Science.gov

Sample records for inhibits human tumor

  1. Bee venom inhibits growth of human cervical tumors in mice.

    PubMed

    Lee, Hye Lim; Park, Sang Ho; Kim, Tae Myoung; Jung, Yu Yeon; Park, Mi Hee; Oh, Sang Hyun; Yun, Hye Seok; Jun, Hyung Ok; Yoo, Hwan Soo; Han, Sang-Bae; Lee, Ung Soo; Yoon, Joo Hee; Song, Min Jong; Hong, Jin Tae

    2015-03-30

    We studied whether bee venom (BV) inhibits cervical tumor growth through enhancement of death receptor (DR) expressions and inactivation of nuclear factor kappa B (NF-κB) in mice. In vivo study showed that BV (1 mg/kg) inhibited tumor growth. Similar inhibitory effects of BV on cancer growth in primary human cervical cancer cells were also found. BV (1-5 μg/ml) also inhibited the growth of cancer cells, Ca Ski and C33Aby the induction of apoptotic cell death in a dose dependent manner. Agreed with cancer cell growth inhibition, expression of death receptors; FAS, DR3 and DR6, and DR downstream pro-apoptotic proteins including caspase-3 and Bax was concomitantly increased, but the NF-κB activity and the expression of Bcl-2 were inhibited by treatment with BV in tumor mice, human cancer cell and human tumor samples as well as cultured cancer cells. In addition, deletion of FAS, DR3 and DR6 by small interfering RNA significantly reversed BV-induced cell growth inhibitory effects as well as NF-κB inactivation. These results suggest that BV inhibits cervical tumor growth through enhancement of FAS, DR3 and DR6 expression via inhibition of NF-κB pathway. PMID:25730901

  2. SKI knockdown inhibits human melanoma tumor growth in vivo.

    PubMed

    Chen, Dahu; Lin, Qiushi; Box, Neil; Roop, Dennis; Ishii, Shunsuke; Matsuzaki, Koichi; Fan, Tao; Hornyak, Thomas J; Reed, Jon A; Stavnezer, Ed; Timchenko, Nikolai A; Medrano, Estela E

    2009-12-01

    The SKI protein represses the TGF-beta tumor suppressor pathway by associating with the Smad transcription factors. SKI is upregulated in human malignant melanoma tumors in a disease-progression manner and its overexpression promotes proliferation and migration of melanoma cells in vitro. The mechanisms by which SKI antagonizes TGF-beta signaling in vivo have not been fully elucidated. Here we show that human melanoma cells in which endogenous SKI expression was knocked down by RNAi produced minimal orthotopic tumor xenograft nodules that displayed low mitotic rate and prominent apoptosis. These minute tumors exhibited critical signatures of active TGF-beta signaling including high levels of nuclear Smad3 and p21(Waf-1), which are not found in the parental melanomas. To understand how SKI promotes tumor growth we used gain- and loss-of-function approaches and found that simultaneously to blocking the TGF-beta-growth inhibitory pathway, SKI promotes the switch of Smad3 from tumor suppression to oncogenesis by favoring phosphorylations of the Smad3 linker region in melanoma cells but not in normal human melanocytes. In this context, SKI is required for preventing TGF-beta-mediated downregulation of the oncogenic protein c-MYC, and for inducing the plasminogen activator inhibitor-1, a mediator of tumor growth and angiogenesis. Together, the results indicate that SKI exploits multiple regulatory levels of the TGF-beta pathway and its deficiency restores TGF-beta tumor suppressor and apoptotic activities in spite of the likely presence of oncogenic mutations in melanoma tumors. PMID:19845874

  3. Inhibition of subcutaneously implanted human pituitary tumor cells in nude mice by LRIG1.

    PubMed

    Wang, X; He, X J; Xu, H Q; Chen, Z W; Fan, H H

    2016-01-01

    The aim of this study was to explore the inhibition of subcutaneously implanted human pituitary tumor cells in nude mice by LRIG1 and its mechanism. For this study, athymic nude mice were injected with either normal pituitary tumor RC-4B/C cells or LRIG1-transfected RC-4B/C cells. We then calculated the volume inhibition rate of the tumors, as well as the apoptosis index of tumor cells and the expression of Ras, Raf, AKt, and ERK mRNA in tumor cells. Tumor cell morphological and structural changes were also observed under electron microscope. Our data showed that subcutaneous tumor growth was slowed or even halted in LRIG1-transfected tumors. The tumor volumes were significantly different between the two groups of mice (χ2 = 2.14, P < 0.05). The tumor apoptosis index was found to be 8.72% in the control group and 39.7% in LRIG1-transfected mice (χ2 = 7.59, P < 0.05). The levels of Ras, Raf, and AKt mRNA in LRIG1-transfected RC-4B/C cells were significantly reduced after transfection (P < 0.01). Transfected subcutaneous tumor cells appeared to be in early or late apoptosis under an electron microscope, while only a few subcutaneous tumor cells appeared to be undergoing apoptosis in the control group. In conclusion, the LRIG1 gene is able to inhibit proliferation and promote apoptosis in subcutaneously implanted human pituitary tumors in nude mice. The mechanism of LRIG1 may involve the inhibition of the PI3K/ Akt and Ras/Raf/ERK signal transduction pathways. PMID:27173312

  4. A humanized anti-DLL4 antibody promotes dysfunctional angiogenesis and inhibits breast tumor growth

    PubMed Central

    Jia, Xuelian; Wang, Wenyi; Xu, Zhuobin; Wang, Shijing; Wang, Tong; Wang, Min; Wu, Min

    2016-01-01

    Blockage of Delta-like 4 (DLL4)-directed Notch signaling induces excessive tip cell formation and endothelial proliferation resulting in dysfunctional angiogenesis in tumors. MMGZ01, as a murine anti-human DLL4 monoclonal antibody, specifically binds to human DLL4 and blocks Notch pathway. Here, the structure of MMGZ01 variable fragment (Fv) was established and framework region (FR) residues which supported complementarily determining region (CDR) loop conformation were identified. Important residues interactions were also identified through docking MMGZ01 Fv with antigen epitope in DLL4. To humanize the murine antibody, we modified MMGZ01 Fv through CDR grafting and the reconstructed antibody (H3L2) maintained similar structure and binding affinity to parental MMGZ01 after back mutation of 12 canonical murine residues in the FRs. Meanwhile, H3L2 promoted human umbilical vein endothelial cell (HUVEC) proliferation through inhibiting DLL4-directed Notch pathway. Moreover, in MDA-MB-231-bearing nude mice, H3L2 induced dysfunctional angiogenesis and tumor cell apoptosis and showed superior anti-tumor activity. In conclusion, H3L2 is an ideal humanized antibody that inhibits tumor growth through targeting DLL4-Notch pathway and has attracting potentials for clinical applications. PMID:27301650

  5. A humanized anti-DLL4 antibody promotes dysfunctional angiogenesis and inhibits breast tumor growth.

    PubMed

    Jia, Xuelian; Wang, Wenyi; Xu, Zhuobin; Wang, Shijing; Wang, Tong; Wang, Min; Wu, Min

    2016-01-01

    Blockage of Delta-like 4 (DLL4)-directed Notch signaling induces excessive tip cell formation and endothelial proliferation resulting in dysfunctional angiogenesis in tumors. MMGZ01, as a murine anti-human DLL4 monoclonal antibody, specifically binds to human DLL4 and blocks Notch pathway. Here, the structure of MMGZ01 variable fragment (Fv) was established and framework region (FR) residues which supported complementarily determining region (CDR) loop conformation were identified. Important residues interactions were also identified through docking MMGZ01 Fv with antigen epitope in DLL4. To humanize the murine antibody, we modified MMGZ01 Fv through CDR grafting and the reconstructed antibody (H3L2) maintained similar structure and binding affinity to parental MMGZ01 after back mutation of 12 canonical murine residues in the FRs. Meanwhile, H3L2 promoted human umbilical vein endothelial cell (HUVEC) proliferation through inhibiting DLL4-directed Notch pathway. Moreover, in MDA-MB-231-bearing nude mice, H3L2 induced dysfunctional angiogenesis and tumor cell apoptosis and showed superior anti-tumor activity. In conclusion, H3L2 is an ideal humanized antibody that inhibits tumor growth through targeting DLL4-Notch pathway and has attracting potentials for clinical applications. PMID:27301650

  6. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    PubMed

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors. PMID:24789042

  7. Berberine inhibits human tongue squamous carcinoma cancer tumor growth in a murine xenograft model.

    PubMed

    Ho, Yung-Tsuan; Yang, Jai-Sing; Lu, Chi-Cheng; Chiang, Jo-Hua; Li, Tsai-Chung; Lin, Jen-Jyh; Lai, Kuang-Chi; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2009-09-01

    Our primary studies showed that berberine induced apoptosis in human tongue cancer SCC-4 cells in vitro. But there is no report to show berberine inhibited SCC-4 cancer cells in vivo on a murine xenograft animal model. SCC-4 tumor cells were implanted into mice and groups of mice were treated with vehicle, berberine (10mg/kg of body weight) and doxorubicin (4mg/kg of body weight). The tested agents were injected once per four days intraperitoneally (i.p.), with treatment starting 4 weeks prior to cells inoculation. Treatment with 4mg/kg of doxorubicin or with 10mg/kg of berberine resulted in a reduction in tumor incidence. Tumor size in xenograft mice treated with 10mg/kg berberine was significantly smaller than that in the control group. Our findings indicated that berbeirne inhibits tumor growth in a xenograft animal model. Therefore, berberine may represent a tongue cancer preventive agent and can be used in clinic. PMID:19303753

  8. Direct tumor recognition by a human CD4+ T-cell subset potently mediates tumor growth inhibition and orchestrates anti-tumor immune responses

    PubMed Central

    Matsuzaki, Junko; Tsuji, Takemasa; Luescher, Immanuel F.; Shiku, Hiroshi; Mineno, Junichi; Okamoto, Sachiko; Old, Lloyd J.; Shrikant, Protul; Gnjatic, Sacha; Odunsi, Kunle

    2015-01-01

    Tumor antigen-specific CD4+ T cells generally orchestrate and regulate immune cells to provide immune surveillance against malignancy. However, activation of antigen-specific CD4+ T cells is restricted at local tumor sites where antigen-presenting cells (APCs) are frequently dysfunctional, which can cause rapid exhaustion of anti-tumor immune responses. Herein, we characterize anti-tumor effects of a unique human CD4+ helper T-cell subset that directly recognizes the cytoplasmic tumor antigen, NY-ESO-1, presented by MHC class II on cancer cells. Upon direct recognition of cancer cells, tumor-recognizing CD4+ T cells (TR-CD4) potently induced IFN-γ-dependent growth arrest in cancer cells. In addition, direct recognition of cancer cells triggers TR-CD4 to provide help to NY-ESO-1-specific CD8+ T cells by enhancing cytotoxic activity, and improving viability and proliferation in the absence of APCs. Notably, the TR-CD4 either alone or in collaboration with CD8+ T cells significantly inhibited tumor growth in vivo in a xenograft model. Finally, retroviral gene-engineering with T cell receptor (TCR) derived from TR-CD4 produced large numbers of functional TR-CD4. These observations provide mechanistic insights into the role of TR-CD4 in tumor immunity, and suggest that approaches to utilize TR-CD4 will augment anti-tumor immune responses for durable therapeutic efficacy in cancer patients. PMID:26447332

  9. Thymic stromal lymphopoietin (TSLP) inhibits human colon tumor growth by promoting apoptosis of tumor cells

    PubMed Central

    Yang, Xuguang; Li, Bingji; Liu, Jie; He, Rui

    2016-01-01

    Thymic stromal lymphopoietin (TSLP) has recently been suggested in several epithelial cancers, either pro-tumor or anti-tumor. However, the role of TSLP in colon cancer remains unknown. We here found significantly decreased TSLP levels in tumor tissues compared with tumor-surrounding tissues of patients with colon cancer and TSLP levels negatively correlated with the clinical staging score of colon cancer. TSLPR, the receptor of TSLP, was expressed in all three colon cancer cell lines investigated and colon tumor tissues. The addition of TSLP significantly enhanced apoptosis of colon cancer cells in a TSLPR-dependent manner. Interestingly, TSLP selectively induced the apoptosis of colon cancer cells, but not normal colonic epithelial cells. Furthermore, we demonstrated that TSLP induced JNK and p38 activation and initiated apoptosis mainly through the extrinsic pathway, as caspase-8 inhibitor significantly reversed the apoptosis-promoting effect of TSLP. Finally, using a xenograft mouse model, we demonstrated that peritumoral administration of TSLP greatly reduced tumor growth accompanied with extensive tumor apoptotic response, which was abolished by tumor cell-specific knockdown of TSLPR. Collectively, our study reveals a novel anti-tumor effect of TSLP via direct promotion of the apoptosis of colon cancer cells, and suggests that TSLP could be of value in treating colon cancer. PMID:26919238

  10. Gallium maltolate inhibits human cutaneous T-cell lymphoma tumor development in mice.

    PubMed

    Wu, Xuesong; Wang, Timothy W; Lessmann, George M; Saleh, Jamal; Liu, Xiping; Chitambar, Christopher R; Hwang, Sam T

    2015-03-01

    Cutaneous T-cell lymphomas (CTCLs) represent a heterogeneous group of non-Hodgkin's lymphoma characterized by an accumulation of malignant CD4 T cells in the skin. The group IIIa metal salt, gallium nitrate, is known to have antineoplastic activity against B-cell lymphoma in humans, but its activity in CTCLs has not been elaborated in detail. Herein, we examined the antineoplastic efficacy of a gallium compound, gallium maltolate (GaM), in vitro and in vivo with murine models of CTCLs. GaM inhibited cell growth and induced apoptosis of cultured CTCL cells. In human CTCL xenograft models, peritumoral injection of GaM limited the growth of CTCL cells, shown by fewer tumor formations, smaller tumor sizes, and decreased neovascularization in tumor microenvironment. To identify key signaling pathways that have a role in GaM-mediated reduction of tumor growth, we analyzed inflammatory cytokines, as well as signal transduction pathways in CTCL cells treated by GaM. IFN-γ-induced chemokines and IL-13 were found to be notably increased in GaM-treated CTCL cells. However, immunosuppressive cytokines, such as IL-10, were decreased with GaM treatment. Interestingly, both oxidative stress and p53 pathways were involved in GaM-induced cytotoxicity. These results warrant further investigation of GaM as a therapeutic agent for CTCLs. PMID:25371972

  11. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    SciTech Connect

    Yin, Shu-Cheng; Guo, Wei; Tao, Ze-Zhang

    2013-09-13

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression.

  12. FBXW7 acts as an independent prognostic marker and inhibits tumor growth in human osteosarcoma.

    PubMed

    Li, Zhanchun; Xiao, Jie; Hu, Kongzu; Wang, Gang; Li, Maoqiang; Zhang, Jidong; Cheng, Guangqi

    2015-01-01

    F-box and WD repeat domain-containing 7 (FBXW7) is a potent tumor suppressor in human cancers including breast cancer, colorectal cancer, gastric cancer and hepatocellular carcinoma. In this study, we found that the expressions of FBXW7 protein and mRNA levels in osteosarcoma (OS) cases were significantly lower than those in normal bone tissues. Clinical analysis indicated that FBXW7 was expressed at lower levels in OS patients with advanced clinical stage, high T classification and poor histological differentiation. Furthermore, we demonstrated that high expression of FBXW7 was correlated with a better 5-year survival of OS patients. Multivariate Cox regression analysis indicated that FBXW7 was an independent prognostic marker in OS. Our in vitro studies showed that FBXW7 overexpression inhibited cell cycle transition and cell proliferation, and promoted apoptosis in both U2OS and MG-63 cells. In a nude mouse xenograft model, FBXW7 overexpression slowed down tumor growth by inducing apoptosis and growth arrest. Mechanistically, FBXW7 inversely regulated oncoprotein c-Myc and cyclin E levels in both U2OS and MG-63 cells. Together these findings suggest that FBXW7 may serve as a prognostic biomarker and inhibit tumor progression by inducing apoptosis and growth arrest in OS. PMID:25622249

  13. Local anesthetics inhibit kinesin motility and microtentacle protrusions in human epithelial and breast tumor cells.

    PubMed

    Yoon, Jennifer R; Whipple, Rebecca A; Balzer, Eric M; Cho, Edward H; Matrone, Michael A; Peckham, Michelle; Martin, Stuart S

    2011-10-01

    Detached breast tumor cells produce dynamic microtubule protrusions that promote reattachment of cells and are termed tubulin microtentacles (McTNs) due to their mechanistic distinctions from actin-based filopodia/invadopodia and tubulin-based cilia. McTNs are enriched with vimentin and detyrosinated α-tubulin, (Glu-tubulin). Evidence suggests that vimentin and Glu-tubulin are cross-linked by kinesin motor proteins. Using known kinesin inhibitors, Lidocaine and Tetracaine, the roles of kinesins in McTN formation and function were tested. Live-cell McTN counts, adhesion assays, immunofluorescence, and video microscopy were performed to visualize inhibitor effects on McTNs. Viability and apoptosis assays were used to confirm the non-toxicity of the inhibitors. Treatments of human non-tumorigenic mammary epithelial and breast tumor cells with Lidocaine or Tetracaine caused rapid collapse of vimentin filaments. Live-cell video microscopy demonstrated that Tetracaine reduces motility of intracellular GFP-kinesin and causes centripetal collapse of McTNs. Treatment with Tetracaine inhibited the extension of McTNs and their ability to promote tumor cell aggregation and reattachment. Lidocaine showed similar effects but to a lesser degree. Our current data support a model in which the inhibition of kinesin motor proteins by Tetracaine leads to the reductions in McTNs, and provides a novel mechanism for the ability of this anesthetic to decrease metastatic progression. PMID:21069453

  14. Pertussis toxin inhibits somatostatin-induced K/sup +/ conductance in human pituitary tumor cells

    SciTech Connect

    Yamashita, N.; Kojima, I.; Shibuya, N.; Ogata, E.

    1987-07-01

    The effect of pertussis toxin on somatostatin-induced K/sup +/ current was examined in dissociated human pituitary tumor cells obtained from two acromegalic patients. Somatostatin-induced hyperpolarization or K/sup +/ current was observed in 20 of 23 cells in adenoma 1 and 10 of 11 cells in adenoma 2. After treatment with pertussis toxin for 24 h, these responses were completely suppressed (0/14 in adenoma, 1, 0/10 in adenoma 2). Spontaneous action potentials, K/sup +/, Na/sup +/, and Ca/sup 2 +/ currents were well preserved after pertussis toxin treatment. When crude membrane fraction was incubated with (/sup 32/P)NAD, a 41K protein was ADP-ribosylated by pertussis toxin. Hormone release was inhibited by somatostatin and this inhibition was blocked by pertussis toxin treatment.

