Sample records for inhibits human tumor

  1. Tumor necrosis factor-alpha inhibits differentiation of myogenic cells in human urethral rhabdosphincter.

    PubMed

    Shinohara, Mayuka; Sumino, Yasuhiro; Sato, Fuminori; Kiyono, Tohru; Hashimoto, Naohiro; Mimata, Hiromitsu

    2017-06-01

    To examine the inhibitory effects of tumor necrosis factor-α on myogenic differentiation of human urethral rhabdosphincter cells. A rhabdosphincter sample was obtained from a patient who underwent total cystectomy. To expand the lifespan of the primary cultured cells, rhabdosphincter myogenic cells were immortalized with mutated cyclin-dependent kinase 4, cyclin D1 and telomerase. The differential potential of the cells was investigated. The transfected human rhabdosphincter cells were induced for myogenic differentiation with recombinant human tumor necrosis factor-α and/or the tumor necrosis factor-α antagonist etanercept at different concentrations, and activation of signaling pathways was monitored. Human rhabdosphincter cells were selectively cultured for at least 40 passages. Molecular analysis confirmed the expression of myosin heavy chain, which is a specific marker of differentiated muscle cells, significantly increased after differentiation induction. Although tumor necrosis factor-α treatment reduced the myosin heavy chain expression in a concentration-dependent manner, etanercept inhibited this suppression. Tumor necrosis factor-α suppressed phosphorylation of protein kinase B and p38, whereas etanercept pretreatment promoted phosphorylation and myosin heavy chain expression in a concentration-dependent manner. Tumor necrosis factor-α inhibits differentiation of urethral rhabdosphincter cells in part through the p38 mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. Inhibition of tumor necrosis factor-α might be a useful strategy to treat stress urinary incontinence. © 2017 The Japanese Urological Association.

  2. Inhibition of subcutaneously implanted human pituitary tumor cells in nude mice by LRIG1.

    PubMed

    Wang, X; He, X J; Xu, H Q; Chen, Z W; Fan, H H

    2016-05-06

    The aim of this study was to explore the inhibition of subcutaneously implanted human pituitary tumor cells in nude mice by LRIG1 and its mechanism. For this study, athymic nude mice were injected with either normal pituitary tumor RC-4B/C cells or LRIG1-transfected RC-4B/C cells. We then calculated the volume inhibition rate of the tumors, as well as the apoptosis index of tumor cells and the expression of Ras, Raf, AKt, and ERK mRNA in tumor cells. Tumor cell morphological and structural changes were also observed under electron microscope. Our data showed that subcutaneous tumor growth was slowed or even halted in LRIG1-transfected tumors. The tumor volumes were significantly different between the two groups of mice (χ2 = 2.14, P < 0.05). The tumor apoptosis index was found to be 8.72% in the control group and 39.7% in LRIG1-transfected mice (χ2 = 7.59, P < 0.05). The levels of Ras, Raf, and AKt mRNA in LRIG1-transfected RC-4B/C cells were significantly reduced after transfection (P < 0.01). Transfected subcutaneous tumor cells appeared to be in early or late apoptosis under an electron microscope, while only a few subcutaneous tumor cells appeared to be undergoing apoptosis in the control group. In conclusion, the LRIG1 gene is able to inhibit proliferation and promote apoptosis in subcutaneously implanted human pituitary tumors in nude mice. The mechanism of LRIG1 may involve the inhibition of the PI3K/ Akt and Ras/Raf/ERK signal transduction pathways.

  3. Antibody-directed neutralization of annexin II (ANX II) inhibits neoangiogenesis and human breast tumor growth in a xenograft model.

    PubMed

    Sharma, Meena; Blackman, Marc R; Sharma, Mahesh C

    2012-02-01

    Activation of the fibrinolytic pathway has long been associated with human breast cancer. Plasmin is the major end product of the fibrinolytic pathway and is critical for normal physiological functions. The mechanism by which plasmin is generated in breast cancer is not yet fully described. We previously identified annexin II (ANX II), a fibrinolytic receptor, in human breast tumor tissue samples and observed a strong positive correlation with advanced stage cancer (Sharma et al., 2006a). We further demonstrated that tissue plasminogen activator (tPA) binds to ANX II in invasive breast cancer MDA-MB231cells, which leads to plasmin generation (Sharma et al., 2010). We hypothesize that ANX II-dependent plasmin generation in breast tumor is necessary to trigger the switch to neoangiogenesis, thereby stimulating a more aggressive cancer phenotype. Our immunohistochemical studies of human breast tumor tissues provide compelling evidence of a strong positive correlation between ANX II expression and neoangiogenesis, and suggest that ANX II is a potential target to slow or inhibit breast tumor growth by inhibiting neoangiogenesis. We now report that administration of anti-ANX II antibody potently inhibits the growth of human breast tumor in a xenograft model. Inhibition of tumor growth is at least partly due to attenuation of neoangiogenic activity within the tumor. In vitro studies demonstrate that anti-ANX II antibody inhibits angiogenesis on three dimensional matrigel cultures by eliciting endothelial cell (EC) death likely due to apoptosis. Taken together, these data suggest that selective disruption of the fibrinolytic activity of ANX II may provide a novel strategy for specific inhibition of neoangiogenesis in human breast cancer. Published by Elsevier Inc.

  4. Galectin-1 Inhibitor OTX008 Induces Tumor Vessel Normalization and Tumor Growth Inhibition in Human Head and Neck Squamous Cell Carcinoma Models.

    PubMed

    Koonce, Nathan A; Griffin, Robert J; Dings, Ruud P M

    2017-12-09

    Galectin-1 is a hypoxia-regulated protein and a prognostic marker in head and neck squamous cell carcinomas (HNSCC). Here we assessed the ability of non-peptidic galectin-1 inhibitor OTX008 to improve tumor oxygenation levels via tumor vessel normalization as well as tumor growth inhibition in two human HNSCC tumor models, the human laryngeal squamous carcinoma SQ20B and the human epithelial type 2 HEp-2. Tumor-bearing mice were treated with OTX008, Anginex, or Avastin and oxygen levels were determined by fiber-optics and molecular marker pimonidazole binding. Immuno-fluorescence was used to determine vessel normalization status. Continued OTX008 treatment caused a transient reoxygenation in SQ20B tumors peaking on day 14, while a steady increase in tumor oxygenation was observed over 21 days in the HEp-2 model. A >50% decrease in immunohistochemical staining for tumor hypoxia verified the oxygenation data measured using a partial pressure of oxygen (pO₂) probe. Additionally, OTX008 induced tumor vessel normalization as tumor pericyte coverage increased by approximately 40% without inducing any toxicity. Moreover, OTX008 inhibited tumor growth as effectively as Anginex and Avastin, except in the HEp-2 model where Avastin was found to suspend tumor growth. Galectin-1 inhibitor OTX008 transiently increased overall tumor oxygenation via vessel normalization to various degrees in both HNSCC models. These findings suggest that targeting galectin-1-e.g., by OTX008-may be an effective approach to treat cancer patients as stand-alone therapy or in combination with other standards of care.

  5. pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity.

    PubMed

    De Milito, Angelo; Canese, Rossella; Marino, Maria Lucia; Borghi, Martina; Iero, Manuela; Villa, Antonello; Venturi, Giulietta; Lozupone, Francesco; Iessi, Elisabetta; Logozzi, Mariantonia; Della Mina, Pamela; Santinami, Mario; Rodolfo, Monica; Podo, Franca; Rivoltini, Licia; Fais, Stefano

    2010-07-01

    Metastatic melanoma is associated with poor prognosis and still limited therapeutic options. An innovative treatment approach for this disease is represented by targeting acidosis, a feature characterizing tumor microenvironment and playing an important role in cancer malignancy. Proton pump inhibitors (PPI), such as esomeprazole (ESOM) are prodrugs functionally activated by acidic environment, fostering pH neutralization by inhibiting proton extrusion. We used human melanoma cell lines and xeno-transplated SCID mice to provide preclinical evidence of ESOM antineoplastic activity. Human melanoma cell lines, characterized by different mutation and signaling profiles, were treated with ESOM in different pH conditions and evaluated for proliferation, viability and cell death. SCID mice engrafted with human melanoma were used to study ESOM administration effects on tumor growth and tumor pH by magnetic resonance spectroscopy (MRS). ESOM inhibited proliferation of melanoma cells in vitro and induced a cytotoxicity strongly boosted by low pH culture conditions. ESOM-induced tumor cell death occurred via rapid intracellular acidification and activation of several caspases. Inhibition of caspases activity by pan-caspase inhibitor z-vad-fmk completely abrogated the ESOM-induced cell death. ESOM administration (2.5 mg kg(-1)) to SCID mice engrafted with human melanoma reduced tumor growth, consistent with decrease of proliferating cells and clear reduction of pH gradients in tumor tissue. Moreover, systemic ESOM administration dramatically increased survival of human melanoma-bearing animals, in absence of any relevant toxicity. These data show preclinical evidence supporting the use of PPI as novel therapeutic strategy for melanoma, providing the proof of concept that PPI target human melanoma modifying tumor pH gradients.

  6. Nitric oxide inhibits topoisomerase II activity and induces resistance to topoisomerase II-poisons in human tumor cells.

    PubMed

    Kumar, Ashutosh; Ehrenshaft, Marilyn; Tokar, Erik J; Mason, Ronald P; Sinha, Birandra K

    2016-07-01

    Etoposide and doxorubicin, topoisomerase II poisons, are important drugs for the treatment of tumors in the clinic. Topoisomerases contain several free sulfhydryl groups which are important for their activity and are also potential targets for nitric oxide (NO)-induced nitrosation. NO, a physiological signaling molecule nitrosates many cellular proteins, causing altered protein and cellular functions. Here, we have evaluated the roles of NO/NO-derived species in the activity/stability of topo II both in vitro and in human tumor cells, and in the cytotoxicity of topo II-poisons, etoposide and doxorubicin. Treatment of purified topo IIα with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of both the catalytic and relaxation activity in vitro, and decreased etoposide-dependent cleavable complex formation in both human HT-29 colon and MCF-7 breast cancer cells. PPNO treatment also induced significant nitrosation of topo IIα protein in these human tumor cells. These events, taken together, caused a significant resistance to etoposide in both cell lines. However, PPNO had no effect on doxorubicin-induced cleavable complex formation, or doxorubicin cytotoxicity in these cell lines. Inhibition of topo II function by NO/NO-derived species induces significant resistance to etoposide, without affecting doxorubicin cytotoxicity in human tumor cells. As tumors express inducible nitric oxide synthase and generate significant amounts of NO, modulation of topo II functions by NO/NO-derived species could render tumors resistant to certain topo II-poisons in the clinic. Published by Elsevier B.V.

  7. Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt.

    PubMed

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirano; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect.

  8. Telomerase inhibition improves tumor response to radiotherapy in a murine orthotopic model of human glioblastoma.

    PubMed

    Ferrandon, Sylvain; Malleval, Céline; El Hamdani, Badia; Battiston-Montagne, Priscillia; Bolbos, Radu; Langlois, Jean-Baptiste; Manas, Patrick; Gryaznov, Sergei M; Alphonse, Gersende; Honnorat, Jérôme; Rodriguez-Lafrasse, Claire; Poncet, Delphine

    2015-07-17

    Glioblastoma (GBM) is the most frequent and aggressive type of adult brain tumor. Most GBMs express telomerase; a high level of intra-tumoral telomerase activity (TA) is predictive of poor prognosis. Thus, telomerase inhibitors are promising options to treat GBM. These inhibitors increase the response to radiotherapy (RT), in vitro as well as in vivo. Since typical treatments for GBM include RT, our objective was to evaluate the efficiency of Imetelstat (TA inhibitor) combined with RT. We used a murine orthotopic model of human GBM (N = 8 to11 mice per group) and μMRI imaging to evaluate the efficacy of Imetelstat (delivered by intra-peritoneal injection) alone and combined with RT. Using a clinically established protocol, we demonstrated that Imetelstat significantly: (i) inhibited the TA in the very center of the tumor, (ii) reduced tumor volume as a proportion of TA inhibition, and (iii) increased the response to RT, in terms of tumor volume regression and survival increase. Imetelstat is currently evaluated in refractory brain tumors in young patients (without RT). Our results support its clinical evaluation combined with RT to treat GBM.

  9. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma

    PubMed Central

    Yin, Da-long; Liang, Ying-jian; Zheng, Tong-sen; Song, Rui-peng; Wang, Jia-bei; Sun, Bo-shi; Pan, Shang-ha; Qu, Lian-dong; Liu, Jia-ren; Jiang, Hong-chi; Liu, Lian-xin

    2016-01-01

    A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment. PMID:27571770

  10. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma.

    PubMed

    Yin, Da-Long; Liang, Ying-Jian; Zheng, Tong-Sen; Song, Rui-Peng; Wang, Jia-Bei; Sun, Bo-Shi; Pan, Shang-Ha; Qu, Lian-Dong; Liu, Jia-Ren; Jiang, Hong-Chi; Liu, Lian-Xin

    2016-08-30

    A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment.

  11. 3-Bromopyruvate inhibits human gastric cancer tumor growth in nude mice via the inhibition of glycolysis.

    PubMed

    Xian, Shu-Lin; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei

    2015-02-01

    Tumor cells primarily depend upon glycolysis in order to gain energy. Therefore, the inhibition of glycolysis may inhibit tumor growth. Our previous study demonstrated that 3-bromopyruvate (3-BrPA) inhibited gastric cancer cell proliferation in vitro . However, the ability of 3-BrPA to suppress tumor growth in vivo, and its underlying mechanism, have yet to be elucidated. The aim of the present study was to investigate the inhibitory effect of 3-BrPA in an animal model of gastric cancer. It was identified that 3-BrPA exhibited strong inhibitory effects upon xenograft tumor growth in nude mice. In addition, the antitumor function of 3-BrPA exhibited a dose-effect association, which was similar to that of the chemotherapeutic agent, 5-fluorouracil. Furthermore, 3-BrPA exhibited low toxicity in the blood, liver and kidneys of the nude mice. The present study hypothesized that the inhibitory effect of 3-BrPA is achieved through the inhibition of hexokinase activity, which leads to the downregulation of B-cell lymphoma 2 (Bcl-2) expression, the upregulation of Bcl-2-associated X protein expression and the subsequent activation of caspase-3. These data suggest that 3-BrPA may be a novel therapy for the treatment of gastric cancer.

  12. Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells.

    PubMed

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-07-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of new drug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD) motif targeting endothelial cells (ECs). We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2(+) perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  13. AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis.

    PubMed

    Wilkinson, Robert W; Odedra, Rajesh; Heaton, Simon P; Wedge, Stephen R; Keen, Nicholas J; Crafter, Claire; Foster, John R; Brady, Madeleine C; Bigley, Alison; Brown, Elaine; Byth, Kate F; Barrass, Nigel C; Mundt, Kirsten E; Foote, Kevin M; Heron, Nicola M; Jung, Frederic H; Mortlock, Andrew A; Boyle, F Thomas; Green, Stephen

    2007-06-15

    In the current study, we examined the in vivo effects of AZD1152, a novel and specific inhibitor of Aurora kinase activity (with selectivity for Aurora B). The pharmacodynamic effects and efficacy of AZD1152 were determined in a panel of human tumor xenograft models. AZD1152 was dosed via several parenteral (s.c. osmotic mini-pump, i.p., and i.v.) routes. AZD1152 potently inhibited the growth of human colon, lung, and hematologic tumor xenografts (mean tumor growth inhibition range, 55% to > or =100%; P < 0.05) in immunodeficient mice. Detailed pharmacodynamic analysis in colorectal SW620 tumor-bearing athymic rats treated i.v. with AZD1152 revealed a temporal sequence of phenotypic events in tumors: transient suppression of histone H3 phosphorylation followed by accumulation of 4N DNA in cells (2.4-fold higher compared with controls) and then an increased proportion of polyploid cells (>4N DNA, 2.3-fold higher compared with controls). Histologic analysis showed aberrant cell division that was concurrent with an increase in apoptosis in AZD1152-treated tumors. Bone marrow analyses revealed transient myelosuppression with the drug that was fully reversible following cessation of AZD1152 treatment. These data suggest that selective targeting of Aurora B kinase may be a promising therapeutic approach for the treatment of a range of malignancies. In addition to the suppression of histone H3 phosphorylation, determination of tumor cell polyploidy and apoptosis may be useful biomarkers for this class of therapeutic agent. AZD1152 is currently in phase I trials.

  14. SKI knockdown inhibits human melanoma tumor growth in vivo.

    PubMed

    Chen, Dahu; Lin, Qiushi; Box, Neil; Roop, Dennis; Ishii, Shunsuke; Matsuzaki, Koichi; Fan, Tao; Hornyak, Thomas J; Reed, Jon A; Stavnezer, Ed; Timchenko, Nikolai A; Medrano, Estela E

    2009-12-01

    The SKI protein represses the TGF-beta tumor suppressor pathway by associating with the Smad transcription factors. SKI is upregulated in human malignant melanoma tumors in a disease-progression manner and its overexpression promotes proliferation and migration of melanoma cells in vitro. The mechanisms by which SKI antagonizes TGF-beta signaling in vivo have not been fully elucidated. Here we show that human melanoma cells in which endogenous SKI expression was knocked down by RNAi produced minimal orthotopic tumor xenograft nodules that displayed low mitotic rate and prominent apoptosis. These minute tumors exhibited critical signatures of active TGF-beta signaling including high levels of nuclear Smad3 and p21(Waf-1), which are not found in the parental melanomas. To understand how SKI promotes tumor growth we used gain- and loss-of-function approaches and found that simultaneously to blocking the TGF-beta-growth inhibitory pathway, SKI promotes the switch of Smad3 from tumor suppression to oncogenesis by favoring phosphorylations of the Smad3 linker region in melanoma cells but not in normal human melanocytes. In this context, SKI is required for preventing TGF-beta-mediated downregulation of the oncogenic protein c-MYC, and for inducing the plasminogen activator inhibitor-1, a mediator of tumor growth and angiogenesis. Together, the results indicate that SKI exploits multiple regulatory levels of the TGF-beta pathway and its deficiency restores TGF-beta tumor suppressor and apoptotic activities in spite of the likely presence of oncogenic mutations in melanoma tumors.

  15. Nitric oxide inhibits ATPase activity and induces resistance to topoisomerase II-poisons in human MCF-7 breast tumor cells.

    PubMed

    Sinha, Birandra K; Kumar, Ashutosh; Mason, Ronald P

    2017-07-01

    Topoisomerase poisons are important drugs for the management of human malignancies. Nitric oxide ( • NO), a physiological signaling molecule, induces nitrosylation (or nitrosation) of many cellular proteins containing cysteine thiol groups, altering their cellular functions. Topoisomerases contain several thiol groups which are important for their activity and are also targets for nitrosation by nitric oxide. Here, we have evaluated the roles of • NO/ • NO-derived species in the stability and activity of topo II (α and β) both in vitro and in human MCF-7 breast tumor cells. Furthermore, we have examined the effects of • NO on the ATPase activity of topo II. Treatment of purified topo IIα and β with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of the catalytic activity of topo II. Furthermore, PPNO significantly inhibited topo II-dependent ATP hydrolysis. • NO-induced inhibition of these topo II (α and β) functions resulted in a decrease in cleavable complex formation in MCF-7 cells in the presence of m-AMSA and XK469 and induced significant resistance to both drugs in MCF-7 cells. PPNO treatment resulted in the nitrosation of the topo II protein in MCF-7 cancer cells and inhibited both catalytic-, and ATPase activities of topo II. Furthermore, PPNO significantly affected the DNA damage and cytotoxicity of m-AMSA and XK469 in MCF-7 tumor cells. As tumors express nitric oxide synthase and generate • NO, inhibition of topo II functions by • NO/ • NO-derived species could render tumors resistant to certain topo II-poisons in the clinic.

  16. Pertussis toxin inhibits somatostatin-induced K/sup +/ conductance in human pituitary tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, N.; Kojima, I.; Shibuya, N.

    1987-07-01

    The effect of pertussis toxin on somatostatin-induced K/sup +/ current was examined in dissociated human pituitary tumor cells obtained from two acromegalic patients. Somatostatin-induced hyperpolarization or K/sup +/ current was observed in 20 of 23 cells in adenoma 1 and 10 of 11 cells in adenoma 2. After treatment with pertussis toxin for 24 h, these responses were completely suppressed (0/14 in adenoma, 1, 0/10 in adenoma 2). Spontaneous action potentials, K/sup +/, Na/sup +/, and Ca/sup 2 +/ currents were well preserved after pertussis toxin treatment. When crude membrane fraction was incubated with (/sup 32/P)NAD, a 41K protein wasmore » ADP-ribosylated by pertussis toxin. Hormone release was inhibited by somatostatin and this inhibition was blocked by pertussis toxin treatment.« less

  17. Tumor Expression of CD200 Inhibits IL-10 Production by Tumor-Associated Myeloid Cells and Prevents Tumor Immune Evasion of CTL Therapy

    PubMed Central

    Wang, Lixin; Liu, Jin-Qing; Talebian, Fatemeh; El-Omrani, Hani Y.; Khattabi, Mazin; Yu, Li; Bai, Xue-Feng

    2010-01-01

    CD200 is a cell-surface glycoprotein that functions through interaction with the CD200 receptor (CD200R) on myeloid lineage cells to regulate myeloid cell functions. Expression of CD200 has been implicated in multiple types of human cancer, however the impact of tumor expression of CD200 on tumor immunity remains poorly understood. To evaluate this issue, we generated CD200-positive mouse plasmacytoma J558 and mastocytoma P815 cells. We found that established CD200-positive tumors were often completely rejected by adoptively transferred CTL without tumor recurrence; in contrast, CD200-negative tumors were initially rejected by adoptively transferred CTL but the majority of tumors recurred. Tumor expression of CD200 significantly inhibited suppressive activity and IL-10 production by tumor-associated myeloid cells (TAMC), and as a result, more CTL accumulated in the tumor and exhibited a greater capacity to produce IFN-γ in CD200-positive tumors than in CD200-negative tumors. Neutralization of IL-10 significantly inhibited the suppressor activity of TAMC, and IL-10-deficiency allowed TAMC to kill cancer cells and their antigenic variants, which prevented tumor recurrence during CTL therapy. Thus, tumor expression of CD200 prevents tumor recurrence via inhibiting IL-10 production by TAMC. PMID:20662098

  18. The anti-tumor effect of HDAC inhibition in a human pancreas cancer model is significantly improved by the simultaneous inhibition of cyclooxygenase 2.

    PubMed

    Peulen, Olivier; Gonzalez, Arnaud; Peixoto, Paul; Turtoi, Andrei; Mottet, Denis; Delvenne, Philippe; Castronovo, Vincent

    2013-01-01

    Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer death worldwide, with no satisfactory treatment to date. In this study, we tested whether the combined inhibition of cyclooxygenase-2 (COX-2) and class I histone deacetylase (HDAC) may results in a better control of pancreatic ductal adenocarcinoma. The impact of the concomitant HDAC and COX-2 inhibition on cell growth, apoptosis and cell cycle was assessed first in vitro on human pancreas BxPC-3, PANC-1 or CFPAC-1 cells treated with chemical inhibitors (SAHA, MS-275 and celecoxib) or HDAC1/2/3/7 siRNA. To test the potential antitumoral activity of this combination in vivo, we have developed and characterized, a refined chick chorioallantoic membrane tumor model that histologically and proteomically mimics human pancreatic ductal adenocarcinoma. The combination of HDAC1/3 and COX-2 inhibition significantly impaired proliferation of BxPC-3 cells in vitro and stalled entirely the BxPC-3 cells tumor growth onto the chorioallantoic membrane in vivo. The combination was more effective than either drug used alone. Consistently, we showed that both HDAC1 and HDAC3 inhibition induced the expression of COX-2 via the NF-kB pathway. Our data demonstrate, for the first time in a Pancreatic Ductal Adenocarcinoma (PDAC) model, a significant action of HDAC and COX-2 inhibitors on cancer cell growth, which sets the basis for the development of potentially effective new combinatory therapies for pancreatic ductal adenocarcinoma patients.

  19. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition

    PubMed Central

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S.; Jones, David R.; Sadelain, Michel; Adusumilli, Prasad S.

    2016-01-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1–mediated (PD-1–mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB–based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  20. Polyphenols in brewed green tea inhibit prostate tumor xenograft growth by localizing to the tumor and decreasing oxidative stress and angiogenesis

    PubMed Central

    Henning, Susanne M.; Wang, Piwen; Said, Jonathan; Magyar, Clara; Castor, Brandon; Doan, Ngan; Tosity, Carmen; Moro, Aune; Gao, Kun; Li, Luyi; Heber, David

    2011-01-01

    It has been demonstrated in various animal models that the oral administration of green tea (GT) extracts in drinking water can inhibit tumor growth, but the effects of brewed GT on factors promoting tumor growth, including oxidant damage of DNA and protein, angiogenesis, and DNA methylation, have not been tested in an animal model. To explore these potential mechanisms, brewed GT was administered instead of drinking water to male severe combined immunodeficiency (SCID) mice with androgen-dependent human LAPC4 prostate cancer cell subcutaneous xenografts. Tumor volume was decreased significantly in mice consuming GT, and tumor size was significantly correlated with GT polyphenol (GTP) content in tumor tissue. There was a significant reduction in hypoxia-inducible factor 1-alpha and vascular endothelial growth factor protein expression. GT consumption significantly reduced oxidative DNA and protein damage in tumor tissue as determined by 8-hydroxydeoxyguanosine/deoxyguanosine ratio and protein carbonyl assay, respectively. Methylation is known to inhibit antioxidative enzymes such as glutathione S-transferase pi (GSTp1) to permit reactive oxygen species promotion of tumor growth. GT inhibited tumor 5-cytosine DNA methyltransferase 1 (DNMT1) mRNA and protein expression significantly, which may contribute to the inhibition of tumor growth by reactivation of antioxidative enzymes. This study advances our understanding of tumor growth inhibition by brewed GT in an animal model by demonstrating tissue localization of GTPs in correlation with inhibition of tumor growth. Our results suggest that the inhibition of tumor growth is due to GTP-mediated inhibition of oxidative stress and angiogenesis in the LAPC4 xenograft prostate tumor in SCID mice. PMID:22405694

  1. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    PubMed

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  2. Expression of a suicidal gene under control of the human secreted protein acidic and rich in cysteine (SPARC) promoter in tumor or stromal cells led to the inhibition of tumor cell growth

    PubMed Central

    Lopez, María V.; Blanco, Patricia; Viale, Diego L.; Cafferata, Eduardo G.; Carbone, Cecilia; Gould, David; Chernajovsky, Yuti; Podhajcer, Osvaldo L.

    2009-01-01

    The successful use of transcriptional targeting for cancer therapy depends on the activity of a given promoter inside the malignant cell. Because solid human tumors evolve as a “cross-talk” between the different cell types within the tumor, we hypothesized that targeting the entire tumor mass might have better therapeutic effect. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein overexpressed in different human cancers malignant melanomas both in the malignant cells compartment as in the stromal one (fibroblasts and endothelial cells). We have shown that expression of the herpes simplex virus-thymidine kinase (TK) gene driven by the SPARC promoter in combination with ganciclovir inhibited human melanoma cell growth in monolayer as well as in multicellular spheroids. This inhibitory effect was observed both in homotypic spheroids composed of melanoma cells alone as well as in spheroids made of melanoma cells and stromal cells. Expression of the TK gene was also efficient to inhibit the in vivo tumor growth of established melanomas when TK was expressed either by the malignant cells themselves or by coadministered endothelial cells. Our data suggest that the use of therapeutic genes driven by SPARC promoter could be a valuable strategy for cancer therapy aiming to target all the cellular components of the tumor mass. PMID:17041094

  3. Luteolin Inhibits Human Prostate Tumor Growth by Suppressing Vascular Endothelial Growth Factor Receptor 2-Mediated Angiogenesis

    PubMed Central

    Pratheeshkumar, Poyil; Son, Young-Ok; Budhraja, Amit; Wang, Xin; Ding, Songze; Wang, Lei; Hitron, Andrew; Lee, Jeong-Chae; Kim, Donghern; Divya, Sasidharan Padmaja; Chen, Gang; Zhang, Zhuo; Luo, Jia; Shi, Xianglin

    2012-01-01

    Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PMID:23300633

  4. Combination of hTERT knockdown and interferon-γ treatment inhibited angiogenesis and tumor progression in glioblastoma

    PubMed Central

    George, Joseph; Banik, Naren L.; Ray, Swapan K.

    2009-01-01

    Purpose The limitless invasive and proliferative capacities of tumor cells are associated with telomerase and expression of its catalytic component, human telomerase reverse transcriptase (hTERT). Interferon-γ (IFN-γ) modulates several cellular activities including signaling pathways and cell cycle through transcriptional regulation. Experimental Design Using a recombinant plasmid with hTERT siRNA cDNA, we down regulated hTERT during IFN-γ treatment in human glioblastoma SNB-19 and LN-18 cell lines and examined whether such a combination could inhibit angiogenesis and tumor growth in nude mice. In vitro angiogenesis assay was performed using co-culture of tumor cells with human microvascular endothelial cells. In vivo angiogenesis assay was performed using diffusion chambers under the dorsal skin of nude mice. In vivo imaging of intracerebral tumorigenesis and longitudinal solid tumor development studies were conducted in nude mice. Results In vitro and in vivo angiogenesis assays demonstrated inhibition of capillary-like network formation of microvascular endothelial cells and neovascularization under dorsal skin of nude mice, respectively. We observed inhibition of intracerebral tumorigenesis and subcutaneous solid tumor formation in nude mice after treatment with combination of hTERT siRNA and IFN-γ. Western blotting of solid tumor samples demonstrated significant down regulation of the molecules that regulate cell invasion, angiogenesis, and tumor progression. Conclusions Our study demonstrated that combination of hTERT siRNA and IFN-γ effectively inhibited angiogenesis and tumor progression through down regulation of molecules involved in these processes. Therefore, combination of hTERT siRNA and IFN-γ is a promising therapeutic strategy for controlling growth of human glioblastoma. PMID:19934306

  5. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo

    PubMed Central

    Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E.; Henning, Susanne M.; Vadgama, Jaydutt V.

    2017-01-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa, has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (< 2μM) significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30-50% at 48h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID) mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo, which provides a high promise in its translation to human application

  6. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo.

    PubMed

    Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E; Henning, Susanne M; Vadgama, Jaydutt V

    2017-06-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa , has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (< 2μM) significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30-50% at 48h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID) mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo , which provides a high promise in its translation to human application.

  7. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice1

    PubMed Central

    Sasaki, Takamitsu; Kitadai, Yasuhiko; Nakamura, Toru; Kim, Jang-Seong; Tsan, Rachel Z; Kuwai, Toshio; Langley, Robert R; Fan, Dominic; Kim, Sun-Jin; Fidler, Isaiah J

    2007-01-01

    The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α) and vascular endothelial growth factor (VEGF) but were negative for EGFR, human epidermal growth factor receptor 2 (HER2), and VEGFR. Double immunofluorescence staining revealed that tumor-associated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR), and phosphorylated VEGFR (pVEGFR). Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase) or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01); this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001). AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, and increased the level of apoptosis in both tumor-associated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer. PMID:18084614

  8. The humanized anti-human AMHRII mAb 3C23K exerts an anti-tumor activity against human ovarian cancer through tumor-associated macrophages.

    PubMed

    Bougherara, Houcine; Némati, Fariba; Nicolas, André; Massonnet, Gérald; Pugnière, Martine; Ngô, Charlotte; Le Frère-Belda, Marie-Aude; Leary, Alexandra; Alexandre, Jérôme; Meseure, Didier; Barret, Jean-Marc; Navarro-Teulon, Isabelle; Pèlegrin, André; Roman-Roman, Sergio; Prost, Jean-François; Donnadieu, Emmanuel; Decaudin, Didier

    2017-11-21

    Müllerian inhibiting substance, also called anti-Müllerian hormone (AMH), inhibits proliferation and induces apoptosis of AMH type II receptor-positive tumor cells, such as human ovarian cancers (OCs). On this basis, a humanized glyco-engineered monoclonal antibody (3C23K) has been developed. The aim of this study was therefore to experimentally confirm the therapeutic potential of 3C23K in human OCs. We first determined by immunofluorescence, immunohistochemistry and cytofluorometry analyses the expression of AMHRII in patient's tumors and found that a majority (60 to 80% depending on the detection technique) of OCs were positive for this marker. We then provided evidence that the tumor stroma of OC is enriched in tumor-associated macrophages and that these cells are responsible for 3C23K-induced killing of tumor cells through ADCP and ADCC mechanisms. In addition, we showed that 3C23K reduced macrophages induced-T cells immunosuppression. Finally, we evaluated the therapeutic efficacy of 3C23K alone and in combination with a carboplatin-paclitaxel chemotherapy in a panel of OC Patient-Derived Xenografts. In those experiments, we showed that 3C23K significantly increased the proportion and the quality of chemotherapy-based in vivo responses. Altogether, our data support the potential interest of AMHRII targeting in human ovarian cancers and the evaluation of 3C23K in further clinical trials.

  9. The humanized anti-human AMHRII mAb 3C23K exerts an anti-tumor activity against human ovarian cancer through tumor-associated macrophages

    PubMed Central

    Bougherara, Houcine; Némati, Fariba; Nicolas, André; Massonnet, Gérald; Pugnière, Martine; Ngô, Charlotte; Le Frère-Belda, Marie-Aude; Leary, Alexandra; Alexandre, Jérôme; Meseure, Didier; Barret, Jean-Marc; Navarro-Teulon, Isabelle; Pèlegrin, André; Roman-Roman, Sergio; Prost, Jean-François; Donnadieu, Emmanuel; Decaudin, Didier

    2017-01-01

    Müllerian inhibiting substance, also called anti-Müllerian hormone (AMH), inhibits proliferation and induces apoptosis of AMH type II receptor-positive tumor cells, such as human ovarian cancers (OCs). On this basis, a humanized glyco-engineered monoclonal antibody (3C23K) has been developed. The aim of this study was therefore to experimentally confirm the therapeutic potential of 3C23K in human OCs. We first determined by immunofluorescence, immunohistochemistry and cytofluorometry analyses the expression of AMHRII in patient’s tumors and found that a majority (60 to 80% depending on the detection technique) of OCs were positive for this marker. We then provided evidence that the tumor stroma of OC is enriched in tumor-associated macrophages and that these cells are responsible for 3C23K-induced killing of tumor cells through ADCP and ADCC mechanisms. In addition, we showed that 3C23K reduced macrophages induced-T cells immunosuppression. Finally, we evaluated the therapeutic efficacy of 3C23K alone and in combination with a carboplatin-paclitaxel chemotherapy in a panel of OC Patient-Derived Xenografts. In those experiments, we showed that 3C23K significantly increased the proportion and the quality of chemotherapy-based in vivo responses. Altogether, our data support the potential interest of AMHRII targeting in human ovarian cancers and the evaluation of 3C23K in further clinical trials. PMID:29245952

  10. A conjugate of an anti-midkine single-chain variable fragment to doxorubicin inhibits tumor growth

    PubMed Central

    Zhao, Shuli; Zhao, Guangfeng; Xie, Hao; Huang, Yahong; Hou, Yayi

    2012-01-01

    Doxorubicin (DOX) was conjugated to a single-chain variable fragment (scFv) against human midkine (MK), and the conjugate (scFv-DOX) was used to target the chemotherapeutic agent to a mouse solid tumor model in which the tumor cells expressed high levels of human MK. The His-tagged recombinant scFv was expressed in bacteria, purified by metal affinity chromatography, and then conjugated to DOX using oxidative dextran (Dex) as a linker. The molecular formula of this immunoconjugate was scFv(Dex)1.3(DOX)20. In vitro apoptosis assays showed that the scFv-DOX conjugate was more cytotoxic against MK-transfected human adenocarcinoma cells (BGC823-MK) than untransfected cells (55.3 ± 2.4 vs 22.4 ± 3.8%) for three independent experiments. Nude mice bearing BGC823-MK solid tumors received scFv-DOX or equivalent doses of scFv + DOX for 2 weeks and tumor growth was more effectively inhibited by the scFv-DOX conjugate than by scFv + DOX (51.83% inhibition vs 40.81%). Histological analysis of the tumor tissues revealed that the highest levels of DOX accumulated in tumors from mice treated with scFv-DOX and this resulted in more extensive tumor cell death than in animals treated with the equivalent dose of scFv + DOX. These results show that the scFv-DOX conjugate effectively inhibited tumor growth in vivo and suggest that antigen-specific scFv may be competent drug-carriers. PMID:22267001

  11. Tumor necrosis factor-alpha inhibits insulin's stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans.

    PubMed

    Rask-Madsen, Christian; Domínguez, Helena; Ihlemann, Nikolaj; Hermann, Thomas; Køber, Lars; Torp-Pedersen, Christian

    2003-10-14

    Inflammatory mechanisms could be involved in the pathogenesis of both insulin resistance and atherosclerosis. Therefore, we aimed at examining whether the proinflammatory cytokine tumor necrosis factor (TNF)-alpha inhibits insulin-stimulated glucose uptake and insulin-stimulated endothelial function in humans. Healthy, lean male volunteers were studied. On each study day, 3 acetylcholine (ACh) or sodium nitroprusside (SNP) dose-response studies were performed by infusion into the brachial artery. Before and during the last 2 dose-response studies, insulin and/or TNF-alpha were coinfused. During infusion of insulin alone for 20 minutes, forearm glucose uptake increased by 220+/-44%. This increase was completely inhibited during coinfusion of TNF-alpha (started 10 min before insulin) with a more pronounced inhibition of glucose extraction than of blood flow. Furthermore, TNF-alpha inhibited the ACh forearm blood flow response (P<0.001), and this inhibition was larger during insulin infusion (P=0.01) but not further increased by NG-monomethyl-L-arginine acetate (P=0.2). Insulin potentiated the SNP response less than the ACh response and the effect of TNF-alpha was smaller (P<0.001); TNF-alpha had no effect on the SNP response without insulin infusion. Thus, TNF-alpha inhibition of the combined response to insulin and ACh was likely mediated through inhibition of NO production. These results support the concept that TNF-alpha could play a role in the development of insulin resistance in humans, both in muscle and in vascular tissue.

  12. Targeted inhibition of EG-1 blocks breast tumor growth.

    PubMed

    Lu, Ming; Sartippour, Maryam R; Zhang, Liping; Norris, Andrew J; Brooks, Mai N

    2007-06-01

    EG-1 is a gene product that is significantly elevated in human breast cancer tissues. Previously, we have shown that EG-1 overexpression stimulates cellular proliferation both in vitro and in vivo. Here, we ask whether this molecule can be targeted for experimental therapeutic purpose. siRNA lentivirus and polyclonal antibodies were designed to suppress EG-1 expression. These agents were then used in cell culture proliferation assays and breast tumor xenograft models. Serum and urine from breast cancer patients were also analyzed for the presence of EG-1 peptide. We report here for the first time that endogenous EG-1 can be targeted to inhibit breast tumor growth. This inhibition, whether delivered via siRNA lentivirus or polyclonal antibody, resulted in decreased cellular proliferation in culture and smaller xenografts in mice. The effects were shown in both ER (estrogen receptor)-positive human breast cancer MCF-7 cells, as well as in ER-negative MDA-MB-231 cells. Furthermore, we detected soluble EG-1 in serum and urine of breast cancer patients. These observations demonstrate that EG-1 is relevant to human breast cancer, and is a molecular target worthy of translational efforts into effective breast cancer therapy.

  13. Ibuprofen Inhibits Colitis-Induced Overexpression of Tumor-Related Rac1b1

    PubMed Central

    Matos, Paulo; Kotelevets, Larissa; Goncalves, Vania; Henriques, Andreia; Zerbib, Philippe; Moyer, Mary Pat; Chastre, Eric; Jordan, Peter

    2013-01-01

    The serrated pathway to colorectal tumor formation involves oncogenic mutations in the BRAF gene, which are sufficient for initiation of hyperplastic growth but not for tumor progression. A previous analysis of colorectal tumors revealed that overexpression of splice variant Rac1b occurs in around 80% of tumors with mutant BRAF and both events proved to cooperate in tumor cell survival. Here, we provide evidence for increased expression of Rac1b in patients with inflamed human colonic mucosa as well as following experimentally induced colitis in mice. The increase of Rac1b in the mouse model was specifically prevented by the nonsteroidal anti-inflammatory drug ibuprofen, which also inhibited Rac1b expression in cultured HT29 colorectal tumor cells through a cyclooxygenase inhibition.independent mechanism. Accordingly, the presence of ibuprofen led to a reduction of HT29 cell survival in vitro and inhibited Rac1b-dependent tumor growth of HT29 xenografts. Together, our results suggest that stromal cues, namely, inflammation, can trigger changes in Rac1b expression in the colon and identify ibuprofen as a highly specific and efficient inhibitor of Rac1b overexpression in colorectal tumors. Our data suggest that the use of ibuprofen may be beneficial in the treatment of patients with serrated colorectal tumors or with inflammatory colon syndromes. PMID:23359345

  14. Periostin Limits Tumor Response to VEGFA Inhibition.

    PubMed

    Keklikoglou, Ioanna; Kadioglu, Ece; Bissinger, Stefan; Langlois, Benoît; Bellotti, Axel; Orend, Gertraud; Ries, Carola H; De Palma, Michele

    2018-03-06

    Resistance to antiangiogenic drugs limits their applicability in cancer therapy. Here, we show that revascularization and progression of pancreatic neuroendocrine tumors (PNETs) under extended vascular-endothelial growth factor A (VEGFA) blockade are dependent on periostin (POSTN), a matricellular protein expressed by stromal cells. Genetic deletion of Postn in RIP1-Tag2 mice blunted tumor rebounds of M2-like macrophages and αSMA + stromal cells in response to prolonged VEGFA inhibition and suppressed PNET revascularization and progression on therapy. POSTN deficiency also impeded the upregulation of basic fibroblast growth factor (FGF2), an adaptive mechanism previously implicated in PNET evasion from antiangiogenic therapy. Higher POSTN expression correlated with markers of M2-like macrophages in human PNETs, and depleting macrophages with a colony-stimulating factor 1 receptor (CSF1R) antibody inhibited PNET revascularization and progression under VEGFA blockade despite continued POSTN production. These findings suggest a role for POSTN in orchestrating resistance to anti-VEGFA therapy in PNETs. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells

    PubMed Central

    Maeng, Yong-Sun; Lee, Rina; Lee, Boram; Choi, Seung-il; Kim, Eung Kweon

    2016-01-01

    Metastasis is the main cause of mortality in cancer patients. Although there are many anti-cancer drugs targeting tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression; in particular, lymphangiogenesis is pivotal for metastasis in cancer. Here we report that lithium inhibits colon cancer metastasis by blocking lymphangiogenesis. Lithium reduces the expression of transforming growth factor-β-induced protein (TGFBIp) in colon cancer cells by inhibiting Smad3 phosphorylation via GSK3β inactivation. Moreover, lithium inhibits lymphatic endothelial cell migration, which is increased upon TGFBIp expression in tumor cells. Lithium had no significant effect on SW620 tumor growth in vitro and in vivo; however, it inhibited lymphangiogenesis in tumors. In tumor xenografts model, lithium was found to prevent metastasis to the lungs, liver, and lymph nodes by inhibiting TGFBIp-induced tumor lymphangiogenesis. Collectively, our findings demonstrate a novel role of lithium in the inhibition of colon cancer metastasis by blocking TGFBIp expression, and thereby TGFBIp-induced lymphangiogenesis, in primary tumors. PMID:26857144

  16. TOPK inhibitor induces complete tumor regression in xenograft models of human cancer through inhibition of cytokinesis.

    PubMed

    Matsuo, Yo; Park, Jae-Hyun; Miyamoto, Takashi; Yamamoto, Shinji; Hisada, Shoji; Alachkar, Houda; Nakamura, Yusuke

    2014-10-22

    TOPK (T-lymphokine-activated killer cell-originated protein kinase) is highly and frequently transactivated in various cancer tissues, including lung and triple-negative breast cancers, and plays an indispensable role in the mitosis of cancer cells. We report the development of a potent TOPK inhibitor, OTS964 {(R)-9-(4-(1-(dimethylamino)propan-2-yl)phenyl)-8-hydroxy-6-methylthieno[2,3-c]quinolin-4(5H)-one}, which inhibits TOPK kinase activity with high affinity and selectivity. Similar to the knockdown effect of TOPK small interfering RNAs (siRNAs), this inhibitor causes a cytokinesis defect and the subsequent apoptosis of cancer cells in vitro as well as in xenograft models of human lung cancer. Although administration of the free compound induced hematopoietic adverse reactions (leukocytopenia associated with thrombocytosis), the drug delivered in a liposomal formulation effectively caused complete regression of transplanted tumors without showing any adverse reactions in mice. Our results suggest that the inhibition of TOPK activity may be a viable therapeutic option for the treatment of various human cancers. Copyright © 2014, American Association for the Advancement of Science.

  17. Rottlerin exerts its anti-tumor activity through inhibition of Skp2 in breast cancer cells.

    PubMed

    Yin, Xuyuan; Zhang, Yu; Su, Jingna; Hou, Yingying; Wang, Lixia; Ye, Xiantao; Zhao, Zhe; Zhou, Xiuxia; Li, Yali; Wang, Zhiwei

    2016-10-11

    Studies have investigated the tumor suppressive role of rottlerin in carcinogenesis. However, the molecular mechanisms of rottlerin-induced anti-tumor activity are largely unclear. Skp2 (S-phase kinase associated protein 2) has been validated to play an oncogenic role in a variety of human malignancies. Therefore, inactivation of Skp2 could be helpful for the treatment of human cancers. In the current study, we explore whether rottlerin could inhibit Skp2 expression, leading to inhibition of cell growth, migration and invasion in breast cancer cells. We found that rottlerin treatment inhibited cell growth, induced apoptosis and cell cycle arrest. We also revealed that rottlerin suppressed cell migration and invasion in breast cancer cells. Mechanically, we observed that rottlerin significantly down-regulated the expression of Skp2 in breast cancer cells. Importantly, overexpression of Skp2 abrogated rottlerin-mediated tumor suppressive activity, whereas down-regulation of Skp2 enhanced rottlerin-triggered anti-tumor function. Strikingly, we identified that rottlerin exhibited its anti-tumor potential partly through inactivation of Skp2 in breast cancer. Our findings indicate that rottlerin could be a potential safe agent for the treatment of breast cancer.

  18. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    PubMed Central

    Marano, Grazia; Gronewold, Claas; Frank, Martin; Merling, Anette; Kliem, Christian; Sauer, Sandra; Wiessler, Manfred; Frei, Eva

    2012-01-01

    Summary Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethyl)furan as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis. The most active compound, (4-{[(β-D-galactopyranosyl)oxy]methyl}furan-3-yl)methyl hydrogen sulfate (GSF), inhibited the activation of matrix-metalloproteinase-2 (MMP-2) as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM) proteins, fibrinogen and fibronectin. In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyl)oxy]methyl}furan (BGF) nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethyl)furan, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site. These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis

  19. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    PubMed

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  20. Pit-1 inhibits BRCA1 and sensitizes human breast tumors to cisplatin and vitamin D treatment

    PubMed Central

    Seoane, Samuel; Arias, Efigenia; Sigueiro, Rita; Sendon-Lago, Juan; Martinez-Ordoñez, Anxo; Castelao, Esteban; Eiró, Noemí; Garcia-Caballero, Tomás; Macia, Manuel; Lopez-Lopez, Rafael; Maestro, Miguel; Vizoso, Francisco; Mouriño, Antonio; Perez-Fernandez, Roman

    2015-01-01

    The POU class 1 homeobox 1 (POU1F1, also known as Pit-1), pertaining to the Pit-Oct-Unc (POU) family of transcription factors, has been related to tumor growth and metastasis in breast. However, its role in response to breast cancer therapy is unknown. We found that Pit-1 down-regulated DNA-damage and repair genes, and specifically inhibited BRCA1 gene expression, sensitizing breast cancer cells to DNA-damage agents. Administration of 1α, 25-dihydroxy-3-epi-vitamin D3 (3-Epi, an endogenous low calcemic vitamin D metabolite) reduced Pit-1 expression, and synergized with cisplatin, thus, decreasing cell proliferation and apoptosis in vitro, and reducing tumor growth in vivo. In addition, fifteen primary cultures of human breast tumors showed significantly decreased proliferation when treated with 3-Epi+cisplatin, compared to cisplatin alone. This response positively correlated with Pit-1 levels. Our findings demonstrate that high levels of Pit-1 and reduced BRCA1 levels increase breast cancer cell susceptibility to 3-Epi+cisplatin therapy. PMID:25992773

  1. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer.

    PubMed

    Chen, Yongshun; Li, Xiaohong; Guo, Leiming; Wu, Xiaoyuan; He, Chunyu; Zhang, Song; Xiao, Yanjing; Yang, Yuanyuan; Hao, Daxuan

    2015-08-01

    Radiotherapy is an effective treatment for esophageal cancer; however, tumor resistance to radiation remains a major biological problem. The present study aimed to investigate whether inhibition of autophagy may decrease overall tumor resistance to radiation. The effects of the autophagy inhibitor 3-methyladenine (3-MA) on radiosensitivity were tested in the EC9706 human esophageal squamous cell carcinoma cell line by colony formation assay. Furthermore, the synergistic cytotoxic effects of 3-MA and radiation were assessed in a tumor xenograft model in nude mice. Mechanistic studies were performed using flow cytometry, immunohistochemistry and western blot analysis. The results of the present study demonstrated that radiation induced an accumulation of autophagosomes and 3-MA effectively inhibited radiation-induced autophagy. Inhibition of autophagy was shown to significantly increase the radiosensitivity of the tumors in vitro and in vivo. The enhancement ratio of sensitization in EC9706 cells was 1.76 when the cells were treated with 10 mM 3-MA, alongside ionizing radiation. In addition, autophagy inhibition increased apoptosis and reduced tumor cell proliferation. The combination of radiation and autophagy inhibition resulted in a significant reduction in tumor volume and vasculature in the murine model. The present study demonstrated in vitro and in vivo that radiation-induced autophagy has a protective effect against cell death, and inhibition of autophagy is able to enhance the radiosensitivity of esophageal squamous cell carcinoma.

  2. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer

    PubMed Central

    CHEN, YONGSHUN; LI, XIAOHONG; GUO, LEIMING; WU, XIAOYUAN; HE, CHUNYU; ZHANG, SONG; XIAO, YANJING; YANG, YUANYUAN; HAO, DAXUAN

    2015-01-01

    Radiotherapy is an effective treatment for esophageal cancer; however, tumor resistance to radiation remains a major biological problem. The present study aimed to investigate whether inhibition of autophagy may decrease overall tumor resistance to radiation. The effects of the autophagy inhibitor 3-methyladenine (3-MA) on radiosensitivity were tested in the EC9706 human esophageal squamous cell carcinoma cell line by colony formation assay. Furthermore, the synergistic cytotoxic effects of 3-MA and radiation were assessed in a tumor xenograft model in nude mice. Mechanistic studies were performed using flow cytometry, immunohistochemistry and western blot analysis. The results of the present study demonstrated that radiation induced an accumulation of autophagosomes and 3-MA effectively inhibited radiation-induced autophagy. Inhibition of autophagy was shown to significantly increase the radiosensitivity of the tumors in vitro and in vivo. The enhancement ratio of sensitization in EC9706 cells was 1.76 when the cells were treated with 10 mM 3-MA, alongside ionizing radiation. In addition, autophagy inhibition increased apoptosis and reduced tumor cell proliferation. The combination of radiation and autophagy inhibition resulted in a significant reduction in tumor volume and vasculature in the murine model. The present study demonstrated in vitro and in vivo that radiation-induced autophagy has a protective effect against cell death, and inhibition of autophagy is able to enhance the radiosensitivity of esophageal squamous cell carcinoma. PMID:25891159

  3. Decursin inhibits vasculogenesis in early tumor progression by suppression of endothelial progenitor cell differentiation and function.

    PubMed

    Jung, Seok Yun; Choi, Jin Hwa; Kwon, Sang-Mo; Masuda, Haruchika; Asahara, Takayuki; Lee, You-Mie

    2012-05-01

    Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti-inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood-derived AC133+ cells that produce functional EPC progenies. Decursin dose-dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle-shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin-2, angiopoietin receptor Tie-2, Flk-1 (vascular endothelial growth factor receptor-2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose-dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor-induced mobilization of circulating EPCs (CD34 + /VEGFR-2+ cells) from bone marrow and early incorporation of Dil-Ac-LDL-labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild-type- or bone-marrow-transplanted mice. Accordingly, decursin attenuated EPC-derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. Copyright © 2012 Wiley Periodicals, Inc.

  4. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors

    PubMed Central

    Mulcahy Levy, Jean M; Zahedi, Shadi; Griesinger, Andrea M; Morin, Andrew; Davies, Kurtis D; Aisner, Dara L; Kleinschmidt-DeMasters, BK; Fitzwalter, Brent E; Goodall, Megan L; Thorburn, Jacqueline; Amani, Vladimir; Donson, Andrew M; Birks, Diane K; Mirsky, David M; Hankinson, Todd C; Handler, Michael H; Green, Adam L; Vibhakar, Rajeev; Foreman, Nicholas K; Thorburn, Andrew

    2017-01-01

    Kinase inhibitors are effective cancer therapies, but tumors frequently develop resistance. Current strategies to circumvent resistance target the same or parallel pathways. We report here that targeting a completely different process, autophagy, can overcome multiple BRAF inhibitor resistance mechanisms in brain tumors. BRAFV600Emutations occur in many pediatric brain tumors. We previously reported that these tumors are autophagy-dependent and a patient was successfully treated with the autophagy inhibitor chloroquine after failure of the BRAFV600E inhibitor vemurafenib, suggesting autophagy inhibition overcame the kinase inhibitor resistance. We tested this hypothesis in vemurafenib-resistant brain tumors. Genetic and pharmacological autophagy inhibition overcame molecularly distinct resistance mechanisms, inhibited tumor cell growth, and increased cell death. Patients with resistance had favorable clinical responses when chloroquine was added to vemurafenib. This provides a fundamentally different strategy to circumvent multiple mechanisms of kinase inhibitor resistance that could be rapidly tested in clinical trials in patients with BRAFV600E brain tumors. DOI: http://dx.doi.org/10.7554/eLife.19671.001 PMID:28094001

  5. Somatostatin Receptor-1 Induces Cell Cycle Arrest and Inhibits Tumor Growth in Pancreatic Cancer

    PubMed Central

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F. Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E.

    2010-01-01

    Functional somatostatin receptors (SSTRs) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G0/G1 growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n=5, p<0.05, t-test), and inhibited tumor weight by 69% and 47%, (n=5, p<0.05, t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  6. Imatinib mesylate inhibits Leydig cell tumor growth: evidence for in vitro and in vivo activity.

    PubMed

    Basciani, Sabrina; Brama, Marina; Mariani, Stefania; De Luca, Gabriele; Arizzi, Mario; Vesci, Loredana; Pisano, Claudio; Dolci, Susanna; Spera, Giovanni; Gnessi, Lucio

    2005-03-01

    Leydig cell tumors are usually benign tumors of the male gonad. However, if the tumor is malignant, no effective treatments are currently available. Leydig cell tumors express platelet-derived growth factor (PDGF), kit ligand and their respective receptors, PDGFR and c-kit. We therefore evaluated the effects of imatinib mesylate (imatinib), a selective inhibitor of the c-kit and PDGFR tyrosine kinases, on the growth of rodent Leydig tumor cell lines in vivo and in vitro, and examined, in human Leydig cell tumor samples, the expression of activated PDGFR and c-kit and the mutations in exons of the c-kit gene commonly associated with solid tumors. Imatinib caused concentration-dependent decreases in the viability of Leydig tumor cell lines, which coincided with apoptosis and inhibition of proliferation and ligand-stimulated phosphorylation of c-kit and PDGFRs. Mice bearing s.c. allografts of a Leydig tumor cell line treated with imatinib p.o., had an almost complete inhibition of tumor growth, less tumor cell proliferation, increased apoptosis, and a lesser amount of tumor-associated mean vessel density compared with controls. No drug-resistant tumors appeared during imatinib treatment but tumors regrew after drug withdrawal. Human Leydig cell tumors showed an intense expression of the phosphorylated form of c-kit and a less intense expression of phosphorylated PDGFRs. No activating mutations in common regions of mutation of the c-kit gene were found. Our studies suggest that Leydig cell tumors might be a potential target for imatinib therapy.

  7. Macrophage PPARγ inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone

    PubMed Central

    Cheng, Wing Yin; Huynh, HoangDinh; Chen, Peiwen; Peña-Llopis, Samuel; Wan, Yihong

    2016-01-01

    Tumor-associated macrophage (TAM) significantly contributes to cancer progression. Human cancer is enhanced by PPARγ loss-of-function mutations, but inhibited by PPARγ agonists such as TZD diabetes drugs including rosiglitazone. However, it remains enigmatic whether and how macrophage contributes to PPARγ tumor-suppressive functions. Here we report that macrophage PPARγ deletion in mice not only exacerbates mammary tumor development but also impairs the anti-tumor effects of rosiglitazone. Mechanistically, we identify Gpr132 as a novel direct PPARγ target in macrophage whose expression is enhanced by PPARγ loss but repressed by PPARγ activation. Functionally, macrophage Gpr132 is pro-inflammatory and pro-tumor. Genetic Gpr132 deletion not only retards inflammation and cancer growth but also abrogates the anti-tumor effects of PPARγ and rosiglitazone. Pharmacological Gpr132 inhibition significantly impedes mammary tumor malignancy. These findings uncover macrophage PPARγ and Gpr132 as critical TAM modulators, new cancer therapeutic targets, and essential mediators of TZD anti-cancer effects. DOI: http://dx.doi.org/10.7554/eLife.18501.001 PMID:27692066

  8. Metformin selectively affects human glioblastoma tumor-initiating cell viability

    PubMed Central

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107

  9. Resveratrol Prevents Tumor Growth and Metastasis by Inhibiting Lymphangiogenesis and M2 Macrophage Activation and Differentiation in Tumor-associated Macrophages.

    PubMed

    Kimura, Yoshiyuki; Sumiyoshi, Maho

    2016-01-01

    Antitumor and antimetastatic effects of resveratrol on tumor-induced lymphangiogenesis through the regulation of M2 macrophages in tumor-associated macrophages currently remain unknown. Therefore, we herein examined the effects of resveratrol on M2 macrophage activation and differentiation, and those of resveratrol-treated condition medium (CM) in M2 macrophages on vascular endothelial cell growth factor (VEGF)-C-induced migration, invasion, and tube formation by human lymphatic endothelial cells (HLECs). Resveratrol (50 μM or 5-50 μM) inhibited the production of interleukin-10 and monocyte chemoattractant protein-1 in M2 macrophages, whereas it promoted that of transforming growth factor-β1. Resveratrol (25 and 50 μM) inhibited the phosphorylation of signal transducer and activator of transcript 3 without affecting its expression in the differentiation process of M2 macrophages. Furthermore, resveratrol-treated CM of M2 macrophages inhibited VEGF-C-induced HLEC migration, invasion, and lymphangiogenesis. Resveratrol (25 mg/kg, twice daily) inhibited tumor growth and metastasis to the lung and also reduced the area of lymphatic endothelial cells in tumors (in vivo). These results suggest that the antitumor and antimetastatic effects of resveratrol were partly due to antilymphangiogenesis through the regulation of M2 macrophage activation and differentiation.

  10. DSGOST inhibits tumor growth by blocking VEGF/VEGFR2-activated angiogenesis.

    PubMed

    Choi, Hyeong Sim; Lee, Kangwook; Kim, Min Kyoung; Lee, Kang Min; Shin, Yong Cheol; Cho, Sung-Gook; Ko, Seong-Gyu

    2016-04-19

    Tumor growth requires a process called angiogenesis, a new blood vessel formation from pre-existing vessels, as newly formed vessels provide tumor cells with oxygen and nutrition. Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST), one of traditional Chinese medicines, has been widely used in treatment of vessel diseases including Raynaud's syndrome in Northeast Asian countries including China, Japan and Korea. Therefore, we hypothesized that DSGOST might inhibit tumor growth by targeting newly formed vessels on the basis of its historical prescription. Here, we demonstrate that DSGOST inhibits tumor growth by inhibiting VEGF-induced angiogenesis. DSGOST inhibited VEGF-induced angiogenic abilities of endothelial cells in vitro and in vivo, which resulted from its inhibition of VEGF/VEGFR2 interaction. Furthermore, DSGOST attenuated pancreatic tumor growth in vivo by reducing angiogenic vessel numbers, while not affecting pancreatic tumor cell viability. Thus, our data conclude that DSGOST inhibits VEGF-induced tumor angiogenesis, suggesting a new indication for DSGOST in treatment of cancer.

  11. Bovine Lactoferrin and Lactoferricin, a Peptide Derived from Bovine Lactoferrin, Inhibit Tumor Metastasis in Mice

    PubMed Central

    Watanabe, Shikiko; Watanabe, Ryosuke; Hata, Katsusuke; Shimazaki, Kei–ichi; Azuma, Ichiro

    1997-01-01

    We investigated the effect of a bovine milk protein, lactoferrin (LF–B), and a pepsin–generated peptide of LF–B, lactoferricin (Lfcin–B), on inhibition of tumor metastasis produced by highly metastatic murine tumor cells, B16–BL6 melanoma and L5178Y–ML25 lymphoma cells, using experimental and spontaneous metastasis models in syngeneic mice. The subcutaneous (s.c.) administration of bovine apo–lactoferrin (apo–LF–B, 1 mg/mouse) and Lfcin–B (0.5 mg/monse) 1 day after tumor inoculation significantly inhibited liver and lung metastasis of L5178Y–ML25 cells. However, human apo–lactoferrin (apo–LF–H) and bovine holo–lactoferrin (holo–LF–B) at the dose of 1 mg/mouse failed to inhibit tumor metastasis of L5178Y–ML25 cells. Similarly, the s.c. administration of apo–LF–B as well as Lfcin–B, but not apo–LF–H and holo–LF–B, 1 day after tumor inoculation resulted in significant inhibition of lung metastasis of B16–BL6 cells in an experimental metastasis model. Furthermore, in in vivo analysis for tumor–induced angiogenesis, both apo–LF–B and Lfcin–B inhibited the number of tumor–induced blood vessels and suppressed tumor growth on day 8 after tumor inoculation. However, in a long–term analysis of tumor growth for up to 21 days after tumor inoculation, single administration of apo–LF–B significantly suppressed the growth of B16–BL6 cells throughout the examination period, whereas Lfcin–B showed inhibitory activity only during the early period (8 days). In spontaneous metastasis of B16–BL6 melanoma cells, multiple administration of both apo–LF–B and Lfcin–B into tumor–bearing mice significantly inhibited lung metastasis produced by B16–BL6 cells, though only apo–LF–B exhibited an inhibitory effect on tumor growth at the time of primary tumor amputation (on day 21) after tumor inoculation. These results suggest that apo–LF–B and Lfcin–B inhibit tumor metastasis through different

  12. Dietary rice bran component γ-oryzanol inhibits tumor growth in tumor-bearing mice.

    PubMed

    Kim, Sung Phil; Kang, Mi Young; Nam, Seok Hyun; Friedman, Mendel

    2012-06-01

    We investigated the effects of rice bran and components on tumor growth in mice. Mice fed standard diets supplemented with rice bran, γ-oryzanol, Ricetrienol®, ferulic acid, or phytic acid for 2 weeks were inoculated with CT-26 colon cancer cells and fed the same diet for two additional weeks. Tumor mass was significantly lower in the γ-oryzanol and less so in the phytic acid group. Tumor inhibition was associated with the following biomarkers: increases in cytolytic activity of splenic natural killer (NK) cells; partial restoration of nitric oxide production and phagocytosis in peritoneal macrophages increases in released the pro-inflammatory cytokines tumor necrosis factor-α, IL-1β, and IL-6 from macrophages; and reductions in the number of blood vessels inside the tumor. Pro-angiogenic biomarkers vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), and 5-lipoxygenase-5 (5-LOX) were also significantly reduced in mRNA and protein expression by tumor genes. ELISA of tumor cells confirmed reduced expression of COX-2 and 5-LOX up to 30%. Reduced COX-2 and 5-LOX expression downregulated VEGF and inhibited neoangiogenesis inside the tumors. Induction of NK activity, activation of macrophages, and inhibition of angiogenesis seem to contribute to the inhibitory mechanism of tumor regression by γ-oryzanol. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Noradrenaline inhibits lipopolysaccharide-induced tumor necrosis factor and interleukin 6 production in human whole blood.

    PubMed Central

    van der Poll, T; Jansen, J; Endert, E; Sauerwein, H P; van Deventer, S J

    1994-01-01

    Sepsis and lipopolysaccharide (LPS) trigger the systemic release of both cytokines and catecholamines. Cytokines are known to be capable of eliciting a stress hormone response in vivo. The present study sought insight into the effect of noradrenaline on LPS-induced release of tumor necrosis factor alpha (TNF) and interleukin 6 (IL-6) in human whole blood. Whole blood was incubated with LPS for 4 h at 37 degrees C in the presence and absence of noradrenaline and/or specific alpha and beta antagonists and agonists. Noradrenaline caused a dose-dependent inhibition of LPS-induced TNF and IL-6 production. This effect could be completely prevented by addition of the specific beta 1, antagonist metoprolol, while it was not affected by the alpha antagonist phentolamine. Specific beta-adrenergic stimulation by isoprenaline mimicked the inhibiting effect of noradrenaline on LPS-evoked cytokine production, whereas alpha-adrenergic stimulation by phenylephrine had no effect. Fluorescence-activated cell sorter analysis demonstrated that beta-adrenergic stimulation had no effect on LPS binding to and internalization into mononuclear cells or on the expression of CD14, the major receptor for LPS on mononuclear cells. In acute sepsis, enhanced release of noradrenaline may be part of a negative feedback mechanism meant to inhibit ongoing TNF and IL-6 production. PMID:8168970

  14. Inhibition of Mycobacterial Infection by the Tumor Suppressor PTEN*

    PubMed Central

    Huang, Guochang; Redelman-Sidi, Gil; Rosen, Neal; Glickman, Michael S.; Jiang, Xuejun

    2012-01-01

    The tumor suppressor PTEN is a lipid phosphatase that is frequently mutated in various human cancers. PTEN suppresses tumor cell proliferation, survival, and growth mainly by inhibiting the PI3K-Akt signaling pathway through dephosphorylation of phosphatidylinositol 3,4,5-triphosphate. In addition to it role in tumor suppression, the PTEN-PI3K pathway controls many cellular functions, some of which may be important for cellular resistance to infection. Currently, the intersection between tumorigenic signaling pathways and cellular susceptibility to infection is not well defined. In this study we report that PTEN signaling regulates infection of both noncancerous and cancerous cells by multiple intracellular mycobacterial pathogens and that pharmacological modulation of PTEN signaling can affect mycobacterial infection. We found that PTEN deficiency renders multiple types of cells hyper-susceptible to infection by Mycoplasma and Mycobacterium bovis Bacillus Calmette-Guérin (BCG). The lipid phosphatase activity of PTEN is required for attenuating infection. Furthermore, we found mycobacterial infection activates host cell Akt phosphorylation, and pharmacological inhibition of Akt or PI3K activity reduced levels of intracellular infection. Intriguingly, inhibition of mTOR, one of the downstream components of the Akt signaling and a promising cancer therapeutic target, also lowered intracellular Bacillus Calmette-Guérin levels in mammary epithelial cancer MCF-7 cells. These findings demonstrate a critical role of PTEN-regulated pathways in pathogen infection. The relationship of PTEN-PI3K-Akt mTOR status and susceptibility to mycobacterial infection suggests that the interaction of mycobacterial pathogens with cancer cells may be influenced by genetic alterations in the tumor cells. PMID:22613768

  15. Shikonins, phytocompounds from Lithospermum erythrorhizon, inhibit the transcriptional activation of human tumor necrosis factor alpha promoter in vivo.

    PubMed

    Staniforth, Vanisree; Wang, Sheng-Yang; Shyur, Lie-Fen; Yang, Ning-Sun

    2004-02-13

    Tumor necrosis factor alpha (TNF-alpha) contributes to the pathogenesis of both acute and chronic inflammatory diseases and has been a target for the development of new anti-inflammatory drugs. Shikonins, the naphthoquinone pigments present in the root tissues of Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae), have been reported to exert anti-inflammatory effects both in vitro and in vivo. In this study, we evaluated the effects of shikonin and its derivatives on the transcriptional activation of human TNF-alpha promoter in a gene gun-transfected mouse skin system by using a luciferase reporter gene assay. The crude plant extract of L. erythrorhizon as well as derived individual compounds shikonin, isobutyryl shikonin, acetyl shikonin, dimethylacryl shikonin and isovaleryl shikonin showed significant dose-dependent inhibition of TNF-alpha promoter activation. Among the tested compounds, shikonin and isobutyryl shikonin exhibited the highest inhibition of TNF-alpha promoter activation and also showed significant suppression of transgenic human TNF-alpha mRNA expression and protein production. We demonstrated that shikonin-inhibitory response was retained in the core TNF-alpha promoter region containing the TATA box and a 48-bp downstream sequence relative to the transcription start site. Further our results indicated that shikonin suppressed the basal transcription and activator-regulated transcription of TNF-alpha by inhibiting the binding of transcription factor IID protein complex (TATA box-binding protein) to TATA box. These in vivo results suggest that shikonins inhibit the transcriptional activation of the human TNF-alpha promoter through interference with the basal transcription machinery. Thus, shikonins may have clinical potential as anti-inflammatory therapeutics.

  16. Daidzein suppresses tumor necrosis factor-α induced migration and invasion by inhibiting hedgehog/Gli1 signaling in human breast cancer cells.

    PubMed

    Bao, Cheng; Namgung, Hyeju; Lee, Jaehoo; Park, Hyun-Chang; Ko, Jiwon; Moon, Heejung; Ko, Hyuk Wan; Lee, Hong Jin

    2014-04-30

    In breast cancer, the cytokine tumor necrosis factor-α (TNF-α) induces cell invasion, although the molecular basis of it has not been clearly elucidated. In this study, we investigated the role of daidzein in regulating TNF-α induced cell invasion and the underlying molecular mechanisms. Daidzein inhibited TNF-α induced cellular migration and invasion in estrogen receptor (ER) negative MCF10DCIS.com human breast cancer cells. TNF-α activated Hedgehog (Hh) signaling by enhancing Gli1 nuclear translocation and transcriptional activity, which resulted in increased invasiveness; these effects were blocked by daidzein and the Hh signaling inhibitors, cyclopamine and vismodegib. Moreover, these compounds suppressed TNF-α induced matrix metalloproteinase (MMP)-9 mRNA expression and activity. Taken together, mammary tumor cell invasiveness was stimulated by TNF-α induced activation of Hh signaling; these effects were abrogated by daidzein, which suppressed Gli1 activation, thereby inhibiting migration and invasion.

  17. Osteoprotegerin inhibits bone resorption and prevents tumor development in a xenogenic model of Ewing's sarcoma by inhibiting RANKL

    PubMed Central

    Picarda, Gaëlle; Matous, Etienne; Amiaud, Jérôme; Charrier, Céline; Lamoureux, François; Heymann, Marie-Françoise; Tirode, Franck; Pitard, Bruno; Trichet, Valérie; Heymann, Dominique; Redini, Françoise

    2013-01-01

    Ewing's sarcoma (ES) associated with high osyeolytic lesions typically arises in the bones of children and adolescents. The development of multi-disciplinary therapy has increased current long-term survival rates to greater than 50% but only 20% for high risk group patients (relapse, metastases, etc.). Among new therapeutic approaches, osteoprotegerin (OPG), an anti-bone resorption molecule may represent a promising candidate to inhibit RANKL-mediated osteolytic component of ES and consequently to limit the tumor development. Xenogenic orthotopic models of Ewing's sarcoma were induced by intra-osseous injection of human TC-71 ES cells. OPG was administered in vivo by non-viral gene transfer using an amphiphilic non ionic block copolymer. ES bearing mice were assigned to controls (no treatment, synthetic vector alone or F68/empty pcDNA3.1 plasmid) and hOPG treated groups. A substantial but not significant inhibition of tumor development was observed in the hOPG group as compared to control groups. Marked bone lesions were revealed by micro-computed tomography analyses in control groups whereas a normal bone micro-architecture was preserved in the hOPG treated group. RANKL over-expressed in ES animal model was expressed by tumor cells rather than by host cells. However, TRAIL present in the tumor microenvironment may interfere with OPG effect on tumor development and bone remodeling via RANKL inhibition. In conclusion, the use of a xenogenic model of Ewing's sarcoma allowed discriminating between the tumor and host cells responsible for the elevation of RANKL production observed in this tumor and demonstrated the relevance of blocking RANKL by OPG as a promising therapy in ES. PMID:26909278

  18. Third-generation oncolytic herpes simplex virus inhibits the growth of liver tumors in mice.

    PubMed

    Nakatake, Richi; Kaibori, Masaki; Nakamura, Yusuke; Tanaka, Yoshito; Matushima, Hideyuki; Okumura, Tadayoshi; Murakami, Takashi; Ino, Yasushi; Todo, Tomoki; Kon, Masanori

    2018-03-01

    Multimodality therapies are used to manage patients with hepatocellular carcinoma (HCC), although advanced HCC is incurable. Oncolytic virus therapy is probably the next major breakthrough in cancer treatment. The third-generation oncolytic herpes simplex virus type 1 (HSV-1) T-01 kills tumor cells without damaging the surrounding normal tissues. Here we investigated the antitumor effects of T-01 on HCC and the host's immune response to HCC cells. The cytopathic activities of T-01 were tested in 14 human and 1 murine hepatoma cell line in vitro. In various mouse xenograft models, HuH-7, KYN-2, PLC/PRF/5 and HepG2 human cells and Hepa1-6 murine cells were used to investigate the in vivo efficacy of T-01. T-01 was cytotoxic to 13 cell lines (in vitro). In mouse xenograft models of subcutaneous, orthotopic and peritoneal tumor metastasis in athymic mice (BALB/c nu/nu), the growth of tumors formed by the human HCC cell lines and hepatoblastoma cell line was inhibited by T-01 compared with that of mock-inoculated tumors. In a bilateral Hepa1-6 subcutaneous tumor model in C57BL/6 mice, the growth of tumors inoculated with T-01 was inhibited, as was the case for contralateral tumors. T-01 also significantly reduced tumor growth. T-01 infection significantly enhanced antitumor efficacy via T cell-mediated immune responses. Results demonstrate that a third-generation oncolytic HSV-1 may serve as a novel treatment for patients with HCC. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. Tumor initiation in human malignant melanoma and potential cancer therapies.

    PubMed

    Ma, Jie; Frank, Markus H

    2010-02-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment.

  20. Tumor Initiation in Human Malignant Melanoma and Potential Cancer Therapies

    PubMed Central

    Ma, Jie; Frank, Markus H.

    2010-01-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells, have been identified in several human malignancies, including human malignant melanoma. The frequency of malignant melanoma-initiating cells (MMICs), which are identified by their expression of ATP-binding cassette (ABC) family member ABCB5, correlates with disease progression in human patients. Furthermore, targeted MMIC ablation through ABCB5 inhibits tumor initiation and growth in preclinical xenotransplantation models, pointing to potential therapeutic promise of the CSC concept. Recent advances also show that CSCs can exert pro-angiogenic roles in tumor growth and serve immunomodulatory functions related to the evasion of host anti-tumor immunity. Thus, MMICs might initiate and sustain tumorigenic growth not only as a result of CSC-intrinsic self-renewal, differentiation and proliferative capacity, but also based on pro-tumorigenic interactions with the host environment. PMID:20184545

  1. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts.

    PubMed

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-12-31

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC.

  2. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    PubMed Central

    2013-01-01

    Background Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. Methods In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Results Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Conclusions Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC. PMID:24380387

  3. Inhibition of the hedgehog pathway targets the tumor-associated stroma in pancreatic cancer.

    PubMed

    Hwang, Rosa F; Moore, Todd T; Hattersley, Maureen Mertens; Scarpitti, Meghan; Yang, Bin; Devereaux, Erik; Ramachandran, Vijaya; Arumugam, Thiruvengadam; Ji, Baoan; Logsdon, Craig D; Brown, Jeffrey L; Godin, Robert

    2012-09-01

    The Hedgehog (Hh) pathway has emerged as an important pathway in multiple tumor types and is thought to be dependent on a paracrine signaling mechanism. The purpose of this study was to determine the role of pancreatic cancer-associated fibroblasts (human pancreatic stellate cells, HPSCs) in Hh signaling. In addition, we evaluated the efficacy of a novel Hh antagonist, AZD8542, on tumor progression with an emphasis on the role of the stroma compartment. Expression of Hh pathway members and activation of the Hh pathway were analyzed in both HPSCs and pancreatic cancer cells. We tested the effects of Smoothened (SMO) inhibition with AZD8542 on tumor growth in vivo using an orthotopic model of pancreatic cancer containing varying amounts of stroma. HPSCs expressed high levels of SMO receptor and low levels of Hh ligands, whereas cancer cells showed the converse expression pattern. HPSC proliferation was stimulated by Sonic Hedgehog with upregulation of downstream GLI1 mRNA. These effects were abrogated by AZD8542 treatment. In an orthotopic model of pancreatic cancer, AZD8542 inhibited tumor growth only when HPSCs were present, implicating a paracrine signaling mechanism dependent on stroma. Further evidence of paracrine signaling of the Hh pathway in prostate and colon cancer models is provided, demonstrating the broader applicability of our findings. Based on the use of our novel human-derived pancreatic cancer stellate cells, our results suggest that Hh-targeted therapies primarily affect the tumor-associated stroma, rather than the epithelial compartment.

  4. The Somatostatin Analog Rhenium Re-188-P2045 Inhibits the Growth of AR42J Pancreatic Tumor-xenografts

    PubMed Central

    Nelson, Carol A.; Azure, Michael T.; Adams, Christopher T.; Zinn, Kurt R.

    2015-01-01

    P2045 is a peptide analog of somatostatin with picomolar affinity for the somatostatin receptor subtype 2 (SSTR2) upregulated in some pancreatic tumors. Studies were conducted in rat AR42J pancreatic tumor-xenograft mice to determine if Re-188-P2045 could inhibit the growth of pancreatic cancer in an animal model. Methods Re-188-P2045 was intravenously administered every 3 days for 16 days to nude mice with AR42J tumor-xenografts that were ≈ 20 mm3 at study initiation. Tumor volumes were recorded throughout the dosing period. At necropsy all tissues were assessed for levels of radioactivity and evaluated for histological abnormalities. Clinical chemistry and hematology parameters were determined from terminal blood samples. The affinity of non-radioactive Re-185/187-P2045 for somatostatin receptors was compared in human NCI-H69 and rat AR42J tumor-cell membranes expressing predominantly SSTR2. Results In the 1.85 and 5.55 mBq groups tumor growth was inhibited in a dose-dependent fashion. In the 11.1 mBq group tumor growth was completely inhibited throughout the dosing period and for 12 days after the last administered dose. The radioactivity level in tumors 4 hours post-injection was 10%ID/g, which was 2-fold higher than in the kidneys. Re-188-P2045 was well tolerated in all dose-groups with no adverse clinical, histological, or hematological findings. The non-radioactive Re-185/187-P2045 bound more avidly (0.2 nM) to SSTR2 in human than rat tumor membranes suggesting that these studies are relevant to human studies. Conclusion Re-188-P2045 is a promising therapeutic candidate for patients with somatostatin-receptor-positive cancer. PMID:25359879

  5. Tumor Suppressor WWOX inhibits osteosarcoma metastasis by modulating RUNX2 function.

    PubMed

    Del Mare, Sara; Aqeilan, Rami I

    2015-08-10

    Osteosarcoma (OS) is among the most frequently occurring primary bone tumors, primarily affecting adolescents and young adults. This malignant osteoid forming tumor is characterized by its metastatic potential, mainly to lungs. We recently demonstrated that WW domain-containing oxidoreductase (WWOX) is frequently inactivated in human OS and that WWOX restoration in WWOX-negative OS cells suppresses tumorigenicity. Of note, WWOX levels are reduced in paired OS samples of post-treatment metastastectomies as compared to pre-treatment biopsies suggesting that decreased WWOX levels are associated with a more aggressive phenotype at the metastatic site. Nevertheless, little is known about WWOX function in OS metastasis. Here, we investigated the role of tumor suppressor WWOX in suppressing pulmonary OS metastasis both in vitro and in vivo. We demonstrated that ectopic expression of WWOX in OS cells, HOS and LM-7, inhibits OS invasion and cell migration in vitro. Furthermore, WWOX expression reduced tumor burden in vivo and inhibited metastases' seeding and colonization. Mechanistically, WWOX function is associated with reduced levels of RUNX2 metastatic target genes implicated in adhesion and motility. Our results suggest that WWOX plays a critical role in determining the aggressive phenotype of OS, and its expression could be an attractive therapeutic target to combat this devastating adolescent disease.

  6. Tumor Suppressor WWOX inhibits osteosarcoma metastasis by modulating RUNX2 function

    PubMed Central

    Del Mare, Sara; Aqeilan, Rami I.

    2015-01-01

    Osteosarcoma (OS) is among the most frequently occurring primary bone tumors, primarily affecting adolescents and young adults. This malignant osteoid forming tumor is characterized by its metastatic potential, mainly to lungs. We recently demonstrated that WW domain-containing oxidoreductase (WWOX) is frequently inactivated in human OS and that WWOX restoration in WWOX-negative OS cells suppresses tumorigenicity. Of note, WWOX levels are reduced in paired OS samples of post-treatment metastastectomies as compared to pre-treatment biopsies suggesting that decreased WWOX levels are associated with a more aggressive phenotype at the metastatic site. Nevertheless, little is known about WWOX function in OS metastasis. Here, we investigated the role of tumor suppressor WWOX in suppressing pulmonary OS metastasis both in vitro and in vivo. We demonstrated that ectopic expression of WWOX in OS cells, HOS and LM-7, inhibits OS invasion and cell migration in vitro. Furthermore, WWOX expression reduced tumor burden in vivo and inhibited metastases’ seeding and colonization. Mechanistically, WWOX function is associated with reduced levels of RUNX2 metastatic target genes implicated in adhesion and motility. Our results suggest that WWOX plays a critical role in determining the aggressive phenotype of OS, and its expression could be an attractive therapeutic target to combat this devastating adolescent disease. PMID:26256646

  7. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth.

    PubMed

    Tu, Shui Ping; Jin, Huanyu; Shi, Jin Dong; Zhu, Li Ming; Suo, Ya; Lu, Gang; Liu, Anna; Wang, Timothy C; Yang, Chung S

    2012-02-01

    Myeloid-derived suppressor cells (MDSC) accumulate in the spleen and tumors and contribute to tumor growth, angiogenesis, and progression. In this study, we examined the effects of curcumin on the activation and differentiation of MDSCs, their interaction with human cancer cells, and related tumor growth. Treatment with curcumin in the diet or by intraperitoneal injection significantly inhibited tumorigenicity and tumor growth, decreased the percentages of MDSCs in the spleen, blood, and tumor tissues, reduced interleukin (IL)-6 levels in the serum and tumor tissues in a human gastric cancer xenograft model and a mouse colon cancer allograft model. Curcumin treatment significantly inhibited cell proliferation and colony formation of cancer cells and decreased the secretion of murine IL-6 by MDSCs in a coculture system. Curcumin treatment inhibited the expansion of MDSCs, the activation of Stat3 and NF-κB in MDSCs, and the secretion of IL-6 by MDSCs, when MDSCs were cultured in the presence of IL-1β, or with cancer cell- or myofibroblast-conditioned medium. Furthermore, curcumin treatment polarized MDSCs toward a M1-like phenotype with an increased expression of CCR7 and decreased expression of dectin 1 in vivo and in vitro. Our results show that curcumin inhibits the accumulation of MDSCs and their interaction with cancer cells and induces the differentiation of MDSCs. The induction of MDSC differentiation and inhibition of the interaction of MDSCs with cancer cells are potential strategies for cancer prevention and therapy. ©2011 AACR.

  8. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth

    PubMed Central

    Tu, Shui Ping; Jin, Huanyu; Shi, Jin Dong; Zhu, Li Ming; Suo, Ya; Lu, Gang; Liu, Anna; Wang, Timothy C.; Yang, Chung S.

    2011-01-01

    Myeloid-derived suppressor cells (MDSCs) accumulate in the spleen and tumors and contribute to tumor growth, angiogenesis and progression. In this study, we examined the effects of curcumin on the activation and differentiation of MDSCs, their interaction with human cancer cells and related tumor growth. Treatment with curcumin in the diet or by i.p. injection significantly inhibited tumorigenecity and tumor growth, decreased the percentages of MDSCs in the spleen, blood and tumor tissues, reduced IL-6 levels in the serum and tumor tissues in a human gastric cancer xenograft model and a mouse colon cancer allograft model. Curcumin treatment significantly inhibited cell proliferation and colony formation of cancer cells and decreased the secretion of murine interleukin (IL)-6 by MDSCs in a co-culture system. Curcumin treatment inhibited the expansion of MDSCs, the activation of Stat3 and NF-κB in MDSCs, and the secretion of IL-6 by MDSCs when MDSCs were cultured in the presence of IL-1β, or with cancer cell- or myofibroblast-conditioned medium. Furthermore, curcumin treatment polarized MDSCs toward a M1-like phenotype with an increased expression of CCR7 and decreased expression of dectin 1 in vivo and in vitro. Our results demonstrate that curcumin inhibits the accumulation of MDSCs and their interaction with cancer cells and induces the differentiation of MDSCs. The induction of MDSC differentiation and inhibition of the interaction of MDSCs with cancer cells are potential strategies for cancer prevention and therapy. PMID:22030090

  9. Enhancement of hypoxia-activated prodrug TH-302 anti-tumor activity by Chk1 inhibition.

    PubMed

    Meng, Fanying; Bhupathi, Deepthi; Sun, Jessica D; Liu, Qian; Ahluwalia, Dharmendra; Wang, Yan; Matteucci, Mark D; Hart, Charles P

    2015-05-21

    The hypoxia-activated prodrug TH-302 is reduced at its nitroimidazole group and selectively under hypoxic conditions releases the DNA cross-linker bromo-isophosphoramide mustard (Br-IPM). Here, we have explored the effect of Chk1 inhibition on TH-302-mediated pharmacological activities. We employed in vitro cell viability, DNA damage, cellular signaling assays and the in vivo HT29 human tumor xenograft model to study the effect of Chk1inhibition on TH-302 antitumor activities. TH-302 cytotoxicity is greatly enhanced by Chk1 inhibition in p53-deficient but not in p53-proficient human cancer cell lines. Chk1 inhibitors reduced TH-302-induced cell cycle arrest via blocking TH-302-induced decrease of phosphorylation of histone H3 and increasing Cdc2-Y15 phosphorylation. Employing the single-cell gel electrophoresis (comet) assay, we observed a potentiation of the TH-302 dependent tail moment. TH-302 induced γH2AX and apoptosis were also increased upon the addition of Chk1 inhibitor. Potentiation of TH-302 cytotoxicity by Chk1 inhibitor was only observed in cell lines proficient in, but not deficient in homology-directed DNA repair. We also show that combination treatment led to lowering of Rad51 expression levels as compared to either agent alone. In vivo data demonstrate that Chk1 inhibitor enhances TH-302 anti-tumor activity in p53 mutant HT-29 human tumor xenografts, supporting the hypothesis that these in vitro results can translate to enhanced in vivo efficacy of the combination. TH-302-mediated in vitro and in vivo anti-tumor activities were greatly enhanced by the addition of Chk1 inhibitors. The preclinical data presented in this study support a new approach for the treatment of p53-deficient hypoxic cancers by combining Chk1 inhibitors with the hypoxia-activated prodrug TH-302.

  10. Trastuzumab inhibits pituitary tumor growth modulating the TGFB/Smad2/3 pathway.

    PubMed

    Petiti, Juan Pablo; Sosa, Liliana Del Valle; Picech, Florencia; Moyano Crespo, Gabriela Deisi; Arevalo Rojas, Jean Zander; Pérez, Pablo Anibal; Guido, Carolina Beatriz; Leimgruber, Carolina; Sabatino, María Eugenia; García, Pedro Emilio; Bengió, Verónica; Papalini, Francisco Roque; Estario, Paula; Bernhardt, Maria Celina; Villarreal, Marcos; Gutiérrez, Silvina; De Paul, Ana Lucía; Mukdsi, Jorge Humberto; Torres, Alicia I

    2018-06-06

    In pituitary adenomas, early recurrences and resistance to conventional pharmacotherapies are common, but the mechanisms involved are still not understood. The high expression of epidermal growth factor receptor 2 (HER2)/extracellular signal-regulated kinase (ERK1/2) signal observed in human pituitary adenomas, together with the low levels of the antimitogenic transforming growth factor beta receptor 2 (TBR2), encouraged us to evaluate the effect of the specific HER2 inhibition with trastuzumab on experimental pituitary tumor cell growth and its effect on the antiproliferative response to TGFB1. Trastuzumab decreased the pituitary tumor growth as well as the expression of ERK1/2 and the cell cycle regulators cyclin D1 and CDK4. The HER2/ERK1/2 pathway is an attractive therapeutic target, but its intricate relations with other signaling modulators still need to be unraveled. Thus, we investigated possible cross-talk with TGFB signaling, which has not yet been studied in pituitary tumors. In tumoral GH3 cells, co-incubation with trastuzumab and TGFB1 significantly decreased cell proliferation, an effect accompanied by a reduction in ERK1/2 phosphorylation, an increase of SMAD2/3 activation. In addition, through immunoprecipitation assays, a diminution of SMAD2/3-ERK1/2 and an increase SMAD2/3-TGFBR1 interactions were observed when cells were co-incubated with Trastuzumab and TGFB1. These findings indicate that blocking HER2 by trastuzumab inhibited pituitary tumor growth and modulated HER2/ERK1/2 signaling and consequently the anti-mitogenic TGFB1/TBRs/SMADs cascade. The imbalance between HER2 and TGFBRs expression observed in human adenomas and the response to trastuzumab on experimental tumor growth, may make the HER2/ERK1/2 pathway an attractive target for future pituitary adenoma therapy.

