts and secondary metabolites of plant, microbial, and marine origin that have been shown to exhibit aromatase inhibitory activity is presented herein. PMID:18690828

  11. Loratadine analogues as MAGL inhibitors.

    PubMed

    Patel, Jayendra Z; Ahenkorah, Stephen; Vaara, Miia; Staszewski, Marek; Adams, Yahaya; Laitinen, Tuomo; Navia-Paldanius, Dina; Parkkari, Teija; Savinainen, Juha R; Walczyński, Krzysztof; Laitinen, Jarmo T; Nevalainen, Tapio J

    2015-04-01

    Compound 12a (JZP-361) acted as a potent and reversible inhibitor of human recombinant MAGL (hMAGL, IC50=46 nM), and was found to have almost 150-fold higher selectivity over human recombinant fatty acid amide hydrolase (hFAAH, IC50=7.24 μM) and 35-fold higher selectivity over human α/β-hydrolase-6 (hABHD6, IC50=1.79 μM). Additionally, compound 12a retained H1 antagonistic affinity (pA2=6.81) but did not show cannabinoid receptor activity, when tested at concentrations ⩽ 10 μM. Hence, compound 12a represents a novel dual-acting pharmacological tool possessing both MAGL-inhibitory and antihistaminergic activities. PMID:25752982

  12. Inhibitors of apoptosis catch ubiquitin.

    PubMed

    Rajalingam, Krishnaraj; Dikic, Ivan

    2009-01-01

    IAP (inhibitor of apoptosis) proteins are a class of anti-apoptotic regulators characterized by the presence of BIR (baculoviral IAP repeat) domains. Some of the IAPs also possess a RING (really interesting new gene) domain with E3 ubiquitin ligase activity. In this issue of the Biochemical Journal, Blankenship et al. unveil the presence of an UBA (ubiquitin-associated domain) in several IAPs. UBAs in c-IAPs (cellular IAPs) bind to monoubiquitin and ubiquitin chains and are implicated in degradation of c-IAPs by promoting their interaction with proteasomes as well as in regulation of TNF-alpha (tumour necrosis factor-alpha)-induced apoptosis. These novel observations establish IAPs as ubiquitin-interacting proteins and opens up new lines of investigation. PMID:19061481

  13. The direct thrombin inhibitor hirudin.

    PubMed

    Greinacher, Andreas; Warkentin, Theodore E

    2008-05-01

    This review discusses the pharmacology and clinical applications of hirudin, a bivalent direct thrombin inhibitor (DTI). Besides the current major indication for hirudin--anticoagulation of patients with heparin-induced thrombocytopenia (HIT)--the experience with hirudin in other indications, especially acute coronary syndromes, are briefly presented. Hirudins have been formally studied prior to their regulatory approval; however, important information on their side effects and relevant preventative measures only became available later. Therefore, current recommendations and dosing schedules for hirudin differ considerably from the information given in the package inserts. Drawbacks of hirudin and important precautions for avoiding potential adverse effects are discussed in detail in the third part of this review. PMID:18449411

  14. Enzyme-Inhibitor Association Thermodynamics

    PubMed Central

    Resat, Haluk; Marrone, Tami J.; McCammon, J. Andrew

    1997-01-01

    Studying the thermodynamics of biochemical association reactions at the microscopic level requires efficient sampling of the configurations of the reactants and solvent as a function of the reaction pathways. In most cases, the associating ligand and receptor have complementary interlocking shapes. Upon association, loosely connected or disconnected solvent cavities at and around the binding site are formed. Disconnected solvent regions lead to severe statistical sampling problems when simulations are performed with explicit solvent. It was recently proposed that, when such limitations are encountered, they might be overcome by the use of the grand canonical ensemble. Here we investigate one such case and report the association free energy profile (potential of mean force) between trypsin and benzamidine along a chosen reaction coordinate as calculated using the grand canonical Monte Carlo method. The free energy profile is also calculated for a continuum solvent model using the Poisson equation, and the results are compared to the explicit water simulations. The comparison shows that the continuum solvent approach is surprisingly successful in reproducing the explicit solvent simulation results. The Monte Carlo results are analyzed in detail with respect to solvation structure. In the binding site channel there are waters bridging the carbonyl oxygen groups of Asp189 with the NH2 groups of benzamidine, which are displaced upon inhibitor binding. A similar solvent-bridging configuration has been seen in the crystal structure of trypsin complexed with bovine pancreatic trypsin inhibitor. The predicted locations of other internal waters are in very good agreement with the positions found in the crystal structures, which supports the accuracy of the simulations. ImagesFIGURE 5 PMID:9017183

  15. Intellectual property issues of immune checkpoint inhibitors.

    PubMed

    Storz, Ulrich

    2016-01-01

    Immune checkpoint inhibitors are drugs that interfere with tumor escape responses. Some members of this class are already approved, and expected to be blockbusters in the future. Many companies have developed patent activities in this field. This article focuses on the patent landscape, and discusses key players and cases related to immune checkpoint inhibitors. PMID:26466763

  16. Trypsin inhibitors for the treatment of pancreatitis.

    PubMed

    Brandl, Trixi; Simic, Oliver; Skaanderup, Philip R; Namoto, Kenji; Berst, Frederic; Ehrhardt, Claus; Schiering, Nikolaus; Mueller, Irene; Woelcke, Julian

    2016-09-01

    Proline-based trypsin inhibitors occupying the S1-S2-S1' region were identified by an HTS screening campaign. It was discovered that truncation of the P1' moiety and appropriate extension into the S4 region led to highly potent trypsin inhibitors with excellent selectivity against related serine proteases and a favorable hERG profile. PMID:27476144

  17. Aminofurazans as potent inhibitors of AKT kinase

    SciTech Connect

    Rouse, Meagan B.; Seefeld, Mark A.; Leber, Jack D.; McNulty, Kenneth C.; Sun, Lihui; Miller, William H.; Zhang, ShuYun; Minthorn, Elisabeth A.; Concha, Nestor O.; Choudhry, Anthony E.; Schaber, Michael D.; Heerding, Dirk A.

    2009-06-24

    AKT inhibitors containing an imidazopyridine aminofurazan scaffold have been optimized. We have previously disclosed identification of the AKT inhibitor GSK690693, which has been evaluated in clinical trials in cancer patients. Herein we describe recent efforts focusing on investigating a distinct region of this scaffold that have afforded compounds (30 and 32) with comparable activity profiles to that of GSK690693.

  18. Discovery and SAR of hydantoin TACE inhibitors

    SciTech Connect

    Yu, Wensheng; Guo, Zhuyan; Orth, Peter; Madison, Vincent; Chen, Lei; Dai, Chaoyang; Feltz, Robert J.; Girijavallabhan, Vinay M.; Kim, Seong Heon; Kozlowski, Joseph A.; Lavey, Brian J.; Li, Dansu; Lundell, Daniel; Niu, Xiaoda; Piwinski, John J.; Popovici-Muller, Janeta; Rizvi, Razia; Rosner, Kristin E.; Shankar, Bandarpalle B.; Shih, Neng-Yang; Siddiqui, M.A.; Sun, J.; Tong, L.; Umland, S.; Wong, M.K.; Yang, D.Y.; Zhou, G.

    2010-09-03

    We disclose inhibitors of TNF-{alpha} converting enzyme (TACE) designed around a hydantoin zinc binding moiety. Crystal structures of inhibitors bound to TACE revealed monodentate coordination of the hydantoin to the zinc. SAR, X-ray, and modeling designs are described. To our knowledge, these are the first reported X-ray structures of TACE with a hydantoin zinc ligand.

  19. Tyrosinase inhibitors from Bolivian medicinal plants.

    PubMed

    Kubo, I; Yokokawa, Y; Kinst-Hori, I

    1995-05-01

    Bioassay-guided fractionation monitored by mushroom tyrosinase (EC 1.14.18.1) activity, afforded six inhibitors from three Bolivian medicinal plants, Buddleia coriacea, Gnaphalium cheiranthifolium, and Scheelea princeps. These inhibitors, which are all known phenolic compounds, inhibited the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) mediated by a mushroom tyrosinase. PMID:7623048

  20. The therapeutic potential of microbial proteasome inhibitors.

    PubMed

    Momose, Isao; Kawada, Manabu

    2016-08-01

    The proteasome influences cellular homeostasis through the degradation of regulatory proteins, many of which are also involved in disease pathogenesis. In particular, numerous regulatory proteins associated with tumor growth, such as cyclins, cyclin-dependent kinase inhibitors, tumor suppressors, and NF-κB inhibitors are degraded by the proteasome. Proteasome inhibitors can stabilize these regulatory proteins, resulting in the suppression of tumor development and the regulation of immune responses. Thus, proteasome inhibitors are promising candidate antitumor agents and immune-regulatory agents. Bortezomib is the first-in-class proteasome inhibitor approved for the treatment of multiple myeloma. Despite its high efficiency, however, a large proportion of patients do not attain sufficient clinical response due to toxicity and drug resistance. Therefore, the development of new proteasome inhibitors with improved pharmacological properties is needed. Natural products produced by microorganisms are a promising source of such compounds. This review provides an overview of proteasome inhibitors produced by microorganisms, with special focus on inhibitors isolated from actinomycetes. PMID:26589840

  1. [Recent development of selective cyclooxygenase-2 inhibitors].

    PubMed

    Kawai, Shinichi

    2002-12-01

    Nonsteroidal anti-inflammatory drugs(NSAIDs) are clinically effective against the inflammatory symptoms of rheumatoid arthritis. Recent attention has been focused on selective cyclooxygenase(COX)-2 inhibitors, a type of NSAID that inhibits a subtype of COX. Because of the different actions of COX-1 and COX-2, selective COX-2 inhibitors were expected to reduce adverse reactions such as gastrointestinal disorders. Various clinical studies have confirmed that the efficacy of COX-2 inhibitors for RA is similar to that of conventional NSAIDs, but they cause fewer severe gastrointestinal disorders. The incidence of complications related to renal dysfunction, such as edema and hypertension, is not different. Patients using selective COX-2 inhibitors have recently been reported to show an increase in thrombotic complications such as myocardial infarction. Therefore, more data on adverse events should be collected in the future from large-scale clinical studies to further clarify the actual value of selective COX-2 inhibitors. PMID:12510364

  2. Current acetylcholinesterase-inhibitors: a neuroinformatics perspective.

    PubMed

    Shaikh, Sibhghatulla; Verma, Anupriya; Siddiqui, Saimeen; Ahmad, Syed S; Rizvi, Syed M D; Shakil, Shazi; Biswas, Deboshree; Singh, Divya; Siddiqui, Mohmmad H; Shakil, Shahnawaz; Tabrez, Shams; Kamal, Mohammad A

    2014-04-01

    This review presents a concise update on the inhibitors of the neuroenzyme, acetylcholinesterase (AChE; EC 3.1.1.7). AChE is a serine protease, which hydrolyses the neurotransmitter, acetylcholine into acetate and choline thereby terminating neurotransmission. Molecular interactions (mode of binding to the target enzyme), clinical applications and limitations have been summarized for each of the inhibitors discussed. Traditional inhibitors (e.g. physostigmine, tacrine, donepezil, rivastigmine etc.) as well as novel inhibitors like various physostigmine-derivatives have been covered. This is followed by a short glimpse on inhibitors derived from nature (e.g. Huperzine A and B, Galangin). Also, a discussion on 'hybrid of pre-existing drugs' has been incorporated. Furthermore, current status of therapeutic applications of AChEinhibitors has also been summarized. PMID:24059296

  3. Pharmacological inhibitors of cyclin-dependent kinases.

    PubMed

    Knockaert, Marie; Greengard, Paul; Meijer, Laurent

    2002-09-01

    Cyclin-dependent kinases (CDKs) regulate the cell division cycle, apoptosis, transcription and differentiation in addition to functions in the nervous system. Deregulation of CDKs in various diseases has stimulated an intensive search for selective pharmacological inhibitors of these kinases. More than 50 inhibitors have been identified, among which >20 have been co-crystallized with CDK2. These inhibitors all target the ATP-binding pocket of the catalytic site of the kinase. The actual selectivity of most known CDK inhibitors, and thus the underlying mechanism of their cellular effects, is poorly known. Pharmacological inhibitors of CDKs are currently being evaluated for therapeutic use against cancer, alopecia, neurodegenerative disorders (e.g. Alzheimer's disease, amyotrophic lateral sclerosis and stroke), cardiovascular disorders (e.g. atherosclerosis and restenosis), glomerulonephritis, viral infections (e.g. HCMV, HIV and HSV) and parasitic protozoa (Plasmodium sp. and Leishmania sp.). PMID:12237154

  4. A Spider-Derived Kunitz-Type Serine Protease Inhibitor That Acts as a Plasmin Inhibitor and an Elastase Inhibitor

    PubMed Central

    Wan, Hu; Lee, Kwang Sik; Kim, Bo Yeon; Zou, Feng Ming; Yoon, Hyung Joo; Je, Yeon Ho; Li, Jianhong; Jin, Byung Rae

    2013-01-01

    Kunitz-type serine protease inhibitors are involved in various physiological processes, such as ion channel blocking, blood coagulation, fibrinolysis, and inflammation. While spider-derived Kunitz-type proteins show activity in trypsin or chymotrypsin inhibition and K+ channel blocking, no additional role for these proteins has been elucidated. In this study, we identified the first spider (Araneus ventricosus) Kunitz-type serine protease inhibitor (AvKTI) that acts as a plasmin inhibitor and an elastase inhibitor. AvKTI possesses a Kunitz domain consisting of a 57-amino-acid mature peptide that displays features consistent with Kunitz-type inhibitors, including six conserved cysteine residues and a P1 lysine residue. Recombinant AvKTI, expressed in baculovirus-infected insect cells, showed a dual inhibitory activity against trypsin (Ki 7.34 nM) and chymotrypsin (Ki 37.75 nM), defining a role for AvKTI as a spider-derived Kunitz-type serine protease inhibitor. Additionally, AvKTI showed no detectable inhibitory effects on factor Xa, thrombin, or tissue plasminogen activator; however, AvKTI inhibited plasmin (Ki 4.89 nM) and neutrophil elastase (Ki 169.07 nM), indicating that it acts as an antifibrinolytic factor and an antielastolytic factor. These findings constitute molecular evidence that AvKTI acts as a plasmin inhibitor and an elastase inhibitor and also provide a novel view of the functions of a spider-derived Kunitz-type serine protease inhibitor. PMID:23308198

  5. High-affinity Cyclic Peptide Matriptase Inhibitors*

    PubMed Central

    Quimbar, Pedro; Malik, Uru; Sommerhoff, Christian P.; Kaas, Quentin; Chan, Lai Y.; Huang, Yen-Hua; Grundhuber, Maresa; Dunse, Kerry; Craik, David J.; Anderson, Marilyn A.; Daly, Norelle L.

    2013-01-01

    The type II transmembrane serine protease matriptase is a key activator of multiple signaling pathways associated with cell proliferation and modification of the extracellular matrix. Deregulated matriptase activity correlates with a number of diseases, including cancer and hence highly selective matriptase inhibitors may have therapeutic potential. The plant-derived cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), is a promising drug scaffold with potent matriptase inhibitory activity. In the current study we have analyzed the structure-activity relationships of SFTI-1 and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a structurally divergent trypsin inhibitor from Momordica cochinchinensis that also contains a cyclic backbone. We show that MCoTI-II is a significantly more potent matriptase inhibitor than SFTI-1 and that all alanine mutants of both peptides, generated using positional scanning mutagenesis, have decreased trypsin affinity, whereas several mutations either maintain or result in enhanced matriptase inhibitory activity. These intriguing results were used to design one of the most potent matriptase inhibitors known to date with a 290 pm equilibrium dissociation constant, and provide the first indication on how to modulate affinity for matriptase over trypsin in cyclic peptides. This information might be useful for the design of more selective and therapeutically relevant inhibitors of matriptase. PMID:23548907

  6. Current use of phosphodiesterase inhibitors in urology

    PubMed Central

    Hakky, Tariq Said; Jain, Lakshay

    2015-01-01

    The causes of male erectile dysfunction (ED) are quite variable and are now commonly divided into etiologies such as ischemia, smooth muscle damage, or altered blood flow. Although varying rates of ED have been reported in literature, the number of men with ED is projected to increase worldwide by 2025 to approximately 322 million. Since the introduction of phosphodiesterase 5 (PDE5) inhibitors, there has been a paradigm shift in the treatment of ED because PDE5 inhibitors address a broad spectrum of etiologies for ED. Today, the American Urological Association recommends the use of three PDE5 inhibitors (sildenafil, tadalafil, and vardenafil) as a first-line therapy for the treatment of ED. This review evaluates the pharmacological mechanism of PDE5 inhibitors along with the impact and use of sildenafil, vardenafil, tadalafil, and avanafil. By increasing intracellular cGMP levels, PDE5 inhibitors have been shown to be effective in the treatment of ED. Through their effects on other cellular signaling pathways, PDE5 inhibitors have the potential for treating other urologic conditions as well. The use of PDE5 inhibitors can also be combined to produce a synergistic effect in conditions such as male hypogonadism and benign prostatic hyperplasia in addition to ED. PMID:26328208

  7. Multi-kinase inhibitors, AURKs and cancer.

    PubMed

    Cicenas, Jonas; Cicenas, Erikas

    2016-05-01

    Inhibitors that impact function of kinases are valuable both for the biological research as well as therapy of kinase-associated diseases, such as different cancers. There are quite a number of inhibitors, which are quite specific for certain kinases and several of them are either already approved for the cancer therapy or are in clinical studies of various phases. However, that does not mean that each single kinase inhibitor is suitable for targeted therapy. Some of them are not effective others might be toxic or fail some other criteria for the use in vivo. On the other hand, even in case of successful therapy, many responders eventually develop resistance to the inhibitors. The limitations of various single kinase inhibitors can be fought using compounds which target multiple kinases. This tactics can increase effectiveness of the inhibitors by the synergistic effect or help to diminish the likelihood of drug resistance. To date, several families of kinases are quite popular targets of the inhibition in cancers, such as tyrosine kinases, cycle-dependent kinases, mitogen-activated protein kinases, phosphoinositide 3-kinases as well as their pathway "players" and aurora kinases. Aurora kinases play an important role in the control of the mitosis and are often altered in diverse human cancers. Here, we will describe the most interesting multi-kinase inhibitors which inhibit aurora kinases among other targets and their use in preclinical and clinical cancer studies. PMID:27038473

  8. Interaction of Chloroplasts with Inhibitors

    PubMed Central

    Ridley, Stuart M.

