Science.gov

Sample records for inhibitors induce peroxisome

  1. Inhibitors of Growth 1b Suppresses Peroxisome Proliferator-Activated Receptor-β/δ Expression Through Downregulation of Hypoxia-Inducible Factor 1α in Osteoblast Differentiation.

    PubMed

    Qu, Bo; Hong, Zhen; Gong, Kai; Sheng, Jun; Wu, Hong-Hua; Deng, Shao-Lin; Huang, Gang; Ma, Ze-Hui; Pan, Xian-Ming

    2016-04-01

    Bone formation, a highly regulated developmental process, involves osteoblast differentiation, which is controlled by different important transcription factors. Recent evidence has suggested possible negative regulation of inhibitors of growth (ING) 1b on the osteoblast marker expression. The aim of this study is to examine the detailed mechanism by which the activity of ING1b inhibits osteoblast differentiation. In the current study, we investigated the function and mechanism by which ING1b inhibits osteoblast differentiation using C3H10T1/2 mesenchymal stem cells and MC3T3-E1 preosteoblasts. Real-time polymerase chain reaction and Western blotting showed that ING1b was decreased during osteoblast differentiation and ING1b overexpression markedly decreased alkaline phosphatase (ALP) activity, runt-related transcription factor 2 (Runx2) expression, and collagen type 1 synthesis, whereas ING1b silencing significantly upregulated ALP activity, Runx2 expression, and collagen type 1 synthesis. Further studies indicated that ING1b suppressed the expression of peroxisome proliferator-activated receptor (PPAR)-β/δ in a hypoxia-inducible factor (HIF) 1α-dependent manner, while ING1b silencing significantly increased the expression of PPAR-β/δ and HIF1α. Moreover, PPAR-β/δ or HIF1α silencing significantly inhibited ALP activity, Runx2 expression, and collagen type 1 synthesis. These results demonstrated that ING1b is an important regulator of osteoblast differentiation and suppresses PPAR-β/δ. Our study may provide additional insight into osteoblast differentiation and offer a potential new molecular target for osteoporosis. PMID:26849833

  2. NADH induces the generation of superoxide radicals in leaf peroxisomes. [Pisum sativum L

    SciTech Connect

    del Rio, L.A.; Sandalio, L.M.; Palma, J.M. ); Fernandez, V.M.; Ruperez, F.L. )

    1989-03-01

    In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O{sub 2}{sup {minus}}) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O{sub 2}{sup {minus}} radicals. In the soluble fractions of peroxisomes, no generation of O{sub 2}{sup {minus}} radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive against xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes suggests that O{sub 2}{sup {minus}} generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related roles for peroxisomes in cellular metabolism.

  3. Inhibition of peroxisome proliferator-activated receptor (PPAR)-mediated keratinocyte differentiation by lipoxygenase inhibitors.

    PubMed Central

    Thuillier, Philippe; Brash, Alan R; Kehrer, James P; Stimmel, Julie B; Leesnitzer, Lisa M; Yang, Peiying; Newman, Robert A; Fischer, Susan M

    2002-01-01

    Lipoxygenase (LOX) metabolites from arachidonic acid and linoleic acid have been implicated in atherosclerosis, inflammation, keratinocyte differentiation and tumour progression. We previously showed that peroxisome proliferator-activated receptors (PPARs) play a role in keratinocyte differentiation and that the PPARalpha ligand 8S-hydroxyeicosatetraenoic acid is important in this process. We hypothesized that blocking LOX activity would block PPAR-mediated keratinocyte differentiation. Three LOX inhibitors, nordihydroguaiaretic acid, quercetin and morin, were studied for their effects on primary keratinocyte differentiation and PPAR activity. All three LOX inhibitors blocked calcium-induced expression of the differentiation marker keratin 1. In addition, activity of a PPAR-responsive element was inhibited in the presence of all three inhibitors, and this effect was mediated primarily through PPARalpha and PPARgamma. LOX inhibitors decreased the activity of a chimaeric PPAR-Gal4-ligand-binding domain reporter system and this effect was reversed by addition of PPAR ligands. Ligand-binding studies revealed that the LOX inhibitors bind directly to PPARs and demonstrate a novel mechanism for these inhibitors in altering PPAR-mediated gene expression. PMID:12069687

  4. ATM functions at the peroxisome to induce pexophagy in response to ROS.

    PubMed

    Zhang, Jiangwei; Tripathi, Durga Nand; Jing, Ji; Alexander, Angela; Kim, Jinhee; Powell, Reid T; Dere, Ruhee; Tait-Mulder, Jacqueline; Lee, Ji-Hoon; Paull, Tanya T; Pandita, Raj K; Charaka, Vijaya K; Pandita, Tej K; Kastan, Michael B; Walker, Cheryl Lyn

    2015-10-01

    Peroxisomes are highly metabolic, autonomously replicating organelles that generate reactive oxygen species (ROS) as a by-product of fatty acid β-oxidation. Consequently, cells must maintain peroxisome homeostasis, or risk pathologies associated with too few peroxisomes, such as peroxisome biogenesis disorders, or too many peroxisomes, inducing oxidative damage and promoting diseases such as cancer. We report that the PEX5 peroxisome import receptor binds ataxia-telangiectasia mutated (ATM) and localizes this kinase to the peroxisome. In response to ROS, ATM signalling activates ULK1 and inhibits mTORC1 to induce autophagy. Specificity for autophagy of peroxisomes (pexophagy) is provided by ATM phosphorylation of PEX5 at Ser 141, which promotes PEX5 monoubiquitylation at Lys 209, and recognition of ubiquitylated PEX5 by the autophagy adaptor protein p62, directing the autophagosome to peroxisomes to induce pexophagy. These data reveal an important new role for ATM in metabolism as a sensor of ROS that regulates pexophagy. PMID:26344566

  5. Expression level of methanol-inducible peroxisomal proteins and peroxisome morphology are affected by oxygen conditions and mitochondrial respiratory pathway function in the methylotrophic yeast Candida boidinii.

    PubMed

    Fujimura, Shuki; Yurimoto, Hiroya; Kurimoto, Shota; Matsufuji, Yoshimi; Ito, Takashi; Hayakawa, Takashi; Tomizuka, Noboru; Sakai, Yasuyoshi; Nakagawa, Tomoyuki

    2013-06-01

    In the methylotrophic yeast, Candida boidinii, methanol-inducible peroxisomal proteins, for example alcohol oxidase (AOD), dihydroxyacetone synthase (DAS), and peroxisomal glutathione peroxidase (Pmp20), were induced only under aerobic conditions, while expression of PMP47 encoding peroxisomal integral membrane protein Pmp47 was independent of oxygen conditions. Expression of the methanol-inducible peroxisomal enzymes was repressed by inhibition of the mitochondrial respiratory chain. In the respiratory-deficient (ρ0) mutant strain, their induction was at very low levels despite the presence of oxygen, whereas the expression of PMP47 was unaffected. Taken together, these facts indicate that C. boidinii can sense oxygen conditions, and that mitochondrial respiratory function may have a profound effect on induction of methanol-inducible gene expression of peroxisomal proteins. Peroxisome morphology was also affected by oxygen conditions and respiratory function. Under hypoxic conditions or respiration-inhibited conditions, cells induced by methanol contained small peroxisomes, indicating that peroxisome biogenesis and the protein import machinery were not affected by oxygen conditions but that peroxisome morphology was dependent on induction of peroxisomal matrix proteins. PMID:23448597

  6. Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells

    PubMed Central

    Voitsekhovskaja, Olga V.; Schiermeyer, Andreas; Reumann, Sigrun

    2014-01-01

    Very recently, autophagy has been recognized as an important degradation pathway for quality control of peroxisomes in Arabidopsis plants. To further characterize the role of autophagy in plant peroxisome degradation, we generated stable transgenic suspension-cultured cell lines of heterotrophic Nicotiana tabacum L. cv. Bright Yellow 2 expressing a peroxisome-targeted version of enhanced yellow fluorescent protein. Indeed, this cell line model system proved advantageous for detailed cytological analyses of autophagy stages and for quantification of cellular peroxisome pools under different culturing conditions and upon inhibitor applications. Complementary biochemical, cytological, and pharmacological analyses provided convincing evidence for peroxisome degradation by bulk autophagy during carbohydrate starvation. This degradation was slowed down by the inhibitor of autophagy, 3-methyladenine (3-MA), but the 3-MA effect ceased at advanced stages of starvation, indicating that another degradation mechanism for peroxisomes might have taken over. 3-MA also caused an increase particularly in peroxisomal proteins and cellular peroxisome numbers when applied under nutrient-rich conditions in the logarithmic growth phase, suggesting a high turnover rate for peroxisomes by basal autophagy under non-stress conditions. Together, our data demonstrate that a great fraction of the peroxisome pool is subject to extensive autophagy-mediated turnover under both nutrient starvation and optimal growth conditions. Our analyses of the cellular pool size of peroxisomes provide a new tool for quantitative investigations of the role of plant peroxisomes in reactive oxygen species metabolism. PMID:25477890

  7. Peroxisome proliferator-activated receptor alpha-retinoid X receptor agonists induce beta-cell protection against palmitate toxicity.

    PubMed

    Hellemans, Karine; Kerckhofs, Karen; Hannaert, Jean-Claude; Martens, Geert; Van Veldhoven, Paul; Pipeleers, Daniel

    2007-12-01

    Fatty acids can stimulate the secretory activity of insulin-producing beta-cells. At elevated concentrations, they can also be toxic to isolated beta-cells. This toxicity varies inversely with the cellular ability to accumulate neutral lipids in the cytoplasm. To further examine whether cytoprotection can be achieved by decreasing cytoplasmic levels of free acyl moieties, we investigated whether palmitate toxicity is also lowered by stimulating its beta-oxidation. Lower rates of palmitate-induced beta-cell death were measured in the presence of L-carnitine as well as after addition of peroxisome proliferator-activated receptor alpha (PPARalpha) agonists, conditions leading to increased palmitate oxidation. In contrast, inhibition of mitochondrial beta-oxidation by etomoxir increased palmitate toxicity. A combination of PPARalpha and retinoid X receptor (RXR) agonists acted synergistically and led to complete protection; this was associated with enhanced expression levels of genes involved in mitochondrial and peroxisomal beta-oxidation, lipid metabolism, and peroxisome proliferation. PPARalpha-RXR protection was abolished by the carnitine palmitoyl transferase 1 inhibitor etomoxir. These observations indicate that PPARalpha and RXR regulate beta-cell susceptibility to long-chain fatty acid toxicity by increasing the rates of beta-oxidation and by involving peroxisomes in fatty acid metabolism. PMID:17970749

  8. Antioxidants attenuate diabetes-induced activation of peroxisomal functions in the rat kidney.

    PubMed

    Dhaunsi, Gursev S; Bitar, Milad S

    2004-01-01

    Diabetes is a multifactorial disease that has now been recognized to involve overproduction of reactive oxygen species and pro-inflammatory cytokines. Peroxisomes are subcellular organelles with several important metabolic functions, and their role in the regulation of cellular oxidative stress is now well established. Despite having their own antioxidant system, peroxisomes undergo functional alterations during various conditions that are associated with free radical production such as inflammation, ischemia-reperfusion, carcinogenesis and diabetes. In this study we investigated the effect of diabetes on peroxisomal functions in rat kidneys and show for the first time that experimental diabetes induces redox-sensitive enhancement of peroxisomal activities. Streptozotocin-induced diabetes significantly increased (p < 0.01) beta-oxidation of lignoceric acid and the enzymic activity of acyl coenzyme A oxidase. Catalase activity was significantly reduced (p < 0.01) in the kidneys of diabetic rats, whereas the enzymic activity of DHAPATase (dihydroxyacetone phosphate acyltransferase) was not markedly affected by diabetes. Treatment of diabetic rats with antioxidants, thiocetic acid and vitamin C attenuated the diabetes-induced modulation of peroxisomal functions. The present study shows that the diabetes-induced effects on kidney peroxisomal functions are redox sensitive, and antioxidants might prove useful tools to alleviate nephropathy in diabetes. PMID:15316130

  9. Pexophagy is induced by increasing peroxisomal reactive oxygen species in 1'10-phenanthroline-treated cells.

    PubMed

    Jo, Doo Sin; Bae, Dong-Jun; Park, So Jung; Seo, Hae Mi; Kim, Han Byeol; Oh, Jeong Su; Chang, Jong Wook; Kim, Sang-Yeob; Shin, Jung-Won; Cho, Dong-Hyung

    2015-11-13

    Although autophagy regulates the quality and quantity of cellular organelles, the regulatory mechanisms of peroxisomal autophagy remain largely unknown. In this study, we developed a cell-based image screening assay, and identified 1,10-phenanthroline (Phen) as a novel pexophagy inducer from chemical library screening. Treatment with Phen induces selective loss of peroxisomes but not endoplasmic reticulum and Golgi apparatus in hepatocytes. In addition, Phen increases autophagic engulfment of peroxisomes in an ATG5 dependent manner. Interestingly, treatment of Phen excessively produces peroxisomal reactive oxygen species (ROS), and inhibition of the ROS suppresses loss of peroxisome in Phen-treated cells. Taken together, these results suggest that Phen triggers pexophagy by enhancing peroxisomal ROS. PMID:26453011

  10. Visfatin is induced by peroxisome proliferator-activated receptor gamma in human macrophages

    PubMed Central

    Mayi, Thérèse Hèrvée; Duhem, Christian; Copin, Corinne; Bouhlel, Mohamed Amine; Rigamonti, Elena; Pattou, François; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2010-01-01

    Obesity is a low grade chronic inflammatory disease associated with an increased number of macrophages (ATM) in adipose tissue. Within the adipose tissue, ATM are the major source of visfatin/PBEF/NAMPT. The nuclear receptor Peroxisome Proliferator-Activated Receptor (PPAR)γ exerts anti-inflammatory effects in macrophages by inhibiting cytokine production and enhancing alternative differentiation. In this study, we investigated whether PPARγ modulates visfatin expression in murine (BMDM) and human (RM, M1, M2, ATM) macrophage models and preadipocyte-derived adipocytes. We show that synthetic PPARγ ligands increased visfatin gene expression in a PPARγ-dependent manner in primary human macrophages (RM) and ATM, but not in adipocytes. The increase of visfatin mRNA (3-fold) was paralleled by an increase of protein expression (30%) and secretion (30%). Electrophoretic Mobility Shift Assay (EMSA) experiments and transient transfection assays indicated that PPARγ induces visfatin promoter activity in human macrophages by binding to a DR1-PPARγ response element. Finally, we show that PPARγ ligands increase NAD+ production in primary human macrophages and this regulation is dampened in the presence of visfatin siRNA or by the visfatin-specific inhibitor FK866. Taken together, our results suggest that PPARγ regulates the expression of visfatin in macrophages leading to increased NAD+ levels. PMID:20608974

  11. Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-β signaling

    PubMed Central

    Oruqaj, Gani; Karnati, Srikanth; Vijayan, Vijith; Boateng, Eistine; Zhang, Wenming; Ruppert, Clemens; Günther, Andreas; Shi, Wei; Baumgart-Vogt, Eveline

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease, and its pathogenic mechanisms remain incompletely understood. Peroxisomes are known to be important in ROS and proinflammatory lipid degradation, and their deficiency induces liver fibrosis. However, altered peroxisome functions in IPF pathogenesis have never been investigated. By comparing peroxisome-related protein and gene expression in lung tissue and isolated lung fibroblasts between human control and IPF patients, we found that IPF lungs exhibited a significant down-regulation of peroxisomal biogenesis and metabolism (e.g., PEX13p and acyl-CoA oxidase 1). Moreover, in vivo the bleomycin-induced down-regulation of peroxisomes was abrogated in transforming growth factor beta (TGF-β) receptor II knockout mice indicating a role for TGF-β signaling in the regulation of peroxisomes. Furthermore, in vitro treatment of IPF fibroblasts with the profibrotic factors TGF-β1 or tumor necrosis factor alpha (TNF-α) was found to down-regulate peroxisomes via the AP-1 signaling pathway. Therefore, the molecular mechanisms by which reduced peroxisomal functions contribute to enhanced fibrosis were further studied. Direct down-regulation of PEX13 by RNAi induced the activation of Smad-dependent TGF-β signaling accompanied by increased ROS production and resulted in the release of cytokines (e.g., IL-6, TGF-β) and excessive production of collagen I and III. In contrast, treatment of fibroblasts with ciprofibrate or WY14643, PPAR-α activators, led to peroxisome proliferation and reduced the TGF-β–induced myofibroblast differentiation and collagen protein in IPF cells. Taken together, our findings suggest that compromised peroxisome activity might play an important role in the molecular pathogenesis of IPF and fibrosis progression, possibly by exacerbating pulmonary inflammation and intensifying the fibrotic response in the patients. PMID:25848047

  12. Obesity and Breast Cancer: The Roles of Peroxisome Proliferator-Activated Receptor-γ and Plasminogen Activator Inhibitor-1

    PubMed Central

    Carter, Jennifer C.; Church, Frank C.

    2009-01-01

    Breast cancer is the most prominent cancer among females in the United States. There are a number of risk factors associated with development of breast cancer, including consumption of a high-fat diet and obesity. Plasminogen activator inhibitor-1 (PAI-1) is a cytokine upregulated in obesity whose expression is correlated with a poor prognosis in breast cancer. As a key mediator of adipogenesis and regulator of adipokine production, peroxisome proliferator-activated receptor-γ (PPAR-γ) is involved in PAI-1 expression from adipose tissue. We summarize the current knowledge linking PPAR-γ and PAI-1 expression to high-fat diet and obesity in the risk of breast cancer. PMID:19672469

  13. Protective Role for Tissue Inhibitor of Metalloproteinase-4, a Novel Peroxisome Proliferator-Activated Receptor-γ Target Gene, in Smooth Muscle in Deoxycorticosterone Acetate-Salt Hypertension.

    PubMed

    Ketsawatsomkron, Pimonrat; Keen, Henry L; Davis, Deborah R; Lu, Ko-Ting; Stump, Madeliene; De Silva, T Michael; Hilzendeger, Aline M; Grobe, Justin L; Faraci, Frank M; Sigmund, Curt D

    2016-01-01

    Loss of peroxisome proliferator-activated receptor-γ (PPARγ) function causes hypertension, whereas its activation lowers blood pressure. Evidence suggests that these effects may be attributable to PPARγ activity in the vasculature. However, the specific transcriptional targets of PPARγ in vessels remain largely unidentified. In this study, we examined the role of smooth muscle PPARγ during salt-sensitive hypertension and investigated its transcriptional targets and functional effect. Transgenic mice expressing dominant-negative PPARγ (S-P467L) in smooth muscle cells were more prone to deoxycorticosterone acetate-salt-induced hypertension and mesenteric arterial dysfunction compared with nontransgenic controls. Despite similar morphometry at baseline, vascular remodeling in conduit and small arteries was enhanced in S-P467L after deoxycorticosterone acetate-salt treatment. Gene expression profiling in aorta and mesenteric arteries revealed significantly decreased expression of tissue inhibitor of metalloproteinase-4 (TIMP-4) in S-P467L. Expression of TIMP-4 was increased by deoxycorticosterone acetate-salt treatment, but this increase was ablated in S-P467L. Interference with PPARγ activity either by treatment with a PPARγ inhibitor, GW9662, or by expressing P467L PPARγ markedly suppressed TIMP-4 in primary smooth muscle cells. PPARγ binds to a PPAR response element (PPRE) in chromatin close to the TIMP-4 gene in smooth muscle cells, suggesting that TIMP-4 is a novel target of PPARγ. The interference with PPARγ and decrease in TIMP-4 were accompanied by an increase in total matrix metalloproteinase activity. PPARγ-mediated loss of TIMP-4 increased, whereas overexpression of TIMP-4 decreased smooth muscle cell migration in a scratch assay. Our findings highlight a protective mechanism induced by PPARγ in deoxycorticosterone acetate-salt treatment, establishing a novel mechanistic link between PPARγ and TIMP-4. PMID:26597823

  14. Peroxisome proliferator activated receptor gamma is not necessary for the development of LPS-induced tolerance in macrophages.

    PubMed

    Zingarelli, Basilia; Fan, Hongkuan; Ashton, Sarah; Piraino, Giovanna; Mangeshkar, Prajakta; Cook, James A

    2008-05-01

    Peroxisome proliferator activated receptor-gamma (PPARgamma) has been reported to exert anti-inflammatory properties in endotoxic shock and sepsis. One phenomenon that alters the inflammatory response to endotoxin [lipopolysaccharide (LPS)] is endotoxin tolerance, which is caused by previous exposure to endotoxin. Here, we investigate whether changes in endogenous PPARgamma function regulate this phenomenon using three different models of LPS-induced tolerance in macrophages. In a first in vitro model, previous LPS exposure of murine J774.2 macrophages suppressed tumour necrosis factor-alpha (TNF-alpha) release in response to subsequent LPS challenge. Treatment of J774.2 cells with the PPARgamma inhibitor GW9662 did not alter tolerance induction because these cells were still hyporesponsive to the secondary LPS challenge. In a second ex vivo model, primary rat peritoneal macrophages from LPS-primed rats exhibited suppression of thromboxane B2 and TNF-alpha production, while maintaining nitrite production in response to in vitro LPS challenge. Pretreatment of rats with the PPARgamma inhibitor GW9662 in vivo failed to alter the tolerant phenotype of these primary macrophages. In a third ex vivo model, primary peritoneal macrophages with conditional deletion of PPARgamma were harvested from LPS-primed Cre-lox mice (Cre+/+ PPARgamma-/-) and exhibited significant suppression of TNF-alpha production in response to in vitro LPS challenge. Furthermore, both LPS-primed PPARgamma-deficient Cre+/+ PPARgamma-/- mice and wild-type Cre-/- PPARgamma+/+ mice exhibited reduced plasma TNF-alpha levels in response to a high dose of LPS in vivo. These data demonstrate that PPARgamma does not play a role in the LPS-induced tolerant phenotype in macrophages. PMID:18028370

  15. Histone deacetylase inhibitor upregulates peroxisomal fatty acid oxidation and inhibits apoptotic cell death in abcd1-deficient glial cells.

    PubMed

    Singh, Jaspreet; Khan, Mushfiquddin; Pujol, Aurora; Baarine, Mauhamad; Singh, Inderjit

    2013-01-01

    In X-ALD, mutation/deletion of ALD gene (ABCD1) and the resultant very long chain fatty acid (VLCFA) derangement has dramatically opposing effects in astrocytes and oligodendrocytes. While loss of Abcd1 in astrocytes produces a robust inflammatory response, the oligodendrocytes undergo cell death leading to demyelination in X-linked adrenoleukodystrophy (X-ALD). The mechanisms of these distinct pathways in the two cell types are not well understood. Here, we investigated the effects of Abcd1-knockdown and the subsequent alteration in VLCFA metabolism in human U87 astrocytes and rat B12 oligodendrocytes. Loss of Abcd1 inhibited peroxisomal β-oxidation activity and increased expression of VLCFA synthesizing enzymes, elongase of very long chain fatty acids (ELOVLs) (1 and 3) in both cell types. However, higher induction of ELOVL's in Abcd1-deficient B12 oligodendrocytes than astrocytes suggests that ELOVL pathway may play a prominent role in oligodendrocytes in X-ALD. While astrocytes are able to maintain the cellular homeostasis of anti-apoptotic proteins, Abcd1-deletion in B12 oligodendrocytes downregulated the anti-apototic (Bcl-2 and Bcl-xL) and cell survival (phospho-Erk1/2) proteins, and upregulated the pro-apoptotic proteins (Bad, Bim, Bax and Bid) leading to cell loss. These observations provide insights into different cellular signaling mechanisms in response to Abcd1-deletion in two different cell types of CNS. The apoptotic responses were accompanied by activation of caspase-3 and caspase-9 suggesting the involvement of mitochondrial-caspase-9-dependent mechanism in Abcd1-deficient oligodendrocytes. Treatment with histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) corrected the VLCFA derangement both in vitro and in vivo, and inhibited the oligodendrocytes loss. These observations provide a proof-of principle that HDAC inhibitor SAHA may have a therapeutic potential for X-ALD. PMID:23923017

  16. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality.

    PubMed

    Minge, Cadence E; Bennett, Brenton D; Norman, Robert J; Robker, Rebecca L

    2008-05-01

    Obesity and its physiological consequences are increasingly prevalent among women of reproductive age and are associated with infertility. To investigate, female mice were fed a high-fat diet until the onset of insulin resistance, followed by assessments of ovarian gene expression, ovulation, fertilization, and oocyte developmental competence. We report defects to ovarian function associated with diet-induced obesity (DIO) that result in poor oocyte quality, subsequently reduced blastocyst survival rates, and abnormal embryonic cellular differentiation. To identify critical cellular mediators of ovarian responses to obesity induced insulin resistance, DIO females were treated for 4 d before mating with an insulin-sensitizing pharmaceutical: glucose and lipid-lowering AMP kinase activator, 5-aminoimidazole 4-carboxamide-riboside, 30 mg/kg.d; sodium salicylate, IkappaK inhibitor that reverses insulin resistance, 50 mg/kg.d; or peroxisome proliferator activated receptor-gamma agonist rosiglitazone, 10 mg/kg.d. 5-aminoimidazole 4-carboxamide-riboside or sodium salicylate treatment did not have significant effects on the reproductive parameters examined. However, embryonic development to the blastocyst stage was significantly improved when DIO mice were treated with rosiglitazone, effectively repairing development rates. Rosiglitazone also normalized DIO-associated abnormal blastomere allocation to the inner cell mass. Such improvements to oocyte quality were coupled with weight loss, improved glucose metabolism, and changes in ovarian mRNA expression of peroxisome proliferator activated receptor-regulated genes, Cd36, Scarb1, and Fabp4 cholesterol transporters. These studies demonstrate that peri-conception treatment with select insulin-sensitizing pharmaceuticals can directly influence ovarian functions and ultimately exert positive effects on oocyte developmental competence. Improved blastocyst quality in obese females treated with rosiglitazone before mating indicates that peroxisome proliferator activated receptor-gamma is a key target for metabolic regulation of ovarian function and oocyte quality. PMID:18276752

  17. Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity.

    PubMed

    Diano, Sabrina; Liu, Zhong-Wu; Jeong, Jin Kwon; Dietrich, Marcelo O; Ruan, Hai-Bin; Kim, Esther; Suyama, Shigetomo; Kelly, Kaitlin; Gyengesi, Erika; Arbiser, Jack L; Belsham, Denise D; Sarruf, David A; Schwartz, Michael W; Bennett, Anton M; Shanabrough, Marya; Mobbs, Charles V; Yang, Xiaoyong; Gao, Xiao-Bing; Horvath, Tamas L

    2011-09-01

    Previous studies have proposed roles for hypothalamic reactive oxygen species (ROS) in the modulation of circuit activity of the melanocortin system. Here we show that suppression of ROS diminishes pro-opiomelanocortin (POMC) cell activation and promotes the activity of neuropeptide Y (NPY)- and agouti-related peptide (AgRP)-co-producing (NPY/AgRP) neurons and feeding, whereas ROS-activates POMC neurons and reduces feeding. The levels of ROS in POMC neurons were positively correlated with those of leptin in lean and ob/ob mice, a relationship that was diminished in diet-induced obese (DIO) mice. High-fat feeding resulted in proliferation of peroxisomes and elevated peroxisome proliferator-activated receptor γ (PPAR-γ) mRNA levels within the hypothalamus. The proliferation of peroxisomes in POMC neurons induced by the PPAR-γ agonist rosiglitazone decreased ROS levels and increased food intake in lean mice on high-fat diet. Conversely, the suppression of peroxisome proliferation by the PPAR antagonist GW9662 increased ROS concentrations and c-fos expression in POMC neurons. Also, it reversed high-fat feeding-triggered elevated NPY/AgRP and low POMC neuronal firing, and resulted in decreased feeding of DIO mice. Finally, central administration of ROS alone increased c-fos and phosphorylated signal transducer and activator of transcription 3 (pStat3) expression in POMC neurons and reduced feeding of DIO mice. These observations unmask a previously unknown hypothalamic cellular process associated with peroxisomes and ROS in the central regulation of energy metabolism in states of leptin resistance. PMID:21873987

  18. Fenofibrate, a peroxisome proliferator-activated receptor α ligand, prevents abnormal liver function induced by a fasting–refeeding process

    SciTech Connect

    Lee, Joon No; Dutta, Raghbendra Kumar; Kim, Seul-Gi; Lim, Jae-Young; Kim, Se-Jin; Choe, Seong-Kyu; Yoo, Kyeong-Won; Immune-network Pioneer Research Center, Department of Biochemistry, College of Medicine, Dong-A University, Busan ; Song, Seung Ryel; Park, Do-Sim; Department of Laboratory of Medicine, School of Medicine, Wonkwang University, Iksan ; So, Hong-Seob; Park, Raekil

    2013-12-06

    Highlights: •A fasting–refeeding high fat diet (HDF) model mimics irregular eating habit. •A fasting–refeeding HFD induces liver ballooning injury. •A fasting–refeeding HDF process elicits hepatic triglyceride accumulation. •Fenofibrate, PPARα ligand, prevents liver damage induced by refeeding HFD. -- Abstract: Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is an anti-hyperlipidemic agent that has been widely used in the treatment of dyslipidemia. In this study, we examined the effect of fenofibrate on liver damage caused by refeeding a high-fat diet (HFD) in mice after 24 h fasting. Here, we showed that refeeding HFD after fasting causes liver damage in mice determined by liver morphology and liver cell death. A detailed analysis revealed that hepatic lipid droplet formation is enhanced and triglyceride levels in liver are increased by refeeding HFD after starvation for 24 h. Also, NF-κB is activated and consequently induces the expression of TNF-α, IL1-β, COX-2, and NOS2. However, treating with fenofibrate attenuates the liver damage and triglyceride accumulation caused by the fasting–refeeding HFD process. Fenofibrate reduces the expression of NF-κB target genes but induces genes for peroxisomal fatty acid oxidation, peroxisome biogenesis and mitochondrial fatty acid oxidation. These results strongly suggest that the treatment of fenofibrate ameliorates the liver damage induced by fasting–refeeding HFD, possibly through the activation of fatty acid oxidation.

  19. Peroxisomal disorders.

    PubMed

    Aubourg, Patrick; Wanders, Ronald

    2013-01-01

    The peroxisomal disorders represent a group of genetic diseases in man in which there is an impairment in one or more peroxisomal functions. The peroxisomal disorders are subdivided into three subgroups comprising: (1) the peroxisome biogenesis disorders (PBDs); (2) the single peroxisomal (enzyme-) protein deficiencies; and (3) the single peroxisomal substrate transport deficiencies. The PBD group comprises four different disorders that include Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), infantile Refsum disease (IRD), and rhizomelic chondrodysplasia punctata (RCDP). ZS, NALD, and IRD are clearly distinct from RCDP and are usually referred to as the Zellweger spectrum with ZS being the most severe, and IRD the less severe disorder, with sometimes onset in adulthood. The single peroxisomal enzyme deficiency group comprises seven different disorders, of which D-bifunctional protein and phytanoyl-CoA hydroxylase (adult Refsum disease) deficiencies are the most frequent. The single peroxisomal substrate transport deficiency group consists of only one disease, X-linked adrenoleukodystrophy. It is the purpose of this chapter to describe the current state of knowledge about the clinical, biochemical, cellular, and molecular aspects of peroxisomal diseases, and to provide guidelines for their post- and prenatal diagnosis. Therapeutic interventions are mostly limited to X-linked adrenoleukodystrophy. PMID:23622381

  20. Ginsenoside Rb? induces type I collagen expression through peroxisome proliferator-activated receptor-delta.

    PubMed

    Kwok, Hoi-Hin; Yue, Patrick Ying-Kit; Mak, Nai-Ki; Wong, Ricky Ngok-Shun

    2012-08-15

    Wrinkle formation is one of the primary characteristics of skin aging, the major cause of wrinkle is the loss of structural protein type I collagen in dermal layer of skin. Topical application of natural substances to reduce wrinkle is gaining attention in recent years. Although a number of polyphenoic compounds are suggested to prevent ultraviolet-induced wrinkle, very few of them are able to increase type I collagen synthesis directly. Ginseng has been known in folk medicine of its beneficial effect to skin. The present study investigate the effect of ginsenoside on type I collagen induction in human dermal fibroblasts. Ginsenoside Rb? was shown to induce type I collagen expression in dermal fibroblasts in a dose- and time-dependent manner. Recent studies suggest the important post-transcriptional regulatory role of microRNAs; here we demonstrated that miR-25 can directly inhibit type I collagen protein expression, and treatment of fibroblasts with Rb? can reduce the inhibition by decreasing miR-25 level. Furthermore, we identified that the nuclear receptor, peroxisome proliferator-activated receptor-delta (PPAR?) is the key mediator of Rb?-induced type I collagen expression. Knockdown of PPAR? by small-interference RNA abolished the Rb?-induced type I collagen production and reversed the Rb?-suppressed miR-25 expression. These results demonstrated that ginsenoside Rb? can increase target gene expression through transcriptional pathway, at the same time, inhibit the corresponding miRNA expression to minimize the translation repression. Furthermore, this study provide solid support of ginsenoside Rb?-induced type I collagen expression, which warrant further study in the dermatological application of ginsenosides in skin disorders. PMID:22692056

  1. Identification of transcriptional networks involved in peroxisome proliferator chemical-induced hepatocyte proliferation

    EPA Science Inventory

    Peroxisome proliferator chemical (PPC) exposure leads to increases in rodent liver tumors through a non-genotoxic mode of action (MOA). The PPC MOA includes increased oxidative stress, hepatocyte proliferation and decreased apoptosis. We investigated the putative genetic regulato...

  2. Peroxisome proliferator-activated receptor gamma agonists protect cerebellar granule cells from cytokine-induced apoptotic cell death by inhibition of inducible nitric oxide synthase.

    PubMed

    Heneka, M T; Feinstein, D L; Galea, E; Gleichmann, M; Wüllner, U; Klockgether, T

    1999-12-01

    Cerebellar granule cells (CGCs) can express the inducible isoform of nitric oxide synthase (iNOS) in response to inflammatory stimuli. We demonstrate that induction of iNOS in CGCs by bacterial lipopolysaccharide and pro-inflammatory cytokines results in cell death that was potentiated by excess L-arginine and inhibited by the selective iNOS inhibitor, 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine. The NO-mediated cell death was accompanied by increased caspase-3-like activity, DNA fragmentation and positive terminal transferase dUTP nick end labeling (TUNEL), suggesting that apoptosis mediates CGC cell death. Incubation of CGCs with the non-steroidal anti-inflammatory drugs (NSAIDs), ibuprofen or indomethacin, or with 15-deoxy-delta12,14 prostaglandin J2 (PGJ2) downregulates iNOS expression and reduces subsequent cell death. Since in other cell types, both NSAIDs and PGJ2 can activate the peroxisome proliferator-activated receptor-gamma (PPARgamma) and downregulate cytokine levels and iNOS expression, and since CGCs express PPARgamma in vivo and in vitro, our data suggest that activation of CGC PPARgamma mediates iNOS suppression and reduced cell death. Because PPARgamma is expressed in brains of Alzheimer's Disease (AD) patients, in which neuronal iNOS expression and apoptotic cell death have been described, these results may help explain the basis for the beneficial effects of NSAIDs in AD. PMID:10695726

  3. ACE inhibitor-induced angioedema.

    PubMed

    Baram, Michael; Kommuri, Anand; Sellers, Subhashini A; Cohn, John R

    2013-01-01

    Angiotensin-converting enzyme inhibitors (ACEI) are commonly prescribed for blood pressure control and renal protection. ACEI angioedema is a common problem in patients who are taking ACEI, although, in most cases, the disorder is self-limited, and spontaneous episodes of apparently unprovoked angioedema stop with the discontinuation of the medication. In a subset of patients, hospitalization and even intubation are required for airway protection. The diagnosis is made clinically. There are no laboratory studies that establish the diagnosis. However, such investigations help exclude alternative diagnoses as the cause for the patient's presentation. Conventional treatment with regimens used to control allergic angioedema is ineffective in this condition. The mechanism of ACEI-induced angioedema is thought to be related to its effect on the kallikrein-kinin system. Kallikrein is a protease that converts high-molecular-weight kininogens into kinins, primarily bradykinin. Medications recently developed, primarily icatibant and ecallantide, to control hereditary angioedema, a disorder also associated with kallikrein-kinin activation, have been used to treat ACEI angioedema with some success. The efficacy of these agents and their optimal use remains to be established by randomized and placebo controlled trials. PMID:24565614

  4. Metal-catalyzed oxidation induces carbonylation of peroxisomal proteins and loss of enzymatic activities.

    PubMed

    Nguyen, A T; Donaldson, R P

    2005-07-01

    Peroxisomes are involved in oxidative metabolic reactions and have the capacity to generate large amounts of reactive oxygen species that could damage biomolecules including their own resident proteins. The purpose of this study was to determine whether peroxisomal proteins are susceptible to oxidation and whether oxidative damage affects their enzymatic activity. Peroxisomal proteins were subjected to metal-catalyzed oxidation (MCO) with CuCl(2)/ascorbate and derivatized with 2,4-dinitrophenylhydrazine which allowed for spectrophotometric quantification of carbonylation. Immunochemical detection of carbonylated peroxisomal proteins, resolved by gel electrophoresis and detected with anti-DNP antibodies, revealed five oxidatively modified proteins with the following molecular weights: 80, 66, 62, 55, and 50 kDa. The proteins at 66, 62, and 55 kDa were identified as malate synthase (MS), isocitrate lyase, and catalase (CAT), respectively. MS and CAT were estimated to contain 2-3 mol of carbonyl/mol of protein as a result of MCO. Enzymatic assays revealed varying degrees of activity loss. Isocitrate lyase and malate synthase showed significant loss of activity while catalase and malate dehydrogenase were less inhibited by carbonylation. Our findings show that peroxisomal proteins are vulnerable to MCO damage and thus may also be affected by in vivo exposure to reactive oxygen species. PMID:15922287

  5. Peroxisome proliferator-activated receptor γ attenuates serotonin-induced pulmonary artery smooth muscle cell proliferation and apoptosis inhibition involving ERK1/2 pathway.

    PubMed

    Han, Xinyuan; Chen, Chunyan; Cheng, Gong; Liang, Lei; Yao, Xiaowei; Yang, Guang; You, Penghua; Shou, Xiling

    2015-07-01

    Serotonin (5-HT) has been shown to be involved in pulmonary vascular remodeling in pulmonary arterial hypertension (PAH) by inducing pulmonary artery smooth muscle cells (PASMCs) proliferation and inhibiting PASMC apoptosis. Peroxisome proliferator-activated receptor γ (PPARγ) plays a crucial role in regulating proliferation and apoptosis of many cell types. Moreover, recently, loss of PPARγ has also been reported to be associated with the development of PAH. The present study is aimed to assess whether PPARγ is involved in 5-HT induced PASMC proliferation and apoptosis inhibition and the possible mechanism. We found that 5-HT could induce PASMC proliferation and inhibit PASMC apoptosis in a dose-dependent manner. Furthermore, we found that 5-HT negatively regulated PPARγ expression and gene promoter activity in PASMCs and 5-HT induced PASMC proliferation and apoptosis resistance could be abolished by PPARγ agonists and enhanced by PPARγ inhibitor. In addition, we found that extracellular signal-regulated kinase (ERK) signaling pathway mediated the 5-HT-induced inhibition of PPARγ expression. Our results might provide novel insights into the mechanisms for the pro-remodeling action of 5-HT in pulmonary vasculature. PMID:25937083

  6. Troglitazone regulates peroxisome proliferator-activated receptors and inducible nitric oxide synthase in murine ovarian macrophages.

    PubMed

    Minge, Cadence E; Ryan, Natalie K; Van Der Hoek, Kylie H; Robker, Rebecca L; Norman, Robert J

    2006-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARG) and PPAR-alpha (PPARA) control metabolic processes in many cell types and act as anti-inflammatory regulators in macrophages. PPAR-activating ligands include thiazolidinediones (TZDs), such as troglitazone, once frequently used to treat insulin resistance as well as symptoms of polycystic ovary syndrome (PCOS). Since macrophages within the ovary mediate optimal follicle development, TZD actions to improve PCOS symptoms are likely to be partly mediated through these specifically localized immune cells. In mouse ovary, PPARG protein was expressed in granulosa cells and in isolated cells localized to theca, stroma, and corpora lutea, consistent with EMR1+ macrophages. Isolation of immune cells (EMR1+ or H2+) showed that Pparg and Ppara were expressed in ovarian macrophages at much higher levels than in peritoneal macrophages. Ovulatory human chorionic gonadotropin downregulated expression of Pparg and Ppara in EMR1+ ovarian macrophages, but no hormonal responsiveness was observed in H2+ cells. Downstream anti-inflammatory effects of PPARG activation were analyzed by in vitro treatment of isolated macrophages with troglitazone. Interleukin-1 beta (Il1b) expression was not altered, and tumor necrosis factor-alpha (Tnf) expression was affected in peritoneal macrophages only. In ovarian macrophages, inducible nitric oxide synthase (Nos2), an important proinflammatory enzyme that regulates ovulation, was significantly reduced by troglitazone treatment, an effect that was restricted to cells from the preovulatory ovary. Thus, expression of PPARs within ovarian macrophages is hormonally regulated, reflecting the changing roles of these cells during the ovulatory cycle. Additionally, ovarian macrophages respond directly to troglitazone to downregulate expression of proinflammatory Nos2, providing mechanistic information about ovarian effects of TZD treatment. PMID:16192401

  7. Peroxisome Proliferator–Activated Receptor α Protects Renal Tubular Cells from Gentamicin-Induced Apoptosis via Upregulating Na+/H+ Exchanger NHE1

    PubMed Central

    Chen, Cheng-Hsien; Chen, Tso-Hsiao; Wu, Mei-Yi; Chen, Jia-Rung; Hong, Li-Yu; Zheng, Cai-Mei; Chiu, I-Jen; Lin, Yuh-Feng; Hsu, Yung-Ho

    2015-01-01

    Peroxisome proliferator–activated receptor (PPAR)-α is a transcription factor that has been reported to inhibit gentamicin-induced apoptosis in renal tubular cells. However, the antiapoptotic mechanism of PPARα is still unknown. In this study, we found that PPARα overexpression induced Na+/H+ exchanger-1 (NHE1) expression in the rat renal tubular cells NRK-52E. Beraprost, a PPARα ligand, also increased NHE1 expression in the renal tubules in normal mice, but not in PPARα knockout mice. Chromatin immunoprecipitation assays revealed that two PPARα binding elements were located in the rat NHE1 promoter region. Na+/H+ exchanger activity also increased in the PPARα-overexpressed cells. Flow cytometry showed that the PPARα-overexpressed cells were resistant to apoptosis-induced shrinkage. Cariporide, a selective NHE1 inhibitor, inhibited the antiapoptotic effect of PPARα in the gentamicin-treated cells. The interaction between NHE1 and ezrin/radixin/moesin (ERM) and between ERM and phosphatidylinositol 4,5-bisphosphate in the PPARα-overexpressed cells was more than in the control cells. ERM short interfering RNA (siRNA) transfection inhibited the PPARα-induced antiapoptotic effect. PPARα overexpression also increased the phosphoinositide 3-kinase (PI3K) expression, which is dependent on NHE1 activity. Increased PI3K further increased the phosphorylation of the prosurvival kinase Akt in the PPARα-overexpressed cells. Wortmannin, a PI3K inhibitor, inhibited PPARα-induced Akt activity and the antiapoptotic effect. We conclude that PPARα induces NHE1 expression and then recruits ERM to promote PI3K/Akt-mediated cell survival in renal tubular cells. The application of PPARα activation reduces the nephrotoxicity of gentamicin and may expand the clinical use of gentamicin. PMID:26623927

  8. Peroxisome Proliferator-activated Receptor γ Induces Apoptosis and Inhibits Autophagy of Human Monocyte-derived Macrophages via Induction of Cathepsin L

    PubMed Central

    Mahmood, Dler Faieeq Darweesh; Jguirim-Souissi, Imene; Khadija, El-Hadri; Blondeau, Nicolas; Diderot, Vimala; Amrani, Souliman; Slimane, Mohamed-Naceur; Syrovets, Tatiana; Simmet, Thomas; Rouis, Mustapha

    2011-01-01

    Macrophages play a pivotal role in the pathophysiology of atherosclerosis. These cells express cathepsin L (CatL), a cysteine protease that has been implicated in atherogenesis and the associated arterial remodeling. In addition, macrophages highly express peroxisome proliferator-activated receptor (PPAR) γ, a transcription factor that regulates numerous genes important for lipid and lipoprotein metabolism, for glucose homeostasis, and inflammation. Hence, PPARγ might affect macrophage function in the context of chronic inflammation such as atherogenesis. In the present study, we examined the effect of PPARγ activation on the expression of CatL in human monocyte-derived macrophages (HMDM). Activation of PPARγ by the specific agonist GW929 concentration-dependently increased the levels of CatL mRNA and protein in HMDM. By promoter analysis, we identified a functional PPAR response element-like sequence that positively regulates CatL expression. In addition, we found that PPARγ-induced CatL promotes the degradation of Bcl2 without affecting Bax protein levels. Consistently, degradation of Bcl2 could be prevented by a specific CatL inhibitor, confirming the causative role of CatL. PPARγ-induced CatL was found to decrease autophagy through reduction of beclin 1 and LC3 protein levels. The reduction of these proteins involved in autophagic cell death was antagonized either by the CatL inhibitor or by CatL knockdown. In conclusion, our data show that PPARγ can specifically induce CatL, a proatherogenic protease, in HMDM. In turn, CatL inhibits autophagy and induces apoptosis. Thus, the proatherogenic effect of CatL could be neutralized by apoptosis, a beneficial phenomenon, at least in the early stages of atherosclerosis. PMID:21700710

  9. Yeast peroxisomes: structure, functions and biotechnological opportunities.

    PubMed

    Sibirny, Andriy A

    2016-06-01

    Peroxisomes are ubiquitous organelles found in most eukaryotic cells. In yeasts, peroxisomes play important roles in cell metabolism, especially in different catabolic processes including fatty acid β-oxidation, the glyoxylic shunt and methanol metabolism, as well as some biosynthetic processes. In addition, peroxisomes are the compartment in which oxidases and catalase are localized. New peroxisomes mainly arise by fission of pre-existing ones, although they can also be formed from the endoplasmic reticulum (ER). Peroxisomes consist of matrix-soluble proteins and membrane proteins known as peroxins. A total of 34 PEX peroxin genes and proteins have been identified to date. and their functions have been elucidated. Protein import into peroxisomes depends on peroxins and requires specific signals in the structure of transported proteins: PTS1, PTS2 and mPTS. The mechanisms of metabolite penetration into peroxisomes are still poorly understood. Peroxisome number and the volume occupied by these organelles are tightly regulated. Methanol, fatty acids and methylamine act as efficient peroxisome proliferators, whereas glucose and ethanol induce peroxisome autophagic degradation (pexophagy). To date, 42 Atg proteins involved in pexophagy are known. Catabolism and alcoholic fermentation of the major pentose sugar, xylose, depend on peroxisomal enzymes. Overexpression of peroxisomal transketolase and transaldolase activates xylose fermentation. Peroxisomes could be useful as target organelles for overexpression of foreign toxic proteins. PMID:27189367

  10. Identification of a peroxisome proliferator responsive element (PPRE)-like cis-element in mouse plasminogen activator inhibitor-1 gene promoter

    SciTech Connect

    Chen Jiegen; Li Xi; Huang Haiyan; Liu Honglei; Liu Deguo; Song Tanjing; Ma Chungu; Ma Duan; Song Houyan; Tang Qiqun . E-mail: qqtang@shmu.edu.cn

    2006-09-01

    PAI-1 is expressed and secreted by adipose tissue which may mediate the pathogenesis of obesity-associated cardiovascular complications. Evidence is presented in this report that PAI-1 is not expressed by preadipocyte, but significantly induced during 3T3-L1 adipocyte differentiation and the PAI-1 expression correlates with the induction of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}). A peroxisome proliferator responsive element (PPRE)-like cis-element (-206TCCCCCATGCCCT-194) is identified in the mouse PAI-1 gene promoter by electrophoretic mobility shift assay (EMSA) combined with transient transfection experiments; the PPRE-like cis-element forms a specific DNA-protein complex only with adipocyte nuclear extracts, not with preadipocyte nuclear extracts; the DNA-protein complex can be totally competed away by non-labeled consensus PPRE, and can be supershifted with PPAR{gamma} antibody. Mutation of this PPRE-like cis-element can abolish the transactivation of mouse PAI-1 promoter mediated by PPAR{gamma}. Specific PPAR{gamma} ligand Pioglitazone can significantly induce the PAI-1 expression, and stimulate the secretion of PAI-1 into medium.

  11. Mitogen-activated protein kinase kinases promote mitochondrial biogenesis in part through inducing peroxisome proliferator-activated receptor γ coactivator-1β expression.

    PubMed

    Gao, Minghui; Wang, Junjian; Lu, Na; Fang, Fang; Liu, Jinsong; Wong, Chi-Wai

    2011-06-01

    Growth factor activates mitogen-activated protein kinase kinases to promote cell growth. Mitochondrial biogenesis is an integral part of cell growth. How growth factor regulates mitochondrial biogenesis is not fully understood. In this study, we found that mitochondrial mass was specifically reduced upon serum starvation and induced upon re-feeding with serum. Using mitogen-activated protein kinase kinases inhibitor U0126, we found that the mRNA expression levels of ATP synthase, cytochrome-C, mitochondrial transcription factor A, and mitofusin 2 were reduced. Since the transcriptional levels of these genes are under the control of peroxisome proliferator-activated receptor γ coactivator-1α and -1β (PGC-1α and PGC-1β), we examined and found that only the mRNA and protein levels of PGC-1β were suppressed. Importantly, over-expression of PGC-1β partially reversed the reduction of mitochondrial mass upon U0126 treatment. Thus, we conclude that mitogen-activated protein kinase kinases direct mitochondrial biogenesis through selectively inducing PGC-1β expression. PMID:21458501

  12. Inducible Conditional Vascular-Specific Overexpression of Peroxisome Proliferator-Activated Receptor Beta/Delta Leads to Rapid Cardiac Hypertrophy

    PubMed Central

    Wagner, Kay-Dietrich; Vukolic, Ana; Baudouy, Delphine; Michiels, Jean-François

    2016-01-01

    Peroxisome proliferator-activated receptors are nuclear receptors which function as ligand-activated transcription factors. Among them, peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in the heart and thought to have cardioprotective functions due to its beneficial effects in metabolic syndrome. As we already showed that PPARβ/δ activation resulted in an enhanced cardiac angiogenesis and growth without impairment of heart function, we were interested to determine the effects of a specific activation of PPARβ/δ in the vasculature on cardiac performance under normal and in chronic ischemic heart disease conditions. We analyzed the effects of a specific PPARβ/δ overexpression in endothelial cells on the heart using an inducible conditional vascular-specific mouse model. We demonstrate that vessel-specific overexpression of PPARβ/δ induces rapid cardiac angiogenesis and growth with an increase in cardiomyocyte size. Upon myocardial infarction, vascular overexpression of PPARβ/δ, despite the enhanced cardiac vessel formation, does not protect against chronic ischemic injury. Our results suggest that the proper balance of PPARβ/δ activation in the different cardiac cell types is required to obtain beneficial effects on the outcome in chronic ischemic heart disease. PMID:27057154

  13. Hypolipidemic effect and enhancement of peroxisomal beta-oxidation in the liver of rats by sodium-(E)-3-(4-(3-pyridylmethyl)phenyl)-2-methyl propenoate (OKY-1581), a potent inhibitor of TxA2 synthetase.

    PubMed

    Watanabe, T; Utsugi, M; Mitsukawa, M; Suga, T; Fujitani, H

    1986-12-01

    The effects of sodium-(E)-3-(4-(3-pyridylmethyl)phenyl)-2-methyl propenoate (OKY-1581) and (E)-3-(4-(imidazolylmethyl)phenyl)-2-propenoic acid (OKY-046), potent inhibitors to thromboxane A2 synthetase, on peroxisomal beta-oxidation and on lipid levels of liver and serum in the rat were studied. When the animals were administered with OKY-1581 at the dose levels of 100 and 500 mg/kg body weight for 2 weeks, the activity of peroxisomal beta-oxidation increased 2.2- and 6.3-fold respectively. Catalase activity increased 1.3-fold, whereas D-amino acid oxidase (DAAO) and urate oxidase activities did not change. Carnitine acetyltransferase and carnitine palmitoyltransferase activities also increased 2.2- - 4.1-fold and 2.7- - 4.2-fold respectively. These changes of the enzymes related to lipid metabolism were also confirmed by the results of a cell fractionation study. Moreover, the induction of peroxisome proliferation-associated polypeptide having a molecular weight of 80000, which is a bifunctional enzyme in the peroxisomal beta-oxidation system was also observed electrophoretically in the light mitochondrial fraction of the liver of OKY-1581-treated rat. The contents of triglyceride and cholesterol in the serum decreased. These results indicated that the action of OKY-1581 in enhancing hepatic peroxisomal-oxidation is similar to that of a potent hypolipidemic peroxisome proliferator such as clofibrate. On the other hand, differing from OKY-1581, OKY-046 at the dose level of 500 mg/kg for 2 weeks showed no effect on serum and liver lipid levels and on the activities of the peroxisomal enzymes, including a cyanide-insensitive fatty acyl-CoA oxidizing system and carnitine acetyl transferase. PMID:3572715

  14. Redox regulated peroxisome homeostasis

    PubMed Central

    Wang, Xiaofeng; Li, Shuo; Liu, Yu; Ma, Changle

    2014-01-01

    Peroxisomes are ubiquitous organelles present in nearly all eukaryotic cells. Conserved functions of peroxisomes encompass beta-oxidation of fatty acids and scavenging of reactive oxygen species generated from diverse peroxisomal metabolic pathways. Peroxisome content, number, and size can change quickly in response to environmental and/or developmental cues. To achieve efficient peroxisome homeostasis, peroxisome biogenesis and degradation must be orchestrated. We review the current knowledge on redox regulated peroxisome biogenesis and degradation with an emphasis on yeasts and plants. PMID:25545794

  15. Activation of Peroxisome Proliferator-activated Receptor α (PPARα) Suppresses Hypoxia-inducible Factor-1α (HIF-1α) Signaling in Cancer Cells*

    PubMed Central

    Zhou, Jundong; Zhang, Shuyu; Xue, Jing; Avery, Jori; Wu, Jinchang; Lind, Stuart E.; Ding, Wei-Qun

    2012-01-01

    Activation of peroxisome proliferator-activated receptor α (PPARα) has been demonstrated to inhibit tumor growth and angiogenesis, yet the mechanisms behind these actions remain to be characterized. In this study, we examined the effects of PPARα activation on the hypoxia-inducible factor-1α (HIF-1α) signaling pathway in human breast (MCF-7) and ovarian (A2780) cancer cells under hypoxia. Incubation of cancer cells under 1% oxygen for 16 h significantly induced HIF-1α expression and activity as assayed by Western blotting and reporter gene analysis. Treatment of the cells with PPARα agonists, but not a PPARγ agonist, prior to hypoxia diminished hypoxia-induced HIF-1α expression and activity, and addition of a PPARα antagonist attenuated the suppression of HIF-1α signaling. Activation of PPARα attenuated hypoxia-induced HA-tagged HIF-1α protein expression without affecting the HA-tagged HIF-1α mutant protein level, indicating that PPARα activation promotes HIF-1α degradation in these cells. This was further confirmed using proteasome inhibitors, which reversed PPARα-mediated suppression of HIF-1α expression under hypoxia. Using the co-immunoprecipitation technique, we found that activation of PPARα enhances the binding of HIF-1α to von Hippel-Lindau tumor suppressor (pVHL), a protein known to mediate HIF-1α degradation through the ubiquitin-proteasome pathway. Following PPARα-mediated suppression of HIF-1α signaling, VEGF secretion from the cancer cells was significantly reduced, and tube formation by endothelial cells was dramatically impaired. Taken together, these findings demonstrate for the first time that activation of PPARα suppresses hypoxia-induced HIF-1α signaling in cancer cells, providing novel insight into the anticancer properties of PPARα agonists. PMID:22932900

  16. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    SciTech Connect

    Liang Pengfei; Jiang Bimei; Yang Xinghua; Xiao Xianzhong Huang Xu; Long Jianhong; Zhang Pihong; Zhang Minghua; Xiao Muzhang; Xie Tinghong; Huang Xiaoyuan

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, an EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.

  17. Agranulocytosis induced by proton pump inhibitors.

    PubMed

    Dury, Sandra; Nardi, Julie; Gozalo, Claire; Lebargy, François; Deslee, Gaëtan

    2012-01-01

    We report the first published case of agranulocytosis induced by omeprazole and its recurrence with esomeprazole, the S-isomer form of omeprazole. Interestingly, we found an homozygotous mutation of CYP2C19*17, responsible for the metabolism of proton pump inhibitors. PMID:22240865

  18. Perfluorooctanoic acid induces peroxisomal fatty acid oxidation and cytokine expression in the liver of male Japanese medaka (Oryzias latipes).

    PubMed

    Yang, Jae-Ho

    2010-09-01

    Widespread contamination of perfluorooctanoic acid (PFOA) in the marine environment draws a great concern over its ecotoxicological impact on marine mammals and wildlife. In the present study, male Japanese medaka (Oryzias latipes) was adapted to seawater to mimic the marine environment and was then exposed to the nominal concentrations of 10, 50, 100 mg L(-1) PFOA for 7d. There were no impact on survival, relative liver and gonad size, and condition factor (measure of growth) at any concentration tested. Peroxisomal acyl-CoA oxidase (ACO) activity was elevated at the highest dose with a marginal significance (P=0.06). The increase of ACO activity was paralleled by the significant upregulation of PPAR-α expression at the same dose. PFOA induced a significant inhibition of catalase (CAT) activity at high doses with no changes of superoxide dismutase (SOD) or glutathione peroxidase (GPx) activities in the liver. These results strongly suggest that PFOA may induce peroxisomal fatty acid oxidation and impose the oxidative stress through the alteration of cellular oxidative homeostasis in the liver. PFOA increased the mRNA levels of proinflammatory cytokines such as IL-6, TNF-α and IL-1β, suggesting that it may be involved in inflammation and tissue injury. This study may contribute to understanding the mechanism of PFOA-induced hepatic toxicity in Japanese medaka and assessing the potential risk of PFOA in marine fish and wildlife. In addition, the present results obtained at the high concentrations may provide important biological endpoints relevant to situations such as environmental spills. PMID:20594573

  19. Anti-kindling Effect of Bezafibrate, a Peroxisome Proliferator-activated Receptors Alpha Agonist, in Pentylenetetrazole Induced Kindling Seizure Model

    PubMed Central

    Saha, Lekha; Bhandari, Swati; Bhatia, Alka; Banerjee, Dibyajyoti; Chakrabarti, Amitava

    2014-01-01

    Background and Purpose: Studies in the animals suggested that Peroxisome proliferators activated receptors (PPARs) may be involved in seizure control and selective agonists of PPAR α or PPAR γ raise seizure thresholds. The present study was contemplated with the aim of evaluating the anti kindling effects and the mechanism of bezafibrate, a Peroxisome proliferator-activated receptors α (PPAR-α) agonist in pentylenetetrazole (PTZ) induced kindling model of seizures in rats. Methods: In a PTZ kindled Wistar rat model, different doses of bezafibrate (100 mg/kg, 200 mg/kg and 300 mg/kg) were administered intraperitoneally 30 minutes before the PTZ injection. The PTZ injection was given on alternate day till the animal became fully kindled or till 10 weeks. The parameters measured were the latency to develop kindling and incidence of kindling, histopathological study of hippocampus, hippocampal lipid peroxidation studies, serum neuron specific enolase, and hippocampal DNA fragmentation study. Results: In this study, bezafibrate significantly reduced the incidence of kindling in PTZ treated rats and exhibited a marked prolongation in the latencies to seizures. In the present study bezafibrate decreased the thiobarbituric acid-reactive substance i.e. Malondialdehyde levels, increased the reduced glutathione levels, catalase and superoxide dismutase activity in the brain. This added to its additional neuroprotective effects. Bezafibrate also reduced the neuronal damage and apoptosis in hippocampal area of the brain. Therefore bezafibrate exerted anticonvulsant properties in PTZ induced kindling model in rats. Conclusions: These findings may provide insights into the understanding of the mechanism of bezafibrate as an anti kindling agent and could offer a useful support to the basic antiepileptic therapy in preventing the development of PTZ induced seizures, suggesting its potential for therapeutic applications in temporal lobe epilepsy. PMID:25625088

  20. Modulation of VEGF-Induced Retinal Vascular Permeability by Peroxisome Proliferator-Activated Receptor-β/δ

    PubMed Central

    Suarez, Sandra; McCollum, Gary W.; Bretz, Colin A.; Yang, Rong; Capozzi, Megan E.; Penn, John S.

    2014-01-01

    Purpose. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability contributes to diabetic macular edema (DME), a serious vision-threatening condition. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) antagonist/reverse agonist, GSK0660, inhibits VEGF-induced human retinal microvascular endothelial cell (HRMEC) proliferation, tubulogenesis, and oxygen-induced retinal vasculopathy in newborn rats. These VEGF-induced HRMEC behaviors and VEGF-induced disruption of endothelial cell junctional complexes may well share molecular signaling events. Thus, we sought to examine the role of PPARβ/δ in VEGF-induced retinal hyperpermeability. Methods. Transendothelial electrical resistance (TEER) measurements were performed on HRMEC monolayers to assess permeability. Claudin-1/Claudin-5 localization in HRMEC monolayers was determined by immunocytochemistry. Extracellular signal-regulated protein kinases 1 and 2 (Erk 1/2) phosphorylation, VEGF receptor 1 (VEGFR1) and R2 were assayed by Western blot analysis. Expression of VEGFR1 and R2 was measured by quantitative RT-PCR. Last, retinal vascular permeability was assayed in vivo by Evans blue extravasation. Results. Human retinal microvascular endothelial cell monolayers treated with VEGF for 24 hours showed decreased TEER values that were completely reversed by the highest concentration of GSK0660 (10 μM) and PPARβ/δ-directed siRNA (20 μM). In HRMEC treated with VEGF, GSK0660 stabilized tight-junctions as evidenced by Claudin-1 staining, reduced phosphorylation of Erk1/2, and reduced VEGFR1/2 expression. Peroxisome proliferator-activated receptor β/δ siRNA had a similar effect on VEGFR expression and Claudin-1, supporting the specificity of GSK0660 in our experiments. Last, GSK0660 significantly inhibited VEGF-induced retinal vascular permeability and reduced retinal VEGFR1and R2 levels in C57BL/6 mice. Conclusions. These data suggest a protective effect for PPARβ/δ antagonism against VEGF-induced vascular permeability, possibly through reduced VEGFR expression. Therefore, antagonism/reverse agonism of PPARβ/δ siRNA may represent a novel therapeutic methodology against retinal hyperpermeability and is worthy of future investigation. PMID:25406289

  1. Lack of peroxisome proliferator-activated receptor alpha in mice enhances methionine and choline deficient diet-induced steatohepatitis.

    PubMed

    Kashireddy, Papreddy V; Rao, M Sambasiva

    2004-10-01

    Pathogenesis of steatohepatitis, a common liver disease, remains controversial. It is proposed that fatty liver with a second hit capable of inducing necroinflammation results in nonalcoholic steatohepatitis. Long chain and very long chain fatty acids are considered important in induction of steatohepatitis. Peroxisome proliferator-activated receptor alpha (PPARalpha) plays an important role in beta-oxidation of long chain and very long chain fatty acids and mitogenic effect caused by peroxisome proliferators in the liver. To determine the role of PPARalpha in the pathogenesis of steatohepatitis and compensatory liver cell hyperplasia, we have used PPARalpha null mice and methionine and choline deficient nutritional model. Male and female PPARalpha null mice and wild type mice were fed methionine and choline deficient diet (MCDD) or normal chow for 4 weeks. Livers were analyzed morphologically for steatosis, steatohepatitis and hepatocyte proliferation (PCNA labeling) and biochemically for triglyceride levels. In addition, serum alanine transaminase, aspartate transaminase and triglyceride levels were measured. In MCDD fed PPARalpha null mice there was severe steatohepatitis and very high liver triglyceride levels compared to wild type mice. Serum aspartate transaminase levels were also significantly higher in MCDD fed PPARalpha null mice compared to wild type mice. The severity of steatohepatitis in MCDD fed male and female PPARalpha null mice was greater compared to wild type mice fed the same diet. The PCNA labeling index was similar in PPARalpha null mice and wild type mice fed MCDD, and significantly higher in both the groups compared to the mice fed control diet. These findings indicate that defective fatty acid oxidation aggravates steatohepatitis caused by methionine and choline deficiency and further establishes the role of long chain and very long chain fatty acids in the pathogenesis of steatohepatitis. In addition, the results of this study also indicate that there is no difference between males and females in the severity of steatohepatitis induced by MCDD and lack of PPARalpha does not affect compensatory hyperplasia in the liver. PMID:15519275

  2. Impacts of peroxisome proliferator-activated receptor-γ activation on cigarette smoke-induced exacerbated response to bacteria.

    PubMed

    Morissette, Mathieu C; Shen, Pamela; Thayaparan, Danya; Stämpfli, Martin R

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterised by a state of chronic pulmonary inflammation punctuated by microbial exacerbations. Despite advances in treatment options, COPD remains difficult to manage. In this study, we investigated the potential of peroxisome proliferator-activated receptor (PPAR)γ activation as a new therapy against cigarette smoke-induced inflammation and its associated bacterial exacerbation. C57BL/6 mice were exposed to room air or cigarette smoke for either 4 days or 4 weeks and treated either prophylactically or therapeutically with rosiglitazone. The impact of rosiglitazone on cigarette smoke-induced exacerbated response to the bacterial pathogen nontypeable Haemophilus influenzae (NTHi) was studied using the therapeutic treatment protocol. We found that rosiglitazone was able to reduce cigarette smoke-induced neutrophilia both when administered prophylactically or therapeutically. Therapeutic intervention with rosiglitazone was also effective in preventing cigarette smoke-induced neutrophilia exacerbation following NTHi infection. Moreover, the anti-inflammatory effects of rosiglitazone did not lead to an increase in the pulmonary bacterial burden, unlike dexamethasone. Altogether, our data suggest that pharmacological activation of PPARγ may be an effective therapeutic approach to improve COPD management, as it is able to reduce cigarette smoke-induced inflammation and decrease the magnitude of bacterial exacerbations, without compromising the ability of the immune system to control the infection. PMID:25034559

  3. Activation of peroxisome proliferator-activated receptor-? coactivator 1? ameliorates mitochondrial dysfunction and protects podocytes from aldosterone-induced injury.

    PubMed

    Yuan, Yanggang; Huang, Songming; Wang, Wenyan; Wang, Yingying; Zhang, Ping; Zhu, Chunhua; Ding, Guixia; Liu, Bicheng; Yang, Tianxin; Zhang, Aihua

    2012-10-01

    Glomerular podocytes are highly specialized epithelial cells whose injury in glomerular diseases causes proteinuria. Since mitochondrial dysfunction is an early event in podocyte injury, we tested whether a major regulator of oxidative metabolism and mitochondrial function, the transcriptional coactivator peroxisome proliferator-activated receptor-? coactivator 1? (PGC-1?), affects podocyte damage. Aldosterone-induced injury decreased PGC-1? expression, and induced mitochondrial and podocyte damage in dose- and time-dependent manners. The suppression of endogenous PGC-1? by RNAi caused podocyte mitochondrial damage and apoptosis while its increase by infection with an adenoviral vector prevented aldosterone-induced mitochondrial malfunction and inhibited injury. Overexpression of the silent mating type information regulation 2 homolog 1, a gene upstream of PGC-1?, prevented aldosterone-induced mitochondrial damage and podocyte injury by upregulating PGC-1? at both the transcriptional and post-translational levels. Resveratrol, a SIRT1 activator, attenuated aldosterone-induced mitochondrial malfunction and podocyte injury in vitro and in aldosterone-infused mice in vivo. Hence, endogenous PGC-1? may be important for maintenance of mitochondrial function in podocytes under normal conditions. Activators of SIRT1, such as resveratol, may be therapeutically useful in glomerular diseases to promote and maintain PGC-1? expression and, consequently, podocyte integrity. PMID:22648295

  4. Activation of Peroxisome Proliferator-activated Receptor α Induces Lysosomal Biogenesis in Brain Cells

    PubMed Central

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J.; Sims, Katherine B.; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-01-01

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role. PMID:25750174

  5. The peroxisome proliferator-activated receptor-γ agonist pioglitazone protects against cisplatin-induced renal damage in mice.

    PubMed

    Jesse, Cristiano R; Bortolatto, Cristiani F; Wilhelm, Ethel A; Roman, Silvane Souza; Prigol, Marina; Nogueira, Cristina W

    2014-01-01

    Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists not only improve metabolic abnormalities of diabetes and consequent diabetic nephropathy, but they also protect against non-diabetic kidney disease in experimental models. Here, we investigated the effect of PPAR-γ agonist pioglitazone against acute renal injury on a cisplatin model in mice. Nephrotoxicity was induced by a single intraperitoneal (i.p.) injection of cisplatin (10 mg kg(-1)). Pioglitazone was administered for six consecutive days in doses of 15 or 30 mg kg(-1)  day(-1), per os (p.o.), starting 3 days before cisplatin injection. Cisplatin treatment to mice induced a marked renal failure, characterized by a significant increase in serum urea and creatinine levels and alterations in renal tissue architecture. Cisplatin exposure induced oxidative stress as indicated by decreased levels of non-enzymatic antioxidant defenses [glutathione (GSH) and ascorbic acid levels] and components of the enzymatic antioxidant defenses [superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase (GPx), glutathione reductase (GR) and and glutathione S-transferase(GST) activities)] in renal tissue. Administration of pioglitazone markedly protected against the increase in urea and creatinine levels and histological alterations in kidney induced by cisplatin treatment. Pioglitazone administration ameliorated GSH and ascorbic acid levels decreased by cisplatin exposure in mice. Pioglitazone protected against the inhibition of CAT, SOD, GPx, GR and GST activities induced by cisplatin in the kidneys of mice. These results indicated that pioglitazone has a protective effect against cisplatin-induced renal damage in mice. The protection is mediated by preventing the decline of antioxidant status. The results have implications in use of PPAR-γ agonists in human application for protecting against drugs-induced nephrotoxicity. PMID:22987311

  6. 4-Hydroxydocosahexaenoic acid, a potent peroxisome proliferator-activated receptor {gamma} agonist alleviates the symptoms of DSS-induced colitis

    SciTech Connect

    Yamamoto, Keiko; Ninomiya, Yuichi; Iseki, Mioko; Nakachi, Yutaka; Kanesaki-Yatsuka, Yukiko; Yamanoue, Yu; Itoh, Toshimasa; Nishii, Yasuho; Petrovsky, Nikolai; Okazaki, Yasushi

    2008-03-14

    (5E,7Z,10Z,13Z,16Z,19Z)-4-Hydroxy-5,7,10,13,16,19-docosahexaenoic acid (4-OHDHA) is a potential agonist of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) and antidiabetic agent as has been previously reported. As PPAR{gamma} agonists may also have anti-inflammatory functions, in this study, we investigated whether 4-OHDHA has an inhibitory effect on expression of inflammatory genes in vitro and whether 4-OHDHA could relieve the symptoms of dextran sodium sulfate (DSS)-induced colitis in a murine model of inflammatory bowel disease. 4-OHDHA inhibited production of nitric oxide and expression of a subset of inflammatory genes including inducible nitric oxide synthase (Nos2/iNOS) and interleukin 6 (Il6) by lipopolysaccharide (LPS)-activated macrophages. In addition, 4-OHDHA-treated mice when compared to control mice not receiving treatment recovered better from the weight loss caused by DSS-induced colitis. Changes in disease activity index (DAI) of 4-OHDHA-treated mice were also more favorable than for control mice and were comparable with mice treated with a typical anti-inflammatory-drug, 5-aminosalichylic acid (5-ASA). These results suggest that 4-OHDHA has potentially clinically useful anti-inflammatory effects mediated by suppression of inflammatory gene expression.

  7. Peroxisome proliferator-activated receptor-γ coactivator-1α mediates neuroprotection against excitotoxic brain injury in transgenic mice: role of mitochondria and X-linked inhibitor of apoptosis protein.

    PubMed

    Mäkelä, Johanna; Mudò, Giuseppa; Pham, Dan Duc; Di Liberto, Valentina; Eriksson, Ove; Louhivuori, Lauri; Bruelle, Céline; Soliymani, Rabah; Baumann, Marc; Korhonen, Laura; Lalowski, Maciej; Belluardo, Natale; Lindholm, Dan

    2016-03-01

    Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1α in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1α in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1α transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomic analyses and immunoblottings. Cultured hippocampal neurons from PGC-1α transgenic mice were more resistant to cell degeneration induced by the glutamate receptor agonist kainic acid. In vivo kainic acid induced excitotoxic cell death in the hippocampus at 48 h in wild-type mice but significantly less so in PGC-1α transgenic mice. However, at later time points cell degeneration was also evident in the transgenic mouse hippocampus, indicating that PGC-1α overexpression can induce a delay in cell death. Immunoblotting showed that X-linked inhibitor of apoptosis protein (XIAP) was increased in PGC-1α transgenic hippocampus with no significant changes in Bcl-2 or Bcl-X. Collectively, these results show that PGC-1α overexpression contributes to enhanced neuronal viability by stimulating mitochondria number and respiration and increasing levels of OXPHOS proteins and the anti-apoptotic protein XIAP. PMID:26741810

  8. The Peroxisomal Proliferator-Activated Receptor (PPAR) α Agonist, Fenofibrate, Prevents Fractionated Whole-Brain Irradiation-Induced Cognitive Impairment

    PubMed Central

    Greene-Schloesser, Dana; Payne, Valerie; Peiffer, Ann M.; Hsu, Fang-Chi; Riddle, David R.; Zhao, Weiling; Chan, Michael D.; Metheny-Barlow, Linda; Robbins, Mike E.

    2014-01-01

    We hypothesized that dietary administration of the peroxisomal proliferator-activated receptor α agonist, fenofibrate, to young adult male rats would prevent the fractionated whole-brain irradiation (fWBI)-induced reduction in cognitive function and neurogenesis and prevent the fWBI-induced increase in the total number of activated microglia. Eighty 12–14-week-old young adult male Fischer 344 × Brown Norway rats received either: (1) sham irradiation, (2) 40 Gy of fWBI delivered as two 5 Gy fractions/week for 4 weeks, (3) sham irradiation + dietary fenofibrate (0.2% w/w) starting 7 days prior to irradiation, or (4) fWBI + fenofibrate. Cognitive function was measured 26–29 weeks after irradiation using: (1) the perirhinal cortex (PRh)-dependent novel object recognition task; (2) the hippocampal-dependent standard Morris water maze (MWM) task; (3) the hippocampal-dependent delayed match-to-place version of the MWM task; and (4) a cue strategy preference version of the MWM to distinguish hippocampal from striatal task performance. Neurogenesis was assessed 29 weeks after fWBI in the granular cell layer and subgranular zone of the dentate gyrus using a doublecortin antibody. Microglial activation was assessed using an ED1 antibody in the dentate gyrus and hilus of the hippocampus. A significant impairment in perirhinal cortex-dependent cognitive function was measured after fWBI. In contrast, fWBI failed to alter hippocampal-dependent cognitive function, despite a significant reduction in hippocampal neurogenesis. Continuous administration of fenofibrate prevented the fWBI-induced reduction in perirhinal cortex-dependent cognitive function, but did not prevent the radiation-induced reduction in neurogenesis or the radiation-induced increase in activated microglia. These data suggest that fenofibrate may be a promising therapeutic for the prevention of some modalities of radiation-induced cognitive impairment in brain cancer patients. PMID:24397438

  9. Antioxidant cytoprotection by peroxisomal peroxiredoxin-5.

    PubMed

    Walbrecq, Geoffroy; Wang, Bo; Becker, Sarah; Hannotiau, Amandine; Fransen, Marc; Knoops, Bernard

    2015-07-01

    Peroxiredoxin-5 (PRDX5) is a thioredoxin peroxidase that reduces hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. This enzyme is present in the cytosol, mitochondria, peroxisomes, and nucleus in human cells. Antioxidant cytoprotective functions have been previously documented for cytosolic, mitochondrial, and nuclear mammalian PRDX5. However, the exact function of PRDX5 in peroxisomes is still not clear. The aim of this work was to determine the function of peroxisomal PRDX5 in mammalian cells and, more specifically, in glial cells. To study the role of PRDX5 in peroxisomes, the endogenous expression of PRDX5 in murine oligodendrocyte 158N cells was silenced by RNA interference. In addition, human PRDX5 was also overexpressed in peroxisomes using a vector coding for human PRDX5, whose unconventional peroxisomal targeting sequence 1 (PTS1; SQL) was replaced by the prototypical PTS1 SKL. Stable 158N clones were obtained. The antioxidant cytoprotective function of peroxisomal PRDX5 against peroxisomal and mitochondrial KillerRed-mediated reactive oxygen species production as well as H2O2 was examined using MTT viability assays, roGFP2, and C11-BOBIPY probes. Altogether our results show that peroxisomal PRDX5 protects 158N oligodendrocytes against peroxisomal and mitochondrial KillerRed- and H2O2-induced oxidative stress. PMID:25772011

  10. Peroxisome Proliferator-activated Receptor β/δ Induces Myogenesis by Modulating Myostatin Activity*

    PubMed Central

    Bonala, Sabeera; Lokireddy, Sudarsanareddy; Arigela, Harikumar; Teng, Serena; Wahli, Walter; Sharma, Mridula; McFarlane, Craig; Kambadur, Ravi

    2012-01-01

    Classically, peroxisome proliferator-activated receptor β/δ (PPARβ/δ) function was thought to be restricted to enhancing adipocyte differentiation and development of adipose-like cells from other lineages. However, recent studies have revealed a critical role for PPARβ/δ during skeletal muscle growth and regeneration. Although PPARβ/δ has been implicated in regulating myogenesis, little is presently known about the role and, for that matter, the mechanism(s) of action of PPARβ/δ in regulating postnatal myogenesis. Here we report for the first time, using a PPARβ/δ-specific ligand (L165041) and the PPARβ/δ-null mouse model, that PPARβ/δ enhances postnatal myogenesis through increasing both myoblast proliferation and differentiation. In addition, we have identified Gasp-1 (growth and differentiation factor-associated serum protein-1) as a novel downstream target of PPARβ/δ in skeletal muscle. In agreement, reduced Gasp-1 expression was detected in PPARβ/δ-null mice muscle tissue. We further report that a functional PPAR-responsive element within the 1.5-kb proximal Gasp-1 promoter region is critical for PPARβ/δ regulation of Gasp-1. Gasp-1 has been reported to bind to and inhibit the activity of myostatin; consistent with this, we found that enhanced secretion of Gasp-1, increased Gasp-1 myostatin interaction and significantly reduced myostatin activity upon L165041-mediated activation of PPARβ/δ. Moreover, we analyzed the ability of hGASP-1 to regulate myogenesis independently of PPARβ/δ activation. The results revealed that hGASP-1 protein treatment enhances myoblast proliferation and differentiation, whereas silencing of hGASP-1 results in defective myogenesis. Taken together these data revealed that PPARβ/δ is a positive regulator of skeletal muscle myogenesis, which functions through negatively modulating myostatin activity via a mechanism involving Gasp-1. PMID:22362769

  11. Multiple Peroxisomal Enzymatic Deficiency Disorders

    PubMed Central

    Vamecq, Joseph; Draye, Jean-Pierre; Van Hoof, François; Misson, Jean-Paul; Evrard, Philippe; Verellen, Gaston; Eyssen, Hendrik J.; Van Eldere, Johan; Schutgens, Ruud B. H.; Wanders, Ronald J. A.; Roels, Frank; Goldfischer, Sidney L.