  11. Chitosan nanoparticles inhibit the growth of human hepatocellular carcinoma xenografts through an antiangiogenic mechanism.

    PubMed

    Xu, Yinglei; Wen, Zhengshun; Xu, Zirong

    2009-12-01

    Chitosan nanoparticles (CNP) have demonstrated anticancer activity in vitro and in vivo by a few recent researches. However, the mechanisms involved in their potential anticancer activity remain to be elucidated. In this study, the effects of CNP on tumor growth were investigated using a model of nude mice xenografted with human hepatocellular carcinoma (HCC) (BEL-7402) cells. The results demonstrated that the treatment of these nude mice with CNP significantly inhibited tumor growth and induced tumor necrosis. Furthermore, microvessel density (MVD) determination by counting immunohistologically stained tumor microvessels suggested that CNP dose-dependent tumor suppression was correlated with the inhibition of tumor angiogenesis. Mechanistically, immunohistochemical and quantitative real-time reverse transcription-polymerase reaction assays provided evidence that CNP-mediated inhibition of tumor angiogenesis was linked to impaired levels of vascular endothelial growth factor receptor 2 (VEGFR2). Due to their low or non-toxicity, CNP and their derivatives may represent a novel class of anti-cancer drug.

  12. A naturally occurring mixture of tocotrienols inhibits the growth of human prostate tumor, associated with epigenetic modifications of cyclin-dependent kinase inhibitors p21 and p27.

    PubMed

    Huang, Ying; Wu, Renyi; Su, Zheng-Yuan; Guo, Yue; Zheng, Xi; Yang, Chung S; Kong, Ah-Ng

    2017-02-01

    Tocotrienols, members of the vitamin E family, have three unsaturated bonds in their side chains. Recently, it has been suggested that the biological effects of tocotrienols may differ from that of tocopherols. Several in vitro studies have shown that tocotrienols have stronger anticancer effects than tocopherols. VCaP cell line used in this study is from a vertebral bone metastasis from a patient with prostate cancer. Eight-week-old male NCr(-/-) nude mice were subcutaneously injected with VCaP-luc cells in matrigel and then administered a tocotrienol mixture for 8 weeks. The tocotrienol mixture inhibited the growth of human prostate tumor xenografts in a dose-dependent manner. The concentrations of tocotrienols and their metabolites were significantly increased in treatment groups. Tocotrienols inhibited prostate tumor growth by suppressing cell proliferation, which was associated with the induction of the cyclin-dependent kinase (CDK) inhibitors p21 and p27. In addition, tocotrienol treatment was associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27 and with decreased expression of histone deacetylases. Tocotrienols inhibited human prostate tumor growth, associated with up-regulation of the CDK inhibitors p21 and p27. Elevated expression of p21 and p27 could be partly due to the suppressed expression of HDACs. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth

    NASA Astrophysics Data System (ADS)

    Holmgren, Lars; Ambrosino, Elena; Birot, Olivier; Tullus, Carl; Veitonmäki, Niina; Levchenko, Tetyana; Carlson, Lena-Maria; Musiani, Piero; Iezzi, Manuela; Curcio, Claudia; Forni, Guido; Cavallo, Federica; Kiessling, Rolf

    2006-06-01

    Endogenous angiogenesis inhibitors have shown promise in preclinical trials, but clinical use has been hindered by low half-life in circulation and high production costs. Here, we describe a strategy that targets the angiostatin receptor angiomotin (Amot) by DNA vaccination. The vaccination procedure generated antibodies that detected Amot on the endothelial cell surface. Purified Ig bound to the endothelial cell membrane and inhibited endothelial cell migration. In vivo, DNA vaccination blocked angiogenesis in the matrigel plug assay and prevented growth of transplanted tumors for up to 150 days. We further demonstrate that a combination of DNA vaccines encoding Amot and the extracellular and transmembrane domains of the human EGF receptor 2 (Her-2)/neu oncogene inhibited breast cancer progression and impaired tumor vascularization in Her-2/neu transgenic mice. No toxicity or impairment of normal blood vessels could be detected. This work shows that DNA vaccination targeting Amot may be used to mimic the effect of angiostatin. cancer vaccines | neoplasia | neovascularization | breast cancer | angiostatin

  14. Aspirin induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model

    PubMed Central

    HOSSAIN, MOHAMMAD AKBAR; KIM, DONG HWAN; JANG, JUNG YOON; KANG, YONG JUNG; YOON, JEONG-HYUN; MOON, JEON-OK; CHUNG, HAE YOUNG; KIM, GI-YOUNG; CHOI, YUNG HYUN; COPPLE, BRYAN L.; KIM, NAM DEUK

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to induce apoptosis in a variety of cancer cells, including colon, prostate, breast and leukemia. Among them, aspirin, a classical NSAID, shows promise in cancer therapy in certain types of cancers. We hypothesized that aspirin might affect the growth of liver cancer cells since liver is the principal site for aspirin metabolism. Therefore, we investigated the effects of aspirin on the HepG2 human hepatocellular carcinoma cell line in vitro and the HepG2 cell xenograft model in BALB/c nude mice. We found that treatment with aspirin inhibited cell growth and induced apoptosis involving both extrinsic and intrinsic pathways as measured by DNA ladder formation, alteration in the Bax/Bcl-2 ratio, activation of the caspase activities and related protein expressions. In vivo antitumor activity assay also showed that aspirin resulted in significant tumor growth inhibition compared to the control. Oral administration of aspirin (100 mg/kg/day) caused a significant reduction in the growth of HepG2 tumors in nude mice. These findings suggest that aspirin may be used as a promising anticancer agent against liver cancer. PMID:22179060

  15. Transcriptional Inhibition of the Human Papilloma Virus Reactivates Tumor Suppressor p53 in Cervical Carcinoma Cells

    PubMed Central

    Kochetkov, D. V.; Ilyinskaya, G. V.; Komarov, P. G.; Strom, E.; Agapova, L. S.; Ivanov, A. V.; Budanov, A. V.; Frolova, E. I.; Chumakov, P. M.

    2009-01-01

    Inactivation of tumor suppressor p53 accompanies the majority of human malignancies. Restoration of p53 function causes death of tumor cells and is potentially suitable for gene therapy of cancer. In cervical carcinoma, human papilloma virus (HPV) E6 facilitates proteasomal degradation of p53. Hence, a possible approach to p53 reactivation is the use of small molecules suppressing the function of viral proteins. HeLa cervical carcinoma cells (HPV-18) with a reporter construct containing the b-galactosidase gene under the control of a p53-responsive promoter were used as a test system to screen a library of small molecules for restoration of the transcriptional activity of p53. The effect of the two most active compounds was studied with cell lines differing in the state of p53-dependent signaling pathways. The compounds each specifically activated p53 in cells expressing HPV-18 and, to a lesser extent, HPV-16 and exerted no effect on control p53-negative cells or cells with the intact p53-dependent pathways. Activation of p53 in cervical carcinoma cells was accompanied by induction of p53-dependent CDKN1 (p21), inhibition of cell proliferation, and induction of apoptosis. In addition, the two compounds dramatically decreased transcription of the HPV genome, which was assumed to cause p53 reactivation. The compounds were low-toxic for normal cells and can be considered as prototypes of new anticancer drugs. PMID:17685229

  16. Magnolol and honokiol exert a synergistic anti-tumor effect through autophagy and apoptosis in human glioblastomas

    PubMed Central

    Cheng, Yu-Chen; Hueng, Dueng-Yuan; Huang, Hua-Yin; Chen, Jang-Yi; Chen, Ying

    2016-01-01

    Glioblastoma (GBM) is a malignant brain tumor associated with a high mortality rate. The aim of this study is to investigate the synergistic effects of honokiol (Hono) and magnolol (Mag), extracted from Magnolia officinalis, on cytotoxicity and inhibition of human GBM tumor progression in cellular and animal models. In comparison with Hono or Mag alone, co-treatment with Hono and Mag (Hono-Mag) decreased cyclin A, D1 and cyclin-dependent kinase 2, 4, 6 significantly, leading to cell cycle arrest in U87MG and LN229 human glioma cells. In addition, phosphorylated phosphoinositide 3-kinase (p-PI3K), p-Akt, and Ki67 were decreased after Hono-Mag treatment, showing proliferation inhibition. Hono-Mag treatment also reduced p-p38 and p-JNK but elevated p-ERK expression. Besides, Hono-Mag treatment induced autophagy and intrinsic and extrinsic apoptosis. Both ERK and autophagy inhibitors enhanced Hono-Mag-induced apoptosis in LN229 cells, indicating a rescuer role of ERK. In human GBM orthotopic xenograft model, the Hono-Mag treatment inhibited the tumor progression and induced apoptosis more efficiently than Temozolomide, Hono, or Mag group. In conclusion, the Hono-Mag exerts a synergistic anti-tumor effect by inhibiting cell proliferation and inducing autophagy and apoptosis in human GBM cells. The Hono-Mag may be applied as an adjuvant therapy to improve the therapeutic efficacy of GBM treatment. PMID:27074557

  17. A Tumor-stroma Targeted Oncolytic Adenovirus Replicated in Human Ovary Cancer Samples and Inhibited Growth of Disseminated Solid Tumors in Mice

    PubMed Central

    Lopez, M Veronica; Rivera, Angel A; Viale, Diego L; Benedetti, Lorena; Cuneo, Nicasio; Kimball, Kristopher J; Wang, Minghui; Douglas, Joanne T; Zhu, Zeng B; Bravo, Alicia I; Gidekel, Manuel; Alvarez, Ronald D; Curiel, David T; Podhajcer, Osvaldo L

    2012-01-01

    Targeting the tumor stroma in addition to the malignant cell compartment is of paramount importance to achieve complete tumor regression. In this work, we modified a previously designed tumor stroma-targeted conditionally replicative adenovirus (CRAd) based on the SPARC promoter by introducing a mutated E1A unable to bind pRB and pseudotyped with a chimeric Ad5/3 fiber (Ad F512v1), and assessed its replication/lytic capacity in ovary cancer in vitro and in vivo. AdF512v1 was able to replicate in fresh samples obtained from patients: (i) with primary human ovary cancer; (ii) that underwent neoadjuvant treatment; (iii) with metastatic disease. In addition, we show that four intraperitoneal (i.p.) injections of 5 × 1010 v.p. eliminated 50% of xenografted human ovary tumors disseminated in nude mice. Moreover, AdF512v1 replication in tumor models was enhanced 15–40-fold when the tumor contained a mix of malignant and SPARC-expressing stromal cells (fibroblasts and endothelial cells). Contrary to the wild-type virus, AdF512v1 was unable to replicate in normal human ovary samples while the wild-type virus can replicate. This study provides evidence on the lytic capacity of this CRAd and highlights the importance of targeting the stromal tissue in addition to the malignant cell compartment to achieve tumor regression. PMID:22948673

  18. LTR12 promoter activation in a broad range of human tumor cells by HDAC inhibition

    PubMed Central

    Krönung, Sonja K.; Beyer, Ulrike; Chiaramonte, Maria Luisa; Dolfini, Diletta; Mantovani, Roberto; Dobbelstein, Matthias

    2016-01-01

    A considerable proportion of the human genome consists of transposable elements, including the long terminal repeats (LTRs) of endogenous retroviruses. During evolution, such LTRs were occasionally inserted upstream of protein-coding genes, contributing to their regulation. We previously identified the LTR12 from endogenous retrovirus 9 (ERV9) as a regulator of proapoptotic genes such as TP63 or TNFRSF10B. The promoter activity of LTR12 is largely confined to the testes, silenced in testicular carcinoma, but reactivated in testicular cancer cells by broad-range histone deacetylase (HDAC) inhibitors. Here we show that inhibition of HDAC1-3 is sufficient for LTR12 activation. Importantly, HDAC inhibitors induce LTR12 activity not only in testicular cancer cells, but also in cells derived from many additional tumor species. Finally, we characterize the transcription factor NF-Y as a mediator of LTR12 promoter activity and HDAC inhibitor-induced apoptosis, in the context of widespread genomic binding of NF-Y to specific LTR12 sequences. Thus, HDAC inhibitor-driven LTR12 activation represents a generally applicable means to induce proapoptotic genes in human cancer cells. PMID:27172897

  19. Purification and characterization of an inhibitor (soluble tumor necrosis factor receptor) for tumor necrosis factor and lymphotoxin obtained from the serum ultrafiltrates of human cancer patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatanaga, Tetsuya; Whang, Chenduen; Cappuccini, F.

    1990-11-01

    Serum ultrafiltrates (SUF) from human patients with different types of cancer contain a blocking factor (BF) that inhibits the cytolytic activity of human tumor necrosis factor {alpha} (TNF-{alpha}) in vitro. BF is a protein with a molecular mass of 28kDa on reducing sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE). The active material was purified to homogeneity by a combination of affinity chromatography, PAGE, and high-pressure liquid chromatography. Amino acid sequence analysis revealed that BF is derived from the membrane TNF receptor. Purified BF blocks the lytic activity of recombinant human and mouse TNF-{alpha} and recombinant human lymphotoxin activity of TNF-{alpha} andmore » recombinant human lymphotoxin on murine L929 cells in vitro. However, BF inhibits the lytic activity of TNF-{alpha} more effectively than it does that of lymphotoxin. The BF also inhibits the necrotizing activity of recombinant human TNF-{alpha} when coinjected into established cutaneous Meth A tumors in BALB/c mice. The BF may have an important role in (i) the regulation and control of TNF-{alpha} and lymphotoxin activity in cancer patients, (ii) interaction between the tumor and the host antitumor mechanisms, and (iii) use of systemically administered TNF-{alpha} in clinical trials with human cancer patients.« less

  20. Near infrared fluorescent imaging of choline kinase alpha expression and inhibition in breast tumors.

    PubMed

    Arlauckas, Sean P; Kumar, Manoj; Popov, Anatoliy V; Poptani, Harish; Delikatny, Edward J

    2017-03-07

    Choline kinase alpha (ChoKα) overexpression is associated with an aggressive tumor phenotype. ChoKα inhibitors induce apoptosis in tumors, however validation of their specificity is difficult in vivo. We report the use of optical imaging to assess ChoKα status in cells and in vivo using JAS239, a carbocyanine-based ChoKα inhibitor with inherent near infrared fluorescence. JAS239 attenuated choline phosphorylation and viability in a panel of human breast cancer cell lines. Antibody blockade prevented cellular retention of JAS239 indicating direct interaction with ChoKα independent of the choline transporters and catabolic choline pathways. In mice bearing orthotopic MCF7 breast xenografts, optical imaging with JAS239 distinguished tumors overexpressing ChoKα from their empty vector counterparts and delineated tumor margins. Pharmacological inhibition of ChoK by the established inhibitor MN58b led to a growth inhibition in 4175-Luc+ tumors that was accompanied by concomitant reduction in JAS239 uptake and decreased total choline metabolite levels as measured using magnetic resonance spectroscopy. At higher therapeutic doses, JAS239 was as effective as MN58b at arresting tumor growth and inducing apoptosis in MDA-MB-231 tumors, significantly reducing tumor choline below baseline levels without observable systemic toxicity. These data introduce a new method to monitor therapeutically effective inhibitors of choline metabolism in breast cancer using a small molecule companion diagnostic.

  1. ME-10TUMOR MICROENVIRONMENT INFILTRATING MYELOID DERIVED SUPPRESSOR CELLS INHIBIT ANTI-TUMOR T CELL RESPONSES

    PubMed Central

    Kamran, Neha; Ayala, Mariela; Li, Youping; Assi, Hikmat; Candolfi, Marianela; Dzaman, Marta; Lowenstein, Pedro; Castro, Maria

    2014-01-01

    MDSCs represent a population of immature myeloid cells at various stages of differentiation that inhibit anti-tumor T cell-mediated responses. We demonstrate the accumulation of MDSCs in GL26 induced glioma and B16 melanoma bearing mice. Absolute numbers of Ly-6G+ (Gr-1high) MDSCs showed a 200 fold increase within the tumor microenvironment (TME) 28 days post-tumor implantation. The numbers of Ly-6C+ (Gr-1low) MDSCs also showed a similar trend within the TME. While this massive influx of MDSCs was noted within intracranial tumors, MDSC levels did not increase in the dLNs, spleen or bone marrow (BM) of intracranial tumor bearing mice. MDSCs numbers were significantly elevated in the blood of GL26 intracranial tumor bearing mice at 28 days. Mice bearing B16 tumors in the flank showed a ∼5 fold increased influx of Ly-6G+ MDSCs while the Ly6C+ MDSCs increased marginally by 1.1 fold within the tumor mass. Levels of circulating MDSCs also increased by ∼10 fold, while the levels of splenic MDSCs did not change. While both Ly-6G+ and Ly6C+ MDSCs isolated from the brain TME of GL26 intracranial tumor bearing mice inhibited antigen-specific T cell proliferation, Ly6C+ MDSC were found to be more efficient. Ly6G+ or Ly6C+ MDSCs from the bone marrow of intracranial tumor bearing mice failed to suppress antigen-specific T cell proliferation. Splenic and bone marrow MDSCs from naïve mice also did not inhibit antigen-specific T cell proliferation suggesting that TME derived factors may activate MDSCs to exert their immune-suppressive properties. Microarray analysis of glioma cell lines showed elevated levels of CXCL1 mRNA and splenic MDSCs from GL26 tumor mice showed upregulation of the CXCR2 mRNA. Preliminary experiments indicate that CXCR2 signaling mediates MDSC chemotaxis. Overall, our data suggests that strategies that inhibit MDSC recruitment to the TME and/or block their activity could enhance the T cell mediated tumor clearance.

  2. Targeting ADAM17 inhibits human colorectal adenocarcinoma progression and tumor-initiating cell frequency.

    PubMed

    Dosch, Joseph; Ziemke, Elizabeth; Wan, Shanshan; Luker, Kathryn; Welling, Theodore; Hardiman, Karin; Fearon, Eric; Thomas, Suneetha; Flynn, Matthew; Rios-Doria, Jonathan; Hollingsworth, Robert; Herbst, Ronald; Hurt, Elaine; Sebolt-Leopold, Judith

    2017-09-12

    ADAM17 (a disintegrin and metalloproteinase 17)/TACE (TNFα converting enzyme) has emerged as a potential therapeutic target in colorectal cancer (CRC) and other cancers, due in part to its role in regulating various tumor cell surface proteins and growth factors and cytokines in the tumor microenvironment. The emergence of MEDI3622, a highly potent and specific antibody-based ADAM17 inhibitor, has allowed testing of the concept that targeting ADAM17 may be an important new therapeutic approach for CRC patients. We demonstrate that MEDI3622 is highly efficacious on tumor growth in multiple human CRC PDX models, resulting in improved survival of animals bearing tumor xenografts. MEDI3622 was further found to impact Notch pathway activity and tumor-initiating cells. The promising preclinical activity seen here supports further clinical investigation of this treatment approach to improve therapeutic outcome for patients diagnosed with metastatic CRC, including patients with KRAS-mutant tumors for whom other therapeutic options are currently limited.

  3. Anemone rivularis inhibits pyruvate dehydrogenase kinase activity and tumor growth.

    PubMed

    Chung, Tae-Wook; Lee, Jung Hee; Choi, Hee-Jung; Park, Mi-Ju; Kim, Eun-Yeong; Han, Jung Ho; Jang, Se Bok; Lee, Syng-Ook; Lee, Sang Woo; Hang, Jin; Yi, Li Wan; Ha, Ki-Tae

    2017-05-05

    Anemone rivularis Buch.-Ham. ex DC. (Ranunculaceae) have been used as a traditional remedy for treatment of inflammation and cancer. However, there is no report demonstrating experimental evidence on anti-tumor action of A. rivularis. The Warburg's effect, preference of aerobic glycolysis rather than oxidative phosphorylation (OXPHOS) even in oxygen rich condition, is focused as one of major characteristics of malignant tumor. Thus, we investigated the effect of A. rivularis on the Pyruvate dehydrogenase (PDH) kinases (PDHKs), a major molecular targets for reducing aerobic glycolysis. The ethanol extract of whole plant of A. rivularis (ARE), fingerprinted by high performance liquid chromatography (HPLC), was applied to in vitro and cell-based PDHK activity assays. The effect of ARE on cell viabilities of several tumor cells was estimated by MTT assay. The expression of phosphor-PDH, PDH and PDHK1 were measured by Western blot analysis. The production of reactive oxygen species (ROS) and apoptosis was measured by fluorescence-activated cell sorting analysis, using 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA) and Annexin V/propidium iodide (PI) staining, respectively. Mitochondrial membrane potential was examined by tetramethylrhodamine methyl ester (TMRM) staining. In vivo anti-tumor efficacy of ARE was estimated by means of tumor volume and weight using allograft injection of murine Lewis lung carcinoma (LLC) cells to dorsa of C57BL/6 mice. ARE inhibited the viabilities of several cancer cells, including MDA-MB321, K562, HT29, Hep3B, DLD-1, and LLC. ARE suppressed PDHK activity in in vitro kinase assay, and also inhibited aerobic glycolysis by reducing phosphorylation of PDHA in human DLD-1 colon cancer and murine LLC cells. The expression of PDHK1, a major isoform of PDHKs in cancer, was not affected by ARE treatment. Moreover, ARE increased the both ROS production and mitochondrial damage. In addition, ARE suppressed the in vitro

  4. Bicarbonate Increases Tumor pH and Inhibits Spontaneous Metastases

    PubMed Central

    Robey, Ian F.; Baggett, Brenda K.; Kirkpatrick, Nathaniel D.; Roe, Denise J.; Dosescu, Julie; Sloane, Bonnie F.; Hashim, Arig Ibrahim; Morse, David L.; Raghunand, Natarajan; Gatenby, Robert A.; Gillies, Robert J.

    2010-01-01

    The external pH of solid tumors is acidic as a consequence of increased metabolism of glucose and poor perfusion. Acid pH has been shown to stimulate tumor cell invasion and metastasis in vitro and in cells before tail vein injection in vivo. The present study investigates whether inhibition of this tumor acidity will reduce the incidence of in vivo metastases. Here, we show that oral NaHCO3 selectively increased the pH of tumors and reduced the formation of spontaneous metastases in mouse models of metastatic breast cancer. This treatment regimen was shown to significantly increase the extracellular pH, but not the intracellular pH, of tumors by 31P magnetic resonance spectroscopy and the export of acid from growing tumors by fluorescence microscopy of tumors grown in window chambers. NaHCO3 therapy also reduced the rate of lymph node involvement, yet did not affect the levels of circulating tumor cells, suggesting that reduced organ metastases were not due to increased intravasation. In contrast, NaHCO3 therapy significantly reduced the formation of hepatic metastases following intrasplenic injection, suggesting that it did inhibit extravasation and colonization. In tail vein injections of alternative cancer models, bicarbonate had mixed results, inhibiting the formation of metastases from PC3M prostate cancer cells, but not those of B16 melanoma. Although the mechanism of this therapy is not known with certainty, low pH was shown to increase the release of active cathepsin B, an important matrix remodeling protease. PMID:19276390

  5. Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice.

    PubMed

    Kisker, Oliver; Onizuka, Shinya; Becker, Christian M; Fannon, Michael; Flynn, Evelyn; D'Amato, Robert; Zetter, Bruce; Folkman, Judah; Ray, Rahul; Swamy, Narasimha; Pirie-Shepherd, Steven

    2003-01-01

    We have isolated a selectively deglycosylated form of vitamin D binding protein (DBP-maf) generated from systemically available DBP by a human pancreatic cancer cell line. DBP-maf is antiproliferative for endothelial cells and antiangiogenic in the chorioallantoic membrane assay. DBP-maf administered daily was able to potently inhibit the growth of human pancreatic cancer in immune compromised mice (T/C=0.09). At higher doses, DBP-maf caused tumor regression. Histological examination revealed that treated tumors had a higher number of infiltrating macrophages as well as reduced microvessel density, and increased levels of apoptosis relative to untreated tumors. Taken together, these data suggest that DBP-maf is an antiangiogenic molecule that can act directly on endothelium as well as stimulate macrophages to attack both the endothelial and tumor cell compartment of a growing malignancy.

  6. Tumor suppressor miR-1 inhibits tumor growth and metastasis by simultaneously targeting multiple genes

    PubMed Central

    Liu, Cuilian; Zhang, Song; Wang, Qizhi; Zhang, Xiaobo

    2017-01-01

    Cancer progression depends on tumor growth and metastasis, which are activated or suppressed by multiple genes. An individual microRNA may target multiple genes, suggesting that a miRNA may suppress tumor growth and metastasis via simultaneously targeting different genes. However, thus far, this issue has not been explored. In the present study, the findings showed that miR-1 could simultaneously inhibit tumor growth and metastasis of gastric and breast cancers by targeting multiple genes. The results indicated that miR-1 was significantly downregulated in cancer tissues compared with normal tissues. The miR-1 overexpression led to cell cycle arrest in the G1 phase in gastric and breast cancer cells but not in normal cells. Furthermore, the miR-1 overexpression significantly inhibited the metastasis of gastric and breast cancer cells. An analysis of the underlying mechanism revealed that the simultaneous inhibition of tumor growth and metastasis mediated by miR-1 was due to the synchronous targeting of 6 miR-1 target genes encoding cyclin dependent kinase 4, twinfilin actin binding protein 1, calponin 3, coronin 1C, WAS protein family member 2 and thymosin beta 4, X-linked. In vivo assays demonstrated that miR-1 efficiently inhibited tumor growth and metastasis of gastric and breast cancers in nude mice. Therefore, our study contributed novel insights into the miR-1′s roles in tumorigenesis of gastric and breast cancers. PMID:28159933

  7. Tumor suppressor miR-1 inhibits tumor growth and metastasis by simultaneously targeting multiple genes.

    PubMed

    Liu, Cuilian; Zhang, Song; Wang, Qizhi; Zhang, Xiaobo

    2017-06-27

    Cancer progression depends on tumor growth and metastasis, which are activated or suppressed by multiple genes. An individual microRNA may target multiple genes, suggesting that a miRNA may suppress tumor growth and metastasis via simultaneously targeting different genes. However, thus far, this issue has not been explored. In the present study, the findings showed that miR-1 could simultaneously inhibit tumor growth and metastasis of gastric and breast cancers by targeting multiple genes. The results indicated that miR-1 was significantly downregulated in cancer tissues compared with normal tissues. The miR-1 overexpression led to cell cycle arrest in the G1 phase in gastric and breast cancer cells but not in normal cells. Furthermore, the miR-1 overexpression significantly inhibited the metastasis of gastric and breast cancer cells. An analysis of the underlying mechanism revealed that the simultaneous inhibition of tumor growth and metastasis mediated by miR-1 was due to the synchronous targeting of 6 miR-1 target genes encoding cyclin dependent kinase 4, twinfilin actin binding protein 1, calponin 3, coronin 1C, WAS protein family member 2 and thymosin beta 4, X-linked. In vivo assays demonstrated that miR-1 efficiently inhibited tumor growth and metastasis of gastric and breast cancers in nude mice. Therefore, our study contributed novel insights into the miR-1's roles in tumorigenesis of gastric and breast cancers.

  8. Enhanced susceptibility of irradiated tumor vessels to vascular endothelial growth factor receptor tyrosine kinase inhibition.

    PubMed

    Zips, Daniel; Eicheler, Wolfgang; Geyer, Peter; Hessel, Franziska; Dörfler, Annegret; Thames, Howard D; Haberey, Martin; Baumann, Michael

    2005-06-15

    Previous experiments with PTK787/ZK222584, a specific inhibitor of vascular endothelial growth factor receptor (VEGFR) tyrosine kinases, using irradiated human FaDu squamous cell carcinoma in nude mice, suggested that radiation-damaged tumor vessels are more sensitive to VEGFR inhibition. To test this hypothesis, the tumor transplantation site (i.e., the right hind leg of nude mice) was irradiated 10 days before transplantation of FaDu to induce radiation damage in the host tissue. FaDu tumors vascularized by radiation-damaged blood vessels appeared later, grew at a slower rate, and showed more necrosis and a smaller vessel area per central tumor section than controls. PTK787/ZK222584 at a daily dose of 50 mg/kg body weight had no impact on growth of control tumors. In contrast, tumors vascularized by radiation-damaged vessels responded to PTK787/ZK222584 with longer latency and slower growth rate than controls, and a trend toward further increase in necrosis, indicating that irradiated tumor vessels are more susceptible to VEGFR inhibition than unirradiated vessels. Although not proving causality, expression analysis of VEGF and VEGFR2 shows that enhanced sensitivity of irradiated vessels to a specific inhibitor of VEGFR tyrosine kinases correlates with increased expression of the molecular target.

  9. CHL1 gene acts as a tumor suppressor in human neuroblastoma.

    PubMed

    Ognibene, Marzia; Pagnan, Gabriella; Marimpietri, Danilo; Cangelosi, Davide; Cilli, Michele; Benedetti, Maria Chiara; Boldrini, Renata; Garaventa, Alberto; Frassoni, Francesco; Eva, Alessandra; Varesio, Luigi; Pistoia, Vito; Pezzolo, Annalisa

    2018-05-25

    Neuroblastoma is an aggressive, relapse-prone childhood tumor of the sympathetic nervous system that accounts for 15% of pediatric cancer deaths. A distal portion of human chromosome 3p is often deleted in neuroblastoma, this region may contain one or more putative tumor suppressor genes. A 2.54 Mb region at 3p26.3 encompassing the smallest region of deletion pinpointed CHL1 gene, the locus for neuronal cell adhesion molecule close homolog of L1. We found that low CHL1 expression predicted poor outcome in neuroblastoma patients. Here we have used two inducible cell models to analyze the impact of CHL1 on neuroblastoma biology. Over-expression of CHL1 induced neurite-like outgrowth and markers of neuronal differentiation in neuroblastoma cells, halted tumor progression, inhibited anchorage-independent colony formation, and suppressed the growth of human tumor xenografts. Conversely, knock-down of CHL1 induced neurite retraction and activation of Rho GTPases, enhanced cell proliferation and migration, triggered colony formation and anchorage-independent growth, accelerated growth in orthotopic xenografts mouse model. Our findings demonstrate unambiguously that CHL1 acts as a regulator of proliferation and differentiation of neuroblastoma cells through inhibition of the MAPKs and Akt pathways. CHL1 is a novel candidate tumor suppressor in neuroblastoma, and its associated pathways may represent a promising target for future therapeutic interventions.

  10. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    PubMed

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  11. Phloroglucinol Inhibits the Bioactivities of Endothelial Progenitor Cells and Suppresses Tumor Angiogenesis in LLC-Tumor-Bearing Mice

    PubMed Central

    Kwon, Yi-Hong; Jung, Seok-Yun; Kim, Jae-Won; Lee, Sang-Hun; Lee, Jun-Hee; Lee, Boo-Yong; Kwon, Sang-Mo

    2012-01-01

    Background There is increasing evidence that phloroglucinol, a compound from Ecklonia cava, induces the apoptosis of cancer cells, eventually suppressing tumor angiogenesis. Methodology/Principal Findings This is the first report on phloroglucinol's ability to potentially inhibit the functional bioactivities of endothelial progenitor cells (EPCs) and thereby attenuate tumor growth and angiogenesis in the Lewis lung carcinoma (LLC)-tumor-bearing mouse model. Although Phloroglucinol did not affect their cell toxicity, it specifically inhibited vascular endothelial growth factor (VEGF) dependent migration and capillary-like tube formation of EPCs. Our matrigel plug assay clearly indicated that orally injected phloroglucinol effectively disrupts VEGF-induced neovessel formation. Moreover, we demonstrated that when phloroglucinol is orally administered, it significantly inhibits tumor growth and angiogenesis as well as CD45−/CD34+ progenitor mobilization into peripheral blood in vivo in the LLC-tumor-bearing mouse model. Conclusions/Significance These results suggest a novel role for phloroglucinol: Phloroglucinol might be a modulator of circulating EPC bioactivities, eventually suppressing tumorigenesis. Therefore, phloroglucinol might be a candidate compound for biosafe drugs that target tumor angiogenesis. PMID:22496756

  12. Magnetic resonance spectroscopy for detection of choline kinase inhibition in the treatment of brain tumors

    PubMed Central

    Kumar, Manoj; Arlauckas, Sean P.; Saksena, Sona; Verma, Gaurav; Ittyerah, Ranjit; Pickup, Stephen; Popov, Anatoliy V.; Delikatny, Edward J.; Poptani, Harish

    2015-01-01

    Abnormal choline metabolism is a hallmark of cancer and is associated with oncogenesis and tumor progression. Increased choline is consistently observed in both pre-clinical tumor models and in human brain tumors by proton magnetic resonance spectroscopy (MRS). Thus, inhibition of choline metabolism using specific choline kinase inhibitors such as MN58b may be a promising new strategy for treatment of brain tumors. We demonstrate the efficacy of MN58b in suppressing phosphocholine production in three brain tumor cell lines. In vivo MRS studies of rats with intra-cranial F98-derived brain tumors showed a significant decrease in tumor total choline concentration after treatment with MN58b. High resolution MRS of tissue extracts confirmed that this decrease was due to a significant reduction in phosphocholine. Concomitantly, a significant increase in poly-unsaturated lipid resonances was also observed in treated tumors, indicating apoptotic cell death. Magnetic resonance imaging (MRI) based volume measurements demonstrated a significant growth arrest in the MN58b-treated tumors in comparison to saline-treated controls. Histologically, MN58b-treated tumors showed decreased cell density, as well as increased apoptotic cells. These results suggest that inhibition of choline kinase can be used as an adjuvant to chemotherapy in the treatment of brain tumors and that decreases in total choline observed by MRS can be used as an effective phamacodynamic biomarker of treatment response. PMID:25657334

  13. Rapamycin causes growth arrest and inhibition of invasion in human chondrosarcoma cells.

    PubMed

    Song, Jian; Wang, Xiaobo; Zhu, Jiaxue; Liu, Jun

    2016-01-01

    Chondrosarcoma is a highly malignant tumor that is characterized by a potent capacity to invade locally and cause distant metastasis and notable for its lack of response to conventional chemotherapy or radiotherapy. Rapamycin, the inhibitor of mammalian target of rapamycin (mTOR), is a valuable drug with diverse clinical applications and regulates many cellular processes. However, the effects of rapamycin on cell growth and invasion of human chondrosarcoma cells are not well known. We determined the effect of rapamycin on cell proliferation, cell cycle arrest and invasion by using MTS, flow cytometry and invasion assays in two human chondrosarcoma cell lines, SW1353 and JJ012. Cell cycle regulatory and invasion-related genes' expression analysis was performed by quantitative RT-PCR (qRT-PCR). We also evaluated the effect of rapamycin on tumor growth by using mice xenograph models. Rapamycin significantly inhibited the cell proliferation, induced cell cycle arrest and decreased the invasion ability of human chondrosarcoma cells. Meanwhile, rapamycin modulated the cell cycle regulatory and invasion-related genes' expression. Furthermore, the tumor growth of mice xenograph models with human chondrosarcoma cells was significantly inhibited by rapamycin. These results provided further insight into the role of rapamycin in chondrosarcoma. Therefore, rapamycin targeted therapy may be a potential treatment strategy for chondrosarcoma.

  14. Overexpression of ROCK1 and ROCK2 inhibits human laryngeal squamous cell carcinoma

    PubMed Central

    Zhang, Junbo; He, Xue; Ma, Yueying; Liu, Yanli; Shi, Huaiyin; Guo, Weiwei; Liu, Liangfa

    2015-01-01

    Rho-associated coiled-coil containing protein kinase (ROCK) over-expression has been implicated in the progression of many tumor types. The aim of this study was to explore the roles of ROCK1 and ROCK2 in human laryngeal squamous cell carcinoma (LSCC). ROCK1 and ROCK2 expression levels were examined in 50 cases of human LSCC samples by immunohistochemistry. Effects of ROCK1 and ROCK2 on LSCC cell proliferation and motility were investigated in the presence of the ROCK inhibitor Y-27632. The results showed that ROCK1 expression was positively correlated with tumor size and lymph node metastasis (P < 0.05); ROCK2 positively correlated with tumor size (P < 0.05). Inhibition of ROCK1 and ROCK2 by Y-27632 significantly inhibits proliferation, migration, and invasion of LSCC cells. Our data indicate that expression of ROCK1 and ROCK2 are closely associated with tumor growth and lymph node metastasis of LSCC. Thus, these two ROCK isoforms may be useful as molecular makers for LSCC diagnosis and may be useful therapeutic targets as well. PMID:25755711

  15. Selective Inhibition of Tumor Oncogenes by Disruption of Super-Enhancers

    PubMed Central

    Lovén, Jakob; Hoke, Heather A.; Lin, Charles Y.; Lau, Ashley; Orlando, David A.; Vakoc, Christopher R.; Bradner, James E.; Lee, Tong Ihn; Young, Richard A.

    2013-01-01

    Summary Chromatin regulators have become attractive targets for cancer therapy, but it is unclear why inhibition of these ubiquitous regulators should have gene-specific effects in tumor cells. Here, we investigate how inhibition of the widely expressed transcriptional coactivator BRD4 leads to selective inhibition of the MYC oncogene in multiple myeloma (MM). BRD4 and Mediator were found to co-occupy thousands of enhancers associated with active genes. They also co-occupied a small set of exceptionally large super-enhancers associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impacted genes with super-enhancers, including MYC. Super-enhancers were found at key oncogenic drivers in many other tumor cells. These observations have implications for the discovery of cancer therapeutics directed at components of super-enhancers in diverse tumor types. PMID:23582323

  16. Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation

    PubMed Central

    Pedroza-Gonzalez, Alexander; Xu, Kangling; Wu, Te-Chia; Aspord, Caroline; Tindle, Sasha; Marches, Florentina; Gallegos, Michael; Burton, Elizabeth C.; Savino, Daniel; Hori, Toshiyuki; Tanaka, Yuetsu; Zurawski, Sandra; Zurawski, Gerard; Bover, Laura; Liu, Yong-Jun; Banchereau, Jacques

    2011-01-01

    The human breast tumor microenvironment can display features of T helper type 2 (Th2) inflammation, and Th2 inflammation can promote tumor development. However, the molecular and cellular mechanisms contributing to Th2 inflammation in breast tumors remain unclear. Here, we show that human breast cancer cells produce thymic stromal lymphopoietin (TSLP). Breast tumor supernatants, in a TSLP-dependent manner, induce expression of OX40L on dendritic cells (DCs). OX40L+ DCs are found in primary breast tumor infiltrates. OX40L+ DCs drive development of inflammatory Th2 cells producing interleukin-13 and tumor necrosis factor in vitro. Antibodies neutralizing TSLP or OX40L inhibit breast tumor growth and interleukin-13 production in a xenograft model. Thus, breast cancer cell–derived TSLP contributes to the inflammatory Th2 microenvironment conducive to breast tumor development by inducing OX40L expression on DCs. PMID:21339324

  17. Targeting Fibroblast Activation Protein in Tumor Stroma with Chimeric Antigen Receptor T Cells Can Inhibit Tumor Growth and Augment Host Immunity Without Severe Toxicity

    PubMed Central

    Wang, Liang-Chuan S; Lo, Albert; Scholler, John; Sun, Jing; Majumdar, Rajrupa S; Kapoor, Veena; Antzis, Michael; Cotner, Cody E.; Johnson, Laura A; Durham, Amy C; Solomides, Charalambos C.; June, Carl H; Puré, Ellen; Albelda, Steven M

    2013-01-01

    The majority of chimeric antigen receptor (CAR) T cell research has focused on attacking cancer cells. Here we show that targeting the tumor-promoting, non-transformed stromal cells using CAR T cells may offer several advantages. We developed a retroviral CAR construct specific for the mouse fibroblast activation protein (FAP), comprising a single chain Fv FAP (mAb 73.3) with the CD8α hinge and transmembrane regions, and the human CD3ζ and 4-1BB activation domains. The transduced muFAP-CAR mouse T cells secreted IFNγ and killed FAP-expressing 3T3 target cells specifically. Adoptively transferred 73.3-FAP-CAR mouse T cells selectively reduced FAPhi stromal cells and inhibited the growth of multiple types of subcutaneously transplanted tumors in wild-type, but not FAP-null immune-competent syngeneic mice. The antitumor effects could be augmented by multiple injections of the CAR T cells, by using CAR T cells with a deficiency in diacylglycerol kinase, or by combination with a vaccine. A major mechanism of action of the muFAP-CAR T cells was the augmentation of the endogenous CD8+ T cell antitumor responses. Off-tumor toxicity in our models was minimal following muFAP-CAR T cell therapy. In summary, inhibiting tumor growth by targeting tumor stroma with adoptively transferred CAR T cells directed to FAP can be safe and effective suggesting that further clinical development of anti-human FAP-CAR is warranted. PMID:24778279

  18. ABT-510 induces tumor cell apoptosis and inhibits ovarian tumor growth in an orthotopic, syngeneic model of epithelial ovarian cancer.

    PubMed

    Greenaway, James; Henkin, Jack; Lawler, Jack; Moorehead, Roger; Petrik, Jim

    2009-01-01

    Epithelial ovarian cancer (EOC) is the fifth most common cancer in women and is characterized by a low 5-year survival rate. One strategy that can potentially improve the overall survival rate in ovarian cancer is the use of antitumor agents such as ABT-510. ABT-510 is a small mimetic peptide of the naturally occurring antiangiogenic compound thrombospondin-1 and has been shown to significantly reduce tumor growth and burden in preclinical mouse models and in naturally occurring tumors in dogs. This is the first evaluation of ABT-510 in a preclinical model of human EOC. Tumorigenic mouse surface epithelial cells were injected into the bursa of C57BL/6 mice that were treated with either 100 mg/kg ABT-510 or an equivalent amount of PBS. ABT-510 caused a significant reduction in tumor size, ascites fluid volume, and secondary lesion dissemination when compared with PBS controls. Analysis of the vasculature of ABT-510-treated mice revealed vascular remodeling with smaller diameter vessels and lower overall area, increased number of mature vessels, and decreased tissue hypoxia. Tumors of ABT-510-treated mice had a significantly higher proportion of apoptotic tumor cells compared with the PBS-treated controls. Immunoblot analysis of cell lysates revealed a reduction in vascular endothelial growth factor, vascular endothelial growth factor receptor-2, and proliferating cell nuclear antigen protein expression as well as expression of members of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase survival pathways. In vitro, ABT-510 induced tumor cell apoptosis in mouse and human ovarian cancer cells. This study shows ABT-510 as a promising candidate for inhibiting tumor growth and ascites formation in human EOC.

  19. Enalapril and ASS inhibit tumor growth in a transgenic mouse model of islet cell tumors.

    PubMed

    Fendrich, V; Lopez, C L; Manoharan, J; Maschuw, K; Wichmann, S; Baier, A; Holler, J P; Ramaswamy, A; Bartsch, D K; Waldmann, J

    2014-10-01

    Accumulating evidence suggests a role for angiotensin-converting enzymes involving the angiotensin II-receptor 1 (AT1-R) and the cyclooxygenase pathway in carcinogenesis. The effects of ASS and enalapril were assessed in vitro and in a transgenic mouse model of pancreatic neuroendocrine neoplasms (pNENs). The effects of enalapril and ASS on proliferation and expression of the AGTR1A and its target gene vascular endothelial growth factor (Vegfa) were assessed in the neuroendocrine cell line BON1. Rip1-Tag2 mice were treated daily with either 0.6 mg/kg bodyweight of enalapril i.p., 20 mg/kg bodyweight of ASS i.p., or a vehicle in a prevention (weeks 5-12) and a survival group (week 5 till death). Tumor surface, weight of pancreatic glands, immunostaining for AT1-R and nuclear factor kappa beta (NFKB), and mice survival were analyzed. In addition, sections from human specimens of 20 insulinomas, ten gastrinomas, and 12 non-functional pNENs were evaluated for AT1-R and NFKB (NFKB1) expression and grouped according to the current WHO classification. Proliferation was significantly inhibited by enalapril and ASS in BON1 cells, with the combination being the most effective. Treatment with enalapril and ASS led to significant downregulation of known target genes Vegf and Rela at RNA level. Tumor growth was significantly inhibited by enalapril and ASS in the prevention group displayed by a reduction of tumor size (84%/67%) and number (30%/45%). Furthermore, daily treatment with enalapril and ASS prolonged the overall median survival compared with vehicle-treated Rip1-Tag2 (107 days) mice by 9 and 17 days (P=0.016 and P=0.013). The AT1-R and the inflammatory transcription factor NFKB were abolished completely upon enalapril and ASS treatment. AT1-R and NFKB expressions were observed in 80% of human pNENs. Enalapril and ASS may provide an approach for chemoprevention and treatment of pNENs. © 2014 Society for Endocrinology.

  20. Lysophosphatidic Acid Acyltransferase β (LPAATβ) Promotes the Tumor Growth of Human Osteosarcoma

    PubMed Central

    Rastegar, Farbod; Gao, Jian-Li; Shenaq, Deana; Luo, Qing; Shi, Qiong; Kim, Stephanie H.; Jiang, Wei; Wagner, Eric R.; Huang, Enyi; Gao, Yanhong; Shen, Jikun; Yang, Ke; He, Bai-Cheng; Chen, Liang; Zuo, Guo-Wei; Luo, Jinyong; Luo, Xiaoji; Bi, Yang; Liu, Xing; Li, Mi; Hu, Ning; Wang, Linyuan; Luther, Gaurav; Luu, Hue H.; Haydon, Rex C.; He, Tong-Chuan

    2010-01-01

    Background Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase β (LPAATβ, aka, AGPAT2) in regulating the proliferation and growth of human osteosarcoma cells. LPAATβ can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATβ has been reported in several types of human tumors, the role of LPAATβ in osteosarcoma progression has yet to be elucidated. Methodology/Principal Findings Endogenous expression of LPAATβ in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATβ and silencing LPAATβ expression is employed to determine the effect of LPAATβ on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATβ is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATβ promotes osteosarcoma cell proliferation and migration, while silencing LPAATβ expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATβ effectively promotes tumor growth, while knockdown of LPAATβ expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma. Conclusions/Significance Our results strongly suggest that LPAATβ expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATβ may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATβ may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This is especially

  1. Therapeutic benefit of selective inhibition of p110α PI3-kinase in pancreatic neuroendocrine tumors

    PubMed Central

    Soler, Adriana; Figueiredo, Ana M; Castel, Pau; Martin, Laura; Monelli, Erika; Angulo-Urarte, Ana; Milà-Guasch, Maria; Viñals, Francesc; Casanovas, Oriol

    2017-01-01

    Purpose Mutations in the PI3-kinase (PI3K) pathway occur in 16% of patients with pancreatic neuroendocrine tumors (PanNETs), which suggests that these tumors are an exciting setting for PI3K/AKT/mTOR pharmacological intervention. Everolimus, an mTOR inhibitor, is being used to treat patients with advanced PanNETs. However, resistance to mTOR targeted therapy is emerging partially due to the loss of mTOR-dependent feedback inhibition of AKT. In contrast, the response to PI3K inhibitors in PanNETs is unknown. Experimental Design In the present study, we assessed the frequency of PI3K pathway activation in human PanNETs and in RIP1-Tag2 mice, a preclinical tumor model of PanNETs, and we investigated the therapeutic efficacy of inhibiting PI3K in RIP1-Tag2 mice using a combination of pan (GDC-0941) and p110α selective (GDC-0326) inhibitors and isoform specific PI3K kinase-dead mutant mice. Results Human and mouse PanNETs showed enhanced pAKT, pPRAS40 and pS6 positivity compared to normal tissue. While treatment of RIP1-Tag2 mice with GDC-0941 led to reduced tumor growth with no impact on tumor vessels, the selective inactivation of the p110α PI3K isoform, either genetically or pharmacologically, reduced tumor growth as well as vascular area. Furthermore, GDC-0326 reduced the incidence of liver and lymph node (LN) metastasis compared to vehicle treated mice. We also demonstrated that tumor and stromal cells are implicated in the anti-tumor activity of GDC-0326 in RIP1-Tag2 tumors. Conclusion Our data provide a rationale for p110α selective intervention in PanNETs and unravel a new function of this kinase in cancer biology through its role in promoting metastasis. PMID:27225693

  2. Intracellular mature IL-37 suppresses tumor metastasis via inhibiting Rac1 activation.

    PubMed

    Li, Y; Zhao, M; Guo, C; Chu, H; Li, W; Chen, X; Wang, X; Li, Y; Jia, Y; Koussatidjoa, S; Zhu, F; Wang, J; Wang, X; Wang, Q; Zhao, W; Shi, Y; Chen, W; Zhang, L

    2018-02-22

    IL-37, a newly found anti-inflammatory cytokine of the IL-1 family, has both extracellular and intracellular functions. Accumulating evidences indicate that it is also involved in tumor progression. However, the mechanism and its intracellular target are unclear. In this study, clinical data from 84 patients showed that loss or reduced expression of IL-37 in lung adenocarcinoma tissues was significantly associated with tumor metastasis. We further provided evidence that IL-37 inhibited effectively tumor metastasis in vitro and in vivo. Moreover, we uncovered a novel mechanism by which IL-37 suppressed tumor cell migration via its intracellular mature form (amino acids 46-218). Intracellular mature form of IL-37, but not its extracellular form, markedly inhibited migration of multiple kinds of tumor cells through inhibiting Rac1 activation. Mechanistically, intracellular mature IL-37 directly bound to the CAAX motif in the C-terminal hypervariable region of Rac1, and then inhibited Rac1 membrane translocation and subsequent downstream signaling. Our research identifies intracellular mature IL-37 as a novel endogenous inhibitor of Rac1. Given the crucial roles of Rac1 in tumor angiogenesis and metastasis, intracellular mature IL-37 might serve as a potential strategy for the control of Rac1 activity and tumor progression.

  3. Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice.

    PubMed

    Zhang, Leying; Alizadeh, Darya; Van Handel, Michelle; Kortylewski, Marcin; Yu, Hua; Badie, Behnam

    2009-10-01

    As the main effector-cell population of the central nervous system, microglia (MG) are considered to play an important immunoregulatory function in a number of pathological conditions such as inflammation, trauma, degenerative disease, and brain tumors. Recent studies, however, have suggested that the anti-neoplastic function of MG may be suppressed in malignant brain tumors. Considering the proposed suppressive role of signal transducers and activators of transcription 3 (Stat3) in antitumor immunity, we evaluated the role of Stat3 inhibition on MG and macrophage (MP) activation and tumor growth in a murine glioma model. N9 MG cells were exposed to GL261 glioma conditioned medium (GL261-CM) and evaluated for Stat3 activity and cytokine expression. Furthermore, the role of Stat3 inhibition on MG and MP activation was studied both in vitro and in vivo. Finally, the effect of Stat3 inhibition on tumor growth was assessed in intracranial GL261 gliomas. GL261-CM increased Stat3 activity in N9 cells in vitro and resulted in overexpression of IL-10 and IL-6, and downregulation of IL1-beta, a pro-inflammatory cytokine. Inhibition of Stat3 by CPA-7 or siRNA reversed glioma-induced cytokine expression profile in N9 cells. Furthermore, inactivation of Stat3 in intracranial GL261 tumors by siRNA resulted in MG/MP activation and tumor growth inhibition. Glioma-induced MG and MP suppression may be mediated thorough Stat3. Inhibition of Stat3 function in tumor MG/MP may result in their activation and can potentially be used as an adjunct immunotherapy approach for gliomas.

  4. Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice.

    PubMed

    Murphy, Kate T; Chee, Annabel; Gleeson, Ben G; Naim, Timur; Swiderski, Kristy; Koopman, René; Lynch, Gordon S

    2011-09-01

    Cancer cachexia describes the progressive skeletal muscle wasting and weakness in many cancer patients and accounts for >20% of cancer-related deaths. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the atrophy and loss of function in muscles of tumor-bearing mice. Twelve-week-old C57BL/6 mice received a subcutaneous injection of saline (control) or Lewis lung carcinoma (LLC) tumor cells. One week later, mice received either once weekly injections of saline (control, n = 12; LLC, n = 9) or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg·kg⁻¹·wk⁻¹, LLC+PF-354, n = 11) for 5 wk. Injection of LLC cells reduced muscle mass and maximum force of tibialis anterior (TA) muscles by 8-10% (P < 0.05), but the muscle atrophy and weakness were prevented with PF-354 treatment (P > 0.05). Maximum specific (normalized) force of diaphragm muscle strips was reduced with LLC injection (P < 0.05) but was not improved with PF-354 treatment (P > 0.05). PF-354 enhanced activity of oxidative enzymes in TA and diaphragm muscles of tumor-bearing mice by 118% and 89%, respectively (P < 0.05). Compared with controls, apoptosis that was not of myofibrillar or satellite cell origin was 140% higher in TA muscle cross sections from saline-treated LLC tumor-bearing mice (P < 0.05) but was not different in PF-354-treated tumor-bearing mice (P > 0.05). Antibody-directed myostatin inhibition attenuated the skeletal muscle atrophy and loss of muscle force-producing capacity in a murine model of cancer cachexia, in part by reducing apoptosis. The improvements in limb muscle mass and function highlight the therapeutic potential of antibody-directed myostatin inhibition for cancer cachexia.

  5. The inhibition of FGF receptor 1 activity mediates sorafenib antiproliferative effects in human malignant pleural mesothelioma tumor-initiating cells.

    PubMed

    Pattarozzi, Alessandra; Carra, Elisa; Favoni, Roberto E; Würth, Roberto; Marubbi, Daniela; Filiberti, Rosa Angela; Mutti, Luciano; Florio, Tullio; Barbieri, Federica; Daga, Antonio

    2017-05-25

    Malignant pleural mesothelioma is an aggressive cancer, characterized by rapid progression and high mortality. Persistence of tumor-initiating cells (TICs, or cancer stem cells) after cytotoxic drug treatment is responsible for tumor relapse, and represents one of the main reasons for the poor prognosis of mesothelioma. In fact, identification of the molecules affecting TIC viability is still a significant challenge. TIC-enriched cultures were obtained from 10 human malignant pleural mesotheliomas and cultured in vitro. Three fully characterized tumorigenic cultures, named MM1, MM3, and MM4, were selected and used to assess antiproliferative effects of the multi-kinase inhibitor sorafenib. Cell viability was investigated by MTT assay, and cell cycle analysis as well as induction of apoptosis were determined by flow cytometry. Western blotting was performed to reveal the modulation of protein expression and the phosphorylation status of pathways associated with sorafenib treatment. We analyzed the molecular mechanisms of the antiproliferative effects of sorafenib in mesothelioma TIC cultures. Sorafenib inhibited cell cycle progression in all cultures, but only in MM3 and MM4 cells was this effect associated with Mcl-1-dependent apoptosis. To investigate the mechanisms of sorafenib-mediated antiproliferative activity, TICs were treated with epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) causing, in MM3 and MM4 cells, MEK, ERK1/2, Akt, and STAT3 phosphorylation. These effects were abolished by sorafenib only in bFGF-treated cells, while a modest inhibition occurred after EGF stimulation, suggesting that sorafenib effects are mainly due to FGF receptor (FGFR) inhibition. Indeed, FGFR1 phosphorylation was inhibited by sorafenib. Moreover, in MM1 cells, which release high levels of bFGF and showed autocrine activation of FGFR1 and constitutive phosphorylation/activation of MEK-ERK1/2, sorafenib induced a more effective antiproliferative response

  6. Ribonuclease binase inhibits primary tumor growth and metastases via apoptosis induction in tumor cells.

    PubMed

    Mironova, Nadezhda L; Petrushanko, Irina Y; Patutina, Olga A; Sen'kova, Aexandra V; Simonenko, Olga V; Mitkevich, Vladimir A; Markov, Oleg V; Zenkova, Marina A; Makarov, Alexander A

    2013-07-01

    Exogenous ribonucleases are known to inhibit tumor growth via apoptosis induction in tumor cells, allowing to consider them as promising anticancer drugs for clinical application. In this work the antitumor potential of binase was evaluated in vivo and the mechanism of cytotoxic effect of binase on tumor cells was comprehensively studied in vitro. We investigated tumoricidal activity of binase using three murine tumor models of Lewis lung carcinoma (LLC), lymphosarcoma RLS 40 and melanoma B-16. We show for the first time that intraperitoneal injection of binase at a dose range 0.1-5 mg/kg results in retardation of primary tumor growth up to 45% in LLC and RLS 40 and inhibits metastasis up to 50% in LLC and RLS 40 and up to 70% in B-16 melanoma. Binase does not exhibit overall toxic effect and displays a general systemic and immunomodulatory effects. Treatment of RLS 40-bearing animals with binase together with polychemotherapy revealed that binase decreases the hepatotoxicity of polychemotherapy while maintaining its antitumor effect. It was demonstrated that the cytotoxic effect of binase is realized via the induction of the intrinsic and extrinsic apoptotic pathways. Activation of intrinsic apoptotic pathway is manifested by a drop of mitochondrial potential, increase in calcium concentration and inhibition of respiratory activity. Subsequent synthesis of TNF-α in the cells under the action of binase triggers extrinsic apoptotic pathway through the binding of TNF with cell-death receptors and activation of caspase 8. Thus binase is a potential anticancer therapeutics inducing apoptosis in cancer cells.

  7. ABT-510 induces tumor cell apoptosis and inhibits ovarian tumor growth in an orthotopic, syngeneic model of epithelial ovarian cancer

    PubMed Central

    Greenaway, James; Henkin, Jack; Lawler, Jack; Moorehead, Roger; Petrik, Jim

    2012-01-01

    Epithelial ovarian cancer (EOC) is the fifth most common cancer in women and is characterized by a low 5-year survival rate. One strategy that can potentially improve the overall survival rate in ovarian cancer is the use of antitumor agents such as ABT-510. ABT-510 is a small mimetic peptide of the naturally occurring antiangiogenic compound thrombospondin-1 and has been shown to significantly reduce tumor growth and burden in preclinical mouse models and in naturally occurring tumors in dogs. This is the first evaluation of ABT-510 in a preclinical model of human EOC. Tumorigenic mouse surface epithelial cells were injected into the bursa of C57BL/6 mice that were treated with either 100 mg/kg ABT-510 or an equivalent amount of PBS. ABT-510 caused a significant reduction in tumor size, ascites fluid volume, and secondary lesion dissemination when compared with PBS controls. Analysis of the vasculature of ABT-510-treated mice revealed vascular remodeling with smaller diameter vessels and lower overall area, increased number of mature vessels, and decreased tissue hypoxia. Tumors of ABT-510-treated mice had a significantly higher proportion of apoptotic tumor cells compared with the PBS-treated controls. Immunoblot analysis of cell lysates revealed a reduction in vascular endothelial growth factor, vascular endothelial growth factor receptor-2, and proliferating cell nuclear antigen protein expression as well as expression of members of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase survival pathways. In vitro, ABT-510 induced tumor cell apoptosis in mouse and human ovarian cancer cells. This study shows ABT-510 as a promising candidate for inhibiting tumor growth and ascites formation in human EOC. PMID:19139114

  8. Synergistic inhibition of glioma cell proliferation by Withaferin A and tumor treating fields.

    PubMed

    Chang, Edwin; Pohling, Christoph; Beygui, Nooshin; Patel, Chirag B; Rosenberg, Jarrett; Ha, Dong Ho; Gambhir, Sanjiv S

    2017-09-01

    Glioblastoma (GBM) is the most aggressive and lethal form of brain cancer. Standard therapies are non-specific and often of limited effectiveness; thus, efforts are underway to uncover novel, unorthodox therapies against GBM. In previous studies, we investigated Withaferin A, a steroidal lactone from Ayurvedic medicine that inhibits proliferation in cancers including GBM. Another novel approach, tumor treating fields (TTFields), is thought to disrupt mitotic spindle formation and stymie proliferation of actively dividing cells. We hypothesized that combining TTFields with Withaferin A would synergistically inhibit proliferation in glioblastoma. Human glioblastoma cells (GBM2, GBM39, U87-MG) and human breast adenocarcinoma cells (MDA-MB-231) were isolated from primary tumors. The glioma cell lines were genetically engineered to express firefly luciferase. Proliferative potential was assessed either by bioluminescence imaging or cell counting via hemocytometer. TTFields (4 V/cm) significantly inhibited growth of the four cancer cell lines tested (n = 3 experiments per time point, four measurements per sample, p < 0.02 at least; 2-way ANOVA, control vs. treatment). The combination of Withaferin A (10-100 nM) with TTFields significantly inhibited the growth of the glioma cells to a degree beyond that of Withaferin A or TTFields alone. The interaction of the Withaferin A and TTFields on glioma cells was found to be synergistic in nature (p < 0.01, n = 3 experiments). These findings were validated by both bioluminescence and hemocytometric measurements. The combination of Withaferin A with TTFields represents a novel approach to treat GBM in a manner that is likely better than either treatment alone and that is synergistic.

  9. Vitamin D Binding Protein-Macrophage Activating Factor (DBP-maf) Inhibits Angiogenesis and Tumor Growth in Mice1

    PubMed Central

    Kisker, Oliver; Onizuka, Shinya; Becker, Christian M; Fannon, Michael; Flynn, Evelyn; D'Amato, Robert; Zetter, Bruce; Folkman, Judah; Ray, Rahul; Swamy, Narasimha; Pirie-Shepherd, Steven

    2003-01-01

    Abstract We have isolated a selectively deglycosylated form of vitamin D binding protein (DBP-maf) generated from systemically available DBP by a human pancreatic cancer cell line. DBP-maf is antiproliferative for endothelial cells and antiangiogenic in the chorioallantoic membrane assay. DBP-maf administered daily was able to potently inhibit the growth of human pancreatic cancer in immune compromised mice (T/C=0.09). At higher doses, DBP-maf caused tumor regression. Histological examination revealed that treated tumors had a higher number of infiltrating macrophages as well as reduced microvessel density, and increased levels of apoptosis relative to untreated tumors. Taken together, these data suggest that DBP-maf is an antiangiogenic molecule that can act directly on endothelium as well as stimulate macrophages to attack both the endothelial and tumor cell compartment of a growing malignancy. PMID:12659668

  10. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels inmore » breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy.« less

  11. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo.

    PubMed

    Milacic, Vesna; Banerjee, Sanjeev; Landis-Piwowar, Kristin R; Sarkar, Fazlul H; Majumdar, Adhip P N; Dou, Q Ping

    2008-09-15

    Curcumin (diferuloylmethane) is the major active ingredient of turmeric (Curcuma longa) used in South Asian cuisine for centuries. Curcumin has been shown to inhibit the growth of transformed cells and to have a number of potential molecular targets. However, the essential molecular targets of curcumin under physiologic conditions have not been completely defined. Herein, we report that the tumor cellular proteasome is most likely an important target of curcumin. Nucleophilic susceptibility and in silico docking studies show that both carbonyl carbons of the curcumin molecule are highly susceptible to a nucleophilic attack by the hydroxyl group of the NH(2)-terminal threonine of the proteasomal chymotrypsin-like (CT-like) subunit. Consistently, curcumin potently inhibits the CT-like activity of a purified rabbit 20S proteasome (IC(50) = 1.85 micromol/L) and cellular 26S proteasome. Furthermore, inhibition of proteasome activity by curcumin in human colon cancer HCT-116 and SW480 cell lines leads to accumulation of ubiquitinated proteins and several proteasome target proteins, and subsequent induction of apoptosis. Furthermore, treatment of HCT-116 colon tumor-bearing ICR SCID mice with curcumin resulted in decreased tumor growth, associated with proteasome inhibition, proliferation suppression, and apoptosis induction in tumor tissues. Our study shows that proteasome inhibition could be one of the mechanisms for the chemopreventive and/or therapeutic roles of curcumin in human colon cancer. Based on its ability to inhibit the proteasome and induce apoptosis in both HCT-116 and metastatic SW480 colon cancer cell lines, our study suggests that curcumin could potentially be used for treatment of both early-stage and late-stage/refractory colon cancer.

  12. Inhibition of Galectin-1 Sensitizes HRAS-driven Tumor Growth to Rapamycin Treatment.

    PubMed

    Michael, James V; Wurtzel, Jeremy G T; Goldfinger, Lawrence E

    2016-10-01

    The goal of this study was to develop combinatorial application of two drugs currently either in active use as anticancer agents (rapamycin) or in clinical trials (OTX008) as a novel strategy to inhibit Harvey RAS (HRAS)-driven tumor progression. HRAS anchored to the plasma membrane shuttles from the lipid ordered (L o ) domain to the lipid ordered/lipid disordered border upon activation, and retention of HRAS at these sites requires galectin-1. We recently showed that genetically enforced L o sequestration of HRAS inhibited mitogen-activated protein kinase (MAPK) signaling, but not phoshatidylinositol 3-kinase (PI3K) activation. Here we show that inhibition of galectin-1 with OTX008 sequestered HRAS in the L o domain, blocked HRAS-mediated MAPK signaling, and attenuated HRAS-driven tumor progression in mice. HRAS-driven tumor growth was also attenuated by treatment with mammalian target of rapamycin (mTOR) inhibitor rapamycin, and this effect was further enhanced in tumors driven by L o -sequestered HRAS. These drugs also revealed bidirectional cross-talk in HRAS pathways. Moreover, dual pathway inhibition with OTX008 and rapamycin resulted in nearly complete ablation of HRAS-driven tumor growth. These findings indicate that membrane microdomain sequestration of HRAS with galectin-1 inhibition, coupled with mTOR inhibition, may support a novel therapeutic approach to treat HRAS-mutant cancer. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Autocrine Complement Inhibits IL10-Dependent T-Cell Mediated Antitumor Immunity to Promote Tumor Progression

    PubMed Central

    Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J.; Patz, Edward F.; Li, Shi-You; He, You-Wen

    2016-01-01

    In contrast to its inhibitory effects on many cells, IL-10 activates CD8+ tumor infiltrating lymphocytes (TILs) and enhances their antitumor activity. However, CD8+ TILs do not routinely express IL-10 as autocrine complement C3 inhibits IL-10 production through complement receptors C3aR and C5aR. CD8+ TILs from C3-deficient mice, however, express IL-10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T cell- and IL-10-dependent manner; human TILs expanded with IL-2 plus IL-10 increase the killing of primary tumors in vitro compared to IL-2 treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the PD-1/PD-L1 immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8+ TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL-10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. PMID:27297552

  14. Imatinib and Dasatinib Inhibit Hemangiosarcoma and Implicate PDGFR-β and Src in Tumor Growth12

    PubMed Central

    Dickerson, Erin B; Marley, Kevin; Edris, Wade; Tyner, Jeffrey W; Schalk, Vidya; MacDonald, Valerie; Loriaux, Marc; Druker, Brian J; Helfand, Stuart C

    2013-01-01

    Hemangiosarcoma, a natural model of human angiosarcoma, is an aggressive vascular tumor diagnosed commonly in dogs. The documented expression of several receptor tyrosine kinases (RTKs) by these tumors makes them attractive targets for therapeutic intervention using tyrosine kinase inhibitors (TKIs). However, we possess limited knowledge of the effects of TKIs on hemangiosarcoma as well as other soft tissue sarcomas. We report here on the use of the TKIs imatinib and dasatinib in canine hemangiosarcoma and their effects on platelet-derived growth factor receptor β (PDGFR-β) and Src inhibition. Both TKIs reduced cell viability, but dasatinib was markedly more potent in this regard, mediating cytotoxic effects orders of magnitude greater than imatinib. Dasatinib also inhibited the phosphorylation of the shared PDGFR-β target at a concentration approximately 1000 times less than that needed by imatinib and effectively blocked Src phosphorylation. Both inhibitors augmented the response to doxorubicin, suggesting that clinical responses likely will be improved using both drugs in combination; however, dasatinib was significantly (P < .05) more effective in this context. Despite the higher concentrations needed in cell-based assays, imatinib significantly inhibited tumor growth (P < .05) in a tumor xenograft model, highlighting that disruption of PDGFR-β/PDGF signaling may be important in targeting the angiogenic nature of these tumors. Treatment of a dog with spontaneously occurring hemangiosarcoma established that clinically achievable doses of dasatinib may be realized in dogs and provides a means to investigate the effect of TKIs on soft tissue sarcomas in a large animal model. PMID:23544168

  15. CBL enhances breast tumor formation by inhibiting tumor suppressive activity of TGF-β signaling.

    PubMed

    Kang, J M; Park, S; Kim, S J; Hong, H Y; Jeong, J; Kim, H-S; Kim, S-J

    2012-12-13

    Casitas B-lineage lymphoma (CBL) protein family functions as multifunctional adaptor proteins and E3 ubiquitin ligases that are implicated as regulators of signaling in various cell types. Recent discovery revealed mutations of proto-oncogenic CBL in the linker region and RING finger domain in human acute myeloid neoplasm, and these transforming mutations induced carcinogenesis. However, the adaptor function of CBL mediated signaling pathway during tumorigenesis has not been well characterized. Here, we show that CBL is highly expressed in breast cancer cells and significantly inhibits transforming growth factor-β (TGF-β) tumor suppressive activity. Knockdown of CBL expression resulted in the increased expression of TGF-β target genes, PAI-I and CDK inhibitors such as p15(INK4b) and p21(Cip1). Furthermore, we demonstrate that CBL is frequently overexpressed in human breast cancer tissues, and the loss of CBL decreases the tumorigenic activity of breast cancer cells in vivo. CBL directly binds to Smad3 through its proline-rich motif, thereby preventing Smad3 from interacting with Smad4 and blocking nuclear translocation of Smad3. CBL-b, one of CBL protein family, also interacted with Smad3 and knockdown of both CBL and CBL-b further enhanced TGF-β transcriptional activity. Our findings provide evidence for a previously undescribed mechanism by which oncogenic CBL can block TGF-β tumor suppressor activity.

  16. Aplasia Ras homologue member Ⅰ overexpression inhibits tumor growth and induces apoptosis through inhibition of PI3K/Akt survival pathways in human osteosarcoma MG-63 cells in culture.

    PubMed

    Ye, Kaishan; Wang, Shuanke; Yang, Yong; Kang, Xuewen; Wang, Jing; Han, Hua

    2015-09-01

    Aplasia Ras homologue member Ⅰ (ARHI), an imprinted tumor-suppressor gene, is downregulated in various types of cancer. However, the expression, function and specific mechanisms of ARHI in human osteosarcoma (OS) cells remain unclear. The aim of the present study was to assess the effect of ARHI on OS cell proliferation and apoptosis and its associated mechanism. In the study, ARHI mRNA and protein levels were markedly downregulated in OS cells compared with the human osteoblast precursor cell line hFOB1.19. By generating stable transfectants, ARHI was overexpressed in OS cells that had low levels of ARHI. Overexpression of ARHI inhibited cell viability and proliferation and induced apoptosis. However, caspase‑3 activity was not changed by ARHI overexpression. In addition, phosphorylated Akt protein expression decreased in the ARHI overexpression group compared to that in the control vector group. The knockdown of ARHI also resulted in the promotion of cell proliferation and the attenuation of apoptosis in MG‑63 cells. Additionally, ARHI silencing increased the level of p‑Akt. The present results indicate that ARHI inhibits OS cell proliferation and may have a key role in the development of OS.

  17. The systemic delivery of an oncolytic adenovirus expressing decorin inhibits bone metastasis in a mouse model of human prostate cancer

    DOE PAGES

    Xu, Weidong; Neill, Thomas; Yang, Yuefeng; ...

    2014-12-11

    In an effort to develop a new therapy for prostate cancer bone metastases, we have created Ad.dcn, a recombinant oncolytic adenovirus carrying the human decorin gene. Infection of PC-3 and DU-145, the human prostate tumor cells, with Ad.dcn or a non-replicating adenovirus Ad(E1-).dcn resulted in decorin expression; Ad.dcn produced high viral titers and cytotoxicity in human prostate tumor cells. Adenoviral-mediated decorin expression inhibited Met, the Wnt/β- catenin signaling axis, vascular endothelial growth factor A, reduced mitochondrial DNA levels, and inhibited tumor cell migration. To examine the anti-tumor response of Ad.dcn, PC-3-luc cells were inoculated in the left heart ventricle tomore » establish bone metastases in nude mice. Ad.dcn, in conjunction with control replicating and non-replicating vectors were injected via tail vein. The real-time monitoring of mice, once a week, by bioluminescence imaging and X-ray radiography showed that Ad.dcn produced significant inhibition of skeletal metastases. Analyses of the mice at the terminal time point indicated a significant reduction in the tumor burden, osteoclast number, serum TRACP 5b levels, osteocalcin levels, hypercalcemia, inhibition of cancer cachexia, and an increase in the animal survival. Finally, based on these studies, we believe that Ad.dcn can be developed as a potential new therapy for prostate cancer bone metastasis.« less

  18. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction.

    PubMed

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui; Murugan, Kaliyappan; Chen, Chinpiao; Chao, Jui-I

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. © 2013.

  19. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ.

    PubMed

    Pahl, Jens H W; Kwappenberg, Kitty M C; Varypataki, Eleni M; Santos, Susy J; Kuijjer, Marieke L; Mohamed, Susan; Wijnen, Juul T; van Tol, Maarten J D; Cleton-Jansen, Anne-Marie; Egeler, R Maarten; Jiskoot, Wim; Lankester, Arjan C; Schilham, Marco W

    2014-03-10

    In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Monocyte-derived M1-like and M2-like macrophages were polarized with LPS + IFN-γ, L-MTP-PE +/- IFN-γ or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS + IFN-γ. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-γ. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-α and IL-1β. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS + IFN-γ-activated M2-like macrophages had low anti-tumor activity, IL-10-polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. This study demonstrates that human macrophages can be induced to exert direct anti-tumor activity against osteosarcoma cells. Our

  20. Apigenin inhibits NF-κB and snail signaling, EMT and metastasis in human hepatocellular carcinoma.

    PubMed

    Qin, Yuan; Zhao, Dong; Zhou, Hong-Gang; Wang, Xing-Hui; Zhong, Wei-Long; Chen, Shuang; Gu, Wen-Guang; Wang, Wei; Zhang, Chun-Hong; Liu, Yan-Rong; Liu, Hui-Juan; Zhang, Qiang; Guo, Yuan-Qiang; Sun, Tao; Yang, Cheng

    2016-07-05

    Apigenin is a naturally occurring compound with anti-inflammatory, antioxidant, and anticancer properties. In this study, we investigated the effects of apigenin on migration and metastasis in experimental human hepatocellular carcinoma (HCC) cell lines in vitro and in vivo. Apigenin dose-dependently inhibited proliferation, migration, and invasion by PLC and Bel-7402 human HCC cells. It also suppressed tumor growth in PLC cell xenografts without altering body weight, thereby prolonging survival. Apigenin reduced Snai1 and NF-κB expression, reversed increases in epithelial-mesenchymal transition (EMT) marker levels, increased cellular adhesion, regulated actin polymerization and cell migration, and inhibited invasion and migration by HCC cells. Apigenin may therefore inhibit EMT by inhibiting the NF-κB/Snail pathway in human HCC.

  1. Apigenin inhibits NF-κB and Snail signaling, EMT and metastasis in human hepatocellular carcinoma

    PubMed Central

    Zhong, Wei-long; Chen, Shuang; Gu, Wen-guang; Wang, Wei; Zhang, Chun-hong; Liu, Yan-rong; Liu, Hui-juan; Zhang, Qiang; Guo, Yuan-qiang; Sun, Tao; Yang, Cheng

    2016-01-01

    Apigenin is a naturally occurring compound with anti-inflammatory, antioxidant, and anticancer properties. In this study, we investigated the effects of apigenin on migration and metastasis in experimental human hepatocellular carcinoma (HCC) cell lines in vitro and in vivo. Apigenin dose-dependently inhibited proliferation, migration, and invasion by PLC and Bel-7402 human HCC cells. It also suppressed tumor growth in PLC cell xenografts without altering body weight, thereby prolonging survival. Apigenin reduced Snai1 and NF-κB expression, reversed increases in epithelial-mesenchymal transition (EMT) marker levels, increased cellular adhesion, regulated actin polymerization and cell migration, and inhibited invasion and migration by HCC cells. Apigenin may therefore inhibit EMT by inhibiting the NF-κB/Snail pathway in human HCC. PMID:27203387

  2. Tumor promotion and inhibition by phenobarbital in livers of conditional Apc-deficient mice.

    PubMed

    Braeuning, Albert; Gavrilov, Alina; Geissler, Miriam; Wenz, Christine; Colnot, Sabine; Templin, Markus F; Metzger, Ute; Römer, Michael; Zell, Andreas; Schwarz, Michael

    2016-06-01

    Activation of Wnt/β-catenin signaling is important for human and rodent hepatocarcinogenesis. In mice, the tumor promoter phenobarbital (PB) selects for hepatocellular tumors with activating β-catenin mutations via constitutive androstane receptor activation. PB-dependent tumor promotion was studied in mice with genetic inactivation of Apc, a negative regulator of β-catenin, to circumvent the problem of randomly induced mutations by chemical initiators and to allow monitoring of PB- and Wnt/β-catenin-dependent tumorigenesis in the absence of unknown genomic alterations. Moreover, the study was designed to investigate PB-induced proliferation of liver cells with activated β-catenin. PB treatment provided Apc-deficient hepatocytes with only a minor proliferative advantage, and additional connexin 32 deficiency did not affect the proliferative response. PB significantly promoted the outgrowth of Apc-deficient hepatocellular adenoma (HCA), but simultaneously inhibited the formation of Apc-deficient hepatocellular carcinoma (HCC). The probability of tumor promotion by PB was calculated to be much lower for hepatocytes with loss of Apc, as compared to mutational β-catenin activation. Comprehensive transcriptomic and phosphoproteomic characterization of HCA and HCC revealed molecular details of the two tumor types. HCC were characterized by a loss of differentiated hepatocellular gene expression, enhanced proliferative signaling, and massive over-activation of Wnt/β-catenin signaling. In conclusion, PB exerts a dual role in liver tumor formation by promoting the growth of HCA but inhibiting the growth of HCC. Data demonstrate that one and the same compound can produce opposite effects on hepatocarcinogenesis, depending on context, highlighting the necessity to develop a more differentiated view on the tumorigenicity of this model compound.

  3. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

    PubMed Central

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-01-01

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287

  4. The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition

    PubMed Central

    2012-01-01

    Background It has been shown in many solid tumors that the overexpression of the pro-survival Bcl-2 family members Bcl-xL and Mcl-1 confers resistance to a variety of chemotherapeutic agents. Mcl-1 is a critical survival protein in a variety of cell lineages and is critically regulated via ubiquitination. Methods The Mcl-1, Bcl-xL and USP9X expression patterns in human lung and colon adenocarcinomas were evaluated via immunohistochemistry. Interaction between USP9X and Mcl-1 was demonstrated by immunoprecipitation-western blotting. The protein expression profiles of Mcl-1, Bcl-xL and USP9X in multiple cancer cell lines were determined by western blotting. Annexin-V staining and cleaved PARP western blotting were used to assay for apoptosis. The cellular toxicities after various treatments were measured via the XTT assay. Results In our current analysis of colon and lung cancer samples, we demonstrate that Mcl-1 and Bcl-xL are overexpressed and also co-exist in many tumors and that the expression levels of both genes correlate with the clinical staging. The downregulation of Mcl-1 or Bcl-xL via RNAi was found to increase the sensitivity of the tumor cells to chemotherapy. Furthermore, our analyses revealed that USP9X expression correlates with that of Mcl-1 in human cancer tissue samples. We additionally found that the USP9X inhibitor WP1130 promotes Mcl-1 degradation and increases tumor cell sensitivity to chemotherapies. Moreover, the combination of WP1130 and ABT-737, a well-documented Bcl-xL inhibitor, demonstrated a chemotherapeutic synergy and promoted apoptosis in different tumor cells. Conclusion Mcl-1, Bcl-xL and USP9X overexpression are tumor survival mechanisms protective against chemotherapy. USP9X inhibition increases tumor cell sensitivity to various chemotherapeutic agents including Bcl-2/Bcl-xL inhibitors. PMID:23171055

  5. Human endothelial precursor cells express tumor endothelial marker 1/endosialin/CD248.

    PubMed

    Bagley, Rebecca G; Rouleau, Cecile; St Martin, Thia; Boutin, Paula; Weber, William; Ruzek, Melanie; Honma, Nakayuki; Nacht, Mariana; Shankara, Srinivas; Kataoka, Shiro; Ishida, Isao; Roberts, Bruce L; Teicher, Beverly A

    2008-08-01

    Angiogenesis occurs during normal physiologic processes as well as under pathologic conditions such as tumor growth. Serial analysis of gene expression profiling revealed genes [tumor endothelial markers (TEM)] that are overexpressed in tumor endothelial cells compared with normal adult endothelial cells. Because blood vessel development of malignant tumors under certain conditions may include endothelial precursor cells (EPC) recruited from bone marrow, we investigated TEM expression in EPC. The expression of TEM1 or endosialin (CD248) and other TEM has been discovered in a population of vascular endothelial growth factor receptor 2+/CD31+/CD45-/VE-cadherin+ EPC derived from human CD133+/CD34+ cells. EPC share some properties with fully differentiated endothelial cells from normal tissue, yet reverse transcription-PCR and flow cytometry reveal that EPC express higher levels of endosialin at the molecular and protein levels. The elevated expression of endosialin in EPC versus mature endothelial cells suggests that endosialin is involved in the earlier stages of tumor angiogenesis. Anti-endosialin antibodies inhibited EPC migration and tube formation in vitro. In vivo, immunohistochemistry indicated that human EPC continued to express endosialin protein in a Matrigel plug angiogenesis assay established in nude mice. Anti-endosialin antibodies delivered systemically at 25 mg/kg were also able to inhibit circulating murine EPC in nude mice bearing s.c. SKNAS tumors. EPC and bone marrow-derived cells have been shown previously to incorporate into malignant blood vessels in some instances, yet they remain controversial in the field. The data presented here on endothelial genes that are up-regulated in tumor vasculature and in EPC support the hypothesis that the angiogenesis process in cancer can involve EPC.

  6. Total Alkaloids of Sophora alopecuroides Inhibit Growth and Induce Apoptosis in Human Cervical Tumor HeLa Cells In vitro.

    PubMed

    Li, Jian-Guang; Yang, Xiao-Yi; Huang, Wei

    2016-05-01

    Uygur females of Xinjiang have the higher incidence of cervical tumor in the country. Alkaloids are the major active ingredients in Sophora alopecuroides, and its antitumor effect was recognized by the medical profession. Xinjiang is the main site of S. alopecuroides production in China so these plants are abundant in the region. Studies on the antitumor properties of total alkaloids of S. alopecuroides (TASA) can take full use of the traditional folk medicine in antitumor unique utility. To explore the effects of TASA on proliferation and apoptosis of human cervical tumor HeLa cells in vitro. TASA was extracted, purified, and each monomer component was analyzed by high-performance liquid chromatography. The effect of TASA at different concentrations on the survival of HeLa cells was determined after 24 h using the Cell Counting Kit-8. In addition, cells were photographed using an inverted microscope to document morphological changes. The effect of TASA on apoptotic rate of HeLa cells was assessed by flow cytometry. Monomers of TASA were found to be sophoridine, matrine, and sophocarpine. On treatment with 8.75 mg/ml of TASA, more than 50% of HeLa cells died, and cell death rate increased further with longer incubation. The apoptotic rates of HeLa cells in the experimental groups were 16.0% and 33.3% at concentrations of 6.25 mg/ml and 12.50 mg/ml, respectively. TASA can induce apoptosis in cervical tumor HeLa cells, and it has obvious inhibitory effects on cell growth. Total alkaloids of Sophora alopecuroides (TASA) exhibits anti-human cervical tumor propertiesMonomer component of TASA was analyzed by high-performance liquid chromatography, and its main effect component are sophoridine, matrine, and sophocarpineTASA inhibits growth and induces apoptosis in HeLa cells. Abbreviations used: TASA: Total alkaloids of S. alopecuroides, CCK-8: Cell Counting Kit-8, FBS: Fetal bovine serum, PBS: Phosphate buffered saline, DMEM: Dulbecco's modified Eagle medium.

  7. NNMT silencing activates tumor suppressor PP2A, inactivates oncogenic STKs and inhibits tumor forming ability

    PubMed Central

    Palanichamy, Kamalakannan; Kanji, Suman; Gordon, Nicolaus; Thirumoorthy, Krishnan; Jacob, John R.; Litzenberg, Kevin T.; Patel, Disha; Chakravarti, Arnab

    2016-01-01

    Purpose To identify potential molecular hubs that regulate oncogenic kinases and target them to improve treatment outcomes for glioblastoma (GBM) patients. Experimental Design Data mining of The Cancer Genome Atlas (TCGA) datasets identified Nicotinamide-N-methyl transferase (NNMT) as a prognostic marker for GBM, an enzyme linked to the reorganization of the methylome. We tested our hypothesis that NNMT plays a crucial role by modulating protein methylation leading to inactivation of tumor suppressors and activation of oncogenes. Further experiments were performed to understand the underlying biochemical mechanisms using GBM patient samples, established, primary, and isogenic cells. Results We demonstrate that NNMT outcompetes leucine carboxyl methyl transferase 1 (LCMT1) for methyl transfer from principal methyl donor SAM in biological systems. Inhibiting NNMT increased the availability of methyl groups for LCMT1 to methylate PP2A, resulting in the inhibition of oncogenic serine/threonine kinases (STKs). Further, NNMT inhibition retained the radiosensitizer nicotinamide and enhanced radiation sensitivity. We have provided the biochemical rationale of how NNMT plays a vital role in inhibiting tumor suppressor PP2A while concomitantly activating STKs. Conclusion We report the intricate novel mechanism in which NNMT inhibits tumor suppressor PP2A by reorganizing the methylome both at epigenome and proteome levels and concomitantly activating pro-survival STKs. In GBM tumors with NNMT expression, activation of PP2A can be accomplished by FDA approved perphenazine (PPZ) which is currently used to treat mood disorders such as schizophrenia, bipolar disorder, etc. This study forms a foundation for further GBM clinical trials using PPZ with standard of care treatment. PMID:27810903

  8. Anti-tumor activity of three ginsenoside derivatives in lung cancer is associated with Wnt/β-catenin signaling inhibition.

    PubMed

    Bi, Xiuli; Xia, Xichun; Mou, Teng; Jiang, Bowen; Fan, Dongdong; Wang, Peng; Liu, Yafei; Hou, Yue; Zhao, Yuqing

    2014-11-05

    Numerous compounds isolated from Ginseng have been shown to exhibit various biological activities, including antioxidant, anti-carcinogenic, anti-mutagenic, and anti-tumor activities. Recent research has focused on the potential values of these compounds in the prevention and treatment of human cancers. The anti-tumor activity of 25-hydroxyprotopanaxadiol (25-OH-PPD), a natural compound isolated from Panax ginseng, has been established in previous study. In the current study, we investigated the anti-tumor activity of three derivatives of 25-OH-PPD, namely xl, 1c, and 8b with respect to lung cancer. All three compounds significantly inhibited the growth of the human lung cancer cells A549 and H460. Oral administration of these compounds significantly inhibited the growth of xenograft tumors in mice without affecting body weight. Further mechanistic study demonstrated that these compounds could decrease the expression levels of β-catenin and its downstream targets Cyclin D1, CDK4, and c-myc in lung cancer cells. Taken together, the results suggested that the anti-growth activity exerted by these 25-OH-PPD derivatives against lung cancer cells probably involved β-catenin-mediated signaling pathway, a finding that could have important implication for chemotherapeutic strategy aiming at the treatment of lung cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Dietary phenethyl isothiocyanate inhibition of androgen-responsive LNCaP prostate cancer cell tumor growth correlates with decreased angiogenesis

    USDA-ARS?s Scientific Manuscript database

    Phenethyl isothiocyanate (PEITC), found in certain cruciferous vegetables, has antitumor activity in several cancer models, including prostate cancer. In our xenograft model, dietary administration of PEITC (100-150 mg/kg/d) inhibited androgen-responsive LNCaP human prostate cancer cell tumor growth...

  10. Impact of genistein on the gut microbiome of humanized mice and its role in breast tumor inhibition.

    PubMed

    Paul, Bidisha; Royston, Kendra J; Li, Yuanyuan; Stoll, Matthew L; Skibola, Christine F; Wilson, Landon S; Barnes, Stephen; Morrow, Casey D; Tollefsbol, Trygve O

    2017-01-01

    Since dietary polyphenols can have beneficial effects in prevention and treatment of cancer, we tested the hypothesis that breast cancer patients' intestinal microbiota is modulated by genistein (GE), an isoflavone found in soy, and that microbial alterations may offset the side effects brought about by chemotherapy. We demonstrated successful humanization of germ-free mice by transplanting fecal samples from breast cancer patients before and after chemotherapy. Mice were then grouped based on chemotherapy status and GE or control diet. We did not find any significant differences between pre-chemotherapy and post-chemotherapy bacterial composition and abundances. Germ-free mice on a GE diet showed differences in microbial composition as compared to mice on control diet. Four weeks after introduction of the customized GE diet, there was distinct clustering of GE-fed mice as compared to the control-fed group. In the gut microbiome of GE-treated humanized mice, there was an increase in abundance of genera Lactococcus and Eubacterium. Phylum Verrucomicrobia showed statistically significant (p = 0.02) differences in abundances between the GE-fed and control-fed groups. There was an increase in bacteria belonging to family Lachnospiraceae and Ruminococcaceae in GE-fed mice. Marked changes were observed in GE catabolism in mice humanized with fecal material from two of three patients' post-chemotherapy with complete disappearance of 4-ethylphenol and 2-(4-hydroxyphenol) propionic acid conjugates. The post-tumor samples did not show any distinct clustering of the gut microbiota between the two diet groups. There was an increase in latency of about 25% for tumor growth of the humanized mice that were on a GE diet as compared to humanized mice on a control diet. The average tumor size for the GE group was significantly decreased compared to the non-GE group. Collectively, our results suggest that the intestinal microbiota becomes altered with a GE diet before induction of

  11. Impact of genistein on the gut microbiome of humanized mice and its role in breast tumor inhibition

    PubMed Central

    Paul, Bidisha; Royston, Kendra J.; Li, Yuanyuan; Stoll, Matthew L.; Skibola, Christine F.; Wilson, Landon S.; Barnes, Stephen; Morrow, Casey D.