    1983-01-01

    Several effects on pea (Pisum sativum L. var Onwards) chloroplasts of a new diphenylether herbicide, fomesafen (5-[2-chloro-4-trifluoromethyl-phenoxy]-N-methanesulfonyl-2 -nitrobenzamide) have been compared with those of a herbicide of related structure, nitrofluorfen (2-chloro-1-[4-nitrophenoxy]-4-[trifluoromethyl]benzene). Although both compounds produce the same light-dependent symptoms of desiccation and chlorosis indicative of a common primary mechanism of action, this study is concerned with a more broadly based investigation of different effects on the electron transport system. Comparisons have also been made with other compounds interacting with the chloroplast. Unlike nitrofluorfen, fomesafen has little effect as an inhibitor of electron flow or energy transfer. Both compounds have the ability to stimulate superoxide production through a functional electron transport system, and this involves specifically the p-nitro substituent. The stimulation, which is not likely to be an essential part of the primary herbicidal effect, is diminished under conditions that remove the coupling factor. Evidence suggests that both diphenylethers may be able to bind to the coupling factor, and kinetic studies reveal this for dibromothymoquinone as well. Such a binding site might be an important feature in allowing the primary effect of the diphenylether herbicides to be expressed. PMID:16663025

  9. Thrombin-activatable fibrinolysis inhibitor.

    PubMed

    Marx, Pauline F

    2004-09-01

    The coagulation system is a potent mechanism that prevents blood loss after vascular injury. It consists of a number of linked enzymatic reactions resulting in thrombin generation. Thrombin converts soluble fibrinogen into a fibrin clot. The clot is subsequently removed by the fibrinolytic system upon wound healing. Thrombin-activatable fibrinolysis inhibitor (TAFI), which is identical to the previously identified proteins procarboxypeptidase B, R, and U, forms a link between blood coagulation and fibrinolysis. TAFI circulates as an inactive proenzyme in the bloodstream, and becomes activated during blood clotting. The active form, TAFIa, inhibits fibrinolysis by cleaving off C-terminal lysine residues from partially degraded fibrin that stimulates the tissue-type plasminogen activator-mediated conversion of plasminogen to plasmin. Consequently, removal of these lysines leads to less plasmin formation and subsequently to protection of the fibrin clot from break down. Moreover, TAFI may also play a role in other processes such as, inflammation and tissue repair. In this review, recent developments in TAFI research are discussed. PMID:15379716

  10. Reverse transcriptase inhibitors as microbicides.

    PubMed

    Lewi, Paul; Heeres, Jan; Ariën, Kevin; Venkatraj, Muthusamy; Joossens, Jurgen; Van der Veken, Pieter; Augustyns, Koen; Vanham, Guido

    2012-01-01

    The CAPRISA 004 study in South Africa has accelerated the development of vaginal and rectal microbicides containing antiretrovirals that target specific enzymes in the reproduction cycle of HIV, especially reverse transcriptase inhibitors (RTI). In this review we discuss the potential relevance of HIV-1 RTIs as microbicides, focusing in the nucleotide RTI tenofovir and six classes of nonnucleoside RTIs (including dapivirine, UC781, urea and thiourea PETTs, DABOs and a pyrimidinedione). Although tenofovir and dapivirine appear to be most advanced in clinical trials as potential microbicides, several issues remain unresolved, e.g., the importance of nonhuman primates as a "gatekeeper" for clinical trials, the emergence and spread of drug-resistant mutants, the combination of microbicides that target different phases of viral reproduction and the accessibility to microbicides in low-income countries. Thus, here we discuss the latest research on RTI as microbicides in the light of the continuing spread of the HIV pandemic from the point of view of medicinal chemistry, virological, and pharmaceutical studies. PMID:22264043

  11. Increased inhibitor incidence in severe haemophilia A since 1990 attributable to more low titre inhibitors.

    PubMed

    van den Berg, H Marijke; Hashemi, S Mojtaba; Fischer, Kathelijn; Petrini, Pia; Ljung, Rolf; Rafowicz, Anne; Carcao, Manuel; Auerswald, Günter; Kurnik, Karin; Kenet, Gili; Santagostino, Elena

    2016-04-01

    Many studies have reported an increased incidence of inhibitors in previously untreated patients (PUPs) with severe haemophilia A after the introduction of recombinant products. It was the objective of this study to investigate whether the inhibitor incidence has increased between 1990 and 2009 in an unselected cohort of PUPs with severe haemophilia A (FVIII< 1 %). Patients were consecutively recruited from 31 haemophilia treatment centres in 16 countries and followed until 50 exposure days or until inhibitor development. Inhibitor development was studied in five-year birth cohorts comparing cumulative incidences. Furthermore the risk for inhibitor development per five-year birth cohort was studied using multivariable Cox regression, adjusting for potential genetic and treatment-related confounders. A total of 926 PUPs were included with a total cumulative inhibitor incidence of 27.5 %. The inhibitor incidence increased from 19.5 % in 1990-1994 (lowest) to 30.9 % in 2000-2004 (highest; p-value 0.011). Low titre inhibitor incidence increased from 3.1 % in 1990-1994 to 10.5 % in 2005-2009 (p-value 0.009). High titre inhibitor incidences remained stable over time. After 2000, risk of all inhibitor development was increased with adjusted hazard ratios 1.96 (95 % CI 1.06-2.83) in 2000-2004 and 2.34 (1.42-4.92) in 2005-2009. Screening for inhibitors was intensified over this 20-year study period from a median of 1.9 to 2.9 tests/year before 2000 to 2.7 to 4.3 tests/year after 2000. In conclusion, the cumulative inhibitor incidence has significantly increased between 1990 and 2009. The high titre inhibitor incidence has remained stable. PMID:26632988

  12. An Updated Review of Tyrosinase Inhibitors

    PubMed Central

    Chang, Te-Sheng

    2009-01-01

    Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed. PMID:19582213

  13. Migrating corrosion inhibitor protection of concrete

    SciTech Connect

    Bjegovic, D.; Miksic, B.

    1999-11-01

    Migrating corrosion inhibitors (MCI) were developed to protect steel rebar from corrosion in concrete. They were designed to be incorporated as an admixture during concrete batching or used for surface impregnation of existing concrete structures. Two investigations are summarized. One studied the effectiveness of MCIs as a corrosion inhibitor for steel rebar when used as an admixture in fresh concrete mix. The other is a long-term study of MCI concrete impregnation that chronicles corrosion rates of rebar in concrete specimens. Based on data from each study, it was concluded that migrating corrosion inhibitors are compatible with concrete and effectively delay the onset of corrosion.

  14. A tyrosinase inhibitor from Aspergillus niger.

    PubMed

    Vasantha, K Y; Murugesh, C S; Sattur, A P

    2014-10-01

    Tyrosinase, in the presence of oxygen, is the main culprit in post harvest browning of food products, resulting in the drop in its commercial value. In an effort to seek natural tyrosinase inhibitors for food applications, a screening programme was undertaken. Of the 26 fungal cultures isolated from soil samples of Agumbe forest, India, one isolate S16, identified as Aspergillus niger, gave an inhibition of 84 % against the enzyme. The inhibitor was isolated by following an enzyme inhibition assay guided purification protocol. The structure of the inhibitor was elucidated and found to be kojic acid. The IC50 of the Competitive inhibitor was found to be 8.8 μg with a Ki of 0.085 mM. PMID:25328242

  15. Structural Characterization of LRRK2 Inhibitors.

    PubMed

    Gilsbach, Bernd K; Messias, Ana C; Ito, Genta; Sattler, Michael; Alessi, Dario R; Wittinghofer, Alfred; Kortholt, Arjan

    2015-05-14

    Kinase inhibition is considered to be an important therapeutic target for LRRK2 mediated Parkinson's disease (PD). Many LRRK2 kinase inhibitors have been reported but have yet to be optimized in order to qualify as drug candidates for the treatment of the disease. In order to start a structure-function analysis of such inhibitors, we mutated the active site of Dictyostelium Roco4 kinase to resemble LRRK2. Here, we show saturation transfer difference (STD) NMR and the first cocrystal structures of two potent in vitro inhibitors, LRRK2-IN-1 and compound 19, with mutated Roco4. Our data demonstrate that this system can serve as an excellent tool for the structural characterization and optimization of LRRK2 inhibitors using X-ray crystallography and NMR spectroscopy. PMID:25897865

  16. Transdermal delivery of Angiotensin Converting Enzyme inhibitors.

    PubMed

    Helal, Fouad; Lane, Majella E

    2014-09-01

    The Angiotensin Converting Enzyme (ACE) inhibitor class of drugs has been in clinical use since the 1970s for the management of all grades of heart failure, hypertension, diabetic nephropathy and prophylaxis of cardiovascular events. Because of the advantages associated with transdermal delivery compared with oral delivery many researchers have investigated the skin as a portal for administration of ACE inhibitors. This review summarises the various studies reported in the literature describing the development and evaluation of transdermal formulations of ACE inhibitors. Captopril, enalapril maleate, lisinopril dihydrate, perindopril erbumine and trandolapril are the most studied in connection with transdermal preparations. The methodologies reported are considered critically and the limitations of the various skin models used are also highlighted. Finally, opportunities for novel transdermal preparations of ACE inhibitor drugs are discussed with an emphasis on rational formulation design. PMID:24657822

  17. Inhibitors of alanine racemase enzyme: a review.

    PubMed

    Azam, Mohammed Afzal; Jayaram, Unni

    2016-08-01

    Alanine racemase is a fold type III PLP-dependent amino acid racemase enzyme catalysing the conversion of l-alanine to d-alanine utilised by bacterial cell wall for peptidoglycan synthesis. As there are no known homologs in humans, it is considered as an excellent antibacterial drug target. The standard inhibitors of this enzyme include O-carbamyl-d-serine, d-cycloserine, chlorovinyl glycine, alaphosphin, etc. d-Cycloserine is indicated for pulmonary and extra pulmonary tuberculosis but therapeutic use of drug is limited due to its severe toxic effects. Toxic effects due to off-target affinities of cycloserine and other substrate analogs have prompted new research efforts to identify alanine racemase inhibitors that are not substrate analogs. In this review, an updated status of known inhibitors of alanine racemase enzyme has been provided which will serve as a rich source of structural information and will be helpful in generating selective and potent inhibitor of alanine racemase. PMID:26024289

  18. Effects of multiphase flow on corrosion inhibitor

    SciTech Connect

    Chen, Y.; Jepson, W.P.; Chen, H.J.

    1999-11-01

    This paper investigates the inhibition performance of a typical imidazoline based inhibitor under multiphase flow. Electrochemical impedance spectroscopy (EIS) measurements were carried out in a 101.6 mm I.D., 15 m long acrylic flow loop using ASTM substitute saltwater and carbon dioxide gas. This flow loop system can generate slug flow, fill pipe flow and other multiphase flow patterns. Effects of different flow conditions on inhibition performance of this typical inhibitor were examined. The system was maintained at a pressure of 0.136 MPa and a temperature of 40 C. EIS measurements for this inhibitor in a Rotating Cylinder Electrode (RCE) system were also conducted. Different equivalent circuit models were used to fit the experiment data for both the RCE and flow loop systems. The high shear stress and turbulence due to the mixing vortex and the bubble impact in multiphase flow can enhance the corrosion or reduce the inhibition performance of inhibitors.

  19. Musical hallucinations treated with acetylcholinesterase inhibitors.

    PubMed

    Blom, Jan Dirk; Coebergh, Jan Adriaan F; Lauw, René; Sommer, Iris E C

    2015-01-01

    Musical hallucinations are relatively rare auditory percepts which, due to their intrusive nature and the accompanying fear of impending mental decline, tend to cause significant distress and impairment. Although their etiology and pathophysiology appear to be heterogeneous and no evidence-based treatment methods are available, case reports indicate that acetylcholinesterase inhibitors may yield positive results in patients with comorbid hearing loss. We present two female patients (aged 76 and 78 years) both of whom suffered from hearing impairment and practically incessant musical hallucinations. Both patients were successfully treated with the acetylcholinesterase inhibitor rivastigmine. Based on these two case descriptions and an overview of studies describing the use of acetylcholinesterase inhibitors in similar patients, we discuss possible mechanisms and propose further research on the use of acetylcholinesterase inhibitors for musical hallucinations experienced in concordance with hearing loss. PMID:25904872

  20. Musical Hallucinations Treated with Acetylcholinesterase Inhibitors

    PubMed Central

    Blom, Jan Dirk; Coebergh, Jan Adriaan F.; Lauw, René; Sommer, Iris E. C.

    2015-01-01

    Musical hallucinations are relatively rare auditory percepts which, due to their intrusive nature and the accompanying fear of impending mental decline, tend to cause significant distress and impairment. Although their etiology and pathophysiology appear to be heterogeneous and no evidence-based treatment methods are available, case reports indicate that acetylcholinesterase inhibitors may yield positive results in patients with comorbid hearing loss. We present two female patients (aged 76 and 78 years) both of whom suffered from hearing impairment and practically incessant musical hallucinations. Both patients were successfully treated with the acetylcholinesterase inhibitor rivastigmine. Based on these two case descriptions and an overview of studies describing the use of acetylcholinesterase inhibitors in similar patients, we discuss possible mechanisms and propose further research on the use of acetylcholinesterase inhibitors for musical hallucinations experienced in concordance with hearing loss. PMID:25904872

  1. Lipoxygenase inhibitors derived from marine macroalgae.

    PubMed

    Kurihara, Hideyuki; Kagawa, Yoshio; Konno, Remi; Kim, Sang Moo; Takahashi, Koretaro

    2014-03-01

    The solvent extracts from the algae Sargassum thunbergii (Sargassaceae) and Odonthalia corymbifera (Rhodomelaceae) were subjected to soybean lipoxygenase inhibitory screening. Two hydrophobic inhibitors were obtained from the extracts of S. thunbergii through inhibitory assay-guided fractionation. The inhibitors were identified as known exo-methylenic alkapolyenes (6Z,9Z,12Z,15Z)-1,6,9,12,15-henicosapentaene (1) and (6Z,9Z,12Z,15Z,18Z)-1,6,9,12,15,18-henicosahexaene (2). The alkapolyenes 1 and 2 showed higher inhibitory activity than the known inhibitor nordihydroguaiaretic acid (NDGA). Pheophytin a (3) was obtained from the extract of O. corymbifera. The inhibitor 3 also showed higher inhibitory activity than NDGA. This is the first report on lipoxygenase inhibition of exo-methylenic alkapolyenes and a chlorophyll a-related substance. PMID:24495846

  2. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity.

    PubMed

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer's disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a "cholinergic anti-inflammatory pathway" which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223

  3. Drug design from the cryptic inhibitor envelope

    PubMed Central

    Lee, Chul-Jin; Liang, Xiaofei; Wu, Qinglin; Najeeb, Javaria; Zhao, Jinshi; Gopalaswamy, Ramesh; Titecat, Marie; Sebbane, Florent; Lemaitre, Nadine; Toone, Eric J.; Zhou, Pei

    2016-01-01

    Conformational dynamics plays an important role in enzyme catalysis, allosteric regulation of protein functions and assembly of macromolecular complexes. Despite these well-established roles, such information has yet to be exploited for drug design. Here we show by nuclear magnetic resonance spectroscopy that inhibitors of LpxC—an essential enzyme of the lipid A biosynthetic pathway in Gram-negative bacteria and a validated novel antibiotic target—access alternative, minor population states in solution in addition to the ligand conformation observed in crystal structures. These conformations collectively delineate an inhibitor envelope that is invisible to crystallography, but is dynamically accessible by small molecules in solution. Drug design exploiting such a hidden inhibitor envelope has led to the development of potent antibiotics with inhibition constants in the single-digit picomolar range. The principle of the cryptic inhibitor envelope approach may be broadly applicable to other lead optimization campaigns to yield improved therapeutics. PMID:26912110

  4. Pharmacological caspase inhibitors: research towards therapeutic perspectives.

    PubMed

    Kudelova, J; Fleischmannova, J; Adamova, E; Matalova, E

    2015-08-01

    Caspases are key molecules of apoptosis and the inflammatory response. Up-regulation of the caspase cascade contributes to human pathologies such as neurodegenerative and immune disorders. Thus, blocking the excessive apoptosis by pharmacological inhibitors seems promising for therapeutic interventions in such diseases. Caspase inhibitors, both natural and artificial, have been used as research tools and have helped to define the role of the individual caspases in apoptosis and in non-apoptotic processes. Moreover, some caspase inhibitors have demonstrated their therapeutic efficiency in the reduction of cell death and inflammation in animal models of human diseases. However, no drug based on caspase inhibition has been approved on the market until now. Thus, the development of therapeutic approaches that specifically target caspases remains a great challenge and is now the focus of intense biological and clinical interest. Here, we provide a brief review of recent knowledge about pharmacological caspase inhibitors with special focus on their proposed clinical applications. PMID:26348072

  5. Biomass conversion inhibitors and in situ detoxification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inhibitory compounds derived from lignocellulosic biomass pretreatment are classified into aldehydes, ketones, organic acids, and phenols based on their chemical functional group that are toxic to fermentative microorganisms. Inhibitors and effects of inhibition to fermentative microbes vary depend...

  6. Small-Molecule Inhibitors of Urea Transporters

    PubMed Central

    Verkman, Alan S.; Esteva-Font, Cristina; Cil, Onur; Anderson, Marc O.; Li, Fei; Li, Min; Lei, Tianluo; Ren, Huiwen; Yang, Baoxue

    2015-01-01

    Urea transporter (UT) proteins, which include isoforms of UT-A in kidney tubule epithelia and UT-B in vasa recta endothelia and erythrocytes, facilitate urinary concentrating function. Inhibitors of urea transporter function have potential clinical applications as sodium-sparing diuretics, or ‘urearetics,’ in edema from different etiologies, such as congestive heart failure and cirrhosis, as well as in syndrome of inappropriate antidiuretic hormone (SIADH). High-throughput screening of drug-like small molecules has identified UT-A and UT-B inhibitors with nanomolar potency. Inhibitors have been identified with different UT-A versus UT-B selectivity profiles and putative binding sites on UT proteins. Studies in rodent models support the utility of UT inhibitors in reducing urinary concentration, though testing in clinically relevant animal models of edema has not yet been done. PMID:25298345

  7. Progress and prospects on DENV protease inhibitors.

    PubMed

    Timiri, Ajay Kumar; Sinha, Barij Nayan; Jayaprakash, Venkatesan

    2016-07-19

    New treatments are desperately required to combat increasing rate of dengue fever cases reported in tropical and sub-tropical parts of the world. Among the ten proteins (structural and non-structural) encoded by dengue viral genome, NS2B-NS3 protease is an ideal target for drug discovery. It is responsible for the processing of poly protein that is required for genome replication of the virus. Moreover, inhibitors designed against proteases were found successful in Human Immuno-deficiency Virus (HIV) and Hepatitis C Virus (HCV). Complete molecular mechanism and a survey of inhibitors reported against dengue protease will be helpful in designing effective and potent inhibitors. This review provides an insight on molecular mechanism of dengue virus protease and covers up-to-date information on different inhibitors reported against dengue proteases with medicinal chemistry perspective. PMID:27092412

  8. Inhibitors of Acetylcholinesterase and Butyrylcholinesterase Meet Immunity

    PubMed Central

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223

  9. Temperature effects on inhibitors and corrosion inhibition

    SciTech Connect

    Raman, A.