    1986-01-01

    Biologic, morphologic, and biochemical investigations performed in 2 patients demonstrate multiple peroxisomal deficiencies in the cerebrohepatorenal syndrome of Zellweger (CHRS) and neonatal adrenoleukodystrophy (NALD). Very long chain fatty acids, abnormal bile acids, including bile acid precursors (di- and trihydroxycoprostanoic acids), and C29-dicarboxylic acid accumulated in plasma in both patients. Generalized hyperaminoaciduria was also present. Peroxisomes could not be detected in CHRS liver and kidney; however, in the NALD patient, small and sparse cytoplasmic bodies resembling altered peroxisomes were found in hepatocytes. Hepatocellular and Kupffer cell lysosomes were engorged with ferritin and contained clefts and trilaminar structures believed to represent very long chain fatty acids. Enzymatic deficiencies reflected the peroxisomal defects. Hepatic glycolate oxidase and palmitoyl-CoA oxidase activities were deficient. No particle-bound catalase was found in cultured fibroblasts, and ether glycerolipid (plasmalogen) biosynthesis was markedly reduced. Administration of phenobarbital and clofibrate, an agent that induces peroxisomal proliferation and enzymatic activities, to the NALD patient did not bring about any changes in plasma metabolites, liver peroxisome population, or oxidizing activities. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:2879480

  12. Peroxisome proliferator-activated receptor ɣ activation induces 11β-hydroxysteroid dehydrogenase type 1 activity in human alternative macrophages

    PubMed Central

    Chinetti-Gbaguidi, Giulia; Bouhlel, Mohamed Amine; Copin, Corinne; Duhem, Christian; Derudas, Bruno; Neve, Bernardette; Noel, Benoit; Eeckhoute, Jerome; Lefebvre, Philippe; Seckl, Jonathan R.; Staels, Bart

    2012-01-01

    Objectives 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses the intracellular reduction of inactive cortisone to active cortisol, the natural ligand activating the glucocorticoid receptor (GR). Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a nuclear receptor controlling inflammation, lipid metabolism and the macrophage polarization state. In this study, we investigated the impact of macrophage polarization on the expression and activity of 11β-HSD1 and the role of PPAR therein. Methods and Results 11β-HSD1 gene expression is higher in pro-inflammatory M1 and anti-inflammatory M2 macrophages than in resting macrophages (RM), whereas its activity is highest in M2 macrophages. Interestingly, PPARγ activation induces 11β-HSD1 enzyme activity in M2 macrophages, but not in RM or M1 macrophages. Consequently, human M2 macrophages displayed enhanced responsiveness to the 11β-HSD1 substrate cortisone, an effect amplified by PPAR -induction of 11β-HSD1 activity, as illustrated by an increased expression of GR target genes. Conclusions Our data identify a positive cross-talk between PPARγ and GR in human M2 macrophages via the induction of 11β-HSD1 expression and activity. PMID:22207732

  13. Peroxisome proliferator-activated receptor beta/delta activation improves angiotensin II-induced cardiac hypertrophy in vitro.

    PubMed

    Sheng, Li; Ye, Ping; Liu, Yong-Xue; Han, Chun-Guang; Zhang, Zhi-Yi

    2008-02-01

    Agonists of the peroxisome proliferator-activated receptor alpha (PPARalpha) and gamma (gamma) exert anti-proliferative and anti-inflammatory effects that led to the testing of these drugs in experimental cardiac hypertrophy. However, the effect of PPAR beta/delta (beta/delta) agonists in hypertrophy is not yet known. In this paper, an experiment was conducted to explore whether PPARbeta/delta activation has an effect on cardiac hypertrophy. An in vitro cardiomyocyte hypertrophy from neonatal rats was induced with Angiotensin II (Ang II1micromol x L(-1)) stimulation. For the examination of PPAR beta/delta effect, the cultured rat cardiac myocytes were pretreated with GW0742 (10 micromol.L(-1)), an agonist of PPARbeta/delta, for 48h before Ang II stimulation. The following parameters in the cultured cells were determined: surface areas of myocytes were measured by the NIH Image Software; (3)H-leucine incorporation into myocytes was counted by liquid scintillometer; mRNA expression of PPARbeta/delta, ANP, BNP, MMP9, MMP2, and IL-1beta was detected by RT-PCR; PPARbeta/delta protein expression was evaluated with immunofluorescence staining; GW0742 could ameliorate Ang II-induced cardiomyocyte hypertrophy, as indicated by its inhibitory effects on the surface area of myocytes, and ANP and BNP mRNA expressions in myocytes and (3)H-leucine incorporation into myocytes. Meanwhile, GW0742 pretreatment exerted inhibition on mRNA expression augmentation of such cytokines as MMP9, MMP2, and IL-1beta in hypertrophic myocytes. In addition, the down-regulated expression of PPARbeta/delta mRNA and protein in hypertrophic myocytes was also significantly reversed by GW0742. We demonstrate for the first time that GW0742 exerts a beneficial effect on Ang II-induced cardiac hypertrophy and the relation to inflammation response. PMID:18293166

  14. Crosstalk between mitochondria and peroxisomes

    PubMed Central

    Demarquoy, Jean; Le Borgne, Françoise

    2015-01-01

    Mitochondria and peroxisomes are small ubiquitous organelles. They both play major roles in cell metabolism, especially in terms of fatty acid metabolism, reactive oxygen species (ROS) production, and ROS scavenging, and it is now clear that they metabolically interact with each other. These two organelles share some properties, such as great plasticity and high potency to adapt their form and number according to cell requirements. Their functions are connected, and any alteration in the function of mitochondria may induce changes in peroxisomal physiology. The objective of this paper was to highlight the interconnection and the crosstalk existing between mitochondria and peroxisomes. Special emphasis was placed on the best known connections between these organelles: origin, structure, and metabolic interconnections. PMID:26629313

  15. Peroxisome Proliferator-Activated Receptor γ and microRNA 98 in Hypoxia-Induced Endothelin-1 Signaling.

    PubMed

    Kang, Bum-Yong; Park, Kathy K; Kleinhenz, Jennifer M; Murphy, Tamara C; Green, David E; Bijli, Kaiser M; Yeligar, Samantha M; Carthan, Kristal A; Searles, Charles D; Sutliff, Roy L; Hart, C Michael

    2016-01-01

    Endothelin-1 (ET-1) plays a critical role in endothelial dysfunction and contributes to the pathogenesis of pulmonary hypertension (PH). We hypothesized that peroxisome proliferator-activated receptor γ (PPARγ) stimulates microRNAs that inhibit ET-1 and pulmonary artery endothelial cell (PAEC) proliferation. The objective of this study was to clarify molecular mechanisms by which PPARγ regulates ET-1 expression in vitro and in vivo. In PAECs isolated from patients with pulmonary arterial hypertension, microRNA (miR)-98 expression was reduced, and ET-1 protein levels and proliferation were increased. Similarly, hypoxia reduced miR-98 and increased ET-1 levels and PAEC proliferation in vitro. In vivo, hypoxia reduced miR-98 expression and increased ET-1 and proliferating cell nuclear antigen (PCNA) levels in mouse lung, derangements that were aggravated by treatment with the vascular endothelial growth factor receptor antagonist Sugen5416. Reporter assays confirmed that miR-98 binds directly to the ET-1 3'-untranslated region. Compared with littermate control mice, miR-98 levels were reduced and ET-1 and PCNA expression were increased in lungs from endothelial-targeted PPARγ knockout mice, whereas miR-98 levels were increased and ET-1 and PCNA expression was reduced in lungs from endothelial-targeted PPARγ-overexpression mice. Gain or loss of PPARγ function in PAECs in vitro confirmed that alterations in PPARγ were sufficient to regulate miR-98, ET-1, and PCNA expression. Finally, PPARγ activation with rosiglitazone regimens that attenuated hypoxia-induced PH in vivo and human PAEC proliferation in vitro restored miR-98 levels. The results of this study show that PPARγ regulates miR-98 to modulate ET-1 expression and PAEC proliferation. These results further clarify molecular mechanisms by which PPARγ participates in PH pathogenesis and therapy. PMID:26098770

  16. Ketogenic diet-induced peroxisome proliferator-activated receptor-? activation decreases neuroinflammation in the mouse hippocampus after kainic acid-induced seizures.

    PubMed

    Jeong, Eun Ae; Jeon, Byeong Tak; Shin, Hyun Joo; Kim, Nayoung; Lee, Dong Hoon; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Choi, Wan Sung; Roh, Gu Seob

    2011-12-01

    Similar to fasting, the ketogenic diet (KD) has anti-inflammatory effects and protects against excitotoxicity-mediated neuronal cell death. Recent studies have shown that peroxisome proliferator-activated receptor (PPAR)? has anti-inflammatory effects in seizure animal models. However, the exact mechanisms underlying the anti-inflammatory effects of the KD have not been determined for seizures. Here we investigated the effect of the KD and acetoacetate (AA) on neuroinflammation in a seizure animal model and glutamate-treated HT22 cells, respectively. Mice were fed the KD for 4 weeks and sacrificed 2 or 6h after KA injection. The KD reduced hippocampal tumor necrosis factor alpha (TNF-?) levels and nuclear factor (NF)-?B translocation into the nucleus 2h after KA treatment. KD-induced PPAR? activation was decreased by KA in neurons as assessed by western blotting and immunofluorescence. Finally, the KD inhibited cyclooxygenase (COX)-2 and microsomal prostaglandin E(2) synthase-1 (mPGES-1) expression in the hippocampus 6h after KA treatment. AA treatment also protected against glutamate-induced cell death in HT22 cells by reducing TNF-? and PPAR?-mediated COX-2 expression. Thus, the KD may inhibit neuroinflammation by suppressing a COX-2-dependent pathway via activation of PPAR? by the KD or AA. PMID:21939657

  17. Highly Oxidized Peroxisomes Are Selectively Degraded via Autophagy in Arabidopsis[C][W

    PubMed Central

    Shibata, Michitaro; Oikawa, Kazusato; Yoshimoto, Kohki; Kondo, Maki; Mano, Shoji; Yamada, Kenji; Hayashi, Makoto; Sakamoto, Wataru; Ohsumi, Yoshinori; Nishimura, Mikio

    2013-01-01

    The positioning of peroxisomes in a cell is a regulated process that is closely associated with their functions. Using this feature of the peroxisomal positioning as a criterion, we identified three Arabidopsis thaliana mutants (peroxisome unusual positioning1 [peup1], peup2, and peup4) that contain aggregated peroxisomes. We found that the PEUP1, PEUP2, and PEUP4 were identical to Autophagy-related2 (ATG2), ATG18a, and ATG7, respectively, which are involved in the autophagic system. The number of peroxisomes was increased and the peroxisomal proteins were highly accumulated in the peup1 mutant, suggesting that peroxisome degradation by autophagy (pexophagy) is deficient in the peup1 mutant. These aggregated peroxisomes contained high levels of inactive catalase and were more oxidative than those of the wild type, indicating that peroxisome aggregates comprise damaged peroxisomes. In addition, peroxisome aggregation was induced in wild-type plants by exogenous application of hydrogen peroxide. The cat2 mutant also contained peroxisome aggregates. These findings demonstrate that hydrogen peroxide as a result of catalase inactivation is the inducer of peroxisome aggregation. Furthermore, an autophagosome marker, ATG8, frequently colocalized with peroxisome aggregates, indicating that peroxisomes damaged by hydrogen peroxide are selectively degraded by autophagy in the wild type. Our data provide evidence that autophagy is crucial for quality control mechanisms for peroxisomes in Arabidopsis. PMID:24368788

  18. Characterization of hepatic mitochondrial injury induced by fatty acid oxidation inhibitors.

    PubMed

    Vickers, Alison E M

    2009-01-01

    Impairment of liver mitochondrial beta-oxidation is an important mechanism of drug-induced liver injury. Four inhibitors of fatty acid oxidation were compared in short-term rat in vivo studies in which the rats were administered one or four doses. The hepatocellular vacuolation represented ultra-structural mitochondrial changes. Urine nuclear magnetic resonance (NMR) spectroscopy revealed that both FOX988 and SDZ51-641 induced a persistent dicarboxylic aciduria, suggesting an inhibition of mitochondrial beta-oxidation and incomplete fatty acid metabolism. Etomoxir caused minimal mitochondrial ultrastructural changes and induced only transient dicarboxylic aciduria. CPI975 served as a negative control, in that there were no significant perturbations to the mitochondrial ultrastructural morphology or in the urine NMR composition; however, compound exposure was confirmed by the up-regulation of liver gene expression compared to vehicle control. The liver gene expression changes that were altered by the compounds were indicative of mitochondria, general and oxidative stress, and peroxisomal enzymes involved in beta-oxidation, suggestive of a compensatory response to the inhibition in the mitochondria. In addition, both FOX988 and SDZ51-641 up-regulated ribosomal genes associated with apoptosis, as well as p53 pathways linked with apoptosis. In summary, metabonomics and liver gene expression provided mechanistic information on mitochondrial dysfunction and impaired fatty acid oxidation to further define the clinical pathology and histopathology findings of hepatotoxicity. PMID:19234235

  19. Interleukin-6 inhibition of peroxisome proliferator-activated receptor alpha expression is mediated by JAK2- and PI3K-induced STAT1/3 in HepG2 hepatocyte cells.

    PubMed

    Chew, Guat-Siew; Myers, Stephen; Shu-Chien, Alexander Chong; Muhammad, Tengku Sifzizul Tengku

    2014-03-01

    Interleukin-6 (IL-6) is the major activator of the acute phase response (APR). One important regulator of IL-6-activated APR is peroxisome proliferator-activated receptor alpha (PPARα). Currently, there is a growing interest in determining the role of PPARα in regulating APR; however, studies on the molecular mechanisms and signaling pathways implicated in mediating the effects of IL-6 on the expression of PPARα are limited. We previously revealed that IL-6 inhibits PPARα gene expression through CAAT/enhancer-binding protein transcription factors in hepatocytes. In this study, we determined that STAT1/3 was the direct downstream molecules that mediated the Janus kinase 2 (JAK2) and phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathways in IL-6-induced repression of PPARα. Treatment of cells with pharmacological inhibitors of JAK2, PI3K, AKT, and mTOR attenuated the inhibitory effect of IL-6 on PPARα protein in a dose-dependent manner. These inhibitors also decreased the IL-6-induced repression of PPARα mRNA expression and promoter activity. Overexpression of STAT1 and STAT3 in HepG2 cells cotransfected with a reporter vector containing this PPARα promoter region revealed that both the expression plasmids inhibited the IL-6-induced repression of PPARα promoter activity. In the presence of inhibitors of JAK2 and mTOR (AG490 and rapamycin, respectively), IL-6-regulated protein expression and DNA binding of STAT1 and STAT3 were either completely or partially inhibited simultaneously, and the IL-6-induced repression of PPARα protein and mRNA was also inhibited. This study has unraveled novel pathways by which IL-6 inhibits PPARα gene transcription, involving the modulation of JAK2/STAT1-3 and PI3K/AKT/mTOR by inducing the binding of STAT1 and STAT3 to STAT-binding sites on the PPARα promoter. Together, these findings represent a new model of IL-6-induced suppression of PPARα expression by inducing STAT1 and STAT3 phosphorylation and subsequent down-regulation of PPARα mRNA expression. PMID:24242046

  20. Peroxisome Biogenesis and Function

    PubMed Central

    Kaur, Navneet; Reumann, Sigrun; Hu, Jianping

    2009-01-01

    Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the contribution of large-scale analysis, such as in sillco predictions and proteomics, in augmenting our knowledge of peroxisome function In Arabidopsis. PMID:22303249

  1. Peroxisomal APX knockdown triggers antioxidant mechanisms favourable for coping with high photorespiratory H2 O2 induced by CAT deficiency in rice.

    PubMed

    Sousa, Rachel H V; Carvalho, Fabricio E L; Ribeiro, Carol W; Passaia, Gisele; Cunha, Juliana R; Lima-Melo, Yugo; Margis-Pinheiro, Márcia; Silveira, Joaquim A G

    2015-03-01

    The physiological role of peroxisomal ascorbate peroxidases (pAPX) is unknown; therefore, we utilized pAPX4 knockdown rice and catalase (CAT) inhibition to assess its role in CAT compensation under high photorespiration. pAPX4 knockdown induced co-suppression in the expression of pAPX3. The rice mutants exhibited metabolic changes such as lower CAT and glycolate oxidase (GO) activities and reduced glyoxylate content; however, APX activity was not altered. CAT inhibition triggered different changes in the expression of CAT, APX and glutathione peroxidase (GPX) isoforms between non-transformed (NT) and silenced plants. These responses were associated with alterations in APX, GPX and GO activities, suggesting redox homeostasis differences. The glutathione oxidation-reduction states were modulated differently in mutants, and the ascorbate redox state was greatly affected in both genotypes. The pAPX suffered less oxidative stress and photosystem II (PSII) damage and displayed higher photosynthesis than the NT plants. The improved acclimation exhibited by the pAPX plants was indicated by lower H2 O2 accumulation, which was associated with lower GO activity and glyoxylate content. The suppression of both pAPXs and/or its downstream metabolic and molecular effects may trigger favourable antioxidant and compensatory mechanisms to cope with CAT deficiency. This physiological acclimation may involve signalling by peroxisomal H2 O2 , which minimized the photorespiration. PMID:25039271

  2. Wogonin prevents lipopolysaccharide-induced acute lung injury and inflammation in mice via peroxisome proliferator-activated receptor gamma-mediated attenuation of the nuclear factor-kappaB pathway

    PubMed Central

    Yao, Jing; Pan, Di; Zhao, Yue; Zhao, Li; Sun, Jie; Wang, Yu; You, Qi-Dong; Xi, Tao; Guo, Qing-Long; Lu, Na

    2014-01-01

    Acute lung injury (ALI) from a variety of clinical disorders, characterized by diffuse inflammation, is a cause of acute respiratory failure that develops in patients of all ages. Previous studies reported that wogonin, a flavonoid-like chemical compound which was found in Scutellaria baicalensis, has anti-inflammatory effects in several inflammation models, but not in ALI. Here, the in vivo protective effect of wogonin in the amelioration of lipopolysaccharide (LPS) -induced lung injury and inflammation was assessed. In addition, the in vitro effects and mechanisms of wogonin were studied in the mouse macrophage cell lines Ana-1 and RAW264.7. In vivo results indicated that wogonin attenuated LPS-induced histological alterations. Peripheral blood leucocytes decreased in the LPS-induced group, which was ameliorated by wogonin. In addition, wogonin inhibited the production of several inflammatory cytokines, including tumour necrosis factor-α, interleukin-1β (IL-1β) and IL-6, in the bronchoalveolar lavage fluid and lung tissues after LPS challenge, while the peroxisome proliferator-activated receptor γ (PPARγ) inhibitor GW9662 reversed these effects. In vitro results indicated that wogonin significantly decreased the secretion of IL-6, IL-1β and tumour necrosis factor-α in Ana-1 and RAW264.7 cells, which was suppressed by transfection of PPARγ small interfering RNA and GW9662 treatment. Moreover, wogonin activated PPARγ, induced PPARγ-mediated attenuation of the nuclear translocation and the DNA-binding activity of nuclear factor-κB in vivo and in vitro. In conclusion, all of these results showed that wogonin may serve as a promising agent for the attenuation of ALI-associated inflammation and pathology by regulating the PPARγ-involved nuclear factor-κB pathway. PMID:24766487

  3. Akt inhibitors induce apoptosis in chronic lymphocytic leukemia cells

    PubMed Central

    de Frias, Mercè; Iglesias-Serret, Daniel; Cosialls, Ana M.; Coll-Mulet, Llorenç; Santidrián, Antonio F.; González-Gironès, Diana M.; de la Banda, Esmeralda; Pons, Gabriel; Gil, Joan

    2009-01-01

    Background The phosphatidylinositol-3-kinase/Akt pathway has been described to be critical in the survival of chronic lymphocytic leukemia cells. In this study we analyzed the effect of two selective chemical inhibitors of Akt (Akti-1/2 and A-443654) on the survival of chronic lymphocytic leukemia cells. Design and Methods Using cytometry we studied the cytotoxic effects of Akt inhibitors on peripheral B and T lymphocytes from patients with chronic lymphocytic leukemia and from healthy donors. We studied the changes induced by Akti-1/2 and A-443654 at the mRNA level by performing reverse transcriptase multiplex ligation–dependent probe amplification. We also studied the changes induced by both Akt inhibitors in some BCL-2 protein family members on chronic lymphocytic leukemia cells by western blotting. Moreover, we analyzed the cytotoxic effect of Akt inhibitors in patients’ cells with deleted/mutated TP53. Results Both inhibitors induced apoptosis in chronic lymphocytic leukemia cells in a dose-dependent manner. Moreover, B cells from patients with chronic lymphocytic leukemia were more sensitive to Akt inhibitors than T cells from leukemic patients, and B or T cells from healthy donors. Survival factors for chronic lymphocytic leukemia cells, such as interleukin-4 and stromal cell-derived factor-1α, were not able to block the apoptosis induced by either Akt inhibitor. Akti-1/2 did not induce any change in the mRNA expression profile of genes involved in apoptosis, while A-443654 induced some changes, including an increase in NOXA and PUMA mRNA levels, suggesting the existence of additional targets for A-443654. Both inhibitors induced an increase in PUMA and NOXA protein levels, and a decrease in MCL-1 protein level. Moreover, Akti-1/2 and A-443654 induced apoptosis irrespective of TP53 status. Conclusions These results demonstrate that Akt inhibitors induce apoptosis of chronic lymphocytic leukemia cells and might be a new therapeutic option for the treatment of chronic lymphocytic leukemia. PMID:19815839

  4. Epigenetic Activity of Peroxisome Proliferator-Activated Receptor Gamma Agonists Increases the Anticancer Effect of Histone Deacetylase Inhibitors on Multiple Myeloma Cells

    PubMed Central

    Aouali, Nassera; Broukou, Angeliki; Bosseler, Manon; Keunen, Olivier; Schlesser, Vincent; Janji, Bassam; Palissot, Valerie; Stordeur, Philippe; Berchem, Guy

    2015-01-01

    Epigenetic modifications play a major role in the development of multiple myeloma. We have previously reported that the PPARγ agonist pioglitazone (PIO) enhances, in-vitro, the cytotoxic effect of the Histone deacetylase inhibitor (HDACi), valproic acid (VPA), on multiple myeloma cells. Here, we described the development of a new multiple myeloma mouse model using MOLP8 cells, in order to evaluate the effect of VPA/PIO combination on the progression of myeloma cells, by analyzing the proliferation of bone marrow plasma cells. We showed that VPA/PIO delays the progression of the disease and the invasion of myeloma cells in the bone marrow. Mechanistically, we demonstrated that VPA/PIO increases the cleavage of caspase 3 and PARP, and induces the acetylation of Histone 3 (H3). Furthermore, we provided evidence that PPARγ agonist is able to enhance the action of other HDACi such as Vorinostat or Mocetinostat. Using PPARγ antagonist or siPPARγ, we strongly suggest that, as described during adipogenesis, PIO behaves as an epigenetic regulator by improving the activity of HDACi. This study highlights the therapeutic benefit of PIO/VPA combination, compared to VPA treatment as a single-arm therapy on multiple myeloma and further highlights that such combination may constitute a new promising treatment strategy which should be supported by clinical trials. PMID:26091518

  5. Arabidopsis peroxisome proteomics

    PubMed Central

    Bussell, John D.; Behrens, Christof; Ecke, Wiebke; Eubel, Holger

    2013-01-01

    The analytical depth of investigation of the peroxisomal proteome of the model plant Arabidopsis thaliana has not yet reached that of other major cellular organelles such as chloroplasts or mitochondria. This is primarily due to the difficulties associated with isolating and obtaining purified samples of peroxisomes from Arabidopsis. So far only a handful of research groups have been successful in obtaining such fractions. To make things worse, enriched peroxisome fractions frequently suffer from significant organellar contamination, lowering confidence in localization assignment of the identified proteins. As with other cellular compartments, identification of peroxisomal proteins forms the basis for investigations of the dynamics of the peroxisomal proteome. It is therefore not surprising that, in terms of functional analyses by proteomic means, peroxisomes are lagging considerably behind chloroplasts or mitochondria. Alternative strategies are needed to overcome the obstacle of hard-to-obtain organellar fractions. This will help to close the knowledge gap between peroxisomes and other organelles and provide a full picture of the physiological pathways shared between organelles. In this review, we briefly summarize the status quo and discuss some of the methodological alternatives to classic organelle proteomic approaches. PMID:23630535

  6. Expression regulation and targeting of the peroxisome proliferator-activated receptor ? following electrically-induced status epilepticus.

    PubMed

    Boes, Katharina; Russmann, Vera; Ongerth, Tanja; Licko, Thomas; Salvamoser, Josephine D; Siegl, Claudia; Potschka, Heidrun

    2015-09-14

    The neuroprotective and anti-inflammatory effects of the peroxisome proliferator-activated receptor ? (PPAR?) agonist rosiglitazone are of particular interest for disease-modifying and antiepileptogenic approaches. We studied the expression of PPAR? and the impact of rosiglitazone on the consequences of status epilepticus (SE) in a rat post-SE model. Immunohistochemical analysis revealed a selective overexpression of PPAR? in the piriform cortex of rats with spontaneous seizures. Rosiglitazone administration initiated following SE failed to exert relevant effects on the development of spontaneous seizures and neuronal cell loss. Whereas spatial learning in the Morris water maze was delayed in SE animals with vehicle administration, the learning curve of rosiglitazone-treated SE rats showed no significant difference to that of controls. The study provides first evidence arguing against a robust antiepileptogenic effect. However, the findings in the spatial learning paradigm indicate disease-modifying effects. PMID:26259695

  7. Peroxisomal ABC transporters.

    PubMed

    Theodoulou, Frederica L; Holdsworth, Michael; Baker, Alison

    2006-02-13

    Peroxisomes perform a range of different functions, dependent upon organism, tissue type, developmental stage or environmental conditions, many of which are connected with lipid metabolism. This review summarises recent research on ATP binding cassette (ABC) transporters of the peroxisomal membrane (ABC subfamily D) and their roles in plants, fungi and animals. Analysis of mutants has revealed that peroxisomal ABC transporters play key roles in specific metabolic and developmental functions in different organisms. A common function is import of substrates for beta-oxidation but much remains to be determined concerning transport substrates and mechanisms which appear to differ significantly between phyla. PMID:16413537

  8. Peroxisome proliferator activated receptor α (PPARα) and PPAR gamma coactivator (PGC-1α) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements

    PubMed Central

    Song, Shulan; Attia, Ramy R.; Connaughton, Sara; Niesen, Melissa I.; Ness, Gene C.; Elam, Marshall B.; Hori, Roderick T.; Cook, George A.; Park, Edwards A.

    2010-01-01

    Long chain fatty acids and pharmacologic ligands for the peroxisome proliferator activated receptor alpha (PPARα) activate expression of genes involved in fatty acid and glucose oxidation including carnitine palmitoyltransferase-1A (CPT-1A) and pyruvate dehydrogenase kinase 4 (PDK4). CPT-1A catalyzes the transfer of long chain fatty acids from acyl-CoA to carnitine for translocation across the mitochondrial membranes and is an initiating step in the mitochondrial oxidation of long chain fatty acids. PDK4 phosphorylates and inhibits the pyruvate dehydrogenase complex (PDC) which catalyzes the conversion of pyruvate to acetyl-CoA in the glucose oxidation pathway. The activity of CPT-1A is modulated both by transcriptional changes as well as by malonyl-CoA inhibition. In the liver, CPT-1A and PDK4 gene expression are induced by starvation, high fat diets and PPARα ligands. Here, we characterized a binding site for PPARα in the second intron of the rat CPT-1A gene. Our studies indicated that WY14643 and long chain fatty acids induce CPT-1A gene expression through this element. In addition, we found that mutation of the PPARα binding site reduced the expression of CPT-1A-luciferase vectors in the liver of fasted rats. We had demonstrated previously that CPT-1A was stimulated by the peroxisome proliferator activated receptor gamma coactivator (PGC-1α) via sequences in the first intron of the rat CPT-1A gene. Surprisingly, PGC-1α did not enhance CPT-1A transcription through the PPARα binding site in the second intron. Following knockdown of PGC-1α with short hairpin RNA, the CPT-1A and PDK4 genes remained responsive to WY14643. Overall, our studies indicated that PPARα and PGC-1α stimulate transcription of the CPT-1A gene through different regions of the CPT-1A gene. PMID:20638986

  9. The Nox4 inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular cell proliferation.

    PubMed

    Green, David E; Murphy, Tamara C; Kang, Bum-Yong; Kleinhenz, Jennifer M; Szyndralewiez, Cdric; Page, Patrick; Sutliff, Roy L; Hart, C Michael

    2012-11-01

    Increased NADP reduced (NADPH) oxidase 4 (Nox4) and reduced expression of the nuclear hormone receptor peroxisome proliferator-activated receptor ? (PPAR?) contribute to hypoxia-induced pulmonary hypertension (PH). To examine the role of Nox4 activity in pulmonary vascular cell proliferation and PH, the current study used a novel Nox4 inhibitor, GKT137831, in hypoxia-exposed human pulmonary artery endothelial or smooth muscle cells (HPAECs or HPASMCs) in vitro and in hypoxia-treated mice in vivo. HPAECs or HPASMCs were exposed to normoxia or hypoxia (1% O(2)) for 72 hours with or without GKT137831. Cell proliferation and Nox4, PPAR?, and transforming growth factor (TGF)?1 expression were measured. C57Bl/6 mice were exposed to normoxia or hypoxia (10% O(2)) for 3 weeks with or without GKT137831 treatment during the final 10 days of exposure. Lung PPAR? and TGF-?1 expression, right ventricular hypertrophy (RVH), right ventricular systolic pressure (RVSP), and pulmonary vascular remodeling were measured. GKT137831 attenuated hypoxia-induced H(2)O(2) release, proliferation, and TGF-?1 expression and blunted reductions in PPAR? in HPAECs and HPASMCs in vitro. In vivo GKT137831 inhibited hypoxia-induced increases in TGF-?1 and reductions in PPAR? expression and attenuated RVH and pulmonary artery wall thickness but not increases in RVSP or muscularization of small arterioles. This study shows that Nox4 plays a critical role in modulating proliferative responses of pulmonary vascular wall cells. Targeting Nox4 with GKT137831 provides a novel strategy to attenuate hypoxia-induced alterations in pulmonary vascular wall cells that contribute to vascular remodeling and RVH, key features involved in PH pathogenesis. PMID:22904198

  10. The Nox4 Inhibitor GKT137831 Attenuates Hypoxia-Induced Pulmonary Vascular Cell Proliferation

    PubMed Central

    Green, David E.; Murphy, Tamara C.; Kang, Bum-Yong; Kleinhenz, Jennifer M.; Szyndralewiez, Cdric; Page, Patrick; Sutliff, Roy L.

    2012-01-01

    Increased NADP reduced (NADPH) oxidase 4 (Nox4) and reduced expression of the nuclear hormone receptor peroxisome proliferator-activated receptor ? (PPAR?) contribute to hypoxia-induced pulmonary hypertension (PH). To examine the role of Nox4 activity in pulmonary vascular cell proliferation and PH, the current study used a novel Nox4 inhibitor, GKT137831, in hypoxia-exposed human pulmonary artery endothelial or smooth muscle cells (HPAECs or HPASMCs) in vitro and in hypoxia-treated mice in vivo. HPAECs or HPASMCs were exposed to normoxia or hypoxia (1% O2) for 72 hours with or without GKT137831. Cell proliferation and Nox4, PPAR?, and transforming growth factor (TGF)?1 expression were measured. C57Bl/6 mice were exposed to normoxia or hypoxia (10% O2) for 3 weeks with or without GKT137831 treatment during the final 10 days of exposure. Lung PPAR? and TGF-?1 expression, right ventricular hypertrophy (RVH), right ventricular systolic pressure (RVSP), and pulmonary vascular remodeling were measured. GKT137831 attenuated hypoxia-induced H2O2 release, proliferation, and TGF-?1 expression and blunted reductions in PPAR? in HPAECs and HPASMCs in vitro. In vivo GKT137831 inhibited hypoxia-induced increases in TGF-?1 and reductions in PPAR? expression and attenuated RVH and pulmonary artery wall thickness but not increases in RVSP or muscularization of small arterioles. This study shows that Nox4 plays a critical role in modulating proliferative responses of pulmonary vascular wall cells. Targeting Nox4 with GKT137831 provides a novel strategy to attenuate hypoxia-induced alterations in pulmonary vascular wall cells that contribute to vascular remodeling and RVH, key features involved in PH pathogenesis. PMID:22904198

  11. Tyrosine Kinase Inhibitor Induced Isolated Pericardial Effusion

    PubMed Central

    Agrawal, Vineet; Christenson, Eric S.; Showel, Margaret M.

    2015-01-01

    Long-term therapy with tyrosine kinase inhibitors (TKI) has resulted in improved outcomes for patients suffering from Bcr-Abl fusion protein-harboring leukemias. As a result, a growing population of patients on TKI therapy present to their primary care providers. In this case, we report on the case of a 62-year-old male who presented with a symptomatic pericardial effusion. After pericardiocentesis, malignancy and infectious etiologies were excluded. The pericardial effusion was attributed to his TKI, with a transition of this medication to a different TKI. A repeat evaluation 1 month following the withdrawal of the offending agent showed no recurrence of his pericardial effusion on echocardiogram. In this report, we will highlight a rare but important side effect of TKI therapy before discussing its purported mechanisms and differing incidence rates. Early recognition of serosal inflammation related to long-term TKI therapy by primary care providers is important in preventing patient morbidity and mortality. PMID:25848358

  12. Activation of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) induces cell death through MAPK-dependent mechanism in osteoblastic cells

    SciTech Connect

    Kim, Sung Hun; Yoo, Chong Il; Kim, Hui Taek; Park, Ji Yeon; Kwon, Chae Hwa; Keun Kim, Yong . E-mail: kim430@pusan.ac.kr

    2006-09-01

    The present study was undertaken to determine the role of the mitogen-activated protein kinase (MAPK) subfamilies in cell death induced by PPAR{gamma} agonists in osteoblastic cells. Ciglitazone and troglitazone, PPAR{gamma} agonists, resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. But a PPAR{alpha} agonist ciprofibrate did not affect the cell death. Ciglitazone caused reactive oxygen species (ROS) generation and ciglitazone-induced cell death was prevented by antioxidants, suggesting an important role of ROS generation in the ciglitazone-induced cell death. ROS generation and cell death induced by ciglitazone were inhibited by the PPAR{gamma} antagonist GW9662. Ciglitazone treatment caused activation of extracellular signal-regulated kinase (ERK) and p38. Activation of ERK was dependent on epidermal growth factor receptor (EGFR) and that of p38 was independent. Ciglitazone-induced cell death was significantly prevented by PD98059, an inhibitor of ERK upstream kinase MEK1/2, and SB203580, a p38 inhibitor. Ciglitazone treatment increased Bax expression and caused a loss of mitochondrial membrane potential, and its effect was prevented by N-acetylcysteine, PD98059, and SB203580. Ciglitazone induced caspase activation, which was prevented by PD98059 and SB203580. The general caspase inhibitor z-DEVD-FMK and the specific inhibitor of caspases-3 DEVD-CHO exerted the protective effect against the ciglitazone-induced cell death. The EGFR inhibitors AG1478 and suramin protected against the ciglitazone-induced cell death. Taken together, these findings suggest that the MAPK signaling pathways play an active role in mediating the ciglitazone-induced cell death of osteoblasts and function upstream of a mitochondria-dependent mechanism. These data may provide a novel insight into potential therapeutic strategies for treatment of osteoporosis.

  13. Peroxisomes Get Loud: A Redox Antidote to Hearing Loss.

    PubMed

    Mardones, Pablo; Hetz, Claudio

    2015-11-01

    Pejvakin (PJVK), a protein originally identified in Persian families with sensorineural hearing loss, regulates peroxisomal dynamics and the antioxidant defense triggered by noise exposure in hair cells and auditory neurons of the inner ear. These findings bring peroxisomes to the forefront of noise-induced hearing loss research. PMID:26544930

  14. Serotonin reuptake inhibitor-induced perinatal complications.

    PubMed

    Gentile, Salvatore

    2007-01-01

    There are a growing number of concerns about the utilization of serotonin reuptake inhibitors (SRIs) in late pregnancy and the onset of perinatal complications. This review aimed to analyze and summarize the studies evaluating the risk of perinatal complications (such as low birth weight, preterm delivery, withdrawal or toxic phenomena, and other detrimental events/poor neonatal outcomes) related to maternal SRI use in late pregnancy. A computerized search of MEDLINE (1966-January 2007) and PsycINFO (1974-January 2007) databases was performed. Articles describing perinatal complications after late in utero exposure to SRIs were selected and also reviewed for additional references. Fifty studies met the inclusion criteria. Exposure to SRIs late in pregnancy is clearly associated with an increased risk of infants developing a constellation of symptoms, including CNS and respiratory effects, often requiring close infant observation and supportive or specific treatment in intensive care units. Such symptoms are not always due to toxic or withdrawal reactions. Indeed, some evidence suggests that SRIs may interfere with the physiology of the respiratory system and parasympathetic activity in neonates. Of the most methodologically relevant studies reviewed, 50% have been published in the last 3 years. Hence, it is possible that further concerning data will become available in the future. For these reasons, the opportunity of tapering and discontinuing SRIs in late pregnancy should be taken into consideration, although to date the evidence to support such a clinical decision is preliminary. PMID:17407365

  15. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders.

    PubMed

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J; Sims, Katherine B; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-04-17

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role. PMID:25750174

  16. Hypoxia-inducible Lipid Droplet-associated (HILPDA) Is a Novel Peroxisome Proliferator-activated Receptor (PPAR) Target Involved in Hepatic Triglyceride Secretion*

    PubMed Central

    Mattijssen, Frits; Georgiadi, Anastasia; Andasarie, Tresty; Szalowska, Ewa; Zota, Annika; Krones-Herzig, Anja; Heier, Christoph; Ratman, Dariusz; De Bosscher, Karolien; Qi, Ling; Zechner, Rudolf; Herzig, Stephan; Kersten, Sander

    2014-01-01

    Peroxisome proliferator-activated receptors (PPARs) play major roles in the regulation of hepatic lipid metabolism through the control of numerous genes involved in processes such as lipid uptake and fatty acid oxidation. Here we identify hypoxia-inducible lipid droplet-associated (Hilpda/Hig2) as a novel PPAR target gene and demonstrate its involvement in hepatic lipid metabolism. Microarray analysis revealed that Hilpda is one of the most highly induced genes by the PPARα agonist Wy14643 in mouse precision cut liver slices. Induction of Hilpda mRNA by Wy14643 was confirmed in mouse and human hepatocytes. Oral dosing with Wy14643 similarly induced Hilpda mRNA levels in livers of wild-type mice but not Ppara−/− mice. Transactivation studies and chromatin immunoprecipitation showed that Hilpda is a direct PPARα target gene via a conserved PPAR response element located 1200 base pairs upstream of the transcription start site. Hepatic overexpression of HILPDA in mice via adeno-associated virus led to a 4-fold increase in liver triglyceride storage, without any changes in key genes involved in de novo lipogenesis, β-oxidation, or lipolysis. Moreover, intracellular lipase activity was not affected by HILPDA overexpression. Strikingly, HILPDA overexpression significantly impaired hepatic triglyceride secretion. Taken together, our data uncover HILPDA as a novel PPAR target that raises hepatic triglyceride storage via regulation of triglyceride secretion. PMID:24876382

  17. Constitutive active/androstane receptor, peroxisome proliferator-activated receptor α, and cytotoxicity are involved in oxadiazon-induced liver tumor development in mice.

    PubMed

    Kuwata, Kazunori; Inoue, Kaoru; Ichimura, Ryohei; Takahashi, Miwa; Kodama, Yukio; Yoshida, Midori

    2016-02-01

    Oxadiazon (OX) is a protoporphyrinogen oxidase-inhibiting herbicide that induces porphyria and liver tumors in rodents. Although porphyria is generally considered to be a risk factor for liver tumor development, the mechanisms through which OX mediates tumor development are unclear. Therefore, in this study, we investigated the mechanisms of tumor development by focusing on constitutive active/androstane receptor (CAR), which is essential for the development of tumors in response to several chemicals. After 1, 4, or 13 weeks of dietary treatment with 1000 ppm OX, hepatic Cyp2b10 expression was induced in wild-type (WT) mice. However, this effect was blocked in CAR-knockout (CARKO) mice. Hepatic Cyp4a10 expression, indicative of peroxisome proliferator-activated receptor α (PPARα) activation, and cytotoxic changes in hepatocytes were also observed in both groups of mice. After initiation by diethylnitrosamine, 26-week treatment with OX resulted in an increase in proliferative lesions, including foci and adenomas, in both genotypes, and the incidence and multiplicity of proliferative lesions in CARKO mice were higher than those in control mice but lower than those in WT mice. These results suggested that CAR, PPARα activation, and cytotoxicity were involved in the development of liver tumors. Moreover, porphyrin was not apparently involved in OX-induced tumor development. PMID:26710982

  18. Administration of the peroxisomal proliferator-activated receptor {gamma} agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment

    SciTech Connect

    Zhao Weiling; Payne, Valerie; Tommasi, Ellen; Diz, Debra I.; Hsu, F.-C.; Robbins, Mike E. . E-mail: mrobbins@wfubmc.edu

    2007-01-01

    Purpose: We hypothesized that administration of the anti-inflammatory peroxisomal proliferator-activated receptor {gamma} (PPAR{gamma}) agonist pioglitazone (Pio) to adult male rats would inhibit radiation-induced cognitive impairment. Methods and Materials: Young adult male F344 rats received one of the following: (1) fractionated whole brain irradiation (WBI); 40 or 45 Gy {gamma}-rays in 4 or 4.5 weeks, respectively, two fractions per week and normal diet; (2) sham-irradiation and normal diet; (3) WBI plus Pio (120 ppm) before, during, and for 4 or 54 weeks postirradiation; (4) sham-irradiation plus Pio; or (5) WBI plus Pio starting 24h after completion of WBI. Results: Administration of Pio before, during, and for 4 or 54 weeks after WBI prevented Radiation-induced cognitive impairment. Administration of Pio for 54 weeks starting after completion of fractionated WBI substantially but not significantly reduced Radiation-induced cognitive impairment. Conclusions: These findings offer the promise of improving the quality of life and increasing the therapeutic window for brain tumor patients.

  19. Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway.

    PubMed

    Misawa, Koichi; Hashizume, Kojiro; Yamamoto, Masaki; Minegishi, Yoshihiko; Hase, Tadashi; Shimotoyodome, Akira

    2015-10-01

    The initiation of obesity entails an imbalance wherein energy intake exceeds expenditure. Obesity is increasing in prevalence and is now a worldwide health problem. Food-derived peroxisome proliferator-activated receptor δ (PPARδ) stimulators represent potential treatment options for obesity. Ginger (Zingiber officinale Roscoe) was previously shown to regulate the PPARγ signaling pathway in adipocytes. In this study, we investigated the antiobesity effects of ginger in vivo and the mechanism of action in vitro. Energy expenditure was increased, and diet-induced obesity was attenuated in C57BL/6J mice treated with dietary ginger extract (GE). GE also increased the number of Type I muscle fibers, improved running endurance capacity and upregulated PPARδ-targeted gene expression in skeletal muscle and the liver. 6-Shogaol and 6-gingerol acted as specific PPARδ ligands and stimulated PPARδ-dependent gene expression in cultured human skeletal muscle myotubes. An analysis of cellular respiration revealed that pretreating cultured skeletal muscle myotubes with GE increased palmitate-induced oxygen consumption rate, which suggested an increase in cellular fatty acid catabolism. These results demonstrated that sustained activation of the PPARδ pathway with GE attenuated diet-induced obesity and improved exercise endurance capacity by increasing skeletal muscle fat catabolism. 6-Shogaol and 6-gingerol may be responsible for the regulatory effects of dietary ginger on PPARδ signaling. PMID:26101135

  20. Hypoxia inducible factor pathway inhibitors as anticancer therapeutics

    PubMed Central

    Burroughs, Sarah K; Kaluz, Stefan; Wang, Danzhu; Wang, Ke

    2013-01-01

    Hypoxia is a significant feature of solid tumor cancers. Hypoxia leads to a more malignant phenotype that is resistant to chemotherapy and radiation, is more invasive and has greater metastatic potential. Hypoxia activates the hypoxia inducible factor (HIF) pathway, which mediates the biological effects of hypoxia in tissues. The HIF complex acts as a transcription factor for many genes that increase tumor survival and proliferation. To date, many HIF pathway inhibitors indirectly affect HIF but there have been no clinically approved direct HIF inhibitors. This can be attributed to the complexity of the HIF pathway, as well as to the challenges of inhibiting protein–protein interactions. PMID:23573973

  1. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORα (PPARα) AGONISTS DIFFERENTIALLY REGULATE INHIBITOR OF DNA BINDING (ID2) EXPRESSION IN RODENTS AND HUMAN CELLS

    EPA Science Inventory

    Abstract Inhibitor of DNA binding (Id2) is a member of the helix-loop-helix (HLH) transcription factor family whose members play important roles in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones,...

  2. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR? (PPAR?) AGONISTS DIFFERENTIALLY REGULATE INHIBITOR OF DNA BINDING (ID2) EXPRESSION IN RODENTS AND HUMAN CELLS

    EPA Science Inventory

    Abstract Inhibitor of DNA binding (Id2) is a member of the helix-loop-helix (HLH) transcription factor family whose members play important roles in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones,...

  3. Proteomic analysis reveals that the Rab GTPase RabE1c is involved in the degradation of the peroxisomal protein receptor PEX7 (peroxin 7).

    PubMed

    Cui, Songkui; Fukao, Yoichiro; Mano, Shoji; Yamada, Kenji; Hayashi, Makoto; Nishimura, Mikio

    2013-02-22

    The biogenesis of peroxisomes is mediated by peroxins (PEXs). PEX7 is a cytosolic receptor that imports peroxisomal targeting signal type 2 (PTS2)-containing proteins. Although PEX7 is important for protein transport, the mechanisms that mediate its function are unknown. In this study, we performed proteomic analysis to identify PEX7-binding proteins using transgenic Arabidopsis expressing green fluorescent protein (GFP)-tagged PEX7. Our analysis identified RabE1c, a small GTPase, as a PEX7 binding partner. In vivo analysis revealed that GTP-bound RabE1c binds to PEX7 and that a subset of RabE1c localizes to peroxisomes and interacts with PEX7 on the peroxisome membrane. Unlike endogenous PEX7, which is predominantly localized to the cytosol, GFP-PEX7 accumulates abnormally on the peroxisomal membrane and induces degradation of endogenous PEX7, concomitant with a reduction in import of PTS2-containing proteins and decreased peroxisomal β-oxidation activity. Thus, GFP-PEX7 on the peroxisomal membrane exerts a dominant negative effect. Mutation of RabE1c restored endogenous PEX7 protein expression and import of PTS2-containing proteins as well as peroxisomal β-oxidation activity. Treatment with proteasome inhibitors also restored endogenous PEX7 protein levels in GFP-PEX7-expressing seedlings. Based on these findings, we conclude that RabE1c binds PEX7 and facilitates PEX7 degradation in the presence of immobile GFP-PEX7 accumulated at the membrane. PMID:23297417

  4. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, independently of PPAR{gamma} in human glioma cells

    SciTech Connect

    Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung; Kim, Hye Jin; Yang, Jin Mo; Ryu, Somi; Noh, Yoo Hun; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Yoo, Keon Hee; Koo, Hong Hoe; Sung, Ki Woong

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Greater than 30 {mu}M ciglitazone induces cell death in glioma cells. Black-Right-Pointing-Pointer Cell death by ciglitazone is independent of PPAR{gamma} in glioma cells. Black-Right-Pointing-Pointer CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPAR{gamma} in CGZ-induced cell death was examined. At concentrations of greater than 30 {mu}M, CGZ, a synthetic PPAR{gamma} agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 {mu}M CGZ effectively induced cell death after pretreatment with 30 {mu}M of the PPAR{gamma} antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPAR{gamma} was down-regulated cells by siRNA, lower concentrations of CGZ (<30 {mu}M) were sufficient to induce cell death, although higher concentrations of CGZ ( Greater-Than-Or-Slanted-Equal-To 30 {mu}M) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPAR{gamma}. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPAR{gamma} in glioma cells, by down-regulating Akt activity and inducing MMP collapse.

  5. The environmental obesogen tributyltin chloride acts via peroxisome proliferator activated receptor gamma to induce adipogenesis in murine 3T3-L1 preadipocytes

    PubMed Central

    Li, Xia; Ycaza, John; Blumberg, Bruce

    2012-01-01

    Obesogens are chemicals that predispose exposed individuals to weight gain and obesity by increasing the number of fat cells, storage of fats into existing cells, altering metabolic rates, or disturbing the regulation of appetite and satiety. Tributyltin exposure causes differentiation of multipotent stromal stem cells (MSCs) into adipocytes; prenatal TBT exposure leads to epigenetic changes in the stem cell compartment that favor the production of adipocytes at the expense of bone, in vivo. While it is known that TBT acts through peroxisome proliferator activated receptor gamma to induce adipogenesis in MSCs, the data in 3T3-L1 preadipocytes are controversial. Here we show that TBT can activate the RXR-PPARγ heterodimer even in the presence of the PPARγ antagonist GW9662. We found that GW9662 has a ten-fold shorter half-life in cell culture than do PPARγ activators such as rosiglitazone (ROSI), accounting for previous observations that GW9662 did not inhibit TBT-mediated adipogenesis. When the culture conditions are adjusted to compensate for the short half-life of GW-9662, we found that TBT induces adipogenesis, triglyceride storage and the expression of adipogenic marker genes in 3T3-L1 cells in a PPARγ-dependent manner. Our results are broadly applicable to the study of obesogen action and indicate that ligand stability is an important consideration in the design and interpretation of adipogenesis assays. PMID:21397693

  6. A Selective Novel Peroxisome Proliferator–Activated Receptor (PPAR)-α Antagonist Induces Apoptosis and Inhibits Proliferation of CLL Cells In Vitro and In Vivo

    PubMed Central

    Messmer, Davorka; Lorrain, Kymmy; Stebbins, Karin; Bravo, Yalda; Stock, Nicholas; Cabrera, Geraldine; Correa, Lucia; Chen, Austin; Jacintho, Jason; Chiorazzi, Nicholas; Yan, Xiao Jie; Spaner, David; Prasit, Peppi; Lorrain, Daniel

    2015-01-01

    Tumor-specific metabolic changes can reveal new therapeutic targets. Our findings implicate a supporting role for fatty acid metabolism in chronic lymphocytic leukemia (CLL) cell survival. Peroxisome proliferator–activated receptor (PPAR)-α, a major transcriptional regulator of fatty acid oxidation, was recently shown to be upregulated in CLL. To evaluate PPARα as a potential therapeutic target, we developed a highly selective, potent small molecule antagonist of PPARα, NXT629. NXT629 inhibited agonist-induced transcription of PPARα-regulated genes, demonstrating target engagement in CLL cells. Furthermore, NXT629 induced apoptosis of CLL cells even in the presence of a protective microenvironment. To mimic the proliferative lymphoid compartment of CLL, we examined the activity of NXT629 on CLL cells that were stimulated to proliferate in vitro. NXT629 reduced the number of leukemia cells undergoing cell division. In addition, in two xenograft mouse models of CLL (one a model for nondividing and one for dividing CLL), NXT629 reduced the number of viable CLL cells in vivo. Overall, these results suggest that fatty acid metabolism promotes survival and proliferation of primary CLL cells and that inhibiting PPARα gene regulation could be a new therapeutic approach to treating CLL. PMID:26070013

  7. No evidence for a role of the peroxisome proliferator-activated receptor gamma (PPARG) and adiponectin (ADIPOQ) genes in antipsychotic-induced weight gain.

    PubMed

    Brandl, Eva J; Tiwari, Arun K; Zai, Clement C; Chowdhury, Nabilah I; Lieberman, Jeffrey A; Meltzer, Herbert Y; Kennedy, James L; Müller, Daniel J

    2014-10-30

    Antipsychotics frequently cause changes in glucose metabolism followed by development of weight gain and/or diabetes. Recent findings from our group indicated an influence of glucose-related genes on this serious side effect. With this study, we aimed to extend previous research and performed a comprehensive study on the peroxisome proliferator-activated receptor gamma (PPARG) and the adiponectin (ADIPOQ) genes. In 216 schizophrenic patients receiving antipsychotics for up to 14 weeks, we investigated single-nucleotide polymorphisms in or near PPARG (N=24) and ADIPOQ (N=18). Statistical analysis was done using ANCOVA in SPSS. Haplotype analysis was performed in UNPHASED 3.1.4 and Haploview 4.2. None of the PPARG or ADIPOQ variants showed significant association with antipsychotic-induced weight gain in our combined sample or in a refined subsample of patients of European ancestry treated with clozapine or olanzapine after correction for multiple testing. Similarly, no haplotype association could withstand multiple test correction. Although we could not find a significant influence of ADIPOQ and PPARG on antipsychotic-induced weight gain, our comprehensive examination of these two genes contributes to understanding the biology of this serious side effect. More research on glucose metabolism genes is warranted to elucidate their role in metabolic changes during antipsychotic treatment. PMID:24953421

  8. Proteomics of the Peroxisome

    PubMed Central

    Saleem, RA; Smith, JJ; Aitchison, JD

    2007-01-01

    Genomes provide us with a blue print for the potential of a cell. However, the activity of a cell is expressed in its proteome. Full understanding of the complexity of cells demands a comprehensive view of the proteome; its interactions, activity states and organization. Comprehensive proteomic approaches applied to peroxisomes have yielded new insights into the organelle and its dynamic interplay with other cellular structures. As technologies and methodologies improve proteomics hold the promise for new discoveries of peroxisome function and a full description of this dynamic organelle. PMID:17050007

  9. Bisphenol A Diglycidyl Ether Induces Adipogenic Differentiation of Multipotent Stromal Stem Cells through a Peroxisome Proliferator–Activated Receptor Gamma-Independent Mechanism

    PubMed Central

    Chamorro-García, Raquel; Kirchner, Séverine; Li, Xia; Janesick, Amanda; Casey, Stephanie C.; Chow, Connie

    2012-01-01

    Background: Bisphenol A (BPA) and bisphenol A diglycidyl ether (BADGE), used in manufacturing coatings and resins, leach from packaging materials into food. Numerous studies suggested that BPA and BADGE may have adverse effects on human health, including the possibility that exposure to such chemicals can be superimposed on traditional risk factors to initiate or exacerbate the development of obesity. BPA is a suspected obesogen, whereas BADGE, described as a peroxisome proliferator–activated receptor gamma (PPARγ) antagonist, could reduce weight gain. Objectives: We sought to test the adipogenic effects of BADGE in a biologically relevant cell culture model. Methods: We used multipotent mesenchymal stromal stem cells (MSCs) to study the adipogenic capacity of BADGE and BPA and evaluated their effects on adipogenesis, osteogenesis, gene expression, and nuclear receptor activation. Discussion: BADGE induced adipogenesis in human and mouse MSCs, as well as in mouse 3T3-L1 preadipocytes. In contrast, BPA failed to promote adipogenesis in MSCs, but induced adipogenesis in 3T3-L1 cells. BADGE exposure elicited an adipogenic gene expression profile, and its ability to induce adipogenesis and the expression of adipogenic genes was not blocked by known PPARγ antagonists. Neither BADGE nor BPA activated or antagonized retinoid “X” receptor (RXR) or PPARγ in transient transfection assays. Conclusions: BADGE can induce adipogenic differentiation in both MSCs and in preadipocytes at low nanomolar concentrations comparable to those that have been observed in limited human biomonitoring. BADGE probably acts through a mechanism that is downstream of, or parallel to, PPARγ. PMID:22763116

  10. Potentially lethal ACE-inhibitor-induced angioedema in a child

    PubMed Central

    Bukhari, Esraa; Safdar, Osama Y; Shalaby, Mohammed; AlSharif, Shafiqa MJ; Alsufiany, Khoulod; Kari, Jameela A

    2015-01-01

    Key Clinical Message We report a case of a 9-year-old female with known end-stage kidney disease who presented with sudden onset tongue swelling. A diagnosis of angiotensin-converting enzyme inhibitor-induced angioedema related to bradykinin accumulation was made. Her symptoms resolved shortly after discontinuation of captopril. Early diagnosis can save patients from severe upper airway obstruction. PMID:26185642

  11. Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression

    PubMed Central

    Barone, Rosario; Macaluso, Filippo; Sangiorgi, Claudia; Campanella, Claudia; Marino Gammazza, Antonella; Moresi, Viviana; Coletti, Dario; Conway de Macario, Everly; Macario, Alberto JL; Cappello, Francesco; Adamo, Sergio; Farina, Felicia; Zummo, Giovanni; Di Felice, Valentina

    2016-01-01

    Heat shock protein 60 (Hsp60) is a chaperone localizing in skeletal muscle mitochondria, whose role is poorly understood. In the present study, the levels of Hsp60 in fibres of the entire posterior group of hindlimb muscles (gastrocnemius, soleus, and plantaris) were evaluated in mice after completing a 6-week endurance training program. The correlation between Hsp60 levels and the expression of four isoforms of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) were investigated only in soleus. Short-term overexpression of hsp60, achieved by in vitro plasmid transfection, was then performed to determine whether this chaperone could have a role in the activation of the expression levels of PGC1α isoforms. The levels of Hsp60 protein were fibre-type specific in the posterior muscles and endurance training increased its content in type I muscle fibers. Concomitantly with the increased levels of Hsp60 released in the blood stream of trained mice, mitochondrial copy number and the expression of three isoforms of PGC1α increased. Overexpressing hsp60 in cultured myoblasts induced only the expression of PGC1 1α, suggesting a correlation between Hsp60 overexpression and PGC1 1 α activation. PMID:26812922

  12. Antagonist of peroxisome proliferator-activated receptor {gamma} induces cerebellar amyloid-{beta} levels and motor dysfunction in APP/PS1 transgenic mice

    SciTech Connect

    Du, Jing; Sun, Bing; Chen, Kui; Fan, Li; Cardiovascular Research, Starr Academic Center, Providence Heart and Vascular Institute, Portland, OR 97225 ; Wang, Zhao

    2009-07-03

    Recent evidences show that peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) is involved in the modulation of the amyloid-{beta} (A{beta}) cascade causing Alzheimer's disease (AD) and treatment with PPAR{gamma} agonists protects against AD pathology. However, the function of PPAR{gamma} steady-state activity in A{beta} cascade and AD pathology remains unclear. In this study, an antagonist of PPAR{gamma}, GW9662, was injected into the fourth ventricle of APP/PS1 transgenic mice to inhibit PPAR{gamma} activity in cerebellum. The results show that inhibition of PPAR{gamma} significantly induced A{beta} levels in cerebellum and caused cerebellar motor dysfunction in APP/PS1 transgenic mice. Moreover, GW9662 treatment markedly decreased the cerebellar levels of insulin-degrading enzyme (IDE), which is responsible for the cellular degradation of A{beta}. Since cerebellum is spared from significant A{beta} accumulation and neurotoxicity in AD patients and animal models, these findings suggest a crucial role of PPAR{gamma} steady-state activity in protection of cerebellum against AD pathology.

  13. Over-expression of C/EBP-{alpha} induces apoptosis in cultured rat hepatic stellate cells depending on p53 and peroxisome proliferator-activated receptor-{gamma}

    SciTech Connect

    Wang Xueqing; Huang Guangcun; Mei Shuang; Qian Jin; Ji Juling; Zhang Jinsheng

    2009-03-06

    Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. In our previous studies, CCAAT enhancer binding protein-{alpha} (C/EBP-{alpha}) has been shown to be involved in the activation of HSCs and to have a repression effect on hepatic fibrosis in vivo. However, the mechanisms are largely unknown. In this study, we show that the infection of adenovirus vector expressing C/EBP-{alpha} gene (Ad-C/EBP-{alpha}) could induce HSCs apoptosis in a dose- and time-dependent manner by Annexin V/PI staining, caspase-3 activation assay, and flow cytometry. Also, over-expression of C/EBP-{alpha} resulted in the up-regulation of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) and P53, while P53 expression was regulated by PPAR-{gamma}. In addition, Fas, FasL, DR4, DR5, and TRAIL were studied. The results indicated that the death receptor pathway was mainly involved and regulated by PPAR-{gamma} and p53 in the process of apoptosis triggered by C/EBP-{alpha} in HSCs.

  14. Decorin Induces Mitophagy in Breast Carcinoma Cells via Peroxisome Proliferator-activated Receptor γ Coactivator-1α (PGC-1α) and Mitostatin*

    PubMed Central

    Neill, Thomas; Torres, Annabel; Buraschi, Simone; Owens, Rick T.; Hoek, Jan B.; Baffa, Raffaele; Iozzo, Renato V.

    2014-01-01

    Tumor cell mitochondria are key biosynthetic hubs that provide macromolecules for cancer progression and angiogenesis. Soluble decorin protein core, hereafter referred to as decorin, potently attenuated mitochondrial respiratory complexes and mitochondrial DNA (mtDNA) in MDA-MB-231 breast carcinoma cells. We found a rapid and dynamic interplay between peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and the decorin-induced tumor suppressor gene, mitostatin. This interaction stabilized mitostatin mRNA with concurrent accumulation of mitostatin protein. In contrast, siRNA-mediated abrogation of PGC-1α-blocked decorin-evoked stabilization of mitostatin. Mechanistically, PGC-1α bound MITOSTATIN mRNA to achieve rapid stabilization. These processes were orchestrated by the decorin/Met axis, as blocking the Met-tyrosine kinase or knockdown of Met abrogated these responses. Furthermore, depletion of mitostatin blocked decorin- or rapamycin-evoked mitophagy, increased vascular endothelial growth factor A (VEGFA) production, and compromised decorin-evoked VEGFA suppression. Collectively, our findings underscore the complexity of PGC-1α-mediated mitochondrial homeostasis and establish mitostatin as a key regulator of tumor cell mitophagy and angiostasis. PMID:24403067

  15. Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression.

    PubMed

    Barone, Rosario; Macaluso, Filippo; Sangiorgi, Claudia; Campanella, Claudia; Marino Gammazza, Antonella; Moresi, Viviana; Coletti, Dario; Conway de Macario, Everly; Macario, Alberto Jl; Cappello, Francesco; Adamo, Sergio; Farina, Felicia; Zummo, Giovanni; Di Felice, Valentina

    2016-01-01

    Heat shock protein 60 (Hsp60) is a chaperone localizing in skeletal muscle mitochondria, whose role is poorly understood. In the present study, the levels of Hsp60 in fibres of the entire posterior group of hindlimb muscles (gastrocnemius, soleus, and plantaris) were evaluated in mice after completing a 6-week endurance training program. The correlation between Hsp60 levels and the expression of four isoforms of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) were investigated only in soleus. Short-term overexpression of hsp60, achieved by in vitro plasmid transfection, was then performed to determine whether this chaperone could have a role in the activation of the expression levels of PGC1α isoforms. The levels of Hsp60 protein were fibre-type specific in the posterior muscles and endurance training increased its content in type I muscle fibers. Concomitantly with the increased levels of Hsp60 released in the blood stream of trained mice, mitochondrial copy number and the expression of three isoforms of PGC1α increased. Overexpressing hsp60 in cultured myoblasts induced only the expression of PGC1 1α, suggesting a correlation between Hsp60 overexpression and PGC1 1 α activation. PMID:26812922

  16. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II.

    PubMed

    Peng, Kesong; Tian, Xinqiao; Qian, Yuanyuan; Skibba, Melissa; Zou, Chunpeng; Liu, Zhiguo; Wang, Jingying; Xu, Zheng; Li, Xiaokun; Liang, Guang

    2016-03-01

    Cardiac hypertrophy is an important risk factor for heart failure. Epidermal growth factor receptor (EGFR) has been found to play a role in the pathogenesis of various cardiovascular diseases. The aim of this current study was to examine the role of EGFR in angiotensin II (Ang II)-induced cardiac hypertrophy and identify the underlying molecular mechanisms. In this study, we observed that both Ang II and EGF could increase the phospohorylation of EGFR and protein kinase B (AKT)/extracellular signal-regulated kinase (ERK), and then induce cell hypertrophy in H9c2 cells. Both pharmacological inhibitors and genetic silencing significantly reduced Ang II-induced EGFR signalling pathway activation, hypertrophic marker overexpression, and cell hypertrophy. In addition, our results showed that Ang II-induced EGFR activation is mediated by c-Src phosphorylation. In vivo, Ang II treatment significantly led to cardiac remodelling including cardiac hypertrophy, disorganization and fibrosis, accompanied by the activation of EGFR signalling pathway in the heart tissues, while all these molecular and pathological alterations were attenuated by the oral administration with EGFR inhibitors. In conclusion, the c-Src-dependent EGFR activation may play an important role in Ang II-induced cardiac hypertrophy, and inhibition of EGFR by specific molecules may be an effective strategy for the treatment of Ang II-associated cardiac diseases. PMID:26762600

  17. Induction of hepatic peroxisome proliferation in nonrodent species, including primates.

    PubMed

    Reddy, J K; Lalwani, N D; Qureshi, S A; Reddy, M K; Moehle, C M

    1984-01-01

    It is well established that the administration to rodents of a variety of structurally diverse chemicals possessing hypotriglyceridemic properties results in hepatomegaly, the induction of hepatic peroxisome (microbody) proliferation, and the development of hepatocellular carcinomas. Studies have led to the hypothesis that persistent proliferation of peroxisomes serves as an endogenous initiator of neoplastic transformation in liver by increasing the intracellular production of H2O2 by the peroxisomal oxidase(s). The objective of the present study was to determine whether hepatic peroxisome proliferation can be induced in cats, chickens, pigeons, and two species of monkeys (rhesus and cynomolgus). The hypolipidemic drug ciprofibrate (2-[4-(2,2-dichloro-cylopropyl)phenoxyl]2-methylpropionic acid) induced peroxisome proliferation in the livers of cats (dose, greater than 40 mg/kg body weight for 4 weeks); chickens (dose greater than 25 mg/kg body weight for 4 weeks); pigeons (300 mg/kg body weight for 3 weeks), rhesus monkeys (50 to 200 mg/kg body weight for 7 weeks) and cynomolgus monkeys (400 mg/kg body weight for 4 weeks). In all five species examined in this study, a marked but variable increase in the activities of peroxisomal catalase, carnitine acetyltransferase, heat-labile enoyl-CoA hydratase, and the fatty acid beta-oxidation system was observed. These results suggest that peroxisome proliferation can be induced in the livers of several species and that it is a dose-dependent but not a species-specific phenomenon. PMID:6691413

  18. The birth of yeast peroxisomes.

    PubMed

    Yuan, Wei; Veenhuis, Marten; van der Klei, Ida J

    2016-05-01

    This contribution describes the phenotypic differences of yeast peroxisome-deficient mutants (pex mutants). In some cases different phenotypes were reported for yeast mutants deleted in the same PEX gene. These differences are most likely related to the marker proteins and methods used to detect peroxisomal remnants. This is especially evident for pex3 and pex19 mutants, where the localization of receptor docking proteins (Pex13, Pex14) resulted in the identification of peroxisomal membrane remnants, which do not contain other peroxisomal membrane proteins, such as the ring proteins Pex2, Pex10 and Pex12. These structures in pex3 and pex19 cells are the template for peroxisome formation upon introduction of the missing gene. Taken together, these data suggest that in all yeast pex mutants analyzed so far peroxisomes are not formed de novo but use membrane remnant structures as a template for peroxisome formation upon reintroduction of the missing gene. The relevance of this model for peroxisomal membrane protein and lipid sorting to peroxisomes is discussed. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26367802

  19. Multiple paths to peroxisomes: Mechanism of peroxisome maintenance in mammals.

    PubMed

    Hua, Rong; Kim, Peter K

    2016-05-01

    Peroxisomes are dynamic organelles that can adjust their size and number in response to cellular demand and environmental stimuli. They can propagate from pre-existing peroxisomes through growth and division, as well as de novo from the endoplasmic reticulum (ER). However, to what extend that these two distinct peroxisome biogenesis pathways are involved in maintaining peroxisome numbers in cycling cells is unclear. Recent studies in yeast suggest that the ER plays a direct role in the maintenance of peroxisomes. However, the role of the ER in mammalian system is under debate. In this review, we outline the recent progress in understanding the biogenesis of mammalian peroxisomes. We herein discuss some of the discrepancies in the literature and the outstanding questions in the field. PMID:26408931

  20. No peroxisome is an island - Peroxisome contact sites.

    PubMed

    Shai, Nadav; Schuldiner, Maya; Zalckvar, Einat

    2016-05-01

    In order to optimize their multiple cellular functions, peroxisomes must collaborate and communicate with the surrounding organelles. A common way of communication between organelles is through physical membrane contact sites where membranes of two organelles are tethered, facilitating exchange of small molecules and intracellular signaling. In addition contact sites are important for controlling processes such as metabolism, organelle trafficking, inheritance and division. How peroxisomes rely on contact sites for their various cellular activities is only recently starting to be appreciated and explored and the extent of peroxisomal communication, their contact sites and their functions are less characterized. In this review we summarize the identified peroxisomal contact sites, their tethering complexes and their potential physiological roles. Additionally, we highlight some of the preliminary evidence that exists in the field for unexplored peroxisomal contact sites. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26384874

  1. Peroxisome Proliferator-activated Receptor α (PPARα) Induces PPARγ Coactivator 1α (PGC-1α) Gene Expression and Contributes to Thermogenic Activation of Brown Fat

    PubMed Central

    Hondares, Elayne; Rosell, Meritxell; Díaz-Delfín, Julieta; Olmos, Yolanda; Monsalve, Maria; Iglesias, Roser; Villarroya, Francesc; Giralt, Marta

    2011-01-01

    Peroxisome proliferator activated receptor α (PPARα) is a distinctive marker of the brown fat phenotype that has been proposed to coordinate the transcriptional activation of genes for lipid oxidation and for thermogenic uncoupling protein 1 in brown adipose tissue. Here, we investigated the involvement of PPARα in the transcriptional control of the PPARγ coactivator (PGC)-1α gene. Treatment with PPARα agonists induced PGC-1α mRNA expression in brown fat in vivo and in primary brown adipocytes. This enhancement of PGC-1α transcription was mediated by PPARα binding to a PPAR-responsive element in the distal PGC-1α gene promoter. PGC-1α gene expression was decreased in PPARα-null brown fat, both under basal conditions and in response to thermogenic activation. Moreover, PPARα- and cAMP-mediated pathways interacted to control PGC-1α transcription. PRDM16 (PRD1-BF1-RIZ1 homologous domain-containing 16) promoted PPARα induction of PGC-1α gene transcription, especially under conditions in which protein kinase A pathways were activated. This enhancement was associated with the interaction of PRDM16 with the PGC-1α promoter at the PPARα-binding site. In addition, PPARα promoted the expression of the PRDM16 gene in brown adipocytes, and activation of PPARα in human white adipocytes led to the appearance of a brown adipocyte pattern of gene expression, including induction of PGC-1α and PRDM16. Collectively, these results suggest that PPARα acts as a key component of brown fat thermogenesis by coordinately regulating lipid catabolism and thermogenic gene expression via induction of PGC-1α and PRDM16. PMID:22033933

  2. Large-Scale Purification of Peroxisomes for Preparative Applications.

    PubMed

    Cramer, Jana; Effelsberg, Daniel; Girzalsky, Wolfgang; Erdmann, Ralf

    2015-09-01

    This protocol is designed for large-scale isolation of highly purified peroxisomes from Saccharomyces cerevisiae using two consecutive density gradient centrifugations. Instructions are provided for harvesting up to 60 g of oleic acid-induced yeast cells for the preparation of spheroplasts and generation of organellar pellets (OPs) enriched in peroxisomes and mitochondria. The OPs are loaded onto eight continuous 36%-68% (w/v) sucrose gradients. After centrifugation, the peak peroxisomal fractions are determined by measurement of catalase activity. These fractions are subsequently pooled and subjected to a second density gradient centrifugation using 20%-40% (w/v) Nycodenz. PMID:26330621

  3. How Peroxisomes Affect Aflatoxin Biosynthesis in Aspergillus Flavus

    PubMed Central

    Reverberi, Massimo; Punelli, Marta; Smith, Carrie A.; Zjalic, Slaven; Scarpari, Marzia; Scala, Valeria; Cardinali, Giorgia; Aspite, Nicaela; Pinzari, Flavia; Payne, Gary A.; Fabbri, Anna A.; Fanelli, Corrado

    2012-01-01

    In filamentous fungi, peroxisomes are crucial for the primary metabolism and play a pivotal role in the formation of some secondary metabolites. Further, peroxisomes are important site for fatty acids ?-oxidation, the formation of reactive oxygen species and for their scavenging through a complex of antioxidant activities. Oxidative stress is involved in different metabolic events in all organisms and it occurs during oxidative processes within the cell, including peroxisomal ?-oxidation of fatty acids. In Aspergillus flavus, an unbalance towards an hyper-oxidant status into the cell is a prerequisite for the onset of aflatoxin biosynthesis. In our preliminary results, the use of bezafibrate, inducer of both peroxisomal ?-oxidation and peroxisome proliferation in mammals, significantly enhanced the expression of pex11 and foxA and stimulated aflatoxin synthesis in A. flavus. This suggests the existence of a correlation among peroxisome proliferation, fatty acids ?-oxidation and aflatoxin biosynthesis. To investigate this correlation, A. flavus was transformed with a vector containing P33, a gene from Cymbidium ringspot virus able to induce peroxisome proliferation, under the control of the promoter of the Cu,Zn-sod gene of A. flavus. This transcriptional control closely relates the onset of the antioxidant response to ROS increase, with the proliferation of peroxisomes in A. flavus. The AfP33 transformant strain show an up-regulation of lipid metabolism and an higher content of both intracellular ROS and some oxylipins. The combined presence of a higher amount of substrates (fatty acids-derived), an hyper-oxidant cell environment and of hormone-like signals (oxylipins) enhances the synthesis of aflatoxins in the AfP33 strain. The results obtained demonstrated a close link between peroxisome metabolism and aflatoxin synthesis. PMID:23094106

  4. Hypervulnerability to Sound Exposure through Impaired Adaptive Proliferation of Peroxisomes.

    PubMed

    Delmaghani, Sedigheh; Defourny, Jean; Aghaie, Asadollah; Beurg, Maryline; Dulon, Didier; Thelen, Nicolas; Perfettini, Isabelle; Zelles, Tibor; Aller, Mate; Meyer, Anaïs; Emptoz, Alice; Giraudet, Fabrice; Leibovici, Michel; Dartevelle, Sylvie; Soubigou, Guillaume; Thiry, Marc; Vizi, E Sylvester; Safieddine, Saaid; Hardelin, Jean-Pierre; Avan, Paul; Petit, Christine

    2015-11-01

    A deficiency in pejvakin, a protein of unknown function, causes a strikingly heterogeneous form of human deafness. Pejvakin-deficient (Pjvk(-/-)) mice also exhibit variable auditory phenotypes. Correlation between their hearing thresholds and the number of pups per cage suggest a possible harmful effect of pup vocalizations. Direct sound or electrical stimulation show that the cochlear sensory hair cells and auditory pathway neurons of Pjvk(-/-) mice and patients are exceptionally vulnerable to sound. Subcellular analysis revealed that pejvakin is associated with peroxisomes and required for their oxidative-stress-induced proliferation. Pjvk(-/-) cochleas display features of marked oxidative stress and impaired antioxidant defenses, and peroxisomes in Pjvk(-/-) hair cells show structural abnormalities after the onset of hearing. Noise exposure rapidly upregulates Pjvk cochlear transcription in wild-type mice and triggers peroxisome proliferation in hair cells and primary auditory neurons. Our results reveal that the antioxidant activity of peroxisomes protects the auditory system against noise-induced damage. PMID:26544938

  5. Histone deacetylase inhibitors block IFNγ-induced STAT1 phosphorylation.

    PubMed

    Ginter, Torsten; Bier, Carolin; Knauer, Shirley K; Sughra, Kalsoom; Hildebrand, Dagmar; Münz, Tobias; Liebe, Theresa; Heller, Regine; Henke, Andreas; Stauber, Roland H; Reichardt, Werner; Schmid, Johannes A; Kubatzky, Katharina F; Heinzel, Thorsten; Krämer, Oliver H

    2012-07-01

    Signal transducer and activator of transcription 1 (STAT1) is important for innate and adaptive immunity. Histone deacetylase inhibitors (HDACi) antagonize unbalanced immune functions causing chronic inflammation and cancer. Phosphorylation and acetylation regulate STAT1 and different IFNs induce phosphorylated STAT1 homo-/heterodimers, e.g. IFNα activates several STATs whereas IFNγ only induces phosphorylated STAT1 homodimers. In transformed cells HDACi trigger STAT1 acetylation linked to dephosphorylation by the phosphatase TCP45. It is unclear whether acetylation differentially affects STAT1 activated by IFNα or IFNγ, and if cellular responses to both cytokines depend on a phosphatase-dependent inactivation of acetylated STAT1. Here, we report that HDACi counteract IFN-induced phosphorylation of a critical tyrosine residue in the STAT1 C-terminus in primary cells and hematopoietic cells. STAT1 mutants mimicking a functionally inactive DNA binding domain (DBD) reveal that the number of acetylation-mimicking sites in STAT1 determines whether STAT1 is recruited to response elements after stimulation with IFNγ. Furthermore, we show that IFNα-induced STAT1 heterodimers carrying STAT1 molecules mimicking acetylation bind cognate DNA and provide innate anti-viral immunity. IFNγ-induced acetylated STAT1 homodimers are though inactive, suggesting that heterodimerization and complex formation can rescue STAT1 lacking a functional DBD. Apparently, the type of cytokine determines how acetylation affects the nuclear entry and DNA binding of STAT1. Our data contribute to a better understanding of STAT1 regulation by acetylation. PMID:22425562

  6. Peroxisomal cholesterol biosynthesis and Smith-Lemli-Opitz syndrome

    SciTech Connect

    Weinhofer, Isabelle; Kunze, Markus; Stangl, Herbert; Porter, Forbes D.; Berger, Johannes . E-mail: johannes.berger@meduniwien.ac.at

    2006-06-23

    Smith-Lemli-Opitz syndrome (SLOS), caused by 7-dehydrocholesterol-reductase (DHCR7) deficiency, shows variable severity independent of DHCR7 genotype. To test whether peroxisomes are involved in alternative cholesterol synthesis, we used [1-{sup 14}C]C24:0 for peroxisomal {beta}-oxidation to generate [1-{sup 14}C]acetyl-CoA as cholesterol precursor inside peroxisomes. The HMG-CoA reductase inhibitor lovastatin suppressed cholesterol synthesis from [2-{sup 14}C]acetate and [1-{sup 14}C]C8:0 but not from [1-{sup 14}C]C24:0, implicating a peroxisomal, lovastatin-resistant HMG-CoA reductase. In SLOS fibroblasts lacking DHCR7 activity, no cholesterol was formed from [1-{sup 14}C]C24:0-derived [1-{sup 14}C]acetyl-CoA, indicating that the alternative peroxisomal pathway also requires this enzyme. Our results implicate peroxisomes in cholesterol biosynthesis but provide no link to phenotypic variation in SLOS.