    2017-01-01

    Since dietary polyphenols can have beneficial effects in prevention and treatment of cancer, we tested the hypothesis that breast cancer patients’ intestinal microbiota is modulated by genistein (GE), an isoflavone found in soy, and that microbial alterations may offset the side effects brought about by chemotherapy. We demonstrated successful humanization of germ-free mice by transplanting fecal samples from breast cancer patients before and after chemotherapy. Mice were then grouped based on chemotherapy status and GE or control diet. We did not find any significant differences between pre-chemotherapy and post-chemotherapy bacterial composition and abundances. Germ-free mice on a GE diet showed differences in microbial composition as compared to mice on control diet. Four weeks after introduction of the customized GE diet, there was distinct clustering of GE-fed mice as compared to the control-fed group. In the gut microbiome of GE-treated humanized mice, there was an increase in abundance of genera Lactococcus and Eubacterium. Phylum Verrucomicrobia showed statistically significant (p = 0.02) differences in abundances between the GE-fed and control-fed groups. There was an increase in bacteria belonging to family Lachnospiraceae and Ruminococcaceae in GE-fed mice. Marked changes were observed in GE catabolism in mice humanized with fecal material from two of three patients’ post-chemotherapy with complete disappearance of 4-ethylphenol and 2-(4-hydroxyphenol) propionic acid conjugates. The post-tumor samples did not show any distinct clustering of the gut microbiota between the two diet groups. There was an increase in latency of about 25% for tumor growth of the humanized mice that were on a GE diet as compared to humanized mice on a control diet. The average tumor size for the GE group was significantly decreased compared to the non-GE group. Collectively, our results suggest that the intestinal microbiota becomes altered with a GE diet before induction

  12. MicroRNA Let-7f Inhibits Tumor Invasion and Metastasis by Targeting MYH9 in Human Gastric Cancer

    PubMed Central

    Miao, Yu; Gu, Yong; Guo, Changcun; Xue, Zengfu; Dou, Weijia; Hu, Fengrong; Wu, Kaichun; Nie, Yongzhan; Fan, Daiming

    2011-01-01

    Background MicroRNAs (miRNAs) are important regulators that play key roles in tumorigenesis and tumor progression. A previous report has shown that let-7 family members can act as tumor suppressors in many cancers. Through miRNA array, we found that let-7f was downregulated in the highly metastatic potential gastric cancer cell lines GC9811-P and SGC7901-M, when compared with their parental cell lines, GC9811 and SGC7901-NM; however, the mechanism was not clear. In this study, we investigate whether let-7f acts as a tumor suppressor to inhibit invasion and metastasis in gastric cancers. Methodology/Principal Real-time PCR showed decreased levels of let-7f expression in metastatic gastric cancer tissues and cell lines that are potentially highly metastatic. Cell invasion and migration were significantly impaired in GC9811-P and SGC7901-M cell lines after transfection with let-7f-mimics. Nude mice with xenograft models of gastric cancer confirmed that let-7f could inhibit gastric cancer metastasis in vivo after transfection by the lentivirus pGCsil-GFP- let-7f. Luciferase reporter assays demonstrated that let-7f directly binds to the 3′UTR of MYH9, which codes for myosin IIA, and real-time PCR and Western blotting further indicated that let-7f downregulated the expression of myosin IIA at the mRNA and protein levels. Conclusions/Significance Our study demonstrated that overexpression of let-7f in gastric cancer could inhibit invasion and migration of gastric cancer cells through directly targeting the tumor metastasis-associated gene MYH9. These data suggest that let-7f may be a novel therapeutic candidate for gastric cancer, given its ability to reduce cell invasion and metastasis. PMID:21533124

  13. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression.

    PubMed

    Horiuchi, Dai; Camarda, Roman; Zhou, Alicia Y; Yau, Christina; Momcilovic, Olga; Balakrishnan, Sanjeev; Corella, Alexandra N; Eyob, Henok; Kessenbrock, Kai; Lawson, Devon A; Marsh, Lindsey A; Anderton, Brittany N; Rohrberg, Julia; Kunder, Ratika; Bazarov, Alexey V; Yaswen, Paul; McManus, Michael T; Rugo, Hope S; Werb, Zena; Goga, Andrei

    2016-11-01

    Triple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcome. No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC-an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes-is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors. Direct inhibition of the oncogenic transcriptional activity of MYC has been challenging to achieve. Here, by conducting a shRNA screen targeting the kinome, we identified PIM1, a non-essential serine-threonine kinase, in a synthetic lethal interaction with MYC. PIM1 expression was higher in TN tumors than in RP tumors and was associated with poor prognosis in patients with hormone- and HER2-negative tumors. Small-molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic mouse models of breast cancer by inhibiting the oncogenic transcriptional activity of MYC and restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that have elevated MYC expression.

  14. Penfluridol suppresses glioblastoma tumor growth by Akt-mediated inhibition of GLI1

    PubMed Central

    Ranjan, Alok; Srivastava, Sanjay K.

    2017-01-01

    Glioblastoma (GBM) is the most common brain tumor with poor survival rate. Our results show that penfluridol, an antipsychotic drug significantly reduced the survival of ten adult and pediatric glioblastoma cell lines with IC50 ranging 2–5 μM after 72 hours of treatment and induced apoptosis. Penfluridol treatment suppressed the phosphorylation of Akt at Ser473 and reduced the expression of GLI1, OCT4, Nanog and Sox2 in several glioblastoma cell lines in a concentration-dependent manner. Inhibiting Akt with LY294002 and siRNA, or inhibiting GLI1 using GANT61, cyclopamine, siRNA and CRISPR/Cas9 resulted in enhanced cell growth suppressive effects of penfluridol. On the other hand, overexpression of GLI1 significantly attenuated the effects of penfluridol. Our results further demonstrated that penfluridol treatment inhibited the growth of U87MG tumors by 65% and 72% in subcutaneous and intracranial in vivo glioblastoma tumor models respectively. Immunohistochemical and western blot analysis of tumors revealed reduced pAkt (Ser 473), GLI1, OCT4 and increase in caspase-3 cleavage and TUNEL staining, confirming in vitro findings. Taken together, our results indicate that overall glioblastoma tumor growth suppression by penfluridol was associated with Akt-mediated inhibition of GLI1. PMID:28380428

  15. CCNG2 Overexpression Mediated by AKT Inhibits Tumor Cell Proliferation in Human Astrocytoma Cells.

    PubMed

    Zhang, Danfeng; Wang, Chunhui; Li, Zhenxing; Li, Yiming; Dai, Dawei; Han, Kaiwei; Lv, Liquan; Lu, Yicheng; Hou, Lijun; Wang, Junyu

    2018-01-01

    The cyclin family protein CCNG2 has an important inhibitory role in cancer initiation and progression, but the exact mechanism is still unknown. In this study, we examined the relationship between CCNG2 and the malignancy of astrocytomas and whether the AKT pathway, which is upregulated in astrocytomas, may inhibit CCNG2 expression. CCNG2 expression was found to be negatively associated with the pathological grade and proliferative activity of astrocytomas, as the highest expression was found in control brain tissue ( N  = 31), whereas the lowest expression was in high-grade glioma tissue ( N  = 31). Additionally, CCNG2 overexpression in glioma cell lines, T98G and U251 inhibited proliferation and arrested cells in the G0/G1 phase. Moreover, CCNG2 overexpression could increase glioma cells apoptosis. In contrast, AKT activity increased in glioma cells that had low CCNG2 expression. Expression of CCNG2 was higher in cells treated with the AKT kinase inhibitor MK-2206 indicating that the presence of phosphorylated AKT may inhibit the expression of CCNG2. Inhibition of AKT also led to decreased colony formation in T98G and U251 cells and knocked down of CCNG2 reversed the result. Finally, overexpression of CCNG2 in glioma cells reduced tumor volume in a murine model. To conclude, low expression of CCNG2 correlated with the severity astrocytoma and CCNG2 overexpression could induce apoptosis and inhibit proliferation. Inhibition of AKT activity increased the expression of CCNG2. The present study highlights the regulatory consequences of CCNG2 expression and AKT activity in astrocytoma tumorigenesis and the potential use of CCNG2 in anticancer treatment.

  16. A novel anti-EGFR monoclonal antibody inhibiting tumor cell growth by recognizing different epitopes from cetuximab.

    PubMed

    Hong, Kwang-Won; Kim, Chang-Goo; Lee, Seung-Hyun; Chang, Ki-Hwan; Shin, Yong Won; Ryoo, Kyung-Hwan; Kim, Se-Ho; Kim, Yong-Sung

    2010-01-01

    The epidermal growth factor receptor (EGFR) overexpressed in many epithelial tumors is an attractive target for tumor therapy since numerous blocking agents of EGFR signaling have proven their anti-tumor activity. Here we report a novel monoclonal antibody (mAb), A13, which was generated from mice immunized with human cervical carcinoma A431 cells. In addition to binding to soluble EGFR with affinity of K(D) approximately 5.8nM, mAb A13 specifically bound to a variety of tumor cells and human placenta tissues expressing EGFR. A13 efficiently inhibited both EGF-dependant EGFR tyrosine phosphorylation in cervical and breast tumor cells and also in vitro colony formation of EGFR-overexpressing lung tumors. Competition and sandwich ELISAs, competitive surface plasmon resonance, and domain-level epitope mapping analyses demonstrated that mAb A13 competitively bound to the domain III (amino acids 302-503) of EGFR with EGF, but recognized distinct epitopes from those of cetuximab (Erbitux). Our results demonstrated that anti-EGFR mAb A13 interfered with EGFR proliferation signaling by blocking EGF binding to EGFR with different epitopes from those of cetuximab, suggesting that combination therapies of mAb A13 with cetuximab may prove beneficial for anti-tumor therapy.

  17. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice.

    PubMed

    Chinnasamy, Dhanalakshmi; Yu, Zhiya; Theoret, Marc R; Zhao, Yangbing; Shrimali, Rajeev K; Morgan, Richard A; Feldman, Steven A; Restifo, Nicholas P; Rosenberg, Steven A

    2010-11-01

    Immunotherapies based on adoptive cell transfer are highly effective in the treatment of metastatic melanoma, but the use of this approach in other cancer histologies has been hampered by the identification of appropriate target molecules. Immunologic approaches targeting tumor vasculature provide a means for the therapy of multiple solid tumor types. We developed a method to target tumor vasculature, using genetically redirected syngeneic or autologous T cells. Mouse and human T cells were engineered to express a chimeric antigen receptor (CAR) targeted against VEGFR-2, which is overexpressed in tumor vasculature and is responsible for VEGF-mediated tumor progression and metastasis. Mouse and human T cells expressing the relevant VEGFR-2 CARs mediated specific immune responses against VEGFR-2 protein as well as VEGFR-2-expressing cells in vitro. A single dose of VEGFR-2 CAR-engineered mouse T cells plus exogenous IL-2 significantly inhibited the growth of 5 different types of established, vascularized syngeneic tumors in 2 different strains of mice and prolonged the survival of mice. T cells transduced with VEGFR-2 CAR showed durable and increased tumor infiltration, correlating with their antitumor effect. This approach provides a potential method for the gene therapy of a variety of human cancers.

  18. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chian, Song; Thapa, Ruby; Chi, Zhexu

    Highlights: • Luteolin inhibits the Nrf2 pathway in mouse liver and in xenografted tumors. • Luteolin markedly inhibits the growth of xenograft tumors. • Luteolin enhances the anti-cancer effect of cisplatin in mice in vivo. • Luteolin could serve as an adjuvant in the chemotherapy of NSCLC. - Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is over-expressed in many types of tumor, promotes tumor growth, and confers resistance to anticancer therapy. Hence, Nrf2 is regarded as a novel therapeutic target in cancer. Previously, we reported that luteolin is a strong inhibitor of Nrf2 in vitro. Here, we showed thatmore » luteolin reduced the constitutive expression of NAD(P)H quinone oxidoreductase 1 in mouse liver in a time- and dose-dependent manner. Further, luteolin inhibited the expression of antioxidant enzymes and glutathione transferases, decreasing the reduced glutathione in the liver of wild-type mice under both constitutive and butylated hydroxyanisole-induced conditions. In contrast, such distinct responses were not detected in Nrf2{sup −/−} mice. In addition, oral administration of luteolin, either alone or combined with intraperitoneal injection of the cytotoxic drug cisplatin, greatly inhibited the growth of xenograft tumors from non-small-cell lung cancer (NSCLC) cell line A549 cells grown subcutaneously in athymic nude mice. Cell proliferation, the expression of Nrf2, and antioxidant enzymes were all reduced in tumor xenograft tissues. Furthermore, luteolin enhanced the anti-cancer effect of cisplatin. Together, our findings demonstrated that luteolin inhibits the Nrf2 pathway in vivo and can serve as an adjuvant in the chemotherapy of NSCLC.« less

  19. Chinese Red Yeast Rice Inhibition of Prostate Tumor Growth in SCID mice

    PubMed Central

    Hong, Mee Young; Henning, Susanne; Moro, Aune; Seeram, Navindra P.; Zhang, Yanjun; Heber, David

    2011-01-01

    Prostate cancer is a slowly developing but very common cancer in males that may be amenable to preventive strategies that are not toxic. Chinese red yeast rice (RYR), a food herb made by fermenting Monascus purpureus Went yeast on white rice, contains a mixture of eight different monacolins that inhibit cholesterogenesis in addition to red pigments with antioxidant properties. Monacolin K is identical to lovastatin (LV), but lovastatin unlike RYR can be used in individuals intolerant to statins due to muscle pain. Both LV and RYR inhibit de novo cholesterogenesis, which is critical to the growth of tumor cells. Long-term use of statin drugs has been associated with a reduced risk of prostate cancer. We have previously shown that RYR inhibited androgen-dependent and AR-overexpressing androgen-independent prostate cancer cell proliferation in vitro. The present study was designed to determine whether RYR and LV inhibit prostate tumor growth in SCID mice. RYR significantly reduced tumor volumes of androgen-dependent and androgen-independent prostate xenograft tumors compared to animals receiving vehicle alone (P<0.05). Inhibition by RYR was greater than that observed with LV at the dose found in RYR demonstrating that other compounds in RYR contributed to the antiproliferative effect. There was a significant correlation of tumor volume to serum cholesterol (P<0.001). RYR decreased gene expression of androgen synthesizing enzymes (HSD3B2, AKR1C3 and SRD5A1) in both type of tumors (P<0.05). Clinical studies of RYR for prostate cancer prevention in the increasing population of men undergoing active surveillance should be considered. PMID:21278313

  20. Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    PubMed

    Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina

    2008-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

  1. [The mechanism of inhibition effect of adenovirus-mediated ING4 on human lung adenocarcinoma xenografts in nude mice].

    PubMed

    Huang, Jinhong; Yang, Jicheng; Ling, Chunhua; Zhao, Daguo; Xie, Yufeng; You, Zhenhua

    2014-02-01

    The inhibitor of growth 4 (ING4) is an important tumor suppressive gene.It has been proven that ING4 could inhibite the proliferation of many tumors. e aim of this study is to investigate the inhibitory effect and anti-cancer mechanism of adenovirus-mediated ING4 gene on SPC-A1 human lung adenocarcinoma in nude mice. A human lung adenocarcinoma xenograft model was established with SPC-A1 cells in nude mice. A total of 15 tumor-bearing nude mice were randomly divided into three groups, namely, PBS, Ad-GFP, and Ad-ING4. e mice in the three groups were intratumorally injected every other day. Their tumor volumes were continually recorded. The treatment tumors were then removed from the mice and weighed. Tumor inhibition rates were calculated. Cell apoptosis was examined by TUNEL method. Caspase-3, COX-2, Fas, and FasL expressions were investigated by immunohistochemistry SP assay. Both tumor weight and volume in the Ad-ING4 group were significantly decreased. The tumor inhibition rate of the mice in the Ad-ING4 group (33.17% ± 5.24%) was statistically different from that of the mice in the Ad-GFP group (1.31% ± 0.31%; P<0.05). The apoptotic index of the mice in the Ad-ING4 group (69.23% ± 6.53%) was also significantly different from those in PBS (17.04% ± 1.10%) and Ad-GFP groups (18.81% ± 1.93%; P<0.05). Based on immunohistochemistry SP assay, the results showed that Ad-ING4 may not only upregulate the expressions of caspase-3, Fas, and FasL but also downregulate the expression of COX-2. ING4 gene elicited a remarkable growth inhibitory e-ect on human lung adenocarcinoma xenografts in nude mice. e mechanism is possibly related to an increase in tumor cell apoptosis.

  2. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors

    PubMed Central

    Diop-Frimpong, Benjamin; Chauhan, Vikash P.; Krane, Stephen; Boucher, Yves; Jain, Rakesh K.

    2011-01-01

    The dense collagen network in tumors significantly reduces the penetration and efficacy of nanotherapeutics. We tested whether losartan—a clinically approved angiotensin II receptor antagonist with noted antifibrotic activity—can enhance the penetration and efficacy of nanomedicine. We found that losartan inhibited collagen I production by carcinoma-associated fibroblasts isolated from breast cancer biopsies. Additionally, it led to a dose-dependent reduction in stromal collagen in desmoplastic models of human breast, pancreatic, and skin tumors in mice. Furthermore, losartan improved the distribution and therapeutic efficacy of intratumorally injected oncolytic herpes simplex viruses. Finally, it also enhanced the efficacy of i.v. injected pegylated liposomal doxorubicin (Doxil). Thus, losartan has the potential to enhance the efficacy of nanotherapeutics in patients with desmoplastic tumors. PMID:21282607

  3. Loxoprofen sodium suppresses mouse tumor growth by inhibiting vascular endothelial growth factor.

    PubMed

    Kanda, Akio; Ebihara, Satoru; Takahashi, Hidenori; Sasaki, Hidetada

    2003-01-01

    There is increasing evidence to suggest the anti-tumor effects of non-steroidal anti-inflammatory drugs (NSAIDs). In this study it was shown that the most popular NSAID in Japan, loxoprofen sodium (LOX), inhibited in vivo growth of implanted Lewis lung carcinoma (LLC), whereas LOX did not affect the proliferation and viability of LLC cells in vitro. Intratumoral vessel density in LOX-treated mice was significantly lower than that of mice without treatment. Intratumoral expressions of vascular endothelial growth factor (VEGF) mRNA were attenuated by the LOX treatment. LOX suppressed both intratumoral and systemic VEGF protein in LLC-implanted mice. LOX also inhibited tubular formation of primary cultured human umbilical vein endothelial cells, presumably due to the inhibition of VEGF. In patients with advanced non-small cell lung cancer, LOX medication (120 mg/day) for a week significantly decreased the plasma VEGF level. These results suggest that LOX may have potent anti-cancer effects in patients with advanced NSCLC.

  4. α-Mangostin: a dietary antioxidant derived from the pericarp of Garcinia mangostana L. inhibits pancreatic tumor growth in xenograft mouse model.

    PubMed

    Hafeez, Bilal Bin; Mustafa, Ala; Fischer, Joseph W; Singh, Ashok; Zhong, Weixiong; Shekhani, Mohammed Ozair; Meske, Louise; Havighurst, Thomas; Kim, KyungMann; Verma, Ajit Kumar

    2014-08-10

    Pancreatic cancer (PC) is the most aggressive malignant disease, ranking as the fourth most leading cause of cancer-related death among men and women in the United States. In this study, we provide evidence of chemotherapeutic effects of α-mangostin, a dietary antioxidant isolated from the pericarp of Garcinia mangostana L. against human PC. The chemotherapeutic effect of α-mangostin was determined using four human PC cells (PL-45, PANC1, BxPC3, and ASPC1). α-Mangostin resulted in a significant inhibition of PC cells viability without having any effects on normal human pancreatic duct epithelial cells. α-Mangostin showed a dose-dependent increase of apoptosis in PC cells. Also, α-mangostin inhibited the expression levels of pNF-κB/p65Ser552, pStat3Ser727, and pStat3Tyr705. α-Mangostin inhibited DNA binding activity of nuclear factor kappa B (NF-κB) and signal transducer and activator 3 (Stat3). α-Mangostin inhibited the expression levels of matrix metallopeptidase 9 (MMP9), cyclin D1, and gp130; however, increased expression of tissue inhibitor of metalloproteinase 1 (TIMP1) was observed in PC cells. In addition, i.p. administration of α-mangostin (6 mg/kg body weight, 5 days a week) resulted in a significant inhibition of both primary (PL-45) and secondary (ASPC1) human PC cell-derived orthotopic and ectopic xenograft tumors in athymic nude mice. No sign of toxicity was observed in any of the mice administered with α-mangostin. α-Mangostin treatment inhibited the biomarkers of cell proliferation (Ki-67 and proliferating cell nuclear antigen [PCNA]) in the xenograft tumor tissues. We present, for the first time, that dietary antioxidant α-mangostin inhibits the growth of PC cells in vitro and in vivo. These results suggest the potential therapeutic efficacy of α-mangostin against human PC.

  5. Human adipose tissue-derived mesenchymal stem cells inhibit T-cell lymphoma growth in vitro and in vivo.

    PubMed

    Ahn, Jin-Ok; Chae, Ji-Sang; Coh, Ye-Rin; Jung, Woo-Sung; Lee, Hee-Woo; Shin, Il-Seob; Kang, Sung-Keun; Youn, Hwa-Young

    2014-09-01

    Human mesenchymal stem cells (hMSCs) are thought to be one of the most reliable stem cell sources for a variety of cell therapies. This study investigated the anti-tumor effect of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) on EL4 murine T-cell lymphoma in vitro and in vivo. The growth-inhibitory effect of hAT-MSCs on EL4 tumor cells was evaluated using a WST-1 cell proliferation assay. Cell-cycle arrest and apoptosis were investigated by flow cytometry and western blot. To evaluate an anti-tumor effect of hAT-MSCs on T-cell lymphoma in vivo, CM-DiI-labeled hAT-MSCs were circumtumorally injected in tumor-bearing nude mice, and tumor size was measured. hAT-MSCs inhibited T-cell lymphoma growth by altering cell-cycle progression and inducing apoptosis in vitro. hAT-MSCs inhibited tumor growth in tumor-bearing nude mice and prolonged survival time. Immunofluorescence analysis showed that hAT-MSCs migrated to tumor sites. hAT-MSCs suppress the growth of T-cell lymphoma, suggesting a therapeutic option for T-cell lymphoma. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma.

    PubMed

    Su, Juan; Gao, Tianyuan; Jiang, Minghao; Wu, Lisha; Zeng, Weiqi; Zhao, Shuang; Peng, Cong; Chen, Xiang

    2016-10-04

    Melanoma is a very malignant disease and there are still no effective treatments. CD147 participates in the carcinogenesis of multiple human cancers and GLUT-1, as a glucose transporter, is associated with tumor growth. However, the function of CD147 and GLUT-1 in melanoma have not been completely understood. Thus, in this study we investigated the expression of CD147 and GLUT-1 in melanoma tissue, which were overexpressed compared with that in nevus tissue. In addition, CD147 and GLUT-1 were co-localized in the cytoplasm of human melanoma A375 cells. Immunoprecipitation proved that CD147 interacted with GLUT-1 at D105-199. Silencing CD147 by specific siRNA could downregulate GLUT-1 level via inhibiting PI3K/Akt signaling and decrease glucose uptake in A375 cells. In vivo experiments also supported that CD147 knockdown suppressed the tumor growth in melanoma subcutaneous mice model, observed by micro PET/CT. Our results could help validate CD147 as a new therapeutic target for treating melanoma.

  7. CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma

    PubMed Central

    Su, Juan; Gao, Tianyuan; Jiang, Minghao; Wu, Lisha; Zeng, Weiqi; Zhao, Shuang; Peng, Cong; Chen, Xiang

    2016-01-01

    Melanoma is a very malignant disease and there are still no effective treatments. CD147 participates in the carcinogenesis of multiple human cancers and GLUT-1, as a glucose transporter, is associated with tumor growth. However, the function of CD147 and GLUT-1 in melanoma have not been completely understood. Thus, in this study we investigated the expression of CD147 and GLUT-1 in melanoma tissue, which were overexpressed compared with that in nevus tissue. In addition, CD147 and GLUT-1 were co-localized in the cytoplasm of human melanoma A375 cells. Immunoprecipitation proved that CD147 interacted with GLUT-1 at D105-199. Silencing CD147 by specific siRNA could downregulate GLUT-1 level via inhibiting PI3K/Akt signaling and decrease glucose uptake in A375 cells. In vivo experiments also supported that CD147 knockdown suppressed the tumor growth in melanoma subcutaneous mice model, observed by micro PET/CT. Our results could help validate CD147 as a new therapeutic target for treating melanoma. PMID:27556188

  8. Therapeutic Benefit of Selective Inhibition of p110α PI3-Kinase in Pancreatic Neuroendocrine Tumors.

    PubMed

    Soler, Adriana; Figueiredo, Ana M; Castel, Pau; Martin, Laura; Monelli, Erika; Angulo-Urarte, Ana; Milà-Guasch, Maria; Viñals, Francesc; Baselga, Jose; Casanovas, Oriol; Graupera, Mariona

    2016-12-01

    Mutations in the PI3K pathway occur in 16% of patients with pancreatic neuroendocrine tumors (PanNETs), which suggests that these tumors are an exciting setting for PI3K/AKT/mTOR pharmacologic intervention. Everolimus, an mTOR inhibitor, is being used to treat patients with advanced PanNETs. However, resistance to mTOR-targeted therapy is emerging partially due to the loss of mTOR-dependent feedback inhibition of AKT. In contrast, the response to PI3K inhibitors in PanNETs is unknown. In the current study, we assessed the frequency of PI3K pathway activation in human PanNETs and in RIP1-Tag2 mice, a preclinical tumor model of PanNETs, and we investigated the therapeutic efficacy of inhibiting PI3K in RIP1-Tag2 mice using a combination of pan (GDC-0941) and p110α-selective (GDC-0326) inhibitors and isoform-specific PI3K kinase-dead-mutant mice. Human and mouse PanNETs showed enhanced pAKT, pPRAS40, and pS6 positivity compared with normal tissue. Although treatment of RIP1-Tag2 mice with GDC-0941 led to reduced tumor growth with no impact on tumor vessels, the selective inactivation of the p110α PI3K isoform, either genetically or pharmacologically, reduced tumor growth as well as vascular area. Furthermore, GDC-0326 reduced the incidence of liver and lymph node metastasis compared with vehicle-treated mice. We also demonstrated that tumor and stromal cells are implicated in the antitumor activity of GDC-0326 in RIP1-Tag2 tumors. Our data provide a rationale for p110α-selective intervention in PanNETs and unravel a new function of this kinase in cancer biology through its role in promoting metastasis. Clin Cancer Res; 22(23); 5805-17. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. PIM kinase inhibition presents a novel targeted therapy against triple-negative breast tumors with elevated MYC expression

    PubMed Central

    Horiuchi, Dai; Camarda, Roman; Zhou, Alicia Y.; Yau, Christina; Momcilovic, Olga; Balakrishnan, Sanjeev; Corella, Alexandra N.; Eyob, Henok; Kessenbrock, Kai; Lawson, Devon A.; Marsh, Lindsey A.; Anderton, Brittany N.; Rohrberg, Julia; Kunder, Ratika; Bazarov, Alexey V.; Yaswen, Paul; McManus, Michael T.; Rugo, Hope S.; Werb, Zena; Goga, Andrei

    2017-01-01

    Triple-negative breast cancer (TNBC), which lacks the expression of the estrogen, progesterone, and HER2 receptors, represents the breast cancer subtype with the poorest outcome1. No targeted therapy is available against this subtype due to lack of validated molecular targets. We previously reported that MYC signaling is disproportionally elevated in triple-negative (TN) tumors compared to receptor-positive (RP) tumors2. MYC is an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes3. Direct inhibition of oncogenic MYC transcriptional activity has remained challenging4,5. The present study conducted an shRNA screen against all kinases to uncover novel MYC-dependent synthetic lethal combinations, and identified PIM1, a non-essential kinase. Here we demonstrate that PIM1 expression was elevated in TN tumors and was associated with poor prognosis in patients with hormone and HER2 receptor-negative tumors. Small molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic breast cancer models by inhibiting oncogenic transcriptional activity of MYC while simultaneously restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that exhibit elevated MYC expression. PMID:27775705

  10. PAQR3 inhibits the proliferation, migration and invasion in human glioma cells.

    PubMed

    Tang, Shi-Lei; Gao, Yuan-Lin; Hu, Wen-Zhong

    2017-08-01

    Progestin and AdipoQ Receptor 3 (PAQR3), a member of the PAQR family, is down-regulated in several types of cancers and has been closely associated with tumor progression and development. However, little is known about the functions of PAQR3 in the tumorigenesis of human glioma. Therefore, in this report, we investigated the role of PAQR3 in human glioma. Our results showed that the expression of PAQR3 was significantly reduced in human glioma tissues and cell lines. PAQR3 overexpression inhibited the proliferation of glioma cells in vitro and attenuated tumor xenograft growth in vivo. In addition, PAQR3 overexpression suppressed the migration and invasion of glioma cells, as well as prevented the EMT process. Mechanistic studies demonstrated that PAQR3 overexpression significantly down-regulated the levels of phosphorylated PI3K and Akt in U251 cells. In conclusion, these results demonstrated that PAQR3 inhibited the proliferation, migration and invasion in glioma cells, at least in part, through the inactivation of PI3K/Akt signaling pathway. Therefore, PAQR3 may be a therapeutic target for the treatment of glioma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Targeting long non-coding RNA-TUG1 inhibits tumor growth and angiogenesis in hepatoblastoma

    PubMed Central

    Dong, R; Liu, G-B; Liu, B-H; Chen, G; Li, K; Zheng, S; Dong, K-R

    2016-01-01

    Hepatoblastoma is the most common liver tumor of early childhood, which is usually characterized by unusual hypervascularity. Recently, long non-coding RNAs (lncRNA) have emerged as gene regulators and prognostic markers in several cancers, including hepatoblastoma. We previously reveal that lnRNA-TUG1 is upregulated in hepatoblastoma specimens by microarray analysis. In this study, we aim to elucidate the biological and clinical significance of TUG1 upregulation in hepatoblastoma. We show that TUG1 is significantly upregulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. TUG1 knockdown inhibits tumor growth and angiogenesis in vivo, and decreases hepatoblastoma cell viability, proliferation, migration, and invasion in vitro. TUG1, miR-34a-5p, and VEGFA constitutes to a regulatory network, and participates in regulating hepatoblastoma cell function, tumor progression, and tumor angiogenesis. Overall, our findings indicate that TUG1 upregulation contributes to unusual hypervascularity of hepatoblastoma. TUG1 is a promising therapeutic target for aggressive, recurrent, or metastatic hepatoblastoma. PMID:27362796

  12. Targeting long non-coding RNA-TUG1 inhibits tumor growth and angiogenesis in hepatoblastoma.

    PubMed

    Dong, R; Liu, G-B; Liu, B-H; Chen, G; Li, K; Zheng, S; Dong, K-R

    2016-06-30

    Hepatoblastoma is the most common liver tumor of early childhood, which is usually characterized by unusual hypervascularity. Recently, long non-coding RNAs (lncRNA) have emerged as gene regulators and prognostic markers in several cancers, including hepatoblastoma. We previously reveal that lnRNA-TUG1 is upregulated in hepatoblastoma specimens by microarray analysis. In this study, we aim to elucidate the biological and clinical significance of TUG1 upregulation in hepatoblastoma. We show that TUG1 is significantly upregulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. TUG1 knockdown inhibits tumor growth and angiogenesis in vivo, and decreases hepatoblastoma cell viability, proliferation, migration, and invasion in vitro. TUG1, miR-34a-5p, and VEGFA constitutes to a regulatory network, and participates in regulating hepatoblastoma cell function, tumor progression, and tumor angiogenesis. Overall, our findings indicate that TUG1 upregulation contributes to unusual hypervascularity of hepatoblastoma. TUG1 is a promising therapeutic target for aggressive, recurrent, or metastatic hepatoblastoma.

  13. Influence of histamine and serotonin antagonists on the growth of xenografted human colorectal tumors.

    PubMed

    Barkla, D H; Tutton, P J

    1981-12-01

    Four lines of human colorectal cancer were established and serially propagated as subcutaneous xenographs in immunosuppressed inbred CBA/Lac mice. Established xenografts were then used to investigate the influence of a serotonin antagonist (BW 501c) and a histamine H2 receptor antagonists (Cimetidine) on xenograft growth. The growth of each of the four tumor lines was significantly inhibited by BW 501c throughout the treatment, whereas the growth of only two tumor lines was significantly inhibited by Cimetidine treatment. The response of individual tumor lines was not predictable on the basis of either tumor histopathology or the natural growth rate of the untreated xenograft. A number of alternative, but not mutually exclusive, hypotheses are suggested to explain the results. One hypothesis proposes that colorectal tumors are composed of subpopulations of tumor cells that are variously dependent on or independent of amine hormones. Another hypothesis is that tumor cells exhibit temporal changes in hormone sensitivity to amine hormones during treatment. Finally, it is suggested that serotonin and/or histamine H2 antagonists may be useful in preventing the repopulation of colorectal carcinomas following antineoplastic therapy with the use of conventional drugs.

  14. Statistical inference for tumor growth inhibition T/C ratio.

    PubMed

    Wu, Jianrong

    2010-09-01

    The tumor growth inhibition T/C ratio is commonly used to quantify treatment effects in drug screening tumor xenograft experiments. The T/C ratio is converted to an antitumor activity rating using an arbitrary cutoff point and often without any formal statistical inference. Here, we applied a nonparametric bootstrap method and a small sample likelihood ratio statistic to make a statistical inference of the T/C ratio, including both hypothesis testing and a confidence interval estimate. Furthermore, sample size and power are also discussed for statistical design of tumor xenograft experiments. Tumor xenograft data from an actual experiment were analyzed to illustrate the application.

  15. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo.

    PubMed

    Chakrabarti, Mrinmay; Ray, Swapan K

    2016-03-01

    Glioblastoma is the deadliest brain tumor in humans. High systemic toxicity of conventional chemotherapies prompted the search for natural compounds for controlling glioblastoma. The natural flavonoids luteolin (LUT) and silibinin (SIL) have anti-tumor activities. LUT inhibits autophagy, cell proliferation, metastasis, and angiogenesis and induces apoptosis; while SIL activates caspase-8 cascades to induce apoptosis. However, synergistic anti-tumor effects of LUT and SIL in glioblastoma remain unknown. Overexpression of tumor suppressor microRNA (miR) could enhance the anti-tumor effects of LUT and SIL. Here, we showed that 20 µM LUT and 50 µM SIL worked synergistically for inhibiting growth of two different human glioblastoma U87MG (wild-type p53) and T98G (mutant p53) cell lines and natural combination therapy was more effective than conventional chemotherapy (10 µM BCNU or 100 µM TMZ). Combination of LUT and SIL caused inhibition of growth of glioblastoma cells due to induction of significant amounts of apoptosis and complete inhibition of invasion and migration. Further, combination of LUT and SIL inhibited rapamycin (RAPA)-induced autophagy, a survival mechanism, with suppression of PKCα and promotion of apoptosis through down regulation of iNOS and significant increase in expression of the tumor suppressor miR-7-1-3p in glioblastoma cells. Our in vivo studies confirmed that overexpression of miR-7-1-3p augmented anti-tumor activities of LUT and SIL in RAPA pre-treated both U87MG and T98G tumors. In conclusion, our results clearly demonstrated that overexpression of miR-7-1-3p augmented the anti-tumor activities of LUT and SIL to inhibit autophagy and induce apoptosis for controlling growth of different human glioblastomas in vivo.

  16. Inhibition of c-Jun N-terminal kinase sensitizes tumor cells to flavonoid-induced apoptosis through down-regulation of JunD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kook, Sung-Ho; Research Center of Bioactive Materials, Chonbuk National University, Chonju 561-756; Son, Young-Ok

    Reduction of susceptibility to apoptosis signals is a crucial step in carcinogenesis. Therefore, sensitization of tumor cells to apoptosis is a promising therapeutic strategy. c-Jun NH{sub 2}-terminal kinase (JNK) has been implicated in stress-induced apoptosis. However, many studies also emphasize the role of JNK on cell survival, although its mechanisms are not completely understood. Previously, we found that inhibition of JNK activity promotes flavonoid-mediated apoptosis of human osteosarcoma cells. We thus determined whether inhibition of JNK sensitizes tumor cells to a bioflavonoid-induced apoptosis, and whether this effect of JNK is a general effect. As the results, quercetin and genistein asmore » well as a flavonoid fraction induced apoptosis of tumor cells, which was further accelerated by specific JNK inhibitor, SP600125 or by small interfering RNA specific to JNK1/2. This effect was specific to types of cells because it was further apparent in tumorigenic cell lines. Inhibition of JNK by SP600125 also reduced flavonoid-stimulated nuclear induction of JunD which was known to have protective role in apoptosis, whereas JNK inhibition alone had little effect on apoptosis. The flavonoid-induced apoptosis of tumor cells was significantly enhanced by transfecting them with antisense JunD oligonucleotides. These results suggest that inhibition of JNK facilitates flavonoid-induced apoptosis through down-regulation of JunD, which is further sensitive to tumor cells. Therefore, combination with a specific JNK inhibitor further enhances the anti-cancer and chemopreventive potential of bio-flavonoids.« less

  17. M-HIFU Inhibits Tumor Growth, Suppresses STAT3 Activity and Enhances Tumor Specific Immunity in a Transplant Tumor Model of Prostate Cancer

    PubMed Central

    Huang, Xiaoyi; Yuan, Fang; Liang, Meihua; Lo, Hui-Wen; Shinohara, Mari L.; Robertson, Cary; Zhong, Pei

    2012-01-01

    Objective In this study, we explored the use of mechanical high intensity focused ultrasound (M-HIFU) as a neo-adjuvant therapy prior to surgical resection of the primary tumor. We also investigated the role of signal transducer and activator of transcription 3 (STAT3) in M-HIFU elicited anti-tumor immune response using a transplant tumor model of prostate cancer. Methods RM-9, a mouse prostate cancer cell line with constitutively activated STAT3, was inoculated subcutaneously in C57BL/6J mice. The tumor-bearing mice (with a maximum tumor diameter of 5∼6 mm) were treated by M-HIFU or sham exposure two days before surgical resection of the primary tumor. Following recovery, if no tumor recurrence was observed in 30 days, tumor rechallenge was performed. The growth of the rechallenged tumor, survival rate and anti-tumor immune response of the animal were evaluated. Results No tumor recurrence and distant metastasis were observed in both treatment groups employing M-HIFU + surgery and surgery alone. However, compared to surgery alone, M-HIFU combined with surgery were found to significantly inhibit the growth of rechallenged tumors, down-regulate intra-tumoral STAT3 activities, increase cytotoxic T cells in spleens and tumor draining lymph nodes (TDLNs), and improve the host survival. Furthermore, M-HIFU combined with surgery was found to significantly decrease the level of immunosuppression with concomitantly increased number and activities of dendritic cells, compared to surgery alone. Conclusion Our results demonstrate that M-HIFU can inhibit STAT3 activities, and when combined synergistically with surgery, may provide a novel and promising strategy for the treatment of prostate cancers. PMID:22911830

  18. The Selective PI3K Inhibitor XL147 (SAR245408) Inhibits Tumor Growth and Survival and Potentiates the Activity of Chemotherapeutic Agents in Preclinical Tumor Models.

    PubMed

    Foster, Paul; Yamaguchi, Kyoko; Hsu, Pin P; Qian, Fawn; Du, Xiangnan; Wu, Jianming; Won, Kwang-Ai; Yu, Peiwen; Jaeger, Christopher T; Zhang, Wentao; Marlowe, Charles K; Keast, Paul; Abulafia, Wendy; Chen, Jason; Young, Jenny; Plonowski, Artur; Yakes, F Michael; Chu, Felix; Engell, Kelly; Bentzien, Frauke; Lam, Sanh T; Dale, Stephanie; Yturralde, Olivia; Matthews, David J; Lamb, Peter; Laird, A Douglas

    2015-04-01

    Dysregulation of PI3K/PTEN pathway components, resulting in hyperactivated PI3K signaling, is frequently observed in various cancers and correlates with tumor growth and survival. Resistance to a variety of anticancer therapies, including receptor tyrosine kinase (RTK) inhibitors and chemotherapeutic agents, has been attributed to the absence or attenuation of downregulating signals along the PI3K/PTEN pathway. Thus, PI3K inhibitors have therapeutic potential as single agents and in combination with other therapies for a variety of cancer indications. XL147 (SAR245408) is a potent and highly selective inhibitor of class I PI3Ks (α, β, γ, and δ). Moreover, broad kinase selectivity profiling of >130 protein kinases revealed that XL147 is highly selective for class I PI3Ks over other kinases. In cellular assays, XL147 inhibits the formation of PIP3 in the membrane, and inhibits phosphorylation of AKT, p70S6K, and S6 in multiple tumor cell lines with diverse genetic alterations affecting the PI3K pathway. In a panel of tumor cell lines, XL147 inhibits proliferation with a wide range of potencies, with evidence of an impact of genotype on sensitivity. In mouse xenograft models, oral administration of XL147 results in dose-dependent inhibition of phosphorylation of AKT, p70S6K, and S6 with a duration of action of at least 24 hours. Repeat-dose administration of XL147 results in significant tumor growth inhibition in multiple human xenograft models in nude mice. Administration of XL147 in combination with chemotherapeutic agents results in antitumor activity in xenograft models that is enhanced over that observed with the corresponding single agents. ©2015 American Association for Cancer Research.

  19. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity☆

    PubMed Central

    Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2013-01-01

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 13.8 μM, which was less potent than copper(II) chloride (IC50 5.3 μM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397

  20. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo

    PubMed Central

    Milacic, Vesna; Banerjee, Sanjeev; Landis-Piwowar, Kristin R.; Sarkar, Fazlul H.; Majumdar, Adhip P.N.; Dou, Q. Ping

    2008-01-01

    Curcumin (diferuloylmethane) is the major active ingredient of turmeric (curcuma longa) used in South Asian cuisine for centuries. Curcumin has been shown to inhibit the growth of transformed cells and to have a number of potential molecular targets. However, the essential molecular targets of curcumin under physiological conditions have not been completely defined. Herein, we report that the tumor cellular proteasome is most likely an important target of curcumin. Nucleophilic susceptibility and in silico docking studies show that both carbonyl carbons of the curcumin molecule are highly susceptible to a nucleophilic attack by the hydroxyl group of the N-terminal threonine of the proteasomal chymotrypsin-like subunit. Consistently, curcumin potently inhibits the chymotrypsin-like activity of a purified rabbit 20S proteasome (IC50=1.85 µM) and cellular 26S proteasome. Furthermore, inhibition of proteasome activity by curcumin in human colon cancer HCT-116 and SW480 cell lines leads to accumulation of ubiquitinated proteins and several proteasome target proteins, and subsequent induction of apoptosis. Furthermore, treatment of HCT-116 colon tumor–bearing ICR SCID mice with curcumin resulted in decreased tumor growth, associated with proteasome inhibition, proliferation suppression and apoptosis induction in tumor tissues. Our study demonstrates that proteasome inhibition could be one of the mechanisms for the chemopreventive and/or therapaeutic roles of curcumin in human colon cancer. Based on its ability to inhibit the proteasome and induce apoptosis in both HCT-116 and metastatic SW480 colon cancer cell lines, our study suggests that curcumin could potentially be used for treatment of both early stage and late stage/refractory colon cancer. PMID:18794115

  1. Baicalein inhibits the migration and invasive properties of human hepatoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Yung-Wei; Institute of Medicine, Chung Shan Medical University, Taiwan; Lin, Tseng-Hsi

    Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38more » mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-{beta}. In addition, baicalein reduced the phosphorylation levels of PKC{alpha} and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: > Baicalein inhibits several essential steps in the onset of metastasis.« less

  2. Mitogen-activated protein kinase inhibition reduces mucin 2 production and mucinous tumor growth.

    PubMed

    Dilly, Ashok K; Song, Xinxin; Zeh, Herbert J; Guo, Zong S; Lee, Yong J; Bartlett, David L; Choudry, Haroon A

    2015-10-01

    Excessive accumulation of mucin 2 (MUC2) protein (a gel-forming secreted mucin) within the peritoneal cavity is the major cause of morbidity and mortality in pseudomyxoma peritonei (PMP), a unique mucinous malignancy of the appendix. Mitogen-activated protein kinase (MAPK) signaling pathway is upregulated in PMP and has been shown to modulate MUC2 promoter activity. We hypothesized that targeted inhibition of the MAPK pathway would be a novel, effective, and safe therapeutic strategy to reduce MUC2 production and mucinous tumor growth. We tested RDEA119, a specific MEK1/2 (MAPK extracellular signal-regulated kinase [ERK] kinase) inhibitor, in MUC2-secreting LS174T cells, human PMP explant tissue, and in a unique intraperitoneal murine xenograft model of PMP. RDEA119 reduced ERK1/2 phosphorylation and inhibited MUC2 messenger RNA and protein expression in vitro. In the xenograft model, chronic oral therapy with RDEA119 inhibited mucinous tumor growth in an MAPK pathway-dependent manner and this translated into a significant improvement in survival. RDEA119 downregulated phosphorylated ERK1/2 and nuclear factor κB p65 protein signaling and reduced activating protein 1 (AP1) transcription factor binding to the MUC2 promoter in LS174T cells. This study provides a preclinical rationale for the use of MEK inhibitors to treat patients with PMP. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Antitumor and Antimetastatic Activity of Synthetic Hydroxystilbenes Through Inhibition of Lymphangiogenesis and M2 Macrophage Differentiation of Tumor-associated Macrophages.

    PubMed

    Kimura, Yoshiyuki; Sumiyoshi, Maho; Baba, Kimiye

    2016-01-01

    An increase in tumor-associated macrophages (TAMs) around the tumor microenvironment has been closely associated with a poor prognosis in patients with cancer, and M2 TAMs promote tumor growth and tumor metastasis by stimulating angiogenesis or lymphangiogenesis in tumors. We herein examined the effects of nine synthetic hydroxystilbenes on M2 macrophage activation and differentiation, and three selected dihydroxystilbenes on vascular endothelial cell growth factor (VEGF)-C-induced tube formation in human lymphatic endothelial cells (HLECs) (in vitro). We also investigated the antitumor and antimetastatic effects of three synthetic dihydroxystilbenes in LM8-bearing mice in vivo. The three selected synthetic stilbenes (at concentrations of 5, 10, 25, and 50 μM) inhibited the production of interleukin-10 and monocyte chemoattractant protein-1 in M2 macrophages, but promoted that of transforming growth factor-β1. The three dihydroxystilbenes (at concentrations of 10-50 μM) inhibited the phosphorylation of signal transducer and activator of transcript 3 without affecting its expression in the differentiation of M2 macrophages. Furthermore, the 2,3- and 4,4'-dihydroxystilbene inhibited VEGF-C-induced lymphangiogenesis in HLECs. Both 2,3- and 4,4'-dihydroxystilbene (at 10 and 25 mg/kg, twice daily) inhibited tumor growth and metastasis to the lung in mice. These results suggested that the antitumor and antimetastatic effects of 2,3- and 4,4'-dihydroxystilbene were partly due to anti-lymphangiogenesis, and the regulation of M2 macrophage activation and differentiation. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. Hepatocyte growth factor sensitizes brain tumors to c-MET kinase inhibition

    PubMed Central

    Zhang, Ying; Farenholtz, Kaitlyn E.; Yang, Yanzhi; Guessous, Fadila; diPierro, Charles G.; Calvert, Valerie S.; Deng, Jianghong; Schiff, David; Xin, Wenjun; Lee, Jae K.; Purow, Benjamin; Christensen, James; Petricoin, Emanuel; Abounader, Roger

    2013-01-01

    Purpose The receptor tyrosine kinase (RTK) c-MET and its ligand hepatocyte growth factor (HGF) are deregulated and promote malignancy in cancer and brain tumors. Consequently, clinically applicable c-MET inhibitors have been developed. The purpose of this study was to investigate the not well known molecular determinants that predict responsiveness to c-MET inhibitors, and to explore new strategies for improving inhibitor efficacy in brain tumors. Experimental design We investigated the molecular factors and pathway activation signatures that determine sensitivity to c-MET inhibitors in a panel of glioblastoma and medulloblastoma cells, glioblastoma stem cells (GSCs), and established cell line-derived xenografts using functional assays, reverse protein microarrays, and in vivo tumor volume measurements, but validation with animal survival analyses remains to be done. We also explored new approaches for improving the efficacy of the inhibitors in vitro and in vivo. Results We found that HGF co-expression is a key predictor of response to c-MET inhibition among the examined factors, and identified an ERK/JAK/p53 pathway activation signature that differentiates c-MET inhibition in responsive and non-responsive cells. Surprisingly, we also found that short pre-treatment of cells and tumors with exogenous HGF moderately but statistically significantly enhanced the anti-tumor effects of c-MET inhibition. We observed a similar ligand-induced sensitization effect to an EGFR small molecule kinase inhibitor. Conclusions These findings allow the identification of a subset of patients that will be responsive to c-MET inhibition, and propose ligand pre-treatment as a potential new strategy for improving the anti-cancer efficacy of RTK inhibitors. PMID:23386689

  5. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells.

    PubMed

    Ge, Peng-Fei; Zhang, Ji-Zhou; Wang, Xiao-Fei; Meng, Fan-Kai; Li, Wen-Chen; Luan, Yong-Xin; Ling, Feng; Luo, Yi-Nan

    2009-07-01

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy. Due to the dual roles of autophagy in tumor cell survival and death, the effect of autophagy on the destiny of glioma cells remains unclear. In this study, we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells. The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells, and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA. Cell viability was measured by MTT assay. Apoptosis and cell cycle were detected by flow cytometry. The expression of autophagy related proteins was determined by Western blot. MG-132 inhibited cell proliferation, induced cell death and cell cycle arrest at G(2)/M phase, and activated autophagy in SHG-44 glioma cells. The expression of autophagy-related Beclin-1 and LC3-I was significantly up-regulated and part of LC3-I was converted into LC3-II. However, when SHG-44 glioma cells were co-treated with MG-132 and 3-MA, the cells became less viable, but cell death and cell numbers at G(2)/M phase increased. Moreover, the accumulation of acidic vesicular organelles was decreased, the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-II from LC3-I was also inhibited. Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells, and inhibition of autophagy increases cell death. This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.Acta Pharmacologica Sinica (2009) 30: 1046-1052; doi: 10.1038/aps.2009.71.

  6. Triflavin, an Arg‐Gly‐Asp‐containing Peptide, Inhibits Tumor Cell‐induced Platelet Aggregation

    PubMed Central

    Sheu, Joen R.; Lin, Chao H.; Peng, Hui C.; Teng, Che M.

    1993-01-01

    In this study, we examined the effect of triflavin, an Arg‐Gly‐Asp (RGD)‐containing snake venom peptide, on human cervical carcinoma (HeLa) cell‐ and B16‐F10 mouse melanoma cell‐induced platelet aggregation (TCIPA) in heparinized platelet‐rich plasma. TCIPA appears to play an important role in the development of certain experimental tumor metastases. Two ADP‐scavenging agents, apyrase (10 U/ml) and creatine phosphate (CP) (5 mM)/creatine phosphokinase (CPK) (5 U/ml) completely inhibited B16‐F10 TCIPA, but hirudin (5 U/ml) had no effect. In contrast, apyrase and CP/CPK did not inhibit HeLa TCIPA while hirudin completely inhibited it. Furthermore, HeLa cells initially induced platelet aggregation and then blood coagulation at a later stage. In addition, HeLa cells shortened, in a concentration‐dependent manner, the recalcification time of normal as well as factor VIII‐ and IX‐deficient human plasma, but did not affect the recalciflcation time of factor VII‐deficient plasma. This suggests that HeLa TCIPA occurs via activation of the extrinsic pathway, probably owing to tumor cell expression of tissue factor‐like activity. HeLa cell‐induced thrombin generation was confirmed by detection of amidolytic activity towards a chromogenic substrate, S‐2238 (H‐D‐Phe‐Pip‐Arg‐p‐NA). Triflavin and GRGDS inhibited, in a dose‐dependent manner, TCIPA caused by either cell line. On a molar basis, triflavin was 10,000–30,000 times more potent than GRGDS in this regard. Moreover, monoclonal antibodies raised against glycoprotein (GP) IIb/IIIa complex (i.e., 7E3 and AP2) and against GP Ib (i.e., AP1) completely inhibited HeLa TCIPA. 7E3 and AP2 inhibited B16‐F10 TCIPA by up to 80% whereas AP1 showed only 30% inhibition of B16‐F10 TCIPA. In conclusion, the inhibitory effect of triflavin on HeLa and B16‐F10 TCIPA may be mediated principally by the binding of triflavin to the fibrinogen receptor associated with GP IIb/IIIa complex on the

  7. [Inhibitory effect of Xiaotan Sanjie Recipe on the microsatellite instability of orthotopic transplantation tumor in MKN-45 human gastric cancer nude mice].

    PubMed

    Ye, Min; Sun, Da-Zhi; Wei, Pin-kang

    2014-05-01

    To study the inhibitory effect of Xiaotan Sanjie Recipe (XSR) on the microsatellite instability of orthotopic transplantation tumor in MKN-45 human gastric cancer nude mice. The 3rd passage subcutaneous transplantation tumor was taken as the origin of the model by using MKN-45 human gastric cancer cell lines. MKN-45 human gastric cancer nude mouse model was established using OB glue adhesive method. Then 30 nude mice were divided into the model group, the XSR group, and the chemotherapy group. Mice in the XSR group were intragastrically given XSR at the daily dose of 0.4 mL. Mice in the chemotherapy group were intragastrically given Fluorouracil at the daily dose of 0.4 mL. No intervention was given to mice in the model group. After 6 weeks of medication, the tumor weight was measured, and the tumor inhibition rate calculated. The size, the peak height, and the peak area of 5 microsatellite instability sites were detected. The tumor inhibition rate was 40. 84% in the XSR group. The tumor weight was significantly lower in the XSR group than in the model group (P < 0.01), showing no statistical difference when compared with the chemotherapy group (P >0.05). The incidence of high microsatellite instability (MSI-H) in the model group was 70%, and the incidence of low microsatellite instability (MSI-L) was 30%. Microsatellite stable site tended be stable after 6 weeks of XSR treatment. XSR showed inhibition on microsatellite instable orthotopic transplantation tumor in MKN-45 human gastric cancer nude mice.

  8. Anticancer activity of TTAC-0001, a fully human anti-vascular endothelial growth factor receptor 2 (VEGFR-2/KDR) monoclonal antibody, is associated with inhibition of tumor angiogenesis

    PubMed Central

    Kim, Dong Geon; Jin, Younggeon; Jin, Juyoun; Yang, Heekyoung; Joo, Kyeung Min; Lee, Weon Sup; Shim, Sang Ryeol; Kim, Sung-Woo; Yoo, Jinsang; Lee, Sang Hoon; Yoo, Jin-San; Nam, Do-Hyun

    2015-01-01

    Vascular endothelial growth factor (VEGF) and its receptors are considered the primary cause of tumor-induced angiogenesis. Specifically, VEGFR-2/kinase insert domain receptor (KDR) is part of the major signaling pathway that plays a significant role in tumor angiogenesis, which is associated with the development of various types of tumor and metastasis. In particular, KDR is involved in tumor angiogenesis as well as cancer cell growth and survival. In this study, we evaluated the therapeutic potential of TTAC-0001, a fully human antibody against VEGFR-2/KDR. To assess the efficacy of the antibody and pharmacokinetic (PK) relationship in vivo, we tested the potency of TTAC-0001 in glioblastoma and colorectal cancer xenograft models. Antitumor activity of TTAC-0001 in preclinical models correlated with tumor growth arrest, induction of tumor cell apoptosis, and inhibition of angiogenesis. We also evaluated the combination effect of TTAC-0001 with a chemotherapeutic agent in xenograft models. We were able to determine the relationship between PK and the efficacy of TTAC-0001 through in vivo single-dose PK study. Taken together, our data suggest that targeting VEGFR-2 with TTAC-0001 could be a promising approach for cancer treatment. PMID:26325365

  9. Potent Antitumor Effects of Combination Therapy With IFNs and Monocytes in Mouse Models of Established Human Ovarian and Melanoma Tumors

    PubMed Central

    Nakashima, Hideyuki; Miyake, Kotaro; Clark, Christopher R; Bekisz, Joseph; Finbloom, Joel; Husain, Syed R.; Baron, Samuel; Puri, Raj K.; Zoon, Kathryn C.

    2012-01-01

    Interferon-activated monocytes are known to exert cytocidal activity against tumor cells in vitro. Here, we have examined whether a combination of IFN-α2a and IFN-γ and human monocytes mediate significant antitumor effects against human ovarian and melanoma tumor xenografts in mouse models. OVCAR-3 tumors were treated i.t. with monocytes alone, IFN-α2a and IFN-γ alone or combination of all three on day 0, 15 or 30 post-tumor implantation. Mice receiving combination therapy beginning day 15 showed significantly reduced tumor growth and prolonged survival including complete regression in 40% mice., Tumor volumes measured on day 80 in mice receiving combination therapy (206 mm3) were significantly smaller than those of mice receiving the IFNs alone (1041 mm3), monocytes alone (1111 mm3) or untreated controls (1728 mm3). Similarly, combination therapy with monocytes and IFNs of much larger tumor also inhibited OVCAR-3 tumor growth. Immunohistochemistry studies showed a large number of activated macrophages (CD31+/CD68+) infiltrating into OVCAR-3 tumors and higher densities of IL-12, IP10 and NOS2, markers of M1 (classical) macrophages in tumors treated with combination therapy compared to the controls. Interestingly, IFNs activated macrophages induced apoptosis of OVCAR-3 tumor cells as monocytes alone or IFNs alone did not mediate significant apoptosis. Similar antitumor activity was observed in the LOX melanoma mouse model, but not as profound as seen with the OVCAR-3 tumors. Administration of either mixture of monocytes and IFN-α2a or monocytes and IFN-γ did not inhibit Lox melanoma growth; however a significant inhibition was observed when tumors were treated with a mixture of monocytes, IFN-α2a and IFN-γ. These results indicate that monocytes and both IFN-α2a and IFN-γ may be required to mediate profound antitumor effect against human ovarian and melanoma tumors in mouse models. PMID:22159517

  10. STAT3 Oligonucleotide Inhibits Tumor Angiogenesis in Preclinical Models of Squamous Cell Carcinoma

    PubMed Central

    Klein, Jonah D.; Sano, Daisuke; Sen, Malabika; Myers, Jeffrey N.; Grandis, Jennifer R.; Kim, Seungwon

    2014-01-01

    Purpose Signal transducer and activator of transcription 3 (STAT3) has shown to play a critical role in head and neck squamous cell carcinoma (HNSCC) and we have recently completed clinical trials of STAT3 decoy oligonucleotide in patients with recurrent or metastatic HNSCC. However, there is limited understanding of the role of STAT3 in modulating other aspects of tumorigenesis such as angiogenesis. In this study, we aimed to examine the effects of STAT3 decoy oligonucleotide on tumor angiogenesis. Experimental Design A STAT3 decoy oligonucleotide and small interfering RNA (siRNA) were used to inhibit STAT3 in endothelial cells in vitro and in vivo. The biochemical effects of STAT3 inhibition were examined in conjunction with the consequences on proliferation, migration, apoptotic staining, and tubule formation. Additionally, we assessed the effects of STAT3 inhibition on tumor angiogenesis using murine xenograft models. Results STAT3 decoy oligonucleotide decreased proliferation, induces apoptosis, decreased migration, and decreased tubule formation of endothelial cells in vitro. The STAT3 decoy oligonucleotide also inhibited tumor angiogenesis in murine tumor xenografts. Lastly, our data suggest that the antiangiogenic effects of STAT3 decoy oligonucleotide were mediatedthrough the inhibition of both STAT3 and STAT1. Conclusions The STAT3 decoy oligonucleotidewas found to be an effective antiangiogenic agent, which is likely to contribute to the overall antitumor effects of this agent in solid tumors.Taken together with the previously demonstrated antitumor activity of this agent, STAT3 decoy oligonucleotide represents a promising single agent approach to targeting both the tumor and vascular compartments in various malignancies. PMID:24404126

  11. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    PubMed Central

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  12. Inhibitory effects of 3-bromopyruvate on human gastric cancer implant tumors in nude mice.

    PubMed

    Xian, Shu-Lin; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei

    2014-01-01

    Gastric cancer is a common malignant tumor. Our previous study demonstrated inhibitory effects of 3-bromopyruvate (3-BrPA) on pleural mesothelioma. Moreover, we found that 3-BrPA could inhibit human gastric cancer cell line SGC-7901 proliferation in vitro, but whether similar effects might be exerted in vivo have remained unclear. To investigate the effect of 3-BrPA to human gastric cancer implant tumors in nude mice. Animals were randomly divided into 6 groups: 3-BrPA low, medium and high dose groups, PBS negative control group 1 (PH7.4), control group 2 (PH 6.8-7.8) and positive control group receiving 5-FU. The TUNEL method was used to detect apoptosis, and cell morphology and structural changes of tumor tissue were observed under transmission electron microscopy (TEM). 3-BrPA low, medium, high dose group, and 5-FU group, the tumor volume inhibition rates were 34.5%, 40.2%, 45.1%, 47.3%, tumor volume of experimental group compared with 2 PBS groups (p<0.05), with no significant difference between the high dose and 5-FU groups (p>0.05). TEM showed typical characteristics of apoptosis. TUNEL demonstrated apoptosis indices of 28.7%, 39.7%, 48.7% for the 3-BrPA low, medium, high dose groups, 42.2% for the 5-FU group and 5% and 4.3% for the PBS1 (PH7.4) and PBS2 (PH6.8-7.8) groups. Compared each experimental group with 2 negative control groups, there was significant difference (p<0.05); there was no significant difference between 5-FU group and medium dose group (p>0.05), but there was between the 5-FU and high dose groups (p<0.05). This study indicated that 3-BrPA in vivo has strong inhibitory effects on human gastric cancer implant tumors in nude mice .

  13. Inhibition of breast tumor growth and angiogenesis by a medicinal herb: Ocimum sanctum

    PubMed Central

    Nangia-Makker, Pratima; Tait, Larry; Hogan, Victor; Shekhar, Malathy P.V.; Funasaka, Tatsuyoshi; Raz, Avraham

    2013-01-01

    Ocimum sanctum (OS) is a traditionally used medicinal herb, which shows anti-oxidant, anti-carcinogenic, radio-protective and free radical scavenging properties. So far no detailed studies have been reported on its effects on human cancers. Thus, we analyzed its effects on human breast cancer utilizing in vitro and in vivo methodologies. Aqueous extracts were prepared from the mature leaves of Ocimum sanctum cultivated devoid of pesticides. Tumor progression and angiogenesis related processes like chemotaxis, proliferation, apoptosis, 3-dimensional growth and morphogenesis, angiogenesis, and tumor growth were studied in the presence or absence of the extract and in some experiments a comparison was made with purified commercially available eugenol, apigenin and ursolic acid. Aqueous OS leaf extract inhibits proliferation, migration, anchorage independent growth, three dimensional growth and morphogenesis, and induction of COX-2 protein in breast cancer cells. A comparative analysis with eugenol, apigenin and ursolic acid showed that the inhibitory effects on chemotaxis and three dimensional morphogenesis of breast cancer cells were specific to OS extract. In addition, OS extracts also reduced tumor size and neoangiogenesis in a MCF10 DCIS.com xenograft model of human DCIS. This is the first detailed report showing that OS leaf extract may be of value as a breast cancer preventive and therapeutic agent and might be considered as additional additive in the arsenal of components aiming at combating breast cancer progression and metastasis. PMID:17437270

  14. The effects of some tumor markers on human erythrocyte (HCA-I and HCA-II), bovine erythrocyte (BCA) and bovine lung (CA-IV) carbonic anhydrase enzyme activities in vitro.

    PubMed

    Demir, N; Nadaroglu, H; Gungor, A A; Demir, Y

    2015-01-01

    The influence of prostatic acid phosphatase (PAP) and human chorionic gonadotropin (HCG), tumor markers have been investigated on human erythrocyte carbonic anhydrase (HCA-I and HCA-II) and bovine erythrocyte (BCA) and bovine lung carbonic anhydrase (CA-IV) in vitro. Tumor markers are substances that can often be detected in higher-than-normal amounts in the blood, urine, or body tissues of some patients with certain types of cancer. Tumor markers are produced either by the tumor itself or by the body in response to the presence of cancer or certain benign (noncancerous) conditions. In addition to their role in cancer diagnosis, some tumor marker levels are measured before treatment to help doctors plan appropriate therapy. All of the tumor markers were determined to have inhibition effect, on human CA-I, CA-II, bovine erythrocyte CA (BCA) and bovine lung CA-IV isoenzymes. The effect of each tumor marker on CA was investigated by Wilbur-Andersen method modified by Rickly et al Inhibition effects of two different tumor markers on human CA-I, CA-II, bovine erythrocyte CA (BCA) and bovine lung CA-IV isoenzymes were determined by using the CO2-Hydratase method by plotting activity % vs (tumor markers). I50 values of tumor markers exhibiting inhibition effects were found by means of these graphs (Tab.1, Fig. 2, Ref. 20).

  15. Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance

    PubMed Central

    Meirelles, Katia; Benedict, Leo Andrew; Dombkowski, David; Pepin, David; Preffer, Frederic I.; Teixeira, Jose; Tanwar, Pradeep Singh; Young, Robert H.; MacLaughlin, David T.; Donahoe, Patricia K.; Wei, Xiaolong

    2012-01-01

    Women with late-stage ovarian cancer usually develop chemotherapeutic-resistant recurrence. It has been theorized that a rare cancer stem cell, which is responsible for the growth and maintenance of the tumor, is also resistant to conventional chemotherapeutics. We have isolated from multiple ovarian cancer cell lines an ovarian cancer stem cell-enriched population marked by CD44, CD24, and Epcam (3+) and by negative selection for Ecadherin (Ecad−) that comprises less than 1% of cancer cells and has increased colony formation and shorter tumor-free intervals in vivo after limiting dilution. Surprisingly, these cells are not only resistant to chemotherapeutics such as doxorubicin, but also are stimulated by it, as evidenced by the significantly increased number of colonies in treated 3+Ecad− cells. Similarly, proliferation of the 3+Ecad− cells in monolayer increased with treatment, by either doxorubicin or cisplatin, compared with the unseparated or cancer stem cell-depleted 3−Ecad+ cells. However, these cells are sensitive to Mullerian inhibiting substance (MIS), which decreased colony formation. MIS inhibits ovarian cancer cells by inducing G1 arrest of the 3+Ecad− subpopulation through the induction of cyclin-dependent kinase inhibitors. 3+Ecad− cells selectively expressed LIN28, which colocalized by immunofluorescence with the 3+ cancer stem cell markers in the human ovarian carcinoma cell line, OVCAR-5, and is also highly expressed in transgenic murine models of ovarian cancer and in other human ovarian cancer cell lines. These results suggest that chemotherapeutics may be stimulative to cancer stem cells and that selective inhibition of these cells by treating with MIS or targeting LIN28 should be considered in the development of therapeutics. PMID:22308459

  16. Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance.

    PubMed

    Meirelles, Katia; Benedict, Leo Andrew; Dombkowski, David; Pepin, David; Preffer, Frederic I; Teixeira, Jose; Tanwar, Pradeep Singh; Young, Robert H; MacLaughlin, David T; Donahoe, Patricia K; Wei, Xiaolong

    2012-02-14

    Women with late-stage ovarian cancer usually develop chemotherapeutic-resistant recurrence. It has been theorized that a rare cancer stem cell, which is responsible for the growth and maintenance of the tumor, is also resistant to conventional chemotherapeutics. We have isolated from multiple ovarian cancer cell lines an ovarian cancer stem cell-enriched population marked by CD44, CD24, and Epcam (3+) and by negative selection for Ecadherin (Ecad-) that comprises less than 1% of cancer cells and has increased colony formation and shorter tumor-free intervals in vivo after limiting dilution. Surprisingly, these cells are not only resistant to chemotherapeutics such as doxorubicin, but also are stimulated by it, as evidenced by the significantly increased number of colonies in treated 3+Ecad- cells. Similarly, proliferation of the 3+Ecad- cells in monolayer increased with treatment, by either doxorubicin or cisplatin, compared with the unseparated or cancer stem cell-depleted 3-Ecad+ cells. However, these cells are sensitive to Mullerian inhibiting substance (MIS), which decreased colony formation. MIS inhibits ovarian cancer cells by inducing G1 arrest of the 3+Ecad- subpopulation through the induction of cyclin-dependent kinase inhibitors. 3+Ecad- cells selectively expressed LIN28, which colocalized by immunofluorescence with the 3+ cancer stem cell markers in the human ovarian carcinoma cell line, OVCAR-5, and is also highly expressed in transgenic murine models of ovarian cancer and in other human ovarian cancer cell lines. These results suggest that chemotherapeutics may be stimulative to cancer stem cells and that selective inhibition of these cells by treating with MIS or targeting LIN28 should be considered in the development of therapeutics.

  17. Withaferin A inhibits tumor necrosis factor-alpha-induced expression of cell adhesion molecules by inactivation of Akt and NF-kappaB in human pulmonary epithelial cells.

    PubMed

    Oh, Jung Hwa; Kwon, Taeg Kyu

    2009-05-01

    We here investigated the functional effect of withaferin A on airway inflammation and its action mechanism. Withaferin A inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in human lung epithelial A549 cells stimulated with tumor necrosis factor-alpha (TNF-alpha), resulting in the suppression of leukocyte adhesion to lung epithelial A549 cells. In addition, withaferin A inhibited TNF-alpha-induced expression of adhesion molecules (ICAM-1 and VCAM-1) protein and mRNA in a dose-dependent manner. Withaferin A prevented DNA binding activity of nuclear factor-kappaB (NF-kappaB) and nuclear translocation of NF-kappaB. It also inhibited phosphorylation of Akt and extracellular signal-regulated kinase (ERK), which are upstream in the regulation of adhesion molecules by TNF-alpha. Furthermore, withaferin A inhibited U937 monocyte adhesion to A549 cells stimulated by TNF-alpha, suggesting that it may inhibit the binding of these cells by regulating the expression of critical adhesion molecules by TNF-alpha. Taken together, these results suggest that withaferin A inhibits cell adhesion through inhibition of ICAM-1 and VCAM-1 expression, at least in part, by blocking Akt and down-regulating NF-kappaB activity.

  18. α-Mangostin: A Dietary Antioxidant Derived from the Pericarp of Garcinia mangostana L. Inhibits Pancreatic Tumor Growth in Xenograft Mouse Model

    PubMed Central

    Mustafa, Ala; Fischer, Joseph W.; Singh, Ashok; Zhong, Weixiong; Shekhani, Mohammed Ozair; Meske, Louise; Havighurst, Thomas; Kim, KyungMann; Verma, Ajit Kumar

    2014-01-01

    Abstract Aims: Pancreatic cancer (PC) is the most aggressive malignant disease, ranking as the fourth most leading cause of cancer-related death among men and women in the United States. In this study, we provide evidence of chemotherapeutic effects of α-mangostin, a dietary antioxidant isolated from the pericarp of Garcinia mangostana L. against human PC. Results: The chemotherapeutic effect of α-mangostin was determined using four human PC cells (PL-45, PANC1, BxPC3, and ASPC1). α-Mangostin resulted in a significant inhibition of PC cells viability without having any effects on normal human pancreatic duct epithelial cells. α-Mangostin showed a dose-dependent increase of apoptosis in PC cells. Also, α-mangostin inhibited the expression levels of pNF-κB/p65Ser552, pStat3Ser727, and pStat3Tyr705. α-Mangostin inhibited DNA binding activity of nuclear factor kappa B (NF-κB) and signal transducer and activator 3 (Stat3). α-Mangostin inhibited the expression levels of matrix metallopeptidase 9 (MMP9), cyclin D1, and gp130; however, increased expression of tissue inhibitor of metalloproteinase 1 (TIMP1) was observed in PC cells. In addition, i.p. administration of α-mangostin (6 mg/kg body weight, 5 days a week) resulted in a significant inhibition of both primary (PL-45) and secondary (ASPC1) human PC cell-derived orthotopic and ectopic xenograft tumors in athymic nude mice. No sign of toxicity was observed in any of the mice administered with α-mangostin. α-Mangostin treatment inhibited the biomarkers of cell proliferation (Ki-67 and proliferating cell nuclear antigen [PCNA]) in the xenograft tumor tissues. Innovation: We present, for the first time, that dietary antioxidant α-mangostin inhibits the growth of PC cells in vitro and in vivo. Conclusion: These results suggest the potential therapeutic efficacy of α-mangostin against human PC. Antioxid. Redox Signal. 21, 682–699. PMID:24295217

  19. Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma.

    PubMed

    Babae, Negar; Bourajjaj, Meriem; Liu, Yijia; Van Beijnum, Judy R; Cerisoli, Francesco; Scaria, Puthupparampil V; Verheul, Mark; Van Berkel, Maaike P; Pieters, Ebel H E; Van Haastert, Rick J; Yousefi, Afrouz; Mastrobattista, Enrico; Storm, Gert; Berezikov, Eugene; Cuppen, Edwin; Woodle, Martin; Schaapveld, Roel Q J; Prevost, Gregoire P; Griffioen, Arjan W; Van Noort, Paula I; Schiffelers, Raymond M

    2014-08-30

    Tumor-angiogenesis is the multi-factorial process of sprouting of endothelial cells (EC) into micro-vessels to provide tumor cells with nutrients and oxygen. To explore miRNAs as therapeutic angiogenesis-inhibitors, we performed a functional screen to identify miRNAs that are able to decrease EC viability. We identified miRNA-7 (miR-7) as a potent negative regulator of angiogenesis. Introduction of miR-7 in EC resulted in strongly reduced cell viability, tube formation, sprouting and migration. Application of miR-7 in the chick chorioallantoic membrane assay led to a profound reduction of vascularization, similar to anti-angiogenic drug sunitinib. Local administration of miR-7 in an in vivo murine neuroblastoma tumor model significantly inhibited angiogenesis and tumor growth. Finally, systemic administration of miR-7 using a novel integrin-targeted biodegradable polymeric nanoparticles that targets both EC and tumor cells, strongly reduced angiogenesis and tumor proliferation in mice with human glioblastoma xenografts. Transcriptome analysis of miR-7 transfected EC in combination with in silico target prediction resulted in the identification of OGT as novel target gene of miR-7. Our study provides a comprehensive validation of miR-7 as novel anti-angiogenic therapeutic miRNA that can be systemically delivered to both EC and tumor cells and offers promise for miR-7 as novel anti-tumor therapeutic.

  20. In Vitro and in Vivo Mechanism of Bone Tumor Inhibition by Selenium-Doped Bone Mineral Nanoparticles.

    PubMed

    Wang, Yifan; Wang, Jianglin; Hao, Hang; Cai, Mingle; Wang, Shiyao; Ma, Jun; Li, Yan; Mao, Chuanbin; Zhang, Shengmin

    2016-11-22

    Biocompatible tissue-borne crystalline nanoparticles releasing anticancer therapeutic inorganic elements are intriguing therapeutics holding the promise for both tissue repair and cancer therapy. However, how the therapeutic inorganic elements released from the lattice of such nanoparticles induce tumor inhibition remains unclear. Here we use selenium-doped hydroxyapatite nanoparticles (Se-HANs), which could potentially fill the bone defect generated from bone tumor removal while killing residual tumor cells, as an example to study the mechanism by which selenium released from the lattice of Se-HANs induces apoptosis of bone cancer cells in vitro and inhibits the growth of bone tumors in vivo. We found that Se-HANs induced apoptosis of tumor cells by an inherent caspase-dependent apoptosis pathway synergistically orchestrated with the generation of reactive oxygen species. Such mechanism was further validated by in vivo animal evaluation in which Se-HANs tremendously induced tumor apoptosis to inhibit tumor growth while reducing systemic toxicity. Our work proposes a feasible paradigm toward the design of tissue-repairing inorganic nanoparticles that bear therapeutic ions in the lattice and can release them in vivo for inhibiting tumor formation.

  1. Extracellular Vesicles Present in Human Ovarian Tumor Microenvironments Induce a Phosphatidylserine Dependent Arrest in the T Cell Signaling Cascade

    PubMed Central

    Kelleher, Raymond J.; Balu-Iyer, Sathy; Loyall, Jenni; Sacca, Anthony J.; Shenoy, Gautam N.; Peng, Peng; Iyer, Vandana; Fathallah, Anas M.; Berenson, Charles S.; Wallace, Paul K.; Tario, Joseph; Odunsi, Kunle; Bankert, Richard B.

    2015-01-01

    The identification of immunosuppressive factors within human tumor microenvironments, and the ability to block these factors, would be expected to enhance patients’ anti-tumor immune responses. We previously established that an unidentified factor, or factors, present in ovarian tumor ascites fluids reversibly inhibited the activation of T cells by arresting the T cell signaling cascade. Ultracentrifugation of the tumor ascites fluid has now revealed a pellet that contains small extracellular vesicles (EV) with an average diameter of 80nm. The T cell arrest was determined to be causally linked to phosphatidylserine (PS) that is present on the outer leaflet of the vesicle bilayer, as a depletion of PS expressing EV or a blockade of PS with anti-PS antibody significantly inhibits the vesicle induced signaling arrest. The inhibitory EV were also isolated from solid tumor tissues. The presence of immune suppressive vesicles in the microenvironments of ovarian tumors and our ability to block their inhibition of T cell function represent a potential therapeutic target for patients with ovarian cancer. PMID:26112921

  2. PTEN: Multiple Functions in Human Malignant Tumors.

    PubMed

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Cesta Incani, Ursula; Del Curatolo, Anais; Inzerilli, Nicola; Nuzzo, Carmen M A; Vaccaro, Vanja; Vari, Sabrina; Cognetti, Francesco; Ciuffreda, Ludovica

    2015-01-01

    PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors.

  3. PTEN: Multiple Functions in Human Malignant Tumors

    PubMed Central

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Cesta Incani, Ursula; Del Curatolo, Anais; Inzerilli, Nicola; Nuzzo, Carmen M. A.; Vaccaro, Vanja; Vari, Sabrina; Cognetti, Francesco; Ciuffreda, Ludovica

    2015-01-01

    PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors. PMID:25763354

  4. Role of TGF-β signaling in curcumin-mediated inhibition of tumorigenicity of human lung cancer cells

    PubMed Central

    Datta, Raktima; Halder, Sunil K.

    2014-01-01

    Purpose Curcumin has been shown to have potent anti-cancer activities like inhibition of cell proliferation, induction of apoptosis, and suppression of angiogenesis. Transforming growth factor-β (TGF-β) signaling plays a complex role in tumor suppression and promotion depending on the tumor type and stage. However, the effect of curcumin on TGF-β signaling in cancer cells and the role of TGF-β signaling in curcumin-induced anticancer activities have not been determined. Here, we investigate the role of curcumin on TGF-β signaling, and whether TGF-β signaling is involved in the antitumor activities of curcumin. Methods Human non-small cell lung cancer (NSCLC) cell lines, ACC-LC-176 (without TGF-β signaling), H358, and A549 (with TGF-β signaling) were treated with curcumin to determine cell growth, apoptosis, and tumorigenicity. Antitumor activities of curcumin were determined using these cell lines and an in vivo mouse model. We also tested the effect of curcumin on TGF-β/Smad signaling by western blotting and by luciferase assays. Results Curcumin inhibited cell growth and induced apoptosis of all three NSCLC cell lines in vitro and in vivo. It significantly reduced subcutaneous tumor growth by these three cell lines irrespective of TGF-β signaling status. Curcumin inhibited TGF-β-induced Smad2/3 phosphorylation and transcription in H358 and A549 cells, but not in ACC-LC-176 cells. Conclusions Curcumin reduces tumorigenicity of human lung cancer cells in vitro and in vivo by inhibiting cell proliferation and promoting apoptosis. These results suggest that TGF-β signaling is not directly involved in curcumin-mediated growth inhibition, induction of apoptosis, and inhibition of tumorigenicity. PMID:23224523

  5. VHL-regulated miR-204 Suppresses Tumor Growth through Inhibition of LC3B-mediated Autophagy in Renal Clear Cell Carcinoma

    PubMed Central

    Mikhaylova, Olga; Stratton, Yiwen; Hall, Daniel; Kellner, Emily; Ehmer, Birgit; Drew, Angela F.; Gallo, Catherine A.; Plas, David R.; Biesiada, Jacek; Meller, Jarek; Czyzyk-Krzeska, Maria F.

    2012-01-01

    Summary The von Hippel-Lindau tumor-suppressor gene (VHL) is lost in most clear cell renal cell carcinomas (ccRCC). Here, using human ccRCC specimens, VHL-deficient cells, and xenograft models, we show that miR-204 is a VHL-regulated tumor suppressor acting by inhibiting macroautophagy, with MAP1LC3B (LC3B) as a direct and functional target. Importantly, higher tumor grade of human ccRCC was correlated with a concomitant decrease in miR-204 and increase in LC3B levels, indicating that LC3B-mediated macroautophagy is necessary for RCC progression. VHL, in addition to inducing endogenous miR-204, triggered the expression of LC3C, an HIF-regulated LC3B paralog, that suppressed tumor growth. These data reveal a function of VHL as a tumor suppressing regulator of autophagic programs. PMID:22516261

  6. Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo.

    PubMed

    Lin, Ping-Yi; Tsai, Ching-Tsan; Chuang, Wan-Ling; Chao, Ya-Hsuan; Pan, I-Horng; Chen, Yu-Kuo; Lin, Chi-Chen; Wang, Bing-Yen

    2017-02-01

    Lung cancer is one of the leading causes of cancer related deaths worldwide. Marine microalgae are a source of biologically active compounds and are widely consumed as a nutritional supplement in East Asian countries. It has been reported that Chlorella or Chlorella extracts have various beneficial pharmacological compounds that modulate immune responses; however, no studies have investigated the anti-cancer effects of Chlorella sorokiniana (CS) on non-small cell lung cancer (NSCLC). In this study, we evaluated the anti-cancer effects of CS in two human NSCLC cell lines (A549 and CL1-5 human lung adenocarcinoma cells), and its effects on tumor growth in a subcutaneous xenograft tumor model. We also investigated the possible molecular mechanisms governing the pharmacological function of CS. Our results showed that exposure of the two cell lines to CS resulted in a concentration-dependent reduction in cell viability. In addition, the percentage of apoptotic cells increased in a dose-dependent manner, suggesting that CS might induce apoptosis in human NSCLC cells. Western blot analysis revealed that exposure to CS resulted in increased protein expression of the cleaved/activated forms of caspase-3, caspase-9, and PARP, except caspase-8. ZDEVD (caspase-3 inhibitor) and Z-LEHD (caspase-9 inhibitor) were sufficient at preventing apoptosis in both A549 and CL1-5 cells, proving that CS induced cell death via the mitochondria-mediated apoptotic pathway. Exposure of A549 and CL1-5 cells to CS for 24 h resulted in decreased expression of Bcl-2 protein and increased expression of Bax protein as well as decreased expression of two IAP family proteins, survivin and XIAP. We demonstrated that CS induces mitochondrial-mediated apoptosis in NSCLC cells via downregulation of Bcl-2, XIAP and survivin. In addition, we also found that the tumors growth of subcutaneous xenograft in vivo was markedly inhibited after oral intake of CS.

  7. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jiajia; Zhu, Xi; Zhang, Jie, E-mail: zhangjiebjmu@163.com

    2014-03-28

    Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCRmore » and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.« less

  8. Emodin inhibits breast cancer growth by blocking the tumor-promoting feedforward loop between cancer cells and macrophages

    PubMed Central

    Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping

    2016-01-01

    Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing anti-tumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2 related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration towards and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. PMID:27196773

  9. Biodegradable polymeric micelles encapsulated JK184 suppress tumor growth through inhibiting Hedgehog signaling pathway

    NASA Astrophysics Data System (ADS)

    Zhang, Nannan; Liu, Shichang; Wang, Ning; Deng, Senyi; Song, Linjiang; Wu, Qinjie; Liu, Lei; Su, Weijun; Wei, Yuquan; Xie, Yongmei; Gong, Changyang

    2015-01-01

    JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity.JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in

  10. RNA interference of pax2 inhibits growth of transplanted human endometrial cancer cells in nude mice

    PubMed Central

    Zhang, Li-Ping; Shi, Xiao-Yan; Zhao, Chang-Yin; Liu, Yong-Zhen; Cheng, Ping

    2011-01-01

    The development of human endometrial carcinoma (HEC) is a complex pathologic process involves several oncogenes and tumor suppressor genes. The full-length paired-box gene 2 (pax2), a recently discovered Oncogene, promotes cell proliferation and growth and inhibits apoptosis of HEC cells. Here, we examined the effect of pax2 small interfering RNA (siRNA) on the growth of transplanted HEC cells in nude mice. The expression of Pax2 in 21 cases of normal endometrium and 38 cases of HEC was examined by immohistochemistry (IHC). HEC models were developed by subcutaneously transferring HEC cells into nude mice, followed by treatment with empty lentivirus vector, lentivirus vector-based pax2 siRNA, and phosphate buffered saline, respectively. Four weeks later, tumor size was measured, tumor inhibition rate was calculated, and histological analyses were conducted after staining with hematoxylin and eosin. The expression of Pax2 and Bcl-2 was detected by Western blot; proliferating cell nuclear antigen (PCNA) was detected by IHC. Significant differences were observed in the positive rate of Pax2 between normal endometrium and HEC (14.2% vs. 60.5%, P < 0.01). The expression index of Pax2 in well differentiated tumors was 1.88 ± 1.68, much lower than that in tumors of moderate (3.07 ± 1.96, P < 0.05) or poor differentiation (5.45 ± 2.76, P < 0.01). Tumor necrosis increased, nuclear basophilia stain decreased, tumor growth was inhibited, and PCNA, Pax2, and Bcl-2 expression was reduced in HEC models treated with pax2 siRNA. These results indicate that Pax2 expression is related to HEC tumor biology with the increased expression of Pax2 correlated to malignancy. pax2 siRNA down-regulates Pax2 expression and inhibits tumorigenesis of HEC in nude mice, possibly due to cell apoptosis and the inhibition of tumor proliferation induced by down-regulation of Bcl-2. PMID:21627862

  11. Hypoestoxide inhibits tumor growth in the mouse CT26 colon tumor model

    PubMed Central

    Ojo-Amaize, Emmanuel A; Cottam, Howard B; Oyemade, Olusola A; Okogun, Joseph I; Nchekwube, Emeka J

    2007-01-01

    AIM: To evaluate the effect of the natural diterpenoid, hypoestoxide (HE) on the growth of established colon cancer in mice. METHODS: The CT26.WT mouse colon carcinoma cell line was grown and expanded in vitro. Following the expansion, BALB/c mice were inoculated s.c. with viable tumor cells. After the tumors had established and developed to about 80-90 mm3, the mice were started on chemotherapy by oral administration of HE, 5-fluorouracil (5-FU) or combination. RESULTS: The antiangiogenic HE has previously been shown to inhibit the growth of melanoma in the B16F1 tumor model in C57BL/6 mice. Our results demonstrate that mean volume of tumors in mice treated with oral HE as a single agent or in combination with 5-FU, were significantly smaller (> 60%) than those in vehicle control mice (471.2 mm3 vs 1542.8 mm3, P < 0.01). The significant reductions in tumor burden resulted in pronounced mean survival times (MST) and increased life spans (ILS) in the treated mice. CONCLUSION: These results indicate that HE is an effective chemotherapeutic agent for colorectal cancer in mice and that HE may be used alone or in combination with 5-FU. PMID:17729410

  12. Bauhinia variegata candida Fraction Induces Tumor Cell Death by Activation of Caspase-3, RIP, and TNF-R1 and Inhibits Cell Migration and Invasion In Vitro

    PubMed Central

    Santos, K. M.; Silva-Oliveira, R. J.; Pinto, F. E.; Oliveira, B. G.; Chagas, R. C. R.; Romão, W.; Reis, R. M. V.

    2018-01-01

    Metastasis remains the most common cause of death in cancer patients. Inhibition of metalloproteinases (MMPs) is an interesting approach to cancer therapy because of their role in the degradation of extracellular matrix (ECM), cell-cell, and cell-ECM interactions, modulating key events in cell migration and invasion. Herein, we show the cytotoxic and antimetastatic effects of the third fraction (FR3) from Bauhinia variegata candida (Bvc) stem on human cervical tumor cells (HeLa) and human peripheral blood mononuclear cells (PBMCs). FR3 inhibited MMP-2 and MMP-9 activity, indicated by zymogram. This fraction was cytotoxic to HeLa cells and noncytotoxic to PBMCs and decreased HeLa cell migration and invasion. FR3 is believed to stimulate extrinsic apoptosis together with necroptosis, assessed by western blotting. FR3 inhibited MMP-2 activity in the HeLa supernatant, differently from the control. The atomic mass spectrometry (ESI-MS) characterization suggested the presence of glucopyranosides, D-pinitol, fatty acids, and phenolic acid. These findings provide insight suggesting that FR3 contains components with potential tumor-selective cytotoxic action in addition to the action on the migration of tumor cells, which may be due to inhibition of MMPs. PMID:29770331

  13. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo

    PubMed Central

    Arif, Tasleem; Vasilkovsky, Lilia; Refaely, Yael; Konson, Alexander; Shoshan-Barmatz, Varda

    2014-01-01

    Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1), a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA). A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP) levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF). VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi) dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs. PMID:24781191

  14. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping; Fu, Shilong; Cao, Zhifei

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressivemore » ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice

  15. Gallium Maltolate Disrupts Tumor Iron Metabolism and Retards the Growth of Glioblastoma by Inhibiting Mitochondrial Function and Ribonucleotide Reductase.