    1996-12-01

    Inhibitor systems commonly employed in industrial operations at elevated and high temperatures are surveyed and the available literature data on their performance characteristics at elevated temperatures are analyzed. The functional behavior of phosphates, amines, benzotriazole, and other important inhibitors are briefly summarized. The inhibitors degrade due to thermal decomposition and/or reaction on the metal surface or with other species present in the environment. Degradation modes of various kinds of amines used in steam systems are reviewed and the resultant limitations for use pointed out. Inhibitor systems in heating, heat exchanger-type cooling, hot acid pickling, in hot corrosive environments in turbine engines, as well as systems to prevent stress corrosion cracking at elevated temperatures are analyzed based on literature data.

  10. Selective Phosphodiesterase 4B Inhibitors: A Review

    PubMed Central

    Azam, Mohammed Afzal; Tripuraneni, Naga Srinivas

    2014-01-01

    Abstract Phosphodiesterase 4B (PDE4B) is a member of the phosphodiesterase family of proteins that plays a critical role in regulating intracellular levels of cyclic adenosine monophosphate (cAMP) by controlling its rate of degradation. It has been demonstrated that this isoform is involved in the orchestra of events which includes inflammation, schizophrenia, cancers, chronic obstructive pulmonary disease, contractility of the myocardium, and psoriatic arthritis. Phosphodiesterase 4B has constituted an interesting target for drug development. In recent years, a number of PDE4B inhibitors have been developed for their use as therapeutic agents. In this review, an up-to-date status of the inhibitors investigated for the inhibition of PDE4B has been given so that this rich source of structural information of presently known PDE4B inhibitors could be helpful in generating a selective and potent inhibitor of PDE4B. PMID:25853062

  11. Ocular Toxicity of Tyrosine Kinase Inhibitors

    PubMed Central

    Davis, Mary Elizabeth

    2016-01-01

    Purpose/Objectives To review common tyrosine kinase inhibitors, as well as their ocular side effects and management. Data Sources A comprehensive literature search was conducted using cINahl®, Pubmed, and cochrane databases for articles published since 2004 with the following search terms: ocular toxicities, tyrosine kinase inhibitors, ophthalmology, adverse events, eye, and vision. Data Synthesis Tyrosine kinase inhibitors can cause significant eye toxicity. Conclusions Given the prevalence of new tyrosine kinase inhibitor therapies and the complexity of possible pathogenesis of ocular pathology, oncology nurses can appreciate the occurrence of ocular toxicities and the role of nursing in the management of these problems. Implications for Nursing Knowledge of the risk factors and etiology of ocular toxicity of targeted cancer therapies can guide nursing assessment, enhance patient education, and improve care management. Including a review of eye symptoms and vision issues in nursing assessment can enhance early detection and treatment of ocular toxicity. PMID:26906134

  12. Proteasome inhibitor associated thrombotic microangiopathy.

    PubMed

    Yui, Jennifer C; Van Keer, Jan; Weiss, Brendan M; Waxman, Adam J; Palmer, Matthew B; D'Agati, Vivette D; Kastritis, Efstathios; Dimopoulos, Meletios A; Vij, Ravi; Bansal, Dhruv; Dingli, David; Nasr, Samih H; Leung, Nelson

    2016-09-01

    A variety of medications have been implicated in the causation of thrombotic microangiopathy (TMA). Recently, a few case reports have emerged of TMA attributed to the proteasome inhibitors (PI) bortezomib and carfilzomib in patients with multiple myeloma. The aim of this case series was to better characterize the role of PI in the etiology of drug-induced TMA. We describe eleven patients from six medical centers from around the world who developed TMA while being treated with PI. The median time between medication initiation and diagnosis of TMA was 21 days (range 5 days to 17 months). Median laboratory values at diagnosis included hemoglobin-7.5 g dL(-1) , platelet count-20 × 10(9) /L, LDH-698 U L(-1) , creatinine-3.12 mg dL(-1) . No patient had any other cause of TMA, including ADAMTS13 inhibition, other malignancy or use of any other medication previously associated with TMA. Nine patients had resolution of TMA without evidence of hemolysis after withdrawal of PI. Two patients had stabilization of laboratory values but persistent evidence of hemolysis despite medication withdrawal. One patient had recurrence of TMA with rechallenge of PI. There is a strong level of evidence that PI can cause DITMA. In evaluating patients with suspected TMA, PI use should be recognized as a potential etiology, and these medications should be discontinued promptly if thought to be the cause of TMA. Am. J. Hematol. 91:E348-E352, 2016. © 2016 Wiley Periodicals, Inc. PMID:27286661

  13. Proton pump inhibitors and pain.

    PubMed

    Smith, Howard S; Dhingra, Reena; Ryckewaert, Lori; Bonner, Dave

    2009-01-01

    There may be a relationship between proton pump inhibitors (PPIs) and iron absorption. PPIs may decrease the amount of iron absorbed gastrointestinally specifically due to alteration of the pH in the duodenum. Restless legs syndrome (RLS) is a sensorimotor disorder that includes an urge to move legs, accompanied or caused by uncomfortable and unpleasant sensations in the legs; the urge to move begins or worsens during periods of rest or inactivity, the urge to move is partially or totally relieved by movement, and the urge is worse or only occurs at night. In the majority of the restless leg syndrome population, the sensation is deep seated, often described as being in the shin bones, and most commonly felt between the knee and ankle. It may be described as a creepy, shock-like, tense, electric, buzzing, itchy, or even numb sensation. A subpopulation of this restless leg syndrome patient population experiences restless leg syndrome associated pain (RLSAP) that has been described as a deep "achy pain." This pain has not been found to be relieved by many of the typical over the counter analgesics. Often, constant movement of the legs appears to be the only remedy, as these sensations usually appear during periods of rest. Furthermore, there appears to be an association between iron deficiency and those suffering from Restless Leg Syndrome (RLS). The authors theorize that there may be a possible correlation between PPIs and the symptoms (e.g. pain) associated with RLS. The authors propose that PPIs, such as omeprazole, may interfere with iron absorption in certain patients and that a subpopulation of patients who develop significant iron deficiency characterized by low serum ferritin levels while on PPIs may also develop RLS-like symptoms (including RLSAP). While there is no robust direct evidence to support any associations of PPIs and iron deficiency or PPIs associated with RLS-like symptoms (including RLSAP), it is hoped that this manuscript may spark research

  14. 2,4-Diaminopyrimidine MK2 inhibitors. Part I: Observation of an unexpected inhibitor binding mode

    SciTech Connect

    Argiriadi, Maria A.; Ericsson, Anna M.; Harris, Christopher M.; Banach, David L.; Borhani, David W.; Calderwood, David J.; Demers, Megan D.; DiMauro, Jennifer; Dixon, Richard W.; Hardman, Jennifer; Kwak, Silvia; Li, Biqin; Mankovich, John A.; Marcotte, Douglas; Mullen, Kelly D.; Ni, Baofu; Pietras, M.; Sadhukhan, Ramkrishna; Sousa, Silvino; Tomlinson, Medha J.; Wang, L.; Xiang, T.; Talanian, R.V.

    2010-09-17

    MK2 is a Ser/Thr kinase of significant interest as an anti-inflammatory drug discovery target. Here we describe the development of in vitro tools for the identification and characterization of MK2 inhibitors, including validation of inhibitor interactions with the crystallography construct and determination of the unique binding mode of 2,4-diaminopyrimidine inhibitors in the MK2 active site.

  15. Activation and Inhibition of Histone Deacetylase 8 by Monovalent Cations*

    PubMed Central

    Gantt, Stephanie L.; Joseph, Caleb G.; Fierke, Carol A.

    2010-01-01

    The metal-dependent histone deacetylases (HDACs) catalyze hydrolysis of acetyl groups from acetyllysine side chains and are targets of cancer therapeutics. Two bound monovalent cations (MVCs) of unknown function have been previously observed in crystal structures of HDAC8; site 1 is near the active site, whereas site 2 is located >20 Å from the catalytic metal ion. Here we demonstrate that one bound MVC activates catalytic activity (K1/2 = 3.4 mm for K+), whereas the second, weaker-binding MVC (K1/2 = 26 mm for K+) decreases catalytic activity by 11-fold. The weaker binding MVC also enhances the affinity of the HDAC inhibitor suberoylanilide hydroxamic acid by 5-fold. The site 1 MVC is coordinated by the side chain of Asp-176 that also forms a hydrogen bond with His-142, one of two histidines important for catalytic activity. The D176A and H142A mutants each increase the K1/2 for potassium inhibition by ≥40-fold, demonstrating that the inhibitory cation binds to site 1. Furthermore, the MVC inhibition is mediated by His-142, suggesting that this residue is protonated for maximal HDAC8 activity. Therefore, His-142 functions either as an electrostatic catalyst or a general acid. The activating MVC binds in the distal site and causes a time-dependent increase in activity, suggesting that the site 2 MVC stabilizes an active conformation of the enzyme. Sodium binds more weakly to both sites and activates HDAC8 to a lesser extent than potassium. Therefore, it is likely that potassium is the predominant MVC bound to HDAC8 in vivo. PMID:20029090

  16. Inhibition of Homologous Recombination with Vorinostat Synergistically Enhances Ganciclovir Cytotoxicity

    PubMed Central

    Ladd, Brendon; Ackroyd, Jeffrey J.; Hicks, J. Kevin; Canman, Christine E.; Flanagan, Sheryl A.; Shewach, Donna S.

    2014-01-01

    The nucleoside analog ganciclovir (GCV) elicits cytotoxicity in tumor cells via a novel mechanism in which drug incorporation into DNA produces minimal disruption of replication, but numerous DNA double strand breaks occur during the second S-phase after drug exposure. We propose that homologous recombination (HR), a major repair pathway for DNA double strand breaks, can prevent GCV-induced DNA damage, and that inhibition of HR will enhance cytotoxicity with GCV. Survival after GCV treatment in cells expressing a herpes simplex virus thymidine kinase was strongly dependent on HR (>14-fold decrease in IC50 in HR-deficient vs. HR-proficient CHO cells). In a homologous recombination reporter assay, the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA; vorinostat), decreased HR repair events up to 85%. SAHA plus GCV produced synergistic cytotoxicity in U251tk human glioblastoma cells. Elucidation of the synergistic mechanism demonstrated that SAHA produced a concentration-dependent decrease in the HR proteins Rad51 and CtIP. GCV alone produced numerous Rad51 foci, demonstrating activation of HR. However, the addition of SAHA blocked GCV-induced Rad51 foci formation completely and increased γH2AX, a marker of DNA double strand breaks. SAHA plus GCV also produced synergistic cytotoxicity in HR-proficient CHO cells, but the combination was antagonistic or additive in HR-deficient CHO cells. Collectively, these data demonstrate that HR promotes survival with GCV and compromise of HR by SAHA results in synergistic cytotoxicity, revealing a new mechanism for enhancing anticancer activity with GCV. PMID:24231389

  17. Lactate Stimulates IL-4 and IL-13 Production in Activated HuT-78 T Lymphocytes Through a Process That Involves Monocarboxylate Transporters and Protein Hyperacetylation.

    PubMed

    Wagner, Waldemar; Ciszewski, Wojciech; Kania, Katarzyna; Dastych, Jarosław

    2016-05-01

    Mucosal cells of the gastrointestinal and female reproductive tract are constantly exposed to l- and d-lactate of bacterial origin. These compounds not only protect the host from pathogen colonization but also modulate the activity of mucosal immune cells, thereby playing an important role in inflammatory host responses. In this study, we demonstrated that exposure of anti-CD3/CD28 or phorbol 12-myristate 13-acetate (PMA)/ionomycin-activated HuT-78 T lymphocyte cells to 10-20 mM d-lactate significantly increased IL-4 and IL-13 production. Interestingly, the d-lactate isomer, exclusively produced locally by gut or cervicovaginal microbiota, was found to be more potent than the l-isomer. Interestingly, neither of the strong histone deacetylase inhibitors [structurally similar butyrate and suberoylanilide hydroxamic acid (SAHA)] was as effective in the stimulation of IL-13 production as d-lactate. Lactate transport through monocarboxylate transporters was required for lactate-enhanced IL-13 production in a manner that was not hydroxycarboxylic acid receptor 1-dependent. Furthermore, lactate treatment increased the acetylation of GATA-3, a critical regulator of Th1/Th2 differentiation and resulted in H3 and H4 histone hyperacetylation state, which is a characteristic feature of transcriptionally active chromatin. Both lactate isomers also enhanced IL4 and IL13 promoter-driven activity of reporter constructs in murine and human cells. Together, these findings demonstrate that a local millimolar concentration of l- or d-lactate may play an important role in the modulation of inflammation-mediated processes. PMID:27119568

  18. Targeting the integrated networks of aggresome formation, proteasome, and autophagy potentiates ER stress-mediated cell death in multiple myeloma cells

    PubMed Central

    MORIYA, SHOTA; KOMATSU, SEIICHIRO; YAMASAKI, KAHO; KAWAI, YUSUKE; KOKUBA, HIROKO; HIROTA, AYAKO; CHE, XIAO-FANG; INAZU, MASATO; GOTOH, AKIHIKO; HIRAMOTO, MASAKI; MIYAZAWA, KEISUKE

    2015-01-01

    The inhibitory effects of macrolide antibiotics including clarithromycin (CAM) on autophagy flux have been reported. Although a macrolide antibiotic exhibits no cytotoxicity, its combination with bortezomib (BZ), a proteasome inhibitor, for the simultaneous blocking of the ubiquitin (Ub)-proteasome and autophagy-lysosome pathways leads to enhanced multiple myeloma (MM) cell apoptosis induction via stress overloading of the endoplasmic reticulum (ER). As misfolded protein cargo is recruited by histone deacetylase 6 (HDAC6) to dynein motors for aggresome transport, serving to sequester misfolded proteins, we further investigated the cellular effects of targeting proteolytic pathways and aggresome formation concomitantly in MM cells. Pronounced apoptosis was induced by the combination of vorinostat [suberoylanilide hydroxamic acid (SAHA); potently inhibits HDAC6] with CAM and BZ compared with each reagent or a 2-reagent combination. CAM/BZ treatment induced vimentin positive-aggresome formation along with the accumulation of autolysosomes in the perinuclear region, whereas they were inhibited in the presence of SAHA. The SAHA/CAM/BZ combination treatment maximally upregulated genes related to ER stress including C/EBP homologous protein (CHOP). Similarly to MM cell lines, enhanced cytotoxicity with CHOP upregulation following SAHA/CAM/BZ treatment was shown by a wild-type murine embryonic fibroblast (MEF) cell line; however, a CHOP-deficient MEF cell line almost completely canceled this pronounced cytotoxicity. Knockdown of HDAC6 with siRNA exhibited further enhanced CAM/BZ-induced cytotoxicity and CHOP induction along with the cancellation of aggresome formation. Targeting the integrated networks of aggresome, proteasome, and autophagy is suggested to induce efficient ER stress-mediated apoptosis in MM cells. PMID:25422130

  19. SAHA-induced loss of tumor suppressor Pten gene promotes thyroid carcinogenesis in a mouse model.

    PubMed

    Zhu, Xuguang; Kim, Dong Wook; Zhao, Li; Willingham, Mark C; Cheng, Sheue-Yann

    2016-07-01

    Thyroid cancer is on the rise. Novel approaches are needed to improve the outcome of patients with recurrent and advanced metastatic thyroid cancers. FDA approval of suberoylanilide hydroxamic acid (SAHA; vorinostat), an inhibitor of histone deacetylase, for the treatment of hematological malignancies led to the clinical trials of vorinostat for advanced thyroid cancer. However, patients were resistant to vorinostat treatment. To understand the molecular basis of resistance, we tested the efficacy of SAHA in two mouse models of metastatic follicular thyroid cancer: Thrb(PV/PV) and Thrb(PV/PV)Pten(+/-) mice. In both, thyroid cancer is driven by overactivation of PI3K-AKT signaling. However, the latter exhibit more aggressive cancer progression due to haplodeficiency of the tumor suppressor, the Pten gene. SAHA had no effects on thyroid cancer progression in Thrb(PV/PV) mice, indicative of resistance to SAHA. Unexpectedly, thyroid cancer progressed in SAHA-treated Thrb(PV/PV)Pten(+/-) mice with accelerated occurrence of vascular invasion, anaplastic foci, and lung metastasis. Molecular analyses showed further activated PI3K-AKT in thyroid tumors of SAHA-treated Thrb(PV/PV)Pten(+/-) mice, resulting in the activated effectors, p-Rb, CDK6, p21(Cip1), p-cSrc, ezrin, and matrix metalloproteinases, to increase proliferation and invasion of tumor cells. Single-molecule DNA analysis indicated that the wild-type allele of the Pten gene was progressively lost, whereas carcinogenesis progressed in SAHA-treated Thrb(PV/PV)Pten(+/-) mice. Thus, this study has uncovered a novel mechanism by which SAHA-induced loss of the tumor suppressor Pten gene to promote thyroid cancer progression. Effectors downstream of the Pten loss-induced signaling may be potential targets to overcome resistance of thyroid cancer to SAHA. PMID:27267120

  20. Thymosin-β4 is a determinant of drug sensitivity for Fenretinide and Vorinostat combination therapy in neuroblastoma.