  15. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma.

    PubMed

    Huang, Suyun; Mills, Lisa; Mian, Badar; Tellez, Carmen; McCarty, Marya; Yang, X-D; Gudas, Jean M; Bar-Eli, Menashe

    2002-07-01

    Interleukin-8 (IL-8) has recently been shown to contribute to human melanoma progression by functioning as a mitogenic and angiogenic factor. In the present study, we investigated whether targeting IL-8 by a fully human anti-IL-8 antibody (ABX-IL8) could be a potential therapeutic strategy to control angiogenesis, growth, and metastasis of melanoma. The human melanoma cells A375SM (high IL-8 producer) and TXM-13 (intermediate IL-8 producer) were injected subcutaneously into nude mice, which were then treated with ABX-IL8 (1 mg/3 times weekly, i.p., for 3 weeks). Tumor growth of both melanomas in ABX-IL8-treated mice was significantly inhibited when compared with control IgG-treated animals. ABX-IL8 treatment also suppressed experimental metastasis when the melanoma cells were injected intravenously. IL-8 blockade by ABX-IL8 significantly inhibited the promoter activity and the collagenase activity of matrix metalloproteinase-2 in human melanoma cells, resulting in decreased invasion through reconstituted basement membrane in vitro. In vivo, ABX-IL8 treatment resulted in decreased expression of matrix metalloproteinase-2, and decreased vascularization (angiogenesis) of tumors concomitant with increased apoptosis of tumor cells. Moreover, in an in vitro vessel formation assay, ABX-IL8 directly interfered with the tubule formation by human umbilical vein endothelial cells. Taken together, these results point to the potential utility of ABX-IL8 as a modality to treat melanoma and other solid tumors either alone or in combination with conventional chemotherapy or other anti-tumor agents. PMID:12107097

  16. Pit-1 inhibits BRCA1 and sensitizes human breast tumors to cisplatin and vitamin D treatment

    PubMed Central

    Seoane, Samuel; Arias, Efigenia; Sigueiro, Rita; Sendon-Lago, Juan; Martinez-Ordoñez, Anxo; Castelao, Esteban; Eiró, Noemí; Garcia-Caballero, Tomás; Macia, Manuel; Lopez-Lopez, Rafael; Maestro, Miguel; Vizoso, Francisco; Mouriño, Antonio; Perez-Fernandez, Roman

    2015-01-01

    The POU class 1 homeobox 1 (POU1F1, also known as Pit-1), pertaining to the Pit-Oct-Unc (POU) family of transcription factors, has been related to tumor growth and metastasis in breast. However, its role in response to breast cancer therapy is unknown. We found that Pit-1 down-regulated DNA-damage and repair genes, and specifically inhibited BRCA1 gene expression, sensitizing breast cancer cells to DNA-damage agents. Administration of 1α, 25-dihydroxy-3-epi-vitamin D3 (3-Epi, an endogenous low calcemic vitamin D metabolite) reduced Pit-1 expression, and synergized with cisplatin, thus, decreasing cell proliferation and apoptosis in vitro, and reducing tumor growth in vivo. In addition, fifteen primary cultures of human breast tumors showed significantly decreased proliferation when treated with 3-Epi+cisplatin, compared to cisplatin alone. This response positively correlated with Pit-1 levels. Our findings demonstrate that high levels of Pit-1 and reduced BRCA1 levels increase breast cancer cell susceptibility to 3-Epi+cisplatin therapy. PMID:25992773

  17. Emodin inhibits HMGB1-induced tumor angiogenesis in human osteosarcoma by regulating SIRT1

    PubMed Central

    Qu, Wei; Wang, Yufei; Wu, Qining; Liu, Jijun; Hao, Dingjun

    2015-01-01

    The anti-cancer effects of emodin, including inhibition of proliferation, invasion, metastasis and angiogenesis, were confirmed by various previous studies. However, the specific mechanisms were not clear. In this study, we investigated emodin’s anti-angiogenesis effect and focused on the mechanisms in human osteosarcoma (OS). OS cells were implanted to nude mice to form OS xenografts. Immunofluorescence assay was used to assess vWF expression in tumor tissue. MTT assay was employed to screen proper emodin concentrations unrelated with proliferation inhibition. siRNA technique was utilized to silence SIRT1 expression in OS cells. Expression levels of SIRT1 and VEGF were investigated by real-time PCR and western blotting. H4-k16Ac expression which indicated the deacetylation activity of SIRT1 was also detected by western blotting. As in results, HMGB1 treatment exacerbated OS angiogenesis both in vivo and in vitro. Emodin administration attenuated angiogenesis in both OS and HMGB1 treated OS in vivo and in vitro. After emodin treatment, the expression level and deacetylation activity of SIRT1 were dramatically enhanced. HMGB1-induced angiogenesis was more striking in SIRT1 silenced OS cells. SIRT1 silencing also impaired the anti-angiogenesis effect of emodin in OS cells. In conclusion: SIRT expression and deacetylation activity elevation are involved in emodin’s anti-angiogenesis effect in human OS. PMID:26628989

  18. Sensitivity of human granulosa cell tumor cells to epidermal growth factor receptor inhibition.

    PubMed

    Andersson, Noora; Anttonen, Mikko; Färkkilä, Anniina; Pihlajoki, Marjut; Bützow, Ralf; Unkila-Kallio, Leila; Heikinheimo, Markku

    2014-04-01

    Epidermal growth factor receptor (EGFR) is implicated in the progression of many human cancers, but its significance in ovarian granulosa cell tumor (GCT) pathobiology remains poorly understood. We assessed the EGFR gene copy number, surveyed the mRNA and protein expression patterns of EGFR in 90 adult GCTs, and assessed the in vitro sensitivity of GCT cells to EGFR inhibition. Low-level amplification of EGFR gene was observed in five GCTs and high-level amplification in one sample. EGFR mRNA was robustly expressed in GCTs. Most tumors expressed both unphosphorylated and phosphorylated EGFR protein, but the protein expression did not correlate with clinical parameters, including the risk of recurrence. Small-molecule EGFR inhibitors reduced the EGF-induced activation of EGFR and its downstream signaling molecules at nanomolar doses, but cell viability was reduced, and caspase-3/7 was activated in GCT cells only at micromolar doses. Based on the present results, EGFR is active and abundantly expressed in the majority of GCTs, but probably has only minor contribution to GCT cell growth. Given the high doses of EGFR inhibitors required to reduce GCT cell viability in vitro, they are not likely to be effective for GCT treatment as single agents; they should rather be tested as part of combination therapies for these malignancies. PMID:24463098

  19. Avastin® in combination with gemcitabine and cisplatin significantly inhibits tumor angiogenesis and increases the survival rate of human A549 tumor-bearing mice

    PubMed Central

    LIU, YING; XIA, XIZHENG; ZHOU, MINGKAI; LIU, XIAOJUN

    2015-01-01

    The aim of this study was to investigate the effect of Avastin® in combination with gemcitabine and cisplatin (GP) on the tumor growth of A549 tumor-bearing mice and the potential anti-tumor mechanism. A total of 30 human A549 tumor-bearing nude mice were randomly divided into the Avastin, chemotherapy and combined treatment groups for treatment with an intraperitoneal injection of Avastin (5 mg/kg) (Avastin group); an intraperitoneal injection of gemcitabine (4 mg/kg) and cisplatin (4 mg/kg) (chemotherapy group); or intraperitoneal injections of Avastin and GP (combined treatment group). The mice were observed for 30 days and the tumor growth, survival and body weight of the mice in the three groups were analyzed. The protein level of vascular endothelial growth factor (VEGF) in the tumor tissues was analyzed by ELISA. The vascular density and structural changes of the tumor were analyzed using immunohistochemistry. Compared with the Avastin and chemotherapy groups, the tumor growth of mice in the combined treatment group was significantly inhibited, and the survival rate of the mice was increased significantly. No difference in body weight was observed among the three groups of mice (P>0.05). The levels of VEGF in the combined treatment group tumor tissues were significantly reduced compared with those in the chemotherapy group tumor tissues (P<0.05). Furthermore, the vessel density of the tumor tissue in the combined treatment group was significantly reduced compared with that in the chemotherapy group (P<0.05), and the number of normal vessels in the combined treatment group tumors was significantly higher than that in the chemotherapy group tumors after 7 days of treatment (P<0.05). In conclusion, Avastin can significantly decrease the level of VEGF in tumor tissue, inhibit tumor angiogenesis and promote the normalization of tumor vascular structure, which may explain the enhanced efficacy of Avastin in combination with chemotherapy. PMID:26136956

  20. Sulindac sulfide selectively inhibits growth and induces apoptosis of human breast tumor cells by PDE5 inhibition, elevation of cGMP, and activation of PKG

    PubMed Central

    Tinsley, Heather N.; Gary, Bernard D.; Keeton, Adam B.; Zhang, Wei; Abadi, Ashraf H.; Reynolds, Robert C.; Piazza, Gary A.

    2009-01-01

    Sulindac displays promising antineoplastic activity, but toxicities from cyclooxygenase (COX) inhibition limit its use for chemoprevention. Previous reports suggest that its anticancer properties may be attributed to a COX-independent mechanism, although alternative targets have not been well defined. Here we show that sulindac sulfide (SS) induces apoptosis and inhibits the growth of human breast tumor cells with IC50 values of 60-85 μM. Within the same concentration range, SS inhibited cGMP hydrolysis in tumor cell lysates, but did not affect cAMP hydrolysis. SS did not induce apoptosis of normal human mammary epithelial cells (HMEC), nor did it inhibit PDE activity in HMEC lysates. SS increased intracellular cGMP levels and activated protein kinase G in breast tumor cells, but not HMEC. The guanylyl cyclase (GC) activator, NOR-3, and cGMP PDE inhibitors, trequinsin and MY5445, displayed similar growth inhibitory activity as SS, but the adenylyl cyclase activator, forskolin, and other PDE inhibitors had no effect. Moreover, GC activation increased the sensitivity of tumor cells to SS, while GC inhibition reduced sensitivity. By comparing PDE isozyme profiles in breast tumor cells with HMEC and determining the sensitivity of recombinant PDE isozymes to SS, PDE5 was found to be overexpressed in breast tumor cells and selectively inhibited by SS. The mechanism of SS binding to the catalytic domain of PDE5 was revealed by molecular modeling. These data suggest that PDE5 inhibition is responsible for the breast tumor cell growth inhibitory and apoptosis inducing activity of SS and may contribute to the chemopreventive properties of sulindac. PMID:19996273

  1. CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models

    PubMed Central

    Zhang, Shui-Jun; Zhao, Chen; Qiu, Bin-Song; Gu, Hai-Feng; Hong, Jian-Fei; Cao, Li; Chen, Yu; Xia, Bing; Bi, Qin; Wang, Ya-Ping

    2015-01-01

    Osteosarcoma is the most common bone tumors in children and adolescents. Despite intensive chemotherapy, patients with advanced disease still have a poor prognosis, illustrating the need for alternative therapies. In this study, we explored the use of antibodies that block CD47 with a tumor growth suppressive effect on osteosarcoma. We first found that up-regulation of CD47 mRNA levels in the tumorous tissues from eight patients with osteosarcoma when compared with that in adjacent non-tumorous tissues. Further western-blot (WB) and immunohistochemistry (IHC) demonstrated that CD47 protein level was highly expressed in osteosarcoma compared to normal osteoblastic cells and adjacent non-tumorous tissues. Osteosarcoma cancer stem cell markers staining shown that the majority of CD44+ cells expressed CD47 albeit with different percentages (ranging from 80% to 99%). Furthermore, high CD47 mRNA expression levels were associated with a decreased probability of progression-free and overall survival. In addition, blockade of CD47 by specific Abs suppresses the invasive ability of osteosarcoma tumor cells and further inhibits spontaneous pulmonary metastasis of KRIB osteosarcoma cells in vivo. Finally, CD47 blockade increases macrophage phagocytosis of osteosarcoma tumor cells. In conclusion, our findings demonstrate that CD47 is a critical regulator in the metastasis of osteosarcoma and suggest that targeted inhibition of this antigen by anti-CD47 may be a novel immunotherapeutic approach in the management of this tumor. PMID:26093091

  2. c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle

    PubMed Central

    Wang, H; Mannava, S; Grachtchouk, V; Zhuang, D; Soengas, MS; Gudkov, AV; Prochownik, EV; Nikiforov, MA

    2011-01-01

    A major role for c-Myc in the proliferation of normal cells is attributed to its ability to promote progression through G1 and into S phase of the cell cycle. The absolute requirement of c-Myc for cell cycle progression in human tumor cells has not been comprehensively addressed. In the present work, we used a lentiviral-based short hairpin RNA (shRNA) expression vector to stably reduce c-Myc expression in a large number of human tumor cell lines and in three different types of normal human cells. In all cases, cell proliferation was severely inhibited, with normal cells ultimately undergoing G0/G1 growth arrest. In contrast, tumor cells demonstrated a much more variable cell cycle response with cells from several lines accumulating in S or G2/M phases. Moreover, in some tumor lines, the phase of cell cycle arrest caused by inhibition of c-Myc could be altered by depleting tumor suppressor protein p53 or its transcriptional target p21CIP/WAF. Our data suggest that, as in the case of normal cells, c-Myc is essential for sustaining proliferation of human tumor cells. However its rate-limiting role in cell cycle control is variable and is reliant upon the status of other cell cycle regulators. PMID:17906696

  3. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma

    PubMed Central

    Yin, Da-long; Liang, Ying-jian; Zheng, Tong-sen; Song, Rui-peng; Wang, Jia-bei; Sun, Bo-shi; Pan, Shang-ha; Qu, Lian-dong; Liu, Jia-ren; Jiang, Hong-chi; Liu, Lian-xin

    2016-01-01

    A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment. PMID:27571770

  4. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma.

    PubMed

    Yin, Da-Long; Liang, Ying-Jian; Zheng, Tong-Sen; Song, Rui-Peng; Wang, Jia-Bei; Sun, Bo-Shi; Pan, Shang-Ha; Qu, Lian-Dong; Liu, Jia-Ren; Jiang, Hong-Chi; Liu, Lian-Xin

    2016-01-01

    A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment. PMID:27571770

  5. Metformin inhibits tumor growth by regulating multiple miRNAs in human cholangiocarcinoma.

    PubMed

    Jiang, Xingming; Ma, Ning; Wang, Dayong; Li, Fuyuan; He, Rongzhang; Li, Dongliang; Zhao, Ruiqi; Zhou, Qingxin; Wang, Yimin; Zhang, Fumin; Wan, Ming; Kang, Pengcheng; Gao, Xu; Cui, Yunfu

    2015-02-20

    The antidiabetic drug metformin exerts antineoplastic effects in many types of malignancies, however the effect of metformin on cholangiocarcinoma (CCA) still remains unclear. In the present study, we investigated that metformin treatment was closely associated with the clinicopathologic characteristics and improved postoperative survival of CCA patients. Metformin inhibited CCA tumor growth by cell cycle arrest in vitro and in vivo. We explored that the expression of six miRNAs (mir124, 182, 27b, let7b, 221 and 181a), which could directly target cell-cycle-regulatory genes, was altered by metformin in vitro and in vivo. These miRNAs were dysregulated in cholangiocarcinoma and promoted the CCA genesis and metformin exactly modulated these carcinogenic miRNAs expression to arrest the cell cycle and inhibit the proliferation. Meanwhile, these miRNAs expression changes correlated with the tumor volume and postoperative survival of CCA patients and could be used to predict the prognosis. Further we confirmed that metformin upregulated Drosha to modulate these miRNAs expression. Our results elucidated that metformin inhibited CCA tumor growth via the regulation of Drosha-mediated multiple carcinogenic miRNAs expression and comprehensive evaluation of these miRNAs expression could be more efficient to predict the prognosis. Moreover, metformin might be a quite promising strategy for CCA prevention and treatment. PMID:25605008

  6. NSK-01105, a Novel Sorafenib Derivative, Inhibits Human Prostate Tumor Growth via Suppression of VEGFR2/EGFR-Mediated Angiogenesis

    PubMed Central

    Yu, Pengfei; Ye, Liang; Wang, Hongbo; Du, Guangying; Zhang, Jianzhao; Zuo, Yanhua; Zhang, Jinghai; Tian, Jingwei

    2014-01-01

    The purpose of this study is to investigate the anti-angiogenic activities of NSK-01105, a novel sorafenib derivative, in in vitro, ex vivo and in vivo models, and explore the potential mechanisms. NSK-01105 significantly inhibited vascular endothelial growth factor (VEGF)-induced migration and tube formation of human umbilical vein endothelial cells at non-cytotoxic concentrations as shown by wound-healing, transwell migration and endothelial cell tube formation assays, respectively. Cell viability and invasion of LNCaP and PC-3 cells were significantly inhibited by cytotoxicity assay and matrigel invasion assay. Furthermore, NSK-01105 also inhibited ex vivo angiogenesis in matrigel plug assay. Western blot analysis showed that NSK-01105 down-regulated VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR2) and the activation of epidermal growth factor receptor (EGFR). Tumor volumes were significantly reduced by NSK-01105 at 60 mg/kg/day in both xenograft models. Immunohistochemical staining demonstrated a close association between inhibition of tumor growth and neovascularization. Collectively, our results suggest a role of NSK-01105 in treatment for human prostate tumors, and one of the potential mechanisms may be attributed to anti-angiogenic activities. PMID:25551444

  7. Inhibition of lactate transport in Ehrlich ascites tumor cells and human erythrocytes by a synthetic anhydride of lactic acid.