    PubMed

    Chitambar, Christopher R; Al-Gizawiy, Mona M; Alhajala, Hisham S; Pechman, Kimberly R; Wereley, Janine P; Wujek, Robert; Clark, Paul A; Kuo, John S; Antholine, William E; Schmainda, Kathleen M

    2018-06-01

    Gallium, a metal with antineoplastic activity, binds transferrin (Tf) and enters tumor cells via Tf receptor1 (TfR1); it disrupts iron homeostasis leading to cell death. We hypothesized that TfR1 on brain microvascular endothelial cells (BMEC) would facilitate Tf-Ga transport into the brain enabling it to target TfR-bearing glioblastoma. We show that U-87 MG and D54 glioblastoma cell lines and multiple glioblastoma stem cell (GSC) lines express TfRs, and that their growth is inhibited by gallium maltolate (GaM) in vitro After 24 hours of incubation with GaM, cells displayed a loss of mitochondrial reserve capacity followed by a dose-dependent decrease in oxygen consumption and a decrease in the activity of the iron-dependent M2 subunit of ribonucleotide reductase (RRM2). IHC staining of rat and human tumor-bearing brains showed that glioblastoma, but not normal glial cells, expressed TfR1 and RRM2, and that glioblastoma expressed greater levels of H- and L-ferritin than normal brain. In an orthotopic U-87 MG glioblastoma xenograft rat model, GaM retarded the growth of brain tumors relative to untreated control ( P = 0.0159) and reduced tumor mitotic figures ( P = 0.045). Tumors in GaM-treated animals displayed an upregulation of TfR1 expression relative to control animals, thus indicating that gallium produced tumor iron deprivation. GaM also inhibited iron uptake and upregulated TfR1 expression in U-87 MG and D54 cells in vitro We conclude that GaM enters the brain via TfR1 on BMECs and targets iron metabolism in glioblastoma in vivo, thus inhibiting tumor growth. Further development of novel gallium compounds for brain tumor treatment is warranted. Mol Cancer Ther; 17(6); 1240-50. ©2018 AACR . ©2018 American Association for Cancer Research.

  16. Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft.

    PubMed

    Auyeung, Kathy Ka-Wai; Law, Pui-Ching; Ko, Joshua Ka-Shun

    2012-12-01

    Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus, a medicinal plant that possesses antitumorigenic properties. Our previous findings demonstrated that formononetin initiates growth-inhibitory and pro-apoptotic activities in human colon cancer cells. In the present study, we aimed to further examine the potential of formononetin in controlling angiogenesis and tumor cell invasiveness in human colon cancer cells and tumor xenografts. The results showed that formononetin downregulated the expression of the key pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and matrix metalloproteinases. We also discovered that the invasiveness of metastatic colon cancer cells was alleviated following drug treatment. The potential anti-angiogenic effect of formononetin was examined in nude mouse xenografts. The tumor size and the number of proliferating cells were reduced in the tumor tissues obtained from the formononetin-treated group. The serum VEGF level was also reduced in the drug-treated animals when compared to the controls. These findings suggest that formononetin inhibits angiogenesis and tumor cell invasion, and thus support its use in the treatment of advanced and metastatic colon cancers.

  17. Novel histone deacetylase inhibitor N25 exerts anti-tumor effects and induces autophagy in human glioma cells by inhibiting HDAC3

    PubMed Central

    Sun, Xin-Yuan; Qu, Yue; Ni, An-Ran; Wang, Gui-Xiang; Huang, Wei-Bin; Chen, Zhong-Ping; Lv, Zhu-Fen; Zhang, Song; Lindsay, Holly; Zhao, Sibo; Li, Xiao-Nan; Feng, Bing-Hong

    2017-01-01

    N25, a novel histone deacetylase inhibitor, was created through structural modification of suberoylanilide hydroxamic acid. To evaluate the anti-tumor activity of N25 and clarify its molecular mechanism of inducing autophagy in glioma cells, we investigated its in vitro anti-proliferative effect and in vivo anticancer effect. Moreover, we detected whether N25 induces autophagy in glioma cells by transmission electron microscope and analyzed the protein expression level of HDAC3, Tip60, LC3 in glioma samples by western blot. We additionally analyzed the protein expression level of HDAC3, Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment with N25 in glioma cells. Our results showed that the anti-tumor activity of N25 in glioma cells is slightly stronger than SAHA both in vitro and in vivo. We found that N25 induced autophagy, and HDAC3 was significantly elevated and Tip60 and LC3 significantly decreased in glioma samples compared with normal brain tissues. Nevertheless, N25 inhibited HDAC3 and up-regulated the protein expression of Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment of glioma cells with N25. In conclusion, these data suggest that N25 has striking anti-tumor activity in part due to inhibition of HDAC3. Additionally, N25 may induce autophagy through inhibiting HDAC3. PMID:29088860

  18. Magnolol inhibits tumor necrosis factor-α-induced ICAM-1 expression via suppressing NF-κB and MAPK signaling pathways in human lung epithelial cells.

    PubMed

    Chunlian, Wu; Heyong, Wang; Jia, Xu; Jie, Huang; Xi, Chen; Gentao, Liu

    2014-12-01

    Magnolol is a traditional Chinese medicine from the root and bark of Magnolia officinalis. It has long been used to treat anxiety, cough, headache and allergies, as well as a variety of inflammations. Lung inflammation is a key event in the pathogenesis of asthma and chronic obstructive pulmonary disease. The present study sought to examine the effects of magnolol on tumor necrosis factor (TNF)-α-induced upregulation of intercellular adhesion molecule-1 (ICAM-1), activation of the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathway in cultured human pulmonary epithelial cells, and adhesion of human macrophage-like U937 cells to A549 cells. A549 cells were incubated with magnolol at 25 and 50 μmol/l. Then, 20 ng/ml TNF-α was used to activate the cells. Magnolol inhibited the growth of human pulmonary epithelial A549 cells in a dose- and time-dependent manner. Magnolol suppressed the adhesion of U937 cells to TNF-α-induced A549 cells. In cultured human pulmonary epithelial A549 cells, magnolol decreased TNF-α-induced upregulation of ICAM-1. Magnolol repressed TNF-α-induced activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways in A549 cells by inhibiting phosphorylation of NF-κB, p38, extracellular signal-regulated kinase (ERK) 1/2, and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). These findings support the hypothesis that magnolol inhibits the inflammatory process in lung epithelial A549 cells by suppressing the ICAM-1 and NF-κB and MAPK signaling pathways. Taken together, these results indicate that magnolol offers significant potential as a therapeutic treatment for inflammatory diseases of the lungs including asthma, sepsis, and chronic obstructive pulmonary disease.

  19. Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression.

    PubMed

    Yang, H; Pellegrini, L; Napolitano, A; Giorgi, C; Jube, S; Preti, A; Jennings, C J; De Marchis, F; Flores, E G; Larson, D; Pagano, I; Tanji, M; Powers, A; Kanodia, S; Gaudino, G; Pastorino, S; Pass, H I; Pinton, P; Bianchi, M E; Carbone, M

    2015-06-11

    High-mobility group box 1 (HMGB1) is an inflammatory molecule that has a critical role in the initiation and progression of malignant mesothelioma (MM). Aspirin (acetylsalicylic acid, ASA) is the most widely used nonsteroidal anti-inflammatory drug that reduces the incidence, metastatic potential and mortality of many inflammation-induced cancers. We hypothesized that ASA may exert anticancer properties in MM by abrogating the carcinogenic effects of HMGB1. Using HMGB1-secreting and -non-secreting human MM cell lines, we determined whether aspirin inhibited the hallmarks of HMGB1-induced MM cell growth in vitro and in vivo. Our data demonstrated that ASA and its metabolite, salicylic acid (SA), inhibit motility, migration, invasion and anchorage-independent colony formation of MM cells via a novel HMGB1-mediated mechanism. ASA/SA, at serum concentrations comparable to those achieved in humans taking therapeutic doses of aspirin, and BoxA, a specific inhibitor of HMGB1, markedly reduced MM growth in xenograft mice and significantly improved survival of treated animals. The effects of ASA and BoxA were cyclooxygenase-2 independent and were not additive, consistent with both acting via inhibition of HMGB1 activity. Our findings provide a rationale for the well documented, yet poorly understood antitumorigenic activity of aspirin, which we show proceeds via HMGB1 inhibition. Moreover, the use of BoxA appears to allow a more efficient HMGB1 targeting while eluding the known gastrointestinal side effects of ASA. Our findings are directly relevant to MM. Given the emerging importance of HMGB1 and its tumor-promoting functions in many cancer types, and of aspirin in cancer prevention and therapy, our investigation is poised to provide broadly applicable information.

  20. Gene editing of the extra domain A positive fibronectin in various tumors, amplified the effects of CRISPR/Cas system on the inhibition of tumor progression.

    PubMed

    Lv, Wan-Qi; Wang, Hai-Cheng; Peng, Jing; Wang, Yi-Xiang; Jiang, Jiu-Hui; Li, Cui-Ying

    2017-12-01

    The low efficiency of clustered, regularly interspaced, palindromic repeats-associated Cas (CRISPR/Cas) system editing genes in vivo limits the application. A components of the extracellular matrix (ECM), the extra domain A positive fibronectin (EDA+FN), may be a target for CRISPR/Cas system for the pro-oncogenic effects. The exclusion of EDA exon would alter the microenvironment and inhibit tumor progression, even the frequency of gene editing is still limited. The pro-oncogenic effects were confirmed by the exclusion of EDA exon from the fibronectin gene, as illustrated by the down-regulated proliferation, migration and invasion of CNE-2Z or SW480 cells (P<0.05). Furthermore, although the efficacy of EDA exon knockout through CRISPR/Cas system was shown to be low in vivo , the EDA+FN protein levels decrease obviously, inhibiting the tumor growth rate significantly (P<0.05), which was accompanied by a decrease in Ki-67 expression and microvessel numbers, and increased E-cadherin or decreased Vimentin expression (P<0.05). Human nasopharyngeal carcinoma cell line CNE-2Z, and the colorectal carcinoma cell line SW480 were transfected with CRISPR/Cas9 plasmids targeting EDA exon. The effects of the exclusion of EDA on the cell proliferation, motility and epithelial-mesenchymal transition (EMT) were investigated, and the western blot and real-time PCR were performed to analyze the underlying mechanisms. Furthermore, CRISPR/Cas9 plasmids were injected into xenograft tumors to knockout EDA exon in vivo , and tumor growth, cell proliferation, EMT rate, or vascularization were investigated using western blot, PCR and immunohistochemistry. CRISPR/Cas system targeting ECM components was shown to be an effective method for the inhibition of tumor progression, as these paracrine or autocrine molecules are necessary for various tumor cells. This may represent a novel strategy for overcoming the drug evasion or resistance, in addition, circumventing the low efficiency of CRISPR

  1. Berberine Inhibits Proliferation and Down-Regulates Epidermal Growth Factor Receptor through Activation of Cbl in Colon Tumor Cells

    PubMed Central

    Wang, Lihong; Cao, Hailong; Lu, Ning; Liu, Liping; Wang, Bangmao; Hu, Tianhui; Israel, Dawn A.; Peek, Richard M.; Polk, D. Brent; Yan, Fang

    2013-01-01

    Berberine, an isoquinoline alkaloid, is an active component of Ranunculaceae and Papaveraceae plant families. Berberine has been found to suppress growth of several tumor cell lines in vitro through the cell-type-dependent mechanism. Expression and activation of epidermal growth factor receptor (EGFR) is increased in colonic precancerous lesions and tumours, thus EGFR is considered a tumour promoter. The aim of this study was to investigate the effects and mechanisms of berberine on regulation of EGFR activity and proliferation in colonic tumor cell lines and in vivo. We reported that berberine significantly inhibited basal level and EGF-stimulated EGFR activation and proliferation in the immorto Min mouse colonic epithelial (IMCE) cells carrying the APC min mutation and human colonic carcinoma cell line, HT-29 cells. Berberine acted to inhibit proliferation through inducing G1/S and G2/M cell cycle arrest, which correlated with regulation of the checkpoint protein expression. In this study, we also showed that berberine stimulated ubiquitin ligase Cbl activation and Cbl's interaction with EGFR, and EGFR ubiquitinylation and down-regulation in these two cell lines in the presence or absence of EGF treatment. Knock-down Cbl expression blocked the effects of berberine on down-regulation of EGFR and inhibition of proliferation. Furthermore, berberine suppressed tumor growth in the HT-29 cell xenograft model. Cell proliferation and EGFR expression level was decreased by berberine treatment in this xenograft model and in colon epithelial cells of APC min/+ mice. Taken together, these data indicate that berberine enhances Cbl activity, resulting in down-regulation of EGFR expression and inhibition of proliferation in colon tumor cells. PMID:23457600

  2. Interleukin-10 production by tumor infiltrating macrophages plays a role in Human Papillomavirus 16 tumor growth.

    PubMed

    Bolpetti, Aline; Silva, João S; Villa, Luisa L; Lepique, Ana Paula

    2010-06-07

    Human Papillomavirus, HPV, is the main etiological factor for cervical cancer. Different studies show that in women infected with HPV there is a positive correlation between lesion grade and number of infiltrating macrophages, as well as with IL-10 higher expression. Using a HPV16 associated tumor model in mice, TC-1, our laboratory has demonstrated that tumor infiltrating macrophages are M2-like, induce T cell regulatory phenotype and play an important role in tumor growth. M2 macrophages secrete several cytokines, among them IL-10, which has been shown to play a role in T cell suppression by tumor macrophages in other tumor models. In this work, we sought to establish if IL-10 is part of the mechanism by which HPV tumor associated macrophages induce T cell regulatory phenotype, inhibiting anti-tumor activity and facilitating tumor growth. TC-1 tumor cells do not express or respond to IL-10, but recruit leukocytes which, within the tumor environment, produce this cytokine. Using IL-10 deficient mice or blocking IL-10 signaling with neutralizing antibodies, we observed a significant reduction in tumor growth, an increase in tumor infiltration by HPV16 E7 specific CD8 lymphocytes, including a population positive for Granzyme B and Perforin expression, and a decrease in the percentage of HPV specific regulatory T cells in the lymph nodes. Our data shows that in the HPV16 TC-1 tumor mouse model, IL-10 produced by tumor macrophages induce regulatory phenotype on T cells, an immune escape mechanism that facilitates tumor growth. Our results point to a possible mechanism behind the epidemiologic data that correlates higher IL-10 expression with risk of cervical cancer development in HPV infected women.

  3. IL-12 Can Target Human Lung Adenocarcinoma Cells and Normal Bronchial Epithelial Cells Surrounding Tumor Lesions

    PubMed Central

    Airoldi, Irma; Di Carlo, Emma; Cocco, Claudia; Caci, Emanuela; Cilli, Michele; Sorrentino, Carlo; Sozzi, Gabriella; Ferrini, Silvano; Rosini, Sandra; Bertolini, Giulia; Truini, Mauro; Grossi, Francesco; Galietta, Luis Juan Vicente; Ribatti, Domenico; Pistoia, Vito

    2009-01-01

    Background Non small cell lung cancer (NSCLC) is a leading cause of cancer death. We have shown previously that IL-12rb2 KO mice develop spontaneously lung adenocarcinomas or bronchioalveolar carcinomas. Aim of the study was to investigate i) IL-12Rβ2 expression in human primary lung adenocarcinomas and in their counterparts, i.e. normal bronchial epithelial cells (NBEC), ii) the direct anti-tumor activity of IL-12 on lung adenocarcinoma cells in vitro and vivo, and the mechanisms involved, and iii) IL-12 activity on NBEC. Methodology/Principal Findings Stage I lung adenocarcinomas showed significantly (P = 0.012) higher frequency of IL-12Rβ2 expressing samples than stage II/III tumors. IL-12 treatment of IL-12R+ neoplastic cells isolated from primary adenocarcinoma (n = 6) inhibited angiogenesis in vitro through down-regulation of different pro-angiogenic genes (e.g. IL-6, VEGF-C, VEGF-D, and laminin-5), as assessed by chorioallantoic membrane (CAM) assay and PCR array. In order to perform in vivo studies, the Calu6 NSCLC cell line was transfected with the IL-12RB2 containing plasmid (Calu6/β2). Similar to that observed in primary tumors, IL-12 treatment of Calu6/β2+ cells inhibited angiogenesis in vitro. Tumors formed by Calu6/β2 cells in SCID/NOD mice, inoculated subcutaneously or orthotopically, were significantly smaller following IL-12 vs PBS treatment due to inhibition of angiogenesis, and of IL-6 and VEGF-C production. Explanted tumors were studied by histology, immuno-histochemistry and PCR array. NBEC cells were isolated and cultured from lung specimens of non neoplastic origin. NBEC expressed IL-12R and released constitutively tumor promoting cytokines (e.g. IL-6 and CCL2). Treatment of NBEC with IL-12 down-regulated production of these cytokines. Conclusions This study demonstrates that IL-12 inhibits directly the growth of human lung adenocarcinoma and targets the adjacent NBEC. These novel anti-tumor activities of IL-12 add to the well

  4. Mechanism of bisphenol AF-induced progesterone inhibition in human chorionic gonadotrophin-stimulated mouse Leydig tumor cell line (mLTC-1) cells.

    PubMed

    Feng, Yixing; Shi, Jiachen; Jiao, Zhihao; Duan, Hejun; Shao, Bing

    2018-06-01

    Bisphenol AF (BPAF) has been shown to inhibit testicular steroidogenesis in male rats. However, the precise mechanisms related to the toxic effects of BPAF on reproduction remain poorly understood. In the present study, a mouse Leydig tumor cell line (mLTC-1) was used as a model to investigate the mechanism of steroidogenic inhibition and to identify the molecular target of BPAF. Levels of progesterone and the concentration of cyclic adenosine monophosphate (cAMP) in cells exposed to BPAF were detected, and expression of key genes and proteins in steroid biosynthesis was assessed. The results showed that BPAF exposure decreased human chorionic gonadotrophin (hCG)-stimulated progesterone production in a dose-dependent manner. The 24-h IC 50 (half maximal inhibitory concentration) value for BPAF regarding progesterone production was 70.2 µM. A dramatic decrease in cellular cAMP concentration was also observed. Furthermore, BPAF exposure inhibited expression of genes and proteins involved in cholesterol transport and progesterone biosynthesis. Conversely, the protein levels of steroidogenic acute regulatory protein (StAR) were not altered, and those of progesterone were still decreased upon 22R-hydroxycholesterol treatment of cells exposed to higher doses of BPAF. Together, these data indicate that BPAF exposure inhibits progesterone secretion in hCG-stimulated mLTC-1 cells by reducing expression of scavenger receptor class B type I (SR-B1) and cytochrome P450 (P450scc) due to the adverse effects of cAMP. However, StAR might not be the molecular target in this process. © 2018 Wiley Periodicals, Inc.

  5. Emodin Inhibits Breast Cancer Growth by Blocking the Tumor-Promoting Feedforward Loop between Cancer Cells and Macrophages.

    PubMed

    Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping

    2016-08-01

    Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing antitumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus, tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T-cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2-related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1 and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration toward and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. Mol Cancer Ther; 15(8); 1931-42. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram

    NASA Astrophysics Data System (ADS)

    Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Yu, Haijun; Mao, Shirui; Li, Yaping

    2014-03-01

    Metastasis, the main cause of cancer related deaths, remains the greatest challenge in cancer treatment. Disulfiram (DSF), which has multi-targeted anti-tumor activity, was encapsulated into redox-sensitive shell crosslinked micelles to achieve intracellular targeted delivery and finally inhibit tumor growth and metastasis. The crosslinked micelles demonstrated good stability in circulation and specifically released DSF under a reductive environment that mimicked the intracellular conditions of tumor cells. As a result, the DSF-loaded redox-sensitive shell crosslinked micelles (DCMs) dramatically inhibited cell proliferation, induced cell apoptosis and suppressed cell invasion, as well as impairing tube formation of HMEC-1 cells. In addition, the DCMs could accumulate in tumor tissue and stay there for a long time, thereby causing significant inhibition of 4T1 tumor growth and marked prevention in lung metastasis of 4T1 tumors. These results suggested that DCMs could be a promising delivery system in inhibiting the growth and metastasis of breast cancer.

  7. Resveratrol inhibits uveal melanoma tumor growth via early mitochondrial dysfunction.

    PubMed

    van Ginkel, Paul R; Darjatmoko, Soesiawati R; Sareen, Dhruv; Subramanian, Lalita; Bhattacharya, Saswati; Lindstrom, Mary J; Albert, Daniel M; Polans, Arthur S

    2008-04-01

    To test the efficacy of resveratrol, a nontoxic plant product, in the treatment of uveal melanoma. The effect of oral administration and peritumor injection of resveratrol was tested on tumor growth in two animal models of uveal melanoma. The mechanism of resveratrol action on uveal melanoma cells was studied in vitro in a cell-viability assay: with JC-1 dye, to measure mitochondrial membrane potential; by Western blot analysis, to analyze the cellular redistribution of cytochrome c and Smac/diablo; and in a fluorescence assay with specific substrates, to measure activation of different caspases. Resveratrol treatment inhibited tumor growth in animal models of uveal melanoma. Since oral administration resulted in relatively low bioavailability of resveratrol, the effect of increased local levels was tested by peritumor injection of the drug. This method resulted in tumor cell death and tumor regression. In vitro experiments with multiple uveal melanoma cell lines demonstrate that resveratrol causes a decrease in cell viability, resulting at least in part from an increase in apoptosis through a mitochondrial pathway. An early event in drug action is the direct targeting of mitochondria by resveratrol, which leads to a decrease in mitochondrial membrane potential and the eventual activation of caspase-3. These data suggest that resveratrol can inhibit tumor growth and can induce apoptosis via the intrinsic mitochondrial pathway and that by further increasing bioavailability of resveratrol the potency of the drug can be increased, leading to tumor regression. The nontoxic nature of the drug at levels needed for therapy make resveratrol an attractive candidate for the treatment of uveal melanoma.

  8. Tryptamine and dimethyltryptamine inhibit indoleamine 2,3 dioxygenase and increase the tumor-reactive effect of peripheral blood mononuclear cells.

    PubMed

    Tourino, Melissa Cavalheiro; de Oliveira, Edson Mendes; Bellé, Luziane Potrich; Knebel, Franciele Hinterholz; Albuquerque, Renata Chaves; Dörr, Felipe Augusto; Okada, Sabrina Sayori; Migliorini, Silene; Soares, Irene Silva; Campa, Ana

    2013-07-01

    Indoleamine 2,3-dioxygenase (IDO) is an interferon-γ (IFN-γ)-induced tryptophan-degrading enzyme, producing kynurenine (KYN) that participates in the mechanism of tumor immune tolerance. Thus, IDO inhibition has been considered a strategy for anticancer therapy. The aim of this study was to identify whether the metabolites originated from the competitive routes of tryptophan metabolism, such as the serotonergic or N, N-dimethyltryptamine (DMT) pathways, have inhibitory effects on recombinant human IDO (rhIDO) activity. Serotonin and melatonin had no effect; on the other hand, tryptamine (TRY) and DMT modulated the activity of rhIDO as classical non-competitive inhibitors, with Ki values of 156 and 506 μM, respectively. This inhibitory effect was also observed on constitutively expressed or IFN-γ-induced IDO in the A172 human glioma cell line. TRY and DMT increased the cytotoxic activity of peripheral blood mononuclear cells (PBMCs) in co-culture assays. We conclude that the IDO inhibition by TRY and DMT contributed to a more effective tumor-reactive response by the PBMCs. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Curcumin Analogue CDF Inhibits Pancreatic Tumor Growth by Switching on Suppressor microRNAs and Attenuating EZH2 Expression

    PubMed Central

    Bao, Bin; Ali, Shadan; Banerjee, Sanjeev; Wang, Zhiwei; Logna, Farah; Azmi, Asfar S.; Kong, Dejuan; Ahmad, Aamir; Li, Yiwei; Padhye, Subhash; Sarkar, Fazlul H.

    2013-01-01

    The histone methyltransferase EZH2 is a central epigenetic regulator of cell survival, proliferation, and cancer stem cell (CSC) function. EZH2 expression is increased in various human cancers, including highly aggressive pancreatic cancers, but the mechanisms underlying for its biologic effects are not yet well understood. In this study, we probed EZH2 function in pancreatic cancer using diflourinated-curcumin (CDF), a novel analogue of the turmeric spice component curcumin that has antioxidant properties. CDF decreased pancreatic cancer cell survival, clonogenicity, formation of pancreatospheres, invasive cell migration, and CSC function in human pancreatic cancer cells. These effects were associated with decreased expression of EZH2 and increased expression of a panel of tumor-suppressive microRNAs (miRNA), including let-7a,b,c,d, miR-26a, miR-101, miR-146a, and miR-200b,c that are typically lost in pancreatic cancer. Mechanistic investigations revealed that reexpression of miR-101 was sufficient to limit the expression of EZH2 and the proinvasive cell surface adhesion molecule EpCAM. In an orthotopic xenograft model of human pancreatic cancer, administration of CDF inhibited tumor growth in a manner associated with reduced expression of EZH2, Notch-1, CD44, EpCAM, and Nanog and increased expression of let-7, miR-26a, and miR-101. Taken together, our results indicated that CDF inhibited pancreatic cancer tumor growth and aggressiveness by targeting an EZH2-miRNA regulatory circuit for epigenetically controlled gene expression. PMID:22108826

  10. MiR-615 inhibits cell proliferation, migration and invasion by targeting EGFR in human glioblastoma.

    PubMed

    Ji, Yanwei; Sun, Qingshan; Zhang, Jianbin; Hu, Haoran

    2018-05-15

    MiR-615 and epidermal growth factor receptor (EGFR) are associated with a number of disease processes and pathogenesis. However, little is known about the mechanisms of miR-615 and EGFR in human glioblastoma multiforme (GBM). Here, we found that down-regulation of miR-615 expression occurred in GBM tissues and cells, and was inversely correlated with overall survival, relapse-free survival, WHO grade as well as EGFR expression. We further determined that miR-615 functions as a tumor suppressor by inhibiting GBM cell proliferation, cell cycle, migration and invasion, and promoting cell apoptosis. In-vivo assay validated the inhibition effect of miR-615 on tumor growth and EGFR expression. Luciferase reporter assays demonstrated that miR-615 targeted the 3'-untranslated region (3'-UTR) of EGFR. Besides, over-expression of EGFR reversed the inhibition effects of miR-615, while silencing of EGFR aggravated these inhibition effects. In conclusions, we identified that miR-615 plays a tumor suppressor role in GBM cell proliferation, migration and invasion by targeting EGFR expression, and miR-615 may act as a novel biomarker for early diagnosis or therapeutic targets of GBM. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Total alkaloids of Rubus alceifolius Poir inhibit tumor angiogenesis through suppression of the Notch signaling pathway in a mouse model of hepatocellular carcinoma.

    PubMed

    Zhao, Jinyan; Lin, Wei; Cao, Zhiyun; Zhuang, Qunchuan; Zheng, Liangpu; Peng, Jun; Hong, Zhenfeng

    2015-01-01

    Angiogenesis, which has a critical role in human tumor growth and development, is tightly regulated by the Notch signaling pathway. Total alkaloids are active components of the plant Rubus alceifolius Poir, which is used for the treatment of various types of cancer. A previous study by our group showed that the total alkaloids of Rubus alceifolius Poir (TARAP) induced hepatocellular carcinoma (HCC) cell apoptosis through the activation of the mitochondria-dependent pathway in vitro and in vivo, as well as inhibited angiogenesis in a chick embryo chorioallantoic membrane model. In the present study, to further analyze the specific mechanisms underlying the antitumor activity of TARAP, a HCC xenograft mouse model was used to assess the effect of TARAP on angiogenesis in vivo. TARAP was found to suppress the expression of vascular endothelial growth factor (VEGF) A and VEGF receptor-2 in tumor tissues, which resulted in the inhibition of tumor angiogenesis. In addition, TARAP treatment was observed to inhibit the expression of Notch1, delta-like ligand 4 and jagged 1, which are key mediators of the Notch signaling pathway. The present study identified that the inhibition of tumor angiogenesis through the suppression of the Notch signaling pathway may be one of the mechanisms through which TARAP may be effective in the treatment of cancer.

  12. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model

    PubMed Central

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-01-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer. PMID:26840261

  13. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model.

    PubMed

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-03-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer.

  14. Saccharomyces boulardii Inhibits EGF Receptor Signaling and Intestinal Tumor Growth in Apcmin Mice

    PubMed Central

    Chen, Xinhua; Fruehauf, Johannes; Goldsmith, Jeffrey D.; Xu, Hua; Katchar, Kianoosh K; Koon, Hon-Wai; Zhao, Dezheng; Kokkotou, Efi G.; Pothoulakis, Charalabos; Kelly, Ciarán P.

    2009-01-01

    Saccharomyces boulardii (Sb) is a probiotic yeast with anti-inflammatory and antimicrobial activities and has been used for decades in the prevention and treatment of a variety of human gastrointestinal disorders. We reported previously that Sb modulates host inflammatory responses through down regulation of Erk1/2 MAP kinase activities both in vitro and in vivo. The aim of this study was to identify upstream mediators responsible for Erk1/2 inactivation and to examine the effects of Sb on tumor development in ApcMin mice. We found that the EGF receptor was deactivated upon exposure to Sb leading to inactivation of both the EGFR-Erk and EGFR-Akt pathways. In human colonic cancer cells, Sb prevented EGF induced proliferation, reduced cell colony formation and promoted apoptosis. HER-2, HER-3 and IGF-1R were also found to be inactivated by Sb. Oral intake of Sb reduced intestinal tumor growth and dysplasia in C57BL/6J Min/+ (ApcMin) mice. Thus, in addition to its anti-inflammatory effects, S. boulardii inhibits EGFR and other receptor tyrosine kinase signaling and thereby may also serve a novel therapeutic or prophylactic role in intestinal neoplasia. PMID:19482027

  15. Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species.

    PubMed

    De Milito, Angelo; Iessi, Elisabetta; Logozzi, Mariantonia; Lozupone, Francesco; Spada, Massimo; Marino, Maria Lucia; Federici, Cristina; Perdicchio, Maurizio; Matarrese, Paola; Lugini, Luana; Nilsson, Anna; Fais, Stefano

    2007-06-01

    Proton pumps like the vacuolar-type H+ ATPase (V-ATPase) are involved in the control of cellular pH in normal and tumor cells. Treatment with proton pump inhibitors (PPI) induces sensitization of cancer cells to chemotherapeutics via modifications of cellular pH gradients. It is also known that low pH is the most suitable condition for a full PPI activation. Here, we tested whether PPI treatment in unbuffered culture conditions could affect survival and proliferation of human B-cell tumors. First, we showed that PPI treatment increased the sensitivity to vinblastine of a pre-B acute lymphoblastic leukemia (ALL) cell line. PPI, per se, induced a dose-dependent inhibition of proliferation of tumor B cells, which was associated with a dose- and time-dependent apoptotic-like cytotoxicity in B-cell lines and leukemic cells from patients with pre-B ALL. The effect of PPI was mediated by a very early production of reactive oxygen species (ROS), that preceded alkalinization of lysosomal pH, lysosomal membrane permeabilization, and cytosol acidification, suggesting an early destabilization of the acidic vesicular compartment. Lysosomal alterations were followed by mitochondrial membrane depolarization, release of cytochrome c, chromatin condensation, and caspase activation. However, inhibition of caspase activity did not affect PPI-induced cell death, whereas specific inhibition of ROS by an antioxidant (N-acetylcysteine) significantly delayed cell death and protected both lysosomal and mitochondrial membranes. The proapoptotic activity of PPI was consistent with a clear inhibition of tumor growth following PPI treatment of B-cell lymphoma in severe combined immunodeficient mice. This study further supports the importance of acidity and pH gradients in tumor cell homeostasis and suggests new therapeutic approaches for human B-cell tumors based on PPI.

  16. Combined therapy with cyclophosphamide and DNA preparation inhibits the tumor growth in mice

    PubMed Central

    Alyamkina, Ekaterina A; Dolgova, Evgenia V; Likhacheva, Anastasia S; Rogachev, Vladimir A; Sebeleva, Tamara E; Nikolin, Valeriy P; Popova, Nelly A; Orishchenko, Konstantin E; Strunkin, Dmitriy N; Chernykh, Elena R; Zagrebelniy, Stanislav N; Bogachev, Sergei S; Shurdov, Mikhail A

    2009-01-01

    Background When cyclophosphamide and preparations of fragmented exogenous genomic double stranded DNA were administered in sequence, the regressive effect on the tumor was synergic: this combined treatment had a more pronounced effect than cyclophosphamide alone. Our further studies demonstrated that exogenous DNA stimulated the maturation and specific activities of dendritic cells. This suggests that cyclophosphamide, combined with DNA, leads to an immune response to the tumors that were grafted into the subjects post treatment. Methods Three-month old CBA/Lac mice were used in the experiments. The mice were injected with cyclosphamide (200 mkg per 1 kg body weight) and genomic DNA (of human, mouse or salmon sperm origin). The DNA was administered intraperitoneally or subcutaneously. After 23 to 60 days, one million tumor cells were intramuscularly grafted into the mice. In the final experiment, the mice were pre-immunized by subcutaneous injections of 20 million repeatedly thawed and frozen tumor cells. Changes in tumor growth were determined by multiplying the three perpendicular diameters (measured by caliper). Students' t-tests were used to determine the difference between tumor growth and average survival rate between the mouse groups and the controls. Results An analysis of varying treatments with cyclophosphamide and exogenous DNA, followed by tumor grafting, provided evidence that this combined treatment had an immunizing effect. This inhibitory effect in mice was analyzed in an experiment with the classical immunization of a tumor homogenate. The strongest inhibitory action on a transplanted graft was created through the following steps: cyclophosphamide at 200 mg/kg of body weight administered as a pretreatment; 6 mg fragmented exogenous DNA administered over the course of 3 days; tumor homogenate grafted 10 days following the final DNA injection. Conclusion Fragmented exogenous DNA injected with cyclophosphamide inhibits the growth of tumors that are

  17. Zyflamend Suppresses Growth and Sensitizes Human Pancreatic Tumors to Gemcitabine in an Orthotopic Mouse Model Through Modulation of Multiple Targets

    PubMed Central

    Kunnumakkara, Ajaikumar B.; Sung, Bokyung; Ravindran, Jayaraj; Diagaradjane, Parmeswaran; Deorukhkar, Amit; Dey, Sanjit; Koca, Cemile; Tong, Zhimin; Gelovani, Juri G.; Guha, Sushovan; Krishnan, Sunil; Aggarwal, Bharat B.

    2011-01-01

    Agents that can potentiate the efficacy of standard chemotherapy against pancreatic cancer are of great interest. Because of their low cost and safety, patients commonly use a variety of dietary supplements, although evidence of their efficacy is often lacking. One such commonly used food supplement, Zyflamend, is a polyherbal preparation with potent anti-inflammatory activities, and preclinical efficacy against prostate and oral cancer. Whether Zyflamend has any efficacy against human pancreatic cancer alone or in combination with gemcitibine, a commonly used agent, was examined in cell cultures and in an orthotopic mouse model. In vitro, Zyflamend inhibited the proliferation of pancreatic cancer cell lines regardless of p53 status and also enhanced gemcitabine-induced apoptosis. This finding correlated with inhibition of NF-κB activation by Zyflamend and suppression of cyclin D1, c-myc, COX-2, Bcl-2, IAP, survivin, VEGF, ICAM-1, and CXCR4. In nude mice, oral administration of Zyflamend alone significantly inhibited the growth of orthotopically transplanted human pancreatic tumors, and when combined with gemcitabine, further enhanced the antitumor effects. Immunohistochemical and Western blot analyses of tumor tissue showed that the suppression of pancreatic cancer growth correlated with inhibition of proliferation index marker (Ki-67), COX-2, MMP-9, NF-κB, and VEGF. Overall, these results suggest that the concentrated multiherb product Zyflamend alone can inhibit the growth of human pancreatic tumors and, in addition, can sensitize pancreatic cancers to gemcitabine through the suppression of multiple targets linked to tumorigenesis. PMID:21935918

  18. Human milk glycoconjugates that inhibit pathogens.

    PubMed

    Newburg, D S

    1999-02-01

    Breast-fed infants have lower incidence of diarrhea, respiratory disease, and otitis media. The protection by human milk has long been attributed to the presence of secretory IgA. However, human milk contains large numbers and amounts of complex carbohydrates, including glycoproteins, glycolipids, glycosaminoglycans, mucins, and especially oligosaccharides. The oligosaccharides comprise the third most abundant solid constituent of human milk, and contain a myriad of structures. Complex carbohydrate moieties of glycoconjugates and oligosaccharides are synthesized by the many glycosyltransferases in the mammary gland; those with homology to cell surface glycoconjugate pathogen receptors may inhibit pathogen binding, thereby protecting the nursing infant. Several examples are reviewed: A fucosyloligosaccharide inhibits the diarrheagenic effect of stable toxin of Escherichia coli. A different fucosyloligosaccharide inhibits infection by Campylobacter jejuni. Binding of Streptococcus pneumoniae and of enteropathogenic E. coli to their respective receptors is inhibited by human milk oligosaccharides. The 46-kD glycoprotein, lactadherin, inhibits rotavirus binding and infectivity. Low levels of lactadherin in human milk are associated with a higher incidence of symptomatic rotavirus in breast-fed infants. A mannosylated glycopeptide inhibits binding by enterohemorrhagic E. coli. A glycosaminoglycan inhibits binding of gp120 to CD4, the first step in HIV infection. Human milk mucin inhibits binding by S-fimbriated E. coli. The ganglioside, GM1, reduces diarrhea production by cholera toxin and labile toxin of E. coli. The neutral glycosphingolipid, Gb3, binds to Shigatoxin. Thus, many complex carbohydrates of human milk may be novel antipathogenic agents, and the milk glycoconjugates and oligosaccharides may be a major source of protection for breastfeeding infants.

  19. CDDO-Me inhibits tumor growth and prevents recurrence of pancreatic ductal adenocarcinoma.

    PubMed

    Gao, Xiaohua; Deeb, Dorrah; Liu, Yongbo; Liu, Patricia; Zhang, Yiguan; Shaw, Jiajiu; Gautam, Subhash C

    2015-12-01

    Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) has shown potent antitumorigenic activity against a wide range of cancer cell lines in vitro and inhibited the growth of liver, lung and prostate cancer in vivo. In the present study, we examined the antitumor activity of CDDO-Me for pancreatic ductal adenocarcinoma (PDAC) cells with and without activating K-ras mutations. Treatment of K-ras mutant MiaPaCa-2 and K-ras normal BxPC-3 cells with CDDO-Me elicited strong antiproliferative and proapoptopic responses in both cell lines in culture. The inhibition of cell proliferation and induction of apoptosis was accompanied by the inhibition of antiapoptotic/prosurvival p-Akt, NF-кB and p-mTOR signaling proteins. For testing efficacy of CDDO-Me in vivo heterotopic and orthotopic xenografts were generated by implanting BxPC-3 and MiaPaCa-2 cells subcutaneously and in the pancreatic tail, respectively. Treatment with CDDO-Me significantly inhibited the growth of BxPC-3 xenografts and reduced the levels of p-Akt and p-mTOR in tumor tissue. In mice with orthotopic MiaPaCa-2 xenografts, treatment with CDDO-Me prolonged the survival of mice when administered following the surgical resection of tumors. The latter was attributed to the eradication of residual PDAC remaining after resection of tumors. These preclinical data demonstrate the potential of CDDO-Me for treating primary PDAC tumors and for preventing relapse/recurrence through the destruction of residual disease.

  20. Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth

    PubMed Central

    Ono, Masanori; Yin, Ping; Navarro, Antonia; Moravek, Molly B.; Coon, John S.; Druschitz, Stacy A.; Gottardi, Cara J.; Bulun, Serdar E.

    2014-01-01

    Objective Dysregulation of WNT signaling plays a central role in tumor cell growth and progression. Our goal was to assess the effect of three WNT/β-catenin pathway inhibitors, Inhibitor of β-Catenin And TCF4 (ICAT), niclosamide, and XAV939 on the proliferation of primary cultures of human uterine leiomyoma cells. Design Prospective study of human leiomyoma cells obtained from myomectomy or hysterectomy. Setting University research laboratory. Patient(s) Women (n=38) aged 27–53 years undergoing surgery. Intervention(s) Adenoviral ICAT overexpression or treatment with varying concentrations of niclosamide or XAV939. Main Outcome Measure(s) Cell proliferation, cell death, WNT/β-catenin target gene expression or reporter gene regulation, β-catenin levels and cellular localization. Result(s) ICAT, niclosamide, or XAV939 inhibit WNT/β-catenin pathway activation and exert anti-proliferative effects in primary cultures of human leiomyoma cells. Conclusion(s) Three WNT/β-catenin pathway inhibitors specifically block human leiomyoma growth and proliferation, suggesting that the canonical WNT pathway may be a potential therapeutic target for the treatment of uterine leiomyoma. Our findings provide rationale for further preclinical and clinical evaluation of ICAT, niclosamide, and XAV939 as candidate anti-tumor agents for uterine leiomyoma. PMID:24534281

  1. Inhibition on the growth of human MDA-MB-231 breast cancer cells in vitro and tumor growth in a mouse xenograft model by Se-containing polysaccharides from Pyracantha fortuneana.

    PubMed

    Yuan, Chengfu; Wang, Changdong; Wang, Junjie; Kumar, Vikas; Anwar, Firoz; Xiao, Fangxiang; Mushtaq, Gohar; Liu, Yufei; Kamal, Mohammad Amjad; Yuan, Ding

    2016-11-01

    Breast cancer is the second cause of cancer-related death among Women. Current therapies for breast cancer have adverse side-effects. Selenium (Se)-containing polysaccharides have multiple health benefits to humans. Pyracantha fortuneana (P. fortuneana) contains rich Se polysaccharides. We hypothesized that Se-containing polysaccharides from P. fortuneana possess anticancer activity on breast cancer via inhibiting growth and inducing apoptosis. This study aimed to assess the anticancer effect of Se-containing polysaccharides from P. fortuneana and the underlying mechanisms. Se-containing polysaccharides were purified. Their properties and monosaccharide compositions were analyzed. Their effects on cell growth, expression of cycle proteins, apoptosis and apoptosis-related protein, and tumor growth in mouse xenograft model were examined. This extract contained 93.7% (w/w) of carbohydrate, 2.1% (w/w) of uronic acid and 3.7μg/g of Se, and was considered as Se-conjugated polysaccharides (Se-PFPs). In vitro studies showed that treatment of triple negative breast cancer (TNBC) MDA-MB-231 cells with Se-PFPs (1) inhibited cell growth dose-dependently by arresting cells at G2 phase via inhibiting CDC25C-CyclinB1/CDC2 pathway; (2) caused apoptosis associated with increased p53, Bax, Puma and Noxa, decreased Bcl2, increased Bax/Bcl2 ratio and increased activities of caspases 3/9, suggesting its effect on p53-mediated cytochrome c-caspase pathway. Treatment of nude mice bearing MDA-MB-231-derived xenograft tumors with Se-PFPs significantly reduced tumor growth without altering body weight, confirming its antitumor activity without toxic side effects. Se-PFPs enhanced doxorubicin cytotoxic effects. It is concluded that Se-containing polysaccharides from P. fortuneana potently inhibit the growth and induce apoptosis of TNBC cells and can be potential anticancer agent for TNBC. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. N-(3-oxo-acyl) homoserine lactone inhibits tumor growth independent of Bcl-2 proteins.

    PubMed

    Zhao, Guoping; Neely, Aaron M; Schwarzer, Christian; Lu, Huayi; Whitt, Aaron G; Stivers, Nicole S; Burlison, Joseph A; White, Carl; Machen, Terry E; Li, Chi

    2016-02-02

    Pseudomonas aeruginosa produces N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule for bacterial communication. C12 has also been reported to induce apoptosis in various types of tumor cells. However, the detailed molecular mechanism of C12-triggerred tumor cell apoptosis is still unclear. In addition, it is completely unknown whether C12 possesses any potential therapeutic effects in vivo. Our data indicate that, unlike most apoptotic inducers, C12 evokes a novel form of apoptosis in tumor cells through inducing mitochondrial membrane permeabilization independent of both pro- and anti-apoptotic Bcl-2 proteins. Importantly, C12 inhibits tumor growth in animals regardless of either pro- or anti-apoptotic Bcl-2 proteins. Furthermore, opposite to conventional chemotherapeutics, C12 requires paraoxonase 2 (PON2) to exert its cytotoxicity on tumor cells in vitro and its inhibitory effects on tumor growth in vivo. Overall, our results demonstrate that C12 inhibits tumor growth independent of both pro- and anti-apoptotic Bcl-2 proteins, and through inducing unique apoptotic signaling mediated by PON2 in tumor cells.

  3. N-(3-oxo-acyl) homoserine lactone inhibits tumor growth independent of Bcl-2 proteins

    PubMed Central

    Zhao, Guoping; Neely, Aaron M.; Schwarzer, Christian; Lu, Huayi; Whitt, Aaron G.; Stivers, Nicole S.; Burlison, Joseph A.; White, Carl; Machen, Terry E.; Li, Chi

    2016-01-01

    Pseudomonas aeruginosa produces N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule for bacterial communication. C12 has also been reported to induce apoptosis in various types of tumor cells. However, the detailed molecular mechanism of C12-triggerred tumor cell apoptosis is still unclear. In addition, it is completely unknown whether C12 possesses any potential therapeutic effects in vivo. Our data indicate that, unlike most apoptotic inducers, C12 evokes a novel form of apoptosis in tumor cells through inducing mitochondrial membrane permeabilization independent of both pro- and anti-apoptotic Bcl-2 proteins. Importantly, C12 inhibits tumor growth in animals regardless of either pro- or anti-apoptotic Bcl-2 proteins. Furthermore, opposite to conventional chemotherapeutics, C12 requires paraoxonase 2 (PON2) to exert its cytotoxicity on tumor cells in vitro and its inhibitory effects on tumor growth in vivo. Overall, our results demonstrate that C12 inhibits tumor growth independent of both pro- and anti-apoptotic Bcl-2 proteins, and through inducing unique apoptotic signaling mediated by PON2 in tumor cells. PMID:26758417

  4. Redox-responsive microbeads containing thiolated pectin-doxorubicin conjugate inhibit tumor growth and metastasis: An in vitro and in vivo study.

    PubMed

    Cheewatanakornkool, Kamonrak; Niratisai, Sathit; Dass, Crispin R; Sriamornsak, Pornsak

    2018-07-10

    The objective of this study was to investigate the in vitro cytotoxicity and in vivo anticancer efficacy of redox-responsive microbeads containing thiolated pectin-doxorubicin (DOX) conjugate. Oral microbeads were coated with an enteric polymer to protect the drug from release in the upper gastrointestinal (GI) tract and allow redox-triggered drug release in the colon. Morphology, particle size, drug content, and in vitro drug release behavior of the microbeads were characterized; in vitro cytotoxicity was tested on mouse colon carcinoma, human colorectal adenocarcinoma, and human bone osteosarcoma cell lines. In vivo anticancer efficacy of coated microbeads was examined in BALB/c mice with murine colon carcinoma. These coated microbeads significantly inhibited the growth of all cell lines. The in vivo study confirmed delivery of DOX to the colorectal tumor site, redox-responsiveness, and anticancer efficacy of coated microbeads. Coated microbeads also effectively inhibited primary tumor growth and suppressed tumor metastases without gross toxicity to the non-target tissue. No noticeable damage was found in mouse GI tissues, indicating lack of DOX toxicity. These novel coated microbeads containing thiolated pectin-DOX conjugate may be a promising vehicle for targeted clinical delivery of DOX to the colorectal cancer site by oral administration. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  5. Sonic-Hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy

    PubMed Central

    Voutouri, Chrysovalantis; Kalli, Maria; Pirentis, Athanassios P.; Stylianopoulos, Triantafyllos

    2017-01-01

    Targeting the rich extracellular matrix of desmoplastic tumors has been successfully shown to normalize collagen and hyaluronan levels and re-engineer intratumoral mechanical forces, improving tumor perfusion and chemotherapy. As far as targeting the abundant cancer-associated fibroblasts (CAFs) in desmoplastic tumors is concerned, while both pharmacologic inhibition of the sonic-hedgehog pathway and genetic depletion of fibroblasts have been employed in pancreatic cancers, the results between the two methods have been contradictory. In this study, we employed vismodegib to inhibit the sonic-hedgehog pathway with the aim to i) elucidate the mechanism of how CAFs depletion improves drug delivery, ii) extent and evaluate the potential use of sonic-hedgehog inhibitors to breast cancers, and iii) investigate whether sonic-hedgehog inhibition improves not only chemotherapy, but also the efficacy of the most commonly used breast cancer nanomedicines, namely Abraxane® and Doxil®. We found that treatment with vismodegib normalizes the tumor microenvironment by reducing the proliferative CAFs and in cases the levels of collagen and hyaluronan. These modulations re-engineered the solid and fluid stresses in the tumors, improving blood vessel functionality. As a result, the delivery and efficacy of chemotherapy was improved in two models of pancreatic cancer. Additionally, vismodegib treatment significantly improved the efficacy of both Abraxane and Doxil in xenograft breast tumors. Our results suggest the use of vismodegib, and sonic hedgehog inhibitors in general, to enhance cancer chemo- and nanotherapy. PMID:28662901

  6. Activation of tumor suppressor protein PP2A inhibits KRAS-driven tumor growth

    PubMed Central

    Sangodkar, Jaya; Perl, Abbey; Tohme, Rita; Kiselar, Janna; Kastrinsky, David B.; Izadmehr, Sudeh; Mazhar, Sahar; Wiredja, Danica D.; O’Connor, Caitlin M.; Hoon, Divya; Dhawan, Neil S.; Schlatzer, Daniela; Yao, Shen; Leonard, Daniel; Borczuk, Alain C.; Gokulrangan, Giridharan; Wang, Lifu; Svenson, Elena; Farrington, Caroline C.; Yuan, Eric; Avelar, Rita A.; Stachnik, Agnes; Smith, Blake; Gidwani, Vickram; Giannini, Heather M.; McQuaid, Daniel; McClinch, Kimberly; Wang, Zhizhi; Levine, Alice C.; Sears, Rosalie C.; Chen, Edward Y.; Duan, Qiaonan; Datt, Manish; Ma’ayan, Avi; DiFeo, Analisa; Sharma, Neelesh; Galsky, Matthew D.; Brautigan, David L.; Ioannou, Yiannis A.; Xu, Wenqing; Chance, Mark R.; Ohlmeyer, Michael

    2017-01-01

    Targeted cancer therapies, which act on specific cancer-associated molecular targets, are predominantly inhibitors of oncogenic kinases. While these drugs have achieved some clinical success, the inactivation of kinase signaling via stimulation of endogenous phosphatases has received minimal attention as an alternative targeted approach. Here, we have demonstrated that activation of the tumor suppressor protein phosphatase 2A (PP2A), a negative regulator of multiple oncogenic signaling proteins, is a promising therapeutic approach for the treatment of cancers. Our group previously developed a series of orally bioavailable small molecule activators of PP2A, termed SMAPs. We now report that SMAP treatment inhibited the growth of KRAS-mutant lung cancers in mouse xenografts and transgenic models. Mechanistically, we found that SMAPs act by binding to the PP2A Aα scaffold subunit to drive conformational changes in PP2A. These results show that PP2A can be activated in cancer cells to inhibit proliferation. Our strategy of reactivating endogenous PP2A may be applicable to the treatment of other diseases and represents an advancement toward the development of small molecule activators of tumor suppressor proteins. PMID:28504649

  7. α-santalol inhibits the angiogenesis and growth of human prostate tumor growth by targeting vascular endothelial growth factor receptor 2-mediated AKT/mTOR/P70S6K signaling pathway

    PubMed Central

    2013-01-01

    Background VEGF receptor 2 (VEGFR2) inhibitors, as efficient antiangiogenesis agents, have been applied in the cancer treatment. However, recently, most of these anticancer drugs have some adverse effects. Discovery of novel VEGFR2 inhibitors as anticancer drug candidates is still needed. Methods We used α-santalol and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVECs) and Prostate tumor cells (PC-3 or LNCaP) in vitro. Tumor xenografts in nude mice were used to examine the in vivo activity of α-santalol. Results α-santalol significantly inhibits HUVEC proliferation, migration, invasion, and tube formation. Western blot analysis indicated that α-santalol inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including AKT, ERK, FAK, Src, mTOR, and pS6K in HUVEC, PC-3 and LNCaP cells. α-santalol treatment inhibited ex vivo and in vivo angiogenesis as evident by rat aortic and sponge implant angiogenesis assay. α-santalol significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model. The antiangiogenic effect by CD31 immunohistochemical staining indicated that α-santalol inhibited tumorigenesis by targeting angiogenesis. Furthermore, α-santalol reduced the cell viability and induced apoptosis in PC-3 cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Molecular docking simulation indicated that α-santalol form hydrogen bonds and aromatic interactions within the ATP-binding region of the VEGFR2 kinase unit. Conclusion α-santalol inhibits angiogenesis by targeting VEGFR2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy. PMID:24261856

  8. β-elemene inhibits tumor-promoting effect of M2 macrophages in lung cancer.

    PubMed

    Yu, Xiaomu; Xu, Maoyi; Li, Na; Li, Zongjuan; Li, Hongye; Shao, Shujuan; Zou, Kun; Zou, Lijuan

    2017-08-19

    Macrophages in tumor are mostly M2-polarized and have been reported to promote tumorigenesis, which are also defined as tumor-associated macrophages (TAMs). β-elemene has therapeutic effects against several cancers, however, it remains unknown whether β-elemene could inhibit cancer by targeting TAMs. Herein, we examined the effect of β-elemene on macrophages to elucidate a novel mechanism of β-elemene in tumor therapy. We showed that the conditioned medium of M2 macrophages promoted lung cancer cells to migration, invasion and epithelial mesenchymal transition, which could be inhibited by β-elemene. Moreover, β-elemene regulated the polarization of macrophages from M2 to M1. β-elemene also inhibited the proliferation, migration, invasion of lung cancer cells and enhanced its radiosensitivity. These results indicate β-elemene suppresses lung cancer by regulating both macrophages and lung cancer cells, it is a promising drug for combination with chemotherapy or radiotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Plantamajoside, a potential anti-tumor herbal medicine inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of matrix metalloproteinase-9 and -2.

    PubMed

    Pei, Shimin; Yang, Xu; Wang, Huanan; Zhang, Hong; Zhou, Bin; Zhang, Di; Lin, Degui

    2015-12-16

    Metastasis is the major cause of death in breast cancers. MMPs play a key role in tumor microenvironment that facilitates metastasis. The existing researches suggest that the high expression of gelatinase A and B (MMP2 and MMP9) promote the metastasis of breast cancer. Therefore, gelatinase inhibitor can effectively suppress tumor metastasis. However, at present, there is no dramatically effective gelatinase inhibitor against breast cancer. We screened gelatinase inhibitor among Chinese herbal medicine by molecular docking technology; investigated the proliferation, migration and invasion of MDA-MB-231 human breast cancer cell line and 4T1 mouse breast cancer cell line in response to the treatment with the screened inhibitor by wound assay, invasion assay and gelatin zymography; then further examined the effects of inhibitor on allograft mammary tumors of mice by immunohistochemistry. We successfully screened an Chinese herbal medicine-Plantamajoside(PMS)-which can reduce the gelatinase activity of MMP9 and MMP2. In vitro, PMS can inhibit the proliferation, migration and invasion of MDA-MB-231 human breast cancer cell line and 4T1 mouse breast cancer cell line by decreasing MMP9 and MMP2 activity. In vivo, oral administration of PMS to the mice bearing 4T1 cells induced tumors resulted in significant reduction in allograft tumor volume and weights, significant decrease in microvascular density and significant lower lung metastasis rate. Our results indicate that as a promising anti-cancer agent, PMS may inhibit growth and metastasis of breast cancer by inhibiting the activity of MMP9 and MMP2.

  10. Inhibition of Lysyl Oxidases Impairs Migration and Angiogenic Properties of Tumor-Associated Pericytes.

    PubMed

    Ribeiro, Aline Lopes; Kaid, Carolini; Silva, Patrícia B G; Cortez, Beatriz A; Okamoto, Oswaldo Keith

    2017-01-01

    Pericytes are important cellular components of the tumor microenviroment with established roles in angiogenesis and metastasis. These two cancer hallmarks are modulated by enzymes of the LOX family, but thus far, information about LOX relevance in tumor-associated pericytes is lacking. Here, we performed a comparative characterization of normal and tumoral pericytes and report for the first time the modulatory effects of LOX enzymes on activated pericyte properties. Tumoral pericytes isolated from childhood ependymoma and neuroblastoma specimens displayed angiogenic properties in vitro and expressed typical markers, including CD146, NG2, and PDGFR β . Expression of all LOX family members could be detected in both normal and tumor-associated pericytes. In most pericyte samples, LOXL3 was the family member displaying the highest transcript levels. Inhibition of LOX/LOXL activity with the inhibitor β -aminopropionitrile ( β APN) significantly reduced migration of pericytes, while proliferation rates were kept unaltered. Formation of tube-like structures in vitro by pericytes was also significantly impaired upon inhibition of LOX/LOXL activity with β APN, which induced more prominent effects in tumor-associated pericytes. These findings reveal a novel involvement of the LOX family of enzymes in migration and angiogenic properties of pericytes, with implications in tumor development and in therapeutic targeting tumor microenvironment constituents.

  11. Inhibition of Lysyl Oxidases Impairs Migration and Angiogenic Properties of Tumor-Associated Pericytes

    PubMed Central

    Kaid, Carolini; Silva, Patrícia B. G.; Cortez, Beatriz A.

    2017-01-01

    Pericytes are important cellular components of the tumor microenviroment with established roles in angiogenesis and metastasis. These two cancer hallmarks are modulated by enzymes of the LOX family, but thus far, information about LOX relevance in tumor-associated pericytes is lacking. Here, we performed a comparative characterization of normal and tumoral pericytes and report for the first time the modulatory effects of LOX enzymes on activated pericyte properties. Tumoral pericytes isolated from childhood ependymoma and neuroblastoma specimens displayed angiogenic properties in vitro and expressed typical markers, including CD146, NG2, and PDGFRβ. Expression of all LOX family members could be detected in both normal and tumor-associated pericytes. In most pericyte samples, LOXL3 was the family member displaying the highest transcript levels. Inhibition of LOX/LOXL activity with the inhibitor β-aminopropionitrile (βAPN) significantly reduced migration of pericytes, while proliferation rates were kept unaltered. Formation of tube-like structures in vitro by pericytes was also significantly impaired upon inhibition of LOX/LOXL activity with βAPN, which induced more prominent effects in tumor-associated pericytes. These findings reveal a novel involvement of the LOX family of enzymes in migration and angiogenic properties of pericytes, with implications in tumor development and in therapeutic targeting tumor microenvironment constituents. PMID:28553358

  12. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression.

    PubMed

    Yoon, Sang-Oh; Shin, Sejeong; Lee, Ho-Jae; Chun, Hyo-Kon; Chung, An-Sik

    2006-11-01

    Matrix metalloproteinase (MMP)-9 plays a key role in tumor invasion. Inhibitors of MMP-9 were screened from Metasequoia glyptostroboides (Dawn redwood) and one potent inhibitor, isoginkgetin, a biflavonoid, was identified. Noncytotoxic levels of isoginkgetin decreased MMP-9 production profoundly, but up-regulated the level of tissue inhibitor of metalloproteinase (TIMP)-1, an inhibitor of MMP-9, in HT1080 human fibrosarcoma cells. The major mechanism of Ras-dependent MMP-9 production in HT1080 cells was phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor-kappaB (NF-kappaB) activation. Expression of dominant-active H-Ras and p85 (a subunit of PI3K) increased MMP-9 activity, whereas dominant-negative forms of these molecules decreased the level of MMP-9. H-Ras did not increase MMP-9 in the presence of a PI3K inhibitor, LY294002, and a NF-kappaB inhibitor, SN50. Further studies showed that isoginkgetin regulated MMP-9 production via PI3K/Akt/NF-kappaB pathway, as evidenced by the findings that isoginkgetin inhibited activities of both Akt and NF-kappaB. PI3K/Akt is a well-known key pathway for cell invasion, and isoginkgetin inhibited HT1080 tumor cell invasion substantially. Isoginkgetin was also quite effective in inhibiting the activities of Akt and MMP-9 in MDA-MB-231 breast carcinomas and B16F10 melanoma. Moreover, isoginkgetin treatment resulted in marked decrease in invasion of these cells. In summary, PI3K/Akt is a major pathway for MMP-9 expression and isoginkgetin markedly decreased MMP-9 expression and invasion through inhibition of this pathway. This suggests that isoginkgetin could be a potential candidate as a therapeutic agent against tumor invasion.

  13. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype.

    PubMed

    Blenkiron, Cherie; Goldstein, Leonard D; Thorne, Natalie P; Spiteri, Inmaculada; Chin, Suet-Feung; Dunning, Mark J; Barbosa-Morais, Nuno L; Teschendorff, Andrew E; Green, Andrew R; Ellis, Ian O; Tavaré, Simon; Caldas, Carlos; Miska, Eric A

    2007-01-01

    MicroRNAs (miRNAs), a class of short non-coding RNAs found in many plants and animals, often act post-transcriptionally to inhibit gene expression. Here we report the analysis of miRNA expression in 93 primary human breast tumors, using a bead-based flow cytometric miRNA expression profiling method. Of 309 human miRNAs assayed, we identify 133 miRNAs expressed in human breast and breast tumors. We used mRNA expression profiling to classify the breast tumors as luminal A, luminal B, basal-like, HER2+ and normal-like. A number of miRNAs are differentially expressed between these molecular tumor subtypes and individual miRNAs are associated with clinicopathological factors. Furthermore, we find that miRNAs could classify basal versus luminal tumor subtypes in an independent data set. In some cases, changes in miRNA expression correlate with genomic loss or gain; in others, changes in miRNA expression are likely due to changes in primary transcription and or miRNA biogenesis. Finally, the expression of DICER1 and AGO2 is correlated with tumor subtype and may explain some of the changes in miRNA expression observed. This study represents the first integrated analysis of miRNA expression, mRNA expression and genomic changes in human breast cancer and may serve as a basis for functional studies of the role of miRNAs in the etiology of breast cancer. Furthermore, we demonstrate that bead-based flow cytometric miRNA expression profiling might be a suitable platform to classify breast cancer into prognostic molecular subtypes.

  14. Naringin inhibits ovarian tumor growth by promoting apoptosis: An in vivo study.

    PubMed

    Cai, Liping; Wu, Heli; Tu, Chunhua; Wen, Xiaochun; Zhou, Bei

    2018-07-01

    The aim of the present study was to investigate the antitumor activities of naringin in ovarian cancer, and to assess the underlying mechanisms. Ovarian tumor cells were implanted into nude mice to produce ovarian tumors in vivo . The mice were divided into six groups: Control, low dose naringin [0.5 mg/kg, intraperitoneal (i.p.)], middle dose naringin (1 mg/kg, i.p.), high dose naringin (2 mg/kg, i.p.), positive control (cisplatin, 2 mg/kg, i.p.) and a combination of cisplatin and naringin (both 2 mg/kg). Following administration of naringin and/or cisplatin, the tumor size and weight were measured. Apoptosis of tumor cells was detected using a terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Apoptosis-associated gene expression was detected using reverse transcription-polymerase chain reaction and immunohistochemistry. In the range of 0.5-2 mg/kg, naringin dose-dependently inhibited tumor growth, as demonstrated by a decrease in tumor size and weight. Naringin promoted apoptosis of the ovarian tumor cells. Additionally, naringin reduced the expression of B-cell lymphoma (Bcl)-2, Bcl-extra large (Bcl-xL), cyclin D1, c-Myc and survivin, while it increased the expression of caspase-3 and caspase-7. The data demonstrated that naringin inhibited ovarian tumor growth in vivo . Its mechanisms may be associated with caspase-7-, caspase-3-, Bcl-2- and Bcl-xL-mediated apoptosis. Nevertheless, the clinical application of naringin in the treatment of ovarian cancer requires further study.

  15. EphrinA1-EphA2 interaction-mediated apoptosis and Flt3L-induced immunotherapy inhibits tumor growth in a breast cancer mouse model

    PubMed Central

    Tandon, Manish; Vemula, Sai V.; Sharma, Anurag; Ahi, Yadvinder S.; Mittal, Shalini; Bangari, Dinesh S.; Mittal, Suresh K.

    2014-01-01

    Background The receptor tyrosine kinase EphA2 is overexpressed in several types of cancers and is currently being pursued as a target for breast cancer therapeutics. The EphA2 ligand EphrinA1 induces EphA2 phosphorylation and intracellular internalization and degradation, thus inhibiting tumor progression. The hematopoietic growth factor, FMS-like tyrosine kinase receptor ligand (Flt3L), promotes expansion and mobilization of functional dendritic cells. Methods We tested the EphrinA1-EphA2 interaction in MDA-MB-231 breast cancer cells focusing on the receptor-ligand-mediated apoptosis of breast cancer cells. In order to determine whether the EphrinA1-EphA2 interaction-associated apoptosis and Flt3L-mediated immunotherapy would have an additive effect in inhibiting tumor growth, we used an immunocompetent mouse model of breast cancer to evaluate intratumoral (i.t.) inoculation strategies with human adenovirus (HAd) vectors expressing either EphrinA1 (HAd-EphrinA1-Fc), Flt3L (HAd-Flt3L) or a combination of EphrinA1-Fc + Flt3L (HAd-EphrinA1-Fc + HAd-Flt3L). Results In vitro analysis demonstrated that an EphrinA1-EphA2 interaction led to apoptosis-related changes in breast cancer cells. In vivo, three i.t. inoculations of HAd-EphrinA1-Fc showed potent inhibition of tumor growth. Furthermore, increased inhibition in tumor growth was observed with the combination of HAd-EphrinA1-Fc and HAd-Flt3L accompanied by the generation of an anti-tumor adaptive immune response. Conclusions The results indicating induction of apoptosis and inhibition of mammary tumor growth show the potential therapeutic benefits of HAd-EphrinA1-Fc. In combination with HAd-Flt3L, this represents a promising strategy to effectively induce mammary tumor regression by HAd vector-based therapy. PMID:22228563

  16. Ellagitannin-rich cloudberry inhibits hepatocyte growth factor induced cell migration and phosphatidylinositol 3-kinase/AKT activation in colon carcinoma cells and tumors in Min mice

    PubMed Central

    Pajari, Anne-Maria; Päivärinta, Essi; Paavolainen, Lassi; Vaara, Elina; Koivumäki, Tuuli; Garg, Ritu; Heiman-Lindh, Anu; Mutanen, Marja; Marjomäki, Varpu; Ridley, Anne J.

    2016-01-01

    Berries have been found to inhibit colon carcinogenesis in animal models, and thus represent a potential source of compounds for prevention and treatment of colorectal cancer. The mechanistic basis for their effects is not well understood. We used human colon carcinoma cells and Min mice to investigate the effects of ellagitannin-rich cloudberry (Rubus chamaemorus) extract on cancer cell migration and underlying cell signaling. Intrinsic and hepatocyte growth factor (HGF) -induced cell motility in human HT29 and HCA7 colon carcinoma cells was assessed carrying out cell scattering and scratch wound healing assays using time-lapse microscopy. Activation of Met, AKT, and ERK in cell lines and tumors of cloudberry-fed Min mice were determined using immunoprecipitation, Western blot and immunohistochemical analyses. Cloudberry extract significantly inhibited particularly HGF-induced cancer cell migration in both cell lines. Cloudberry extract inhibited the Met receptor tyrosine phosphorylation by HGF and strongly suppressed HGF-induced AKT and ERK activation in both HT29 and HCA7 cells. Consistently, cloudberry feeding (10% w/w freeze-dried berries in diet for 10 weeks) reduced the level of active AKT and prevented phosphoMet localization at the edges in tumors of Min mice. These results indicate that cloudberry reduces tumor growth and cancer cell motility by inhibiting Met signaling and consequent activation of phosphatidylinositol 3-kinase/AKT in vitro and in tumors in vivo. As the Met receptor is recognized to be a major target in cancer treatment, our results suggest that dietary phytochemicals may have therapeutic value in reducing cancer progression and metastasis. PMID:27270323

  17. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo.

    PubMed

    Srivastava, Sanjay K; Xiao, Dong; Lew, Karen L; Hershberger, Pamela; Kokkinakis, Demetrius M; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2003-10-01

    We have shown previously that allyl isothiocyanate (AITC), a constituent of cruciferous vegetables, significantly inhibits survival of PC-3 and LNCaP human prostate cancer cells in culture, whereas proliferation of a normal prostate epithelial cell line is minimally affected by AITC even at concentrations that are highly cytotoxic to the prostate cancer cells. The present studies were designed to test the hypothesis that AITC administration may retard growth of human prostate cancer xenografts in vivo. Bolus i.p. injection of 10 micromol AITC, three times per week (Monday, Wednesday and Friday) beginning the day of tumor cell implantation, significantly inhibited the growth of PC-3 xenograft (P < 0.05 by two-way ANOVA). For example, 26 days after tumor cell implantation, the average tumor volume in control mice (1025 +/- 205 mm3) was approximately 1.7-fold higher compared with AITC-treated mice. Histological analysis of tumors excised at the termination of the experiment revealed a statistically significant increase in number of apoptotic bodies with a concomitant decrease in cells undergoing mitosis in the tumors of AITC-treated mice compared with that of control mice. Western blot analysis indicated an approximately 70% reduction in the levels of anti-apoptotic protein Bcl-2 in the tumor lysate of AITC-treated mice compared with that of control mice. Moreover, the tumors from AITC-treated mice, but not control mice, exhibited cleavage of BID, which is known to promote apoptosis. Statistically significant reduction in the expression of several proteins that regulate G2/M progression, including cyclin B1, cell division cycle (Cdc)25B and Cdc25C (44, 45 and 90% reduction, respectively, compared with control), was also observed in the tumors of AITC-treated mice relative to control tumors. In conclusion, the results of the present study indicate that AITC administration inhibits growth of PC-3 xenografts in vivo by inducing apoptosis and reducing mitotic activity.

  18. 3-Bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth

    PubMed Central

    WANG, TING-AN; ZHANG, XIAO-DONG; GUO, XING-YU; XIAN, SHU-LIN; LU, YUN-FEI

    2016-01-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT. PMID:26708213

  19. 3-bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth.

    PubMed

    Wang, Ting-An; Zhang, Xiao-Dong; Guo, Xing-Yu; Xian, Shu-Lin; Lu, Yun-Fei

    2016-03-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT.

  20. Type-1-cytokines synergize with oncogene inhibition to induce tumor growth arrest

    PubMed Central

    Acquavella, Nicolas; Clever, David; Yu, Zhiya; Roelke-Parker, Melody; Palmer, Douglas C.; Xi, Liqiang; Pflicke, Holger; Ji, Yun; Gros, Alena; Hanada, Ken-ichi; Goldlust, Ian S.; Mehta, Gautam U.; Klebanoff, Christopher A.; Crompton, Joseph G.; Sukumar, Madhusudhanan; Morrow, James J.; Franco, Zulmarie; Gattinoni, Luca; Liu, Hui; Wang, Ena; Marincola, Francesco; Stroncek, David F.; Lee, Chyi-Chia R.; Raffeld, Mark; Bosenberg, Marcus W.; Roychoudhuri, Rahul; Restifo, Nicholas P.

    2014-01-01

    Both targeted inhibition of oncogenic driver mutations and immune-based therapies show efficacy in treatment of patients with metastatic cancer but responses can be either short-lived or incompletely effective. Oncogene inhibition can augment the efficacy of immune-based therapy but mechanisms by which these two interventions might cooperate are incompletely resolved. Using a novel transplantable BRAFV600E-mutant murine melanoma model (SB-3123), we explore potential mechanisms of synergy between the selective BRAFV600E inhibitor vemurafenib and adoptive cell transfer (ACT)-based immunotherapy. We found that vemurafenib cooperated with ACT to delay melanoma progression without significantly affecting tumor infiltration or effector function of endogenous or adoptively transferred CD8+ T cells as previously observed. Instead, we found that the T-cell cytokines IFNγ and TNFα synergized with vemurafenib to induce cell-cycle arrest of tumor cells in vitro. This combinatorial effect was recapitulated in human melanoma-derived cell lines and was restricted to cancers bearing a BRAFV600E-mutation. Molecular profiling of treated SB-3123 indicated that the provision of vemurafenib promoted the sensitization of SB-3123 to the anti-proliferative effects of T-cell effector cytokines. The unexpected finding that immune cytokines synergize with oncogene inhibitors to induce growth arrest have major implications for understanding cancer biology at the intersection of oncogenic and immune signaling and provides a basis for design of combinatorial therapeutic approaches for patients with metastatic cancer. PMID:25358764

  1. Ellagic acid inhibits the proliferation of human pancreatic carcinoma PANC-1 cells in vitro and in vivo.

    PubMed

    Cheng, Hao; Lu, Chenglin; Tang, Ribo; Pan, Yiming; Bao, Shanhua; Qiu, Yudong; Xie, Min

    2017-02-14

    Ellagic aicd (EA), a dietary polyphenolic compound found in plants and fruits, possesses various pharmacological activities. This study investigated the effect of EA on human pancreatic carcinoma PANC-1 cells both in vitro and in vivo; and defined the associated molecular mechanisms. In vitro, the cell growth and repairing ability were assessed by CCK-8 assay and wound healing assay. The cell migration and invasion activity was evaluated by Tanswell assay. In vivo, PANC-1 cell tumor-bearing mice were treated with different concentrations of EA. We found that EA significantly inhibited cell growth, cell repairing activity, and cell migration and invasion in a dose-dependent manner. Treatment of PANC-1 xenografted mice with EA resulted in significant inhibition in tumor growth and prolong mice survival rate. Furthermore, flow cytometric analysis showed that EA increased the percentage of cells in the G1 phase of cell cycle. Western blot analysis revealed that EA inhibited the expression of COX-2 and NF-κB. In addition, EA reversed epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. In summary, the present study demonstrated that EA inhibited cell growth, cell repairing activity, cell migration and invasion in a dose-dependent manner. EA also effectively inhibit human pancreatic cancer growth in mice. The anti-tumor effect of EA might be related to cell cycle arrest, down-regulating the expression of COX-2 and NF-κB, reversing epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. Our findings suggest that the use of EA would be beneficial for the management of pancreatic cancer.

  2. Serotonergic system antagonists target breast tumor initiating cells and synergize with chemotherapy to shrink human breast tumor xenografts

    PubMed Central

    Gwynne, William D; Hallett, Robin M; Girgis-Gabardo, Adele; Bojovic, Bojana; Dvorkin-Gheva, Anna; Aarts, Craig; Dias, Kay; Bane, Anita; Hassell, John A

    2017-01-01

    Breast tumors comprise an infrequent tumor cell population, termed breast tumor initiating cells (BTIC), which sustain tumor growth, seed metastases and resist cytotoxic therapies. Hence therapies are needed to target BTIC to provide more durable breast cancer remissions than are currently achieved. We previously reported that serotonergic system antagonists abrogated the activity of mouse BTIC resident in the mammary tumors of a HER2-overexpressing model of breast cancer. Here we report that antagonists of serotonin (5-hydroxytryptamine; 5-HT) biosynthesis and activity, including US Federal Food and Drug Administration (FDA)-approved antidepressants, targeted BTIC resident in numerous breast tumor cell lines regardless of their clinical or molecular subtype. Notably, inhibitors of tryptophan hydroxylase 1 (TPH1), required for 5-HT biosynthesis in select non-neuronal cells, the serotonin reuptake transporter (SERT) and several 5-HT receptors compromised BTIC activity as assessed by functional sphere-forming assays. Consistent with these findings, human breast tumor cells express TPH1, 5-HT and SERT independent of their molecular or clinical subtype. Exposure of breast tumor cells ex vivo to sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), reduced BTIC frequency as determined by transplanting drug-treated tumor cells into immune-compromised mice. Moreover, another SSRI (vilazodone; Viibryd) synergized with chemotherapy to shrink breast tumor xenografts in immune-compromised mice by inhibiting tumor cell proliferation and inducing their apoptosis. Collectively our data suggest that antidepressants in combination with cytotoxic anticancer therapies may be an appropriate treatment regimen for testing in clinical trials. PMID:28404880

  3. Serotonergic system antagonists target breast tumor initiating cells and synergize with chemotherapy to shrink human breast tumor xenografts.

    PubMed

    Gwynne, William D; Hallett, Robin M; Girgis-Gabardo, Adele; Bojovic, Bojana; Dvorkin-Gheva, Anna; Aarts, Craig; Dias, Kay; Bane, Anita; Hassell, John A

    2017-05-09

    Breast tumors comprise an infrequent tumor cell population, termed breast tumor initiating cells (BTIC), which sustain tumor growth, seed metastases and resist cytotoxic therapies. Hence therapies are needed to target BTIC to provide more durable breast cancer remissions than are currently achieved. We previously reported that serotonergic system antagonists abrogated the activity of mouse BTIC resident in the mammary tumors of a HER2-overexpressing model of breast cancer. Here we report that antagonists of serotonin (5-hydroxytryptamine; 5-HT) biosynthesis and activity, including US Federal Food and Drug Administration (FDA)-approved antidepressants, targeted BTIC resident in numerous breast tumor cell lines regardless of their clinical or molecular subtype. Notably, inhibitors of tryptophan hydroxylase 1 (TPH1), required for 5-HT biosynthesis in select non-neuronal cells, the serotonin reuptake transporter (SERT) and several 5-HT receptors compromised BTIC activity as assessed by functional sphere-forming assays. Consistent with these findings, human breast tumor cells express TPH1, 5-HT and SERT independent of their molecular or clinical subtype. Exposure of breast tumor cells ex vivo to sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), reduced BTIC frequency as determined by transplanting drug-treated tumor cells into immune-compromised mice. Moreover, another SSRI (vilazodone; Viibryd) synergized with chemotherapy to shrink breast tumor xenografts in immune-compromised mice by inhibiting tumor cell proliferation and inducing their apoptosis. Collectively our data suggest that antidepressants in combination with cytotoxic anticancer therapies may be an appropriate treatment regimen for testing in clinical trials.

  4. Growth regulators in connective tissue. Systemic administration of an aortic extract inhibits tumor growth in mice.

    PubMed Central

    Eisenstein, R.; Schumacher, B.; Meineke, C.; Matijevitch, B.; Kuettner, K. E.

    1978-01-01

    A low-molecular-weight fraction prepared from extracts of bovine aorta inhibits the growth of a transplantable mammary tumor and a fibrosarcoma in mice when injected systemically. It also inhibits the growth of the fibrosarcoma in cell culture. The effect on the fibrosarcoma is much more marked than on the mammary tumor. Since the extract is more effective against the fibrosarcoma and is known to inhibit the growth of endothelial cells, it appears that the enhanced effect on this tumor is due to its activity on the endothelial cells of the host and the tumor cells themselves. The material injected is enriched in an antiproteinase we have previously isolated, which has anticollagneolytic activity and is presumed to be the effector molecule. Images Figure 1 Figure 2 PMID:645813

  5. Yap1 promotes the survival and self-renewal of breast tumor initiating cells via inhibiting Smad3 signaling

    PubMed Central

    Sun, Jian-Guo; Chen, Xie-Wan; Zhang, Lu-Ping; Wang, Jiang; Diehn, Max

    2016-01-01

    Tumor initiating cells (TICs) serve as the root of tumor growth. After identifying TICs in spontaneous breast tumors of the MMTV-Wnt1 mouse model, we confirmed the specific expression and activation of Yes-associated protein 1 (Yap1) within TICs. To investigate the role of Yap1 in the self-renewal of breast TICs and the underlying mechanism, we sorted CD49fhighEpCAMlow cells as breast TICs. Active Yap1 with ectopic expression in breast TICs promoted their colony formation in vitro (p< 0.01) and self-renewal in vivo (p< 0.01), and led to a 4-fold increase in TIC frequency (p< 0.05). A conditional knock-out mouse was reconstructed to generate Yap1 knock-out breast tumors. The loss of Yap1 led to a dramatic growth disadvantage of breast TICs in vitro (p< 0.01) and in vivo (p< 0.01), and it also led to an over 200-fold decrease in TIC frequency (p< 0.01). The expression of active Yap1 was negatively correlated with that of phosphorylated Smad3 (p-Smad3). Transforming growth factor β (TGF-β) served as a strong enhancer of Smad3 and an inhibitor of clonogenesis of TICs. The presence of SIS3, a specific inhibitor of Smad3, could rescue the TGF-β -induced growth inhibition and reverse the Smad3 inhibition by Yap1. Analysis of a database containing 2,072 human breast cancer samples showed that higher expressions of Yap1 correlated with a poorer outcome of a 15-year survival rate and median overall survival (mOS)in patients, especially in those with basal breast tumors without estrogen receptor 1 (ER) expression. The findings indicate that active Yap1 promotes the self-renewal of breast TICs by inhibiting Smad3 signaling. PMID:26695440

  6. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    PubMed

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  7. Magnolol suppresses hypoxia-induced angiogenesis via inhibition of HIF-1α/VEGF signaling pathway in human bladder cancer cells.

    PubMed

    Chen, Meng-Chuan; Lee, Chi-Feng; Huang, Wen-Hsin; Chou, Tz-Chong

    2013-05-01

    The hypoxic environment in tumors is an important factor causing tumor angiogenesis by activating the key transcription factor, hypoxia-inducible factors-1α (HIF-1α). Magnolol isolated from Magnolia officinalis has been reported to exhibit an anticancer activity via elevation of apoptosis. However, whether magnolol inhibits tumor angiogenesis remains unknown. In the present study, we demonstrated that magnolol significantly inhibited angiogenesis in vitro and in vivo evidenced by the attenuation of hypoxia and vascular endothelial growth factor (VEGF)-induced tube formation of human umbilical vascular endothelial cells, vasculature generation in chicken chorioallantoic membrane and Matrigel plug. In hypoxic human bladder cancer cells (T24), treatment with magnolol inhibited hypoxia-stimulated H2O2 formation, HIF-1α induction including mRNA, protein expression, and transcriptional activity as well as VEGF secretion. Additionally, the enhanced degradation of HIF-1α protein via enhancing prolyl hydroxylase activity and the decreased newly-synthesized HIF-1α protein in hypoxic T24 cells may involve the reduction of HIF-1α protein accumulation by magnolol. Interestingly, magnolol also acts as a VEGFR2 antagonist, and subsequently attenuates the down-stream AKT/mTOR/p70S6K/4E-BP-1 kinase activation both in hypoxic T24 cells and tumor tissues. As expected, administration of magnolol greatly attenuated tumor growth, angiogenesis and the protein expression of HIF-1α, VEGF, CD31, a marker of endothelial cells, and carbonic anhydrase IX, an endogenous marker for hypoxia, in the T24 xenograft mouse model. Collectively, these findings strongly indicate that the anti-agngiogenic activity of magnolol is, at least in part, mediated by suppressing HIF-1α/VEGF-dependent pathways, and suggest that magnolol may be a potential drug for human bladder cancer therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids.

    PubMed

    Huang, Ling; Holtzinger, Audrey; Jagan, Ishaan; BeGora, Michael; Lohse, Ines; Ngai, Nicholas; Nostro, Cristina; Wang, Rennian; Muthuswamy, Lakshmi B; Crawford, Howard C; Arrowsmith, Cheryl; Kalloger, Steve E; Renouf, Daniel J; Connor, Ashton A; Cleary, Sean; Schaeffer, David F; Roehrl, Michael; Tsao, Ming-Sound; Gallinger, Steven; Keller, Gordon; Muthuswamy, Senthil K

    2015-11-01

    There are few in vitro models of exocrine pancreas development and primary human pancreatic adenocarcinoma (PDAC). We establish three-dimensional culture conditions to induce the differentiation of human pluripotent stem cells into exocrine progenitor organoids that form ductal and acinar structures in culture and in vivo. Expression of mutant KRAS or TP53 in progenitor organoids induces mutation-specific phenotypes in culture and in vivo. Expression of TP53(R175H) induces cytosolic SOX9 localization. In patient tumors bearing TP53 mutations, SOX9 was cytoplasmic and associated with mortality. We also define culture conditions for clonal generation of tumor organoids from freshly resected PDAC. Tumor organoids maintain the differentiation status, histoarchitecture and phenotypic heterogeneity of the primary tumor and retain patient-specific physiological changes, including hypoxia, oxygen consumption, epigenetic marks and differences in sensitivity to inhibition of the histone methyltransferase EZH2. Thus, pancreatic progenitor organoids and tumor organoids can be used to model PDAC and for drug screening to identify precision therapy strategies.

  9. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell and patient-derived tumor organoids

    PubMed Central

    Huang, Ling; Holtzinger, Audrey; Jagan, Ishaan; BeGora, Michael; Lohse, Ines; Ngai, Nicholas; Nostro, Cristina; Wang, Rennian; Muthuswamy, Lakshmi B.; Crawford, Howard C.; Arrowsmith, Cheryl; Kalloger, Steve E.; Renouf, Daniel J.; Connor, Ashton A; Cleary, Sean; Schaeffer, David F.; Roehrl, Michael; Tsao, Ming-Sound; Gallinger, Steven; Keller, Gordon; Muthuswamy, Senthil K.

    2016-01-01

    There are few in vitro models of exocrine pancreas development and primary human pancreatic adenocarcinoma (PDAC). We establish three-dimensional culture conditions to induce the differentiation of human pluripotent stem cells (PSCs) into exocrine progenitor organoids that form ductal and acinar structures in culture and in vivo. Expression of mutant KRAS or TP53 in progenitor organoids induces mutation-specific phenotypes in culture and in vivo. Expression of TP53R175H induced cytosolic SOX9 localization. In patient tumors bearing TP53 mutations, SOX9 was cytoplasmic and associated with mortality. Culture conditions are also defined for clonal generation of tumor organoids from freshly resected PDAC. Tumor organoids maintain the differentiation status, histoarchitecture, phenotypic heterogeneity of the primary tumor, and retain patient-specific physiologic changes including hypoxia, oxygen consumption, epigenetic marks, and differential sensitivity to EZH2 inhibition. Thus, pancreatic progenitor organoids and tumor organoids can be used to model PDAC and for drug screening to identify precision therapy strategies. PMID:26501191

  10. Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1.

    PubMed

    Juarez, Jose C; Betancourt, Oscar; Pirie-Shepherd, Steven R; Guan, Xiaojun; Price, Melissa L; Shaw, David E; Mazar, Andrew P; Doñate, Fernando

    2006-08-15

    A second-generation tetrathiomolybdate analogue (ATN-224; choline tetrathiomolybdate), which selectively binds copper with high affinity, is currently completing two phase I clinical trials in patients with advanced solid and advanced hematologic malignancies. However, there is very little information about the mechanism of action of ATN-224 at the molecular level. The effects of ATN-224 on endothelial and tumor cell growth were evaluated in cell culture experiments in vitro. The antiangiogenic activity of ATN-224 was investigated using the Matrigel plug model of angiogenesis. ATN-224 inhibits superoxide dismutase 1 (SOD1) in tumor and endothelial cells. The inhibition of SOD1 leads to inhibition of endothelial cell proliferation in vitro and attenuation of angiogenesis in vivo. The inhibition of SOD1 activity in endothelial cells is dose and time dependent and leads to an increase in the steady-state levels of superoxide anions, resulting in the inhibition of extracellular signal-regulated kinase phosphorylation without apparent induction of apoptosis. In contrast, the inhibition of SOD1 in tumor cells leads to the induction of apoptosis. The effects of ATN-224 on endothelial and tumor cells could be substantially reversed using Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, a catalytic small-molecule SOD mimetic. These data provide a distinct molecular target for the activity of ATN-224 and provide validation for SOD1 as a target for the inhibition of angiogenesis and tumor growth.

  11. Inhibition of autophagy stimulate molecular iodine-induced apoptosis in hormone independent breast tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Preeti; Godbole, Madan, E-mail: madangodbole@yahoo.co.in; Rao, Geeta

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Molecular iodine (I{sub 2}) causes non-apoptotic cell death in MDA-MB231 breast tumor cells. Black-Right-Pointing-Pointer Autophagy is activated as a survival mechanism in response to I{sub 2} in MDA-MB231. Black-Right-Pointing-Pointer Autophagy inhibition sensitizes tumor cells to I{sub 2}-induced apoptotic cell death. Black-Right-Pointing-Pointer Autophagy inhibitor potentiates apoptosis and tumor regressive effects of I{sub 2} in mice. -- Abstract: Estrogen receptor negative (ER{sup -ve}) and p53 mutant breast tumors are highly aggressive and have fewer treatment options. Previously, we showed that molecular Iodine (I{sub 2}) induces apoptosis in hormone responsive MCF-7 breast cancer cells, and non-apoptotic cell death in ER{sup -ve}-p53more » mutant MDA-MB231 cells (Shrivastava, 2006). Here we show that I{sub 2} (3 {mu}M) treatment enhanced the features of autophagy in MDA-MB231 cells. Since autophagy is a cell survival response to most anti-cancer therapies, we used both in vitro and in vivo systems to determine whether ER{sup -ve} mammary tumors could be sensitized to I{sub 2}-induced apoptosis by inhibiting autophagy. Autophagy inhibition with chloroquine (CQ) and inhibitors for PI3K (3MA, LY294002) and H+/ATPase (baflomycin) resulted in enhanced cell death in I{sub 2} treated MDA-MB231 cells. Further, CQ (20 {mu}M) in combination with I{sub 2}, showed apoptotic features such as increased sub-G1 fraction ({approx}5-fold), expression of cleaved caspase-9 and -3 compared to I{sub 2} treatment alone. Flowcytometry of I{sub 2} and CQ co-treated cells revealed increase in mitochondrial membrane permeability (p < 0.01) and translocation of cathepsin D activity to cytosol relative to I{sub 2} treatment. For in vivo studies ICRC mice were transplanted subcutaneously with MMTV-induced mammary tumors. A significant reduction in tumor volumes, as measured by MRI, was found in I{sub 2} and CQ co-treated mice relative to I

  12. Direct endothelial junction restoration results in significant tumor vascular normalization and metastasis inhibition in mice

    PubMed Central

    Agrawal, Vijayendra; Maharjan, Sony; Kim, Kyeojin; Kim, Nam-Jung; Son, Jimin; Lee, Keunho; Choi, Hyun-Jung; Rho, Seung-Sik; Ahn, Sunjoo; Won, Moo-Ho; Ha, Sang-Jun; Koh, Gou Young; Kim, Young-Myeong; Suh, Young-Ger; Kwon, Young-Guen

    2014-01-01

    Tumor blood vessels are leaky and immature, which causes inadequate blood supply to tumor tissues resulting in hypoxic microenvironment and promotes metastasis. Here we have explored tumor vessel modulating activity of Sac-1004, a recently developed molecule in our lab, which directly potentiates VE-cadherin-mediated endothelial cell junction. Sac-1004 could enhance vascular junction integrity in tumor vessels and thereby inhibit vascular leakage and enhance vascular perfusion. Improved perfusion enabled Sac-1004 to have synergistic anti-tumor effect on cisplatin-mediated apoptosis of tumor cells. Interestingly, characteristics of normalized blood vessels namely reduced hypoxia, improved pericyte coverage and decreased basement membrane thickness were readily observed in tumors treated with Sac-1004. Remarkably, Sac-1004 was also able to inhibit lung and lymph node metastasis in MMTV and B16BL6 tumor models. This was in correlation with a reduction in epithelial-to-mesenchymal transition of tumor cells with considerable diminution in expression of related transcription factors. Moreover, cancer stem cell population dropped substantially in Sac-1004 treated tumor tissues. Taken together, our results showed that direct restoration of vascular junction could be a significant strategy to induce normalization of tumor blood vessels and reduce metastasis. PMID:24811731

  13. A CD13-targeting peptide integrated protein inhibits human liver cancer growth by killing cancer stem cells and suppressing angiogenesis.