    PubMed

    Cheung, Belamy B; Tan, Owen; Koach, Jessica; Liu, Bing; Shum, Michael S Y; Carter, Daniel R; Sutton, Selina; Po'uha, Sela T; Chesler, Louis; Haber, Michelle; Norris, Murray D; Kavallaris, Maria; Liu, Tao; O'Neill, Geraldine M; Marshall, Glenn M

    2015-08-01

    Retinoids are an important component of neuroblastoma therapy at the stage of minimal residual disease, yet 40-50% of patients treated with 13-cis-retinoic acid (13-cis-RA) still relapse, indicating the need for more effective retinoid therapy. Vorinostat, or Suberoylanilide hydroxamic acid (SAHA), is a potent inhibitor of histone deacetylase (HDAC) classes I & II and has antitumor activity in vitro and in vivo. Fenretinide (4-HPR) is a synthetic retinoid which acts on cancer cells through both nuclear retinoid receptor and non-receptor mechanisms. In this study, we found that the combination of 4-HPR + SAHA exhibited potent cytotoxic effects on neuroblastoma cells, much more effective than 13-cis-RA + SAHA. The 4-HPR + SAHA combination induced caspase-dependent apoptosis through activation of caspase 3, reduced colony formation and cell migration in vitro, and tumorigenicity in vivo. The 4-HPR and SAHA combination significantly increased mRNA expression of thymosin-beta-4 (Tβ4) and decreased mRNA expression of retinoic acid receptor α (RARα). Importantly, the up-regulation of Tβ4 and down-regulation of RARα were both necessary for the 4-HPR + SAHA cytotoxic effect on neuroblastoma cells. Moreover, Tβ4 knockdown in neuroblastoma cells increased cell migration and blocked the effect of 4-HPR + SAHA on cell migration and focal adhesion formation. In primary human neuroblastoma tumor tissues, low expression of Tβ4 was associated with metastatic disease and predicted poor patient prognosis. Our findings demonstrate that Tβ4 is a novel therapeutic target in neuroblastoma, and that 4-HPR + SAHA is a potential therapy for the disease. PMID:25963741

  1. Nicotine primes the effect of cocaine on the induction of LTP in the amygdala.

    PubMed

    Huang, Yan-You; Kandel, Denise B; Kandel, Eric R; Levine, Amir

    2013-11-01

    In human populations, there is a well-defined sequence of involvement in drugs of abuse, in which the use of nicotine or alcohol precedes the use of marijuana, which in turn, precedes the use of cocaine. The term "Gateway Hypothesis" describes this developmental sequence of drug involvement. In prior work, we have developed a mouse model to study the underlying metaplastic behavioral, cellular and molecular mechanisms by which exposure to one drug, namely nicotine, affects the response to another drug, namely cocaine. We found that nicotine enhances significantly the changes in synaptic plasticity in the striatum induced by cocaine (Levine et al., 2011). Here we ask: does the metaplastic effect of nicotine on cocaine also apply in the amygdala, a brain region that is involved in the orchestration of emotions and in drug addiction? We find that pretreatment with nicotine enhances long-term synaptic potentiation (LTP) in response to cocaine in the amygdala. Both short-term (1 day) and long-term (7 days) pre-exposure to nicotine facilitate the induction of LTP by cocaine. The effect of nicotine on LTP is unidirectional; exposure to nicotine following treatment with cocaine is ineffective. This metaplastic effect of nicotine on cocaine is long lasting but reversible. The facilitation of LTP can be obtained for 24 but not 40 days after cessation of nicotine. As is the case in the striatum, pretreatment with Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, simulates the priming effect of nicotine. These results provide further evidence that the priming effect of nicotine may be achieved, at least partially, by the inhibition of histone acetylation and indicate that the amygdala appears to be an important brain structure for the processing of the metaplastic effect of nicotine on cocaine. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'. PMID:23597510

  2. Selected Drugs with Reported Secondary Cell-Differentiating Capacity Prime Latent HIV-1 Infection for Reactivation

    PubMed Central

    Shishido, Takao; Wolschendorf, Frank; Duverger, Alexandra; Wagner, Frederic; Kappes, John; Jones, Jennifer

    2012-01-01

    Reactivation of latent HIV-1 infection is considered our best therapeutic means to eliminate the latent HIV-1 reservoir. Past therapeutic attempts to systemically trigger HIV-1 reactivation using single drugs were unsuccessful. We thus sought to identify drug combinations consisting of one component that would lower the HIV-1 reactivation threshold and a synergistic activator. With aclacinomycin and dactinomycin, we initially identified two FDA-approved drugs that primed latent HIV-1 infection in T cell lines and in primary T cells for reactivation and facilitated complete reactivation at the population level. This effect was correlated not with the reported primary drug effects but with the cell-differentiating capacity of the drugs. We thus tested other cell-differentiating drugs/compounds such as cytarabine and aphidicolin and found that they also primed latent HIV-1 infection for reactivation. This finding extends the therapeutic promise of N′-N′-hexamethylene-bisacetamide (HMBA), another cell-differentiating agent that has been reported to trigger HIV-1 reactivation, into the group of FDA-approved drugs. To this end, it is also noteworthy that suberoylanilide hydroxamic acid (SAHA), a polar compound that was initially developed as a second-generation cell-differentiating agent using HMBA as a structural template and which is now marketed as the histone deacetylase (HDAC) inhibitor vorinostat, also has been reported to trigger HIV-1 reactivation. Our findings suggest that drugs with primary or secondary cell-differentiating capacity should be revisited as HIV-1-reactivating agents as some could potentially be repositioned as candidate drugs to be included in an induction therapy to trigger HIV-1 reactivation. PMID:22696646

  3. Selected drugs with reported secondary cell-differentiating capacity prime latent HIV-1 infection for reactivation.

    PubMed

    Shishido, Takao; Wolschendorf, Frank; Duverger, Alexandra; Wagner, Frederic; Kappes, John; Jones, Jennifer; Kutsch, Olaf

    2012-09-01

    Reactivation of latent HIV-1 infection is considered our best therapeutic means to eliminate the latent HIV-1 reservoir. Past therapeutic attempts to systemically trigger HIV-1 reactivation using single drugs were unsuccessful. We thus sought to identify drug combinations consisting of one component that would lower the HIV-1 reactivation threshold and a synergistic activator. With aclacinomycin and dactinomycin, we initially identified two FDA-approved drugs that primed latent HIV-1 infection in T cell lines and in primary T cells for reactivation and facilitated complete reactivation at the population level. This effect was correlated not with the reported primary drug effects but with the cell-differentiating capacity of the drugs. We thus tested other cell-differentiating drugs/compounds such as cytarabine and aphidicolin and found that they also primed latent HIV-1 infection for reactivation. This finding extends the therapeutic promise of N'-N'-hexamethylene-bisacetamide (HMBA), another cell-differentiating agent that has been reported to trigger HIV-1 reactivation, into the group of FDA-approved drugs. To this end, it is also noteworthy that suberoylanilide hydroxamic acid (SAHA), a polar compound that was initially developed as a second-generation cell-differentiating agent using HMBA as a structural template and which is now marketed as the histone deacetylase (HDAC) inhibitor vorinostat, also has been reported to trigger HIV-1 reactivation. Our findings suggest that drugs with primary or secondary cell-differentiating capacity should be revisited as HIV-1-reactivating agents as some could potentially be repositioned as candidate drugs to be included in an induction therapy to trigger HIV-1 reactivation. PMID:22696646

  4. Vorinostat with Sustained Exposure and High Solubility in Poly(ethylene glycol)-b-poly(DL-lactic acid) Micelle Nanocarriers: Characterization and Effects on Pharmacokinetics in Rat Serum and Urine

    PubMed Central

    Mohamed, Elham A.; Zhao, Yunqi; Meshali, Mahasen M.; Remsberg, Connie M.; Borg, Thanaa M.; Foda, Abdel Monem M.; Takemoto, Jody K.; Sayre, Casey; Martinez, Stephanie; Davies, Neal M.; Forrest, M. Laird

    2015-01-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anti-cancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat’s pharmacokinetics in rats were investigated after intravenous (i.v.) (10 mg/kg) and oral (50 mg/kg) micellar administrations and compared to a conventional PEG400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 mg/ml to 8.15 ± 0.60 mg/ml and 10.24 ± 0.92 mg/ml at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 nm and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19 %, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the oral and intravenous pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. PMID:22806441

  5. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine.

    PubMed

    Mohamed, Elham A; Zhao, Yunqi; Meshali, Mahasen M; Remsberg, Connie M; Borg, Thanaa M; Foda, Abdel Monem M; Takemoto, Jody K; Sayre, Casey L; Martinez, Stephanie E; Davies, Neal M; Forrest, M Laird

    2012-10-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anticancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat's pharmacokinetics in rats was investigated after intravenous (i.v.) (10 mg/kg) and oral (p.o.) (50 mg/kg) micellar administrations and compared with a conventional polyethylene glycol 400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 to 8.15 ± 0.60 and 10.24 ± 0.92 mg/mL at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19%, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the p.o. and i.v. pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. PMID:22806441

  6. HIV pharmacotherapy: A review of integrase inhibitors.

    PubMed

    Wong, Elaine; Trustman, Nathan; Yalong, April

    2016-02-01

    Integrase strand transfer inhibitors (INSTIs) are a class of antiretroviral agents used to treat HIV. These drugs--raltegravir, elvitegravir, and dolutegravir--are preferred options for treatment-naïve patients when used in combination with two nucleoside reverse transcriptase inhibitors. Based on clinical trials, INSTIs have been proven to be effective with minimal safety concerns. This article reviews the pharmacologic profile, role in therapy, and safety and efficacy of each agent. PMID:26818644

  7. Influenza virus neuraminidase: structure, antibodies, and inhibitors.

    PubMed Central

    Colman, P. M.

    1994-01-01

    The determination of the 3-dimensional structure of the influenza virus neuraminidase in 1983 has served as a platform for understanding interactions between antibodies and protein antigens, for investigating antigenic variation in influenza viruses, and for devising new inhibitors of the enzyme. That work is reviewed here, together with more recent developments that have resulted in one of the inhibitors entering clinical trials as an anti-influenza virus drug. PMID:7849585

  8. Heterocyclics as corrosion inhibitors for acid media

    SciTech Connect

    Ajmal, M.; Khan, M.A.W.; Ahmad, S.; Quraishi, M.A.

    1996-12-01

    The available literature on the use of heterocyclic compounds as corrosion inhibitors in acid media has been reviewed. It has been noted that the workers in this field have either used sulfur or nitrogen containing heterocyclic compounds for studying inhibition action. The authors have synthesized compounds containing sulfur and nitrogen both in the same ring and studied their inhibition action in acid media. These compounds were found to be better inhibitors than those containing either atoms alone.

  9. On the selectivity of neuronal NOS inhibitors

    PubMed Central

    Pigott, B; Bartus, K; Garthwaite, J

    2013-01-01

    Background and Purpose Isoform-selective inhibitors of NOS enzymes are desirable as research tools and for potential therapeutic purposes. Vinyl-l-N-5-(1-imino-3-butenyl)-l-ornithine (l-VNIO) and Nω-propyl-l-arginine (NPA) purportedly have good selectivity for neuronal over endothelial NOS under cell-free conditions, as does N-[(3-aminomethyl)benzyl]acetamidine (1400W), which is primarily an inducible NOS inhibitor. Although used in numerous investigations in vitro and in vivo, there have been surprisingly few tests of the potency and selectivity of these compounds in cells. This study addresses this deficiency and evaluates the activity of new and potentially better pyrrolidine-based compounds. Experimental Approach The inhibitors were evaluated by measuring their effect on NMDA-evoked cGMP accumulation in rodent hippocampal slices, a response dependent on neuronal NOS, and ACh-evoked cGMP synthesis in aortic rings of the same animals, an endothelial NOS-dependent phenomenon. Key Results l-VNIO, NPA and 1400W inhibited responses in both tissues but all showed less than fivefold higher potency in the hippocampus than in the aorta, implying useless selectivity for neuronal over endothelial NOS at the tissue level. In addition, the inhibitors had a 25-fold lower potency in the hippocampus than reported previously, the IC50 values being approximately 1 μM for l-VNIO and NPA, and 150 μM for 1400W. Pyrrolidine-based inhibitors were similarly weak and nonselective. Conclusion and Implications The results suggest that l-VNIO, NPA and 1400W, as well as the newer pyrrolidine-type inhibitors, cannot be used as neuronal NOS inhibitors in cells without stringent verification. The identification of inhibitors with useable selectivity in cells and tissues remains an important goal. PMID:23072468

  10. Endogenous angiogenesis inhibitors and their therapeutic implications.

    PubMed

    Cao, Y

    2001-04-01

    A number of endogenous inhibitors targeting the tumor vasculature have recently been identified using in vitro and in vivo antiangiogenesis models. While many of these angiogenesis inhibitors display a broad spectrum of biological actions on several systems in the body, several inhibitors including angiostatin, endostatin, and serpin antithrombin seem to act specifically on the proliferating endothelial cell compartment of the newly formed blood vessels. The discovery of these specific endothelial inhibitors not only increases our understanding of the functions of these molecules in the regulation of physiological and pathological angiogenesis, but may also provide an important therapeutic strategy for the treatment of cancer and other angiogenesis dependent diseases, including diabetic retinopathy and chronic inflammations. Systemic administration of these angiogenesis inhibitors in animals significantly suppresses the growth of a variety of tumors and their metastases. However, their production as functional recombinant proteins has been proven to be difficult. In addition, high dosages of these inhibitors are required to suppress tumor growth in animal studies. Other disadvantages of the antiangiogenic protein therapy include repeated injections, prolonged treatment, transmission of toxins and infectious particles, and high cost for manufacturing large amounts of protein molecules. Thus, alternative strategies need to be developed in order to improve the clinical settings of antiangiogenic therapy. Developments of these strategies are ongoing and they include identification of more potent inhibitors, antiangiogenic gene therapy, improvement of protein/compound half-lives in the circulation, increase of their concentrations at the disease location, and combinatorial therapies with approaches including chemotherapy, radiotherapy, and immunotherapy. Despite the above-mentioned disadvantages, a few inhibitors have entered into the early stages of clinical trials and

  11. Update on TNF Inhibitors in Dermatology.

    PubMed

    Sobell, Jeffrey M

    2016-06-01

    Emerging data describe new potential indications for tumor necrosis factor (TNF) inhibitors in dermatology, including pediatric psoriasis and hidradenitis suppurativa. New biosimilar TNF agents are in late stages of development and may be available in the United States in the near future. Biosimilar agents are similar but not identical to available TNF inhibitors, and approval requires extensive analytic, toxicity, pharmacokinetic, pharmacodynamic, and clinical testing. Semin Cutan Med Surg 35(supp6):S104-S106. PMID:27537073

  12. Aromatase inhibitors in the treatment of endometriosis.

    PubMed

    Słopień, Radosław; Męczekalski, Błażej

    2016-03-01

    Endometriosis is a chronic inflammatory condition in which foci of endometrial tissue grow outside of the uterine cavity. Endometriosis was estimated to affect 176 million women of childbearing potential all over the world in 2010. The presence of extrauterine endometrial tissue is associated with pain and infertility. Typical symptoms of endometriosis include dysmenorrhoea, dyspareunia, heavy menstrual periods (menorrhagia), pelvic pain that is not related to menstrual cycles, dysuria, and chronic fatigue. Medical treatments for endometriosis include combined oral contraceptive pills, danazol, gestrinone, medroxyprogesterone acetate, and gonadotropin-releasing hormone agonists (aGnRHs). A new class of medications called aromatase inhibitors has been identified in recent years as potential therapeutic agents for endometriosis. This article provides general information about aromatase inhibitors, their use in gynaecology, and their adverse effects. In particular, the paper discusses the use of aromatase inhibitors in the treatment of endometriosis in postmenopausal women. Unlike oral contraceptives, gestagens, aGnRHs, and danazol, which suppress ovarian oestrogen synthesis, aromatase inhibitors inhibit mainly extra-ovarian synthesis of oestrogens. Therefore, the use of aromatase inhibitors seems to be particularly relevant in older patients, as most of the body's oestrogen is produced outside the ovaries after menopause. The paper discusses also the use of aromatase inhibitors in the treatment of pain associated with endometriosis and infertility caused by endometriosis. PMID:27095958

  13. FERRITIN H INDUCTION BY HISTONE DEACETYLASE INHIBITORS

    PubMed Central

    Wang, Wei; Di, Xiumin; Torti, Suzy V.; Torti, Frank M.

    2010-01-01

    Because both iron deficiency and iron excess are deleterious to normal cell function, the intracellular level of iron must be tightly controlled. Ferritin, an iron binding protein, regulates iron balance by storing iron in a bioavailable but non-toxic form. Ferritin protein comprises two subunits: ferritin H, which contains ferroxidase activity, and ferritin L. Here we demonstrate that ferritin H mRNA and protein are induced by histone deacetylase inhibitors (HDAC inhibitors), a promising class of anti-cancer drugs, in cultured human cancer cells. Deletion analysis and EMSA assays reveal that the induction of ferritin H occurs at a transcriptional level via Sp1 and NF-Y binding sites near the transcriptional start site of the human ferritin H promoter. Classically, HDAC inhibitors modulate gene expression by increasing histone acetylation. However, ChIP assays demonstrate that HDAC inhibitors induce ferritin H transcription by increasing NF-Y binding to the ferritin H promoter without changes in histone acetylation. These results identify ferritin H as a new target of HDAC inhibitors, and recruitment of NF-Y as a novel mechanism of action of HDAC inhibitors. PMID:20385107

  14. Discovery of Novel Haloalkane Dehalogenase Inhibitors

    PubMed Central

    Buryska, Tomas; Daniel, Lukas; Kunka, Antonin; Brezovsky, Jan; Damborsky, Jiri

    2016-01-01

    Haloalkane dehalogenases (HLDs) have recently been discovered in a number of bacteria, including symbionts and pathogens of both plants and humans. However, the biological roles of HLDs in these organisms are unclear. The development of efficient HLD inhibitors serving as molecular probes to explore their function would represent an important step toward a better understanding of these interesting enzymes. Here we report the identification of inhibitors for this enzyme family using two different approaches. The first builds on the structures of the enzymes' known substrates and led to the discovery of less potent nonspecific HLD inhibitors. The second approach involved the virtual screening of 150,000 potential inhibitors against the crystal structure of an HLD from the human pathogen Mycobacterium tuberculosis H37Rv. The best inhibitor exhibited high specificity for the target structure, with an inhibition constant of 3 μM and a molecular architecture that clearly differs from those of all known HLD substrates. The new inhibitors will be used to study the natural functions of HLDs in bacteria, to probe their mechanisms, and to achieve their stabilization. PMID:26773086

  15. PARP1 Inhibitors: antitumor drug design

    PubMed Central

    Malyuchenko, N. V.; Kotova, E. Yu.; Kulaeva, O. I.; Kirpichnikov, M. P.; Studitskiy, V. M.

    2015-01-01

    The poly (ADP-ribose) polymerase 1 (PARP1) enzyme is one of the promising molecular targets for the discovery of antitumor drugs. PARP1 is a common nuclear protein (1–2 million molecules per cell) serving as a “sensor” for DNA strand breaks. Increased PARP1 expression is sometimes observed in melanomas, breast cancer, lung cancer, and other neoplastic diseases. The PARP1 expression level is a prognostic indicator and is associated with a poor survival prognosis. There is evidence that high PARP1 expression and treatment-resistance of tumors are correlated. PARP1 inhibitors are promising antitumor agents, since they act as chemo- and radiosensitizers in the conventional therapy of malignant tumors. Furthermore, PARP1 inhibitors can be used as independent, effective drugs against tumors with broken DNA repair mechanisms. Currently, third-generation PARP1 inhibitors are being developed, many of which are undergoing Phase II clinical trials. In this review, we focus on the properties and features of the PARP1 inhibitors identified in preclinical and clinical trials. We also describe some problems associated with the application of PARP1 inhibitors. The possibility of developing new PARP1 inhibitors aimed at DNA binding and transcriptional activity rather than the catalytic domain of the protein is discussed. PMID:26483957

  16. Discovery of Novel Haloalkane Dehalogenase Inhibitors.

    PubMed

    Buryska, Tomas; Daniel, Lukas; Kunka, Antonin; Brezovsky, Jan; Damborsky, Jiri; Prokop, Zbynek

    2016-03-01

    Haloalkane dehalogenases (HLDs) have recently been discovered in a number of bacteria, including symbionts and pathogens of both plants and humans. However, the biological roles of HLDs in these organisms are unclear. The development of efficient HLD inhibitors serving as molecular probes to explore their function would represent an important step toward a better understanding of these interesting enzymes. Here we report the identification of inhibitors for this enzyme family using two different approaches. The first builds on the structures of the enzymes' known substrates and led to the discovery of less potent nonspecific HLD inhibitors. The second approach involved the virtual screening of 150,000 potential inhibitors against the crystal structure of an HLD from the human pathogen Mycobacterium tuberculosis H37Rv. The best inhibitor exhibited high specificity for the target structure, with an inhibition constant of 3 μM and a molecular architecture that clearly differs from those of all known HLD substrates. The new inhibitors will be used to study the natural functions of HLDs in bacteria, to probe their mechanisms, and to achieve their stabilization. PMID:26773086

  17. Aromatase inhibitors in the treatment of endometriosis

    PubMed Central

    Męczekalski, Błażej

    2016-01-01

    Endometriosis is a chronic inflammatory condition in which foci of endometrial tissue grow outside of the uterine cavity. Endometriosis was estimated to affect 176 million women of childbearing potential all over the world in 2010. The presence of extrauterine endometrial tissue is associated with pain and infertility. Typical symptoms of endometriosis include dysmenorrhoea, dyspareunia, heavy menstrual periods (menorrhagia), pelvic pain that is not related to menstrual cycles, dysuria, and chronic fatigue. Medical treatments for endometriosis include combined oral contraceptive pills, danazol, gestrinone, medroxyprogesterone acetate, and gonadotropin-releasing hormone agonists (aGnRHs). A new class of medications called aromatase inhibitors has been identified in recent years as potential therapeutic agents for endometriosis. This article provides general information about aromatase inhibitors, their use in gynaecology, and their adverse effects. In particular, the paper discusses the use of aromatase inhibitors in the treatment of endometriosis in postmenopausal women. Unlike oral contraceptives, gestagens, aGnRHs, and danazol, which suppress ovarian oestrogen synthesis, aromatase inhibitors inhibit mainly extra-ovarian synthesis of oestrogens. Therefore, the use of aromatase inhibitors seems to be particularly relevant in older patients, as most of the body's oestrogen is produced outside the ovaries after menopause. The paper discusses also the use of aromatase inhibitors in the treatment of pain associated with endometriosis and infertility caused by endometriosis. PMID:27095958

  18. Potent pyrrolidine- and piperidine-based BACE-1 inhibitors

    SciTech Connect

    Iserloh, U.; Wu, Y.; Cumming, J.N.; Pan, J.; Wang, L.Y.; Stamford, A.W.; Kennedy, M.E.; Kuvelkar, R.; Chen, X.; Parker, E.M.; Strickland, C.; Voigt, J.