    PubMed

    Johnson, J H; Belt, J A; Dubinsky, W P; Zimniak, A; Racker, E

    1980-08-01

    The synthesis and some of the physical and biological characteristics of a new inhibitor of lactate transport are described. The inhibitor is isobutylcarbonyl lactayl anhydride (iBCLA). It is formed by the condensation of lactic acid and isobutylchloroformate. It inhibits lactate transport 50% at 0.5 microgram/mg of protein in both Ehrlich ascites tumor cells and human erythrocytes. In contrast, 15 microgram of iBCLA/mg of protein is required for 50% inhibition of phosphate transport in erythrocytes, and phosphate transport in Ehrlich ascites tumor cells is unaffected at levels as high as 50 microgram of iBCLA/mg of protein. A time-dependent and concentration-dependent reversal of lactate transport inhibition took place on exposure of iBCLA-treated Ehrlich ascites cells to hydroxylamine or dithiothreitol. These data, along with the observed sensitivity of the lactate transporter to sulfhydryl reagents [Spencer, T. L., & Lehninger, A. L. (1976) Biochem. J. 154, 405-414], suggest that iBCLA acylates an essential sulfhydryl group on the transporter. When glycolyzing Ehrlich ascites tumor cells were treated with concentrations of iBCLA sufficient for complete inhibition of lactate transport, intracellular lactate levels increased, intracellular pH and extra-cellular lactate levels decreased, and overall lactate production was inhibited. PMID:7407072

  8. Shikonin Inhibits the Proliferation of Human Breast Cancer Cells by Reducing Tumor-Derived Exosomes.

    PubMed

    Wei, Yao; Li, Mingzhen; Cui, Shufang; Wang, Dong; Zhang, Chen-Yu; Zen, Ke; Li, Limin

    2016-01-01

    Shikonin is a naphthoquinone isolated from the traditional Chinese medicine Lithospermum. It has been used in the treatment of various tumors. However, the effects of shikonin on such diseases have not been fully elucidated. In the present study, we detected the exosome release of a breast cancer cell line (MCF-7) with shikonin treatment and found a positive relationship between the level of secreted exosomes and cell proliferation. We next analyzed miRNA profiles in MCF-7 cells and exosomes and found that some miRNAs are specifically sorted and abundant in exosomes. Knockdown of the most abundant miRNAs in exosomes and the MCF-7 proliferation assay showed that miR-128 in exosomes negatively regulates the level of Bax in MCF-7 recipient cells and inhibits cell proliferation. These results show that shikonin inhibits the proliferation of MCF-7 cells through reducing tumor-derived exosomal miR-128. The current study suggests that shikonin suppresses MCF-7 growth by the inhibition of exosome release. PMID:27322220

  9. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    SciTech Connect

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  10. Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma.

    PubMed

    Djojosubroto, Meta W; Chin, Allison C; Go, Ning; Schaetzlein, Sonja; Manns, Michael P; Gryaznov, Sergei; Harley, Calvin B; Rudolph, K Lenhard

    2005-11-01

    Most cancer cells have an immortal growth capacity as a consequence of telomerase reactivation. Inhibition of this enzyme leads to increased telomere dysfunction, which limits the proliferative capacity of tumor cells; thus, telomerase inhibition represents a potentially safe and universal target for cancer treatment. We evaluated the potential of two thio-phosphoramidate oligonucleotide inhibitors of telomerase, GRN163 and GRN163L, as drug candidates for the treatment of human hepatoma. GRN163 and GRN163L were tested in preclinical studies using systemic administration to treat flank xenografts of different human hepatoma cell lines (Hep3B and Huh7) in nude mice. The studies showed that both GRN163 and GRN163L inhibited telomerase activity and tumor cell growth in a dose-dependent manner in vitro and in vivo. The potency and efficacy of the lipid-conjugated antagonist, GRN163L, was superior to the nonlipidated parent compound, GRN163. Impaired tumor growth in vivo was associated with critical telomere shortening, induction of telomere dysfunction, reduced rate of cell proliferation, and increased apoptosis in the treatment groups. In vitro, GRN163L administration led to higher prevalence of chromosomal telomere-free ends and DNA damage foci in both hepatoma cell lines. In addition, in vitro chemosensitivity assay showed that pretreatment with GRN163L increased doxorubicin sensitivity of Hep3B. In conclusion, our data support the development of GRN163L, a novel lipidated conjugate of the telomerase inhibitor GRN163, for systemic treatment of human hepatoma. In addition to limiting the proliferative capacity of hepatoma, GRN163L might also increase the sensitivity of this tumor type to conventional chemotherapy. PMID:16114043

  11. Tetrandrine inhibits Wnt/β-catenin signaling and suppresses tumor growth of human colorectal cancer.

    PubMed

    He, Bai-Cheng; Gao, Jian-Li; Zhang, Bing-Qiang; Luo, Qing; Shi, Qiong; Kim, Stephanie H; Huang, Enyi; Gao, Yanhong; Yang, Ke; Wagner, Eric R; Wang, Linyuan; Tang, Ni; Luo, Jinyong; Liu, Xing; Li, Mi; Bi, Yang; Shen, Jikun; Luther, Gaurav; Hu, Ning; Zhou, Qixin; Luu, Hue H; Haydon, Rex C; Zhao, Yingming; He, Tong-Chuan

    2011-02-01

    As one of the most common malignancies, colon cancer is initiated by abnormal activation of the Wnt/β-catenin pathway. Although the treatment options have increased for some patients, overall progress has been modest. Thus, there is a great need to develop new treatments. We have found that bisbenzylisoquinoline alkaloid tetrandrine (TET) exhibits anticancer activity. TET is used as a calcium channel blocker to treat hypertensive and arrhythmic conditions in Chinese medicine. Here, we investigate the molecular basis underlying TET's anticancer activity. We compare TET with six chemotherapy drugs in eight cancer lines and find that TET exhibits comparable anticancer activities with camptothecin, vincristine, paclitaxel, and doxorubicin, and better than that of 5-fluorouracil (5-FU) and carboplatin. TET IC₅₀ is ≤5 μM in most of the tested cancer lines. TET exhibits synergistic anticancer activity with 5-FU and reduces migration and invasion capabilities of HCT116 cells. Furthermore, TET induces apoptosis and inhibits xenograft tumor growth of colon cancer. TET treatment leads to a decrease in β-catenin protein level in xenograft tumors, which is confirmed by T-cell factor/lymphocyte enhancer factor and c-Myc reporter assays. It is noteworthy that HCT116 cells with allelic oncogenic β-catenin deleted are less sensitive to TET-mediated inhibition of proliferation, viability, and xenograft tumor growth. Thus, our findings strongly suggest that the anticancer effect of TET in colon cancer may be at least in part mediated by targeting β-catenin activity. Therefore, TET may be used alone or in combination as an effective anticancer agent. PMID:20978119

  12. Let-7a inhibits tumor cell growth and metastasis by directly targeting RTKN in human colon cancer.

    PubMed

    Li, Bin; Chen, Peng; Chang, Yanxiang; Qi, Jingpeng; Fu, Hui; Guo, Huifang

    2016-09-16

    Colorectal cancer (CRC) is the third most common cancer worldwide, with high morbidity. MicroRNAs (miRNAs) are endogenous small RNAs that play important roles in regulating multiple biological and pathologic processes. The differential expression of miRNAs in CRC was first reported in 2003. Accumulated evidence indicates that lethal-7a (let-7a, miRNA) generally functions as a tumor suppressor in several human cancers. However, the role of let-7a in human colon cancer remains unclear. The aim of this study was to investigate the biological functions of let-7a and its potential role in colon cancer. We first discovered that let-7a level was significantly decreased in colon cancer tissues and cell lines (HT-29, HCT-116, LoVo, SW480, and SW620). To explore the effects of let-7a on colon cancer, let-7a over-expressed HCT-116 and SW620 cells were constructed. Further studies demonstrated that over-expressed let-7a could remarkably inhibit HCT-116 and SW620 cell growth and metastasis by directly down-regulating Rhotekin (RTKN). When RTKN was reintroduced into let-7a mimic transfected HCT-116 or SW620 cells, the inhibition effects of let-7a on colon cancer cell growth and metastasis were markedly reversed. In conclusion, our research shows that let-7a can inhibit tumor cell growth and metastasis by directly targeting RTKN in human colon cancer. PMID:27498032

  13. Adipose Tissue–derived Mesenchymal Stem Cells Expressing Prodrug-converting Enzyme Inhibit Human Prostate Tumor Growth

    PubMed Central

    Cavarretta, Ilaria T; Altanerova, Veronika; Matuskova, Miroslava; Kucerova, Lucia; Culig, Zoran; Altaner, Cestmir

    2009-01-01

    The ability of human adipose tissue–derived mesenchymal stem cells (AT-MSCs), engineered to express the suicide gene cytosine deaminase::uracil phosphoribosyltransferase (CD::UPRT), to convert the relatively nontoxic 5-fluorocytosine (5-FC) into the highly toxic antitumor 5-fluorouracil (5-FU) together with their ability to track and engraft into tumors and micrometastases makes these cells an attractive tool to activate prodrugs directly within the tumor mass. In this study, we tested the feasibility and efficacy of these therapeutic cells to function as cellular vehicles of prodrug-activating enzymes in prostate cancer (PC) therapy. In in vitro migration experiments we have shown that therapeutic AT-MSCs migrated to all the prostate cell lines tested. In a pilot preclinical study, we observed that coinjections of human bone metastatic PC cells along with the transduced AT-MSCs into nude mice treated with 5-FC induced a complete tumor regression in a dose dependent manner or did not even allow the establishment of the tumor. More importantly, we also demonstrated that the therapeutic cells were effective in significantly inhibiting PC tumor growth after intravenous administration that is a key requisite for any clinical application of gene-directed enzyme prodrug therapies. PMID:19844197

  14. Effect of celecoxib on inhibiting tumor repopulation during radiotherapy in human FaDu squamous cell carcinoma

    PubMed Central

    Yang, Jia; Liu, Jing; Sun, Xin-Dong; Hu, Xu-Dong; Sun, Ju-Jie; Li, Yu-Hui; Yu, Jin-Ming

    2014-01-01

    Aim of the study FaDu human squamous cell carcinoma (FaDu-hSCC) demonstrated accelerated tumor repopulation during fractionated irradiation with pathological validation in a xenograft model system. Previous studies showed that the selective cyclooxygenase (COX)-2 inhibitor celecoxib can enhance the tumor response to radiotherapy. So we aimed to explore the effect of celecoxib in inducing apoptosis and inhibiting repopulation of FaDu tumors in nude mice during fractionated radiotherapy. Material and methods FaDu-hSCC was transplanted into the right hind leg of BALB/C nude mice. Mice were treated with celecoxib and/or fractionated irradiation. Celecoxib (100 mg/kg/day) was administered by daily gavage. Irradiation was delivered with 12 to 18 fractions of 3.0 Gy daily or every second day based on Petersen's repopulation model. At different time points, tumors were excised for immunohistochemistry staining. Results Significant tumor repopulation occurred after about 18 days of radiotherapy. On average, Ki-67 and bromodeoxyuridine (BrdUrd) labeling indices (LI) decreased with daily irradiation (both p < 0.05) and increased with every-second-day irradiation (both p > 0.05), suggesting accelerated repopulation. Ki-67 LI decreased in celecoxib concurrent with radiotherapy for 12 fractions in 24 days and 18 fractions in 36 days compared with irradiated alone (p = 0.004 and 0.042, respectively). BrdUrd LI values were lower in the concurrent groups than irradiated alone (p = 0.001 and 0.006, respectively). Epithelial growth factor receptor (EGFR) expression score decreased in the concurrent groups than irradiated alone (p = 0.037 and 0.031, respectively). Caspase-3 expression scores were higher in the concurrent groups than irradiated alone (p = 0.05 and 0.006, respectively). Conclusions Celecoxib concurrent radiotherapy could inhibit tumor repopulation and increase tumor apoptosis during the treatment in FaDu squamous cell carcinoma. PMID:25258584

  15. Generation and Characterization of Small Single Domain Antibodies Inhibiting Human Tumor Necrosis Factor Receptor 1*

    PubMed Central

    Steeland, Sophie; Puimège, Leen; Vandenbroucke, Roosmarijn E.; Van Hauwermeiren, Filip; Haustraete, Jurgen; Devoogdt, Nick; Hulpiau, Paco; Leroux-Roels, Geert; Laukens, Debby; Meuleman, Philip; De Vos, Martine; Libert, Claude

    2015-01-01

    The cytokine TNF is a well known drug target for several inflammatory diseases such as Crohn disease. Despite the great success of TNF blockers, therapy could be improved because of high costs and side effects. Selective inhibition of TNF receptor (TNFR) 1 signaling holds the potential to greatly reduce the pro-inflammatory activity of TNF, thereby preserving the advantageous immunomodulatory signals mediated by TNFR2. We generated a selective human TNFR1 inhibitor based on Nanobody (Nb) technology. Two anti-human TNFR1 Nbs were linked with an anti-albumin Nb to generate Nb Alb-70-96 named “TNF Receptor-One Silencer” (TROS). TROS selectively binds and inhibits TNF/TNFR1 and lymphotoxin-α/TNFR1 signaling with good affinity and IC50 values, both of which are in the nanomolar range. Surface plasmon resonance analysis reveals that TROS competes with TNF for binding to human TNFR1. In HEK293T cells, TROS strongly reduces TNF-induced gene expression, like IL8 and TNF, in a dose-dependent manner; and in ex vivo cultured colon biopsies of CD patients, TROS inhibits inflammation. Finally, in liver chimeric humanized mice, TROS antagonizes inflammation in a model of acute TNF-induced liver inflammation, reflected in reduced human IL8 expression in liver and reduced IL6 levels in serum. These results demonstrate the considerable potential of TROS and justify the evaluation of TROS in relevant disease animal models of both acute and chronic inflammation and eventually in patients. PMID:25538244

  16. Triple combination of irradiation, chemotherapy (pemetrexed), and VEGFR inhibition (SU5416) in human endothelial and tumor cells

    SciTech Connect

    Bischof, Marc; Abdollahi, Amir; Gong Ping; Stoffregen, Clemens; Lipson, Kenneth E.; Debus, Juergen; Weber, Klaus J.; Huber, Peter E. . E-mail: p.huber@dkfz.de

    2004-11-15

    Purpose: This is the first preclinical report evaluating a trimodal therapy consisting of irradiation, chemotherapy, and antiangiogenesis in the context of a multimodal anticancer strategy. The combination of the folate antimetabolite pemetrexed, SU5416, a receptor tyrosine kinase inhibitor of VEGFR2, and irradiation was investigated in human endothelial cells and tumor cell lines. Methods and materials: Primary isolated human umbilical vein endothelial cells (HUVEC), human dermal microvascular endothelial cells (HDMEC), and human glioblastoma (U87) and prostate cancer cells (PC3) were exposed to pemetrexed (2 h) alone and in combination with SU5416 (2 h). When combined with irradiation up to 8 Gy, fixed concentrations of pemetrexed (1.06 {mu}M) and SU5416 (1.0 {mu}M) were used. Proliferation and clonogenic assays were conducted with endothelial and tumor cells. The migration/invasion ability of endothelial cells and the ability to produce tubular structures were tested in Matrigel and tube formation assays. Apoptosis was measured by sub-G1 DNA and caspase-3 flow cytometry. To investigate underlying cell signaling, immunocytochemistry was used to detect Akt survival signaling involvement. Results: Triple combination using only a low-toxicity drug exposure of pemetrexed and SU5416 results in greater response than each treatment alone or than each combination of two modalities in all tested endothelial and tumor cell models. Triple combination substantially inhibits proliferation, migration/invasion, tube formation, and clonogenic survival. Triple combination also induced the highest rate of apoptosis in HDMEC and HUVEC as indicated by sub-1 G1 and caspase-3 assessment. Interestingly, triple combination therapy also reduces proliferation and clonogenic survival significantly in U87 and PC3 tumor cell lines. SU5416 potently inhibited Akt phosphorylation which could be induced by radiation and radiochemotherapy in human endothelial cells. Conclusions: Our findings

  17. Wee1 inhibition by MK-1775 leads to tumor inhibition and enhances efficacy of gemcitabine in human sarcomas.

    PubMed

    Kreahling, Jenny M; Foroutan, Parastou; Reed, Damon; Martinez, Gary; Razabdouski, Tiffany; Bui, Marilyn M; Raghavan, Meera; Letson, Douglas; Gillies, Robert J; Altiok, Soner

    2013-01-01

    Sarcomas are rare and heterogeneous mesenchymal tumors affecting both pediatric and adult populations with more than 70 recognized histologies. Doxorubicin and ifosfamide have been the main course of therapy for treatment of sarcomas; however, the response rate to these therapies is about 10-20% in metastatic setting. Toxicity with the drug combination is high, response rates remain low, and improvement in overall survival, especially in the metastatic disease, remains negligible and new agents are needed. Wee1 is a critical component of the G2/M cell cycle checkpoint control and mediates cell cycle arrest by regulating the phosphorylation of CDC2. Inhibition of Wee1 by MK1775 has been reported to enhance the cytotoxic effect of DNA damaging agents in different types of carcinomas. In this study we investigated the therapeutic efficacy of MK1775 in various sarcoma cell lines, patient-derived tumor explants ex vivo and in vivo both alone and in combination with gemcitabine, which is frequently used in the treatment of sarcomas. Our data demonstrate that MK1775 treatment as a single agent at clinically relevant concentrations leads to unscheduled entry into mitosis and initiation of apoptotic cell death in all sarcomas tested. Additionally, MK1775 significantly enhances the cytotoxic effect of gemcitabine in sarcoma cells lines with different p53 mutational status. In patient-derived bone and soft tissue sarcoma samples we showed that MK1775 alone and in combination with gemcitabine causes significant apoptotic cell death. Magnetic resonance imaging (MRI) and histopathologic studies showed that MK1775 induces significant cell death and terminal differentiation in a patient-derived xenograft mouse model of osteosarcoma in vivo. Our results together with the high safety profile of MK1775 strongly suggest that this drug can be used as a potential therapeutic agent in the treatment of both adult as well as pediatric sarcoma patients. PMID:23520471

  18. Wee1 Inhibition by MK-1775 Leads to Tumor Inhibition and Enhances Efficacy of Gemcitabine in Human Sarcomas

    PubMed Central

    Kreahling, Jenny M.; Foroutan, Parastou; Reed, Damon; Martinez, Gary; Razabdouski, Tiffany; Bui, Marilyn M.; Raghavan, Meera; Letson, Douglas; Gillies, Robert J.; Altiok, Soner

    2013-01-01

    Sarcomas are rare and heterogeneous mesenchymal tumors affecting both pediatric and adult populations with more than 70 recognized histologies. Doxorubicin and ifosfamide have been the main course of therapy for treatment of sarcomas; however, the response rate to these therapies is about 10–20% in metastatic setting. Toxicity with the drug combination is high, response rates remain low, and improvement in overall survival, especially in the metastatic disease, remains negligible and new agents are needed. Wee1 is a critical component of the G2/M cell cycle checkpoint control and mediates cell cycle arrest by regulating the phosphorylation of CDC2. Inhibition of Wee1 by MK1775 has been reported to enhance the cytotoxic effect of DNA damaging agents in different types of carcinomas. In this study we investigated the therapeutic efficacy of MK1775 in various sarcoma cell lines, patient-derived tumor explants ex vivo and in vivo both alone and in combination with gemcitabine, which is frequently used in the treatment of sarcomas. Our data demonstrate that MK1775 treatment as a single agent at clinically relevant concentrations leads to unscheduled entry into mitosis and initiation of apoptotic cell death in all sarcomas tested. Additionally, MK1775 significantly enhances the cytotoxic effect of gemcitabine in sarcoma cells lines with different p53 mutational status. In patient-derived bone and soft tissue sarcoma samples we showed that MK1775 alone and in combination with gemcitabine causes significant apoptotic cell death. Magnetic resonance imaging (MRI) and histopathologic studies showed that MK1775 induces significant cell death and terminal differentiation in a patient-derived xenograft mouse model of osteosarcoma in vivo. Our results together with the high safety profile of MK1775 strongly suggest that this drug can be used as a potential therapeutic agent in the treatment of both adult as well as pediatric sarcoma patients. PMID:23520471

  19. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition.