    PubMed

    Zheng, Yan-Bo; Gong, Jian-Hua; Liu, Xiu-Jun; Li, Yi; Zhen, Yong-Su

    2017-05-01

    CD13 is a marker of angiogenic endothelial cells, and recently it is proved to be a biomarker of human liver cancer stem cells (CSCs). Herein, the therapeutic effects of NGR-LDP-AE, a fusion protein composed of CD13-targeting peptide NGR and antitumor antibiotic lidamycin, on human liver cancer and its mechanism were studied. Western blot and immunofluorescence assay demonstrated that CD13 (WM15 epitope) was expressed in both human liver cancer cell lines and vascular endothelial cells, while absent in normal liver cells. MTT assay showed that NGR-LDP-AE displayed potent cytotoxicity to cultured tumor cell lines with IC 50 values at low nanomolar level. NGR-LDP-AE inhibited tumorsphere formation of liver cancer cells, and the IC 50 values were much lower than that in MTT assay, indicating selectively killing of CSCs. In endothelial tube formation assay, NGR-LDP-AE at low cytotoxic dose significantly inhibited the formation of intact tube networks. Animal experiment demonstrated that NGR-LDP-AE inhibited the growth of human liver cancer xenograft. Immunohistochemical analysis showed that NGR-LDP-AE induced the down-regulation of CD13. In vitro experiment using cultured tumor cells also confirmed this result. NGR-LDP-AE activated both apoptotic and autophagic pathways in cultured tumor cells, while the induced autophagy protected cells from death. Conclusively, NGR-LDP-AE exerts its antitumor activity via killing liver CSCs and inhibiting angiogenesis. With one targeting motif, NGR-LDP-AE acts on both liver CSCs and angiogenic endothelial cells. It is a promising dual targeting fusion protein for liver cancer therapy, especially for advanced or relapsed cancers. © 2017 Wiley Periodicals, Inc.

  14. Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer.

    PubMed

    Song, Fei; Wang, Geng; Ma, Zhifang; Ma, Yuebing; Wang, Yingying

    2017-11-10

    Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all p<0.001). BAG3 expression was associated with FIGO stage and metastasis (all p<0.05). In-vitro analysis demonstrated that BAG3 siRNAs inhibited SiHa and HeLa cell growth, invasion and migration. Mechanically, BAG3 siRNAs inhibited the expression of EMT-regulating markers, involving MMP2, Slug and N-cadherin, and increased the expression of E-cadherin. In a xenograft nude model, BAG3 siRNAs inhibited tumor growth and the expression of EMT biomarkers. In conclusion, BAG3 is involved in the EMT process, including cell growth, invasion and migration in the development of CC. Thus, BAG3 target might be recommended as a novel therapeutic approach.

  15. Silencing of BAG3 inhibits the epithelial-mesenchymal transition in human cervical cancer

    PubMed Central

    Song, Fei; Wang, Geng; Ma, Zhifang; Ma, Yuebing; Wang, Yingying

    2017-01-01

    Bcl2-associated athanogene 3 (BAG3) has been reported to be involved in aggressive progression of many tumors. In the present study, we examined the expression of BAG3 in human cervical cancer (CC) tissues and investigated the role of BAG3 in SiHa and HeLa cell growth, migration, and invasion. Here, we found that most of CC tissues highly expressed the protein and mRNA of BAG3, while their expression was obviously lower in paired normal tissues (all p<0.001). BAG3 expression was associated with FIGO stage and metastasis (all p<0.05). In-vitro analysis demonstrated that BAG3 siRNAs inhibited SiHa and HeLa cell growth, invasion and migration. Mechanically, BAG3 siRNAs inhibited the expression of EMT-regulating markers, involving MMP2, Slug and N-cadherin, and increased the expression of E-cadherin. In a xenograft nude model, BAG3 siRNAs inhibited tumor growth and the expression of EMT biomarkers. In conclusion, BAG3 is involved in the EMT process, including cell growth, invasion and migration in the development of CC. Thus, BAG3 target might be recommended as a novel therapeutic approach. PMID:29221135

  16. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth

    NASA Astrophysics Data System (ADS)

    Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; Dewitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.

    2015-10-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models.

  17. Novel Midkine Inhibitor iMDK Inhibits Tumor Growth and Angiogenesis in Oral Squamous Cell Carcinoma.

    PubMed

    Masui, Masanori; Okui, Tatsuo; Shimo, Tsuyoshi; Takabatake, Kiyofumi; Fukazawa, Takuya; Matsumoto, Kenichi; Kurio, Naito; Ibaragi, Soichiro; Naomoto, Yoshio; Nagatsuka, Hitoshi; Sasaki, Akira

    2016-06-01

    Midkine is a heparin-binding growth factor highly expressed in various human malignant tumors. However, its role in the growth of oral squamous cell carcinoma is not well understood. In this study, we analyzed the antitumor effect of a novel midkine inhibitor (iMDK) against oral squamous cell carcinoma. Administration of iMDK induced a robust antitumor response and suppressed cluster of differentiation 31 (CD31) expression in oral squamous cell carcinoma HSC-2 cells and SAS cells xenograft models. iMDK inhibited the proliferation of these cells dose-dependently, as well as the expression of midkine and phospho-extracellular signal-regulated kinase in HSC-2 and SAS cells. Moreover, iMDK significantly inhibited vascular endothelial growth factor and induced tube growth of human umbilical vein endothelial cells in a dose-dependent fashion. These findings suggest that midkine is critically involved in oral squamous cell carcinoma and iMDK can be effectively used for the treatment of oral squamous cell carcinoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Antibodies neutralizing hepsin protease activity do not impact cell growth but inhibit invasion of prostate and ovarian tumor cells in culture.

    PubMed

    Xuan, Jian-Ai; Schneider, Doug; Toy, Pam; Lin, Rick; Newton, Alicia; Zhu, Ying; Finster, Silke; Vogel, David; Mintzer, Bob; Dinter, Harald; Light, David; Parry, Renate; Polokoff, Mark; Whitlow, Marc; Wu, Qingyu; Parry, Gordon

    2006-04-01

    Hepsin is a type II transmembrane serine protease that is expressed in normal liver, and at lower levels in kidney, pancreas, and testis. Several studies have shown that hepsin mRNA is significantly elevated in most prostate tumors, as well as a significant fraction of ovarian and renal cell carcinomas and hepatomas. Although the overexpression of mRNA in these tumors has been extensively documented, there has been conflicting literature on whether hepsin plays a role in tumor cell growth and progression. Early literature implied a role for hepsin in human tumor cell proliferation, whereas recent studies with a transgenic mouse model for prostate cancer support a role for hepsin in tumor progression and metastases. To evaluate this issue further, we have expressed an activatable form of hepsin, and have generated a set of monoclonal antibodies that neutralize enzyme activity. The neutralizing antibodies inhibit hepsin enzymatic activity in biochemical and cell-based assays. Selected neutralizing and nonneutralizing antibodies were used in cell-based assays with tumor cells to evaluate the effect of antibodies on tumor cell growth and invasion. Neutralizing antibodies failed to inhibit the growth of prostate, ovarian, and hepatoma cell lines in culture. However, potent inhibitory effects of the antibodies were seen on invasion of ovarian and prostate cells in transwell-based invasion assays. These results support a role for hepsin in tumor cell progression but not in primary tumor growth. Consistent with this, immunohistochemical experiments with a mouse monoclonal antibody reveal progressively increased staining of prostate tumors with advanced disease, and in particular, extensive staining of bone metastatic lesions.

  19. Vasoactive Intestinal Peptide Inhibits Human Small-Cell Lung Cancer Proliferation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Maruno, Kaname; Absood, Afaf; Said, Sami I.

    1998-11-01

    Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

  20. Heterozygous Deficiency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis via Endothelial Normalization

    PubMed Central

    Loges, Sonja; Schmidt, Thomas; Jonckx, Bart; Tian, Ya-Min; Lanahan, Anthony A.; Pollard, Patrick; de Almodovar, Carmen Ruiz; De Smet, Frederik; Vinckier, Stefan; Aragonés, Julián; Debackere, Koen; Luttun, Aernout; Wyns, Sabine; Jordan, Benedicte; Pisacane, Alberto; Gallez, Bernard; Lampugnani, Maria Grazia; Dejana, Elisabetta; Simons, Michael; Ratcliffe, Peter; Maxwell, Patrick; Carmeliet, Peter

    2014-01-01

    SUMMARY A key function of blood vessels, to supply oxygen, is impaired in tumors because of abnormalities in their endothelial lining. PHD proteins serve as oxygen sensors and may regulate oxygen delivery. We therefore studied the role of endothelial PHD2 in vessel shaping by implanting tumors in PHD2+/− mice. Haplodeficiency of PHD2 did not affect tumor vessel density or lumen size, but normalized the endothelial lining and vessel maturation. This resulted in improved tumor perfusion and oxygenation and inhibited tumor cell invasion, intravasation, and metastasis. Haplodeficiency of PHD2 redirected the specification of endothelial tip cells to a more quiescent cell type, lacking filopodia and arrayed in a phalanx formation. This transition relied on HIF-driven upregulation of (soluble) VEGFR-1 and VE-cadherin. Thus, decreased activity of an oxygen sensor in hypoxic conditions prompts endothelial cells to readjust their shape and phenotype to restore oxygen supply. Inhibition of PHD2 may offer alternative therapeutic opportunities for anticancer therapy. PMID:19217150

  1. PD-1 expression by tumor-associated macrophages inhibits phagocytosis and tumor immunity

    PubMed Central

    Gordon, Sydney R.; Maute, Roy L.; Dulken, Ben W.; Hutter, Gregor; George, Benson M.; McCracken, Melissa N.; Gupta, Rohit; Tsai, Jonathan M.; Sinha, Rahul; Corey, Daniel; Ring, Aaron M.; Connolly, Andrew J.; Weissman, Irving L.

    2017-01-01

    Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor that is upregulated on activated T cells to induce immune tolerance.1,2 Tumor cells frequently overexpress the ligand for PD-1, programmed cell death ligand 1 (PD-L1), facilitating escape from the immune system.3,4 Monoclonal antibodies blocking PD-1/PD-L1 have shown remarkable clinical efficacy in patients with a variety of cancers, including melanoma, colorectal cancer, non-small cell lung cancer, and Hodgkin’s lymphoma.5–9 Although it is well-established that PD-1/PD-L1 blockade activates T cells, little is known about the role that this pathway may have on tumor-associated macrophages (TAMs). Here we show that both mouse and human TAMs express PD-1. TAM PD-1 expression increases over time in mouse models, and with increasing disease stage in primary human cancers. TAM PD-1 expression negatively correlates with phagocytic potency against tumor cells, and blockade of PD-1/PD-L1 in vivo increases macrophage phagocytosis, reduces tumor growth, and lengthens survival in mouse models of cancer in a macrophage-dependent fashion. Our results suggest that PD-1/PD-L1 therapies may also function through a direct effect on macrophages, with significant implications for treatment with these agents. PMID:28514441

  2. Inhibition of progression of androgen-dependent prostate LNCaP tumors to androgen independence in SCID mice by oral caffeine and voluntary exercise.

    PubMed

    Zheng, Xi; Cui, Xiao-Xing; Huang, Mou-Tuan; Liu, Yue; Wagner, George C; Lin, Yong; Shih, Weichung Joe; Lee, Mao-Jung; Yang, Chung S; Conney, Allan H

    2012-01-01

    The effect of oral caffeine or voluntary running wheel exercise (RW) alone or in combination on the progression of human androgen-dependent LNCaP prostate tumors to androgen independence in male severe combined immunodeficiency mice was determined. The mice were injected subcutaneously with LNCaP cells, and when the tumors reached a moderate size, the mice were surgically castrated and treated with caffeine (0.40 mg/ml drinking water) or RW alone or in combination for 42 days. We found that caffeine administration or RW inhibited the progression and growth of androgen-dependent LNCaP tumors to androgen independence, and a combination of the 2 regimens was more effective than the individual regimens alone. The ratios of the percent mitotic cells/caspase-3 positive cells in tumors from the caffeine-treated, RW-treated, or combination-treated mice were decreased by 34%, 38%, and 52%, respectively. Caffeine treatment increased the percentage of mitotic tumor cells undergoing apoptosis (lethal mitosis) whereas RW inhibited the increase in interleukin-6 that occurred during the progression of LNCaP tumors from androgen dependence to androgen independence. Our results indicate that oral administration of caffeine in combination with voluntary exercise may be an effective strategy for the prevention of prostate cancer progression from androgen dependence to androgen independence.

  3. Immunization with mutant HPV16 E7 protein inhibits the growth of TC-1 cells in tumor-bearing mice.

    PubMed

    Li, Yan-Li; Ma, Zhong-Liang; Zhao, Yue; Zhang, Jing

    2015-04-01

    Two human papillomavirus (HPV) 16 oncogenic proteins, E6 and E7, are co-expressed in the majority of HPV16-induced cervical cancer cells. Thus, the E6 and E7 proteins are good targets for developing therapeutic vaccines for cervical cancer. In the present study, immunization with the mutant non-transforming HPV16 E7 (mE7) protein was demonstrated to inhibit the growth of TC-1 cells in the TC-1 mouse model. The HPV16 mE7 gene was amplified by splicing overlap extension polymerase chain reaction using pET-28a(+)-E7 as a template, and the gene was cloned into pET-28a(+) to form pET-28a(+)-mE7. Compared with the E7 protein, mE7 lacks amino acid residues 94-98, and at residue 24, there is a Cys to Gly substitution. pET-28a(+)-mE7 was then introduced into Escherichia coli Rosetta. The expression of mE7 was induced by isopropyl β-D-1-thiogalactopyranoside. The mE7 protein was purified using Ni-NTA agarose and detected by SDS-PAGE and western blot analysis. In the tumor prevention model, no tumor was detected in the mice vaccinated with the mE7 protein. After 40 days, the tumor-free mice and control mice were challenged with 2×10 5 TC-1 cells. All control mice developed tumors six days later, but mE7 immunized mice were tumor free until 90 days. In the tumor therapy model, the TC-1 cells were initially injected subcutaneously, and the mice were subsequently vaccinated. Vaccination against the mE7 protein may significantly inhibit TC-1 cell growth compared to the control. These results demonstrated that immunization with the HPV16 mE7 protein elicited a long-term protective immunity against TC-1 tumor growth and generated a significant inhibition of TC-1 growth in a TC-1 mouse model.

  4. Acrolein- and 4-Aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells

    PubMed Central

    Weng, Mao-wen; Hu, Yu; Chen, Wei-sheng; Chou, David; Liu, Yan; Donin, Nicholas; Huang, William C.; Lepor, Herbert; Wu, Xue-Ru; Wang, Hailin; Beland, Frederick A.; Tang, Moon-shong

    2014-01-01

    Tobacco smoke (TS) is a major cause of human bladder cancer (BC). Two components in TS, 4-aminobiphenyl (4-ABP) and acrolein, which also are environmental contaminants, can cause bladder tumor in rat models. Their role in TS related BC has not been forthcoming. To establish the relationship between acrolein and 4-ABP exposure and BC, we analyzed acrolein-deoxyguanosine (dG) and 4-ABP-DNA adducts in normal human urothelial mucosa (NHUM) and bladder tumor tissues (BTT), and measured their mutagenicity in human urothelial cells. We found that the acrolein-dG levels in NHUM and BTT are 10-30 fold higher than 4-ABP-DNA adduct levels and that the acrolein-dG levels in BTT are 2 fold higher than in NHUM. Both acrolein-dG and 4-ABP-DNA adducts are mutagenic; however, the former are 5 fold more mutagenic than the latter. These two types of DNA adducts induce different mutational signatures and spectra. We found that acrolein inhibits nucleotide excision and base excision repair and induces repair protein degradation in urothelial cells. Since acrolein is abundant in TS, inhaled acrolein is excreted into urine and accumulates in the bladder and because acrolein inhibits DNA repair and acrolein-dG DNA adducts are mutagenic, we propose that acrolein is a major bladder carcinogen in TS. PMID:24939871

  5. Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro.

    PubMed

    Chen, Huan-Huan; Zhou, Hui-Jun; Fang, Xin

    2003-09-01

    Artemisinin derivatives artesunate (ART) and dihydroartemisinin are remarkable anti-malarial drugs with low toxicity to humans. In the present investigation, we find they also inhibited tumor cell growth and suppressed angiogenesis in vitro. The anti-cancer activity was demonstrated by inhibition (IC(50)) of four human cancer cell lines: cervical cancer Hela, uterus chorion cancer JAR, embryo transversal cancer RD and ovarian cancer HO-8910 cell lines growth by the MTT assay. IC(50) values ranged from 15.4 to 49.7 microM or from 8.5 to 32.9 microM after treatment with ART or dihydroartemisinin for 48 h, indicating that dihydroartemisinin was more effective than ART in inhibiting cancer cell lines. The anti-angiogenic activities were tested on in vitro models of angiogenesis, namely, proliferation, migration and tube formation of human umbilical vein endothelial (HUVE) cells. We investigated the inhibitory effects of ART and dihydroartemisinin on HUVE cells proliferation by cell counting, migration into the scratch wounded area in HUVE cell monolayers and microvessel tube-like formation on collagen gel. The results showed ART and dihydroartemisinin significantly inhibited angiogenisis in a dose-dependent form in range of 12.5-50 microM and 2.5-50 microM, respectively. They indicated that dihydroartemisinin was more effective than ART in inhibiting angiogenesis either. These results and the known low toxicity are clues that ART and dihydroartemisinin may be promising novel candidates for cancer chemotherapy.

  6. Regulation of hormone release by cultured cells from a thyrotropin-growth hormone-secreting pituitary tumor. Direct inhibiting effects of 3,5,3'-triiodothyronine and dexamethasone on thyrotropin secretion.

    PubMed

    Lamberts, S W; Oosterom, R; Verleun, T; Krenning, E P; Assies, H

    1984-08-01

    The regulation of TSH and GH secretion was investigated in cultured tumor cells prepared from a mixed TSH/GH secreting pituitary tumor. The tumor tissue had been removed transsphenoidally from a patient with hyperthyroidism and inappropriately high serum TSH levels and acromegaly. TSH and GH secretion by cultured cells were stimulated in a parallel way by TRH (300 nM) and LHRH (50 nM), but were unaffected by bromocriptine (10 nM). Exposure of the tumor cells to dexamethasone (0.1 microM) or T3 (50 nM) had differential effects on hormone secretion. GH secretion was greatly stimulated by dexamethasone, but unaffected by T3. TSH secretion was inhibited both by T3 and by dexamethasone. So, T3 and glucocorticoids inhibit TSH release by the human pituitary tumor cells studied at least partly by means of a direct effect.

  7. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model

    PubMed Central

    Borgna, Vincenzo; Villegas, Jaime; Burzio, Verónica A.; Belmar, Sebastián; Araya, Mariela; Jeldes, Emanuel; Lobos-González, Lorena; Silva, Verónica; Villota, Claudio; Oliveira-Cruz, Luciana; Lopez, Constanza; Socias, Teresa; Castillo, Octavio; Burzio, Luis O.

    2017-01-01

    Knockdown of antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptosis in several human and mouse tumor cell lines, but not normal cells, suggesting this approach for a selective therapy against different types of cancer. Here we show that in vitro knockdown of murine ASncmtRNAs induces apoptotic death of mouse renal adenocarcinoma RenCa cells, but not normal murine kidney epithelial cells. In a syngeneic subcutaneous RenCa model, treatment delayed and even reversed tumor growth. Since the subcutaneous model does not reflect the natural microenviroment of renal cancer, we used an orthotopic model of RenCa cells inoculated under the renal capsule. These studies showed inhibition of tumor growth and metastasis. Direct metastasis assessment by tail vein injection of RenCa cells also showed a drastic reduction in lung metastatic nodules. In vivo treatment reduces survivin, N-cadherin and P-cadherin levels, providing a molecular basis for metastasis inhibition. In consequence, the treatment significantly enhanced mouse survival in these models. Our results suggest that the ASncmtRNAs could be potent and selective targets for therapy against human renal cell carcinoma. PMID:28620146

  8. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model.

    PubMed

    Borgna, Vincenzo; Villegas, Jaime; Burzio, Verónica A; Belmar, Sebastián; Araya, Mariela; Jeldes, Emanuel; Lobos-González, Lorena; Silva, Verónica; Villota, Claudio; Oliveira-Cruz, Luciana; Lopez, Constanza; Socias, Teresa; Castillo, Octavio; Burzio, Luis O

    2017-07-04

    Knockdown of antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptosis in several human and mouse tumor cell lines, but not normal cells, suggesting this approach for a selective therapy against different types of cancer. Here we show that in vitro knockdown of murine ASncmtRNAs induces apoptotic death of mouse renal adenocarcinoma RenCa cells, but not normal murine kidney epithelial cells. In a syngeneic subcutaneous RenCa model, treatment delayed and even reversed tumor growth. Since the subcutaneous model does not reflect the natural microenviroment of renal cancer, we used an orthotopic model of RenCa cells inoculated under the renal capsule. These studies showed inhibition of tumor growth and metastasis. Direct metastasis assessment by tail vein injection of RenCa cells also showed a drastic reduction in lung metastatic nodules. In vivo treatment reduces survivin, N-cadherin and P-cadherin levels, providing a molecular basis for metastasis inhibition. In consequence, the treatment significantly enhanced mouse survival in these models. Our results suggest that the ASncmtRNAs could be potent and selective targets for therapy against human renal cell carcinoma.

  9. Herpes simplex virus amplicon delivery of a hypoxia-inducible soluble vascular endothelial growth factor receptor (sFlk-1) inhibits angiogenesis and tumor growth in pancreatic adenocarcinoma.

    PubMed

    Reinblatt, Maura; Pin, Richard H; Bowers, William J; Federoff, Howard J; Fong, Yuman

    2005-12-01

    Tumor hypoxia induces vascular endothelial growth factor (VEGF) expression, which stimulates angiogenesis and tumor proliferation. The VEGF signaling pathway is inhibited by soluble VEGF receptors (soluble fetal liver kinase 1; sFlk-1), which bind VEGF and block its interaction with endothelial cells. Herpes simplex virus (HSV) amplicons are replication-incompetent viruses used for gene delivery. We attempted to attenuate angiogenesis and inhibit pancreatic tumor growth through HSV amplicon-mediated expression of sFlk-1 under hypoxic control. A multimerized hypoxia-responsive enhancer (10 x HRE) was cloned upstream of the sFlk-1 gene (10 x HRE/sFlk-1). A novel HSV amplicon expressing 10 x HRE/sFlk-1 was genetically engineered (HSV10 x HRE/sFlk-1).Human pancreatic adenocarcinoma cells (AsPC1) were transduced with HSV10 x HRE/sFlk-1 and incubated in normoxia (21% oxygen) or hypoxia (1% oxygen). Capillary inhibition was evaluated by human umbilical vein endothelial cell assay. Western blot assessed sFlk-1 expression. AsPC1 flank tumor xenografts (n = 24) were transduced with HSV10 x HRE/sFlk-1. Media from normoxic AsPC1 transduced with HSV10 x HRE/sFlk-1 yielded a 36% reduction in capillary formation versus controls (P < .05), whereas hypoxic AsPC1 yielded a 76% reduction (P < .005). Western blot of AsPC1 transduced with HSV10 x HRE/sFlk-1 demonstrated greater sFlk-1 expression in hypoxia versus normoxia. AsPC1 flank tumors treated with HSV10 x HRE/sFlk-1 exhibited a 59% reduction in volume versus controls (P < .000001). HSV amplicon delivery of a hypoxia-inducible soluble VEGF receptor significantly reduces new vessel formation and tumor growth. Tumor hypoxia can thus be used to direct antiangiogenic therapy to pancreatic adenocarcinoma.

  10. Selective inhibition of KCa3.1 channels mediates adenosine regulation of the motility of human T cells.

    PubMed

    Chimote, Ameet A; Hajdu, Peter; Kucher, Vladimir; Boiko, Nina; Kuras, Zerrin; Szilagyi, Orsolya; Yun, Yeo-Heung; Conforti, Laura

    2013-12-15

    Adenosine, a purine nucleoside, is present at high concentrations in tumors, where it contributes to the failure of immune cells to eliminate cancer cells. The mechanisms responsible for the immunosuppressive properties of adenosine are not fully understood. We tested the hypothesis that adenosine's immunosuppressive functions in human T lymphocytes are in part mediated via modulation of ion channels. The activity of T lymphocytes relies on ion channels. KCa3.1 and Kv1.3 channels control cytokine release and, together with TRPM7, regulate T cell motility. Adenosine selectively inhibited KCa3.1, but not Kv1.3 and TRPM7, in activated human T cells. This effect of adenosine was mainly mediated by A2A receptors, as KCa3.1 inhibition was reversed by SCH58261 (selective A2A receptor antagonist), but not by MRS1754 (A2B receptor antagonist), and it was mimicked by the A2A receptor agonist CGS21680. Furthermore, it was mediated by the cAMP/protein kinase A isoform (PKAI) signaling pathway, as adenylyl-cyclase and PKAI inhibition prevented adenosine effect on KCa3.1. The functional implication of the effect of adenosine on KCa3.1 was determined by measuring T cell motility on ICAM-1 surfaces. Adenosine and CGS21680 inhibited T cell migration. Comparable effects were obtained by KCa3.1 blockade with TRAM-34. Furthermore, the effect of adenosine on cell migration was abolished by pre-exposure to TRAM-34. Additionally, adenosine suppresses IL-2 secretion via KCa3.1 inhibition. Our data indicate that adenosine inhibits KCa3.1 in human T cells via A2A receptor and PKAI, thereby resulting in decreased T cell motility and cytokine release. This mechanism is likely to contribute to decreased immune surveillance in solid tumors.

  11. Targeted inhibition of osteosarcoma tumor growth by bone marrow-derived mesenchymal stem cells expressing cytosine deaminase/5-fluorocytosine in tumor-bearing mice.

    PubMed

    NguyenThai, Quynh-Anh; Sharma, Neelesh; Luong, Do Huynh; Sodhi, Simrinder Singh; Kim, Jeong-Hyun; Kim, Nameun; Oh, Sung-Jong; Jeong, Dong Kee

    2015-01-01

    Mesenchymal stem cells (MSCs) are considered as an attractive approach for gene or drug delivery in cancer therapy. In the present study, the ability of human bone marrow-derived MSCs expressing the cytosine deaminase/5-fluorocytosine prodrug (CD/5-FC MSCs) to target the human osteosarcoma cell line Cal72 was evaluated. The stable CD/5-FC MSC cell line was established by transfection of pEGFP containing the cytosine deaminase gene into MSCs with G418 selection. The anti-tumor effect was verified by a bystander effect assay in vitro and co-injection of Cal72 and CD/5-FC MSCs in cancer-bearing mice. The therapeutic CD/5-FC MSCs retained the characteristics of multipotent cells, such as differentiation into adipocytes/osteocytes and expression of mesenchymal markers (CD90 and CD44), and showed migration toward Cal72 cells to a greater extent than the native MSCs. The bystander effect assay showed that the CD/5-FC MSCs significantly augmented Cal72 cytotoxicity in direct co-culture and in the presence of 5-FC through the application of conditioned medium. In osteosarcoma-bearing mice, the CD/5-FC MSCs inhibited tumor growth compared to control mice subcutaneously injected with only Cal72 cells. Taken together, these findings suggest that CD/5-FC MSCs may be suitable for targeting human osteosarcoma. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Modeling targeted inhibition of MEK and PI3 kinase in human pancreatic cancer.

    PubMed

    Junttila, Melissa R; Devasthali, Vidusha; Cheng, Jason H; Castillo, Joseph; Metcalfe, Ciara; Clermont, Anne C; Otter, Douglas Den; Chan, Emily; Bou-Reslan, Hani; Cao, Tim; Forrest, William; Nannini, Michelle A; French, Dorothy; Carano, Richard; Merchant, Mark; Hoeflich, Klaus P; Singh, Mallika

    2015-01-01

    Activating mutations in the KRAS oncogene occur in approximately 90% of pancreatic cancers, resulting in aberrant activation of the MAPK and the PI3K pathways, driving malignant progression. Significant efforts to develop targeted inhibitors of nodes within these pathways are underway and several are currently in clinical trials for patients with KRAS-mutant tumors, including patients with pancreatic cancer. To model MEK and PI3K inhibition in late-stage pancreatic cancer, we conducted preclinical trials with a mutant Kras-driven genetically engineered mouse model that faithfully recapitulates human pancreatic ductal adenocarcinoma development. Treatment of advanced disease with either a MEK (GDC-0973) or PI3K inhibitor (GDC-0941) alone showed modest tumor growth inhibition and did not significantly enhance overall survival. However, combination of the two agents resulted in a significant survival advantage as compared with control tumor-bearing mice. To model the clinical scenario, we also evaluated the combination of these targeted agents with gemcitabine, the current standard-of-care chemotherapy for pancreatic cancer. The addition of MEK or PI3K inhibition to gemcitabine, or the triple combination regimen, incrementally enhanced overall survival as compared with gemcitabine alone. These results are reminiscent of the survival advantage conferred in this model and in patients by the combination of gemcitabine and erlotinib, an approved therapeutic regimen for advanced nonresectable pancreatic cancer. Taken together, these data indicate that inhibition of MEK and PI3K alone or in combination with chemotherapy do not confer a dramatic improvement as compared with currently available therapies for patients with pancreatic cancer. ©2014 American Association for Cancer Research.

  13. Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Yingfeng; Liu, Li; Zhao, Dongliang

    Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497more » mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.« less

  14. Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2

    DOE PAGES

    Tu, Yingfeng; Liu, Li; Zhao, Dongliang; ...

    2015-09-08

    Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497more » mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.« less

  15. MEK Inhibition Leads To Lysosome-Mediated Na+/I- Symporter Protein Degradation In Human Breast Cancer Cells

    PubMed Central

    Zhang, Zhaoxia; Beyer, Sasha; Jhiang, Sissy M

    2013-01-01

    The Na+/I- symporter (NIS) is a transmembrane glycoprotein that mediates active iodide uptake into thyroid follicular cells. NIS-mediated iodide uptake in thyroid cells is the basis for targeted radionuclide imaging and treatment of differentiated thyroid carcinomas and their metastases. Furthermore, NIS is expressed in many human breast tumors but not in normal non-lactating breast tissue, suggesting that NIS-mediated radionuclide uptake may also allow the imaging and targeted therapy of breast cancer. However, functional cell surface NIS expression is often low in breast cancer, making it important to uncover signaling pathways that modulate NIS expression at multiple levels, from gene transcription to post-translational processing and cell surface trafficking. In this study, we investigated NIS regulation in breast cancer by MEK (MAPK/ERK kinase) signaling, an important cell signaling pathway involved in oncogenic transformation. We found that MEK inhibition decreased NIS protein levels in all-trans retinoic acid (tRA)/hydrocortisone treated MCF-7 cells as well as human breast cancer cells expressing exogenous NIS. The decrease in NIS protein levels by MEK inhibition was not accompanied by a decrease in NIS mRNA or a decrease in NIS mRNA export from the nucleus to the cytoplasm. NIS protein degradation upon MEK inhibition was prevented by lysosome inhibitors, but not by proteasome inhibitors. Interestingly, NIS protein level was correlated with MEK/ERK activation in human breast tumors from a tissue microarray. Taken together, MEK activation appears to play an important role in maintaining NIS protein stability in human breast cancers. PMID:23404856

  16. Inhibiting Autophagy During Interleukin 2 (IL-2) Immunotherapy Promotes Long Term Tumor Regression

    PubMed Central

    Liang, Xiaoyan; De Vera, Michael E.; Buchser, William J.; Romo de Vivar Chavez, Antonio; Loughran, Patricia; Stolz, Donna Beer; Basse, Per; Wang, Tao; Van Houten, Bennett; Zeh, Herbert J.; Lotze, Michael T.

    2012-01-01

    Administration of high dose interleukin 2 (HDIL-2) has durable antitumor effects in 5-10% patients with melanoma and renal cell carcinoma. However, treatment is often limited by side effects, including reversible, multi-organ dysfunction and characterized by a cytokine-induced ‘systemic autophagic syndrome’. Here we hypothesized that the autophagy inhibitor chloroquine (CQ) would enhance IL-2 immunotherapeutic efficacy and limit toxicity. In an advanced murine metastatic liver tumor model, IL-2 inhibited tumor growth in a dose-dependent fashion, and these anti-tumor effects were significantly enhanced upon addition of CQ. The combination of IL-2 with CQ increased long term survival, decreased toxicity associated with vascular leakage, and enhanced immune cell proliferation and infiltration in the liver and spleen. HDIL-2 alone increased serum levels of IFN-γ, IL-6 and IL-18 and also induced autophagy within the liver and translocation of HMGB1 from the nucleus to the cytosol in hepatocytes, effects that were inhibited by combined administration with CQ. In tumor cells, CQ increased autophagic vacuoles and LC3-II levels inhibited oxidative phosphorylation and ATP production and promoted apoptosis, which was associated with increased Annexin V+/PI- cells, cleaved-PARP, cleaved-caspase 3, and cytochrome C release from mitochondria. Taken together, our findings provide a novel clinical strategy to enhance the efficacy of HDIL-2 immunotherapy for cancer patients. PMID:22472122

  17. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, wemore » determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.« less

  18. Curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway.

    PubMed

    Tian, Binqiang; Zhao, Yingmei; Liang, Tao; Ye, Xuxiao; Li, Zuowei; Yan, Dongliang; Fu, Qiang; Li, Yonghui

    2017-08-01

    We have previously reported that curcumin inhibits urothelial tumor development in a rat bladder carcinogenesis model. In this study, we report that curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. Curcumin inhibits IGF2 expression at the transcriptional level and decreases the phosphorylation levels of IGF1R and IRS-1 in bladder cancer cells and N-methyl-N-nitrosourea (MNU)-induced urothelial tumor tissue. Ectopic expression of IGF2 and IGF1R, but not IGF1, in bladder cancer cells restored this process, suggesting that IGF2 is a target of curcumin. Moreover, introduction of constitutively active AKT1 abolished the inhibitory effect of curcumin on cell proliferation, migration, and restored the phosphorylation levels of 4E-BP1 and S6K1, suggesting that curcumin functions via suppressing IGF2-mediated AKT/mTOR signaling pathway. In summary, our results reveal that suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway is one of the mechanisms of action of curcumin. Our findings suggest a new therapeutic strategy against human bladder cancer caused by aberrant activation of IGF2, which are useful for translational application of curcumin.

  19. Long noncoding RNA LINC01296 promotes tumor growth and progression by sponging miR-5095 in human cholangiocarcinoma.

    PubMed

    Zhang, Dawei; Li, Haiyan; Xie, Juping; Jiang, Decan; Cao, Liangqi; Yang, Xuewei; Xue, Ping; Jiang, Xiaofeng

    2018-06-01

    The aim of the present study was to elucidate whether, and how, long intergenic non-protein coding RNA 1296 (LINC01296) is involved in the modulation of human cholangiocarcinoma (CCA) development and progression. Microarray data analysis and reverse transcription-quantitative polymerase chain reaction analysis demonstrated that LINC01296 was significantly upregulated in human CCA compared with nontumor tissues. Furthermore, the expression of LINC01296 in human CCA was positively associated with tumor severity and clinical stage. Knockdown of LINC01296 dramatically suppressed the viability, migration and invasion of RBE and CCLP1 cells, and promoted cell apoptosis in vitro. Furthermore, LINC01296 knockdown inhibited tumor growth in a xenograft model. Mechanistically, LINC01296 was demonstrated to sponge microRNA-5095 (miR-5095), which targets MYCN proto-oncogene bHLH transcription factor (MYCN) mRNA in human CCA. By inhibition of miR-5095, LINC01296 overexpression upregulated the expression of MYCN and promoted cell viability, migration and invasion in CCA cells. The results reveal that the axis of LINC01296/miR-5095/MYCN may be a mechanism to regulate CCA development and progression.

  20. Effects of curcumin analogues for inhibiting human prostate cancer cells and the growth of human PC-3 prostate xenografts in immunodeficient mice.

    PubMed

    Zhou, Dai-Ying; Ding, Ning; Van Doren, Jeremiah; Wei, Xing-Chuan; Du, Zhi-Yun; Conney, Allan H; Zhang, Kun; Zheng, Xi

    2014-01-01

    Four curcumin analogues ((2E,6E)-2,6-bis(thiophen-3-methylene) cyclohexanone (AS), (2E,5E)-2,5-bis(thiophen-3-methylene) cyclopentanone (BS), (3E,5E)-3,5-bis(thiophen-3-methylene)-tetrahydropyran-4-one (ES) and (3E,5E)-3,5-bis(thiophen-3-methylene)-tetrahydrothiopyran-4-one (FS) as shown in Fig. 1) with different linker groups were investigated for their effects in human prostate cancer CWR-22Rv1 and PC-3 cells. Compounds FS and ES had stronger inhibitory effects than curcumin, AS and BS on the growth of cultured CWR-22Rv1 and PC-3 cells, as well as on the androgen receptor (AR) and nuclear factor kappa B (NF-κB) activity. The strong activities of ES and FS may be correlated with a heteroatom linker. In animal studies, severe combined immunodeficient (SCID) mice were injected subcutaneously (s.c.) with PC-3 cells in Matrigel. After 4 to 6 weeks, mice with PC-3 tumors (about 0.6 cm wide and 0.6 cm long) received daily intraperitoneal (i.p.) injections of vehicle, ES and FS (10 µg/g body weight) for 31 d. FS had a potent effect in inhibiting the growth and progression of PC-3 tumors. Our results indicate that FS may be useful for inhibiting human prostate tumors growth.

  1. Platelet-camouflaged nanococktail: Simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy.

    PubMed

    Jing, Lijia; Qu, Haijing; Wu, Dongqi; Zhu, Chaojian; Yang, Yongbo; Jin, Xing; Zheng, Jian; Shi, Xiangsheng; Yan, Xiufeng; Wang, Yang

    2018-01-01

    Multidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients. In this study, a nanomedicine RGD-NPVs@MNPs/DOX was developed by encapsulating melanin nanoparticles (MNPs) and doxorubicin (DOX) inside RGD peptide (c(RGDyC))-modified nanoscale platelet vesicles (RGD-NPVs) to efficiently inhibit the growth and metastasis of drug-resistant tumors via a cancer cells and tumor vasculature dual-targeting strategy. Methods: The in vitro immune evasion potential and the targeting performance of RGD-NPVs@MNPs/DOX were examined using RAW264.7, HUVECs, MDA-MB-231 and MDA-MB-231/ADR cells lines. We also evaluated the pharmacokinetic behavior and the in vivo therapeutic performance of RGD-NPVs@MNPs/DOX using a MDA-MB-231/ADR tumor-bearing nude mouse model. Results: By taking advantage of the self-recognizing property of the platelet membrane and the conjugated RGD peptides, RGD-NPVs@MNPs/DOX was found to evade immune clearance and target the αvβ3 integrin on tumor vasculature and resistant breast tumor cells. Under irradiation with a NIR laser, RGD-NPVs@MNPs/DOX produced a multipronged effect, including reversal of cancer MDR, efficient killing of resistant cells by chemo-photothermal therapy, elimination of tumor vasculature for blocking metastasis, and long-lasting inhibition of the expressions of VEGF, MMP2 and MMP9 within the tumor. Conclusion: This versatile nanomedicine of RGD-NPVs@MNPs/DOX integrating unique biomimetic properties, excellent targeting performance, and comprehensive therapeutic strategies in one formulation might bring opportunities to MDR cancer therapy.

  2. [Design of new anti-tumor agents interrupting deregulated signaling pathways induced by tyrosine kinase proteins. Inhibition of protein-protein interaction involving Grb2].

    PubMed

    Vidal, Michel; Liu, Wang Qing; Gril, Brunile; Assayag, Franck; Poupon, Marie-France; Garbay, Christiane

    2004-01-01

    Cellular signaling pathways induced by growth-factor receptors are frequently deregulated in cancer. Anti-tumor agents that inhibit their enzymatic tyrosine kinase activity have been designed and are now used in human chemotherapy. We propose here an alternative way to interrupt over-expressed signaling by inhibiting protein-protein interactions that involve either the over-expressed proteins or proteins located downstream. The adaptor protein Grb2 over-expressed in connection with HER2/ErbB2/neu in Ras signaling pathway was chosen as a target. Peptides with very high affinity for Grb2 were rationally designed from structural data. Their capacity to interrupt the signaling pathway, their anti-proliferative activity as well as their potential anti-tumor properties are described.

  3. Gamma-Klotho exhibits multiple roles in tumor growth of human bladder cancer.

    PubMed

    Hori, Shunta; Miyake, Makito; Tatsumi, Yoshihiro; Morizawa, Yosuke; Nakai, Yasushi; Onishi, Sayuri; Onishi, Kenta; Iida, Kota; Gotoh, Daisuke; Tanaka, Nobumichi; Fujimoto, Kiyohide

    2018-04-13

    Alpha-Klotho (KLα) and beta-Klotho (KLβ) have recently been reported to correlate with cancer prognosis in some malignancies and we previously reported the association between KLα, KLβ, and urothelial carcinoma of the bladder (UCB), indicating that KLβ acts as a tumor promoter. However, the association between gamma-Klotho (KLγ) and cancer prognosis remains unclear. In the present study, we evaluated the association between KLγ and UCB. To evaluate the effect of KLγ on human bladder cancer cell lines in vitro assays were performed. Exogenous KLγ increased the ability of human bladder cancer cells to proliferate, migrate, invade, form colonies, and provide anchorage-independent growth potential. In in vivo assays, eighteen mice bearing xenografts inoculated using UM-UC-3, were randomly divided into three groups and treated with a small interfering RNA (siRNA) by intratumoral administration once a week for four weeks. Knockdown of KLγ with siRNA led to a dramatic change in tumor growth and suggested that KLγ had effects on tumor growth, including promotion of cell proliferation, inhibition of apoptosis, and enhancement of the epithelial-mesenchymal transition. To confirm the study, human tissue samples were used and patients were divided into two groups according to KLγ expression level. High expression of KLγ was significantly associated with higher stage and grade cancer and the presence of lymphovascular invasion compared to patients with lower expression of KLγ. Our results suggest that KLγ plays an important role in tumor invasion and progression and these results may lead to the development of new therapies and diagnostic methods for UCB.

  4. Gamma-Klotho exhibits multiple roles in tumor growth of human bladder cancer

    PubMed Central

    Hori, Shunta; Miyake, Makito; Tatsumi, Yoshihiro; Morizawa, Yosuke; Nakai, Yasushi; Onishi, Sayuri; Onishi, Kenta; Iida, Kota; Gotoh, Daisuke; Tanaka, Nobumichi; Fujimoto, Kiyohide

    2018-01-01

    Alpha-Klotho (KLα) and beta-Klotho (KLβ) have recently been reported to correlate with cancer prognosis in some malignancies and we previously reported the association between KLα, KLβ, and urothelial carcinoma of the bladder (UCB), indicating that KLβ acts as a tumor promoter. However, the association between gamma-Klotho (KLγ) and cancer prognosis remains unclear. In the present study, we evaluated the association between KLγ and UCB. To evaluate the effect of KLγ on human bladder cancer cell lines in vitro assays were performed. Exogenous KLγ increased the ability of human bladder cancer cells to proliferate, migrate, invade, form colonies, and provide anchorage-independent growth potential. In in vivo assays, eighteen mice bearing xenografts inoculated using UM-UC-3, were randomly divided into three groups and treated with a small interfering RNA (siRNA) by intratumoral administration once a week for four weeks. Knockdown of KLγ with siRNA led to a dramatic change in tumor growth and suggested that KLγ had effects on tumor growth, including promotion of cell proliferation, inhibition of apoptosis, and enhancement of the epithelial-mesenchymal transition. To confirm the study, human tissue samples were used and patients were divided into two groups according to KLγ expression level. High expression of KLγ was significantly associated with higher stage and grade cancer and the presence of lymphovascular invasion compared to patients with lower expression of KLγ. Our results suggest that KLγ plays an important role in tumor invasion and progression and these results may lead to the development of new therapies and diagnostic methods for UCB. PMID:29731962

  5. mTOR and MEK1/2 inhibition differentially modulate tumor growth and the immune microenvironment in syngeneic models of oral cavity cancer

    PubMed Central

    Cash, Harrison; Shah, Sujay; Moore, Ellen; Caruso, Andria; Uppaluri, Ravindra; Van Waes, Carter; Allen, Clint

    2015-01-01

    We investigated the effects of mTOR and MEK1/2 inhibition on tumor growth and the tumor microenvironment in immunogenic and poorly immunogenic models of murine oral cancer. In vitro, rapamycin and PD901 inhibited signaling through expected downstream targets, but only PD901 reduced viability and altered function of MOC cells. Following transplantation of MOC cells into immune-competent mice, effects on both cancer and infiltrating immune cells were characterized following rapamycin and/or PD901 treatment for 21 days. In vivo, both rapamycin and PD901 inhibition reduced primary growth of established MOC tumors on treatment. Following withdrawal of PD901, rapid rebound of tumor growth limited survival, whereas durable tumor control was observed following rapamycin treatment in immunogenic MOC1 tumors despite more robust inhibition of oncogenic signaling by PD901. Characterization of the immune microenvironment revealed diminished infiltration and activation of antigen-specific CD8+ T-cells and other immune cells following PD901 but not rapamycin in immunogenic tumors. Subsequent in vitro T-cell assays validated robust inhibition of T-cell expansion and activation following MEK inhibition compared to mTOR inhibition. CD8 cell depletion abrogated rapamycin-induced primary tumor growth inhibition in MOC1 mice. These data have critical implications in the design of combination targeted and immune therapies in oral cancer. PMID:26506415

  6. Epithalon inhibits tumor growth and expression of HER-2/neu oncogene in breast tumors in transgenic mice characterized by accelerated aging.

    PubMed

    Anisimov, V N; Khavinsov, V Kh; Alimova, I N; Provintsiali, M; Manchini, R; Francheski, K

    2002-02-01

    Female transgenic FVB mice carrying breast cancer gene HER-2/neu were monthly injected with Vilon or Epithalon (1 microgram subcutaneously for 5 consecutive days) starting from the 2nd month of life. Epithalon markedly inhibited neoplasm development: the maximum size of breast adenocarcinomas was 33% lower than in the control (p < 0.05). The intensity of HER-2/neu mRNA expression in breast tumors of Epithalon-treated mice was 3.7 times lower than in control animals. These results indicate that Epithalon inhibits breast tumor development in transgenic mice, which is probably related to suppression of HER-2/neu expression.

  7. Alternatively spliced Spalax heparanase inhibits extracellular matrix degradation, tumor growth, and metastasis

    PubMed Central

    Nasser, Nicola J.; Avivi, Aaron; Shafat, Itay; Edovitsky, Evgeny; Zcharia, Eyal; Ilan, Neta; Vlodavsky, Israel; Nevo, Eviatar

    2009-01-01

    Heparanase is an endoglycosidase that degrades heparan sulfate (HS) at the cell surface and in the extracellular matrix. Heparanase is expressed mainly by cancer cells, and its expression is correlated with increased tumor aggressiveness, metastasis, and angiogenesis. Here, we report the cloning of a unique splice variant (splice 36) of heparanase from the subterranean blind mole rat (Spalax). This splice variant results from skipping part of exon 3, exons 4 and 5, and part of exon 6 and functions as a dominant negative to the wild-type enzyme. It inhibits HS degradation, suppresses glioma tumor growth, and decreases experimental B16–BL6 lung colonization in a mouse model. Intriguingly, Spalax splice variant 7 of heparanase (which results from skipping of exon 7) is devoid of enzymatic activity, but unlike splice 36 it enhances tumor growth. Our results demonstrate that alternative splicing of heparanase regulates its enzymatic activity and might adapt the heparanase function to the fluctuating normoxic–hypoxic subterranean environment that Spalax experiences. Development of anticancer drugs designed to suppress tumor growth, angiogenesis, and metastasis is a major challenge, of which heparanase inhibition is a promising approach. We anticipate that the heparanase splicing model, evolved during 40 million years of Spalacid adaptation to underground life, would pave the way for the development of heparanase-based therapeutic modalities directed against angiogenesis, tumor growth, and metastasis. PMID:19164514

  8. Progesterone receptor antagonism inhibits progestogen-related carcinogenesis and suppresses tumor cell proliferation.

    PubMed

    Lee, Oukseub; Choi, Mi-Ran; Christov, Konstantin; Ivancic, David; Khan, Seema A

    2016-07-01

    Blockade of the progestogen-progesterone receptor (PR) axis is a novel but untested strategy for breast cancer prevention. We report preclinical data evaluating telapristone acetate (TPA), ulipristal acetate (UPA), and mifepristone. Tumors were induced with medroxyprogesterone acetate (MPA) plus 7,12-dimethylbenz[a]anthracene (DMBA) in mice, and MPA or progesterone plus N-methyl-N-nitrosourea (MNU) in rats. Mammary gland histology, tumor incidence, latency, multiplicity, burden and histology were evaluated, along with immunohistochemical labeling of pHH3 (proliferation), CD34 (angiogenesis), and estrogen and progesterone receptors (ER and PR). A concentration gradient of TPA, UPA, and mifepristone was tested for growth inhibition of T47D spheroids. In mouse mammary glands, no tumors formed, but TPA opposed the pro-hyperplastic effects of MPA (p = 0.002). In rats, TPA decreased tumor incidence (p = 0.037 for MPA + TPA vs. MPA, and p = 0.032 for progesterone + TPA vs. progesterone) and tumor burden (p = 0.042 for progesterone + TPA vs. progesterone), with significant decreases in pHH3 and CD34 positive cells. TPA and UPA were superior to mifepristone in growth inhibition of T47D spheroids. TPA has consistent anti-tumorigenic effects in several models, which are accompanied by decreases in cell proliferation, angiogenesis, and hormone receptor expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. MicroRNA-300 targets hypoxia inducible factor-3 alpha to inhibit tumorigenesis of human non-small cell lung cancer.

    PubMed

    Zhang, Y; Guo, Y; Yang, C; Zhang, S; Zhu, X; Cao, L; Nie, W; Yu, H

    2017-01-01

    Non-small cell lung cancer (NSCLC) is one of the most deadly human cancers. MicroRNA-300 acts as both tumor promoter and suppressor in different types of cancer. Here, we try to identify the function of microRNA-300 in human NSCLC. We compared MicroRNA-300 levels between tumor tissues versus paired adjacent non-tumor lung tissues from NSCLC patients, and in NSCLC versus normal lung cell lines. Effects of microRNA-300 on cell proliferation, invasion and migration were examined in vitro, and on tumor growth in vivo using a xenograft mouse model. Potential mRNA targets of microRNA-300 were predicted and underlying mechanism was explored. MicroRNA-300 expression was lower in both NSCLC tissues and cell lines. Overexpression of microRNA-300 inhibited proliferation, invasion and migration of NSCLC cells in vitro, and tumor growth in vivo. MicroRNA-300 could directly bind to the 3'-UTR of hypoxia inducible factor-3 alpha (HIF3α) mRNA, and inhibit both its mRNA and protein expressions. Restoring HIF3α expression could rescue the inhibitory effects of microRNA-300 on tumorigenesis of NSCLC both in vitro and in vivo. MicroRNA-300 is a tumor suppressor microRNA in NSCLC by downregulating HIF3α expression. Both microRNA-300 and HIF3α may serve as potential therapeutic targets in NSCLC treatment.

  10. Studies on the inhibition of tumor cell growth and microtubule assembly by 3-hydroxy-4-[(E)-(2-furyl)methylidene]methyl-3-cyclopentene-1,2-dione, an intensively coloured Maillard reaction product.

    PubMed

    Marko, D; Kemény, M; Bernady, E; Habermeyer, M; Weyand, U; Meiers, S; Frank, O; Hofmann, T

    2002-01-01

    Very recently, 3-hydroxy-4-[(E)-(2-furyl)methylidene]methyl-3-cyclopentene-1,2-dione (1) has been successfully identified as an intensively coloured Maillard product formed from glucose and L-proline upon thermal food processing. Using a biomimetic synthetic strategy, reference material of compound 1 was prepared and purified, and then used to study its effect on the growth of human tumor cells. Compound 1 was found to potently inhibit the growth of human tumor cells in vitro. Using a reporter gene assay we could show that in growth inhibitory concentrations compound 1 effectively inhibits the phosphorylation of the transcription factor Elk-1. In addition, 1 was found to affect the microtubule skeleton. The human mammary carcinoma cell line MCF-7 exhibits a decrease of the microtubule organisation when treated for 24 h with 1 (> or =20 microM). At concentrations of 30 microM and above a loss of microtubule integrity is observed after 1 h incubation. In vitro studies demonstrated that the polymerisation and, to a minor extent, also the depolymerisation of tubulin, isolated and purified from bovine brain, is inhibited in a dose-dependent manner at concentrations of 30 microM and above. This is the first time that a non-enzymatically formed browning compound of known structure was reported to effectively inhibit tumor cell growth and microtubule assembly.

  11. CHIP is a novel tumor suppressor in pancreatic cancer and inhibits tumor growth through targeting EGFR

    PubMed Central

    Wang, Tianxiao; Yang, Jingxuan; Xu, Jianwei; Li, Jian; Cao, Zhe; Zhou, Li; You, Lei; Shu, Hong; Lu, Zhaohui; Li, Huihua; Li, Min; Zhang, Taiping; Zhao, Yupei

    2014-01-01

    Carboxyl terminus of heat shock protein 70-interacting protein (CHIP) is an E3 ubiquitin ligase that is involved in protein quality control and mediates several tumor-related proteins in many cancers, but the function of CHIP in pancreatic cancer is not known. Here we show that CHIP interacts and ubiquitinates epidermal growth factor receptor (EGFR) for proteasome-mediated degradation in pancreatic cancer cells, thereby inhibiting the activation of EGFR downstream pathways. CHIP suppressed cell proliferation, anchor-independent growth, invasion and migration, as well as enhanced apoptosis induced by erlotinib in vitro and in vivo. The expression of CHIP was decreased in pancreatic cancer tissues or sera. Low CHIP expression in tumor tissues was correlated with tumor differentiation and shorter overall survival. These observations indicate that CHIP serves as a novel tumor suppressor by down-regulating EGFR pathway in pancreatic cancer cells, decreased expression of CHIP was associated with poor prognosis in pancreatic cancer. PMID:24722501

  12. Autocrine Complement Inhibits IL10-Dependent T-cell-Mediated Antitumor Immunity to Promote Tumor Progression.

    PubMed

    Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J; Patz, Edward F; Li, Shi-You; He, You-Wen

    2016-09-01

    In contrast to its inhibitory effects on many cells, IL10 activates CD8(+) tumor-infiltrating lymphocytes (TIL) and enhances their antitumor activity. However, CD8(+) TILs do not routinely express IL10, as autocrine complement C3 inhibits IL10 production through complement receptors C3aR and C5aR. CD8(+) TILs from C3-deficient mice, however, express IL10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T-cell- and IL10-dependent manner; human TILs expanded with IL2 plus IL10 increase the killing of primary tumors in vitro compared with IL2-treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8(+) TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. Our data suggest novel strategies to enhance immunotherapies: a combined blockade of complement signaling by antagonists to C3aR, C5aR, and anti-PD-1 to enhance anti-PD-1 efficacy; a targeted IL10 delivery to CD8(+) TILs using anti-PD-1-IL10 or anti-CTLA4-IL10 fusion proteins; and the addition of IL10 in TIL expansion for adoptive cellular therapy. Cancer Discov; 6(9); 1022-35. ©2016 AACR.See related commentary by Peng et al., p. 953This article is highlighted in the In This Issue feature, p. 932. ©2016 American Association for Cancer Research.

  13. Extract of Artemisia lavandulaefolia Inhibits In Vitro Angiogenesis in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Yi, Eui-Yeun; Han, Kyung-Suk; Kim, Yung-Jin

    2014-01-01

    Angiogenesis is important processes for tumor growth and metastasis. Anti-angiogenesis target therapy has recently been known to be new anti-cancer therapeutic strategies. Natural products such as traditional medicine comprise a major source of angiogenesis inhibitors. Artemisia lavandulaefolia has been known to use in the traditional medical practices. However, its molecular mechanism on the tumor protection and therapy was not clearly elucidated. In this study, we investigated the possibility that extract of A. lavandulaefolia inhibits in vitro angiogenesis. Therefore, we examined the effect of extract of A. lavandulaefolia on the vascular network formation of human umbilical vein endothelial cells (HUVECs). We found that the treatment of A. lavandulaefolia extract suppressed the tube formation of HUVECs without any influence on the viability of HUVECs. In addition, extract of A. lavandulaefolia inhibited the migration and invasion of HUVECs. These results suggest that extract of A. lavandulaefolia could be act for an angiogenic inhibitor. PMID:25574458

  14. Ultrasound Targeted Microbubble Destruction-Mediated Delivery of a Transcription Factor Decoy Inhibits STAT3 Signaling and Tumor Growth

    PubMed Central

    Kopechek, Jonathan A.; Carson, Andrew R.; McTiernan, Charles F.; Chen, Xucai; Hasjim, Bima; Lavery, Linda; Sen, Malabika; Grandis, Jennifer R.; Villanueva, Flordeliza S.

    2015-01-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many cancers where it acts to promote tumor progression. A STAT3-specific transcription factor decoy has been developed to suppress STAT3 downstream signaling, but a delivery strategy is needed to improve clinical translation. Ultrasound-targeted microbubble destruction (UTMD) has been shown to enhance image-guided local delivery of molecular therapeutics to a target site. The objective of this study was to deliver STAT3 decoy to squamous cell carcinoma (SCC) tumors using UTMD to disrupt STAT3 signaling and inhibit tumor growth. Studies performed demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles inhibited STAT3 signaling in SCC cells in vitro. Studies performed in vivo demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles induced significant tumor growth inhibition (31-51% reduced tumor volume vs. controls, p < 0.05) in mice bearing SCC tumors. Furthermore, expression of STAT3 downstream target genes (Bcl-xL and cyclin D1) was significantly reduced (34-39%, p < 0.05) in tumors receiving UTMD treatment with STAT3 decoy-loaded microbubbles compared to controls. In addition, the quantity of radiolabeled STAT3 decoy detected in tumors eight hours after treatment was significantly higher with UTMD treatment compared to controls (70-150%, p < 0.05). This study demonstrates that UTMD can increase delivery of a transcription factor decoy to tumors in vivo and that the decoy can inhibit STAT3 signaling and tumor growth. These results suggest that UTMD treatment holds potential for clinical use to increase the concentration of a transcription factor signaling inhibitor in the tumor. PMID:26681983

  15. Novel Immunocytokine IL12-SS1 (Fv) Inhibits Mesothelioma Tumor Growth in Nude Mice

    PubMed Central

    Kim, Heungnam; Gao, Wei; Ho, Mitchell

    2013-01-01

    Mesothelin is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed on the cell surface of malignant mesothelioma. Monoclonal antibodies against mesothelin are being evaluated for the treatment of mesothelioma. Immunocytokines represent a novel class of armed antibodies. To provide an alternative approach to current mesothelin-targeted antibody therapies, we have developed a novel immunocytokine based on interleukin-12 (IL12) and the SS1 Fv specific for mesothelin. IL12 possesses potent anti-tumor activity in a wide variety of solid tumors. The newly-developed recombinant immunocytokine, IL12-SS1 (Fv), was produced in insect cells using a baculovirus-insect cell expression system. The SS1 single-chain Fv was fused to the C terminus of the p35 subunit of IL12 through a short linker (GSADGG). The single-chain IL12-SS1 (Fv) immunocytokine bound native mesothelin proteins on malignant mesothelioma (NCI-H226) and ovarian (OVCAR-3) cells as well as recombinant mesothelin on A431/H9 cells. The immunocytokine retained sufficient bioactivity of IL12 and significantly inhibited human malignant mesothelioma (NCI-H226) grown in the peritoneal cavity of nude mice and showed comparable anti-tumor activity to that of the SS1P immunotoxin. IL12-SS1 (Fv) is the first reported immunocytokine to mesothelin-positive tumors and may be an attractive addition to mesothelin-targeted cancer therapies. PMID:24260587

  16. Inhibition of STAT3 and ErbB2 Suppresses Tumor Growth, Enhances Radiosensitivity, and Induces Mitochondria-Dependent Apoptosis in Glioma Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Ling; Li Fengsheng; Dong Bo

    2010-07-15

    Purpose: Constitutively activated signal transducer and activator of transcription 3 (STAT3) and ErbB2 are involved in the pathogenesis of many tumors, including astrocytoma. Inactivation of these molecules is reported to result in radiosensitization. The purpose of this study was to investigate whether inhibition of STAT3, ErbB2, or both could enhance radiotherapy in the human glioma model (U251 and U87 cell lines). Methods and Materials: The RNAi plasmids targeting STAT3 or ErbB2 were constructed, and their downregulatory effects on target proteins were examined by immunoblotting. After combination treatment of RNAi with or without irradiation, the cell viability was determined using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliummore » bromide (MTT) and clonogenic assays. The in vivo effect of combined treatment was determined using the U251 xenograft model. The apoptosis caused by the inhibition of STAT3 and ErbB2 was detected, and the mechanism involved in the apoptosis was investigated, including increases in caspase proteins, mitochondrial damage, and the expression of key modulating protein of different apoptosis pathways. Results: Transfection of U251 cells with STAT3 or ErbB2 siRNA plasmids specifically reduced their target gene expressions. Inhibition of STAT3 or ErbB2 greatly decreased glioma cell survival after 2, 4, or 6 Gy irradiation. Inhibition of STAT3 and ErbB2 also enhanced radiation-induced tumor growth inhibition in the U251 xenograft model. Furthermore, the suppression of either STAT3 or ErbB2 could induce U251 cell apoptosis, which was related primarily to the mitochondrial apoptotic pathway. Conclusions: These results indicated that simultaneous inhibition of STAT3 and ErbB2 expression can promote potent antitumor activity and radiosensitizing activity in human glioma.« less

  17. BPIC: A novel anti-tumor lead capable of inhibiting inflammation and scavenging free radicals.

    PubMed

    Li, Shan; Wang, Yuji; Zhao, Ming; Wu, Jianhui; Peng, Shiqi

    2015-03-01

    Inflammation has a critical role in the tumor progression, free radical damage can worse the status of patients in cancer condition. The anti-cancer agents capable of inhibiting inflammation and scavenging free radicals attract a lot of our interest. Aimed at the discovery of such anti-tumor agent, a novel intercalator, benzyl 1-[4-hydroxy-3-(methoxycarbonyl)-phenyl-9H-pyrido[3,4-b]indole-3-carboxylate (BPIC) was presented. The docking investigation of BPIC and doxorubicin towards the DNA (PDB ID: 1NAB) gave equal score and similar feature. The anti-proliferation assay of 8 cancer cells identified S180 cells had equal sensitivity to BPIC and doxorubicin. The anti-tumor assay defined the efficacy of BPIC been 2 folds higher than that of doxorubicin. At 1μmol/kg of dose BPIC effectively inhibited xylene-induced ear edema and decreased the plasma TNF-α and IL-8 of the mice. BPIC scavenged ∙OH, ∙O2(-) and NO free radicals in a concentration dependent manner and NO free radicals had the highest sensitivity. BPIC could be a novel anti-tumor lead capable of simultaneously inhibiting inflammation and scavenging free radicals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells.

    PubMed

    Gao, Xin; Wang, Xuefeng; Yang, Qianting; Zhao, Xin; Wen, Wen; Li, Gang; Lu, Junfeng; Qin, Wenxin; Qi, Yuan; Xie, Fang; Jiang, Jingting; Wu, Changping; Zhang, Xueguang; Chen, Xinchun; Turnquist, Heth; Zhu, Yibei; Lu, Binfeng

    2015-01-01

    Cancer immunotherapy has shown great promise as a new standard cancer therapeutic modality. However, the response rates are limited for current approach that depends on enhancing spontaneous antitumor immune responses. Therefore, increasing tumor immunogenicity by expressing appropriate cytokines should further improve the current immunotherapy. IL-33 is a member of the IL-1 family of cytokines and is released by necrotic epithelial cells or activated innate immune cells and is thus considered a "danger" signal. The role of IL-33 in promoting type 2 immune responses and tissue inflammation has been well established. However, whether IL-33 drives antitumor immune responses is controversial. Our previous work established that IL-33 promoted the function of CD8(+) T cells. In this study, we showed that the expression of IL-33 in two types of cancer cells potently inhibited tumor growth and metastasis. Mechanistically, IL-33 increased numbers and IFN-γ production by CD8(+) T and NK cells in tumor tissues, thereby inducing a tumor microenvironment favoring tumor eradication. Importantly, IL-33 greatly increased tumor Ag-specific CD8(+) T cells. Furthermore, both NK and CD8(+) T cells were required for the antitumor effect of IL-33. Moreover, depletion of regulatory T cells worked synergistically with IL-33 expression for tumor elimination. Our studies established "alarmin" IL-33 as a promising new cytokine for tumor immunotherapy through promoting cancer-eradicating type 1 immune responses. Copyright © 2014 by The American Association of Immunologists, Inc.

  19. Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice

    PubMed Central

    Vila-Leahey, Ava; Oldford, Sharon A.; Marignani, Paola A.; Wang, Jun; Haidl, Ian D.; Marshall, Jean S.

    2016-01-01

    ABSTRACT Histamine receptor 2 (H2) antagonists are widely used clinically for the control of gastrointestinal symptoms, but also impact immune function. They have been reported to reduce tumor growth in established colon and lung cancer models. Histamine has also been reported to modify populations of myeloid-derived suppressor cells (MDSCs). We have examined the impact of the widely used H2 antagonist ranitidine, on both myeloid cell populations and tumor development and spread, in three distinct models of breast cancer that highlight different stages of cancer progression. Oral ranitidine treatment significantly decreased the monocytic MDSC population in the spleen and bone marrow both alone and in the context of an orthotopic breast tumor model. H2 antagonists ranitidine and famotidine, but not H1 or H4 antagonists, significantly inhibited lung metastasis in the 4T1 model. In the E0771 model, ranitidine decreased primary tumor growth while omeprazole treatment had no impact on tumor development. Gemcitabine treatment prevented the tumor growth inhibition associated with ranitidine treatment. In keeping with ranitidine-induced changes in myeloid cell populations in non-tumor-bearing mice, ranitidine also delayed the onset of spontaneous tumor development, and decreased the number of tumors that developed in LKB1−/−/NIC mice. These results indicate that ranitidine alters monocyte populations associated with MDSC activity, and subsequently impacts breast tumor development and outcome. Ranitidine has potential as an adjuvant therapy or preventative agent in breast cancer and provides a novel and safe approach to the long-term reduction of tumor-associated immune suppression. PMID:27622015

  20. Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth

    NASA Astrophysics Data System (ADS)

    Cao, Ying; Wang, Hua-Jie; Cao, Cui; Sun, Yuan-Yuan; Yang, Lin; Wang, Bao-Qing; Zhou, Jian-Guo

    2011-07-01

    In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.

  1. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models.

    PubMed

    Wu, Xiao Yu; Xu, Hao; Wu, Zhen Feng; Chen, Che; Liu, Jia Yun; Wu, Guan Nan; Yao, Xue Quan; Liu, Fu Kun; Li, Gang; Shen, Liang

    2015-12-29

    Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis.

  2. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models

    PubMed Central

    Wu, Zhen Feng; Chen, Che; Liu, Jia Yun; Wu, Guan Nan; Yao, Xue Quan; Liu, Fu Kun; Li, Gang; Shen, Liang

    2015-01-01

    Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis. PMID:26575424

  3. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts

    PubMed Central

    Liang, Yayun; Mafuvadze, Benford; Besch-Williford, Cynthia; Hyder, Salman M

    2018-01-01

    Background Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53) lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood vessels, which serve as the major route for tumor metastasis, in tumor xenografts compared with either agent alone. Conclusion Based on our findings, we contend that breast tumor growth might effectively be controlled by simultaneous

  4. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells.

    PubMed

    Fan, Huijin; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; Sun, Jia; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-05-01

    High levels of fatty acid synthase (FAS) expression have been found in many tumors, including prostate, breast, and ovarian cancers, and inhibition of FAS has been reported to obstruct tumor growth in vitro and in vivo. Curcumin is one of the major active ingredients of Curcuma longa, which has been proven to inhibit the growth of cancer cells. In the present study, we investigated the potential activity of curcumin as a FAS inhibitor for chemoprevention of breast cancer. As a result, curcumin induced human breast cancer MDA-MB-231 cell apoptosis with the half-inhibitory concentration value of 3.63 ± 0.26 µg/ml, and blocked FAS activity, expression and mRNA level in a dose-dependent manner. Curcumin also regulated B-cell lymphoma 2 (Bcl-2), Bax and p-Akt protein expression in MDA-MB-231 cells. Moreover, FAS knockdown showed similar effect as curcumin. All these results suggested that curcumin may induce cell apoptosis via inhibiting FAS.

  5. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma

    PubMed Central

    Coulson, Rhiannon; Liew, Seng H.; Connelly, Angela A.; Yee, Nicholas S.; Deb, Siddhartha; Kumar, Beena; Vargas, Ana C.; O’Toole, Sandra A.; Parslow, Adam C.; Poh, Ashleigh; Putoczki, Tracy; Morrow, Riley J.; Alorro, Mariah; Lazarus, Kyren A.; Yeap, Evie F.W.; Walton, Kelly L.; Harrison, Craig A.; Hannan, Natalie J.; George, Amee J.; Clyne, Colin D.; Ernst, Matthias; Allen, Andrew M.; Chand, Ashwini L.

    2017-01-01

    Drugs that target the Renin-Angiotensin System (RAS) have recently come into focus for their potential utility as cancer treatments. The use of Angiotensin Receptor Blockers (ARBs) and Angiotensin-Converting Enzyme (ACE) Inhibitors (ACEIs) to manage hypertension in cancer patients is correlated with improved survival outcomes for renal, prostate, breast and small cell lung cancer. Previous studies demonstrate that the Angiotensin Receptor Type I (AT1R) is linked to breast cancer pathogenesis, with unbiased analysis of gene-expression studies identifying significant up-regulation of AGTR1, the gene encoding AT1R in ER+ve/HER2−ve tumors correlating with poor prognosis. However, there is no evidence, so far, of the functional contribution of AT1R to breast tumorigenesis. We explored the potential therapeutic benefit of ARB in a carcinogen-induced mouse model of breast cancer and clarified the mechanisms associated with its success. Mammary tumors were induced with 7,12-dimethylbenz[α]antracene (DMBA) and medroxyprogesterone acetate (MPA) in female wild type mice and the effects of the ARB, Losartan treatment assessed in a preventative setting (n = 15 per group). Tumor histopathology was characterised by immunohistochemistry, real-time qPCR to detect gene expression signatures, and tumor cytokine levels measured with quantitative bioplex assays. AT1R was detected with radiolabelled ligand binding assays in fresh frozen tumor samples. We showed that therapeutic inhibition of AT1R, with Losartan, resulted in a significant reduction in tumor burden; and no mammary tumor incidence in 20% of animals. We observed a significant reduction in tumor progression from DCIS to invasive cancer with Losartan treatment. This was associated with reduced tumor cell proliferation and a significant reduction in IL-6, pSTAT3 and TNFα levels. Analysis of tumor immune cell infiltrates, however, demonstrated no significant differences in the recruitment of lymphocytes or tumour

  6. Cabozantinib Is Active against Human Gastrointestinal Stromal Tumor Xenografts Carrying Different KIT Mutations.

    PubMed

    Gebreyohannes, Yemarshet K; Schöffski, Patrick; Van Looy, Thomas; Wellens, Jasmien; Vreys, Lise; Cornillie, Jasmien; Vanleeuw, Ulla; Aftab, Dana T; Debiec-Rychter, Maria; Sciot, Raf; Wozniak, Agnieszka

    2016-12-01

    In the majority of gastrointestinal stromal tumors (GIST), oncogenic signaling is driven by KIT mutations. Advanced GIST is treated with tyrosine kinase inhibitors (TKI) such as imatinib. Acquired resistance to TKI is mainly caused by secondary KIT mutations, but can also be attributed to a switch of KIT dependency to another receptor tyrosine kinase (RTK). We tested the efficacy of cabozantinib, a novel TKI targeting KIT, MET, AXL, and vascular endothelial growth factor receptors (VEGFR), in patient-derived xenograft (PDX) models of GIST, carrying different KIT mutations. NMRI nu/nu mice (n = 52) were bilaterally transplanted with human GIST: UZLX-GIST4 (KIT exon 11 mutation, imatinib sensitive), UZLX-GIST2 (KIT exon 9, imatinib dose-dependent resistance), or UZLX-GIST9 (KIT exon 11 and 17 mutations, imatinib resistant). Mice were grouped as control (untreated), imatinib (50 mg/kg/bid), and cabozantinib (30 mg/kg/qd) and treated orally for 15 days. Cabozantinib resulted in significant tumor regression in UZLX-GIST4 and -GIST2 and delayed tumor growth in -GIST9. In all three models, cabozantinib inhibited the proliferative activity, which was completely absent in UZLX-GIST4 and significantly reduced in -GIST2 and -GIST9. Increased apoptotic activity was observed only in UZLX-GIST4. Cabozantinib inhibited the KIT signaling pathway in UZLX-GIST4 and -GIST2. In addition, compared with both control and imatinib, cabozantinib significantly reduced microvessel density in all models. In conclusion, cabozantinib showed antitumor activity in GIST PDX models through inhibition of tumor growth, proliferation, and angiogenesis, in both imatinib-sensitive and imatinib-resistant models. Mol Cancer Ther; 15(12); 2845-52. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. RSPO3 antagonism inhibits growth and tumorigenicity in colorectal tumors harboring common Wnt pathway mutations.

    PubMed

    Fischer, Marcus M; Yeung, V Pete; Cattaruzza, Fiore; Hussein, Rajaa; Yen, Wan-Ching; Murriel, Christopher; Evans, James W; O'Young, Gilbert; Brunner, Alayne L; Wang, Min; Cain, Jennifer; Cancilla, Belinda; Kapoun, Ann; Hoey, Timothy

    2017-11-10

    Activating mutations in the Wnt pathway are a characteristic feature of colorectal cancer (CRC). The R-spondin (RSPO) family is a group of secreted proteins that enhance Wnt signaling and RSPO2 and RSPO3 gene fusions have been reported in CRC. We have previously shown that Wnt pathway blockers exhibit potent combinatorial activity with taxanes to inhibit tumor growth. Here we show that RSPO3 antagonism synergizes with paclitaxel based chemotherapies in patient-derived xenograft models (PDX) with RSPO3 fusions and in tumors with common CRC mutations such as APC, β-catenin, or RNF43. In these latter types of tumors that represent over 90% of CRC, RSPO3 is produced by stromal cells in the tumor microenvironment and the activating mutations appear to sensitize the tumors to Wnt-Rspo synergy. The combination of RSPO3 inhibition and taxane treatment provides an approach to effectively target oncogenic WNT signaling in a significant number of patients with colorectal and other intestinal cancers.

  8. 6-Substituted Pyrrolo[2,3-d]pyrimidine Thienoyl Regioisomers as Targeted Antifolates for Folate Receptor α and the Proton-Coupled Folate Transporter in Human Tumors

    PubMed Central

    Wang, Lei; Wallace, Adrianne; Raghavan, Sudhir; Deis, Siobhan M.; Wilson, Mike R.; Yang, Si; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Orr, Steven; George, Christina; O’Connor, Carrie; Hou, Zhanjun; Mitchell-Ryan, Shermaine; Dann, Charles E.; Matherly, Larry H.; Gangjee, Aleem

    2016-01-01

    2-Amino-4-oxo-6-substituted-pyrrolo[2,3-d]-pyrimidine antifolate thiophene regioisomers of AGF94 (4) with a thienoyl side chain and three-carbon bridge lengths [AGF150 (5) and AGF154 (7)] were synthesized as potential antitumor agents. These analogues inhibited proliferation of Chinese hamster ovary (CHO) sublines expressing folate receptors (FRs) α or β (IC50s < 1 nM) or the proton-coupled folate transporter (PCFT) (IC50 < 7 nM). Compounds 5 and 7 inhibited KB, IGROV1, and SKOV3 human tumor cells at subnanomolar concentrations, reflecting both FRα and PCFT uptake. AGF152 (6) and AGF163 (8), 2,4-diamino-5-substituted-furo[2,3-d]pyrimidine thiophene regioisomers, also inhibited growth of FR-expressing CHO and KB cells. All four analogues inhibited glycinamide ribonucleotide formyltransferase (GARFTase). Crystal structures of human GARFTase complexed with 5 and 7 were reported. In severe combined immunodeficient mice bearing SKOV3 tumors, 7 was efficacious. The selectivity of these compounds for PCFT and for FRα and β over the ubiquitously expressed reduced folate carrier is a paradigm for selective tumor targeting. PMID:26317331

  9. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bo; Sun, Ding; Department of Hepatobiliary Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215004

    2015-12-25

    Curcumin, a yellow polyphenol extracted from the rhizome of turmeric root (Curcuma longa) has potent anti-cancer properties in many types of tumors with ability to reverse multidrug resistance of cancer cells. However, widespread clinical application of this agent in cancer and other diseases has been limited due to its poor aqueous solubility. The recent findings of polymeric nanoparticle formulation of curcumin (NFC) have shown the potential for circumventing the problem of poor solubility, however evidences for NFC's anti-cancer and reverse multidrug resistance properties are lacking. Here we provide models of human hepatocellular carcinoma (HCC), the most common form of primarymore » liver cancer, in vitro and in vivo to evaluate the efficacy of NFC alone and in combination with sorafenib, a kinase inhibitor approved for treatment of HCC. Results showed that NFC not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. Moreover, in combination with sorafenib, NFC induced HCC cell apoptosis and cell cycle arrest. Mechanistically, NFC and sorafenib synergistically down-regulated the expression of MMP9 via NF-κB/p65 signaling pathway. Furthermore, the combination therapy significantly decreased the population of CD133-positive HCC cells, which have been reported as cancer initiating cells in HCC. Taken together, NanoCurcumin provides an opportunity to expand the clinical repertoire of this agent. Additional studies utilizing a combination of NanoCurcumin and sorafenib in HCC are needed for further clinical development. - Highlights: • Polymeric nanoparticle formulation of curcumin not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. • In combination with sorafenib, NanoCurcumin induced HCC cell apoptosis and cell cycle arrest. • Nano

  10. Inhibition of the mammary carcinoma angiogenic switch in C3(1)/SV40 transgenic mice by a mutated form of human endostatin.

    PubMed

    Calvo, Alfonso; Yokoyama, Yumi; Smith, Lois E; Ali, Iqbal; Shih, Shu-Ching; Feldman, Andrew L; Libutti, Steven K; Sundaram, Ramakrishnan; Green, Jeffrey E

    2002-09-20

    Cancer therapies based on the inhibition of angiogenesis by endostatin have recently been developed. We demonstrate that a mutated form of human endostatin (P125A) can inhibit the angiogenic switch in the C3(1)/Tag mammary cancer model. P125A has a stronger growth-inhibitory effect on endothelial cell proliferation than wild-type endostatin. We characterize the angiogenic switch, which occurs during the transition from preinvasive lesions to invasive carcinoma in this model, and which is accompanied by a significant increase in total protein levels of vascular endothelial growth factor (VEGF) and an invasion of blood vessels. Expression of the VEGF(188) mRNA isoform, however, is suppressed in invasive carcinomas. The VEGF receptors fetal liver kinase-1 (Flk-1) and Fms-like tyrosine kinase-1 (Flt-1) become highly expressed in epithelial tumor and endothelial cells in the mammary carcinomas, suggesting a potential autocrine effect for VEGF on tumor cell growth. Angiopoietin-2 mRNA levels are also increased during tumor progression. CD-31 (platelet-endothelial cell adhesion molecule [PECAM]) staining revealed that blood vessels developed in tumors larger than 1 mm The administration of P125A human endostatin in C3(1)/Tag females resulted in a significant delay in tumor onset, decreased tumor multiplicity and tumor burden and prolonged survival of the animals. Endostatin treatment did not reduce the number of preinvasive lesions, proliferation rates or apoptotic index, compared with controls. However, mRNA levels of a variety of proangiogenic factors (VEGF, VEGF receptors Flk-1 and Flt-1, angiopoietin-2, Tie-1, cadherin-5 and PECAM) were significantly decreased in the endostatin-treated group compared with controls. These results demonstrate that P125A endostatin inhibits the angiogenic switch during mammary gland adenocarcinoma tumor progression in the C3(1)/Tag transgenic model. Copyright 2002 Wiley-Liss, Inc.

  11. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer

    PubMed Central

    Tan, Marcus C. B.; Goedegebuure, Peter S.; Belt, Brian A.; Flaherty, Brian; Sankpal, Narendra; Gillanders, William E.; Eberlein, Timothy J.; Hsieh, Chyi-Song; Linehan, David C.

    2013-01-01

    Tumors evade immune destruction by actively inducing immune tolerance through the recruitment of CD4+CD25+Foxp3+ regulatory T cells (Treg). We have previously described increased prevalence of these cells in pancreatic adenocarcinoma, but it remains unclear what mechanisms are involved in recruiting Treg into the tumor microenvironment. Here, we postulated that chemokines might direct Treg homing to tumor. We show, in both human pancreatic adenocarcinoma and a murine pancreatic tumor model (Pan02), that tumor cells produce increased levels of ligands for the CCR5 chemokine receptor, and, reciprocally, that CD4+ Foxp3+ Treg, compared with CD4+ Foxp3− effector T cells, preferentially express CCR5. When CCR5/CCL5 signaling is disrupted, either by reducing CCL5 production by tumor cells or by systemic administration of a CCR5 inhibitor (TAK-779), Treg migration to tumors is reduced and tumors are smaller than in control mice. Thus, this study demonstrates the importance of Treg in immune evasion by tumors, how blockade of Treg migration may inhibit tumor growth, and, specifically in pancreatic adenocarcinoma, the role of CCR5 in the homing of tumor-associated Treg. Selective targeting of CCR5/CCL5 signaling may represent a novel immunomodulatory strategy for the treatment of cancer. PMID:19155524

  12. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models.

    PubMed

    Jandial, Rahul; Neman, Josh; Lim, Punnajit P; Tamae, Daniel; Kowolik, Claudia M; Wuenschell, Gerald E; Shuck, Sarah C; Ciminera, Alexandra K; De Jesus, Luis R; Ouyang, Ching; Chen, Mike Y; Termini, John

    2018-01-30

    Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1) to detoxify the toxic glycolytic byproduct methylglyoxal (MG) and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs). Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM), the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA) approaches. Inhibition of GLO1 with S -( p -bromobenzyl) glutathione dicyclopentyl ester ( p- BrBzGSH(Cp)₂) increased levels of the DNA-AGE N ²-1-(carboxyethyl)-2'-deoxyguanosine (CEdG), a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE); and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p -BrBzGSH(Cp)₂ exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.

  13. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models

    PubMed Central

    Jandial, Rahul; Neman, Josh; Tamae, Daniel; Kowolik, Claudia M.; Wuenschell, Gerald E.; Ciminera, Alexandra K.; De Jesus, Luis R.; Ouyang, Ching; Chen, Mike Y.

    2018-01-01

    Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1) to detoxify the toxic glycolytic byproduct methylglyoxal (MG) and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs). Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM), the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA) approaches. Inhibition of GLO1 with S-(p-bromobenzyl) glutathione dicyclopentyl ester (p-BrBzGSH(Cp)2) increased levels of the DNA-AGE N2-1-(carboxyethyl)-2′-deoxyguanosine (CEdG), a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE); and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p-BrBzGSH(Cp)2 exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors. PMID:29385725

  14. LncRNA-LET inhibits cell viability, migration and EMT while induces apoptosis by up-regulation of TIMP2 in human granulosa-like tumor cell line KGN.

    PubMed

    Han, Qingfang; Zhang, Wenke; Meng, Jinlai; Ma, Li; Li, Aihua

    2018-04-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disease characterized by hyperandrogenism, irregular menses, and polycystic ovaries. Several long non-coding RNAs (lncRNAs) are aberrantly expressed in PCOS patients; however, little is known about the effects of the lncRNA-low expression in tumor (lncRNA-LET) on PCOS. We aimed to explore the effects of lncRNA-LET on human granulosa-like tumor cell line, KGN. Expression of lncRNA-LET in normal IOSE80 cells and granulosa cells was determined by qRT-PCR. KGN cell viability, apoptosis and migration were measured by trypan blue exclusion method, flow cytometry assay and wound healing assay, respectively. TGF-β1 was used to induce epithelial-mesenchymal transition (EMT) process. LncRNA-LET expression and mRNA expressions of TIMP2 and EMT-related proteins were measured by qRT-PCR. Western blot analysis was used to measure the protein expression of apoptosis-related proteins, EMT-related proteins, TIMP2, and the proteins in the Wnt/β-catenin and Notch signaling pathways. lncRNA-LET was down-regulated in KGN cells, and its overexpression inhibited cell viability and migration, and promoted apoptosis in KGN cells. Overexpression of lncRNA-LET increased the expression of E-cadherin and decreased the expressions of N-cadherin and vimentin in KGN cells. These effects of lncRNA-LET on KGN cells were reversed by TIMP2 suppression. Overexpression of TIMP2 inhibited cell viability, migration and EMT process, and increased apoptosis by activating the Wnt/β-catenin and Notch pathways. Overexpression of lncRNA-LET inhibits cell viability, migration and EMT process, and increases apoptosis in KGN cells by up-regulating the expression of TIMP2 and activating the Wnt/β-catenin and notch signaling pathways. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Downregulation of MCT1 inhibits tumor growth, metastasis and enhances chemotherapeutic efficacy in osteosarcoma through regulation of the NF-κB pathway.

    PubMed

    Zhao, Zhiqiang; Wu, Man-Si; Zou, Changye; Tang, Qinglian; Lu, Jinchang; Liu, Dawei; Wu, Yuanzhong; Yin, Junqiang; Xie, Xianbiao; Shen, Jingnan; Kang, Tiebang; Wang, Jin

    2014-01-01

    Monocarboxylate transporter isoform 1 (MCT1) is an important member of the proton-linked MCT family and has been reported in an array of human cancer cell lines and primary human tumors. MCT1 expression is associated with developing a new therapeutic approach for cancer. In this study, we initially showed that MCT1 is expressed in a variety of human osteosarcoma cell lines. Moreover, we evaluated the therapeutic response of targeting MCT1 using shRNA or MCT1 inhibitor. Inhibiting MCT1 delayed tumor growth in vitro and in vivo, including in an orthotopic model of osteosarcoma. Targeting MCT1 greatly enhanced the sensitivity of human osteosarcoma cells to the chemotherapeutic drugs adriamycin (ADM). In addition, we observed that MCT1 knockdown significantly suppressed the metastatic activity of osteosarcoma, including wound healing, invasion and migration. Further mechanistic studies revealed that the antitumor effects of targeting MCT1 might be related to the NF-κB pathway. Immunochemistry assay showed that MCT1 was an independent positive prognostic marker in osteosarcoma patients. In conclusion, our data, for the first time, demonstrate that MCT1 inhibition has antitumor potential which is associated with the NF-κB pathway, and high MCT1 expression predicates poor overall survival in patients with osteosarcoma. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittmann, Klaus H.; Mayer, Claus; Ohneseit, Petra A.