    2008-08-18

    Based on lead compound 1 identified from the patent literature, we developed novel patentable BACE-1 inhibitors by introducing a cyclic amine scaffold. Extensive SAR studies on both pyrrolidines and piperidines ultimately led to inhibitor 2f, one of the most potent inhibitors synthesized to date. The discovery and development of novel BACE-1 inhibitors incorporating a cyclic amine scaffold is described.

  19. Corrosion inhibitors for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1978-01-01

    Inhibitors which appeared promising in previous tests and additional inhibitors including several proprietary products were evaluated. Evaluation of the inhibitors was based on corrosion protection afforded an aluminum-mild steel-copper-stainless steel assembly in a hot corrosive water. Of the inhibitors tested two were found to be effective and show promise for protecting multimetallic solar heating systems.

  20. Selective serotonin reuptake inhibitor exposure.

    PubMed

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Many antidepressants inhibit serotonin or norepinephrine reuptake or both to achieve their clinical effect. The selective serotonin reuptake inhibitor class of antidepressants (SSRIs) includes citalopram, escitalopram (active enantiomer of citalopram), fluoxetine, fluvoxamine, paroxetine, and sertraline. The SSRIs are as effective as tricyclic antidepressants in treatment of major depression with less significant side effects. As a result, they have become the largest class of medications prescribed to humans for depression. They are also used to treat obsessive-compulsive disorder, panic disorders, alcoholism, obesity, migraines, and chronic pain. An SSRI (fluoxetine) has been approved for veterinary use in treatment of canine separation anxiety. SSRIs act specifically on synaptic serotonin concentrations by blocking its reuptake in the presynapse and increasing levels in the presynaptic membrane. Clinical signs of SSRI overdose result from excessive amounts of serotonin in the central nervous system. These signs include nausea, vomiting, mydriasis, hypersalivation, and hyperthermia. Clinical signs are dose dependent and higher dosages may result in the serotonin syndrome that manifests itself as ataxia, tremors, muscle rigidity, hyperthermia, diarrhea, and seizures. Current studies reveal no increase in appearance of any specific clinical signs of serotonin toxicity with regard to any SSRI medication. In people, citalopram has been reported to have an increased risk of electrocardiographic abnormalities. Diagnosis of SSRI poisoning is based on history, clinical signs, and response to therapy. No single clinical test is currently available to confirm SSRI toxicosis. The goals of treatment in this intoxication are to support the animal, prevent further absorption of the drug, support the central nervous system, control hyperthermia, and halt any seizure activity. The relative safety of the SSRIs in overdose despite the occurrence of serotonin syndrome makes them

  1. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    SciTech Connect

    Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon; Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora; Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun; Park, In-Chul; Lee, Jin Kyung

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  2. SGLT2 Inhibitors and the Diabetic Kidney.

    PubMed

    Fioretto, Paola; Zambon, Alberto; Rossato, Marco; Busetto, Luca; Vettor, Roberto

    2016-08-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. Blood glucose and blood pressure control reduce the risk of developing this complication; however, once DN is established, it is only possible to slow progression. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, the most recent glucose-lowering oral agents, may have the potential to exert nephroprotection not only through improving glycemic control but also through glucose-independent effects, such as blood pressure-lowering and direct renal effects. It is important to consider, however, that in patients with impaired renal function, given their mode of action, SGLT2 inhibitors are less effective in lowering blood glucose. In patients with high cardiovascular risk, the SGLT2 inhibitor empagliflozin lowered the rate of cardiovascular events, especially cardiovascular death, and substantially reduced important renal outcomes. Such benefits on DN could derive from effects beyond glycemia. Glomerular hyperfiltration is a potential risk factor for DN. In addition to the activation of the renin-angiotensin-aldosterone system, renal tubular factors, including SGLT2, contribute to glomerular hyperfiltration in diabetes. SGLT2 inhibitors reduce sodium reabsorption in the proximal tubule, causing, through tubuloglomerular feedback, afferent arteriole vasoconstriction and reduction in hyperfiltration. Experimental studies showed that SGLT2 inhibitors reduced hyperfiltration and decreased inflammatory and fibrotic responses of proximal tubular cells. SGLT2 inhibitors reduced glomerular hyperfiltration in patients with type 1 diabetes, and in patients with type 2 diabetes, they caused transient acute reductions in glomerular filtration rate, followed by a progressive recovery and stabilization of renal function. Interestingly, recent studies consistently demonstrated a reduction in albuminuria. Although these data are promising, only dedicated renal outcome trials will clarify whether

  3. Three Decades of β-Lactamase Inhibitors

    PubMed Central

    Drawz, Sarah M.; Bonomo, Robert A.

    2010-01-01

    Summary: Since the introduction of penicillin, β-lactam antibiotics have been the antimicrobial agents of choice. Unfortunately, the efficacy of these life-saving antibiotics is significantly threatened by bacterial β-lactamases. β-Lactamases are now responsible for resistance to penicillins, extended-spectrum cephalosporins, monobactams, and carbapenems. In order to overcome β-lactamase-mediated resistance, β-lactamase inhibitors (clavulanate, sulbactam, and tazobactam) were introduced into clinical practice. These inhibitors greatly enhance the efficacy of their partner β-lactams (amoxicillin, ampicillin, piperacillin, and ticarcillin) in the treatment of serious Enterobacteriaceae and penicillin-resistant staphylococcal infections. However, selective pressure from excess antibiotic use accelerated the emergence of resistance to β-lactam-β-lactamase inhibitor combinations. Furthermore, the prevalence of clinically relevant β-lactamases from other classes that are resistant to inhibition is rapidly increasing. There is an urgent need for effective inhibitors that can restore the activity of β-lactams. Here, we review the catalytic mechanisms of each β-lactamase class. We then discuss approaches for circumventing β-lactamase-mediated resistance, including properties and characteristics of mechanism-based inactivators. We next highlight the mechanisms of action and salient clinical and microbiological features of β-lactamase inhibitors. We also emphasize their therapeutic applications. We close by focusing on novel compounds and the chemical features of these agents that may contribute to a “second generation” of inhibitors. The goal for the next 3 decades will be to design inhibitors that will be effective for more than a single class of β-lactamases. PMID:20065329

  4. Polyphenol oxidase inhibitor(s) from German cockroach (Blattella germanica) extract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An extract from German cockroach appears effective in inhibiting browning on apples and potatoes. Successful identification of inhibitor(s) of PPO from German cockroach would be useful to the fruit and vegetable segments of the food industry, due to the losses they incur from enzymatic browning. Ide...

  5. Inhibitors Selective for Mycobacterial Versus Human Proteasomes

    SciTech Connect

    Lin, G.; Li, D; Sorio de Carvalho, L; Deng, H; Tao, H; Vogt, G; Wu, K; Schneider, J; Chidawanyika, T; et. al.

    2009-01-01

    Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-one compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.

  6. Inhibitors in LPE growth of garnets

    NASA Astrophysics Data System (ADS)

    De Roode, W. H.; Robertson, J. M.

    1983-09-01

    The growth rate of LPE growth garnets can be reduced considerably by the addition of small amounts of group II oxides. This effect can be helpful for the controlled growth of very thin garnet films for sub-micron bubbles and optical devices. The largest effect was found with the addition of Mg 2+ and Ca 2+, resulting in a maximum decrease of the growth rate of approximately 70%. A semi-empirical formula was used to describe the growth rate as a function of the dipping temperature. The change in the growth rate on the addition of the inhibitor ion at constant temperature was found to be proportional to ( aMO)/( aMO+2 Ln 2O 3), where M is a group II element, Ln 2O 2 is the sum of the yttrium and RE oxides in the melt, and a is the inhibitor factor. The value of the inhibitor factor depends on both the inhibitor ion as well as the composition of the garnet. The lowering of the growth rate on the addition of an inhibitor ion is explained by the introduction of an extra growth resistance due to the charge compensation mechanism of the divalent ions. The influence of the different charge compensation possibilities in the garnet system is examined and the relative importance of these possibilities for charge compensation is discussed.

  7. Clinical Development of Immune Checkpoint Inhibitors.

    PubMed

    Ito, Ayumu; Kondo, Shunsuke; Tada, Kohei; Kitano, Shigehisa

    2015-01-01

    Recent progress in cancer immunotherapy has been remarkable. Most striking are the clinical development and approval of immunomodulators, also known as immune checkpoint inhibitors. These monoclonal antibodies (mAb) are directed to immune checkpoint molecules, which are expressed on immune cells and mediate signals to attenuate excessive immune reactions. Although mAbs targeting tumor associated antigens, such as anti-CD20 mAb and anti-Her2 mAb, directly recognize tumor cells and induce cell death, immune checkpoint inhibitors restore and augment the antitumor immune activities of cytotoxic T cells by blocking immune checkpoint molecules on T cells or their ligands on antigen presenting and tumor cells. Based on preclinical data, many clinical trials have demonstrated the acceptable safety profiles and efficacies of immune checkpoint inhibitors in a variety of cancers. The first in class approved immune checkpoint inhibitor is ipilimumab, an anti-CTLA-4 (cytotoxic T lymphocyte antigen-4) mAb. Two pivotal phase III randomized controlled trials demonstrated a survival benefit in patients with metastatic melanoma. In 2011, the US Food and Drug Administration (FDA) approved ipilimumab for metastatic melanoma. Several clinical trials have since investigated new agents, alone and in combination, for various cancers. In this review, we discuss the current development status of and future challenges in utilizing immune checkpoint inhibitors. PMID:26161407

  8. Clinical Development of Immune Checkpoint Inhibitors

    PubMed Central

    Ito, Ayumu; Kondo, Shunsuke; Tada, Kohei; Kitano, Shigehisa

    2015-01-01

    Recent progress in cancer immunotherapy has been remarkable. Most striking are the clinical development and approval of immunomodulators, also known as immune checkpoint inhibitors. These monoclonal antibodies (mAb) are directed to immune checkpoint molecules, which are expressed on immune cells and mediate signals to attenuate excessive immune reactions. Although mAbs targeting tumor associated antigens, such as anti-CD20 mAb and anti-Her2 mAb, directly recognize tumor cells and induce cell death, immune checkpoint inhibitors restore and augment the antitumor immune activities of cytotoxic T cells by blocking immune checkpoint molecules on T cells or their ligands on antigen presenting and tumor cells. Based on preclinical data, many clinical trials have demonstrated the acceptable safety profiles and efficacies of immune checkpoint inhibitors in a variety of cancers. The first in class approved immune checkpoint inhibitor is ipilimumab, an anti-CTLA-4 (cytotoxic T lymphocyte antigen-4) mAb. Two pivotal phase III randomized controlled trials demonstrated a survival benefit in patients with metastatic melanoma. In 2011, the US Food and Drug Administration (FDA) approved ipilimumab for metastatic melanoma. Several clinical trials have since investigated new agents, alone and in combination, for various cancers. In this review, we discuss the current development status of and future challenges in utilizing immune checkpoint inhibitors. PMID:26161407

  9. Inhibitors of the Metalloproteinase Anthrax Lethal Factor.

    PubMed

    Goldberg, Allison B; Turk, Benjamin E

    2016-01-01

    Bacillus anthracis, a rod shaped, spore forming, gram positive bacteria, is the etiological agent of anthrax. B. anthracis virulence is partly attributable to two secreted bipartite protein toxins, which act inside host cells to disrupt signaling pathways important for host defense against infection. These toxins may also directly contribute to mortality in late stage infection. The zinc-dependent metalloproteinase anthrax lethal factor (LF) is a critical component of one of these protein toxins and a prime target for inhibitor development to produce anthrax therapeutics. Here, we describe recent efforts to identify specific and potent LF inhibitors. Derivatization of peptide substrate analogs bearing zinc-binding groups has produced potent and specific LF inhibitors, and X-ray crystallography of LFinhibitor complexes has provided insight into features required for high affinity binding. Novel inhibitor scaffolds have been identified through several approaches, including fragment-based drug discovery, virtual screening, and highthroughput screening of diverse compound libraries. Lastly, efforts to discover LF inhibitors have led to the development of new screening strategies, such as the use of full-length proteins as substrates, that may prove useful for other proteases as well. Overall, these efforts have led to a collection of chemically and mechanistically diverse molecules capable of inhibiting LF activity in vitro and in cells, as well as in animal models of anthrax infection. PMID:27072692

  10. Monoamine Reuptake Inhibitors in Parkinson's Disease

    PubMed Central

    Huot, Philippe; Fox, Susan H.; Brotchie, Jonathan M.

    2015-01-01

    The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia. PMID:25810948

  11. Novel hemagglutinin-based influenza virus inhibitors

    PubMed Central

    Shen, Xintian; Zhang, Xuanxuan

    2013-01-01

    Influenza virus has caused seasonal epidemics and worldwide pandemics, which caused tremendous loss of human lives and socioeconomics. Nowadays, only two classes of anti-influenza drugs, M2 ion channel inhibitors and neuraminidase inhibitors respectively, are used for prophylaxis and treatment of influenza virus infection. Unfortunately, influenza virus strains resistant to one or all of those drugs emerge frequently. Hemagglutinin (HA), the glycoprotein in influenza virus envelope, plays a critical role in viral binding, fusion and entry processes. Therefore, HA is a promising target for developing anti-influenza drugs, which block the initial entry step of viral life cycle. Here we reviewed recent understanding of conformational changes of HA in protein folding and fusion processes, and the discovery of HA-based influenza entry inhibitors, which may provide more choices for preventing and controlling potential pandemics caused by multi-resistant influenza viruses. PMID:23977436

  12. Functional non-nucleoside adenylyl cyclase inhibitors.

    PubMed

    Lelle, Marco; Hameed, Abdul; Ackermann, Lisa-Maria; Kaloyanova, Stefka; Wagner, Manfred; Berisha, Filip; Nikolaev, Viacheslav O; Peneva, Kalina

    2015-05-01

    In this study, we describe the synthesis of novel functional non-nucleoside adenylyl cyclase inhibitors, which can be easily modified with thiol containing biomolecules such as tumour targeting structures. The linkage between inhibitor and biomolecule contains cleavable bonds to enable efficient intracellular delivery in the reductive milieu of the cytosol as well as in the acidic environment within endosomes and lysosomes. The suitability of this synthetic approach was shown by the successful bioconjugation of a poor cell-permeable inhibitor with a cell-penetrating peptide. Additionally, we have demonstrated the excellent inhibitory effect of the compounds presented here in a live-cell Förster resonance energy transfer-based assay in human embryonic kidney cells. PMID:25319071

  13. Serotonin norepinephrine reuptake inhibitors: a pharmacological comparison.

    PubMed

    Sansone, Randy A; Sansone, Lori A

    2014-03-01

    The serotonin norepinephrine reuptake inhibitors are a family of antidepressants that inhibit the reuptake of both serotonin and norepinephrine. While these drugs are traditionally considered a group of inter-related antidepressants based upon reuptake inhibition, they generally display different chemical structures as well as different pharmacological properties. In this article, we discuss these and other differences among the serotonin norepinephrine reuptake inhibitors, including the year of approval by the United States Food and Drug Administration, generic availability, approved clinical indications, half-lives, metabolism and excretion, presence or not of active metabolites, dosing schedules, proportionate effects on serotonin and norepinephrine, and the timing of serotonin and norepinephrine reuptake (i.e., sequential or simultaneous). Again, while serotonin norepinephrine reuptake inhibitors are grouped as a family of antidepressants, they exhibit a surprising number of differences- differences that may ultimately relate to clinical nuances in patient care. PMID:24800132

  14. Topoisomerase I inhibitors: camptothecins and beyond.

    PubMed

    Pommier, Yves

    2006-10-01

    Nuclear DNA topoisomerase I (TOP1) is an essential human enzyme. It is the only known target of the alkaloid camptothecin, from which the potent anticancer agents irinotecan and topotecan are derived. As camptothecins bind at the interface of the TOP1-DNA complex, they represent a paradigm for interfacial inhibitors that reversibly trap macromolecular complexes. Several camptothecin and non-camptothecin derivatives are being developed to further increase anti-tumour activity and reduce side effects. The mechanisms and molecular determinants of tumour response to TOP1 inhibitors are reviewed, and rational combinations of TOP1 inhibitors with other drugs are considered based on current knowledge of repair and checkpoint pathways that are associated with TOP1-mediated DNA damage. PMID:16990856

  15. Orally Bioavailable Potent Soluble Epoxide Hydrolase Inhibitors

    PubMed Central

    Hwang, Sung Hee; Tsai, Hsing-Ju; Liu, Jun-Yan; Morisseau, Christophe; Hammock, Bruce D.