  7. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae

    PubMed Central

    Ramprecht, Claudia; Zellnig, Günther; Leitner, Erich; Hermetter, Albin; Daum, Günther

    2015-01-01

    In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity. PMID:26241051

  8. Inhibitors

    MedlinePlus

    ... treatment but they can appear at any time. Cost of Care Caring for people with inhibitors poses a special challenge. The health care costs associated with inhibitors can be staggering because of ...

  9. Peroxisome proliferator-activated receptor-α-mediated transcription of miR-199a2 attenuates endothelin-1 expression via hypoxia-inducible factor-1α.

    PubMed

    Li, Chen; Mpollo, Marthe-Sandrine Eiymo Mwa; Gonsalves, Caryn S; Tahara, Stanley M; Malik, Punam; Kalra, Vijay K

    2014-12-26

    Endothelin-1, a potent vasoconstrictor, plays an important role in pulmonary hypertension (PH) in sickle cell disease (SCD). Our previous studies show that higher levels of placenta growth factor (PlGF), secreted by erythroid precursor cells, correlate with increased plasma levels of endothelin-1 (ET-1) and other functional markers of PH in SCD. PlGF-mediated ET-1 expression occurs via activation of hypoxia-inducible factor-1α (HIF-1α). However, relatively less is understood regarding how PlGF-mediated expression of HIF-1α and its downstream effector ET-1 are post-transcriptionally regulated. Herein, we show that PlGF treatment of endothelial cells resulted in reduced levels of miR-199a2, which targeted the 3'-UTR of HIF-1α mRNA and concomitantly led to augmented ET-1 expression. Plasma levels of miR-199a2 in SCD subjects were significantly lower with reciprocally high levels of plasma ET-1, unlike unaffected controls. This observation provided a molecular link between miR-199a2 and high levels of ET-1 in SCD. Furthermore, we show that miR-199a2 located in the DNM3os transcription unit was co-transcriptionally regulated by peroxisome proliferator-activated receptor α (PPARα). Binding of the latter to PPARα cis-elements in the promoter of DNM3os was demonstrated by promoter mutational analysis and ChIP. Additionally, we show that fenofibrate, a PPARα agonist, increased the expression of miR-199a2 and DNM3os; the former was responsible for reduced expression of HIF-1α and ET-1. In vivo studies of fenofibrate-fed Berkeley sickle mice resulted in increased levels of miR-199a2 and reduced levels of ET-1 in lung tissues. Our studies provide a potential therapeutic approach whereby fenofibrate-induced miR-199a2 expression can ameliorate PH by reduction of ET-1 levels. PMID:25389292

  10. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress

    SciTech Connect

    Riganti, Chiara . E-mail: dario.ghigo@unito.it

    2006-05-01

    Apocynin (acetovanillone) is often used as a specific inhibitor of NADPH oxidase. In N11 glial cells, apocynin induced, in a dose-dependent way, a significant increase of both malonyldialdehyde level (index of lipid peroxidation) and lactate dehydrogenase release (index of a cytotoxic effect). Apocynin evoked also, in a significant way, an increase of H{sub 2}O{sub 2} concentration and a decrease of the intracellular glutathione/glutathione disulfide ratio, accompanied by augmented efflux of glutathione and glutathione disulfide. Apocynin induced the activation of both pentose phosphate pathway and tricarboxylic acid cycle, which was blocked when the cells were incubated with glutathione together with apocynin. The cell incubation with glutathione prevented also the apocynin-induced increase of malonyldialdehyde generation and lactate dehydrogenase leakage. Apocynin exerted an oxidant effect also in a cell-free system: indeed, in aqueous solution, it evoked a faster oxidation of the thiols glutathione and dithiothreitol, and elicited the generation of reactive oxygen species, mainly superoxide anions. Our results suggest that apocynin per se can induce an oxidative stress and exert a cytotoxic effect in N11 cells and other cell types, and that some effects of apocynin in in vitro and in vivo experimental models should be interpreted with caution.

  11. No peroxisome is an island — Peroxisome contact sites☆

    PubMed Central

    Shai, Nadav; Schuldiner, Maya; Zalckvar, Einat

    2016-01-01

    In order to optimize their multiple cellular functions, peroxisomes must collaborate and communicate with the surrounding organelles. A common way of communication between organelles is through physical membrane contact sites where membranes of two organelles are tethered, facilitating exchange of small molecules and intracellular signaling. In addition contact sites are important for controlling processes such as metabolism, organelle trafficking, inheritance and division. How peroxisomes rely on contact sites for their various cellular activities is only recently starting to be appreciated and explored and the extent of peroxisomal communication, their contact sites and their functions are less characterized. In this review we summarize the identified peroxisomal contact sites, their tethering complexes and their potential physiological roles. Additionally, we highlight some of the preliminary evidence that exists in the field for unexplored peroxisomal contact sites. PMID:26384874

  12. Human disorders of peroxisome metabolism and biogenesis.

    PubMed

    Waterham, Hans R; Ferdinandusse, Sacha; Wanders, Ronald J A

    2016-05-01

    Peroxisomes are dynamic organelles that play an essential role in a variety of cellular catabolic and anabolic metabolic pathways, including fatty acid alpha- and beta-oxidation, and plasmalogen and bile acid synthesis. Defects in genes encoding peroxisomal proteins can result in a large variety of peroxisomal disorders either affecting specific metabolic pathways, i.e., the single peroxisomal enzyme deficiencies, or causing a generalized defect in function and assembly of peroxisomes, i.e., peroxisome biogenesis disorders. In this review, we discuss the clinical, biochemical, and genetic aspects of all human peroxisomal disorders currently known. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26611709

  13. Peroxisomes contribute to reactive oxygen species homeostasis and cell division induction in Arabidopsis protoplasts.

    PubMed

    Tiew, Terence W-Y; Sheahan, Michael B; Rose, Ray J

    2015-01-01

    The ability to induce Arabidopsis protoplasts to dedifferentiate and divide provides a convenient system to analyze organelle dynamics in plant cells acquiring totipotency. Using peroxisome-targeted fluorescent proteins, we show that during protoplast culture, peroxisomes undergo massive proliferation and disperse uniformly around the cell before cell division. Peroxisome dispersion is influenced by the cytoskeleton, ensuring unbiased segregation during cell division. Considering their role in oxidative metabolism, we also investigated how peroxisomes influence homeostasis of reactive oxygen species (ROS). Protoplast isolation induces an oxidative burst, with mitochondria the likely major ROS producers. Subsequently ROS levels in protoplast cultures decline, correlating with the increase in peroxisomes, suggesting that peroxisome proliferation may also aid restoration of ROS homeostasis. Transcriptional profiling showed up-regulation of several peroxisome-localized antioxidant enzymes, most notably catalase (CAT). Analysis of antioxidant levels, CAT activity and CAT isoform 3 mutants (cat3) indicate that peroxisome-localized CAT plays a major role in restoring ROS homeostasis. Furthermore, protoplast cultures of pex11a, a peroxisome division mutant, and cat3 mutants show reduced induction of cell division. Taken together, the data indicate that peroxisome proliferation and CAT contribute to ROS homeostasis and subsequent protoplast division induction. PMID:26379686

  14. Peroxisomes contribute to reactive oxygen species homeostasis and cell division induction in Arabidopsis protoplasts

    PubMed Central

    Tiew, Terence W.-Y.; Sheahan, Michael B.; Rose, Ray J.

    2015-01-01

    The ability to induce Arabidopsis protoplasts to dedifferentiate and divide provides a convenient system to analyze organelle dynamics in plant cells acquiring totipotency. Using peroxisome-targeted fluorescent proteins, we show that during protoplast culture, peroxisomes undergo massive proliferation and disperse uniformly around the cell before cell division. Peroxisome dispersion is influenced by the cytoskeleton, ensuring unbiased segregation during cell division. Considering their role in oxidative metabolism, we also investigated how peroxisomes influence homeostasis of reactive oxygen species (ROS). Protoplast isolation induces an oxidative burst, with mitochondria the likely major ROS producers. Subsequently ROS levels in protoplast cultures decline, correlating with the increase in peroxisomes, suggesting that peroxisome proliferation may also aid restoration of ROS homeostasis. Transcriptional profiling showed up-regulation of several peroxisome-localized antioxidant enzymes, most notably catalase (CAT). Analysis of antioxidant levels, CAT activity and CAT isoform 3 mutants (cat3) indicate that peroxisome-localized CAT plays a major role in restoring ROS homeostasis. Furthermore, protoplast cultures of pex11a, a peroxisome division mutant, and cat3 mutants show reduced induction of cell division. Taken together, the data indicate that peroxisome proliferation and CAT contribute to ROS homeostasis and subsequent protoplast division induction. PMID:26379686

  15. Effects of vitamin E on peroxisome proliferator-activated receptor ? and nuclear factor-erythroid 2-related factor 2 in hypercholesterolemia-induced atherosclerosis.

    PubMed

    Bozaykut, Perinur; Karademir, Betul; Yazgan, Burak; Sozen, Erdi; Siow, Richard C M; Mann, Giovanni E; Ozer, Nesrin Kartal

    2014-05-01

    Atherosclerosis and associated cardiovascular complications such as stroke and myocardial infarction are major causes of morbidity and mortality. We have previously reported a significant increase in mRNA levels of the scavenger receptor CD36 in aortae of cholesterol-fed rabbits and shown that vitamin E treatment attenuated increased CD36 mRNA expression. In the present study, we further investigated the redox signaling pathways associated with protection against atherogenesis induced by high dietary cholesterol and correlated these with CD36 expression and the effects of vitamin E supplementation in a rabbit model. Male albino rabbits were assigned to either a control group fed with a low vitamin E diet alone or a test group fed with a low vitamin E diet containing 2% cholesterol in the absence or presence of daily intramuscular injections of vitamin E (50mg/kg). To elucidate the mechanisms by which vitamin E supplementation alters the effects of hypercholesterolemia in rabbit aortae, we measured peroxisome proliferator-activated receptor ? (PPAR?), ATP-binding cassette transporter A1 (ABCA1), and matrix metalloproteinase-1 (MMP-1) mRNA levels by quantitative RT-PCR and the expression of MMP-1, nuclear factor-erythroid 2-related factor 2 (Nrf2), and glutathione S-transferase ? (GST?) protein by immunoblotting. The increased MMP-1 and decreased GST? expression observed suggests that a cholesterol-rich diet contributes to the development of atherosclerosis, whereas vitamin E supplementation affords protection by decreasing MMP-1 and increasing PPAR?, GST?, and ABCA1 levels in aortae of rabbits fed a cholesterol-rich diet. Notably, protein expression of Nrf2, the antioxidant transcription factor, was increased in both the cholesterol-fed and the vitamin E-supplemented groups. Although Nrf2 activation can promote CD36-mediated cholesterol uptake by macrophages, the increased induction of Nrf2-mediated antioxidant genes is likely to contribute to decreased lesion progression. Thus, our study demonstrates that Nrf2 can mediate both pro- and antiatherosclerotic effects. PMID:24583459

  16. Selective HDAC1/HDAC2 Inhibitors Induce Neuroblastoma Differentiation

    PubMed Central

    Frumm, Stacey M.; Fan, Zi Peng; Ross, Kenneth N.; Duvall, Jeremy R.; Gupta, Supriya; VerPlank, Lynn; Suh, Byung-Chul; Holson, Edward; Wagner, Florence F.; Smith, William B.; Paranal, Ronald M.; Bassil, Christopher F.; Qi, Jun; Roti, Giovanni; Kung, Andrew L.; Bradner, James E.; Tolliday, Nicola; Stegmaier, Kimberly

    2013-01-01

    Summary While cytotoxic chemotherapy remains the hallmark of cancer treatment, intensive regimens fall short in many malignancies, including high-risk neuroblastoma. One alternative strategy is to therapeutically promote tumor differentiation. We created a gene expression signature to measure neuroblast maturation, adapted it to a high-throughput platform, and screened a diversity oriented synthesis-generated small-molecule library for differentiation inducers. We identified BRD8430, containing a nine-membered lactam, an ortho-amino anilide functionality, and three chiral centers, as a selective Class I histone deacetylase (HDAC) inhibitor (HDAC1>2>3). Further investigation demonstrated that selective HDAC1/HDAC2 inhibition using compounds or RNA interference induced differentiation and decreased viability in neuroblastoma cell lines. Combined treatment with 13-cis retinoic acid augmented these effects and enhanced activation of retinoic acid signaling. Therefore, by applying a chemical genomic screening approach we identified selective HDAC1/HDAC2 inhibition as a strategy to induce neuroblastoma differentiation. PMID:23706636

  17. Small-Scale Purification of Peroxisomes for Analytical Applications.

    PubMed

    Cramer, Jana; Effelsberg, Daniel; Girzalsky, Wolfgang; Erdmann, Ralf

    2015-09-01

    This protocol describes the isolation of peroxisomes from Saccharomyces cerevisiae by density gradient centrifugation using a sucrose, OptiPrep, or OptiPrep/sucrose gradient. Oleic acid-induced cells are first converted to spheroplasts using lyticase for cell wall digestion. Spheroplasts are homogenized, and nuclei and cell debris are removed by low-speed centrifugation to produce a postnuclear supernatant (PNS). Separation of the PNS by density gradient centrifugation is suitable for many analytical applications; however, to increase the yield of peroxisomes, further fractionation of the PNS is possible. Differential centrifugation of the PNS allows removal of the cytosol and other contaminating organelles, resulting in an organellar pellet (OP) enriched in peroxisomes and mitochondria that can be loaded onto the density gradient. Following density gradient centrifugation of the PNS or OP, fractions are collected from the bottom of the centrifuge tube. The distribution of organelles, including peroxisome peak fractions, is characterized by measurement of marker enzyme activity. PMID:26330620

  18. MG132, a proteasome inhibitor, induces apoptosis in tumor cells.

    PubMed

    Guo, Na; Peng, Zhilan

    2013-03-01

    The balance between cell proliferation and apoptosis is critical for normal development and for the maintenance of homeostasis in adult organisms. Disruption of this balance has been implicated in a large number of disease processes, ranging from autoimmunity and neurodegenerative disorders to cancer. The ubiquitin-proteasome pathway, responsible for mediating the majority of intracellular proteolysis, plays a crucial role in the regulation of many normal cellular processes, including the cell cycle, differentiation and apoptosis. Apoptosis in cancer cells is closely connected with the activity of ubiquitin-proteasome pathway. The peptide-aldehyde proteasome inhibitor MG132 (carbobenzoxyl-L-leucyl-L-leucyl-L-leucine) induces the apoptosis of cells by a different intermediary pathway. Although the pathway of induction of apoptosis is different, it plays a crucial role in anti-tumor treatment. There are many cancer-related molecules in which the protein levels present in cells are regulated by a proteasomal pathway; for example, tumor inhibitors (P53, E2A, c-Myc, c-Jun, c-Fos), transcription factors (transcription factor nuclear factor-kappa B, IκBα, HIFI, YYI, ICER), cell cycle proteins (cyclin A and B, P27, P21, IAP1/3), MG132 induces cell apoptosis through formation of reactive oxygen species or the upregulation and downregulation of these factors, which is ultimately dependent upon the activation of the caspase family of cysteine proteases. In this article we review the mechanism of the induction of apoptosis in order to provide information required for research. PMID:22897979

  19. Small GTPases in peroxisome dynamics.

    PubMed

    Just, Wilhelm W; Peränen, Johan

    2016-05-01

    In this review article, we summarize current knowledge on peroxisome biogenesis/functions and the role that small GTPases may play in these processes. Precise intracellular distribution of cell organelles requires their regulated association to microtubules and the actin cytoskeleton. In this respect, RhoGDP/RhoGTP favor binding of peroxisomes to microtubules and actin filaments. In its GTP-bound form, RhoA activates a regulatory cascade involving Rho kinaseII and non-muscle myosinIIA. Such interactions frequently depend on phosphoinositides (PIs) of which PI4P, PI(4,5)P2, and PI(3,5)P2 were found to be present in the peroxisomal membrane. PIs are pivotal determinants of intracellular signaling and known to regulate a wide range of cellular functions. In many of these functions, small GTPases are implicated. The small GTPase ADP-ribosylation factor 1 (Arf1), for example, is known to stimulate synthesis of PI4P and PI(4,5)P2 on the Golgi to regulate protein and lipid sorting. In vitro binding assays localized Arf1 and the COPI complex to peroxisomes. In light of the recent discussion of pre-peroxisomal vesicle generation at the ER, peroxisomal Arf1-COPI vesicles may serve retrograde transport of ER-resident components. A mass spectrometric screen localized various Rab proteins to peroxisomes. Overexpression of these proteins in combination with laser-scanning fluorescence microscopy co-localized Rab6, Rab8, Rab10, Rab14, and Rab18 with peroxisomal structures. By analogy to the role these proteins play in other organelle dynamics, we may envisage what the function of these proteins may be in relation to the peroxisomal compartment. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26775587

  20. Mode of action framework analysis for receptor-mediated toxicity: the Peroxisome Proliferator-Activated Receptor alpha (PPAR?) as a case study

    EPA Science Inventory

    Therapeutic hypolipidemic agents and industrial chemicals that cause peroxisome proliferation and induce liver tumors in rodents activate the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR?). Research has elucidated the cellular and molecular events by w...

  1. Mode of action framework analysis for receptor-mediated toxicity: the Peroxisome Proliferator-Activated Receptor alpha (PPARα) as a case study

    EPA Science Inventory

    Therapeutic hypolipidemic agents and industrial chemicals that cause peroxisome proliferation and induce liver tumors in rodents activate the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα). Research has elucidated the cellular and molecular events by w...

  2. Formation of the peroxisome lumen is abolished by loss of Pichia pastoris Pas7p, a zinc-binding integral membrane protein of the peroxisome.

    PubMed Central

    Kalish, J E; Theda, C; Morrell, J C; Berg, J M; Gould, S J

    1995-01-01

    We have cloned and sequenced PAS7, a gene required for peroxisome assembly in the yeast Pichia pastoris. The product of this gene, Pas7p, is a member of the C3HC4 superfamily of zinc-binding proteins. Point mutations that alter conserved residues of the C3HC4 motif abolish PAS7 activity and reduce zinc binding, suggesting that Pas7p binds zinc in vivo and that zinc binding is essential for PAS7 function. As with most pas mutants, pas7 cells exhibit a pronounced deficiency in import of peroxisomal matrix proteins that contain either the type 1 peroxisomal targeting signal (PTS1) or the type 2 PTS (PTS2). However, while other yeast and mammalian pas mutants accumulate ovoid, vesicular peroxisomal intermediates, loss of Pas7p leads to accumulation of membrane sheets and vesicles which lack a recognizable lumen. Thus, Pas7p appears to be essential for protein translocation into peroxisomes as well as formation of the lumen of the organelle. Consistent with these data, we find that Pas7p is an integral peroxisomal membrane protein which is entirely resistant to exogenous protease and thus appears to reside completely within the peroxisome. Our observations suggest that the function of Pas7p defines a previously unrecognized step in peroxisome assembly: formation of the peroxisome lumen. Furthermore, because the peroxisomal intermediates in the pas7 delta mutant proliferate in response to peroxisome-inducing environmental conditions, we conclude that Pas7p is not required for peroxisome proliferation. PMID:7565793

  3. Hypoxia-inducible factor 1 mediates hypoxia-induced cardiomyocyte lipid accumulation by reducing the DNA binding activity of peroxisome proliferator-activated receptor {alpha}/retinoid X receptor

    SciTech Connect

    Belanger, Adam J.; Luo Zhengyu; Vincent, Karen A.; Akita, Geoffrey Y.; Cheng, Seng H.; Gregory, Richard J.; Jiang Canwen

    2007-12-21

    In response to cellular hypoxia, cardiomyocytes adapt to consume less oxygen by shifting ATP production from mitochondrial fatty acid {beta}-oxidation to glycolysis. The transcriptional activation of glucose transporters and glycolytic enzymes by hypoxia is mediated by hypoxia-inducible factor 1 (HIF-1). In this study, we examined whether HIF-1 was involved in the suppression of mitochondrial fatty acid {beta}-oxidation in hypoxic cardiomyocytes. We showed that either hypoxia or adenovirus-mediated expression of a constitutively stable hybrid form (HIF-1{alpha}/VP16) suppressed mitochondrial fatty acid metabolism, as indicated by an accumulation of intracellular neutral lipid. Both treatments also reduced the mRNA levels of muscle carnitine palmitoyltransferase I which catalyzes the rate-limiting step in the mitochondrial import of fatty acids for {beta}-oxidation. Furthermore, adenovirus-mediated expression of HIF-1{alpha}/VP16 in cardiomyocytes under normoxic conditions also mimicked the reduction in the DNA binding activity of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})/retinoid X receptor (RXR), in the presence or absence of a PPAR{alpha} ligand. These results suggest that HIF-1 may be involved in hypoxia-induced suppression of fatty acid metabolism in cardiomyocytes by reducing the DNA binding activity of PPAR{alpha}/RXR.

  4. The peroxisome: still a mysterious organelle

    PubMed Central

    Fahimi, H. Dariush

    2008-01-01

    More than half a century of research on peroxisomes has revealed unique features of this ubiquitous subcellular organelle, which have often been in disagreement with existing dogmas in cell biology. About 50 peroxisomal enzymes have so far been identified, which contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, and render peroxisomes indispensable for human health and development. It became obvious that peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. However, many aspects of peroxisome biology are still mysterious. This review addresses recent exciting discoveries on the biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross talk of peroxisomes with other subcellular compartments. Furthermore, recent advances on the role of peroxisomes in medicine and in the identification of novel peroxisomal proteins are discussed. PMID:18274771

  5. Maternal protein restriction induces early-onset glucose intolerance and alters hepatic genes expression in the peroxisome proliferator-activated receptor pathway in offspring

    PubMed Central

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Wang, Zhixin

    2015-01-01

    Aims/Introduction Maternal undernutrition during pregnancy and/or lactation can alter the offspring's response to environmental challenges, and thus increases the risk of the development of metabolic diseases at a later age. However, whether maternal protein restriction can modulate glucose metabolism in the early life of offspring is less understood. Furthermore, we explored the potential underlying mechanisms that illustrate this phenotype. Materials and Methods To test this hypothesis, we examined the offspring of C57BL/6J mice at weaning to determine the effects of feeding their mothers a low-protein diet or normal chow diet throughout pregnancy and lactation. Gene array experiments and quantitative real-time polymerase chain reaction were utilized to explore the altered hepatic genes expression. Results The offspring of dams fed a low-protein diet had a lower birthweight and bodyweight, impaired glucose tolerance, decreased insulin sensitivity, and decreased serum cholesterol at weaning. Using gene array experiments, 253 differentially expressed genes were identified in the liver tissues of the offspring between the two groups. Bioinformatic analyses showed that all differentially expressed genes were mapped to 11 pathways. We focused on the ‘peroxisome proliferator-activated receptor signaling pathway,’ because peroxisome proliferator-activated receptors have emerged as central regulators of glucose and lipid homeostasis. Quantitative real-time polymerase chain reaction was utilized for the validation of genes in the pathway. Conclusions A maternal low-protein diet during pregnancy and lactation promotes early-onset glucose intolerance in the offspring mice, and the altered hepatic genes expression in peroxisome proliferator-activated receptor signaling pathway could play role in regulating this phenomenon. PMID:25969711

  6. Integrin Inhibitor Suppresses Bevacizumab-Induced Glioma Invasion12

    PubMed Central

    Ishida, Joji; Onishi, Manabu; Kurozumi, Kazuhiko; Ichikawa, Tomotsugu; Fujii, Kentaro; Shimazu, Yosuke; Oka, Tetsuo; Date, Isao

    2014-01-01

    Glioblastoma is known to secrete high levels of vascular endothelial growth factor (VEGF), and clinical studies with bevacizumab, a monoclonal antibody to VEGF, have demonstrated convincing therapeutic benefits in glioblastoma patients. However, its induction of invasive proliferation has also been reported. We examined the effects of treatment with cilengitide, an integrin inhibitor, on bevacizumab-induced invasive changes in glioma. U87?EGFR cells were stereotactically injected into the brain of nude mice or rats. Five days after tumor implantation, cilengitide and bevacizumab were administered intraperitoneally three times a week. At 18 days after tumor implantation, the brains were removed and observed histopathologically. Next, the bevacizumab and cilengitide combination group was compared to the bevacizumab monotherapy group using microarray analysis. Bevacizumab treatment led to increased cell invasion in spite of decreased angiogenesis. When the rats were treated with a combination of bevacizumab and cilengitide, the depth of tumor invasion was significantly less than with only bevacizumab. Pathway analysis demonstrated the inhibition of invasion-associated genes such as the integrin-mediated cell adhesion pathway in the combination group. This study showed that the combination of bevacizumab with cilengitide exerted its anti-invasive effect. The elucidation of this mechanism might contribute to the treatment of bevacizumab-refractory glioma. PMID:24704537

  7. Proton pump inhibitor-induced exfoliative dermatitis: A case report

    PubMed Central

    QIU, ZHIHONG; LIU, HONGTAO; HE, LIEN; MA, YINLING; SONG, HAOJING; BAI, WANJUN; YU, MEILING

    2016-01-01

    A 74-year-old female patient was admitted to hospital following a road accident with pains in the chest, abdomen, waist, back, nose, left wrist and lower limbs. After 1 week, the patient presented with gastrointestinal bleeding, and thus was treated with protein pump inhibitors (PPIs), including lansoprazole, esomeprazole and omeprazole enteric-coated tablets, in order to inhibit acid secretion and attenuate bleeding. However, the patient developed skin rashes on the chest and right lower limb and foot 28 days following treatment initiation. The skin rashes spread and ulcerated after 3 days, and were associated with tracheal mucosal injury and hemoptysis. Subsequently, treatment of the patient with PPIs was terminated, after which the tracheal hemoptysis and skin rashes markedly improved. In addition, no new skin rashes appeared following termination of the PPI treatment. In the present case, long-term treatment of an elderly patient with PPIs may have induced exfoliative dermatitis, due to hepatic ischemia, hypoxia and acute renal failure, which may have decreased the metabolism of PPIs, resulting in the accumulation of PPI metabolites. PMID:26893644

  8. Hepatic dysfunction in peroxisomal disorders.

    PubMed

    Baes, Myriam; Van Veldhoven, Paul P

    2016-05-01

    The peroxisomal compartment in hepatocytes hosts several essential metabolic conversions. These are defective in peroxisomal disorders that are either caused by failure to import the enzymes in the organelle or by mutations in the enzymes or in transporters needed to transfer the substrates across the peroxisomal membrane. Hepatic pathology is one of the cardinal features in disorders of peroxisome biogenesis and peroxisomal β-oxidation although it only rarely determines the clinical fate. In mouse models of these diseases liver pathologies also occur, although these are not always concordant with the human phenotype which might be due to differences in diet, expression of enzymes and backup mechanisms. Besides the morphological changes, we overview the impact of peroxisome malfunction on other cellular compartments including mitochondria and the ER. We further focus on the metabolic pathways that are affected such as bile acid formation, and dicarboxylic acid and branched chain fatty acid degradation. It appears that the association between deregulated metabolites and pathological events remains unclear. PMID:26453805

  9. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  10. Regulation of peroxisome dynamics by phosphorylation.

    PubMed

    Oeljeklaus, Silke; Schummer, Andreas; Mastalski, Thomas; Platta, Harald W; Warscheid, Bettina

    2016-05-01

    Peroxisomes are highly dynamic organelles that can rapidly change in size, abundance, and protein content in response to alterations in nutritional and other environmental conditions. These dynamic changes in peroxisome features, referred to as peroxisome dynamics, rely on the coordinated action of several processes of peroxisome biogenesis. Revealing the regulatory mechanisms of peroxisome dynamics is an emerging theme in cell biology. These mechanisms are inevitably linked to and synchronized with the biogenesis and degradation of peroxisomes. To date, the key players and basic principles of virtually all steps in the peroxisomal life cycle are known, but regulatory mechanisms remained largely elusive. A number of recent studies put the spotlight on reversible protein phosphorylation for the control of peroxisome dynamics and highlighted peroxisomes as hubs for cellular signal integration and regulation. Here, we will present and discuss the results of several studies performed using yeast and mammalian cells that convey a sense of the impact protein phosphorylation may have on the modulation of peroxisome dynamics by regulating peroxisomal matrix and membrane protein import, proliferation, inheritance, and degradation. We further put forward the idea to make use of current data on phosphorylation sites of peroxisomal and peroxisome-associated proteins reported in advanced large-scale phosphoproteomic studies. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26775584

  11. Catalase-negative peroxisomes: transient appearance in rat hepatocytes during liver regeneration after partial hepatectomy.

    PubMed Central

    Oikawa, I.; Novikoff, P. M.

    1995-01-01

    Using light microscopy enzyme cytochemistry to localize catalase activity in peroxisomes, a population of peroxisome-negative hepatocytes was detected in livers of rats during liver regeneration induced by two-thirds partial hepatectomy. However, examination by electron microscopy revealed that this population of hepatocytes contained peroxisomes with a delimiting membrane and a nucleoid, but no cytochemically demonstrable catalase activity within their matrix. Regenerating livers 6, 18, 24, 36, 48 and 72 hours, and 1 week after partial hepatectomy showed hepatocytes without catalase activity. However, their numbers varied, with the most numerous appearing at 24 hours after partial hepatectomy. Mitosis of catalase-negative hepatocytes were seen along with mitosis of hepatocytes containing the normal complement of catalase-positive peroxisomes. The catalase-negative hepatocytes did not show evidence of apoptosis or necrotic cell death. Lysosomal acid phosphatase activity and bile canalicular ATPase activity were present in hepatocytes with catalase-negative peroxisomes. Another population of hepatocytes with a small number of catalase-positive peroxisomes appeared and were more numerous at 36 hours after partial hepatectomy; ultrastructurally, these hepatocytes contained both catalase-negative peroxisomes, which appeared to undergo dissolution, and catalase-positive peroxisomes, which were smaller in size. After complete restoration of the liver, all hepatocytes displayed essentially uniform numbers of catalase-positive peroxisomes. These studies indicated that during liver regeneration there is a transient loss of catalase in peroxisomes of some hepatocytes. These cells proliferate and with time acquire new catalase-positive peroxisomes. The observations are discussed in relation to peroxisome biogenesis, hepatocellular carcinogenesis, and oxidative stress during liver regeneration. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7887449

  12. Reevaluation of the role of Pex1 and dynamin-related proteins in peroxisome membrane biogenesis.

    PubMed

    Motley, Alison M; Galvin, Paul C; Ekal, Lakhan; Nuttall, James M; Hettema, Ewald H

    2015-12-01

    A recent model for peroxisome biogenesis postulates that peroxisomes form de novo continuously in wild-type cells by heterotypic fusion of endoplasmic reticulum-derived vesicles containing distinct sets of peroxisomal membrane proteins. This model proposes a role in vesicle fusion for the Pex1/Pex6 complex, which has an established role in matrix protein import. The growth and division model proposes that peroxisomes derive from existing peroxisomes. We tested these models by reexamining the role of Pex1/Pex6 and dynamin-related proteins in peroxisome biogenesis. We found that induced depletion of Pex1 blocks the import of matrix proteins but does not affect membrane protein delivery to peroxisomes; markers for the previously reported distinct vesicles colocalize in pex1 and pex6 cells; peroxisomes undergo continued growth if fission is blocked. Our data are compatible with the established primary role of the Pex1/Pex6 complex in matrix protein import and show that peroxisomes in Saccharomyces cerevisiae multiply mainly by growth and division. PMID:26644516

  13. Multiple Pathways for Protein Transport to Peroxisomes

    PubMed Central

    Kim, P.K.; Hettema, E.H.

    2015-01-01

    Peroxisomes are unique among the organelles of the endomembrane system. Unlike other organelles that derive most if not all of their proteins from the ER (endoplasmic reticulum), peroxisomes contain dedicated machineries for import of matrix proteins and insertion of membrane proteins. However, peroxisomes are also able to import a subset of their membrane proteins from the ER. One aspect of peroxisome biology that has remained ill defined is the role the various import pathways play in peroxisome maintenance. In this review, we discuss the available data on matrix and membrane protein import into peroxisomes. PMID:25681696

  14. Thyromimetic effect of peroxisomal proliferators in rat liver.

    PubMed Central

    Hertz, R; Aurbach, R; Hashimoto, T; Bar-Tana, J

    1991-01-01

    Amphipathic carboxylates, of varying hydrophobic backbones, which act as peroxisomal proliferators (aryloxyalkanoic acids, methyl-substituted dicarboxylic acid) induce in euthyroid or thyroidectomized rats, as well as in rat hepatocytes cultured in 3,5,3'-tri-iodo-L-thyronine (T3)-free media, liver enzyme activities that are classically considered to be thyroid-hormone-dependent (malic enzyme, mitochondrial alpha-glycerophosphate dehydrogenase, glucose-6-phosphate dehydrogenase and S14). The dose required in vivo for the thyromimetic effect of peroxisomal proliferators was 10(3)-fold higher than the dose of T3 required. Similarly, peroxisomal proliferators were active in culture in the range 1-100 microM compared with 1 nM for T3. Their maximal inductive capacities were, however, similar to or greater than that of T3. The thyromimetic effect of peroxisomal proliferators was only partially correlated with their capacities as inducers of liver peroxisomal enzymes. The thyromimetic effect with respect to liver malate dehydrogenase and S14 resulted from an increase in their mRNA contents. The increase in liver S14 mRNA was accounted for by transcriptional activation of the S14 gene. T3 binding to isolated liver nuclei or nuclear extract was competitively displaced by some but not all of the non-thyroidal inducers of the above liver activities. In contrast with the thyromimetic effect induced in liver cells, no increase in growth hormone mRNA was observed in cultured GH1 pituitary cells incubated in the presence of non-thyroidal amphipathic carboxylates. The characteristics of the thyromimetic effect of amphipathic carboxylic peroxisomal proliferators indicate that these agents may act as transcriptional activators of thyroid-hormone-dependent genes in the rat liver. PMID:2012603

  15. Peroxisome homeostasis: Mechanisms of division and selective degradation of peroxisomes in mammals.

    PubMed

    Honsho, Masanori; Yamashita, Shun-ichi; Fujiki, Yukio

    2016-05-01

    Peroxisome number and quality are maintained by its biogenesis and turnover and are important for the homeostasis of peroxisomes. Peroxisomes are increased in number by division with dynamic morphological changes including elongation, constriction, and fission. In the course of peroxisomal division, peroxisomal morphogenesis is orchestrated by Pex11β, dynamin-like protein 1 (DLP1), and mitochondrial fission factor (Mff). Conversely, peroxisome number is reduced by its degradation. Peroxisomes are mainly degraded by pexophagy, a type of autophagy specific for peroxisomes. Upon pexophagy, an adaptor protein translocates on peroxisomal membrane and connects peroxisomes to autophagic machineries. Molecular mechanisms of pexophagy are well studied in yeast systems where several specific adaptor proteins are identified. Pexophagy in mammals also proceeds in a manner dependent on adaptor proteins. In this review, we address the recent progress in studies on peroxisome morphogenesis and pexophagy. PMID:26434997

  16. Selective Serotonin Reuptake Inhibitor-Induced Sexual Dysfunction in Adolescents: A Review.

    ERIC Educational Resources Information Center

    Scharko, Alexander M.

    2004-01-01

    Objective: To review the existing literature on selective serotonin reuptake inhibitor (SSRI)-induced sexual dysfunction in adolescents. Method: A literature review of SSRI-induced adverse effects in adolescents focusing on sexual dysfunction was done. Nonsexual SSRI-induced adverse effects were compared in adult and pediatric populations.…

  17. Assembly, maintenance and dynamics of peroxisomes.

    PubMed

    Erdmann, Ralf

    2016-05-01

    Peroxisomes are ubiquitous organelles of eukaryotic cells, and it is becoming increasingly clear that the biogenesis of these multi-purpose organelles is more complex than initially anticipated. Along this line, peroxisomes exhibit features, which clearly distinguish them from other cellular organelles, like their ability to import folded proteins or their capability to form de novo. However, further insight into the cellular life of peroxisomes also revealed features that they share with other organelles, such as organelle fission or regulated degradation by autophagy, that are similar for peroxisomes, mitochondria and chloroplasts. This special issue highlights recent progress in the understanding of the biogenesis of peroxisomes with emphasis on the assembly, maintenance and dynamics of the organelles. In particular, it focuses on the following areas: (i) topogenesis of peroxisomal matrix proteins as well as the structure and function of peroxisomal protein import machineries. (ii) Peroxisomal targeting of membrane proteins and de novo formation of peroxisomes. (iii) Maintenance of peroxisomes in health and disease. (iv) Proliferation and regulated degradation of peroxisomes. (v) Motility and inheritance of peroxisomes. (vi) Role of peroxisomes in the cellular context. PMID:26851075

  18. The Synergistic Enhancement of Cloning Efficiency in Individualized Human Pluripotent Stem Cells by Peroxisome Proliferative-activated Receptor-? (PPAR?) Activation and Rho-associated Kinase (ROCK) Inhibition.

    PubMed

    Kajabadi, Nasim-Sadat; Ghoochani, Ali; Peymani, Maryam; Ghaedi, Kamran; Kiani-Esfahani, Abbas; Hashemi, Motahareh-Sadat; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein

    2015-10-23

    Although human pluripotent stem cells (hPSCs) provide valuable sources for regenerative medicine, their applicability is dependent on obtaining both suitable up-scaled and cost effective cultures. The Rho-associated kinase (ROCK) inhibitor Y-27632 permits hPSC survival upon dissociation; however, cloning efficiency is often still low. Here we have shown that pioglitazone, a selective peroxisome proliferative-activated receptor-? agonist, along with Y-27632 synergistically diminished dissociation-induced apoptosis and increased cloning efficiency (2-3-fold versus Y-27632) without affecting pluripotency of hPSCs. Pioglitazone exerted its positive effect by inhibition of glycogen synthase kinase (GSK3) activity and enhancement of membranous ?-catenin and E-cadherin proteins. These effects were reversed by GW-9662, an irreversible peroxisome proliferative-activated receptor-? antagonist. This novel setting provided a step toward hPSC manipulation and its biomedical applications. PMID:26336103

  19. Peroxisome Proliferator-Activated Receptors as Mediators of Phthalate-Induced Effects in the Male and Female Reproductive Tract: Epidemiological and Experimental Evidence

    PubMed Central

    Latini, Giuseppe; Scoditti, Egeria; Verrotti, Alberto; De Felice, Claudio; Massaro, Marika

    2008-01-01

    There is growing evidence that male as well as female reproductive function has been declining in human and wildlife populations over the last 40 years. Several factors such as lifestyle or environmental xenobiotics other than genetic factors may play a role in determining adverse effects on reproductive health. Among the environmental xenobiotics phthalates, a family of man-made pollutants are suspected to interfere with the function of the endocrine system and therefore to be endocrine disruptors. The definition of endocrine disruption is today extended to broader endocrine regulations, and includes activation of metabolic sensors, such as the peroxisome proliferator-activated receptors (PPARs). Toxicological studies have shown that phthalates can activate a subset of PPARs. Here, we analyze the epidemiological and experimental evidence linking phthalate exposure to both PPAR activation and adverse effects on male and female reproductive health. PMID:18288285

  20. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    SciTech Connect

    Sharma, Bhupesh Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in As induced VaD.

  1. Pexophagy and peroxisomal protein turnover in plants.

    PubMed

    Young, Pierce G; Bartel, Bonnie

    2016-05-01

    Peroxisomes are dynamic, vital organelles that sequester a variety of oxidative reactions and their toxic byproducts from the remainder of the cell. The oxidative nature of peroxisomal metabolism predisposes the organelle to self-inflicted damage, highlighting the need for a mechanism to dispose of damaged peroxisomes. In addition, the metabolic requirements of plant peroxisomes change during development, and obsolete peroxisomal proteins are degraded. Although pexophagy, the selective autophagy of peroxisomes, is an obvious mechanism for executing such degradation, pexophagy has only recently been described in plants. Several recent studies in the reference plant Arabidopsis thaliana implicate pexophagy in the turnover of peroxisomal proteins, both for quality control and during functional transitions of peroxisomal content. In this review, we describe our current understanding of the occurrence, roles, and mechanisms of pexophagy in plants. PMID:26348128

  2. Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells.

    PubMed

    Baenke, Franziska; Chaneton, Barbara; Smith, Matthew; Van Den Broek, Niels; Hogan, Kate; Tang, Haoran; Viros, Amaya; Martin, Matthew; Galbraith, Laura; Girotti, Maria R; Dhomen, Nathalie; Gottlieb, Eyal; Marais, Richard

    2016-01-01

    BRAF inhibitors can extend progression-free and overall survival in melanoma patients whose tumors harbor mutations in BRAF. However, the majority of patients eventually develop resistance to these drugs. Here we show that BRAF mutant melanoma cells that have developed acquired resistance to BRAF inhibitors display increased oxidative metabolism and increased dependency on mitochondria for survival. Intriguingly, the increased oxidative metabolism is associated with a switch from glucose to glutamine metabolism and an increased dependence on glutamine over glucose for proliferation. We show that the resistant cells are more sensitive to mitochondrial poisons and to inhibitors of glutaminolysis, suggesting that targeting specific metabolic pathways may offer exciting therapeutic opportunities to treat resistant tumors, or to delay emergence of resistance in the first-line setting. PMID:26365896

  3. Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells

    PubMed Central

    Baenke, Franziska; Chaneton, Barbara; Smith, Matthew; Van Den Broek, Niels; Hogan, Kate; Tang, Haoran; Viros, Amaya; Martin, Matthew; Galbraith, Laura; Girotti, Maria R.; Dhomen, Nathalie; Gottlieb, Eyal; Marais, Richard

    2016-01-01

    BRAF inhibitors can extend progression-free and overall survival in melanoma patients whose tumors harbor mutations in BRAF. However, the majority of patients eventually develop resistance to these drugs. Here we show that BRAF mutant melanoma cells that have developed acquired resistance to BRAF inhibitors display increased oxidative metabolism and increased dependency on mitochondria for survival. Intriguingly, the increased oxidative metabolism is associated with a switch from glucose to glutamine metabolism and an increased dependence on glutamine over glucose for proliferation. We show that the resistant cells are more sensitive to mitochondrial poisons and to inhibitors of glutaminolysis, suggesting that targeting specific metabolic pathways may offer exciting therapeutic opportunities to treat resistant tumors, or to delay emergence of resistance in the first-line setting. PMID:26365896

  4. BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells.

    PubMed

    Baker, Emma K; Taylor, Scott; Gupte, Ankita; Sharp, Phillip P; Walia, Mannu; Walsh, Nicole C; Zannettino, Andrew C W; Chalk, Alistair M; Burns, Christopher J; Walkley, Carl R

    2015-01-01

    Osteosarcoma (OS) survival rates have plateaued in part due to a lack of new therapeutic options. Here we demonstrate that bromodomain inhibitors (BETi), JQ1, I-BET151, I-BET762, exert potent anti-tumour activity against primary and established OS cell lines, mediated by inhibition of BRD4. Strikingly, unlike previous observations in long-term established human OS cell lines, the antiproliferative activity of JQ1 in primary OS cells was driven by the induction of apoptosis, not cell cycle arrest. In further contrast, JQ1 activity in OS was mediated independently of MYC downregulation. We identified that JQ1 suppresses the transcription factor FOSL1 by displacement of BRD4 from its locus. Loss of FOSL1 phenocopied the antiproliferative effects of JQ1, identifying FOSL1 suppression as a potential novel therapeutic approach for OS. As a monotherapy JQ1 demonstrated significant anti-tumour activity in vivo in an OS graft model. Further, combinatorial treatment approaches showed that JQ1 increased the sensitivity of OS cells to doxorubicin and induced potent synergistic activity when rationally combined with CDK inhibitors. The greater level of activity achieved with the combination of BETi with CDK inhibitors demonstrates the efficacy of this combination therapy. Taken together, our studies show that BET inhibitors are a promising new therapeutic for OS. PMID:25944566

  5. BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells

    PubMed Central

    Baker, Emma K; Taylor, Scott; Gupte, Ankita; Sharp, Phillip P; Walia, Mannu; Walsh, Nicole C; Zannettino, Andrew CW; Chalk, Alistair M; Burns, Christopher J; Walkley, Carl R

    2015-01-01

    Osteosarcoma (OS) survival rates have plateaued in part due to a lack of new therapeutic options. Here we demonstrate that bromodomain inhibitors (BETi), JQ1, I-BET151, I-BET762, exert potent anti-tumour activity against primary and established OS cell lines, mediated by inhibition of BRD4. Strikingly, unlike previous observations in long-term established human OS cell lines, the antiproliferative activity of JQ1 in primary OS cells was driven by the induction of apoptosis, not cell cycle arrest. In further contrast, JQ1 activity in OS was mediated independently of MYC downregulation. We identified that JQ1 suppresses the transcription factor FOSL1 by displacement of BRD4 from its locus. Loss of FOSL1 phenocopied the antiproliferative effects of JQ1, identifying FOSL1 suppression as a potential novel therapeutic approach for OS. As a monotherapy JQ1 demonstrated significant anti-tumour activity in vivo in an OS graft model. Further, combinatorial treatment approaches showed that JQ1 increased the sensitivity of OS cells to doxorubicin and induced potent synergistic activity when rationally combined with CDK inhibitors. The greater level of activity achieved with the combination of BETi with CDK inhibitors demonstrates the efficacy of this combination therapy. Taken together, our studies show that BET inhibitors are a promising new therapeutic for OS. PMID:25944566

  6. Peroxisomal ABC transporters: functions and mechanism

    PubMed Central

    Baker, Alison; Carrier, David J.; Schaedler, Theresia; Waterham, Hans R.; van Roermund, Carlo W.; Theodoulou, Frederica L.

    2015-01-01

    Peroxisomes are arguably the most biochemically versatile of all eukaryotic organelles. Their metabolic functions vary between different organisms, between different tissue types of the same organism and even between different developmental stages or in response to changed environmental conditions. New functions for peroxisomes are still being discovered and their importance is underscored by the severe phenotypes that can arise as a result of peroxisome dysfunction. The β-oxidation pathway is central to peroxisomal metabolism, but the substrates processed are very diverse, reflecting the diversity of peroxisomes across species. Substrates for β-oxidation enter peroxisomes via ATP-binding cassette (ABC) transporters of subfamily D; (ABCD) and are activated by specific acyl CoA synthetases for further metabolism. Humans have three peroxisomal ABCD family members, which are half transporters that homodimerize and have distinct but partially overlapping substrate specificity; Saccharomyces cerevisiae has two half transporters that heterodimerize and plants have a single peroxisomal ABC transporter that is a fused heterodimer and which appears to be the single entry point into peroxisomes for a very wide variety of β-oxidation substrates. Our studies suggest that the Arabidopsis peroxisomal ABC transporter AtABCD1 accepts acyl CoA substrates, cleaves them before or during transport followed by reactivation by peroxisomal synthetases. We propose that this is a general mechanism to provide specificity to this class of transporters and by which amphipathic compounds are moved across peroxisome membranes. PMID:26517910

  7. Peroxisomal ABC transporters: functions and mechanism.

    PubMed

    Baker, Alison; Carrier, David J; Schaedler, Theresia; Waterham, Hans R; van Roermund, Carlo W; Theodoulou, Frederica L

    2015-10-01

    Peroxisomes are arguably the most biochemically versatile of all eukaryotic organelles. Their metabolic functions vary between different organisms, between different tissue types of the same organism and even between different developmental stages or in response to changed environmental conditions. New functions for peroxisomes are still being discovered and their importance is underscored by the severe phenotypes that can arise as a result of peroxisome dysfunction. The β-oxidation pathway is central to peroxisomal metabolism, but the substrates processed are very diverse, reflecting the diversity of peroxisomes across species. Substrates for β-oxidation enter peroxisomes via ATP-binding cassette (ABC) transporters of subfamily D; (ABCD) and are activated by specific acyl CoA synthetases for further metabolism. Humans have three peroxisomal ABCD family members, which are half transporters that homodimerize and have distinct but partially overlapping substrate specificity; Saccharomyces cerevisiae has two half transporters that heterodimerize and plants have a single peroxisomal ABC transporter that is a fused heterodimer and which appears to be the single entry point into peroxisomes for a very wide variety of β-oxidation substrates. Our studies suggest that the Arabidopsis peroxisomal ABC transporter AtABCD1 accepts acyl CoA substrates, cleaves them before or during transport followed by reactivation by peroxisomal synthetases. We propose that this is a general mechanism to provide specificity to this class of transporters and by which amphipathic compounds are moved across peroxisome membranes. PMID:26517910

  8. Peroxisomes and sexual development in fungi

    PubMed Central

    Peraza-Reyes, Leonardo; Berteaux-Lecellier, Véronique

    2013-01-01

    Peroxisomes are versatile and dynamic organelles that are essential for the development of most eukaryotic organisms. In fungi, many developmental processes, such as sexual development, require the activity of peroxisomes. Sexual reproduction in fungi involves the formation of meiotic-derived sexual spores, often takes place inside multicellular fruiting bodies and requires precise coordination between the differentiation of multiple cell types and the progression of karyogamy and meiosis. Different peroxisomal functions contribute to the orchestration of this complex developmental process. Peroxisomes are required to sustain the formation of fruiting bodies and the maturation and germination of sexual spores. They facilitate the mobilization of reserve compounds via fatty acid β-oxidation and the glyoxylate cycle, allowing the generation of energy and biosynthetic precursors. Additionally, peroxisomes are implicated in the progression of meiotic development. During meiotic development in Podospora anserina, there is a precise modulation of peroxisome assembly and dynamics. This modulation includes changes in peroxisome size, number and localization, and involves a differential activity of the protein-machinery that drives the import of proteins into peroxisomes. Furthermore, karyogamy, entry into meiosis and sorting of meiotic-derived nuclei into sexual spores all require the activity of peroxisomes. These processes rely on different peroxisomal functions and likely depend on different pathways for peroxisome assembly. Indeed, emerging studies support the existence of distinct import channels for peroxisomal proteins that contribute to different developmental stages. PMID:24046747

  9. Combined Treatment With Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands and Gamma Radiation Induces Apoptosis by PPARγ-Independent Up-Regulation of Reactive Oxygen Species-Induced Deoxyribonucleic Acid Damage Signals in Non-Small Cell Lung Cancer Cells

    SciTech Connect

    Han, Eun Jong; Im, Chang-Nim; Park, Seon Hwa; Moon, Eun-Yi; Hong, Sung Hee

    2013-04-01

    Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation in a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.

  10. Lovastatin, an inhibitor of cholesterol synthesis, induces hydroxymethylglutaryl-coenzyme A reductase directly on membranes of expanded smooth endoplasmic reticulum in rat hepatocytes.

    PubMed Central

    Singer, I I; Scott, S; Kazazis, D M; Huff, J W

    1988-01-01

    Lovastatin is a potent competitive inhibitor of the rate-limiting enzyme of cholesterol synthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (NADPH) [HMG-CoA reductase; (S)-mevalonate:NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34]. We determined the subcellular distribution of HMG-CoA reductase at high resolution by means of immunoelectron microscopy on ultrathin frozen liver sections of rats treated with lovastatin and cholestyramine. High concentrations of reductase were located on the outer (cytoplasmic) surfaces of smooth endoplasmic reticulum (SER) membranes induced in hepatocytes by acute drug administration. The enzyme was specifically localized over the whorled SER membranes and was absent from nonwhorled SER, rough endoplasmic reticulum, and peroxisomes. Intense HMG-CoA reductase labeling was only observed in hepatocytes containing high levels of HMG-CoA reductase activity; no staining was detected in untreated livers. These observations show that HMG-CoA reductase is induced as an integral component of the SER membranes that form in rat hepatocytes subsequent to lovastatin treatment and suggest that the formation of SER whorls in rat hepatocytes is due to mechanism-based effects of lovastatin. Images PMID:3293052

  11. Docosahexaenoic acid inhibits superoxide dismutase 1 gene transcription in human cancer cells: the involvement of peroxisome proliferator-activated receptor alpha and hypoxia-inducible factor-2alpha signaling.

    PubMed

    Tuller, Erin R; Beavers, Charles T; Lou, Jessica R; Ihnat, Michael A; Benbrook, Doris M; Ding, Wei-Qun

    2009-09-01

    Docosahexaenoic acid (DHA; n-3, 22:6) is known to have anticancer activity, but its mechanisms of action remain to be further elucidated. We recently demonstrated that DHA down-regulates superoxide dismutase (SOD) 1 gene expression, thereby weakening cellular antioxidant forces and enhancing cytotoxicity in various human cancer cells. The objective of this study was to investigate the mechanism of the inhibitory effect of DHA on SOD-1 gene expression in human cancer cells. A reporter gene assay indicated that DHA suppresses SOD-1 gene transcription in a time- and concentration-dependent manner in human cancer cells. Pretreatment with vitamin E did not block the inhibitory effect of DHA, indicating that this suppression does not depend on lipid peroxidation. The suppressive effect of DHA on SOD-1 gene transcription could be mimicked by the peroxisome proliferator-activator receptor (PPAR) alpha ligand clofibrate but not the PPARgamma ligand troglitazone, suggesting the involvement of PPARalpha signaling. Deletion analysis of the key DNA binding elements in the SOD-1 gene promoter identified the distal hypoxia response element (HRE), but not the peroxisome proliferator response element or nuclear factor-kappaB element, as essential for the suppressive effects of DHA. Coimmunoprecipitation confirmed that PPARalpha, but not PPARgamma, forms a complex with hypoxia-inducible factor (HIF)-2alpha in cancer cells. Chromatin immunoprecipitation analysis indicated that both DHA and clofibrate reduce HIF-2alpha binding to the HRE. Thus, we have identified the distal HRE in the SOD-1 gene promoter that mediates the suppression on the transcription of this gene by DHA, and we have demonstrated the involvement of PPARalpha and HIF-2alpha signaling in this event. PMID:19528198

  12. Statins enhance peroxisome proliferator-activated receptor gamma coactivator-1alpha activity to regulate energy metabolism.

    PubMed

    Wang, Wenxian; Wong, Chi-Wai

    2010-03-01

    Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) serves as an inducible coactivator for a number of transcription factors to control energy metabolism. Insulin signaling through Akt kinase has been demonstrated to phosphorylate PGC-1alpha at serine 571 and downregulate its activity in the liver. Statins are 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors that reduce cholesterol synthesis in the liver. In this study, we found that statins reduced the active form of Akt and enhanced PGC-1alpha activity. Specifically, statins failed to activate an S571A mutant of PGC-1alpha. The activation of PGC-1alpha by statins selectively enhanced the expression of energy metabolizing enzymes and regulators including peroxisome proliferator-activated receptor alpha, acyl-CoA oxidase, carnitine palmitoyl transferase-1A, and pyruvate dehydrogenase kinase 4. Importantly, a constitutively active form of Akt partially reduced the statin-enhanced gene expression. Our study thus provides a plausible mechanistic explanation for the hypolipidemic effect of statin through elevating the rate of beta-oxidation and mitochondrial Kreb's cycle capacity to enhance fatty acid utilization while reducing the rate of glycolysis. PMID:19915805

  13. Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis

    SciTech Connect

    Kobayashi, Shinta; Tanaka, Atsushi; Fujiki, Yukio . E-mail: yfujiscb@mbox.nc.kyushu-u.ac.jp

    2007-05-01

    Dynamin-like protein 1 (DLP1) and Pex11p{beta} function in morphogenesis of peroxisomes. In the present work, we investigated whether Fis1 is involved in fission of peroxisomes. Endogenous Fis1 was morphologically detected in peroxisomes as well as mitochondria in wild-type CHO-K1 and DLP1-defective ZP121 cells. Subcellular fractionation studies also revealed the presence of Fis1 in peroxisomes. Peroxisomal Fis1 showed the same topology, i.e., C-tail anchored membrane protein, as the mitochondrial one. Furthermore, ectopic expression of FIS1 induced peroxisome proliferation in CHO-K1 cells, while the interference of FIS1 RNA resulted in tubulation of peroxisomes, hence reducing the number of peroxisomes. Fis1 interacted with Pex11p{beta}, by direct binding apparently involving the C-terminal region of Pex11p{beta} in the interaction. Pex11p{beta} also interacted with each other, whereas the binding of Pex11p{beta} to DLP1 was not detectable. Moreover, ternary complexes comprising Fis1, Pex11p{beta}, and DLP1 were detected by chemical cross-linking. We also showed that the highly conserved N-terminal domain of Pex11p{beta} was required for the homo-oligomerization of Pex11p{beta} and indispensable for the peroxisome-proliferating activity. Taken together, these findings indicate that Fis1 plays important roles in peroxisome division and maintenance of peroxisome morphology in mammalian cells, possibly in a concerted manner with Pex11p{beta} and DLP1.

  14. Lysine-specific demethylase 1 inhibitors protect cochlear spiral ganglion neurons against cisplatin-induced damage.

    PubMed

    Li, Ao; He, Yingzi; Sun, Shan; Cai, Chengfu; Li, Huawei

    2015-06-17

    Cisplatin is a widely used chemotherapeutic drug, but one of its side effects is ototoxicity. Epigenetic-related drugs, such as lysine-specific demethylase 1 (LSD1) inhibitors, have been reported to protect against cisplatin-induced hair cell loss by preventing demethylation of histone H3K4 (H3K4me2). However, the protective effect of LSD1 inhibitors in spiral ganglion neurons (SGNs) remains unclear. To investigate whether LSD1 inhibitors exert similar protective effects on SGNs, we treated mouse cochlear explant cultures with LSD1 inhibitors (2PCPA, S2101, or CBB1007) together with cisplatin. Low concentrations of cisplatin damaged SGNs much more than high concentrations, and blocking the demethylation of H3K4me2 with LSD1 inhibitors prevented the SGNs from injury. Reactive oxygen species are also involved in the injury process, and LSD1 inhibitors protected SGNs by increasing the expression level of the antioxidant gene Slc7a11 and decreasing the level of the pro-oxidant gene lactoperoxidase (Lpo). Our findings show that LSD1 inhibitors prevent cisplatin-induced SGN loss by regulating the demethylation of H3K4 and preventing increases of reactive oxygen species levels, which might provide a potential therapeutic strategy for cisplatin-induced hearing loss. PMID:26011390

  15. Blockade of the ERK pathway markedly sensitizes tumor cells to HDAC inhibitor-induced cell death

    SciTech Connect

    Ozaki, Kei-ichi; Minoda, Ai; Kishikawa, Futaba; Kohno, Michiaki . E-mail: kohnom@net.nagasaki-u.ac.jp

    2006-01-27

    Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway is associated with the neoplastic phenotype of a large number of human tumor cells. Although specific blockade of the ERK pathway by treating such tumor cells with potent mitogen-activated protein kinase/ERK kinase (MEK) inhibitors completely suppresses their proliferation, it by itself shows only a modest effect on the induction of apoptotic cell death. However, these MEK inhibitors markedly enhance the efficacy of histone deacetylase (HDAC) inhibitors to induce apoptotic cell death: such an enhanced cell death is observed only in tumor cells in which the ERK pathway is constitutively activated. Co-administration of MEK inhibitor markedly sensitizes tumor cells to HDAC inhibitor-induced generation of reactive oxygen species, which appears to mediate the enhanced cell death induced by the combination of these agents. These results suggest that the combination of MEK inhibitors and HDAC inhibitors provides an efficient chemotherapeutic strategy for the treatment of tumor cells in which the ERK pathway is constitutively activated.

  16. DPP IV inhibitor blocks mescaline-induced scratching and amphetamine-induced hyperactivity in mice.

    PubMed

    Lautar, Susan L; Rojas, Camilo; Slusher, Barbara S; Wozniak, Krystyna M; Wu, Ying; Thomas, Ajit G; Waldon, Daniel; Li, William; Ferraris, Dana; Belyakov, Sergei

    2005-06-28

    Dipeptidyl peptidase IV (DPP IV) is a ubiquitous membrane-bound enzyme that cleaves the two N-terminal amino acids from peptides with a proline or alanine residue in the second position from the amino end. Potential substrates for DPP IV include several neuropeptides, suggesting a role for DPP IV in neurological processes. We have developed a potent DPP IV inhibitor (IC50 = 30 nM), 1-(2-amino-3-methyl-butyryl)-azetidine-2-carbonitrile (AMAC), which has shown efficacy in two established models of psychosis: mescaline-induced scratching and amphetamine-induced hyperactivity. In the mescaline-induced scratching model, AMAC treatment before mescaline administration reduced the number of scratching paroxysms by 68% (P < 0.01). The compound showed a dose-dependent effect, inhibiting significantly at 6, 20 and 60 mg/kg (37%, 39% and 68%, respectively). In the amphetamine-induced hyperactivity model, 50 and 60 mg/kg AMAC, given before injection of amphetamine, significantly reduced hyper-locomotion by 65% and 76%, respectively. Additionally, AMAC showed no significant activity in binding assays for 20 receptors thought to be involved in the pathology of schizophrenia, including dopamine, serotonin and glutamate. A structurally similar analog, 1-(2-dimethylamino-3-methyl-butyryl)-azetidine-2-carbonitrile (DAMAC), that does not inhibit DPP IV, was inactive in both models. Taken together, these data suggest that the antipsychotic effects of AMAC are the result of DPP IV inhibition. PMID:15925329

  17. Variability of Voriconazole Trough Levels in Haematological Patients: Influence of Comedications with cytochrome P450(CYP) Inhibitors and/or with CYP Inhibitors plus CYP Inducers.

    PubMed

    Cojutti, Piergiorgio; Candoni, Anna; Forghieri, Fabio; Isola, Miriam; Zannier, Maria Elena; Bigliardi, Sara; Luppi, Mario; Fanin, Renato; Pea, Federico

    2016-06-01

    Voriconazole plasma exposure greatly varies among haematological patients. The purpose of this study was to identify the magnitude of influence of comedications with CYP inhibitors and/or with CYP inhibitors plus CYP inducers on voriconazole trough level (Cmin ). Voriconazole Cmin was retrospectively assessed among haematological patients who underwent therapeutic drug monitoring (TDM). Univariate and multivariate linear mixed-effect regression analyses were performed to identify the independent predictors of normalized Cmin . Of the 83 included patients, 35 had comedications with CYP inhibitors (omeprazole or pantoprazole) and 21 with CYP inhibitors (omeprazole or pantoprazole) plus CYP inducers (methylprednisolone, dexamethasone, phenobarbital, rifampin or carbamazepine). Median Cmin value (n = 199) was 2.4 mg/L with a wide range of distribution (<0.2-13.5 mg/L). Median (IQR) normalized voriconazole Cmin value was significantly higher in the presence of CYP inhibitors (4.20 mg/L, 3.23-5.51 mg/L) than either in the absence of interacting cotreatments (2.55 mg/L, 1.54-3.47 mg/L) or in the presence of CYP inhibitors plus CYP inducers (2.16 mg/L, 1.19-3.09 mg/L). The presence of CYP inhibitors was highly significantly associated with Cmin >5.5 mg/L (OR: 23.22, 95% CI: 3.01-179.09, p = 0.003). No significant association emerged when CYP inhibitors were coadministered with CYP inducers (OR: 3.53, 95% CI: 0.36-34.95, p = 0.280). The amount of expected Cmin increase was significantly influenced by both the type and the dose of the administered proton pump inhibitor. The study highlights that the benefit from TDM of voriconazole may be maximal in those patients who are cotreated with CYP inhibitors and/or with CYP inhibitors plus CYP inducers, especially when receiving proton pump inhibitors (PPIs) at very high dosages intravenously. PMID:26572687

  18. Elevation of cortical C26:0 due to the decline of peroxisomal β-oxidation potentiates amyloid β generation and spatial memory deficits via oxidative stress in diabetic rats.

    PubMed

    Shi, Y; Sun, X; Sun, Y; Hou, L; Yao, M; Lian, K; Li, J; Lu, X; Jiang, L

    2016-02-19

    Diabetes mellitus correlates with subsequent development of Alzheimer's disease (AD). An accumulation of very long chain fatty acids (VLCFAs) was observed in AD brains. We found previously that inhibiting peroxisomal β-oxidation by an inhibitor caused increases in VLCFA and β-amyloid peptide (Aβ) in the cortex and primary cultured neurons of rats. Therefore, we investigated whether there was an impaired peroxisomal β-oxidation and elevated VLCFA related to the increased Aβ in the diabetic brain. This study was conducted in a type 2 diabetic rat model induced by a high-fat diet and low-dose streptozotocin. A decrease in peroxisomal β-oxidation activity caused by down-regulated thiolase expression and a consequent increase in C26:0 were observed. Meanwhile, decreases in eicosapentenoic acid (EPA) and increases in oxidative stress [indicated by levels of malondialdehyde (MDA), and the protein expression of NOX4, p47(phox) and HO-1], Aβ, and the expression of AβPP and BACE1, two proteins involved in Aβ production, were observed. C26:0 levels were positively correlated with Aβ and MDA. This work suggests that in addition to decreases in EPA, increases in C26:0 by impaired peroxisomal β-oxidation can be a potential risk factor contributing to the progression of AD in diabetic brains via inducing oxidative stress. PMID:26687434

  19. Histone deacetylase inhibitor trichostatin A and proteasome inhibitor PS-341 synergistically induce apoptosis in pancreatic cancer cells

    SciTech Connect

    Bai Jirong . E-mail: jbai@bidmc.harvard.edu; Demirjian, Aram; Sui Jianhua; Marasco, Wayne; Callery, Mark P. . E-mail: mcallery@bidmc.harvard.ede

    2006-10-06

    Pancreatic cancer is a common and lethal malignancy. Pancreatic cancer cells overexpress multiple anti-apoptotic factors and death receptor decoys, and are strongly resistant to radiation and to 5-fluorouracil (5-FU)- or gemcitabine (Gem)-based chemotherapy regimens. We have found that low-dose proteasome inhibitor PS-341 and histone deacetylase inhibitor trichostatin A (TSA) synergistically induce cytotoxicity in a panel of eight diverse pancreatic cancer cell lines. Combining TSA with PS-341 effectively inactivated NF{kappa}B signaling, downregulated the predominant endogenous anti-apoptotic factor Bcl-XL overexpression, and disrupted MAP kinase pathway. The combined drug regimen effectively inflicted an average of 71.5% apoptotic cell death (55.2-80%) in diverse pancreatic cancer cell lines by activating the intrinsic apoptotic pathway. Conclusion: the TSA/PS-341 regimen may represent a potential novel therapeutic strategy for pancreatic cancer.

  20. Activating effect of benzbromarone, a uricosuric drug, on peroxisome proliferator-activated receptors.

    PubMed

    Kunishima, Chiyoko; Inoue, Ikuo; Oikawa, Toshihiro; Nakajima, Hiromu; Komoda, Tsugikazu; Katayama, Shigehiro

    2007-01-01

    Benzbromarone, a uricosuric drug, reportedly causes hepatic hypertrophy accompanied by proliferation of peroxisomes in rats. To elucidate the mechanisms underlying induction of peroxisome proliferation by benzbromarone, we examined binding affinity for peroxisome proliferator-activated receptor alpha (PPARalpha) and gamma (PPARgamma), and effects on the binding activity of PPARs with peroxisome proliferation-responsive element (PPRE) and expression of the PPARs target protein. Binding affinity of benzbromarone for PPARalpha and PPARgamma was examined by reporter gene assay. Binding activity of PPARs with PPRE was determined by electric mobility shift assay, and expression of lipoprotein lipase (LPL) and acyl-CoA synthetase (ACS) by Western blot method. Benzbromarone displayed affinity for PPARalpha and PPARgamma, and promoted binding of PPARs to PPRE. Furthermore, cultured cells with benzbromarone added showed upregulated expression of LPL and ACS. These results suggest that benzbromarone induces peroxisome proliferation in hepatocytes by binding to PPARs, and controls expression of proteins related to lipid metabolism. PMID:18274627

  1. Activating Effect of Benzbromarone, a Uricosuric Drug, on Peroxisome Proliferator-Activated Receptors

    PubMed Central

    Kunishima, Chiyoko; Inoue, Ikuo; Oikawa, Toshihiro; Nakajima, Hiromu; Komoda, Tsugikazu; Katayama, Shigehiro

    2007-01-01

    Benzbromarone, a uricosuric drug, reportedly causes hepatic hypertrophy accompanied by proliferation of peroxisomes in rats. To elucidate the mechanisms underlying induction of peroxisome proliferation by benzbromarone, we examined binding affinity for peroxisome proliferator-activated receptor α (PPARα) and γ (PPARγ), and effects on the binding activity of PPARs with peroxisome proliferation-responsive element (PPRE) and expression of the PPARs target protein. Binding affinity of benzbromarone for PPARα and PPARγ was examined by reporter gene assay. Binding activity of PPARs with PPRE was determined by electric mobility shift assay, and expression of lipoprotein lipase (LPL) and acyl-CoA synthetase (ACS) by Western blot method. Benzbromarone displayed affinity for PPARα and PPARγ, and promoted binding of PPARs to PPRE. Furthermore, cultured cells with benzbromarone added showed upregulated expression of LPL and ACS. These results suggest that benzbromarone induces peroxisome proliferation in hepatocytes by binding to PPARs, and controls expression of proteins related to lipid metabolism. PMID:18274627

  2. AMP-Activated Protein Kinase Interacts with the Peroxisome Proliferator-Activated Receptor Delta to Induce Genes Affecting Fatty Acid Oxidation in Human Macrophages

    PubMed Central

    Kemmerer, Marina; Finkernagel, Florian; Cavalcante, Marcela Frota; Abdalla, Dulcineia Saes Parra; Müller, Rolf; Brüne, Bernhard; Namgaladze, Dmitry

    2015-01-01

    AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor δ (PPARδ) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload. PMID:26098914

  3. Peroxisomes are platforms for cytomegalovirus' evasion from the cellular immune response.

    PubMed

    Magalhães, Ana Cristina; Ferreira, Ana Rita; Gomes, Sílvia; Vieira, Marta; Gouveia, Ana; Valença, Isabel; Islinger, Markus; Nascimento, Rute; Schrader, Michael; Kagan, Jonathan C; Ribeiro, Daniela

    2016-01-01

    The human cytomegalovirus developed distinct evasion mechanisms from the cellular antiviral response involving vMIA, a virally-encoded protein that is not only able to prevent cellular apoptosis but also to inhibit signalling downstream from mitochondrial MAVS. vMIA has been shown to localize at mitochondria and to trigger their fragmentation, a phenomenon proven to be essential for the signalling inhibition. Here, we demonstrate that vMIA is also localized at peroxisomes, induces their fragmentation and inhibits the peroxisomal-dependent antiviral signalling pathway. Importantly, we demonstrate that peroxisomal fragmentation is not essential for vMIA to specifically inhibit signalling downstream the peroxisomal MAVS. We also show that vMIA interacts with the cytoplasmic chaperone Pex19, suggesting that the virus has developed a strategy to highjack the peroxisomal membrane proteins' transport machinery. Furthermore, we show that vMIA is able to specifically interact with the peroxisomal MAVS. Our results demonstrate that peroxisomes constitute a platform for evasion of the cellular antiviral response and that the human cytomegalovirus has developed a mechanism by which it is able to specifically evade the peroxisomal MAVS-dependent antiviral signalling. PMID:27181750

  4. A Sulfhydryl Reagent Modulates Systemic Signaling for Wound-Induced and Systemin-Induced Proteinase Inhibitor Synthesis.

    PubMed Central

    Narvaez-Vasquez, J.; Orozco-Cardenas, M. L.; Ryan, C. A.

    1994-01-01

    The sulfhydryl group reagent p-chloromecuribenzene sulfonic acid (PCMBS), an established inhibitor of active apoplastic phloem loading of sucrose in several plant species, is shown to be a powerful inhibitor of wound-induced and systemin-induced activation of proteinase inhibitor synthesis and accumulation in leaves of tomato plants (Lycopersicon esculentum cv Castlemart). PCMBS, supplied to young tomato plants through their cut stems, blocks accumulation of proteinase inhibitors in leaves in response to wounding. The application of systemin directly to fresh wounds enhances systemic accumulation of proteinase inhibitors to levels higher than wounding alone. Placed on fresh wounds, PCMBS severely inhibits systemic induction of proteinase inhibitors, in both the presence and absence of exogenous systemin. PCMBS inhibition can be reversed by cysteine, dithiothreitol, and glutathione. Radiolabeled systemin placed on fresh wounds is readily transported from the wounded leaves to upper leaves. However, in the presence of PCMBS, radiolabeled systemin is not transported away from wound sites. Induction of proteinase inhibitor I synthesis by oligouronides (degree of polymerization [almost equal to] 20), linolenic acid, or methyl jasmonate was not inhibited by PCMBS. The cumulative data support a possible role for sulfhydryl groups in mediating the translocation of systemin from wound sites to distal receptor sites in tomato plants and further support a role for systemin as a systemic wound signal. PMID:12232239

  5. Peroxisome assembly: matrix and membrane protein biogenesis.

    PubMed

    Ma, Changle; Agrawal, Gaurav; Subramani, Suresh

    2011-04-01

    The biogenesis of peroxisomal matrix and membrane proteins is substantially different from the biogenesis of proteins of other subcellular compartments, such as mitochondria and chloroplasts, that are of endosymbiotic origin. Proteins are targeted to the peroxisome matrix through interactions between specific targeting sequences and receptor proteins, followed by protein translocation across the peroxisomal membrane. Recent advances have shed light on the nature of the peroxisomal translocon in matrix protein import and the molecular mechanisms of receptor recycling. Furthermore, the endoplasmic reticulum has been shown to play an important role in peroxisomal membrane protein biogenesis. Defining the molecular events in peroxisome assembly may enhance our understanding of the etiology of human peroxisome biogenesis disorders. PMID:21464226

  6. Localization of peroxisomal matrix proteins by photobleaching

    SciTech Connect

    Buch, Charlotta; Soedertoerns University, Life Sciences, SE-141 89 Huddinge ; Hunt, Mary C.; Alexson, Stefan E.H.; Hallberg, Einar

    2009-10-16

    The distribution of some enzymes between peroxisomes and cytosol, or a dual localization in both these compartments, can be difficult to reconcile. We have used photobleaching in live cells expressing green fluorescent protein (GFP)-fusion proteins to show that imported bona fide peroxisomal matrix proteins are retained in the peroxisome. The high mobility of the GFP-fusion proteins in the cytosol and absence of peroxisomal escape makes it possible to eliminate the cytosolic fluorescence by photobleaching, to distinguish between exclusively cytosolic proteins and proteins that are also present at low levels in peroxisomes. Using this technique we found that GFP tagged bile acid-CoA:amino acid N-acyltransferase (BAAT) was exclusively localized in the cytosol in HeLa cells. We conclude that the cytosolic localization was due to its carboxyterminal non-consensus peroxisomal targeting signal (-SQL) since mutation of the -SQL to -SKL resulted in BAAT being efficiently imported into peroxisomes.

  7. Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors

    PubMed Central

    Bretteville, Alexis; Marcouiller, François; Julien, Carl; El Khoury, Noura B.; Petry, Franck R.; Poitras, Isabelle; Mouginot, Didier; Lévesque, Georges; Hébert, Sébastien S.; Planel, Emmanuel

    2012-01-01

    Tau hyperphosphorylation is one hallmark of Alzheimer's disease (AD) pathology. Pharmaceutical companies have thus developed kinase inhibitors aiming to reduce tau hyperphosphorylation. One obstacle in screening for tau kinase inhibitors is the low phosphorylation levels of AD-related phospho-epitopes in normal adult mice and cultured cells. We have shown that hypothermia induces tau hyperphosphorylation in vitro and in vivo. Here, we hypothesized that hypothermia could be used to assess tau kinase inhibitors efficacy. Hypothermia applied to models of biological gradual complexity such as neuronal-like cells, ex vivo brain slices and adult non-transgenic mice leads to tau hyperphosphorylation at multiple AD-related phospho-epitopes. We show that Glycogen Synthase Kinase-3 inhibitors LiCl and AR-A014418, as well as roscovitine, a cyclin-dependent kinase 5 inhibitor, decrease hypothermia-induced tau hyperphosphorylation, leading to different tau phosphorylation profiles. Therefore, we propose hypothermia-induced hyperphosphorylation as a reliable, fast, convenient and inexpensive tool to screen for tau kinase inhibitors. PMID:22761989

  8. Angiotensin-converting enzyme inhibitors-induced angioedema treated by C1 esterase inhibitor concentrate (Berinert®): about one case and review of the therapeutic arsenal

    PubMed Central

    Lipski, Samuel Michael; Casimir, Georges; Vanlommel, Martine; Jeanmaire, Mathieu; Dolhen, Pierre

    2015-01-01

    Key Clinical Message C1 esterase inhibitor (Berinert®) is generally used to treat severe attack of hereditary angioedema. We describe here the case of a patient who presented with a severe angioedema induced by angiotensin-converting enzyme inhibitors (ACEIs) endangering her life. It could be successfully treated with that medicine. PMID:25767713

  9. Angiotensin-converting enzyme inhibitors-induced angioedema treated by C1 esterase inhibitor concentrate (Berinert®): about one case and review of the therapeutic arsenal.

    PubMed

    Lipski, Samuel Michael; Casimir, Georges; Vanlommel, Martine; Jeanmaire, Mathieu; Dolhen, Pierre

    2015-02-01

    C1 esterase inhibitor (Berinert®) is generally used to treat severe attack of hereditary angioedema. We describe here the case of a patient who presented with a severe angioedema induced by angiotensin-converting enzyme inhibitors (ACEIs) endangering her life. It could be successfully treated with that medicine. PMID:25767713

  10. Proteasome inhibitors induce AMPK activation via CaMKK? in human breast cancer cells.

    PubMed

    Deshmukh, Rahul R; Dou, Q Ping

    2015-08-01

    The purpose of present study is to examine the mechanism of the 5'-AMP-activated protein kinase (AMPK) activation induced by proteasome inhibitors. AMPK activation and ubiquitin proteasome system (UPS) inhibition have gained great attention as therapeutic strategies for the treatment of certain types of cancers. While AMPK serves as a master regulator of cellular metabolism, UPS regulates protein homeostasis. However, the relationship between these two important pathways is not very clear. We observe that proteasome inhibition leads to AMPK activation in human breast cancer cells. siRNA transfection, western blotting, qPCR, and proteasomal inhibition assays were used to study the mechanism of proteasome inhibitor-induced AMPK activation using human triple-negative breast cancer, lung, and cervical cancer cell lines. We report that a variety of proteasome inhibitors activate AMPK in all the tested different cancer cell lines. Our data using liver kinase B1-deficient cancer cells suggest that proteasome inhibitor-induced AMPK activation is primarily mediated by Calcium/Calmodulin-dependent kinase kinase ? (CaMKK?). This hypothesis is supported by that pharmacological or genetic inhibition of CaMKK? leads to a decrease in proteasome inhibitor-induced AMPK activation. Additionally, the AMPK-activating function of the FDA-approved proteasome inhibitor bortezomib depends on an increase in intracellular calcium levels as calcium chelation abrogates its induced AMPK activation. Finally, bortezomib-mediated upregulation in CaMKK? levels is due to its enhanced protein synthesis. These data suggest that proteasome inhibitors indirectly activate AMPK in human cancer cells primarily via Ca(2+)-CaMKK?-dependent pathway. PMID:26227473

  11. Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells

    PubMed Central

    Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng

    2013-01-01

    The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581

  12. UK114, a YjgF/Yer057p/UK114 family protein highly conserved from bacteria to mammals, is localized in rat liver peroxisomes

    SciTech Connect

    Antonenkov, Vasily D. . E-mail: vasily.antonenkov@oulu.fi; Ohlmeier, Steffen; Sormunen, Raija T.; Hiltunen, J. Kalervo

    2007-05-25

    Mammalian UK114 belongs to a highly conserved family of proteins with unknown functions. Although it is believed that UK114 is a cytosolic or mitochondrial protein there is no detailed study of its intracellular localization. Using analytical subcellular fractionation, electron microscopic colloidal gold technique, and two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with mass spectrometric analysis we show here that a large portion of UK114 is present in rat liver peroxisomes. The peroxisomal UK114 is a soluble matrix protein and it is not inducible by the peroxisomal proliferator clofibrate. The data predict involvement of UK114 in peroxisomal metabolism.