    PubMed

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S; Jones, David R; Sadelain, Michel; Adusumilli, Prasad S

    2016-08-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1-mediated (PD-1-mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB-based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  20. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    PubMed Central

    Marano, Grazia; Gronewold, Claas; Frank, Martin; Merling, Anette; Kliem, Christian; Sauer, Sandra; Wiessler, Manfred; Frei, Eva

    2012-01-01

    Summary Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethyl)furan as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis. The most active compound, (4-{[(β-D-galactopyranosyl)oxy]methyl}furan-3-yl)methyl hydrogen sulfate (GSF), inhibited the activation of matrix-metalloproteinase-2 (MMP-2) as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM) proteins, fibrinogen and fibronectin. In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyl)oxy]methyl}furan (BGF) nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethyl)furan, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site. These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis

  1. Frondoside A inhibits human breast cancer cell survival, migration, invasion and the growth of breast tumor xenografts.

    PubMed

    Al Marzouqi, Nadia; Iratni, Rabah; Nemmar, Abderrahim; Arafat, Kholoud; Ahmed Al Sultan, Mahmood; Yasin, Javed; Collin, Peter; Mester, Jan; Adrian, Thomas E; Attoub, Samir

    2011-10-01

    Breast cancer is a major challenge for pharmacologists to develop new drugs to improve the survival of cancer patients. Frondoside A is a triterpenoid glycoside isolated from the sea cucumber, Cucumaria frondosa. It has been demonstrated that Frondoside A inhibited the growth of pancreatic cancer cells in vitro and in vivo. We investigated the impact of Frondoside A on human breast cancer cell survival, migration and invasion in vitro, and on tumor growth in nude mice, using the human estrogen receptor-negative breast cancer cell line MDA-MB-231. The non-tumorigenic MCF10-A cell line derived from normal human mammary epithelium was used as control. Frondoside A (0.01-5 μM) decreased the viability of breast cancer cells in a concentration- and time-dependent manner, with 50%-effective concentration (EC50) of 2.5 μM at 24h. MCF10-A cells were more resistant to the cytotoxic effect of Frondoside A (EC50 superior to 5 μM at 24 h). In the MDA-MB-231 cells, Frondoside A effectively increased the sub-G1 (apoptotic) cell fraction through the activation of p53, and subsequently the caspases 9 and 3/7 cell death pathways. In addition, Frondoside A induced a concentration-dependent inhibition of MDA-MB-231 cell migration and invasion. In vivo, Frondoside A (100 μg/kg/dayi.p. for 24 days) strongly decreased the growth of MDA-MB-231 tumor xenografts in athymic mice, without manifest toxic side-effects. Moreover, we found that Frondoside A could enhance the killing of breast cancer cells induced by the chemotherapeutic agent paclitaxel. These findings identify Frondoside A as a promising novel therapeutic agent for breast cancer. PMID:21741966

  2. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells

    PubMed Central

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  3. Inhibition of Autophagy Enhances Curcumin United light irradiation-induced Oxidative Stress and Tumor Growth Suppression in Human Melanoma Cells.

    PubMed

    Niu, Tianhui; Tian, Yan; Mei, Zhusong; Guo, Guangjin

    2016-01-01

    Malignant melanoma is the most aggressive form of skin carcinoma, which possesses fast propagating and highly invasive characteristics. Curcumin is a natural phenol compound that has various biological activities, such as anti-proliferative and apoptosis-accelerating impacts on tumor cells. Unfortunately, the therapeutical activities of Cur are severely hindered due to its extremely low bioavailability. In this study, a cooperative therapy of low concentration Cur combined with red united blue light irradiation was performed to inspect the synergistic effects on the apoptosis, proliferation and autophagy in human melanoma A375 cell. The results showed that red united blue light irradiation efficaciously synergized with Cur to trigger oxidative stress-mediated cell death, induce apoptosis and inhibit cell proliferation. Meanwhile, Western blotting revealed that combined disposure induced the formation of autophagosomes. Conversely, inhibition of the autophagy enhanced apoptosis, obstructed cell cycle arrest and induced reversible proliferation arrest to senescence. These findings suggest that Cur combined with red united blue light irradiation could generate photochemo-preventive effects via enhancing apoptosis and triggering autophagy, and pharmacological inhibition of autophagy convert reversible arrested cells to senescence, therefore reducing the possibility that damaged cells might escape programmed death. PMID:27502897

  4. Melatonin reversed tumor necrosis factor-alpha-inhibited osteogenesis of human mesenchymal stem cells by stabilizing SMAD1 protein.

    PubMed

    Lian, Chengjie; Wu, Zizhao; Gao, Bo; Peng, Yan; Liang, Anjing; Xu, Caixia; Liu, Lei; Qiu, Xianjian; Huang, Junjun; Zhou, Hang; Cai, Yifeng; Su, Peiqiang; Huang, Dongsheng

    2016-10-01

    Tumor necrosis factor-alpha (TNFα) plays a pivotal role in inflammation-related osteoporosis through the promotion of bone resorption and suppression of bone formation. Numerous drugs have been produced to treat osteoporosis by inhibiting bone resorption, but they offer few benefits to bone formation, which is what is needed by patients with severe bone loss. Melatonin, which can exert both anti-inflammatory and pro-osteogenic effects, shows promise in overcoming TNFα-inhibited osteogenesis and deserves further research. This study demonstrated that melatonin rescued TNFα-inhibited osteogenesis of human mesenchymal stem cells and that the interactions between SMURF1 and SMAD1 mediated the crosstalk between melatonin signaling and TNFα signaling. Additionally, melatonin treatment was found to downregulate TNFα-induced SMURF1 expression and then decrease SMURF1-mediated ubiquitination and degradation of SMAD1 protein, leading to steady bone morphogenetic protein-SMAD1 signaling activity and restoration of TNFα-impaired osteogenesis. Thus, melatonin has prospects for treating osteoporosis caused by inflammatory factors due to its multifaceted functions on regulation of bone formation, bone resorption, and inflammation. Further studies will focus on unveiling the specific mechanisms by which melatonin downregulates SMURF1 expression and confirming the clinical therapeutic value of melatonin in the prevention and therapy of bone loss associated with inflammation. PMID:27265199

  5. Metformin in combination with 5-fluorouracil suppresses tumor growth by inhibiting the Warburg effect in human oral squamous cell carcinoma.

    PubMed

    Harada, Koji; Ferdous, Tarannum; Harada, Toyoko; Ueyama, Yoshiya

    2016-07-01

    Cancer cells show enhanced glucose consumption and lactate production even in the presence of abundant oxygen, a phenomenon known as the Warburg effect, which is related to tumor proliferation, progression and drug-resistance in cancers. Hypoxia-inducible factor-1 (HIF-1) and several members of Phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway positively contribute to the Warburg effect, whereas AMP activated protein Kinase (AMPK) acts as a negative regulator. Targeting the regulator molecules of Warburg effect might be a useful strategy to effectively kill cancer cells. Metformin was reported to be effective against various cancers as it inhibits cell proliferation by activating AMPK, and inhibiting mTOR and HIF-1α. Several studies suggested the efficacy of metformin with 5-fluorouracil (5-FU) against esophageal and colon cancer. In this study, we evaluated the efficacy of metformin and 5-FU combined therapy against human oral squamous cell carcinoma (OSCC) in vitro and in vivo. MTT assay and TUNEL assay revealed that metformin (4 mg/ml) and 5-FU (2.5 µg/ml) combination treatment effectively inhibited cell growth and induced apoptosis in OSCC cell lines (HSC2, HSC3 and HSC4) compared to either agent alone. Lactate colorimetric assay detected decreased level of lactate in the supernatants of metformin and 5-FU treated cells compared to cells treated with metformin or 5-FU. Western blot analysis showed marked downregulation of HIF-1α and mTOR expression, and upregulation of AMPKα in cells treated with metformin and 5-FU combination treatment. Combination therapy with metformin (200 mg/kg, i.p.) and 5-FU (10 mg/kg, i.p.) for 4 weeks (5 days/week) effectively reduced HSC2 tumor growth (77.6%) compared to metformin (59.9%) or 5-FU (52%) alone in nude mice. These findings suggest that metformin and 5-FU combined therapy could exert strong antitumor effect against OSCC through the inhibition of

  6. Characterization of p21Ras-mediated apoptosis induced by protein kinase C inhibition and application to human tumor cell lines.

    PubMed

    Liou, James S; Chen, James S; Faller, Douglas V

    2004-02-01

    Suppression of PKC activity can selectively induce apoptosis in cells expressing a constitutively activated p21Ras protein. We demonstrate that continued expression of p21Ras activity is required in PKC-mediated apoptosis because farnesyltransferase inhibitors abrogated the loss of viability in p21Ras-transformed cells occurring following PKC inhibition. Studies utilizing gene transfer or viral vectors demonstrate that transient expression of oncogenic p21Ras activity is sufficient for induction of apoptosis by PKC inhibition, whereas physiologic activation of p21Ras by growth factor is not sufficient to induce apoptosis. Mechanistically, the p21Ras-mediated apoptosis induced by PKC inhibition is dependent upon mitochondrial dysregulation, with a concurrent loss of mitochondrial membrane potential (psim). Cyclosporine A, which prevented the loss of psim, also inhibited HMG-induced DNA fragmentation in cells expressing an activated p21Ras. Induction of apoptosis by PKC inhibition in human tumors with oncogenic p21Ras mutations was demonstrated. Inhibition of PKC caused increased apoptosis in MIA-PaCa-2, a human pancreatic tumor line containing a mutated Ki-ras allele, when compared to HS766T, a human pancreatic tumor line with normal Ki-ras alleles. Furthermore, PKC inhibition induced apoptosis in HCT116, a human colorectal tumor line containing an oncogenic Ki-ras allele but not in a subline (Hke3) in which the mutated Ki-ras allele had been disrupted. The PKC inhibitor 1-O-hexadecyl-2-O-methyl-rac-glycerol (HMG), significantly reduced p21Ras-mediated tumor growth in vivo in a nude mouse MIA-PaCa-2 xenograft model. Collectively these studies suggest the therapeutic feasibility of targeting PKC activity in tumors expressing an activated p21Ras oncoprotein. PMID:14603530

  7. Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma.

    PubMed

    Kawano, Satoshi; Grassian, Alexandra R; Tsuda, Masumi; Knutson, Sarah K; Warholic, Natalie M; Kuznetsov, Galina; Xu, Shanqin; Xiao, Yonghong; Pollock, Roy M; Smith, Jesse S; Kuntz, Kevin K; Ribich, Scott; Minoshima, Yukinori; Matsui, Junji; Copeland, Robert A; Tanaka, Shinya; Keilhack, Heike

    2016-01-01

    The catalytic activities of covalent and ATP-dependent chromatin remodeling are central to regulating the conformational state of chromatin and the resultant transcriptional output. The enzymes that catalyze these activities are often contained within multiprotein complexes in nature. Two such multiprotein complexes, the polycomb repressive complex 2 (PRC2) methyltransferase and the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeler have been reported to act in opposition to each other during development and homeostasis. An imbalance in their activities induced by mutations/deletions in complex members (e.g. SMARCB1) has been suggested to be a pathogenic mechanism in certain human cancers. Here we show that preclinical models of synovial sarcoma-a cancer characterized by functional SMARCB1 loss via its displacement from the SWI/SNF complex through the pathognomonic SS18-SSX fusion protein-display sensitivity to pharmacologic inhibition of EZH2, the catalytic subunit of PRC2. Treatment with tazemetostat, a clinical-stage, selective and orally bioavailable small-molecule inhibitor of EZH2 enzymatic activity reverses a subset of synovial sarcoma gene expression and results in concentration-dependent cell growth inhibition and cell death specifically in SS18-SSX fusion-positive cells in vitro. Treatment of mice bearing either a cell line or two patient-derived xenograft models of synovial sarcoma leads to dose-dependent tumor growth inhibition with correlative inhibition of trimethylation levels of the EZH2-specific substrate, lysine 27 on histone H3. These data demonstrate a dependency of SS18-SSX-positive, SMARCB1-deficient synovial sarcomas on EZH2 enzymatic activity and suggests the potential utility of EZH2-targeted drugs in these genetically defined cancers. PMID:27391784

  8. Preclinical Evidence of Anti-Tumor Activity Induced by EZH2 Inhibition in Human Models of Synovial Sarcoma

    PubMed Central

    Tsuda, Masumi; Knutson, Sarah K.; Warholic, Natalie M.; Kuznetsov, Galina; Xu, Shanqin; Xiao, Yonghong; Pollock, Roy M.; Smith, Jesse S.; Kuntz, Kevin K.; Ribich, Scott; Minoshima, Yukinori; Matsui, Junji; Copeland, Robert A.; Tanaka, Shinya; Keilhack, Heike

    2016-01-01

    The catalytic activities of covalent and ATP-dependent chromatin remodeling are central to regulating the conformational state of chromatin and the resultant transcriptional output. The enzymes that catalyze these activities are often contained within multiprotein complexes in nature. Two such multiprotein complexes, the polycomb repressive complex 2 (PRC2) methyltransferase and the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeler have been reported to act in opposition to each other during development and homeostasis. An imbalance in their activities induced by mutations/deletions in complex members (e.g. SMARCB1) has been suggested to be a pathogenic mechanism in certain human cancers. Here we show that preclinical models of synovial sarcoma—a cancer characterized by functional SMARCB1 loss via its displacement from the SWI/SNF complex through the pathognomonic SS18-SSX fusion protein—display sensitivity to pharmacologic inhibition of EZH2, the catalytic subunit of PRC2. Treatment with tazemetostat, a clinical-stage, selective and orally bioavailable small-molecule inhibitor of EZH2 enzymatic activity reverses a subset of synovial sarcoma gene expression and results in concentration-dependent cell growth inhibition and cell death specifically in SS18-SSX fusion-positive cells in vitro. Treatment of mice bearing either a cell line or two patient-derived xenograft models of synovial sarcoma leads to dose-dependent tumor growth inhibition with correlative inhibition of trimethylation levels of the EZH2-specific substrate, lysine 27 on histone H3. These data demonstrate a dependency of SS18-SSX-positive, SMARCB1-deficient synovial sarcomas on EZH2 enzymatic activity and suggests the potential utility of EZH2-targeted drugs in these genetically defined cancers. PMID:27391784

  9. Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo

    PubMed Central

    Yogesh, Bendale; Vineeta, Bendale; Rammesh, Natu; Saili, Paul

    2016-01-01

    Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached 70 ─ 75 mm3, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer. PMID:27386144

  10. Meloxicam combined with sorafenib synergistically inhibits tumor growth of human hepatocellular carcinoma cells via ER stress-related apoptosis.

    PubMed

    Zhong, Jingtao; Xiu, Peng; Dong, Xiaofeng; Wang, Fuhai; Wei, Honglong; Wang, Xin; Xu, Zongzhen; Liu, Feng; Li, Tao; Wang, Yong; Li, Jie

    2015-10-01

    Sorafenib (SOR) is a promising treatment for advanced hepatocellular carcinoma (HCC). However, the precise mechanisms of toxicity and drug resistance have not been fully explored and new strategies are urgently needed for HCC therapy. Meloxicam (MEL) is a selective cyclooxygenase-2 (COX-2) inhibitor which elicits antitumor effects in human HCC cells. In the present study, we investigated the interaction between MEL and SOR in human SMMC‑7721 cells and the role endoplasmic reticulum (ER) stress exerts in the combination of SOR with MEL treatment-induced cytotoxicity. Our results revealed that the combination treatment synergistically inhibited cell proliferation and enhanced apoptosis. Furthermore, the combination treatment enhanced ER stress-related molecules which involved in SMMC-7721 cell apoptosis. GRP78 knockdown by siRNA or co-treatment with MG132 significantly increased this combination treatment-induced apoptosis. In addition, we found that the combination treatment suppressed tumor growth by way of activation of ER stress in in vivo models. We concluded that the combination of SOR with MEL treatment-induced ER stress, and eventually apoptosis in human SMMC-7721 cells. Knockdown of GRP78 using siRNA or proteosome inhibitor enhanced the cytotoxicity of the combination of SOR with MEL-treatment in SMMC-7721 cells. These findings provided a new potential treatment strategy against HCC. PMID:26252057

  11. Human Neural Stem Cells Overexpressing a Carboxylesterase Inhibit Bladder Tumor Growth.

    PubMed

    Choi, Sung S; Chi, Byung Hoon; Chang, In Ho; Kim, Kyung Do; Lee, Sang-Rae; Kim, Seung U; Lee, Hong J

    2016-06-01

    Bladder cancer is a significant clinical and economic problem. Despite intravesical chemotherapy and immunotherapy, up to 80% of patients with non-muscle-invasive bladder cancer develop recurrent tumors, of which 20% to 30% evolve into more aggressive, potentially lethal tumors. Recently, bladder cancer cells are considered to be mediators of resistance to current therapies and therefore represent strong candidates as biologic targets. No effective chemotherapy has yet been developed for advanced bladder cancer. It is desirable that a drug can be delivered directly and specifically to bladder cancer cells. Stem cells have selective migration ability toward cancer cells, and therapeutic genes can be easily transduced into stem cells. In suicide gene therapy for cancer, stem cells carry a gene encoding a carboxylesterase (CE) enzyme that transforms an inert CPT-11 prodrug into a toxic SN-38 product, a topoisomerase 1 inhibitor. In immunodeficient mice, systemically transplanted HB1.F3.CE stem cells migrated toward the tumor implanted by the TCCSUP bladder cancer cell line, and, in combination with CPT-11, the volume of tumors was significantly reduced. These findings may contribute to the development of a new selective chemotherapeutic strategy against bladder cancer. Mol Cancer Ther; 15(6); 1201-7. ©2016 AACR. PMID:27009215

  12. Suppression of homologous recombination sensitizes human tumor cells to IGF-1R inhibition.

    PubMed

    Lodhia, Kunal A; Gao, Shan; Aleksic, Tamara; Esashi, Fumiko; Macaulay, Valentine M