    2008-01-01

    A series of N,N′-disubstituted ureas having a conformationally restricted cis- or trans-1,4-cyclohexane α to the urea were prepared and tested as soluble epoxide hydrolase (sEH) inhibitors. This series of compounds showed low nanomolar to picomolar activities against recombinant human sEH. Both isomers showed similar potencies, but the trans isomers were more metabolically stable in human hepatic microsomes. Furthermore, these new potent inhibitors show a greater metabolic stability in vivo than previously described sEH inhibitors. We demonstrated that trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid 13g (t-AUCB, IC50 = 1.3 ± 0.05 nM) had excellent oral bioavailability (98%, n = 2) and blood area under the curve in dogs and was effective in vivo to treat hypotension in lipopolysaccharide challenged murine models. PMID:17616115

  16. Use of acetylcholinesterase inhibitors in Alzheimer's disease.

    PubMed

    Moghul, S; Wilkinson, D

    2001-09-01

    Alzheimer's disease is a growing problem in an aging Western world, estimated to have cost the US economy USD 1.75 trillion. Until recently, the management of Alzheimer's disease largely comprised support for the family, nursing care and the use of unlicensed medication to control behavioral disturbances. The three new acetylcholinesterase inhibitors licensed to treat Alzheimer's disease (donepezil, rivastigmine and galantamine) have provided clinicians with a major impetus to their desire to diagnose and treat this lethal disease. Their effects on cognition are proven. More recent work on the effects of acetylcholinesterase inhibitors on behavioral symptoms, activities of daily living and caregiver burden have also been encouraging. Emerging work indicates their likely efficacy in other dementias (e.g., vascular dementia, dementia with Lewy bodies). This review summarizes the evidence concerning the impact of acetylcholinesterase inhibitors in dementia both currently and over the next 5 years. PMID:19811047

  17. LDL cholesterol, statins and PCSK 9 inhibitors.

    PubMed

    Gupta, Sanjiv

    2015-01-01

    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20-30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through 'Risk evaluation and Mitigation Strategy (REMS)'. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  18. Synthesis of amino heterocycle aspartyl protease inhibitors.

    PubMed

    Chambers, Rachel K; Khan, Tanweer A; Olsen, David B; Sleebs, Brad E

    2016-06-14

    Aspartyl proteases are important pharmacological targets. Historically aspartyl proteases have been commonly targeted with transition state derived peptidomimetics. The strategy to develop aspartyl protease inhibitors has undertaken a dramatic paradigm shift in the last 10 years. The pharmaceutical industry in 2005 disclosed several scaffolds or "head groups" that prompted the field to move beyond peptidomimetic derived inhibitors. Since the discovery of the first amino heterocycle aspartyl protease inhibitor, the amino hydantoin, industry and academia have positioned themselves for a foothold on the new molecular space, designing a variety of related "head groups". Both the design and synthetic efforts involved in constructing these scaffolds are varied and complex. Here we highlight the synthetic strategies used to access these amino heterocycle scaffolds. PMID:27143279

  19. Prospects for novel inhibitors of peptidoglycan transglycosylases

    PubMed Central

    Galley, Nicola F.; O’Reilly, Amy M.; Roper, David I.

    2014-01-01

    The lack of novel antimicrobial drugs under development coupled with the increasing occurrence of resistance to existing antibiotics by community and hospital acquired infections is of grave concern. The targeting of biosynthesis of the peptidoglycan component of the bacterial cell wall has proven to be clinically valuable but relatively little therapeutic development has been directed towards the transglycosylase step of this process. Advances towards the isolation of new antimicrobials that target transglycosylase activity will rely on the development of the enzymological tools required to identify and characterise novel inhibitors of these enzymes. Therefore, in this article, we review the assay methods developed for transglycosylases and review recent novel chemical inhibitors discovered in relation to both the lipidic substrates and natural product inhibitors of the transglycosylase step. PMID:24924926

  20. Global Metabolic Inhibitors of Sialyl- and Fucosyltransferases

    PubMed Central

    Rillahan, Cory D.; Antonopoulos, Aristotelis; Lefort, Craig T.; Sonon, Roberto; Azadi, Parastoo; Ley, Klaus; Dell, Anne; Haslam, Stuart M.; Paulson, James C.

    2012-01-01

    Despite the fundamental roles of sialyl- and fucosyltransferases in mammalian physiology, there are few pharmacological tools to manipulate their function in a cellular setting. Although fluorinated analogs of the donor substrates are well-established transition state inhibitors of these enzymes, they are not membrane permeable. By exploiting promiscuous monosaccharide salvage pathways, we show that fluorinated analogs of sialic acid and fucose can be taken up and metabolized to the desired donor substrate-based inhibitors inside the cell. Due to the existence of metabolic feedback loops, they also act to prevent the de novo synthesis of the natural substrates, resulting in a global, family-wide shutdown of sialyl- and/or fucosyltransferases and remodeling of cell surface glycans. As an example of the functional consequences, the inhibitors drastically reduce expression of the sialylated and fucosylated ligand Sialyl Lewis X on myeloid cells, resulting in loss of binding to selectins and impaired leukocyte rolling. PMID:22683610

  1. Therapeutic potential of monoacylglycerol lipase inhibitors.

    PubMed

    Mulvihill, Melinda M; Nomura, Daniel K

    2013-03-19

    Marijuana and aspirin have been used for millennia to treat a wide range of maladies including pain and inflammation. Both cannabinoids, like marijuana, that exert anti-inflammatory action through stimulating cannabinoid receptors, and cyclooxygenase (COX) inhibitors, like aspirin, that suppress pro-inflammatory eicosanoid production have shown beneficial outcomes in mouse models of neurodegenerative diseases and cancer. Both cannabinoids and COX inhibitors, however, have untoward effects that discourage their chronic usage, including cognitive deficits and gastrointestinal toxicity, respectively. Recent studies have uncovered that the serine hydrolase monoacylglycerol lipase (MAGL) links the endocannabinoid and eicosanoid systems together through hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) to provide the major arachidonic acid (AA) precursor pools for pro-inflammatory eicosanoid synthesis in specific tissues. Studies in recent years have shown that MAGL inhibitors elicit anti-nociceptive, anxiolytic, and anti-emetic responses and attenuate precipitated withdrawal symptoms in addiction paradigms through enhancing endocannabinoid signaling. MAGL inhibitors have also been shown to exert anti-inflammatory action in the brain and protect against neurodegeneration through lowering eicosanoid production. In cancer, MAGL inhibitors have been shown to have anti-cancer properties not only through modulating the endocannabinoid-eicosanoid network, but also by controlling fatty acid release for the synthesis of protumorigenic signaling lipids. Thus, MAGL serves as a critical node in simultaneously coordinating multiple lipid signaling pathways in both physiological and disease contexts. This review will discuss the diverse (patho)physiological roles of MAGL and the therapeutic potential of MAGL inhibitors in treating a vast array of complex human diseases. PMID:23142242

  2. Substituted quinolines as noncovalent proteasome inhibitors.

    PubMed

    McDaniel, Tanner J; Lansdell, Theresa A; Dissanayake, Amila A; Azevedo, Lauren M; Claes, Jacob; Odom, Aaron L; Tepe, Jetze J

    2016-06-01

    Screening of a library of diverse heterocyclic scaffolds identified substituted quinolines as inhibitors of the human proteasome. The heterocyclic library was prepared via a novel titanium-catalyzed multicomponent coupling reaction, which rendered a diverse set of isoxazoles, pyrimidines, pyrroles, pyrazoles and quinolines. SAR of the parent lead compound indicated that hydrophobic residues on the benzo-moiety significantly improved potency. Lead compound 25 inhibits the chymotryptic-like proteolytic activity of the proteasome (IC50 5.4μM), representing a new class of nonpeptidic, noncovalent proteasome inhibitors. PMID:27112450

  3. Selective serotonin reuptake inhibitor discontinuation during pregnancy

    PubMed Central

    Ejaz, Resham; Leibson, Tom; Koren, Gideon

    2014-01-01

    Abstract Question I have a patient who discontinued her selective serotonin reuptake inhibitor in pregnancy against my advice owing to fears it might affect the baby. She eventually attempted suicide. How can we deal effectively with this situation? Answer The “cold turkey” discontinuation of needed antidepressants is a serious public health issue strengthened by fears and misinformation. It is very important for physicians to ensure that evidence-based information is given to women in a way that is easy to understand. The risks of untreated moderate to severe depression far outweigh the theoretical risks of taking selective serotonin reuptake inhibitors. PMID:25642484

  4. Hereditary angioedema with normal C1 inhibitor.

    PubMed

    Bork, Konrad

    2013-11-01

    Until recently it was assumed that hereditary angioedema was a disease that results exclusively from a genetic deficiency of the C1 inhibitor. In 2000, families with hereditary angioedema, normal C1 inhibitor activity, and protein in plasma were described. Since then, numerous patients and families with that condition have been reported. Most of the patients were women. In many of the affected women, oral contraceptives, hormone replacement therapy containing estrogens, and pregnancies triggered the clinical symptoms. In some families mutations in the coagulation factor XII (Hageman factor) gene were detected. PMID:24176211

  5. Identification of potent, selective KDM5 inhibitors.

    PubMed

    Gehling, Victor S; Bellon, Steven F; Harmange, Jean-Christophe; LeBlanc, Yves; Poy, Florence; Odate, Shobu; Buker, Shane; Lan, Fei; Arora, Shilpi; Williamson, Kaylyn E; Sandy, Peter; Cummings, Richard T; Bailey, Christopher M; Bergeron, Louise; Mao, Weifeng; Gustafson, Amy; Liu, Yichin; VanderPorten, Erica; Audia, James E; Trojer, Patrick; Albrecht, Brian K

    2016-09-01

    This communication describes the identification and optimization of a series of pan-KDM5 inhibitors derived from compound 1, a hit initially identified against KDM4C. Compound 1 was optimized to afford compound 20, a 10nM inhibitor of KDM5A. Compound 20 is highly selective for the KDM5 enzymes versus other histone lysine demethylases and demonstrates activity in a cellular assay measuring the increase in global histone 3 lysine 4 tri-methylation (H3K4me3). In addition compound 20 has good ADME properties, excellent mouse PK, and is a suitable starting point for further optimization. PMID:27476424

  6. HIV Entry Inhibitors and Their Potential in HIV Therapy

    PubMed Central

    Qian, Keduo; Morris-Natschke, Susan L.; Lee, Kuo-Hsiung

    2013-01-01

    This review discusses recent progress in the development of anti-HIV agents targeting the viral entry process. The three main classes (attachment inhibitors, co-receptor binding inhibitors, and fusion inhibitors) are further broken down by specific mechanism of action and structure. Many of these inhibitors are in advanced clinical trials, including the HIV maturation inhibitor bevirimat, from the authors’ laboratories. In addition, the CCR5 inhibitor maraviroc has recently been FDA-approved. Possible roles for these agents in anti-HIV therapy, including treatment of virus resistant to current drugs, are also discussed. PMID:18720513

  7. Polyphenolic Compounds as Pancreatic Lipase Inhibitors.

    PubMed

    Buchholz, Tina; Melzig, Matthias F

    2015-07-01

    Obesity and its associated diseases such as diabetes mellitus and coronary heart diseases are a major challenge for our society. An important target for the treatment of obesity includes the development of inhibitors of nutrient digestion and absorption. Inhibition of pancreatic lipase and the associated reduction of lipid absorption is an attractive approach for the discovery of potent agents. Currently, the only clinically approved pharmacologic agent as pancreatic lipase inhibitor is Orlistat. However, its usage is compromised by unpleasant gastrointestinal adverse reactions (oily stools, oily spotting, flatulence). The use of botanical materials as a potential source of new drugs is of increasing importance and application. Natural products that are interesting for obesity treatment are generally considered to have less toxic and side effects than totally synthetic drugs. One of the most important sources of potential pancreatic lipase inhibitors represents the class of polyphenols. This article summarizes most studied subclasses of polyphenols including flavonoids, hydroxycinnamic acids, hydroxybenzoic acids and lignans with pancreatic lipase inhibitory effects. A structural comparison of potent inhibitors shows an increased inhibitory effect depending on number and position of phenolic hydroxyl groups, degree of polymerization and elimination of glycosylation during digestion. PMID:26132857

  8. Novel proteinase inhibitor promotes resistance to insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Beta vulgaris serine proteinase inhibitor gene (BvSTI) and its protein are identified in response to insect feeding on B. vulgaris seedlings. BvSTI is cloned into an expression vector with constitutive promoter and transformed into Nicotiana benthamiana plants to assess BvSTI’s ability to ...

  9. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors

    PubMed Central

    Papagianni, M; Tziomalos, K

    2015-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are effective glucose-lowering agents that do not increase body weight and are associated with a low risk for hypoglycemia. Also, they appear to exert beneficial effects on other established cardiovascular risk factors, including dyslipidemia and hypertension. Moreover, DPP-4 inhibitors exert antiinflammatory and antioxidant actions, improve endothelial function and reduce urinary albumin excretion. In contrast to these favorable cardiovascular effects, three recent large, randomized, placebo-controlled trials in patients with type 2 diabetes mellitus (T2DM) and established cardiovascular disease or multiple cardiovascular risk factors showed that DPP-4 inhibitors do not affect the risk of myocardial infarction or ischemic stroke and might increase the risk of heart failure. The findings of the former randomized studies highlight the limitations of surrogate markers and show that beneficial effects on cardiovascular risk factors do not necessarily translate into reductions in hard clinical endpoints. Ongoing trials will shed more light on the safety profile of DPP-4 inhibitors and will clarify whether they will improve the cardiovascular outcomes of patients with T2DM. Hippokratia 2015; 19 (3): 195-199. PMID:27418775

  10. Histidines, histamines and imidazoles as glycosidase inhibitors.

    PubMed Central

    Field, R A; Haines, A H; Chrystal, E J; Luszniak, M C

    1991-01-01

    This present study reports the ability of a range of derivatives of L-histidine, histamine and imidazole to act as inhibitors of sweet-almond beta-glucosidase, yeast alpha-glucosidase and Escherichia coli beta-galactosidase. The addition of a hydrophobic group to the basic imidazole nucleus greatly enhances binding to both the alpha- and beta-glucosidases. L-Histidine (beta-naphthylamide (Ki 17 microM) is a potent competitive inhibitor of sweet-almond beta-glucosidase as is omega-N-acetylhistamine (K1 35 microM), which inhibits the sweet-almond beta-glucosidase at least 700 times more strongly than either yeast alpha-glucosidase or Escherichia coli beta-galactosidase, and suggests potential for the development of selective reversible beta-glucosidase inhibitors. A range of hydrophobic omega-N-acylhistamines were synthesized and shown to be among the most potent inhibitors of sweet-almond beta-glucosidase reported to date. PMID:2012615

  11. A chemotactic inhibitor in synovial fluid.

    PubMed Central

    Matzner, Y; Partridge, R E; Babior, B M

    1983-01-01

    Synovial fluid was found to contain an inhibitor of neutrophil chemotaxis. The activity of this inhibitor was masked in native synovial fluid, but could be detected in fluid in which complement had been deactivated by mild heating. The inhibitor was most effective against the chemotactic activity of zymosan-activated serum (C5ades arg). It had little effect when N-formyl-methionyl-leucyl-phenylalanine served as chemoattractant. Inhibition was not the result of a direct effect on the neutrophils, since incubation of cells with synovial fluid did not alter their chemotactic response. The inhibitory activity was destroyed by boiling the synovial fluid or treating it with trypsin, suggesting that it is a protein (or proteins); it was not affected by hyaluronidase treatment. Gel filtration revealed that the inhibitor was present in native as well as decomplemented synovial fluid, and that its molecular weight was in the vicinity of 25,000. It is proposed that this inhibitory activity plays a role in the regulation of the inflammatory response in joints. PMID:6840801

  12. Resistant mechanisms to BRAF inhibitors in melanoma.

    PubMed

    Manzano, José Luís; Layos, Laura; Bugés, Cristina; de Los Llanos Gil, María; Vila, Laia; Martínez-Balibrea, Eva; Martínez-Cardús, Anna

    2016-06-01

    Patients with advanced melanoma have traditionally had very poor prognosis. However, since 2011 better understanding of the biology and epidemiology of this disease has revolutionized its treatment, with newer therapies becoming available. These newer therapies can be classified into immunotherapy and targeted therapy. The immunotherapy arsenal includes inhibitors of CTLA4, PD-1 and PDL-1, while targeted therapy focuses on BRAF and MEK. BRAF inhibitors (vemurafenib, dabrafenib) have shown benefit in terms of overall survival (OS) compared to chemotherapy, and their combination with MEK inhibitors has recently been shown to improve progression-free survival (PFS), compared with monotherapy with BRAF inhibitors. However, almost 20% of patients initially do not respond, due to intrinsic resistance to therapy and, of those who do, most eventually develop mechanisms of acquired resistance, including reactivation of the MAP kinase pathway, persistent activation of receptor tyrosine kinase (RTKS) receptor, activation of phosphatidyinositol-3OH kinase, overexpression of epidermal growth factor receptor (EGFR), and interactions with the tumor microenvironment. Herein we comment in detail on mechanisms of resistance to targeted therapy and discuss the strategies to overcome them. PMID:27429963

  13. Cellulose biosynthesis inhibitors - a multifunctional toolbox.

    PubMed

    Tateno, Mizuki; Brabham, Chad; DeBolt, Seth

    2016-01-01

    In the current review, we examine the growing number of existing Cellulose Biosynthesis Inhibitors (CBIs) and based on those that have been studied with live cell imaging we group their mechanism of action. Attention is paid to the use of CBIs as tools to ask fundamental questions about cellulose biosynthesis. PMID:26590309

  14. FAAH inhibitors in the limelight, but regrettably

    PubMed Central

    Mallet, Christophe; Dubray, Claude; Dualé, Christian

    2016-01-01

    Abstract. This short review focuses on the recent drug development of FAAH inhibitors, as recent serious adverse events have been reported in a phase I study with a compound of this class. The authors overview the potential interest in targeting FAAH inhibition, the current programs, and the available information on the recent dramatic events. PMID:27191771

  15. Phenyltriazolinones as potent factor Xa inhibitors.

    PubMed

    Quan, Mimi L; Pinto, Donald J P; Rossi, Karen A; Sheriff, Steven; Alexander, Richard S; Amparo, Eugene; Kish, Kevin; Knabb, Robert M; Luettgen, Joseph M; Morin, Paul; Smallwood, Angela; Woerner, Francis J; Wexler, Ruth R

    2010-02-15

    We have discovered that phenyltriazolinone is a novel and potent P1 moiety for coagulation factor Xa. X-ray structures of the inhibitors with a phenyltriazolinone in the P1 position revealed that the side chain of Asp189 has reoriented resulting in a novel S1 binding pocket which is larger in size to accommodate the phenyltriazolinone P1 substrate. PMID:20100660

  16. Photodynamic therapy using a protoporphyrinogen oxidase inhibitor.

    PubMed

    Fingar, V H; Wieman, T J; McMahon, K S; Haydon, P S; Halling, B P; Yuhas, D A; Winkelman, J W

    1997-10-15

    The use of endogenously created porphyrins as an alternative to photosensitizer injection for photodynamic therapy is a rapidly evolving area of study. One common method to induce porphyrin synthesis and accumulation in cells is the topical, oral, or parenteral administration of 5-aminolevulinic acid, a precursor for heme biosynthesis. Porphyrin accumulation may also be elicited by the use of enzyme inhibitors of the heme biosynthetic pathway. Groups of DBA/2 mice bearing SMT-F mammary tumors were placed on a diet containing 0-4000 ppm of a protoporphyrinogen oxidase inhibitor, FP-846. This agent blocks a critical step in porphyrin metabolism and results in elevated intracellular levels of protoporphyrin IX. Light treatment of tumors produced both initial and long-term regression that was dependent on the amount of inhibitor, the duration of inhibitor exposure to animals, and the amount of light used in PDT. Tumor regression occurred without significant destruction of normal tissues in the treatment field and without initial vascular constriction or blood flow stasis. Tumor cure in animals given 4000 ppm FP-846 in feed for 3 days and 300 J/cm2 602-670 nm light (23% cure) was similar to the response in animals given 10 mg/kg Photofrin and the same light dose (20%). PMID:9377568

  17. Resistant mechanisms to BRAF inhibitors in melanoma

    PubMed Central

    Layos, Laura; Bugés, Cristina; de los Llanos Gil, María; Vila, Laia; Martínez-Balibrea, Eva; Martínez-Cardús, Anna

    2016-01-01

    Patients with advanced melanoma have traditionally had very poor prognosis. However, since 2011 better understanding of the biology and epidemiology of this disease has revolutionized its treatment, with newer therapies becoming available. These newer therapies can be classified into immunotherapy and targeted therapy. The immunotherapy arsenal includes inhibitors of CTLA4, PD-1 and PDL-1, while targeted therapy focuses on BRAF and MEK. BRAF inhibitors (vemurafenib, dabrafenib) have shown benefit in terms of overall survival (OS) compared to chemotherapy, and their combination with MEK inhibitors has recently been shown to improve progression-free survival (PFS), compared with monotherapy with BRAF inhibitors. However, almost 20% of patients initially do not respond, due to intrinsic resistance to therapy and, of those who do, most eventually develop mechanisms of acquired resistance, including reactivation of the MAP kinase pathway, persistent activation of receptor tyrosine kinase (RTKS) receptor, activation of phosphatidyinositol-3OH kinase, overexpression of epidermal growth factor receptor (EGFR), and interactions with the tumor microenvironment. Herein we comment in detail on mechanisms of resistance to targeted therapy and discuss the strategies to overcome them. PMID:27429963

  18. [Myoclonic encephalopathy associated with proton pump inhibitors].