  13. Activation of peroxisome proliferator-activated receptor α ameliorates perfluorododecanoic acid-induced production of reactive oxygen species in rat liver.

    PubMed

    Liu, Hui; Zhang, Hongxia; Cui, Ruina; Guo, Xuejiang; Wang, Dazhi; Dai, Jiayin

    2016-06-01

    Perfluorododecanoic acid (PFDoA) is a ubiquitous environmental pollutant known to cause hepatocellular hypertrophy; however, the mechanisms of hepatotoxicity remain poorly understood. In this study, male rats were exposed to 0, 0.05, 0.2 and 0.5 mg/kg/day of PFDoA for 110 days. After two-dimensional differential gel electrophoresis and MALDI-TOF/TOF analysis, 73 differentially expressed proteins involved in lipid metabolism, inflammation, stress response and other functions were successfully identified. Among them, six significantly changed proteins (CTE1, MTE1, HADHA, ECH1, ALDH2 and CPS1) were found to be regulated by peroxisome proliferator-activated receptor alpha (PPARα). The anti-oxidant enzyme activity assays of superoxide dismutase and glutathione peroxidase and the content of thiobarbituric acid-reactive substances in the liver implied that PFDoA caused oxidative stress. The mRNA levels of PPARα in rat primary hepatocytes were knocked down by lentivirus-mediated RNAi. Furthermore, targeted protein levels of CTE1 and MTE1 were down-regulated, while those of HADHA, ALDH2 and CPS1 were up-regulated. After PFDoA exposure, however, the targeted protein levels of CTE1 and ALDH2 increased compared with those of the knockdown untreated group. The reactive oxygen species (ROS) content in rat hepatocytes assayed by flow cytometry significantly increased in the PPARα knockdown groups, consistent with the PPARα antagonist GW6471- and agonist WY14643-treated groups. These results strongly suggested that PPARα played an important role in suppressing ROS content in hepatocytes following PFDoA exposure. PMID:26168851

  14. Epithelial tissue hyperplasia induced by the RAF inhibitor PF-04880594 is attenuated by a clinically well-tolerated dose of the MEK inhibitor PD-0325901.

    PubMed

    Torti, Vince R; Wojciechowicz, Donald; Hu, Wenyue; John-Baptiste, Annette; Evering, Winston; Troche, Gabriel; Marroquin, Lisa D; Smeal, Tod; Yamazaki, Shinji; Palmer, Cynthia L; Burns-Naas, Leigh Ann; Bagrodia, Shubha

    2012-10-01

    Clinical trials of selective RAF inhibitors in patients with melanoma tumors harboring activated BRAFV600E have produced very promising results, and a RAF inhibitor has been approved for treatment of advanced melanoma. However, about a third of patients developed resectable skin tumors during the course of trials. This is likely related to observations that RAF inhibitors activate extracellular signal-regulated kinase (ERK) signaling, stimulate proliferation, and induce epithelial hyperplasia in preclinical models. Because these findings raise safety concerns about RAF inhibitor development, we further investigated the underlying mechanisms. We showed that the RAF inhibitor PF-04880594 induces ERK phosphorylation and RAF dimerization in those epithelial tissues that undergo hyperplasia. Hyperplasia and ERK hyperphosphorylation are prevented by treatment with the mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor PD-0325901 at exposures that extrapolate to clinically well-tolerated doses. To facilitate mechanistic and toxicologic studies, we developed a three-dimensional cell culture model of epithelial layering that recapitulated the RAF inhibitor-induced hyperplasia and reversal by MEK inhibitor in vitro. We also showed that PF-04880594 stimulates production of the inflammatory cytokine interleukin 8 in HL-60 cells, suggesting a possible mechanism for the skin flushing observed in dogs. The complete inhibition of hyperplasia by MEK inhibitor in epithelial tissues does not seem to reduce RAF inhibitor efficacy and, in fact, allows doubling of the PF-04880594 dose without toxicity usually associated with such doses. These findings indicated that combination treatment with MEK inhibitors might greatly increase the safety and therapeutic index of RAF inhibitors for the treatment of melanoma and other cancers. PMID:22752429

  15. Oxaliplatin Neurotoxicity Involves Peroxisome Alterations. PPARγ Agonism as Preventive Pharmacological Approach

    PubMed Central

    Zanardelli, Matteo; Micheli, Laura; Cinci, Lorenzo; Failli, Paola; Ghelardini, Carla; Di Cesare Mannelli, Lorenzo

    2014-01-01

    The development of neuropathic syndromes is an important, dose limiting side effect of anticancer agents like platinum derivates, taxanes and vinca alkaloids. The causes of neurotoxicity are still unclear but the impairment of the oxidative equilibrium is strictly related to pain. Two intracellular organelles, mitochondria and peroxisomes cooperate to the maintaining of the redox cellular state. Whereas a relationship between chemotherapy-dependent mitochondrial alteration and neuropathy has been established, the role of peroxisome is poor explored. In order to study the mechanisms of oxaliplatin-induced neurotoxicity, peroxisomal involvement was evaluated in vitro and in vivo. In primary rat astrocyte cell culture, oxaliplatin (10 µM for 48 h or 1 µM for 5 days) increased the number of peroxisomes, nevertheless expression and functionality of catalase, the most important antioxidant defense enzyme in mammalian peroxisomes, were significantly reduced. Five day incubation with the selective Peroxisome Proliferator Activated Receptor-γ (PPAR-γ) antagonist G3335 (30 µM) induced a similar peroxisomal impairment suggesting a relationship between PPARγ signaling and oxaliplatin neurotoxicity. The PPARγ agonist rosiglitazone (10 µM) reduced the harmful effects induced both by G3335 and oxaliplatin. In vivo, in a rat model of oxaliplatin induced neuropathy, a repeated treatment with rosiglitazone (3 and 10 mg kg−1 per os) significantly reduced neuropathic pain evoked by noxious (Paw pressure test) and non-noxious (Cold plate test) stimuli. The behavioral effect paralleled with the prevention of catalase impairment induced by oxaliplatin in dorsal root ganglia. In the spinal cord, catalase protection was showed by the lower rosiglitazone dosage without effect on the astrocyte density increase induced by oxaliplatin. Rosiglitazone did not alter the oxaliplatin-induced mortality of the human colon cancer cell line HT-29. These results highlight the role of peroxisomes in oxaliplatin-dependent nervous damage and suggest PPARγ stimulation as a candidate to counteract oxaliplatin neurotoxicity. PMID:25036594

  16. Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry

    PubMed Central

    McMillan, Kirk; Adler, Marc; Auld, Douglas S.; Baldwin, John J.; Blasko, Eric; Browne, Leslie J.; Chelsky, Daniel; Davey, David; Dolle, Ronald E.; Eagen, Keith A.; Erickson, Shawn; Feldman, Richard I.; Glaser, Charles B.; Mallari, Cornell; Morrissey, Michael M.; Ohlmeyer, Michael H. J.; Pan, Gonghua; Parkinson, John F.; Phillips, Gary B.; Polokoff, Mark A.; Sigal, Nolan H.; Vergona, Ronald; Whitlow, Marc; Young, Tish A.; Devlin, James J.

    2000-01-01

    Potent and selective inhibitors of inducible nitric oxide synthase (iNOS) (EC 1.14.13.39) were identified in an encoded combinatorial chemical library that blocked human iNOS dimerization, and thereby NO production. In a cell-based iNOS assay (A-172 astrocytoma cells) the inhibitors had low-nanomolar IC50 values and thus were >1,000-fold more potent than the substrate-based direct iNOS inhibitors 1400W and N-methyl-l-arginine. Biochemical studies confirmed that inhibitors caused accumulation of iNOS monomers in mouse macrophage RAW 264.7 cells. High affinity (Kd ≈ 3 nM) of inhibitors for isolated iNOS monomers was confirmed by using a radioligand binding assay. Inhibitors were >1,000-fold selective for iNOS versus endothelial NOS dimerization in a cell-based assay. The crystal structure of inhibitor bound to the monomeric iNOS oxygenase domain revealed inhibitor–heme coordination and substantial perturbation of the substrate binding site and the dimerization interface, indicating that this small molecule acts by allosterically disrupting protein–protein interactions at the dimer interface. These results provide a mechanism-based approach to highly selective iNOS inhibition. Inhibitors were active in vivo, with ED50 values of <2 mg/kg in a rat model of endotoxin-induced systemic iNOS induction. Thus, this class of dimerization inhibitors has broad therapeutic potential in iNOS-mediated pathologies. PMID:10677491

  17. PKC/MEK inhibitors suppress oxaliplatin-induced neuropathy and potentiate the antitumor effects.

    PubMed

    Tsubaki, Masanobu; Takeda, Tomoya; Tani, Tadahumi; Shimaoka, Hirotaka; Suzuyama, Naohiro; Sakamoto, Kotaro; Fujita, Arisa; Ogawa, Naoki; Itoh, Tatsuki; Imano, Motohiro; Funakami, Yoshinori; Ichida, Seiji; Satou, Takao; Nishida, Shozo

    2015-07-01

    Oxaliplatin is a key drug commonly used in colorectal cancer treatment. Despite high clinical efficacy, its therapeutic application is limited by common, dose-limiting occurrence of neuropathy. As usual symptomatic neuropathy treatments fail to improve the patients' condition, there is an urgent need to advance our understanding of the pathogenesis of neuropathy to propose effective therapy and ensure adequate pain management. Oxaliplatin-induced neuropathy was recently reported to be associated with protein kinase C (PKC) activation. It is unclear, however, whether PKC inhibition can prevent neuropathy. In our current studies, we found that a PKC inhibitor, tamoxifen, inhibited oxaliplatin-induced neuropathy via the PKC/extracellular signal-regulated kinase (ERK)/c-Fos pathway in lumbar spinal cords (lumbar segments 4-6). Additionally, tamoxifen was shown to act in synergy with oxaliplatin to inhibit growth in tumor cells-implanted mice. Moreover, mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, PD0325901, suppressed oxaliplatin-induced neuropathy and enhanced oxaliplatin efficacy. Our results indicate that oxaliplatin-induced neuropathy is associated with PKC/ERK/c-Fos pathway in lumbar spinal cord. Additionally, we demonstrate that disruption of this pathway by PKC and MEK inhibitors suppresses oxaliplatin-induced neuropathy, thereby suggesting that PKC and MEK inhibitors may be therapeutically useful in preventing oxaliplatin-induced neuropathy and could aid in combination antitumor pharmacotherapy. PMID:25430564

  18. U-19451A: a selective inducible nitric oxide synthase inhibitor.

    PubMed

    Stratman, N C; Fici, G J; Sethy, V H

    1996-01-01

    Drugs with high selectivity for iNOS inhibition may be useful for treatment of neurodegenerative disorders, chronic inflammatory diseases, and septic shock. Therefore, U-19451A (2-benzyl-2-thio-pseudourea hydrochloride), a potential NOS inhibitor, has been investigated for its selectivity for iNOS using tissues, primary cerebellar granule cell cultures and glial cell cultures. Lungs isolated from rats treated with intravenous injection of E coli lipopolysaccharide and glial cell cultures treated with the same bacterial toxin plus gamma-interferon were used for iNOS activity. Rat cerebellum and primary cerebellar granule cell cultures were utilized for neuronal NOS (nNOS) activity. S-methylthiourea (SMT) and L-nitroarginine methyl ester (L-NAME), selective iNOS and nNOS inhibitors, respectively, were chosen as standards. Both U-19451A and SMT were 4-times more selective for iNOS as compared to nNOS in tissues. U-19451A was more selective than SMT for iNOS inhibition using cultures. L-NAME was 16-31 times more selective for inhibiting nNOS activity. Based on the selectivity of U-19451A for iNOS inhibition, this drug would be expected to be effective in the treatment of diseases with inflammatory pathology without producing side effects associated with nNOS inhibition. PMID:8795706

  19. Peroxisomal disorders with infantile seizures.

    PubMed

    Liang, Jao-Shwann; Lu, Jyh-Feng

    2011-10-01

    Peroxisomes are organelles responsible for multiple metabolic pathways including the biosynthesis of plasmalogens and the oxidation of branched-chain as well as very-long-chain fatty acids (VLCFAs). Peroxisomal disorders (PDs) are heterogeneous groups of diseases and affect many organs with varying degrees of involvement. Even pathogenetically distinct PDs share some common symptoms. However, several PDs have uniquely characteristic clinical findings. The durations of survival in PDs are also variable. Infants with PDs are usually presented with developmental delay, visual and hearing impairment. Generalized hypotonia is present in severe cases. Epileptic seizures are also a common characteristic of patients with certain PDs. Nonetheless, the classification and evolution of epilepsy in PDs have not been elucidated in detail. Here, we review the relevant literatures and provide an overview of PDs with particular emphasis on the characteristics of seizures in infants. PMID:21397417

  20. Lipopolysaccharide-Related Stimuli Induce Expression of the Secretory Leukocyte Protease Inhibitor, a Macrophage-Derived Lipopolysaccharide Inhibitor

    PubMed Central

    Jin, Fenyu; Nathan, Carl F.; Radzioch, Danuta; Ding, Aihao

    1998-01-01

    Mouse secretory leukocyte protease inhibitor (SLPI) was recently characterized as a lipopolysaccharide (LPS)-induced product of macrophages that antagonizes their LPS-induced activation of NF-κB and production of NO and tumor necrosis factor (TNF) (F. Y. Jin, C. Nathan, D. Radzioch, and A. Ding, Cell 88:417–426, 1997). To better understand the role of SLPI in innate immune and inflammatory responses, we examined the kinetics of SLPI expression in response to LPS, LPS-induced cytokines, and LPS-mimetic compounds. SLPI mRNA was detectable in macrophages by Northern blot analysis within 30 min of exposure to LPS but levels peaked only at 24 to 36 h and remained elevated at 72 h. Despite the slowly mounting and prolonged response, early expression of SLPI mRNA was cycloheximide resistant. Two LPS-induced proteins—interleukin-10 (IL-10) and IL-6—also induced SLPI, while TNF and IL-1β did not. The slow attainment of maximal induction of SLPI by LPS in vitro was mimicked by infection with Pseudomonas aeruginosa in vivo, where SLPI expression in the lung peaked at 3 days. Two LPS-mimetic molecules—taxol from yew bark and lipoteichoic acid (LTA) from gram-positive bacterial cell walls—also induced SLPI. Transfection of macrophages with SLPI inhibited their LTA-induced NO production. An anti-inflammatory role for macrophage-derived SLPI seems likely based on SLPI’s slowly mounting production in response to constituents of gram-negative and gram-positive bacteria, its induction both as a direct response to LPS and as a response to anti-inflammatory cytokines induced by LPS, and its ability to suppress the production of proinflammatory products by macrophages stimulated with constituents of both gram-positive and gram-negative bacteria. PMID:9596701

  1. Salicylates inhibit PAF-acether-induced rat paw oedema when cyclooxygenase inhibitors are ineffective.

    PubMed

    Cordeiro, R S; Silva, P M; Martins, M A; Vargaftig, B B

    1986-11-01

    The cyclooxygenase inhibitors indomethacin, piroxicam, ibuprofen, naproxen and flurbiprofen failed to block rat paw oedema induced by PAF-acether, whereas aspirin and sodium salicylate were effective. Two mixed cyclooxygenase and lipoxygenase inhibitors NDGA, BW 755C and dexamethasone reduced oedema in a dose - dependently. The selective PAF-acether antagonist, BN 52021, was effective against PAF-acether at 5 - 20 mg/kg. The lipoxygenase derivates may be involved in paw oedema induced by PAF-acether in the rat and the inhibition produced by aspirin and by sodium salicylate should involve mechanisms other than the cyclooxygenase pathway. PMID:3103172

  2. RIP1 protein-dependent assembly of a cytosolic cell death complex is required for inhibitor of apoptosis (IAP) inhibitor-mediated sensitization to lexatumumab-induced apoptosis.

    PubMed

    Basit, Farhan; Humphreys, Robin; Fulda, Simone

    2012-11-01

    Searching for new strategies to trigger apoptosis in rhabdomyosarcoma (RMS), we investigated the effect of two novel classes of apoptosis-targeting agents, i.e. monoclonal antibodies against TNF-related apoptosis-inducing ligand (TRAIL) receptor 1 (mapatumumab) and TRAIL receptor 2 (lexatumumab) and small-molecule inhibitors of inhibitor of apoptosis (IAP) proteins. Here, we report that IAP inhibitors synergized with lexatumumab, but not with mapatumumab, to reduce cell viability and to induce apoptosis in several RMS cell lines in a highly synergistic manner (combination index <0.1). Cotreatment-induced apoptosis was accompanied by enhanced activation of caspase-8, -9, and -3; loss of mitochondrial membrane potential; and caspase-dependent apoptosis. In addition, IAP inhibitor and lexatumumab cooperated to stimulate the assembly of a cytosolic complex containing RIP1, FADD, and caspase-8. Importantly, knockdown of RIP1 by RNA interference prevented the formation of the RIP1·FADD·caspase-8 complex and inhibited subsequent activation of caspase-8, -9, and -3; loss of mitochondrial membrane potential; and apoptosis upon treatment with IAP inhibitor and lexatumumab. In addition, RIP1 silencing rescued clonogenic survival of cells treated with the combination of lexatumumab and IAP inhibitor, thus underscoring the critical role of RIP1 in cotreatment-induced apoptosis. By comparison, the TNFα-blocking antibody Enbrel had no effect on IAP inhibitor/lexatumumab-induced apoptosis, indicating that an autocrine TNFα loop is dispensable. By demonstrating that IAP inhibitors and lexatumumab synergistically trigger apoptosis in a RIP1-dependent but TNFα-independent manner in RMS cells, our findings substantially advance our understanding of IAP inhibitor-mediated regulation of TRAIL-induced cell death. PMID:22927431

  3. PeroxisomeDB: a database for the peroxisomal proteome, functional genomics and disease

    PubMed Central

    Schlüter, Agatha; Fourcade, Stéphane; Domènech-Estévez, Enric; Gabaldón, Toni; Huerta-Cepas, Jaime; Berthommier, Guillaume; Ripp, Raymond; Wanders, Ronald J. A.; Poch, Olivier; Pujol, Aurora

    2007-01-01

    Peroxisomes are essential organelles of eukaryotic origin, ubiquitously distributed in cells and organisms, playing key roles in lipid and antioxidant metabolism. Loss or malfunction of peroxisomes causes more than 20 fatal inherited conditions. We have created a peroxisomal database () that includes the complete peroxisomal proteome of Homo sapiens and Saccharomyces cerevisiae, by gathering, updating and integrating the available genetic and functional information on peroxisomal genes. PeroxisomeDB is structured in interrelated sections ‘Genes’, ‘Functions’, ‘Metabolic pathways’ and ‘Diseases’, that include hyperlinks to selected features of NCBI, ENSEMBL and UCSC databases. We have designed graphical depictions of the main peroxisomal metabolic routes and have included updated flow charts for diagnosis. Precomputed BLAST, PSI-BLAST, multiple sequence alignment (MUSCLE) and phylogenetic trees are provided to assist in direct multispecies comparison to study evolutionary conserved functions and pathways. Highlights of the PeroxisomeDB include new tools developed for facilitating (i) identification of novel peroxisomal proteins, by means of identifying proteins carrying peroxisome targeting signal (PTS) motifs, (ii) detection of peroxisomes in silico, particularly useful for screening the deluge of newly sequenced genomes. PeroxisomeDB should contribute to the systematic characterization of the peroxisomal proteome and facilitate system biology approaches on the organelle. PMID:17135190

  4. PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome

    PubMed Central

    Schlter, Agatha; Real-Chicharro, Alejandro; Gabaldn, Toni; Snchez-Jimnez, Francisca; Pujol, Aurora

    2010-01-01

    Peroxisomes are essential organelles that play a key role in redox signalling and lipid homeostasis. They contain a highly diverse enzymatic network among different species, mirroring the varied metabolic needs of the organisms. The previous PeroxisomeDB version organized the peroxisomal proteome of humans and Saccharomyces cerevisiae based on genetic and functional information into metabolic categories with a special focus on peroxisomal disease. The new release (http://www.peroxisomeDB.org) adds peroxisomal proteins from 35 newly sequenced eukaryotic genomes including fungi, yeasts, plants and lower eukaryotes. We searched these genomes for a core ensemble of 139 peroxisomal protein families and identified 2706 putative peroxisomal protein homologs. Approximately 37% of the identified homologs contained putative peroxisome targeting signals (PTS). To help develop understanding of the evolutionary relationships among peroxisomal proteins, the new database includes phylogenetic trees for 2386 of the peroxisomal proteins. Additional new features are provided, such as a tool to capture kinetic information from Brenda, CheBI and Sabio-RK databases and more than 1400 selected bibliographic references. PeroxisomeDB 2.0 is a freely available, highly interactive functional genomics platform that offers an extensive view on the peroxisomal metabolome across lineages, thus facilitating comparative genomics and systems analysis of the organelle. PMID:19892824

  5. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors

    PubMed Central

    Qian, Guofeng; Karnati, Srikanth; Baumgart-Vogt, Eveline

    2015-01-01

    Ossification defects leading to craniofacial dysmorphism or rhizomelia are typical phenotypes in patients and corresponding knockout mouse models with distinct peroxisomal disorders. Despite these obvious skeletal pathologies, to date no careful analysis exists on the distribution and function of peroxisomes in skeletal tissues and their alterations during ossification. Therefore, we analyzed the peroxisomal compartment in different cell types of mouse cartilage and bone as well as in primary cultures of calvarial osteoblasts. The peroxisome number and metabolism strongly increased in chondrocytes during endochondral ossification from the reserve to the hypertrophic zone, whereas in bone, metabolically active osteoblasts contained a higher numerical abundance of this organelle than osteocytes. The high abundance of peroxisomes in these skeletal cell types is reflected by high levels of Pex11β gene expression. During culture, calvarial pre-osteoblasts differentiated into secretory osteoblasts accompanied by peroxisome proliferation and increased levels of peroxisomal genes and proteins. Since many peroxisomal genes contain a PPAR-responsive element, we analyzed the gene expression of PPARɑ/ß/ɣ in calvarial osteoblasts and MC3T3-E1 cells, revealing higher levels for PPARß than for PPARɑ and PPARɣ. Treatment with different PPAR agonists and antagonists not only changed the peroxisomal compartment and associated gene expression, but also induced complex alterations of the gene expression patterns of the other PPAR family members. Studies in M3CT3-E1 cells showed that the PPARß agonist GW0742 activated the PPRE-mediated luciferase expression and up-regulated peroxisomal gene transcription (Pex11, Pex13, Pex14, Acox1 and Cat), whereas the PPARß antagonist GSK0660 led to repression of the PPRE and a decrease of the corresponding mRNA levels. In the same way, treatment of calvarial osteoblasts with GW0742 increased in peroxisome number and related gene expression and accelerated osteoblast differentiation. Taken together, our results suggest that PPARß regulates the numerical abundance and metabolic function of peroxisomes via Pex11ß in parallel to osteoblast differentiation. PMID:26630504

  6. Biphenyl metabolism by rat liver microsomes. Regioselective effects of inducers, inhibitors, and solvents

    SciTech Connect

    Haugen, D.A.

    1981-01-01

    The effects of the inducers phenobarbital and 3-methylcholanthrene, the inhibitors 7,8-benzoflavone and 1-benzyl-imidazole, and the solvents methanol, acetone, and dimethyl sulfoxide on the 2-, 3-, and 4-hydroxylation of biphenyl and the O-de-ethylation of 7-ethoxycoumarin by rat liver microsomes were examined. Phenobarbital pretreatment primarily induced 2- and 3-hydroxylation, the latter most dramatically. 3-Methylcholanthrene pretreatment induced 2- and 3-hydroxylation to similar extents. The inhibitors and solvents had regioselective effects on biphenyl metabolism that were characteristic of the uninduced, phenobarbital-induced, and 3-methylcholanthrene-induced microsomes. The presence of multiple forms of cytochrome P-450 in uninduced microsomes is indicated by the regioselective effects of the solvents and the inhibitors. The 3-methylcholanthrene-dependent increases in 2- and 3-hydroxylation appear due to induction of a single form of cytochrome P-450, as indicated by similar dose-response relationships and similar changes in sensitivitty to the inhibitors. The phenobarbital-dependent increases in 2- and 3-hydroxylation appear due to the induction of two forms of cytochrome P-450, as indicated by different changes in sensitivity to the effects of dimethyl sulfoxide and 7,8-benzoflavone. The results indicate that examination of the regioselectivity of biphenyl metabolism is a useful approach for characterizing microsomal mono-oxygenases, and they suggest that the approach may also be useful in the characterization of purified mono-oxygenase systems. (JMT)

  7. Determination of antithrombin-dependent factor Xa inhibitors by prothrombin-induced clotting time.

    PubMed

    Harenberg, Job; Giese, Christina; Hagedorn, Antje; Traeger, Inge; Fenyvesi, Tivadar

    2007-07-01

    Prothrombinase-induced clotting time (PiCT) determines the anticoagulant effects of heparins, low molecular weight heparins (LMWHs), and direct thrombin inhibitors. At present, this is the only method that measures the effects of all of these inhibitors, in contrast to the prothrombin time, activated partial thromboplastin time (aPTT), Heptest, ecarin clotting time, and the chromogenic assays. The antithrombin-dependent direct factor (F) Xa inhibitors fondaparinux and idraparinux were compared with the LMWH dalteparin on PiCT, aPTT, Heptest, and chromogenic anti-FXa assays in pooled human normal plasma samples. Fondaparinux and idraparinux prolonged the coagulation times in the PiCT, Heptest, and chromogenic FXa assays in a dose-dependent manner, in contrast to the aPTT. We conclude that PiCT is a suitable assay to determine the anticoagulant effects of these two new FXa inhibitors in patients receiving treatment with these compounds. PMID:17629847

  8. Effects of inhibitors of radiation-induced potentially lethal damage repair on chemotherapy in murine tumors

    SciTech Connect

    Nakatsugawa, S.; Sugahara, T.

    1982-09-01

    Enhancement of various antitumor drugs effects by inhibitors of radiation-induced potentially lethal damage (PLD) repair was studied in three murine tumors (EMT-6, RIF-1 and SQ-1). In EMT-6 tumors, PLD repair inhibitors, 3'-deoxyguanosine (3'dG) and 7904 (a derivative of 3'-deoxyadenosine) showed a marked enhancement of tumor growth inhibition by anticancerous drugs (FT-207 (a derivative of 5-FU), bleomycin, Ara-C, ACNU). However, the effects of mitomycin-C and vincristine were not potentiated by the inhibitors. In SQ-1 carcinomas, another repair inhibitor, ara-A (1-..beta..-D-arabinofuranosyladenine) (32 mg/kg) potentiated the effect of ACNU. In RIF-1 sarcomas, in which a low PLD repair function has been reported after ionizing radiation exposure, the potentiation was not so marked as in EMT-6 or SQ-1 tumors. Thus, as a possibility, the potentiation by inhibitors of radiation-induced PLD repair might be a result of the inhibition of chemical-induced PLD repair. The study of this field may contribute to the improvement of cancer treatment not only by radiotherapy but also by chemotherapy.

  9. Import of proteins into the peroxisomal matrix

    PubMed Central

    Hasan, Sohel; Platta, Harald W.; Erdmann, Ralf

    2013-01-01

    Peroxisomes constitute a dynamic compartment in all nucleated cells. They fulfill diverse metabolic tasks in response to environmental changes and cellular demands. This adaptation is implemented by modulation of the enzyme content of the organelles, which is accomplished by dynamically operating peroxisomal protein transport machineries. Soluble import receptors recognize their newly synthesized cargo proteins in the cytosol and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the matrix, where the receptor is ubiquitinated and exported back to the cytosol for further rounds of matrix protein import. This review discusses the recent progress in our understanding of the peroxisomal matrix protein import and its regulation by ubiquitination events as well as the current view on the translocation mechanism of folded proteins into peroxisomes. This article is part of a Special Issue entitled: Origin and spatiotemporal dynamics of the peroxisomal endomembrane system. PMID:24069002

  10. Modulation of Osteoclastogenesis Induced by Nucleoside Reverse Transcriptase Inhibitors

    PubMed Central

    PAN, GEORGE; KILBY, MICHAEL; McDONALD, JAY M.

    2007-01-01

    Osteopenia is a common and debilitating side-effect of HAART, yet little is known concerning the effects of HAART on bone metabolism. We reported previously that zidovudine (AZT) stimulates osteoclastogenesis in vitro and causes osteopenia in mice. Here, we confirmed that the AZT-induced osteoclastogenesis is dependent on RANKL in that osteoclastogenesis is blocked by osteoprotegestin. Alendronate, which is used for the treatment of osteopenia and osteoporosis, failed to inhibit AZT-induced osteoclastogenesis in vitro. Osteoclastogenesis in vitro was not affected by tumor necrosis factor-α. Two other NRTI drugs, ddl and 3TC, also induced osteoclastogenesis in vitro and induced osteopenia in mice. The osteopenia was associated with an elevation of parameters of osteoclasts, but not with osteoblasts. Combinations of the NRTIs did not result in additive or synergistic effects in vitro or in vivo. Finally, AZT induced osteoclastogenesis of human osteoclast precursors in a RANKL-dependent manner. This in vitro osteoclastogenesis assay using human peripheral blood mononuclear cells could be useful in evaluating bone turnover and the risk of developing osteopenia in AIDS patients on HAART. PMID:17147500

  11. Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells

    PubMed Central

    WADA, NAOKO; KAWANO, YAWARA; FUJIWARA, SHIHO; KIKUKAWA, YOSHITAKA; OKUNO, YUTAKA; TASAKI, MASAYOSHI; UEDA, MITSUHARU; ANDO, YUKIO; YOSHINAGA, KAZUYA; RI, MASAKI; IIDA, SHINSUKE; NAKASHIMA, TAKAYUKI; SHIOTSU, YUKIMASA; MITSUYA, HIROAKI; HATA, HIROYUKI

    2015-01-01

    Shikonin (SHK), a natural small agent (MW 288.3), reportedly induces cell death in various tumor cells. We have found that SHK also exerts potent cytocidal effects on human multiple myeloma (MM) cells, but its anticancer mechanism in MM cells remains to be elucidated. SHK at 2.5–5 μM induced apoptosis in seven MM cell lines, including the bortezomib-resistant cell line KMS11/BTZ. The IC50 value of SHK against KMS11/BTZ was comparable to that of a parental cell line KMS11 (1.1 and 1.56 μM, respectively). SHK induces accumulation of ubiquitinated proteins and activates XBP-1 in MM cells, suggesting that SHK functions as a proteasome inhibitor, eventually inducing ER stress-associated apoptosis. SHK increases levels of HSP70/72, which protects cells from apoptosis, and exerts greater cytocidal effects in combination with the HSP70/72 inhibitor VER-155008. At higher concentrations (10–20 μM), SHK induced cell death, which was completely inhibited by a necroptosis inhibitor, necrostatin-1 (Nec-1), while the cytocidal activity was unaffected by Z-VAD-FMK, strongly suggesting that cell death is induced by SHK at high concentrations through necroptosis. The present data show for the first time that SHK induces cell death in MM cells. SHK efficiently induces apoptosis and combination of heat shock protein inhibitor with low dose SHK enhances apoptosis, while high dose SHK induces necroptosis in MM cells. These findings together support the use of SHK as a potential therapeutic agent for MM. PMID:25530098

  12. An aqueous extract of Salacia oblonga root, a herb-derived peroxisome proliferator-activated receptor-alpha activator, by oral gavage over 28 days induces gender-dependent hepatic hypertrophy in rats.

    PubMed

    Rong, Xianglu; Kim, Moon Sun; Su, Ning; Wen, Suping; Matsuo, Yukimi; Yamahara, Johji; Murray, Michael; Li, Yuhao

    2008-06-01

    Activation of peroxisome proliferator-activated receptor (PPAR)-alpha by natural and synthetic chemicals induces hepatic hypertrophy. An aqueous extract of Salacia oblonga root (SOW) is an Ayurvedic medicine with anti-diabetic and anti-obesity properties. In the present study, it was found that SOW (100, 300 and 900mg/kg, once daily by oral gavage over a 28 day period) elicited dose-related increases in liver weight (LW) by 1.6%, 13.4% and 42.5%, respectively, and in the ratio of LW to body weight by 8.8%, 16.7% and 40.2%, respectively, in male rats. These effects were less pronounced in females. SOW selectively increased liver mass in male rats but Sudan red staining was not different, which indicates that hepatic lipid accumulation was similar in both genders. However, SOW even at the highest dosage did not influence serum ALT and AST activities in male or female rats. Moreover, SOW was found to activate PPAR-alpha in human hepatoma-derived HepG2 cells, as evidenced by the upregulation of PPAR-alpha and acyl-CoA oxidase mRNA expression. Thus, SOW-dependent PPAR-alpha activation may precede the development of the gender difference in hepatic hypertrophy; this process may be influenced by sex hormone status. PMID:18397819

  13. Peroxisome deficient invertebrate and vertebrate animal models

    PubMed Central

    Van Veldhoven, Paul P.; Baes, Myriam

    2013-01-01

    Although peroxisomes are ubiquitous organelles in all animal species, their importance for the functioning of tissues and organs remains largely unresolved. Because peroxins are essential for the biogenesis of peroxisomes, an obvious approach to investigate their physiological role is to inactivate a Pex gene or to suppress its translation. This has been performed in mice but also in more primitive organisms including D. melanogaster, C. elegans, and D. rerio, and the major findings and abnormalities in these models will be highlighted. Although peroxisomes are generally not essential for embryonic development and organogenesis, a generalized inactivity of peroxisomes affects lifespan and posthatching/postnatal growth, proving that peroxisomal metabolism is necessary for the normal maturation of these organisms. Strikingly, despite the wide variety of model organisms, corresponding tissues are affected including the central nervous system and the testis. By inactivating peroxisomes in a cell type selective way in the brain of mice, it was also demonstrated that peroxisomes are necessary to prevent neurodegeneration. As these peroxisome deficient model organisms recapitulate pathologies of patients affected with peroxisomal diseases, their further analysis will contribute to the elucidation of still elusive pathogenic mechanisms. PMID:24319432

  14. Pseudoceramide stimulates peroxisome proliferator-activated receptor-α expression in a murine model of atopic dermatitis: molecular basis underlying the anti-inflammatory effect and the preventive effect against steroid-induced barrier impairment.

    PubMed

    Lee, Sang Eun; Jung, Min Kyung; Oh, Seung Joon; Jeong, Se Kyoo; Lee, Seung Hun

    2015-11-01

    Topical pseudoceramides are successfully used in skin barrier repair therapy for atopic dermatitis (AD) and demonstrated to reduce the adverse effects of topical glucocorticoids (GC). However, the molecular mechanisms involved are not fully understood. We investigated whether PC-9S (myristoyl/palmitoyloxostearamide/arachamide MEA, Neopharm, Daejeon, Korea), one of the synthetic pseudoceramides, could stimulate peroxisome proliferator-activated receptor (PPAR)α expression in a hapten [oxazolone (oxa)]-induced AD murine model (oxa-AD mice) and subsequently improved permeability barrier, reduced inflammation, and increased antimicrobial peptides (AMPs) expression. Normal hairless mice and oxa-AD mice were topically treated twice daily with either PC-9S-containing physiologic lipid mixture (PLM), vehicle (PLM), or PPARα agonist for 4 days. Topical PC-9S significantly increased PPARα expression in mouse epidermis in vivo and in oxa-AD mice skin comparable with PPARα agonist. Topical PC-9S-containing PLM significantly reduced basal trans-epidermal water loss (TEWL), surface pH, and mast cell infiltrates and prevented the decline of AMPs expression in oxa-AD mice, which were abrogated by PPARα antagonist. Then, oxa-AD mice were treated with super-potent topical GC twice daily for 4 days with or without PC-9S co-applications. Co-treatment with PC-9S-containing PLM suppressed GC-induced increase in basal TEWL, epidermal thinning, reduced loricrin expression, and impaired barrier recovery and these effects were attenuated by PPARα antagonist. Collectively, our findings suggest that pseudoceramide PC-9S-induced stimulation of PPARα expression provides a new mechanism by which pseudoceramides show anti-inflammatory property, improve the permeability and antimicrobial barrier function, and prevent the negative effects of topical GC. PMID:26121942

  15. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  16. Angiogenesis inhibitor attenuates parathyroid hormone-induced anabolic effect.

    PubMed

    Rhee, Yumie; Park, So Young; Kim, Yoo Mee; Lee, Sihoon; Lim, Sung-Kil

    2009-01-01

    In vivo osteogenic responses to anabolic stimuli are expected to be accompanied by angiogenesis as well as in the process of remodeling of bone. Consequently, angiogenesis might play an important role in mediating bone forming stimulating effect of parathyroid hormone (PTH). To investigate this relationship, we used actively growing young Sprague-Dawley rats and CKD-732, one of the angiogenesis inhibitor (AI) to reveal the relationship of angiogenesis in the effect of PTH. The groups were divided as (1) vehicle [VEH group], (2) PTH(1-84) [PTH group], (3) AI alone [AI group], (4) PTH(1-84)+AI concomitance [PTH-AI group] and were treated for 6 weeks. The bone mineral density (BMD) of PTH group was higher than VEH group and the gain of bone mass was attenuated in PTH-AI group. The maximal failure load in PTH group was higher than VEH group, but it was definitely attenuated by concurrent use of AI. Moreover, the toughness showed similar significant deterioration in PTH-AI group. General bone turnover was also significantly decreased in PTH-AI group as shown by the absence of increase in osteocalcin and beta-crosslaps and by decrease in metaphyseal length. The BMD or the biomechanic data of AI only group were similar to the VEH group, suggesting the minimal effect of AI itself on the normal modeling phase of the growing rats. In conclusion, the angiogenesis seemed to contribute to completing the anabolic effect of PTH especially for bone strength. PMID:18457934

  17. Proteasome inhibitors induce apoptosis and reduce viral replication in primary effusion lymphoma cells

    SciTech Connect

    Saji, Chiaki; Higashi, Chizuka; Niinaka, Yasufumi; Yamada, Koji; Noguchi, Kohji; Fujimuro, Masahiro

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Constitutive NF-{kappa}B signaling is essential for the survival and growth of PEL cells. Black-Right-Pointing-Pointer NF-{kappa}B signaling is upregulated by the proteasome-dependent degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress NF-{kappa}B signaling and induce apoptosis in PEL cells through stabilization of I{kappa}B{alpha}. Black-Right-Pointing-Pointer Proteasome inhibitors suppress viral replication in PEL cells during lytic KSHV infection. -- Abstract: Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi's sarcoma-associated herpesvirus (KSHV). This study provides evidence that proteasomal activity is required for both survival of PEL cells stably harboring the KSHV genome and viral replication of KSHV. We evaluated the cytotoxic effects of proteasome inhibitors on PEL cells. The proteasome inhibitors MG132, lactacystin, and proteasome inhibitor I dramatically inhibited cell proliferation and induced apoptosis of PEL cells through the accumulation of p21 and p27. Furthermore, proteasome inhibitors induced the stabilization of NF-{kappa}B inhibitory molecule (I{kappa}B{alpha}) and suppressed the transcriptional activity of NF-{kappa}B in PEL cells. The NF-{kappa}B specific inhibitor BAY11-7082 also induced apoptosis in PEL cells. The constitutive activation of NF-{kappa}B signaling is essential for the survival and growth of B cell lymphoma cells, including PEL cells. NF-{kappa}B signaling is upregulated by proteasome-dependent degradation of I{kappa}B{alpha}. The suppression of NF-{kappa}B signaling by proteasome inhibitors may contribute to the induction of apoptosis in PEL cells. In addition, proteasome activity is required for KSHV replication in KSHV latently infected PEL cells. MG132 reduced the production of progeny virus from PEL cells at low concentrations, which do not affect PEL cell growth. These findings suggest that proteasome inhibitors may represent a novel strategy for the treatment of KSHV infection and KSHV-associated lymphomas.

  18. PPAR-γ Impairment Alters Peroxisome Functionality in Primary Astrocyte Cell Cultures

    PubMed Central

    Di Cesare Mannelli, Lorenzo; Zanardelli, Matteo; Micheli, Laura; Ghelardini, Carla

    2014-01-01

    Peroxisomes provide glial cells with protective functions against the harmful effects of H2O2 on neurons and peroxisome impairment results in nervous lesions. Agonists of the γ-subtype of the Peroxisome-Proliferator-Activated-Receptors (PPAR) have been proposed as neuroprotective agents in neurodegenerative disorders. Nevertheless, the role of PPAR-γ alterations in pathophysiological mechanisms and the relevance of peroxisome functions in the PPAR-γ effects are not yet clear. In a primary cell culture of rat astrocytes, the irreversible PPAR-γ antagonist GW9662 concentration-dependently decreased the activity of catalase, the most important antioxidant defense enzyme in peroxisomes. Catalase functionality recovered in a few days and the PPAR-γ agonist rosiglitazone promoted reversal of enzymatic damage. The reversible antagonist G3335 reduced both the activity and expression of catalase in a rosiglitazone-prevented manner. G3335 reduced also the glutathione reductase expression, indicating that enzyme involved in glutathione regeneration was compromised. Neither the PPAR-α target gene Acyl-Coenzyme-A-oxidase-1 nor the mitochondrial detoxifying enzyme NADH:ubiquinone-oxidoreductase (NDFUS3) was altered by PPAR-γ inhibition. In conclusion, PPAR-γ inhibition induced impairment of catalase in astrocytes. A general decrease of the antioxidant defenses of the cell suggests that a PPAR-γ hypofunction could participate in neurodegenerative mechanisms through peroxisomal damage. This series of experiments could be a useful model for studying compounds able to restore peroxisome functionality. PMID:24729976

  19. [BRAF Inhibitor-Induced Erythema Nodosum-Like Lesions].

    PubMed

    Shiba, Keiko; Moriuchi, Reine; Morita, Yusuke; Nakamura, Michio; Takigami, Masayoshi; Shimizu, Satoko

    2016-05-01

    BRAFinhibitors have been licensed for the treatment of unresectable or metastatic BRAF-mutated melanomas. In Japan, the BRAFinhibitor vemurafenib has been available since December 2014. Several adverse events induced by BRAFinhibitors have been reported, such as Stevens-Johnson syndrome, toxic epidermal necrosis, squamous cell carcinoma, secondary melanoma, and hand-foot syndrome. Recently, inflammatory skin lesions clinically resembling erythema nodosum have been reported as side effects that may lead to treatment discontinuation. In this report, we described the first Japanese case of erythema nodosum-like lesions induced by vemurafenib and discussed the countermeasures to this adverse reaction. Dose reduction or interruption of BRAFinhibitors should be considered on a case-by-case basis because the condition may resolve spontaneously or under symptomatic treatment. We postulate that erythema nodosum-like lesions can be controlled by careful follow-up and supportive care. PMID:27210102

  20. Partial purification and properties of an exonuclease inhibitor induced by bacteriophage Mu-1.

    PubMed Central

    Williams, J G; Radding, C M

    1981-01-01

    From an induced lysogen of bacteriophage Mu-1, we partially purified a substance of high molecular weight that blocks the action of several exonucleases on double-stranded DNA. The presence of the inhibitor in cell-free extracts is dependent on induction of a Mu prophage. The Mu-related inhibitor acts by binding to double-stranded DNA rather than by interacting with the DNase. The inhibitor protects linear duplex DNA of Mu, P22, and phi X174am3 from exonucleolytic degradation by recBC DNase and lambda exonuclease. Single-stranded DNA, however, is not protected by the inhibitor from degradation by either recBC DNase or exonuclease I. The inhibitor preparation contains a protein that binds to linear duplex DNA, but not to circular duplex DNA; ends are required for binding to occur. Single-stranded DNA is not a substrate for the binding protein. These and other results suggest that the binding protein and the inhibitor are the same activity. Images PMID:6268842

  1. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling

    PubMed Central

    Heinemann, Anja; Cullinane, Carleen; De Paoli-Iseppi, Ricardo; Wilmott, James S.; Gunatilake, Dilini; Madore, Jason; Strbenac, Dario; Yang, Jean Y.; Gowrishankar, Kavitha; Tiffen, Jessamy C.; Prinjha, Rab K.; Smithers, Nicholas; McArthur, Grant A.; Hersey, Peter; Gallagher, Stuart J.

    2015-01-01

    Histone acetylation marks have an important role in controlling gene expression and are removed by histone deacetylases (HDACs). These marks are read by bromodomain and extra-terminal (BET) proteins and novel inhibitiors of these proteins are currently in clinical development. Inhibitors of HDAC and BET proteins have individually been shown to cause apoptosis and reduce growth of melanoma cells. Here we show that combining the HDAC inhibitor LBH589 and BET inhibitor I-BET151 synergistically induce apoptosis of melanoma cells but not of melanocytes. Induction of apoptosis proceeded through the mitochondrial pathway, was caspase dependent and involved upregulation of the BH3 pro-apoptotic protein BIM. Analysis of signal pathways in melanoma cell lines resistant to BRAF inhibitors revealed that treatment with the combination strongly downregulated anti-apoptotic proteins and proteins in the AKT and Hippo/YAP signaling pathways. Xenograft studies showed that the combination of inhibitors was more effective than single drug treatment and confirmed upregulation of BIM and downregulation of XIAP as seen in vitro. These results support the combination of these two classes of epigenetic regulators in treatment of melanoma including those resistant to BRAF inhibitors. PMID:26087189

  2. The EMT-activator ZEB1 induces bone metastasis associated genes including BMP-inhibitors

    PubMed Central

    Mock, Kerstin; Preca, Bogdan-Tiberius; Brummer, Tilman; Brabletz, Simone; Stemmler, Marc P.; Brabletz, Thomas

    2015-01-01

    Tumor cell invasion, dissemination and metastasis is triggered by an aberrant activation of epithelial-to-mesenchymal transition (EMT), often mediated by the transcription factor ZEB1. Disseminating tumor cells must acquire specific features that allow them to colonize at different organ sites. Here we identify a set of genes that is highly expressed in breast cancer bone metastasis and activated by ZEB1. This gene set includes various secreted factors, e.g. the BMP-inhibitor FST, that are described to reorganize the bone microenvironment. By inactivating BMP-signaling, BMP-inhibitors are well-known to induce osteolysis in development and disease. We here demonstrate that the expression of ZEB1 and BMP-inhibitors is correlated with bone metastasis, but not with brain or lung metastasis of breast cancer patients. In addition, we show that this correlated expression pattern is causally linked, as ZEB1 induces the expression of the BMP-inhibitors NOG, FST and CHRDL1 both by directly increasing their gene transcription, as well as by indirectly suppressing their reduction via miR-200 family members. Consequently, ZEB1 stimulates BMP-inhibitor mediated osteoclast differentiation. These findings suggest that ZEB1 is not only driving EMT, but also contributes to the formation of osteolytic bone metastases in breast cancer. PMID:25973542

  3. HDAC inhibitor-induced drug resistance involving ATP-binding cassette transporters (Review)

    PubMed Central

    NI, XUAN; LI, LI; PAN, GUOYU

    2015-01-01

    Histone deacetylase (HDAC) inhibitors are becoming a novel and promising class of antineoplastic agents that have been used for cancer therapy in the clinic. Two HDAC inhibitors, vorinostat and romidepsin, have been approved by the Food and Drug Administration to treat T-cell lymphoma. Nevertheless, similar to common anticancer drugs, HDAC inhibitors have been found to induce multidrug resistance (MDR), which is an obstacle for the success of chemotherapy. The most common cause of MDR is considered to be the increased expression of adenosine triphosphate binding cassette (ABC) transporters. Numerous studies have identified that the upregulation of ABC transporters is often observed following treatment with HDAC inhibitors, particularly the increased expression of P-glycoprotein, which leads to drug efflux, reduces intracellular drug concentration and induces MDR. The present review summarizes the key ABC transporters involved in MDR following various HDAC inhibitor treatments in a range of cancer cell lines and also explored the potential mechanisms that result in MDR, including the effect of nuclear receptors, which are the upstream regulatory factors of ABC transporters. PMID:25624882

  4. Encapsulation-Induced Stress Helps Saccharomyces cerevisiae Resist Convertible Lignocellulose Derived Inhibitors

    PubMed Central

    Westman, Johan O.; Manikondu, Ramesh Babu; Franzén, Carl Johan; Taherzadeh, Mohammad J.

    2012-01-01

    The ability of macroencapsulated Saccharomyces cerevisiae CBS8066 to withstand readily and not readily in situ convertible lignocellulose-derived inhibitors was investigated in anaerobic batch cultivations. It was shown that encapsulation increased the tolerance against readily convertible furan aldehyde inhibitors and to dilute acid spruce hydrolysate, but not to organic acid inhibitors that cannot be metabolized anaerobically. Gene expression analysis showed that the protective effect arising from the encapsulation is evident also on the transcriptome level, as the expression of the stress-related genes YAP1, ATR1 and FLR1 was induced upon encapsulation. The transcript levels were increased due to encapsulation already in the medium without added inhibitors, indicating that the cells sensed low stress level arising from the encapsulation itself. We present a model, where the stress response is induced by nutrient limitation, that this helps the cells to cope with the increased stress added by a toxic medium, and that superficial cells in the capsules degrade convertible inhibitors, alleviating the inhibition for the cells deeper in the capsule. PMID:23109889

  5. The interaction between Helminthosporium carbonum and maize: Induced resistance and the role of an inhibitor

    SciTech Connect

    Cantone, F.A.

    1989-01-01

    Helminthosporium carbonum race 1 produces large, necrotic lesions on susceptible leaves of maize, whereas race 2 causes small, chlorotic flecks. Resistance to race 1 on susceptible leaves was induced when race 2 was inoculated for at least 10 h prior to a challenge inoculation with the pathogen and was manifest as a decrease in the number of appressoria and reduced penetration by race 1 conidia. Induced resistance was prevented or reversed when HC-toxin was added to challenge race 1 inoculum. The basis for protection appears to be a volatile, inhibitory compound produced by the host. This inhibitor was always associated with treatments that resulted in resistance, whereas no inhibitory activity was detected in diffusates from susceptible reactions. The appearance of inhibitor in diffusates coincided with the appearance of protection on the leaf. In addition to race 2 of H. carbonum, other fungi (H. victoriae, H. turcicum, and Alternaria) also induced production of the inhibitor as well as resistance to race 1. The inhibitor prevented the germination of conidia of all fungi tested. The growth of two phytopathogenic bacteria was also completely inhibited. Incorporation of {sup 3}H-leucine and {sup 14}C-uridine into protein and RNA, respectively, by conidia of H. carbonum was prevented within 15 min of exposure to inhibitor. In addition, respiration of conidia in inhibitor was reduced within 90 min to just 25% of the rate of conidia germinated in water. However, inhibitory activity of the diffusates was readily reversed when conidia were rinsed with water or when organic or amino acids were added to inhibited conidia. The addition of sodium acetate to race 2 and race 1 inocula resulted in lesion enlargement and also nullified inhibitory activity in vitro.

  6. NOVEL ATYPICAL PKC INHIBITORS PREVENT VASCULAR ENDOTHELIAL GROWTH FACTOR-INDUCED BLOOD-RETINAL BARRIER DYSFUNCTION

    PubMed Central

    Titchenell, Paul M.; Lin, Cheng-Mao; Keil, Jason M.; Sundstrom, Jeffrey M.; Smith, Charles D.; Antonetti, David A.

    2013-01-01

    SYNOPSIS Pro-inflammatory cytokines and growth factors such as vascular endothelial growth factor (VEGF) contribute to the loss of the blood-retinal barrier (BRB) and subsequent macular edema in various retinal pathologies. VEGF signaling requires conventional PKC (PKCβ) activity; however, PKCβ inhibition only partially prevents VEGF-induced endothelial permeability and does not affect pro-inflammatory cytokine-induced permeability suggesting the involvement of alternative signaling pathways. Here, we provide evidence for the involvement of atypical protein kinase C (aPKC) signaling in VEGF-induced endothelial permeability and identify a novel class of inhibitors of aPKC that prevent BRB breakdown in vivo. Genetic and pharmacological manipulations of aPKC isoforms were used to assess their contribution to endothelial permeability in culture. A chemical library was screened using an in vitro kinase assay to identify novel small molecule inhibitors and further medicinal chemistry was performed to delineate a novel pharmacophore. We demonstrate that aPKC isoforms are both sufficient and required for VEGF-induced endothelial permeability. Furthermore, these specific, potent, non-competitive, small molecule inhibitors prevented VEGF-induced tight junction internalization and retinal endothelial permeability in response to VEGF in both primary culture and in rodent retina. These data suggest that aPKC inhibition with 2-amino-4-phenyl-thiophene derivatives may be developed to preserve the BRB in retinal diseases such as diabetic retinopathy or uveitis and the blood-brain barrier (BBB) in the presence of brain tumors. PMID:22721706

  7. Wound-induced Accumulation of Trypsin Inhibitor Activities in Plant Leaves

    PubMed Central

    Walker-Simmons, Mary; Ryan, Clarence A.

    1977-01-01

    Proteinase inhibitor-inducing factor (PIIF)-induced accumulation of trypsin inhibitory activity was assayed in leaves of 23 species of plants representing 10 agriculturally important genera. Inhibitory activity was assayed in extracts from attached leaves or from excised leaves supplied through the cut petioles for 30 minutes with extracts containing the wound hormone PIIF, obtained from either tomato leaves or from the leaves of each plant under study. During subsequent incubation in light for 72 hours, PIIF-induced trypsin inhibitory activity accumulated in significant quantities in 10 of the 23 species. Alfalfa accumulated the highest levels of inhibitory activity (340 μg trypsin inhibited/ml leaf juice), followed by tobacco, tomato, potato, strawberry, cucumber, squash, clover, broadbean, and grape. It is suggested that the inhibitors might be classed as allelochemics that are present in certain plants and not others in response to environmental pressures during their evolution. PMID:16659868

  8. Characterization of a novel component of the peroxisomal protein import apparatus using fluorescent peroxisomal proteins.

    PubMed Central

    Kalish, J E; Keller, G A; Morrell, J C; Mihalik, S J; Smith, B; Cregg, J M; Gould, S J

    1996-01-01

    Fluorescent peroxisomal probes were developed by fusing green fluorescent protein (GFP) to the matrix peroxisomal targeting signals PTS1 and PTS2, as well as to an integral peroxisomal membrane protein (IPMP). These proteins were used to identify and characterize novel peroxisome assembly (pas) mutants in the yeast Pichia pastoris. Mutant cells lacking the PAS10 gene mislocalized both PTS1-GFP and PTS2-GFP to the cytoplasm but did incorporate IPMP-GFP into peroxisome membranes. Similar distributions were observed for endogenous peroxisomal matrix and membrane proteins. While peroxisomes from translocation-competent pas mutants sediment in sucrose gradients at the density of normal peroxisomes, >98% of peroxisomes from pas10 cells migrated to a much lower density and had an extremely low ratio of matrix:membrane protein. These data indicate that Pas10p plays an important role in protein translocation across the peroxisome membrane. Consistent with this hypothesis, we find that Pas10p is an integral protein of the peroxisome membrane. In addition, Pas10p contains a cytoplasmically-oriented C3HC4 zinc binding domain that is essential for its biological activity. Images PMID:8670828

  9. Peroxisomes in brain development and function.

    PubMed

    Berger, Johannes; Dorninger, Fabian; Forss-Petter, Sonja; Kunze, Markus

    2016-05-01

    Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer's disease, autism and amyotrophic lateral sclerosis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26686055

  10. Metabolite transport across the peroxisomal membrane.

    PubMed

    Visser, Wouter F; van Roermund, Carlo W T; Ijlst, Lodewijk; Waterham, Hans R; Wanders, Ronald J A

    2007-01-15

    In recent years, much progress has been made with respect to the unravelling of the functions of peroxisomes in metabolism, and it is now well established that peroxisomes are indispensable organelles, especially in higher eukaryotes. Peroxisomes catalyse a number of essential metabolic functions including fatty acid beta-oxidation, ether phospholipid biosynthesis, fatty acid alpha-oxidation and glyoxylate detoxification. The involvement of peroxisomes in these metabolic pathways necessitates the transport of metabolites in and out of peroxisomes. Recently, considerable progress has been made in the characterization of metabolite transport across the peroxisomal membrane. Peroxisomes posses several specialized transport systems to transport metabolites. This is exemplified by the identification of a specific transporter for adenine nucleotides and several half-ABC (ATP-binding cassette) transporters which may be present as hetero- and homo-dimers. The nature of the substrates handled by the different ABC transporters is less clear. In this review we will describe the current state of knowledge of the permeability properties of the peroxisomal membrane. PMID:17173541

  11. Peroxisomes in brain development and function☆

    PubMed Central

    Berger, Johannes; Dorninger, Fabian; Forss-Petter, Sonja; Kunze, Markus

    2016-01-01

    Peroxisomes contain numerous enzymatic activities that are important for mammalian physiology. Patients lacking either all peroxisomal functions or a single enzyme or transporter function typically develop severe neurological deficits, which originate from aberrant development of the brain, demyelination and loss of axonal integrity, neuroinflammation or other neurodegenerative processes. Whilst correlating peroxisomal properties with a compilation of pathologies observed in human patients and mouse models lacking all or individual peroxisomal functions, we discuss the importance of peroxisomal metabolites and tissue- and cell type-specific contributions to the observed brain pathologies. This enables us to deconstruct the local and systemic contribution of individual metabolic pathways to specific brain functions. We also review the recently discovered variability of pathological symptoms in cases with unexpectedly mild presentation of peroxisome biogenesis disorders. Finally, we explore the emerging evidence linking peroxisomes to more common neurological disorders such as Alzheimer’s disease, autism and amyotrophic lateral sclerosis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26686055

  12. Why do peroxisomes associate with the cytoskeleton?

    PubMed

    Neuhaus, Alexander; Eggeling, Christian; Erdmann, Ralf; Schliebs, Wolfgang

    2016-05-01

    Attachment of peroxisomes to cytoskeleton and movement along microtubular filaments and actin cables are essential and highly regulated processes enabling metabolic efficiency, biogenesis, maintenance and inheritance of this dynamic cellular compartment. Several peroxisome-associated proteins have been identified, which mediate interaction with motor proteins, adaptor proteins or other constituents of the cytoskeleton. It appears that there is a species-specific complexity of protein-protein interactions required to control directional movement and arresting. An open question is why some proteins with a specific role in peroxisomal protein import have an additional function in the regulation of cytoskeleton binding and motility of peroxisomes. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26616035

  13. A novel histone deacetylase inhibitor Chidamide induces apoptosis of human colon cancer cells

    SciTech Connect

    Liu, Lin; Chen, Baoan; Qin, Shukui; Li, Suyi; He, Xiangming; Qiu, Shaomin; Zhao, Wei; Zhao, Hong

    2010-02-05

    Many studies have demonstrated that histone deacetylase (HDAC) inhibitors induce various tumor cells to undergo apoptosis, and such inhibitors have been used in different clinical trials against different human cancers. In this study, we designed and synthesized a novel HDAC inhibitor, Chidamide. We showed that Chidamide was able to increase the acetylation levels of histone H3 and to inhibit the PI3K/Akt and MAPK/Ras signaling pathways, which resulted in arresting colon cancer cells at the G1 phase of the cell cycle and promoting apoptosis. As a result, the proliferation of colon cancer cells was suppressed in vitro. Our data support the potential application of Chidamide as an anticancer agent in treating colon cancer. Future studies are needed to demonstrate its in vivo efficacy.

  14. Aromatase Inhibitor-Induced Erythrocytosis in a Patient Undergoing Hormonal Treatment for Breast Cancer

    PubMed Central

    Yeruva, Sri Lakshmi Hyndavi; Ogbonna, Onyekachi Henry; Oneal, Patricia

    2015-01-01

    Aromatase inhibitors (AIs) are most commonly used for breast cancer patients with hormone receptor positive disease. Although the side effect profile of aromatase inhibitors is well known, including common side effects like arthralgia, bone pain, arthritis, hot flashes, and more serious problems like osteoporosis, we present a case of an uncommon side effect of these medications. We report the case of a postmenopausal woman on adjuvant hormonal therapy with anastrozole after completing definitive therapy for stage IIIB estrogen receptor-positive breast cancer, who was referred to hematology service for evaluation of persistent erythrocytosis. Primary and known secondary causes of polycythemia were ruled out. On further evaluation, we found that her erythrocytosis began after initiation of anastrozole and resolved after it was discontinued. We discuss the pathophysiology of aromatase inhibitor-induced erythrocytosis and reference of similar cases reported in the literature. PMID:26137331

  15. Activation of peroxisome proliferator-activated receptors by chlorinated hydrocarbons and endogenous steroids.

    PubMed Central

    Zhou, Y C; Waxman, D J

    1998-01-01

    Trichloroethylene (TCE) and related hydrocarbons constitute an important class of environmental pollutants whose adverse effects on liver, kidney, and other tissues may, in part, be mediated by peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors belonging to the steroid receptor superfamily. Activation of PPAR induces a dramatic proliferation of peroxisomes in rodent hepatocytes and ultimately leads to hepatocellular carcinoma. To elucidate the role of PPAR in the pathophysiologic effects of TCE and its metabolites, it is important to understand the mechanisms whereby PPAR is activated both by TCE and endogenous peroxisome proliferators. The investigations summarized in this article a) help clarify the mechanism by which TCE and its metabolites induce peroxisome proliferation and b) explore the potential role of the adrenal steroid and anticarcinogen dehydroepiandrosterone 3beta-sulfate (DHEA-S) as an endogenous PPAR activator. Transient transfection studies have demonstrated that the TCE metabolites trichloroacetate and dichloroacetate both activate PPAR alpha, a major liver-expressed receptor isoform. TCE itself was inactive when tested over the same concentration range, suggesting that its acidic metabolites mediate the peroxisome proliferative potential of TCE. Although DHEA-S is an active peroxisome proliferator in vivo, this steroid does not stimulate trans-activation of PPAR alpha or of two other PPAR isoforms, gamma and delta/Nuc1, when evaluated in COS-1 cell transfection studies. To test whether PPAR alpha mediates peroxisomal gene induction by DHEA-S in intact animals, DHEA-S has been administered to mice lacking a functional PPAR alpha gene. DHEA-S was thus shown to markedly increase hepatic expression of two microsomal P4504A proteins associated with the peroxisomal proliferative response in wild-type mice. In contrast, DHEA-S did not induce these hepatic proteins in PPAR alpha-deficient mice. Thus, despite its unresponsiveness to steroidal peroxisome proliferators in transfection assays, PPAR alpha is an obligatory mediator of DHEA-S-stimulated hepatic peroxisomal gene induction. DHEA-S, or one of its metabolites, may thus serve as an important endogenous regulator of liver peroxisomal enzyme expression. Images Figure 2 Figure 3 PMID:9703482

  16. Synergistic effect of apoptosis and necroptosis inhibitors in cisplatin-induced nephrotoxicity.

    PubMed

    Tristo, Vivian Regina; Pessoa, Edson A; Nakamichi, Renata; Reis, Luciana A; Batista, Marcelo Costa; de Souza Duro Junior, Marcelino; Monte, Jlio Cesar Martins

    2016-01-01

    Necroptosis is a nonapoptotic cell death pathway. We aim to study the effect of necrostatin-1 (a specific necroptosis inhibitor) in cisplatin-induced injury. We analyzed the effect of the combined use of inhibitors of apoptosis (z-vad) and necroptosis (necrostatin-1) in acute kidney injury by cisplatin in human proximal tubule cells. Our results showed moderate effectiveness in cytoprotection after treatment with z-vad. But the concomitant use of inhibitors (z-vad and necrostatin-1) presented synergistic and additive protection. The present study analyzed the caspase-3 activity and we observed a significant decrease in the group treated with z-vad and cisplatin. However we did not observe changes in the group treated with both inhibitors (z-vad and necrostatin-1) and cisplatin. Thus, demonstrating that necroptosis is a caspase-independent mechanism. We also analyzed the effect of necrostatin-1 in vivo model. C57BL/6 mice were treated with cisplatin and/or inhibitors. The concomitant use of inhibitors (z-vad and necrostatin-1) recovered renal function and decreased levels of urinary Ngal. Additionally, we analyzed the expression of RIP-1, a specific marker for necroptosis. In animals treated with cisplatin and z-VAD levels of RIP-1 were higher. This result reinforces that necroptosis occurs only in conditions where apoptosis was blocked. However, the use of both inhibitors (z-vad and necrostatin-1) provided additional protection. In conclusion, our study has a significant potential to show in vitro and in vivo protection obtained by necrostatin-1. Therefore, our results suggest that necroptosis may be an important mechanism of cell death after kidney injury. PMID:26519037

  17. A novel role for the apoptosis inhibitor ARC in suppressing TNFα-induced regulated necrosis.

    PubMed

    Kung, G; Dai, P; Deng, L; Kitsis, R N

    2014-04-01

    TNFα signaling can promote apoptosis or a regulated form of necrosis. ARC (apoptosis repressor with CARD (caspase recruitment domain)) is an endogenous inhibitor of apoptosis that antagonizes both the extrinsic (death receptor) and intrinsic (mitochondrial/ER) apoptosis pathways. We discovered that ARC blocks not only apoptosis but also necrosis. TNFα-induced necrosis was abrogated by overexpression of wild-type ARC but not by a CARD mutant that is also defective for inhibition of apoptosis. Conversely, knockdown of ARC exacerbated TNFα-induced necrosis, an effect that was rescued by reconstitution with wild-type, but not CARD-defective, ARC. Similarly, depletion of ARC in vivo exacerbated necrosis caused by infection with vaccinia virus, which elicits severe tissue damage through this pathway, and sensitized mice to TNFα-induced systemic inflammatory response syndrome. The mechanism underlying these effects is an interaction of ARC with TNF receptor 1 that interferes with recruitment of RIP1, a critical mediator of TNFα-induced regulated necrosis. These findings extend the role of ARC from an apoptosis inhibitor to a regulator of the TNFα pathway and an inhibitor of TNFα-mediated regulated necrosis. PMID:24440909

  18. Histone deacetylase inhibitors induce apoptosis in both Type I and Type II endometrial cancer cells

    PubMed Central

    Jiang, Shujuan; Dowdy, Sean C.; Meng, Xue W.; Wang, Zhaoyu; Jones, Monica B.; Podratz, Karl C.; Jiang, Shi-Wen

    2012-01-01

    Objective To characterize the molecular pathways involved in apoptosis following administration of histone deacetylase inhibitors to Type I and II endometrial cancer cells. Methods Ark2, Ishikawa, and AN3 cell lines representing both Type I and II endometrial cancers were treated with various concentrations of oxamflatin and HDAC inhibitor-1. Cell apoptosis was determined by flow cytometry, nuclear staining, Western blotting, and mitochondrial membrane potential assays. Results Compared to controls, there was a 95% reduction in the growth of Ark2 cells following administration of histone deacetylase inhibitors and this response was dose-dependent. These agents also caused profound morphologic changes and loss of mitochondrial membrane potentials consistent with the induction of apoptosis. Cleavage of PARP, caspase-9, and caspase-8 was detected, confirming the activation of apoptotic cascades in endometrial carcinoma cells. This effect was present in both serous and endometrioid cell types. Conclusion Our results suggest that oxamflatin and HDAC inhibitor-1 have potent cytotoxicity in endometrial cancer cells by inducing cell apoptosis. Histone deacetylase inhibitors are promising agents for the treatment of both Type I and II endometrial carcinoma. PMID:17303224

  19. Combination of Proteasomal Inhibitors Lactacystin and MG132 Induced Synergistic Apoptosis in Prostate Cancer Cells

    PubMed Central

    Shirley, Robert B; Kaddour-Djebbar, Ismail; Patel, Dimpu M; Lakshmikanthan, Vijayabaskar; Lewis, Ronald W; Kumar, M Vijay

    2005-01-01

    Abstract The proteasome inhibitor Velcade (bortezomib/PS-341) has been shown to block the targeted proteolytic degradation of short-lived proteins that are involved in cell maintenance, growth, division, and death, advocating the use of proteasomal inhibitors as therapeutic agents. Although many studies focused on the use of one proteasomal inhibitor for therapy, we hypothesized that the combination of proteasome inhibitors Lactacystin (AG Scientific, Inc., San Diego, CA) and MG132 (Biomol International, Plymouth Meeting, PA) may be more effective in inducing apoptosis. Additionally, this regimen would enable the use of sublethal doses of individual drugs, thus reducing adverse effects. Results indicate a significant increase in apoptosis when LNCaP prostate cancer cells were treated with increasing levels of Lactacystin, MG132, or a combination of sublethal doses of these two inhibitors. Furthermore, induction in apoptosis coincided with a significant loss of IKKα, IKKβ, and IKKγ proteins and NFκB activity. In addition to describing effective therapeutic agents, we provide a model system to facilitate the investigation of the mechanism of action of these drugs and their effects on the IKK-NFκB axis. PMID:16354593

  20. 8-Hydroxyeicosapentaenoic Acid Decreases Plasma and Hepatic Triglycerides via Activation of Peroxisome Proliferator-Activated Receptor Alpha in High-Fat Diet-Induced Obese Mice

    PubMed Central

    Yamada, Hidetoshi; Kikuchi, Sayaka; Hakozaki, Mayuka; Motodate, Kaori; Nagahora, Nozomi; Hirose, Masamichi

    2016-01-01

    PPARs regulate the expression of genes involved in lipid homeostasis. PPARs serve as molecular sensors of fatty acids, and their activation can act against obesity and metabolic syndromes. 8-Hydroxyeicosapentaenoic acid (8-HEPE) acts as a PPAR ligand and has higher activity than EPA. However, to date, the PPAR ligand activity of 8-HEPE has only been demonstrated in vitro. Here, we investigated its ligand activity in vivo by examining the effect of 8-HEPE treatment on high fat diet-induced obesity in mice. After the 4-week treatment period, the levels of plasma and hepatic triglycerides in the 8-HEPE-fed mice were significantly lower than those in the HFD-fed mice. The expression of genes regulated by PPARα was significantly increased in 8-HEPE-fed mice compared to those that received only HFD. Additionally, the level of hepatic palmitic acid in 8-HEPE-fed mice was significantly lower than in HFD-fed mice. These results suggested that intake of 8-HEPE induced PPARα activation and increased catabolism of lipids in the liver. We found no significant differences between EPA-fed mice and HFD-fed mice. We demonstrated that 8-HEPE has a larger positive effect on metabolic syndrome than EPA and that 8-HEPE acts by inducing PPARα activation in the liver.

  1. Pulsed EPR characterization of HIV-1 protease conformational sampling and inhibitor-induced population shifts.

    PubMed

    Liu, Zhanglong; Casey, Thomas M; Blackburn, Mandy E; Huang, Xi; Pham, Linh; de Vera, Ian Mitchelle S; Carter, Jeffrey D; Kear-Scott, Jamie L; Veloro, Angelo M; Galiano, Luis; Fanucci, Gail E

    2016-02-17

    The conformational landscape of HIV-1 protease (PR) can be experimentally characterized by pulsed-EPR double electron-electron resonance (DEER). For this characterization, nitroxide spin labels are attached to an engineered cysteine residue in the flap region of HIV-1 PR. DEER distance measurements from spin-labels contained within each flap of the homodimer provide a detailed description of the conformational sampling of apo-enzyme as well as induced conformational shifts as a function of inhibitor binding. The distance distribution profiles are further interpreted in terms of a conformational ensemble scheme that consists of four unique states termed "curled/tucked", "closed", "semi-open" and "wide-open" conformations. Reported here are the DEER results for a drug-resistant variant clinical isolate sequence, V6, in the presence of FDA approved protease inhibitors (PIs) as well as a non-hydrolyzable substrate mimic, CaP2. Results are interpreted in the context of the current understanding of the relationship between conformational sampling, drug resistance, and kinetic efficiency of HIV-1PR as derived from previous DEER and kinetic data for a series of HIV-1PR constructs that contain drug-pressure selected mutations or natural polymorphisms. Specifically, these collective results support the notion that inhibitor-induced closure of the flaps correlates with inhibitor efficiency and drug resistance. This body of work also suggests DEER as a tool for studying conformational sampling in flexible enzymes as it relates to function. PMID:26489725

  2. Pulsed EPR Characterization of HIV-1 Protease Conformational Sampling and Inhibitor-Induced Population Shifts

    PubMed Central

    Liu, Zhanglong; Casey, Thomas M.; Blackburn, Mandy E.; Huang, Xi; Pham, Linh; de Vera, Ian Mitchelle S.; Carter, Jeffrey D.; Kear-Scott, Jamie L.; Veloro, Angelo M.; Galiano, Luis; Fanucci, Gail E.

    2015-01-01

    The conformational landscape of HIV-1 protease (PR) can be experimentally characterized by pulsed-EPR double electron-electron resonance (DEER). For this characterization, nitroxide spin labels are attached to an engineered cysteine residue in the flap region of HIV-1 PR. DEER distance measurements from spin-labels contained within each flap of the homodimer provide a detailed description of the conformational sampling of apo-enzyme as well as induced conformational shifts as a function inhibitor binding. The distance distribution profiles are further interpreted in terms of a conformational ensemble scheme that consists of four unique states termed “curled/tucked”, “closed”, “semi-open” and “wide-open” conformations. Reported here are the DEER results for a drug-resistant variant clinical isolate sequence, V6, in the presence of FDA approved protease inhibitors (PIs) as well as a non-hydrolyzable substrate mimic, CaP2. Results are interpreted in the context of the current understanding of the relationship between conformational sampling, drug resistance, and kinetic efficiency of HIV-1PR as derived from previous DEER and kinetic data for a series of HIV-1PR constructs that contain drug-pressure selected mutations or natural polymorphisms. Specifically, these collective results support the notion that inhibitor-induced closure of the flaps correlates with inhibitor efficiency and drug resistance. This body of work also suggests DEER as a tool for studying conformational sampling in flexible enzymes as it relates to function. PMID:26489725

  3. Inhibitor of cyclooxygenase-2 induces cell-cycle arrest in the epithelial cancer cell line via up-regulation of cyclin dependent kinase inhibitor p21

    PubMed Central

    Toyoshima, T; Kamijo, R; Takizawa, K; Sumitani, K; Ito, D; Nagumo, M

    2002-01-01

    Cyclooxygenase-2 is the rate-limiting enzyme in synthesis of prostaglandins and other eicosanoids. Prior reports have shown that inhibition of cyclooxygenase-2 activity, either by selective inhibitors or by antisense oligonucleotide, results in suppression of growth of squamous cell carcinoma cell lines which express high cyclooxygenase-2 levels, such as NA, a cell line established from a squamous cell carcinoma of the tongue. To investigate the mechanisms by which cyclooxygenase-2 inhibitors suppressed growth of these cells, the effects of NS-398, the selective cyclooxygenase-2 inhibitor, on cell-cycle distribution were examined. NS-398 induced G0/G1 cell-cycle arrest in NA cells which expressed cyclooxygenase-2. G0/G1 arrest induced by NS-398 was accompanied by up-regulation of cyclin-dependent kinase inhibitor p21, but not by up-regulation of the other cyclin-dependent kinase inhibitors. Transfection with p21 antisense oligonucleotide inhibited cell-cycle arrest induced by NS-398. Accumulation in G0/G1 was also observed in NA cells transfected with cyclooxygenase-2 antisense oligonucleotide. On the other hand, NS-398-treated NA cells showed a loss of plasma membrane asymmetry, a marker of early events in apoptosis. However, NS-398 did not induce other morphological and biochemical changes related to apoptotic cell death. These results suggest that cyclooxygenase-2 inhibitor induces G0/G1 cell-cycle arrest in NA cells by up-regulation of p21. Our results also suggest that NS-398 is not sufficient to complete the whole process of apoptosis in NA cells, although it induces an early event in apoptosis. British Journal of Cancer (2002) 86, 1150–1156. DOI: 10.1038/sj/bjc/6600183 www.bjcancer.com © 2002 Cancer Research UK PMID:11953864

  4. Inhibitor of cyclooxygenase-2 induces cell-cycle arrest in the epithelial cancer cell line via up-regulation of cyclin dependent kinase inhibitor p21.

    PubMed

    Toyoshima, T; Kamijo, R; Takizawa, K; Sumitani, K; Ito, D; Nagumo, M

    2002-04-01

    Cyclooxygenase-2 is the rate-limiting enzyme in synthesis of prostaglandins and other eicosanoids. Prior reports have shown that inhibition of cyclooxygenase-2 activity, either by selective inhibitors or by antisense oligonucleotide, results in suppression of growth of squamous cell carcinoma cell lines which express high cyclooxygenase-2 levels, such as NA, a cell line established from a squamous cell carcinoma of the tongue. To investigate the mechanisms by which cyclooxygenase-2 inhibitors suppressed growth of these cells, the effects of NS-398, the selective cyclooxygenase-2 inhibitor, on cell-cycle distribution were examined. NS-398 induced G0/G1 cell-cycle arrest in NA cells which expressed cyclooxygenase-2. G0/G1 arrest induced by NS-398 was accompanied by up-regulation of cyclin-dependent kinase inhibitor p21, but not by up-regulation of the other cyclin-dependent kinase inhibitors. Transfection with p21 antisense oligonucleotide inhibited cell-cycle arrest induced by NS-398. Accumulation in G0/G1 was also observed in NA cells transfected with cyclooxygenase-2 antisense oligonucleotide. On the other hand, NS-398-treated NA cells showed a loss of plasma membrane asymmetry, a marker of early events in apoptosis. However, NS-398 did not induce other morphological and biochemical changes related to apoptotic cell death. These results suggest that cyclooxygenase-2 inhibitor induces G0/G1 cell-cycle arrest in NA cells by up-regulation of p21. Our results also suggest that NS-398 is not sufficient to complete the whole process of apoptosis in NA cells, although it induces an early event in apoptosis. PMID:11953864

  5. AMP-activated protein kinase is required for exercise-induced peroxisome proliferator-activated receptor γ co-activator 1α translocation to subsarcolemmal mitochondria in skeletal muscle

    PubMed Central

    Smith, Brennan K; Mukai, Kazutaka; Lally, James S; Maher, Amy C; Gurd, Brendon J; Heigenhauser, George J F; Spriet, Lawrence L; Holloway, Graham P

    2013-01-01

    In skeletal muscle, mitochondria exist as two subcellular populations known as subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria. SS mitochondria preferentially respond to exercise training, suggesting divergent transcriptional control of the mitochondrial genomes. The transcriptional co-activator peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and mitochondrial transcription factor A (Tfam) have been implicated in the direct regulation of the mitochondrial genome in mice, although SS and IMF differences may exist, and the potential signalling events regulating the mitochondrial content of these proteins have not been elucidated. Therefore, we examined the potential for PGC-1α and Tfam to translocate to SS and IMF mitochondria in human subjects, and performed experiments in rodents to identify signalling mechanisms regulating these translocation events. Acute exercise in humans and rats increased PGC-1α content in SS but not IMF mitochondria. Acute exposure to 5-aminoimidazole-4-carboxamide-1-β-ribofuranoside in rats recapitulated the exercise effect of increased PGC-1α protein within SS mitochondria only, suggesting that AMP-activated protein kinase (AMPK) signalling is involved. In addition, rendering AMPK inactive (AMPK kinase dead mice) prevented exercise-induced PGC-1α translocation to SS mitochondria, further suggesting that AMPK plays an integral role in these translocation events. In contrast to the conserved PGC-1α translocation to SS mitochondria across species (humans, rats and mice), acute exercise only increased mitochondrial Tfam in rats. Nevertheless, in rat resting muscle PGC-1α and Tfam co-immunoprecipate with α-tubulin, suggesting a common cytosolic localization. These data suggest that exercise causes translocation of PGC-1α preferentially to SS mitochondria in an AMPK-dependent manner. PMID:23297307

  6. Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine.