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by {gamma}H{sub 2}AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observedmore » radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual {gamma}H2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2.« less

  17. Human IP10-scFv and DC-induced CTL synergistically inhibit the growth of glioma in a xenograft model.

    PubMed

    Wang, Xuan; Zhang, Fang-Cheng; Zhao, Hong-Yang; Lu, Xiao-Ling; Sun, Yun; Xiong, Zhi-Yong; Jiang, Xiao-Bing

    2014-08-01

    The epidermal growth factor receptor (EGFR) mutant of EGFRvIII is highly expressed in glioma cells, and the EGFRvIII-specific dendritic cell (DC)-induced tumor antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) may hold promise in cancer immunotherapy. Interferon (IFN)-γ-inducible protein (IP)-10 (IP-10) is a potent inhibitor of angiogenesis and can recruit CXCR3(+) T cells, including CD8(+) T cells, which are important for the control of tumor growth. In this study, we assessed if the combination of IP10-EGFRvIIIscFv with DC-induced CTLs would improve the therapeutic antitumor efficacy. IP10-scFv was generated by linking the human IP-10 gene with the DNA fragment for anti-EGFRvIIIscFv with a (Gly4Ser)3 flexible linker, purified by affinity chromatography, and characterized for its anti-EGFRvIII immunoreactivity and chemotactic activity. DCs were isolated from human peripheral blood monocyte cells and pulsed with EGFRvIII-peptide, then co-cultured with autologous CD8(+) T cells. BALB/c-nu mice were inoculated with human glioma U87-EGFRvIII cells in the brain and treated intracranially with IP10-scFv and/or intravenously with DC-induced CTLs for evaluating the therapeutic effect. Treatment with both IP10-scFv and EGFRvIII peptide-pulsed, DC-induced CTL synergistically inhibited the growth of glioma and prolonged the survival of tumor-bearing mice, which was accompanied by the inhibition of tumor angiogenesis and enhancement of cytotoxicity, thereby increasing the numbers of brain-infiltrating lymphocytes (BILs) and prolonging the residence time of CTLs in the tumor.

  18. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    PubMed

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  19. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kanayo; Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp; Tanaka, Satoshi

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDKmore » inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.« less

  20. Nucleolin antagonist triggers autophagic cell death in human glioblastoma primary cells and decreased in vivo tumor growth in orthotopic brain tumor model

    PubMed Central

    d'Angelo, Michele; Cristiano, Loredana; Galzio, Renato; Destouches, Damien; Florio, Tiziana Marilena; Dhez, Anne Chloé; Astarita, Carlo; Cinque, Benedetta; Fidoamore, Alessia; Rosati, Floriana; Cifone, Maria Grazia; Ippoliti, Rodolfo; Giordano, Antonio; Courty, José; Cimini, Annamaria

    2015-01-01

    Nucleolin (NCL) is highly expressed in several types of cancer and represents an interesting therapeutic target. It is expressed at the plasma membrane of tumor cells, a property which is being used as a marker for several human cancer including glioblastoma. In this study we investigated targeting NCL as a new therapeutic strategy for the treatment of this pathology. To explore this possibility, we studied the effect of an antagonist of NCL, the multivalent pseudopeptide N6L using primary culture of human glioblastoma cells. In this system, N6L inhibits cell growth with different sensitivity depending to NCL localization. Cell cycle analysis indicated that N6L-induced growth reduction was due to a block of the G1/S transition with down-regulation of the expression of cyclin D1 and B2. By monitoring autophagy markers such as p62 and LC3II, we demonstrate that autophagy is enhanced after N6L treatment. In addition, N6L-treatment of mice bearing tumor decreased in vivo tumor growth in orthotopic brain tumor model and increase mice survival. The results obtained indicated an anti-proliferative and pro-autophagic effect of N6L and point towards its possible use as adjuvant agent to the standard therapeutic protocols presently utilized for glioblastoma. PMID:26540346

  1. Intravenous miR-144 inhibits tumor growth in diethylnitrosamine-induced hepatocellular carcinoma in mice.

    PubMed

    He, Quan; Wang, Fangfei; Honda, Takashi; Lindquist, Diana M; Dillman, Jonathan R; Timchenko, Nikolai A; Redington, Andrew N

    2017-10-01

    Previous in vitro studies have demonstrated that miR-144 inhibits hepatocellular carcinoma cell proliferation, invasion, and migration. We have shown that miR-144, injected intravenously, is taken up by the liver and induces endogenous hepatic synthesis of miR-144. We hypothesized that administered miR-144 has tumor-suppressive effects on liver tumor development in vivo. The effects of miR-144 on tumorigenesis and tumor growth were tested in a diethylnitrosamine-induced hepatocellular carcinoma mouse model. MiR-144 injection had no effect on body weight but significantly reduced diethylnitrosamine-induced liver enlargement compared with scrambled microRNA. MiR-144 had no effect on diethylnitrosamine-induced liver tumor number but reduced the tumor size above 50%, as evaluated by magnetic resonance imaging (scrambled microRNA 23.07 ± 5.67 vs miR-144 10.38 ± 2.62, p < 0.05) and histological analysis (scrambled microRNA 30.75 ± 5.41 vs miR-144 15.20 ± 3.41, p < 0.05). The levels of miR-144 was suppressed in tumor tissue compared with non-tumor tissue in all treatment groups (diethylnitrosamine-phosphate-buffered saline non-tumor 1.05 ± 0.09 vs tumor 0.54 ± 0.08, p < 0.01; diethylnitrosamine-scrambled microRNA non-tumor 1.23 ± 0.33 vs tumor 0.44 ± 0.10, p < 0.05; diethylnitrosamine-miR-144 non-tumor 54.72 ± 11.80 vs tumor 11.66 ± 2.75, p < 0.01), but injection of miR-144 greatly increased miR-144 levels both in tumor and non-tumor tissues. Mechanistic studies showed that miR-144 targets epidermal growth factor receptor and inhibits the downstream Src/AKT signaling pathway which has previously been implicated in hepatocellular carcinoma tumorigenesis. Exogenously delivered miR-144 may be a therapeutic strategy to suppress tumor growth in hepatocellular carcinoma.

  2. Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells.

    PubMed

    Kimura, Yoshiyuki; Sumiyoshi, Maho

    2015-01-05

    Tumor growth and metastasis are closely associated with the M2 macrophage activation of tumor-associated macrophages (TAMs) in the tumor microenvironment as well as the development of tumor cells. In this study, we examined the antiproliferative, antitumor, and antimetastatic effects of three dihydroxycoumarins (esculetin, fraxetin, and daphnetin) against osteosarcoma LM8 cells (in vitro) and a highly metastatic model in LM8-bearing mice (in vivo). Esculetin (20-100μM) inhibited the proliferation of LM8 cells, whereas fraxetin and daphnetin had no effect. Esculetin inhibited the expressions of cyclin D1, cyclin-dependent kinase (CDK) 4 and matrix metalloproteinase (MMP)-2, and production of both transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF) in LM8 cells. Esculetin (3 or 10mg/kg) and fraxetin (10mg/kg) inhibited tumor growth and metastasis to the lung or liver, whereas daphnetin did not. These results suggested that the antitumor and antimetastatic actions of esculetin may be partly attributed to G1 arrest by the inhibition of cyclin D1 and CDK4 expression, while its antiangiogenic action may have been due to the inhibition of MMP-2 expression and TGF-β1 and VEGF productions at tumor sites. Esculetin (10-100μM) and fraxetin (50-100μM) inhibited the production of interleukin (IL)-10, monocyte chemoattractant protein (MCP)-1, and TGF-β1 during the differentiation of M2 macrophages by reducing the phosphorylation of Stat 3 without affecting its expression. These results also suggested that the antitumor and antimetastatic actions of esculetin or fraxetin may be due to the regulated activation of TAM by M2 macrophage differentiation in the tumor microenvironment. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Inhibition of Notch signaling alters the phenotype of orthotopic tumors formed from glioblastoma multiforme neurosphere cells but does not hamper intracranial tumor growth regardless of endogene Notch pathway signature.

    PubMed

    Kristoffersen, Karina; Nedergaard, Mette Kjølhede; Villingshøj, Mette; Borup, Rehannah; Broholm, Helle; Kjær, Andreas; Poulsen, Hans Skovgaard; Stockhausen, Marie-Thérése

    2014-07-01

    Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in the devastating brain tumor glioblastoma multiforme (GBM). bCSC are proposed a central role in tumor initiation, progression, treatment resistance and relapse and as such present a promising target in GBM research. The Notch signaling pathway is often deregulated in GBM and we have previously characterized GBM-derived bCSC cultures based on their expression of the Notch-1 receptor and found that it could be used as predictive marker for the effect of Notch inhibition. The aim of the present project was therefore to further elucidate the significance of Notch pathway activity for the tumorigenic properties of GBM-derived bCSC. Human-derived GBM xenograft cells previously established as NSC-like neurosphere cultures were used. Notch inhibition was accomplished by exposing the cells to the gamma-secretase inhibitor DAPT prior to gene expression analysis and intracranial injection into immunocompromised mice. By analyzing the expression of several Notch pathway components, we found that the cultures indeed displayed different Notch pathway signatures. However, when DAPT-treated neurosphere cells were injected into the brain of immunocompromised mice, no increase in survival was obtained regardless of Notch pathway signature and Notch inhibition. We did however observe a decrease in the expression of the stem cell marker Nestin, an increase in the proliferative marker Ki-67 and an increased number of abnormal vessels in tumors formed from DAPT-treated, high Notch-1 expressing cultures, when compared with the control. Based on the presented results we propose that Notch inhibition partly induces differentiation of bCSC, and selects for a cell type that more strongly induces angiogenesis if the treatment is not sustained. However, this more differentiated cell type might prove to be more sensitive to conventional therapies.

  4. Inhibition of Notch-1 pathway is involved in rottlerin-induced tumor suppressive function in nasopharyngeal carcinoma cells

    PubMed Central

    Hou, Yingying; Feng, Shaoyan; Wang, Lixia; Zhao, Zhe; Su, Jingna; Yin, Xuyuan; Zheng, Nana; Zhou, Xiuxia; Xia, Jun; Wang, Zhiwei

    2017-01-01

    Recent studies have revealed that rottlerin is a natural chemical drug to exert its anti-cancer activity. However, the molecular mechanisms of rottlerin-induced tumor suppressive function have not been fully elucidated. Notch signaling pathway has been characterized to play a crucial role in tumorigenesis. Therefore, regulation of Notch pathway could be beneficial for the treatment of human cancer. The aims of our current study were to explore whether rottlerin could suppress Notch-1 expression, which leads to inhibition of cell proliferation, migration and invasion in nasopharyngeal carcinoma cells. We performed several approaches, such as CTG, Flow cytometry, scratch healing assay, transwell and Western blotting. Our results showed that rottlerin treatment inhibited cell growth, migration and invasion, and triggered apoptosis, and arrested cell cycle to G1 phase. Moreover, the expression of Notch-1 was obvious decreased in nasopharyngeal carcinoma cells after rottlerin treatment. Importantly, overexpression of Notch-1 promoted cell growth and invasion, whereas down-regulation of Notch-1 inhibited cell growth and invasion in nasopharyngeal carcinoma cells. Notably, we found the over-expression of Notch-1 could abrogate the anti-cancer function induced by rottlerin. Strikingly, our study implied that Notch-1 could be a useful target of rottlerin for the prevention and treatment of human nasopharyngeal carcinoma. PMID:28977931

  5. Cytosolic phospholipaseA2 inhibition with PLA-695 radiosensitizes tumors in lung cancer animal models.

    PubMed

    Thotala, Dinesh; Craft, Jeffrey M; Ferraro, Daniel J; Kotipatruni, Rama P; Bhave, Sandeep R; Jaboin, Jerry J; Hallahan, Dennis E

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted.

  6. Intraperitoneal administration of tumor-targeting Salmonella typhimurium A1-R inhibits disseminated human ovarian cancer and extends survival in nude mice

    PubMed Central

    Zhang, Yong; Zhao, Ming; Yano, Shuya; Uehara, Fuminari; Yamamoto, Mako; Hiroshima, Yukihiko; Toneri, Makoto; Bouvet, Michael; Matsubara, Hisahiro; Tsuchiya, Hiroyuki; Hoffman, Robert M.

    2015-01-01

    Peritoneal disseminated cancer is highly treatment resistant. We here report the efficacy of intraperitoneal (i.p.) administration of tumor-targeting Salmonella typhimurium A1-R in a nude mouse model of disseminated human ovarian cancer. The mouse model was established by intraperitoneal injection of the human ovarian cancer cell line SKOV3-GFP. Seven days after implantation, mice were treated with S. typhimurium A1-R via intravenous (i.v.) or i.p. administration at the same dose, 5×107 CFU, once per week. Both i.v. and i.p. treatments effected prolonged survival compared with the untreated control group (P=0.025 and P<0.001, respectively). However, i.p. treatment was less toxic than i.v. treatment. Tumor-specific targeting of S. typhimurium A1-R was confirmed with bacterial culture from tumors and various organs and tumor or organ colony formation after i.v. or i.p. injection. Selective tumor targeting was most effective with i.p. administration. The results of the present study show S. typhimurium A1-R has promising clinical potential for disseminated ovarian cancer, especially via i.p. administration. PMID:25957417

  7. Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum

    NASA Astrophysics Data System (ADS)

    Chen, Shaodan; Yong, Tianqiao; Zhang, Yifang; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen

    2017-10-01

    This study was carried out to isolate chemical constituents from the lipid enriched fraction of Ganoderma lucidum extract and to evaluate their anti-proliferative effect on cancer cell lines and human umbilical vein endothelial cells. Ergosterol derivatives (1-14) were isolated from the lipid enriched fraction of G. lucidum. Their structures were established on the basis of spectroscopic analyses or by comparison of mass and NMR spectral data with those reported previously. Amongst, compound 1 was isolated and identified as a new compound. All the compounds were evaluated for their inhibitory effect on tumor cells and human umbilical vein endothelial cells in vitro. Compounds 9-13 displayed inhibitory activity against two tumor cell lines and human umbilical vein endothelial cells, which indicated that these four compounds had both anti-tumor and anti-angiogenesis activities. Compound 2 had significant selective inhibition against two tumor cell lines, while 3 exhibited selective inhibition against human umbilical vein endothelial cells. The structure–activity relationships for inhibiting human HepG2 cells were revealed by 3D-QASR. Ergosterol content in different parts of the raw material and products of G. lucidum was quantified. This study provides a basis for further development and utilization of ergosterol derivatives as natural nutraceuticals and functional food ingredients, or as source of new potential antitumor or anti-angiogenesis chemotherapy agent.

  8. IGF-1 receptor inhibition by picropodophyllin in medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohshima-Hosoyama, Sachiko; Hosoyama, Tohru; Nelon, Laura D.

    2010-09-03

    Research highlights: {yields} Igf1r is overexpressed and activated in a Sonic Hedgehog driven model of medulloblastoma. {yields} Picropodophyllin targets and abrogates IGF signaling in medulloblastoma. {yields} Picropodophyllin inhibits medulloblastoma tumor cell growth by induction of apoptosis. -- Abstract: The insulin-like growth factor-1 receptor (Igf1r) is a multifunctional membrane-associated tyrosine kinase associated with regulation of transformation, proliferation, differentiation and apoptosis. Increased IGF pathway activity has been reported in human and murine medulloblastoma. Tumors from our genetically-engineered medulloblastoma mouse model over-express Igf1r, and thus this mouse model is a good platform with which to study the role of Igf1r in tumor progression.more » We hypothesize that inhibition of IGF pathway in medulloblastoma can slow or inhibit tumor growth and metastasis. To test our hypothesis, we tested the role of IGF in tumor growth in vitro by treatment with the tyrosine kinase small molecule inhibitor, picropodophyllin (PPP), which strongly inhibits the IGF pathway. Our results demonstrate that PPP-mediated downregulation of the IGF pathway inhibits mouse tumor cell growth and induces apoptotic cell death in vitro in primary medulloblastoma cultures that are most reflective of tumor cell behavior in vivo.« less

  9. Modulation of the tumor microvasculature by phosphoinositide-3 kinase inhibition increases doxorubicin delivery in vivo.

    PubMed

    Qayum, Naseer; Im, Jaehong; Stratford, Michael R; Bernhard, Eric J; McKenna, W Gillies; Muschel, Ruth J

    2012-01-01

    Because effective drug delivery is often limited by inadequate vasculature within the tumor, the ability to modulate the tumor microenvironment is one strategy that may achieve better drug distribution. We have previously shown that treatment of mice bearing tumors with phosphoinositide-3 kinase (PI3K) inhibitors alters vascular structure in a manner analogous to vascular normalization and results in increased perfusion of the tumor. On the basis of that result, we asked whether inhibition of PI3K would improve chemotherapy delivery. Mice with xenografts using the cell line SQ20B bearing a hypoxia marker or MMTV-neu transgenic mice with spontaneous breast tumors were treated with the class I PI3K inhibitor GDC-0941. The tumor vasculature was evaluated by Doppler ultrasound, and histology. The delivery of doxorubicin was assessed using whole animal fluorescence, distribution on histologic sections, high-performance liquid chromatography on tumor lysates, and tumor growth delay. Treatment with GDC-0941 led to approximately three-fold increases in perfusion, substantially reduced hypoxia and vascular normalization by histology. Significantly increased amounts of doxorubicin were delivered to the tumors correlating with synergistic tumor growth delay. The GDC-0941 itself had no effect on tumor growth. Inhibition of PI3K led to vascular normalization and improved delivery of a chemotherapeutic agent. This study highlights the importance of the microvascular effects of some novel oncogenic signaling inhibitors and the need to take those changes into account in the design of clinical trials many of which use combinations of chemotherapeutic agents. © 2011 AACR.

  10. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C 82(OH) 22 and its implication for de novo design of nanomedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, S. -g.; Zhou, G.; Yang, P.

    2012-09-18

    Pancreatic adenocarcinoma is the most lethal of the solid tumors and the fourth-leading cause of cancer-related death in North America. Matrix metalloproteinases (MMPs) have long been targeted as a potential anticancer therapy because of their seminal role in angiogenesis and extracellular matrix (ECM) degradation of tumor survival and invasion. However, the inhibition specificity to MMPs and the molecular-level understanding of the inhibition mechanism remain largely unresolved. Here, we found that endohedral metallofullerenol Gd@C 82(OH) 22 can successfully inhibit the neoplastic activity with experiments at animal, tissue, and cellular levels. Gd@C 82(OH) 22 effectively blocks tumor growth in human pancreatic cancermore » xenografts in a nude mouse model. Enzyme activity assays also show Gd@C 82(OH) 22 not only suppresses the expression of MMPs but also significantly reduces their activities. We then applied large-scale molecular-dynamics simulations to illustrate the molecular mechanism by studying the Gd@C 82(OH) 22–MMP-9 interactions in atomic detail. Our data demonstrated that Gd@C 82(OH) 22 inhibits MMP-9 mainly via an exocite interaction, whereas the well-known zinc catalytic site only plays a minimal role. Steered by nonspecific electrostatic, hydrophobic, and specific hydrogen-bonding interactions, Gd@C 82(OH) 22 exhibits specific binding modes near the ligand-specificity loop S1', thereby inhibiting MMP-9 activity. Both the suppression of MMP expression and specific binding mode make Gd@C 82(OH) 22 a potentially more effective nanomedicine for pancreatic cancer than traditional medicines, which usually target the proteolytic sites directly but fail in selective inhibition. Finally, our findings provide insights for de novo design of nanomedicines for fatal diseases such as pancreatic cancer.« less

  11. MITOSTATIN, a putative tumor suppressor on chromosome 12q24.1, is downregulated in human bladder and breast cancer.

    PubMed

    Vecchione, A; Fassan, M; Anesti, V; Morrione, A; Goldoni, S; Baldassarre, G; Byrne, D; D'Arca, D; Palazzo, J P; Lloyd, J; Scorrano, L; Gomella, L G; Iozzo, R V; Baffa, R

    2009-01-15

    Allelic deletions on human chromosome 12q24 are frequently reported in a variety of malignant neoplasms, indicating the presence of a tumor suppressor gene(s) in this chromosomal region. However, no reasonable candidate has been identified so far. In this study, we report the cloning and functional characterization of a novel mitochondrial protein with tumor suppressor activity, henceforth designated MITOSTATIN. Human MITOSTATIN was found within a 3.2-kb transcript, which encoded a approximately 62 kDa, ubiquitously expressed protein with little homology to any known protein. We found homozygous deletions and mutations of MITOSTATIN gene in approximately 5 and approximately 11% of various cancer-derived cells and solid tumors, respectively. When transiently overexpressed, MITOSTATIN inhibited colony formation, tumor cell growth and was proapoptotic, all features shared by established tumor suppressor genes. We discovered a specific link between MITOSTATIN overexpression and downregulation of Hsp27. Conversely, MITOSTATIN knockdown cells showed an increase in cell growth and cell survival rates. Finally, MITOSTATIN expression was significantly reduced in primary bladder and breast tumors, and its reduction was associated with advanced tumor stages. Our findings support the hypothesis that MITOSTATIN has many hallmarks of a classical tumor suppressor in solid tumors and may play an important role in cancer development and progression.

  12. Immunostimulatory CpG on Carbon Nanotubes Selectively Inhibits Migration of Brain Tumor Cells.

    PubMed

    Alizadeh, Darya; White, Ethan E; Sanchez, Teresa C; Liu, Shunan; Zhang, Leying; Badie, Behnam; Berlin, Jacob M

    2018-05-16

    Even when treated with aggressive current therapies, patients with glioblastoma usually survive less than two years and exhibit a high rate of recurrence. CpG is an oligonucleotide that activates the innate immune system via Toll-like receptor 9 (TLR9) activation. Injection of CpG into glioblastoma tumors showed promise as an immunotherapy in mouse models but proved disappointing in human trials. One aspect of glioma that is not addressed by CpG therapy alone is the highly invasive nature of glioma cells, which is associated with resistance to radiation and chemotherapy. Here, we demonstrate that single-walled carbon nanotubes noncovalently functionalized with CpG (SWNT/CpG), which retain the immunostimulatory property of the CpG, selectively inhibit the migration of glioma cells and not macrophages without affecting cell viability or proliferation. SWNT/CpG also selectively decreased NF-κB activation in glioma cells, while activating macrophages by induction of the TLR9/NF-κB pathway, as we have previously reported. The migration inhibition of glioma cells was correlated with selective reduction of intracellular levels of reactive oxygen species (ROS), suggesting that an antioxidant-based mechanism mediates the observed effects. To the best of our knowledge, SWNT/CpG is the first nanomaterial that inhibits the migration of cancer cells while stimulating the immune system.

  13. Fusion with human lung cancer cells elongates the life span of human umbilical endothelial cells and enhances the anti-tumor immunity.

    PubMed

    Mu, Xiyan; Fang, Chunju; Zhou, Jing; Xi, Yufeng; Zhang, Li; Wei, Yuquan; Yi, Tao; Wu, Yang; Zhao, Xia

    2016-01-01

    Human umbilical endothelial cells (HUVECs) have been proved as an effective whole-cell vaccine inhibiting tumor angiogenesis. However, HUVECs divide a very limited number of passages before entering replicative senescence, which limits its application for clinical situation. Here, we fused HUVECs with human pulmonary adenocarcinoma cell line A549s and investigated the anti-tumor immunity of the hybrids against mice Lewis lung cancer. HUVECs were fused with A549s using polyethylene glycol and were sorted by flow cytometry. The fusion cells (HUVEC-A549s) were confirmed by testing the expression of telomerase and VE-cadherin, the senescence-associated β-galactosidase activity, and tube formation ability. HUVEC-A549s were then irradiated and injected into the C57BL/6 mice of protective, therapeutic, and metastatic models. The mechanism of the anti-tumor immunity was explored by analyzing mice sera, spleen T lymphocytes, tumor microenvironment, and histological changes. HUVEC-A549s coexpressed tumor and endothelial markers and maintained the vascular function of tube forming at passage 30 without showing signs of senescence. HUVEC-A549s could induce protective and therapeutic anti-tumor activity for LL(2) model and presented stronger activity against metastasis than HUVECs. Both humoral and cellular immunity were participated in the anti-angiogenic activity, as HUVECs-neutralizing IgG and HUVECs-toxic lymphocytes were increased. Angiogenic mediators (VEGF and TGF-β) and tumor microenvironment cells MDSCs and Tregs were also diminished. Our findings might provide a novel strategy for HUVECs-related immunotherapy, and this vaccine requires lower culture condition than primary HUVECs while enhancing the anti-tumor immunity.

  14. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    PubMed

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.

  15. Chronic anti-inflammatory drug therapy inhibits gel-forming mucin production in a murine xenograft model of human pseudomyxoma peritonei.

    PubMed

    Choudry, Haroon Asif; Mavanur, Arun; O'Malley, Mark E; Zeh, Herbert J; Guo, Z Sheng; Bartlett, David L

    2012-05-01

    Intraperitoneal accumulation of mucinous ascites in pseudomyxoma peritonei (PMP) promotes an inflammatory/fibrotic reaction that progresses to bowel obstruction and eventual patient demise. Cytokines and inflammation-associated transcription factor binding sites, such as glucocorticoid response elements and COX-2, regulate secretory mucin, specifically MUC2, production. We hypothesized that anti-inflammatory drugs targeting inflammation-associated pathways may reduce mucin production and subsequent disease morbidity in PMP. The effects of dexamethasone and Celebrex were assessed in mucin-secreting human colon cancer LS174T cells in vitro and murine xenograft models of LS174T and human appendiceal PMP in vivo by serial parametric measurements, MUC2 transcripts via real-time RT-PCR, and MUC2 protein expression via immunofluorescence assays. Dexamethasone significantly inhibited basal MUC2 mRNA levels in LS174T cells, inhibited mucinous tumor accumulation in an intraperitoneal PMP xenograft model, and prolonged survival in a subcutaneous LS174T xenograft model. Celebrex significantly inhibited sodium butyrate-stimulated MUC2 mRNA levels in LS174T cells and demonstrated a statistically nonsignificant trend toward reduced mucinous tumor growth and prolonged survival in the xenograft models. MUC2 protein analysis by immunofluorescence demonstrated a dual effect of dexamethasone on mucin production and tumor cell count. Inflammatory mediators are known to regulate mucin production and may promote overexpression of MUC2 by neoplastic cells with goblet cell phenotype in PMP. Anti-inflammatory drugs, dexamethasone and Celebrex, could inhibit extracellular mucin production in PMP by targeting inflammatory cascades and, therefore, may decrease compressive symptoms, increase the disease-free interval, and reduce the extent or frequency of morbid cytoreductive surgeries.

  16. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness.

    PubMed

    Galaup, Ariane; Cazes, Aurelie; Le Jan, Sebastien; Philippe, Josette; Connault, Elisabeth; Le Coz, Emmanuelle; Mekid, Halima; Mir, Lluis M; Opolon, Paule; Corvol, Pierre; Monnot, Catherine; Germain, Stephane

    2006-12-05

    Angiopoietin-like 4 (ANGPTL4), a secreted protein of the angiopoietin-like family, is induced by hypoxia in both tumor and endothelial cells as well as in hypoxic perinecrotic areas of numerous cancers. Here, we investigated whether ANGPTL4 might affect tumor growth as well as metastasis. Metastatic 3LL cells were therefore xenografted into control mice and mice in which ANGPTL4 was expressed by using in vivo DNA electrotransfer. Whereas primary tumors grew at a similar rate in both groups, 3LL cells metastasized less efficiently to the lungs of mice that expressed ANGPTL4. Fewer 3LL emboli were observed in primary tumors, suggesting that intravasation of 3LL cells was inhibited by ANGPTL4. Furthermore, melanoma B16F0 cells injected into the retro-orbital sinus also metastasized less efficiently in mice expressing ANGPTL4. Although B16F0 cells were observed in lung vessels, they rarely invaded the parenchyma, suggesting that ANGPTL4 affects extravasation. In addition, recombinant B16F0 cells that overexpress ANGPTL4 were generated, showing a lower capacity for in vitro migration, invasion, and adhesion than control cells. Expression of ANGPTL4 induced reorganization of the actin cytoskeleton through inhibition of actin stress fiber formation and vinculin localization at focal contacts. Together, these results show that ANGPTL4, through its action on both vascular and tumor compartments, prevents the metastatic process by inhibiting vascular activity as well as tumor cell motility and invasiveness.

  17. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness

    PubMed Central

    Galaup, Ariane; Cazes, Aurelie; Le Jan, Sebastien; Philippe, Josette; Connault, Elisabeth; Le Coz, Emmanuelle; Mekid, Halima; Mir, Lluis M.; Opolon, Paule; Corvol, Pierre; Monnot, Catherine; Germain, Stephane

    2006-01-01

    Angiopoietin-like 4 (ANGPTL4), a secreted protein of the angiopoietin-like family, is induced by hypoxia in both tumor and endothelial cells as well as in hypoxic perinecrotic areas of numerous cancers. Here, we investigated whether ANGPTL4 might affect tumor growth as well as metastasis. Metastatic 3LL cells were therefore xenografted into control mice and mice in which ANGPTL4 was expressed by using in vivo DNA electrotransfer. Whereas primary tumors grew at a similar rate in both groups, 3LL cells metastasized less efficiently to the lungs of mice that expressed ANGPTL4. Fewer 3LL emboli were observed in primary tumors, suggesting that intravasation of 3LL cells was inhibited by ANGPTL4. Furthermore, melanoma B16F0 cells injected into the retro-orbital sinus also metastasized less efficiently in mice expressing ANGPTL4. Although B16F0 cells were observed in lung vessels, they rarely invaded the parenchyma, suggesting that ANGPTL4 affects extravasation. In addition, recombinant B16F0 cells that overexpress ANGPTL4 were generated, showing a lower capacity for in vitro migration, invasion, and adhesion than control cells. Expression of ANGPTL4 induced reorganization of the actin cytoskeleton through inhibition of actin stress fiber formation and vinculin localization at focal contacts. Together, these results show that ANGPTL4, through its action on both vascular and tumor compartments, prevents the metastatic process by inhibiting vascular activity as well as tumor cell motility and invasiveness. PMID:17130448

  18. NEMO Binding Domain peptide inhibits constitutive NF-κB activity and reduces tumor burden in a canine model of relapsed, refractory Diffuse Large B-Cell Lymphoma

    PubMed Central

    Gaurnier-Hausser, Anita; Patel, Reema; Baldwin, Albert S.; May, Michael J.; Mason, Nicola J.

    2011-01-01

    Purpose Activated B-Cell Diffuse Large B-Cell Lymphoma (ABC-DLBCL) is an aggressive, poorly chemoresponsive lymphoid malignancy characterized by constitutive canonical NF-κB activity that promotes lymphomagenesis and chemotherapy resistance via over-expression of anti-apoptotic NF-κB target genes. Inhibition of the canonical NF-κB pathway may therefore have therapeutic relevance in ABC-DLBCL. Here we set out to determine whether dogs with spontaneous DLBCL have comparative aberrant constitutive NF-κB activity and to determine the therapeutic relevance of NF-κB inhibition in dogs with relapsed, resistant DLBCL. Experimental Design Canonical NF-κB activity was evaluated by electrophoretic mobility shift assays and immunoblot analyses, and NF-κB target gene expression was measured by qRT-PCR. Primary malignant canine B lymphocytes were treated with the selective IKK complex inhibitor Nemo Binding Domain (NBD) peptide, and evaluated for NF-κB activity and apoptosis. NBD peptide was administered intra-nodally to dogs with relapsed B-cell lymphoma and NF-κB target gene expression and tumor burden were evaluated pre and post treatment. Results Constitutive canonical NF-κB activity and increased NF-κB target gene expression was detected in primary DLBCL tissue. NBD peptide inhibited this activity and induced apoptosis of primary malignant B cells in vitro. Intra-tumoral injections of NBD peptide to dogs with relapsed DLBCL inhibited NF-κB target gene expression and reduced tumor burden. Conclusions This work shows that dogs with spontaneous DLBCL represent a clinically relevant, spontaneous, large animal model for human ABC-DLBCL and demonstrates the therapeutic relevance of NF-κB inhibition in the treatment of ABC-DLBCL. These results have important translational relevance for ABC-DLBCL treatment in human patients. PMID:21610150

  19. Caffeic acid phenethyl ester inhibits diesel exhaust particle-induced inflammation of human middle ear epithelial cells via NOX4 inhibition.

    PubMed

    Jo, Sun-Young; Lee, Naree; Hong, Sung-Moon; Jung, Hak Hyun; Chae, Sung-Won

    2013-09-01

    Otitis media is one of the most common diseases in pediatric populations. Recent research on its pathogenesis has focused on air pollution. Chronic exposure to particulate air pollution is associated with the impairment of middle ear function. However, the mechanisms and the underlying inhibitory pathways, especially in the human middle ear, remain unknown. Caffeic acid phenethyl ester (CAPE) is a biologically active ingredient of propolis, a product of honeybee hives, which has anti-oxidative and anti-inflammatory activities. The aim of this study was to evaluate the inhibitory effect of CAPE on diesel exhaust particle (DEP)-induced inflammation of human middle ear epithelial cells and to determine the underlying pathway of the action of CAPE. The inflammatory damage caused by DEPs and the anti-inflammatory effects of CAPE were determined by measuring the levels of tumor necrosis factor alpha and nicotinamide adenine dinucleotide phosphate oxidase (NOX) 4 with real-time reverse transcription polymerase chain reaction and Western blot analysis. The oxidative stress induced by DEPs and the anti-oxidative effects of CAPE were directly evaluated by measuring reactive oxygen species production by use of flow cytometric analysis of 2',7'-dichlorofluorescein diacetate. The effects of CAPE were compared with those of N-acetyl-L-cysteine, which has anti-oxidative and anti-inflammatory effects. Use of CAPE significantly inhibited DEP-induced up-regulation of tumor necrosis factor alpha and NOX4 expression in a dose- and time-dependent manner. The accumulation of reactive oxygen species induced by DEPs was decreased by pretreatment with CAPE. The anti-inflammatory and anti-oxidative effects of CAPE were similar to those of N-acetyl-L-cysteine. The inflammation induced by DEP is reduced by CAPE via the inhibition of NOX4 expression. These findings suggest that CAPE might be used as a therapeutic agent against DEP-induced inflammation of human middle ear epithelial cells.

  20. Paeoniflorin inhibits cell growth and induces cell cycle arrest through inhibition of FoxM1 in colorectal cancer cells.

    PubMed

    Yue, Meng; Li, Shiquan; Yan, Guoqiang; Li, Chenyao; Kang, Zhenhua

    2018-01-01

    Paeoniflorin (PF) exhibits tumor suppressive functions in a variety of human cancers. However, the function of PF and molecular mechanism in colorectal cancer are elusive. In the present study, we investigated whether PF could exert its antiproliferative activity, anti-migration, and anti-invasive function in colorectal cancer cells. We found that PF inhibited cell growth and induced apoptosis and blocked cell cycle progression in the G0/G1 phase in colorectal cancer cells. Moreover, we found that PF suppressed cell migration and invasion in colorectal cancer cells. FoxM1 has been reported to play an important oncogenic role in human cancers. We also determine whether PF inhibited the expression of FoxM1, leading to its anti-cancer activity. We found that PF treatment in colorectal cancer cells resulted in down-regulation of FoxM1. The rescue experiments showed that overexpression of FoxM1 abrogated the tumor suppressive function induced by PF treatment. Notably, depletion of FoxM1 promoted the anti-tumor activity of PF in colorectal cancer cells. Therefore, inhibition of FoxM1 could participate in the anti-tumor activity of PF in colorectal cancer cells.

  1. Cytosolic PhospholipaseA2 Inhibition with PLA-695 Radiosensitizes Tumors in Lung Cancer Animal Models

    PubMed Central

    Ferraro, Daniel J.; Kotipatruni, Rama P.; Bhave, Sandeep R.; Jaboin, Jerry J.; Hallahan, Dennis E.

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted. PMID:23894523

  2. Hippo Cascade Controls Lineage Commitment of Liver Tumors in Mice and Humans.

    PubMed

    Zhang, Shanshan; Wang, Jingxiao; Wang, Haichuan; Fan, Lingling; Fan, Biao; Zeng, Billy; Tao, Junyan; Li, Xiaolei; Che, Li; Cigliano, Antonio; Ribback, Silvia; Dombrowski, Frank; Chen, Bin; Cong, Wenming; Wei, Lixin; Calvisi, Diego F; Chen, Xin

    2018-04-01

    Primary liver cancer consists mainly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). A subset of human HCCs expresses a ICC-like gene signature and is classified as ICC-like HCC. The Hippo pathway is a critical regulator of normal and malignant liver development. However, the precise function(s) of the Hippo cascade along liver carcinogenesis remain to be fully delineated. The role of the Hippo pathway in a murine mixed HCC/ICC model induced by activated forms of AKT and Ras oncogenes (AKT/Ras) was investigated. The authors demonstrated the inactivation of Hippo in AKT/Ras liver tumors leading to nuclear localization of Yap and TAZ. Coexpression of AKT/Ras with Lats2, which activates Hippo, or the dominant negative form of TEAD2 (dnTEAD2), which blocks Yap/TAZ activity, resulted in delayed hepatocarcinogenesis and elimination of ICC-like lesions in the liver. Mechanistically, Notch2 expression was found to be down-regulated by the Hippo pathway in liver tumors. Overexpression of Lats2 or dnTEAD2 in human HCC cell lines inhibited their growth and led to the decreased expression of ICC-like markers, as well as Notch2 expression. Altogether, this study supports the key role of the Hippo cascade in regulating the differentiation status of liver tumors. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Suppression of tumor cell invasiveness by hydrolyzable tannins (plant polyphenols) via the inhibition of matrix metalloproteinase-2/-9 activity.

    PubMed

    Tanimura, Susumu; Kadomoto, Ryoji; Tanaka, Takashi; Zhang, Ying-Jun; Kouno, Isao; Kohno, Michiaki

    2005-05-20

    Elevated expression of matrix metalloproteinases (MMPs), especially that of MMP-2 and MMP-9, is associated with increased metastatic potential in many tumor cells. Recently, green tea polyphenol epigallocatechin-3-O-gallate (EGCG) has been shown to inhibit the MMP-2/-9 activity as well as the invasiveness of tumor cells. In this study, we have examined the inhibitory effect of hydrolyzable tannins (plant polyphenols) on the tumor cell invasion. Our results demonstrate that beta-d-glucose whose hydroxy groups are substituted entirely with galloyl group and further some of them are cross-linked to form hexahydroxydiphenoyl group, for example, suppresses the invasiveness of tumor cells much more potently than EGCG via direct inhibition of the MMP-2/-9 activity. Among those examined, 1,2,4-tri-O-galloyl-3,6-hexahydroxydiphenoyl-beta-d-glucose (punicafolin) inhibits the invasion of HT1080 fibrosarcoma cells most potently. These hydrolyzable tannins would provide new leads for the development of potent inhibitors against tumor metastasis.

  4. Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1.

    PubMed

    Guo, Yue; Shu, Limin; Zhang, Chengyue; Su, Zheng-Yuan; Kong, Ah-Ng Tony

    2015-03-15

    Colorectal cancer remains the most prevalent malignancy in humans. The impact of epigenetic alterations on the development of this complex disease is now being recognized. The dynamic and reversible nature of epigenetic modifications makes them a promising target in colorectal cancer chemoprevention and treatment. Curcumin (CUR), the major component in Curcuma longa, has been shown as a potent chemopreventive phytochemical that modulates various signaling pathways. Deleted in lung and esophageal cancer 1 (DLEC1) is a tumor suppressor gene with reduced transcriptional activity and promoter hypermethylation in various cancers, including colorectal cancer. In the present study, we aimed to investigate the inhibitory role of DLEC1 in anchorage-independent growth of the human colorectal adenocarcinoma HT29 cells and epigenetic regulation by CUR. Specifically, we found that CUR treatment inhibited colony formation of HT29 cells, whereas stable knockdown of DLEC1 using lentiviral short hairpin RNA vector increased cell proliferation and colony formation. Knockdown of DLEC1 in HT29 cells attenuated the ability of CUR to inhibit anchorage-independent growth. Methylation-specific polymerase chain reaction (MSP), bisulfite genomic sequencing, and methylated DNA immunoprecipitation revealed that CUR decreased CpG methylation of the DLEC1 promoter in HT29 cells after 5 days of treatment, corresponding to increased mRNA expression of DLEC1. Furthermore, CUR decreased the protein expression of DNA methyltransferases and subtypes of histone deacetylases (HDAC4, 5, 6, and 8). Taken together, our results suggest that the inhibitory effect of CUR on anchorage-independent growth of HT29 cells could, at least in part, involve the epigenetic demethylation and up-regulation of DLEC1. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Pharmacological or genetic inhibition of LDHA reverses tumor progression of pediatric osteosarcoma.

    PubMed

    Gao, Shan; Tu, Dan-Na; Li, Heng; Jiang, Jian-Xin; Cao, Xin; You, Jin-Bin; Zhou, Xiao-Qin

    2016-07-01

    Reprogrammed energy metabolism is an emerging hallmark of cancer. Lactate dehydrogenase A (LDHA), a key enzyme involved in anaerobic glycolysis, is frequently deregulated in human malignancies. However, limited knowledge is known about its roles in the progression of osteosarcoma (OS). In this study, we found that LDHA is commonly upregulated in four OS cell lines compared with the normal osteoblast cells (hFOB1.19). Treatment with FX11, a specific inhibitor of LDHA, significantly reduced LDHA activity, and inhibited cell proliferation and invasive potential in a dose dependent manner. Genetic silencing of LDHA resulted in a decreased lactate level in the culture medium, reduced cell viability and decreased cell invasion ability. Meanwhile, silencing of LDHA also compromised tumorigenesis in vivo. Furthermore, knockdown of LDHA remarkably reduced extracellular acidification rate (ECAR) as well as glucose consumption. In the presence of 2-DG, a glycolysis inhibitor, LDHA-mediated cell proliferation and invasion were completely blocked, indicating the oncogenic activities of LDHA may dependent on Warburg effect. Finally, pharmacological inhibition of c-Myc or HIF1α significantly attenuated LDHA expression. Taken together, upregulated LDHA facilitates tumor progression of OS and might be a potential target for OS treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Validating the pivotal role of the immune system in low-dose radiation-induced tumor inhibition in Lewis lung cancer-bearing mice.

    PubMed

    Zhou, Lei; Zhang, Xiaoying; Li, Hui; Niu, Chao; Yu, Dehai; Yang, Guozi; Liang, Xinyue; Wen, Xue; Li, Min; Cui, Jiuwei

    2018-04-01

    Although low-dose radiation (LDR) possesses the two distinct functions of inducing hormesis and adaptive responses, which result in immune enhancement and tumor inhibition, its clinical applications have not yet been elucidated. The major obstacle that hinders the application of LDR in the clinical setting is that the mechanisms underlying induction of tumor inhibition are unclear, and the risks associated with LDR are still unknown. Thus, to overcome this obstacle and elucidate the mechanisms mediating the antitumor effects of LDR, in this study, we established an in vivo lung cancer model to investigate the participation of the immune system in LDR-induced tumor inhibition and validated the pivotal role of the immune system by impairing immunity with high-dose radiation (HDR) of 1 Gy. Additionally, the LDR-induced adaptive response of the immune system was also observed by sequential HDR treatment in this mouse model. We found that LDR-activated T cells and natural killer cells and increased the cytotoxicity of splenocytes and the infiltration of T cells in the tumor tissues. In contrast, when immune function was impaired by HDR pretreatment, LDR could not induce tumor inhibition. However, when LDR was administered before HDR, the immunity could be protected from impairment, and tumor growth could be inhibited to some extent, indicating the induction of the immune adaptive response by LDR. Therefore, we demonstrated that immune enhancement played a key role in LDR-induced tumor inhibition. These findings emphasized the importance of the immune response in tumor radiotherapy and may help promote the application of LDR as a novel approach in clinical practice. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  7. Stat3 orchestrates interaction between endothelial and tumor cells and inhibition of Stat3 suppresses brain metastasis of breast cancer cells.

    PubMed

    Lee, Hsueh-Te; Xue, Jianfei; Chou, Ping-Chieh; Zhou, Aidong; Yang, Phillip; Conrad, Charles A; Aldape, Kenneth D; Priebe, Waldemar; Patterson, Cam; Sawaya, Raymond; Xie, Keping; Huang, Suyun

    2015-04-30

    Brain metastasis is a major cause of morbidity and mortality in patients with breast cancer. Our previous studies indicated that Stat3 plays an important role in brain metastasis. Here, we present evidence that Stat3 functions at the level of the microenvironment of brain metastases. Stat3 controlled constitutive and inducible VEGFR2 expression in tumor-associated brain endothelial cells. Furthermore, inhibition of Stat3 by WP1066 decreased the incidence of brain metastases and increased survival in a preclinical model of breast cancer brain metastasis. WP1066 inhibited Stat3 activation in tumor-associated endothelial cells, reducing their infiltration and angiogenesis. WP1066 also inhibited breast cancer cell invasion. Our results indicate that WP1066 can inhibit tumor angiogenesis and brain metastasis mediated by Stat3 in endothelial and tumor cells.

  8. Quercetin sensitizes human glioblastoma cells to temozolomide in vitro via inhibition of Hsp27.

    PubMed

    Sang, Dong-Ping; Li, Ru-Jun; Lan, Qing

    2014-06-01

    Quercetin is an effective Hsp27 inhibitor and has been reported to facilitate tumor cell apoptosis. The aim of this study was to investigate whether quercetin could sensitize human glioblastoma cells to temozolomide (TMZ) in vitro. Both U251 and U87 human glioblastoma cells were treated with quercetin and/or TMZ for 48 h. Cell viability was detected using the MTT assay. Cell apoptosis was analyzed with caspase-3 activity kits and flow cytometry. Hsp27 expression and phosphorylation were examined using Western blot analysis. RNA interference using Hsp27 siRNA oligos was performed to knock down the gene expression of Hsp27. TMZ (200 or 400 μmol/L) alone effectively inhibited the viability of U251 and U87 cells. When combined with quercetin (30 μmol/L), TMZ (100 μmol/L) significantly inhibited the cell viability, and the inhibition of TMZ (200 and 400 μmol/L) was enhanced. TMZ or quercetin anole did not affect caspase-3 activity and cell apoptosis, while TMZ combined with quercetin significantly increased caspase-3 activity and induced cell apoptosis. TMZ anole significantly increased Hsp27 phosphorylation in U251 and U87 cells, while quercetin or Hsp27 siRNA oligos combined with TMZ attenuated TMZ-induced Hsp27 phosphorylation and significantly inhibited Hsp27 expression. Combined treatment with TMZ and quercetin efficiently suppressed human glioblastoma cell survival in vitro.

  9. Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma

    PubMed Central

    Balakrishnan, Ilango; Harris, Peter; Birks, Diane K; Griesinger, Andrea; Amani, Vladimir; Cristiano, Brian; Remke, Marc; Taylor, Michael D; Handler, Michael; Foreman, Nicholas K; Vibhakar, Rajeev

    2014-01-01

    Medulloblastoma is a pediatric brain tumor with a variable prognosis due to clinical and genomic heterogeneity. Among the 4 major genomic sub-groups, patients with MYC amplified tumors have a particularly poor prognosis despite therapy with surgery, radiation and chemotherapy. Targeting the MYC oncogene has traditionally been problematic. Here we report that MYC driven medulloblastoma can be targeted by inhibition of the bromodomain protein BRD4. We show that bromodomain inhibition with JQ1 restricts c-MYC driven transcriptional programs in medulloblastoma, suppresses medulloblastoma cell growth and induces a cell cycle arrest. Importantly JQ1 suppresses stem cell associated signaling in medulloblastoma cells and inhibits medulloblastoma tumor cell self-renewal. Additionally JQ1 also promotes senescence in medulloblastoma cells by activating cell cycle kinase inhibitors and inhibiting activity of E2F1. Furthermore BRD4 inhibition displayed an anti-proliferative, pro-senescence effect in a medulloblastoma model in vivo. In clinical samples we found that transcriptional programs suppressed by JQ1 are associated with adverse risk in medulloblastoma patients. Our work indicates that BRD4 inhibition attenuates stem cell signaling in MYC driven medulloblastoma and demonstrates the feasibility BET domain inhibition as a therapeutic approach in vivo. PMID:24796395

  10. Tumor-targeting Salmonella typhimurium A1-R inhibits human prostate cancer experimental bone metastasis in mouse models.

    PubMed

    Toneri, Makoto; Miwa, Shinji; Zhang, Yong; Hu, Cameron; Yano, Shuya; Matsumoto, Yasunori; Bouvet, Michael; Nakanishi, Hayao; Hoffman, Robert M; Zhao, Ming

    2015-10-13

    Bone metastasis is a frequent occurrence in prostate cancer patients and often is lethal. Zoledronic acid (ZOL) is often used for bone metastasis with limited efficacy. More effective models and treatment methods are required to improve the outcome of prostate cancer patients. In the present study, the effects of tumor-targeting Salmonella typhimurium A1-R were analyzed in vitro and in vivo on prostate cancer cells and experimental bone metastasis. Both ZOL and S. typhimurium A1-R inhibited the growth of PC-3 cells expressing red fluorescent protien in vitro. To investigate the efficacy of S. typhimurium A1-R on prostate cancer experimental bone metastasis, we established models of both early and advanced stage bone metastasis. The mice were treated with ZOL, S. typhimurium A1-R, and combination therapy of both ZOL and S. typhimurium A1-R. ZOL and S. typhimurium A1-R inhibited the growth of solitary bone metastases. S. typhimurium A1-R treatment significantly decreased bone metastasis and delayed the appearance of PC-3 bone metastases of multiple mouse models. Additionally, S. typhimurium A1-R treatment significantly improved the overall survival of the mice with multiple bone metastases. The results of the present study indicate that S. typhimurium A1-R is useful to prevent and inhibit prostate cancer bone metastasis and has potential for future clinical use in the adjuvant setting.

  11. Targeting TWIST1 through loss of function inhibits tumorigenicity of human glioblastoma.

    PubMed

    Mikheev, Andrei M; Mikheeva, Svetlana A; Severs, Liza J; Funk, Cory C; Huang, Lei; McFaline-Figueroa, José L; Schwensen, Jeanette; Trapnell, Cole; Price, Nathan D; Wong, Stephen; Rostomily, Robert C

    2018-05-13

    Twist1 (TW) is a bHLH transcription factor (TF) and master regulator of the epithelial to mesenchymal transition (EMT). In vitro, TW promotes mesenchymal change, invasion and self-renewal in glioblastoma (GBM) cells. However the potential therapeutic relevance of TW has not been established through loss of function studies in human GBM cell xenograft models. The effects of TW loss of function (gene editing and knock down) on inhibition of tumorigenicity of U87MG and GBM4 glioma stem cells were tested in orthotopic xenograft models and conditional knockdown in established flank xenograft tumors. RNAseq and the analysis of tumors investigated putative TW associated mechanisms. Multiple bioinformatics tools revealed significant alteration of ECM, membrane receptors, signaling transduction kinases and cytoskeleton dynamics leading to identification of PI3K/AKT signaling. We experimentally show alteration of AKT activity and periostin (POSTN) expression in vivo and/or in vitro. For the first time we show that effect of TW knockout inhibits AKT activity in U87MG cells in vivo independent of PTEN mutation. The clinical relevance of TW and candidate mechanisms was established by analysis of the TCGA and ENCODE databases. TW expression was associated with decreased patient survival and LASSO regression analysis identified POSTN as one of top targets of TW in human GBM. While we previously demonstrated the role of TW in promoting EMT and invasion of glioma cells, these studies provide direct experimental evidence supporting pro-tumorigenic role of TW independent of invasion in vivo and the therapeutic relevance of targeting TW in human GBM. Further, the role of TW driving POSTN expression and AKT signaling suggests actionable targets, which could be leveraged to mitigate the oncogenic effects of TW in GBM. Molecular Oncology (2018) © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  12. Inhibition of Human Papillomavirus Type 16 Infection Using an RNA Aptamer.

    PubMed

    Valencia-Reséndiz, Diana Gabriela; Palomino-Vizcaino, Giovanni; Tapia-Vieyra, Juana Virginia; Benítez-Hess, María Luisa; Leija-Montoya, Ana Gabriela; Alvarez-Salas, Luis Marat

    2018-04-01

    Human papillomavirus type 16 (HPV16) DNA has been found in ∼50% of cervical tumors worldwide. HPV infection starts with the binding of the virus capsid to heparan sulfate (HS) receptors exposed on the surface of epithelial basal layer keratinocytes. Previously, our group isolated a high-affinity RNA aptamer (Sc5c3) specific for HPV16 L1 virus-like particles (VLPs). In this study, we report the inhibition of HPV16 infection by Sc5c3 in a pseudovirus (PsVs) model. 293TT cells were infected by HPV16 PsVs containing the yellow fluorescent protein (YFP) as reporter gene. Incubation of HPV16 PsVs with Sc5c3 before infection resulted in a dose-dependent decrease in YFP fluorescence, suggesting infection inhibition. Aptamer degradation by RNase A restored PsVs infectivity, supporting the previous observation that Sc5c3 aptamer can inhibit infection. VLP mutants with removed HS binding sites were used in binding assays to elucidate the Sc5c3 blocking mechanism; however, no binding difference was observed between wild-type and mutant VLPs, suggesting that pseudoinfection inhibition relies on mechanisms additional to electrostatic HS binding site interaction. A DNA/RNA Sc5c3 version also inhibited HPV PsVs infection, suggesting that a modified, nuclease-resistant Sc5c3 may be used to inhibit HPV16 infection in vivo.

  13. Characterization of Compounds with Tumor-Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii) Mycelia Produced by Solid-State Fermentation.

    PubMed

    Zhang, Henan; Shao, Qian; Wang, Wenhan; Zhang, Jingsong; Zhang, Zhong; Liu, Yanfang; Yang, Yan

    2017-04-27

    The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol) fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC), high-speed countercurrent chromatography (HSCCC), and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic methods as ergosterol (RF1), ergosta-7,22-dien-3β-yl pentadecanoate (RF3), 3,4-dihydroxy benzaldehyde(RF6), inoscavinA (RF7), baicalein(RF10), and 24-ethylcholesta-5,22-dien-3β-ol (RF13). To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  14. A ruthenium(II) complex inhibits tumor growth in vivo with fewer side-effects compared with cisplatin.

    PubMed

    Wang, Jin-Quan; Zhang, Ping-Yu; Ji, Liang-Nian; Chao, Hui

    2015-05-01

    The antitumor activity of a ruthenium(II) polypyridyl complex, Δ-[Ru(bpy)2(HPIP)](ClO4)2 (Δ-Ru1, where bpy=2,2'-bipyridine, HPIP=2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline), was evaluated. The in vivo experiments showed that Δ-Ru1 inhibited the growth of a human cervical carcinoma cell line (HeLa) xenotransplanted into nude mice with efficiency similar to that of cisplatin. Histopathology examination of the tumors from treated xenograft models was consistent with apoptosis in tumor cells. Importantly, in striking contrast with cisplatin, Δ-Ru1 did not cause any detectable side effects on the kidney, liver, peripheral neuronal system, or the hematological system at the pharmacologically effective dose. The preclinical studies reported here provide support for the clinical use of Δ-Ru1 as an exciting new drug candidate with lower toxicity than cisplatin, endowed with proapoptotic properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. SH003 represses tumor angiogenesis by blocking VEGF binding to VEGFR2

    PubMed Central

    Choi, Hyeong Sim; Kim, Min Kyoung; Lee, Kangwook; Lee, Kang Min; Choi, Youn Kyung; Shin, Yong Cheol; Cho, Sung-Gook; Ko, Seong-Gyu

    2016-01-01

    Tumor angiogenesis is a key feature of cancer progression, because a tumor requires abundant oxygen and nutrition to grow. Here, we demonstrate that SH003, a mixed herbal extract containing Astragalus membranaceus (Am), Angelica gigas (Ag) and Trichosanthes Kirilowii Maximowicz (Tk), represses VEGF-induced tumor angiogenesis both in vitro and in vivo. SH003 inhibited VEGF-induced migration, invasion and tube formation in human umbilical vein endothelial cells (HUVEC) with no effect on the proliferation. SH003 reduced CD31-positive vessel numbers in tumor tissues and retarded tumor growth in our xenograft mouse tumor model, while SH003 did not affect pancreatic tumor cell viability. Consistently, SH003 inhibited VEGF-stimulated vascular permeability in ears and back skins. Moreover, SH003 inhibited VEGF-induced VEGFR2-dependent signaling by blocking VEGF binding to VEGFR2. Therefore, our data conclude that SH003 represses tumor angiogenesis by inhibiting VEGF-induced VEGFR2 activation, and suggest that SH003 may be useful for treating cancer. PMID:27105528

  16. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors.

    PubMed

    Lou, Yuanmei; McDonald, Paul C; Oloumi, Arusha; Chia, Stephen; Ostlund, Christina; Ahmadi, Ardalan; Kyle, Alastair; Auf dem Keller, Ulrich; Leung, Samuel; Huntsman, David; Clarke, Blaise; Sutherland, Brent W; Waterhouse, Dawn; Bally, Marcel; Roskelley, Calvin; Overall, Christopher M; Minchinton, Andrew; Pacchiano, Fabio; Carta, Fabrizio; Scozzafava, Andrea; Touisni, Nadia; Winum, Jean-Yves; Supuran, Claudiu T; Dedhar, Shoukat

    2011-05-01

    Carbonic anhydrase IX (CAIX) is a hypoxia and HIF-1-inducible protein that regulates intra- and extracellular pH under hypoxic conditions and promotes tumor cell survival and invasion in hypoxic microenvironments. Interrogation of 3,630 human breast cancers provided definitive evidence of CAIX as an independent poor prognostic biomarker for distant metastases and survival. shRNA-mediated depletion of CAIX expression in 4T1 mouse metastatic breast cancer cells capable of inducing CAIX in hypoxia resulted in regression of orthotopic mammary tumors and inhibition of spontaneous lung metastasis formation. Stable depletion of CAIX in MDA-MB-231 human breast cancer xenografts also resulted in attenuation of primary tumor growth. CAIX depletion in the 4T1 cells led to caspase-independent cell death and reversal of extracellular acidosis under hypoxic conditions in vitro. Treatment of mice harboring CAIX-positive 4T1 mammary tumors with novel CAIX-specific small molecule inhibitors that mimicked the effects of CAIX depletion in vitro resulted in significant inhibition of tumor growth and metastasis formation in both spontaneous and experimental models of metastasis, without inhibitory effects on CAIX-negative tumors. Similar inhibitory effects on primary tumor growth were observed in mice harboring orthotopic tumors comprised of lung metatstatic MDA-MB-231 LM2-4(Luc+) cells. Our findings show that CAIX is vital for growth and metastasis of hypoxic breast tumors and is a specific, targetable biomarker for breast cancer metastasis.

  17. MicroRNA-137 inhibits tumor growth and sensitizes chemosensitivity to paclitaxel and cisplatin in lung cancer

    PubMed Central

    Ge, Xin; Jiang, Cheng-Fei; Shi, Zhu-Mei; Li, Dong-Mei; Liu, Wei-Tao; Yu, Xiaobo; Shu, Yong-Qian

    2016-01-01

    Chemotherapy resistance frequently drives tumour progression. However, the underlying molecular mechanisms are poorly characterized. In this study, we explored miR-137's role in the chemosensitivity of lung cancer. We found that the expression level of miR-137 is down-regulated in the human lung cancer tissues and the resistant cells strains: A549/paclitaxel(A549/PTX) and A549/cisplatin (A549/CDDP) when compared with lung cancer A549 cells. Moreover, we found that overe-expression of miR-137 inhibited cell proliferation, migration, cell survival and arrest the cell cycle in G1 phase in A549/PTX and A549/CDDP. Furthermore, Repression of miR-137 significantly promoted cell growth, migration, cell survival and cell cycle G1/S transition in A549 cells. We further demonstrated that the tumor suppressive role of miR-137 was mediated by negatively regulating Nuclear casein kinase and cyclin-dependent kinase substrate1(NUCKS1) protein expression. Importantly, miR-137 inhibits A549/PTX, A549/CDDP growth and angiogenesis in vivo. Our study is the first to identify the tumor suppressive role of over-expressed miR-137 in chemosensitivity. Identification of a novel miRNA-mediated pathway that regulates chemosensitivity in lung cancer will facilitate the development of novel therapeutic strategies in the future. PMID:26989074

  18. Alpha cyano-4-hydroxy-3-methoxycinnamic acid inhibits proliferation and induces apoptosis in human breast cancer cells.

    PubMed

    Hamdan, Lamia; Arrar, Zoheir; Al Muataz, Yacoub; Suleiman, Lutfi; Négrier, Claude; Mulengi, Joseph Kajima; Boukerche, Habib

    2013-01-01

    This study investigated the underlying mechanism of 4-hydroxy-3-methoxycinnamic acid (ACCA), on the growth of breast cancer cells and normal immortal epithelial cells, and compared their cytotoxic effects responses. Treatment of breast cancer cells (MCF-7, T47D, and MDA-231) with ACCA resulted in dose- and time-dependent decrease of cell proliferation, viability in colony formation assay, and programmed cell death (apoptosis) with minimal effects on non-tumoral cells. The ability of ACCA to suppress growth in cancer cells not expressing or containing defects in p53 gene indicates a lack of involvement of this critical tumor suppressor element in mediating ACCA-induced growth inhibition. Induction of apoptosis correlated with an increase in Bax protein, an established inducer of programmed cell death, and the ratio of Bax to Bcl-2, an established inhibitor of apoptosis. We also documented the ability of ACCA to inhibit the migration and invasion of MDA-231 cells with ACCA in vitro. Additionally, tumor growth of MDA-231 breast cancer cells in vivo was dramatically affected with ACCA. On the basis of its selective anticancer inhibitory activity on tumor cells, ACCA may represent a promising therapeutic drug that should be further evaluated as a chemotherapeutic agent for human breast cancer.

  19. Alpha Cyano-4-Hydroxy-3-Methoxycinnamic Acid Inhibits Proliferation and Induces Apoptosis in Human Breast Cancer Cells

    PubMed Central

    Hamdan, Lamia; Arrar, Zoheir; Al Muataz, Yacoub; Suleiman, Lutfi; Négrier, Claude; Mulengi, Joseph Kajima; Boukerche, Habib

    2013-01-01

    This study investigated the underlying mechanism of 4-hydroxy-3-methoxycinnamic acid (ACCA), on the growth of breast cancer cells and normal immortal epithelial cells, and compared their cytotoxic effects responses. Treatment of breast cancer cells (MCF-7, T47D, and MDA-231) with ACCA resulted in dose- and time-dependent decrease of cell proliferation, viability in colony formation assay, and programmed cell death (apoptosis) with minimal effects on non-tumoral cells. The ability of ACCA to suppress growth in cancer cells not expressing or containing defects in p53 gene indicates a lack of involvement of this critical tumor suppressor element in mediating ACCA-induced growth inhibition. Induction of apoptosis correlated with an increase in Bax protein, an established inducer of programmed cell death, and the ratio of Bax to Bcl-2, an established inhibitor of apoptosis. We also documented the ability of ACCA to inhibit the migration and invasion of MDA-231 cells with ACCA in vitro. Additionally, tumor growth of MDA-231 breast cancer cells in vivo was dramatically affected with ACCA. On the basis of its selective anticancer inhibitory activity on tumor cells, ACCA may represent a promising therapeutic drug that should be further evaluated as a chemotherapeutic agent for human breast cancer. PMID:24039831

  20. CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells

    PubMed Central

    Kósa, János P; Horváth, Péter; Wölfling, János; Kovács, Dóra; Balla, Bernadett; Mátyus, Péter; Horváth, Evelin; Speer, Gábor; Takács, István; Nagy, Zsolt; Horváth, Henrik; Lakatos, Péter

    2013-01-01

    AIM: The effects of vitamin D3 have been investigated on various tumors, including colorectal cancer (CRC). 25-hydroxyvitamin-D3-24-hydroxylase (CYP24A1), the enzyme that inactivates the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 (1,25-D3), is considered to be the main enzyme determining the biological half-life of 1,25-D3. During colorectal carcinogenesis, the expression and concentration of CYP24A1 increases significantly, suggesting that this phenomenon could be responsible for the proposed efficacy of 1,25-D3 in the treatment of CRC. The aim of this study was to investigate the anti-tumor effects of vitamin D3 on the human CRC cell line Caco-2 after inhibition of the cytochrome P450 component of CYP24A1 activity. METHODS: We examined the expression of CYP24A1 mRNA and the effects of 1,25-D3 on the cell line Caco-2 after inhibition of CYP24A1. Cell viability and proliferation were determined by means of sulforhodamine-B staining and bromodeoxyuridine incorporation, respectively, while cytotoxicity was estimated via the lactate dehydrogenase content of the cell culture supernatant. CYP24A1 expression was measured by real-time reverse transcription polymerase chain reaction. A number of tetralone compounds were synthesized to investigate their CP24A1 inhibitory activity. RESULTS: In response to 1,25-D3, CYP24A1 mRNA expression was enhanced significantly, in a time- and dose-dependent manner. Caco-2 cell viability and proliferation were not influenced by the administration of 1,25-D3 alone, but were markedly reduced by co-administration of 1,25-D3 and KD-35, a CYP24A1-inhibiting tetralone. Our data suggest that the mechanism of action of co-administered KD-35 and 1,25-D3 does not involve a direct cytotoxic effect, but rather the inhibition of cell proliferation. CONCLUSION: These findings demonstrate that the selective inhibition of CYP24A1 by compounds such as KD-35 may be a new approach for enhancement of the anti-tumor effect of 1,25-D3 on CRC. PMID

  1. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    PubMed Central

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2012-01-01

    Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391

  2. Hedgehog pathway inhibition radiosensitizes non-small cell lung cancers.

    PubMed

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T; Aftab, Blake T; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M; Wong, John; Rudin, Charles M; Tran, Phuoc T; Hales, Russell K

    2013-05-01

    Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras(G12D)-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntagmore » and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.« less

  4. The ammonium sulfate inhibition of human angiogenin.

    PubMed

    Chatzileontiadou, Demetra S M; Tsirkone, Vicky G; Dossi, Kyriaki; Kassouni, Aikaterini G; Liggri, Panagiota G V; Kantsadi, Anastassia L; Stravodimos, George A; Balatsos, Nikolaos A A; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2016-09-01

    In this study, we investigate the inhibition of human angiogenin by ammonium sulfate. The inhibitory potency of ammonium sulfate for human angiogenin (IC50 = 123.5 ± 14.9 mm) is comparable to that previously reported for RNase A (119.0 ± 6.5 mm) and RNase 2 (95.7 ± 9.3 mm). However, analysis of two X-ray crystal structures of human angiogenin in complex with sulfate anions (in acidic and basic pH environments, respectively) indicates an entirely distinct mechanism of inhibition. While ammonium sulfate inhibits the ribonucleolytic activity of RNase A and RNase 2 by binding to the active site of these enzymes, sulfate anions bind only to peripheral substrate anion-binding subsites of human angiogenin, and not to the active site. © 2016 Federation of European Biochemical Societies.

  5. Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures

    PubMed Central

    Carra, Elisa; Barbieri, Federica; Marubbi, Daniela; Pattarozzi, Alessandra; Favoni, Roberto E.; Florio, Tullio; Daga, Antonio

    2013-01-01

    Glioblastomas are grade IV brain tumors characterized by high aggressiveness and invasiveness, giving patients a poor prognosis. We investigated the effects of the multi-kinase inhibitor sorafenib on six cultures isolated from human glioblastomas and maintained in tumor initiating cells-enriching conditions. These cell subpopulations are thought to be responsible for tumor recurrence and radio- and chemo-resistance, representing the perfect target for glioblastoma therapy. Sorafenib reduces proliferation of glioblastoma cultures, and this effect depends, at least in part, on the inhibition of PI3K/Akt and MAPK pathways, both involved in gliomagenesis. Sorafenib significantly induces apoptosis/cell death via downregulation of the survival factor Mcl-1. We provide evidence that sorafenib has a selective action on glioblastoma stem cells, causing enrichment of cultures in differentiated cells, downregulation of the expression of stemness markers required to maintain malignancy (nestin, Olig2 and Sox2) and reducing cell clonogenic ability in vitro and tumorigenic potential in vivo. The selectivity of sorafenib effects on glioblastoma stem cells is confirmed by the lower sensitivity of glioblastoma cultures after differentiation as compared with the undifferentiated counterpart. Since current GBM therapy enriches the tumor in cancer stem cells, the evidence of a selective action of sorafenib on these cells is therapeutically relevant, even if, so far, results from first phase II clinical trials did not demonstrate its efficacy. PMID:23324350

  6. Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures.

    PubMed

    Carra, Elisa; Barbieri, Federica; Marubbi, Daniela; Pattarozzi, Alessandra; Favoni, Roberto E; Florio, Tullio; Daga, Antonio

    2013-02-01

    Glioblastomas are grade IV brain tumors characterized by high aggressiveness and invasiveness, giving patients a poor prognosis. We investigated the effects of the multi-kinase inhibitor sorafenib on six cultures isolated from human glioblastomas and maintained in tumor initiating cells-enriching conditions. These cell subpopulations are thought to be responsible for tumor recurrence and radio- and chemo-resistance, representing the perfect target for glioblastoma therapy. Sorafenib reduces proliferation of glioblastoma cultures, and this effect depends, at least in part, on the inhibition of PI3K/Akt and MAPK pathways, both involved in gliomagenesis. Sorafenib significantly induces apoptosis/cell death via downregulation of the survival factor Mcl-1. We provide evidence that sorafenib has a selective action on glioblastoma stem cells, causing enrichment of cultures in differentiated cells, downregulation of the expression of stemness markers required to maintain malignancy (nestin, Olig2 and Sox2) and reducing cell clonogenic ability in vitro and tumorigenic potential in vivo. The selectivity of sorafenib effects on glioblastoma stem cells is confirmed by the lower sensitivity of glioblastoma cultures after differentiation as compared with the undifferentiated counterpart. Since current GBM therapy enriches the tumor in cancer stem cells, the evidence of a selective action of sorafenib on these cells is therapeutically relevant, even if, so far, results from first phase II clinical trials did not demonstrate its efficacy.

  7. Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while enhancing radiation-mediated control of tumor vasculature

    PubMed Central

    Geng, Ling; Rachakonda, Girish; Morré, D. James; Morré, Dorothy M.; Crooks, Peter A.; Sonar, Vijayakumar N.; Roti, Joseph L. Roti; Rogers, Buck E.; Greco, Suellen; Ye, Fei; Salleng, Kenneth J.; Sasi, Soumya; Freeman, Michael L.; Sekhar, Konjeti R.

    2009-01-01

    There is a need for novel strategies that target tumor vasculature, specifically those that synergize with cytotoxic therapy, in order to overcome resistance that can develop with current therapeutics. A chemistry-driven drug discovery screen was employed to identify novel compounds that inhibit endothelial cell tubule formation. Cell-based phenotypic screening revealed that noncytotoxic concentrations of (Z)-(±)-2-(1-benzenesulfonylindol-3-ylmethylene)-1-azabicyclo[2. 2.2]octan-3-ol (analog I) and (Z)-(±)-2-(1-benzylindol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol (analog II) inhibited endothelial cell migration and the ability to form capillary-like structures in Matrigel by ≥70%. The ability to undergo neoangiogenesis, as measured in a window-chamber model, was also inhibited by 70%. Screening of biochemical pathways revealed that analog II inhibited the enzyme ENOX1 (EC50 = 10 μM). Retroviral-mediated shRNA suppression of endothelial ENOX1 expression inhibited cell migration and tubule formation, recapitulating the effects observed with the small-molecule analogs. Genetic or chemical suppression of ENOX1 significantly increased radiation-mediated Caspase3-activated apoptosis, coincident with suppression of p70S6K1 phosphorylation. Administration of analog II prior to fractionated X-irradiation significantly diminished the number and density of tumor microvessels, as well as delayed syngeneic and xenograft tumor growth compared to results obtained with radiation alone. Analysis of necropsies suggests that the analog was well tolerated. These results suggest that targeting ENOX1 activity represents a novel therapeutic strategy for enhancing the radiation response of tumors.—Geng, L., Rachakonda, G., Morré, D. J., Morré, D. M., Crooks, P. A., Sonar, V. N., Roti Roti, J. L., Rogers, B. E., Greco, S., Ye, F., Salleng, K. J., Sasi, S., Freeman, M. L., Sekhar, K. R. Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while

  8. Lepidotol A from Mesua lepidota Inhibits Inflammatory and Immune Mediators in Human Endothelial Cells.

    PubMed

    Rouger, Caroline; Derbré, Séverine; Charreau, Béatrice; Pabois, Angélique; Cauchy, Thomas; Litaudon, Marc; Awang, Khalijah; Richomme, Pascal

    2015-09-25

    Phytochemical investigation on the fruits of Mesua lepidota (Calophyllaceae) led to the isolation of seven new phenylcoumarin derivatives named lepidotols A-E (1-5) and lepidotins A and B (6, 7). These structures were elucidated by spectroscopic and spectrometric methods including UV, NMR, and HRMS. Lepidotol A (1), the major compound, was evaluated for its inhibitory effect on inflammation and immunity using endothelial cell-based cellular assays. At 10 μM, 1 exhibited an anti-inflammatory activity, with a significant inhibition of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 expression induced by tumor necrosis factor-α. Lepidotol A also showed a mild immunosuppressive effect, with inhibition of the major histocompatibility complex molecules, namely, human leukocyte antigen (HLA)-DR and HLA-E.

  9. Slug inhibits the proliferation and tumor formation of human cervical cancer cells by up-regulating the p21/p27 proteins and down-regulating the activity of the Wnt/β-catenin signaling pathway via the trans-suppression Akt1/p-Akt1 expression

    PubMed Central

    Cui, Nan; Yang, Wen-Ting; Zheng, Peng-Sheng

    2016-01-01

    Slug (Snai2) has been demonstrated to act as an oncogene or tumor suppressor in different human cancers, but the function of Slug in cervical cancer remains poorly understood. In this study, we demonstrated that Slug could suppress the proliferation of cervical cancer cells in vitro and tumor formation in vivo. Further experiments found that Slug could trans-suppress the expression of Akt1/p-Akt1 by binding to E-box motifs in the promoter of the Akt1 gene and then inhibit the cell proliferation and tumor formation of cervical cancer cells by up-regulating p21/p27 and/or down-regulating the activity of the Wnt/β-catenin signaling pathway. Therefore, Slug acts as a tumor suppressor during cervical carcinogenesis. PMID:27036045

  10. Electroporation driven delivery of both an IL-12 expressing plasmid and cisplatin synergizes to inhibit B16 melanoma tumor growth through an NK cell mediated tumor killing mechanism.

    PubMed

    Kim, Ha; Sin, Jeong-Im

    2012-11-01

    Combined therapy using chemotherapeutic drugs and immunotherapeutics offers some promise for treating patients with cancer. In this study, we evaluated whether cisplatin delivered by intratumoral (IT)-electroporation (EP) might enhance antitumor activity against established B16 melanoma and whether further addition of intramuscular (IM)-EP of IL-12 cDNA to IT-EP of cisplatin might augment antitumor therapeutic activity, with a focus on the underlining antitumor mechanism(s). When tumor (7 mm)-bearing animals were treated locally with cisplatin by IT-EP, they showed tumor growth inhibition significantly more than those without IT-EP. Moreover, IL-12 cDNA delivered by IM-EP was also able to inhibit tumor growth significantly more than control vector delivery. This tumor growth inhibition was mediated by NK cells, but not CD4+ T or CD8+ T cells, as determined by immune cell subset depletion and IFN-γ induction. Moreover, concurrent therapy using IT-EP of cisplatin plus IM-EP of IL-12 cDNA displayed antitumor therapeutic synergy. This therapeutic synergy appeared to be mediated by increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. Taken together, these data support that cisplatin delivery by IT-EP plus IL-12 gene delivery by IM-EP are more effective at inducing antitumor therapeutic responses through increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. This combined approach might have some implication for treating melanoma in patients.

  11. Dual mTORC1/2 inhibition in a preclinical xenograft tumor model of endometrial cancer

    PubMed Central

    Korets, Sharmilee Bansal; Musa, Fernanda; Curtin, John; Blank, Stephanie V.; Schneider, Robert J.

    2015-01-01

    Objectives Up to 70% of endometrioid endometrial cancers carry PTEN gene deletions that can upregulate mTOR activity. Investigational mTOR kinase inhibitors may provide a novel therapeutic approach for these tumors. Using a xenograft tumor model of endometrial cancer, we assessed the activity of mTOR and downstream effector proteins in the mTOR translational control pathway after treatment with a dual mTOR Complex 1 and 2 (mTORC1/2) catalytic inhibitor (PP242) compared to that of an allosteric mTOR Complex 1 (mTORC1) inhibitor (everolimus, RAD001). Methods Grade 3 endometrioid endometrial cancer cells (AN3CA) were xenografted into nude mice. Animals were treated with PP242; PP242 and carboplatin; carboplatin; RAD001; RAD001 and carboplatin. Mean tumor volume was compared across groups by ANOVA. Immunoblot analysis was performed to assess mTORC1/2 activity using P-Akt, P-S6 and P-4E-BP1. Results The mean tumor volume of PP242 + carboplatin was significantly lower than in all other treatment groups, P<0.001 (89% smaller). The RAD001 + carboplatin group was also smaller, but this did not reach statistical significance (P=0.097). Immunoblot analysis of tumor lysates treated with PP242 demonstrated inhibition of activated P-Akt. Conclusions Catalytic mTORC1/2 inhibition demonstrates clear efficacy in tumor growth control that is enhanced by the addition of a DNA damage agent, carboplatin. Targeting mTORC1/2 leads to inhibition of Akt activation and strong downregulation of effectors of mTORC1, resulting in downregulation of protein synthesis. Based on this study, mTORC1/2 kinase inhibitors warrant further investigation as a potential treatment for endometrial cancer. PMID:24316308

  12. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma.

    PubMed

    Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi

    2010-02-01

    Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.

  13. Hsp90 N- and C-terminal double inhibition synergistically suppresses Bcr-Abl-positive human leukemia cells

    PubMed Central

    Chen, Xianling; Chen, Xiaole; Li, Ding; Fan, Yingjuan; Xu, Jianhua; Chen, Yuanzhong; Wu, Lixian

    2017-01-01

    Heat shock protein 90 (Hsp90) contains amino (N)–terminal domain, carboxyl(C)-terminal domain, and middle domains, which activate Hsp90 chaperone function cooperatively in tumor cells. One terminal occupancy might influence another terminal binding with inhibitor. The Bcr-Abl kinase is one of the Hsp90 clients implicated in the pathogenesis of chronic myeloid leukemia (CML). Present studies demonstrate that double inhibition of the N- and C-terminal termini can disrupt Hsp90 chaperone function synergistically, but not antagonistically, in Bcr-Abl-positive human leukemia cells. Furthermore, both the N-terminal inhibitor 17-AAG and the C-terminal inhibitor cisplatin (CP) have the capacity to suppress progenitor cells; however, only CP is able to inhibit leukemia stem cells (LSCs) significantly, which implies that the combinational treatment is able to suppress human leukemia in different mature states. PMID:28036294

  14. Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice.

    PubMed

    Kim, Sun-Jin; Uehara, Hisanori; Karashima, Takashi; Shepherd, David L; Killion, Jerald J; Fidler, Isaiah J

    2003-03-01

    We determined whether blockade of the epidermal growth factor receptor (EGF-R) signaling pathway by oral administration of the EGF-R tyrosine kinase inhibitor (PKI 166) alone or in combination with injectable Taxol inhibits the growth of PC-3MM2 human prostate cancer cells in the bone of nude mice. Male nude mice implanted with PC-3MM2 cells in the tibia were treated with oral administrations of PKI 166 or PKI 166 plus injectable Taxol beginning 3 days after implantation. The incidence and size of bone tumors and destruction of bone were determined by digitalized radiography. Expression of epidermal growth factor (EGF), EGF-R, and activated EGF-R in tumor cells and tumor-associated endothelial cells was determined by immunohistochemistry. Oral administration of PKI 166 or PKI 166 plus injectable Taxol reduced the incidence and size of bone tumors and destruction of bone. Immunohistochemical analysis revealed that PC-3MM2 cells growing adjacent to the bone expressed high levels of EGF and activated EGF-R, whereas tumor cells in the adjacent musculature did not. Moreover, endothelial cells within the bone tumor lesions, but not in uninvolved bone or tumors in the muscle, expressed high levels of activated EGF-R. Treatment with PKI 166 and more so with PKI 166 plus Taxol significantly inhibited phosphorylation of EGF-R on tumor and endothelial cells and induced significant apoptosis and endothelial cells within tumor lesions. These data indicate that endothelial cells exposed to EGF produced by tumor cells express activated EGF-R and that targeting EGF-R can produce significant therapeutic effects against prostate cancer bone metastasis.

  15. Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth

    PubMed Central

    2011-01-01

    Introduction MicroRNAs (miRNAs) are a class of small non-coding RNAs (20 to 24 nucleotides) that post-transcriptionally modulate gene expression. A key oncomir in carcinogenesis is miR-21, which is consistently up-regulated in a wide range of cancers. However, few functional studies are available for miR-21, and few targets have been identified. In this study, we explored the role of miR-21 in human breast cancer cells and tissues, and searched for miR-21 targets. Methods We used in vitro and in vivo assays to explore the role of miR-21 in the malignant progression of human breast cancer, using miR-21 knockdown. Using LNA silencing combined to microarray technology and target prediction, we screened for potential targets of miR-21 and validated direct targets by using luciferase reporter assay and Western blot. Two candidate target genes (EIF4A2 and ANKRD46) were selected for analysis of correlation with clinicopathological characteristics and prognosis using immunohistochemistry on cancer tissue microrrays. Results Anti-miR-21 inhibited growth and migration of MCF-7 and MDA-MB-231 cells in vitro, and tumor growth in nude mice. Knockdown of miR-21 significantly increased the expression of ANKRD46 at both mRNA and protein levels. Luciferase assays using a reporter carrying a putative target site in the 3' untranslated region of ANKRD46 revealed that miR-21 directly targeted ANKRD46. miR-21 and EIF4A2 protein were inversely expressed in breast cancers (rs = -0.283, P = 0.005, Spearman's correlation analysis). Conclusions Knockdown of miR-21 in MCF-7 and MDA-MB-231 cells inhibits in vitro and in vivo growth as well as in vitro migration. ANKRD46 is newly identified as a direct target of miR-21 in BC. These results suggest that inhibitory strategies against miR-21 using peptide nucleic acids (PNAs)-antimiR-21 may provide potential therapeutic applications in breast cancer treatment. PMID:21219636

  16. Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth.

    PubMed

    Yan, Li Xu; Wu, Qi Nian; Zhang, Yan; Li, Yang Yang; Liao, Ding Zhun; Hou, Jing Hui; Fu, Jia; Zeng, Mu Sheng; Yun, Jing Ping; Wu, Qiu Liang; Zeng, Yi Xin; Shao, Jian Yong

    2011-01-10

    MicroRNAs (miRNAs) are a class of small non-coding RNAs (20 to 24 nucleotides) that post-transcriptionally modulate gene expression. A key oncomir in carcinogenesis is miR-21, which is consistently up-regulated in a wide range of cancers. However, few functional studies are available for miR-21, and few targets have been identified. In this study, we explored the role of miR-21 in human breast cancer cells and tissues, and searched for miR-21 targets. We used in vitro and in vivo assays to explore the role of miR-21 in the malignant progression of human breast cancer, using miR-21 knockdown. Using LNA silencing combined to microarray technology and target prediction, we screened for potential targets of miR-21 and validated direct targets by using luciferase reporter assay and Western blot. Two candidate target genes (EIF4A2 and ANKRD46) were selected for analysis of correlation with clinicopathological characteristics and prognosis using immunohistochemistry on cancer tissue microrrays. Anti-miR-21 inhibited growth and migration of MCF-7 and MDA-MB-231 cells in vitro, and tumor growth in nude mice. Knockdown of miR-21 significantly increased the expression of ANKRD46 at both mRNA and protein levels. Luciferase assays using a reporter carrying a putative target site in the 3' untranslated region of ANKRD46 revealed that miR-21 directly targeted ANKRD46. miR-21 and EIF4A2 protein were inversely expressed in breast cancers (rs = -0.283, P = 0.005, Spearman's correlation analysis). Knockdown of miR-21 in MCF-7 and MDA-MB-231 cells inhibits in vitro and in vivo growth as well as in vitro migration. ANKRD46 is newly identified as a direct target of miR-21 in BC. These results suggest that inhibitory strategies against miR-21 using peptide nucleic acids (PNAs)-antimiR-21 may provide potential therapeutic applications in breast cancer treatment.

  17. Tumor necrosis factor-α inhibits effects of aryl hydrocarbon receptor ligands on cell death in human lymphocytes.

    PubMed

    Ghatrehsamani, Mahdi; Soleimani, Masoud; Esfahani, Behjat A Moayedi; Shirzad, Hedayatollah; Hakemi, Mazdak G; Mossahebimohammadi, Majid; Eskandari, Nahid; Adib, Minoo

    2015-01-01

    Activation of aryl hydrocarbon receptor (AhR) leads to diverse outcome in various kinds of cells. AhR activation may induce apoptosis or prevent of apoptosis and cell death. Recent studies suggest that apoptosis effects of AhR can be modulated by inflammatory cytokine like tumor necrosis factor alpha (TNF-α). In this study, we try to investigate the possible interaction of TNF-α with the 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a ligand of AhR, on peripheral lymphocytes. Human peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood by discontinuous density gradient centrifugation on ficoll. Isolated PBMCs were divided into four groups: Control group, TNF-α administered group, TCDD administered group, co-administered group with TCDD and TNF-α. Cells were maintained for a week in lymphocyte culture condition. Then, TNF-α was added to group 2 and 4. Finally, apoptosis and necrosis were analyzed in all samples using flowcytometry. In group 4, the mean percent of necrosis and apoptosis in TCDD treatment groups was significantly larger than other groups; (P < 0.05). Furthermore, there was no significant difference between the mean percent of cell death in TNF-α administered group and TCDD administered group (P > 0.05). However, the mean percent of cell death in co-administered group with TCDD and TNF-α was significantly lower than other groups; (P < 0.05). TNF-α could significantly inhibit effects of TCDD on lymphocytes apoptosis. Combination effects of TNF-α and TCDD on lymphocyte increase cell survival.

  18. RNA interference targeting CD147 inhibits metastasis and invasion of human breast cancer MCF-7 cells by downregulating MMP-9/VEGF expression.

    PubMed

    Li, Fang; Zhang, Junping; Guo, Jiqiang; Jia, Yuan; Han, Yaping; Wang, Zhuanhua

    2018-06-12

    Breast cancer is one of the most common malignancies. It is necessary to identify new markers for predicting tumor progression and therapeutic molecular targets. It has been reported that CD147 is one of the most commonly expressed proteins in primary tumors and in metastatic cells. In this study, we investigated the role of CD147 in human breast cancer metastasis and invasion, and examined its underlying molecular mechanisms. Immunohistochemistry results revealed high expression of CD147 in human breast tumor tissues, which was positively correlated with the malignancy of breast cancer. MCF-7 cells were transfected with CD147 siRNA eukaryotic expression vector, which resulted in significant knockdown of CD147. We found that CD147 siRNA dramatically inhibited cell proliferation, metastasis, and invasion. Furthermore, our results demonstrated that CD147 siRNA inhibited the synthesis of matrix metalloproteinase 9 (MMP-9) but had no significant effect on matrix metalloproteinase 2 (MMP-2). In addition, CD147 siRNA significantly inhibited the production of vascular endothelial growth factor (VEGF). Taken together, these data indicate that CD147 promotes breast cancer cell proliferation, metastasis, and invasion by modulating MMP-9 and VEGF expression. Thus, CD147 may be used as an important indicator for the judgment of malignant behavior of breast cancer, and may be a potential novel target for breast cancer therapy.

  19. Selective inhibition of FLICE-like inhibitory protein expression with small interfering RNA oligonucleotides is sufficient to sensitize tumor cells for TRAIL-induced apoptosis.

    PubMed Central

    Siegmund, Daniela; Hadwiger, Philipp; Pfizenmaier, Klaus; Vornlocher, Hans-Peter; Wajant, Harald

    2002-01-01

    BACKGROUND: Most tumors express death receptors and their activation represents a potential selective approach in cancer treatment. The most promising candidate for tumor selective death receptor-activation is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L, which activates the death receptors TRAIL-R1 and TRAIL-R2, and induces apoptosis preferentially in tumor cells but not in normal tissues. However, many cancer cells are not or only moderately sensitive towards TRAIL and require cotreatment with irradiation or chemotherapy to yield a therapeutically reasonable apoptotic response. Because chemotherapy can have a broad range of unwanted side effects, more specific means for sensitizing tumor cells for TRAIL are desirable. The expression of the cellular FLICE-like inhibitory protein (cFLIP) is regarded as a major cause of TRAIL resistance. We therefore analyzed the usefulness of targeting FLIP to sensitize tumor cells for TRAIL-induced apoptosis. MATERIALS AND METHODS: To selectively interfere with expression of cFLIP short double-stranded RNA oligonucleotides (small interfering RNAs [siRNAs]) were introduced in the human cell lines SV80 and KB by electroporation. Effects of siRNA on FLIP expression were analyzed by Western blotting and RNase protection assay and correlated with TRAIL sensitivity upon stimulation with recombinant soluble TRAIL and TRAIL-R1- and TRAIL-R2-specific agonistic antibodies. RESULTS: FLIP expression can be inhibited by RNA interference using siRNAs, evident from reduced levels of FLIP-mRNA and FLIP protein. Inhibition of cFLIP expression sensitizes cells for apoptosis induction by TRAIL and other death ligands. In accordance with the presumed function of FLIP as an inhibitor of death receptor-induced caspase-8 activation, down-regulation of FLIP by siRNAs enhanced TRAIL-induced caspase-8 activation. CONCLUSION: Inhibition of FLIP expression was sufficient to sensitize tumor cells for TRAIL-induced apoptosis. The

  20. Human Mut T Homolog 1 (MTH1): a roadblock for the tumor-suppressive effects of oncogenic RAS-induced ROS.

    PubMed

    Rai, Priyamvada

    2012-01-01

    Oncogenic RAS-induced reactive oxygen species (ROS) trigger barriers to cell transformation and cancer progression through tumor-suppressive responses such as cellular senescence or cell death. We have recently shown that oncogenic RAS-induced DNA damage and attendant premature senescence can be prevented by overexpressing human MutT Homolog 1 (MTH1), the major mammalian detoxifier of the oxidized DNA precursor, 8-oxo-dGTP. Paradoxically, RAS-induced ROS are also able to participate in tumor progression via transformative processes such as mitogenic signaling, the epithelial-mesenchymal transition (EMT), anoikis inhibition, and PI3K/Akt-mediated survival signaling. Here we provide a preliminary insight into the influence of MTH1 levels on the EMT phenotype and Akt activation in RAS-transformed HMLE breast epithelial cells. Within this context, we will discuss the implications of MTH1 upregulation in oncogenic RAS-sustaining cells as a beneficial adaptive change that inhibits ROS-mediated cell senescence and participates in the maintenance of ROS-associated tumor-promoting mechanisms. Accordingly, targeting MTH1 in RAS-transformed tumor cells will not only induce proliferative defects but also potentially enhance therapeutic cytotoxicity by shifting cellular response away from pro-survival mechanisms.