    2015-06-15

    Inhibition of type 1 IGF receptor (IGF-1R) sensitizes to DNA-damaging cancer treatments, and delays repair of DNA double strand breaks (DSBs) by non-homologous end-joining and homologous recombination (HR). In a recent screen for mediators of resistance to IGF-1R inhibitor AZ12253801, we identified RAD51, required for the strand invasion step of HR. These findings prompted us to test the hypothesis that IGF-1R-inhibited cells accumulate DSBs formed at endogenous DNA lesions, and depend on residual HR for their repair. Indeed, initial experiments showed time-dependent accumulation of γH2AX foci in IGF-1R -inhibited or -depleted prostate cancer cells. We then tested effects of suppressing HR, and found that RAD51 depletion enhanced AZ12253801 sensitivity in PTEN wild-type prostate cancer cells but not in cells lacking functional PTEN. Similar sensitization was induced in prostate cancer cells by depletion of BRCA2, required for RAD51 loading onto DNA, and in BRCA2(-/-) colorectal cancer cells, compared with isogenic BRCA2(+/-) cells. We also assessed chemical HR inhibitors, finding that RAD51 inhibitor BO2 blocked RAD51 focus formation and sensitized to AZ12253801. Finally, we tested CDK1 inhibitor RO-3306, which impairs HR by inhibiting CDK1-mediated BRCA1 phosphorylation. R0-3306 suppressed RAD51 focus formation consistent with HR attenuation, and sensitized prostate cancer cells to IGF-1R inhibition, with 2.4-fold reduction in AZ12253801 GI50 and 13-fold reduction in GI80. These data suggest that responses to IGF-1R inhibition are enhanced by genetic and chemical approaches to suppress HR, defining a population of cancers (PTEN wild-type, BRCA mutant) that may be intrinsically sensitive to IGF-1R inhibitory drugs. PMID:25388513

  13. Inhibition of human esophageal squamous cell carcinomas by targeted silencing of tumor enhancer genes: an overview

    PubMed Central

    Islamian, Jalil Pirayesh; Mohammadi, Mohsen; Baradaran, Behzad

    2014-01-01

    Esophageal cancer has been reported as the ninth most common malignancy and ranks as the sixth most frequent cause of death worldwide. Esophageal cancer treatment involves surgery, chemotherapy, radiation therapy, or combination therapy. Novel strategies are needed to boost the oncologic outcome. Recent advances in the molecular biology of esophageal cancer have documented the role of genetic alterations in tumorigenesis. Oncogenes serve a pivotal function in tumorigenesis. Targeted therapies are directed at the unique molecular signature of cancer cells for enhanced efficacy with low toxicity. RNA interference (RNAi) technology is a powerful tool for silencing endogenous or exogenous genes in mammalian cells. Related results have shown that targeting oncogenes with siRNAs, specifically the mRNA, effectively reduces tumor cell proliferation and induces apoptotic cell death. This article will briefly review studies on silencing tumor enhancer genes related to the induction of esophageal cancer. PMID:25009749

  14. Total Alkaloids of Sophora alopecuroides Inhibit Growth and Induce Apoptosis in Human Cervical Tumor HeLa Cells In vitro

    PubMed Central

    Li, Jian-Guang; Yang, Xiao-Yi; Huang, Wei

    2016-01-01

    Background: Uygur females of Xinjiang have the higher incidence of cervical tumor in the country. Alkaloids are the major active ingredients in Sophora alopecuroides, and its antitumor effect was recognized by the medical profession. Xinjiang is the main site of S. alopecuroides production in China so these plants are abundant in the region. Studies on the antitumor properties of total alkaloids of S. alopecuroides (TASA) can take full use of the traditional folk medicine in antitumor unique utility. Objectives: To explore the effects of TASA on proliferation and apoptosis of human cervical tumor HeLa cells in vitro. Materials and Methods: TASA was extracted, purified, and each monomer component was analyzed by high-performance liquid chromatography. The effect of TASA at different concentrations on the survival of HeLa cells was determined after 24 h using the Cell Counting Kit-8. In addition, cells were photographed using an inverted microscope to document morphological changes. The effect of TASA on apoptotic rate of HeLa cells was assessed by flow cytometry. Results: Monomers of TASA were found to be sophoridine, matrine, and sophocarpine. On treatment with 8.75 mg/ml of TASA, more than 50% of HeLa cells died, and cell death rate increased further with longer incubation. The apoptotic rates of HeLa cells in the experimental groups were 16.0% and 33.3% at concentrations of 6.25 mg/ml and 12.50 mg/ml, respectively. Conclusion: TASA can induce apoptosis in cervical tumor HeLa cells, and it has obvious inhibitory effects on cell growth. SUMMARY Total alkaloids of Sophora alopecuroides (TASA) exhibits anti-human cervical tumor propertiesMonomer component of TASA was analyzed by high-performance liquid chromatography, and its main effect component are sophoridine, matrine, and sophocarpineTASA inhibits growth and induces apoptosis in HeLa cells. Abbreviations used: TASA: Total alkaloids of S. alopecuroides, CCK-8: Cell Counting Kit-8, FBS: Fetal bovine serum, PBS

  15. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells

    PubMed Central

    Urueña, Claudia; Cifuentes, Claudia; Castañeda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana

    2008-01-01

    Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Results Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. Conclusion The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent. PMID:19017389

  16. Escin, a Pentacyclic Triterpene, Chemosensitizes Human Tumor Cells through Inhibition of Nuclear Factor-κB Signaling Pathway

    PubMed Central

    Harikumar, Kuzhuvelil B.; Sung, Bokyung; Pandey, Manoj K.; Guha, Sushovan; Krishnan, Sunil

    2010-01-01

    Agents that can enhance tumor cell apoptosis and inhibit invasion have potential for the treatment of cancer. Here, we report the identification of escin, a pentacyclic triterpenoid from horse chestnut that exhibits antitumor potential against leukemia and multiple myeloma. Whether examined by esterase staining, phosphatidyl-serine staining, DNA breakage, or caspase-mediated poly(ADP-ribose) polymerase cleavage, escin potentiated tumor necrosis factor (TNF)-induced apoptosis but inhibited tumor cell invasion. This correlated with the down-regulation of bcl-2, cellular inhibitor of apoptosis protein-2, cyclin D1, cyclooxygenase-2, intercellular adhesion molecule-1, matrix metalloproteinase-9, and vascular endothelial growth factor, which are all regulated by the activation of the transcription factor NF-κB. When examined by electrophoretic mobility shift assay, the triterpenoid suppressed nuclear factor-κB (NF-κB) activation induced by TNF and other inflammatory agents, and this correlated with the inhibition of IκBα phosphorylation and degradation, inhibition of IκB kinase complex (IKK) activation, suppression of p65 phosphorylation and nuclear translocation, and abrogation of NF-κB-dependent reporter activity. Overall, our results demonstrate that escin inhibits activation of NF-κB through inhibition of IKK, leading to down-regulation of NF-κB-regulated cell survival and metastatic gene products and thus resulting in sensitization of cells to cytokines and chemotherapeutic agents. PMID:20103608

  17. Pyrogallol induces G2-M arrest in human lung cancer cells and inhibits tumor growth in an animal model.

    PubMed

    Yang, Chih-Jen; Wang, Chuan-Sheng; Hung, Jen-Yu; Huang, Hurng-Wern; Chia, Yi-Chen; Wang, Pei-Hui; Weng, Ching-Feng; Huang, Ming-Shyan

    2009-11-01

    Pyrogallol, a catechin compound, is an active component of Emblica officinalis extracts and has an anti-proliferative effect on some human cancer cell lines. In our preliminary study, pyrogallol had highly cytotoxic effect on human lung cancer cell lines and less effect on human bronchial epithelium cell line. This study was performed to investigate the beneficial effect of pyrogallol on human lung cancer cell lines - H441 (lung adenocarcinoma) and H520 (lung squamous cell carcinoma). The MTT (cytotoxic) data showed the inhibition growth of lung cancer cells followed pyrogallol treatment. The cell cycle of lung cancer cells was arrested in G2/M phase using flow cytometry. Using Western blot analysis, the cell cycle related proteins - cyclin B1 and Cdc25c were decreased in a time-dependent manner and the phosphorylated Cdc2 (Thr14) was increased within 4h pyrogallol treatment. Moreover, the higher cleavage of poly (ADP)-ribose polymerase (PARP), the increased of Bax concurrent with the decreased of Bcl-2 indicated that pyrogallol treatment resulted in apoptosis of lung cancer cells. The cell apoptosis was also directly demonstrated using Annexin V-FITC and TUNEL stain. Additionally, the tumoricidal effect of pyrogallol was measured using a xenograft nude mice model. After 5 weeks of pyrogallol treatment could cause the regression of tumor. Taken in vitro and in vivo studies together, these results suggest that pyrogallol can be developed as a promising anti-lung cancer drug particular for the non-small cell lung cancer (NSCLC). PMID:19233505

  18. Anti-EphA2 antibodies decrease EphA2 protein levels in murine CT26 colorectal and human MDA-231 breast tumors but do not inhibit tumor growth.

    PubMed

    Kiewlich, David; Zhang, Jianhuan; Gross, Cynthia; Xia, Wei; Larsen, Brent; Cobb, Ronald R; Biroc, Sandra; Gu, Jian-Ming; Sato, Takashi; Light, David R; Heitner, Tara; Willuda, Joerg; Vogel, David; Monteclaro, Felipe; Citkowicz, Andrzej; Roffler, Steve R; Zajchowski, Deborah A

    2006-01-01

    The EphA2 receptor tyrosine kinase has been shown to be over-expressed in cancer and a monoclonal antibody (mAb) that activates and down-modulates EphA2 was reported to inhibit the growth of human breast and lung tumor xenografts in nude mice. Reduction of EphA2 levels by treatment with anti-EphA2 siRNA also inhibited tumor growth, suggesting that the anti-tumor effects of these agents are mediated by decreasing the levels of EphA2. As these studies employed human tumor xenograft models in nude mice with reagents whose cross reactivity with murine EphA2 is unknown, we generated a mAb (Ab20) that preferentially binds, activates, and induces the degradation of murine EphA2. Treatment of established murine CT26 colorectal tumors with Ab20 reduced EphA2 protein levels to approximately 12% of control tumor levels, yet had no effect on tumor growth. CT26 tumor cell colonization of the lung was also not affected by Ab20 administration despite having barely detectable levels of EphA2. We also generated and tested a potent agonistic mAb against human EphA2 (1G9-H7). No inhibition of humanMDA-231 breast tumor xenograft growth was observed despite evidence for >85% reduction of EphA2 protein levels in the tumors. These results suggest that molecular characteristics of the tumors in addition to EphA2 over-expression may be important for predicting responsiveness to EphA2-directed therapies. PMID:16533422

  19. Inhibition of Single Minded 2 gene expression mediates tumor-selective apoptosis and differentiation in human colon cancer cells.

    PubMed

    Aleman, Mireille J; DeYoung, Maurice Phil; Tress, Matthew; Keating, Patricia; Perry, Gary W; Narayanan, Ramaswamy

    2005-09-01

    A Down's syndrome associated gene, Single Minded 2 gene short form (SIM2-s), is specifically expressed in colon tumors but not in the normal colon. Antisense inhibition of SIM2-s in a RKO-derived colon carcinoma cell line causes growth inhibition, apoptosis, and inhibition of tumor growth in a nude mouse tumoriginicity model. The mechanism of cell death in tumor cells is unclear. In the present study, we investigated the pathways underlying apoptosis. Apoptosis was seen in a tumor cell-specific manner in RKO cells but not in normal renal epithelial cells, despite inhibition of SIM2-s expression in both of these cells by the antisense. Apoptosis was depended on WT p53 status and was caspase-dependent; it was inhibited by a pharmacological inhibitor of mitogen-activated protein kinase activity. Expression of a key stress response gene, growth arrest and DNA damage gene (GADD)45alpha, was up-regulated in antisense-treated tumor cells but not in normal cells. In an isogenic RKO cell line expressing stable antisense RNA to GADD45alpha, a significant protection of the antisense-induced apoptosis was seen. Whereas antisense-treated RKO cells did not undergo cell cycle arrest, several markers of differentiation were deregulated, including alkaline phosphatase activity, a marker of terminal differentiation. Protection of apoptosis and block of differentiation showed a correlation in the RKO model. Our results support the tumor cell-selective nature of SIM2-s gene function, provide a direct link between SIM2-s and differentiation, and may provide a model to identify SIM2-s targets. PMID:16129820

  20. Downregulation of stathmin 1 in human gallbladder carcinoma inhibits tumor growth in vitro and in vivo

    PubMed Central

    Wang, Jiwen; Yao, Yanli; Ming, Yue; Shen, Sheng; Wu, Nan; Liu, Jiaqi; Liu, Han; Suo, Tao; Pan, Hongtao; Zhang, Dexiang; Ding, Kan; Liu, Houbao

    2016-01-01

    Gallbladder carcinoma (GBC) is a highly lethal malignancy of the gastrointestinal tract. Despite extensive research, the underlying molecular mechanism of GBC remains largely unclear. Stathmin 1 (STMN1) is an important cytosolic protein associated with microtubule stability that was reported to be involved in tumorigenesis. Up to our knowledge, its role in gallbladder carcinoma has not been analyzed. In this study, we found that STMN1 was significantly highly expressed in GBC by immunohistochemistry (IHC). Further research demonstrated that silencing of STMN1 inhibited cell growth in vitro. Moreover, knockdown of STMN1 induced apoptosis and delayed G2/M phase transformation in GBC cells. Our data support a rationale for further studies that the silencing of STMN1 may regulate the activity of p38 MAPK kinase and p53/p21 signal pathway. Besides, xenografted gallbladder carcinoma cells growth were significantly impaired after STMN1 was silenced in vivo. These results suggested that STMN1 played an important role in cell proliferation and migration. This provided a potential clue for investigating the therapeutic target in GBC. PMID:27349455

  1. The Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinase Inhibitor Cediranib (Recentin; AZD2171) Inhibits Endothelial Cell Function and Growth of Human Renal Tumor Xenografts

    SciTech Connect

    Siemann, Dietmar W. Brazelle, W.D.; Juergensmeier, Juliane M.

    2009-03-01

    Purpose: The goal of this study was to examine the therapeutic potential of the vascular endothelial growth factor (VEGF) signaling inhibitor cediranib in a human model of renal cell carcinoma (Caki-1). Methods and Materials: The effects of cediranib treatment on in vitro endothelial cell function (proliferation, migration, and tube formation), as well as in vivo angiogenesis and tumor growth, were determined. Results: In vitro, cediranib significantly impaired the proliferation and migration of endothelial cells and their ability to form tubes, but had no effect on the proliferation of Caki-1 tumor cells. In vivo, cediranib significantly reduced Caki-1 tumor cell-induced angiogenesis, reduced tumor perfusion, and inhibited the growth of Caki-1 tumor xenografts. Conclusions: The present results are consistent with the notion that inhibition of VEGF signaling leads to an indirect (i.e., antiangiogenic) antitumor effect, rather than a direct effect on tumor cells. These results further suggest that inhibition of VEGF signaling with cediranib may impair the growth of renal cell carcinoma.

  2. Selenite Treatment Inhibits LAPC-4 Tumor Growth and Prostate-Specific Antigen Secretion in a Xenograft Model of Human Prostate Cancer

    SciTech Connect

    Bhattacharyya, Rumi S.; Husbeck, Bryan; Feldman, David; Knox, Susan J.

    2008-11-01

    Purpose: Selenium compounds have known chemopreventive effects on prostate cancer. However selenite, an inorganic form of selenium, has not been extensively studied as a treatment option for prostate cancer. Our previous studies have demonstrated the inhibition of androgen receptor expression and androgen stimulated prostate-specific antigen (PSA) expression by selenite in human prostate cancer cell lines. In this study, we investigated the in vivo effects of selenite as a therapy to treat mice with established LAPC-4 tumors. Methods and Materials: Male mice harboring androgen-dependent LAPC-4 xenograft tumors were treated with selenite (2 mg/kg intraperitoneally three times per week) or vehicle for 42 days. In addition, androgen-independent LAPC-4 xenograft tumors were generated in female mice over 4 to 6 months. Once established, androgen-independent LAPC-4 tumor fragments were passaged into female mice and were treated with selenite or vehicle for 42 days. Changes in tumor volume and serum PSA levels were assessed. Results: Selenite significantly decreased androgen-dependent LAPC-4 tumor growth in male mice over 42 days (p < 0.001). Relative tumor volume was decreased by 41% in selenite-treated animals compared with vehicle-treated animals. The inhibition of LAPC-4 tumor growth corresponded to a marked decrease in serum PSA levels (p < 0.01). In the androgen-independent LAPC-4 tumors in female mice, selenite treatment decreased tumor volume by 58% after 42 days of treatment (p < 0.001). Conclusions: These results suggest that selenite may have potential as a novel therapeutic agent to treat both androgen-dependent and androgen-independent prostate cancer.

  3. Inhibition of rate of tumor growth by creatine and cyclocreatine.

    PubMed Central

    Miller, E E; Evans, A E; Cohn, M

    1993-01-01

    Growth rate inhibition of subcutaneously implanted tumors results from feeding rats and athymic nude mice diets containing 1% cyclocreatine or 1%, 2%, 5%, or 10% creatine. The tumors studied included rat mammary tumors (Ac33tc in Lewis female rats and 13762A in Fischer 344 female rats), rat sarcoma MCI in Lewis male rats, and tumors resulting from the injection of two human neuroblastoma cell lines, IMR-5 and CHP-134, in athymic nude mice. Inhibition was observed regardless of the time experimental diets were administered, either at the time of tumor implantation or after the appearance of palpable tumors. For mammary tumor Ac33tc, the growth inhibition during 24 days after the implantation was approximately 50% for both 1% cyclocreatine and 1% creatine, and inhibition increased as creatine was increased from 2% to 10% of the diet. For the other rat mammary tumor (13762A), there was approximately 35% inhibition by both 1% cyclocreatine and 2% creatine. In the case of the MCI sarcoma, the inhibitory effect appeared more pronounced at earlier periods of growth, ranging from 26% to 41% for 1% cyclocreatine and from 30% to 53% for 1% creatine; there was no significant difference in growth rate between the tumors in the rats fed 1% and 5% creatine. The growth rate of tumors in athymic nude mice, produced by implantation of the human neuroblastoma IMR-5 cell line, appeared somewhat more effectively inhibited by 1% cyclocreatine than by 1% creatine, and 5% creatine feeding was most effective. For the CHP-134 cell line, 33% inhibition was observed for the 1% cyclocreatine diet and 71% for the 5% creatine diet. In several experiments, a delay in appearance of tumors was observed in animals on the experimental diets. In occasional experiments, neither additive inhibited tumor growth rate for the rat tumors or the athymic mouse tumors. Images Fig. 3 PMID:8475072

  4. Peloruside A Inhibits Growth of Human Lung and Breast Tumor Xenografts in an Athymic nu/nu Mouse Model.

    PubMed

    Meyer, Colin J; Krauth, Melissa; Wick, Michael J; Shay, Jerry W; Gellert, Ginelle; De Brabander, Jef K; Northcote, Peter T; Miller, John H

    2015-08-01

    Peloruside A is a microtubule-stabilizing agent isolated from a New Zealand marine sponge. Peloruside prevents growth of a panel of cancer cell lines at low nanomolar concentrations, including cell lines that are resistant to paclitaxel. Three xenograft studies in athymic nu/nu mice were performed to assess the efficacy of peloruside compared with standard anticancer agents such as paclitaxel, docetaxel, and doxorubicin. The first study examined the effect of 5 and 10 mg/kg peloruside (QD×5) on the growth of H460 non-small cell lung cancer xenografts. Peloruside caused tumor growth inhibition (%TGI) of 84% and 95%, respectively, whereas standard treatments with paclitaxel (8 mg/kg, QD×5) and docetaxel (6.3 mg/kg, Q2D×3) were much less effective (%TGI of 50% and 18%, respectively). In a second xenograft study using A549 lung cancer cells and varied schedules of dosing, activity of peloruside was again superior compared with the taxanes with inhibitions ranging from 51% to 74%, compared with 44% and 50% for the two taxanes. A third xenograft study in a P-glycoprotein-overexpressing NCI/ADR-RES breast tumor model showed that peloruside was better tolerated than either doxorubicin or paclitaxel. We conclude that peloruside is highly effective in preventing the growth of lung and P-glycoprotein-overexpressing breast tumors in vivo and that further therapeutic development is warranted. Mol Cancer Ther; 14(8); 1816-23. ©2015 AACR. PMID:26056149

  5. Combined inhibition of the mevalonate pathway with statins and zoledronic acid potentiates their anti-tumor effects in human breast cancer cells.