    PubMed

    Barbiero, Janaína K; Santiago, Ronise M; Persike, Daniele Suzete; da Silva Fernandes, Maria José; Tonin, Fernanda S; da Cunha, Claudio; Lucio Boschen, Suelen; Lima, Marcelo M S; Vital, Maria A B F

    2014-11-01

    A large body of evidence suggests that peroxisome proliferator-activated receptor (PPAR) agonists may improve some of the pathological features of Parkinson's disease (PD). In the present study, we evaluated the effects of the PPAR-α agonist fenofibrate (100mg/kg) and PPAR-γ agonist pioglitazone (30mg/kg) in a rat model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine (MPTP). Male Wistar rats were pretreated with both drugs for 5 days and received an infusion of MPTP. The experiments were divided into two parts. First, 1, 7, 14, and 21 days after surgery, the animals were submitted to the open field test. On days 21 and 22, the rats were subjected to the forced swim test and two-way active avoidance task. In the second part of the study, 24h after neurotoxin administration, immunohistochemistry was performed to assess tyrosine hydroxylase activity. The levels of dopamine and its metabolites in the striatum were determined using high-performance liquid chromatography, and fluorescence detection was used to assess caspase-3 activation in the substantia nigra pars compacta (SNpc). Both fenofibrate as pioglitazone protected against hypolocomotion, depressive-like behavior, impairment of learning and memory, and dopaminergic neurodegeneration caused by MPTP, with dopaminergic neuron loss of approximately 33%. Fenofibrate and pioglitazone also protected against the increased activation of caspase-3, an effector enzyme of the apoptosis cascade that is considered one of the pathological features of PD. Thus, PPAR agonists may contribute to therapeutic strategies in PD. PMID:25127682

  7. A Novel Peroxisome Proliferator-activated Receptor (PPAR)α Agonist and PPARγ Antagonist, Z-551, Ameliorates High-fat Diet-induced Obesity and Metabolic Disorders in Mice.

    PubMed

    Shiomi, Yoshihiro; Yamauchi, Toshimasa; Iwabu, Masato; Okada-Iwabu, Miki; Nakayama, Ryo; Orikawa, Yuki; Yoshioka, Yoshichika; Tanaka, Koichiro; Ueki, Kohjiro; Kadowaki, Takashi

    2015-06-01

    A novel peroxisome proliferator-activated receptor (PPAR) modulator, Z-551, having both PPARα agonistic and PPARγ antagonistic activities, has been developed for the treatment of obesity and obesity-related metabolic disorders. We examined the effects of Z-551 on obesity and the metabolic disorders in wild-type mice on the high-fat diet (HFD). In mice on the HFD, Z-551 significantly suppressed body weight gain and ameliorated insulin resistance and abnormal glucose and lipid metabolisms. Z-551 inhibited visceral fat mass gain and adipocyte hypertrophy, and reduced molecules involved in fatty acid uptake and synthesis, macrophage infiltration, and inflammation in adipose tissue. Z-551 increased molecules involved in fatty acid combustion, while reduced molecules associated with gluconeogenesis in the liver. Furthermore, Z-551 significantly reduced fasting plasma levels of glucose, triglyceride, free fatty acid, insulin, and leptin. To elucidate the significance of the PPAR combination, we examined the effects of Z-551 in PPARα-deficient mice and those of a synthetic PPARγ antagonist in wild-type mice on the HFD. Both drugs showed similar, but weaker effects on body weight, insulin resistance and specific events provoked in adipose tissue compared with those of Z-551 as described above, except for lack of effects on fasting plasma triglyceride and free fatty acid levels. These findings suggest that Z-551 ameliorates HFD-induced obesity, insulin resistance, and impairment of glucose and lipid metabolisms by PPARα agonistic and PPARγ antagonistic activities, and therefore, might be clinically useful for preventing or treating obesity and obesity-related metabolic disorders such as insulin resistance, type 2 diabetes, and dyslipidemia. PMID:25907553

  8. Diltiazem enhances the apoptotic effects of proteasome inhibitors to induce prostate cancer cell death.

    PubMed

    Kaddour-Djebbar, Ismail; Choudhary, Vivek; Lakshmikanthan, Vijayabaskar; Shirley, Robert; El Gaish, Manal; Al-Shabrawey, Mohamed; Al-Husein, Belal; Zhong, Roger; Davis, Michael; Dong, Zheng; Bollag, Wendy B; Kumar, M Vijay

    2012-06-01

    Diltiazem is a calcium channel blocker used to treat cardiovascular ailments. In addition, reports suggest that diltiazem induces cell death, which could make it a drug of choice for the treatment of cancer associated with hypertension. The goal of this research was to determine whether diltiazem is capable of inducing apoptosis in prostate cancer cells, either alone or in combination with the proteasome inhibitors, lactacystin and bortezomib (Velcade). Bortezomib is approved for the treatment of multiple myeloma; unfortunately, it has side effects that limit its utility. Presumably these side effects could be decreased by reducing its dose in combination with another drug. We have previously shown that lactacystin induces apoptosis in LNCaP cells; here, we show that this effect was enhanced by diltiazem. Furthermore, in proteasome inhibitor-resistant DU145 cells, diltiazem alone did not induce apoptosis but decreased cytosolic calcium levels and induced mitochondrial fission; likewise, lactacystin did not induce apoptosis but up-regulated the proapoptotic protein Bik. However, increasing concentrations of diltiazem in combination with lactacystin or bortezomib induced apoptosis in a dose-dependent and synergistic manner. The combination of diltiazem and lactacystin also up-regulated the levels of Bik and released Bak from Bcl-xL, indicating the involvement of the Bcl2 family pathway in this apoptosis. In addition, the drug combination up-regulated GRP78, suggesting also the involvement of endoplasmic reticulum stress in the apoptotic response. Thus, our results demonstrate a potential therapeutic advantage of combining a frequently used calcium channel blocker with proteasome inhibitors in the treatment of prostate cancer. PMID:22393247

  9. Effect of ACE inhibitors and AT1 receptor antagonists on pentylenetetrazole-induced convulsions in mice.

    PubMed

    ?ukawski, Krzysztof; Czuczwar, Stanis?aw Jerzy

    2015-05-01

    Experimental data show that some angiotensin-converting enzyme (ACE) inhibitors and angiotensin AT(1) receptor antagonists that are normally used as antihypertensive drugs can exert anticonvulsant-like activity against audiogenic seizures. In the current study, a number of ACE inhibitors (captopril, enalapril, cilazapril, perindopril and zofenopril) and AT(1) antagonists (losartan, telmisartan and candesartan) were examined against pentylenetetrazole (PTZ)-induced seizures in mice. Captopril (50 mg/kg) administered intraperitoneally significantly raised the PTZ threshold (p < 0.05). The remaining drugs were not protective against PTZ-induced convulsions. The current study indicates that captopril decreases PTZ-evoked seizures in mice, which is an animal model of myoclonic convulsions. PMID:25573423

  10. Association between cardiac changes and stress, and the effect of peroxisome proliferator-activated receptor-γ on stress-induced myocardial injury in mice.

    PubMed

    Gao, Jin-liao; Xue, Qiao; Wang, Shi-wen; Gao, Li-fei; Lan, Yun-feng; Fang, Zhou; Fu, Yi-cheng; Liu, Yan; Li, Yang; Fan, Li

    2015-02-01

    This study was aimed to investigate the effect of stress induced by high-intensity exercises on the cardiovascular system. In the epidemiological investigation, 200 subjects (test group) engaged in special high-intensity exercises, and 97 who lived and worked in the same environment and conditions as those in the test group, but did not participate in the exercises served as controls. In the second part of the study, 50 mice were randomly divided into control group, exhaustive swimming group, white noise group, exhaustive swimming plus white noise group, and pioglitazone intervention group. The results showed that the plasma concentrations of the myocardial injury markers heart fatty acid-binding protein (H-FABP), C-reactive protein (CRP), β-endorphin (β-EP) and levels of psychological stress were significantly increased in test group as compared with control group; special high-intensity exercises resulted in a significant elevation of the incidence of cardiac arrhythmias. Animal experiments showed that the plasma levels of corticosterone (CORT) and troponin I (TnI) were raised while the level of SOD was reduced in exhaustive swimming group, white noise group, and exhaustive swimming plus white noise group. The expression levels of PPARγ mRNA and protein were decreased in myocardial tissues in these groups as well. HE staining showed no remarkable change in myocardial tissues in all the groups. Treatment with pioglitazone significantly decreased the plasma levels of TnI and CORT, while increased the level of SOD and the expression levels of PPARγ mRNA and protein. It was concluded that the high-intensity exercises may induce a heavy physical and psychological stress and predispose the subjects to accumulated fatigue and sleep deprivation; high-intensity exercises also increases the incidence of arrhythmias and myocardial injury. PPARγ may be involved in the physical and psychological changes induced by high-intensity exercises. PMID:25673189

  11. Ku70 is essential for histone deacetylase inhibitor trichostatin A-induced apoptosis.

    PubMed

    Meng, Jin; Zhang, Feng; Zhang, Xu-Tao; Zhang, Tao; Li, Yu-Hua; Fan, Lei; Sun, Yang; Zhang, He-Long; Mei, Qi-Bing

    2015-07-01

    It was previously reported that the histone deacetylase inhibitor (HDACI) trichostatin A (TSA) induced B cell lymphoma 2 (Bcl-2)-associated X protein (Bax)-dependent apoptosis in colorectal cancer (CRC) cells. In addition, Ku70 has been identified as a regulator of apoptosis, the mechanism of which proceeds via interacting with Bax. The aim of the present study was to investigate the role of Ku70 in TSA-induced apoptosis in the CRC cell lines HCT116 and HT29. The results showed that TSA induced the acetylation of Ku70, which was found to be associated with increased apoptosis. In addition, TSA treatment promoted the release of Bax from its complex with Ku70. Bax was then detected to have translocated from the cytoplasm into the mitochondria, while cytochrome c was detected to have translocated from the mitochondria into the cytoplasm. Furthermore, knockdown of Ku70 using small interfering RNA decreased TSA-induced apoptosis as well as downregulated the expression of Bax. These effects were rescued through pre-treatment of cells with the proteasome inhibitor MG132. In conclusion, the results of the present study suggested that Ku70 acetylation mediated TSA-induced apoptosis in CRC cells. In addition, Ku70 was found to be indispensable in TSA-induced apoptosis due to its role in protecting Bax from proteosomal degradation. PMID:25695595

  12. Does combined peroxisome proliferator-activated receptors-agonist and pravastatin therapy attenuate the onset of diabetes-induced experimental nephropathy?

    PubMed Central

    Gad, Hayam I.

    2014-01-01

    Objectives: To investigate the combined effects of rosiglitazone and pravastatin on renal functions in early streptozotocin induced diabetic nephropathy (DN). Methods: This study was carried out at King Khalid University Hospital Animal House, Riyadh, Saudi Arabia from August 2013 to February 2014. Fifty male Wistar rats were assigned to normal control rats and diabetic rats that received saline, rosiglitazone, pravastatin, or rosiglitazone+pravastatin for 2 months. Their weight range was 230-250 gm, and age range was from 18-20 weeks. At the end of experiment, creatinine clearance, and urinary albumin to creatinine ratio (ACR) were measured. Blood samples were analyzed for transferrin, glycosylated hemoglobin (HbA1c), lipid profile, tumor necrosis factor-alpha (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and lipid peroxide. Results: Rosiglitazone treatment increased creatinine clearance and plasma transferrin, and decreased urinary ACR, HbA1c, plasma TNF-α, ICAM-1, and serum lipid peroxide levels without affecting the altered lipid profile. Pravastatin treatment produced similar results and normalized the lipid alteration. The combination of rosiglitazone and pravastatin was more effective in attenuating the diabetes-induced nephropathy compared with treatment with either drug alone. Conclusion: The combination strategy of rosiglitazone and pravastatin may provide a potential synergistic renoprotective effect against DN by improving renal functions and reducing indices of DN. PMID:25399210

  13. Vascular Endothelial Growth Factor Inhibitor-Induced Hypertension: Basics for Primary Care Providers

    PubMed Central

    Escalante, Carmen P.; Zalpour, Ali

    2011-01-01

    Frequently, primary care providers continue to manage the overall medical care of cancer patients. With newer and often more potent antitumor agents, patients may present to their local physicians with drug-induced toxicities such as hypertension induced by vascular endothelial growth factor (VEGF) inhibitors. It is imperative that these healthcare providers are aware of basic aspects of this drug class, as its use has increased significantly in the last several years. Uncontrolled or malignant hypertension due to these agents should be recognized readily and treated early to prevent more severe outcomes. This overview provides a brief background on the role of VEGF and angiogenesis in tumor metabolism as well as theories of the mechanism of VEGF inhibitors and hypertension. Helpful clinical practice aspects including the types of inhibitors used in the United States and their pharmacologic characteristics will be discussed. Also, diagnosis and treatment of hypertension induced by vascular endothelial growth factors are reviewed. A summary of key aspects of this drug class and hypertension is included. PMID:21629798

  14. Effect of ethylene action inhibitors upon wound-induced gene expression in tomato pericarp

    SciTech Connect

    Henstrand, J.M.; Handa, A.K. )

    1989-09-01

    The contribution of wound-ethylene to wound-induced gene expression was investigated in unripe tomato pericarp using inhibitors of ethylene action. Wounded unripe tomato pericarp was treated with 2,5-norbornadiene or silver thiosulfate to inhibit specifically the induction of ethylene-dependent mRNA species. Poly(A){sup +} RNAs isolated from these tissues after 12 hours of wounding were translated in vitro in a rabbit reticulocyte lysate system and ({sup 35}S)methionine-labeled polypeptides were compared to unwounded controls after separation by one and two-dimensional polyacrylamide gel electrophoresis. Results show that mechanical wounding induces a dramatic shift in gene expression (over 50 mRNA species) but expression of less than 15% of these genes is affected by the treatment with ethylene action inhibitors. A selective decrease in mRNAs coding for a 37 kilodalton doublet and 75 kilodalton polypeptides is observed in 2,5-norbornadiene and silver thiosulfate treated wounded pericarp. Levels of hydroxyproline-rich glycoprotein mRNAs induced in wounded tissue were not influenced by inhibitors of ethylene action.

  15. Peroxisome Biogenesis Disorders: Biological, Clinical and Pathophysiological Perspectives

    ERIC Educational Resources Information Center

    Braverman, Nancy E.; D'Agostino, Maria Daniela; MacLean, Gillian E.

    2013-01-01

    The peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive disorders in which peroxisome assembly is impaired, leading to multiple peroxisome enzyme deficiencies, complex developmental sequelae and progressive disabilities. Mammalian peroxisome assembly involves the protein products of 16 "PEX" genes;

  16. Peroxisome Biogenesis Disorders: Biological, Clinical and Pathophysiological Perspectives

    ERIC Educational Resources Information Center

    Braverman, Nancy E.; D'Agostino, Maria Daniela; MacLean, Gillian E.

    2013-01-01

    The peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive disorders in which peroxisome assembly is impaired, leading to multiple peroxisome enzyme deficiencies, complex developmental sequelae and progressive disabilities. Mammalian peroxisome assembly involves the protein products of 16 "PEX" genes;…

  17. Depressor effect of chymase inhibitor in mice with high salt-induced moderate hypertension.

    PubMed

    Devarajan, Sankar; Yahiro, Eiji; Uehara, Yoshinari; Habe, Shigehisa; Nishiyama, Akira; Miura, Shin-ichiro; Saku, Keijiro; Urata, Hidenori

    2015-12-01

    The aim of the present study was to determine whether long-term high salt intake in the drinking water induces hypertension in wild-type (WT) mice and whether a chymase inhibitor or other antihypertensive drugs could reverse the increase of blood pressure. Eight-week-old male WT mice were supplied with drinking water containing 2% salt for 12 wk (high-salt group) or high-salt drinking water plus an oral chymase inhibitor (TPC-806) at four different doses (25, 50, 75, or 100 mg/kg), captopril (75 mg/kg), losartan (100 mg/kg), hydrochlorothiazide (3 mg/kg), eplerenone (200 mg/kg), or amlodipine (6 mg/kg). Control groups were given normal water with or without the chymase inhibitor. Blood pressure and heart rate gradually showed a significant increase in the high-salt group, whereas a dose-dependent depressor effect of the chymase inhibitor was observed. There was also partial improvement of hypertension in the losartan- and eplerenone-treated groups but not in the captopril-, hydrochlorothiazide-, and amlodipine-treated groups. A high salt load significantly increased chymase-dependent ANG II-forming activity in the alimentary tract. In addition, the relative contribution of chymase to ANG II formation, but not actual average activity, showed a significant increase in skin and skeletal muscle, whereas angiotensin-converting enzyme-dependent ANG II-forming activity and its relative contribution were reduced by high salt intake. Plasma and urinary renin-angiotensin system components were significantly increased in the high-salt group but were significantly suppressed in the chymase inhibitor-treated group. In conclusion, 2% salt water drinking for 12 wk caused moderate hypertension and activated the renin-angiotensin system in WT mice. A chymase inhibitor suppressed both the elevation of blood pressure and heart rate, indicating a definite involvement of chymase in salt-sensitive hypertension. PMID:26432844

  18. Effects of inhibitors on 1-methyladenine induced maturation of starfish oocytes

    NASA Astrophysics Data System (ADS)

    Lee, Harold H.; Xu, Quanhan

    1986-12-01

    1-methladenine (1-MA) induces starfish oocytes maturation via surface reaction followed by the appearance of a cytoplasmic maturation factor which in turn induces germinal vesicle breakdown (GVBD) to resume meiosis. Cellular mechanisms involved in GVBD were investigated by microinjection of metabolic inhibitors. Colchicine (Co) inhibited maturation, cytochalasin-B (CB) delayed GVBD and actinomycin-D-(Act-D) and puromycin (Pu) had no effect. It appears that the microtubule and the microfilament systems are associated with the nuclear membrane dissolution during the process of oocyte maturation of starfish.

  19. Discovery of Indenopyrazoles as a New Class of Hypoxia Inducible Factor (HIF)-1 Inhibitors

    PubMed Central

    2013-01-01

    The indenopyrazole framework was investigated as a new class of HIF-1α inhibitors. Indenopyrazole 2l was found to most strongly inhibit the hypoxia-induced HIF-1α transcriptional activity (IC50 = 0.014 μM) among all of the known compounds having relatively simple structures, unlike manassantins. Indenopyrazole 2l suppressed HIF-1α transcriptional activity without affecting both HIF-1α protein accumulation and HIF-1α/HIF-1β heterodimerization in nuclei under the hypoxic conditions, suggesting that 2l probably affected the transcriptional pathway induced by the HIF-1α/HIF-1β heterodimer. PMID:24900662

  20. Further studies of auxin and ACC induced feminization in the cucumber plant using ethylene inhibitors

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Jaffe, M. J.

    1984-01-01

    The present study was designed to establish the role of an essential hormone controlling sex expression in cucumber. A potent anti-ethylene agent, AgNO3, completely inhibited pistillate flower formation caused by IAA, ACC or ethephon. Inhibitors of ethylene biosynthesis, AVG and CoCl2 also suppressed feminization due to exogenous IAA or ACC. Though AVG also suppressed ethephon-induced feminization, this may be due to the second effect of AVG rather than the effect on ACC biosynthesis. These results confirm that ethylene is a major factor regulating feminization and that exogenous auxin induces pistillate flower formation through its stimulation of ethylene production, rather than ACC production.

  1. Nicotinamide phosphoribosyltransferase inhibitor APO866 induces C6 glioblastoma cell death via autophagy.

    PubMed

    Yang, Ping; Zhang, Lu; Shi, Qiao-Juan; Lu, Yun-Bi; Wu, Ming; Wei, Er-Qing; Zhang, Wei-Ping

    2015-10-01

    APO866 is a potent inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), and inhibits nicotinamide adenine dinucleotide (NAD) synthesis. Our previous study showed that APO866 inhibits the proliferation of C6 glioblastoma cells, but failed to induce apoptosis. Since APO866 inhibits cellular metabolism and such metabolic stress is closely related with autophagy, thus we determined whether APO866 can induce autophagy in C6 glioblastoma cells and whether the autophagy induced by APO866 is pro-death or pro-survival. Using LC3 immunofluorescence imaging and transmission electron microscopy detection, we found that APO866 at 1-100 nM induced autophagy in C6 glioblastoma cells. APO866 at 1 nM mainly induced initial autophagic vacuoles. Whereas APO866 at 100 nM induced degrading autophagic vacuoles, as well as induced nuclei malformation and mitochondria swelling. In addition, APO866 concentration-dependently decreased the cell viability of C6 glioblastoma cells, and this effect was attenuated by autophagy inhibitors, including 3-methyladenine and LY294002. APO866 concentration-dependently decreased intracellular NAD level. Interestingly, APO866 at 1 nM slightly decreased intracellular NAD level, but dramatically increased autophagy-positive cells. The dramatical cell viability decreasing required the decreasing of intracellular NAD level to a very low threshold. Thus, our results indicated that APO866 induced pro-death autophagy in C6 glioblastoma cells by decreasing intracellular NAD, and low concentration of APO866 can be used as an autophagy inducer in autophagic-death sensitive glioblastoma. PMID:26601421

  2. Translation Inhibitors Induce Formation of Cholesterol Ester-Rich Lipid Droplets

    PubMed Central

    Tatematsu, Tsuyako; Shinohara, Yuki; Maeda, Takashi; Cheng, Jinglei; Fujimoto, Toyoshi

    2012-01-01

    Lipid droplets (LDs) in non-adipocytes contain triglycerides (TG) and cholesterol esters (CE) in variable ratios. TG-rich LDs are generated when unsaturated fatty acids are administered, but the conditions that induce CE-rich LD formation are less well characterized. In the present study, we found that protein translation inhibitors such as cycloheximide (CHX) induced generation of CE-rich LDs and that TIP47 (perilipin 3) was recruited to the LDs, although the expression of this protein was reduced drastically. Electron microscopy revealed that LDs formed in CHX-treated cells possess a distinct electron-dense rim that is not found in TG-rich LDs, whose formation is induced by oleic acid. CHX treatment caused upregulation of mTORC1, but the CHX-induced increase in CE-rich LDs occurred even when rapamycin or Torin1 was given along with CHX. Moreover, the increase in CE was seen in both wild-type and autophagy-deficient Atg5-null mouse embryonic fibroblasts, indicating that mTORC1 activation and suppression of autophagy are not necessary to induce the observed phenomenon. The results showed that translation inhibitors cause a significant change in the lipid ester composition of LDs by a mechanism independent of mTORC1 signaling and autophagy. PMID:22879956

  3. Next-generation proteasome inhibitor MLN9708 sensitizes breast cancer cells to doxorubicin-induced apoptosis.

    PubMed

    Wang, Hao; Yu, Yang; Jiang, Zheng; Cao, Wen-Ming; Wang, Zhenyu; Dou, Jun; Zhao, Yanling; Cui, Yunfu; Zhang, Hong

    2016-01-01

    Doxorubicin (Dox), one of the most effective chemotherapy drug for cancer treatment, is limited by its severe side effects and chemoresistance. Dox induces DNA damage and leads to significant proteomic changes in the cancer cells, which makes the ubiquitin-proteasome system a potential target to enhance the efficacy of Dox therapy. The unsuccessful clinical trials of proteasome inhibitor PS-341 (bortezomib) in solid tumors led to the invention of MLN9708 (ixazomib), an orally bioavailable next-generation proteasome inhibitor with improved pharmacokinetic and pharmacodynamic features. In this preclinical study, we used eight human breast cancer cell lines, which represent the major molecular subtypes of breast cancer, to validate the cytotoxic effects of MLN9708, alone and in combination with Dox. We found that MLN9708 had cytotoxic effects, induced autophagy and MKP-1 expression, and enhanced Dox-induced apoptosis in these cell lines. MLN9708 also enhanced Dox-induced JNK and p38 phosphorylation and inhibited Dox-induced IκBα degradation. Our in vitro results suggest that MLN9708 has antitumor effects in breast cancer and can sensitize breast cancer cells to Dox treatment. This promising combination may be an effective and feasible therapeutic option for treating breast cancer and warrants clinical validation. PMID:27217076

  4. Peroxisomal Import Reduces the Proapoptotic Activity of Deubiquitinating Enzyme USP2

    PubMed Central

    Reglinski, Katharina; Keil, Marina; Altendorf, Sabrina; Waithe, Dominic; Eggeling, Christian; Schliebs, Wolfgang; Erdmann, Ralf

    2015-01-01

    The human deubiquitinating enzyme ubiquitin-specific protease 2 (USP2) regulates multiple cellular pathways, including cell proliferation and apoptosis. As a result of alternative splicing four USP2 isoenzymes are expressed in human cells of which all contain a weak peroxisome targeting signal of type 1 (PTS1) at their C-termini. Here, we systematically analyzed apoptotic effects induced by overexpression and intracellular localization for each isoform. All isoforms exhibit proapoptotic activity and are post-translationally imported into the matrix of peroxisomes in a PEX5-dependent manner. However, a significant fraction of the USP2 pool resides in the cytosol due to a weaker PTS1 and thus low affinity to the PTS receptor PEX5. Blocking of peroxisomal import did not interfere with the proapoptotic activity of USP2, suggesting that the enzyme performs its critical function outside of this compartment. Instead, increase of the efficiency of USP2 import into peroxisomes either by optimization of its peroxisomal targeting signal or by overexpression of the PTS1 receptor did result in a reduction of the apoptotic rate of transfected cells. Our studies suggest that peroxisomal import of USP2 provides additional control over the proapoptotic activity of cytosolic USP2 by spatial separation of the deubiquitinating enzymes from their interaction partners in the cytosol and nucleus. PMID:26484888

  5. Chronic activation of peroxisome proliferator-activated receptor-alpha with fenofibrate prevents alterations in cardiac metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Severe heart failure (HF) is characterized by profound alterations in cardiac metabolic phenotype, with down-regulation of the free fatty acid (FFA) oxidative pathway and marked increase in glucose oxidation. We tested whether fenofibrate, a pharmacological agonist of peroxisome proliferator-activat...

  6. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    SciTech Connect

    Hayashi, H.; Miwa, A. )

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  7. Cell Death Inducing Microbial Protein Phosphatase Inhibitors--Mechanisms of Action.

    PubMed

    Kleppe, Rune; Herfindal, Lars; Døskeland, Stein Ove

    2015-10-01

    Okadaic acid (OA) and microcystin (MC) as well as several other microbial toxins like nodularin and calyculinA are known as tumor promoters as well as inducers of apoptotic cell death. Their intracellular targets are the major serine/threonine protein phosphatases. This review summarizes mechanisms believed to be responsible for the death induction and tumor promotion with focus on the interdependent production of reactive oxygen species (ROS) and activation of Ca(2+)/calmodulin kinase II (CaM-KII). New data are presented using inhibitors of specific ROS producing enzymes to curb nodularin/MC-induced liver cell (hepatocyte) death. They indicate that enzymes of the arachidonic acid pathway, notably phospholipase A2, 5-lipoxygenase, and cyclooxygenases, may be required for nodularin/MC-induced (and presumably OA-induced) cell death, suggesting new ways to overcome at least some aspects of OA and MC toxicity. PMID:26506362

  8. T0070907, a PPAR ? Inhibitor, Induced G2/M Arrest Enhances the Effect of Radiation in Human Cervical Cancer Cells Through Mitotic Catastrophe

    PubMed Central

    An, Zhengzhe; Muthusami, Sridhar; Yu, Jae-Ran

    2014-01-01

    Overexpression of peroxisome proliferator activator receptor ? (PPAR?) has been implicated in many types of cancer including cervical cancer. Radiation therapy remains the main nonsurgical modality for the treatment of cervical cancer. The present study reports the impact of pharmacological inhibition of PPAR? in enhancing the radiosensitization of cervical cancer cells in vitro. Three cervical cancer cell lines (HeLa, SiHa, and Me180) were treated with a PPAR? inhibitor, T0070907, and/or radiation. The changes in protein, cell cycle, DNA content, apoptosis, and cell survival were analyzed. The PPAR? is differentially expressed in cervical cancer cells with maximum expression in ME180 cells. T0070907 has significantly decreased the tubulin levels in a time-dependent manner in ME180 cells. The decrease in the tubulin levels after T0070907 in ME180 and SiHa cells was associated with significant increase in the cells at the G2/M phase. The changes in the tubulin and G2/M phase were not evident in HeLa cells. T0070907 reduced the protein levels of PPAR?; however, PPAR? silencing had no effect on the ?-tubulin level in ME180 cells suggesting the PPAR?-dependent and -independent actions of T0070907. To ascertain the impact of synergistic effect of T0070907 and radiation, HeLa and ME180 cells were pretreated with T0070907 and subjected to radiation (4 Gy). Annexin V-fluorescein isothiocyanate analysis revealed increased apoptosis in cells treated with radiation and T0070907 when compared to control and individual treatment. In addition, T0070907 pretreatment enhanced radiation-induced tetraploidization reinforcing the additive effect of T0070907. Confocal analysis of tubulin confirmed the onset of mitotic catastrophe in cells treated with T0070907 and radiation. These results strongly suggest the radiosensitizing effects of T0070907 through G2/M arrest and mitotic catastrophe. PMID:24642720

  9. Protection from impulse noise-induced hearing loss with novel Src-protein tyrosine kinase inhibitors

    PubMed Central

    Bielefeld, Eric C.; Hangauer, David; Henderson, Donald

    2011-01-01

    Apoptosis is a significant mechanism of cochlear hair cell loss from noise. Molecules that inhibit apoptotic intracellular signaling reduce cochlear damage and hearing loss from noise. The current study is an extension of a previous study of the protective value of Src-protein tyrosine kinase inhibitors against noise (Harris et al., 2005). The current study tested three Src-inhibitors: the indole-based KX1-141, the biaryl-based KX2-329, and the ATP-competitive KX2-328. Each of the three drugs was delivered into the chinchillas’ cochleae by allowing the solutions to diffuse across the round window membrane thirty minutes prior to exposure to impulse noise. Hearing thresholds were measured using auditory evoked responses from electrodes in the inferior colliculi. Ears treated with KX2-329 showed significantly lower threshold shifts and outer hair cell losses than the control group. The cochleae treated with KX1-141 and KX2-328 did not show statistically significant protection from the impulse noise. The finding of protection with KX2-329 demonstrates that a biaryl-based Src inhibitor has protective capacity against noise-induced hearing loss that is as good as that demonstrated by KX1-004, a Src inhibitor drug that has been studied extensively as an otoprotectant against noise, and suggests that KX2-329 could be useful for protection against noise. PMID:21840347

  10. Electron transport chain inhibitors induce microglia activation through enhancing mitochondrial reactive oxygen species production.

    PubMed

    Ye, Junli; Jiang, Zhongxin; Chen, Xuehong; Liu, Mengyang; Li, Jing; Liu, Na

    2016-01-15

    Reactive oxygen species (ROS) are believed to be mediators of excessive microglial activation, yet the resources and mechanism are not fully understood. Here we stimulated murine microglial BV-2 cells and primary microglial cells with different inhibitors of electron transport chain (ETC), rotenone, thenoyltrifluoroacetone (TTFA), antimycin A, and NaN3 to induce mitochondrial ROS production and we observed the role of mitochondrial ROS in microglial activation. Our results showed that ETC inhibitors resulted in significant changes in cell viability, microglial morphology, cell cycle arrest and mitochondrial ROS production in a dose-dependent manner in both primary cultural microglia and BV-2 cell lines. Moreover, ETC inhibitors, especially rotenone and antimycin A stimulated secretion of interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin 12 (IL-12) and tumor necrosis factor α (TNF-α) by microglia with marked activation of mitogen-activated proteinkinases (MAPKs) and nuclear factor κB (NF-κB), which could be blocked by specific inhibitors of MAPK and NF-κB and mitochondrial antioxidants, Mito-TEMPO. Taken together, our results demonstrated that inhibition of mitochondrial respiratory chain in microglia led to production of mitochondrial ROS and therefore may activate MAPK/NF-кB dependent inflammatory cytokines release in microglia, which indicated that mitochondrial-derived ROS were contributed to microglial activation. PMID:26511505

  11. [Safety of selective inhibitors of inducible cyclooxygenase-2 taken for a long period].

    PubMed

    Lamarque, Dominique

    2004-05-01

    The serious digestive side effects of the selective inhibitors the inducible cyclooxygenase-2 are reduced by 60% as compared to the nonselective non-steroidal anti-inflammatory drugs. The main risk factors associated with gastro-intestinal ulcers caused by the latter were found also with the selective inhibitors taken for long period (age > 60 years, antecedents of gastro-duodenal ulcers, concomitant aspirin treatment). In contrast, H. pylori infection was not found as risk factor apart from past history of gastro-duodenal ulcers. The complications in the lower digestive tract are twice less frequent with the selective inhibitors than with nonselective anti-inflammatory drugs. Nevertheless, it seems that the risk of exacerbation of inflammatory colitis is not reduced. The cardiovascular complications are discussed. Rofecoxib taken at supra-therapeutic dosage was recognised to increase the incidence of myocardial infarction. A such increase was not found with usual dosage or with celecoxib. The selective inhibitors may reduce the renal sodium excretion and increase the blood pressure, particularly in hypertensive patients whose the blood pressure has to be regularly checked. PMID:15239340

  12. Mitochondrial Complex I Inhibitors and Forced Oxidative Phosphorylation Synergize in Inducing Cancer Cell Death

    PubMed Central

    Simonetto, Tiziana; Chiaradonna, Ferdinando

    2013-01-01

    Cancer cells generally rely mostly on glycolysis rather than oxidative phosphorylation (OXPHOS) for ATP production. In fact, they are particularly sensitive to glycolysis inhibition and glucose depletion. On the other hand mitochondrial dysfunctions, involved in the onset of the Warburg effect, are sometimes also associated with the resistance to apoptosis that characterizes cancer cells. Therefore, combined treatments targeting both glycolysis and mitochondria function, exploiting peculiar tumor features, might be lethal for cancer cells. In this study, we show that glucose deprivation and mitochondrial Complex I inhibitors synergize in inducing cancer cell death. In particular, our results reveal that low doses of Complex I inhibitors, ineffective on immortalized cells and in high glucose growth, become specifically cytotoxic on cancer cells deprived of glucose. Importantly, the cytotoxic effect of the inhibitors on cancer cells is strongly enhanced by forskolin, a PKA pathway activator, that we have previously shown to stimulate OXPHOS. Taken together, we demonstrate that induction in cancer cells of a switch from a glycolytic to a more respirative metabolism, obtained by glucose depletion or mitochondrial activity stimulation, strongly increases their sensitivity to low doses of mitochondrial Complex I inhibitors. Our findings might be a valuable approach to eradicate cancer cells. PMID:23690779

  13. Protease inhibitors prevent plasminogen-mediated, but not pemphigus vulgaris-induced, acantholysis in human epidermis.

    PubMed

    Schuh, Theda; Besch, Robert; Braungart, Evelyn; Flaig, Michael J; Douwes, Kathrin; Sander, Christian A; Magdolen, Viktor; Probst, Christopher; Wosikowski, Katja; Degitz, Klaus

    2003-02-01

    Pemphigus is an autoimmune blistering disease of the skin and mucous membranes. It is caused by autoantibodies directed against desmosomes, which are the principal adhesion structures between epidermal keratinocytes. Binding of autoantibodies leads to the destruction of desmosomes resulting in the loss of cell-cell adhesion (acantholysis) and epidermal blisters. The plasminogen activator system has been implicated as a proteolytic effector in pemphigus. We have tested inhibitors of the plasminogen activator system with regard to their potential to prevent pemphigus-induced cutaneous pathology. In a human split skin culture system, IgG preparations of sera from pemphigus vulgaris patients caused histopathologic changes (acantholysis) similar to those observed in the original pemphigus disease. All inhibitors that were tested (active site inhibitors directed against uPA, tPA, and/or plasmin; antibodies neutralizing the enzymatic activity of uPA or tPA; substances interfering with the binding of uPA to its specific cell surface receptor uPAR) failed to prevent pemphigus vulgaris IgG-mediated acantholysis. Plasminogen-mediated acantholysis, however, was effectively antagonized by the synthetic active site serine protease inhibitor WX-UK1 or by p-aminomethylbenzoic acid. Our data argue against applying anti-plasminogen activator/anti-plasmin strategies in the management of pemphigus. PMID:12675525

  14. Methods for the Analyses of Inhibitor-Induced Aberrant Multimerization of HIV-1 Integrase

    PubMed Central

    Kessl, Jacques J.; Sharma, Amit; Kvaratskhelia, Mamuka

    2016-01-01

    HIV-1 integrase (IN) is an important therapeutic target as its function is essential for the viral lifecycle. The discovery of multifunctional allosteric IN inhibitors or ALLINIs, which potently impair viral replication by promoting aberrant, higher order IN multimerization as well as inhibit IN interactions with its cellular cofactor, LEDGF/p75, has opened new venues to exploit IN multimerization as a therapeutic target. Furthermore, the recent discovery of multimerization selective IN inhibitors or MINIs, has provided new investigational probes to study the direct effects of aberrant IN multimerization in vitro and in infected cells. Here we describe three complementary methods designed to detect and quantify the effects of these new classes of inhibitors on IN multimerization. These methods include a homogenous time-resolved fluorescence-based assay which allows for measuring EC50 values for the inhibitor-induced aberrant IN multimerization, a dynamic light scattering-based assay which allows for monitoring the formation and sizes of oligomeric IN particles in a time-dependent manner, and a chemical cross-linking-based assay of interacting IN subunits which allows for the determination of IN oligomers in viral particles. PMID:26714710

  15. NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells.

    PubMed

    Miller, Claudia P; Ban, Kechen; Dujka, Melanie E; McConkey, David J; Munsell, Mark; Palladino, Michael; Chandra, Joya

    2007-07-01

    The proteasome has been successfully targeted for the treatment of multiple myeloma and mantle cell lymphoma; however, in other hematologic malignancies, bortezomib has been less effective as a single agent. Here, we describe effects of NPI-0052, a novel proteasome inhibitor, in leukemia model systems. In cell lines, NPI-0052 inhibits all 3 proteolytic activities associated with the proteasome: chymotrypsin-, trypsin-, and caspase-like. NPI-0052 also induces DNA fragmentation in leukemia lines and in mononuclear cells from a Ph + acute lymphoblastic leukemia (ALL) patient. Caspase-3 activation by NPI-0052 was seen in wild-type Jurkat cells, but was significantly lessened in Fas-associated death domain (FADD)-deficient or caspase-8-deficient counterparts. NPI-0052-induced apoptosis was further probed using caspase-8 inhibitors, which were more protective than caspase-9 inhibitors. N-acetyl cysteine (NAC) also conferred protection against NPI-0052-induced apoptosis, indicating a role for oxidative stress by NPI-0052. In support of the drug's in vitro activities, biweekly treatment with NPI-0052 lessened total white blood cell (WBC) burden over 35 days in leukemic mice. Interestingly, combining NPI-0052 with either MS-275 or valproic acid (VPA) induced greater levels of cell death than the combination of bortezomib with these histone deacetylase inhibitors (HDACi). These effects of NPI-0052, alone and in combination with HDACi, warrant further testing to determine the compound's clinical efficacy in leukemia. PMID:17356134

  16. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury

    SciTech Connect

    Xie, Yuchao; Ramachandran, Anup; Breckenridge, David G.; Liles, John T.; Lebofsky, Margitta; Farhood, Anwar; Jaeschke, Hartmut

    2015-07-01

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24 h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5 h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. - Highlights: • Two ASK1 inhibitors protected against acetaminophen-induced liver injury. • The ASK1 inhibitors protect when used as pre- or post-treatment. • Protection by ASK1 inhibitor is not due to inhibition of APAP metabolism. • The ASK1 inhibitor prevents JNK activation and translocation to mitochondria. • Treatment with ASK1 inhibitors does not impair liver regeneration after APAP.

  17. Calpain Inhibitor PD150606 Attenuates Glutamate Induced Spiral Ganglion Neuron Apoptosis through Apoptosis Inducing Factor Pathway In Vitro

    PubMed Central

    Song, Yong-Li; Chen, Xiao-Dong; Mi, Wen-Juan; Wang, Jian; Lin, Ying; Chen, Fu-Quan; Qiu, Jian-Hua

    2015-01-01

    Objective This research aimed to investigate whether glutamate induced spiral ganglion neurons (SGNs) apoptosis through apoptosis inducing factor (AIF) pathway. And verify whether PD150606, a calpain inhibitor could prevent apoptosis by inhibiting cleaving and releasing AIF in mitochondrion. Methods SGNs of postnatal days 0-3 were harvested and cultured in dishes. 20 mM Glu, the caspase inhibitor Z-VAD-FMK and calpain inhibitor PD150606 were added into cultured dishes separately. We used optical microscope and immunofluoresence staining to observe cell morphology and AIF distribution, RT-PCR and Westernblot to analyse AIF and calpain expression in SGNs. TUNEL assay was used to test cell apoptosis. Results Cell morphology and nuclear translocation of AIF were altered in SGNs by 20 mM Glu treated in vitro. The axon of SGN shortened, more apoptosis SGN were observed and the expression of AIF and calpain were up-regulated in Glu-treated group than the normal one (P<0.05). The same experiments were conducted in 20 mM+PD150606 treated group and 20 mM+Z-VAD-FMK group. Obviously AIF were located from cytoplasm to the nuclear and the expressions of AIF and calpain were down-regulated by PD150606 (P<0.05). Positive cells in TUNEL staining decreased after PD150606 treating. However, Z-VAD-FMK had no influence on AIF, calpain expression or cell apoptosis. Conclusion The AIF-related apoptosis pathway is involved in the process of Glu-induced SGN injury. Furthermore, the inhibition of calpain can prevent AIF from releasing the nuclear or inducing SGN apoptosis. PMID:25874633

  18. XIAP inhibitors induce differentiation and impair clonogenic capacity of acute myeloid leukemia stem cells.

    PubMed

    Moreno-Martínez, Daniel; Nomdedeu, Meritxell; Lara-Castillo, María Carmen; Etxabe, Amaia; Pratcorona, Marta; Tesi, Niccolò; Díaz-Beyá, Marina; Rozman, María; Montserrat, Emili; Urbano-Ispizua, Alvaro; Esteve, Jordi; Risueño, Ruth M

    2014-06-30

    Acute myeloid leukemia (AML) is a neoplasia characterized by the rapid expansion of immature myeloid blasts in the bone marrow, and marked by poor prognosis and frequent relapse. As such, new therapeutic approaches are required for remission induction and prevention of relapse. Due to the higher chemotherapy sensitivity and limited life span of more differentiated AML blasts, differentiation-based therapies are a promising therapeutic approach. Based on public available gene expression profiles, a myeloid-specific differentiation-associated gene expression pattern was defined as the therapeutic target. A XIAP inhibitor (Dequalinium chloride, DQA) was identified in an in silico screening searching for small molecules that induce similar gene expression regulation. Treatment with DQA, similarly to Embelin (another XIAP inhibitor), induced cytotoxicity and differentiation in AML. XIAP inhibition differentially impaired cell viability of the most primitive AML blasts and reduced clonogenic capacity of AML cells, sparing healthy mature blood and hematopoietic stem cells. Taken together, these results suggest that XIAP constitutes a potential target for AML treatment and support the evaluation of XIAP inhibitors in clinical trials. PMID:24952669

  19. XIAP inhibitors induce differentiation and impair clonogenic capacity of acute myeloid leukemia stem cells

    PubMed Central

    Moreno-Martínez, Daniel; Nomdedeu, Meritxell; Lara-Castillo, María Carmen; Etxabe, Amaia; Pratcorona, Marta; Tesi, Niccolò; Díaz-Beyá, Marina; Rozman, María; Montserrat, Emili; Urbano-Ispizua, Álvaro; Esteve, Jordi; Risueño, Ruth M.

    2014-01-01

    Acute myeloid leukemia (AML) is a neoplasia characterized by the rapid expansion of immature myeloid blasts in the bone marrow, and marked by poor prognosis and frequent relapse. As such, new therapeutic approaches are required for remission induction and prevention of relapse. Due to the higher chemotherapy sensitivity and limited life span of more differentiated AML blasts, differentiation-based therapies are a promising therapeutic approach. Based on public available gene expression profiles, a myeloid-specific differentiation-associated gene expression pattern was defined as the therapeutic target. A XIAP inhibitor (Dequalinium chloride, DQA) was identified in an in silico screening searching for small molecules that induce similar gene expression regulation. Treatment with DQA, similarly to Embelin (another XIAP inhibitor), induced cytotoxicity and differentiation in AML. XIAP inhibition differentially impaired cell viability of the most primitive AML blasts and reduced clonogenic capacity of AML cells, sparing healthy mature blood and hematopoietic stem cells. Taken together, these results suggest that XIAP constitutes a potential target for AML treatment and support the evaluation of XIAP inhibitors in clinical trials. PMID:24952669

  20. Interleukin-4-induced macrophage fusion is prevented by inhibitors of mannose receptor activity.

    PubMed Central

    McNally, A. K.; DeFife, K. M.; Anderson, J. M.

    1996-01-01

    A potential role for the macrophage mannose receptor in human monocyte-derived macrophage fusion was explored by testing the effects of previously described inhibitors of its activity on the formation of interleukin-4-induced foreign body giant cells in vitro Giant cell formation was prevented or reduced in the presence of alpha-man-nan and synthetic neoglycoprotein conjugates according to the following pattern of relative inhibition: mannose-bovine serum albumin (BSA) > N-acetylgucosamine-BSA congruent to glucose-BSA. Laminarin (beta-glucan) or galactose-BSA were not inhibitory. Swainsonine and castanospermine, inhibitors of glycoprotein processing that interfere with the arrival of newly synthesized mannose receptors at the cell surface, also attenuated macrophage fusion and the formation of giant cells, whereas another glycosidase inhibitor, deoxymannojirimycin, was without effect. Mannose receptors were confirmed to be specifically up-regulated by interleukin-4 in this culture system and also demonstrated to be present and concentrated at macrophage fusion interfaces. These data suggest that the macrophage mannose receptor may be an essential participant in the mechanism of interleukin-4-induced macrophage fusion and implicate a novel function for this endocytic/phagocytic receptor in mediating foreign body giant cell formation at sites of chronic inflammation. Images Figure 1 Figure 4 PMID:8780401

  1. CTA095, a Novel Etk and Src Dual Inhibitor, Induces Apoptosis in Prostate Cancer Cells and Overcomes Resistance to Src Inhibitors

    PubMed Central

    Guo, Wenchang; Liu, Ruiwu; Bhardwaj, Gaurav; Ma, Ai-Hong; Changou, Chun; Yang, Joy C.; Li, Yuanpei; Feng, Caihong; Luo, Yan; Mazloom, Anisha; Sanchez, Eduardo; Wang, Yan; Huang, Wenzhe; Patterson, Randen; Evans, Christopher P.; Lam, Kit S.; Kung, Hsing-Jien

    2013-01-01

    Etk is a non-receptor tyrosine kinase, which provides a strong survival signal in human prostate cancer cells. Src, another tyrosine kinase that cross-activates with Etk, has been shown to play an important role in prostate cancer metastasis. Herein, we discovered a new class of Etk inhibitors. Within those inhibitors, CTA095 was identified as a potent Etk and Src dual inhibitor. CTA095 was found to induce autophagy as well as apoptosis in human prostate cancer cells. In addition, CTA095 inhibited HUVEC cell tube formation and “wound healing” of human prostate cancer cells, implying its role in inhibition of angiogenesis and metastasis of human prostate cancer. More interestingly, CTA095 could overcome Src inhibitor resistance in prostate cancer cells. It induces apoptosis in Src inhibitor resistant prostate cancer cells, likely through a mechanism of down regulation of Myc and BCL2. This finding indicates that simultaneously targeting Etk and Src could be a promising approach to overcome drug resistance in prostate cancer. PMID:23967135

  2. CTA095, a novel Etk and Src dual inhibitor, induces apoptosis in prostate cancer cells and overcomes resistance to Src inhibitors.

    PubMed

    Guo, Wenchang; Liu, Ruiwu; Bhardwaj, Gaurav; Ma, Ai-Hong; Changou, Chun; Yang, Joy C; Li, Yuanpei; Feng, Caihong; Luo, Yan; Mazloom, Anisha; Sanchez, Eduardo; Wang, Yan; Huang, Wenzhe; Patterson, Randen; Evans, Christopher P; Lam, Kit S; Kung, Hsing-Jien

    2013-01-01

    Etk is a non-receptor tyrosine kinase, which provides a strong survival signal in human prostate cancer cells. Src, another tyrosine kinase that cross-activates with Etk, has been shown to play an important role in prostate cancer metastasis. Herein, we discovered a new class of Etk inhibitors. Within those inhibitors, CTA095 was identified as a potent Etk and Src dual inhibitor. CTA095 was found to induce autophagy as well as apoptosis in human prostate cancer cells. In addition, CTA095 inhibited HUVEC cell tube formation and "wound healing" of human prostate cancer cells, implying its role in inhibition of angiogenesis and metastasis of human prostate cancer. More interestingly, CTA095 could overcome Src inhibitor resistance in prostate cancer cells. It induces apoptosis in Src inhibitor resistant prostate cancer cells, likely through a mechanism of down regulation of Myc and BCL2. This finding indicates that simultaneously targeting Etk and Src could be a promising approach to overcome drug resistance in prostate cancer. PMID:23967135

  3. Species-dependent induction of peroxisome proliferation by haloxyfop, an aryloxyphenoxy herbicide.

    PubMed

    Stott, W T; Yano, B L; Williams, D M; Barnard, S D; Hannah, M A; Cieszlak, F S; Herman, J R

    1995-11-01

    The potential of haloxyfop [2-(4-((3-chloro-5-(trifluoromethyl)-2- pyridinyl)oxy)phenoxy)propanoic acid; HAL] to induce the proliferation of hepatocellular peroxisomes (PP) was examined in rats, mice, dogs, and monkeys. Chemically induced PP is associated with the development of liver tumors in rodents via an apparent species-dependent, nongenotoxic mechanism of action. HAL is nongenotoxic yet has been shown to cause liver tumors in female B6C3F1 mice. Ingestion of HAL by rats and/or mice (0.1-14 mg/kg/day for 2 to 4 weeks) resulted in significant dose-related PP as evidenced by hepatocellular hypertrophy, increased peroxisome volume density (VD), and induction of peroxisomal enzymes and CYP4A1. Only a relatively weak induction of PP was noted at a carcinogenic dosage in female mice. In contrast to rodent species, ingestion of up to 20 mg/kg/day HAL by male and female Beagle dogs for 13 weeks failed to increase peroxisomal VD while causing only a slight increase in peroxisomal enzyme activity at the highest dosages. Oral administration of up to 30 mg/kg/day HAL by male and female Cynomolgus monkeys for 13 weeks failed to induce PP. While a direct relationship of PP with tumor formation, at least in mice, was not demonstrated, these data still support the concept that PP represents a potential marker of nongenotoxic tumorigenic activity, at some dosage, in rodents. PMID:8566486

  4. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma

    SciTech Connect

    Zuo, Chaohui; Qiu, Xiaoxin; Liu, Nianli; Yang, Darong; Xia, Man; Liu, Jingshi; Wang, Xiaohong; and others

    2015-05-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4',6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors. - Highlights: ●The cytotoxic effect of TRAIL on a developed HCC HLCZ01 cells infected with HBV. ●IFN-α and celecoxib induced apoptosis in HLCZ01 cells infected with HBV. ●The combined regime reduced the growth of xenotransplanted HCCs in nude mice model.

  5. Antagonism between granulocytic maturation and deacetylase inhibitor-induced apoptosis in acute promyelocytic leukaemia cells

    PubMed Central

    Hennig, D; Müller, S; Wichmann, C; Drube, S; Pietschmann, K; Pelzl, L; Grez, M; Bug, G; Heinzel, T; Krämer, O H

    2015-01-01

    Background: Transcriptional repression is a key mechanism driving leukaemogenesis. In acute promyelocytic leukaemia (APL), the fusion protein promyelocytic leukaemia-retinoic acid receptor-α fusion (PML-RARα) recruits transcriptional repressors to myeloid differentiation genes. All-trans-retinoic acid (ATRA) induces the proteasomal degradation of PML-RARα and granulocytic differentiation. Histone deacetylases (HDACs) fall into four classes (I–IV) and contribute to the transcription block caused by PML-RARα. Methods: Immunoblot, flow cytometry, and May-Grünwald–Giemsa staining were used to analyze differentiation and induction of apoptosis. Results: A PML-RARα- and ATRA-dependent differentiation programme induces granulocytic maturation associated with an accumulation of the myeloid transcription factor CCAAT/enhancer binding protein (C/EBP)ɛ and of the surface protein CD11b. While this process protects APL cells from inhibitors of class I HDAC activity, inhibition of all Zinc-dependent HDACs (classes I, II, and IV) with the pan-HDACi (histone deacetylase inhibitor(s)) LBH589 induces apoptosis of immature and differentiated APL cells. LBH589 can eliminate C/EBPɛ and the mitochondrial apoptosis regulator B-cell lymphoma (BCL)-xL in immature and differentiated NB4 cells. Thus, BCL-xL and C/EBPɛ are newly identified molecular markers for the efficacy of HDACi against APL cells. Conclusions: Our results could explain the therapeutic limitations occurring with ATRA and class I HDACi combinations. Pro-apoptotic effects caused by pan-HDAC inhibition are not blunted by ATRA-induced differentiation and may provide a clinically interesting alternative. PMID:25514379

  6. Suppression of VEGF-induced angiogenesis by the protein tyrosine kinase inhibitor, lavendustin A.

    PubMed Central

    Hu, D E; Fan, T P

    1995-01-01

    1. Vascular endothelial growth factor (VEGF) is a heparin-binding angiogenic factor which specifically acts on endothelial cells via distinct membrane-spanning tyrosine kinase receptors. Here we used the rat sponge implant model to test the hypothesis that the angiogenic activity of VEGF can be suppressed by protein tyrosine kinase (PTK) inhibitors. 2. Neovascular responses in subcutaneous sponge implants were determined by measurements of relative sponge blood flow by use of a 133Xe clearance technique, and confirmed by histological studies and morphometric analysis. 3. Daily local administration of 250 ng VEGF165 accelerated the rate of 133Xe clearance from the sponges and induced an intense neovascularisation. This VEGF165-induced angiogenesis was inhibited by daily co-administration of the selective PTK inhibitor, lavendustin A (10 micrograms), but not its negative control, lavendustin B (10 micrograms). Blood flow measurements and morphometric analysis of 8-day-old sponges showed that lavendustin A reduced the 133Xe clearance of VEGF165-treated sponges from 32.9 +/- 1.5% to 20.9 +/- 1.6% and the total fibrovascular growth area from 62.4 +/- 6.1% to 21.6 +/- 6.8% (n = 12, P < 0.05). 4. Co-injection of suramin (3 mg), an inhibitor of heparin-binding growth factors, also suppressed the VEGF165-elicited neovascular response. In contrast, neither lavendustin A nor suramin produced any effect on the basal sponge-induced angiogenesis. 5. When given alone, low doses of VEGF165 (25 ng) or basic fibroblast growth factor (bFGF; 10 ng) did not modify the basal sponge-induced neovascularisation.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 2 PMID:7533611

  7. Endocrinopathies induced by immune-checkpoint inhibitors in advanced non-small cell lung cancer.

    PubMed

    Rossi, Emanuela; Sgambato, Assunta; De Chiara, Giovanni; Casaluce, Francesca; Losanno, Tania; Sacco, Paola Claudia; Santabarbara, Giuseppe; Gridelli, Cesare

    2016-03-01

    The advent of immunotherapy has recently expanded the therapeutic options in advanced non-small cell lung cancer (NSCLC). In these patients, the recent efficacy demonstration of antibodies against immune checkpoints: the anti-programmed death-1 (PD-1) and anti-programmed death ligand-1 (PD-L1), has led to approval of nivolumab and pembrolizumab (anti-PD-1) in the treatment of advanced NSCLC. The mechanism of action of checkpoint inhibitors explains the development of autoimmune diseases as a side-effect of these medications. Among these, a spectrum of endocrine disorders has been also reported. This manuscript focuses particularly on endocrine disorders induced by immuno-checkpoint inhibitors employed in NSCLC, in order to suggest the strategies for their diagnosis and effective management. PMID:26681547

  8. ACE inhibitors can induce circulating antibodies directed to antigens of the superficial epidermal cells.

    PubMed

    Cozzani, Emanuele; Rosa, Gian Marco; Drosera, Massimo; Intra, Chiara; Barsotti, Antonio; Parodi, Aurora

    2011-07-01

    Drug-induced pemphigus has been reported in patients receiving angiotensin-converting enzyme inhibitors. The aim of this work was to study a group of hypertensive patients without skin diseases treated with angiotensin-converting enzyme (ACE) Inhibitors (I), to verify the presence of serum circulating anti-antibodies. The indirect immunofluorescence showed that 33 sera (52.38%) presented autoantibodies directed to an antigen of the cytoplasm of the superficial epidermal keratinocytes. Two of the 33 positive sera had antibodies to Dsg1 and/or 3 in ELISA. Immunoblot analyses were negative. All the 48 control sera were found to have no circulating antibodies using the three assays. Our results would confirm that ACEI drugs may trigger the production of circulating autoantibodies also in patients without clinical manifestations of pemphigus. PMID:20563876

  9. Angiogenesis inhibitor DC101 delays growth of intracerebral glioblastoma but induces morbidity when combined with irradiation.

    PubMed

    Verhoeff, Joost J C; Stalpers, Lukas J A; Van Noorden, Cornelis J F; Troost, Dirk; Ramkema, Marja D; van Bree, Chris; Song, Ji-Ying; Donker, Mila; Chekenya, Martha; Vandertop, W Peter; Richel, Dick J; van Furth, Wouter R

    2009-11-18

    The combination of irradiation with angiogenic inhibition is increasingly being investigated for treatment of glioblastoma multiforme (GBM). We investigated whether vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor DC101 affects morbidity and tumor growth in irradiated and non-irradiated intracerebral GBM-bearing mice, controlled with sham treatments. End-points were toxicity, morbidity and histology. Irradiation either or not combined, reduced tumor size strongly, whereas DC101 mono-treatment reduced tumor size by 64%. Irradiation delayed morbidity from 5.8 weeks in sham-treated mice to 10.3 weeks. Morbidity after combined treatment occurred after 5.9 weeks. Treatment with angiogenesis inhibitor DC101 delays tumor growth but it induces morbidity, by itself or combined with irradiation. PMID:19473756

  10. Including Receptor Flexibility and Induced Fit Effects into the Design of MMP-2 Inhibitors

    PubMed Central

    Durrant, Jacob D.; de Oliveira, César Augusto F.; McCammon, J. Andrew

    2010-01-01

    Matrix metalloproteinases (MMPs) comprise a class of flexible proteins required for normal tissue remodeling. Overexpression of MMPs is associated with a wide range of pathophysiological processes, including vascular disease, multiple sclerosis, Alzheimer’s disease, and cancer. Nearly all MMP inhibitors have failed in clinical trials, in part due to lack of specificity. Due to the highly dynamic molecular motions of the MMP-2 binding pockets, the rational drug design of MMP inhibitors has been very challenging. To address these challenges, in the current study we combine computer docking with molecular dynamics (MD) simulations in order to incorporate receptor-flexibility and induced-fit effects into the drug-design process. Our strategy identifies molecular fragments predicted to target multiple MMP-2 binding pockets. PMID:19882751

  11. Hypoxia inducible factor 1α expression and effects of its inhibitors in canine lymphoma

    PubMed Central

    KAMBAYASHI, Satoshi; IGASE, Masaya; KOBAYASHI, Kosuke; KIMURA, Ayana; SHIMOKAWA MIYAMA, Takako; BABA, Kenji; NOGUCHI, Shunsuke; MIZUNO, Takuya; OKUDA, Masaru

    2015-01-01

    Hypoxic conditions in various cancers are believed to relate with their malignancy, and hypoxia inducible factor-1α (HIF-1α) has been shown to be a major regulator of the response to low oxygen. In this study, we examined HIF-1α expression in canine lymphoma using cell lines and clinical samples and found that these cells expressed HIF-1α. Moreover, the HIF-1α inhibitors, echinomycin, YC-1 and 2-methoxyestradiol, suppressed the proliferation of canine lymphoma cell lines. In a xenograft model using NOD/scid mice, echinomycin treatment resulted in a dose-dependent regression of the tumor. Our results suggest that HIF-1α contributes to the proliferation and/or survival of canine lymphoma cells. Therefore, HIF-1α inhibitors may be potential agents to treat canine lymphoma. PMID:26050843

  12. A dual inhibitor of cyclooxygenase and 5-lipoxygenase protects against kainic acid-induced brain injury.

    PubMed

    Minutoli, Letteria; Marini, Herbert; Rinaldi, Mariagrazia; Bitto, Alessandra; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Calò, Margherita; Adamo, Elena Bianca; Trichilo, Vincenzo; Interdonato, Monica; Galfo, Federica; Squadrito, Francesco; Altavilla, Domenica

    2015-06-01

    Systemic administration of kainic acid causes inflammation and apoptosis in the brain, resulting in neuronal loss. Dual cyclooxygenase/5-lipoxygenase (COX/5-LOX) inhibitors could represent a possible neuroprotective approach in preventing glutamate excitotoxicity. Consequently, we investigated the effects of a dual inhibitor of COX/5-LOX following intraperitoneal administration of kainic acid (KA, 10 mg/kg) in rats. Animals were randomized to receive either the dual inhibitor of COX/5-LOX (flavocoxid, 20 mg/kg i.p.) or its vehicle (1 ml/kg i.p.) 30 min after KA administration. Sham brain injury rats were used as controls. We evaluated protein expression of phosphorylated extracellular signal-regulated kinase (p-ERK1/2) and tumor necrosis factor alpha (TNF-α) as well as levels of malondialdehyde (MDA), prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) in the hippocampus. Animals were also observed for monitoring behavioral changes according to Racine Scale. Finally, histological analysis and brain edema evaluation were carried out. Treatment with the dual inhibitor of COX/5-LOX decreased protein expression of p-ERK1/2 and TNF-α in hippocampus, markedly reduced MDA, LTB4 and PGE2 hippocampal levels, and also ameliorated brain edema. Histological analysis showed a reduction in cell damage in rats treated with the dual inhibitor of COX/5-LOX, particularly in hippocampal subregion CA3c. Moreover, flavocoxid significantly improved behavioral signs following kainic acid administration. Our results suggest that dual inhibition of COX/5-LOX by flavocoxid has neuroprotective effects during kainic acid-induced excitotoxicity. PMID:25893744

  13. The proteasome inhibitor MG132 reduces immobilization-induced skeletal muscle atrophy in mice

    PubMed Central

    2011-01-01

    Background Skeletal muscle atrophy is a serious concern for the rehabilitation of patients afflicted by prolonged limb restriction. This debilitating condition is associated with a marked activation of NFκB activity. The ubiquitin-proteasome pathway degrades the NFκB inhibitor IκBα, enabling NFκB to translocate to the nucleus and bind to the target genes that promote muscle atrophy. Although several studies showed that proteasome inhibitors are efficient to reduce atrophy, no studies have demonstrated the ability of these inhibitors to preserve muscle function under catabolic condition. Methods We recently developed a new hindlimb immobilization procedure that induces significant skeletal muscle atrophy and used it to show that an inflammatory process characterized by the up-regulation of TNFα, a known activator of the canonical NFκB pathway, is associated with the atrophy. Here, we used this model to investigate the effect of in vivo proteasome inhibition on the muscle integrity by histological approach. TNFα, IL-1, IL-6, MuRF-1 and Atrogin/MAFbx mRNA level were determined by qPCR. Also, a functional measurement of locomotors activity was performed to determine if the treatment can shorten the rehabilitation period following immobilization. Results In the present study, we showed that the proteasome inhibitor MG132 significantly inhibited IκBα degradation thus preventing NFκB activation in vitro. MG132 preserved muscle and myofiber cross-sectional area by downregulating the muscle-specific ubiquitin ligases atrogin-1/MAFbx and MuRF-1 mRNA in vivo. This effect resulted in a diminished rehabilitation period. Conclusion These finding demonstrate that proteasome inhibitors show potential for the development of pharmacological therapies to prevent muscle atrophy and thus favor muscle rehabilitation. PMID:21843349

  14. [Aromatase inhibitor letrozole induces sex inversion in the protogynous red spotted grouper (Epinephelus akaara).].

    PubMed

    Li, Guang-Li; Liu, Xiao-Chun; Lin, Hao-Ran

    2005-08-25

    The objective of this study was to investigate the effects of the aromatase inhibitor (AI) letrozole on gonadal development, serum steroids and aromatase activities in 2-year-old female red spotted grouper (Epinephelus akaara) during reproductive season. Groupers were divided into two groups, one implanted with aromatase inhibitor (AI, 5 mg/kg body weight) and the other elastomer without AI into peritoneal cavity once every four weeks for 8 weeks. Spermiation was checked through gentle abdominal pressure every 2 weeks. Blood samples were obtained from 6 fish of each group every 4 weeks for later analysis of sex steroids. After blood samples were collected, forebrain, midbrain, hindbrain, and gonads were collected and stored at -70 degrees C for later aromatase activity measurement and gonadal histological study. Significantly lower gondadosomatic index (GSI) was observed in AI-implanted group. Fish implanted with AI once showed complete degradation of oocytes and sex inversion with developing testicular tissues in the 4th week. AI induced females to develop into functional males with authentic males testes similar in structure to those in normal males. Spermiating rate of AI-treated males were 14.3%, 35.3%, and 48.4%in the 4th, 6th, and 8th week, respectively, while all fish in the control group were still female with developing ovaries. Aromatase activities in gonads decreased significantly after implantation with aromatase inhibitor, but showed no significant difference between control and AI-implanted group. No difference in serum testosterone (T) levels was observed in control and AI-treated group, while serum levels of 17beta-estradiol (E(2)) decreased but 11-ketotestosterone (11-KT) concentration increased significantly. The present results suggest that the decrease in serum 17beta-estradiol (E(2)) and increase in 11-KT levels may be important for sex inversion induced by aromatase inhibitor in red spotted grouper. PMID:16094495

  15. Evidence that peroxisomal acyl-CoA synthetase is located at the cytoplasmic side of the peroxisomal membrane.

    PubMed Central

    Mannaerts, G P; Van Veldhoven, P; Van Broekhoven, A; Vandebroek, G; Debeer, L J

    1982-01-01

    1. Subfractionation by isopycnic density-gradient centrifugation in self-generating Percoll gradients of peroxisome-rich fractions prepared by differential centrifugation confirmed the presence of acyl-CoA synthetase in peroxisomes. Peroxisomes did not contain nicotinamide or adenine nucleotides other than CoA. 2. The gradient fractions most enriched in peroxisomes were pooled and the peroxisomes sedimented by centrifugation, resulting in a 50-fold-purified peroxisomal preparation as revealed by marker enzyme analysis. 3. Palmitate oxidation by intact purified peroxisomes was CoA-dependent, whereas palmitoyl-CoA oxidation was not, demonstrating that the peroxisomal CoA was available for the thiolase reaction, located in the peroxisomal matrix, but not for acyl-CoA synthetase. This suggests that the latter enzyme is located at the cytoplasmic side of the peroxisomal membrane. 4. Additional evidence for this location of peroxisomal acyl-CoA synthetase was as follows. Mechanical disruption of purified peroxisomes resulted in the release of catalase from the broken organelles, but not of acyl-CoA synthetase, indicating that the enzyme was membrane-bound. Acyl-CoA synthetase was not latent, despite the fact that at least one of its substrates appears to have a limited membrane permeability, as evidenced by the presence of CoA in purified peroxisomes. Finally, Pronase, a proteinase that does not penetrate the peroxisomal membrane, almost completely inactivated the acyl-CoA synthetase of intact peroxisomes. PMID:7115321

  16. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    SciTech Connect

    Huang, Shi-Wei; Wu, Chun-Ying; Wang, Yen-Ting; Kao, Jun-Kai; Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu; Chiu, Husan-Wen; Chang, Chuan-Hsun; Liang, Shu-Mei; Chen, Yi-Ju; Huang, Jau-Ling; Shieh, Jeng-Jer

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  17. NFAT inhibitor tributylhexadecylphosphoniumbromide, ameliorates high fructose induced insulin resistance and nephropathy.

    PubMed

    Sanghavi, Maitri; Vajir, Malek; Kumar, Sandeep; Tikoo, Kulbhushan

    2015-10-01

    High fructose diet (HFrD)-induced insulin resistance (IR) has been reported to be associated with an increase in albuminuria, glomerular hypertrophy and inflammation in kidney. However, the molecular mechanisms associated with high fructose-induced IR and renal dysfunction are still unclear. In the present study, we have investigated the role of nuclear factor of activated T-cell (NFAT) and its inhibitor, Tributylhexadecylphosphoniumbromide (THPB) in high fructose-induced IR and renal injury. NFAT inhibition by THPB treatment significantly improved HFrD-induced insulin resistance. Treatment with THPB markedly reduced high fructose diet-induced protein expression of NFATc4, PTEN and also alleviated expression of inflammatory markers in kidneys of HFrD rats. Further, THPB treatment not only improved acute ANG II responses but also repressed the processes of renal fibrosis, ECM accumulation, foot process effacement and renal apoptosis in HFrD rats. Taken together, we for the first time provide evidence that HFrD -induced insulin resistance and renal injury is associated with dysregulated NFATc4/PTEN signalling and THPB prevents this dysregulation through inhibition of NFATc4. Thus, targeting NFATc4 can be a novel therapeutic approach for preventing HFrD induced- IR and renal injury. PMID:26358169

  18. Nonhypoxic regulation and role of hypoxia-inducible factor 1 in aromatase inhibitor resistant breast cancer

    PubMed Central

    2014-01-01

    Introduction Although aromatase inhibitors (AIs; for example, letrozole) are highly effective in treating estrogen receptor positive (ER+) breast cancer, a significant percentage of patients either do not respond to AIs or become resistant to them. Previous studies suggest that acquired resistance to AIs involves a switch from dependence on ER signaling to dependence on growth factor-mediated pathways, such as human epidermal growth factor receptor-2 (HER2). However, the role of HER2, and the identity of other relevant factors that may be used as biomarkers or therapeutic targets remain unknown. This study investigated the potential role of transcription factor hypoxia inducible factor 1 (HIF-1) in acquired AI resistance, and its regulation by HER2. Methods In vitro studies using AI (letrozole or exemestane)-resistant and AI-sensitive cells were conducted to investigate the regulation and role of HIF-1 in AI resistance. Western blot and RT-PCR analyses were conducted to compare protein and mRNA expression, respectively, of ERα, HER2, and HIF-1α (inducible HIF-1 subunit) in AI-resistant versus AI-sensitive cells. Similar expression analyses were also done, along with chromatin immunoprecipitation (ChIP), to identify previously known HIF-1 target genes, such as breast cancer resistance protein (BCRP), that may also play a role in AI resistance. Letrozole-resistant cells were treated with inhibitors to HER2, kinase pathways, and ERα to elucidate the regulation of HIF-1 and BCRP. Lastly, cells were treated with inhibitors or inducers of HIF-1α to determine its importance. Results Basal HIF-1α protein and BCRP mRNA and protein are higher in AI-resistant and HER2-transfected cells than in AI-sensitive, HER2- parental cells under nonhypoxic conditions. HIF-1α expression in AI-resistant cells is likely regulated by HER2 activated-phosphatidylinositide-3-kinase/Akt-protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, as its expression was inhibited by HER2 inhibitors and kinase pathway inhibitors. Inhibition or upregulation of HIF-1α affects breast cancer cell expression of BCRP; AI responsiveness; and expression of cancer stem cell characteristics, partially through BCRP. Conclusions One of the mechanisms of AI resistance may be through regulation of nonhypoxic HIF-1 target genes, such as BCRP, implicated in chemoresistance. Thus, HIF-1 should be explored further for its potential as a biomarker of and therapeutic target. PMID:24472707

  19. Vascular dysfunction induced by hypochlorite is improved by the selective phosphodiesterase-5-inhibitor vardenafil.

    PubMed

    Radovits, Tamás; Arif, Rawa; Bömicke, Timo; Korkmaz, Sevil; Barnucz, Enikő; Karck, Matthias; Merkely, Béla; Szabó, Gábor

    2013-06-15

    Reactive oxygen species, such as hypochlorite induce oxidative stress, which impairs nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling and leads to vascular dysfunction. It has been proposed, that elevated cGMP-levels may contribute to an effective cytoprotection against oxidative stress. We investigated the effects of vardenafil, a selective inhibitor of the cGMP-degrading phosphodiesterase-5 enzyme on vascular dysfunction induced by hypochlorite. In organ bath experiments for isometric tension, we investigated the endothelium-dependent and endothelium-independent vasorelaxation of isolated rat aortic rings using cumulative concentrations of acetylcholine and sodium nitroprusside (SNP). Vascular dysfunction was induced by exposing rings to hypochlorite (100-400 µM). In the treatment groups, rats were pretreated with vardenafil (30 and 300 µg/kg i.v.). Immunohistochemical analysis was performed for the oxidative stress markers nitrotyrosine, poly(ADP-ribose) and for apoptosis inducing factor (AIF). Exposure to hypochlorite resulted in a marked impairment of acetylcholine-induced endothelium-dependent vasorelaxation of aortic rings. Pretreatment with vardenafil led to improved endothelial function as reflected by the higher maximal vasorelaxation (Rmax) to acetylcholine. Regarding endothelium-independent vasorelaxation, hypochlorite exposure led to a left-shift of SNP concentration-response curves in the vardenafil groups without any alterations of the Rmax. In the hypochlorite groups immunohistochemical analysis showed enhanced poly(ADP-ribose)-formation and nuclear translocation of AIF, which were prevented by vardenafil-pretreatment. Our results support the view that cytoprotective effects of PDE-5-inhibitors on the endothelium may underlie the improved endothelial function, however, a slight sensitisation of vascular smooth muscle to NO was also confirmed. PDE-5-inhibition may represent a potential therapy approach for treating vascular dysfunction induced by oxidative stress. PMID:23623933

  20. Inhibition of Glucose-Induced Release of Insulin by Aldose Reductase Inhibitors

    PubMed Central

    Gabbay, Kenneth H.; Tze, Wah Jun

    1972-01-01

    Aldose reductase (alditol: NADP oxidoreductase, EC 1.1.1.21) is the enzyme responsible for the conversion of glucose to its sugar alcohol, sorbitol. In this study, aldose reductase and a closely related enzyme, L-hexonate dehydrogenase (L-gulonate: NADP oxidoreductase, EC 1.1.1.19), were purified from rat pancreas. Glutaric acid, 2,4-dimethyl glutaric acid, 3,3-tetramethylene glutaric acid, and colchicine inhibited both enzymes, albeit with different potencies. These compounds also inhibited both phases of glucose-induced release of insulin by the perfused rat pancreas. The potencies of these inhibitors in depressing the release of insulin correlated with their effectiveness in inhibiting aldose reductase. At higher concentrations of inhibitors, tolbutamide-induced release of insulin was also depressed. The addition of exogenous sorbitol to pancreases treated with glutaric acid restored their ability to respond to glucose and tolbutamide. These findings suggest that the conversion of free intracellular glucose to sorbitol in the beta cell is an essential step in the glucose-induced release mechanism. PMID:4402538

  1. Inducible nitric oxide synthase inhibitors abolished histological protection by late ischemic preconditioning in rat retina.