    PubMed

    Boulliat, J; Polard, E; Colin, F; Bentué-Ferrer, D; Allain, H

    2004-03-01

    Two men (66 and 73 Years) with a cardiovascular history were hospitalized for rapid onset encephalopathy associated with myoclonia and an extrapyramidal syndrome. On the basis of the French Pharmacovigilance system, this symptomatology has been attributed to the coadministration of a proton pump inhibitor, lansoprazole (15mg/day) with levodopa. Lansoprazole withdrawal led to a normalisation of the situation. PMID:15037850

  19. Novel in vitro inhibitory functions of potato tuber proteinaceous inhibitors.

    PubMed

    Fischer, Matthias; Kuckenberg, Markus; Kastilan, Robin; Muth, Jost; Gebhardt, Christiane

    2015-02-01

    Plant protease inhibitors are a structurally highly diverse and ubiquitous class of small proteins, which play various roles in plant development and defense against pests and pathogens. Particular isoforms inhibit in vitro proteases and other enzymes that are not their natural substrates, for example proteases that have roles in human diseases. Mature potato tubers are a rich source of several protease inhibitor families. Different cultivars have different inhibitor profiles. With the objective to explore the functional diversity of the natural diversity of potato protease inhibitors, we randomly selected and sequenced 9,600 cDNA clones originated from mature tubers of ten potato cultivars. Among these, 120 unique inhibitor cDNA clones were identified by homology searches. Eighty-eight inhibitors represented novel sequence variants of known plant protease inhibitor families. Most frequent were Kunitz-type inhibitors (KTI), potato protease inhibitors I and II (PIN), pectin methylesterase inhibitors, metallocarboxypeptidase inhibitors and defensins. Twenty-three inhibitors were functionally characterized after heterologous expression in the yeast Pichia pastoris. The purified recombinant proteins were tested for inhibitory activity on trypsin, eleven pharmacological relevant proteases and the non-proteolytic enzyme 5-lipoxygenase. Members of the KTI and PIN families inhibited pig pancreas elastase, β-Secretase, Cathepsin K, HIV-1 protease and potato 5-lipoxygenase. Our results demonstrate in vitro inhibitory diversity of small potato tuber proteins commonly known as protease inhibitors, which might have biotechnological or medical applications. PMID:25260821

  20. Cost of care of haemophilia with inhibitors.

    PubMed

    Di Minno, M N D; Di Minno, G; Di Capua, M; Cerbone, A M; Coppola, A

    2010-01-01

    In Western countries, the treatment of patients with inhibitors is presently the most challenging and serious issue in haemophilia management, direct costs of clotting factor concentrates accounting for >98% of the highest economic burden absorbed for the healthcare of patients in this setting. Being designed to address questions of resource allocation and effectiveness, decision models are the golden standard to reliably assess the overall economic implications of haemophilia with inhibitors in terms of mortality, bleeding-related morbidity, and severity of arthropathy. However, presently, most data analyses stem from retrospective short-term evaluations, that only allow for the analysis of direct health costs. In the setting of chronic diseases, the cost-utility analysis, that takes into account the beneficial effects of a given treatment/healthcare intervention in terms of health-related quality of life, is likely to be the most appropriate approach. To calculate net benefits, the quality adjusted life year, that significantly reflects such health gain, has to be compared with specific economic impacts. Differences in data sources, in medical practice and/or in healthcare systems and costs, imply that most current pharmacoeconomic analyses are confined to a narrow healthcare payer perspective. Long-term/lifetime prospective or observational studies, devoted to a careful definition of when to start a treatment; of regimens (dose and type of product) to employ, and of inhibitor population (children/adults, low-responding/high responding inhibitors) to study, are thus urgently needed to allow for newer insights, based on reliable data sources into resource allocation, effectiveness and cost-utility analysis in the treatment of haemophiliacs with inhibitors. PMID:19845772

  1. Inhibitors from Carob (Ceratonia siliqua L.)

    PubMed Central

    Corcoran, Mary Ritzel

    1970-01-01

    Two inhibitory fractions (B1 and C) from extracts of immature fruit of carob were tested for their ability to inhibit the action of indoleacetic acid (IAA) in three bioassays. There was no reduction of IAA-induced reactions in the Avena curvature test, abscission of debladed coleus petioles, or growth of cucumber hypocotyls. The highest ratio of inhibitor to IAA was 10,000 times greater than the ratio necessary to inhibit by 50% the growth caused by an equivalent amount of gibberellin A3 in pea seedlings. At the highest concentration used, fraction C alone caused curvature of Avena coleoptiles. The inhibitory fractions appeared to enhance the effect of IAA in the cucumber test. Concentrated whole extract and fractions B1 and C were tested for reduction of growth caused by gibberellins A1, A4, A5, A7, and a neutral gibberellin-like substance from beans in the dwarf-5 maize bioassay. Each gibberellin was inhibited and required the same amount of inhibitor for a 50% reduction of the induced growth. The inhibiting effect could be completely overcome by increasing the amount of gibberellin while maintaining the same concentration of inhibitor. Fractions B1 and C were also tested with gibberellins A2 and A4 in the cucumber hypocotyl test. Both inhibitory fractions reduced growth but were more effective against gibberellin A3 than gibberellin A4 in the assay. The ability to reduce gibberellin-induced growth and not reduce IAA-induced growth indicates that the inhibitors from carob have a greater specificity of action than that previously reported for any inhibitor. PMID:16657500

  2. DNA Methyltransferases Inhibitors from Natural Sources.

    PubMed

    Zwergel, Clemens; Valente, Sergio; Mai, Antonello

    2016-01-01

    DNA methyltransferases (DNMTs) catalyze the methylation at cytosine-C5 mainly in a CpG dinucleotide context. Although DNA methylation is essential for fundamental processes like embryonic development or differentiation, aberrant expression and/or activities of DNMTs are involved in several pathologies, from neurodegeneration to cancer. DNMTs inhibition can arrest tumor growth, cells invasiveness and induce differentiation, whereas their increased expression is shown in numerous cancer types. Moreover, hypermethylated promoters of tumor suppressor genes lead to their silencing. Hence, the use of specific inhibitors of DNMT might reactivate those genes and stop or even reverse the aberrant cell processes. To date, the only approved DNMTs inhibitors for therapy belong to the nucleoside-based family of drugs, but they display relevant side effects as well as high chemical instability. Thus, there is a keen interest actually exists to develop novel, potent and safe inhibitors possessing a nonnucleoside structure. Increasing literature evidence is highlighting that natural sources could help the researchers to achieve this goal. Indeed, several polyphenols, flavonoids, antraquinones, and others are described able to inhibit DNMTs activity and/or expression, thus decreasing the methylation/silencing of different genes involved in tumorigenesis. These events can lead to re-expression of such genes and to cell death in diverse cancer cell lines. Epigallocatechin-3-gallate (1) and laccaic acid A (11) resulted the most effective DNMT1 inhibitors with submicromolar IC50 values, acting as competitive inhibitors. Compound 1 and 11 both displayed gene demethylation and re-activation in several cancers. However, all of the natural compounds described in this review showed important results, from gene reactivation to cell growth inhibition. Moreover, some of them displayed interesting activity even in rodent cancer models and very recently entered clinical trials. PMID:26303417

  3. Peptidyl cyclopropenones: Reversible inhibitors, irreversible inhibitors, or substrates of cysteine proteases?

    PubMed Central

    Cohen, Meital; Bretler, Uriel; Albeck, Amnon

    2013-01-01

    Peptidyl cyclopropenones were previously introduced as selective cysteine protease reversible inhibitors. In the present study we synthesized one such peptidyl cyclopropenone and investigated its interaction with papain, a prototype cysteine protease. A set of kinetics, biochemical, HPLC, MS, and 13C-NMR experiments revealed that the peptidyl cyclopropenone was an irreversible inhibitor of the enzyme, alkylating the catalytic cysteine. In parallel, this cyclopropenone also behaved as an alternative substrate of the enzyme, providing a product that was tentatively suggested to be either a spiroepoxy cyclopropanone or a gamma-lactone. Thus, a single family of compounds exhibits an unusual variety of activities, being reversible inhibitors, irreversible inhibitors and alternative substrates towards enzymes of the same family. PMID:23553793

  4. Comparative study on the protease inhibitors from fish eggs

    NASA Astrophysics Data System (ADS)

    Ustadi; Kim, K. Y.; Kim, S. M.

    2005-07-01

    The protease inhibitor was purified from five different fish eggs. The molecular weights of Pacific herring, chum salmon, pond smelt, glassfish, and Alaska pollock egg protease inhibitors were 120, 89, 84.5, 17, and l6.8kDa, respectively. The specific inhibitory activity of glassfish egg protease inhibitor was the highest followed by those of Pacific herring and Alaska pollock in order. The specific inhibitory activity and purity of glassfish egg protease inhibitor were 19.70 Umg-1 protein and 164.70 folds of purification, respectively. Glassfish egg protease inhibitor was reasonably stable at 50-65°C and pH 8, which was more stable at high temperature and pH than protease inhibitors from the other fish species. Glassfish egg protease inhibitor was noncompetitive with inhibitor constant ( K i) of 4.44 nmolL-1.

  5. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    PubMed

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis. PMID:23772801

  6. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors.

    PubMed

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S; Mohammadi, Moosa; Jänne, Pasi A; Gray, Nathanael S

    2014-11-11

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a "DFG-out" covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket. PMID:25349422

  7. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors

    PubMed Central

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R.; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G.; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A.; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S.; Mohammadi, Moosa; Jänne, Pasi A.; Gray, Nathanael S.

    2014-01-01

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a “DFG-out” covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket. PMID:25349422

  8. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells.

    PubMed

    Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon; Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora; Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun; Park, In-Chul; Lee, Jin Kyung

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H+ ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. PMID:25981168

  9. Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis

    PubMed Central

    Herman, Michael P.; Sukhova, Galina K.; Kisiel, Walter; Foster, Don; Kehry, Marilyn R.; Libby, Peter; Schönbeck, Uwe

    2001-01-01

    Degradation of ECM, particularly interstitial collagen, promotes plaque instability, rendering atheroma prone to rupture. Previous studies implicated matrix metalloproteinases (MMPs) in these processes, suggesting that dysregulated MMP activity, probably due to imbalance with endogenous inhibitors, promotes complications of atherosclerosis. We report here that the serine proteinase inhibitor tissue factor pathway inhibitor-2 (TFPI-2) can function as an MMP inhibitor. TFPI-2 diminished the ability of the interstitial collagenases MMP-1 and MMP-13 to degrade triple-helical collagen, the primary load-bearing molecule of the ECM within human atheroma. In addition, TFPI-2 also reduced the activity of the gelatinases MMP-2 and MMP-9. In contrast to the “classical” tissue inhibitors of MMPs (TIMPs), TFPI-2 expression in situ correlated inversely with MMP levels in human atheroma. TFPI-2 colocalized primarily with smooth muscle cells in the normal media as well as the plaque’s fibrous cap. Conversely, the macrophage-enriched shoulder region, the prototypical site of matrix degradation and plaque rupture, stained only weakly for TFPI-2 but intensely for gelatinases and interstitial collagenases. Evidently, human mononuclear phagocytes, an abundant source of MMPs within human atheroma, lost their ability to express this inhibitor during differentiation in vitro. These findings establish a new, anti-inflammatory function of TFPI-2 of potential pathophysiological significance for human diseases, including atherosclerosis. PMID:11342575

  10. Action of anti-HIV drugs and resistance: reverse transcriptase inhibitors and protease inhibitors.

    PubMed

    Imamichi, Tomozumi

    2004-01-01

    Currently, 20 drugs have been approved for Human Immunodeficiency Virus type-1 (HIV-1) clinical therapy. These drugs inhibit HIV-1 reverse transcriptase, protease, or virus entry. Introduction of a combination therapy with reverse transcriptase inhibitors and protease inhibitors has resulted in a drastic decrease in HIV-1 related mortality. Although the combination therapy can suppress viral replication below detection levels in current available assays, low levels of on-going viral replication still persist in some patients. Long-term administration of the combination therapy may increase selective pressure against viruses, and subsequently induce emergence of multiple drug-resistant HIV-1 variants. Attempts have been made to design novel antiretroviral drugs that would be able to suppress replication of the resistant variants. At present, several investigational drugs are being tested in clinical trials. These drugs target not only the resistant variants, but also improvement in oral bioavilability or other viral proteins such as HIV-1 integrase, ribonuclease H, and HIV-1 entry (CD4 attachment inhibitors, chemokine receptors antagonists, and fusion inhibitors). Understanding mechanism(s) of action of the drugs and mechanisms of drug resistance is necessary for successful designs in the next generation of anti-HIV-1 drugs. In this review, the mechanisms of action of reverse transcriptase- and protease-inhibitors, and the mechanism of resistance to these inhibitors, are described. PMID:15579086

  11. Disulfide bridge structure of ascidian trypsin inhibitor I: similarity to Kazal-type inhibitors.

    PubMed

    Kumazaki, T; Ishii, S

    1990-03-01

    The primary structures of ascidian trypsin inhibitors (iso-inhibitors I and II) were reported in the preceding paper (Kumazaki, T. et al. (1990) J. Biochem. 107, 409-413). Both of them have eight half-cystines in a molecule composed of 55 amino acid residues with a sequence showing no extensive homology to other known protease inhibitors. To locate the four disulfide bridges in the molecule, native inhibitor I was digested with thermolysin to yield cystine-containing peptides. The peptides were separated from each other by reversed-phase HPLC. A core peptide still containing six closely located half-cystines (e.g. -Cys-Arg-Cys and -Cys-Cys-) was further digested with Streptomyces griseus trypsin for cleavage of the Arg-Cys bond. On the other hand, the Cys-Cys bond was split by applying manual Edman degradation to the core peptide. Amino acid composition analyses of the resulting cystine peptides allowed us to define the whole disulfide bridge structure in the parent molecule. The topological relation between the disulfide loops and the reactive site suggested that the ascidian trypsin inhibitor may be classified as a member of the Kazal-type inhibitor family. PMID:2111316

  12. Studies on amylase inhibitors in some Egyptian legume seeds.

    PubMed

    Shekib, L A; el-Iraqui, S M; Abo-Bakr, T M

    1988-01-01

    Amylase inhibitor activity was determined in four legume seeds which are widely consumed in Egypt. The effect of dehulling, heat treatment, soaking and germination were also assessed. The results showed that faba bean contained the highest activity of amylase inhibitor followed by cowpea, lentils, then chickpea. Dehulling resulted in raising the amylase inhibitor activities in all samples investigated, while heat treatment and cooking lowered it. Soaking for 10 h and germination eliminated completely the inhibitor from all samples. PMID:2467277

  13. Controlled-release scale inhibitor for use in fracturing treatments

    SciTech Connect

    Powell, R.J.; Gdanski, R.D.; McCabe, M.A.; Buster, D.C.

    1995-11-01

    This paper describes results of laboratory and field testing of a solid, controlled-release scale inhibitor for use in fracturing treatments. Laboratory testing with a continuous flow apparatus has yielded inhibitor release rates under dynamic conditions. The inhibitor was tested to determine the minimum inhibitor concentration required to inhibit the formation of CaCO{sub 3}, CaSO{sub 4}, and BaSO{sub 4} scales in a brine. A model to predict the long-term release rate of the inhibitor was developed from data collected on the continuous flow apparatus. Data from treated wells will be compared with predictions of the model. Inhibitor release-rate testing in a continuous-flow apparatus shows that a solid, calcium-magnesium polyphosphate inhibitor has a sustained release profile. Release-rate testing shows that the inhibitor can be used up to 175 F. The inhibitor is compatible with both borate and zirconium crosslinked fracturing fluids and foamed fluids. The effective lifetime of the scale treatment can be predicted based on a model developed from laboratory data. The input variables required for the prediction include: temperature, water production, amount of inhibitor, minimum effective concentration of inhibitor for the specific brine. The model can be used to aid in the design of the scale inhibitor treatment.

  14. Inhibitor analysis for a solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Tabony, J. H.

    1977-01-01

    A study of potential corrosion inhibitors for the NASA solar heating and cooling system which uses aluminum solar panels is provided. Research consisted of testing using a dynamic corrosion system, along with an economic analysis of proposed corrosion inhibitors. Very good progress was made in finding a suitable inhibitor for the system.