  1. Targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin squamous cell carcinoma cell growth in vitro and in vivo.

    PubMed

    Zou, Ying; Ge, Minggai; Wang, Xuemin

    2017-08-19

    Abnormal activation of PI3K-AKT-mTOR signaling is detected in human skin squamous cell carcinoma (SCC). LY3023414 is a novel, potent, and orally bio-available PI3K-AKT-mTOR inhibitor. Its activity against human skin SCC cells was tested. We demonstrated that LY3023414 was cytotoxic when added to established (A431 line) and primary (patient-derived) human skin SCC cells. LY3023414 induced G0/1-S arrest and inhibited proliferation of skin SCC cells. Moreover, LY3023414 induced activation of caspase-3/-9 and apoptosis in skin SCC cells. Intriguingly, LY3023414 was yet non-cytotoxic nor pro-apoptotic to normal human skin cells (melanocytes, keratinocytes and fibroblasts). At the molecular level, LY3023414 blocked PI3K-AKT-mTOR activation in skin SCC cells, as it dephosphorylated PI3K-AKT-mTOR substrates: P85, AKT and S6K1. In vivo studies showed that oral administration of LY3023414 at well-tolerated doses inhibited A431 xenograft tumor growth in severe combined immunodeficiency (SCID) mice. AKT-mTOR activation in LY3023414-treated tumors was also largely inhibited. Together, these results suggest that targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin SCC cell growth in vitro and in vivo, establishing the rationale for further clinical testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Octreotide promotes apoptosis in human somatotroph tumor cells by activating somatostatin receptor type 2.

    PubMed

    Ferrante, E; Pellegrini, C; Bondioni, S; Peverelli, E; Locatelli, M; Gelmini, P; Luciani, P; Peri, A; Mantovani, G; Bosari, S; Beck-Peccoz, P; Spada, A; Lania, A

    2006-09-01

    Somatostatin analogs currently used in the treatment of acromegaly and other neuroendocrine tumors inhibit hormone secretion and cell proliferation by binding to somatostatin receptor type (SST) 2 and 5. The antiproliferative pathways coupled to these receptors have been only partially characterized. The aim of this study was to evaluate the effect of octreotide and super selective SST2 (BIM23120) and SST5 (BIM23206) analogs on apoptotic activity and apoptotic gene expression in human somatotroph tumor cells. Eight somatotroph tumors expressing similar levels of SST2 and SST5 evaluated by real-time PCR and western blot analyses were included in the study. In cultured cells obtained from these tumors, octreotide induced a dose-dependent increase of caspase-3 activity (160+/-20% vs basal at 10 nM) and cleaved cytokeratin 18 levels (172+/-25% vs basal) at concentrations higher than 0.1 nM. This effect was due to SST2 activation since BIM23120 elicited comparable responses, while BIM23206 was ineffective. BIM23120-stimulated apoptosis was dependent on phosphatases, since it was abrogated by the inhibitor orthovanadate, and independent from the induction of apoptosis-related genes, such as p53, p63, p73, Bcl-2, Bax, BID, BIK, TNFSF8, and FADD. In somatotroph tumors, both BIM23120 and BIM2306 caused growth arrest as indicated by the increase in p27 and decrease in cyclin D1 expression. In conclusion, the present study showed that octreotide-induced apoptosis in human somatotroph tumor cells by activating SST2. This effect, together with the cytostatic action exerted by both SST2 and SST5 analogs, might account for the tumor shrinkage observed in acromegalic patients treated with long-acting somatostatin analogs.

  3. Ex-vivo in-vitro inhibition of lipopolysaccharide stimulated tumor necrosis factor-alpha and interleukin-1 beta secretion in human whole blood by extractum urticae dioicae foliorum.

    PubMed

    Obertreis, B; Ruttkowski, T; Teucher, T; Behnke, B; Schmitz, H

    1996-04-01

    An extract of Urtica dioica folium (IDS 23, Rheuma-Hek), monographed positively for adjuvant therapy of rheumatic diseases and with known effects in partial inhibition of prostaglandin and leukotriene synthesis in vitro, was investigated with respect to effects of the extract on the lipopolysaccharide (LPS) stimulated secretion of proinflammatory cytokines in human whole blood of healthy volunteers. In the assay system used, LPS stimulated human whole blood showed a straight increase of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) secretion reaching maximum concentrations within 24 h following a plateau and slight decrease up to 65 h, respectively. The concentrations of these cytokines was strongly positively correlated with the number of monocytes/macrophages of each volunteer. TNF-alpha and IL-1 beta concentration after LPS stimulation was significantly reduced by simultaneously given IDS 23 in a strictly dose dependent manner. At time 24 h these cytokine concentrations were reduced by 50.8% and 99.7%, respectively, using the highest test IDS 23 assay concentration of 5 mg/ml (p < 0.001). After 65 h the corresponding inhibition was 38.9% and 99.9%, respectively (p < 0.001). On the other hand IDS 23 showed no inhibition but stimulated IL-6 secretion in absence of LPS alone. Simultaneously given LPS and IDS 23 resulted in no further increase. In contrast to described effects on arachidonic acid cascade in vitro, tested Urtica dioica phenol carbon acid derivates and flavonoides such as caffeic malic acid, caffeic acid, chlorogenic acid, quercetin and rutin did not influence LPS stimulated TNF-alpha, IL-1 beta and IL-6 secretion in tested concentrations up to 5 x 10(-5) mol/l. These further findings on the pharmacological mechanism of action of Urticae dioica folia may explain the positive effects of this extract in the treatment of rheumatic diseases.

  4. Inhibition of growth and metastasis of human gastric cancer implanted in nude mice by d-limonene

    PubMed Central

    Lu, Xiao-Guang; Zhan, Li-Bin; Feng, Bing-An; Qu, Ming-Yang; Yu, Li-Hua; Xie, Ji-Hong

    2004-01-01

    AIM: To investigate the effects and mechanism of d-limonene on the growth and metastasis of gastric cancer in vivo. METHODS: Metastatic model simulating human gastric cancer was established by orthotopic implantation of histologically intact human tumor tissue into gastric wall of nude mice. One percent d-limonene was orally administered at dose of 15 ml/kg every other day for seven weeks. Eight weeks after implantation, tumor weight, inhibition rate, apoptotic index (AI), microvessel density (MVD), vascular endothelial growth factor (VEGF), variation of ultrastructure, and the presence of metastasis were evaluated, respectively, after the mice were sacrificed. RESULTS: The tumor weight was significantly reduced in 5-FU group (2.55 ± 0.28 g), d-limonene group (1.49 ± 0.09 g) and combined treatment group (1.48 ± 0.21 g) compared with the control group(2.73 ± 0.23 g, P < 0.05). In 5-FU group, d-limonene group, combined treatment group, the inhibition rates were 2.60%, 47.58% and 46.84% and 0, respectively; AI was (3.31 ± 0.33)%, (8.26 ± 1.21)%, (20.99 ± 1.84)% and (19.34 ± 2.19)%, respectively; MVD was (8.64 ± 2.81), (16.77 ± 1.39), (5.32 ± 4.26) and (5.86 ± 2.27), respectively; VEGF expression was (45.77 ± 4.79), (41.34 ± 5.41), (29.71 ± 8.92) and (28.24 ± 8.55), respectively. The incidences of peritoneal metastasis also decreased significantly in 5-FU group(77.8%), d-limonene group (20.0%) and combined group (22.2%) compared with control group (100%) versus 62.5%, 30% and 22.2%) (P < 0.05). Liver metastasis was also inhibited and the incidences decreased significantly in 5-FU group, d-limonene group and combined group than that in control group (87.5% vs 55.5%, 20.0% and 22.2% respectively) (P < 0.05). The incidence of ascites in control group, 5-FU group, d-limonene group and combined group was 25.0%, 22.2%, 0, 0, respectively and 12.5%, 11.1% 0, 0, with respect to the metastasis rate to other organs. CONCLUSION: d-limonene has antiangiogenic and

  5. Inhibition of phorbol ester-induced tumor promotion in mice by vitamin A analog and anti-inflammatory steroid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeks, C.E.; Slaga, T.J.; Hennings, H.

    1979-08-01

    The effects of a vitamin A analog, TMMP ethyl retinoate (abbreviated Ro 10-9359), and an anti-inflammatory steroid, fluocinoione acetonide (abbreviated FA), given alone or together were studied in a two-stage carcinogenesis system. the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) was used as the tumor promoter in a DMBA-initiated mouse skin system. Two stocks of female mice, which differ in their degrees of sensitivity to skin carcinogenesis, were used. A dose-dependent inhibition of carcinogenic expression, as determined by a decreased number of papillomas per animal, was observed in each mouse stock with the use of both FA and Ro 10-9359 were given alone.more » When FA and RO 10-9359 were given together, an enhanced effect on the lowering of tumor incidence was noted. FA effectively inhibited tumor formation in the sensitive mouse stock even when the steroid was given 1 day prior to TPA treatment under conditions of unusually high doses of initiator (DMBA) and/or promoter (TPA). These results suggest that both anti-inflammatory steroids and retinoids inhibit tumor promotion and can be effectively used as a combination regimen for increased chemopreventive response.« less

  6. Biological markers of human tumors and monitoring of cancer treatment.

    PubMed

    Tanneberger, S; Nissen, E; Ziegenbein, R

    1979-01-01

    The development of human tumors is accompanied very often by tumor-associated phenomena such as production of tumor-derived substances, production of certian substances in response to the tumor or immunological reactions. Up to now no of these phenomena can be used as a diagnostic cancer test but biological markers are increasingly used for monitoring progression and regression of human tumors. Basing on a number of own studies the value of the determination of CEA-serum level and urinary excretion of hydroxyprolin, spermidin and putrescin for monitoring the tumor behaviour particularly during cancer chemotherapy is demonstrated.

  7. Growth inhibition of squamous cell carcinoma xenografts with the polyamine analogue BE 4444.

    PubMed

    Auchter, R M; Pickart, M A; Nash, G A; Qu, R P; Harari, P M

    1996-09-01

    The capacity of radiation to cure advanced head and neck squamous cell carcinoma is compromised by the proliferation of surviving tumor cells during the course of therapy (overall duration, often 7-9 weeks). Antiproliferative agents that inhibit tumor proliferation, even in the absence of direct cytotoxicity, may be useful adjuncts for concurrent use with radiation. Modulation of endogenous polyamine (PA) metabolism has the potential to inhibit cell growth. The PA analogue 1,19-bis(ethylamino)-5,10,15-triazanonadecane (BE 4444) is a synthetic compound that demonstrates antiproliferative effects in human tumor cells. To evaluate the PA analogue BE 4444 for its inhibitory effect on the growth of human squamous cell carcinoma xenografts in nude mice. Xenografts of human squamous cell carcinomas were grown in nude mice; then, BE 4444 was injected intraperitoneally (5 mg/kg) on a twice-daily schedule for 8 days. Tumor growth measurements were performed twice weekly for 8 weeks and compared with those of control mice that were injected with sterile saline solution on the same schedule. The PA levels in the tumor and normal tissue samples were assayed at the completion of treatment. Tumor volume in the BE 4444-treated mice was reduced by 62% compared with tumor volumes in control mice, and the tumor growth rate was reduced by 64%. This growth inhibition was maintained through completion of the experiment. Levels of endogenous PAs were not significantly different from control levels, suggesting that the mechanism of action for BE 4444 is not simply PA biosynthesis inhibition. The PA analogue BE 4444 is an inhibitor of human squamous cell cancer growth. Further studies are in progress to characterize the potential value of PA analogues as adjuncts to radiation therapy for rapidly proliferating squamous cell carcinoma of the head and neck.

  8. Let-7b Inhibits Human Cancer Phenotype by Targeting Cytochrome P450 Epoxygenase 2J2

    PubMed Central

    Yang, Shenglan; Gong, Wei; Wang, Yan; Cianflone, Katherine; Tang, Jiarong; Wang, Dao Wen

    2012-01-01

    Background MicroRNAs (miRNAs) are small, noncoding RNA molecules of 20 to 22 nucleotides that regulate gene expression by binding to their 3′ untranslated region (3′UTR). Increasing data implicate altered miRNA participation in the progress of cancer. We previously reported that CYP2J2 epoxygenase promotes human cancer phenotypes. But whether and how CYP2J2 is regulated by miRNA is not understood. Methods and Results Using bioinformatics analysis, we found potential target sites for miRNA let-7b in 3′UTR of human CYP2J2. Luciferase and western blot assays revealed that CYP2J2 was regulated by let-7b. In addition, let-7b decreased the enzymatic activity of endogenous CYP2J2. Furthermore, let-7b may diminish cell proliferation and promote cell apoptosis of tumor cells via posttranscriptional repression of CYP2J2. Tumor xenografts were induced in nude mice by subcutaneous injection of MDA-MB-435 cells. The let-7b expression vector, pSilencer-let-7b, was injected through tail vein every 3 weeks. Let-7b significantly inhibited the tumor phenotype by targeting CYP2J2. Moreover, quantitative real-time polymerase chain reaction and western blotting were used to determine the expression levels of let-7b and CYP2J2 protein from 18 matched lung squamous cell cancer and adjacent normal lung tissues; the expression level of CYP2J2 was inversely proportional to that of let-7b. Conclusions Our results demonstrated that the decreased expression of let-7b could lead to the high expression of CYP2J2 protein in cancerous tissues. These findings suggest that miRNA let-7b reduces CYP2J2 expression, which may contribute to inhibiting tumor phenotypes. PMID:22761738

  9. Canine mammary tumors as a model for human disease.

    PubMed

    Abdelmegeed, Somaia M; Mohammed, Sulma

    2018-06-01

    Animal models for examining human breast cancer (HBC) carcinogenesis have been extensively studied and proposed. With the recent advent of immunotherapy, significant attention has been focused on the dog as a model for human cancer. Dogs develop mammary tumors and other cancer types spontaneously with an intact immune system, which exhibit a number of clinical and molecular similarities to HBC. In addition to the spontaneous tumor presentation, the clinical similarities between human and canine mammary tumors (CMT) include the age at onset, hormonal etiology and course of the diseases. Furthermore, factors that affect the disease outcome, including tumor size, stage and lymph node invasion, are similar in HBC and CMT. Similarly, the molecular characteristics of steroid receptor, epidermal growth factor, proliferation marker, metalloproteinase and cyclooxygenase expression, and the mutation of the p53 tumor suppressor gene in CMT, mimic HBC. Furthermore, ductal carcinomas in situ in human and canine mammary glands are particularly similar in their pathological, molecular and visual characteristics. These CMT characteristics and their similarities to HBC indicate that the dog could be an excellent model for the study of human disease. These similarities are discussed in detail in the present review, and are compared with the in vitro and other in vivo animal models available.

  10. Dehydroeffusol effectively inhibits human gastric cancer cell-mediated vasculogenic mimicry with low toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenming; Meng, Mei; Zhang, Bin

    Accumulated data has shown that various vasculogenic tumor cells, including gastric cancer cells, are able to directly form tumor blood vessels via vasculogenic mimicry, supplying oxygen and nutrients to tumors, and facilitating progression and metastasis of malignant tumors. Therefore, tumor vasculogenic mimicry is a rational target for developing novel anticancer therapeutics. However, effective antitumor vasculogenic mimicry-targeting drugs are not clinically available. In this study, we purified 2,7-dihydroxyl-1-methyl-5-vinyl-phenanthrene, termed dehydroeffusol, from the traditional Chinese medicinal herb Juncus effusus L., and found that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry in vitro and in vivo with very low toxicity. Dehydroeffusol significantlymore » suppressed gastric cancer cell adhesion, migration, and invasion. Molecular mechanistic studies revealed that dehydroeffusol markedly inhibited the expression of a vasculogenic mimicry master gene VE-cadherin and reduced adherent protein exposure on the cell surface by inhibiting gene promoter activity. In addition, dehydroeffusol significantly decreased the expression of a key vasculogenic gene matrix metalloproteinase 2 (MMP2) in gastric cancer cells, and diminished MMP2 protease activity. Together, our results showed that dehydroeffusol effectively inhibited gastric cancer cell-mediated vasculogenic mimicry with very low toxicity, suggesting that dehydroeffusol is a potential drug candidate for anti-gastric cancer neovascularization and anti-gastric cancer therapy. - Highlights: • Dehydroeffusol markedly inhibits gastric cancer cell-mediated vasculogenic mimicry. • Dehydroeffusol suppresses the expression of vasculogenic mimicry key gene VE-cadherin. • Dehydroeffusol decreases the MMP2 expression and activity in gastric cancer cells. • Dehydroeffusol is a potential anti-cancer drug candidate with very low toxicity.« less

  11. CTNNA3 is a tumor suppressor in hepatocellular carcinomas and is inhibited by miR-425

    PubMed Central

    Liu, Fang-E; Chen, Xue-Mei; Zhao, Jing; Lin, Song; Liu, Zhi-Zhen; Zhang, Hu-Qin

    2016-01-01

    Hepatocellular carcinoma (HCC) is a common and leading cause of death worldwide. Here, we identified that a cell-cell adhesion gene, CTNNA3, is a tumor suppressor in HCC. CTNNA3 inhibited the proliferation, migration and invasion of HCC cell lines. In these cells, CTNNA3 inhibited Akt signal, and in turn decreased the proliferating cell nuclear antigen (PCNA) and the matrix metallopeptidase MMP-9, and increased the cell cycle inhibitor p21Cip1/Waf1. Meanwhile, CTNNA3 is inhibited by miR-425 in HCC. The miR-425 directly bound to the 3′UTR of CTNNA3 and inhibited its expression. The tumor suppressor function of CTNNA3 and the oncogenic function of miR-425 were further confirmed in HCC cell xenograft in nude mice. The miR-425/CTNNA3 axis may provide insights into the mechanisms underlying HCC, and contribute to potential therapeutic strategy of HCC. PMID:26882563

  12. Pharmacokinetic-pharmacodynamic modeling of tumor growth inhibition and biomarker modulation by the novel phosphatidylinositol 3-kinase inhibitor GDC-0941.

    PubMed

    Salphati, Laurent; Wong, Harvey; Belvin, Marcia; Bradford, Delia; Edgar, Kyle A; Prior, Wei Wei; Sampath, Deepak; Wallin, Jeffrey J

    2010-09-01

    The phosphatidylinositol 3-kinase (PI3K) pathway is a major determinant of cell cycling and proliferation. Its deregulation, by activation or transforming mutations of the p110alpha subunit, is associated with the development of many cancers. 2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) is a novel small molecule inhibitor of PI3K currently being evaluated in the clinic as an anticancer agent. The objectives of these studies were to characterize the relationships between GDC-0941 plasma concentrations and tumor reduction in MCF7.1 breast cancer xenografts and to evaluate the association between the tumor pharmacodynamic biomarker [phosphorylated (p) Akt and phosphorylated proline-rich Akt substrate of 40 kDa (pPRAS40)] responses and antitumor efficacy. MCF7.1 tumor-bearing mice were treated for up to 3 weeks with GDC-0941 at various doses (12.5-200 mg/kg) and dosing schedules (daily to weekly). An indirect response model fitted to tumor growth data indicated that the GDC-0941 plasma concentration required for tumor stasis was approximately 0.3 muM. The relationship between GDC-0941 plasma concentrations and inhibition of pAkt and pPRAS40 in tumor was also investigated after a single oral dose of 12.5, 50, or 150 mg/kg. An indirect response model was fitted to the inhibition of Akt and PRAS40 phosphorylation data and provided IC(50) estimates of 0.36 and 0.29 muM for pAkt and pPRAS40, respectively. The relationship between pAkt inhibition and tumor volume was further explored using an integrated pharmacokinetic biomarker tumor growth model, which showed that a pAkt inhibition of at least 30% was required to achieve stasis after GDC-0941 treatment of the MCF7.1 xenograft.

  13. MiR-374b Promotes Proliferation and Inhibits Apoptosis of Human GIST Cells by Inhibiting PTEN through Activation of the PI3K/Akt Pathway.

    PubMed

    Long, Zi-Wen; Wu, Jiang-Hong; Hong, Cai-; Wang, Ya-Nong; Zhou, Ye

    2018-06-14

    Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR- 374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR- 374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.

  14. Gene therapy of uterine leiomyomas: adenovirus-mediated expression of dominant negative estrogen receptor inhibits tumor growth in nude mice.

    PubMed

    Al-Hendy, Ayman; Lee, Eun J; Wang, Hui Q; Copland, John A

    2004-11-01

    Leiomyomas (fibroids) are common estrogen-dependent uterine tumors with no effective medicinal treatment; hysterectomy is the mainstay of management. This study was undertaken to investigate a potential therapy for leiomyoma; we used a mutated dominant-negative estrogen receptor gene delivered via an adenoviral vector (Ad-ER-DN). Ad-ER-DN transduction, in both human and rat leiomyoma cell lines, induced an increase in both caspase-3 levels and BAX/Bcl-2 ratio with evident apoptosis in the TdT-mediated dUTP nick-end labeling assay. In nude mice, rat leiomyoma cells ex vivo transduced with Ad-ER-DN supported significantly smaller tumors compared with Ad-LacZ-treated cells 5 weeks after implantation. In mice treated by direct intratumor injection into preexisting lesions, Ad-ER-DN caused immediate overall arrest of tumor growth. The Ad-ER-DN-treated tumors demonstrated severely inhibited cell proliferation (BrdU index) and a marked increase in the number of apoptotic cells (TdT-mediated dUTP nick-end labeling index). Dominant-negative estrogen receptor gene therapy may provide a nonsurgical treatment option for women with symptomatic uterine fibroids who want to preserve their uteri.

  15. CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages.

    PubMed

    Ball, Michael S; Shipman, Emilie P; Kim, Hyunjung; Liby, Karen T; Pioli, Patricia A

    2016-01-01

    Tumor-associated macrophages can account for up to 50% of the tumor mass in breast cancer patients and high TAM density is associated with poor clinical prognosis. Because TAMs enhance tumor growth, development, and metastatic potential, redirection of TAM activation may have significant therapeutic benefit. Our studies in primary human macrophages and murine breast TAMs suggest that the synthetic oleanane triterpenoid CDDO-methyl ester (CDDO-Me) reprograms the activation profile of TAMs from tumor-promoting to tumor-inhibiting. We show that CDDO-Me treatment inhibits expression of IL-10 and VEGF in stimulated human M2 macrophages and TAMs but increases expression of TNF-α and IL-6. Surface expression of CD206 and CD163, which are characteristic of M2 activation, is significantly attenuated by CDDO-Me. In contrast, CDDO-Me up-regulates surface expression of HLA-DR and CD80, which are markers of M1 activation, and importantly potentiates macrophage activation of autologous T cells but inhibits endothelial cell vascularization. These results show for the first time that CDDO-Me redirects activation of M2 macrophages and TAMs from immune-suppressive to immune-stimulatory, and implicate a role for CDDO-Me as an immunotherapeutic in the treatment of breast and potentially other types of cancer.

  16. CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages

    PubMed Central

    Ball, Michael S.; Shipman, Emilie P.; Kim, Hyunjung; Liby, Karen T.; Pioli, Patricia A.

    2016-01-01

    Tumor-associated macrophages can account for up to 50% of the tumor mass in breast cancer patients and high TAM density is associated with poor clinical prognosis. Because TAMs enhance tumor growth, development, and metastatic potential, redirection of TAM activation may have significant therapeutic benefit. Our studies in primary human macrophages and murine breast TAMs suggest that the synthetic oleanane triterpenoid CDDO-methyl ester (CDDO-Me) reprograms the activation profile of TAMs from tumor-promoting to tumor-inhibiting. We show that CDDO-Me treatment inhibits expression of IL-10 and VEGF in stimulated human M2 macrophages and TAMs but increases expression of TNF-α and IL-6. Surface expression of CD206 and CD163, which are characteristic of M2 activation, is significantly attenuated by CDDO-Me. In contrast, CDDO-Me up-regulates surface expression of HLA-DR and CD80, which are markers of M1 activation, and importantly potentiates macrophage activation of autologous T cells but inhibits endothelial cell vascularization. These results show for the first time that CDDO-Me redirects activation of M2 macrophages and TAMs from immune-suppressive to immune-stimulatory, and implicate a role for CDDO-Me as an immunotherapeutic in the treatment of breast and potentially other types of cancer. PMID:26918785

  17. [Inhibitory effect of human lactoferrin (neolactoferrin) on the growth of transplantable tumor in the uterine cervix of mice].

    PubMed

    Kobliakov, V A; Antoshina, E E; Gor'kova, T G; Gol'dman, I L; Trukhanova, L S; Sadchikova, E R

    2012-01-01

    There was studied effect of recombinant form of human breast milk component-lactoferrin, received from milk of goats-producers (neolactoferrin), on growth of transplantable tumor of the cervix in mice (TTC-5). Neolactoferrin in dose of 100 mg/kg and 200 mg/kg of animals' mass inhibited the rate of tumor growth. The most effective was the dose of 200 mg/kg, which was entered a week before transplantation. In contrast to the control group, in groups where neolactoferrin was entered it was fixed resorption of TTC-5 in 6 mice. Repeated transplantation TTC-5 to these mice led to reducing of the rate of tumor growth and increasing of duration of their lives. To investigate if tumor-braking effect neolactoferrin connected with direct effect on the tumor or due to the general effect of the organism, TTC-5 cells were transformed in culture and they were exposed by neolactoferrin in dose of 10 and 100 mkg/ml. In investigated doses neolactoferrin did not influence on tumor cells growth. There is discussed possible mechanism of anti-tumor effect of neolactoferrin.

  18. Ajoene inhibits both primary tumor growth and metastasis of B16/BL6 melanoma cells in C57BL/6 mice.

    PubMed

    Taylor, Peter; Noriega, Raquel; Farah, Carla; Abad, María-Jesús; Arsenak, Miriam; Apitz, Rafael

    2006-08-08

    Ajoene is an organosulphur compound derived from garlic with important effects on several membrane-associated processes such as platelet aggregation, as well as being cytotoxic for tumor cell lines in vitro. In the present study, we investigated the effect of ajoene on different cell types in vitro, as well as its inhibitory effects on both primary tumors and metastasis in a mouse model. We found ajoene to inhibit tumor cell growth in vitro, but also to inhibit strongly metastasis to lung in the B16/BL6 melanoma tumor model in C57BL/6 mice. As far as we are aware, this is the first report of the anti-metastatic effect of ajoene. Ajoene also inhibited tumor-endothelial cell adhesion, as well as the in vivo TNF-alpha response to lipopolysaccharide. Possible mechanisms of its antitumoral activity are discussed in the light of these results.

  19. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacymore » and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.« less

  20. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    PubMed

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  1. Knockdown of MAGEA6 Activates AMP-Activated Protein Kinase (AMPK) Signaling to Inhibit Human Renal Cell Carcinoma Cells.

    PubMed

    Ye, Xueting; Xie, Jing; Huang, Hang; Deng, Zhexian

    2018-01-01

    Melanoma antigen A6 (MAGEA6) is a cancer-specific ubiquitin ligase of AMP-activated protein kinase (AMPK). The current study tested MAGEA6 expression and potential function in renal cell carcinoma (RCC). MAGEA6 and AMPK expression in human RCC tissues and RCC cells were tested by Western blotting assay and qRT-PCR assay. shRNA method was applied to knockdown MAGEA6 in human RCC cells. Cell survival and proliferation were tested by MTT assay and BrdU ELISA assay, respectively. Cell apoptosis was tested by the TUNEL assay and single strand DNA ELISA assay. The 786-O xenograft in nude mouse model was established to test RCC cell growth in vivo. MAGEA6 is specifically expressed in RCC tissues as well as in the established (786-O and A498) and primary human RCC cells. MAGEA6 expression is correlated with AMPKα1 downregulation in RCC tissues and cells. It is not detected in normal renal tissues nor in the HK-2 renal epithelial cells. MAGEA6 knockdown by targeted-shRNA induced AMPK stabilization and activation, which led to mTOR complex 1 (mTORC1) in-activation and RCC cell death/apoptosis. AMPK inhibition, by AMPKα1 shRNA or the dominant negative AMPKα1 (T172A), almost reversed MAGEA6 knockdown-induced RCC cell apoptosis. Conversely, expression of the constitutive-active AMPKα1 (T172D) mimicked the actions by MAGEA6 shRNA. In vivo, MAGEA6 shRNA-bearing 786-O tumors grew significantly slower in nude mice than the control tumors. AMPKα1 stabilization and activation as well as mTORC1 in-activation were detected in MAGEA6 shRNA tumor tissues. MAGEA6 knockdown inhibits human RCC cells via activating AMPK signaling. © 2018 The Author(s). Published by S. Karger AG, Basel.

  2. H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK.

    PubMed

    Kar, Siddhartha; Wang, Meifang; Ham, Seung Wook; Carr, Brian I

    2006-10-01

    We previously synthesized a K-vitamin derivative, Cpd 5, which was a potent growth inhibitor of human tumor cells, including Hep3B hepatoma cells. However, being a quinone compound, Cpd 5 has the potential for generating toxic reactive oxygen species (ROS). We therefore synthesized a nonquinone sulfone derivative, H32, which has a sufone group substituting the quinone. The IC50 of H32 for Hep3B cells was found to be 2.5 microM, which was 2.5 and 3.2 times more potent than Cpd 5 and vitamin K3 respectively. It induced apoptosis in Hep3B cells but did not generate ROS when compared to Cpd 5. Interestingly, under similar culture conditions, normal rat hepatocytes were 14-fold more and 7-fold more resistant to the growth inhibitory effects of H32 than Hep3B and PLC/PRF5 cells respectively. H32 preferentially inhibited the activities of the cell cycle controlling Cdc25A phosphatase likely by binding to its catalytic cysteine. As a consequence, it induced inhibitory tyrosine phosphorylation of the Cdc25 substrate kinases Cdk2 and Cdk4 in Hep3B cells and the cells undergo an arrest in the G1 phase of the cell cycle. H32 also induced persistent phosphorylation of the MAPK protein ERK1/2, but marginal JNK1/2 and p38 phosphorylation. The ERK inhibitor U0126, added at least 30 min prior to H32, antagonized the growth inhibition induced by H32. However, the JNK and p38 inhibitors, JNKI-II and SB203580, were not able to antagonize H32 induced growth inhibition. Thus, H32 differentially inhibited growth of normal and liver tumor cells by preferentially inhibiting the actions of Cdc25 phosphatases and inducing persistent ERK phosphorylation.

  3. Autophagy inhibition synergistically enhances anti-cancer efficacy of RAMBA, VN/12-1 in SKBR-3 cells and tumor xenografts

    PubMed Central

    Godbole, Abhijit M.; Purushottamachar, Puranik; Martin, Marlena S.; Daskalakis, Constantine; Njar, Vincent C. O.

    2012-01-01

    VN/12-1 is a novel retinoic acid metabolism blocking agent (RAMBA) discovered in our laboratory. The purpose of the study was to elucidate the molecular mechanism of VN/12-1’s anticancer activity in breast cancer cell lines and in tumor xenografts. We investigated the effects of VN/12-1 on induction of autophagy andapoptosis in SKBR-3 cells. Further, we also examined the impact of pharmacological and genomic inhibition of autophagy on VN/12-1’s anti-cancer activity. Finally, the anti-tumor activity of VN/12-1 was evaluated as a single agent and in combination with autophagy inhibitor chloroquine (CHL) in an SKBR-3 mouse xenograft model. Short exposure of low dose (< 10 µM) of VN/12-1 induced endoplasmic reticulum stress (ERS), autophagy and inhibits G1-S phase transition and caused a protective response. However, higher dose of VN/12-1 initiates apoptosis in vitro. Inhibition of autophagy using either pharmacological inhibitors or RNA interference of Beclin-1 enhanced anti-cancer activity induced by VN/12-1 in SKBR-3 cells by triggering apoptosis. Importantly, VN/12-1 (5 mg/kg twice weekly) and the combination of VN/12-1 (5 mg/kg twice weekly) + chloroquine (50 mg/kg twice weekly) significantly suppressed established SKBR-3 tumor growth by 81.4% (p < 0.001 vs. control) and 96.2% (p < 0.001 vs. control), respectively. Our novel findings suggest that VN/12-1 may be useful as a single agent or in combination with autophagy inhibitors for treating human breast cancers. Our data provides a strong rationale for clinical evaluation of VN/12-1 as single agent or in combination with autophagy inhibitors. PMID:22334589

  4. Parkin targets HIF-1α for ubiquitination and degradation to inhibit breast tumor progression.

    PubMed

    Liu, Juan; Zhang, Cen; Zhao, Yuhan; Yue, Xuetian; Wu, Hao; Huang, Shan; Chen, James; Tomsky, Kyle; Xie, Haiyang; Khella, Christen A; Gatza, Michael L; Xia, Dajing; Gao, Jimin; White, Eileen; Haffty, Bruce G; Hu, Wenwei; Feng, Zhaohui

    2017-11-28

    Mutations in E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Accumulating evidence suggests that Parkin is a tumor suppressor, but the underlying mechanism is poorly understood. Here we show that Parkin is an E3 ubiquitin ligase for hypoxia-inducible factor 1α (HIF-1α). Parkin interacts with HIF-1α and promotes HIF-1α degradation through ubiquitination, which in turn inhibits metastasis of breast cancer cells. Parkin downregulation in breast cancer cells promotes metastasis, which can be inhibited by targeting HIF-1α with RNA interference or the small-molecule inhibitor YC-1. We further identify lysine 477 (K477) of HIF-1α as a major ubiquitination site for Parkin. K477R HIF-1α mutation and specific cancer-associated Parkin mutations largely abolish the functions of Parkin to ubiquitinate HIF-1α and inhibit cancer metastasis. Importantly, Parkin expression is inversely correlated with HIF-1α expression and metastasis in breast cancer. Our results reveal an important mechanism for Parkin in tumor suppression and HIF-1α regulation.

  5. Blocking the proliferation of human tumor cell lines by peptidase inhibitors from Bauhinia seeds.

    PubMed

    Nakahata, Adriana Miti; Mayer, Barbara; Neth, Peter; Hansen, Daiane; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2013-03-01

    In cancer tumors, growth, invasion, and formation of metastasis at a secondary site play a pivotal role, participating in diverse processes in the development of the pathology, such as degradation of extracellular matrix. Bauhinia seeds contain relatively large quantities of peptidase inhibitors, and two Bauhinia inhibitors were obtained in a recombinant form from the Bauhinia bauhinioides species, B. bauhinoides cruzipain inhibitor, which is a cysteine and serine peptidase inhibitor, and B. bauhinioides kallikrein inhibitor, which is a serine peptidase inhibitor. While recombinant B. bauhinoides cruzipain inhibitor inhibits human neutrophil elastase cathepsin G and the cysteine proteinase cathepsin L, recombinant B. bauhinioides kallikrein inhibitor inhibits plasma kallikrein and plasmin. The effects of recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor on the viability of tumor cell lines with a distinct potential of growth from the same tissue were compared to those of the clinical cytotoxic drug 5-fluorouracil. At 12.5 µM concentration, recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor were more efficient than 5-fluorouracil in inhibiting MKN-28 and Hs746T (gastric), HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), and THP-1 and K562 (leukemia) cell lines. Additionally, recombinant B. bauhinoides cruzipain inhibitor inhibited 40 % of the migration of Hs746T, the most invasive gastric cell line, while recombinant B. bauhinioides kallikrein inhibitor did not affect cell migration. Recombinant B. bauhinioides kallikrein inhibitor and recombinant B. bauhinoides cruzipain inhibitor, even at high doses, did not affect hMSC proliferation while 5-fluorouracil greatly reduced the proliferation rates of hMSCs. Therefore, both recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor might be considered for further studies

  6. Celecoxib-Induced Cytotoxic Effect Is Potentiated by Inhibition of Autophagy in Human Urothelial Carcinoma Cells

    PubMed Central

    Ho, I-Lin; Chang, Hong-Chiang; Chuang, Yuan-Ting; Lin, Wei-Chou; Lee, Ping-Yi; Chang, Shih-Chen; Chiang, Chih-Kang; Pu, Yeong-Shiau; Chou, Chien-Tso; Hsu, Chen-Hsun; Liu, Shing-Hwa

    2013-01-01

    Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, can elicit anti-tumor effects in various malignancies. Here, we sought to clarify the role of autophagy in celecoxib-induced cytotoxicity in human urothelial carcinoma (UC) cells. The results shows celecoxib induced cellular stress response such as endoplasmic reticulum (ER) stress, phosopho-SAPK/JNK, and phosopho-c-Jun as well as autophagosome formation in UC cells. Inhibition of autophagy by 3-methyladenine (3-MA), bafilomycin A1 or ATG7 knockdown potentiated celecoxib-induced apoptosis. Up-regulation of autophagy by rapamycin or GFP-LC3B-transfection alleviated celecoxib-induced cytotoxicity in UC cells. Taken together, the inhibition of autophagy enhances therapeutic efficacy of celecoxib in UC cells, suggesting a novel therapeutic strategy against UC. PMID:24349176

  7. Hedgehog signal inhibitor forskolin suppresses cell proliferation and tumor growth of human rhabdomyosarcoma xenograft.

    PubMed

    Yamanaka, Hiroaki; Oue, Takaharu; Uehara, Shuichiro; Fukuzawa, Masahiro

    2011-02-01

    We have previously reported that the Hedgehog (Hh) signaling pathway is activated in pediatric malignancies. In this study, we examined the effect of the Hh signal inhibitor forskolin on the growth of rhabdomyosarcoma (RMS) in vivo and in vitro and thereby elucidated the possibility of considering Hh signaling pathway as a therapeutic target for RMS. We evaluated the messenger RNA expressions of Hh signal mediators in 3 human RMS cell lines using reverse transcriptase-polymerase chain reaction method. The effect of forskolin on the tumor cell proliferation was investigated using WST-1 assay (Dojindo Co, Kumamoto, Japan). We inoculated 10(7) tumor cells into the back of nude mice to create RMS xenograft tumor models. Forskolin was subcutaneously administered in the region around the tumor, and the effect on the tumor growth was evaluated. The messenger RNA expression of glioma-associated oncogene homolog 1, the marker of Hh signaling activation, was expressed at various levels in RMS cell lines. The proliferation of RMS cells was inhibited in a dose-dependent fashion by forskolin. Similarly, in the xenograft model, tumor growth was also significantly reduced by forskolin treatment. Our findings suggest that the Hh signaling pathway plays an important role in the tumorigenesis of RMS and that this pathway can be considered to be a potential molecular target of new treatment strategies for RMS. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase.

    PubMed Central

    Cavigelli, M; Li, W W; Lin, A; Su, B; Yoshioka, K; Karin, M

    1996-01-01

    Trivalent arsenic (As3+) is highly carcinogenic, but devoid of known mutagenic activity. Therefore, it is likely to act as a tumor promoter. To understand the molecular basis for the tumor-promoting activity of As3+, we examined its effect on transcription factor AP-1, whose activity is stimulated by several other tumor promoters. We found that As3+, but not As5+, which is toxic but not carcinogenic, is a potent stimulator of AP-1 transcriptional activity and an efficient inducer of c-fos and c-jun gene expression. Induction of c-jun and c-fos transcription by As3+ correlates with activation of Jun kinases (JNKs) and p38/Mpk2, which phosphorylate transcription factors that activate these immediate early genes. No effect on ERK activity was observed. As5+, on the other hand, had a negligible effect on JNK or p38/Mpk2 activity. Biochemical analysis and co-transfection experiments strongly suggest that the primary mechanism by which As3+ stimulates JNK activity involves the inhibition of a constitutive dual-specificity JNK phosphatase. This phosphatase activity appears to be responsible for maintaining low basal JNK activity in non-stimulated cells and its inhibition may lead to tumor promotion through induction of proto-oncogenes such as c-jun and c-fos, and stimulation of AP-1 activity. The same phosphatase may also regulate p38/Mpk2 activity. Images PMID:8947050

  9. A novel human Fab antibody for Trop2 inhibits breast cancer growth in vitro and in vivo.

    PubMed

    Lin, Hong; Zhang, Huiling; Wang, Jun; Lu, Meiping; Zheng, Feng; Wang, Changjun; Tang, Xiaojun; Xu, Ning; Chen, Renjie; Zhang, Dawei; Zhao, Ping; Zhu, Jin; Mao, Yuan; Feng, Zhenqing

    2014-03-01

    Human trophoblastic cell surface antigen 2 (Trop2) has been suggested as an oncogene, which is associated with the different types of tumors. In this study, a human Fab antibody against Trop2 extracellular domain was isolated from phage library by phage display technology, and characterized by ELISA, FACS, fluorescence staining and Western blotting analysis. MTT, apoptosis assay and wound healing assay were employed to evaluate the inhibitory effects of Trop2 Fab on breast cancer cell growth in vitro, while tumor-xenograft model was employed to evaluate the inhibitory effects on breast cancer growth in vivo. The results showed that Trop2 Fab inhibited the proliferation, induced the apoptosis and suspended the migration of MDA-MB-231 cells in a dose dependent manner. The expression caspase-3 was activated, and the expression of Bcl-2 was reduced while that of Bax was elevated in MDA-MB-231 cells by treating with Trop2 Fab. In addition, Trop2 Fab inhibited the growth of breast cancer xenografts and the expression of Bcl-2 was reduced while that of Bax was elevated in xenografts. Trop2 Fab, which was isolated successfully in this research, is a promising therapeutic agent for the treatment of Trop2 expressing breast cancer. © 2013 UICC.

  10. Epithelial-mesenchymal transition increases tumor sensitivity to COX-2 inhibition by apricoxib.

    PubMed

    Kirane, Amanda; Toombs, Jason E; Larsen, Jill E; Ostapoff, Katherine T; Meshaw, Kathryn R; Zaknoen, Sara; Brekken, Rolf A; Burrows, Francis J

    2012-09-01

    Although cyclooxygenase-2 (COX-2) inhibitors, such as the late stage development drug apricoxib, exhibit antitumor activity, their mechanisms of action have not been fully defined. In this study, we characterized the mechanisms of action of apricoxib in HT29 colorectal carcinoma. Apricoxib was weakly cytotoxic toward naive HT29 cells in vitro but inhibited tumor growth markedly in vivo. Pharmacokinetic analyses revealed that in vivo drug levels peaked at 2-4 µM and remained sufficient to completely inhibit prostaglandin E(2) production, but failed to reach concentrations cytotoxic for HT29 cells in monolayer culture. Despite this, apricoxib significantly inhibited tumor cell proliferation and induced apoptosis without affecting blood vessel density, although it did promote vascular normalization. Strikingly, apricoxib treatment induced a dose-dependent reversal of epithelial-mesenchymal transition (EMT), as shown by robust upregulation of E-cadherin and the virtual disappearance of vimentin and ZEB1 protein expression. In vitro, either anchorage-independent growth conditions or forced EMT sensitized HT29 and non-small cell lung cancer cells to apricoxib by 50-fold, suggesting that the occurrence of EMT may actually increase the dependence of colon and lung carcinoma cells on COX-2. Taken together, these data suggest that acquisition of mesenchymal characteristics sensitizes carcinoma cells to apricoxib resulting in significant single-agent antitumor activity.

  11. Rupatadine inhibits inflammatory mediator release from human laboratory of allergic diseases 2 cultured mast cells stimulated by platelet-activating factor.

    PubMed

    Alevizos, Michail; Karagkouni, Anna; Vasiadi, Magdalini; Sismanopoulos, Nikolaos; Makris, Michael; Kalogeromitros, Dimitrios; Theoharides, Theoharis C

    2013-12-01

    Mast cells are involved in allergy and inflammation by the secretion of multiple mediators, including histamine, cytokines, and platelet-activating factor (PAF), in response to different triggers, including emotional stress. PAF has been associated with allergic inflammation, but there are no clinically available PAF inhibitors. To investigate whether PAF could stimulate human mast cell mediator release and whether rupatadine (RUP), a dual histamine-1 and PAF receptor antagonist, could inhibit the effect of PAF on human mast cells. Laboratory of allergic diseases 2 cultured mast cells were stimulated with PAF (0.001, 0.01, and 0.1 μmol/L) and substance P (1 μmol/L) with or without pretreatment with RUP (2.5 and 25 μmol/L), which was added 10 minutes before stimulation. Release of β-hexosaminidase was measured in supernatant fluid by spectrophotoscopy, and histamine, interleukin-8, and tumor necrosis factor were measured by enzyme-linked immunosorbent assay. PAF stimulated a statistically significant release of histamine, interleukin-8, and tumor necrosis factor (0.001-0.1 μmol/L) that was comparable to that stimulated by substance P. Pretreatment with RUP (25 μmol/L) for 10 minutes inhibited this effect. In contrast, pretreatment of laboratory of allergic diseases 2 cells with diphenhydramine (25 μmol/L) did not inhibit mediator release, suggesting that the effect of RUP was not due to its antihistaminic effect. PAF stimulates human mast cell release of proinflammatory mediators that is inhibited by RUP. This action endows RUP with additional properties in treating allergic inflammation. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  12. Flor-Essence® herbal tonic does not inhibit estrogen receptor negative mammary tumor development in a transgenic mouse model

    PubMed Central

    Bennett, L. Michelle; Montgomery, Jennifer L.; Collins, N. Keith; Steinberg, Seth M.; Kulp, Kristen S.

    2012-01-01

    Women who are diagnosed with breast cancer often self-administer complementary and alternative medicines to augment their conventional treatments, improve health, or prevent recurrence. Flor-Essence® herbal tonic is a complex mixture of eight herbal extracts used by cancer patients because of anecdotal evidence that it can treat or prevent disease. In this study four experimental groups of female MMTV-Neu mice were left untreated or treated with 3% Flor-Essence® in utero, from birth until 5 weeks of age, or throughout their lifetime. Palpable mammary tumor incidence and body weight was determined weekly for each group. The mice were sacrificed at 28 weeks of age and mammary tumors were enumerated to determine average tumor incidence and multiplicity for each group. Female mice exposed to Flor-Essence® herbal tonic in utero weighed significantly more than the control group (p < 0.001). The average tumor incidence and tumor multiplicity in the experimental mice treated with Flor-Essence® herbal tonic did not differ from the control animals. Flor-Essence® does not inhibit mammary tumor incidence or mammary tumor multiplicity in MMTV-Neu transgenic mice. Flor-Essence® exposure in utero causes increased body weight in experimental animals. This conclusion challenges widely available anecdotal information as well as the hopes of the consumer that this product will inhibit or suppress tumor development. Lay Abstract Flor-Essence® herbal tonic is a complex mixture of eight herbal extracts often used by women with breast cancer in hopes that it will help cure disease or prevent recurrence. There is currently very little scientific data to support or refute its self-administration. We tested whether Flor-Essence® would influence tumor development in the mammary glands of a mouse model of Her2/neu breast cancer. The tonic was given at different life stages to determine if timing of the exposure influenced the response to treatment. This report shows that Flor

  13. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling

    PubMed Central

    Zheng, Hongming; Zheng, Liang; Liu, Wenqin; Wu, Jinjun; Ou, Rilan; Zhang, Guiyu; Li, Fangyuan; Hu, Ming; Liu, Zhongqiu; Lu, Linlin

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is the most prevalent malignancy worldwide given its high incidence, considerable mortality, and poor prognosis. The anti-malaria compounds artemisinin (ART), dihydroartemisinin (DHA), and artesunate (ARTS) reportedly have anti-cancer potential, although the underlying mechanisms remain unclear. In this work, we used flow cytometry to show that ART, DHA, and ARTS could inhibit the proliferation of A549 and H1299 cells by arresting cell cycle in G1 phase. Meanwhile, tumor malignancy including migration, invasion, cancer stem cells, and epithelial–mesenchymal transition were also significantly suppressed by these compounds. Furthermore, ART, DHA, and ARTS remarkably decreased tumor growth in vivo. By using IWP-2, the inhibitor of Wnt/β-catenin pathway, and Wnt5a siRNA, we found that ART, DHA, and ARTS could render tumor inhibition partially dependent on Wnt/β-catenin inactivation. These compounds could strikingly decrease the protein level of Wnt5-a/b and simultaneously increase those of NKD2 and Axin2, ultimately resulting in β-catenin downregulation. In summary, our findings revealed that ART, DHA, and ARTS could suppress lung-tumor progression by inhibiting Wnt/β-catenin pathway, thereby suggesting a novel target for ART, DHA, and ARTS in cancer treatment. PMID:27119499

  14. Astaxanthin Inhibits PC-3 Xenograft Prostate Tumor Growth in Nude Mice

    PubMed Central

    Ni, Xiaofeng; Yu, Haining; Wang, Shanshan; Zhang, Chengcheng; Shen, Shengrong

    2017-01-01

    Prostate cancer (PCa), the most common malignancy in men, is a major cause of cancer deaths. A better understanding of the mechanisms that drive tumor initiation and progression may identify actionable targets to improve treatment of this patient group. As a dietary carotenoid, astaxanthin has been demonstrated to exert beneficial effects against inflammation, cardiovascular disease, oxidative damage, or different cancer sites. This study used intragastric administration of astaxanthin to detect its role on tumor proliferation, apoptosis, microRNA (miRNA) overexpression, and microbacteria composition change by establishing androgen-independent PCa cell PC-3 xenograft nude mice. Nude mice were inoculated with androgen-independent prostate cancer PC-3 cells subcutaneously. The intervention was started when tumors reached 0.5–0.6 cm in diameter. Mice were intragastrically administered 100 mg/kg astaxanthin (HA), 25 mg/kg astaxanthin (LA), or olive oil (TC). The results showed that 100 mg/kg astaxanthin significantly inhibited tumor growth compared to the TC group, with an inhibitory rate of 41.7%. A decrease of Ki67 and proliferating cell nuclear antigen (PCNA) as well as an increase of cleaved caspase-3 were observed in HA-treated tumors, along with increasing apoptotic cells, obtained by TUNEL assay. The HA significantly elevated the levels of tumor suppressors miR-375 and miR-487b in tumor tissues and the amount of Lactobacillus sp. and Lachnospiraceae in mice stools, while there was no significant difference between LA and TC groups. These results provide a promising regimen to enhance the therapeutic effect in a dietary supplement manner. PMID:28282880

  15. Astaxanthin Inhibits PC-3 Xenograft Prostate Tumor Growth in Nude Mice.

    PubMed

    Ni, Xiaofeng; Yu, Haining; Wang, Shanshan; Zhang, Chengcheng; Shen, Shengrong

    2017-03-08

    Prostate cancer (PCa), the most common malignancy in men, is a major cause of cancer deaths. A better understanding of the mechanisms that drive tumor initiation and progression may identify actionable targets to improve treatment of this patient group. As a dietary carotenoid, astaxanthin has been demonstrated to exert beneficial effects against inflammation, cardiovascular disease, oxidative damage, or different cancer sites. This study used intragastric administration of astaxanthin to detect its role on tumor proliferation, apoptosis, microRNA (miRNA) overexpression, and microbacteria composition change by establishing androgen-independent PCa cell PC-3 xenograft nude mice. Nude mice were inoculated with androgen-independent prostate cancer PC-3 cells subcutaneously. The intervention was started when tumors reached 0.5-0.6 cm in diameter. Mice were intragastrically administered 100 mg/kg astaxanthin (HA), 25 mg/kg astaxanthin (LA), or olive oil (TC). The results showed that 100 mg/kg astaxanthin significantly inhibited tumor growth compared to the TC group, with an inhibitory rate of 41.7%. A decrease of Ki67 and proliferating cell nuclear antigen (PCNA) as well as an increase of cleaved caspase-3 were observed in HA-treated tumors, along with increasing apoptotic cells, obtained by TUNEL assay. The HA significantly elevated the levels of tumor suppressors miR-375 and miR-487b in tumor tissues and the amount of Lactobacillus sp. and Lachnospiraceae in mice stools, while there was no significant difference between LA and TC groups. These results provide a promising regimen to enhance the therapeutic effect in a dietary supplement manner.

  16. ABT-510, a modified type 1 repeat peptide of thrombospondin, inhibits malignant glioma growth in vivo by inhibiting angiogenesis.

    PubMed

    Anderson, Joshua C; Grammer, J Robert; Wang, Wenquan; Nabors, L Burton; Henkin, Jack; Stewart, Jerry E; Gladson, Candece L

    2007-03-01

    Anti-angiogenic therapies would be particularly beneficial in the treatment of malignant gliomas. Peptides derived from the second type 1 repeat (TSR) of thrombospondin-1 (TSP-1) have been shown to inhibit angiogenesis in non-glioma tumor models and a modified TSR peptide, ABT-510, has now entered into Phase II clinical trials of its efficacy in non-glioma tumors. As microvascular endothelial cells (MvEC) exhibit heterogeneity, we evaluated the ability of the modified TSR peptide (NAcSarGlyValDallolleThrNvalleArgProNHE, ABT-510) to inhibit malignant glioma growth in vivo and to induce apoptosis of brain microvessel endothelial cells (MvEC) propagated in vitro. We found that daily administration of ABT-510 until euthanasia (days 7 to 19), significantly inhibited the growth of human malignant astrocytoma tumors established in the brain of athymic nude mice. The microvessel density was significantly lower and the number of apoptotic MvEC was significantly higher (3-fold) in the tumors of the ABT-510-treated animals. Similar results were found using a model in which the established tumor is an intracerebral malignant glioma propagated in a syngeneic mouse model. ABT-510 treatment of primary human brain MvEC propagated as a monolayer resulted in induction of apoptosis in a dose- and time-dependent manner through a caspase-8-dependent mechanism. It also inhibited tubular morphogenesis of MvEC propagated in collagen gels in a dose- and caspase-8 dependent manner through a mechanism that requires the TSP-1 receptor (CD36) on the MvEC. These findings indicate that ABT-510 should be evaluated as a therapeutic option for patients with malignant glioma.

  17. IL-6 Inhibition With MEDI5117 Decreases The Fraction of Head and Neck Cancer Stem Cells and Prevents Tumor Recurrence.

    PubMed

    Finkel, Kelsey A; Warner, Kristy A; Kerk, Samuel; Bradford, Carol R; McLean, Scott A; Prince, Mark E; Zhong, Haihong; Hurt, Elaine M; Hollingsworth, Robert E; Wicha, Max S; Tice, David A; Nör, Jacques E

    2016-05-01

    Head and neck squamous cell carcinomas (HNSCC) exhibit a small population of uniquely tumorigenic cancer stem cells (CSC) endowed with self-renewal and multipotency. We have recently shown that IL-6 enhances the survival and tumorigenic potential of head and neck cancer stem cells (i.e. ALDH(high)CD44(high) cells). Here, we characterized the effect of therapeutic inhibition of IL-6 with a novel humanized anti-IL-6 antibody (MEDI5117) using three low-passage patient-derived xenograft (PDX) models of HNSCC. We observed that single agent MEDI5117 inhibited the growth of PDX-SCC-M1 tumors (P < .05). This PDX model was generated from a previously untreated HNSCC. In contrast, MEDI5117 was not effective at reducing overall tumor volume for PDX models representing resistant disease (PDX-SCC-M0, PDX-SCC-M11). Low dose MEDI5117 (3 mg/kg) consistently decreased the fraction of cancer stem cells in PDX models of HNSCC when compared to IgG-treated controls, as follows: PDX-SCC-M0 (P < .001), PDX-SCC-M1 (P < .001), PDX-SCC-M11 (P = .04). Interestingly, high dose MEDI5117 (30 mg/kg) decreased the CSC fraction in the PDX-SCC-M11 model (P = .002), but not in PDX-SCC-M0 and PDX-SCC-M1. MEDI5117 mediated a dose-dependent decrease in the number of orospheres generated by ALDH(high)CD44(high) cells cultured in ultra-low attachment plates (P < .05), supporting an inhibitory effect on head and neck cancer stem cells. Notably, single agent MEDI5117 reduced the overall recurrence rate of PDX-SCC-M0, a PDX generated from the local recurrence of human HNSCC. Collectively, these data demonstrate that therapeutic inhibition of IL-6 with low-dose MEDI5117 decreases the fraction of cancer stem cells, and that adjuvant MEDI5117 inhibits recurrence in preclinical models of HNSCC. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors

    PubMed Central

    Cheong, Jit Kong; Gunaratnam, Lakshman; Zang, Zhi Jiang; Yang, Christopher M; Sun, Xiaoming; Nasr, Susan L; Sim, Khe Guan; Peh, Bee Keow; Rashid, Suhaimi Bin Abdul; Bonventre, Joseph V; Salto-Tellez, Manuel; Hsu, Stephen I

    2009-01-01

    Background Members of the TRIP-Br/SERTAD family of mammalian transcriptional coregulators have recently been implicated in E2F-mediated cell cycle progression and tumorigenesis. We, herein, focus on the detailed functional characterization of the least understood member of the TRIP-Br/SERTAD protein family, TRIP-Br2 (SERTAD2). Methods Oncogenic potential of TRIP-Br2 was demonstrated by (1) inoculation of NIH3T3 fibroblasts, which were engineered to stably overexpress ectopic TRIP-Br2, into athymic nude mice for tumor induction and (2) comprehensive immunohistochemical high-throughput screening of TRIP-Br2 protein expression in multiple human tumor cell lines and human tumor tissue microarrays (TMAs). Clinicopathologic analysis was conducted to assess the potential of TRIP-Br2 as a novel prognostic marker of human cancer. RNA interference of TRIP-Br2 expression in HCT-116 colorectal carcinoma cells was performed to determine the potential of TRIP-Br2 as a novel chemotherapeutic drug target. Results Overexpression of TRIP-Br2 is sufficient to transform murine fibroblasts and promotes tumorigenesis in nude mice. The transformed phenotype is characterized by deregulation of the E2F/DP-transcriptional pathway through upregulation of the key E2F-responsive genes CYCLIN E, CYCLIN A2, CDC6 and DHFR. TRIP-Br2 is frequently overexpressed in both cancer cell lines and multiple human tumors. Clinicopathologic correlation indicates that overexpression of TRIP-Br2 in hepatocellular carcinoma is associated with a worse clinical outcome by Kaplan-Meier survival analysis. Small interfering RNA-mediated (siRNA) knockdown of TRIP-Br2 was sufficient to inhibit cell-autonomous growth of HCT-116 cells in vitro. Conclusion This study identifies TRIP-Br2 as a bona-fide protooncogene and supports the potential for TRIP-Br2 as a novel prognostic marker and a chemotherapeutic drug target in human cancer. PMID:19152710

  19. Anti-tumor activity and mechanism of apoptosis of A549 induced by ruthenium complex.

    PubMed

    Sun, Dongdong; Mou, Zhipeng; Li, Nuan; Zhang, Weiwei; Wang, Yazhe; Yang, Endong; Wang, Weiyun

    2016-12-01

    Two new ruthenium (II) polypyridyl complexes [Ru(MeIm) 4 (pip)] 2+ (1) and [Ru(MeIm) 4 (4-npip)] 2+ (2) were synthesized under the guidance of computational studies (DFT). Their binding property to human telomeric G-quadruplex studied by UV-Vis absorption spectroscopy, the fluorescent resonance energy transfer (FRET) melting assay and circular dichroism (CD) spectroscopy for validating the theoretical prediction. Both of them were evaluated for their potential anti-proliferative activity against four human tumor cell lines. Complex 2 shows growth inhibition against all the cell lines tested, especially the human lung tumor cell (A549). The RTCA analysis not only validated the inhibition activity but also showed the ability of reducing A549 cells' migration. DNA-flow cytometric analysis, mitochondrial membrane potential (ΔΨm) and the scavenger measurements of reactive oxygen species (ROS) analysis carried out to investigate the mechanism of cell growth inhibition and apoptosis-inducing effect of complex 2. The results demonstrated that complex 2 induces tumor cells apoptosis by acting on both mitochondrial homeostasis destruction and death receptor signaling pathways. And those suggested that complex 2 could be a candidate for further evaluation as a chemotherapeutic agent against human tumor.

  20. Curcumin (Diferuloylmethane) Inhibits Cell Proliferation, Induces Apoptosis, and Decreases Hormone Levels and Secretion in Pituitary Tumor Cells

    PubMed Central

    Miller, Matthew; Chen, Shenglin; Woodliff, Jeffrey; Kansra, Sanjay

    2008-01-01

    Prolactinomas are the most prevalent functional pituitary adenomas. Dopamine D2 receptor (D2R) agonists, such as bromocriptine are the first line of therapy; however, drug intolerance/resistance to D2R agonists exists. Apart from D2R agonists, there is no established medical therapy for prolactinomas; therefore, identifying novel therapeutics is warranted. Curcumin, a commonly used food additive in South Asian cooking, inhibits proliferation of several tumor cell lines; however, its effect on pituitary tumor cell proliferation has not been determined. Our objectives were to: 1) determine whether curcumin inhibits proliferation of pituitary tumor cell lines; 2) identify the signaling intermediaries that mediate the effect of curcumin; 3) examine whether curcumin inhibited pituitary hormone production and release; and 4) examine whether curcumin could enhance the growth-inhibitory effect of bromocriptine. Using rat lactotroph cell lines, GH3 and MMQ cells, we report that curcumin had a robust dose and time-dependent inhibitory effect on GH3 and MMQ cell proliferation. Inhibitory effects of curcumin persisted, even on removal of curcumin, and curcumin also blocked colony formation ability of pituitary tumor cells. The growth-inhibitory effect of curcumin was accompanied by decreased expression of cyclin D3 and ser 780 phosphorylation of retinoblastoma protein. In addition, curcumin also induced apoptosis in both GH3 and MMQ cells. Furthermore, curcumin suppresses intracellular levels and release of both prolactin and GH. Finally, we show that low concentrations of curcumin enhanced the growth-inhibitory effect of bromocriptine on MMQ cell proliferation. Taken together we demonstrate that curcumin inhibits pituitary tumor cell proliferation, induces apoptosis, and decreases hormone production and release, and thus, we propose developing curcumin as a novel therapeutic tool in the management of prolactinomas. PMID:18450960

  1. Curcumin (diferuloylmethane) inhibits cell proliferation, induces apoptosis, and decreases hormone levels and secretion in pituitary tumor cells.

    PubMed

    Miller, Matthew; Chen, Shenglin; Woodliff, Jeffrey; Kansra, Sanjay

    2008-08-01

    Prolactinomas are the most prevalent functional pituitary adenomas. Dopamine D2 receptor (D2R) agonists, such as bromocriptine are the first line of therapy; however, drug intolerance/resistance to D2R agonists exists. Apart from D2R agonists, there is no established medical therapy for prolactinomas; therefore, identifying novel therapeutics is warranted. Curcumin, a commonly used food additive in South Asian cooking, inhibits proliferation of several tumor cell lines; however, its effect on pituitary tumor cell proliferation has not been determined. Our objectives were to: 1) determine whether curcumin inhibits proliferation of pituitary tumor cell lines; 2) identify the signaling intermediaries that mediate the effect of curcumin; 3) examine whether curcumin inhibited pituitary hormone production and release; and 4) examine whether curcumin could enhance the growth-inhibitory effect of bromocriptine. Using rat lactotroph cell lines, GH3 and MMQ cells, we report that curcumin had a robust dose and time-dependent inhibitory effect on GH3 and MMQ cell proliferation. Inhibitory effects of curcumin persisted, even on removal of curcumin, and curcumin also blocked colony formation ability of pituitary tumor cells. The growth-inhibitory effect of curcumin was accompanied by decreased expression of cyclin D3 and ser 780 phosphorylation of retinoblastoma protein. In addition, curcumin also induced apoptosis in both GH3 and MMQ cells. Furthermore, curcumin suppresses intracellular levels and release of both prolactin and GH. Finally, we show that low concentrations of curcumin enhanced the growth-inhibitory effect of bromocriptine on MMQ cell proliferation. Taken together we demonstrate that curcumin inhibits pituitary tumor cell proliferation, induces apoptosis, and decreases hormone production and release, and thus, we propose developing curcumin as a novel therapeutic tool in the management of prolactinomas.

  2. Fisetin suppresses malignant proliferation in human oral squamous cell carcinoma through inhibition of Met/Src signaling pathways.

    PubMed

    Li, Yan-Shu; Qin, Xing-Jun; Dai, Wei

    2017-01-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a dietary flavonoid and has been indicated as a novel anti-cancer agent in several types of cancer cells. However, the mechanisms underlying the effect of fisetin in human oral squamous cell carcinoma (OSCC) remain unclear. Here, we report that fisetin significantly inhibits tumor cell proliferation and induces apoptosis in OSCC (UM-SCC-23 and Tca-8113) cancer cell lines. Further analysis demonstrates that fisetin also inhibits Met/Src signaling pathways using the PathScan ® receptor tyrosine kinases (RTK) Signaling Antibody Array Kit. Fisetin resulted in decreased basal expression of Met and Src protein in UM-SCC-23 cancer cell lines, which validated by western blot. A student's t -test (two-tailed) was used to compare differences between groups. Furthermore, fisetin significantly inhibited the expression of a disintegrin and metalloproteinase 9 (ADAM9) protein in OSCC cells. Taken together, these results provide novel insights into the mechanism of fisetin and suggest potential therapeutic strategies for human OSCC by blocking the Met/Src signaling pathways.

  3. Vaccination directed against the human endogenous retrovirus-K envelope protein inhibits tumor growth in a murine model system.

    PubMed

    Kraus, Benjamin; Fischer, Katrin; Büchner, Sarah M; Wels, Winfried S; Löwer, Roswitha; Sliva, Katja; Schnierle, Barbara S

    2013-01-01

    Human endogenous retrovirus (HERV) genomes are chromosomally integrated in all cells of an individual. They are normally transcriptionally silenced and transmitted only vertically. Enhanced expression of HERV-K accompanied by the emergence of anti-HERV-K-directed immune responses has been observed in tumor patients and HIV-infected individuals. As HERV-K is usually not expressed and immunological tolerance development is unlikely, it is an appropriate target for the development of immunotherapies. We generated a recombinant vaccinia virus (MVA-HKenv) expressing the HERV-K envelope glycoprotein (ENV), based on the modified vaccinia virus Ankara (MVA), and established an animal model to test its vaccination efficacy. Murine renal carcinoma cells (Renca) were genetically altered to express E. coli beta-galactosidase (RLZ cells) or the HERV-K ENV gene (RLZ-HKenv cells). Intravenous injection of RLZ-HKenv cells into syngenic BALB/c mice led to the formation of pulmonary metastases, which were detectable by X-gal staining. A single vaccination of tumor-bearing mice with MVA-HKenv drastically reduced the number of pulmonary RLZ-HKenv tumor nodules compared to vaccination with wild-type MVA. Prophylactic vaccination of mice with MVA-HKenv precluded the formation of RLZ-HKenv tumor nodules, whereas wild-type MVA-vaccinated animals succumbed to metastasis. Protection from tumor formation correlated with enhanced HERV-K ENV-specific killing activity of splenocytes. These data demonstrate for the first time that HERV-K ENV is a useful target for vaccine development and might offer new treatment opportunities for diverse types of cancer.

  4. Inhibiting tumor necrosis factor-alpha diminishes desmoplasia and inflammation to overcome chemoresistance in pancreatic ductal adenocarcinoma.

    PubMed

    Zhao, Xianda; Fan, Wei; Xu, Zhigao; Chen, Honglei; He, Yuyu; Yang, Gui; Yang, Gang; Hu, Hanning; Tang, Shihui; Wang, Ping; Zhang, Zheng; Xu, Peipei; Yu, Mingxia

    2016-12-06

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancer death reasons. Anti-tumor necrosis factor-alpha (TNF-α) antibodies have shown promising effects in PDAC pre-clinical models. However, the prognostic values of TNF-α, underlying mechanisms by which anti-TNF-α treatments inhibit PDAC, and potential synergistic effects of anti-TNF-α treatments with chemotherapy are still unclear. To identify the targeting values of TNF-α in PDAC, we measured TNF-α expression in different stages of PDAC initiation and evaluated its prognostic significance in a pancreatic cancer cohort. We found that TNF-α expression elevated in PDAC initiation process, and high expression of TNF-α was an independent prognostic marker of poor survival. We further evaluated anti-tumor effects of anti-TNF-α treatments in PDAC. Anti-TNF-α treatments resulted in decreased cell viability in both PDAC tumor cells and pancreatic satellite cells in similar dose in vitro. In vivo, anti-TNF-α treatments showed effects in reducing desmoplasia and the tumor promoting inflammatory microenvironment in PDAC. Combination of anti-TNF-α treatments with chemotherapy partly overcame chemoresistance of PDAC tumor cells and prolonged the survival of PDAC mouse model. In conclusion, our findings indicated that TNF-α in PDAC can be a prognostic and therapeutic target. Inhibition of TNF-α synergized with chemotherapy in PDAC resulted in better pre-clinical responses via killing tumor cells as well as diminishing desmoplasia and inflammation in PDAC tumor stroma.

  5. Acyl-CoA Synthetase VL3 Knockdown Inhibits Human Glioma Cell Proliferation and Tumorigenicity

    PubMed Central

    Pei, Zhengtong; Sun, Peng; Huang, Ping; Lal, Bachchu; Laterra, John; Watkins, Paul A.

    2009-01-01

    The contribution of lipid metabolic pathways to malignancy is poorly understood. Expression of the fatty acyl-CoA synthetase, ACSVL3, was found to be markedly elevated in clinical malignant glioma specimens but nearly undetectable in normal glia. ACSVL3 levels correlated with the malignant behavior of human glioma cell lines and glioma cells propagated as xenografts. ACSVL3 expression was induced by the activation of oncogenic receptor tyrosine kinases (RTK) c-Met and EGFR. Inhibiting c-Met activation with neutralizing anti-HGF monoclonal antibodies reduced ACSVL3 expression concurrent with tumor growth inhibition in vivo. ACSVL3 expression knockdown using RNA interference, which decreased long-chain fatty acid activation, inhibited anchorage-dependent and anchorage-independent glioma cell growth by ~70% and ~ 90%, respectively. ACSVL3-depleted cells were less tumorigenic than control cells and subcutaneous xenografts grew ~60% slower than control tumors. Orthotopic xenografts produced by ACSVL3-depleted cells were 82–86 % smaller than control xenografts. ACSVL3 knockdown disrupted Akt function as evidenced by RTK-induced transient decreases in total and phosphorylated Akt, as well as GSK3β, via a caspase-dependent mechanism. Expressing constitutively active myr-Akt rescued cells from the anchorage-dependent and anchorage-independent growth inhibitory effects of ACSVL3 depletion. These studies show that ACSVL3 maintains oncogenic properties of malignant glioma cells via a mechanism that involves, in part, the regulation of Akt function. PMID:19920185

  6. CDC42 inhibition suppresses progression of incipient intestinal tumors

    USDA-ARS?s Scientific Manuscript database

    Mutations in the APC or Beta-catenin genes are well-established initiators of colorectal cancer, yet modifiers that facilitate the survival and progression of nascent tumor cells are not well defined. Using genetic and pharmacologic approaches in mouse colorectal cancer and human colorectal cancer x...

  7. Early T Cell Signalling Is Reversibly Altered in PD-1+ T Lymphocytes Infiltrating Human Tumors

    PubMed Central

    Wang, Shu-Fang; Fouquet, Stéphane; Chapon, Maxime; Salmon, Hélène; Regnier, Fabienne; Labroquère, Karine; Badoual, Cécile; Damotte, Diane; Validire, Pierre; Maubec, Eve; Delongchamps, Nicolas B.; Cazes, Aurélie; Gibault, Laure; Garcette, Marylène; Dieu-Nosjean, Marie-Caroline; Zerbib, Marc; Avril, Marie-Françoise; Prévost-Blondel, Armelle; Randriamampita, Clotilde; Trautmann, Alain; Bercovici, Nadège

    2011-01-01

    To improve cancer immunotherapy, a better understanding of the weak efficiency of tumor-infiltrating T lymphocytes (TIL) is necessary. We have analyzed the functional state of human TIL immediately after resection of three types of tumors (NSCLC, melanoma and RCC). Several signalling pathways (calcium, phosphorylation of ERK and Akt) and cytokine secretion are affected to different extents in TIL, and show a partial spontaneous recovery within a few hours in culture. The global result is an anergy that is quite distinct from clonal anergy induced in vitro, and closer to adaptive tolerance in mice. PD-1 (programmed death -1) is systematically expressed by TIL and may contribute to their anergy by its mere expression, and not only when it interacts with its ligands PD-L1 or PD-L2, which are not expressed by every tumor. Indeed, the TCR-induced calcium and ERK responses were reduced in peripheral blood T cells transfected with PD-1. Inhibition by sodium stibogluconate of the SHP-1 and SHP-2 phosphatases that associate with several inhibitory receptors including PD-1, relieves part of the anergy apparent in TIL or in PD-1-transfected T cells. This work highlights some of the molecular modifications contributing to functional defects of human TIL. PMID:21408177

  8. CD4+CD25+ Treg derived from hepatocellular carcinoma mice inhibits tumor immunity.

    PubMed

    Chen, Xin; Du, Yong; Huang, Zhiming

    2012-01-01

    CD4+CD25+ regulatory T cells (Tregs) play an essential role in the establishment and persistence of tumor immune suppression. Tregs can prevent anti-tumor-specific T cells from clearing the tumor, making Tregs a significant barrier for effective immunotherapy. An increase in the number of Tregs has been detected in the peripheral blood and tumor infiltrating lymphocytes of patients with hepatocellular carcinoma. Dendritic cells (DCs) are antigen-presenting cells that play a pivotal role in the initiation of immune responses. The evidence for their ability to act as natural adjuvant in the stimulation of specific anti-tumor cytotoxic T lymphocytes and in the induction of protective and therapeutic anti-tumor immunity is now overwhelming. The aim of our study was to investigate the variation of Tregs in hepatocellular carcinoma mice and how Tregs derived from the tumor mice affect DCs' function. We found that Tregs derived from the tumor mice down-regulated the expression of costimulatory molecules CD80/CD86 on DCs and inhibited the production of TNF-α and IL-12 from DCs. The suppressive function of Tregs was mediated by cell-to-cell contact, CTLA-4 expression and IL-10 secretion. In conclusion, these mechanisms acting in hepatocellular carcinoma may be necessary to better understand the immunosuppression of Tregs and helpful to the tumor immunotherapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Selective growth inhibition of human breast cancer cells by graviola fruit extract in vitro and in vivo involving downregulation of EGFR expression.

    PubMed

    Dai, Yumin; Hogan, Shelly; Schmelz, Eva M; Ju, Young H; Canning, Corene; Zhou, Kequan

    2011-01-01

    The epidermal growth factor receptor (EGFR) is an oncogene frequently overexpressed in breast cancer (BC), and its overexpression has been associated with poor prognosis and drug resistance. EGFR is therefore a rational target for BC therapy development. This study demonstrated that a graviola fruit extract (GFE) significantly downregulated EGFR gene expression and inhibited the growth of BC cells and xenografts. GFE selectively inhibited the growth of EGFR-overexpressing human BC (MDA-MB-468) cells (IC(50) = 4.8 μg/ml) but had no effect on nontumorigenic human breast epithelial cells (MCF-10A). GFE significantly downregulated EGFR mRNA expression, arrested cell cycle in the G0/G1 phase, and induced apoptosis in MDA-MB-468 cells. In the mouse xenograft model, a 5-wk dietary treatment of GFE (200 mg/kg diet) significantly reduced the protein expression of EGFR, p-EGFR, and p-ERK in MDA-MB-468 tumors by 56%, 54%, and 32.5%, respectively. Overall, dietary GFE inhibited tumor growth, as measured by wet weight, by 32% (P < 0.01). These data showed that dietary GFE induced significant growth inhibition of MDA-MB-468 cells in vitro and in vivo through a mechanism involving the EGFR/ERK signaling pathway, suggesting that GFE may have a protective effect for women against EGFR-overexpressing BC.

  10. The Human Cell Surfaceome of Breast Tumors

    PubMed Central

    da Cunha, Júlia Pinheiro Chagas; Galante, Pedro Alexandre Favoretto; de Souza, Jorge Estefano Santana; Pieprzyk, Martin; Carraro, Dirce Maria; Old, Lloyd J.; Camargo, Anamaria Aranha; de Souza, Sandro José

    2013-01-01

    Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors. PMID:24195083

  11. Selective inhibition of tumor cell associated Vacuolar-ATPase 'a2' isoform overcomes cisplatin resistance in ovarian cancer cells.

    PubMed

    Kulshrestha, Arpita; Katara, Gajendra K; Ginter, Jordyn; Pamarthy, Sahithi; Ibrahim, Safaa A; Jaiswal, Mukesh K; Sandulescu, Corina; Periakaruppan, Ramayee; Dolan, James; Gilman-Sachs, Alice; Beaman, Kenneth D

    2016-06-01

    Development of resistance to platinum compounds significantly hinders successful ovarian cancer (OVCA) treatment. In tumor cells, dysregulated pH gradient across cell membranes is a key physiological mechanism of metastasis/chemo-resistance. These pH alterations are mediated by aberrant activation of key multi-subunit proton pumps, Vacuolar-ATPases (V-ATPases). In tumor cells, its 'a2' isoform (V-ATPase-V0a2) is a component of functional plasma-membrane complex and promotes tumor invasion through tumor-acidification and immuno-modulation. Its involvement in chemo-resistance has not been studied. Here, we show that V-ATPase-V0a2 is over-expressed in acquired-cisplatin resistant OVCA cells (cis-A2780/cis-TOV112D). Of all the 'a' subunit isoforms, V-ATPase-V0a2 exhibited an elevated expression on plasma membrane of cisplatin-resistant cells compared to sensitive counterparts. Immuno-histochemistry revealed V-ATPase-V0a2 expression in both low grade (highly drug-resistant) and high grade (highly recurrent) human OVCA tissues indicating its role in a centralized mechanism of tumor resistance. In cisplatin resistant cells, shRNA mediated inhibition of V-ATPase-V0a2 enhanced sensitivity towards both cisplatin and carboplatin. This improved cytotoxicity was mediated by enhanced cisplatin-DNA-adduct formation and suppressed DNA-repair pathway, leading to enhanced apoptosis. Suppression of V0a2 activity strongly reduced cytosolic pH in resistant tumor cells, which is known to enhance platinum-associated DNA-damage. As an indicator of reduced metastasis and chemo-resistance, in contrast to plasma membrane localization, a diffused cytoplasmic localization of acidic vacuoles was observed in V0a2-knockdown resistant cells. Interestingly, pre-treatment with monoclonal V0a2-inhibitory antibody enhanced cisplatin cytotoxicity in resistant cells. Taken together, our findings suggest that the isoform specific inhibition of V-ATPase-V0a2 could serve as a therapeutic strategy for chemo

  12. Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature

    PubMed Central

    Mohamedali, Khalid A.; Li, Zhi Gang; Starbuck, Michael W.; Wan, Xinhai; Yang, Jun; Kim, Sehoon; Zhang, Wendy; Rosenblum, Michael G.; Navone, Nora M.

    2011-01-01

    Purpose A hallmark of prostate cancer (PCa) progression is the development of osteoblastic bone metastases, which respond poorly to available therapies. We previously reported that VEGF121/rGel targets osteoclast precursors and tumor neovasculature. Here we tested the hypothesis that targeting non-tumor cells expressing these receptors can inhibit tumor progression in a clinically relevant model of osteoblastic PCa. Experimental Design Cells from MDA PCa 118b, a PCa xenograft obtained from a bone metastasis in a patient with castrate-resistant PCa, were injected into the femurs of mice. Osteoblastic progression was monitored following systemic administration of VEGF121/rGel. Results VEGF121/rGel was cytotoxic in vitro to osteoblast precursor cells. This cytotoxicity was specific as VEGF121/rGel internalization into osteoblasts was VEGF121 receptor driven. Furthermore, VEGF121/rGel significantly inhibited PCa-induced bone formation in a mouse calvaria culture assay. In vivo, VEGF121/rGel significantly inhibited the osteoblastic progression of PCa cells in the femurs of nude mice. Microcomputed tomography analysis revealed that VEGF121/rGel restored the bone volume fraction of tumor-bearing femurs to values similar to those of the contralateral (non–tumor bearing) femurs. VEGF121/rGel significantly reduced the number of tumor-associated osteoclasts but did not change the numbers of peritumoral osteoblasts. Importantly, VEGF121/rGel-treated mice had significantly less tumor burden than control mice. Our results thus indicate that VEGF121/rGel inhibits osteoblastic tumor progression by targeting angiogenesis, osteoclastogenesis, and bone formation. Conclusions Targeting VEGFR-1 – or VEGFR-2–expressing cells is effective in controlling the osteoblastic progression of PCa in bone. These findings provide the basis for an effective multitargeted approach for metastatic PCa. PMID:21343372

  13. CS2164, a novel multi-target inhibitor against tumor angiogenesis, mitosis and chronic inflammation with anti-tumor potency.

    PubMed

    Zhou, You; Shan, Song; Li, Zhi-Bin; Xin, Li-Jun; Pan, De-Si; Yang, Qian-Jiao; Liu, Ying-Ping; Yue, Xu-Peng; Liu, Xiao-Rong; Gao, Ji-Zhou; Zhang, Jin-Wen; Ning, Zhi-Qiang; Lu, Xian-Ping

    2017-03-01

    Although inhibitors targeting tumor angiogenic pathway have provided improvement for clinical treatment in patients with various solid tumors, the still very limited anti-cancer efficacy and acquired drug resistance demand new agents that may offer better clinical benefits. In the effort to find a small molecule potentially targeting several key pathways for tumor development, we designed, discovered and evaluated a novel multi-kinase inhibitor, CS2164. CS2164 inhibited the angiogenesis-related kinases (VEGFR2, VEGFR1, VEGFR3, PDGFRα and c-Kit), mitosis-related kinase Aurora B and chronic inflammation-related kinase CSF-1R in a high potency manner with the IC 50 at a single-digit nanomolar range. Consequently, CS2164 displayed anti-angiogenic activities through suppression of VEGFR/PDGFR phosphorylation, inhibition of ligand-dependent cell proliferation and capillary tube formation, and prevention of vasculature formation in tumor tissues. CS2164 also showed induction of G2/M cell cycle arrest and suppression of cell proliferation in tumor tissues through the inhibition of Aurora B-mediated H3 phosphorylation. Furthermore, CS2164 demonstrated the inhibitory effect on CSF-1R phosphorylation that led to the suppression of ligand-stimulated monocyte-to-macrophage differentiation and reduced CSF-1R + cells in tumor tissues. The in vivo animal efficacy studies revealed that CS2164 induced remarkable regression or complete inhibition of tumor growth at well-tolerated oral doses in several human tumor xenograft models. Collectively, these results indicate that CS2164 is a highly selective multi-kinase inhibitor with potent anti-tumor activities against tumor angiogenesis, mitosis and chronic inflammation, which may provide the rationale for further clinical assessment of CS2164 as a therapeutic agent in the treatment of cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Inhibition of avian tumor virus replication by CCCH-type zinc finger antiviral protein

    PubMed Central

    Zhu, Mingjun; Ma, Xiaoqian; Cui, Xiyao; Zhou, Jing; Li, Chengui; Huang, Libo; Shang, Yingli; Cheng, Ziqiang

    2017-01-01

    CCCH type zinc finger antiviral protein (ZAP) is a host restriction factor that inhibits the replication of a variety of viruses in mammals. However, little is known about its antiviral activity on avian tumor virus. Avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, induces myelocytomas and various other tumors in meat and egg type chickens. Here, we identified a chicken ZAP (chZAP) that increased at early stage, and subsequently decreased after infection of ALV-J in DF-1 cells, indicating the inducible feature of the endogenous chZAP. To demonstrate the inhibitory effect on ALV-J replication by chZAP, we expressed exogenous chZAP by lentivirus based vectors in DF-1 cells that infected by ALV-J. The result showed that overexpression of chZAP significantly inhibited ALV-J replication at both mRNA level and protein level. Consequently, knockdown of endogenous chZAP by RNAi facilitated ALV-J replication in DF-1 cells. Further, we demonstrated that chZAP interacts with SU protein (encode by gp85 gene) of ALV-J in cytoplasm. Taken together, our results demonstrated that chZAP inhibits ALV-J by both mRNA and protein pathway and it may shed light on a novel antiviral approach in poultry. PMID:28938603

  15. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors

    NASA Astrophysics Data System (ADS)

    Rubin, Joshua B.; Kung, Andrew L.; Klein, Robyn S.; Chan, Jennifer A.; Sun, Yanping; Schmidt, Karl; Kieran, Mark W.; Luster, Andrew D.; Segal, Rosalind A.

    2003-11-01

    The vast majority of brain tumors in adults exhibit glial characteristics. Brain tumors in children are diverse: Many have neuronal characteristics, whereas others have glial features. Here we show that activation of the Gi protein-coupled receptor CXCR4 is critical for the growth of both malignant neuronal and glial tumors. Systemic administration of CXCR4 antagonist AMD 3100 inhibits growth of intracranial glioblastoma and medulloblastoma xenografts by increasing apoptosis and decreasing the proliferation of tumor cells. This reflects the ability of AMD 3100 to reduce the activation of extracellular signal-regulated kinases 1 and 2 and Akt, all of which are pathways downstream of CXCR4 that promote survival, proliferation, and migration. These studies (i) demonstrate that CXCR4 is critical to the progression of diverse brain malignances and (ii) provide a scientific rationale for clinical evaluation of AMD 3100 in treating both adults and children with malignant brain tumors.

  16. Combined epigenetic and differentiation-based treatment inhibits neuroblastoma tumor growth and links HIF2α to tumor suppression

    PubMed Central

    Westerlund, Isabelle; Shi, Yao; Toskas, Konstantinos; Fell, Stuart M.; Li, Shuijie; Surova, Olga; Södersten, Erik; Kogner, Per; Nyman, Ulrika; Schlisio, Susanne; Holmberg, Johan

    2017-01-01

    Neuroblastoma is a pediatric cancer characterized by variable outcomes ranging from spontaneous regression to life-threatening progression. High-risk neuroblastoma patients receive myeloablative chemotherapy with hematopoietic stem-cell transplant followed by adjuvant retinoid differentiation treatment. However, the overall survival remains low; hence, there is an urgent need for alternative therapeutic approaches. One feature of high-risk neuroblastoma is the high level of DNA methylation of putative tumor suppressors. Combining the reversibility of DNA methylation with the differentiation-promoting activity of retinoic acid (RA) could provide an alternative strategy to treat high-risk neuroblastoma. Here we show that treatment with the DNA-demethylating drug 5-Aza-deoxycytidine (AZA) restores high-risk neuroblastoma sensitivity to RA. Combined systemic distribution of AZA and RA impedes tumor growth and prolongs survival. Genome-wide analysis of treated tumors reveals that this combined treatment rapidly induces a HIF2α-associated hypoxia-like transcriptional response followed by an increase in neuronal gene expression and a decrease in cell-cycle gene expression. A small-molecule inhibitor of HIF2α activity diminishes the tumor response to AZA+RA treatment, indicating that the increase in HIF2α levels is a key component in tumor response to AZA+RA. The link between increased HIF2α levels and inhibited tumor growth is reflected in large neuroblastoma patient datasets. Therein, high levels of HIF2α, but not HIF1α, significantly correlate with expression of neuronal differentiation genes and better prognosis but negatively correlate with key features of high-risk tumors, such as MYCN amplification. Thus, contrary to previous studies, our findings indicate an unanticipated tumor-suppressive role for HIF2α in neuroblastoma. PMID:28696319

  17. Combined epigenetic and differentiation-based treatment inhibits neuroblastoma tumor growth and links HIF2α to tumor suppression.

    PubMed

    Westerlund, Isabelle; Shi, Yao; Toskas, Konstantinos; Fell, Stuart M; Li, Shuijie; Surova, Olga; Södersten, Erik; Kogner, Per; Nyman, Ulrika; Schlisio, Susanne; Holmberg, Johan

    2017-07-25

    Neuroblastoma is a pediatric cancer characterized by variable outcomes ranging from spontaneous regression to life-threatening progression. High-risk neuroblastoma patients receive myeloablative chemotherapy with hematopoietic stem-cell transplant followed by adjuvant retinoid differentiation treatment. However, the overall survival remains low; hence, there is an urgent need for alternative therapeutic approaches. One feature of high-risk neuroblastoma is the high level of DNA methylation of putative tumor suppressors. Combining the reversibility of DNA methylation with the differentiation-promoting activity of retinoic acid (RA) could provide an alternative strategy to treat high-risk neuroblastoma. Here we show that treatment with the DNA-demethylating drug 5-Aza-deoxycytidine (AZA) restores high-risk neuroblastoma sensitivity to RA. Combined systemic distribution of AZA and RA impedes tumor growth and prolongs survival. Genome-wide analysis of treated tumors reveals that this combined treatment rapidly induces a HIF2α-associated hypoxia-like transcriptional response followed by an increase in neuronal gene expression and a decrease in cell-cycle gene expression. A small-molecule inhibitor of HIF2α activity diminishes the tumor response to AZA+RA treatment, indicating that the increase in HIF2α levels is a key component in tumor response to AZA+RA. The link between increased HIF2α levels and inhibited tumor growth is reflected in large neuroblastoma patient datasets. Therein, high levels of HIF2α, but not HIF1α, significantly correlate with expression of neuronal differentiation genes and better prognosis but negatively correlate with key features of high-risk tumors, such as MYCN amplification. Thus, contrary to previous studies, our findings indicate an unanticipated tumor-suppressive role for HIF2α in neuroblastoma.

  18. Inhibition of both focal adhesion kinase and fibroblast growth factor receptor 2 pathways induces anti-tumor and anti-angiogenic activities.