    PubMed

    Sakamoto, Kenji; Yonoki, Yuzuru; Kubota, Yuko; Kuwagata, Mayumi; Saito, Maki; Nakahara, Tsutomu; Ishii, Kunio

    2006-03-01

    Brief ischemia was reported to protect retinal cells against injury induced by subsequent ischemia-reperfusion with de novo protein synthesis, and this phenomenon is known as late ischemic preconditioning. The aims of the present study were to determine whether nitric oxide synthase (NOS) was involved in the mechanism of late ischemic preconditioning in rat retina using pharmacological tools. Under anesthesia with pentobarbital sodium, male Sprague-Dawley rats were subjected to 60 min of retinal ischemia by raising intraocular pressure to 130 mm Hg. Ischemic preconditioning was achieved by applying 5 min of ischemia 24 hrs before 60 min of ischemia. Retinal sections sliced into 5 microm thick were examined 7 days after ischemia. Additional groups of rats received NG-nitro-L-arginine and NG-monomethyl-L-arginin, non-selective NO synthase inhibitors, 7-nitroindazole, a neuronal NOS inhibitor, and aminoguanidine and L-N6-(1-iminoethyl) lysine, inducible NO synthase (iNOS) inhibitors before preconditioning, and were subjected to 60 min of ischemia. In the non-preconditioned group, cell loss in the ganglion cell layer and thinning of the inner plexiform and inner nuclear layer were observed 7 days after 60 min of ischemia. Ischemic preconditioning for 5 min completely protected against the histological damage induced by 60 min of ischemia applied 24 hrs thereafter. Treatment of rats with aminoguanidine and L-N6-(1-iminoethyl) lysine, but not NG-nitro-L-arginine, NG-monomethyl-L-arginine or 7-nitroindazole, wiped off the protective effect of ischemic preconditioning. The inhibitory effect of aminoguanidine was abolished by L-arginine, but not D-arginine. The results in the present study suggest that NO synthesized by iNOS is involved in the histological protection by late ischemic preconditioning in rat retina. PMID:16198335

  2. Therapeutic treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates murine colitis

    PubMed Central

    Gupta, Ram; Chaudhary, Anita R; Shah, Binita N; Jadhav, Avinash V; Zambad, Shitalkumar P; Gupta, Ramesh Chandra; Deshpande, Shailesh; Chauthaiwale, Vijay; Dutt, Chaitanya

    2014-01-01

    Background and aim Mucosal healing in inflammatory bowel disease (IBD) can be achieved by improvement of intestinal barrier protection. Activation of hypoxia-inducible factor (HIF) has been identified as a critical factor for barrier protection during mucosal insult and is linked with improvement in symptoms of colitis. Although prophylactic efficacy of HIF hydroxylase inhibitors in murine colitis have been established, its therapeutic efficacy in clinically relevant therapeutic settings have not been established. In the present study we aim to establish therapeutic efficacy of TRC160334, a novel HIF hydroxylase inhibitor, in animal models of colitis. Methods The efficacy of TRC160334 was evaluated in two different mouse models of colitis by oral route. A prophylactic efficacy study was performed in a 2,4,6-trinitrobenzene sulfonic acid-induced mouse model of colitis representing human Crohn’s disease pathology. Additionally, a therapeutic efficacy study was performed in a dextran sulfate sodium-induced mouse model of colitis, a model simulating human ulcerative colitis. Results TRC160334 treatment resulted in significant improvement in disease end points in both models of colitis. TRC160334 treatment resulted into cytoprotective heatshock protein 70 induction in inflamed colon. TRC160334 successfully attenuated the rate of fall in body weight, disease activity index, and macroscopic and microscopic scores of colonic damage leading to overall improvement in study outcome. Conclusion Our findings are the first to demonstrate that therapeutic intervention with a HIF hydroxylase inhibitor ameliorates IBD in disease models. These findings highlight the potential of TRC160334 for its clinical application in the treatment of IBD. PMID:24493931

  3. Nuclear Factor Kappa B Activation and Peroxisome Proliferator-activated Receptor Transactivational Effects of Chemical Components of the Roots of Polygonum multiflorum

    PubMed Central

    Sun, Ya Nan; Li, Wei; Song, Seok Bean; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2016-01-01

    Background: Polygonum multiflorum is well-known as “Heshouwu” in traditional Chinese herbal medicine. In Northeast Asia, it is often used as a tonic to prevent premature aging of the kidney and liver, tendons, and bones and strengthening of the lower back and knees. Objective: To research the anti-inflammatory activities of components from P. multiflorum. Materials and Methods: The compounds were isolated by a combination of silica gel and YMC R-18 column chromatography, and their structures were identified by analysis of spectroscopic data (1D, 2D-nuclear magnetic resonance, and mass spectrometry). The anti-inflammatory activities of the isolated compounds 1−15 were evaluated by luciferase reporter gene assays. Results: Fifteen compounds (1–15) were isolated from the roots of P. multiflorum. Compounds 1−5 and 14−15 significantly inhibited tumor necrosis factor-α-induced nuclear factor kappa B-luciferase activity, with IC50 values of 24.16-37.56 μM. Compounds 1−5 also greatly enhanced peroxisome proliferator-activated receptors transcriptional activity with EC50 values of 18.26−31.45 μM. Conclusion: The anthraquinone derivatives were the active components from the roots of P. multiflorum as an inhibitor on inflammation-related factors in human hepatoma cells. Therefore, we suggest that the roots of P. multiflorum can be used to treat natural inflammatory diseases. SUMMARY This study presented that fifteen compounds (1-15) isolated from the roots of Polygonum multiflrum exert signifiant anti inflmmatory effects by inhibiting TNF α induced NF κB activation and PPARs transcription. Abbreviation used: NF κB: Nuclear factor kappa B, PPARs: Peroxisome proliferator activated receptors, PPREs: Peroxisome proliferator response elements, TNF α: Tumor necrosis factor α, ESI-MS: Electrospray ionization mass spectrometry, HepG2: Human hepatoma cells

  4. SELECTIVE AND NON-SELECTIVE METALLOPROTEINASE INHIBITORS REDUCE IL-1-INDUCED CARTILAGE DEGRADATION AND LOSS OF MECHANICAL PROPERTIES

    PubMed Central

    Wilson, Christopher G.; Palmer, Ashley W.; Zuo, Fengrong; Eugui, Elsie; Wilson, Stacy; Mackenzie, Rebecca; Sandy, John D.; Levenston, Marc E.

    2015-01-01

    Articular cartilage undergoes matrix degradation and loss of mechanical properties when stimulated with proinflammatory cytokines such as interleukin-1 (IL-1). Aggrecanases and matrix metalloproteinases (MMPs) are thought to be principal downstream effectors of cytokine-induced matrix catabolism, and aggrecanase- or MMP-selective inhibitors reduce or block matrix destruction in several model systems. The objective of this study was to use metalloproteinase inhibitors to perturb IL-1-induced matrix catabolism in bovine cartilage explants and examine their effects on changes in tissue compression and shear properties. Explanted tissue was stimulated with IL-1 for up to 24 days in the absence or presence of inhibitors which were aggrecanase-selective, MMP-selective, or non-selective. Analysis of conditioned media and explant digests revealed that aggrecanase-mediated aggrecanolysis was delayed to varying extents with all inhibitor treatments, but that aggrecan release persisted. Collagen degradation was abrogated by MMP- and non-selective inhibitors and reduced by the aggrecanase inhibitor. The inhibitors delayed but did not reduce loss of the equilibrium compression modulus, whereas the loss of dynamic compression and shear moduli was delayed and reduced. The data suggest that non-metalloproteinase mechanisms participate in IL-1-induced matrix degradation and loss of tissue material properties. PMID:17174540

  5. Anmindenols A and B, inducible nitric oxide synthase inhibitors from a marine-derived Streptomyces sp.

    PubMed

    Lee, Jihye; Kim, Hiyoung; Lee, Tae Gu; Yang, Inho; Won, Dong Hwan; Choi, Hyukjae; Nam, Sang-Jip; Kang, Heonjoong

    2014-06-27

    Anmindenols A (1) and B (2), inhibitors of inducible nitric oxide synthase (iNOS), were isolated from a marine-derived bacterium Streptomyces sp. Their chemical structures were elucidated by interpreting various spectroscopic data, including IR, MS, and NMR. Anmindenols A and B are sesquiterpenoids possessing an indene moiety with five- and six-membered rings derived from isoprenyl units. The absolute configuration of C-4 in anmindenol B was determined by electronic circular dichroism (ECD) of a dimolybdenum complex. Anmindenols A (1) and B (2) inhibited nitric oxide production in stimulated RAW 264.7 macrophage cells with IC50 values of 23 and 19 μM, respectively. PMID:24878306

  6. Inhibitors of fatty acid amide hydrolase reduce carrageenan-induced hind paw inflammation in pentobarbital-treated mice: comparison with indomethacin and possible involvement of cannabinoid receptors

    PubMed Central

    Holt, Sandra; Comelli, Francesca; Costa, Barbara; Fowler, Christopher J

    2005-01-01

    The in vivo effect of inhibitors of fatty acid amide hydrolase (FAAH) upon oedema volume and FAAH activity was evaluated in the carrageenan induced hind paw inflammation model in the mouse. Oedema was measured at two time points, 2 and 4 h, after intraplantar injection of carrageenan to anaesthetised mice. Intraperitoneal (i.p.) injections of the FAAH inhibitor URB597 (0.1, 0.3, 1 and 3 mg kg−1) 30 min prior to carrageenan administration, dose-dependently reduced oedema formation. At the 4 h time point, the ED50 for URB597 was ∼0.3 mg kg−1. Indomethacin (5 mg kg−1 i.p.) completely prevented the oedema response to carrageenan. The antioedema effects of indomethacin and URB597 were blocked by 3 mg kg−1 i.p. of the CB2 receptor antagonist SR144528. The effect of URB597 was not affected by pretreatment with the peroxisome proliferator-activated receptor γ antagonist bisphenol A diglycidyl ether (30 mg kg−1 i.p.) or the TRPV1 antagonist capsazepine (10 mg kg−1 i.p.), when oedema was assessed 4 h after carrageenan administration. The CB1 receptor antagonists AM251 (3 mg kg−1 i.p.) and rimonabant (0.5 mg kg−1 i.p.) gave inconsistent effects upon the antioedema effect of URB597. FAAH measurements were conducted ex vivo in the paws, spinal cords and brains of the mice. The activities of FAAH in the paws and spinal cords of the inflamed vehicle-treated mice were significantly lower than the corresponding activities in the noninflamed mice. PMSF treatment almost completely inhibited the FAAH activity in all three tissues, as did the highest dose of URB597 (3 mg kg−1) in spinal cord samples, whereas no obvious changes were seen ex vivo for the other treatments. In conclusion, the results show that in mice, treatment with indomethacin and URB597 produce SR144528-sensitive anti-inflammatory effects in the carrageenan model of acute inflammation. PMID:16100529

  7. Common pathways of cytochrome P450 gene regulation by peroxisome proliferators and barbiturates in Bacillus megaterium ATCC14581.

    PubMed

    English, N; Hughes, V; Wolf, C R

    1994-10-28

    Bacillus megaterium contains a barbiturate-inducible cytochrome P450BM-3, which catalyzes the hydroxylation of fatty acids. We report the intriguing finding that peroxisome proliferators, a major class of epigenetic carcinogen, are also extremely potent inducers of this enzyme being up to 50-fold more potent than one of the most effective barbiturates, secobarbital. Similar to barbiturates, the mechanism of induction appears to involve the direct binding of the peroxisome proliferator to the transcriptional repressor (Bm3R1), resulting in its dissociation from its DNA operator. These observations provide evidence that peroxisome proliferators can interact with a transcription factor to modulate gene expression. The data also demonstrate that the effects of these compounds are highly conserved through evolution and that there are important common denominators in the regulation of gene expression by peroxisome proliferators and the barbiturates. Evidence is presented to indicate that this may involve effects on unsaturated fatty acid homeostasis. PMID:7929421

  8. Reduced peroxisomal citrate synthase activity increases substrate availability for polyhydroxyalkanoate biosynthesis in plant peroxisomes.

    PubMed

    Tilbrook, Kimberley; Poirier, Yves; Gebbie, Leigh; Schenk, Peer M; McQualter, Richard B; Brumbley, Stevens M

    2014-10-01

    Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species. PMID:24944109

  9. Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis

    SciTech Connect

    Wu Yichen; Yen Wenyen; Lee, T.-C. Yih, L.-H.

    2009-04-15

    Arsenic trioxide (ATO) has recently emerged as a promising therapeutic agent in leukemia because of its ability to induce apoptosis. However, there is no sufficient evidence to support its therapeutic use for other types of cancers. In this study, we investigated if, and how, 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), an antagonist of heat shock protein 90 (HSP90), and KNK437, a HSP synthesis inhibitor, potentiated the cytotoxic effect of ATO. Our results showed that cotreatment with ATO and either 17-DMAG or KNK437 significantly increased ATO-induced cell death and apoptosis. siRNA-mediated attenuation of the expression of the inducible isoform of HSP70 (HSP70i) or HSP90{alpha}/{beta} also enhanced ATO-induced apoptosis. In addition, cotreatment with ATO and 17-DMAG or KNK437 significantly increased ATO-induced mitotic arrest and ATO-induced BUBR1 phosphorylation and PDS1 accumulation. Cotreatment also significantly increased the percentage of mitotic cells with abnormal mitotic spindles and promoted metaphase arrest as compared to ATO treatment alone. These results indicated that 17-DMAG or KNK437 may enhance ATO cytotoxicity by potentiating mitotic arrest and mitotic apoptosis possibly through increased activation of the spindle checkpoint.

  10. Inhibitor of Differentiation-3 mediates high fat diet-induced visceral fat expansion

    PubMed Central

    Cutchins, Alexis; Harmon, Daniel B.; Kirby, Jennifer L.; Doran, Amanda C.; Oldham, Stephanie N.; Skaflen, Marcus; Klibanov, Alexander L.; Meller, Nahum; Keller, Susanna R.; Garmey, James; McNamara, Coleen A.

    2011-01-01

    Objective Inhibitor of differentiation-3 (Id3) has been implicated in promoting angiogenesis, a key determinant of high fat diet (HFD)-induced visceral adiposity. Yet the role of Id3 in high fat diet (HFD)-induced angiogenesis and visceral adipose expansion is unknown. Methods and Results Id3−/− mice demonstrated a significant attenuation of HFD-induced visceral fat depot expansion compared to WT littermate controls. Importantly, unlike other Id proteins, loss of Id3 did not affect adipose depot size in young mice fed chow diet or differentiation of adipocytes in vitro or in vivo. Contrast enhanced ultrasound revealed a significant attenuation of visceral fat microvascular blood volume in HFD-fed mice null for Id3 compared to WT controls. HFD induced Id3 and VEGFA expression in the visceral stromal vascular fraction (SVF) and Id3−/− mice had significantly lower levels of VEGFA protein in visceral adipose tissue compared to WT. Furthermore, HFD-induced VEGFA expression in visceral adipose tissue was completely abolished by loss of Id3. Consistent with this effect, Id3 abolished E12-mediated repression of VEGFA promoter activity. Conclusions Results identify Id3 as an important regulator of HFD-induced visceral adipose VEGFA expression, microvascular blood volume, and depot expansion. Inhibition of Id3 may have potential as a therapeutic strategy to limit visceral adiposity. PMID:22075252

  11. Redox interplay between mitochondria and peroxisomes

    PubMed Central

    Lismont, Celien; Nordgren, Marcus; Van Veldhoven, Paul P.; Fransen, Marc

    2015-01-01

    Reduction-oxidation or “redox” reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from “omics” technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of discussion. PMID:26075204

  12. Changes of epidermal cell morphology and keratin expression induced by inhibitors of protein kinase C.

    PubMed

    Hegemann, L; Wevers, A; Bonnekoh, B; Mahrle, G

    1992-03-01

    Several lines of evidence show protein kinase C as being involved in various regulatory processes in keratinocyte biology, e.g. proliferation and differentiation. In the present study, we investigated the effects of three different inhibitors of protein kinase C, staurosporine, CP 46'665-1, and tiflucarbine, on cell morphology and keratin expression in a non-tumorigenic human keratinocyte cell line (HaCaT cells). Staurosporine, being the most potent inhibitor of protein kinase C activity in vitro, and CP 46'665-1 induced morphological transformation to a fibroblast-like cell shape. In contrast, no changes in cell morphology were observed after exposure to tiflucarbine. The investigation of keratin expression in HaCaT cells grown in the presence of the different compounds revealed the following changes: After 72 h of cultivation, keratins 8 and 18 were still expressed in treated cells, whereas expression of keratin 13 was decreased as compared to control cells. Immunoblotting to detect vimentin demonstrated its absence in treated and control cells. Since tiflucarbine is known as a dual protein kinase C/calmodulin inhibitor whereas staurosporine and CP 46'665-1 do not antagonize calmodulin function, it might be possible that not only protein kinase C but also calmodulin is involved in the process leading to the morphological changes. PMID:1376142

  13. Identification of an Allosteric Small Molecule Inhibitor Selective for Inducible Form of Heat Shock Protein 70

    PubMed Central

    Howe, Matthew K.; Bodoor, Khaldon; Carlson, David A.; Hughes, Philip F.; Alwarawrah, Yazan; Loiselle, David R.; Jaeger, Alex M.; Darr, David B.; Jordan, Jamie L.; Hunter, Lucas M.; Molzberger, Eileen T.; Gobillot, Theodore A.; Thiele, Dennis J.; Brodsky, Jeffrey L.; Spector, Neil L.; Haystead, Timothy A. J.

    2014-01-01

    Summary Inducible Hsp70 (Hsp70i) is overexpressed in a wide spectrum of human tumors and its expression correlates with metastasis, poor outcomes, and resistance to chemotherapy in patients. Identification of small molecule inhibitors selective for Hsp70i could provide new therapeutic tools for cancer treatment. In this work, we used fluorescence-linked enzyme chemoproteomic strategy (FLECS) to identify HS-72, an allosteric inhibitor selective for Hsp70i. HS-72 displays the hallmarks of Hsp70 inhibition in cells, promoting substrate protein degradation and growth inhibition. Importantly, HS-72 is selective for Hsp70i over the closely related constitutively active Hsc70. Studies with purified protein show HS-72 acts as an allosteric inhibitor, reducing ATP affinity. In vivo HS-72 is well-tolerated, showing bioavailability and efficacy, inhibiting tumor growth and promoting survival in a HER2+ model of breast cancer. The HS-72 scaffold is amenable to resynthesis and iteration, suggesting an ideal starting point for a new generation of anticancer therapeutics targeting Hsp70i. PMID:25500222

  14. Binding-induced, turn-on fluorescence of the EGFR/ERBB kinase inhibitor, lapatinib.

    PubMed

    Wilson, James N; Liu, Wenjun; Brown, Adrienne S; Landgraf, Ralf

    2015-05-01

    We report the photophysical properties, binding-induced turn-on emission, and fluorescence imaging of the cellular uptake and distribution of lapatinib, an EGFR/ERBB inhibitor. Lapatinib, a type II, i.e. inactive state, inhibitor that targets the ATP binding pocket of the EGFR family of receptor tyrosine kinases. DFT calculations predict that the 6-furanylquinazoline core of lapatinib should exhibit an excited state with charge transfer character and an S0 to S1 transition energy of 3.4 eV. Absorption confirms an optical transition in the near UV to violet, while fluorescence spectroscopy shows that photoemission is highly sensitive to solvent polarity. The hydrophobicity of lapatinib leads to fluorescent aggregates in solution, however, binding to the lipid-carrier protein, BSA or to the kinase domain of ERBB2, produces spectroscopically distinct photoemission. Confocal fluorescence microscopy imaging of lapatinib uptake in ERBB2-overexpressing MCF7 and BT474 cells reveals pools of intracellular inhibitor with emission profiles consistent with aggregated lapatinib. PMID:25820099

  15. Betulin, betulinic acid and butein are inhibitors of acetaldehyde-induced activation of liver stellate cells.

    PubMed

    Szuster-Ciesielska, Agnieszka; Plewka, Krzysztof; Kandefer-Szerszeń, Martyna

    2011-01-01

    Liver fibrosis has been reported to be inhibited in vivo by oleanolic and ursolic acids; however, the activity of other triterpenes like betulin and betulinic acid has not been examined. Butein has also been reported to prevent and partly reverse liver fibrosis in vivo, although its mechanism of action is poorly understood. Therefore, the aim of this study was to determine the antifibrotic potential of butein, betulin, and betulinic acid and examine their mechanisms of action in vitro. This study was conducted in rat stellate cells (HSCs) that were treated with acetaldehyde, which is the most reactive product of ethanol metabolism. Butein, betulin, and betulinic acid were preincubated with rat HSCs at non-toxic concentrations. Treatment effects were measured in regard to acetaldehyde-induced toxicity and cell migration, and several markers of HSC activation were evaluated, including smooth muscle α-actin (α-SMA) and procollagen I expression. In addition, changes in the release of reactive oxygen species (ROS) and cytokines such as tumor necrosis factor-α (TNF-α) and tumor growth factor-β1 (TGF-β1) and changes in the production of metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) were determined. In vitro, HSCs were protected against acetaldehyde-induced toxicity by betulin but not by betulinic acid and butein. However, butein, betulin, and betulinic acid inhibited the production of ROS by HSCs treated with acetaldehyde and inhibited their migration. Butein also inhibited acetaldehyde-induced TGF-β1 production. Butein, betulin, and betulinic acid down-regulated acetaldehyde-induced production of TIMP-1 and TIMP-2. Betulin decreased the acetaldehyde-induced activity of MMP-2, but butein and betulinic acid did not. The results indicated that butein, betulin, and betulinic acid inhibited the acetaldehyde-induced activation of HSCs. Each drug functioned in a different manner, whereby some were acting as either antioxidants or inhibitors of TIMPs expression and butein additionally acted as an inhibitor of TGF-β production. PMID:22180353

  16. Histone deacetylase inhibitor treatment induces BRCAness and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells

    PubMed Central

    Ha, Kyungsoo; Bhaskara, Srividya; Cerchietti, Leandro; Devaraj, Santhana G. T.; Shah, Bhavin; Sharma, Sunil; Chang, Jenny C.; Melnick, Ari M.; Hiebert, Scott; Bhalla, Kapil N.

    2014-01-01

    There is an unmet need to develop new, more effective and safe therapies for the aggressive forms of triple negative breast cancers (TNBCs). While up to 20% of women under 50 years of age with TNBC harbor germline mutations in BRCA1, and these tumors are sensitive to treatment with poly(ADP) ribose polymerase inhibitors, a majority of TNBCs lack BRCA1 mutations or loss of expression. Findings presented here demonstrate that by attenuating the levels of DNA damage response and homologous recombination proteins, pan-histone deacetylase inhibitor (HDI) treatment induces BRCAness and sensitizes TNBC cells lacking BRCA1 to lethal effects of PARP inhibitor or cisplatin. Treatment with HDI also induced hyperacetylation of nuclear hsp90. Similar effects were observed following shRNA-mediated depletion of HDAC3, confirming its role as the deacetylase for nuclear HSP90. Furthermore, cotreatment with HDI and ABT-888 induced significantly more DNA strand breaks than either agent alone, and synergistically induced apoptosis of TNBC cells. Notably, co-treatment with HDI and ABT-888 significantly reduced in vivo tumor growth and markedly improved the survival of mice bearing TNBC cell xenografts. These findings support the rationale to interrogate the clinical activity of this novel combination against human TNBC, irrespective of its expression of mutant BRCA1. PMID:25026298

  17. Nitric Oxide Synthase Inhibitor Improves De Novo and Long-Term l-DOPA-Induced Dyskinesia in Hemiparkinsonian Rats

    PubMed Central

    Padovan-Neto, Fernando Eduardo; Echeverry, Marcela Bermúdez; Chiavegatto, Silvana; Del-Bel, Elaine

    2011-01-01

    Inhibitors of neuronal and endothelial nitric oxide synthase decrease l-3,4-dihidroxifenilalanine (l-DOPA)-induced dyskinesias in rodents. The mechanism of nitric oxide inhibitor action is unknown. The aims of the present study were to investigate the decrease of l-DOPA-induced abnormal involuntary movements (AIMs) in 6-hydroxydopamine (6-OHDA)-lesioned rats by nitric oxide inhibitors following either acute or chronic treatment. The primary findings of this study were that NG-nitro-l-Arginine, an inhibitor of endothelial and neuronal nitric oxide synthase, attenuated AIMs induced by chronic and acute l-DOPA. In contrast, rotational behavior was attenuated only after chronic l-DOPA. The 6-OHDA lesion and the l-DOPA treatment induced a bilateral increase (1.5 times) in the neuronal nitric oxide synthase (nNOS) protein and nNOS mRNA in the striatum and in the frontal cortex. There was a parallel increase, bilaterally, of the FosB/ΔFosB, primarily in the ipsilateral striatum. The exception was in the contralateral striatum and the ipsilateral frontal cortex, where chronic l-DOPA treatment induced an increase of approximately 10 times the nNOS mRNA. Our results provided further evidence of an anti-dyskinetic effect of NOS inhibitor. The effect appeared under l-DOPA acute and chronic treatment. The l-DOPA treatment also revealed an over-expression of the neuronal NOS in the frontal cortex and striatum. Our results corroborated findings that l-DOPA-induced rotation differs between acute and chronic treatment. The effect of the NOS inhibitor conceivably relied on the l-DOPA structural modifications in the Parkinsonian brain. Taken together, these data provided a rationale for further evaluation of NOS inhibitors in the treatment of l-DOPA-induced dyskinesia. PMID:21713068

  18. Topically applied Hsp90 inhibitor 17AAG inhibits UVR-induced cutaneous squamous cell carcinomas.

    PubMed

    Singh, Anupama; Singh, Ashok; Sand, Jordan M; Bauer, Samuel J; Hafeez, Bilal Bin; Meske, Louise; Verma, Ajit K

    2015-04-01

    We present here that heat-shock protein 90 (Hsp90) inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17AAG), when topically applied to mouse skin, inhibits UVR-induced development of cutaneous squamous cell carcinoma (SCC). In these experiments, DMSO:acetone (1:40 v/v) solution of 17AAG (500?nmol) was applied topically to mouse skin in conjunction with each UVR exposure (1.8?kJ?m(-2)). The UVR source was Kodacel-filtered FS-40 sun lamps (approximately 60% UVB and 40% UVA). In independent experiments with three separate mouse lines (SKH-1 hairless mice, wild-type FVB, and protein kinase C epsilon (PKC?)-overexpressing transgenic FVB mice), 17AAG treatment increased the latency and decreased both the incidence and multiplicity of UVR-induced SCC. Topical 17AAG alone or in conjunction with UVR treatments elicited neither skin nor systemic toxicity. 17AAG-caused inhibition of SCC induction was accompanied by a decrease in UVR-induced (1) hyperplasia, (2) Hsp90?-PKC? interaction, and (3) expression levels of Hsp90?, Stat3, pStat3Ser727, pStat3Tyr705, pAktSer473, and matrix metalloproteinase (MMP). The results presented here indicate that topical Hsp90 inhibitor 17AAG is effective in prevention of UVR-induced epidermal hyperplasia and SCC. One may conclude from the preclinical data presented here that topical 17AAG may be useful for prevention of UVR-induced inflammation and cutaneous SCC either developed in UVR-exposed or organ transplant population. PMID:25337691

  19. Topically applied Hsp90 inhibitor 17AAG inhibits ultraviolet radiation-induced cutaneous squamous cell carcinomas

    PubMed Central

    Singh, Anupama; Singh, Ashok; Sand, Jordan M.; Bauer, Samuel J.; Hafeez, Bilal Bin; Meske, Louise; Verma, Ajit K.

    2014-01-01

    We present here that Heat shock protein 90 (Hsp90) inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17AAG), when topically applied to mouse skin, inhibits ultraviolet radiation (UVR)-induced development of cutaneous squamous cell carcinoma (SCC). In these experiments, DMSO:acetone (1:40 v/v) solution of 17AAG (500nmol) was applied topically to mouse skin in conjunction with each UVR exposure (1.8 kJ/m2). The UVR source was Kodacel-filtered FS-40 sun lamps (approximately 60% UVB and 40% UVA). In independent experiments with three separate mouse lines (SKH-1 hairless mice, wild-type FVB, and PKCε overexpressing transgenic FVB mice), 17AAG treatment increased the latency and decreased both the incidence and multiplicity of UVR-induced SCC. Topical 17AAG alone or in conjunction with UVR treatments elicited neither skin nor systemic toxicity. 17AAG-caused inhibition of SCC induction was accompanied by decrease in UVR-induced: 1) hyperplasia, 2) Hsp90β-PKCε interaction, 3) expression levels of Hsp90β, Stat3, pStat3Ser727, pStat3Tyr705, pAktSer473 and matrix metalloproteinase (MMPs). The results presented here indicate that topical Hsp90 inhibitor 17AAG is effective in prevention of UVR-induced epidermal hyperplasia and SCC. One may conclude from the preclinical data presented here that topical 17AAG may be useful for prevention of UVR-induced inflammation and cutaneous SCC either developed in UVR exposed or organ transplant population. PMID:25337691

  20. Anti-Ulcer Efficacy of Soluble Epoxide Hydrolase Inhibitor TPPU on Diclofenac-Induced Intestinal Ulcers.

    PubMed

    Goswami, Sumanta Kumar; Wan, Debin; Yang, Jun; Trindade da Silva, Carlos A; Morisseau, Christophe; Kodani, Sean D; Yang, Guang-Yu; Inceoglu, Bora; Hammock, Bruce D

    2016-06-01

    Proton pump inhibitors such as omeprazole (OME) reduce the severity of gastrointestinal (GI) ulcers induced by nonsteroidal anti-inflammatory drugs (NSAIDs) but can also increase the chance of dysbiosis. The aim of this study was to test the hypothesis that preventive use of a soluble epoxide hydrolase inhibitor (sEHI) such as TPPU can decrease NSAID-induced ulcers by increasing anti-inflammatory epoxyeicosatrienoic acids (EETs). Dose- [10, 30, and 100 mg/kg, by mouth (PO)] and time-dependent (6 and 18 hours) ulcerative effects of diclofenac sodium (DCF, an NSAID) were studied in the small intestine of Swiss Webster mice. Dose-dependent effects of TPPU (0.001-0.1 mg/kg per day for 7 days, in drinking water) were evaluated in DCF-induced intestinal toxicity and compared with OME (20 mg/kg, PO). In addition, the effect of treatment was studied on levels of Hb in blood, EETs in plasma, inflammatory markers such as myeloperoxidase (MPO) in intestinal tissue homogenates, and tissue necrosis factor-α (TNF-α) in serum. DCF dose dependently induced ulcers that were associated with both a significant (P < 0.05) loss of Hb and an increase in the level of MPO and TNF-α, with severity of ulceration highest at 18 hours. Pretreatment with TPPU dose dependently prevented ulcer formation by DCF, increased the levels of epoxy fatty acids, including EETs, and TPPU's efficacy was comparable to OME. TPPU significantly (P < 0.05) reversed the effect of DCF on the level of Hb, MPO, and TNF-α Thus sEHI might be useful in the management of NSAID-induced ulcers. PMID:26989141

  1. Cytoprotective effect of selective small-molecule caspase inhibitors against staurosporine-induced apoptosis.

    PubMed

    Wu, Jianghong; Wang, Yuren; Liang, Shuguang; Ma, Haiching

    2014-01-01

    Caspases are currently known as the central executioners of the apoptotic pathways. Inhibition of apoptosis and promotion of normal cell survival by caspase inhibitors would be a tremendous benefit for reducing the side effects of cancer therapy and for control of neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases. The objective of this study was to discover small-molecule caspase inhibitors with which to achieve cytoprotective effect. We completed the high-throughput screening of Bionet's 37,500-compound library (Key Organics Limited, Camelford, Cornwall, UK) against caspase-1, -3, and -9 and successfully identified 43 initial hit compounds. The 43 hit compounds were further tested for cytoprotective activity against staurosporine-induced cell death in NIH3T3 cells. Nineteen compounds were found to have significant cytoprotective effects in cell viability assays. One of the compounds, RBC1023, was demonstrated to protect NIH3T3 cells from staurosporine-induced caspase-3 cleavage and activation. RBC1023 was also shown to protect against staurosporine-induced impairment of mitochondrial membrane potential. DNA microarray analysis demonstrated that staurosporine treatment induced broad global gene expression alterations, and RBC1023 co-treatment significantly restored these changes, especially of the genes that are related to cell growth and survival signaling such as Egr1, Cdc25c, cdkn3, Rhob, Nek2, and Taok1. Collectively, RBC1023 protects NIH3T3 cells against staurosporine-induced apoptosis via inhibiting caspase activity, restoring mitochondrial membrane potential, and possibly upregulating some cell survival-related gene expressions and pathways. PMID:24920883

  2. Arabidopsis PEROXIN11c-e, FISSION1b, and DYNAMIN-RELATED PROTEIN3A Cooperate in Cell Cycle–Associated Replication of Peroxisomes[W

    PubMed Central

    Lingard, Matthew J.; Gidda, Satinder K.; Bingham, Scott; Rothstein, Steven J.; Mullen, Robert T.; Trelease, Richard N.

    2008-01-01

    Although participation of PEROXIN11 (PEX11), FISSION1 (FISl), and DYNAMIN-RELATED PROTEIN (DRP) has been well established during induced peroxisome proliferation in response to external stimuli, their roles in cell cycle–associated constitutive replication/duplication have not been fully explored. Herein, bimolecular fluorescence complementation experiments with Arabidopsis thaliana suspension cells revealed homooligomerization of all five PEX11 isoforms (PEX11a-e) and heterooligomerizations of all five PEX11 isoforms with FIS1b, but not FIS1a nor DRP3A. Intracellular protein targeting experiments demonstrated that FIS1b, but not FIS1a nor DRP3A, targeted to peroxisomes only when coexpressed with PEX11d or PEX11e. Simultaneous silencing of PEX11c-e or individual silencing of DRP3A, but not FIS1a nor FIS1b, resulted in ∼40% reductions in peroxisome number. During G2 in synchronized cell cultures, peroxisomes sequentially enlarged, elongated, and then doubled in number, which correlated with peaks in PEX11, FIS1, and DRP3A expression. Overall, these data support a model for the replication of preexisting peroxisomes wherein PEX11c, PEX11d, and PEX11e act cooperatively during G2 to promote peroxisome elongation and recruitment of FIS1b to the peroxisome membrane, where DRP3A stimulates fission of elongated peroxisomes into daughter peroxisomes, which are then distributed between daughter cells. PMID:18539750

  3. Kidney-specific Overexpression of Sirt1 Protects against Acute Kidney Injury by Retaining Peroxisome Function

    PubMed Central

    Hasegawa, Kazuhiro; Wakino, Shu; Yoshioka, Kyoko; Tatematsu, Satoru; Hara, Yoshikazu; Minakuchi, Hitoshi; Sueyasu, Keiko; Washida, Naoki; Tokuyama, Hirobumi; Tzukerman, Maty; Skorecki, Karl; Hayashi, Koichi; Itoh, Hiroshi

    2010-01-01

    Sirt1, a NAD-dependent protein deacetylase, is reported to regulate intracellular metabolism and attenuate reactive oxidative species (ROS)-induced apoptosis leading to longevity and acute stress resistance. We created transgenic (TG) mice with kidney-specific overexpression of Sirt1 using the promoter sodium-phosphate cotransporter IIa (Npt2) driven specifically in proximal tubules and investigated the kidney-specific role of Sirt1 in the protection against acute kidney injury (AKI). We also elucidated the role of number or function of peroxisome and mitochondria in mediating the mechanisms for renal protective effects of Sirt1 in AKI. Cisplatin-induced AKI decreased the number and function of peroxisomes as well as mitochondria and led to increased local levels of ROS production and renal tubular apoptotic cells. TG mice treated with cisplatin mitigated AKI, local ROS, and renal tubular apoptotic tubular cells. Consistent with these results, TG mice treated with cisplatin also exhibited recovery of peroxisome number and function, as well as rescued mitochondrial function; however, mitochondrial number was not recovered. Immunoelectron microscopic findings consistently demonstrated that the decrease in peroxisome number by cisplatin in wild type mice was restored in transgenic mice. In HK-2 cells, a cultured proximal tubule cell line, overexpression of Sirt1 rescued the cisplatin-induced cell apoptosis through the restoration of peroxisome number, although the mitochondria number was not restored. These results indicate that Sirt1 overexpression in proximal tubules rescues cisplatin-induced AKI by maintaining peroxisomes number and function, concomitant up-regulation of catalase, and elimination of renal ROS levels. Renal Sirt1 can be a potential therapeutic target for the treatment of AKI. PMID:20139070

  4. Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in β-oxidation and development.

    PubMed

    Quan, Sheng; Yang, Pingfang; Cassin-Ross, Gaëlle; Kaur, Navneet; Switzenberg, Robert; Aung, Kyaw; Li, Jiying; Hu, Jianping

    2013-12-01

    Plant peroxisomes are highly dynamic organelles that mediate a suite of metabolic processes crucial to development. Peroxisomes in seeds/dark-grown seedlings and in photosynthetic tissues constitute two major subtypes of plant peroxisomes, which had been postulated to contain distinct primary biochemical properties. Multiple in-depth proteomic analyses had been performed on leaf peroxisomes, yet the major makeup of peroxisomes in seeds or dark-grown seedlings remained unclear. To compare the metabolic pathways of the two dominant plant peroxisomal subtypes and discover new peroxisomal proteins that function specifically during seed germination, we performed proteomic analysis of peroxisomes from etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The detection of 77 peroxisomal proteins allowed us to perform comparative analysis with the peroxisomal proteome of green leaves, which revealed a large overlap between these two primary peroxisomal variants. Subcellular targeting analysis by fluorescence microscopy validated around 10 new peroxisomal proteins in Arabidopsis. Mutant analysis suggested the role of the cysteine protease RESPONSE TO DROUGHT21A-LIKE1 in β-oxidation, seed germination, and growth. This work provides a much-needed road map of a major type of plant peroxisome and has established a basis for future investigations of peroxisomal proteolytic processes to understand their roles in development and in plant interaction with the environment. PMID:24130194

  5. Topoisomerase II inhibitors induce DNA double-strand breaks at a specific site within the AML1 locus.

    PubMed

    Stanulla, M; Wang, J; Chervinsky, D S; Aplan, P D

    1997-04-01

    Treatment-related acute myeloid leukemia (t-AML) following successful therapy of a primary malignancy has been recognized with increasing frequency among cancer survivors over the past several years. Many of these t-AML cases are associated with the use of intensive chemotherapy regimens that employ one or more agents which target eukaryotic topoisomerase II (topo II), and demonstrate non-random chromosomal translocations involving either the MLL (ALL-1, HRX) gene at 11q23 or the AML1 gene at 21q22. Although many investigators have speculated that these translocations are induced by the therapeutic use of topo II inhibitors, the molecular sequence of events by which topo II inhibitors might induce a chromosomal translocation are not well understood. We describe here the reproducible induction of highly specific, double-strand DNA cleavage at a specific site within the AML1 locus by topo II inhibitors. This DNA cleavage, which maps to a region of the AML1 locus frequently disrupted by chromosomal translocations, can be induced in several cell lines, with multiple different topo II inhibitors, indicating that this phenomenon is not restricted to a specific cell type or specific topo II inhibitor. It is conceivable that site-specific double-strand DNA cleavage within the AML1 locus induced by topo II inhibitors represents the initial molecular event leading to a chromosomal translocation and t-AML. PMID:9096688

  6. Pharmacologic Profiling of Phosphoinositide 3-Kinase Inhibitors as Mitigators of Ionizing Radiation–Induced Cell Death

    PubMed Central

    Sharlow, Elizabeth R.; Epperly, Michael W.; Lira, Ana; Leimgruber, Stephanie; Skoda, Erin M.; Wipf, Peter; Greenberger, Joel S.

    2013-01-01

    Ionizing radiation (IR) induces genotoxic stress that triggers adaptive cellular responses, such as activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade. Pluripotent cells are the most important population affected by IR because they are required for cellular replenishment. Despite the clear danger to large population centers, we still lack safe and effective therapies to abrogate the life-threatening effects of any accidental or intentional IR exposure. Therefore, we computationally analyzed the chemical structural similarity of previously published small molecules that, when given after IR, mitigate cell death and found a chemical cluster that was populated with PI3K inhibitors. Subsequently, we evaluated structurally diverse PI3K inhibitors. It is remarkable that 9 of 14 PI3K inhibitors mitigated γIR-induced death in pluripotent NCCIT cells as measured by caspase 3/7 activation. A single intraperitoneal dose of LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], administered to mice at 4 or 24 hours, or PX-867 [(4S,4aR,5R,6aS,9aR,Z)-11-hydroxy-4-(methoxymethyl)-4a,6a-dimethyl-2,7,10-trioxo-1-(pyrrolidin-1-ylmethylene)-1,2,4,4a,5,6,6a,7,8,9,9a,10-dodecahydroindeno[4,5-H]isochromen-5-yl acetate (CID24798773)], administered 4 hours after a lethal dose of γIR, statistically significantly (P < 0.02) enhanced in vivo survival. Because cell cycle checkpoints are important regulators of cell survival after IR, we examined cell cycle distribution in NCCIT cells after γIR and PI3K inhibitor treatment. LY294002 and PX-867 treatment of nonirradiated cells produced a marked decrease in S phase cells with a concomitant increase in the G1 population. In irradiated cells, LY294002 and PX-867 treatment also decreased S phase and increased the G1 and G2 populations. Treatment with LY294002 or PX-867 decreased γIR-induced DNA damage as measured by γH2AX, suggesting reduced DNA damage. These results indicate pharmacologic inhibition of PI3K after IR abrogated cell death. PMID:24068833

  7. Tolerogenic nanoparticles to induce immunologic tolerance: Prevention and reversal of FVIII inhibitor formation.

    PubMed

    Zhang, Ai-Hong; Rossi, Robert J; Yoon, Jeongheon; Wang, Hong; Scott, David W

    2016-03-01

    The immune response of hemophilia A patients to administered FVIII is a major complication that obviates this very therapy. We have recently described the use of synthetic, biodegradable nanoparticles carrying rapamycin and FVIII peptide antigens, to induce antigen-specific tolerance. Herein we test the tolerogenicity of nanoparticles that contains full length FVIII protein in hemophilia A mice, focusing on anti-FVIII humoral immune response. As expected, recipients of tolerogenic nanoparticles remained unresponsive to FVIII despite multiple challenges for up to 6months. Furthermore, therapeutic treatments in FVIII-immunized mice with pre-existing anti-FVIII antibodies resulted in diminished antibody titers, albeit efficacy required longer therapy with the tolerogenic nanoparticles. Interestingly, durable FVIII-specific tolerance was also achieved in animals co-administered with FVIII admixed with nanoparticles encapsulating rapamycin alone. These results suggest that nanoparticles carrying rapamycin and FVIII can be employed to induce specific tolerance to prevent and even reverse inhibitor formation. PMID:26687613

  8. Cyclooxygenase inhibitor induces the upregulation of connexin-43 expression in C6 glioma cells

    PubMed Central

    QIN, LI-JUAN; JIA, YONG-SEN; ZHANG, YI-BING; WANG, YIN-HUAN

    2016-01-01

    The present study was performed to determine whether aspirin, a cyclooxygenase (COX) inhibitor, has an effect on the expression of connexin 43 (Cx43) in C6 glioma cells. Using an in vitro glioma invasion model, the expression of Cx43 protein in C6 cells was significantly increased following aspirin treatment at a dose of 8 mmol/l for 30, 60 and 120 min via western blot analysis. The peak value of the Cx43 expression was observed in C6 cells after 120 min of aspirin treatment, which was significantly reduced by prostaglandin E2 (PGE2). In addition, aspirin also significantly increased the gap junction intercellular communication (GJIC) activity and reduced glioma invasion, which was induced by PGE2. This led to the conclusion that the aspirin-induced glioma invasion decrease may be associated with the increased expression of Cx43 protein and formation of GJIC. PMID:27073629

  9. Further studies of auxin and ACC induced feminization in the cucumber plant using ethylene inhibitors.

    PubMed

    Takahashi, H; Jaffe, M J

    1984-01-01

    The present study was designed to establish the role of an essential hormone controlling sex expression in cucumber. A potent anti-ethylene agent, AgNO3, completely inhibited pistillate flower formation caused by IAA, ACC or ethephon. Inhibitors of ethylene biosynthesis, AVG and CoCl2 also suppressed feminization due to exogenous IAA or ACC. Though AVG also suppressed ethephon-induced feminization, this may be due to the second effect of AVG rather than the effect on ACC biosynthesis. These results confirm that ethylene is a major factor regulating feminization and that exogenous auxin induces pistillate flower formation through its stimulation of ethylene production, rather than ACC production. PMID:11540805

  10. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types. PMID:26568031

  11. Omeprazole increases the efficacy of a soluble epoxide hydrolase inhibitor in a PGE₂ induced pain model.

    PubMed

    Goswami, Sumanta Kumar; Inceoglu, Bora; Yang, Jun; Wan, Debin; Kodani, Sean D; da Silva, Carlos Antonio Trindade; Morisseau, Christophe; Hammock, Bruce D

    2015-12-15

    Epoxyeicosatrienoic acids (EETs) are potent endogenous analgesic metabolites produced from arachidonic acid by cytochrome P450s (P450s). Metabolism of EETs by soluble epoxide hydrolase (sEH) reduces their activity, while their stabilization by sEH inhibition decreases both inflammatory and neuropathic pain. Here, we tested the complementary hypothesis that increasing the level of EETs through induction of P450s by omeprazole (OME), can influence pain related signaling by itself, and potentiate the anti-hyperalgesic effect of sEH inhibitor. Rats were treated with OME (100mg/kg/day, p.o., 7 days), sEH inhibitor TPPU (3mg/kg/day, p.o.) and OME (100mg/kg/day, p.o., 7 days)+TPPU (3mg/kg/day, p.o., last 3 days of OME dose) dissolved in vehicle PEG400, and their effect on hyperalgesia (increased sensitivity to pain) induced by PGE2 was monitored. While OME treatment by itself exhibited variable effects on PGE2 induced hyperalgesia, it strongly potentiated the effect of TPPU in the same assay. The significant decrease in pain with OME+TPPU treatment correlated with the increased levels of EETs in plasma and increased activities of P450 1A1 and P450 1A2 in liver microsomes. The results show that reducing catabolism of EETs with a sEH inhibitor yielded a stronger analgesic effect than increasing generation of EETs by OME, and combination of both yielded the strongest pain reducing effect under the condition of this study. PMID:26522832

  12. Identification of H7 as a novel peroxiredoxin I inhibitor to induce differentiation of leukemia cells

    PubMed Central

    Qin, Dongjun; Chen, Yingyi; Liu, Chuanxu; Xia, Li; Wang, Tongdan; Lei, Hu; Yu, Yun; Huang, Min; Tong, Yin; Xu, Hanzhang; Gao, Fenghou

    2016-01-01

    Identifying novel targets to enhance leukemia-cell differentiation is an urgent requirment. We have recently proposed that inhibiting the antioxidant enzyme peroxiredoxin I (Prdx I) may induce leukemia-cell differentiation. However, this concept remains to be confirmed. In this work, we identified H7 as a novel Prdx I inhibitor through virtual screening, in vitro activity assay, and surface plasmon resonance assay. Cellular thermal shift assay showed that H7 directly bound to Prdx I but not to Prdxs II–V in cells. H7 treatment also increased reactive oxygen species (ROS) level and cell differentiation in leukemia cells, as reflected by the upregulation of the cell surface differentiation marker CD11b/CD14 and the morphological maturation of cells. The differentiation-induction effect of H7 was further observed in some non-acute promyelocytic leukemia (APL) and primary leukemia cells apart from APL NB4 cells. Moreover, the ROS scavenger N-acetyl cysteine significantly reversed the H7-induced cell differentiation. We demonstrated as well that H7-induced cell differentiation was associated with the activation of the ROS-Erk1/2-C/EBPβ axis. Finally, we showed H7 treatment induced cell differentiation in an APL mouse model. All of these data confirmed that Prdx I was novel target for inducing leukemia-cell differentiation and that H7 was a novel lead compound for optimizing Prdx I inhibition. PMID:26716647

  13. Identification of H7 as a novel peroxiredoxin I inhibitor to induce differentiation of leukemia cells.

    PubMed

    Wei, Wei; Ma, Chunmin; Cao, Yang; Yang, Li; Huang, Zhimin; Qin, Dongjun; Chen, Yingyi; Liu, Chuanxu; Xia, Li; Wang, Tongdan; Lei, Hu; Yu, Yun; Huang, Min; Tong, Yin; Xu, Hanzhang; Gao, Fenghou; Zhang, Jian; Wu, Ying-Li

    2016-01-26

    Identifying novel targets to enhance leukemia-cell differentiation is an urgent requirement. We have recently proposed that inhibiting the antioxidant enzyme peroxiredoxin I (Prdx I) may induce leukemia-cell differentiation. However, this concept remains to be confirmed. In this work, we identified H7 as a novel Prdx I inhibitor through virtual screening, in vitro activity assay, and surface plasmon resonance assay. Cellular thermal shift assay showed that H7 directly bound to Prdx I but not to Prdxs II-V in cells. H7 treatment also increased reactive oxygen species (ROS) level and cell differentiation in leukemia cells, as reflected by the upregulation of the cell surface differentiation marker CD11b/CD14 and the morphological maturation of cells. The differentiation-induction effect of H7 was further observed in some non-acute promyelocytic leukemia (APL) and primary leukemia cells apart from APL NB4 cells. Moreover, the ROS scavenger N-acetyl cysteine significantly reversed the H7-induced cell differentiation. We demonstrated as well that H7-induced cell differentiation was associated with the activation of the ROS-Erk1/2-C/EBPβ axis. Finally, we showed H7 treatment induced cell differentiation in an APL mouse model. All of these data confirmed that Prdx I was novel target for inducing leukemia-cell differentiation and that H7 was a novel lead compound for optimizing Prdx I inhibition. PMID:26716647

  14. Icariside II, a novel phosphodiesterase-5 inhibitor, attenuates streptozotocin-induced cognitive deficits in rats.

    PubMed

    Yin, Caixia; Deng, Yuanyuan; Gao, Jianmei; Li, Xiaohui; Liu, Yuangui; Gong, Qihai

    2016-07-22

    Beta-amyloid (Aβ) deposition and neuroinflammation are involved in Alzheimer's disease (AD)-type neurodegeneration with cognitive deficits. Phosphodiesterase-5 (PDE5) inhibitors have recently been studied as a potential target for cognitive enhancement by reducing inflammatory responses and Aβ levels. The present study was designed to investigate the effects of icariside II (ICS II), a novel PDE5 inhibitor derived from the traditional Chinese herb Epimedium brevicornum, on cognitive deficits, Aβ levels and neuroinflammation induced by intracerebroventricular-streptozotocin (ICV-STZ) in rats. The results demonstrated that ICV-STZ exhibited cognitive deficits and neuronal morphological damage, along with Aβ increase and neuroinflammation in the rat hippocampus. ICS II improved cognitive deficits, attenuated neuronal death, and decreased the levels of Aβ1-40, Aβ1-42 and PDE5 in the hippocampus of STZ rats. Furthermore, administration of ICS II at the dose of 10mg/kg for 21days significantly suppressed the expression of beta-amyloid precursor protein (APP), beta-secretase1 (BACE1) and increased the expressions of neprilysin (NEP) together with inhibited interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, cyclooxygenase-2 (COX-2) and transforming growth factor-β1 (TGF-β1) levels. In addition, ICS II exerted a beneficial effect on inhibition of IκB-α degradation and NF-κB activation induced by STZ. Taken together, the present study demonstrated that ICS II was a potential therapeutic agent for AD treatment. PMID:27109920

  15. Sorafenib, a multikinase inhibitor, induces formation of stress granules in hepatocarcinoma cells

    PubMed Central

    Adjibade, Pauline; St-Sauveur, Valérie Grenier; Huberdeau, Miguel Quevillon; Fournier, Marie-Josée; Savard, Andreanne; Coudert, Laetitia; Khandjian, Edouard W.; Mazroui, Rachid

    2015-01-01

    Stress granules (SGs) are cytoplasmic RNA multimeric bodies that form under stress conditions known to inhibit translation initiation. In most reported stress cases, the formation of SGs was associated with the cell recovery from stress and survival. In cells derived from cancer, SGs formation was shown to promote resistance to either proteasome inhibitors or 5-Fluorouracil used as chemotherapeutic agents. Despite these studies, the induction of SGs by chemotherapeutic drugs contributing to cancer cells resistance is still understudied. Here we identified sorafenib, a tyrosine kinase inhibitor used to treat hepatocarcinoma, as a potent chemotherapeutic inducer of SGs. The formation of SGs in sorafenib-treated hepatocarcionoma cells correlates with inhibition of translation initiation; both events requiring the phosphorylation of the translation initiation factor eIF2α. Further characterisation of the mechanism of sorafenib-induced SGs revealed PERK as the main eIF2α kinase responsible for SGs formation. Depletion experiments support the implication of PERK-eIF2α-SGs pathway in hepatocarcinoma cells resistance to sorafenib. This study also suggests the existence of an unexpected complex regulatory balance between SGs and phospho-eIF2α where SGs dampen the activation of the phospho-eIF2α-downstream ATF4 cell death pathway. PMID:26556863

  16. High-throughput screening identifies inhibitors of DUX4-induced myoblast toxicity

    PubMed Central

    2014-01-01

    Background Facioscapulohumeral muscular dystrophy (FSHD) is caused by epigenetic alterations at the D4Z4 macrosatellite repeat locus on chromosome 4, resulting in inappropriate expression of the DUX4 protein. The DUX4 protein is therefore the primary molecular target for therapeutic intervention. Methods We have developed a high-throughput screen based on the toxicity of DUX4 when overexpressed in C2C12 myoblasts, and identified inhibitors of DUX4-induced toxicity from within a diverse set of 44,000 small, drug-like molecules. A total of 1,280 hits were then subjected to secondary screening for activity against DUX4 expressed by 3T3 fibroblasts, for absence of activity against the tet-on system used to conditionally express DUX4, and for potential effects on cellular proliferation rate. Results This allowed us to define a panel of 52 compounds to use as probes to identify essential pathways of DUX4 activity. We tested these compounds for their ability to protect wild-type cells from other types of cell death-inducing insults. Remarkably, we found that 60% of the DUX4 toxicity inhibitors that we identified also protected cells from tert-butyl hydrogen peroxide, an oxidative stress-inducing compound. Compounds did not protect against death induced by caspase activation, DNA damage, protein misfolding, or ER stress. Encouragingly, many of these compounds are also protective against DUX4 expression in human cells. Conclusion These data suggest that oxidative stress is a dominant pathway through which DUX4-provoked toxicity is mediated in this system, and we speculate that enhancing the oxidative stress response pathway might be clinically beneficial in FSHD. PMID:24484587

  17. Peroxisome proliferator-activated receptor gamma regulates expression of signal transducer and activator of transcription 5A

    SciTech Connect

    Olsen, Hanne; Haldosen, Lars-Arne . E-mail: Lars-Arne.Haldosen@mednut.ki.se

    2006-05-01

    Signal transducer and activator of transcription 5A (STAT5A) has been shown to be important for terminal differentiation of mammary epithelial cells. In order to understand regulation of expression of STAT5A, the 5' end of the mouse Stat5a gene was isolated. Putative regulatory elements was searched for and several peroxisome proliferator response elements (PPREs) were found, one with high (12/13 nucleotides) and three with less (8-10/13) similarity to the reported consensus sequence. Mouse mammary epithelial HC11 cells were treated with peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligand, the thiazolidinedione (TZD) troglitazone, and an increase in STAT5A protein expression was seen. The 5' flank of Stat5a gene was cloned in a luciferase reporter vector. A concentration dependent activation of the STAT5A-luciferase reporter was detected, when transiently transfected HC11 cells were treated with TZD. The activation could be inhibited by treatment with a PPAR{gamma} antagonist. It has earlier been shown that epidermal growth factor (EGF) induces MAPK phosphorylation of PPAR{gamma} resulting in a less transcriptionally active receptor. In HC11 cells, EGF inhibited TZD induced STAT5A-reporter activity suggesting that our previously reported EGF-mediated suppression of STAT5A expression is mediated in all or partly through inhibition of PPAR{gamma} activity. Furthermore, the MEK inhibitor PD98059 inhibited the EGF effect. All together, data presented suggest that PPAR{gamma} participates in regulation of STAT5A expression.

  18. An intimate collaboration between peroxisomes and lipid bodies

    PubMed Central

    Binns, Derk; Januszewski, Tom; Chen, Yue; Hill, Justin; Markin, Vladislav S.; Zhao, Yingming; Gilpin, Christopher; Chapman, Kent D.; Anderson, Richard G.W.; Goodman, Joel M.

    2006-01-01

    Although peroxisomes oxidize lipids, the metabolism of lipid bodies and peroxisomes is thought to be largely uncoupled from one another. In this study, using oleic acid–cultured Saccharomyces cerevisiae as a model system, we provide evidence that lipid bodies and peroxisomes have a close physiological relationship. Peroxisomes adhere stably to lipid bodies, and they can even extend processes into lipid body cores. Biochemical experiments and proteomic analysis of the purified lipid bodies suggest that these processes are limited to enzymes of fatty acid β oxidation. Peroxisomes that are unable to oxidize fatty acids promote novel structures within lipid bodies (“gnarls”), which may be organized arrays of accumulated free fatty acids. However, gnarls are suppressed, and fatty acids are not accumulated in the absence of peroxisomal membranes. Our results suggest that the extensive physical contact between peroxisomes and lipid bodies promotes the coupling of lipolysis within lipid bodies with peroxisomal fatty acid oxidation. PMID:16735577

  19. Structural biology of the import pathways of peroxisomal matrix proteins.

    PubMed

    Emmanouilidis, Leonidas; Gopalswamy, Mohanraj; Passon, Daniel M; Wilmanns, Matthias; Sattler, Michael

    2016-05-01

    The peroxisomal proteins (peroxins) that mediate the import of peroxisomal matrix proteins have been identified. Recently, the purification of a functional peroxisomal translocon has been reported. However, the molecular details of the import pathways and the mechanisms by which the cargo is translocated into the lumen of the organelle are still poorly understood. Structural studies have begun to provide insight into molecular mechanisms of peroxisomal import pathways for cargo proteins that harbor peroxisomal targeting signals, PTS1 and PTS2, at their C- and N-termini, respectively. So far structures have been reported for binary or tertiary protein-protein interfaces, and highlight the role of intrinsically disordered regions for these interactions. Here, we provide an overview of the currently available structural biology of peroxisomal import pathways. Current challenges and future perspectives of the structural biology of peroxisomal protein translocation are discussed. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26450166

  20. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors

    SciTech Connect

    Zhou, Dan; Liu, Yuan; Ye, Josephine; Ying, Weiwen; Ogawa, Luisa Shin; Inoue, Takayo; Tatsuta, Noriaki; Wada, Yumiko; Koya, Keizo; Huang, Qin; Bates, Richard C.; Sonderfan, Andrew J.

    2013-12-01

    In human trials certain heat shock protein 90 (Hsp90) inhibitors, including 17-DMAG and NVP-AUY922, have caused visual disorders indicative of retinal dysfunction; others such as 17-AAG and ganetespib have not. To understand these safety profile differences we evaluated histopathological changes and exposure profiles of four Hsp90 inhibitors, with or without clinical reports of adverse ocular effects, using a rat retinal model. Retinal morphology, Hsp70 expression (a surrogate marker of Hsp90 inhibition), apoptotic induction and pharmacokinetic drug exposure analysis were examined in rats treated with the ansamycins 17-DMAG and 17-AAG, or with the second-generation compounds NVP-AUY922 and ganetespib. Both 17-DMAG and NVP-AUY922 induced strong yet restricted retinal Hsp70 up-regulation and promoted marked photoreceptor cell death 24 h after the final dose. In contrast, neither 17-AAG nor ganetespib elicited photoreceptor injury. When the relationship between drug distribution and photoreceptor degeneration was examined, 17-DMAG and NVP-AUY922 showed substantial retinal accumulation, with high retina/plasma (R/P) ratios and slow elimination rates, such that 51% of 17-DMAG and 65% of NVP-AUY922 present at 30 min post-injection were retained in the retina 6 h post-dose. For 17-AAG and ganetespib, retinal elimination was rapid (90% and 70% of drugs eliminated from the retina at 6 h, respectively) which correlated with lower R/P ratios. These findings indicate that prolonged inhibition of Hsp90 activity in the eye results in photoreceptor cell death. Moreover, the results suggest that the retina/plasma exposure ratio and retinal elimination rate profiles of Hsp90 inhibitors, irrespective of their chemical class, may predict for ocular toxicity potential. - Highlights: • In human trials some Hsp90 inhibitors cause visual disorders, others do not. • Prolonged inhibition of Hsp90 in the rat eye results in photoreceptor cell death. • Retina/plasma ratio and retinal elimination rate are linked to toxicity potential. • Rat retinotoxic responses to individual Hsp90 inhibitors reflect clinical profiles. • Rodent modeling may be used to assess ocular risks of targeted Hsp90 compounds.

  1. Post-treatment of an NADPH oxidase inhibitor prevents seizure-induced neuronal death.

    PubMed

    Kim, Jin Hee; Jang, Bong Geom; Choi, Bo Young; Kim, Hyeong Seop; Sohn, Min; Chung, Tae Nyoung; Choi, Hui Chul; Song, Hong Ki; Suh, Sang Won

    2013-03-01

    The present study sought to evaluate the neuroprotective effects of apocynin, an NADPH oxidase assembly inhibitor, on seizure-induced neuronal death. Apocynin, also known as acetovanillone, is a natural organic compound isolated from the root of Canadian hemp (Apocynum cannabium). It has been extensively studied to determine its disease-fighting capabilities and application in several brain insults, such as traumatic brain injury and stroke. Here we tested the hypothesis that post-treatment of apocynin may prevent seizure-induced neuronal death by suppression of NADPH oxidase-mediated superoxide production. Temporal lobe epilepsy (TLE) was induced by intraperitoneal injection of pilocarpine (25mg/kg) in male rats. Apocynin (30mg/kg, i.p.) was injected into the intraperitoneal space two hours after seizure onset. A second injection was performed 24h after seizure. To test whether apocynin inhibits NADPH oxidase activation-induced reactive oxygen species (ROS) production, dihydroethidium (dHEt, 5mg/kg, i.p.) was injected before onset of seizure and ROS production was detected five hours after seizure onset. Neuronal oxidative injury (4HNE), neuronal death (Fluoro Jade-B), blood brain barrier (BBB) disruption (IgG leak), neurotrophil infiltration (MPO) and microglia activation (CD11b) in the hippocampus was evaluated at three days after status epilepticus (SE). Pilocarpine-induced seizure increased p47 immunofluorescence in the plasma membrane of hippocampal neurons at 12h post-insult and apocynin treatment prevented this increase. The present study found that apocynin post-treatment decreased ROS production and lipid peroxidation after seizure and decreased the number of degenerating hippocampal neurons. Apocynin also reduced seizure-induced BBB disruption, neurotrophil infiltration and microglial activation. Taken together, the present results suggest that inhibition of NADPH oxidase by apocynin may have a high therapeutic potential to reduce seizure-induced neuronal dysfunction. PMID:23313582

  2. Effect of the Angiotensin I Converting Enzyme Inhibitor, MK-421, on Experimentally Induced Drinking

    NASA Technical Reports Server (NTRS)

    Fregley, Melvin J.; Fater, Dennis C.; Greenleaf, John E.

    1982-01-01

    MK-421, the ethyl ester maleate salt of N-(S)-1-(ethoxycarbonyl)-3-phenyl-propyl- Ala-L-Pro, is an angiotensin I converting enzyme inhibitor. An initial objective was to determine whether MK-421, administered at 0, 2.5, 5.0, 10.0, 20.0 and 40.0 mg/kg, ip to 96 female rats 15 min prior to administration of the beta-adrenergic agonist, isoproterenol (25 microgram/kg, ip), would inhibit the drinking induced by isoproterenol during 2 h after its administration. The water intake induced by isoproterenol was inhibited significantly by 2.5 mg MK-421/kg. When a similar experiment was performed using Angiotensin I (AI) (200 microgram/kg, ip) as the dipsogenic agent, MK-421 (5 mg/kg, ip), administered 15 min prior to AI, inhibited significantly both the dipsogenic and the diuretic effect of AI. However, administration of angiotensin II (AII, 200 microgram/kg, ip) 15 min after MK-421 (5mg/kg) was accompanied by a water intake that did not differ from AII alone. The drink induced by ip administration of 1.0 m NaCl solution (1% of body wt, ip) was not inhibited by administration of MK-421 (5 mg/kg) 15 min prior to allowing access to water while the drink induced by a 24 h dehydration was partially inhibited. Thus, the drinks induced by administraition of either isoproterenol or AI are dependent on formation of AII. That induced by dehydration is partially dependent, while that induced by hypertonic siilinc is independent of the formation of AII.

  3. Peroxisome proliferator-activated receptors for hypertension.

    PubMed

    Usuda, Daisuke; Kanda, Tsugiyasu

    2014-08-26

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily, which is composed of four members encoded by distinct genes (α, β, γ, and δ). The genes undergo transactivation or transrepression under specific mechanisms that lead to the induction or repression of target gene expression. As is the case with other nuclear receptors, all four PPAR isoforms contain five or six structural regions in four functional domains; namely, A/B, C, D, and E/F. PPARs have many functions, particularly functions involving control of vascular tone, inflammation, and energy homeostasis, and are, therefore, important targets for hypertension, obesity, obesity-induced inflammation, and metabolic syndrome in general. Hence, PPARs also represent drug targets, and PPARα and PPARγ agonists are used clinically in the treatment of dyslipidemia and type 2 diabetes mellitus, respectively. Because of their pleiotropic effects, they have been identified as active in a number of diseases and are targets for the development of a broad range of therapies for a variety of diseases. It is likely that the range of PPARγ agonist therapeutic actions will result in novel approaches to lifestyle and other diseases. The combination of PPARs with reagents or with other cardiovascular drugs, such as diuretics and angiotensin II receptor blockers, should be studied. This article provides a review of PPAR isoform characteristics, a discussion of progress in our understanding of the biological actions of PPARs, and a summary of PPAR agonist development for patient management. We also include a summary of the experimental and clinical evidence obtained from animal studies and clinical trials conducted to evaluate the usefulness and effectiveness of PPAR agonists in the treatment of lifestyle-related diseases. PMID:25228953

  4. Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury.

    PubMed

    Chaaban, Hala; Keshari, Ravi S; Silasi-Mansat, Robert; Popescu, Narcis I; Mehta-D'Souza, Padmaja; Lim, Yow-Pin; Lupu, Florea

    2015-04-01

    Extracellular histones are mediators of tissue injury and organ dysfunction; therefore they constitute potential therapeutic targets in sepsis, inflammation, and thrombosis. Histone cytotoxicity in vitro decreases in the presence of plasma. Here, we demonstrate that plasma inter-α inhibitor protein (IAIP) neutralizes the cytotoxic effects of histones and decreases histone-induced platelet aggregation. These effects are mediated through the negatively charged glycosaminoglycans (GAGs) chondroitin sulfate and high-molecular-weight hyaluronan (HMW-HA) associated with IAIP. Cell surface anionic glycosaminoglycans heparan sulfate and HA protect the cells against histone-mediated damage in vitro. Surface plasmon resonance showed that both IAIP and HMW-HA directly bind to recombinant histone H4. In vivo neutralization of histones with IAIP and HMW-HA prevented histone-induced thrombocytopenia, bleeding, and lung microvascular thrombosis, decreased neutrophil activation, and averted histone-induced production of inflammatory cytokines and chemokines. IAIP and HMW-HA colocalized with histones in necrotic tissues and areas that displayed neutrophil extracellular traps. Increasing amounts of IAIP-histone complexes detected in the plasma of septic baboons correlated with increase in histones and/or nucleosomes and consumption of plasma IAIP. Our data suggest that IAIP, chondroitin sulfate, and HMW-HA are potential therapeutic agents to protect against histone-induced cytotoxicity, coagulopathy, systemic inflammation, and organ damage during inflammatory conditions such as sepsis and trauma. PMID:25631771

  5. Citalopram, a selective serotonin reuptake inhibitor augments harmaline-induced tremor in rats.

    PubMed

    Arshaduddin, Mohammed; Al Kadasah, Saeed; Biary, Nabil; Al Deeb, Saleh; Al Moutaery, Khalaf; Tariq, Mohammad

    2004-08-12

    Citalopram, a serotonin reuptake inhibitor (SSRI) is one of the widely used antidepressants. Apart from its antidepressant activity citalopram is also used for anxiety, panic disorders, obsessive-compulsive disorder and behavioral disturbances of dementia. Tremor is the second most common neurological adverse effect in patients receiving treatment with SSRIs. Use of these agents in depressed patients with essential tremor has not been studied. The present study was undertaken to investigate the effect of chronic citalopram treatment on harmaline-induced tremors in rats. Female Sprague-Dawley rats weighing 70+/-2 g were given citalopram in doses of 0, 10, 20 and 40 mg/kg by gavage for 2 weeks. On the 15th day, the rats were given harmaline (10 mg/kg, i.p.) 30 min after the last dose of citalopram. The latency of onset, intensity and duration of tremor and EMG were recorded. Serotonin (5HT) and 5-hydroxy indole acetic acid (5HIAA) were measured in brain stem. Citalopram dose dependently exacerbated the duration, intensity and amplitude of EMG of harmaline-induced tremor. A significant decrease in 5HT turnover (5HIAA/5HT ratio) in the brain stem was observed suggesting a possible role of serotoninergic impairment in citalopram-induced augmentation of harmaline-induced tremor. Clinical implications of these observations warrant further investigation. PMID:15219702

  6. Inter-α inhibitor protein and its associated glycosaminoglycans protect against histone-induced injury

    PubMed Central

    Chaaban, Hala; Keshari, Ravi S.; Silasi-Mansat, Robert; Popescu, Narcis I.; Mehta-D’Souza, Padmaja; Lim, Yow-Pin

    2015-01-01

    Extracellular histones are mediators of tissue injury and organ dysfunction; therefore they constitute potential therapeutic targets in sepsis, inflammation, and thrombosis. Histone cytotoxicity in vitro decreases in the presence of plasma. Here, we demonstrate that plasma inter-α inhibitor protein (IAIP) neutralizes the cytotoxic effects of histones and decreases histone-induced platelet aggregation. These effects are mediated through the negatively charged glycosaminoglycans (GAGs) chondroitin sulfate and high-molecular-weight hyaluronan (HMW-HA) associated with IAIP. Cell surface anionic glycosaminoglycans heparan sulfate and HA protect the cells against histone-mediated damage in vitro. Surface plasmon resonance showed that both IAIP and HMW-HA directly bind to recombinant histone H4. In vivo neutralization of histones with IAIP and HMW-HA prevented histone-induced thrombocytopenia, bleeding, and lung microvascular thrombosis, decreased neutrophil activation, and averted histone-induced production of inflammatory cytokines and chemokines. IAIP and HMW-HA colocalized with histones in necrotic tissues and areas that displayed neutrophil extracellular traps. Increasing amounts of IAIP-histone complexes detected in the plasma of septic baboons correlated with increase in histones and/or nucleosomes and consumption of plasma IAIP. Our data suggest that IAIP, chondroitin sulfate, and HMW-HA are potential therapeutic agents to protect against histone-induced cytotoxicity, coagulopathy, systemic inflammation, and organ damage during inflammatory conditions such as sepsis and trauma. PMID:25631771

  7. IDENTIFICATION OF EARLY MOLECULAR EVENTS AFTER PEROXISOME PROLIFERATOR EXPOSURE IN THE RODENT LIVER

    EPA Science Inventory

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the PP-activated receptor ?(PPAR?). Development of PP induced hepatocarcinogenesis in mouse liver is known to be dependent on PPAR? but do...

  8. PPARÁ-DEPENDENT GENE EXPRESSION CHANGES IN THE MOUSE LIVER AFTER EXPOSURE TO PEROXISOME PROLIFERATORS

    EPA Science Inventory

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the PP-activated receptor ¿ (PPARα). Development of PP induced hepatocarcinogenesis in mouse liver is known to be dependent on PPAR&#...

  9. PPAR-DEPENDENT GENE EXPRESSION CHANGES IN THE MOUSE LIVER AFTER EXPOSURE TO PEROXISOME PROLIFERATORS

    EPA Science Inventory

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the PP-activated receptor (PPAR?). Development of PP induced hepatocarcinogenesis in mouse liver is known to be dependent on PPAR&#...

  10. Diabetes or peroxisome proliferator-activated receptor alpha agonist increases mitochondrial thioesterase I activity in heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a transcriptional regulator of the expression of mitochondrial thioesterase I (MTE-I) and uncoupling protein 3 (UCP3), which are induced in the heart at the mRNA level in response to diabetes. Little is known about the regulation of pr...

  11. IDENTIFICATION OF EARLY MOLECULAR EVENTS AFTER PEROXISOME PROLIFERATOR EXPOSURE IN THE RODENT LIVER

    EPA Science Inventory

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the PP-activated receptor α(PPARα). Development of PP induced hepatocarcinogenesis in mouse liver is known to be dependent on PPARα but do...

  12. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    SciTech Connect

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F.; Rando, Roy J.; Pathak, Yashwant V.; Hoyle, Gary W.

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.

  13. Regulation of apoptosis by peroxisome proliferators.

    PubMed

    Roberts, Ruth A; Michel, Cecile; Coyle, Beth; Freathy, Caroline; Cain, Kelvin; Boitier, Eric

    2004-04-01

    Peroxisome proliferators (PPs) constitute a large and chemically diverse family of non-genotoxic rodent hepatocarcinogens that activate the PP-activated receptor alpha (PPARalpha). In order to investigate the hypothesis that PPs elicit their carcinogenic effects through the suppression of apoptosis, we established an in vitro assay for apoptosis using both primary rat hepatocytes and the FaO rat hepatoma cell line. Apoptosis was induced by transforming growth factor beta1 (TGFbeta1), the physiological negative regulator of liver growth. In this system, PPs could suppress both spontaneous and TGFbeta1-induced apoptosis. In order to understand the mechanisms of this regulation of apoptosis, we conducted microarray analysis followed by pathway-specific gene clustering in TGFbeta1-treated cells. After treatment, 76 genes were up-regulated and 185 were down-regulated more than 1.5-fold. Cluster analysis of up-regulated genes revealed three clusters, A-C. Cluster A (4h) was associated with 12% apoptosis and consisted of genes mainly of the cytoskeleton and extracellular matrix such as troponin and the proteoglycan SDC4. In cluster B (8h; 25% apoptosis), there were many pro- and anti-apoptotic genes such as XIAP, BAK1 and BAD, whereas at 16h (40% apoptosis) the regulated genes were mainly those of the cellular stress pathways such as the genes implicated in the activation of the transcription factor NFkappab. Genes found down-regulated in response to TGFbeta1 were mainly those associated with oxidative stress and several genes implicated in glutathione production and maintenance. Thus, TGFbeta1 may induce apoptosis via a down regulation of oxidant defence leading to the generation of reactive oxygen species. The ability of PPs to impact on these apoptosis pathways remains to be determined. To approach this question, we have developed a technique using laser capture microdissection of livers treated with the PP, clofibric acid coupled with gene expression array analysis. Results show that some of the key steps of the LCM process had an impact on the gene profiles generated. However, this did not preclude accurate determination of a PP-specific molecular signature. Thus, the choice of appropriate controls will ensure that meaningful gene expression analyses can be performed on tissue microdissected from the foci generated in clofibric acid treated livers. These data will allow the identification of specific genes that are regulated by PPs leading to changes in apoptosis and ultimately to tumours. PMID:15093246

  14. Immune checkpoint inhibitors enhance cytotoxicity of cytokine-induced killer cells against human myeloid leukaemic blasts.

    PubMed

    Poh, Su Li; Linn, Yeh Ching

    2016-05-01

    We studied whether blockade of inhibitory receptors on cytokine-induced killer (CIK) cells by immune checkpoint inhibitors could increase its anti-tumour potency against haematological malignancies. CIK cultures were generated from seven normal donors and nine patients with acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) or multiple myeloma (MM). The inhibitory receptors B and T lymphocyte attenuator, CD200 receptor, lymphocyte activation gene-3 (LAG-3) and T cell immunoglobulin and mucin-domain-containing-3 (TIM-3) were present at variable percentages in most CIK cultures, while cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed death-1 (PD-1) and killer cell immunoglobulin-like receptors (KIR2DL1/2/3) were expressed at low level in most cultures. Without blockade, myeloid leukaemia cells were susceptible to autologous and allogeneic CIK-mediated cytotoxicity. Blockade of KIR, LAG-3, PD-1 and TIM-3 but not CTLA-4 resulted in remarkable increase in killing against these targets, even in those with poor baseline cytotoxicity. ALL and MM targets were resistant to CIK-mediated cytotoxicity, and blockade of receptors did not increase cytotoxicity to a meaningful extent. Combination of inhibitors against two receptors did not further increase cytotoxicity. Interestingly, potentiation of CIK killing by blocking antibodies was not predicted by expression of receptors on CIK and their respective ligands on the targets. Compared to un-activated T and NK cells, blockade potentiated the cytotoxicity of CIK cells to a greater degree and at a lower E:T ratio, but without significant increase in cytotoxicity against normal white cell. Our findings provide the basis for clinical trial combining autologous CIK cells with checkpoint inhibitors for patients with AML. PMID:26961084

  15. Inhibitors of the 5-lipoxygenase arachidonic acid pathway induce ATP release and ATP-dependent organic cation transport in macrophages.

    PubMed

    da Silva-Souza, Hercules Antônio; Lira, Maria Nathalia de; Costa-Junior, Helio Miranda; da Cruz, Cristiane Monteiro; Vasconcellos, Jorge Silvio Silva; Mendes, Anderson Nogueira; Pimenta-Reis, Gabriela; Alvarez, Cora Lilia; Faccioli, Lucia Helena; Serezani, Carlos Henrique; Schachter, Julieta; Persechini, Pedro Muanis

    2014-07-01

    We have previously described that arachidonic acid (AA)-5-lipoxygenase (5-LO) metabolism inhibitors such as NDGA and MK886, inhibit cell death by apoptosis, but not by necrosis, induced by extracellular ATP (ATPe) binding to P2X7 receptors in macrophages. ATPe binding to P2X7 also induces large cationic and anionic organic molecules uptake in these cells, a process that involves at least two distinct transport mechanisms: one for cations and another for anions. Here we show that inhibitors of the AA-5-LO pathway do not inhibit P2X7 receptors, as judged by the maintenance of the ATPe-induced uptake of fluorescent anionic dyes. In addition, we describe two new transport phenomena induced by these inhibitors in macrophages: a cation-selective uptake of fluorescent dyes and the release of ATP. The cation uptake requires secreted ATPe, but, differently from the P2X7/ATPe-induced phenomena, it is also present in macrophages derived from mice deficient in the P2X7 gene. Inhibitors of phospholipase A2 and of the AA-cyclooxygenase pathway did not induce the cation uptake. The uptake of non-organic cations was investigated by measuring the free intracellular Ca(2+) concentration ([Ca(2+)]i) by Fura-2 fluorescence. NDGA, but not MK886, induced an increase in [Ca(2+)]i. Chelating Ca(2+) ions in the extracellular medium suppressed the intracellular Ca(2+) signal without interfering in the uptake of cationic dyes. We conclude that inhibitors of the AA-5-LO pathway do not block P2X7 receptors, trigger the release of ATP, and induce an ATP-dependent uptake of organic cations by a Ca(2+)- and P2X7-independent transport mechanism in macrophages. PMID:24743022

  16. Expression of the Salmonella Spp. Virulence Factor SifA in Yeast Alters Rho1 Activity on Peroxisomes

    PubMed Central

    Vinh, Dani B. N.; Ko, Dennis C.; Rachubinski, Richard A.; Aitchison, John D.

    2010-01-01

    The Salmonella typhimurium effector protein SifA regulates the assembly and tubulation of the Salmonella phagosome. SifA localizes to the phagosome and interacts with the membrane via its prenylated tail. SifA is a structural homologue of another bacterial effector that acts as a GTP-exchange factor for Rho family GTPases and can bind GDP-RhoA. When coexpressed with a bacterial lipase that is activated by RhoA, SifA can induce tubulation of mammalian endosomes. In an effort to develop a genetic system to study SifA function, we expressed SifA and characterized its activity in yeast. GFP-SifA predominantly localized to yeast peroxisomal membranes. Under peroxisome-inducing conditions, GFP-SifA reduced the number of free peroxisomes and promoted the formation of large peroxisomes with membrane invaginations. GFP-SifA activity depended on the recruitment to peroxisomes of wild-type Rho1p and Pex25p, a receptor for Rho1p. GFP-SifA could also rescue the actin organization defects in pex25Δ and rho1 mutants, suggesting that SifA may recruit and potentiate Rho1p activity. We reexamined the distribution of GFP-SifA in mammalian cells and found the majority colocalizing with LAMP1-positive compartment and not with the peroxisomal marker PMP70. Together, these data suggest that SifA may use a similar mode of action via Rho proteins to alter yeast peroxisomal and mammalian endosomal membranes. Further definition of SifA activity on yeast peroxisomes could provide more insight into its role in regulating host membrane dynamics and small GTPases. PMID:20739463

  17. High Throughput Screening for Small Molecule Inhibitors of Heparin-induced Tau Fibril Formation

    PubMed Central

    Crowe, Alex; Ballatore, Carlo; Hyde, Edward; Trojanowski, John Q.; Lee, Virginia M.-Y.