  15. P3 SAR exploration of biphenyl carbamate based Legumain inhibitors.

    PubMed

    Higgins, Catherine; Bouazzaoui, Samira; Gaddale, Kishore; D'Costa, Zenobia; Templeman, Amy; O'Rourke, Martin; Young, Andrew; Scott, Christopher; Harrison, Tim; Mullan, Paul; Williams, Rich

    2014-06-01

    This Letter describes the further development and SAR exploration of a novel series of Legumain inhibitors. Based upon a previously identified Legumain inhibitor from our group, we explored the SAR of the carbamate phenyl ring system to probe the P3 pocket of the enzyme. This led to the identification of a sub-nanomolar inhibitor of Legumain. PMID:24775305

  16. Unveiling new chemical scaffolds as Mnk inhibitors.

    PubMed

    Diab, Sarah; Li, Peng; Basnet, Sunita K C; Lu, Jingfeng; Yu, Mingfeng; Albrecht, Hugo; Milne, Robert W; Wang, Shudong

    2016-01-01

    The discovery of small molecules that selectively inhibit Mnks is considered of paramount importance towards deciphering the exact role of these proteins in carcinogenesis and to further validate them as anti-cancer drug targets. However, the dearth of structural information of Mnks is a major hurdle. This study unveils the 7H-pyrrolo[2,3-d]pyrimidine derivatives as potent inhibitors of Mnks. ATP and substrate competition assays showed that this scaffold interacts with the ATP binding site, but not with the substrate site. Screened against a panel of cancer cells, Mnk inhibitors were most potent against MV4-11 acute myeloid leukemia cells. The induction of apoptosis was shown to be mediated by downregulation of Mcl-1. PMID:26910782

  17. Protein synthesis inhibitor from potato tuber

    SciTech Connect

    Romaen, R. )

    1989-04-01

    A protein fraction capable of inhibit in vitro protein synthesis was found in potato tubers in fresh and wounded tissue. Inhibitor activity from fresh tissue decays with wounding. Inhibition activity was detected absorbed to ribsomal fraction and cytosol of potato tuber tissue by a partially reconstituted in vitro system from potato tuber and wheat germ. Adsorbed ribosomal fraction was more suitable of purification. This fraction was washed from ribosomes with 0.3M KCl, concentrated with ammonium sulfate precipitation and purified through sephadex G100 and sephadex G-75 columns chromatography. After 61 fold purification adsorbed protein fraction can inhibit germination of maize, wheat and sesame seeds, as well as {sup 3}H-leucine incorporation into protein by imbibed maize embryos. Inhibition activity was lost by temperature, alkali and protease-K hydrolysis. Preliminar analysis could not show presence of reductor sugars. Physiological role of this inhibitor in relation to rest and active tissue remains to be studied.

  18. Serine protease inhibitors of parasitic helminths.

    PubMed

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships. PMID:22310379

  19. mTOR inhibitors in cancer therapy

    PubMed Central

    Xie, Jianling; Wang, Xuemin; Proud, Christopher G.

    2016-01-01

    The mammalian target of rapamycin, mTOR, plays key roles in cell growth and proliferation, acting at the catalytic subunit of two protein kinase complexes: mTOR complexes 1 and 2 (mTORC1/2). mTORC1 signaling is switched on by several oncogenic signaling pathways and is accordingly hyperactive in the majority of cancers. Inhibiting mTORC1 signaling has therefore attracted great attention as an anti-cancer therapy. However, progress in using inhibitors of mTOR signaling as therapeutic agents in oncology has been limited by a number of factors, including the fact that the classic mTOR inhibitor, rapamycin, inhibits only some of the effects of mTOR; the existence of several feedback loops; and the crucial importance of mTOR in normal physiology.

  20. Development of inhibitors in the ubiquitination cascade.

    PubMed

    Zhang, Wei; Sidhu, Sachdev S

    2014-01-21

    The ubiquitin proteasome system (UPS) is essential in regulating myriad aspects of protein functions. It is therefore a fundamentally important regulatory mechanism that impacts most if not all aspects of cellular processes. Indeed, malfunction of UPS components is implicated in human diseases such as neurodegenerative and immunological disorders and many cancers. The success of proteasome inhibitors in cancer therapy suggests that modulating enzymes in the ubiquitination cascade would be clinically important for therapeutic benefits. In this review, we summarize advances in developing inhibitors of a variety of UPS components. In particular, we highlight recent work done on the protein engineering of ubiquitin as modulators of the UPS, a novel approach that may shed light on innovative drug discovery in the future. PMID:24239534

  1. Naphthyridines as novel BET family bromodomain inhibitors.

    PubMed

    Mirguet, Olivier; Lamotte, Yann; Chung, Chun-Wa; Bamborough, Paul; Delannée, Delphine; Bouillot, Anne; Gellibert, Françoise; Krysa, Gael; Lewis, Antonia; Witherington, Jason; Huet, Pascal; Dudit, Yann; Trottet, Lionel; Nicodeme, Edwige

    2014-03-01

    Bromodomains (BRDs) are small protein domains found in a variety of proteins that recognize and bind to acetylated histone tails. This binding affects chromatin structure and facilitates the localisation of transcriptional complexes to specific genes, thereby regulating epigenetically controlled processes including gene transcription and mRNA elongation. Inhibitors of the bromodomain and extra-terminal (BET) proteins BRD2-4 and T, which prevent bromodomain binding to acetyl-modified histone tails, have shown therapeutic promise in several diseases. We report here the discovery of 1,5-naphthyridine derivatives as potent inhibitors of the BET bromodomain family with good cell activity and oral pharmacokinetic parameters. X-ray crystal structures of naphthyridine isomers have been solved and quantum mechanical calculations have been used to explain the higher affinity of the 1,5-isomer over the others. The best compounds were progressed in a mouse model of inflammation and exhibited dose-dependent anti-inflammatory pharmacology. PMID:24000170

  2. Replacing sulfa drugs with novel DHPS inhibitors

    PubMed Central

    Hammoudeh, Dalia I; Zhao, Ying; White, Stephen W; Lee, Richard E

    2013-01-01

    More research effort needs to be invested in antimicrobial drug development to address the increasing threat of multidrug-resistant organisms. The enzyme DHPS has been a validated drug target for over 70 years as the target for the highly successful sulfa drugs. The use of sulfa drugs has been compromised by the widespread presence of resistant organisms and the adverse side effects associated with their use. Despite the large amount of structural information available for DHPS, few recent publications address the possibility of using this knowledge for novel drug design. This article reviews the relevant papers and patents that report promising new small-molecule inhibitors of DHPS, and discuss these data in light of new insights into the DHPS catalytic mechanism and recently determined crystal structures of DHPS bound to potent small-molecule inhibitors. This new functional understanding confirms that DHPS deserves further consideration as an antimicrobial drug target. PMID:23859210

  3. [Once-weekly DPP-4 inhibitor].

    PubMed

    Harada, Norio; Inagaki, Nobuya

    2015-12-01

    Trelagliptin is the first once-weekly dipeptidyl peptidase-4(DPP-4) inhibitor in the world. Trelagliptin inhibits DPP-4 activity with lower drug concentration compared with other once- (or twice-) daily DPP-4 inhibitors in in vitro study. More than 70 % of DPP-4 activity is inhibited even 1 week after administration of trelagliptin administration in human study. 24-week trelagliptin monotherapy improved HbA1c(-0.33%) and fasting plasma glucose levels in Japanese patients with type 2 diabetes. Trelagliptin did not affect body weight and frequency of hypoglycemic events in this study. 52-week monotherapy and add-on therapy of trelagliptin also improved HbA1c levels without body weight gain and severe hypoglycemia. Therefore, trelagliptin has high efficacy and safety on glucose control in Japanese patients with type 2 diabetes. PMID:26666159

  4. New potential AChE inhibitor candidates.

    PubMed

    de Paula, A A N; Martins, J B L; dos Santos, M L; Nascente, L de C; Romeiro, L A S; Areas, T F M A; Vieira, K S T; Gambôa, N F; Castro, N G; Gargano, R

    2009-09-01

    We have theoretically studied new potential candidates of acetylcholinesterase (AChE) inhibitors designed from cardanol, a non-isoprenoid phenolic lipid of cashew Anacardium occidentale nut-shell liquid. The electronic structure calculations of fifteen molecule derivatives from cardanol were performed using B3LYP level with 6-31G, 6-31G(d), and 6-311+G(2d,p) basis functions. For this study we used the following groups: methyl, acetyl, N,N-dimethylcarbamoyl, N,N-dimethylamine, N,N-diethylamine, piperidine, pyrrolidine, and N,N-methylbenzylamine. Among the proposed compounds we identified that the structures with substitution by N,N-dimethycarbamoyl, N,N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine, and represent possible AChE inhibitors against Alzheimer disease. PMID:19446931

  5. Inhibitor prevents corrosion, scale in Chinese waterflood

    SciTech Connect

    Yong, W.; Jianhua, W. )

    1994-03-14

    An imidazoline derivative-based series inhibitor has prevented both corrosion and scale formation in produced-water treatment and water-injection equipment in China National Petroleum Co.'s (CNPC) Shengli oil field. Development of the inhibitor started in 1986, and after successful field trials the chemical is now being extensively applied. To increase oil recovery, water injection is widely used in China's onshore oil fields. Oil production in the Shengli oil field, for example, requires injection of about 4 bbl of water/1 bbl of oil produced. The large volumes of produced formation water contain many substances that can cause serious corrosion and scale. Also, the makeup water from other sources, subsurface or surface, complicates water handling. The paper discusses the following: corrosion and scale, oxygen, carbon dioxide, H[sub 2]S and sulfur reducing bacteria, temperature, inhibition, field tests, applications, and economics.

  6. Replacing sulfa drugs with novel DHPS inhibitors.

    PubMed

    Hammoudeh, Dalia I; Zhao, Ying; White, Stephen W; Lee, Richard E

    2013-07-01

    More research effort needs to be invested in antimicrobial drug development to address the increasing threat of multidrug-resistant organisms. The enzyme DHPS has been a validated drug target for over 70 years as the target for the highly successful sulfa drugs. The use of sulfa drugs has been compromised by the widespread presence of resistant organisms and the adverse side effects associated with their use. Despite the large amount of structural information available for DHPS, few recent publications address the possibility of using this knowledge for novel drug design. This article reviews the relevant papers and patents that report promising new small-molecule inhibitors of DHPS, and discuss these data in light of new insights into the DHPS catalytic mechanism and recently determined crystal structures of DHPS bound to potent small-molecule inhibitors. This new functional understanding confirms that DHPS deserves further consideration as an antimicrobial drug target. PMID:23859210

  7. Aurora Kinase Inhibitors: Current Status and Outlook

    PubMed Central

    Bavetsias, Vassilios; Linardopoulos, Spiros

    2015-01-01

    The Aurora kinase family comprises of cell cycle-regulated serine/threonine kinases important for mitosis. Their activity and protein expression are cell cycle regulated, peaking during mitosis to orchestrate important mitotic processes including centrosome maturation, chromosome alignment, chromosome segregation, and cytokinesis. In humans, the Aurora kinase family consists of three members; Aurora-A, Aurora-B, and Aurora-C, which each share a conserved C-terminal catalytic domain but differ in their sub-cellular localization, substrate specificity, and function during mitosis. In addition, Aurora-A and Aurora-B have been found to be overexpressed in a wide variety of human tumors. These observations led to a number of programs among academic and pharmaceutical organizations to discovering small molecule Aurora kinase inhibitors as anti-cancer drugs. This review will summarize the known Aurora kinase inhibitors currently in the clinic, and discuss the current and future directions. PMID:26734566

  8. Drug Delivery Strategies of Chemical CDK Inhibitors.

    PubMed

    Alvira, Daniel; Mondragón, Laura

    2016-01-01

    The pharmacological use of new therapeutics is often limited by a safe and effective drug-delivery system. In this sense, new chemical CDK inhibitors are not an exception. Nanotechnology may be able to solve some of the main problems limiting cancer treatments such as more specific delivery of therapeutics and reduction of toxic secondary effects. It provides new delivery systems able to specifically target cancer cells and release the active molecules in a controlled fashion. Specifically, silica mesoporous supports (SMPS) have emerged as an alternative for more classical drug delivery systems based on polymers. In this chapter, we describe the synthesis of a SMPS containing the CDK inhibitor roscovitine as cargo molecule and the protocols for confirmation of the proper cargo release of the nanoparticles in cell culture employing cell viability, cellular internalization, and cell death induction studies. PMID:26231714

  9. Secreted and transmembrane wnt inhibitors and activators.

    PubMed

    Cruciat, Cristina-Maria; Niehrs, Christof

    2013-03-01

    Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand-receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease. PMID:23085770

  10. mTOR Inhibitors at a Glance

    PubMed Central

    Zheng, Yin; Jiang, Yu

    2016-01-01

    Mechanistic target of rapamycin (mTOR) is a conserved threonine and serine protein kinase that was identified more than two decades ago as the target of immunosuppressive drug rapamycin. Since then considerable amount of information has been learned about the function of this kinase. It is now well-established that mTOR plays a pivotal role in governing cell growth and proliferation, hence making mTOR a therapeutic target for disease conditions caused by deregulated cell proliferation, such as cancer. In the past decade, numerous mTOR inhibitors have been developed and many are currently in clinical trials for cancer treatment. This commentary is to provide a brief summary of these mTOR inhibitors. PMID:27134695

  11. Prospective therapeutic applications of p53 inhibitors

    SciTech Connect

    Gudkov, Andrei V. . E-mail: gudkov@ccf.org; Komarova, Elena A.

    2005-06-10

    p53, in addition to being a key cancer preventive factor, is also a determinant of cancer treatment side effects causing excessive apoptotic death in several normal tissues during cancer therapy. p53 inhibitory strategy has been suggested to protect normal tissues from chemo- and radiotherapy, and to treat other pathologies associated with stress-mediated activation of p53. This strategy was validated by isolation and testing of small molecule p53 inhibitor pifithrin-{alpha} that demonstrated broad tissue protecting capacity. However, in some normal tissues and tumors p53 plays protective role by inducing growth arrest and preventing cells from premature entrance into mitosis and death from mitotic catastrophe. Inhibition of this function of p53 can sensitize tumor cells to chemo- and radiotherapy, thus opening new potential application of p53 inhibitors and justifying the need in pharmacological agents targeting specifically either pro-apoptotic or growth arrest functions of p53.

  12. Neuroserpin, an axonally secreted serine protease inhibitor.

    PubMed Central

    Osterwalder, T; Contartese, J; Stoeckli, E T; Kuhn, T B; Sonderegger, P

    1996-01-01

    We have identified and chromatographically purified an axonally secreted glycoprotein of CNS and PNS neurons. Several peptides derived from it were microsequenced. Based on these sequences, a fragment of the corresponding cDNA was amplified and used as a probe to isolate a full length cDNA from a chicken brain cDNA library. Because the deduced amino acid sequence qualified the protein as a novel member of the serpin family of serine protease inhibitors, we called it neuroserpin. Analysis of the primary structural features further characterized neuroserpin as a heparin-independent, functional inhibitor of a trypsin-like serine protease. In situ hybridization revealed a predominantly neuronal expression during the late stages of neurogenesis and in the adult brain in regions which exhibit synaptic plasticity. Thus, neuroserpin might function as an axonally secreted regulator of the local extracellular proteolysis involved in the reorganization of the synaptic connectivity during development and synapse plasticity in the adult. Images PMID:8670795

  13. Alternative therapies for the management of inhibitors.

    PubMed

    Shima, M; Lillicrap, D; Kruse-Jarres, R

    2016-07-01

    The development of inhibitors to factor VIII (FVIII) or factor IX (FIX) remains a major treatment complication encountered in the treatment of haemophilia. Not all patients with even the same severity and genotype develop inhibitors suggesting an underlying mechanism of tolerance against FVIII- or FIX-related immunity. One mechanism may be central tolerance observed in patients in whom the FVIII mutation enables some production of the protein. The other is a peripheral tolerance mechanism which may be evident in patients with null mutation. Recently, recombinant porcine FVIII (rpFVIII, Obixur, OBI-1, BAX801) has been developed for the haemostatic treatment of both congenital haemophilia with inhibitor (CHAWI) and acquired haemophilia A (AHA). In 28 subjects with AHA with life-/limb-threatening bleeding, rpFVIII reduced or stopped bleeding in all patients within 24 h. The cross-reactivity of anti-human FVIII antibodies to rpFVIII remains around 30-50%. Recently, new therapeutics based on the quite novel concepts have been developed and clinical studies are ongoing. These are humanized asymmetric antibody mimicking FVIIIa function by maintaining a suitable interaction between FIXa and FX (Emicizumab, ACE910), and small interfering RNAs (siRNA, ALN-AT3) suppress liver production of AT through post-transcriptional gene silencing and a humanized anti-TFPI monoclonal antibody (Concizumab). Their main advantages are longer half-life, subcutaneous applicability and efficacy irrespective of the presence of inhibitors which will make it easier to initiate more effective treatment especially early childhood. PMID:27405674

  14. Trial Watch: Proteasomal inhibitors for anticancer therapy

    PubMed Central

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called “ubiquitin-proteasome system” (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients. PMID:27308423

  15. Aromatase inhibitors and anti-synthetase syndrome.

    PubMed

    Mascella, Fabio; Gianni, Lorenzo; Affatato, Alessandra; Fantini, Manuela

    2016-09-01

    Adjuvant therapy in postmenopausal women with endocrine-responsive breast cancer (BC) is actually centered on the use of anti-aromatase inhibitors (AI). Several reports, however, are emerging in literature associating the use of this drugs to rheumatic disorders. This case report describes the first case of anti-synthetase syndrome diagnosis after treatment with anti-estrogen agents in a patient with pre-existing rheumatoid arthritis. PMID:27225465

  16. Serendipity in discovery of proteasome inhibitors.

    PubMed

    Dunn, Derek; Iqbal, Mohamed; Husten, Jean; Ator, Mark A; Chatterjee, Sankar

    2012-05-15

    Among its various catalytic activities, the 'chymotrypsin-like' activity of the proteasome, a large multicatalytic proteinase complex has emerged as the focus of drug discovery efforts in cancer therapy. Herein, a series of first generation (2S, 3R)-2-amino-3-hydroxybutyric acid derived proteasome inhibitors that were discovered serendipitously en route to original goal of generating a series of sterically constrained oxazoline derivatives has been reported. PMID:22503349

  17. Inhibitors of the AAA+ Chaperone p97

    PubMed Central

    Chapman, Eli; Maksim, Nick; de la Cruz, Fabian; La Clair, James J.

    2015-01-01

    It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA) more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®), which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+) chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and physiology. PMID

  18. Trial Watch: Proteasomal inhibitors for anticancer therapy.

    PubMed

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called "ubiquitin-proteasome system" (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients. PMID:27308423

  19. Corrosion Inhibitors as Penetrant Dyes for Radiography

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.

    2003-01-01

    Liquid/vapor-phase corrosion inhibitors (LVCIs) have been found to be additionally useful as penetrant dyes for neutron radiography (and perhaps also x-radiography). Enhancement of radiographic contrasts by use of LVCIs can reveal cracks, corrosion, and other defects that may be undetectable by ultrasonic inspection, that are hidden from direct optical inspection, and/or that are difficult or impossible to detect in radiographs made without dyes.

  20. Rust Inhibitor And Fungicide For Cooling Systems

    NASA Technical Reports Server (NTRS)

    Adams, James F.; Greer, D. Clay

    1988-01-01

    Mixture of benzotriazole, benzoic acid, and fungicide prevents growth of rust and fungus. Water-based cooling mixture made from readily available materials prevents formation of metallic oxides and growth of fungi in metallic pipes. Coolant remains clear and does not develop thick sludge tending to collect in low points in cooling systems with many commercial rust inhibitors. Coolant compatible with iron, copper, aluminum, and stainless steel. Cannot be used with cadmium or cadmium-plated pipes.