    PubMed

    Dao, Pascal; Jarray, Rafika; Smith, Nikaia; Lepelletier, Yves; Le Coq, Johanne; Lietha, Daniel; Hadj-Slimane, Réda; Herbeuval, Jean-Philippe; Garbay, Christiane; Raynaud, Françoise; Chen, Huixiong

    2014-06-28

    FAK and FGFR2 signaling pathways play important roles in cancer development, progression and tumor angiogenesis. PHM16 is a novel ATP competitive inhibitor of FAK and FGFR2. To evaluate the therapeutic efficacy of this agent, we examined its anti-angiogenic effect in HUVEC and its anti-tumor effect in different cancer cell lines. We showed PHM16 inhibited endothelial cell viability, adherence and tube formation along with the added ability to induce endothelial cell apoptosis. This compound significantly delayed tumor cell growth. Together, these data showed that inhibition of both FAK and FGFR2 signaling pathways can enhance anti-tumor and anti-angiogenic activities. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells.

    PubMed

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-14

    BACKGROUND Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. MATERIAL AND METHODS We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). RESULTS We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. CONCLUSIONS Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer.

  20. Jolkinolide A and Jolkinolide B Inhibit Proliferation of A549 Cells and Activity of Human Umbilical Vein Endothelial Cells

    PubMed Central

    Shen, Lei; Zhang, Shan-Qiang; Liu, Lei; Sun, Yu; Wu, Yu-Xuan; Xie, Li-Ping; Liu, Ji-Cheng

    2017-01-01

    Background Jolkinolide A (JA) and Jolkinolide B (JB) are diterpenoids extracted from the roots of Euphorbia fischeriana Steud and have been shown to have anti-tumor activity. However, their effects on the ability of tumor cells to invade blood vessels and metastasize remain largely unknown. Investigations into the effects of JA and JB on the angiogenesis of tumor tissues may facilitate the identification of new natural drugs with anti-tumor growth and metastasis activities. Material/Methods We used different concentrations of JA and JB (20 μg/ml, 40 μg/ml, 60 μg/ml, 80 μg/ml, and 100 μg/ml) to stimulate A549 cells and then studied the effects on the growth and metastasis of lung cancers. In addition, we used conditional media from A549 cells (A549-CM) stimulated by either JA or JB in different concentrations to culture human umbilical vein endothelial cells (HUVECs). Results We found that both JA and JB significantly inhibited the Akt-STAT3-mTOR signaling pathway and reduced the expression of VEGF in A549 cells, but JB exhibited more significant inhibitory effects than JA. The JB-stimulated A549 cell conditional media had a greater inhibitory effect on the proliferation and migration of HUVECs than did the conditional media of JA-stimulated A549 cells. This effect gradually increased with increasing concentrations of either type of Jolkinolide. Conclusions Our results suggest that JA and JB inhibited VEGF expression in A549 cells through the inhibition of the Akt-STAT3-mTOR signaling pathway, and directly inhibited the proliferation and migration of HUVECs. These findings are of great significance for the development of new plant-derived chemotherapy agents for the treatment of cancer. PMID:28087861

  1. Brachytherapy Using Elastin-Like Polypeptides with (131)I Inhibit Tumor Growth in Rabbits with VX2 Liver Tumor.

    PubMed

    Liu, Xinpei; Shen, Yiming; Zhang, Xuqian; Lin, Rui; Jia, Qiang; Chang, Yixiang; Liu, Wenge; Liu, Wentian

    2016-10-01

    Brachytherapy is a targeted type of radiotherapy utilized in the treatment of cancers. Elastin-like polypeptides are a unique class of genetically engineered peptide polymers that have several attractive properties for brachytherapy. To explore the feasibility and application of brachytherapy for VX2 liver tumor using elastin-like polypeptides with (131)I so as to provide reliable experimental evidence for a new promising treatment of liver cancer. Elastin-like polypeptide as carrier was labeled with (131)I using the iodogen method. Ten eligible rabbits with VX2 liver tumor were randomly divided into the treatment group (n = 5) and control group (n = 5). The treatment group received brachytherapy using elastin-like polypeptide with (131)I, and in the control group, elastin-like polypeptide was injected into the VX2 liver tumor as a control. Periodic biochemical and imaging surveillances were required to assess treatment efficacy. The stability of elastin-like polypeptide with (131)I in vitro was maintained at over 96.8 % for 96 h. Biochemistry and imaging indicated brachytherapy using elastin-like polypeptide with (131)I for liver tumor can improve liver function and inhibit tumor growth (P < 0.05). Elastin-like polypeptide can be an ideal carrier of (131)I and have high labeling efficiency, radiochemical purity and stability. Brachytherapy using elastin-like polypeptide with (131)I for liver tumor is a useful therapy that possesses high antitumor efficacy advantages.

  2. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function.

    PubMed

    Lee, Young-Hee; Martin-Orozco, Natalia; Zheng, Peilin; Li, Jing; Zhang, Peng; Tan, Haidong; Park, Hyun Jung; Jeong, Mira; Chang, Seon Hee; Kim, Byung-Seok; Xiong, Wei; Zang, Wenjuan; Guo, Li; Liu, Yang; Dong, Zhong-Jun; Overwijk, Willem W; Hwu, Patrick; Yi, Qing; Kwak, Larry; Yang, Zhiying; Mak, Tak W; Li, Wei; Radvanyi, Laszlo G; Ni, Ling; Liu, Dongfang; Dong, Chen

    2017-08-01

    The interaction between tumor and the immune system is still poorly understood. Significant clinical responses have been achieved in cancer patients treated with antibodies against the CTLA4 and PD-1/PD-L1 checkpoints; however, only a small portion of patients responded to the therapies, indicating a need to explore additional co-inhibitory molecules for cancer treatment. B7-H3, a member of the B7 superfamily, was previously shown by us to inhibit T-cell activation and autoimmunity. In this study, we have analyzed the function of B7-H3 in tumor immunity. Expression of B7-H3 was found in multiple tumor lines, tumor-infiltrating dendritic cells, and macrophages. B7-H3-deficient mice or mice treated with an antagonistic antibody to B7-H3 showed reduced growth of multiple tumors, which depended on NK and CD8 + T cells. With a putative receptor expressed by cytotoxic lymphocytes, B7-H3 inhibited their activation, and its deficiency resulted in increased cytotoxic lymphocyte function in tumor-bearing mice. Combining blockades of B7-H3 and PD-1 resulted in further enhanced therapeutic control of late-stage tumors. Taken together, our results indicate that the B7-H3 checkpoint may serve as a novel target for immunotherapy against cancer.

  3. Synergistic targeted inhibition of MEK and dual PI3K/mTOR diminishes viability and inhibits tumor growth of canine melanoma underscoring its utility as a preclinical model for human mucosal melanoma.

    PubMed

    Wei, Bih-Rong; Michael, Helen T; Halsey, Charles H C; Peer, Cody J; Adhikari, Amit; Dwyer, Jennifer E; Hoover, Shelley B; El Meskini, Rajaa; Kozlov, Serguei; Weaver Ohler, Zoe; Figg, William D; Merlino, Glenn; Simpson, R Mark

    2016-11-01

    Human mucosal melanoma (MM), an uncommon, aggressive and diverse subtype, shares characteristics with spontaneous MM in dogs. Although BRAF and N-RAS mutations are uncommon in MM in both species, the majority of human and canine MM evaluated exhibited RAS/ERK and/or PI3K/mTOR signaling pathway activation. Canine MM cell lines, with varying ERK and AKT/mTOR activation levels reflective of naturally occurring differences in dogs, were sensitive to the MEK inhibitor GSK1120212 and dual PI3K/mTOR inhibitor NVP-BEZ235. The two-drug combination synergistically decreased cell survival in association with caspase 3/7 activation, as well as altered expression of cell cycle regulatory proteins and Bcl-2 family proteins. In combination, the two drugs targeted their respective signaling pathways, potentiating reduction of pathway mediators p-ERK, p-AKT, p-S6, and 4E-BP1 in vitro, and in association with significantly inhibited solid tumor growth in MM xenografts in mice. These findings provide evidence of synergistic therapeutic efficacy when simultaneously targeting multiple mediators in melanoma with Ras/ERK and PI3K/mTOR pathway activation. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Pigment Cell & Melanoma Research published by John Wiley & Sons Ltd.

  4. The expression of Egfl7 in human normal tissues and epithelial tumors.

    PubMed

    Fan, Chun; Yang, Lian-Yue; Wu, Fan; Tao, Yi-Ming; Liu, Lin-Sen; Zhang, Jin-Fan; He, Ya-Ning; Tang, Li-Li; Chen, Guo-Dong; Guo, Lei

    2013-04-23

    To investigate the expression of Egfl7 in normal adult human tissues and human epithelial tumors.
 RT-PCR and Western blot were employed to detect Egfl7 expression in normal adult human tissues and 10 human epithelial tumors including hepatocellular carcinoma (HCC), lung cancer, breast cancer, prostate cancer, colorectal cancer, gastric cancer, esophageal cancer, malignant glioma, ovarian cancer and renal cancer. Immunohistochemistry and cytoimmunofluorescence were subsequently used to determine the localization of Egfl7 in human epithelial tumor tissues and cell lines. ELISA was also carried out to examine the serum Egfl7 levels in cancer patients. In addition, correlations between Egfl7 expression and clinicopathological features as well as prognosis of HCC and breast cancer were also analyzed on the basis of immunohistochemistry results.
 Egfl7 was differentially expressed in 19 adult human normal tissues and was overexpressed in all 10 human epithelial tumor tissues. The serum Egfl7 level was also significantly elevated in cancer patients. The increased Egfl7 expression in HCC correlated with vein invasion, absence of capsule formation, multiple tumor nodes and poor prognosis. Similarly, upregulation of Egfl7 in breast cancer correlated strongly with TNM stage, lymphatic metastasis, estrogen receptor positivity, Her2 positivity and poor prognosis. 
 Egfl7 is significantly upregulated in human epithelial tumor tissues, suggesting Egfl7 to be a potential biomarker for human epithelial tumors, especially HCC and breast cancer.

  5. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice

    PubMed Central

    Hu, Zheng; Xia, Jinxing; Fan, Wei; Wargo, Jennifer; Yang, Yong-Guang

    2016-01-01

    A major factor hindering the exploration of adoptive immunotherapy in preclinical settings is the limited availability of tumor-reactive human T cells. Here we developed a humanized mouse model that permits large-scale production of human T cells expressing the engineered melanoma antigen MART-1-specific TCR. Humanized mice, made by transplantation of human fetal thymic tissue and CD34+ cells virally-transduced with HLA class I-restricted melanoma antigen (MART-1)-specific TCR gene, showed efficient development of MART-1-TCR+ human T cells with predominantly CD8+ cells. Importantly, MART-1-TCR+CD8+ T cells developing in these mice were capable of mounting antigen-specific responses in vivo, as evidenced by their proliferation, phenotypic conversion and IFN-γ production following MART-1 peptide immunization. Moreover, these MART-1-TCR+CD8+ T cells mediated efficient killing of melanoma cells in an HLA/antigen-dependent manner. Adoptive transfer of in vitro expanded MART-1-TCR+CD8+ T cells induced potent antitumor responses that were further enhanced by IL-15 treatment in melanoma-bearing recipients. Finally, a short incubation of MART-1-specific T cells with rapamycin acted synergistically with IL-15, leading to significantly improved tumor-free survival in recipients with metastatic melanoma. These data demonstrate the practicality of using humanized mice to produce potentially unlimited source of tumor-specific human T cells for experimental and preclinical exploration of cancer immunotherapy. This study also suggests that pretreatment of tumor-reactive T cells with rapamycin in combination with IL-15 administration may be a novel strategy to improve the efficacy of adoptive T cell therapy. PMID:26824989

  6. Decursin chemosensitizes human multiple myeloma cells through inhibition of STAT3 signaling pathway.

    PubMed

    Kim, Hyun Jung; Kim, Sung-Moo; Park, Kyung-Ran; Jang, Hyeung-Jin; Na, Young-Soon; Ahn, Kyoo Seok; Kim, Sung-Hoon; Ahn, Kwang Seok

    2011-02-01

    Recent reports have indicated that decursin can induce apoptosis, suppress tumor growth, and inhibit angiogenesis. In this experiment, we investigated how decursin could potentiate the cytotoxic effects of bortezomib in human multiple myeloma cells. We found that decursin inhibited cell viability in U266, MM.1S and ARH77 cells, but not in peripheral blood mononuclear cells (PBMC). Decursin-induced apoptosis through the activation of caspase-8, -9, and -3 in U266 cells. This correlated with the down-regulating of cyclin D1, bcl-2, bcl-xL, survivin, and the vascular endothelial growth factor (VEGF), which are all regulated by the activation of signal transducers and the activator of transcription 3 (STAT3). Indeed, decursin inhibited constitutive STAT3 activation through inhibition of the activation of Janus-activated kinase 2 (JAK2) in U266 cells. In addition, decursin inhibited interleukin-6-inducible STAT3 activation in a time-dependent manner in MM.1S cells. Interestingly, decursin significantly potentiated the apoptotic effects of bortezomib in U266 cells. These effects of decursin were correlated with the suppression of constitutive STAT3 activation in U266 cells. Overall, these results suggest that decursin is a novel blocker of STAT3 activation and it may be a potential candidate for overcoming chemo-resistance through suppression of this signaling. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1#

    PubMed Central

    Zhang, Huabing; Ramakrishnan, Sadeesh K.; Triner, Daniel; Centofanti, Brook; Maitra, Dhiman; Győrffy, Balázs; Sebolt-Leopold, Judith S.; Dame, Michael K.; Varani, James; Brenner, Dean E.; Fearon, Eric R.; Omary, M. Bishr; Shah, Yatrik M.

    2016-01-01

    Yes-associated protein 1 (YAP1) is a transcriptional coactivator in the Hippo signaling pathway. Increased YAP1- activity promotes the growth of tumors, including that of colorectal cancer (CRC). Verteporfin, a drug that enhances phototherapy to treat neovascular macular degeneration, is an inhibitor of YAP1. Here, we found that verteporfin inhibited tumor growth independently of its effects on YAP1 or the related protein TAZ in genetic or chemical-induced mouse models of CRC, in patient-derived xenografts and in enteroid models of CRC. Instead, verteporfin exhibited in vivo selectivity for killing tumor cells in part by impairing the global clearance of high molecular weight oligomerized proteins, particularly p62 (a sequestrome involved in autophagy) and STAT3 (a transcription factor). Verteporfin inhibited cytokine-induced STAT3 activity and cell proliferation and reduced the viabilty of cultured CRC cells. Although verteporfin accumulated to a greater extent in normal cells than in tumor cells in vivo, experiments with cultured cells indicated that the normal cells efficiently cleared verteporfin-induced protein oligomers through autophagic and proteasomal pathways. Culturing CRC cells in hypoxic or nutrient-deprived conditions (modeling a typical CRC microenvironment) impaired the clearance of protein oligomers and resulted in cell death; whereas culturing cells in normoxic or glucose-replete conditions protected cell viability and proliferation in the presence of verteporfin. Furthermore, verteporfin suppressed the proliferation of other cancer cell lines even in the absence of YAP1, suggesting that verteporfin may be effective against multiple types of solid cancers. PMID:26443705

  8. Bone morphogenetic protein and activin membrane-bound inhibitor overexpression inhibits gastric tumor cell invasion via the transforming growth factor-β/epithelial-mesenchymal transition signaling pathway.

    PubMed

    Yuan, Chun-Ling; Liang, Rong; Liu, Zhi-Hui; Li, Yong-Qiang; Luo, Xiao-Ling; Ye, Jia-Zhou; Lin, Yan

    2018-06-01

    Gastric carcinoma is one of the most common human malignancies and remains the second leading cause of cancer-associated mortality worldwide. Gastric carcinoma is characterized by early-stage metastasis and is typically diagnosed in the advanced stage. Previous results have indicated that bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) overexpression has been demonstrated to inhibit growth and metastasis of gastric cancer cells. However, the molecular mechanisms of the BAMBI-mediated signaling pathway in the progression of gastric cancer are poorly understood. In the present study, to assess whether BAMBI overexpression inhibited the growth and aggressiveness of gastric carcinoma cells through regulation of transforming growth factor (TGF)-β/epithelial-mesenchymal transition (EMT) signaling pathway, the growth and metastasis of gastric carcinoma cells were analyzed following BAMBI overexpression and knockdown in vitro and in vivo . Molecular changes in the TGF-β/EMT signaling pathway were studied in gastric carcinoma cells following BAMBI overexpression and knockdown. DNA methylation of the gene regions encoding the TGF-β/EMT signaling pathway was investigated in gastric carcinoma cells. Tumor growth in tumor-bearing mice was analyzed after mice were subjected to endogenous overexpression of BAMBI. Results indicated that BAMBI overexpression significantly inhibited gastric carcinoma cell growth and aggressiveness, whereas knockdown of BAMBI significantly promoted its growth and metastasis compared with the control (P<0.01). The TGF-β/EMT signaling pathway was downregulated in BAMBI-overexpressed gastric carcinoma cells; however, signaling was promoted following BAMBI knockdown. In addition, it was observed that BAMBI overexpression significantly downregulated the DNA methylation of the gene regions encoding the TGF-β/EMT signaling pathway (P<0.01). Furthermore, RNA interference-mediated BAMBI overexpression also promoted apoptosis in

  9. Licochalcone D induces apoptosis and inhibits migration and invasion in human melanoma A375 cells

    PubMed Central

    Si, Lingling; Yan, Xinyan; Hao, Wenjin; Ma, Xiaoyi; Ren, Huanhuan; Ren, Boxue; Li, Defang; Dong, Zhengping; Zheng, Qiusheng

    2018-01-01

    The aim of the present study was to determine the effects of Licochalcone D (LD) on the apoptosis and migration and invasion in human melanoma A375 cells. Cell proliferation was determined by sulforhodamine B assay. Apoptosis was assessed by Hoechst 33258 and Annexin V-FITC/PI staining and JC-1 assay. Total intracellular reactive oxygen species (ROS) was examined by DCFH-DA. Wound healing and Transwell assays were used to detect migration and invasion of the cells. The activities of matrix metalloproteinase (MMP-2 and MMP-9) were assessed via gelatin zymography. Tumor growth in vivo was evaluated in C57BL/6 mice. RT-PCR, qPCR, ELISA and western blot analysis were utilized to measure the mRNA and protein levels. Our results showed that LD inhibited the proliferation of A375 and SK-MEL-5 cells in a concentration-dependent manner. After treatment with LD, A375 cells displayed obvious apoptotic characteristics, and the number of apoptotic cells was significantly increased. Pro-apoptotic protein Bax, caspase-9 and caspase-3 were upregulated, while anti-apoptotic protein Bcl-2 was downregulated in the LD-treated cells. Meanwhile, LD induced the loss of mitochondrial membrane potential (ΔΨm) and increased the level of ROS. ROS production was inhibited by the co-treatment of LD and free radical scavenger N-acetyl-cysteine (NAC). Furthermore, LD also blocked A375 cell migration and invasion in vitro which was associated with the downregulation of MMP-9 and MMP-2. Finally, intragastric administration of LD suppressed tumor growth in the mouse xenograft model of murine melanoma B16F0 cells. These results suggest that LD may be a potential drug for human melanoma treatment by inhibiting proliferation, inducing apoptosis via the mitochondrial pathway and blocking cell migration and invasion. PMID:29565458

  10. [Locus HS.633957 expression in human gastrointestinal tract and tumors].

    PubMed

    Polev, D E; Krukovskaia, L L; Kozlov, A P

    2011-01-01

    Human locus HS.633957 corresponds to its namesake cluster in the UniGene database http:/www.ncbi.nlm.nih.gov/unigene. It is located on chromosome 7 and is 3.7 tpn in size. It does not seem to encode proteins nor has its function been identified. According to bioinformation evidence, its expression is tumor-specific. PCR assay on kDNA samples from different intact human tissues detected its slight expression in liver, heart, embryonal brain and kidney as well as in a wide spectrum of tumors. This work features locus Hs.633957 expression in different parts of human gastrointestinal tract and tumors.

  11. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo.

    PubMed

    Chu, Sheng-Hua; Feng, Dong-Fu; Ma, Yan-Bin; Li, Zhi-Qiang

    2012-01-01

    Hydroxyapatite nanoparticles (nano-HAPs) have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU).

  12. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo

    PubMed Central

    Chu, Sheng-Hua; Feng, Dong-Fu; Ma, Yan-Bin; Li, Zhi-Qiang

    2012-01-01

    Hydroxyapatite nanoparticles (nano-HAPs) have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). PMID:22888225

  13. Exogenous DKK-3/REIC inhibits Wnt/β-catenin signaling and cell proliferation in human kidney cancer KPK1.

    PubMed

    Xu, Jiaqi; Sadahira, Takuya; Kinoshita, Rie; Li, Shun-Ai; Huang, Peng; Wada, Koichiro; Araki, Motoo; Ochiai, Kazuhiko; Noguchi, Hirofumi; Sakaguchi, Masakiyo; Nasu, Yasutomo; Watanabe, Masami

    2017-11-01

    The third member of the Dickkopf family (DKK-3), also known as reduced expression in immortalized cells (REIC), is a tumor suppressor present in a variety of tumor cells. Regarding the regulation of the Wnt/β-catenin signaling pathway, exogenous DKK-1 and DKK-2 are reported to inhibit Wnt signaling by binding the associated effectors. However, whether exogenous DKK-3 inhibits Wnt signaling remains unclear. A recombinant protein of human full-length DKK-3 was used to investigate the exogenous effects of the protein in vitro in KPK1 human renal cell carcinoma cells. It was demonstrated that the expression of phosphorylated (p-)β-catenin (inactive form as the transcriptional factor) was increased in KPK1 cells treated with the exogenous DKK-3 protein. The levels of non-p-β-catenin (activated form of β-catenin) were consistently decreased. It was revealed that the expression of transcription factor (TCF) 1 and c-Myc, the downstream transcription factors of the Wnt/β-catenin signaling pathway, was inhibited following treatment with DKK-3. A cancer cell viability assay confirmed the anti-proliferative effects of exogenous DKK-3 protein, which was consistent with a suppressed Wnt/β-catenin signaling cascade. In addition, as low-density lipoprotein receptor-related protein 6 (LRP6) is a receptor of DKK-1 and DKK-2 and their interaction on the cell surface inhibits Wnt/β-catenin signaling, it was examined whether the exogenous DKK-3 protein affects LRP6-mediated Wnt/β-catenin signaling. The LRP6 gene was silenced and the effects of DKK-3 on the time course of the upregulation of p-β-catenin expression were subsequently analyzed. Notably, LRP6 depletion elevated the base level of p-β-catenin; however, there was no significant effect on its upregulation course or expression pattern. These findings indicate that exogenous DKK-3 upregulates p-β-catenin and inhibits Wnt/β-catenin signaling in an LRP6-independent manner. Therefore, exogenous DKK-3 protein may inhibit

  14. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    PubMed Central

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  15. Tetraspanin TM4SF5 mediates loss of contact inhibition through epithelial-mesenchymal transition in human hepatocarcinoma

    PubMed Central

    Lee, Sin-Ae; Lee, Sung-Yul; Cho, Ik-Hyun; Oh, Min-A; Kang, Eun-Sil; Kim, Yong-Bae; Seo, Woo Duck; Choi, Suyong; Nam, Ju-Ock; Tamamori-Adachi, Mimi; Kitajima, Shigetaka; Ye, Sang-Kyu; Kim, Semi; Hwang, Yoon-Jin; Kim, In-San; Park, Ki Hun; Lee, Jung Weon

    2008-01-01

    The growth of normal cells is arrested when they come in contact with each other, a process known as contact inhibition. Contact inhibition is lost during tumorigenesis, resulting in uncontrolled cell growth. Here, we investigated the role of the tetraspanin transmembrane 4 superfamily member 5 (TM4SF5) in contact inhibition and tumorigenesis. We found that TM4SF5 was overexpressed in human hepatocarcinoma tissue. TM4SF5 expression in clinical samples and in human hepatocellular carcinoma cell lines correlated with enhanced p27Kip1 expression and cytosolic stabilization as well as morphological elongation mediated by RhoA inactivation. These TM4SF5-mediated effects resulted in epithelial-mesenchymal transition (EMT) via loss of E-cadherin expression. The consequence of this was aberrant cell growth, as assessed by S-phase transition in confluent conditions, anchorage-independent growth, and tumor formation in nude mice. The TM4SF5-mediated effects were abolished by suppressing the expression of either TM4SF5 or cytosolic p27Kip1, as well as by reconstituting the expression of E-cadherin. Our observations have revealed a role for TM4SF5 in causing uncontrolled growth of human hepatocarcinoma cells through EMT. PMID:18357344

  16. Potential of decursin to inhibit the human cytochrome P450 2J2 isoform.

    PubMed

    Lee, Boram; Wu, Zhexue; Sung, Sang Hyun; Lee, Taeho; Song, Kyung-Sik; Lee, Min Young; Liu, Kwang-Hyeon

    2014-08-01

    CYP2J2 enzyme is highly expressed in human tumors and carcinoma cell lines, and epoxyeicosatrienoic acids, CYP2J2-mediated metabolites, have been implicated in the pathologic development of human cancers. To identify a CYP2J2 inhibitor, 50 natural products obtained from plants were screened using astemizole as a CYP2J2 probe substrate in human liver microsomes. Of these, decursin noncompetitively inhibited CYP2J2-mediated astemizole O-demethylation and terfenadine hydroxylation activities with Ki values of 8.34 and 15.8μM, respectively. It also showed cytotoxic effects against human hepatoma HepG2 cells in a dose-dependent manner while it did not show cytotoxicity against mouse hepatocytes. The present data suggest that decursin is a potential candidate for further evaluation for its CYP2J2 targeting anti-cancer activities. Studies are currently underway to test decursin as a potential therapeutic agent for cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Dual Inhibition of MEK and PI3K/Akt Rescues Cancer Cachexia through Both Tumor Extrinsic and Intrinsic Activities

    PubMed Central

    Mace, Thomas A.; Farren, Matthew R.; Farris, Alton B.; Young, Gregory S.; Elnaggar, Omar; Che, Zheng; Timmers, Cynthia D.; Rajasekera, Priyani; Maskarinec, Jennifer M.; Bloomston, Mark; Bekaii-Saab, Tanios; Guttridge, Denis C.; Lesinski, Gregory B.

    2016-01-01

    Involuntary weight loss, a part of the cachexia syndrome, is a debilitating co-morbidity of cancer and currently has no treatment options. Results from a recent clinical trial at our institution showed that biliary tract cancer patients treated with a MEK inhibitor exhibited poor tumor responses, but surprisingly gained weight and increased their skeletal muscle mass. This implied that MEK inhibition might be anti-cachectic. To test this potential effect of MEK inhibition, we utilized the established Colon-26 model of cancer cachexia and the MEK1/2 inhibitor MEK162. Results showed that MEK inhibition effectively prevented muscle wasting. Importantly, MEK162 retained its ability to spare muscle loss even in mice bearing a Colon-26 clone resistant to the MEK inhibitor, demonstrating that the effects of blocking MEK is at least in part independent of the tumor. Because single agent MEK inhibitors have been limited as a front-line targeted therapy due to compensatory activation of other oncogenic signaling pathways, we combined MEK162 with the PI3K/Akt inhibitor buparlisib. Results showed that this combinatorial treatment significantly reduced tumor growth due to a direct activity on Colon-26 tumor cells in vitro and in vivo, while also preserving skeletal muscle mass. Together, our results suggest that as a monotherapy MEK inhibition preserves muscle mass, but when combined with a PI3K/Akt inhibitor exhibits potent anti-tumor activity. Thus, combinatorial therapy might serve as a new approach for the treatment of cancer cachexia. PMID:27811010

  18. Stability of the recombinant anti‑erbB2 scFv‑Fc‑interleukin‑2 fusion protein and its inhibition of HER2‑overexpressing tumor cells.

    PubMed

    Du, Yu-Jia; Lin, Ze-Min; Zhao, Ying-Hua; Feng, Xiu-Ping; Wang, Chang-Qing; Wang, Gang; Wang, Chun-Di; Shi, Wei; Zuo, Jian-Ping; Li, Fan; Wang, Cheng-Zhong

    2013-02-01

    The anti‑erbB2 scFv‑Fc‑IL‑2 fusion protein (HFI) is the basis for development of a novel targeted anticancer drug, in particular for the treatment of HER2‑positive cancer patients. HFI was fused with the anti‑erbB2 antibody and human IL‑2 by genetic engineering technology and by antibody targeting characteristics of HFI. IL‑2 was recruited to target cells to block HER2 signaling, inhibit or kill tumor cells, improve the immune capacity, reduce the dose of antibody and IL‑2 synergy. In order to analyse HFI drug ability, HFI plasmid stability was verified by HFI expression of the trend of volume changes. Additionally, HFI could easily precipitate and had progressive characteristics and thus, the buffer system of the additive phosphate‑citric acid buffer, arginine, Triton X‑100 or Tween‑80, the establishment of a microfiltration, ion exchange, affinity chromatography and gel filtration chromatography‑based purification process were explored. HFI samples were obtained according to the requirements of purity, activity and homogeneity. In vivo, HFI significantly delayed HER2 overexpression of non‑small cell lung cancer (Calu‑3) in human non‑small cell lung cancer xenografts in nude mice, and the inhibition rate was more than 60% (P<0.05) in the group treated with 1 mg/kg the HFI dose; HFI significantly inhibited HER2 expression of breast cancer (FVB/neu) transgenic mouse tumor growth in 1 mg/kg of the HFI dose group, and in the following treatment the 400 mm3 tumors disappeared completely. Combined with other HFI test data analysis, HFI not only has good prospects, but also laid the foundation for the development of antibody‑cytokine fusion protein‑like drugs.

  19. Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk.

    PubMed

    Orozco, Carlos A; Martinez-Bosch, Neus; Guerrero, Pedro E; Vinaixa, Judith; Dalotto-Moreno, Tomás; Iglesias, Mar; Moreno, Mireia; Djurec, Magdolna; Poirier, Françoise; Gabius, Hans-Joachim; Fernandez-Zapico, Martin E; Hwang, Rosa F; Guerra, Carmen; Rabinovich, Gabriel A; Navarro, Pilar

    2018-04-17

    Pancreatic ductal adenocarcinoma (PDA) remains one of the most lethal tumor types, with extremely low survival rates due to late diagnosis and resistance to standard therapies. A more comprehensive understanding of the complexity of PDA pathobiology, and especially of the role of the tumor microenvironment in disease progression, should pave the way for therapies to improve patient response rates. In this study, we identify galectin-1 (Gal1), a glycan-binding protein that is highly overexpressed in PDA stroma, as a major driver of pancreatic cancer progression. Genetic deletion of Gal1 in a Kras -driven mouse model of PDA ( Ela-Kras G12V p53 -/- ) results in a significant increase in survival through mechanisms involving decreased stroma activation, attenuated vascularization, and enhanced T cell infiltration leading to diminished metastasis rates. In a human setting, human pancreatic stellate cells (HPSCs) promote cancer proliferation, migration, and invasion via Gal1-driven pathways. Moreover, in vivo orthotopic coinjection of pancreatic tumor cells with Gal1-depleted HPSCs leads to impaired tumor formation and metastasis in mice. Gene-expression analyses of pancreatic tumor cells exposed to Gal1 reveal modulation of multiple regulatory pathways involved in tumor progression. Thus, Gal1 hierarchically regulates different events implicated in PDA biology including tumor cell proliferation, invasion, angiogenesis, inflammation, and metastasis, highlighting the broad therapeutic potential of Gal1-specific inhibitors, either alone or in combination with other therapeutic modalities.

  20. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    PubMed

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation.

  1. Combination Treatment with Apricoxib and IL-27 Enhances Inhibition of Epithelial-Mesenchymal Transition in Human Lung Cancer Cells through a STAT1 Dominant Pathway

    PubMed Central

    Lee, Mi-Heon; Kachroo, Puja; Pagano, Paul C; Yanagawa, Jane; Wang, Gerald; Walser, Tonya C; Krysan, Kostyantyn; Sharma, Sherven; John, Maie St.; Dubinett, Steven M; Lee, Jay M

    2015-01-01

    Background The cyclooxygenase 2 (COX-2) pathway has been implicated in the molecular pathogenesis of many malignancies, including lung cancer. Apricoxib, a selective COX-2 inhibitor, has been described to inhibit epithelial-mesenchymal transition (EMT) in human malignancies. The mechanism by which apricoxib may alter the tumor microenvironment by affecting EMT through other important signaling pathways is poorly defined. IL-27 has been shown to have anti-tumor activity and our recent study showed that IL-27 inhibited EMT through a STAT1 dominant pathway. Objective The purpose of this study is to investigate the role of apricoxib combined with IL-27 in inhibiting lung carcinogenesis by modulation of EMT through STAT signaling. Methods and Results Western blot analysis revealed that IL-27 stimulation of human non-small cell lung cancer (NSCLC) cell lines results in STAT1 and STAT3 activation, decreased Snail protein and mesenchymal markers (N-cadherin and vimentin) and a concomitant increase in expression of epithelial markers (E-cadherin, β-and γ-catenins), and inhibition of cell migration. The combination of apricoxib and IL-27 resulted in augmentation of STAT1 activation. However, IL-27 mediated STAT3 activation was decreased by the addition of apricoxib. STAT1 siRNA was used to determine the involvement of STAT1 pathway in the enhanced inhibition of EMT and cell migration by the combined IL-27 and apricoxib treatment. Pretreatment of cells with STAT1 siRNA inhibited the effect of combined IL-27 and apricoxib in the activation of STAT1 and STAT3. In addition, the augmented expression of epithelial markers, decreased expression mesenchymal markers, and inhibited cell migration by the combination treatment were also inhibited by STAT1 siRNA, suggesting that the STAT1 pathway is important in the enhanced effect from the combination treatment. Conclusion Combined apricoxib and IL-27 has an enhanced effect in inhibition of epithelial-mesenchymal transition and cell

  2. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiting; Wu, Dan; Xia, Fengjie

    Histone deacetylase 9 (HDAC9) is a member of class II HDACs, which regulates a wide variety of normal and abnormal physiological functions. Recently, HDAC9 has been found to be overexpressed in some types of human cancers. However, the role of HDAC9 in retinoblastoma remains unclear. In this study, we found that HDAC9 was commonly expressed in retinoblastoma tissues and HDAC9 was overexpressed in prognostically poor retinoblastoma patients. Through knocking down HDAC9 in Y79 and WERI-Rb-1 cells, the expression level of HDAC9 was found to be positively related to cell proliferation in vitro. Further investigation indicated that knockdown HDAC9 could significantly induce cellmore » cycle arrest at G1 phase in retinoblastoma cells. Western blot assay showed downregulation of HDAC9 could significantly decrease cyclin E2 and CDK2 expression. Lastly, xenograft study in nude mice showed that downregulation of HDAC9 inhibited tumor growth and development in vivo. Therefore, our results suggest that HDAC9 could serve as a novel potential therapeutic target in the treatment of retinoblastoma. - Highlights: • High expression of HDAC9 correlates with poor patient prognosis. • Downregulation of HDAC9 inhibits cell proliferation in retinoblastoma cells. • Downregulation of HDAC9 induces cell cycle arrest at G1 phase in retinoblastoma cells. • Downregulation of HDAC9 suppresses tumor growth in nude mice.« less

  3. Antitumor activity of erlotinib (OSI-774, Tarceva) alone or in combination in human non-small cell lung cancer tumor xenograft models.

    PubMed

    Higgins, Brian; Kolinsky, Kenneth; Smith, Melissa; Beck, Gordon; Rashed, Mohammad; Adames, Violeta; Linn, Michael; Wheeldon, Eric; Gand, Laurent; Birnboeck, Herbert; Hoffmann, Gerhard

    2004-06-01

    Our objective was the preclinical assessment of the pharmacokinetics, monotherapy and combined antitumor activity of the epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor erlotinib in athymic nude mice bearing non-small cell lung cancer (NSCLC) xenograft models. Immunohistochemistry determined the HER1/EGFR status of the NSCLC tumor models. Pharmacokinetic studies assessed plasma drug concentrations of erlotinib in tumor- and non-tumor-bearing athymic nude mice. These were followed by maximum tolerated dose (MTD) studies for erlotinib and each chemotherapy. Erlotinib was then assessed alone and in combination with these chemotherapies in the NSCLC xenograft models. Complete necropsies were performed on most of the animals in each study to further assess antitumor or toxic effects. Erlotinib monotherapy dose-dependently inhibited tumor growth in the H460a tumor model, correlating with circulating levels of drug. There was antitumor activity at the MTD with each agent tested in both the H460a and A549 tumor models (erlotinib 100 mg/kg: 71 and 93% tumor growth inhibition; gemcitabine 120 mg/kg: 93 and 75% tumor growth inhibition; cisplatin 6 mg/kg: 81 and 88% tumor growth inhibition). When each compound was given at a fraction of the MTD, tumor growth inhibition was suboptimal. Combinations of gemcitabine or cisplatin with erlotinib were assessed at 25% of the MTD to determine efficacy. In both NSCLC models, doses of gemcitabine (30 mg/kg) or cisplatin (1.5 mg/kg) with erlotinib (25 mg/kg) at 25% of the MTD were well tolerated. For the slow growing A549 tumor, there was significant tumor growth inhibition in the gemcitabine/erlotinib and cisplatin/erlotinib combinations (above 100 and 98%, respectively), with partial regressions. For the faster growing H460a tumor, there was significant but less remarkable tumor growth inhibition in these same combinations (86 and 53% respectively). These results show that in NSCLC xenograft tumors with similar

  4. Inhibiting tumor necrosis factor-alpha diminishes desmoplasia and inflammation to overcome chemoresistance in pancreatic ductal adenocarcinoma

    PubMed Central

    Xu, Zhigao; Chen, Honglei; He, Yuyu; Yang, Gui; Yang, Gang; Hu, Hanning; Tang, Shihui; Wang, Ping; Zhang, Zheng; Xu, Peipei; Yu, Mingxia

    2016-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancer death reasons. Anti-tumor necrosis factor-alpha (TNF-α) antibodies have shown promising effects in PDAC pre-clinical models. However, the prognostic values of TNF-α, underlying mechanisms by which anti-TNF-α treatments inhibit PDAC, and potential synergistic effects of anti-TNF-α treatments with chemotherapy are still unclear. Results and Methods To identify the targeting values of TNF-α in PDAC, we measured TNF-α expression in different stages of PDAC initiation and evaluated its prognostic significance in a pancreatic cancer cohort. We found that TNF-α expression elevated in PDAC initiation process, and high expression of TNF-α was an independent prognostic marker of poor survival. We further evaluated anti-tumor effects of anti-TNF-α treatments in PDAC. Anti-TNF-α treatments resulted in decreased cell viability in both PDAC tumor cells and pancreatic satellite cells in similar dose in vitro. In vivo, anti-TNF-α treatments showed effects in reducing desmoplasia and the tumor promoting inflammatory microenvironment in PDAC. Combination of anti-TNF-α treatments with chemotherapy partly overcame chemoresistance of PDAC tumor cells and prolonged the survival of PDAC mouse model. Conclusions In conclusion, our findings indicated that TNF-α in PDAC can be a prognostic and therapeutic target. Inhibition of TNF-α synergized with chemotherapy in PDAC resulted in better pre-clinical responses via killing tumor cells as well as diminishing desmoplasia and inflammation in PDAC tumor stroma. PMID:27835602

  5. Saccharin and Cyclamate Inhibit Binding of Epidermal Growth Factor

    NASA Astrophysics Data System (ADS)

    Lee, L. S.

    1981-02-01

    The binding of 125I-labeled mouse epidermal growth factor (EGF) to 18 cell lines, including HeLa (human carcinoma), MDCK (dog kidney cells), HTC (rat hepatoma), K22 (rat liver), HF (human foreskin), GM17 (human skin fibroblasts), XP (human xeroderma pigmentosum fibroblasts), and 3T3-L1 (mouse fibroblasts), was inhibited by saccharin and cyclamate. The human cells were more sensitive to inhibition by these sweeteners than mouse or rat cells. EGF at doses far above the physiological levels reversed the inhibition in rodent cells but not in HeLa cells. In HeLa cells, the doses of saccharin and cyclamate needed for 50% inhibition were 3.5 and 9.3 mg/ml, respectively. Glucose, 2-deoxyglucose, sucrose, and xylitol did not inhibit EGF binding. Previous studies have shown that phorbol esters, strongly potent tumor promoters, also inhibit EGF binding to tissue culture cells. To explain the EGF binding inhibition by such greatly dissimilar molecules as phorbol esters, saccharin, and cyclamate, it is suggested that they operate through the activation of a hormone response control unit.

  6. Smad4 inhibits cell migration via suppression of JNK activity in human pancreatic carcinoma PANC-1 cells.

    PubMed

    Zhang, Xueying; Cao, Junxia; Pei, Yujun; Zhang, Jiyan; Wang, Qingyang

    2016-05-01

    Smad4 is a common Smad and is a key downstream regulator of the transforming growth factor-β signaling pathway, in which Smad4 often acts as a potent tumor suppressor and functions in a highly context-dependent manner, particularly in pancreatic cancer. However, little is known regarding whether Smad4 regulates other signaling pathways involved in pancreatic cancer. The present study demonstrated that Smad4 downregulates c-Jun N-terminal kinase (JNK) activity using a Smad4 loss-of-function or gain-of-function analysis. Additionally, stable overexpression of Smad4 clearly affected the migration of human pancreatic epithelioid carcinoma PANC-1 cells, but did not affect cell growth. In addition, the present study revealed that upregulation of mitogen-activated protein kinase phosphatase-1 is required for the reduction of JNK activity by Smad4, leading to a decrease in vascular endothelial growth factor expression and inhibiting cell migration. Overall, the present findings indicate that Smad4 may suppress JNK activation and inhibit the tumor characteristics of pancreatic cancer cells.

  7. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse.

    PubMed

    Zheng, Bingxin; Ren, Tingting; Huang, Yi; Sun, Kunkun; Wang, Shidong; Bao, Xing; Liu, Kuisheng; Guo, Wei

    2018-02-06

    Immune checkpoint inhibitors have led to a breakthrough in solid tumor immunotherapy, but related studies on musculoskeletal tumors are few, especially for PD-L2. We examined expression of three molecular effectors of the PD-1 axis in 234 patients with musculoskeletal tumors, including osteosarcoma, chondrosarcoma, synovial sarcoma, and giant cell tumor. Survival analyses and potential mechanisms were investigated in osteosarcoma per the Gene Expression Omnibus (GEO) and immunohistochemistry analyses. In vivo, humanized mice were used to evaluate the effect of nivolumab on osteosarcoma. PD-L1, PD-L2, and PD-1 expression levels were significantly different between the histologic types of the musculoskeletal tumors. For osteosarcoma, PD-L1 was negatively correlated with prognosis, while PD-1 had a negative correlation tendency with overall survival (OS). Meanwhile, PD-L2 had a positive correlation trend with OS. Nivolumab inhibited osteosarcoma metastasis in humanized mice by increasing CD4+ and CD8+ lymphocytes and the cytolytic activity of CD8 lymphocytes in the lung but did not affect primary osteosarcoma growth. We systematically detected the expression patterns of PD-L1, PD-L2, and PD-1 in musculoskeletal tumors for the first time and demonstrated the prognostic roles and underlying mechanisms of PD-1 axis in osteosarcoma. Furthermore, PD-1 blockade could effectively control osteosarcoma pulmonary metastasis in vivo. Therefore, the PD-1 axis may be a potential immunotherapeutic target for metastatic osteosarcoma.

  8. Time-resolved fluorescence spectroscopy of human brain tumors

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.

    2002-05-01

    Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.

  9. T3 receptors in human pituitary tumors.

    PubMed

    Machiavelli, Gloria A; Pauni, Micaela; Heredia Sereno, Gastón M; Szijan, Irene; Basso, Armando; Burdman, José A

    2009-11-01

    The purpose of this work was to investigate the synthesis of T3 receptors in human tumors of the anterior pituitary gland, its relationship with the hormone synthesized and/or secreted by the tumor and the post-surgical evolution of the patient. Patients were evaluated clinically and by magnetic nuclear resonance to classify the adenoma according to their size. Hormonal concentrations in sera were determined by radioimmunoassay. Immunohistochemistry of the pituitary hormones was performed in the tumors. Tumors were obtained at surgery and immediately frozen in ice, transported to the laboratory and stored at -70 degrees C. Reverse transcription was performed with purified RNA from the tumors. Out of 33 pituitary tumors, 29 had RNA for T3 receptors synthesis (88%). They were present in different histological specimens, the tumors were grades 1-4 according to their size, and there was no relationship between the size of the tumor and the presence of T3 receptor RNAs. The post-surgical evolution of the patient was mostly dependent on the size and not on the presence of T3 receptors. The presence of thyroid hormone receptors in pituitary tumors is in line with two important characteristics of these tumors: they are histologically benign and well differentiated.

  10. In vivo inhibition of PC-3 human androgen-independent prostate cancer by a targeted cytotoxic bombesin analogue, AN-215.

    PubMed

    Plonowski, A; Nagy, A; Schally, A V; Sun, B; Groot, K; Halmos, G

    2000-11-15

    The effectiveness of chemotherapy targeted to bombesin (BN) receptors was evaluated in nude mice bearing PC-3 human androgen-independent prostate cancers. Cytotoxic BN analogue AN-215, consisting of 2-pyrrolinodoxorubicin (AN-201) linked to BN-like carrier peptide RC-3094, was injected i.v. at 150 nmol/kg on days 1, 11 and 21. After treatment with AN-215, tumor volume was 69% (p < 0.01) smaller than that in controls and tumor doubling time was extended from 8.5 +/- 0.7 days to 20.3 +/- 3.5 days (p < 0.05). Cytotoxic radical AN-201, carrier RC-3094 and their unconjugated mixture administered at the same dosage were ineffective. The mortality rate was 12.5% in the AN-201 group and 16.7% in the group treated with the mixture, but no deaths occurred in mice receiving AN-215. Because the ester bond linking AN-201 to the carrier molecule is hydrolyzed much faster in mouse serum than in human serum, in the second experiment we investigated the tolerance to AN-215 and its effect in nude mice bearing PC-3 tumors after pharmacological inhibition of serum carboxylesterases. Two applications of AN-201 at 200 nmol/kg were lethal, whereas no mortality was observed after 4 injections of AN-215 at the same dose. Administration of 200 nmol/kg AN-215 on days 1, 7, 17 and 26 again produced 69% tumor inhibition. BN receptors on membranes of PC-3 tumors were detected by (125)I-[Tyr(4)]BN binding, and expression of mRNA for BRS-3 and GRP-R subtypes was also found. AN-215 showed a high affinity to PC-3 tumors, displacing the radioligand at an IC(50) of 12.95 +/- 0.35 nM. Because BN receptors are present on primary and metastatic prostate cancer, targeted chemotherapy with AN-215 might benefit patients with advanced prostatic carcinoma who relapsed androgen ablation. Copyright 2000 Wiley-Liss, Inc.

  11. Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature.

    PubMed

    Mohamedali, Khalid A; Li, Zhi Gang; Starbuck, Michael W; Wan, Xinhai; Yang, Jun; Kim, Sehoon; Zhang, Wendy; Rosenblum, Michael G; Navone, Nora M

    2011-04-15

    A hallmark of prostate cancer (PCa) progression is the development of osteoblastic bone metastases, which respond poorly to available therapies. We previously reported that VEGF(121)/rGel targets osteoclast precursors and tumor neovasculature. Here we tested the hypothesis that targeting nontumor cells expressing these receptors can inhibit tumor progression in a clinically relevant model of osteoblastic PCa. Cells from MDA PCa 118b, a PCa xenograft obtained from a bone metastasis in a patient with castrate-resistant PCa, were injected into the femurs of mice. Osteoblastic progression was monitored following systemic administration of VEGF(121)/rGel. VEGF(121)/rGel was cytotoxic in vitro to osteoblast precursor cells. This cytotoxicity was specific as VEGF(121)/rGel internalization into osteoblasts was VEGF(121) receptor driven. Furthermore, VEGF(121)/rGel significantly inhibited PCa-induced bone formation in a mouse calvaria culture assay. In vivo, VEGF(121)/rGel significantly inhibited the osteoblastic progression of PCa cells in the femurs of nude mice. Microcomputed tomographic analysis revealed that VEGF(121)/rGel restored the bone volume fraction of tumor-bearing femurs to values similar to those of the contralateral (non-tumor-bearing) femurs. VEGF(121)/rGel significantly reduced the number of tumor-associated osteoclasts but did not change the numbers of peritumoral osteoblasts. Importantly, VEGF(121)/rGel-treated mice had significantly less tumor burden than control mice. Our results thus indicate that VEGF(121)/rGel inhibits osteoblastic tumor progression by targeting angiogenesis, osteoclastogenesis, and bone formation. Targeting VEGF receptor (VEGFR)-1- or VEGFR-2-expressing cells is effective in controlling the osteoblastic progression of PCa in bone. These findings provide the basis for an effective multitargeted approach for metastatic PCa. ©2011 AACR.

  12. Pentoxifylline inhibits hypoxia-induced upregulation of tumor cell tissue factor and vascular endothelial growth factor.

    PubMed

    Amirkhosravi, A; Meyer, T; Warnes, G; Amaya, M; Malik, Z; Biggerstaff, J P; Siddiqui, F A; Sherman, P; Francis, J L

    1998-10-01

    Tissue factor (TF), the membrane glycoprotein that initiates blood coagulation, is constitutively expressed by many tumor cells and is implicated in peri-tumor fibrin deposition and hypercoagulability in cancer. Upregulation of tumor TF correlates with enhanced metastatic potential. Furthermore, TF has been colocalized with VEGF in breast cancer, specially at sites of early angiogenesis. There are no data on the effect of hypoxia on tumor cell TF expression. Since hypoxia is known to stimulate VEGF production, we studied whether this also induces tumor cell TF expression. Confluent monolayers of A375 melanoma, MCF-7 breast carcinoma and A549 lung carcinoma were cultured in either 95% air, 5% CO2 (normoxic) or 95% N2, 5% CO2 (hypoxic; 25-30 mmHg) for 24 h. Procoagulant activity (PCA) was measured by amidolytic and clotting assays, surface TF antigen by flow cytometry, early apoptosis by annexin V binding and VEGF levels in culture supernatants by ELISA. Hypoxia significantly increased tumor cell PCA in all three cell lines tested and TF antigen on A375 cells was increased four-fold (P <0.05). Pentoxifylline (PTX), a methylxanthine derivative, significantly inhibited the hypoxia-induced increase in PCA as well as VEGF release in all three cell lines tested. In A375 cells, PTX significantly inhibited TF antigen expression by both normoxic and hypoxic cells. Hypoxia induced a slight (5%) but not significant, increase in early apoptosis. Intravenous injection of hypoxic A375 cells into nude rats produced more pronounced thrombocytopenia (n = 5, P <0.01) and more lung metastases (n = 3, P <0.05) compared to normoxic cells. We conclude that hypoxia increases TF expression by malignant cells which enhances tumor cell-platelet binding and hematogenous metastasis. Hypoxia-induced upregulation of TF appears to parallel that of VEGF, although the mechanism remains unclear.

  13. MUC-1 Tumor Antigen Agonist Epitopes for Enhancing T-cell Responses to Human Tumors | NCI Technology Transfer Center | TTC

    Cancer.gov

    Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.

  14. Antibody treatment of human tumor xenografts elicits active anti-tumor immunity in nude mice

    PubMed Central

    Liebman, Meredith A.; Roche, Marly I.; Williams, Brent R.; Kim, Jae; Pageau, Steven C.; Sharon, Jacqueline

    2007-01-01

    Athymic nude mice bearing subcutaneous tumor xenografts of the human anti-colorectal cancer cell line SW480 were used as a preclinical model to explore anti-tumor immunotherapies. Intratumor or systemic treatment of the mice with murine anti-SW480 serum, recombinant anti-SW480 polyclonal antibodies, or the anti-colorectal cancer monoclonal antibody CO17-1A, caused retardation or regression of SW480 tumor xenografts. Interestingly, when mice that had regressed their tumors were re-challenged with SW480 cells, these mice regressed the new tumors without further antibody treatment. Adoptive transfer of spleen cells from mice that had regressed their tumors conferred anti-tumor immunity to naïve nude mice. Pilot experiments suggest that the transferred anti-tumor immunity is mediated by T cells of both γδ and αβ lineages. These results demonstrate that passive anti-tumor immunotherapy can elicit active immunity and support a role for extra-thymic γδ and αβ T cells in tumor rejection. Implications for potential immunotherapies include injection of tumor nodules in cancer patients with anti-tumor antibodies to induce anti-tumor T cell immunity. PMID:17920694

  15. Structures and mechanisms of antitumor agents: xestoquinones uncouple cellular respiration and disrupt HIF signaling in human breast tumor cells.

    PubMed

    Du, Lin; Mahdi, Fakhri; Datta, Sandipan; Jekabsons, Mika B; Zhou, Yu-Dong; Nagle, Dale G

    2012-09-28

    The organic extract of a marine sponge, Petrosia alfiani, selectively inhibited iron chelator-induced hypoxia-inducible factor-1 (HIF-1) activation in a human breast tumor T47D cell-based reporter assay. Bioassay-guided fractionation yielded seven xestoquinones (1-7) including three new compounds: 14-hydroxymethylxestoquinone (1), 15-hydroxymethylxestoquinone (2), and 14,15-dihydroxestoquinone (3). Compounds 1-7 were evaluated for their effects on HIF-1 signaling, mitochondrial respiration, and tumor cell proliferation/viability. The known metabolites adociaquinones A (5) and B (6), which possess a 3,4-dihydro-2H-1,4-thiazine-1,1-dioxide moiety, potently and selectively inhibited iron chelator-induced HIF-1 activation in T47D cells, each with an IC(50) value of 0.2 μM. Mechanistic studies revealed that adociaquinones promote oxygen consumption without affecting mitochondrial membrane potential. Compound 1 both enhances respiration and decreases mitochondrial membrane potential, suggesting that it acts as a protonophore that uncouples mitochondrial respiration.

  16. A Small Molecule Agonist of EphA2 Receptor Tyrosine Kinase Inhibits Tumor Cell Migration In Vitro and Prostate Cancer Metastasis In Vivo

    PubMed Central

    Guo, Hong; Miao, Hui; Tochtrop, Gregory P.; Hsieh, Jer-Tsong; Page, Phillip; Liu, Lili; Lindner, Daniel J.; Acharya, Chayan; MacKerell, Alexander D.; Ficker, Eckhard; Song, Jianxing; Wang, Bingcheng

    2012-01-01

    During tumor progression, EphA2 receptor can gain ligand-independent pro-oncogenic functions due to Akt activation and reduced ephrin-A ligand engagement. The effects can be reversed by ligand stimulation, which triggers the intrinsic tumor suppressive signaling pathways of EphA2 including inhibition of PI3/Akt and Ras/ERK pathways. These observations argue for development of small molecule agonists for EphA2 as potential tumor intervention agents. Through virtual screening and cell-based assays, we report here the identification and characterization of doxazosin as a novel small molecule agonist for EphA2 and EphA4, but not for other Eph receptors tested. NMR studies revealed extensive contacts of doxazosin with EphA2/A4, recapitulating both hydrophobic and electrostatic interactions recently found in the EphA2/ephrin-A1 complex. Clinically used as an α1-adrenoreceptor antagonist (Cardura®) for treating hypertension and benign prostate hyperplasia, doxazosin activated EphA2 independent of α1-adrenoreceptor. Similar to ephrin-A1, doxazosin inhibited Akt and ERK kinase activities in an EphA2-dependent manner. Treatment with doxazosin triggered EphA2 receptor internalization, and suppressed haptotactic and chemotactic migration of prostate cancer, breast cancer, and glioma cells. Moreover, in an orthotopic xenograft model, doxazosin reduced distal metastasis of human prostate cancer cells and prolonged survival in recipient mice. To our knowledge, doxazosin is the first small molecule agonist of a receptor tyrosine kinase that is capable of inhibiting malignant behaviors in vitro and in vivo. PMID:22916121

  17. Inhibition of urinary bladder tumors induced by N-butyl-N-(4-hydroxybutyl)-nitrosamine in rats by green tea.

    PubMed

    Sato, D

    1999-02-01

    Recently, the anticarcinogenic effects of green tea have been studied in sites other than the urinary tract. The present study examined the inhibition by green tea of vesical tumors induced in rats by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). In the first series of experiments, 0.05% BBN was added to the drinking water of rats and remained present for 5 weeks. In one experiment, six groups of animals received either tap water, green tea, matcha, hojicha, oolong tea or black tea from week 6. In a second experiment, three groups of rats received either tap water, green tea extract or powdered green tea mixed into a pellet diet from week 6. In a third experiment, five groups of rats were fed a pellet diet with addition of either 0, 0.15, 1.5 or 3.0% powdered green tea from week 6. All rats were killed and examined at 40 weeks. Green tea, particularly green tea leaves, dose-dependently inhibited the growth of BBN-induced urinary bladder tumors when given after the carcinogen. Green tea may inhibit bladder tumor growth.

  18. Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF-10A cells and suppresses vimentin protein level in vivo in breast tumors.

    PubMed

    Lee, Joomin; Hahm, Eun-Ryeong; Marcus, Adam I; Singh, Shivendra V

    2015-06-01

    We have shown previously that withaferin A (WA), a bioactive component of the medicinal plant Withania somnifera, inhibits growth of cultured and xenografted human breast cancer cells and prevents breast cancer development and pulmonary metastasis incidence in a transgenic mouse model. The present study was undertaken to determine if the anticancer effect of WA involved inhibition of epithelial-mesenchymal transition (EMT). Experimental EMT induced by exposure of MCF-10A cells to tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β) was partially reversed by treatment with WA but not by its structural analogs withanone or withanolide A. Combined TNF-α and TGF-β treatments conferred partial protection against MCF-10A cell migration inhibition by WA. Inhibition of TNF-α and TGF-β-induced MCF-10A cell migration by WA exposure was modestly attenuated by knockdown of E-cadherin protein. MCF-7 and MDA-MB-231 cells exposed to WA exhibited sustained (MCF-7) or transient (MDA-MB-231) induction of E-cadherin protein. On the other hand, the level of vimentin protein was increased markedly after 24 h treatment of MDA-MB-231 cells with WA. WA-induced apoptosis was not affected by vimentin protein knockdown in MDA-MB-231 cells. Protein level of vimentin was significantly lower in the MDA-MB-231 xenografts as well as in MMTV-neu tumors from WA-treated mice compared with controls. The major conclusions of the present study are that (a) WA treatment inhibits experimental EMT in MCF-10A cells, and (b) mammary cancer growth inhibition by WA administration is associated with suppression of vimentin protein expression in vivo. © 2013 Wiley Periodicals, Inc.

  19. HER2-Targeted Polyinosine/Polycytosine Therapy Inhibits Tumor Growth and Modulates the Tumor Immune Microenvironment.

    PubMed

    Zigler, Maya; Shir, Alexei; Joubran, Salim; Sagalov, Anna; Klein, Shoshana; Edinger, Nufar; Lau, Jeffrey; Yu, Shang-Fan; Mizraji, Gabriel; Globerson Levin, Anat; Sliwkowski, Mark X; Levitzki, Alexander

    2016-08-01

    The development of targeted therapies that affect multiple signaling pathways and stimulate antitumor immunity is greatly needed. About 20% of patients with breast cancer overexpress HER2. Small molecules and antibodies targeting HER2 convey some survival benefits; however, patients with advanced disease succumb to the disease under these treatment regimens, possibly because HER2 is not completely necessary for the survival of the targeted cancer cells. In the present study, we show that a polyinosine/polycytosine (pIC) HER2-homing chemical vector induced the demise of HER2-overexpressing breast cancer cells, including trastuzumab-resistant cells. Targeting pIC to the tumor evoked a number of cell-killing mechanisms, as well as strong bystander effects. These bystander mechanisms included type I IFN induction, immune cell recruitment, and activation. The HER2-targeted pIC strongly inhibited the growth of HER2-overexpressing tumors in immunocompetent mice. The data presented here could open additional avenues in the treatment of HER2-positive breast cancer. Cancer Immunol Res; 4(8); 688-97. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. T Lymphocyte Inhibition by Tumor-Infiltrating Dendritic Cells Involves Ectonucleotidase CD39 but Not Arginase-1.

    PubMed

    Trad, Malika; Gautheron, Alexandrine; Fraszczak, Jennifer; Alizadeh, Darya; Larmonier, Claire; LaCasse, Collin J; Centuori, Sara; Audia, Sylvain; Samson, Maxime; Ciudad, Marion; Bonnefoy, Francis; Lemaire-Ewing, Stéphanie; Katsanis, Emmanuel; Perruche, Sylvain; Saas, Philippe; Bonnotte, Bernard

    2015-01-01

    T lymphocytes activated by dendritic cells (DC) which present tumor antigens play a key role in the antitumor immune response. However, in patients suffering from active cancer, DC are not efficient at initiating and supporting immune responses as they participate to T lymphocyte inhibition. DC in the tumor environment are functionally defective and exhibit a characteristic of immature phenotype, different to that of DC present in nonpathological conditions. The mechanistic bases underlying DC dysfunction in cancer responsible for the modulation of T-cell responses and tumor immune escape are still being investigated. Using two different mouse tumor models, we showed that tumor-infiltrating DC (TIDC) are constitutively immunosuppressive, exhibit a semimature phenotype, and impair responder T lymphocyte proliferation and activation by a mechanism involving CD39 ectoenzyme.

  1. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    PubMed

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Aromatase inhibitors in human lung cancer therapy.

    PubMed

    Weinberg, Olga K; Marquez-Garban, Diana C; Fishbein, Michael C; Goodglick, Lee; Garban, Hermes J; Dubinett, Steven M; Pietras, Richard J

    2005-12-15

    Lung cancer is the most common cancer in the world. It is a highly lethal disease in women and men, and new treatments are urgently needed. Previous studies implicated a role of estrogens and estrogen receptors in lung cancer progression, and this steroidal growth-stimulatory pathway may be promoted by tumor expression and activity of aromatase, an estrogen synthase. We found expression of aromatase transcripts and protein in human non-small cell lung cancer (NSCLC) cells using reverse transcription-PCR and Western immunoblots, respectively. Aromatase staining by immunohistochemistry was detected in 86% of archival NSCLC tumor specimens from the clinic. Further, biological activity of aromatase was determined in NSCLC tumors using radiolabeled substrate assays as well as measure of estradiol product using ELISA. Significant activity of aromatase occurred in human NSCLC tumors, with enhanced levels in tumor cells compared with that in nearby normal cells. Lung tumor aromatase activity was inhibited by anastrozole, an aromatase inhibitor, and treatment of tumor cells in vitro with anastrozole led to significant suppression of tumor cell growth. Similarly, among ovariectomized nude mice with A549 lung tumor xenografts, administration of anastrozole by p.o. gavage for 21 days elicited pronounced inhibition of tumor growth in vivo. These findings show that aromatase is present and biologically active in human NSCLCs and that tumor growth can be down-regulated by specific inhibition of aromatase. This work may lead to development of new treatment options for patients afflicted with NSCLC.

  3. Cytotoxic and anti-colorectal tumor effects of sulfated saponins from sea cucumber Holothuria moebii.

    PubMed

    Yu, Siran; Ye, Xuewei; Chen, Lu; Xie, Xin; Zhou, Qian; Lian, Xiao-Yuan; Zhang, Zhizhen

    2015-11-15

    Whether sulfated saponins from Holothuria moebii inhibit the proliferation of colorectal cancer cells and have anti-colorectal tumor effects in animal model has not been investigated. To evaluate the cytotoxic and anti-colorectal tumor effects of sulfated saponins from sea cucumber Holothuria moebii. (1) Column chromatography was used to prepare the total and individual saponins and HPLC was applied to define the components of the total saponins; (2) the activity of the total and individual saponins inhibiting the proliferation of human colorectal cancer cells was determined by SRB assay and the apoptosis induced by the saponins was qualified using cytometric analysis with Annexin V-FITC/PI double staining; and (3) the antitumor effects of the sulfated saponins on colorectal CT-26 tumor-bearing Balb/c mice were tested. The total and individual sulfated saponins significantly inhibited the proliferation of four different human colorectal cancer cells with IC50 values ranging from 1.04 to 4.08 μM (or 1.46 to 3.24 μg/ml for total saponins) and induced late apoptosis at an early treatment time in cancer cells. The total saponins (120 mg/kg) had antitumor activity in colorectal CT-26 tumor-bearing Balb/c mice. The sulfated saponins from H. moebii remarkably inhibited the proliferation of different human colorectal cancer cells and had significant anti-colorectal tumor activity in animal model. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Increased expression of IRF8 in tumor cells inhibits the generation of Th17 cells and predicts unfavorable survival of diffuse large B cell lymphoma patients.

    PubMed

    Zhong, Weijie; Xu, Xin; Zhu, Zhigang; Du, Qinghua; Du, Hong; Yang, Li; Ling, Yanying; Xiong, Huabao; Li, Qingshan

    2017-07-25

    The immunological pathogenesis of diffuse large B cell lymphoma (DLBCL) remains elusive. Searching for new prognostic markers of DLBCL is a crucial focal point for clinical scientists. The aim of the present study was to examine the prognostic value of interferon regulatory factor 8 (IRF8) expression and its effect on the development of Th17 cells in the tumor microenvironment of DLBCL patients. Flow cytometry, immunohistochemistry, and quantitative real-time PCR were used to detect the distribution of Th17 cells and related cytokines and IRF8 in tumor tissues from DLBCL patients. Two DLBCL cell lines (OCI-LY10 and OCI-LY1) with IRF8 knockdown or overexpression and two human B lymphoblast cell lines were co-cultured with peripheral blood mononuclear cells (PBMCs) in vitro to determine the effect of IRF8 on the generation of Th17 cells. Quantitative real-time PCR and Western blotting were used to investigate the involvement of retinoic acid receptor-related orphan receptor gamma t (RORγt) in the effect of IRF8 on Th17 cell generation. The survival of 67 DLBCL patients was estimated using the Kaplan-Meier method and log-rank analysis. The percentage of Th17 cells was lower in DLBCL tumor tissues than in PBMCs and corresponding adjacent benign tissues. Relative expression of interleukin (IL)-17A was lower, whereas that of interferon (IFN)-γ was higher in tumor tissues than in benign tissues. Co-culture with DLBCL cell lines inhibited the generation of Th17 cells in vitro. IRF8 upregulation was detected in DLBCL tumor tissues, and it was associated with decreased DLBCL patient survival. Investigation of the underlying mechanism suggested that IRF8 upregulation in DLBCL, through an unknown mechanism, inhibited Th17 cell generation by suppressing RORγt in neighboring CD4+ T cells. Tumor cells may express soluble or membrane-bound factors that inhibit the expression of RORγt in T cells within the tumor microenvironment. Our findings suggest that IRF8 expression could

  5. Inhibition of hyaluronan synthesis by vesnarinone in cultured human myofibroblasts.

    PubMed

    Ueki, N; Taguchi, T; Takahashi, M; Adachi, M; Ohkawa, T; Amuro, Y; Hada, T; Higashino, K

    2000-02-02

    Hyaluronan (HA), which is a major component of the extracellular matrix (ECM), is regulated during myofibroproliferative responses to numerous forms of inflammatory stimuli. It is a key factor involved in cellular migration and adherence. The development of a potent and non-toxic inhibitor of HA synthesis would open up a new avenue for the treatment of fibrocontractive diseases such as pulmonary fibrosis and liver cirrhosis. In this study, the effects of vesnarinone (OPC-8212: 3,4-dihydro-6-[4-(3, 4-dimethoxybenzoyl)-1-piperazinyl]-2(1H)-quinolinone) on the secretion of HA in human myofibroblast cell lines (MRC-5 and LI90 cells, referred to as pulmonary and hepatic myofibroblasts, respectively) were examined. Vesnarinone specifically and dose-dependently inhibited HA secretion by myofibroblasts up-regulated by fetal calf serum (FCS). The treatment of vesnarinone did not modify the phenotype of myofibroblast cells in culture. Vesnarinone also potently inhibited the HA secretion by the two myofibroblast cell lines up-regulated by transforming growth factor-beta1 (TGF-beta1) or tumor necrosis factor-alpha (TNF-alpha). The addition of vesnarinone to myofibroblasts resulted in a significant decrease of HA synthase (HAS) activity, with or without the addition of FCS or either cytokine. These findings suggest that vesnarinone inhibits the secretion of HA in myofibroblasts by specifically suppressing HAS activity, and may therefore prove useful for the treatment of chronic inflammation and tissue fibrosis.

  6. Tangeretin inhibits high glucose-induced extracellular matrix accumulation in human glomerular mesangial cells.

    PubMed

    Chen, Fang; Ma, Yali; Sun, Zhiqiang; Zhu, Xiaoguang

    2018-06-01

    Tangeretin (5, 6, 7, 8, 4'-pentamethoxyflavone), a natural compound extracted from citrus plants, has been shown to possess a variety of pharmacological activities, including anti-oxidant, anti-tumor, cytostatic and anti-diabetic properties. However, the role of tangeretin in diabetic nephropathy (DN) has not yet been investigated. This study was undertaken to elucidate the effects of tangeretin on high glucose (HG)-induced oxidative stress and extracellular matrix (ECM) accumulation in human glomerular mesangial cells (MCs) and explore the underlying mechanisms. Our results showed that tangeretin significantly inhibited HG-induced the proliferation of MCs. In addition, tangeretin dramatically reduced the levels of reactive oxygen species (ROS) and malondialdhyde (MDA), and induced SOD activity, as well as inhibited the expression of fibronectin (FN) and collagen IV in HG-stimulated MCs. Furthermore, tangeretin efficiently prevented the activation of ERK signaling pathway in HG-stimulated MCs. Taken together, these data indicated that tangeretin inhibits HG-induced cell proliferation, oxidative stress and ECM expression in glomerular MCs, at least in part, through the inactivation of ERK signaling pathway. Therefore, tangeretin may be a potential agent in the treatment of DN. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-beta signaling in diffuse-type gastric carcinoma.

    PubMed

    Kiyono, Kunihiko; Suzuki, Hiroshi I; Morishita, Yasuyuki; Komuro, Akiyoshi; Iwata, Caname; Yashiro, Masakazu; Hirakawa, Kosei; Kano, Mitsunobu R; Miyazono, Kohei

    2009-10-01

    c-Ski, originally identified as a proto-oncogene product, is an important negative regulator of transforming growth factor (TGF)-beta family signaling through interaction with Smad2, Smad3, and Smad4. High expression of c-Ski has been found in some cancers, including gastric cancer. We previously showed that disruption of TGF-beta signaling by dominant-negative TGF-beta type II receptor in a diffuse-type gastric carcinoma model accelerated tumor growth through induction of tumor angiogenesis by decreased expression of the anti-angiogenic factor thrombospondin (TSP)-1. Here, we examined the function of c-Ski in human diffuse-type gastric carcinoma OCUM-2MLN cells. Overexpression of c-Ski inhibited TGF-beta signaling in OCUM-2MLN cells. Interestingly, c-Ski overexpression resulted in extensive acceleration of the growth of subcutaneous xenografts in BALB/c nu/nu female mice (6 weeks of age). Similar to tumors expressing dominant-negative TGF-beta type II receptor, histochemical studies revealed less fibrosis and increased angiogenesis in xenografted tumors expressing c-Ski compared to control tumors. Induction of TSP-1 mRNA by TGF-beta was attenuated by c-Ski in vitro, and expression of TSP-1 mRNA was decreased in tumors expressing c-Ski in vivo. These findings suggest that c-Ski overexpression promotes the growth of diffuse-type gastric carcinoma through induction of angiogenesis.

  8. Anti-tumor immunotherapy by blockade of the PD-1/PD-L1 pathway with recombinant human PD-1-IgV.

    PubMed

    Zhang, C; Wu, S; Xue, X; Li, M; Qin, X; Li, W; Han, W; Zhang, Y

    2008-01-01

    Blockade of the programmed death-1 (PD-1)/PD-ligand 1 (PD-L1) pathway can delay tumor growth and prolong the survival of tumor-bearing mice. The extracellular immunoglobulin (Ig) V domain of PD-1 is important for the interaction between PD-1 and PD-L1, suggesting that PD-1-IgV may be a potential target for anti-tumor immunotherapy. The extracellular sequence of human PD-1-IgV (hPD-1-IgV) was expressed in Escherichia coli and purified. The anti-tumor effect of hPD-1-IgV on tumor-bearing mice was tested. hPD-1-IgV recombinant protein could bind PD-L1 at molecular and cellular levels and enhance Cytotoxic T Lymphocyte (CTL) activity and anti-tumor effect on tumor-bearing mice in vivo. The percentage of CD4(+)CD25(+) T cells in tumor-bearing mice was decreased compared with control mice after administration of the recombinant protein. Our results suggest that inhibition of the interaction between PD-1 and PD-L1 by hPD-1-IgV may be a promising strategy for specific tumor immunotherapy.

  9. Hawthorn extract inhibits human isolated neutrophil functions.

    PubMed

    Dalli, Ernesto; Milara, Javier; Cortijo, Julio; Morcillo, Esteban J; Cosín-Sales, Juan; Sotillo, José Francisco

    2008-06-01

    Hawthorn extract is a popular herbal medicine given as adjunctive treatment for chronic heart failure. In contrast to the cardiac properties of hawthorn extract, its anti-inflammatory effect has been scarcely investigated. This study examines the effects of a dry extract of leaves and flowers of Crataegus laevigata on various functional outputs of human neutrophils in vitro. Incubation of human neutrophils obtained from peripheral blood of healthy donors with C. laevigata extract (0.75-250 microg/ml) inhibited N-formyl-Met-Leu-Phe (FMLP)-induced superoxide anion generation, elastase release and chemotactic migration with potency values of 43.6, 21.9, and 31.6 microg/ml, respectively. By contrast, serum-opsonized zymosan-induced phagocytosis was unaltered by plant extract. C. laevigata extract (125 microg/ml) reduced FMLP-induced leukotriene B(4) production and lipopolysaccharide-induced generation of tumour necrosis factor-alpha and interleukin-8. Extract inhibited FMLP-induced intracellular calcium signal with potency of 17.4 microg/ml. Extract also markedly inhibited the extracellular calcium entry into calcium-depleted neutrophils, and the thapsigargin-induced intracellular calcium response. In conclusion, C. laevigata extract inhibited various functional outputs of activated human neutrophils which may be relevant to the pathophysiology of cardiac failure.

  10. Screening of plant extracts for human tyrosinase inhibiting effects.

    PubMed

    Kim, M; Park, J; Song, K; Kim, H G; Koh, J-S; Boo, Y C

    2012-04-01

    Screening for tyrosinase (TYR) inhibitors potentially useful for control of skin pigmentation has been hampered by the limited availability of human TYR. To overcome this hurdle, we have established human embryonic kidney (HEK293)-TYR cells that constitutively express human TYR. In the current study, we assayed human TYR inhibition activities of 50 plant extracts using the lysates of transformed HEK293-TYR cells. The strongest inhibition of human TYR was shown by the extract of Vaccinium bracteatum Thunberg, followed by the extract of Morus bombycis Koidzumi. The former extract did not inhibit mushroom TYR activity whereas significant inhibition was observed with the latter extract, demonstrating the importance of using human TYR in the screening for human TYR inhibitors. Upon liquid-liquid partitioning of the extract from V. bracteatum, the active constituents were enriched in the ethyl acetate fraction, and the subsequent preparatory thin-layer chromatography identified p-coumaric acid (PCA) as the main active constituent. The hypo-pigmentation of PCA was verified in the MelanoDerm™ Skin Model. This study demonstrates that transformed HEK293-TYR cells could expedite the discovery of human TYR-specific inhibitors from natural sources which might be useful in the control of skin pigmentation. © 2012 The Authors. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  11. MicroRNA100 Inhibits Self-Renewal of Breast Cancer Stem–like Cells and Breast Tumor Development

    PubMed Central

    Deng, Lu; Shang, Li; Bai, Shoumin; Chen, Ji; He, Xueyan; Martin-Trevino, Rachel; Chen, Shanshan; Li, Xiao-yan; Meng, Xiaojie; Yu, Bin; Wang, Xiaolin; Liu, Yajing; McDermott, Sean P.; Ariazi, Alexa E.; Ginestier, Christophe; Ibarra, Ingrid; Ke, Jia; Luther, Tahra; Clouthier, Shawn G.; Xu, Liang; Shan, Ge; Song, Erwei; Yao, Herui; Hannon, Gregory J.; Weiss, Stephen J.; Wicha, Max S.; Liu, Suling

    2015-01-01

    miRNAs are essential for self-renewal and differentiation of normal and malignant stem cells by regulating the expression of key stem cell regulatory genes. Here, we report evidence implicating the miR100 in self-renewal of cancer stem-like cells (CSC). We found that miR100 expression levels relate to the cellular differentiation state, with lowest expression in cells displaying stem cell markers. Utilizing a tetracycline-inducible lentivirus to elevate expression of miR100 in human cells, we found that increasing miR100 levels decreased the production of breast CSCs. This effect was correlated with an inhibition of cancer cell proliferation in vitro and in mouse tumor xenografts due to attenuated expression of the CSC regulatory genes SMARCA5, SMARCD1, and BMPR2. Furthermore, miR100 induction in breast CSCs immediately upon their orthotopic implantation or intracardiac injection completely blocked tumor growth and metastasis formation. Clinically, we observed a significant association between miR100 expression in breast cancer specimens and patient survival. Our results suggest that miR100 is required to direct CSC self-renewal and differentiation. PMID:25217527

  12. Cyanidin-3-glucoside inhibits inflammatory activities in human fibroblast-like synoviocytes and in mice with collagen-induced arthritis.

    PubMed

    Sun, Yan; Li, Lingling

    2018-05-19

    Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint tissue inflammation. Cyanidin-3-glucoside (C3G) is a major component in the flavonoid family and has shown anti-inflammatory, anti-oxidant and anti-tumor activity. In this study, we investigated the effects of C3G on lipopolysaccharides (LPS)-induced inflammation on human rheumatoid fibroblast-like synoviocytes (FLS) and on collagen-induced arthritis (CIA) mice model. We treated FLS with C3G followed by LPS induction, the expressions of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and IL-6 and the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway were analyzed. CIA was induced in mice and the arthritic mice were treated with C3G for 3 weeks. The disease severity was compared between control and C3G treated mice. The serum levels of TNF-α, IL-1β and IL-6 were analyzed by ELISA. C3G inhibited LPS-induced TNF-α, IL-1β and IL-6 expression in FLS. Moreover, C3G inhibited LPS-induced p65 production and IκBa, p38, ERK and JNK phosphorylation. Administration of C3G significantly attenuated disease in mice with CIA and decreased the serum level of TNF-α, IL-1β and IL-6. C3G inhibited LPS-induced inflammation in human FLS by inhibiting activation of NF-κB and MAPK signaling pathway. C3G exhibited therapeutic effects in mice with CIA. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. miR-34a inhibits the in vitro cell proliferation and migration in human esophageal cancer.

    PubMed

    Shi, Hui; Zhou, Shengluan; Liu, Junhua; Zhu, Jun; Xue, Jianhua; Gu, Luo; Chen, Yijiang

    2016-05-01

    Increasing studies demonstrate that reduced expression of miR-34a is involved in the initiation and progression of cancers, and it has been characterized as a tumor suppressor in various types of cancers. In present study, we investigated the expression and role of miR-34a in esophageal cancer. qRT-PCR assays were performed to analyze the expression of miR-34a in human esophageal cancer tissues and adjacent esophageal tissues. CCK8 assay, flow cytometry analysis and in vitro migration assays were performed to analyze the role of miR-34a in human esophageal cancer cell. MSP assay was performed to analyze the DNA methylation of the miR-34a promoter. The expression of miR-34a was down-regulated in human esophageal cancer tissues. miR-34a ectopic expression affected esophageal cancer cells survival, proliferation and capabilities of migration in vitro. p53 status was not correlated with miR-34a. Subsequently, aberrant DNA methylation of the miR-34a promoter was found in human esophageal cancer, and 5-AZA-dC inhibited DNA methylation of the miR-34a promoter. our data showed that miR-34a acted as a tumor suppressor in human esophageal cancer. Copyright © 2016. Published by Elsevier GmbH.

  14. Targeting foreign major histocompatibility complex molecules to tumors by tumor cell specific single chain antibody (scFv).

    PubMed

    Li, Jinhua; Franek, Karl J; Patterson, Andrea L; Holmes, Lillia M; Burgin, Kelly E; Ji, Jianfei; Yu, Xianzhong; Wagner, Thomas E; Wei, Yanzhang

    2003-11-01

    Down-regulation of the major histocompatibility complex (MHC) is one of the major mechanisms that tumor cells adopted to escape immunosurveillance. Therefore, specifically coating tumor cells with foreign MHC may make tumor cells a better target for immune recognition and surveillance. In this study, we designed and generated a fusion protein, H2Kd/scPSMA, consisting of a single chain antibody against human prostate specific membrane antigen (PSMA) and the extracellular domain of mouse H-2Kd. The expression of this fusion protein in B16F0 mouse melanoma cells was confirmed by RT-PCR and fluorescent activated cell sorting (FACS). Our animal study showed that the expression of H2Kd/scPSMA in B16F0/PSMA5, a B16F0 cell line expressing human PSMA, significantly inhibited tumor growth as demonstrated in the pulmonary metastasis assay and tumor growth study and improved overall survival.

  15. The B-Raf status of tumor cells may be a significant determinant of both antitumor and anti-angiogenic effects of pazopanib in xenograft tumor models.

    PubMed

    Gril, Brunilde; Palmieri, Diane; Qian, Yong; Anwar, Talha; Ileva, Lilia; Bernardo, Marcelino; Choyke, Peter; Liewehr, David J; Steinberg, Seth M; Steeg, Patricia S

    2011-01-01

    Pazopanib is an FDA approved Vascular Endothelial Growth Factor Receptor inhibitor. We previously reported that it also inhibits tumor cell B-Raf activity in an experimental brain metastatic setting. Here, we determine the effects of different B-Raf genotypes on pazopanib efficacy, in terms of primary tumor growth and anti-angiogenesis. A panel of seven human breast cancer and melanoma cell lines harboring different mutations in the Ras-Raf pathway was implanted orthotopically in mice, and tumor growth, ERK1/2, MEK1/2 and AKT activation, and blood vessel density and permeability were analyzed. Pazopanib was significantly inhibitory to xenografts expressing either exon 11 mutations of B-Raf, or HER2 activated wild type B-Raf; no significant inhibition of a xenograft expressing the common V600E B-Raf mutation was observed. Decreased pMEK staining in the responsive tumors confirmed that B-Raf was targeted by pazopanib. Interestingly, pazopanib inhibition of tumor cell B-Raf also correlated with its anti-angiogenic activity, as quantified by vessel density and area. In conclusion, using pazopanib, tumor B-Raf status was identified as a significant determinant of both tumor growth and angiogenesis.

  16. The B-Raf Status of Tumor Cells May Be a Significant Determinant of Both Antitumor and Anti-Angiogenic Effects of Pazopanib in Xenograft Tumor Models

    PubMed Central

    Gril, Brunilde; Palmieri, Diane; Qian, Yong; Anwar, Talha; Ileva, Lilia; Bernardo, Marcelino; Choyke, Peter; Liewehr, David J.; Steinberg, Seth M.; Steeg, Patricia S.

    2011-01-01

    Pazopanib is an FDA approved Vascular Endothelial Growth Factor Receptor inhibitor. We previously reported that it also inhibits tumor cell B-Raf activity in an experimental brain metastatic setting. Here, we determine the effects of different B-Raf genotypes on pazopanib efficacy, in terms of primary tumor growth and anti-angiogenesis. A panel of seven human breast cancer and melanoma cell lines harboring different mutations in the Ras-Raf pathway was implanted orthotopically in mice, and tumor growth, ERK1/2, MEK1/2 and AKT activation, and blood vessel density and permeability were analyzed. Pazopanib was significantly inhibitory to xenografts expressing either exon 11 mutations of B-Raf, or HER2 activated wild type B-Raf; no significant inhibition of a xenograft expressing the common V600E B-Raf mutation was observed. Decreased pMEK staining in the responsive tumors confirmed that B-Raf was targeted by pazopanib. Interestingly, pazopanib inhibition of tumor cell B-Raf also correlated with its anti-angiogenic activity, as quantified by vessel density and area. In conclusion, using pazopanib, tumor B-Raf status was identified as a significant determinant of both tumor growth and angiogenesis. PMID:21998674

  17. Tributyltin or triphenyltin inhibits aromatase activity in the human granulosa-like tumor cell line KGN.

    PubMed

    Saitoh, M; Yanase, T; Morinaga, H; Tanabe, M; Mu, Y M; Nishi, Y; Nomura, M; Okabe, T; Goto, K; Takayanagi, R; Nawata, H

    2001-11-23

    The superimposition of male sex organs (penis and vas deferens) in a female gastropod, called imposex, is widely attributed to the exposure to tributyltin (TBT) compounds, used world-wide in antifouling paints for ships. It has been hypothesized that the TBT-induced imposex is mediated by an increasing androgen level relative to the estrogen level, namely a decreased conversion of androgens to estrogens (i.e., aromatization). In the present study, we tested this hypothesis by examining the effects of TBT or triphenyltin (TPT) on the aromatase activity in a cultured human granulosa-like tumor cell line, KGN, which was recently established by our group. Treatment with more than 1000 ng/ml TBT compounds was very toxic to the cells and caused immediate cell death within 24 h, while 200 ng/ml was found to cause apoptosis of the cells. Treatment of the KGN cells for more than 48 h with 20 ng/ml TBT or TPT, which is a concentration level reported to cause imposex in marine species, did not affect cell proliferation but significantly suppressed the aromatase activity determined by a [(3)H]H(2)O release assay. Treatment with 20 ng/ml TBT compounds for 7 days also resulted in a reduction of the E2 production from Delta 4-androstenedione stimulated by db-cAMP. The changes in the aromatase activity by TBT compounds were associated with comparable changes in P450arom mRNA assessed by RT-PCR. The luciferase activity of the P450arom promoter II (1 kb) decreased after the addition of 20 ng/ml TBT compounds in transfected KGN cells either in a basic state or in states stimulated by db-cAMP. The Ad4BP-dependent increase in the luciferase activity of P450arom promoter II was also downregulated by such treatments. These results indicate that TBT compounds inhibited the aromatase activity and also decreased the P450arom mRNA level at the transcriptional level in KGN cells. The direct inhibitory effect of TBT compounds on the aromatase activity may therefore partly explain the induction

  18. Auraptene, a citrus coumarin, inhibits 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion in ICR mouse skin, possibly through suppression of superoxide generation in leukocytes.

    PubMed

    Murakami, A; Kuki, W; Takahashi, Y; Yonei, H; Nakamura, Y; Ohto, Y; Ohigashi, H; Koshimizu, K

    1997-05-01

    Coumarin-related compounds, auraptene and umbelliferone, have been isolated from the cold-pressed oil of natsumikan (Citrus natsudaidai HAYATA), and tested as inhibitors of tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced Epstein-Barr virus activation in Raji cells. The 50% inhibitory concentration (IC50) of auraptene (18 microM) was almost equal to that of genistein. Umbelliferone, which lacks a geranyloxyl group present in auraptene, was less active (IC50 = 450 microM). In a two-stage carcinogenesis experiment with 7,12-dimethylbenz[a] anthracene (topical application at 0.19 mumol) and TPA (topical application at 1.6 nmol) in ICR mouse skin, topical application of auraptene (at 160 nmol) significantly reduced tumor incidence and the numbers of tumors per mouse by 27% (P < 0.01) and 23% (P < 0.05), respectively. Auraptene at a concentration of 50 microM markedly suppressed superoxide (O2-) generation induced by 100 microM TPA in differentiated human promyelocytic HL-60 cells. Having no O2(-)-scavenging potential, auraptene may inhibit the multicomponent NADPH oxidase system. Inhibition of intracellular hydroperoxide formation in differentiated HL-60 cells by auraptene was also confirmed by flow-cytometric analysis using 2',7'-dichlorofluorescein diacetate as a fluorescence probe. Quantitative analyses using high-performance liquid chromatography showed the occurrence of auraptene not only in both the peels and sarcocarps of natsumikan, but also in those of hassaku orange (C. hassaku) and grapefruit (C. paradisi), and even in their bottled fresh juice form. These results indicate that auraptene is a chemopreventer of skin tumorigenesis, and implies that suppression of leukocyte activation might be the mechanism through which it inhibits tumor promotion.

  19. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts.

    PubMed

    Rapisarda, Annamaria; Zalek, Jessica; Hollingshead, Melinda; Braunschweig, Till; Uranchimeg, Badarch; Bonomi, Carrie A; Borgel, Suzanne D; Carter, John P; Hewitt, Stephen M; Shoemaker, Robert H; Melillo, Giovanni

    2004-10-01

    We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1alpha protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1alpha protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1alpha inhibition, topotecan caused a significant tumor growth inhibition associated with a marked decrease of angiogenesis and expression of HIF-1 target genes in tumor tissue. These results provide a compelling rationale for testing topotecan in clinical trials to target HIF-1 in cancer patients.

  20. Acetylshikonin Inhibits Human Pancreatic PANC-1 Cancer Cell Proliferation by Suppressing the NF-κB Activity.

    PubMed

    Cho, Seok-Cheol; Choi, Bu Young

    2015-09-01

    Acetylshikonin, a natural naphthoquinone derivative compound, has been used for treatment of inflammation and cancer. In the present study, we have investigated whether acetylshikonin could regulate the NF-κB signaling pathway, thereby leading to suppression of tumorigenesis. We observed that acetylshikonin significantly reduced proliferation of several cancer cell lines, including human pancreatic PANC-1 cancer cells. In addition, acetylshikonin inhibited phorbol 12-myristate 13-acetate (PMA) or tumor necrosis-α (TNF-α)-induced NF-κB reporter activity. Proteome cytokine array and real-time RT-PCR results illustrated that acetylshikonin inhibition of PMA-induced production of cytokines was mediated at the transcriptional level and it was associated with suppression of NF-κB activity and matrix metalloprotenases. Finally, we observed that an exposure of acetylshikonin significantly inhibited the anchorage-independent growth of PANC-1 cells. Together, our results indicate that acetylshikonin could serve as a promising therapeutic agent for future treatment of pancreatic cancer.