    2009-01-01

    A library of ∼51,000 compounds was interrogated by high throughput screening (HTS) using a heparin-induced tau fibrillization assay. HTS was conducted with bacterially expressed recombinant tau fragment K18 and the reaction was monitored by thioflavine T fluorescence. Hits meeting criteria set for selection in HTS were further evaluated in a panel of assays designed (a) to confirm the initial results and (b) to identify possible false positives arising from non-specific mechanisms or assay dependent artifacts. Two 2,3-di(furan-2-yl)-quinoxalines were confirmed as inhibitors of tau fibrillization with IC50s in the low micromolar range (l–3 μM). Among false positives hits, members of the pyrimidotriazines, benzofurans, porphyrins and anthraquinones, inhibited tau fibrillization by generating peroxides via catalytic redox cycles due to the reducing agent dithiothreitol (DTT) in the assay. This study delineates focused strategies for HTS of tau fibrillization inhibitors that are relevant to drug discovery for Alzheimer's disease and related tauopathies. PMID:17482143

  18. TNF? inhibitor induced lupus-like syndrome (TAILS) in a patient with IBD

    PubMed Central

    LUPU, A.; TIERANU, C.; CONSTANTINESCU, C.L.; DICULESCU, M.

    2014-01-01

    Background: In patients with autoimmune diseases like inflammatory bowel diseases there has been reported a drug-induced lupus like syndrome secondary to TNF? inhibitors. Objective: clinical case presentation and literature review of patients who develop lupus-like syndrome in relation to TNF? antagonists and their future therapeutic options. Materials and methods: we report the case of a 27-year old woman with colonic Crohn's disease on combo-therapy (infliximab+azathioprine) for nearly two years who developed peripheral arthritis and malar rash in the context of TAILS. Results: our patient had positive anti-nuclear antibody, arthritis, malar rash, anemia and leukopenia. Her symptomes remited after discontinuation of infliximab and subsequently she started adalimumab for her Crohn's colitis; more than a year after switching between TNF? inhibitor molecules and stopping azathioprine she is feeling very well. TAILS is a rare condition described in the literature that can affect 0.5-1% of individuals, more often in association with etanercept and infliximab. Several pathogenic routes have been incriminated in the apparition of this syndrome there is still no definite mechanism up to date. Management options include discontinuation of the drug, corticosteroids, hydroxycloroquine sulfate and switching for other immunosupressives. Conclusions: TAILS can appear even a long time after first exposure to TNF? antagonists. In our case, the association with azathioprine was not a primary prophylactic solution. PMID:26788358

  19. The Proteome of Human Liver Peroxisomes: Identification of Five New Peroxisomal Constituents by a Label-Free Quantitative Proteomics Survey

    PubMed Central

    Ofman, Rob; Bunse, Christian; Pawlas, Magdalena; Hayen, Heiko; Eisenacher, Martin; Stephan, Christian; Meyer, Helmut E.; Waterham, Hans R.; Erdmann, Ralf; Wanders, Ronald J.; Warscheid, Bettina

    2013-01-01

    The peroxisome is a key organelle of low abundance that fulfils various functions essential for human cell metabolism. Severe genetic diseases in humans are caused by defects in peroxisome biogenesis or deficiencies in the function of single peroxisomal proteins. To improve our knowledge of this important cellular structure, we studied for the first time human liver peroxisomes by quantitative proteomics. Peroxisomes were isolated by differential and Nycodenz density gradient centrifugation. A label-free quantitative study of 314 proteins across the density gradient was accomplished using high resolution mass spectrometry. By pairing statistical data evaluation, cDNA cloning and in vivo colocalization studies, we report the association of five new proteins with human liver peroxisomes. Among these, isochorismatase domain containing 1 protein points to the existence of a new metabolic pathway and hydroxysteroid dehydrogenase like 2 protein is likely involved in the transport or ?-oxidation of fatty acids in human peroxisomes. The detection of alcohol dehydrogenase 1A suggests the presence of an alternative alcohol-oxidizing system in hepatic peroxisomes. In addition, lactate dehydrogenase A and malate dehydrogenase 1 partially associate with human liver peroxisomes and enzyme activity profiles support the idea that NAD+ becomes regenerated during fatty acid ?-oxidation by alternative shuttling processes in human peroxisomes involving lactate dehydrogenase and/or malate dehydrogenase. Taken together, our data represent a valuable resource for future studies of peroxisome biochemistry that will advance research of human peroxisomes in health and disease. PMID:23460848

  20. Heat shock protein 90 inhibitors induce functional inhibition of human natural killer cells in a dose-dependent manner.

    PubMed

    Huyan, Ting; Li, Qi; Dong, Dan-Dan; Yang, Hui; Zhang, Jian; Huang, Qing-Sheng; Yin, Da-Chuan; Shang, Peng

    2016-04-01

    Heat shock protein 90 (Hsp90) is a ubiquitously expressed ATP-dependent molecular chaperone across all species that helps to the correct the folding of many proteins related to important signaling pathways. Tumor cells expressing Hsp90 have more ATP-binding affinity than normal cells. Many correlative inhibitors have been developed to promising anti-tumor strategies and have been evaluated in clinical trials. However, the effect of Hsp90 inhibitors on immunocytes cannot be ignored. Natural killer (NK) cells are key components of the innate immune system that play a pivotal role in tumor surveillance. The present study has investigated the potential effect of four Hsp90 inhibitors (NVP-AUY922, BIIB021, 17-DMAG, and SNX-2112) on human primary NK cells. The viability, cytotoxicity, apoptosis, phenotype, and cytokine secretion of NK cells after inhibitor treatment were assessed. The results of this study demonstrated that the inhibitors had negative effects on NK cell activity in a dose-dependent manner. The four inhibitors significantly reduced the cytotoxicity of the NK cells by decreasing viability, inducing apoptosis and down-regulating the expression of cytokines and functional receptors. These findings suggest that more attention should be given to the effect of Hsp90 inhibitors on NK cell function during clinical trials and also represent a potential immunosuppressant strategy. PMID:26642940

  1. Peroxisome dynamics during development of the fungus Podospora anserina.

    PubMed

    Takano-Rojas, Harumi; Zickler, Denise; Peraza-Reyes, Leonardo

    2016-05-01

    Peroxisomes are versatile and dynamic organelles that are required for the development of diverse eukaryotic organisms. We demonstrated previously that in the fungus Podospora anserina different peroxisomal functions are required at distinct stages of sexual development, including the initiation and progression of meiocyte (ascus) development and the differentiation and germination of sexual spores (ascospores). Peroxisome assembly during these processes relies on the differential activity of the protein machinery that drives the import of proteins into the organelle, indicating a complex developmental regulation of peroxisome formation and activity. Here we demonstrate that peroxisome dynamics is also highly regulated during development. We show that peroxisomes in P. anserina are highly dynamic and respond to metabolic and environmental cues by undergoing changes in size, morphology and number. In addition, peroxisomes of vegetative and sexual cell types are structurally different. During sexual development peroxisome number increases at two stages: at early ascus differentiation and during ascospore formation. These processes are accompanied by changes in peroxisome structure and distribution, which include a cell-polarized concentration of peroxisomes at the beginning of ascus development, as well as a morphological transition from predominantly spherical to elongated shapes at the end of the first meiotic division. Further, the mostly tubular peroxisomes present from second meiotic division to early ascospore formation again become rounded during ascospore differentiation. Ultimately the number of peroxisomes dramatically decreases upon ascospore maturation. Our results reveal a precise regulation of peroxisome dynamics during sexual development and suggest that peroxisome constitution and function during development is defined by the coordinated regulation of the proteins that control peroxisome assembly and dynamics. PMID:26908647

  2. Management of diarrhea induced by epidermal growth factor receptor tyrosine kinase inhibitors

    PubMed Central

    Hirsh, V.; Blais, N.; Burkes, R.; Verma, S.; Croitoru, K.

    2014-01-01

    Treatment for non-small-cell lung cancer (nsclc) is moving away from traditional chemotherapy toward personalized medicine. The reversible tyrosine kinase inhibitors (tkis) erlotinib and gefitinib were developed to target the epidermal growth factor receptor (egfr). Afatinib, an irreversible ErbB family blocker, was developed to block egfr (ErbB1), human epidermal growth factor receptor 2 (ErbB2), and ErbB4 signalling, and transphosphorylation of ErbB3. All of the foregoing agents are efficacious in treating nsclc, and their adverse event profile is different from that of chemotherapy. Two of the most common adverse events with egfr tkis are rash and diarrhea. Here, we focus on diarrhea. The key to successful management of diarrhea is to treat early and aggressively using patient education, diet, and antidiarrheal medications such as loperamide. We also present strategies for the effective assessment and management of egfr tki–induced diarrhea. PMID:25489260

  3. Proton-pump inhibitor-induced hypomagnesemia: Current research and proposed mechanisms

    PubMed Central

    William, Jeffrey H; Danziger, John

    2016-01-01

    Since the early reports nearly a decade ago, proton-pump inhibitor-induced hypomagnesemia (PPIH) has become a well-recognized phenomenon. While many observational studies in the inpatient and outpatient populations have confirmed the association of PPI exposure and serum magnesium concentrations, there are no prospective, controlled studies to support causation. Molecular mechanisms of magnesium transporters, including the pH-dependent regulation of transient receptor potential melastatin-6 transporters in the colonic enterocyte, have been proposed to explain the effect of PPIs on magnesium reabsorption, but may be a small part of a more complicated interplay of molecular biology, pharmacology, and genetic predisposition. This review explores the current state of research in the field of PPIH and the proposed mechanisms of this effect. PMID:26981439

  4. The novel NF-κB inhibitor IMD-0354 induces apoptosis in chronic lymphocytic leukemia.

    PubMed

    Kanduri, M; Tobin, G; Aleskog, A; Nilsson, K; Rosenquist, R

    2011-03-01

    Nuclear factor-κB (NF-κB) is an important regulator of cell survival and has been shown to be constitutively active in chronic lymphocytic leukemia (CLL) cells. Recently, a novel NF-κB inhibitor, IMD-0354 (N-(3, 5-bis-trifluoromethyl-phenyl)-5-chloro-2-hydroxy-benzamide), was shown to specifically inhibit the phosphorylation of IκBα by IkB kinases, thus preventing NF-κB release. In this study, we investigated if IMD-0354 can inhibit NF-κB activation and induce apoptosis in CLL cells in vitro. The rate of increase in apoptosis, drug sensitivity and DNA-binding activity of NF-κB were studied using Annexin V stainings, the fluorometric microculture cytotoxicity assay and electrophoretic mobility shift assay, respectively. Finally, the impact of IMD-0354 treatment on the expression of a set of apoptosis-related genes was investigated. The results clearly show that IMD-0354 induced apoptosis (mean 26%, range 8-48%) in CLL cells, independent of immunoglobulin heavy variable (IGHV) gene mutational status, and showed a dose-dependent cytotoxic effect. IMD-0354 treatment also significantly lowered the DNA-binding activity of NF-κB in CLL cells. In addition, we identified differences in expression levels of pro- and antiapoptotic genes following IMD-0354 treatment. In summary, our novel findings show that IMD-0354 can induce apoptosis in CLL cells, and thus merits further investigation as an anticancer agent in vivo. PMID:22829125

  5. A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro

    PubMed Central

    Lee, Yura; Bae, Kyoung Jun; Chon, Hae Jung; Kim, Seong Hwan; Kim, Soon Ae; Kim, Jiyeon

    2016-01-01

    Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders. PMID:27025387

  6. A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro.

    PubMed

    Lee, Yura; Bae, Kyoung Jun; Chon, Hae Jung; Kim, Seong Hwan; Kim, Soon Ae; Kim, Jiyeon

    2016-05-31

    Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders. PMID:27025387

  7. IL-8 confers resistance to EGFR inhibitors by inducing stem cell properties in lung cancer

    PubMed Central

    Liu, Yi-Nan; Chang, Tzu-Hua; Tsai, Meng-Feng; Wu, Shang-Gin; Tsai, Tzu-Hsiu; Chen, Hsuan-Yu; Yu, Sung-Liang; Yang, James Chih-Hsin; Shih, Jin-Yuan

    2015-01-01

    Epidermal growth factor receptor (EGFR)-targeted strategy is limited by resistance. We identify the potential genes involved in EGFR TKI (tyrosine kinase inhibitor) resistance and study the therapeutic mechanism in the non-small cell lung cancers. Potential genes involved in resistance were examined by analyzing datasets from a pair of EGFR TKI-sensitive (PC9) and TKI-resistant cells (PC9/gef). Blood specimens from patients taking EGFR TKI as first-line treatment were used to examine the correlation between drug's efficacy and IL-8 level. The effects of IL-8 on gefitinib-induced apoptosis, stemness, and in vivo tumorigenicity were investigated using established cell lines. We identified IL-8 was up-regulated in gefitinib-resistant cells, and high plasma IL-8 level was correlated with shorter progression-free-survival time. IL-8 overexpression suppressed gefitinib-induced apoptosis in gefitinib-sensitive cells. By contrast, suppression of IL-8 enhanced gefitinib-induced cell death in gefitinib-resistant cells. IL-8 also increased stem-like characteristics including aldehyde dehydrogenase activity, expression of stemness-related genes, clonogenic activity, side-population, and in vivo tumorigenicity. Consistently, knockdown of IL-8 leads to loss of stem cell-like characteristics in gefitinib-resistant cells. Our study demonstrates an important role for IL-8, and suggests IL-8 is a potential therapeutic target for overcoming EGFR TKI resistance. PMID:25871388

  8. Predictive factor and antihypertensive usage of tyrosine kinase inhibitor-induced hypertension in kidney cancer patients.

    PubMed

    Izumi, Kouji; Itai, Shingo; Takahashi, Yoshiko; Maolake, Aerken; Namiki, Mikio

    2014-07-01

    Hypertension (HT) is the common adverse event associated with vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKI). The present study was performed to identify the predictive factors of TKI-induced HT and to determine the classes of antihypertensive agents (AHTA) that demonstrate optimal efficacy against this type of HT. The charts of 50 cases of patients that had received VEGFR-TKI treatment were retrospectively examined. The association between patient background and TKI-induced HT, and the effect of administering AHTA were analyzed. High systolic blood pressure at baseline was identified to be a predictive factor for HT. In addition, there was no difference observed between calcium channel blockers (CCBs) and angiotensin receptor II blockers (ARBs) as first-line AHTA for the control of HT. The findings of the present study may aid with predicting the onset of TKI-induced HT, as well as for its management via the primary use of either CCBs or ARBs. PMID:24959266

  9. Ethanol-induced hypoglycaemia in man: its suppression by the alcohol dehydrogenase inhibitor 4-methylpyrazole.

    PubMed

    Salaspuro, M P; Pikkarainen, P; Lindros, K

    1977-12-01

    Infusion of ethanol (0.6 g/kg body wt) caused marked hypoglycaemia in subjects fasted for 36 h. Previous administration of the alcohol dehydrogenase (ADH) inhibitor 4-methylpyrazole (4-MP, 7 mg/kg body wt i.v.) strongly suppressed the ethanol-induced hypoglycaemia. The rate of ethanol elimination was 84.6 mg/kg per hour. 4-MP at the dose used caused a 21% reduction of ethanol elimination, but had no significant effect on blood acetaldehyde levels. 4-MP also significantly suppressed the ethanol-induced elevation of blood lactate and almost completely prevented the increase in the 3-hydroxybutyrate/acetoacetate ratio, but had only a slight effect on the lactate/pyruvate ratio of venous blood. The results demonstrate that the hypoglycaemia and lactacidaemia produced by the oxidation of alcohol can be prevented by a dose of 4-MP that diminishes or prevents the ethanol-induced shift in the NAD-coupled redox state of the liver. PMID:415870

  10. Amplification of CRKL induces transformation and EGFR inhibitor resistance in human non small cell lung cancers

    PubMed Central

    Cheung, Hiu Wing; Du, Jinyan; Boehm, Jesse S.; He, Frank; Weir, Barbara A.; Wang, Xiaoxing; Butaney, Mohit; Sequist, Lecia V.; Luo, Biao; Engelman, Jeffrey A.; Root, David E.; Meyerson, Matthew; Golub, Todd R.; Jänne, Pasi A.; Hahn, William C.

    2011-01-01

    We previously identified a region of recurrent amplification on chromosome 22q11.21 in a subset of primary lung adenocarcinomas. Here we show that CRKL, encoding for an adaptor protein, is amplified and overexpressed in non-small cell lung cancer (NSCLC) cells that harbor 22q11.21 amplifications. Overexpression of CRKL in immortalized human airway epithelial cells promoted anchorage independent growth and tumorigenicity. Oncogenic CRKL activates SOS1-RAS-RAF-ERK and SRC-C3G-RAP1 pathways. Suppression of CRKL in NSCLC cells that harbor CRKL amplifications induced cell death. Overexpression of CRKL in EGFR mutant cells induces resistance to gefitinib by activating ERK and AKT signaling. We identified CRKL amplification in an EGFR inhibitor treated lung adenocarcinoma that was not present prior to treatment. These observations show that CRKL overexpression induces cell transformation, credential CRKL as a therapeutic target for a subset of NSCLC that harbor CRKL amplifications and implicate CRKL as an additional mechanism of resistance to EGFR-directed therapy. PMID:22586683

  11. Sensitization to UV-induced apoptosis by the histone deacetylase inhibitor trichostatin A (TSA)

    SciTech Connect

    Kim, Myoung Sook; Baek, Jin Hyen; Chakravarty, Devulapalli; Sidransky, David; Carrier, France . E-mail: fcarr001@umaryland.edu

    2005-05-15

    UV-induced apoptosis is a protective mechanism that is primarily caused by DNA damage. Cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts are the main DNA adducts triggered by UV radiation. Because the formation of DNA lesions in the chromatin is modulated by the structure of the nucleosomes, we postulated that modification of chromatin compaction could affect the formation of the lesions and consequently apoptosis. To verify this possibility we treated human colon carcinoma RKO cells with the histone deacetylase inhibitor trichostatin A (TSA) prior to exposure to UV radiation. Our data show that pre-treatment with TSA increased UV killing efficiency by more than threefold. This effect correlated with increased formation of CPDs and consequently apoptosis. On the other hand, TSA treatment after UV exposure rather than before had no more effect than UV radiation alone. This suggests that a primed (opened) chromatin status is required to sensitize the cells. Moreover, TSA sensitization to UV-induced apoptosis is p53 dependent. p53 and acetylation of the core histones may thus contribute to UV-induced apoptosis by modulating the formation of DNA lesions on chromatin.

  12. The Effect of Celecoxib, a Cyclooxygenase-2 Inhibitor on Noise- Induced Hearing Loss

    PubMed Central

    Pourbakht, Akram

    2013-01-01

    Objective(s): Noise-induced hearing loss (NIHL) is the major cause of acquired hearing loss. Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, is a non- steroidal anti- inflammatory drug (NSAID) with known antioxidant and antineoplastic activity. Therefore, we monitored the extent of temporary noise- induced threshold shifts (TTS) and cochlear damage caused by high level 4- kHz noise exposure to verify the differences with those pretreated with celecoxib. Materials and Methods: Ten male albino guinea pigs (300-350 g in weight) were randomly allocated into two groups: the primal group was exposed to 4- kHz octave band noise at 102 dB SPL for 3 hrs (group 1, n=5); the latter pretreated with 50 mg/ kg celecoxib for 3 days, then exposed to noise (group 2, n=5). Before exposure and one hr after noise exposure, threshold shifts were evaluated with auditory brainstem responses (ABR) and finally the animals were euthanized for histological evaluation. Results: Comparing the threshold shifts before/after noise exposure with those pretreated, we found out that TTS caused by noise exposure did not show significant mitigation by celecoxib. By observing the organ of Corti at lower middle turn of cochlea in celecoxib pretreated group, considerable hair cell loss was discovered. Conclusion: The current study clearly confirmed that celecoxib had no attenuation against temporary noise-induced hearing loss. PMID:23826496

  13. Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury

    PubMed Central

    Daosukho, Chotiros; Chen, Yumin; Noel, Teresa; Sompol, Pradoldej; Nithipongvanitch, Ramaneeya; Velez, Joyce M.; Oberley, Terry D.; Clair, Daret K. St.

    2007-01-01

    Cardiac injury is a major complication for oxidative stress-generating anticancer agents exemplified by Adriamycin (ADR). Recently, several histone deacetylase inhibitors (HDACIs) including phenylbutyrate (PBA) have shown promise in the treatment of cancer with little known toxicity to normal tissues. PBA has been shown to protect against oxidative stress in normal tissues. Here, we examined whether PBA might protect heart against ADR toxicity in a mouse model. The mice were i.p. injected with ADR (20 mg/kg). PBA (400 mg/kg/day) was i.p. injected one day before and daily after the ADR injection for two days. We found that PBA significantly decreased the ADR-associated elevation of serum lactase dehydrogenase (LDH) and creatine kinase (CK) activities, and diminished ADR-induced ultrastructual damages of cardiac tissue by more than 70%. Importantly, PBA completely rescued ADR-caused reduction of cardiac functions exemplified by ejection fraction and fraction shortening, and increased cardiac MnSOD protein and activity. Our results reveal a previously unrecognized role of HDACIs in protecting against ADR-induced cardiac injury, and suggest that PBA may exert its cardioprotective effect, in part, by the increase of MnSOD. Thus, combining HDACIs with ADR could add a new mechanism to fight cancer while simultaneously decrease ADR-induced cardiotoxicity. PMID:17512461

  14. USP7 inhibitor P22077 inhibits neuroblastoma growth via inducing p53-mediated apoptosis.

    PubMed

    Fan, Y-H; Cheng, J; Vasudevan, S A; Dou, J; Zhang, H; Patel, R H; Ma, I T; Rojas, Y; Zhao, Y; Yu, Y; Zhang, H; Shohet, J M; Nuchtern, J G; Kim, E S; Yang, J

    2013-01-01

    Neuroblastoma (NB) is a common pediatric cancer and contributes to more than 15% of all pediatric cancer-related deaths. Unlike adult tumors, recurrent somatic mutations in NB, such as tumor protein 53 (p53) mutations, occur with relative paucity. In addition, p53 downstream function is intact in NB cells with wild-type p53, suggesting that reactivation of p53 may be a viable therapeutic strategy for NB treatment. Herein, we report that the ubiquitin-specific protease 7 (USP7) inhibitor, P22077, potently induces apoptosis in NB cells with an intact USP7-HDM2-p53 axis but not in NB cells with mutant p53 or without human homolog of MDM2 (HDM2) expression. In this study, we found that P22077 stabilized p53 by inducing HDM2 protein degradation in NB cells. P22077 also significantly augmented the cytotoxic effects of doxorubicin (Dox) and etoposide (VP-16) in NB cells with an intact USP7-HDM2-p53 axis. Moreover, P22077 was found to be able to sensitize chemoresistant LA-N-6 NB cells to chemotherapy. In an in vivo orthotopic NB mouse model, P22077 significantly inhibited the xenograft growth of three NB cell lines. Database analysis of NB patients shows that high expression of USP7 significantly predicts poor outcomes. Together, our data strongly suggest that targeting USP7 is a novel concept in the treatment of NB. USP7-specific inhibitors like P22077 may serve not only as a stand-alone therapy but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact USP7-HDM2-p53 axis. PMID:24136231

  15. Effect of thrombin inhibitors on thrombin-induced platelet release and aggregation.

    PubMed

    Knupp, C L

    1988-01-01

    Thrombin-induced platelet activation was interrupted with hirudin or Dansylarginine N-(3-ethyl-1-5-pentanediyl) amide (DAPA) to study the time requirement for receptor occupancy by thrombin in promoting platelet responses at low (0.25 U/ml), intermediate (0.5 U/ml) and high (1 U/ml) thrombin concentrations. Each of these thrombin inhibitors suppressed adenosine triphosphate (ATP) release and aggregation by thrombin when added either before or simultaneously with thrombin or within seconds of the initiation of these responses by thrombin. If the inhibitors were added later, yet before aggregation or release was complete, no effect was present. The period of time for which active thrombin was required in order to promote these reactions had the following characteristics: (i) it is thrombin concentration dependent for a given response; (ii) it is longer for aggregation than for ATP secretion at each thrombin concentration; (iii) it is increased in platelets modified by chymotrypsin or platelets partially inhibited by antimycin A and 2-deoxy-D-glucose, which have prolonged aggregation and ATP release responses. In direct comparison studies, the inhibitory effects of hirudin and DAPA were identical on aggregation and ATP release. Thrombin binding, under similar experimental conditions identical to those used to measure platelet activation, was prevented by hirudin, but not by DAPA. Therefore, the effect of DAPA on thrombin must be at the proteolytic site region and not at the hirudin-inhibitable platelet binding region. It is concluded from these studies that the tight coupling requirements for thrombin to induce platelet dense granule release and aggregation are directly dependent upon both the thrombin concentration and the rate of the individual platelet responses. Catalytic site integrity is required for the duration of this period of receptor occupancy. PMID:3347926

  16. Mitigation and Treatment of Radiation-Induced Thoracic Injury With a Cyclooxygenase-2 Inhibitor, Celecoxib

    SciTech Connect

    Hunter, Nancy R.; Valdecanas, David; Liao Zhongxing; Milas, Luka; Thames, Howard D.; Mason, Kathy A.

    2013-02-01

    Purpose: To test whether a cyclooxygenase-2 inhibitor (celecoxib) could reduce mortality resulting from radiation-induced pneumonitis. Methods and Materials: Celecoxib was given to mice twice daily for 40 consecutive days starting on the day of local thoracic irradiation (LTI) or 40 or 80 days later. C3Hf/KamLaw mice were observed for morbidity, and time to death was determined. Results were analyzed using the Cox proportional hazards model. Results: Timing of celecoxib relative to LTI determined efficacy. A significant reduction in time to death was achieved only when celecoxib was started 80 days after LTI, corresponding to the time when pneumonitis is expressed. For these mice the reduction in mortality was quantified as a hazard ratio for mortality of treated vs untreated of 0.36 (95% confidence interval [CI] 0.24-0.53), thus significantly less than 1.0. Correspondingly, the median lethal dose for treated mice (12.9 Gy; 95% CI 12.55-13.25 Gy) was significantly (P=.026) higher than for untreated mice (12.4 Gy; 95% CI 12.2-12.65 Gy). Conclusions: Celecoxib significantly reduced lung toxicity when administered months after LTI when the deleterious effects of radiation were expressed. The schedule-dependent reduction in fatal pneumonitis suggests that celecoxib could be clinically useful by reintroduction of treatment months after completion of radiation therapy. These findings may be important for designing clinical trials using cyclooxygenase-2 inhibitors to treat radiation-induced lung toxicity as a complement to concurrent radiation therapy of lung cancers.

  17. Management of NSAID-induced gastrointestinal toxicity: focus on proton pump inhibitors.

    PubMed

    Lazzaroni, Marco; Porro, Gabriele Bianchi

    2009-01-01

    The association between NSAIDs and the presence of upper gastrointestinal (GI) complications is well established. Evidence that acid aggravates NSAID-induced injury provides a rationale for minimizing such damage by acid suppression. Proton pump inhibitors (PPIs) appear to be very effective in treating NSAID-related dyspepsia, and also in healing gastric and duodenal ulcers in patients continuing to receive the NSAID. An analysis of data from comparative studies of PPIs versus ranitidine, misoprostol and sucralfate shows a therapeutic advantage in favour of the PPI. Several studies now confirm the efficacy of co-therapy with PPIs in the short- and long-term prevention of NSAID-induced upper GI injury. PPIs are more effective than histamine H(2)-receptor antagonists at standard dosages in reducing the risk of gastric and duodenal ulcer, and are superior to misoprostol in preventing duodenal but not gastric lesions. However, when balancing effectiveness and tolerance, PPIs may be considered the treatment of choice in the short- and long-term prevention of NSAID-related mucosal lesions. To date, there are only a few published articles dealing with the role of PPIs in the prevention of upper GI complications. Recent epidemiological and interventional studies provide some evidence that PPIs are of benefit. However, more controlled studies using clinical outcomes are needed to establish the best management strategy (PPIs combined with traditional NSAIDs or with cyclo-oxygenase-2 selective inhibitors) especially in patients with multiple risk factors, in patients using concomitant low-dose aspirin, corticosteroids or anticoagulants (high risk group), or in patients with a history of ulcer complications (very high risk group). Furthermore, it should be underlined that Helicobacter pylori infection positively interacts with the gastroprotective effect of PPIs; therefore, the true efficacy of these drugs in preventing NSAID-related ulcer complications should be reassessed without the confounding influence of this microorganism. PMID:19192936

  18. Branched-chain amino acid biosynthesis inhibitors: herbicide efficacy is associated with an induced carbon-nitrogen imbalance.

    PubMed

    Zabalza, Ana; Zulet, Amaia; Gil-Monreal, Miriam; Igal, Maria; Royuela, Mercedes

    2013-06-15

    Acetolactate synthase (ALS; EC 4.1.3.18) and ketol-acid reductoisomerase (KARI; EC 1.1.1.86) are two consecutive enzymes in the biosynthesis of branched-chain amino acids. Several commercial herbicides inhibit ALS as their primary site of action. KARI has also attracted attention as a potential target for herbicides. Although potent and selective inhibitors of KARI have been discovered, these inhibitors display less herbicidal activity than ALS-inhibiting herbicides. To obtain a better understanding of these findings, we have compared the physiological effects induced in pea plants after KARI or ALS inhibition. Although, both types of inhibitors induce growth arrest and photosynthesis inhibition, plant death occurs more rapidly under ALS inhibition than KARI inhibition. Carbohydrates accumulated in the leaves and roots following treatments with both inhibitors. The carbohydrate accumulation in the leaves occurred as a consequence of a decrease in sink strength. In contrast, the free amino acid content was only affected through ALS inhibition. These results indicate that although KARI and ALS inhibition block the same biosynthetic pathway and exert common effects on carbon metabolism, nitrogen metabolism is more affected via ALS than KARI inhibition. Thus, metabolic alterations in nitrogen metabolism induced through ALS inhibitors might contribute to the increased efficacy of these chemicals as herbicides. PMID:23394788

  19. Angiotensin-converting enzyme inhibitor (enalapril maleate) accelerates recovery of mouse skin from UVB-induced wrinkles

    SciTech Connect

    Matsuura-Hachiya, Yuko; Arai, Koji Y.; Ozeki, Rieko; Kikuta, Ayako; Nishiyama, Toshio

    2013-12-06

    Highlights: •Angiotensin converting enzyme (ACE) increases in UVB-irradiated skin. •Administration of an ACE inhibitor improved UVB-induced skin wrinkle. •ACE inhibitor improved UVB-induced epidermal hypertrophy. •ACE inhibitor improved transepidermal water loss in the UVB-irradiated skin. -- Abstract: Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recovery of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin.

  20. Small-molecule inhibitors of USP7 induce apoptosis through oxidative and endoplasmic reticulum stress in cancer cells.

    PubMed

    Lee, Gibok; Oh, Taek-In; Um, Ki Bum; Yoon, Hyeshin; Son, Jaekyoung; Kim, Byeong Mo; Kim, Hong-Il; Kim, Hackyoung; Kim, Young Jun; Lee, Chang-Soo; Lim, Ji-Hong

    2016-01-29

    USP7 is a deubiquitinating enzyme that involves the ubiquitin proteasome system (UPS) to maintain regulation of protein synthesis and degradation. The well-known substrate of USP7 is the Mdm2-p53 complex. In fact, several studies have reported that functional inhibition of USP7 induces cancer cell apoptosis through activation of p53. However, the contribution of oxidative or endoplasmic reticulum (ER) stress, which is commonly induced by inhibition of the UPS for USP7 inhibitor-mediated apoptosis in cancer cells, has not been investigated. In contrast to previous reports, we show that p53 is not critical during USP7 inhibitor-induced apoptosis in several cancer cells. Inhibition of deubiquitinating enzyme activities by USP7 inhibitors causes ER stress by accumulating polyubiquitinated proteins in cancer cells. Furthermore, we demonstrate that USP7 inhibitors increase intracellular reactive oxygen species and mainly cause cancer cell apoptosis. Taken together, our results reveal that oxidative and ER stress, rather than the Mdm2-p53 axis, mainly contributes to USP7 inhibitor-mediated apoptosis in cancer cells. PMID:26768359

  1. Catalase degradation in sunflower cotyledons during peroxisome transition from glyoxysomal to leaf peroxisomal function. [Helianthus annuus

    SciTech Connect

    Eising, R.; Gerhardt, B.

    1987-06-01

    First order rate constant for the degradation (degradation constants) of catalase in the cotyledons of sunflower (Helianthus annuus L.) were determined by measuring the loss of catalase containing /sup 14/C-labeled heme. During greening of the cotyledons, a period when peroxisomes change from glyoxysomal to leaf peroxisomal function, the degradation of glyoxysomal catalase is significantly slower than during all other stages of cotyledon development in light or darkness. The degradation constant during the transition stage of peroxisome function amounts to 0.205 day/sup -1/ in contrast to the constants ranging from 0.304 day/sup -1/ to 0.515 day/sup -1/ during the other developmental stages. Density labeling experiments comprising labeling of catalase with /sup 2/H/sub 2/O and its isopycnic centrifugation on CsCl gradients demonstrated that the determinations of the degradation constants were not substantially affected by reutilization of /sup 14/C-labeled compounds for catalase synthesis. The degradation constants for both glyoxysomal catalase and catalase synthesized during the transition of peroxisome function do not differ. This was shown by labeling the catalases with different isotopes and measuring the isotope ratio during the development of the cotyledons. The results are inconsistent with the concept that an accelerated and selective degradation of glyoxysomes underlies the change in peroxisome function. The data suggest that catalase degradation is at least partially due to an individual turnover of catalase and does not only result from a turnover of the whole peroxisomes.

  2. The cytosolic and membrane components required for peroxisomal protein import.

    PubMed

    Terlecky, S R; Nuttley, W M; Subramani, S

    1996-12-15

    Peroxisomes are vital intracellular organelles which house enzymes involved in a variety of metabolic pathways. The large number of human disorders associated with flawed peroxisome biogenesis emphasizes the importance of protein targeting to, and translocation across, the peroxisomal membrane. This brief review will summarize some of the emerging themes of peroxisomal protein import, specifically addressing the targeting signals possessed by constituent proteins, as well as the cytosolic, membrane and luminal components of the import machinery. Although a detailed understanding of the molecular mechanisms of peroxisomal protein import is not yet available, remarkable progress has been made in the field in recent years. An overview of these advances will be presented. PMID:8988245

  3. Relaxin causes selective outward remodeling of brain parenchymal arterioles via activation of peroxisome proliferator-activated receptor-γ

    PubMed Central

    Chan, Siu-Lung; Cipolla, Marilyn J.

    2011-01-01

    Brain parenchymal arterioles (PAs), but not pial arteries, undergo hypotrophic outward remodeling during pregnancy that involves peroxisome proliferator-activated receptor-γ (PPARγ) activation. Relaxin, a peptide hormone produced during pregnancy, is involved in systemic and renal artery remodeling and activates PPARγ in vitro. Thus, we hypothesized that relaxin is involved in the selective outward remodeling of PAs through a PPARγ-dependent mechanism. Nonpregnant rats were treated with relaxin (4 μg/h, osmotic minipump), relaxin plus PPARγ inhibitor GW9662 (10 mg/kg/d), or vehicle for 10 d. Vascular function and structure were compared in isolated and pressurized middle cerebral arteries (MCAs) and PAs taken from the same animals. Relaxin treatment increased serum relaxin to the level of pregnancy (54 ng/ml) and increased passive wall thickness (hypertrophy; 70±5 vs. 54±4 μm in vehicle; P<0.05) and inner diameter (outward remodeling; 10.6±0.5 vs. 8.0±0.6 μm in vehicle; P<0.05) in PAs, but not in MCAs. This hypertrophic outward remodeling was prevented by GW9662 that had diameters (57±3 μm) and wall thickness (8.6±1.0 μm) similar to vehicle. GW9662 also prevented relaxin-induced changes in PPARγ target gene expression. These results suggest that relaxin produced during pregnancy may be partly responsible for selective remodeling of PAs during pregnancy through a mechanism involving PPARγ.—Chan, S.-L., Cipolla, M. J. Relaxin causes selective outward remodeling of brain parenchymal arterioles via activation of peroxisome proliferator-activated receptor-γ. PMID:21602449

  4. Inhibitors of ethylene synthesis inhibit auxin-induced stomatal opening in epidermis detached from leaves of Vicia faba L.

    PubMed

    Merritt, F; Kemper, A; Tallman, G

    2001-02-01

    Using leaf epidermis from Vicia faba, we tested whether auxin-induced stomatal opening was initiated by auxin-induced ethylene synthesis. Epidermis was dark-incubated in buffered KNO3 containing 0.1 mM alpha-napthalene acetic acid or 1 mM indole-3-acetic acid. Maximum net opening was ca. 4 micron after 6 h. Opening was reversed by 20 microM ABA, 0.1 mM CaCl2. 1-Aminocyclopropane carboxylic acid (ACC) synthase catalyzes synthesis of ACC, the immediate precursor to ethylene. Auxin-induced stomatal opening was fully inhibited by 10 microM 1-aminoethoxyvinylglycine (AVG), an ACC synthase inhibitor. In solutions containing AVG, auxin-induced opening was restored in a concentration-dependent manner by exogenous ACC, but not in control solutions lacking an auxin. ACC-mediated reversal of AVG-inhibition of stomatal opening was inhibited by alpha-aminoisobutyric acid (AIB), an inhibitor of ACC oxidase, the last enzyme in the ethylene biosynthetic pathway, by 10 microM silver thiosulfate (STS), an inhibitor of ethylene action, and by 20 microM ABA, 0.1 mM CaCl2. CoCl2, an inhibitor of ethylene synthesis, also inhibited auxin-induced opening. Both STS and CoCl2 inhibited opening induced by light or by fusicoccin, but neither light- nor fusicoccin-induced opening was inhibited by AVG. These results support the hypothesis that auxin-induced stomatal opening is mediated through auxin-induced ethylene production by guard cells. PMID:11230577

  5. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production

    SciTech Connect

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling; Shen, Jie

    2015-08-07

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our in vitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. In vivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation in vitro and in vivo, and ceramide production might be the key mechanism responsible for its actions. - Highlights: • AR-42 is anti-proliferative against primary/established colon cancer cells. • AR-42 induces significant apoptotic death in primary/established colon cancer cells. • Ceramide production mediates AR-42-induced cytotoxicity in colon cancer cells. • AR-42 oral administration potently inhibits SW-620 xenograft growth in SCID mice.

  6. Defining the Plant Peroxisomal Proteome: From Arabidopsis to Rice

    PubMed Central

    Kaur, Navneet; Hu, Jianping

    2011-01-01

    Peroxisomes are small subcellular organelles mediating a multitude of processes in plants. Proteomics studies over the last several years have yielded much needed information on the composition of plant peroxisomes. In this review, the status of peroxisome proteomics studies in Arabidopsis and other plant species and the cumulative advances made through these studies are summarized. A reference Arabidopsis peroxisome proteome is generated, and some unique aspects of Arabidopsis peroxisomes that were uncovered through proteomics studies and hint at unanticipated peroxisomal functions are also highlighted. Knowledge gained from Arabidopsis was utilized to compile a tentative list of peroxisome proteins for the model monocot plant, rice. Differences in the peroxisomal proteome between these two model plants were drawn, and novel facets in rice were expounded upon. Finally, we discuss about the current limitations of experimental proteomics in decoding the complete and dynamic makeup of peroxisomes, and complementary and integrated approaches that would be beneficial to defining the peroxisomal metabolic and regulatory roadmaps. The synteny of genomes in the grass family makes rice an ideal model to study peroxisomes in cereal crops, in which these organelles have received much less attention, with the ultimate goal to improve crop yield. PMID:22645559

  7. Cholesterol transport through lysosome-peroxisome membrane contacts.

    PubMed

    Chu, Bei-Bei; Liao, Ya-Cheng; Qi, Wei; Xie, Chang; Du, Ximing; Wang, Jiang; Yang, Hongyuan; Miao, Hong-Hua; Li, Bo-Liang; Song, Bao-Liang

    2015-04-01

    Cholesterol is dynamically transported among organelles, which is essential for multiple cellular functions. However, the mechanism underlying intracellular cholesterol transport has remained largely unknown. We established an amphotericin B-based assay enabling a genome-wide shRNA screen for delayed LDL-cholesterol transport and identified 341 hits with particular enrichment of peroxisome genes, suggesting a previously unappreciated pathway for cholesterol transport. We show dynamic membrane contacts between peroxisome and lysosome, which are mediated by lysosomal Synaptotagmin VII binding to the lipid PI(4,5)P2 on peroxisomal membrane. LDL-cholesterol enhances such contacts, and cholesterol is transported from lysosome to peroxisome. Disruption of critical peroxisome genes leads to cholesterol accumulation in lysosome. Together, these findings reveal an unexpected role of peroxisome in intracellular cholesterol transport. We further demonstrate massive cholesterol accumulation in human patient cells and mouse model of peroxisomal disorders, suggesting a contribution of abnormal cholesterol accumulation to these diseases. PMID:25860611

  8. ABCD1 deletion-induced mitochondrial dysfunction is corrected by SAHA: implication for adrenoleukodystrophy.

    PubMed

    Baarine, Mauhamad; Beeson, Craig; Singh, Avtar; Singh, Inderjit

    2015-05-01

    X-linked Adrenoleukodystrophy (X-ALD), an inherited peroxisomal metabolic neurodegenerative disorder, is caused by mutations/deletions in the ATP-binding cassette transporter (ABCD1) gene encoding peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). Metabolic dysfunction in X-ALD is characterized by the accumulation of very long chain fatty acids ≥ C22:0) in the tissues and plasma of patients. Here, we investigated the mitochondrial status following deletion of ABCD1 in B12 oligodendrocytes and U87 astrocytes. This study provides evidence that silencing of peroxisomal protein ABCD1 produces structural and functional perturbations in mitochondria. Activities of electron transport chain-related enzymes and of citric acid cycle (TCA cycle) were reduced; mitochondrial redox status was dysregulated and the mitochondrial membrane potential was disrupted following ABCD1 silencing. A greater reduction in ATP levels and citrate synthase activities was observed in oligodendrocytes as compared to astrocytes. Furthermore, most of the mitochondrial perturbations induced by ABCD1 silencing were corrected by treating cells with suberoylanilide hydroxamic acid, an Histone deacetylase inhibitor. These observations indicate a novel relationship between peroxisomes and mitochondria in cellular homeostasis and the importance of intact peroxisomes in relation to mitochondrial integrity and function in the cell types that participate in the pathobiology of X-ALD. These observations suggest suberoylanilide hydroxamic acid as a potential therapy for X-ALD. Schematic description of the effects of loss of peroxisomal ATP-binding cassette transporter D1 (ABCD1) gene on cellular Redox and mitochondrial activities and their correction by suberoylanilide hydroxamic acid (SAHA) treatment. Pathogenomic accumulation of very long chain fatty acids (VLCFA) as a result of loss of ABCD1 leads to dysfunctions of mitochondrial biogenesis and its activities. Treatment with SAHA corrects mitochondrial dysfunctions. These studies describe unique cooperation between mitochondria and peroxisome for cellular activities. PMID:25393703

  9. Selective inhibitors of cyclo-oxygenase-2 (COX-2) induce hypoalgesia in a rat paw model of inflammation

    PubMed Central

    Francischi, J N; Chaves, C T; Moura, A C L; Lima, A S; Rocha, O A; Ferreira-Alves, D L; Bakhle, Y S

    2002-01-01

    It is well-established that inhibitors of cyclo-oxygenase (COX) and hence of prostaglandin (PG) biosynthesis reverse inflammatory hyperalgesia and oedema in both human and animal models of inflammatory pain. Paw oedema and hyperalgesia in rats were induced by injecting carrageenan (250 ?g paw?1) into a hindpaw. Both inflammatory responses were followed for 24 h after the injection, measuring hyperalgesia by decreased pain threshold in the paws and oedema by plethysmography. Three selective inhibitors of cyclo-oxygenase-2 (COX-2), celecoxib, rofecoxib and SC 236, given systemically in a range of doses, before the inflammatory stimulus, abolished carrageenan-induced hyperalgesia with little reduction of oedema. These inhibitors also induced hypoalgesia, increasing nociceptive thresholds in the inflamed paw above normal, non-inflamed levels. This hypoalgesia was lost at the higher doses of the selective inhibitors, although hyperalgesia was still prevented. In paws injected with saline only, celecoxib, given at the dose inducing the maximum hypoalgesia after carrageenan, did not alter the nociceptive thresholds. Two non-selective inhibitors of COX-2, indomethacin and piroxicam, abolished hyperalgesia and reduced oedema but did not induce hypoalgesia. Celecoxib given locally into the paw also abolished inflammatory hyperalgesia and induced hypoalgesia without reducing oedema. We conclude that hypoalgesia is expressed only over a critical range of COX-2 inhibition and that concomitant inhibition of COX-1 prevents expression of hypoalgesia, although hyperalgesia is still prevented. Our results suggest a novel anti-nociceptive pathway mediating hypoalgesia, involving COX-2 selectively and having a clear peripheral component. This peripheral component can be further explored for therapeutic purposes. PMID:12411415

  10. MDM2 Inhibitor, Nutlin 3a, Induces p53 Dependent Autophagy in Acute Leukemia by AMP Kinase Activation

    PubMed Central

    Borthakur, Gautam; Duvvuri, Seshagiri; Ruvolo, Vivian; Tripathi, Durga Nand; Piya, Sujan; Burks, Jared; Jacamo, Rodrigo; Kojima, Kensuke; Ruvolo, Peter; Fueyo-Margareto, Juan; Konopleva, Marina; Andreeff, Michael

    2015-01-01

    MDM2 (mouse double minute 2) inhibitors that activate p53 and induce apoptosis in a non-genotoxic manner are in clinical development for treatment of leukemias. P53 can modulate other programmed cell death pathways including autophagy both transcriptionally and non-transcriptionally. We investigated autophagy induction in acute leukemia by Nutlin 3a, a first-in-class MDM2 inhibitor. Nutlin 3a induced autophagy in a p53 dependent manner and transcriptional activation of AMP kinase (AMPK) is critical, as this effect is abrogated in AMPK -/- mouse embryonic fibroblasts. Nutlin 3a induced autophagy appears to be pro-apoptotic as pharmacological (bafilomycin) or genetic inhibition (BECLIN1 knockdown) of autophagy impairs apoptosis induced by Nutlin 3a. PMID:26440941

  11. A novel NF-κB inhibitor, DHMEQ, ameliorates pristane-induced lupus in mice

    PubMed Central

    QU, HUIQING; BIAN, WEIHUA; XU, YANYAN

    2014-01-01

    Nuclear factor (NF)-κB is strongly associated with the development of immune regulation and inflammation. The aim of the present study was to identify whether a NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), ameliorates systemic lupus erythematosus (SLE) in a pristane-induced mouse model. SLE was induced in 8-week-old female BALB/c mice by the injection of 0.5 ml pristane. The therapeutic effect of 12 mg/kg DHMEQ on the pristane-induced BALB/c mouse model of lupus was investigated to elucidate the effects on SLE. The intraperitoneal administration of DHMEQ three times per week was initiated when the mice were 16 weeks-old (8 weeks following the pristane injection) and the treatment was continued for 16 weeks. Serum IgG autoantibodies against nucleosomes, dsDNA and histones were detected at weeks 8, 16 and 32. In addition, the expression levels of interleukin (IL)-1β, 6 and 17, as well as tumor necrosis factor (TNF)-α, were analyzed at week 32. Renal lesions were also observed. DHMEQ was shown to antagonize the increasing levels of anti-nucleosome, anti-dsDNA and anti-histone autoantibodies, as well as the increasing levels of IL-1β, 6 and 17 and TNF-α. In addition, DHMEQ reduced the number of renal lesions caused by pristane, as reflected by milder proteinuria and reduced renal pathology. The renal expression levels of phosphorylated-p38 mitogen-activated protein kinase (MAPK), phosphorylated-c-Jun N-terminal kinase (JNK) and NF-κB p65 were significantly downregulated. Therefore, the results of the present study indicate that DHMEQ has a beneficial effect on pristane-induced lupus through regulating cytokine levels and the MAPK/JNK/NF-κB signaling pathway. PMID:24944605

  12. A novel NF-κB inhibitor, DHMEQ, ameliorates pristane-induced lupus in mice.

    PubMed

    Qu, Huiqing; Bian, Weihua; Xu, Yanyan

    2014-07-01

    Nuclear factor (NF)-κB is strongly associated with the development of immune regulation and inflammation. The aim of the present study was to identify whether a NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), ameliorates systemic lupus erythematosus (SLE) in a pristane-induced mouse model. SLE was induced in 8-week-old female BALB/c mice by the injection of 0.5 ml pristane. The therapeutic effect of 12 mg/kg DHMEQ on the pristane-induced BALB/c mouse model of lupus was investigated to elucidate the effects on SLE. The intraperitoneal administration of DHMEQ three times per week was initiated when the mice were 16 weeks-old (8 weeks following the pristane injection) and the treatment was continued for 16 weeks. Serum IgG autoantibodies against nucleosomes, dsDNA and histones were detected at weeks 8, 16 and 32. In addition, the expression levels of interleukin (IL)-1β, 6 and 17, as well as tumor necrosis factor (TNF)-α, were analyzed at week 32. Renal lesions were also observed. DHMEQ was shown to antagonize the increasing levels of anti-nucleosome, anti-dsDNA and anti-histone autoantibodies, as well as the increasing levels of IL-1β, 6 and 17 and TNF-α. In addition, DHMEQ reduced the number of renal lesions caused by pristane, as reflected by milder proteinuria and reduced renal pathology. The renal expression levels of phosphorylated-p38 mitogen-activated protein kinase (MAPK), phosphorylated-c-Jun N-terminal kinase (JNK) and NF-κB p65 were significantly downregulated. Therefore, the results of the present study indicate that DHMEQ has a beneficial effect on pristane-induced lupus through regulating cytokine levels and the MAPK/JNK/NF-κB signaling pathway. PMID:24944605

  13. Clinical significance of plasminogen activator inhibitor activity in patients with exercise-induced ischemia

    SciTech Connect

    Sakata, K.; Kurata, C.; Taguchi, T.; Suzuki, S.; Kobayashi, A.; Yamazaki, N.; Rydzewski, A.; Takada, Y.; Takada, A. )

    1990-10-01

    To assess the fibrinolytic system in patients with exercise-induced ischemia and its relation to ischemia and severity of coronary artery disease (CAD), 47 patients with CAD confirmed by results of coronary angiography underwent symptom-limited multistage exercise thallium-201 emission computed tomography. All patients with CAD had exercise-induced ischemia as assessed from thallium-201 images. Pre- and peak exercise blood samples from each patient and preexercise blood samples from control subjects were assayed for several fibrinolytic components and were also assayed for plasma adrenaline. The extent of ischemia was defined as delta visual uptake score (total visual uptake score in delayed images minus total visual uptake score in initial images) and the severity of CAD as the number of diseased vessels. In the basal condition, plasminogen activator inhibitor (PAI) activity was significantly higher in patients with exercise-induced ischemia as compared to control subjects (p less than 0.01), although there were no significant differences in other fibrinolytic variables between the two groups. Moreover, PAI activity in the basal condition displayed a significantly positive correlation with the extent of ischemia (r = 0.47, p less than 0.01). Patients with exercise-induced ischemia were divided into two groups (24 with single-vessel disease and 23 with multivessel disease). There were no significant differences in coronary risk factors, hemodynamics, or plasma adrenaline levels during exercise between single-vessel and multivessel disease except that delta visual uptake score was significantly higher in multivessel disease (p less than 0.01).

  14. Inhibition of cytokine-induced JAK-STAT signalling pathways by an endonuclease inhibitor aurintricarboxylic acid

    PubMed Central

    Chen, Ching-Wen; Chao, Yee; Chang, Ying-Hsin; Hsu, Ming-Jen; Lin, Wan-Wan

    2002-01-01

    Inducible nitric oxide (iNOS) is thought to involve in host defence and tissue damage in inflammatory loci. In previous study, we have found that the endonuclease inhibitor aurintricarboxylic acid (ATA) can protect macrophages from cell death induced by bacterial lipopolysaccharide. This action is through the interruption with signalling pathways for NF-κB and AP-1 activation, and thus iNOS expression. In this study we have addressed the effects of ATA on JAK-STAT signalling pathways. In murine RAW 264.7 macrophages, IFN-γ-mediated NO production and iNOS expression were concentration-dependently reduced by the presence of 3–100 μM ATA. IFN-γ-induced STAT1 activation, as assessed from its tyrosine phosphorylation, nuclear translocation, binding to specific DNA response element and evoked IRF-1 reporter gene assay, were concomitantly inhibited by ATA. However, ATA did not alter IFN-γ binding to RAW 264.7 cells. The activities of JAK1 and JAK2, the upstream kinases essential for STAT1 signalling in response to IFN-γ, were also reduced by ATA. Moreover, IL-4, IL-10, GM-CSF and M-CSF elicited tyrosine phosphorylation of STAT3, STAT5 and/or STAT6 in macrophages were diminished by the presence of ATA. Taken together, we conclude that ATA can interfere JAK-STAT signalling pathways in response to cytokines. This action contributes to the inhibition of IFN-γ-induced iNOS expression. PMID:12429573

  15. MET inhibitor PHA-665752 suppresses the hepatocyte growth factor-induced cell proliferation and radioresistance in nasopharyngeal carcinoma cells

    SciTech Connect

    Liu, Tongxin; Li, Qi; Sun, Quanquan; Zhang, Yuqin; Yang, Hua; Wang, Rong; Chen, Longhua; Wang, Wei

    2014-06-20

    Highlights: • We demonstrated that irradiation induced MET overexpression and activation. • The aberrant MET signal mediated by HGF induced proliferation and radioresistance of NPC cells. • MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. • PHA-665752 suppressed the three downstream pathway of HGF/MET signal in a dose-dependent manner. - Abstract: Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC), in subsets of patients, radioresistance is still a major problem in the treatment. In this study, we demonstrated that irradiation induced MET overexpression and activation, and the aberrant MET signal mediated by hepatocyte growth factor (HGF) induced radioresistance. We also found that MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. Further investigation indicated that PHA-665752 suppressed the phosphorylation of the Akt, ERK1/2, and STAT3 proteins in a dose-dependent manner. Our data indicated that the combination of IR with a MET inhibitor, such as PHA-665752, might be a promising therapeutic strategy for NPC.

  16. Inhibitors of nitric oxide synthase enhance rat ileum contractions induced by ricinoleic acid in vitro.

    PubMed

    Izzo, A A; Mascolo, N; Viola, P; Capasso, F

    1993-10-12

    The effects of NG-nitro-L-arginine methyl ester (L-NAME) and NG-monomethyl-L-arginine (L-NMMA), inhibitors of nitric oxide (NO) synthase, were studied on ricinoleic acid-evoked contractions in rat isolated ileum. Ricinoleic acid (10(-5) to 10(-4) M) caused a concentration-dependent contraction. Addition of L-NAME (30-300 microM) or L-NMMA (30-300 microM) to the Tyrode's solution increased in a concentration-dependent fashion the amplitude of the ricinoleic acid-evoked responses. L-Arginine (900 microM), a natural substrate of NO synthase, but not D-arginine (900 microM), counteracted the effect of L-NAME (300 microM). The potentiating effect of L-NAME was also prevented by sodium nitroprusside (0.1-1 microM), a generator of NO. These results provide evidence that endogenous NO may modulate the contraction of rat ileum induced by ricinoleic acid. As the contraction induced by ricinoleic acid is not blocked by tetrodotoxin (0.6 and 6.0 microM) the contractile effect of ricinoleic acid results mainly from a direct action on the smooth muscle. PMID:7504631

  17. Inhibitors of nitric oxide synthase enhance rat ileum contractions induced by ricinoleic acid in vitro.

    TOXLINE Toxicology Bibliographic Information

    Izzo AA; Mascolo N; Viola P; Capasso F

    1993-10-12

    The effects of NG-nitro-L-arginine methyl ester (L-NAME) and NG-monomethyl-L-arginine (L-NMMA), inhibitors of nitric oxide (NO) synthase, were studied on ricinoleic acid-evoked contractions in rat isolated ileum. Ricinoleic acid (10(-5) to 10(-4) M) caused a concentration-dependent contraction. Addition of L-NAME (30-300 microM) or L-NMMA (30-300 microM) to the Tyrode's solution increased in a concentration-dependent fashion the amplitude of the ricinoleic acid-evoked responses. L-Arginine (900 microM), a natural substrate of NO synthase, but not D-arginine (900 microM), counteracted the effect of L-NAME (300 microM). The potentiating effect of L-NAME was also prevented by sodium nitroprusside (0.1-1 microM), a generator of NO. These results provide evidence that endogenous NO may modulate the contraction of rat ileum induced by ricinoleic acid. As the contraction induced by ricinoleic acid is not blocked by tetrodotoxin (0.6 and 6.0 microM) the contractile effect of ricinoleic acid results mainly from a direct action on the smooth muscle.

  18. The Cyclin-Dependent Kinase Inhibitor SCH 727965 (Dinacliclib) Induces the Apoptosis of Osteosarcoma Cells

    PubMed Central

    Fu, Wei; Ma, Le; Chu, Baoky; Wang, Xue; Bui, Marilyn M.; Gemmer, Jennifer; Altiok, Soner; Pledger, W. Jackson

    2015-01-01

    Although rare, osteosarcoma is an aggressive cancer that often metastasizes to the lungs. Toward the goal of developing new treatment options for osteosarcoma, we show that the cyclin-dependent kinase (CDK) inhibitor SCH 727965 (SCH) induces the apoptosis of several osteosarcoma cell lines including those resistant to doxorubicin and dasatinib. Cell lines prepared in our laboratory from patients who had received adjuvant chemotherapy and explants derived from a human osteosarcoma xenograft in mice were also responsive to SCH. Apoptosis occurred at low nanomolar concentrations of SCH, as did CDK inhibition, and was p53-independent. SCH activated the mitochondrial pathway of apoptosis as evidenced by caspase-9 cleavage and accumulation of cytoplasmic cytochrome c. Amounts of the apoptotic proteins Bax and Bim increased in mitochondria, whereas amounts of the antiapoptotic proteins Mcl-1 and Bcl-xL declined. Osteosarcoma cells apoptosed when codepleted of CDK1 and CDK2 but not when depleted of other CDK combinations. We suggest that SCH triggers the apoptosis of osteosarcoma cells by inactivating CDK1 and CDK2 and that SCH may be useful for treatment of drug-resistant osteosarcomas. SCH also induced the apoptosis of other sarcoma types but not of normal quiescent osteoblasts or fibroblasts. PMID:21490307

  19. JTP-103237, a novel monoacylglycerol acyltransferase inhibitor, modulates fat absorption and prevents diet-induced obesity.

    PubMed

    Okuma, Chihiro; Ohta, Takeshi; Tadaki, Hironobu; Hamada, Hiromi; Oda, Tomohiro; Taniuchi, Hideyuki; Yamanaka, Kenji; Ishii, Yukihito; Ohe, Yasuhiro; Yata, Shinji; Nishiu, Jun; Aratsu, Yusuke; Oshida, Shinichi; Kume, Shinichi; Kakutani, Makoto

    2015-07-01

    Monoacylglycerol acyltransferase 2 (MGAT2) plays an important role in intestinal fat absorption. We discovered the novel MGAT2 inhibitor, JTP-103237, and evaluated its pharmacological profile. JTP-103237 selectively inhibited MGAT2 without remarkable species differences and reduced absorbed lipids in circulation. After lipid administration, JTP-103237 slightly but significantly decreased triglyceride content in proximal small intestine and significantly increased the lipids content in the distal small intestine. In addition, JTP-103237 significantly increased MGAT substrate (monoacylglycerol and fatty acid) content in the small intestine. JTP-103237 increased plasma peptide YY levels after lipid loading and reduced food intake in a dietary fat-dependent manner. After chronic treatment, JTP-103237 significantly decreased body weight and increased O2 consumption in the early dark phase in high fat diet induced obese (DIO) mice. Moreover, JTP-103237 improved glucose tolerance and decreased fat weight and hepatic triglyceride content in DIO mice. Our findings indicate that JTP-103237 prevents diet-induced obesity by inhibiting intestinal MGAT2 and has unique properties as a drug for the treatment of obesity. PMID:25857225

  20. Reduction of chlorpyrifos-induced toxicity in human lymphocytes by selected phosphodiesterase inhibitors.

    PubMed

    Jowzi, Narges; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Baeeri, Maryam; Darvishi, Behrad; Rezvanfar, Mohammad Amin; Abdollahi, Mohammad

    2016-03-01

    One of the most famous and commonly used compounds from organophosphate (OP) family is chlorpyrifos (CP) which is widespreadly used as a powerful insecticide. Previous studies have shown that OPs induce oxidative stress, inflammation and apoptosis by generating the free radicals. The protective effects of three members of phosphodiesterase inhibitor (PDEI) family, including rolipram (RLP), milrinon (MLR) and pentoxifylline (PTX) were evaluated in the human lymphocytes against CP's toxicity. In this case, the level of oxidative stress biomarkers, the viability of the cells and the rate of apoptosis by flow cytometry were investigated. The results of this study revealed that CP makes a significant increase in the level of inflammatory and oxidative stress markers such as meyloperoxidase (MPO), lipid peroxidation (LPO), total thiol molecules (TTM) and total antioxidant potential (TAP), and also makes an enhancement in the rate of apoptosis process. On the other hand, PDEIs and specifically the combination of them restored the negative effects of CP and significantly prevented the apoptosis and oxidative stress imbalance. It is concluded that these PDEIs have positive effects in attenuation, recovery, and protection of CP-induced toxicity in the human lymphocytes. PMID:26969440

  1. Contact lens-induced edema in vitro--amelioration by lactate dehydrogenase inhibitors.

    PubMed

    Rohde, M D; Huff, J W

    1986-10-01

    Isolated rabbit corneas bathed in Krebs-bicarbonate Ringer solution were observed for thickness changes after a 90 minute equilibration period. Control corneas swelled an average of 0.5 micron/hr, and placement of a polymethylmechacrylate (PMMA) contact lens on the epithelial surface caused the corneas to swell 24.5 microns/hr, an effect similar to 0.5 mM epithelial cyanide exposure. The pronounced swelling induced by PMMA lens placement was much less however, in the epithelial presence of 3.2 mM sodium oxalate (3.22 microns/hr) or 3.2 mM sodium oxamate (5.38 microns/hr). An equiosmotic excess of 4.8 mM NaCl was least active (15.89 microns/hr). On normal isolated corneas (without contact lenses), the Ringer containing an excess of 4.8 mM NaCl significantly deswelled the corneas (-13.44 microns/hr), which contrasted with oxalate and oxamate containing Ringer solutions (1.17 and 1.33 micron/hr respectively). The present study supports the notion that contact lens-induced edema results from stromal lactate accumulation, and suggests a potential alternative to osmotic therapy for its amelioration. These LDH inhibitors, in the concentrations used, have no acute osmotic or toxic effect on normal corneas in vitro. PMID:3769523

  2. Panhistone deacetylase inhibitors inhibit proinflammatory signaling pathways to ameliorate interleukin-18-induced cardiac hypertrophy

    PubMed Central

    Majumdar, Gipsy; Rooney, Robert J.; Johnson, I. Maria

    2011-01-01

    We investigated the genome-wide consequences of pan-histone deacetylase inhibitors (HDACIs) trichostatin A (TSA) and m-carboxycinnamic acid bis-hydroxamide (CBHA) in the hearts of BALB/c mice eliciting hypertrophy in response to interleukin-18 (IL-18). Both TSA and CBHA profoundly altered cardiac chromatin structure that occurred concomitantly with normalization of IL-18-induced gene expression and amelioration of cardiac hypertrophy. The hearts of mice exposed to IL-18 +/− TSA or CBHA elicited distinct gene expression profiles. Of 184 genes that were differentially regulated by IL-18 and TSA, 33 were regulated in an opposite manner. The hearts of mice treated with IL-18 and/or CBHA elicited 147 differentially expressed genes (DEGs), a third of which were oppositely regulated by IL-18 and CBHA. Ingenuity Pathways and Kyoto Encyclopedia of Genes and Genomes analyses of DEGs showed that IL-18 impinged on TNF-α- and IFNγ-specific gene networks relegated to controlling immunity and inflammation, cardiac metabolism and energetics, and cell proliferation and apoptosis. These TNF-α- and IFNγ-specific gene networks, extensively connected with PI3K, MAPK, and NF-κB signaling pathways, were oppositely regulated by IL-18 and pan-HDACIs. Evidently, both TSA and CBHA caused a two- to fourfold induction of phosphatase and tensin homolog expression to counteract IL-18-induced proinflammatory signaling and cardiac hypertrophy. PMID:21954451

  3. Beneficial effects of nilotinib, tyrosine kinase inhibitor on cyclosporine-A induced renal damage in rats.

    PubMed

    Nader, Manar A; Attia, Ghalia M

    2016-04-01

    Nilotinib is a known tyrosine kinase inhibitor that has been approved for treatment of leukemia. The possible protective effect of nilotinib on cyclosporine A-induced nephropathy was investigated in this study and the possible underlying mechanism was explored. Nilotinib (25mg/kg, orally) and cyclosporine A (15mg/kg/day, subcutaneous) were given to male SD rats for 28days. Cyclosporine A alone was found to significantly increase serum creatinine, blood urea nitrogen, lactate dehydrogenase, urinary micrototal protein, renal thiobarbituric acid reactive substance, Bax, cytosol cytochrome c release and nuclear factor kappa B activation. Moreover, cyclosporine A significantly reduced serum albumin, creatinine clearance, urinary total antioxidant, superoxide dismutase, glutathione and Bcl2 protein levels. Pathological results showed that in the model group; there was an obvious shrinkage and congestion of the glomeruli and widening of urinary spaces of renal corpuscles, in addition to marked renal tubular injury and fibrosis, while in the group pretreated with nilotinib all measured serum, renal and pathological changes were significantly reduced. This protective effect of nilotinib is linked to the enhanced antioxidant status and reduced inflammation and apoptosis induced by cyclosporine A. PMID:26844915

  4. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress

    SciTech Connect

    Riganti, Chiara

    2008-05-01

    We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-{kappa}B and decreased intracellular level of its inhibitor IkB{alpha}. These effects, accompanied by increased production of H{sub 2}O{sub 2}, were very similar to those observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-{kappa}B activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed.

  5. Novel Epidermal Growth Factor Receptor Inhibitor Attenuates Angiotensin II-Induced Kidney Fibrosis.

    PubMed

    Qian, Yuanyuan; Peng, Kesong; Qiu, Chenyu; Skibba, Melissa; Huang, Yi; Xu, Zheng; Zhang, Yali; Hu, Jie; Liang, Dandan; Zou, Chunpeng; Wang, Yi; Liang, Guang

    2016-01-01

    Chronic activation of renin-angiotensin system (RAS) greatly contributes to renal fibrosis and accelerates the progression of chronic kidney disease; however, the underlying molecular mechanism is poorly understood. Angiotensin II (Ang II), the central component of RAS, is a key regulator of renal fibrogenic destruction. Here we show that epidermal growth factor receptor (EGFR) plays an important role in Ang II-induced renal fibrosis. Inhibition of EGFR activation by novel small molecules or by short hairpin RNA knockdown in Ang II-treated SV40 mesangial cells in vitro suppresses protein kinase B and extracellular signal-related kinase signaling pathways and transforming growth factor-β/Sma- and Mad-related protein activation, and abolishes the accumulation of fibrotic markers such as connective tissue growth factor, collagen IV. The transactivation of EGFR by Ang II in SV40 cells depends on the phosphorylation of proto-oncogene tyrosine-protein kinase Src (c-Src) kinase. Further validation in vivo demonstrates that EGFR small molecule inhibitor successfully attenuates renal fibrosis and kidney dysfunction in a mouse model induced by Ang II infusion. These findings indicate a crucial role of EGFR in Ang II-dependent renal deterioration, and reveal EGFR inhibition as a new therapeutic strategy for preventing progression of chronic renal diseases. PMID:26514795

  6. A lysophosphatidic acid analogue is revealed as a potent inhibitor of phosphatidylcholine synthesis, inducing apoptosis.

    PubMed Central

    Gueguen, Geneviéve; Granci, Virginie; Rogalle, Pierre; Briand-Mésange, Fabienne; Wilson, Michéle; Klaébé, Alain; Tercé, François; Chap, Hugues; Salles, Jean-Pierre; Simon, Marie-Françoise; Gaits, Frédérique

    2002-01-01

    A previous study demonstrated that cross-desensitization experiments performed with the lysophosphatidic acid (LPA) analogues (R)- and (S)-N-palmitoyl-norleucinol 1-phosphate (PNPAs) inhibited LPA-induced platelet aggregation without any stereospecificity. Here we report opposite biological effects of the two enantiomers on mitogenesis of IMR-90 fibroblasts in relation to their respective metabolism. (R)PNPA was proliferative, while (S)PNPA induced apoptosis by specifically inhibiting phosphatidylcholine biosynthesis at the last step of the CDP-choline pathway controlled by cholinephosphotransferase. This effect was not direct but required dephosphorylation of PNPAs by ecto-lipid phosphate phosphatase before cellular uptake of the generated N-palmitoyl-norleucinols (PNOHs). Inhibition of cholinephosphotransferase by the derivative (S)PNOH was confirmed by an in vitro assay. (S)PNPA proapoptotic effects led us to clarify the mechanism linking cholinephosphotransferase inhibition to apoptosis. Three proapoptotic responses were observed: the activation of caspase-3, the production of ceramides from newly synthesized pools (as demonstrated by the inhibitor Fumonisin B1) and finally the activation of stress-activated protein kinase, p38 and c-Jun N-terminal kinases 1/2, as a result of ceramide increase. Thus our data demonstrate that synthetic analogues of LPA might display stereospecific effects leading to apoptosis independently of classical LPA-activated pathways. PMID:12197836

  7. Effect of a p38 MAPK inhibitor on FFA-induced hepatic insulin resistance in vivo.

    PubMed

    Pereira, S; Yu, W Q; Moore, J; Mori, Y; Tsiani, E; Giacca, A

    2016-01-01

    The mechanisms whereby prolonged plasma free fatty acids elevation, as found in obesity, causes hepatic insulin resistance are not fully clarified. We herein investigated whether inhibition of p38 mitogen-activated protein kinase (MAPK) prevented hepatic insulin resistance following prolonged lipid infusion. Chronically cannulated rats were subdivided into one of four intravenous (i.v.) treatments that lasted 48 h: Saline (5.5 μl min(-1)), Intralipid plus heparin (IH, 20% Intralipid+20 U ml(-1) heparin; 5.5 μl min(-1)), IH+p38 MAPK inhibitor (SB239063) and SB239063 alone. During the last 2 h of treatment, a hyperinsulinemic (5 mU kg(-1) min(-1)) euglycemic clamp together with [3-(3)H] glucose methodology was carried out to distinguish hepatic from peripheral insulin sensitivity. We found that SB239063 prevented IH-induced hepatic insulin resistance, but not peripheral insulin resistance. SB239063 also prevented IH-induced phosphorylation of activating transcription factor 2 (ATF2), a marker of p38 MAPK activity, in the liver. Moreover, in another lipid infusion model in mice, SB239063 prevented hepatic but not peripheral insulin resistance caused by 48 h combined ethyloleate plus ethylpalmitate infusion. Our results suggest that inhibition of p38 MAPK may be a useful strategy in alleviating hepatic insulin resistance in obesity-associated disorders. PMID:27136448

  8. Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice.

    PubMed Central

    Cross, A H; Misko, T P; Lin, R F; Hickey, W F; Trotter, J L; Tilton, R G

    1994-01-01

    Previous work from our laboratory localized nitric oxide to the affected spinal cords of mice with experimental autoimmune encephalomyelitis, a prime model for the human disease multiple sclerosis. The present study shows that activated lymphocytes sensitized to the central nervous system encephalitogen, myelin basic protein, can induce nitric oxide production by a murine macrophage cell line. Induction was inhibited by amino-guanidine, a preferential inhibitor of the inducible nitric oxide synthase isoform, and by NG-monomethyl-L-arginine. Aminoguanidine, when administered to mice sensitized to develop experimental autoimmune encephalomyelitis, inhibited disease expression in a dose-related manner. At 400 mg aminoguanidine/kg per day, disease onset was delayed and the mean maximum clinical score was 0.9 +/- 1.2 in aminoguanidine versus 3.9 +/- 0.9 in placebo-treated mice. Histologic scoring of the spinal cords for inflammation, demyelination, and axonal necrosis revealed significantly less pathology in the aminoguanidine-treated group. The present study implicates excessive nitric oxide production in the pathogenesis of murine inflammatory central nervous system demyelination, and perhaps in the human disease multiple sclerosis. Images PMID:7515395

  9. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    PubMed

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-01

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor. PMID:26721445

  10. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection

    PubMed Central

    Goujon, Caroline; Moncorgé, Olivier; Bauby, Hélène; Doyle, Tomas; Ward, Christopher C.; Schaller, Torsten; Hué, Stéphane; Barclay, Wendy S.; Schulz, Reiner; Malim, Michael H.

    2013-01-01

    Animal cells harbour multiple innate effector mechanisms that inhibit virus replication. For the pathogenic retrovirus human immunodeficiency virus type-1 (HIV-1), these include widely expressed restriction factors1 such as APOBEC3 proteins2, TRIM5α3, tetherin/BST24,5 and SAMHD16,7, as well as additional factors that are stimulated by type-1 interferon (IFN)8,9,10,11,12,13,14. Here, we employ both ectopic expression and gene silencing experiments to define the human dynamin-like, IFN-induced guanosine triphosphatase (GTPase), myxovirus resistance 2 (MX2 or MxB) protein, as a potent inhibitor of HIV-1 infection and as a major effector of IFNα-mediated resistance to HIV-1 infection. MX2 suppresses infection by all HIV-1 strains tested, has similar to modest effects on divergent simian immunodeficiency viruses (SIVs), and does not inhibit other retroviruses such as murine leukaemia virus (MLV). The capsid (CA) region of the viral Gag protein dictates susceptibility to MX2, and the block to infection occurs at a late post-entry step with the nuclear accumulation and chromosomal integration of nascent viral cDNA both being suppressed. Finally, human MX1 (or MxA), a closely related protein that has long been recognised as a broadly acting inhibitor of RNA/DNA viruses, including the orthomyxovirus influenza A virus15,16, does not affect HIV-1,whereas MX2 is ineffective against influenza virus. MX2 is therefore a cell-autonomous, anti-HIV-1 resistance factor whose purposeful mobilisation may represent a new therapeutic approach for the treatment of HIV/AIDS. PMID:24048477

  11. Dietary Inulin Fibers Prevent Proton-Pump Inhibitor (PPI)-Induced Hypocalcemia in Mice

    PubMed Central

    Hess, Mark W.; de Baaij, Jeroen H. F.; Gommers, Lisanne M. M.; Hoenderop, Joost G. J.; Bindels, René J. M.

    2015-01-01

    Background Proton-pump inhibitor-induced hypomagnesemia (PPIH) is the most recognized side effect of proton-pump inhibitors (PPIs). Additionally, PPIH is associated with hypocalcemia and hypokalemia. It is hypothesized that PPIs reduce epithelial proton secretion and thereby increase the pH in the colon, which may explain the reduced absorption of and Mg2+ and Ca2+. Fermentation of dietary oligofructose-enriched inulin fibers by the microflora leads to acidification of the intestinal lumen and by this enhances mineral uptake. This study aimed, therefore, to improve mineral absorption by application of dietary inulin to counteract PPIH. Methods Here, C57BL/J6 mice were supplemented with omeprazole and/or inulin. Subsequently, Mg2+ and Ca2+ homeostasis was assessed by means of serum, urine and fecal electrolyte measurements. Moreover, the mRNA levels of magnesiotropic and calciotropic genes were examined in the large intestine and kidney by real-time PCR. Results Treatment with omeprazole significantly reduced serum Mg2+ and Ca2+ levels. However, concomitant addition of dietary inulin fibers normalized serum Ca2+ but not serum Mg2+ concentrations. Inulin abolished enhanced expression of Trpv6 and S100g in the colon by omeprazole. Additionally, intestinal and renal mRNA levels of the Trpm6 gene were reduced after inulin intake. Conclusions This study suggests that dietary inulin counteracts reduced intestinal Ca2+ absorption upon PPI treatment. In contrast, inulin did not increase intestinal absorption of Mg2+ sufficiently to recover serum Mg2+. The clinical potential of dietary inulin treatment should be the subject of future studies. PMID:26397986

  12. Calcineurin inhibitor induces pain hypersensitivity by potentiating pre- and postsynaptic NMDA receptor activity in spinal cords

    PubMed Central

    Chen, Shao-Rui; Hu, Yi-Min; Chen, Hong; Pan, Hui-Lin

    2014-01-01

    Abstract Calcineurin inhibitors, such as cyclosporin A and tacrolimus (FK506), have played a pivotal role in the preservation of allograft function. However, these drugs can cause unexplained severe pain in patients, often referred to as calcineurin inhibitor-induced pain syndrome (CIPS). Although calcineurin can regulate NMDA receptor (NMDAR) activity, the causal relationship between spinal synaptic plasticity and CIPS remains unknown. In this study, we showed that systemic administration of FK506 (1.5 mg kg−1 day−1) for 7 days in rats led to long-lasting nociceptive and mechanical hypersensitivity. Whole-cell patch-clamp recordings in spinal cord slices revealed that FK506 treatment caused a large increase in the amplitude of NMDAR-mediated excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation. The amplitude of NMDAR currents elicited by puff NMDA application to dorsal horn neurons was also significantly greater in FK506-treated than in vehicle-treated rats. The frequency of spontaneous and miniature EPSCs in most dorsal horn neurons was profoundly increased in FK506-treated rats and was reduced by blocking NMDARs. Furthermore, blocking GluN2A or GluN2B subunits similarly reduced the amplitude of evoked EPSCs and the frequency of miniature EPSCs in dorsal horn neurons of FK506-treated rats. In addition, intrathecal injection of an NMDAR antagonist or systemic administration of memantine effectively reversed nociceptive and mechanical hypersensitivity in FK506-treated rats. Our findings indicate that calcineurin inhibition increases glutamate-mediated nociceptive input by potentiating presynaptic and postsynaptic NMDAR activity in spinal cords. NMDAR antagonists may represent a new therapeutic option for the treatment of CIPS. PMID:24081160

  13. Interaction of ligands for the peroxisome proliferator-activated receptor γ with the endocannabinoid system

    PubMed Central

    Lenman, A; Fowler, C J

    2007-01-01

    Background and purpose: There is good evidence that agents interacting with the endocannabinoid system in the body can also interact with the peroxisome proliferator-activated receptor γ. The present study was designed to test whether the reverse is true, namely whether peroxisome proliferator-activated receptor γ ligands have direct effects upon the activity of the endocannabinoid metabolizing enzyme fatty acid amide hydrolase. Experimental approach: Fatty acid amide hydrolase activity was measured in rat brain homogenates, C6 glioma and RBL2H3 basophilic leukaemia cells. Cellular uptake of anandamide was also assessed in these cells. Key results: Peroxisome proliferator-activated receptor γ activators inhibited the metabolism of the endocannabinoid anandamide in rat brain homogenates with an order of potency MCC-555 > indomethacin ≈ ciglitazone ≈ 15-deoxy-Δ12,14-prostaglandin J2 ≈ pioglitazone > rosiglitazone > troglitazone. The antagonists BADGE, GW9662 and T0070907 were poor inhibitors of anandamide hydrolysis. The inhibition by ciglitazone was competitive and increased as the pH of the assay buffer was decreased; the Ki value at pH 6.0 was 17 μM. In intact C6 glioma cells assayed at pH 6.2, significant inhibition of anandamide hydrolysis was seen at 3 μM ciglitazone, whereas 100 μM was required to produce significant inhibition at pH 7.4. Ciglitazone also interacted with monoacylglycerol lipase as well as with cannabinoid CB1 and CB2 receptors. Conclusions and implications: Ciglitazone may be useful as a template for the design of novel dual action anti-inflammatory agents which are both inhibitors of fatty acid amide hydrolase and agonists at the peroxisome proliferator-activated receptor γ. PMID:17592505

  14. Thrombin inhibitors and anti-coagulants on thrombin-induced embolisation in rabbit cranial vasculature.

    PubMed

    Liu, J T; Paul, W; Emerson, M; Cicala, C; Page, C P

    1994-10-24

    111Indium-labelled platelets were continuously monitored in the cranial vasculature of anaesthetised rabbits and thrombin inhibitors and anti-coagulants were tested on the sustained platelet accumulation induced by intracarotid injection of thrombin (90 U/kg). Pretreatment, commencing 30 min prior to thrombin, with a 1-h intracarotid infusion of D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone (PPACK; 0.25-1.0 micrograms/kg per min), unfractionated heparin (Multiparin; 5-20 U/kg bolus + 0.75-3.0 U/kg per min infusion) or low molecular weight heparin (Fragmin; 2.4-9.6 U/kg per min) produced dose-related reductions in platelet accumulation. Continuous infusion of acetyl-D-phenylalanyl-prolyl-boroarginine (DuP-714 ester; 30 micrograms/kg per min) for 30 min induced marked accumulation of platelets in the pulmonary circulation in the absence of thrombin. Bolus intracarotid injection, 1 min before thrombin, of Hirulog (0.05-0.2 mg/kg), PPACK (10-30 micrograms/kg), Multiparin (25-100 U/kg), Fragmin (150 U/kg) or DuP-714 ester (15-30 micrograms/kg) caused significant reductions in platelet accumulation. When injected 1 min after thrombin, Hirulog (1 mg/kg), PPACK (100 micrograms/kg), Fragmin (150 U/kg) and DuP-714 ester (30 micrograms/kg) had no significant effect and Multiparin (100 U/kg) increased platelet accumulation. The results demonstrate that pretreatment with a range of thrombin inactivators, acting via different mechanisms, can inhibit thrombin-induced cerebral thromboembolism in the rabbit. PMID:7851481

  15. Xanthine crystals induced by topiroxostat, a xanthine oxidoreductase inhibitor, in rats, cause transitional cell tumors.