    PubMed

    Göbel, Andy; Thiele, Stefanie; Browne, Andrew J; Rauner, Martina; Zinna, Valentina M; Hofbauer, Lorenz C; Rachner, Tilman D

    2016-05-28

    Amino-bisphosphonates are antiresorptive drugs for the treatment of osteolytic bone metastases, which are frequently caused by breast and other solid tumors. Like statins, amino-bisphosphonates inhibit the mevalonate pathway. Direct anti-tumor effects of amino-bisphosphonates and statins have been proposed, although high concentrations are required to achieve these effects. Here, we demonstrate that the treatment of different human breast cancer cell lines (MDA-MB-231, MDA-Bone, and MDA-Met) by combined inhibition of the mevalonate pathway using statins and zoledronic acid at the same time significantly reduces the concentrations required to achieve a meaningful anti-tumor effect over a single agent approach (50% reduction of cell vitality and 4-fold increase of apoptosis; p < 0.05). The effects were mediated by suppressed protein geranylation that caused an accumulation of GTP-bound RhoA and CDC42. Importantly, the knockdown of both proteins prior to mevalonate pathway inhibition reduced apoptosis by up to 65% (p < 0.01), indicating the accumulation of the GTP-bound GTPases as the mediator of apoptosis. Our results point to effective anti-tumor effects in breast cancer by the combination of statins and zoledronic acid and warrant further validation in preclinical settings. PMID:26968247

  6. Daidzein suppresses tumor necrosis factor-α induced migration and invasion by inhibiting hedgehog/Gli1 signaling in human breast cancer cells.

    PubMed

    Bao, Cheng; Namgung, Hyeju; Lee, Jaehoo; Park, Hyun-Chang; Ko, Jiwon; Moon, Heejung; Ko, Hyuk Wan; Lee, Hong Jin

    2014-04-30

    In breast cancer, the cytokine tumor necrosis factor-α (TNF-α) induces cell invasion, although the molecular basis of it has not been clearly elucidated. In this study, we investigated the role of daidzein in regulating TNF-α induced cell invasion and the underlying molecular mechanisms. Daidzein inhibited TNF-α induced cellular migration and invasion in estrogen receptor (ER) negative MCF10DCIS.com human breast cancer cells. TNF-α activated Hedgehog (Hh) signaling by enhancing Gli1 nuclear translocation and transcriptional activity, which resulted in increased invasiveness; these effects were blocked by daidzein and the Hh signaling inhibitors, cyclopamine and vismodegib. Moreover, these compounds suppressed TNF-α induced matrix metalloproteinase (MMP)-9 mRNA expression and activity. Taken together, mammary tumor cell invasiveness was stimulated by TNF-α induced activation of Hh signaling; these effects were abrogated by daidzein, which suppressed Gli1 activation, thereby inhibiting migration and invasion. PMID:24724627

  7. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer.

    PubMed

    Jia, Linghan; Liu, Wen; Guan, Lizhao; Lu, Min; Wang, KeWei

    2015-01-01

    Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs) that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy. PMID:26305547

  8. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer

    PubMed Central

    Jia, Linghan; Liu, Wen; Guan, Lizhao; Lu, Min; Wang, KeWei

    2015-01-01

    Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs) that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy. PMID:26305547

  9. Tetrandrine Inhibits Wnt/β-Catenin Signaling and Suppresses Tumor Growth of Human Colorectal CancerS⃞

    PubMed Central

    He, Bai-Cheng; Gao, Jian-Li; Zhang, Bing-Qiang; Luo, Qing; Shi, Qiong; Kim, Stephanie H.; Huang, Enyi; Gao, Yanhong; Yang, Ke; Wagner, Eric R.; Wang, Linyuan; Tang, Ni; Luo, Jinyong; Liu, Xing; Li, Mi; Bi, Yang; Shen, Jikun; Luther, Gaurav; Hu, Ning; Zhou, Qixin; Luu, Hue H.; Haydon, Rex C.; Zhao, Yingming

    2011-01-01

    As one of the most common malignancies, colon cancer is initiated by abnormal activation of the Wnt/β-catenin pathway. Although the treatment options have increased for some patients, overall progress has been modest. Thus, there is a great need to develop new treatments. We have found that bisbenzylisoquinoline alkaloid tetrandrine (TET) exhibits anticancer activity. TET is used as a calcium channel blocker to treat hypertensive and arrhythmic conditions in Chinese medicine. Here, we investigate the molecular basis underlying TET's anticancer activity. We compare TET with six chemotherapy drugs in eight cancer lines and find that TET exhibits comparable anticancer activities with camptothecin, vincristine, paclitaxel, and doxorubicin, and better than that of 5-fluorouracil (5-FU) and carboplatin. TET IC50 is ≤5 μM in most of the tested cancer lines. TET exhibits synergistic anticancer activity with 5-FU and reduces migration and invasion capabilities of HCT116 cells. Furthermore, TET induces apoptosis and inhibits xenograft tumor growth of colon cancer. TET treatment leads to a decrease in β-catenin protein level in xenograft tumors, which is confirmed by T-cell factor/lymphocyte enhancer factor and c-Myc reporter assays. It is noteworthy that HCT116 cells with allelic oncogenic β-catenin deleted are less sensitive to TET-mediated inhibition of proliferation, viability, and xenograft tumor growth. Thus, our findings strongly suggest that the anticancer effect of TET in colon cancer may be at least in part mediated by targeting β-catenin activity. Therefore, TET may be used alone or in combination as an effective anticancer agent. PMID:20978119

  10. Anticancer activity of TTAC-0001, a fully human anti-vascular endothelial growth factor receptor 2 (VEGFR-2/KDR) monoclonal antibody, is associated with inhibition of tumor angiogenesis

    PubMed Central

    Kim, Dong Geon; Jin, Younggeon; Jin, Juyoun; Yang, Heekyoung; Joo, Kyeung Min; Lee, Weon Sup; Shim, Sang Ryeol; Kim, Sung-Woo; Yoo, Jinsang; Lee, Sang Hoon; Yoo, Jin-San; Nam, Do-Hyun

    2015-01-01

    Vascular endothelial growth factor (VEGF) and its receptors are considered the primary cause of tumor-induced angiogenesis. Specifically, VEGFR-2/kinase insert domain receptor (KDR) is part of the major signaling pathway that plays a significant role in tumor angiogenesis, which is associated with the development of various types of tumor and metastasis. In particular, KDR is involved in tumor angiogenesis as well as cancer cell growth and survival. In this study, we evaluated the therapeutic potential of TTAC-0001, a fully human antibody against VEGFR-2/KDR. To assess the efficacy of the antibody and pharmacokinetic (PK) relationship in vivo, we tested the potency of TTAC-0001 in glioblastoma and colorectal cancer xenograft models. Antitumor activity of TTAC-0001 in preclinical models correlated with tumor growth arrest, induction of tumor cell apoptosis, and inhibition of angiogenesis. We also evaluated the combination effect of TTAC-0001 with a chemotherapeutic agent in xenograft models. We were able to determine the relationship between PK and the efficacy of TTAC-0001 through in vivo single-dose PK study. Taken together, our data suggest that targeting VEGFR-2 with TTAC-0001 could be a promising approach for cancer treatment. PMID:26325365

  11. Tumor-targeting Salmonella typhimurium A1-R inhibits human prostate cancer experimental bone metastasis in mouse models

    PubMed Central

    Toneri, Makoto; Miwa, Shinji; Zhang, Yong; Hu, Cameron; Yano, Shuya; Matsumoto, Yasunori; Bouvet, Michael; Nakanishi, Hayao; Hoffman, Robert M.; Zhao, Ming

    2015-01-01

    Bone metastasis is a frequent occurrence in prostate cancer patients and often is lethal. Zoledronic acid (ZOL) is often used for bone metastasis with limited efficacy. More effective models and treatment methods are required to improve the outcome of prostate cancer patients. In the present study, the effects of tumor-targeting Salmonella typhimurium A1-R were analyzed in vitro and in vivo on prostate cancer cells and experimental bone metastasis. Both ZOL and S. typhimurium A1-R inhibited the growth of PC-3 cells expressing red fluorescent protien in vitro. To investigate the efficacy of S. typhimurium A1-R on prostate cancer experimental bone metastasis, we established models of both early and advanced stage bone metastasis. The mice were treated with ZOL, S. typhimurium A1-R, and combination therapy of both ZOL and S. typhimurium A1-R. ZOL and S. typhimurium A1-R inhibited the growth of solitary bone metastases. S. typhimurium A1-R treatment significantly decreased bone metastasis and delayed the appearance of PC-3 bone metastases of multiple mouse models. Additionally, S. typhimurium A1-R treatment significantly improved the overall survival of the mice with multiple bone metastases. The results of the present study indicate that S. typhimurium A1-R is useful to prevent and inhibit prostate cancer bone metastasis and has potential for future clinical use in the adjuvant setting. PMID:26431498

  12. Simvastatin Inhibits Toll-like Receptor 8 (TLR8) Signaling in Primary Human Monocytes and Spontaneous Tumor Necrosis Factor Production from Rheumatoid Synovial Membrane Cultures

    PubMed Central

    Mullen, Lisa; Ferdjani, Jason; Sacre, Sandra

    2015-01-01

    Simvastatin has been shown to have antiinflammatory effects that are independent of its serum cholesterol lowering action, but the mechanisms by which these antiinflammatory effects are mediated have not been elucidated. To explore the mechanism involved, the effect of simvastatin on toll-like receptor (TLR) signaling in primary human monocytes was investigated. A short pretreatment with simvastatin dose-dependently inhibited the production of tumor necrosis factor (TNF)-α in response to TLR8 activation (but not TLR2, -4 or -5). Statins are known inhibitors of the cholesterol biosynthetic pathway, but, intriguingly, TLR8 inhibition could not be reversed by addition of mevalonate or geranylgeranyl pyrophosphate, downstream products of cholesterol biosynthesis. TLR8 signaling was examined in HEK 293 cells stably expressing TLR8, where simvastatin inhibited I kappa B kinase (IKK)α/β phosphorylation and subsequent nuclear factor (NF)-κB activation without affecting the pathway to activating protein-1 (AP-1). Because simvastatin has been reported to have antiinflammatory effects in RA patients and TLR8 signaling contributes to TNF production in human RA synovial tissue in culture, simvastatin was tested in these cultures. Simvastatin significantly inhibited the spontaneous release of TNF in this model, which was not reversed by mevalonate. Together, these results demonstrate a hitherto unrecognized mechanism of simvastatin inhibition of TLR8 signaling that may in part explain its beneficial antiinflammatory effects. PMID:26322850

  13. Norcantharidin inhibits tumor growth and vasculogenic mimicry of human gallbladder carcinomas by suppression of the PI3-K/MMPs/Ln-5γ2 signaling pathway

    PubMed Central

    2014-01-01

    NCTD or TIMP-2 group; (all P < 0.01, vs. control group); NCTD down-regulated expression of these VM signaling-related markers in vitro and in vivo. Conclusions NCTD inhibited tumor growth and VM of human GBCs in vitro and in vivo by suppression of the PI3-K/MMPs/Ln-5γ2 signaling pathway. It is firstly concluded that NCTD may be a potential anti-VM agent for human GBCs. PMID:24628713

  14. Emblica officinalis Extract Induces Autophagy and Inhibits Human Ovarian Cancer Cell Proliferation, Angiogenesis, Growth of Mouse Xenograft Tumors

    PubMed Central

    De, Alok; De, Archana; Papasian, Chris; Hentges, Shane; Banerjee, Snigdha; Haque, Inamul; Banerjee, Sushanta K.

    2013-01-01

    Patients with ovarian cancer (OC) may be treated with surgery, chemotherapy and/or radiation therapy, although none of these strategies are very effective. Several plant-based natural products/dietary supplements, including extracts from Emblicaofficinalis (Amla), have demonstrated potent anti-neoplastic properties. In this study we determined that Amla extract (AE) has anti-proliferative effects on OC cells under both in vitro and in vivo conditions. We also determined the anti-proliferative effects one of the components of AE, quercetin, on OC cells under in vitro conditions. AE did not induce apoptotic cell death, but did significantly increase the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. Quercetin also increased the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also significantly reduced the expression of several angiogenic genes, including hypoxia-inducible factor 1α (HIF-1α) in OVCAR3 cells. AE acted synergistically with cisplatin to reduce cell proliferation and increase expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also had anti-proliferative effects and induced the expression of the autophagic proteins beclin1 and LC3B-II in mouse xenograft tumors. Additionally, AE reduced endothelial cell antigen – CD31 positive blood vessels and HIF-1α expression in mouse xenograft tumors. Together, these studies indicate that AE inhibits OC cell growth both in vitro and in vivo possibly via inhibition of angiogenesis and activation of autophagy in OC. Thus AE may prove useful as an alternative or adjunct therapeutic approach in helping to fight OC. PMID:24133573

  15. RNA Interference-Mediated Inhibition of Erythropoietin Receptor Expression Suppresses Tumor Growth and Invasiveness in A2780 Human Ovarian Carcinoma Cells

    PubMed Central

    Paragh, Gyorgy; Kumar, Suresh M.; Rakosy, Zsuzsa; Choi, Soek-Choel; Xu, Xiaowei; Acs, Geza

    2009-01-01

    Although recombinant human erythropoietin (rHuEpo) has revolutionized the treatment of anemia, recent clinical trials suggested that rHuEpo use may be associated with decreased survival in cancer patients. Although the expression of erythropoietin (Epo) receptor (EpoR) has been demonstrated in various human cancers, the effect of exogenous Epo on the growth and therapy resistance of EpoR-bearing tumor cells is unclear at present. In the current study, we examined the hypothesis that EpoR may contribute to tumor growth independent of Epo in A2780 human ovarian carcinoma cells. A2780 human ovarian carcinoma cells showed high levels of EpoR expression, but lacked expression of Epo mRNA and biologically active Epo protein under both normoxic and hypoxic conditions. Exogenous Epo did not stimulate EpoR-mediated signaling, proliferation, invasiveness, or resistance to cytotoxic drugs in A2780 cells. In contrast, specific inhibition of EpoR expression using a short hairpin RNA (shRNA) expression plasmid resulted in markedly reduced proliferation and invasiveness in vitro. In addition, inhibition of EpoR expression led to abrogated in vivo ovarian cancer cell growth in a tumor xenograft system and resulted in decreased EpoR signaling. Our findings suggest that EpoR may be constitutively active in some cancer cells in the absence of Epo and provide the first evidence for a potential role of an Epo-independent, EpoR-mediated pathway in the growth of some human cancers. PMID:19264915

  16. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    SciTech Connect

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang . E-mail: hgjeong@chosun.ac.kr

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.

  17. A Humanized Anti-VEGF Rabbit Monoclonal Antibody Inhibits Angiogenesis and Blocks Tumor Growth in Xenograft Models

    PubMed Central

    Zhang, Yongke; Yu, Qiu; Lee, Jonathan; Li, Mingzhen; Song, Jialiang; Chen, Jungang; Dai, Jihong; Couto, Fernando Jose Rebelo Do; An, Zhiqiang; Zhu, Weimin; Yu, Guo-Liang

    2010-01-01

    Rabbit antibodies have been widely used in research and diagnostics due to their high antigen specificity and affinity. Though these properties are also highly desirable for therapeutic applications, rabbit antibodies have remained untapped for human disease therapy. To evaluate the therapeutic potential of rabbit monoclonal antibodies (RabMAbs), we generated a panel of neutralizing RabMAbs against human vascular endothelial growth factor-A (VEGF). These neutralizing RabMAbs are specific to VEGF and do not cross-react to other members of the VEGF protein family. Guided by sequence and lineage analysis of a panel of neutralizing RabMAbs, we humanized the lead candidate by substituting non-critical residues with human residues within both the frameworks and the CDR regions. We showed that the humanized RabMAb retained its parental biological properties and showed potent inhibition of the growth of H460 lung carcinoma and A673 rhabdomyosarcoma xenografts in mice. These studies provide proof of principle for the feasibility of developing humanized RabMAbs as therapeutics. PMID:20140208

  18. Rapid decrease in tumor perfusion following VEGF blockade predicts long-term tumor growth inhibition in preclinical tumor models.