    PubMed

    Shimo, Takeo; Moto, Mitsuyoshi; Ashizawa, Naoki; Matsumoto, Koji; Iwanaga, Takashi; Saito, Kazuhiro

    2014-04-01

    The present study was performed to elucidate the underlying mechanism of transitional cell tumors found in the carcinogenicity testing of topiroxostat, a xanthine oxidoreductase inhibitor, in which topiroxostat was orally given to F344 rats at 0.3, 1, and 3 mg/kg for 2 years. In the urinary bladder, transitional cell papillomas and/or carcinomas were seen in males receiving 0.3, 1, and 3 mg/kg (1/49, 3/49, and 10/50, respectively). In the kidney, transitional cell papillomas and/or carcinomas in the pelvis were seen in 2/50 males and 1/50 females receiving 3 mg/kg. In the mechanistic study by 52-week oral treatment with topiroxostat at 3 mg/kg to F344 male rats, with and without citrate, simple and papillary transitional cell hyperplasias of the urinary bladder epithelium were observed in 5/17 in the topiroxostat-alone treatment group, along with xanthine-induced nephropathy, in contrast to neither xanthine crystals nor lesions in urinary organs by co-treatment group with citrate. As for sex differences of urinary bladder tumors, the BrdU labeling index for epithelial cells of the urinary bladder by 5-week oral treatment with topiroxostat at 10 mg/kg to F344 rats was increased in males only, showing consistency with histopathological findings. Therefore, the present study indicates that transitional cell tumors induced by topiroxostat in rats were due to physical stimulation to transitional cells of xanthine crystals/calculi and provides that other factors were not implicated in this tumorigenesis. Furthermore, the present study suggests that such tumors do not predict for humans since topiroxostat-induced xanthine deposition is a rodent-specific event. PMID:24448833

  16. Substrate and Inhibitor-induced Dimerization and Cooperativity in Caspase-1 but Not Caspase-3*

    PubMed Central

    Datta, Debajyoti; McClendon, Christopher L.; Jacobson, Matthew P.; Wells, James A.

    2013-01-01

    Caspases are intracellular cysteine-class proteases with aspartate specificity that is critical for driving processes as diverse as the innate immune response and apoptosis, exemplified by caspase-1 and caspase-3, respectively. Interestingly, caspase-1 cleaves far fewer cellular substrates than caspase-3 and also shows strong positive cooperativity between the two active sites of the homodimer, unlike caspase-3. Biophysical and kinetic studies here present a molecular basis for this difference. Analytical ultracentrifugation experiments show that mature caspase-1 exists predominantly as a monomer under physiological concentrations that undergoes dimerization in the presence of substrate; specifically, substrate binding shifts the KD for dimerization by 20-fold. We have created a hemi-active site-labeled dimer of caspase-1, where one site is blocked with the covalent active site inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. This hemi-labeled enzyme is about 9-fold more active than the apo-dimer of caspase-1. These studies suggest that substrate not only drives dimerization but also, once bound to one site in the dimer, promotes an active conformation in the other monomer. Steady-state kinetic analysis and modeling independently support this model, where binding of one substrate molecule not only increases substrate binding in preformed dimers but also drives the formation of heterodimers. Thus, the cooperativity in caspase-1 is driven both by substrate-induced dimerization as well as substrate-induced activation. Substrate-induced dimerization and activation seen in caspase-1 and not in caspase-3 may reflect their biological roles. Whereas caspase-1 cleaves a dramatically smaller number of cellular substrates that need to be concentrated near inflammasomes, caspase-3 is a constitutively active dimer that cleaves many more substrates located diffusely throughout the cell. PMID:23386603

  17. Histone Deacetylase Inhibitor Trichostatin A Ameliorated Endotoxin-Induced Neuroinflammation and Cognitive Dysfunction

    PubMed Central

    Hsing, Chung-Hsi; Hung, Shih-Kai; Chen, Yeong-Chang; Wei, Tsui-Shan; Sun, Ding-Ping; Wang, Jhi-Joung; Yeh, Ching-Hua

    2015-01-01

    Excessive production of cytokines by microglia may cause cognitive dysfunction and long-lasting behavioral changes. Activating the peripheral innate immune system stimulates cytokine secretion in the central nervous system, which modulates cognitive function. Histone deacetylases (HDACs) modulate cytokine synthesis and release. Trichostatin A (TSA), an HDAC inhibitor, is documented to be anti-inflammatory and neuroprotective. We investigated whether TSA reduces lipopolysaccharide- (LPS-) induced neuroinflammation and cognitive dysfunction. ICR mice were first intraperitoneally (i.p.) injected with vehicle or TSA (0.3 mg/kg). One hour later, they were injected (i.p.) with saline or Escherichia coli LPS (1 mg/kg). We analyzed the food and water intake, body weight loss, and sucrose preference of the injected mice and then determined the microglia activation and inflammatory cytokine expression in the brains of LPS-treated mice and LPS-treated BV-2 microglial cells. In the TSA-pretreated mice, microglial activation was lower, anhedonia did not occur, and LPS-induced cognitive dysfunction (anorexia, weight loss, and social withdrawal) was attenuated. Moreover, mRNA expression of HDAC2, HDAC5, indoleamine 2,3-dioxygenase (IDO), TNF-α, MCP-1, and IL-1β in the brain of LPS-challenged mice and in the LPS-treated BV-2 microglial cells was lower. TSA diminished LPS-induced inflammatory responses in the mouse brain and modulated the cytokine-associated changes in cognitive function, which might be specifically related to reducing HDAC2 and HDAC5 expression. PMID:26273133

  18. SLCO1B1 Variants and Angiotensin Converting Enzyme Inhibitor (Enalapril) -Induced Cough: a Pharmacogenetic Study

    PubMed Central

    Luo, Jian-Quan; He, Fa-Zhong; Wang, Zhen-Min; Sun, Ning-Ling; Wang, Lu-Yan; Tang, Gen-Fu; Liu, Mou-Ze; Li, Qing; Chen, Xiao-Ping; Liu, Zhao-Qian; Zhou, Hong-Hao; Zhang, Wei

    2015-01-01

    Clinical observations suggest that incidence of cough in Chinese taking angiotensin converting enzyme inhibitors is much higher than other racial groups. Cough is the most common adverse reaction of enalapril. We investigate whether SLCO1B1 genetic polymorphisms, previously reported to be important determinants of inter-individual variability in enalapril pharmacokinetics, are associated with the enalapril-induced cough. A cohort of 450 patients with essential hypertension taking 10 mg enalapril maleate were genotyped for the functional SLCO1B1 variants, 388A > G (Asn130Asp, rs2306283) and 521T > C (Val174Ala, rs4149056). The primary endpoint was cough, which was recorded when participants were bothered by cough and respiratory symptoms during enalapril treatment without an identifiable cause. SLCO1B1 521C allele conferred a 2-fold relative risk of enalapril-induced cough (95% confidence interval [CI] = 1.34–3.04, P = 6.2 × 10−4), and haplotype analysis suggested the relative risk of cough was 6.94-fold (95% CI = 1.30–37.07, P = 0.020) in SLCO1B1*15/*15 carriers. Furthermore, there was strong evidence for a gene-dose effect (percent with cough in those with 0, 1, or 2 copy of the 521C allele: 28.2%, 42.5%, and 71.4%, trend P = 6.6 × 10−4). Our study highlights, for the first time, SLCO1B1 variants are strongly associated with an increased risk of enalapril-induced cough. The findings will be useful to provide pharmacogenetic markers for enalapril treatment. PMID:26607661

  19. Simotinib as a modulator of P-glycoprotein: substrate, inhibitor, or inducer?

    PubMed

    Huang, Lingling; Shen, Cheng; Chen, Yanfen; Yan, Huiwen; Cheng, Zeneng; Zhu, Qubo

    2016-04-01

    As a new antitumor drug, simotinib hydrochloride is prescribed for prolonged periods, often to patients with comorbidities. Therefore, the risk for developing drug resistance and drug-drug interactions between simotinib and other agents has to be taken into consideration. As P-glycoprotein (P-gp) is an efflux transporter, which plays a significant role in drug resistance and influences the pharmacological properties and toxicities of the drugs it interacts with, the interactions between simotinib and P-gp were investigated. Cytotoxicity was measured using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Intracellular drug concentrations were detected by high-performance liquid chromatography, fluorescence-activated cell sorting and using a fluorescence reader. P-gp ATPase activity was measured using the Pgp-Glo assay, and intracellular pH was assessed using the fluorescent probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl. The expression and transcription of P-gp were detected by western blotting and the luciferase assay. Simotinib has no cross-resistance to P-gp substrates, and its efflux rate was independent of either the P-gp expression or the coadministered P-gp substrate. Simotinib reversed chemotherapeutic agent resistance in a short time by increasing the intracellular concentration of the chemotherapeutic agent and blocked rhodamine 123 efflux. Further studies demonstrated that simotinib inhibited P-gp activity by modulating its ATPase activity and the intracellular pH. Although simotinib induced P-gp expression after extended treatment, the induced expression of P-gp had little impact on drug resistance. Simotinib is not a substrate of P-gp. As a modulator, it functions mainly as an inhibitor of P-gp by modulating the intracellular pH and ATPase activity, although it also induces P-gp expression after extended treatment. PMID:26766493

  20. Inhibitors of inducible nitric oxide (NO) synthase are more effective than an NO donor in reducing carbon-tetrachloride induced acute liver injury.

    PubMed

    Tipoe, G L; Leung, T M; Liong, E; So, H; Leung, K M; Lau, T Y H; Tom, W M; Fung, M L; Fan, S T; Nanji, A A

    2006-11-01

    The exact functional role of nitric oxide (NO) in liver injury is currently a source of controversy. NO is enzymatically synthesized by nitric oxide synthase (NOS). In this study, we assessed the role of inducible NOS (iNOS) in carbon tetrachloride (CCl4)-induced acute liver injury using inhibitors of iNOS, and an NO donor. Adult ICR mice were injected with CCl4 with or without the iNOS inhibitors (5-methylisothiourea hemisulfate [SMT] and l-N6-(1-iminoethyl)-lysine [L-NIL]) and an NO donor (Sodium Nitroprusside [SNP]). Blood and liver tissues were collected for analysis. Immunohistochemistry (IHC), serum alanine aminotransferase (ALT), serum total 8-isoprostane analysis, RT-PCR, Western Blotting (WB) and EMSA were done. Our results showed increased levels of ALT, necrosis, total 8-isoprostane and nitrotyrosine after CCl4 administration. iNOS inhibitors and SNP abrogated these effects but the effect was more pronounced with SMT and L-NIL. RT-PCR, WB and IHC in CCl4-treated mice demonstrated upregulation of TNF-alpha, iNOS, and COX-2. The administration of iNOS inhibitors with CCl4 diminished the expression of these proinflammatory mediators. NF-kappaB was also upregulated in CCl4-treated mice and was reversed in mice pretreated with iNOS inhibitors. SNP pretreated mice also showed a lower expression of COX-2 when compared with CCl4 treated mice but TNF-alpha, iNOS and NF-kappaB activity were unaffected. We propose that a high level of nitric oxide is associated with CCl4-induced acute liver injury and the liver injury can be ameliorated by decreasing the NO level with iNOS inhibitors and an NO donor with the former more effective in reducing CCl4-induced liver injury. PMID:16874658

  1. Regulation of peroxisomal matrix protein import by ubiquitination.

    PubMed

    Platta, Harald W; Brinkmeier, Rebecca; Reidick, Christina; Galiani, Silvia; Clausen, Mathias P; Eggeling, Christian

    2016-05-01

    Peroxisomes are organelles that play an important role in many cellular tasks. The functionality of peroxisomes depends on the proper import of their matrix proteins. Peroxisomal matrix proteins are imported posttranslationally in a folded, sometimes even oligomeric state. They harbor a peroxisomal targeting sequence (PTS), which is recognized by dynamic PTS-receptors in the cytosol. The PTS-receptors ferry the cargo to the peroxisomal membrane, where they become part of a transient import pore and then release the cargo into the peroxisomal lumen. Subsequentially, the PTS-receptors are ubiquitinated in order to mark them for the export-machinery, which releases them back to the cytosol. Upon deubiquitination, the PTS-receptors can facilitate further rounds of cargo import. Because the ubiquitination of the receptors is an essential step in the import cycle, it also represents a central regulatory element that governs peroxisomal dynamics. In this review we want to give an introduction to the functional role played by ubiquitination during peroxisomal protein import and highlight the mechanistic concepts that have emerged based on data derived from different species since the discovery of the first ubiquitinated peroxin 15years ago. Moreover, we discuss future tasks and the potential of using advanced technologies for investigating further details of peroxisomal protein transport. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26367801

  2. Allosteric inhibition of c-Met kinase in sub-microsecond molecular dynamics simulations induced by its inhibitor, tivantinib.

    PubMed

    Yan, Maocai; Wang, Huiyun; Wang, Qibao; Zhang, Zhen; Zhang, Chunyan

    2016-04-21

    Protein dynamics in the allosteric regulation of enzymes is crucial for understanding the regulation mechanism of enzymes and designing of inhibitors. Kinases have a conserved Asp-Phe-Gly motif (DFG motif) whose conformation determines the activation state of the kinase; however, knowledge on conformational transition of the DFG motif from the active state to the inactive state ("DFG-flip") is quite limited. Here we report a DFG-flip of c-Met kinase in molecular dynamics (MD) simulations, induced by its allosteric inhibitor tivantinib. Our MD simulations showed that, with the assistance of tivantinib, c-Met may transit from the DFG-in state to the DFG-out state in a sub-microsecond time-scale. A unique binding mode of tivantinib to c-Met was identified to be the key intermediate for the ligand-induced DFG-flip. This study provides a detailed process of inhibitor-induced kinase allostery, as well as important insights into the DFG-flip mechanism and the design of allosteric inhibitors, not only of c-Met, but also of other kinases. PMID:27029952

  3. OCTN3 is a mammalian peroxisomal membrane carnitine transporter

    SciTech Connect

    Lamhonwah, Anne-Marie; Ackerley, Cameron A.; Tilups, Aina; Edwards, Vernon D.; Wanders, Ronald J.; Tein, Ingrid . E-mail: ingrid.tein@sickkids.ca

    2005-12-30

    Carnitine is a zwitterion essential for the {beta}-oxidation of fatty acids. The role of the carnitine system is to maintain homeostasis in the acyl-CoA pools of the cell, keeping the acyl-CoA/CoA pool constant even under conditions of very high acyl-CoA turnover, thereby providing cells with a critical source of free CoA. Carnitine derivatives can be moved across intracellular barriers providing a shuttle mechanism between mitochondria, peroxisomes, and microsomes. We now demonstrate expression and colocalization of mOctn3, the intermediate-affinity carnitine transporter (K {sub m} 20 {mu}M), and catalase in murine liver peroxisomes by TEM using immunogold labelled anti-mOctn3 and anti-catalase antibodies. We further demonstrate expression of hOCTN3 in control human cultured skin fibroblasts both by Western blotting and immunostaining analysis using our specific anti-mOctn3 antibody. In contrast with two peroxisomal biogenesis disorders, we show reduced expression of hOCTN3 in human PEX 1 deficient Zellweger fibroblasts in which the uptake of peroxisomal matrix enzymes is impaired but the biosynthesis of peroxisomal membrane proteins is normal, versus a complete absence of hOCTN3 in human PEX 19 deficient Zellweger fibroblasts in which both the uptake of peroxisomal matrix enzymes as well as peroxisomal membranes are deficient. This supports the localization of hOCTN3 to the peroxisomal membrane. Given the impermeability of the peroxisomal membrane and the key role of carnitine in the transport of different chain-shortened products out of peroxisomes, there appears to be a critical need for the intermediate-affinity carnitine/organic cation transporter, OCTN3, on peroxisomal membranes now shown to be expressed in both human and murine peroxisomes. This Octn3 localization is in keeping with the essential role of carnitine in peroxisomal lipid metabolism.

  4. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production.

    PubMed

    Xu, Weihong; Xu, Bin; Yao, Yiting; Yu, Xiaoling; Shen, Jie

    2015-08-01

    In the current study, we investigated the potential activity of AR-42, a novel histone deacetylase (HDAC) inhibitor, against colon cancer cells. Our invitro results showed that AR-42 induced ceramide production, exerted potent anti-proliferative and pro-apoptotic activities in established (SW-620 and HCT-116 lines) and primary human colon cancer cells. Exogenously-added sphingosine 1-phosphate (S1P) suppressed AR-42-induced activity, yet a cell-permeable ceramide (C4) facilitated AR-42-induced cytotoxicity against colon cancer cells. In addition, AR-42-induced ceramide production and anti-colon cancer cell activity were inhibited by the ceramide synthase inhibitor fumonisin B1, but were exacerbated by PDMP, which is a ceramide glucosylation inhibitor. Invivo, oral administration of a single dose of AR-42 dramatically inhibited SW-620 xenograft growth in severe combined immunodeficient (SCID) mice, without inducing overt toxicities. Together, these results show that AR-42 dramatically inhibits colon cancer cell proliferation invitro and invivo, and ceramide production might be the key mechanism responsible for its actions. PMID:26026677

  5. Evodiamine inhibits the proliferation of leukemia cell line K562 by regulating peroxisome proliferators-activated receptor gamma (PPARγ) pathway.

    PubMed

    Sun, Chengming; Zhang, Guili; Luan, Shuping; Luan, Caifu; Shao, Huiyuan; Dong, Fei; Liu, Xuena

    2016-08-01

    Evodiamine, a quinolone alkaloid, is one of the major bioactive compounds of Evodia rutaecarpa Bentham (Rutaceae). It exhibits excellent biological activities, especially the anticancer activity. This study aims to investigate the effect of evodiamine on the proliferation of leukemia cell line K562 and to explore the underlying mechanism. The effect of evodiamine on K562 cells proliferation was analyzed by trypan blue dye exclusion assay and MTT assay. The expression levels of peroxisome proliferators-activated receptor gamma (PPARγ), cyclin D1, and p21 were detected by western blot assay. The results demonstrated that evodiamine inhibited the proliferation and decreased the viability of K562 cells in a dose- and time-dependent manner. 2-Chloro-5-nitro-N-phenylbenzamide (GW9662) and/or PPARγ-siRNA pretreatment alleviated the cell growth suppression triggered by evodiamine. Meanwhile, evodiamine intervention elevated the expression of PPARγ in K562 cells, while pretreatment with GW9662 attenuated the enhanced upregulation of PPARγ expression induced by evodiamine. In addition, GW9662 and PPARγ-siRNA pretreatment also significantly attenuated the downregulation of the cell cycle control protein cyclin D1 and the upregulation of cyclin-dependent kinase inhibitor p21 induced by evodiamine. In conclusion, PPARγ signaling pathway may involve in the proliferation inhibition of evodiamine on K562 cells via inhibiting cylcin D1 and stimulating of p21. PMID:26671528

  6. Fatty Acid Synthase Inhibitors Induce Apoptosis in Non-Tumorigenic Melan-A Cells Associated with Inhibition of Mitochondrial Respiration

    PubMed Central

    Rossato, Franco A.; Zecchin, Karina G.; La Guardia, Paolo G.; Ortega, Rose M.; Alberici, Luciane C.; Costa, Rute A. P.; Catharino, Rodrigo R.; Graner, Edgard; Castilho, Roger F.; Vercesi, Aníbal E.

    2014-01-01

    The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat induce apoptosis in non-tumorigenic cells via mitochondrial dysfunction, independent of FASN inhibition. PMID:24964211

  7. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    SciTech Connect

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung; Chung, Sung Woon; Hong, Ki Whan; Kim, Chi Dae; Bae, Sun Sik

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.

  8. Peroxisomal D-bifunctional protein deficiency

    PubMed Central

    Lines, Matthew A.; Jobling, Rebekah; Brady, Lauren; Marshall, Christian R.; Scherer, Stephen W.; Rodriguez, Amadeo R.; Lee, Liesly; Lang, Anthony E.; Mestre, Tiago A.; Wanders, Ronald J.A.; Ferdinandusse, Sacha

    2014-01-01

    Objective: To determine the causative genetic lesion in 3 adult siblings with a slowly progressive, juvenile-onset phenotype comprising cerebellar atrophy and ataxia, intellectual decline, hearing loss, hypogonadism, hyperreflexia, a demyelinating sensorimotor neuropathy, and (in 2 of 3 probands) supratentorial white matter changes, in whom numerous prior investigations were nondiagnostic. Methods: The patients’ initial clinical assessment included history and physical examination, cranial MRI, and nerve conduction studies. We performed whole-exome sequencing of all 3 probands, followed by variant annotation and selection of rare, shared, recessive coding changes to identify the gene responsible. We next performed a panel of peroxisomal investigations in blood and cultured fibroblasts, including assessment of D-bifunctional protein (DBP) stability and activity by immunoblot and enzymologic methods, respectively. Results: Exome sequencing identified compound heterozygous mutations in HSD17B4, encoding peroxisomal DBP, in all 3 probands. Both identified mutations alter a conserved residue within the active site of DBP’s enoyl-CoA hydratase domain. Routine peroxisomal screening tests, including very long-chain fatty acids and phytanic acid, were normal. DBP enzymatic activity was markedly reduced. Conclusion: Exome sequencing provides a powerful and elegant tool in the specific diagnosis of “mild” or “atypical” neurometabolic disorders. Given the broad differential diagnosis and the absence of detectable biochemical abnormalities in blood, molecular testing of HSD17B4 should be considered as a first-line investigation in patients with compatible features. PMID:24553428

  9. Calpain Inhibitor Reduces Cancer-induced Bone Pain Possibly Through Inhibition of Osteoclastogenesis in Rat Cancer-induced Bone Pain Model

    PubMed Central

    Xu, Jia-Ying; Jiang, Yu; Liu, Wei; Huang, Yu-Guang

    2015-01-01

    Background: Calpain, a calcium-dependent cysteine protease, has been demonstrated to regulate osteoclastogenesis, which is considered one of the major reasons for cancer-induced bone pain (CIBP). In the present study, calpain inhibitor was applied in a rat CIBP model to determine whether it could reduce CIBP through regulation of osteoclastogenesis activity. Methods: A rat CIBP model was established with intratibial injection of Walker 256 cells. Then, the efficacy of intraperitoneal administered calpain inhibitor III (MDL28170, 1 mg/kg) on mechanical withdrawal threshold (MWT) of bilateral hind paws was examined on postoperative days (PODs) 2, 5, 8, 11, and 14. On POD 14, the calpain inhibitor's effect on tumor bone tartrate-resistant acid phosphatase (TRAP) stain and radiology was also carefully investigated. Results: Pain behavioral tests in rats showed that the calpain inhibitor effectively attenuated MWTs of both the surgical side and contralateral side hind paws on POD 5, 8, and 11 (P < 0.05). TRAP-positive cell count of the surgical side bone was significantly decreased in the calpain inhibitor group compared with the vehicle group (P < 0.05). However, bone resorption and destruction measured by radiographs showed no difference between the two groups. Conclusions: Calpain inhibitor can effectively reduce CIBP of both the surgical side and nonsurgical side after tumor injection in a rat CIBP model. It may be due to the inhibition of receptor activator of nuclear factor-kappa B ligand-induced osteoclastogenesis. Whether a calpain inhibitor could be a novel therapeutic target to treat CIBP needs further investigation. PMID:25881607

  10. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation

    SciTech Connect

    Fukuda, Kazuki; Matsumura, Takeshi; Senokuchi, Takafumi; Ishii, Norio; Kinoshita, Hiroyuki; Yamada, Sarie; Murakami, Saiko; Nakao, Saya; Motoshima, Hiroyuki; Kondo, Tatsuya; Kukidome, Daisuke; Kawasaki, Shuji; Kawada, Teruo; Nishikawa, Takeshi; Araki, Eiichi

    2015-01-30

    Highlights: • Statins induce PPARγ activation in vascular smooth muscle cells. • Statin-induced PPARγ activation is mediated by COX-2 expression. • Statins suppress cell migration and proliferation in vascular smooth muscle cells. • Statins inhibit LPS-induced inflammatory responses by PPARγ activation. • Fluvastatin suppress the progression of atherosclerosis and induces PPARγ activation in the aorta of apoE-deficient mice. - Abstract: The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However, it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe{sup −/−} mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe{sup −/−} mice. In conclusion, statins mediate anti-atherogenic effects through PPARγ activation in SMCs. These effects of statins on SMCs may be beneficial for the prevention of atherosclerosis.

  11. Branched chain fatty acids induce nitric oxide-dependent apoptosis in vascular smooth muscle cells.

    PubMed

    Idel, Susanne; Ellinghaus, Peter; Wolfrum, Christian; Nofer, Jerzy-Roch; Gloerich, Jolein; Assmann, Gerd; Spener, Friedrich; Seedorf, Udo

    2002-12-20

    Clinical observations in patients with peroxisomal disorders and studies employing corresponding mouse models have shown that supraphysiological concentrations of dietary branched chain fatty acids (BCFAs) are associated with a high level of toxicity, which is poorly understood at present. Here we show that phytanic and pristanic acid, two BCFAs that are metabolized in peroxisomes, promote apoptosis in cultured vascular smooth muscle cells of human, rat, and porcine origin. Under the conditions used, the apoptosis-promoting effect of BCFAs was neither shared by saturated or unsaturated straight chain fatty acids nor by artificial peroxisome proliferators, which, like phytanic and pristanic acid, have been shown to activate the peroxisome proliferator-activated receptor alpha (PPARalpha). We could demonstrate, however, that BCFA induced tumor necrosis factor alpha (TNFalpha) activation and secretion, which is an obligatory step required for induction of apoptosis by BCFAs. Furthermore, incubation of VSMCs with BCFA increased inducible nitric-oxide synthase (iNOS) mRNA and protein concentrations markedly within 2 h of treatment. Correspondingly, apoptosis was significantly reduced when the cells were co-treated with the competitive NOS inhibitors monomethyl-L-arginine monoacetate and aminoguanidine. Moreover, co-incubation with TGFbeta1, previously shown to destabilize iNOS mRNA, also abolished apoptosis. These results establish a new signaling cascade in which natural BCFA induced NO-dependent apoptosis, which is apparently triggered by autocrine secretion of TNFalpha in cultured VSMCs. PMID:12368296

  12. Characterization of Rab21-positive tubular endosomes induced by PI3K inhibitors.

    PubMed

    Egami, Youhei; Araki, Nobukazu

    2008-02-15

    We found that wortmannin, a potent phosphoinositide 3-kinase (PI3K) inhibitor, markedly induced the formation of Rab21-positive tubular compartments in A431 cells. By time-lapse fluorescence microscopy of live cells co-expressing fluorescent protein-fused Rab21 and other marker proteins, it was shown that the Rab21-positive tubules in wortmannin-treated cells were derived from Rab5-positive early endosomes, but not from late endosomes, recycling endosomes, lysosomes or the trans-Golgi network. The formation of Rab21-positive tubules was very dynamic and required microtubules. Rab21-positive tubules were also formed by the treatment of cells with 3-methyladenine (3-MA), which inhibits class III PI3K rather than class I PI3K. Furthermore, the loss of PI(3)P correlated with the tubulation of Rab21-positive endosomes in cells co-expressing fluorescent protein-fused Rab21 and a tandem FYVE domain. These results suggest that the lowering of PI(3)P as a result of class III PI3K inhibition may be an important cue for the morphological change of Rab21-positive early endosomes from vesicular to tubular form. PMID:18162182

  13. A novel diacylglycerol kinase ?-selective inhibitor, CU-3, induces cancer cell apoptosis and enhances immune response.

    PubMed

    Liu, Ke; Kunii, Naoko; Sakuma, Megumi; Yamaki, Atsumi; Mizuno, Satoru; Sato, Mayu; Sakai, Hiromichi; Kado, Sayaka; Kumagai, Kazuo; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo; Shirai, Yasuhito; Sakane, Fumio

    2016-03-01

    Diacylglycerol kinase (DGK) consists of 10 isozymes. The ?-isozyme enhances the proliferation of cancer cells. However, DGK? facilitates the nonresponsive state of immunity known as T-cell anergy; therefore, DGK? enhances malignant traits and suppresses immune surveillance. The aim of this study was to identify a novel small molecule that selectively and potently inhibits DGK? activity. We screened a library containing 9,600 chemical compounds using a newly established high-throughput DGK assay. As a result, we have obtained a promising compound, 5-[(2E)-3-(2-furyl)prop-2-enylidene]-3-[(phenylsulfonyl)amino]2-thioxo-1,3-thiazolidin-4-one) (CU-3), which selectively inhibited DGK? with an IC50 value of 0.6 ?M. CU-3 targeted the catalytic region, but not the regulatory region, of DGK?. CU-3 competitively reduced the affinity of DGK? for ATP, but not diacylglycerol or phosphatidylserine. Moreover, this compound induced apoptosis in HepG2 hepatocellular carcinoma and HeLa cervical cancer cells while simultaneously enhancing the interleukin-2 production of Jurkat T cells. Taken together, these results indicate that CU-3 is a selective and potent inhibitor for DGK? and can be an ideal anticancer drug candidate that attenuates cancer cell proliferation and simultaneously enhances immune responses including anticancer immunity. PMID:26768655

  14. HDAC inhibitor misprocesses bantam oncomiRNA, but stimulates hid induced apoptotic pathway

    PubMed Central

    Bhadra, Utpal; Mondal, Tanmoy; Bag, Indira; Mukhopadhyay, Debasmita; Das, Paromita; Parida, Bibhuti B.; Mainkar, Prathama S.; Reddy, Chada Raji; Bhadra, Manika Pal

    2015-01-01

    Apoptosis or programmed cell death is critical for embryogenesis and tissue homeostasis. Uncontrolled apoptosis leads to different human disorders including immunodeficiency, autoimmune disorder and cancer. Several small molecules that control apoptosis have been identified. Here, we have shown the functional role of triazole derivative (DCPTN-PT) that acts as a potent HDAC inhibitor and mis-express proto onco microRNA (miRNA) bantam. To further understanding the mechanism of action of the molecule in apoptotic pathway, a series of experiments were also performed in Drosophila, a well known model organism in which the nature of human apoptosis is very analogous. DCPTN-PT mis processes bantam microRNA and alters its down regulatory target hid function and cleavage of Caspase-3 which in turn influence components of the mitochondrial apoptotic pathway in Drosophila. However regulatory microRNAs in other pro-apoptotic genes are not altered. Simultaneously, treatment of same molecule also affects the mitochondrial regulatory pathway in human tumour cell lines suggesting its conservative nature between fly and human. It is reasonable to propose that triazole derivative (DCPTN-PT) controls bantam oncomiRNA and increases hid induced apoptosis and is also able to influence mitochondrial apoptotic pathway. PMID:26442596

  15. Effects of EGFR Inhibitor on Helicobacter pylori Induced Gastric Epithelial Pathology in Vivo

    PubMed Central

    Crabtree, Jean E.; Jeremy, Anthony H.T.; Duval, Cedric; Dixon, Michael F.; Danjo, Kazuma; Carr, Ian M.; Pritchard, D. Mark; Robinson, Philip A.

    2013-01-01

    Helicobacter pylori transactivates the Epidermal Growth Factor Receptor (EGFR) and predisposes to gastric cancer development in humans and animal models. To examine the importance of EGFR signalling to gastric pathology, this study investigated whether treatment of Mongolian gerbils with a selective EGFR tyrosine kinase inhibitor, EKB-569, altered gastric pathology in chronic H. pylori infection. Gerbils were infected with H. pylori and six weeks later received either EKB-569-supplemented, or control diet, for 32 weeks prior to sacrifice. EKB-569-treated H. pylori-infected gerbils had no difference in H. pylori colonisation or inflammation scores compared to infected animals on control diet, but showed significantly less corpus atrophy, mucous metaplasia and submucosal glandular herniations along with markedly reduced antral and corpus epithelial proliferation to apoptosis ratios. EKB-569-treated infected gerbils had significantly decreased abundance of Cox-2, Adam17 and Egfr gastric transcripts relative to infected animals on control diet. EGFR inhibition by EKB-569 therefore reduced the severity of pre-neoplastic gastric pathology in chronically H. pylori-infected gerbils. EKB-569 increased gastric epithelial apoptosis in H. pylori-infected gerbils which counteracted some of the consequences of increased gastric epithelial cell proliferation. Similar chemopreventative strategies may be useful in humans who are at high risk of developing H. pylori- induced gastric adenocarcinoma. PMID:25437333

  16. Thrombin-Activatable Fibrinolysis Inhibitor Deficiency Attenuates Bleomycin-Induced Lung Fibrosis

    PubMed Central

    Fujimoto, Hajime; Gabazza, Esteban C.; Taguchi, Osamu; Nishii, Yoichi; Nakahara, Hiroki; Bruno, Nelson E.; D’Alessandro-Gabazza, Corina N.; Kasper, Michael; Yano, Yutaka; Nagashima, Mariko; Morser, John; Broze, George J.; Suzuki, Koji; Adachi, Yukihiko

    2006-01-01

    Decreased fibrinolytic function favors the development of pulmonary fibrosis. Thrombin-activatable fibrinolysis inhibitor (TAFI) is a strong suppressor of fibrinolysis, but its role in lung fibrosis is unknown. Therefore, we compared bleomycin-induced lung fibrosis in TAFI-deficient, heterozygous, and wild-type mice. The animals were sacrificed 21 days after bleomycin administration, and markers of lung fibrosis and inflammation were measured. The bronchoalveolar lavage fluid levels of total protein, neutrophil proteases (elastase, myeloperoxidase), cytokines (tumor necrosis factor-α, interleukin-13), chemokine (monocyte chemoattractant protein-1), coagulation activation marker (thrombin-antithrombin complex), total soluble collagen, and growth factors (platelet-derived growth factor, transforming growth factor-β1, granulocytic-macrophage growth factor) were significantly decreased in knockout mice compared to wild-type mice. Further, histological findings of fibrosis, fibrin deposition, and hydroxyproline and collagen content in the lung were significantly decreased in knockout mice compared to wild-type mice. Depletion of fibrinogen by ancrod treatment led to equalization in the amount of fibrosis and collagen deposition in the lungs of knockout and wild-type mice. No difference was detected in body temperature or arterial pressure between the different mouse phenotypes. These results suggest that the anti-fibrinolytic activity of TAFI promotes lung fibrosis by hindering the rate at which fibrin is degraded. PMID:16565485

  17. Isoform switching and exon skipping induced by the DNA methylation inhibitor 5-Aza-2'-deoxycytidine.

    PubMed

    Ding, Xiao-Lei; Yang, Xiaojing; Liang, Gangning; Wang, Kai

    2016-01-01

    DNA methylation in gene promoters leads to gene silencing and is the therapeutic target of methylation inhibitors such as 5-Aza-2'-deoxycytidine (5-Aza-CdR). By analyzing the time series RNA-seq data (days 5, 9, 13, 17) obtained from human bladder cells exposed to 5-Aza-CdR with 0.1 uM concentration, we showed that 5-Aza-CdR can affect isoform switching and differential exon usage (i.e., exon-skipping), in addition to its effects on gene expression. We identified more than 2,000 genes with significant expression changes after 5-Aza-CdR treatment. Interestingly, 29 exon-skipping events induced by treatment were identified and validated experimentally. Particularly, exon-skipping event in Enhancer of Zeste Homologue 2 (EZH2) along with expression changes showed significant down regulation on Day 5 and Day 9 but returned to normal level on Day 13 and Day 17. EZH2 is a component of the multi-subunit polycomb repressive complex PRC2, and the down-regulation of exon-skipping event may lead to the regain of functional EZH2 which was consistent with our previous finding that demethylation may cause regain of PRC2 in demethylated regions. In summary, our study identified pervasive transcriptome changes of bladder cancer cells after treatment with 5-Aza-CdR, and provided valuable insights into the therapeutic effects of 5-Aza-CdR in current clinical trials. PMID:27090213

  18. Aromatase inhibitor-induced modulation of breast density: clinical and genetic effects

    PubMed Central

    Henry, N L; Chan, H-P; Dantzer, J; Goswami, C P; Li, L; Skaar, T C; Rae, J M; Desta, Z; Khouri, N; Pinsky, R; Oesterreich, S; Zhou, C; Hadjiiski, L; Philips, S; Robarge, J; Nguyen, A T; Storniolo, A M; Flockhart, D A; Hayes, D F; Helvie, M A; Stearns, V

    2013-01-01

    Background: Change in breast density may predict outcome of women receiving adjuvant hormone therapy for breast cancer. We performed a prospective clinical trial to evaluate the impact of inherited variants in genes involved in oestrogen metabolism and signalling on change in mammographic percent density (MPD) with aromatase inhibitor (AI) therapy. Methods: Postmenopausal women with breast cancer who were initiating adjuvant AI therapy were enrolled onto a multicentre, randomised clinical trial of exemestane vs letrozole, designed to identify associations between AI-induced change in MPD and single-nucleotide polymorphisms in candidate genes. Subjects underwent unilateral craniocaudal mammography before and following 24 months of treatment. Results: Of the 503 enrolled subjects, 259 had both paired mammograms at baseline and following 24 months of treatment and evaluable DNA. We observed a statistically significant decrease in mean MPD from 17.1 to 15.1% (P<0.001), more pronounced in women with baseline MPD ⩾20%. No AI-specific difference in change in MPD was identified. No significant associations between change in MPD and inherited genetic variants were observed. Conclusion: Subjects with higher baseline MPD had a greater average decrease in MPD with AI therapy. There does not appear to be a substantial effect of inherited variants in biologically selected candidate genes. PMID:24084768

  19. A New Generation Fatty Acid Amide Hydrolase Inhibitor Protects Against Kainate-Induced Excitotoxicity

    PubMed Central

    Naidoo, Vinogran; Nikas, Spyros P.; Karanian, David A.; Hwang, Jeannie; Zhao, Jianhong; Wood, JodiAnne T.; Alapafuja, Shakiru O.; Vadivel, Subramanian K.; Butler, David; Makriyannis, Alexandros; Bahr, Ben A.

    2010-01-01

    Endocannabinoids, including anandamide (AEA), have been implicated in neuroprotective on-demand responses. Related to such a response to injury, an excitotoxic kainic acid (KA) injection (i.p.) was found to increase AEA levels in the brain. To modulate the endocannabinoid response during events of excitotoxicity in vitro and in vivo, we utilized a new generation compound (AM5206) that selectively inhibits the AEA deactivating enzyme fatty acid amide hydrolase (FAAH). KA caused calpain-mediated spectrin breakdown, declines in synaptic markers, and disruption of neuronal integrity in cultured hippocampal slices. FAAH inhibition with AM5206 protected against the neurodegenerative cascade assessed in the slice model 24 h postinsult. In vivo, KA administration induced seizures and the same neurodegenerative events exhibited in vitro. When AM5206 was injected immediately after KA in rats, the seizure scores were markedly reduced as were levels of cytoskeletal damage and synaptic protein decline. The pre- and postsynaptic proteins were protected by the FAAH inhibitor to levels comparable to those found in healthy control brains. These data support the idea that endocannabinoids are released and converge on pro-survival pathways that prevent excitotoxic progression. PMID:21069475

  20. Sphingosine Kinase Inhibitors as Maintenance Therapy of Glioblastoma After Ceramide-Induced Response.

    PubMed

    Sordillo, Laura A; Sordillo, Peter P; Helson, Lawrence

    2016-05-01

    Ceramide and sphingosine 1-phosphate (S1P) are sphingolipid metabolites with important signaling functions. Ceramides promote apoptosis, whereas S1P favors proliferation, angiogenesis and cell survival. The balance between these opposing signaling functions is referred to as the sphingolipid rheostat. A shift in this balance toward S1P is seen in glioblastoma (GBM) and other cancers, and results in tumor cell survival and resistance to chemotherapy. Sphingosine kinase (SK), the enzyme responsible for transforming sphingosine into S1P, plays the critical role in modulating the balance between S1P and ceramides. Chemotherapeutic agents or radiation therapy may induce short-term responses in GBM patients by increasing ceramide levels. However, we believe that the enzyme SK may cause the increased ceramide to be metabolized to S1P, restoring the abnormally high S1P to ceramide balance, and that this may be part of the reason for the near-100% recurrence rate of GBM. The use of maintenance therapy with an SK inhibitor, in patients with GBM who have tumor reduction or stable disease after therapy, should be investigated. PMID:27127108

  1. Novel ALK inhibitor AZD3463 inhibits neuroblastoma growth by overcoming crizotinib resistance and inducing apoptosis

    PubMed Central

    Wang, Yongfeng; Wang, Long; Guan, Shan; Cao, Wenming; Wang, Hao; Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Zhang, Huiyuan; Pang, Jonathan C.; Huang, Sophia L.; Akiyama, Yo; Yang, Yifan; Sun, Wenjing; Xu, Xin; Shi, Yan; Zhang, Hong; Kim, Eugene S.; Muscal, Jodi A.; Lu, Fengmin; Yang, Jianhua

    2016-01-01

    ALK receptor tyrosine kinase has been shown to be a therapeutic target in neuroblastoma. Germline ALK activating mutations are responsible for the majority of hereditary neuroblastoma and somatic ALK activating mutations are also frequently observed in sporadic cases of advanced NB. Crizotinib, a first-line therapy in the treatment of advanced non-small cell lung cancer (NSCLC) harboring ALK rearrangements, demonstrates striking efficacy against ALK-rearranged NB. However, crizotinib fails to effectively inhibit the activity of ALK when activating mutations are present within its kinase domain, as with the F1174L mutation. Here we show that a new ALK inhibitor AZD3463 effectively suppressed the proliferation of NB cell lines with wild type ALK (WT) as well as ALK activating mutations (F1174L and D1091N) by blocking the ALK-mediated PI3K/AKT/mTOR pathway and ultimately induced apoptosis and autophagy. In addition, AZD3463 enhanced the cytotoxic effects of doxorubicin on NB cells. AZD3463 also exhibited significant therapeutic efficacy on the growth of the NB tumors with WT and F1174L activating mutation ALK in orthotopic xenograft mouse models. These results indicate that AZD3463 is a promising therapeutic agent in the treatment of NB. PMID:26786851

  2. The glial activation inhibitor AV411 reduces morphine-induced nucleus accumbens dopamine release.

    PubMed

    Bland, Sondra T; Hutchinson, Mark R; Maier, Steven F; Watkins, Linda R; Johnson, Kirk W

    2009-05-01

    Glial activation has recently been discovered to modulate several effects of morphine, including analgesia, tolerance, and dependence. The present studies extend this line of investigation by exploring whether glial activation may also affect extracellular levels of dopamine (DA) in the nucleus accumbens (NAc) shell, a neurochemical corollary of morphine-induced drug reward, during a challenge dose of morphine in experiments both with and without precipitated withdrawal. Morphine or vehicle was administered s.c. for 4 days (starting at 15 mg/kg/day up to 20 mg/kg/day), and the glial activation inhibitor AV411 (7.5 mg/kg) or vehicle was administered twice daily. A challenge dose of morphine (22.5 mg/kg) or saline was then given during dialysis. In the first experiment, naloxone (10 mg/kg) was administered 1h after morphine during dialysis in AV411- or vehicle-treated rats, and behavioral signs of somatic withdrawal were assessed during microdialysis. In the second experiment, using the same dosing regimen, sampling continued 3 h after morphine or saline in AV411- or vehicle-treated rats. NAc DA increased in vehicle-treated rats significantly more than in AV411-treated rats before naloxone treatment, and withdrawal symptoms were significantly reduced in AV411-treated rats. The decrease in morphine-induced NAc DA by AV411 was persistent, lasting 3+h post-morphine. These results indicate that glial activation contributes to the effects of morphine on NAc DA, which is associated with somatic signs of precipitated withdrawal. PMID:19486648

  3. Oxaceprol, an atypical inhibitor of inflammation, reduces leukocyte adherence in mouse antigen-induced arthritis.

    PubMed

    Veihelmann, A; Hofbauer, A; Refior, H J; Messmer, K

    2001-06-01

    Oxaceprol (N-acetyl-L-hydroxyproline), an atypical inhibitor of inflammation, is an established drug forjoint disease without serious side-effects. Recent studies have emphasized that oxaceprol has an effect on the microcirculation. Since the exact mechanism of action remains unclear, the aim of our study was to investigate the leukocyte-endothelial cell interactions in oxaceprol-treated mice with antigen-induced arthritis (AiA) using intravital microscopy. In our study, Balb/c mice were allocated to 4 groups (n 7, 8, 8, 8): 2 control groups with saline or oxaceprol and 2 groups of arthritic animals which received saline or oxaceprol (100 mg/kg twice a day intraperitoneally). The severity of arthritis was quantified by the transverse knee joint diameter. For the intravital fluorescence microscopy measurements on day 10 after inducing arthritis, the patella tendon was partily resected to visualize the intraarticular synovial tissue of the knee joint. The number of rolling and adherent leukocytes as well as RBC velocity and functional capillary density (FCD) were quantified in synovial microvessels. Furthermore, leukocyte infiltration was determined in the histological sections with an established score. No significant changes in mean arterial blood pressure or functional capillary density were found in any of the groups. However, the leukocyte rolling fraction and number of leukocytes adherent to the endothelium were increased in postcapillary venules of the synovium in arthritic animals (0.16 to 0.31, 78 cells/mm2 to 220 cells/mm2). In animals with AiA treated with oxaceprol, leukocyte adherence and swelling were significantly reduced in comparison to the arthritic animals treated with saline. Furthermore, the histological score showed less leukocyte infiltration in the oxaceprol treated arthritic animals. Thus, oxaceprol reduces leukocyte adherence in vivo and leukocyte infiltration in mouse AiA, indicating an effect on synovial microcirculation. PMID:11480608

  4. Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review.

    PubMed

    Stout, Stephen M; Cimino, Nina M

    2014-02-01

    Exogenous cannabinoids are structurally and pharmacologically diverse compounds that are widely used. The purpose of this systematic review is to summarize the data characterizing the potential for these compounds to act as substrates, inhibitors, or inducers of human drug metabolizing enzymes, with the aim of clarifying the significance of these properties in clinical care and drug interactions. In vitro data were identified that characterize cytochrome P-450 (CYP-450) enzymes as potential significant contributors to the primary metabolism of several exogenous cannabinoids: tetrahydrocannabinol (THC; CYPs 2C9, 3A4); cannabidiol (CBD; CYPs 2C19, 3A4); cannabinol (CBN; CYPs 2C9, 3A4); JWH-018 (CYPs 1A2, 2C9); and AM2201 (CYPs 1A2, 2C9). CYP-450 enzymes may also contribute to the secondary metabolism of THC, and UDP-glucuronosyltransferases have been identified as capable of catalyzing both primary (CBD, CBN) and secondary (THC, JWH-018, JWH-073) cannabinoid metabolism. Clinical pharmacogenetic data further support CYP2C9 as a significant contributor to THC metabolism, and a pharmacokinetic interaction study using ketoconazole with oromucosal cannabis extract further supports CYP3A4 as a significant metabolic pathway for THC and CBD. However, the absence of interaction between CBD from oromucosal cannabis extract with omeprazole suggests a less significant role of CYP2C19 in CBD metabolism. Studies of THC, CBD, and CBN inhibition and induction of major human CYP-450 isoforms generally reflect a low risk of clinically significant drug interactions with most use, but specific human data are lacking. Smoked cannabis herb (marijuana) likely induces CYP1A2 mediated theophylline metabolism, although the role of cannabinoids specifically in eliciting this effect is questionable. PMID:24160757

  5. Alfacalcidol prevents aromatase inhibitor (Letrozole)-induced bone mineral loss in young growing female rats.

    PubMed

    Mohamed, Idris; Yeh, James K

    2009-08-01

    Long-term aromatase inhibitor use causes bone loss and increases fracture risk secondary to induced estrogen deficiency. We postulated that alfacalcidol (A; vitamin D(3) analog) could help prevent the Letrozole (L)-induced mineral bone loss. Fifty intact 1-month-old female rats were randomly divided into basal group; age-matched control group (AMC); L group: oral administration of 2 mg/kg per day; A group: oral administration of 0.1 microg/kg per day; and group L+A for a period of 8 weeks. Eight-week administration of L resulted in a significant increase in body weight, bone length, bone area, bone formation, and bone resorption activities when compared with the AMC group. However, the bone mass and bone mineral density (BMD) were significantly lower than the AMC group. Serum levels of testosterone, LH, FSH, and IGF-1 were significantly higher and serum estrone and estradiol were lower along with a decrease in ovary+uterus horn weight, when compared with the AMC groups. None of those parameters were affected by A treatment, except suppression of bone resorption activities and increased trabecular bone mass and femoral BMD, when compared with the AMC group. Results of L+A combined intervention showed that bone length, bone area, and bone formation activities were higher than the AMC group, and the bone resorption activities were lower and BMD was significantly higher than that of the L group. This study demonstrates that the combined intervention of L and A not only enhances bone growth, but also increases bone density, and the effects of L and A are independent and additive. PMID:19420010

  6. The calpain inhibitor calpeptin prevents bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Tabata, C; Tabata, R; Nakano, T

    2010-12-01

    Pulmonary fibrosis is characterized by progressive worsening of pulmonary function leading to a high incidence of death. Currently, however, there has been little progress in therapeutic strategies for pulmonary fibrosis. There have been several reports on cytokines being associated with lung fibrosis, including interleukin (IL)-6 and transforming growth factor (TGF)-?1. We reported recently that two substances (ATRA and thalidomide) have preventive effects on pulmonary fibrosis by inhibiting IL-6-dependent proliferation and TGF-?1-dependent transdifferentiation of lung fibroblasts. Rheumatoid arthritis is a chronic autoimmune disorder, and its pathogenesis is also characterized by an association with several cytokines. It has been reported that calpain, a calcium-dependent intracellular cysteine protease, plays an important role in the progression of rheumatoid arthritis. In this study, we examined the preventive effect of Calpeptin, a calpain inhibitor, on bleomycin-induced pulmonary fibrosis. We performed histological examinations and quantitative measurements of IL-6, TGF-?1, collagen type I?1 and angiopoietin-1 in bleomycin-treated mouse lung tissues with or without the administration of Calpeptin. Calpeptin histologically ameliorated bleomycin-induced pulmonary fibrosis in mice. Calpeptin decreased the expression of IL-6, TGF-?1, angiopoietin-1 and collagen type I?1 mRNA in mouse lung tissues. In vitro studies disclosed that Calpeptin reduced (i) production of IL-6, TGF-?1, angiopoietin-1 and collagen synthesis from lung fibroblasts; and (ii) both IL-6-dependent proliferation and angiopoietin-1-dependent migration of the cells, which could be the mechanism underlying the preventive effect of Calpeptin on pulmonary fibrosis. These data suggest the clinical use of Calpeptin for the prevention of pulmonary fibrosis. PMID:20846163

  7. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    SciTech Connect

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra; Galadari, Sehamuddin

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  8. Histone Deacetylase Inhibitors Trichostatin A and MCP30 Relieve Benzene-Induced Hematotoxicity via Restoring Topoisomerase IIα

    PubMed Central

    Chen, Yi; Li, Jiaqi; Qian, Shanhu; Shi, Yifen; Sun, Lan; Han, Yixiang; Zhang, Shenghui; Yu, Kang

    2016-01-01

    Dysfunction of histone acetylation inhibits topoisomerase IIα (Topo IIα), which is implicated in benzene-induced hematotoxicity in patients with chronic benzene exposure. Whether histone deacetylase (HDAC) inhibitors can relieve benzene-induced hematotoxicity remains unclear. Here we showed that hydroquinone, a main metabolite of benzene, increased the HDAC activity, decreased the Topo IIα expression and induced apoptosis in human bone marrow mononuclear cells in vitro, and treatment with two HDAC inhibitors, namely trichostatin A (TSA) or a mixture of ribosome-inactivating proteins MCP30, almost completely reversed these effects. We further established a benzene poisoning murine model by inhaling benzene vapor in a container and found that benzene poisoning decreased the expression and activity of Topo IIα, and impaired acetylation of histone H4 and H3. The analysis of regulatory factors of Topo IIα promoter found that benzene poisoning decreased the mRNA levels of SP1 and C-MYB, and increased the mRNA level of SP3. Both TSA and MCP30 significantly enhanced the acetylation of histone H3 and H4 in Topo IIα promoter and increased the expression and activity of Topo IIα in benzene poisoning mice, which contributed to relieve the symptoms of hematotoxicity. Thus, treatment with HDAC inhibitors represents an attractive approach to reduce benzene-induced hematotoxicity. PMID:27058040

  9. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    SciTech Connect

    Fujii, Seiko; Division of Maxillofacial Surgery, Kyushu Dental University ; Okinaga, Toshinori; Ariyoshi, Wataru; Oral Biology Research Center, Kyushu Dental University ; Takahashi, Osamu; Iwanaga, Kenjiro; Nishino, Norikazu; Tominaga, Kazuhiro; Nishihara, Tatsuji; Oral Biology Research Center, Kyushu Dental University

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.

  10. The differential role of NOS inhibitors on stress-induced anxiety and neuroendocrine alterations in the rat.

    PubMed

    Joung, Hye-Young; Jung, Eun-Yee; Kim, Kyungsoo; Lee, Mi-Sook; Her, Song; Shim, Insop

    2012-12-01

    The inhibitors of nitric oxide synthase (NOS) have been shown to possess antidepressant- and anxiolytic-properties in animal model. In order to examine the involvement of nitric oxide (NO) on stress-induced neurobehavioral changes and the concomitant alterations of neuroendocrinological factors, we studied the effects of the nonselective NOS inhibitor, N(ω)-Nitro L-arginine methyl ester hydrochloride (L-NAME) and the specific neuronal NOS inhibitor, 7-nitroindazole (7-NI) on restraint stress-induced anxiety in the elevated plus maze (EPM) test and biochemical analysis. Restraint stress significantly reduced the latency time in open arm and the percentage of open arm entries of the plus maze. Pretreatment with L-NAME (10 mg/kg) or 7-NI (10 mg/kg) significantly attenuated stress-induced anxiety response. In addition, administration of L-NAME (10 mg/kg) reversed stress-induced increase in corticosterone and NO metabolites (NO(x)) in plasma. The administration of 7-NI, but not L-NAME, reversed stress-induced NO(x) in paraventricular nucleus of the hypothalamus (PVN) and locus coeruleus (LC), accompanying with decrease of NADPH-d reactivity in the PVN and lateral dorsal tegmental nucleus (LTDg). These results showed that L-NAME influences HPA axis activity such as corticosterone levels and NO(x) in plasma, whereas 7-NI produced anxiolytic-like effects through the direct reduction in NO(x) in the brain. The results of this study demonstrated that NOS inhibitors have differential effect on stress responses and inhibition of NO could be responsible for the beneficial effect on regulation of stress. PMID:22884925

  11. [Peroxisomes--functions and disturbances in human metabolism].

    PubMed

    Stradomska, Teresa J

    2011-01-01

    Peroxisomes, classical compartments of eucaryotic cells have significant functions in cellular metabolism, which beta-oxidation fatty acids and detoxification of H2O2 are the most important biochemical process. Defects in genes encoding for peroxisomal proteins result in biochemical malfunctioning of these organelles and constitute base for severe human's inherited diseases. This article presents the most important aspects concerning peroxisomal biogenesis, biochemical functions and their disturbance. PMID:21913419

  12. A Critical Role of the C-terminal Segment for Allosteric Inhibitor-induced Aberrant Multimerization of HIV-1 Integrase*

    PubMed Central

    Shkriabai, Nikoloz; Dharmarajan, Venkatasubramanian; Slaughter, Alison; Kessl, Jacques J.; Larue, Ross C.; Feng, Lei; Fuchs, James R.; Griffin, Patrick R.; Kvaratskhelia, Mamuka

    2014-01-01

    Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a promising class of antiretroviral agents for clinical development. Although ALLINIs promote aberrant IN multimerization and inhibit IN interaction with its cellular cofactor LEDGF/p75 with comparable potencies in vitro, their primary mechanism of action in infected cells is through inducing aberrant multimerization of IN. Crystal structures have shown that ALLINIs bind at the IN catalytic core domain dimer interface and bridge two interacting subunits. However, how these interactions promote higher-order protein multimerization is not clear. Here, we used mass spectrometry-based protein footprinting to monitor surface topology changes in full-length WT and the drug-resistant A128T mutant INs in the presence of ALLINI-2. These experiments have identified protein-protein interactions that extend beyond the direct inhibitor binding site and which lead to aberrant multimerization of WT but not A128T IN. Specifically, we demonstrate that C-terminal residues Lys-264 and Lys-266 play an important role in the inhibitor induced aberrant multimerization of the WT protein. Our findings provide structural clues for exploiting IN multimerization as a new, attractive therapeutic target and are expected to facilitate development of improved inhibitors. PMID:25118283

  13. The peroxisomal lumen in Saccharomyces cerevisiae is alkaline.

    PubMed

    van Roermund, Carlo W T; de Jong, Mark; IJlst, Lodewijk; van Marle, Jan; Dansen, Tobias B; Wanders, Ronald J A; Waterham, Hans R

    2004-08-15

    Peroxisomes have a central function in lipid metabolism, including the beta-oxidation of various fatty acids. The products and substrates involved in the beta-oxidation have to cross the peroxisomal membrane, which previously has been demonstrated to constitute a closed barrier, implying the existence of specific transport mechanisms. Fatty acid transport across the yeast peroxisomal membrane may follow two routes: one for activated fatty acids, dependent on the peroxisomal ABC half transporter proteins Pxa1p and Pxa2p, and one for free fatty acids, which depends on the peroxisomal acyl-CoA synthetase Faa2p and the ATP transporter Ant1p. A proton gradient across the peroxisomal membrane as part of a proton motive force has been proposed to be required for proper peroxisomal function, but the nature of the peroxisomal pH has remained inconclusive and little is known about its generation. To determine the pH of Sacharomyces cerevisiae peroxisomes in vivo, we have used two different pH-sensitive yellow fluorescent proteins targeted to the peroxisome by virtue of a C-terminal SKL and found the peroxisomal matrix in wild-type cells to be alkaline (pH(per) 8.2), while the cytosolic pH was neutral (pH(cyt) 7.0). No Delta pH was present in ant1 Delta cells, indicating that the peroxisomal pH is regulated in an ATP-dependent way and suggesting that Ant1p activity is directly involved in maintenance of the peroxisomal pH. Moreover, we found a high peroxisomal pH of >8.6 in faa2 Delta cells, while the peroxisomal pH remained 8.1+/-0.2 in pxa2 Delta cells. Our combined results suggest that the proton gradient across the peroxisomal membrane is dependent on Ant1p activity and required for the beta-oxidation of medium chain fatty acids. PMID:15316083

  14. De novo peroxisome biogenesis: Evolving concepts and conundrums.

    PubMed

    Agrawal, Gaurav; Subramani, Suresh

    2016-05-01

    Peroxisomes proliferate by growth and division of pre-existing peroxisomes or could arise de novo. Though the de novo pathway of peroxisome biogenesis is a more recent discovery, several studies have highlighted key mechanistic details of the pathway. The endoplasmic reticulum (ER) is the primary source of lipids and proteins for the newly-formed peroxisomes. More recently, an intricate sorting process functioning at the ER has been proposed, that segregates specific PMPs first to peroxisome-specific ER domains (pER) and then assembles PMPs selectively into distinct pre-peroxisomal vesicles (ppVs) that later fuse to form import-competent peroxisomes. In addition, plausible roles of the three key peroxins Pex3, Pex16 and Pex19, which are also central to the growth and division pathway, have been suggested in the de novo process. In this review, we discuss key developments and highlight the unexplored avenues in de novo peroxisome biogenesis. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26381541

  15. Human peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency

    SciTech Connect

    Schram, A.W.; Goldfischer, S.; Van Roermund, C.W.T.; Brouwer-Kelder, E.M.; Collins, J.; Hashimoto, T.; Heymans, H.S.A.; Van Den Bosch, H.; Schutgens, R.B.H.; Tager, J.M.; Wanders, R.J.A.

    1987-04-01

    The authors investigated the peroxisomal ..beta..-oxidation system in liver from a patient with clinical features similar to those in the cerebrohepatorenal (Zellweger) syndrome and with elevated levels in body fluids of very-long-chain fatty acids and intermediates in the biosynthesis of bile acids. The peroxisomal ..beta..-oxidation of fatty acids, measured as the cyanide-insensitive formation of (/sup 14/C)acetyl units from (/sup 14/C)palmitoyl-CoA, was very low in the patient (< 10% of the values in control subjects). Immunoblotting experiments using antibodies to peroxisomal ..beta..-oxidation enzymes indicated that peroxisomal 3-oxoaceyl-CoA thiolase (acyl-CoA:acetyl-CoA C-acyltransferase, EC 2.3.1.16) was deficient. Addition of purified rat-liver peroxisomal 3-oxoacyl-CoA thiolase to a reaction mixture containing liver homogenate from the patient restored peroxisomal ..beta..-oxidation. They conclude that the deficiency of peroxisomal 3-oxoacyl-CoA thiolase is responsible for the very low peroxisomal ..beta..-oxidation activity and for the accumulation of very-long-chain fatty acids and intermediates in the biosynthesis of bile acids. Furthermore, the finding that both very-long-chain fatty acids and abnormal bile acids accumulate in this patient suggests that a single peroxisomal 3-oxoacyl-CoA thiolase is involved in the oxidative chain shortening of both very-long-chain fatty acids and the coprostanoic acids.

  16. Ultrastructural and cytochemical identification of peroxisomes in Balantidium coli, Ciliophora.

    PubMed

    Skotarczak, B

    1997-01-01

    Peroxisomes of the trophozoites of Balantidium coli isolated from pig intestine content were investigated, using ultrastructural and cytochemical techniques. The peroxisomes of B. coli trophozoites from pigs with subclinical balantidiasis are less then 0.8 mm in diameter whereas those from pigs with acute balantidiasis are greater than 0.8 micron in diameter. In all the trophozoites peroxisomes are round, oval or dumb-bell shaped. Catalase as an indicative enzyme was detected by cytochemical techniques in B. coli peroxisomes. PMID:9643167

  17. Dynamics of the Light-Dependent Transition of Plant Peroxisomes.

    PubMed

    Goto-Yamada, Shino; Mano, Shoji; Yamada, Kenji; Oikawa, Kazusato; Hosokawa, Yoichiroh; Hara-Nishimura, Ikuko; Nishimura, Mikio

    2015-07-01

    Peroxisomes are present in almost all plant cells. These organelles are involved in various metabolic processes, such as lipid catabolism and photorespiration. A notable feature of plant peroxisomes is their flexible adaptive responses to environmental conditions such as light. When plants shift from heterotrophic to autotrophic growth during the post-germinative stage, peroxisomes undergo a dynamic response, i.e. enzymes involved in lipid catabolism are replaced with photorespiratory enzymes. Although the detailed molecular mechanisms underlying the functional transition of peroxisomes have previously been unclear, recent analyses at the cellular level have enabled this detailed machinery to be characterized. During the functional transition, obsolete enzymes are degraded inside peroxisomes by Lon protease, while newly synthesized enzymes are transported into peroxisomes. In parallel, mature and oxidized peroxisomes are eliminated via autophagy; this functional transition occurs in an efficient manner. Moreover, it has become clear that quality control mechanisms are important for the peroxisomal response to environmental stimuli. In this review, we highlight recent advances in elucidating the molecular mechanisms required for the regulation of peroxisomal roles in response to changes in environmental conditions. PMID:26063394

  18. A receptor tyrosine kinase inhibitor, Tyrphostin A9 induces cancer cell death through Drp1 dependent mitochondria fragmentation

    SciTech Connect

    Park, So Jung; Park, Young Jun; Shin, Ji Hyun; Kim, Eun Sung; Hwang, Jung Jin; Jin, Dong-Hoon; Kim, Jin Cheon; Cho, Dong-Hyung

    2011-05-13

    Highlights: {yields} We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. {yields} Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. {yields} Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. {yields} Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactive chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.

  19. Stationary spots and stationary arcs induced by advection in a one-activator, two-inhibitor reactive system.

    PubMed

    Berenstein, Igal; Bullara, Domenico; De Decker, Yannick

    2014-09-01

    This paper studies the spatiotemporal dynamics of a reaction-diffusion-advection system corresponding to an extension of the Oregonator model, which includes two inhibitors instead of one. We show that when the reaction-diffusion, two-dimensional problem displays stationary patterns the addition of a plug flow can induce the emergence of new types of stationary structures. These patterns take the form of spots or arcs, the size and the spacing of which can be controlled by the flow. PMID:25273209

  20. Network-level effects of kinase inhibitors modulate TNF-α-induced apoptosis in the intestinal epithelium

    PubMed Central

    Lau, Ken S.; Lin, Yi-Jang; Genetti, Casie; Samatar, Ahmed A.; Lauffenburger, Douglas A.; Haigis, Kevin M.

    2016-01-01

    Individual signaling pathways are not isolated, but rather operate in the context of the broader signaling network. Thus, the response of a cell to perturbation of a given pathway depends on the state of the network, which depends upon contextual inputs from the microenvironment. The cytokine tumor necrosis factor α (TNF-α) promotes opposing cellular behaviors under different conditions, which is influenced by perturbation of the network. For example, inhibition of the mitogen-activated protein kinase (MAPK) kinase MEK alters the kinetics of TNF-α-induced apoptosis in the mouse intestinal epithelium. We investigated whether MAPK signaling directly influences TNF-α-induced apoptosis, or whether network-level effects secondary to inhibition of the MAPK pathway alter the kinetics of cell death. We found that inhibitors of the MAPK kinase kinase Raf, MEK, and extracellular signal regulated kinase (ERK) exerted distinct effects on the timing and magnitude of TNF-α-induced apoptosis in the mouse intestine. Furthermore, even different MEK inhibitors exerted distinct effects; one of them, CH5126766, potentiated TNF-α-induced apoptosis. Computational modeling analysis and experimental perturbation identified the kinase Akt as the primary signaling node that promoted apoptosis in the context of TNF-α signaling in the presence of CH5126766. Our work emphasizes the importance of integrated network signaling in specifying cellular behavior in response to external perturbation. More broadly, this study highlights the importance of considering the network-level effects of pathway inhibitors and demonstrates the distinct effects of inhibitors that share the same target. PMID:26671150

  1. Effects of rolipram and roflumilast, phosphodiesterase-4 inhibitors, on hypertension-induced defects in memory function in rats.

    PubMed

    Jabaris, Sobhana George Sugin Lal; Sumathy, Haridass; Kumar, Ramadass Satiesh; Narayanan, Shridhar; Thanikachalam, Sadagopan; Babu, Chidambaram Saravana

    2015-01-01

    Hypertension (HT) is a prevailing risk factor for cognitive impairment, the most common cause of vascular dementia; yet, no possible mechanism underlying the cognitive impairment induced by hypertension has been identified so far. Inhibition of PDE-4 has been shown to increase phosphorylation of cAMP-response element binding protein in the hippocampus and enhance the memory performance. Here, we examined the effects of PDE-4 inhibitors, rolipram and roflumilast, on the impairment of learning and memory observed in hypertensive rats. We used 2k-1c hypertensive model to induce learning and memory defects. In addition, mRNA expression of PDE-4 sub-types A-D was also assessed in the hippocampus tissue. Systolic blood pressure (SBP) was measured by tail-cuff method was significantly increased in 2k-1c rats when compared to sham operated rats; this effect was reversed by clonidine, whereas, PDE-4 inhibitors did not. PDE-4 inhibitors significantly reversed time induced memory deficit in novel object recognition task (NORT). Further, the retention latency on the second day in the elevated plus maze model was significantly shortened after repeated administration of rolipram and roflumilast. Plasma and brain concentrations of rolipram, roflumilast and roflumilast N-oxide were also measured after the NORT and showed linear increase in plasma and brain concentrations. The PDE4B and PDE4D gene expression was significantly enhanced in hypertensive rats compared with sham operated however PDE4A and PDE4C remained unaltered. Repeated treatment with PDE-4 inhibitors caused down regulation of PDE4B and PDE4D in hypertensive rats. These results suggest that inhibition of PDE-4 ameliorates HT-induced impairment of learning and memory functions. PMID:25446433

  2. The MAO-B inhibitor deprenyl reduces the oral tremor and the dopamine depletion induced by the VMAT-2 inhibitor tetrabenazine.

    PubMed

    Podurgiel, Samantha J; Yohn, Samantha E; Dortche, Kristina; Correa, Merce; Salamone, John D

    2016-02-01

    Tetrabenazine (TBZ) is prescribed for the treatment of chorea associated with Huntington's disease. Via inhibition of the vesicular monoamine transporter (VMAT-2), TBZ blocks dopamine (DA) storage and depletes striatal DA; this drug also has been shown to induce Parkinsonian motor side effects in patients. Recently, TBZ was shown to induce tremulous jaw movements (TJMs) in rats and mice. TJMs are an oral tremor that has many of the characteristics of Parkinsonian tremor in humans. The present study focused upon the ability of the well-estabilished antiparkinsonian agent deprenyl to attenuate the behavioral and neurochemical effects of 2.0mg/kg TBZ. Deprenyl is a selective and irreversible inhibitor of monoamine oxidase-B, and administration of deprenyl produced a dose-related suppression of TBZ-induced TJMs. A second experiment employed in vivo microdialysis to examine extracellular DA levels in the ventrolateral striatum, the neostriatal region most closely associated with the production of TJMs, after administration of TBZ and deprenyl. Consistent with the behavioral data, TBZ alone produced a biphasic effect on extracellular DA, with an initial increases followed by a prolonged decrease during the period in which TJMs are displayed. Co-administration of deprenyl with TBZ increased DA levels compared to rats treated with TBZ alone. These results provide support for use of TBZ as a rodent model of Parkinsonism, and future studies should utilize this model to evaluate putative anti-Parkinsonian agents. PMID:26590367

  3. Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability

    PubMed Central

    Lodhi, Irfan J.; Wei, Xiaochao; Yin, Li; Feng, Chu; Adak, Sangeeta; Abou-Ezzi, Grazia; Hsu, Fong-Fu; Link, Daniel C.; Semenkovich, Clay F.

    2014-01-01

    SUMMARY Fatty acid synthase (FAS) is altered in metabolic disorders and cancer. Conventional FAS null mice die in utero so effects of whole body inhibition of lipogenesis following development are unknown. Inducible global knockout of FAS (iFASKO) in mice was lethal due to a disrupted intestinal barrier and leukopenia. Conditional loss of FAS was associated with the selective suppression of granulopoiesis without disrupting granulocytic differentiation. Transplantation of iFASKO bone marrow into wild type mice followed by Cre induction resulted in selective neutrophil depletion but not death. Impaired lipogenesis increased ER stress and apoptosis in neutrophils by preferentially decreasing peroxisome-derived membrane phospholipids containing ether bonds. Inducible global knockout of PexRAP, a peroxisomal enzyme required for ether lipid synthesis, also produced neutropenia. FAS knockdown in neutrophil-like HL-60 cells caused cell loss that was partially rescued by ether lipids. Inhibiting ether lipid synthesis selectively constrains neutrophil development, revealing an unrecognized pathway in immunometabolism. PMID:25565205

  4. Treatment responses of procaterol and CD38 inhibitors in an ozone-induced airway hyperresponsiveness mice model.

    PubMed

    Deng, Zheng; Gao, Zhan-Cheng; Ge, Hui-Qi; Zhang, Liang-Ren; Zhou, Jun-Jun; Zhu, Zhi-Peng; Wu, Dong-Ying; Sun, Shuang-Yong; Chen, Lin; Pu, Xiao-Ping

    2013-01-01

    Airway hyperresponsiveness (AHR) and airway inflammation are key pathophysiological features of many respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). To evaluate the treatment responses of procaterol and CD38 inhibitors in an ozone-induced AHR mice model, we hypothesized that procaterol and two synthetic CD38 inhibitors (Compounds T and H) might have therapeutic effects on the ozone-induced AHR mice model, and the nuclear factor-kappaB (NF-κB) pathway and the CD38 enzymatic activity might be involved in the mechanisms. With the exception of the Control group, ozone exposure was used to establish an AHR model. Male Kunming mice in the Procaterol and CD38 inhibitors groups were treated with an emulsifier of procaterol hydrochloride, Compound T or H. Results indicated that (1) no drug showed severe toxicity in this study; (2) ozone exposure induced airway inflammation and AHR; (3) intragastric treatment with procaterol and Compound T achieved potent therapeutic effects, but Compound H did not show any therapeutic effect; (4) the NF-κB pathway was involved in both the pathogenic mechanisms of ozone and therapeutic mechanisms of procaterol and Compound T; (5) however, the in vivo effect of Compound T was not caused by its inhibitory activity on CD38. Taken together, procaterol and Compound T are potentially good drugs to treat asthma and COPD complicated with ozone exposure. PMID:23902978

  5. Inhibitors of glutamate release from breast cancer cells; new targets for cancer-induced bone-pain

    PubMed Central

    Fazzari, Jennifer; Lin, Hanxin; Murphy, Cecilia; Ungard, Robert; Singh, Gurmit

    2015-01-01

    Glutamate is an important signaling molecule in a wide variety of tissues. Aberrant glutamatergic signaling disrupts normal tissue homeostasis and induces several disruptive pathological conditions including pain. Breast cancer cells secrete high levels of glutamate and often metastasize to bone. Exogenous glutamate can disrupt normal bone turnover and may be responsible for cancer-induced bone pain (CIBP). CIBP is a significant co-morbidity that affects quality of life for many advanced-stage breast cancer patients. Current treatment options are commonly accompanied by serious side-effects that negatively impact patient care. Identifying small molecule inhibitors of glutamate release from aggressive breast cancer cells advances a novel, mechanistic approach to targeting CIBP that could advance treatment for several pathological conditions. Using high-throughput screening, we investigated the ability of approximately 30,000 compounds from the Canadian Compound Collection to reduce glutamate release from MDA-MB-231 breast cancer cells. This line is known to secrete high levels of glutamate and has been demonstrated to induce CIBP by this mechanism. Positive chemical hits were based on the potency of each molecule relative to a known pharmacological inhibitor of glutamate release, sulfasalazine. Efficacy was confirmed and drug-like molecules were identified as potent inhibitors of glutamate secretion from MDA-MB-231, MCF-7 and Mat-Ly-Lu cells. PMID:25670024

  6. Differential transcription of genes involved in peroxisome proliferation in thicklip grey mullets Chelon labrosus injected with benzo(a)pyrene.

    PubMed

    Bilbao, Eider; Cajaraville, Miren P; Cancio, Ibon

    2010-04-01

    Benzo(a)pyrene (B(a)P) is a mutagenic polycyclic aromatic hydrocarbon (PAH) commonly released into the environment. B(a)P induces phase I biotransformation metabolism and peroxisome proliferation which is characterised in rodents by increased peroxisomal volume density, accompanied by the transcriptional induction of peroxisomal proteins. The aim of the present work was to study peroxisome proliferation at the transcriptional level, in comparison to the transcription of the well-characterised cytochrome P450 1A gene (cyp1a) in the thicklip grey mullet Chelon labrosus. For this purpose, genes coding for the major peroxisomal membrane protein PMP70 and CYP1A were cloned using degenerate primers. Then juvenile mullets were single injected with B(a)P (5mg/kg) and transcription of palmitoyl-CoA oxidase (aox1), multifunctional protein (mfp1), 3-ketoacyl-CoA thiolase (thio), Delta(2),Delta(4)dienoyl-CoA reductase 2, pmp70, catalase and cyp1a was semi-quantified in liver and gills 1 and 7days after the injection. Transcription of aox1 and cyp1a was induced in gills 1day after B(a)P injection. Cyp1a transcription was also induced in mullet liver one day after injection, indicating that B(a)P was available for the liver. This was further proved by the significant accumulation of B(a)P-like metabolites in bile 7days after the injection. In liver, aox1, mfp1 and thio transcription was induced at day 1 followed by the induction of catalase transcription at day 7 that may reflect a response to an oxidative stress caused by B(a)P itself or by oxyradicals produced through the biotransformation metabolism and the peroxisomal beta-oxidation. These hepatic responses were not reflected at AOX1 activity level. In conclusion, it has been shown for the first time that the three enzymes in the fish peroxisomal beta-oxidation pathway are transcriptionally induced by B(a)P. It remains to be tested whether this enhanced transcription is reflected in an increase in the volume of peroxisomes. PMID:20045488

  7. Lapatinib–induced NF-kappaB activation sensitizes triple-negative breast cancer cells to proteasome inhibitors

    PubMed Central

    2013-01-01

    Introduction Triple-negative breast cancer (TNBC), a subtype of breast cancer with negative expressions of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), is frequently diagnosed in younger women and has poor prognosis for disease-free and overall survival. Due to the lack of known oncogenic drivers for TNBC proliferation, clinic