    PubMed

    Eichten, Alexandra; Adler, Alexander P; Cooper, Blerta; Griffith, Jennifer; Wei, Yi; Yancopoulos, George D; Lin, Hsin Chieh; Thurston, Gavin

    2013-04-01

    Vascular endothelial growth factor (VEGF) is a key upstream mediator of tumor angiogenesis, and blockade of VEGF can inhibit tumor angiogenesis and decrease tumor growth. However, not all tumors respond well to anti-VEGF therapy. Despite much effort, identification of early response biomarkers that correlate with long-term efficacy of anti-VEGF therapy has been difficult. These difficulties arise in part because the functional effects of VEGF inhibition on tumor vessels are still unclear. We therefore assessed rapid molecular, morphologic and functional vascular responses following treatment with aflibercept (also known as VEGF Trap or ziv-aflibercept in the United States) in preclinical tumor models with a range of responses to anti-VEGF therapy, including Colo205 human colorectal carcinoma (highly sensitive), C6 rat glioblastoma (moderately sensitive), and HT1080 human fibrosarcoma (resistant), and correlated these changes to long-term tumor growth inhibition. We found that an overall decrease in tumor vessel perfusion, assessed by dynamic contrast-enhanced ultrasound (DCE-US), and increases in tumor hypoxia correlated well with long-term tumor growth inhibition, whereas changes in vascular gene expression and microvessel density did not. Our findings support previous clinical studies showing that decreased tumor perfusion after anti-VEGF therapy (measured by DCE-US) correlated with response. Thus, measuring tumor perfusion changes shortly after treatment with VEGF inhibitors, or possibly other anti-angiogenic therapies, may be useful to predict treatment efficacy. PMID:23238831

  19. Inhibition of human tumor xenograft growth in nude mice by a conjugate of monoclonal antibody LA22 to epidermal growth factor receptor with anti-tumor antibiotics mitomycin C

    SciTech Connect

    Shao Wei; Zhao Shan; Liu Zhaofei; Zhang Jianzhong; Ma Shujun; Sato, J. Denry; Zhang Peng; Tong Mei; Han Jiping; Wang Yan; Bai Dongmei; Wang Fan . E-mail: wangfan@bjmu.edu.cn; Sun Le . E-mail: lsun@welsonpharma.com

    2006-10-20

    Anti-EGFR monoclonal antibodies LA22 and Erbitux bind to different epitopes of EGFR. The chemimmunoconjugates of MMC with LA22 or Erbitux were prepared, and in vitro cytotoxicity assays with A549 cells showed that LA22-MMC was much more potent than Erbitux or Erbitux-MMC. Viabilities of A549 cells treated with LA22-MMC, Erbitux or Erbitux-MMC were 35%, 94%, and 81%, respectively. Immunoscintigraphy of xenografts of human A431 and A549 cells in nude mice both showed that {sup 125}I-labeled-LA22-MMC enriched in tumor sites prominently. Most importantly, in vivo assays showed LA22-MMC was significantly more effective than free drug MMC in the treatment of subcutaneous xenografts of human A431 cells in nude mice (83% inhibition for LA22-MMC and 30% for MMC). We concluded that LA22-MMC could be a very potent drug for treatment of solid tumors.

  20. Inhibition of Vascularization in Tumor Growth

    NASA Astrophysics Data System (ADS)

    Scalerandi, M.; Sansone, B. Capogrosso

    2002-11-01

    The transition to a vascular phase is a prerequisite for fast tumor growth. During the avascular phase, the neoplasm feeds only from the (relatively few) existing nearby blood vessels. During angiogenesis, the number of capillaries surrounding and infiltrating the tumor increases dramatically. A model which includes physical and biological mechanisms of the interactions between the tumor and vascular growth describes the avascular-vascular transition. Numerical results agree with clinical observations and predict the influence of therapies aiming to inhibit the transition.

  1. Ehrlich tumor inhibition using doxorubicin containing liposomes.

    PubMed

    Elbialy, Nihal Saad; Mady, Mohsen Mahmoud

    2015-04-01

    Ehrlich tumors were grown in female balb mice by subcutaneous injection of Ehrlich ascites carcinoma cells. Mice bearing Ehrlich tumor were injected with saline, DOX in solution or DOX encapsulated within liposomes prepared from DMPC/CHOL/DPPG/PEG-PE (100:100:60:4) in molar ratio. Cytotoxicity assay showed that the IC50 of liposomes containing DOX was greater than that DOX only. Tumor growth inhibition curves in terms of mean tumor size (cm(3)) were presented. All the DOX formulations were effective in preventing tumor growth compared to saline. Treatment with DOX loaded liposomes displayed a pronounced inhibition in tumor growth than treatment with DOX only. Histopathological examination of the entire tumor sections for the various groups revealed marked differences in cellular features accompanied by varying degrees in necrosis percentage ranging from 12% for saline treated mice to 70% for DOX loaded liposome treated mice. The proposed liposomal formulation can efficiently deliver the drug into the tumor cells by endocytosis (or passive diffusion) and lead to a high concentration of DOX in the tumor cells. The study showed that the formulation of liposomal doxorubicin improved the therapeutic index of DOX and had increased anti-tumor activity against Ehrlich tumor models. PMID:25972739

  2. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    PubMed

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  3. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes

    PubMed Central

    Tiffen, Jessamy C.; Gunatilake, Dilini; Gallagher, Stuart J.; Gowrishankar, Kavitha; Heinemann, Anja; Cullinane, Carleen; Dutton-Regester, Ken; Pupo, Gulietta M.; Strbenac, Dario; Yang, Jean Y.; Madore, Jason; Mann, Graham J.; Hayward, Nicholas K.; McArthur, Grant A.; Filipp, Fabian V.; Hersey, Peter

    2015-01-01

    The epigenetic modifier EZH2 is part of the polycomb repressive complex that suppresses gene expression via histone methylation. Activating mutations in EZH2 are found in a subset of melanoma that contributes to disease progression by inactivating tumor suppressor genes. In this study we have targeted EZH2 with a specific inhibitor (GSK126) or depleted EZH2 protein by stable shRNA knockdown. We show that inhibition of EZH2 has potent effects on the growth of both wild-type and EZH2 mutant human melanoma in vitro particularly in cell lines harboring the EZH2Y646 activating mutation. This was associated with cell cycle arrest, reduced proliferative capacity in both 2D and 3D culture systems, and induction of apoptosis. The latter was caspase independent and mediated by the release of apoptosis inducing factor (AIFM1) from mitochondria. Gene expression arrays showed that several well characterized tumor suppressor genes were reactivated by EZH2 inhibition. This included activating transcription factor 3 (ATF3) that was validated as an EZH2 target gene by ChIP-qPCR. These results emphasize a critical role for EZH2 in the proliferation and viability of melanoma and highlight the potential for targeted therapy against EZH2 in treatment of patients with melanoma. PMID:26304929

  4. Anti-tumor activity of the novel hexahydrocannabinol analog LYR-8 in Human colorectal tumor xenograft is mediated through the inhibition of Akt and hypoxia-inducible factor-1α activation.

    PubMed

    Thapa, Dinesh; Kang, Youra; Park, Pil-Hoon; Noh, Seok Kyun; Lee, Yong Rok; Han, Sung Soo; Ku, Sae Kwang; Jung, Yunjin; Kim, Jung-Ae

    2012-01-01

    Cannabinoid compounds have been shown to exert anti-tumor effects by affecting angiogenesis, invasion, and metastasis. In the present study, we examined the action mechanism by which LYR-8, a novel hexahydrocannabinol analog, exerts anti-angiogenic and anti-tumor activity in human cancer xenografts. In the xenografted tumor tissues, LYR-8 significantly reduced the expression of hypoxia-inducible factor-1 alpha (HIF-1α), a transcription factor responsible for induction of angiogenesis-promoting factors, and its target genes, vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). In HT-29 human colon cancer cells treated with a hypoxia-inducing agent (CoCl(2)), LYR-8 dose-dependently suppressed the induction of HIF-1α and subsequently its targets, VEGF and COX-2. In addition, highly elevated prostaglandin E(2) (PGE(2)) concentrations in CoCl(2)-treated HT-29 cells were also significantly suppressed by LYR-8. However, LYR-8 alone in the absence of CoCl(2) did not alter the basal expression of VEGF and COX-2, or PGE(2) production. Furthermore, LYR-8 effectively suppressed Akt signaling, which corresponded to the suppression of CoCl(2)-induced HIF-1α accumulation. Taken together, LYR-8 exerts anti-tumor effects through the inhibition of Akt and HIF-1α activation, and subsequently suppressing factors regulating tumor microenvironment, such as VEGF and COX-2. These results indicate a novel function of cannabinoid-like compound LYR-8 as an anti-tumor agent with a HIF-1α inhibitory activity. PMID:22687485

  5. A novel quinoline, MT477: suppresses cell signaling through Ras molecular pathway, inhibits PKC activity, and demonstrates in vivo anti-tumor activity against human carcinoma cell lines.

    PubMed

    Jasinski, Piotr; Welsh, Brandon; Galvez, Jorge; Land, David; Zwolak, Pawel; Ghandi, Lori; Terai, Kaoru; Dudek, Arkadiusz Z

    2008-06-01

    MT477 is a novel thiopyrano[2,3-c]quinoline that has been identified using molecular topology screening as a potential anticancer drug with a high activity against protein kinase C (PKC) isoforms. The objective of the present study was to determine the mechanism of action of MT477 and its activity against human cancer cell lines. MT477 interfered with PKC activity as well as phosphorylation of Ras and ERK1/2 in H226 human lung carcinoma cells. It also induced poly-caspase-dependent apoptosis. MT477 had a dose-dependent (0.006 to 0.2 mM) inhibitory effect on cellular proliferation of H226, MCF-7, U87, LNCaP, A431 and A549 cancer cell lines as determined by in vitro proliferation assays. Two murine xenograft models of human A431 and H226 lung carcinoma were used to evaluate tumor response to intraperitoneal administration of MT477 (33 microg/kg, 100 microg/kg, and 1 mg/kg). Tumor growth was inhibited by 24.5% in A431 and 43.67% in H226 xenografts following MT477 treatment, compared to vehicle controls (p < 0.05). In conclusion, our empirical findings are consistent with molecular modeling of MT477's activity against PKC. We also found, however, that its mechanism of action occurs through suppressing Ras signaling, indicating that its effects on apoptosis and tumor growth in vivo may be mediated by Ras as well as PKC. We propose, therefore, that MT477 warrants further development as an anticancer drug. PMID:17957339

  6. Adriamycin resistance-associated prohibitin gene inhibits proliferation of human osteosarcoma MG63 cells by interacting with oncogenes and tumor suppressor genes

    PubMed Central

    Du, Min-Dong; He, Kai-Yi; Qin, Gang; Chen, Jin; Li, Jin-Yi

    2016-01-01

    The resistance of cancer cells to chemotherapeutic agents is a major obstacle for successful chemotherapy, and the mechanism of chemoresistance remains unclear. The present study developed an adriamycin-resistant human osteosarcoma MG-63 sub-line (MG-63/ADR), and identified differentially expressed proteins that may be associated with adriamycin resistance. Two dimensional gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis and a protein identification assay were performed. Western blot analysis was used to examine the prohibitin (PHB) levels in the MG-63/ADR cells. Quantitative polymerase chain reaction was utilized to detect adriamycin resistant-associated genes. Laser-scanning confocal microscope was employed to examine the colocalization of PHB with v-myc avian myelocytomatosis viral oncogene homolog (c-myc), FBJ murine osteosarcoma viral oncogene homolog (c-fos), tumor protein p53 and retinoblastoma 1 (Rb). In addition, the full length of the open reading frame of human PHB was subcloned into a lentiviral vector pLVX-puro. The proliferative rate of MG-63 cells was also investigated. The overall protein expression in MG-63/ADR cells was clearly suppressed. Three notable protein regions, representing high mobility group box 1, Ras homolog gene family, member A, and PHB, were identified to be significantly altered in MG-63/ADR cells when compared with its parental cells. Therefore, PHB modulated the chemoresistance of MG-63/ADR cells by interacting with multiple oncogenes or tumor suppressor genes (c-myc, c-fos, p53 and Rb). In addition, overexpression of PHB decreases the proliferative rate of MG-63 cells. In conclusion, PHB is an adriamycin resistance-associated gene, which may inhibit the proliferation of human osteosarcoma MG-63 cells by interacting with the oncogenes or tumor suppressor genes, c-myc, c-fos, p53 and Rb. PMID:27602127

  7. Inhibition of sup 125 I organification and thyroid hormone release by interleukin-1, tumor necrosis factor-alpha, and interferon-gamma in human thyrocytes in suspension culture

    SciTech Connect

    Sato, K.; Satoh, T.; Shizume, K.; Ozawa, M.; Han, D.C.; Imamura, H.; Tsushima, T.; Demura, H.; Kanaji, Y.; Ito, Y. )

    1990-06-01

    To elucidate the mechanism of decreased 131I uptake by the thyroid gland in patients with subacute thyroiditis and painless thyroiditis, human thyroid follicles were cultured with interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF alpha), and/or interferon-gamma (IFN gamma), and the effects of these cytokines on thyroid function were studied in vitro. When human thyrocytes were cultured in RPMI-1640 medium containing 0.5% fetal calf serum and TSH for 5-8 days, the cells incorporated 125I, synthesized de novo (125I)iodotyrosines and (125I)iodothyronines, and secreted (125I)T4 and (125I)T3 into the medium. IL-1 alpha and IL-1 beta inhibited 125I incorporation and (125I)iodothyronine release in a concentration-dependent manner. The minimal inhibitory effect was detected at 10 pg/ml. Electron microscopic examination revealed a marked decrease in lysosome formation in IL-1-treated thyrocytes. TNF alpha and IFN gamma also inhibited thyroid function in a concentration-dependent manner. Furthermore, when thyrocytes were cultured with IL-1, TNF alpha and IFN gamma, these cytokines more than additively inhibited thyroid function. Although the main mechanism of 131I uptake suppression in the thyroid gland in subacute thyroiditis is due to cellular damage and suppression of TSH release, our present findings suggest that IL-1, TNF alpha, and IFN gamma produced in the inflammatory process within the thyroid gland further inhibit iodine incorporation and at least partly account for the decreased 131I uptake by the thyroid gland in destruction-induced hyperthyroidism.

  8. Transient exposure of human myoblasts to tumor necrosis factor-alpha inhibits serum and insulin-like growth factor-I stimulated protein synthesis.

    PubMed

    Frost, R A; Lang, C H; Gelato, M C

    1997-10-01

    Tumor necrosis factor-alpha (TNF-alpha) induces cachexia and is postulated to be responsible for muscle wasting in several pathophysiological conditions. The purpose of the present study was to investigate whether exposure of human myoblasts to TNF-alpha could directly inhibit the ability of serum or insulin-like growth factor I (IGF-I) to stimulate protein synthesis as assessed by the incorporation of [3H]phenylalanine into protein. Serum and IGF-I stimulated protein synthesis dose dependently. Half-maximal stimulation of protein synthesis occurred at 05% serum and 8 ng/ml of IGF-I, respectively. TNF-alpha inhibited IGF-I-stimulated protein synthesis in a dose-dependent manner. Additionally, as little as 2 ng/ml of TNF-alpha impaired the ability of IGF-I to stimulate protein synthesis by 33% and, at a dose of 100 ng/ml, TNF-alpha completely prevented the increase in protein synthesis induced by either serum or a maximally stimulating dose of IGF-I. Inhibition of protein synthesis was independent of whether TNF-alpha and growth factors were added to cells simultaneously or if the cells were pretreated with growth factors. Exposure ofmyoblasts to TNF-alpha for 10 min completely inhibited serum-induced stimulation of protein synthesis. TNF-alpha inhibited protein synthesis up to 48 h after addition of the cytokine. TNF-alpha also inhibited serum-stimulated protein synthesis in human myoblasts that were differentiated into myotubes. In contrast, exposure of myoblasts to TNF-alpha had no effect on IGF-I binding and failed to alter the ability of either IGF-I or serum to stimulate [3H]thymidine uptake. These data indicate that transient exposure of myoblasts or myotubes to TNF-alpha inhibits protein synthesis. Thus, the anabolic actions of IGF-I on muscle protein synthesis may be impaired during catabolic conditions in which TNF-alpha is over expressed. PMID:9322924

  9. Silencing NFBD1/MDC1 enhances the radiosensitivity of human nasopharyngeal cancer CNE1 cells and results in tumor growth inhibition

    PubMed Central

    Wang, Z; Zeng, Q; Chen, T; Liao, K; Bu, Y; Hong, S; Hu, G

    2015-01-01

    NFBD1 functions in cell cycle checkpoint activation and DNA repair following ionizing radiation (IR). In this study, we defined the NFBD1 as a tractable molecular target to radiosensitize nasopharyngeal carcinoma (NPC) cells. Silencing NFBD1 using lentivirus-mediated shRNA-sensitized NPC cells to radiation in a dose-dependent manner, increasing apoptotic cell death, decreasing clonogenic survival and delaying DNA damage repair. Furthermore, downregulation of NFBD1 inhibited the amplification of the IR-induced DNA damage signal, and failed to accumulate and retain DNA damage-response proteins at the DNA damage sites, which leaded to defective checkpoint activation following DNA damage. We also implicated the involvement of NFBD1 in IR-induced Rad51 and DNA-dependent protein kinase catalytic subunit foci formation. Xenografts models in nude mice showed that silencing NFBD1 significantly enhanced the antitumor activity of IR, leading to tumor growth inhibition of the combination therapy. Our studies suggested that a combination of gene therapy and radiation therapy may be an effective strategy for human NPC treatment. PMID:26247734

  10. Silencing NFBD1/MDC1 enhances the radiosensitivity of human nasopharyngeal cancer CNE1 cells and results in tumor growth inhibition.

    PubMed

    Wang, Z; Zeng, Q; Chen, T; Liao, K; Bu, Y; Hong, S; Hu, G

    2015-01-01

    NFBD1 functions in cell cycle checkpoint activation and DNA repair following ionizing radiation (IR). In this study, we defined the NFBD1 as a tractable molecular target to radiosensitize nasopharyngeal carcinoma (NPC) cells. Silencing NFBD1 using lentivirus-mediated shRNA-sensitized NPC cells to radiation in a dose-dependent manner, increasing apoptotic cell death, decreasing clonogenic survival and delaying DNA damage repair. Furthermore, downregulation of NFBD1 inhibited the amplification of the IR-induced DNA damage signal, and failed to accumulate and retain DNA damage-response proteins at the DNA damage sites, which leaded to defective checkpoint activation following DNA damage. We also implicated the involvement of NFBD1 in IR-induced Rad51 and DNA-dependent protein kinase catalytic subunit foci formation. Xenografts models in nude mice showed that silencing NFBD1 significantly enhanced the antitumor activity of IR, leading to tumor growth inhibition of the combination therapy. Our studies suggested that a combination of gene therapy and radiation therapy may be an effective strategy for human NPC treatment. PMID:26247734

  11. BMP4/Thrombospondin-1 loop paracrinically inhibits tumor angiogenesis and suppresses the growth of solid tumors.

    PubMed

    Tsuchida, R; Osawa, T; Wang, F; Nishii, R; Das, B; Tsuchida, S; Muramatsu, M; Takahashi, T; Inoue, T; Wada, Y; Minami, T; Yuasa, Y; Shibuya, M

    2014-07-17

    Bone morphogenetic protein 4 (BMP4) has potential as an anticancer agent. Recent studies have suggested that BMP4 inhibits the survival of cancer stem cells (CSCs) of neural and colon cancers. Here, we showed that BMP4 paracrinically inhibited tumor angiogenesis via the induction of Thrombospondin-1 (TSP1), and consequently suppressed tumor growth in vivo. Although HeLa (human cervical cancer), HCI-H460-LNM35 (highly metastatic human lung cancer) and B16 (murine melanoma) cells did not respond to the BMP4 treatment in vitro, the growth of xeno- and allografts of these cells was suppressed via reductions in tumor angiogenesis after intraperitoneal treatment with BMP4. When we assessed the mRNA expression of major angiogenesis-related factors in grafted tumors, we found that the expression of TSP1 was significantly upregulated by BMP4 administration. We then confirmed that BMP4 was less effective in suppressing the tumor growth of TSP1-knockdown cancer cells. Furthermore, we found that BMP4 reduced vascular endothelial growth factor (VEGF) expression in vivo in a TSP1-dependent manner, which indicates that BMP4 interfered with the stabilization of tumor angiogenesis. In conclusion, the BMP4/TSP1 loop paracrinically suppressed tumor angiogenesis in the tumor microenvironment, which subsequently reduced the growth of tumors. BMP4 may become an antitumor agent and open a new field of antiangiogenic therapy. PMID:24013228

  12. Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1

    PubMed Central

    Guo, Yue; Shu, Limin; Zhang, Chengyue; Su, Zheng-Yuan; Kong, Ah-Ng Tony

    2015-01-01

    Colorectal cancer remains the most prevalent malignancy in humans. The impact of epigenetic alterations on the development of this complex disease is now being recognized. The dynamic and reversible nature of epigenetic modifications makes them a promising target in colorectal cancer chemoprevention and treatment. Curcumin (CUR), the major component in Curcuma longa, has been shown as a potent chemopreventive phytochemical that modulates various signaling pathways. Deleted in lung and esophageal cancer 1 (DLEC1) is a tumor suppressor gene with reduced transcriptional activity and promoter hypermethylation in various cancers, including colorectal cancer. In the present study, we aimed to investigate the inhibitory role of DLEC1 in anchorage-independent growth of the human colorectal adenocarcinoma HT29 cells and epigenetic regulation by CUR. Specifically, we found that CUR treatment inhibited colony formation of HT29 cells, whereas stable knockdown of DLEC1 using lentiviral short hairpin RNA vector increased cell proliferation and colony formation. Knockdown of DLEC1 in HT29 cells attenuated the ability of CUR to inhibit anchorage-independent growth. Methylation-specific polymerase chain reaction (MSP), bisulfite genomic sequencing, and methylated DNA immunoprecipitation revealed that CUR decreased CpG methylation of the DLEC1 promoter in HT29 cells after 5 days of treatment, corresponding to increased mRNA expression of DLEC1. Furthermore, CUR decreased the protein expression of DNA methyltransferases and subtypes of histone deacetylases (HDAC4, 5, 6, and 8). Taken together, our results suggest that the inhibitory effect of CUR on anchorage-independent growth of HT29 cells could, at least in part, involve the epigenetic demethylation and up-regulation of DLEC1. PMID:25640947

  13. Citrus polymethoxylated flavone inhibition of tumor necrosis factor-alpha in LPS-challenged mice and human monocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus flavonoids have been investigated for their biological actions in animals, particularly for their anti-cancer effects, and for their cholesterol-lowering and anti-inflammatory properties. An investigation of the production of cytokines in bacterial lipopolysaccharide (LPS)-treated human mono...

  14. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma.

    PubMed

    Hu, Bo; Sun, Ding; Sun, Chao; Sun, Yun-Fan; Sun, Hai-Xiang; Zhu, Qing-Feng; Yang, Xin-Rong; Gao, Ya-Bo; Tang, Wei-Guo; Fan, Jia; Maitra, Anirban; Anders, Robert A; Xu, Yang

    2015-12-25

    Curcumin, a yellow polyphenol extracted from the rhizome of turmeric root (Curcuma longa) has potent anti-cancer properties in many types of tumors with ability to reverse multidrug resistance of cancer cells. However, widespread clinical application of this agent in cancer and other diseases has been limited due to its poor aqueous solubility. The recent findings of polymeric nanoparticle formulation of curcumin (NFC) have shown the potential for circumventing the problem of poor solubility, however evidences for NFC's anti-cancer and reverse multidrug resistance properties are lacking. Here we provide models of human hepatocellular carcinoma (HCC), the most common form of primary liver cancer, in vitro and in vivo to evaluate the efficacy of NFC alone and in combination with sorafenib, a kinase inhibitor approved for treatment of HCC. Results showed that NFC not only inhibited the proliferation and invasion of HCC cell lines in vitro, but also drastically suppressed primary tumor growth and lung metastases in vivo. Moreover, in combination with sorafenib, NFC induced HCC cell apoptosis and cell cycle arrest. Mechanistically, NFC and sorafenib synergistically down-regulated the expression of MMP9 via NF-κB/p65 signaling pathway. Furthermore, the combination therapy significantly decreased the population of CD133-positive HCC cells, which have been reported as cancer initiating cells in HCC. Taken together, NanoCurcumin provides an opportunity to expand the clinical repertoire of this agent. Additional studies utilizing a combination of NanoCurcumin and sorafenib in HCC are needed for further clinical development. PMID:26482853

  15. Aromatase in the human choriocarcinoma JEG-3: inhibition by R 76 713 in cultured cells and in tumors grown in nude mice.

    PubMed

    Krekels, M D; Wouters, W; De Coster, R; Van Ginckel, R; Leonaers, A; Janssen, P A

    1991-04-01

    The aromatase enzyme and its inhibition by R 76 713 were characterized in the JEG-3 choriocarcinoma cell line in culture and in JEG-3 tumors grown in nude mice. Optimal cell culture parameters and enzyme reaction conditions for the determination of aromatase activity were established. Under these conditions, in vitro JEG-3 aromatase was inhibited by R 76 713 with IC50-values of 7.6 +/- 0.5 nM and 2.7 +/- 1.1 nM using 500 nM of androstenedione and testosterone as substrate respectively. The Km-value of the aromatase enzyme with androstenedione as substrate was 62 +/- 19 nM; with testosterone as substrate, a value of 166 +/- 27 nM was found. In the presence of increasing concentrations of R 76 713, the Km-values increased while the Vmax remained unchanged. Using androstenedione and testosterone as substrate Lineweaver-Burk analysis of the data showed Ki-values for R 76 713 of 0.43 +/- 0.06 nM and 0.47 +/- 0.39 nM respectively. R 76 713 appeared to competitively inhibit the JEG-3 aromatase. Aromatase could easily be measured in homogenates of JEG-3 tumors grown in nude mice and showed Km-values similar to those found for JEG-3 cells in vitro. IC50-values for inhibition of tumor aromatase by R 76 713 were also similar to those found in cultured cells. Tumor aromatase measured ex vivo, 2 h after a single oral administration of R 76 713 was dose-dependently inhibited. An ED50-value of 0.05 mg/kg was calculated. The JEG-3 choriocarcinoma proved to be a useful aromatase model enabling the comparative study of aromatase inhibition in vitro and in vivo. PMID:2031856

  16. p190RhoGAP can act to inhibit PDGF-induced gliomas in mice: a putative tumor suppressor encoded on human Chromosome 19q13.3

    PubMed Central

    Wolf, Rebecca M.; Draghi, Nicole; Liang, Xiquan; Dai, Chengkai; Uhrbom, Lene; Eklöf, Charlotta; Westermark, Bengt; Holland, Eric C.; Resh, Marilyn D.

    2003-01-01

    p190RhoGAP and Rho are key regulators of oligodendrocyte differentiation. The gene encoding p190RhoGAP is located at 19q13.3 of the human chromosome, a locus that is deleted in 50%–80% of oligodendrogliomas. Here we provide evidence that p190RhoGAP may suppress gliomagenesis by inducing a differentiated glial phenotype. Using a cell culture model of autocrine loop PDGF stimulation, we show that reduced Rho activity via p190RhoGAP overexpression or Rho kinase inhibition induced cellular process extension, a block in proliferation, and reduced expression of the neural precursor marker nestin. In vivo infection of mice with retrovirus expressing PDGF and the p190 GAP domain caused a decreased incidence of oligodendrogliomas compared with that observed with PDGF alone. Independent experiments revealed that the retroviral vector insertion site in 3 of 50 PDGF-induced gliomas was within the p190RhoGAP gene. This evidence strongly suggests that p190 regulates critical components of PDGF oncogenesis and can act as a tumor suppressor in PDGF-induced gliomas by down-regulating Rho activity. PMID:12600941

  17. Anandamide inhibits breast tumor-induced angiogenesis

    PubMed Central

    Picardi, P; Ciaglia, E; Proto, MC; Pisanti, S

    2014-01-01

    Breast cancer is one of the most frequently diagnosed malignancies and a leading cause of cancer death in women. Great advances in the treatment of primary tumors have led to a significant increment in the overall survival rates, however recurrence and metastatic disease, the underlying cause of death, are still a medical challenge. Breast cancer is highly dependent on neovascularization to progress. In the last years several anti-angiogenic drugs have been developed and administered to patients in combination with chemotherapeutic drugs. Collected preclinical evidence has proposed the endocannabinoid system as a potential target in cancer. The endocannabinoid anandamide has been reported to affect breast cancer growth at multiple levels, by inhibiting proliferation, migration and invasiveness in vitro and in vivo and by directly inhibiting angiogenesis. Aim of the present work is to investigate if anandamide is able to affect the proangiogenic phenotype of the highly invasive and metastatic breast cancer cells MDA-MB-231. We found that following anandamide treatment, MDAMB-231 cells lose their ability to stimulate endothelial cells proliferation in vitro, due to a significant inhibition of all the pro-angiogenic factors produced by these cells. This finding adds another piece of evidence to the anti-tumor efficacy of anandamide in breast cancer. PMID:25147760

  18. Dll4 Inhibition plus Aflibercept Markedly Reduces Ovarian Tumor Growth.

    PubMed

    Huang, Jie; Hu, Wei; Hu, Limin; Previs, Rebecca A; Dalton, Heather J; Yang, Xiao-Yun; Sun, Yunjie; McGuire, Michael; Rupaimoole, Rajesha; Nagaraja, Archana S; Kang, Yu; Liu, Tao; Nick, Alpa M; Jennings, Nicholas B; Coleman, Robert L; Jaffe, Robert B; Sood, Anil K

    2016-06-01

    Delta-like ligand 4 (Dll4), one of the Notch ligands, is overexpressed in ovarian cancer, especially in tumors resistant to anti-VEGF therapy. Here, we examined the biologic effects of dual anti-Dll4 and anti-VEGF therapy in ovarian cancer models. Using Dll4-Fc blockade and anti-Dll4 antibodies (murine REGN1035 and human REGN421), we evaluated the biologic effects of Dll4 inhibition combined with aflibercept or chemotherapy in orthotopic mouse models of ovarian cancer. We also examined potential mechanisms by which dual Dll4 and VEGF targeting inhibit tumor growth using immunohistochemical staining for apoptosis and proliferation markers. Reverse-phase protein arrays were used to identify potential downstream targets of Dll4 blockade. Dual targeting of VEGF and Dll4 with murine REGN1035 showed superior antitumor effects in ovarian cancer models compared with either monotherapy. In the A2780 model, REGN1035 (targets murine Dll4) or REGN421 (targets human Dll4) reduced tumor weights by 62% and 82%, respectively; aflibercept alone reduced tumor weights by 90%. Greater therapeutic effects were observed for Dll4 blockade (REGN1035) combined with either aflibercept or docetaxel (P < 0.05 for the combination vs. aflibercept). The superior antitumor effects of REGN1035 and aflibercept were related to increased apoptosis in tumor cells compared with the monotherapy. We also found that GATA3 expression was significantly increased in tumor stroma from the mice treated with REGN1035 combined with docetaxel or aflibercept, suggesting an indirect effect of these combination treatments on the tumor stroma. These findings identify that dual targeting of Dll4 and VEGF is an attractive therapeutic approach. Mol Cancer Ther; 15(6); 1344-52. ©2016 AACR. PMID:27009216

  19. Inhibition of TGFBIp expression reduces lymphangiogenesis and tumor metastasis.

    PubMed

    Maeng, Y-S; Aguilar, B; Choi, S-I; Kim, E K

    2016-01-14

    Transforming growth factor-β-induced protein (TGFBIp) is an extracellular matrix protein that has a role in a wide range of pathological conditions. However, the role of TGFBIp signaling in lymphangiogenesis is poorly understood. The purpose of this study was therefore to analyze the effects of TGFBIp on lymphangiogenesis and determine whether TGFBIp-related lymphangiogenesis is important for the metastasis of tumor cells. TGFBIp increased adhesion, migration, and morphologic differentiation of human lymphatic endothelial cells (LECs), consistent with an increase in lymphatic vessel sprouting in a three-dimensional lymphatic ring assay. TGFBIp also induced phosphorylation of intracellular signaling molecules SRC, FAK, AKT, JNK and ERK. TGFBIp-induced lymphatic vessel sprouting was inhibited by addition of anti-integrin β3 antibody and pharmacologic inhibitors of FAK, AKT, JNK or ERK. TGFBIp increased both CCL21 expression in LECs, a chemokine that actively recruits tumor cells expressing the cognate chemokine receptors to lymphatic vessels and LEC permeability by inducing the dissociation of VE-cadherin junctions between LECs via the activation of SRC signaling. In vivo, inhibition of TGFBIp expression in SW620 cancer cells dramatically reduced tumor lymphangiogenesis and metastasis. Collectively, our findings demonstrate that TGFBIp is a lymphangiogenic factor contributing to tumor dissemination and represents a potential target to inhibit metastasis. PMID:25772247

  20. Scopoletin, an active principle of tree tobacco (Nicotiana glauca) inhibits human tumor vascularization in xenograft models and modulates ERK1, VEGF-A, and FGF-2 in computer model.

    PubMed

    Tabana, Yasser M; Hassan, Loiy Elsir A; Ahamed, Mohamed B Khadeer; Dahham, Saad S; Iqbal, Muhammad Adnan; Saeed, Mohammed A A; Khan, Md Shamsuddin S; Sandai, Doblin; Majid, Aman S Abdul; Oon, Chern Ein; Majid, Amin Malik S A

    2016-09-01

    We recently reported the antineovascularization effect of scopoletin on rat aorta and identified its potential anti-angiogenic activity. Scopoletin could be useful as a systemic chemotherapeutic agent against angiogenesis-dependent malignancies if its antitumorigenic activity is investigated and scientifically proven using a suitable human tumor xenograft model. In the present study, bioassay-guided (anti-angiogenesis) phytochemical investigation was conducted on Nicotiana glauca extract which led to the isolation of scopoletin. Further, anti-angiogenic activity of scopoletin was characterized using ex vivo, in vivo and in silico angiogenesis models. Finally, the antitumorigenic efficacy of scopoletin was studied in human colorectal tumor xenograft model using athymic nude mice. For the first time, an in vivo anticancer activity of scopoletin was reported and characterized using xenograft models. Scopoletin caused significant suppression of sprouting of microvessels in rat aortic explants with IC50 (median inhibitory concentration) 0.06μM. Scopoletin (100 and 200mg/kg) strongly inhibited (59.72 and 89.4%, respectively) vascularization in matrigel plugs implanted in nude mice. In the tumor xenograft model, scopoletin showed remarkable inhibition on tumor growth (34.2 and 94.7% at 100 and 200mg/kg, respectively). Tumor histology revealed drastic reduction of the extent of vascularization. Further, immunostaining of CD31 and NG2 receptors in the histological sections confirmed the antivascular effect of scopoletin in tumor vasculature. In computer modeling, scopoletin showed strong ligand affinity and binding energies toward the following angiogenic factors: protein kinase (ERK1), vascular endothelial growth factor A (VEGF-A), and fibroblast growth factor 2 (FGF-2). These results suggest that the antitumor activity of scopoletin may be due to its strong anti-angiogenic effect, which may be mediated by its effective inhibition of ERK1, VEGF-A, and FGF-2. PMID:27133199

  1. PI3K/AKT/mTOR and sonic hedgehog pathways cooperate together to inhibit human pancreatic cancer stem cell characteristics and tumor growth

    PubMed Central

    Sharma, Narinder; Nanta, Rajesh; Sharma, Jay; Gunewardena, Sumedha; Singh, Karan P.; Shankar, Sharmila; Srivastava, Rakesh K.

    2015-01-01

    Cancer stem cells (CSCs) play major roles in cancer initiation, progression, and metastasis. It is evident from growing reports that PI3K/Akt/mTOR and Sonic Hedgehog (Shh) signaling pathways are aberrantly reactivated in pancreatic CSCs. Here, we examined the efficacy of combining NVP-LDE-225 (PI3K/mTOR inhibitor) and NVP-BEZ-235 (Smoothened inhibitor) on pancreatic CSCs characteristics, microRNA regulatory network, and tumor growth. NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting pancreatic CSC's characteristics and tumor growth in mice by acting at the level of Gli. Combination of NVP-LDE-225 and NVP-BEZ-235 inhibited self-renewal capacity of CSCs by suppressing the expression of pluripotency maintaining factors Nanog, Oct-4, Sox-2 and c-Myc, and transcription of Gli. NVP-LDE-225 co-operated with NVP-BEZ-235 to inhibit Lin28/Let7a/Kras axis in pancreatic CSCs. Furthermore, a superior interaction of these drugs was observed on spheroid formation by pancreatic CSCs isolated from Pankras/p53 mice. The combination of these drugs also showed superior effects on the expression of proteins involved in cell proliferation, survival and apoptosis. In addition, NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting EMT through modulation of cadherin, vimentin and transcription factors Snail, Slug and Zeb1. In conclusion, these data suggest that the combined inhibition of PI3K/Akt/mTOR and Shh pathways may be beneficial for the treatment of pancreatic cancer. PMID:26451606

  2. Netrin-4 delays colorectal cancer carcinomatosis by inhibiting tumor angiogenesis.

    PubMed

    Eveno, Clarisse; Broqueres-You, Dong; Feron, Jean-Guillaume; Rampanou, Aurore; Tijeras-Raballand, Annemilaï; Ropert, Stanislas; Leconte, Laurence; Levy, Bernard I; Pocard, Marc

    2011-04-01

    A close relationship between tumor angiogenesis, growth, and carcinomatosis has been observed. Netrin-4 (NT-4) has been shown to regulate angiogenic responses. We aimed to examine the effects of NT-4 on colon tumor angiogenesis, growth, and carcinomatosis. We showed that NT-4 was expressed in human colon cancer cells (LS174). A 20-fold increase in NT-4 expression was stably induced by NT-4 pcDNA in LS174 cells. In vivo, a Matrigel angiogenesis assay showed that NT-4 overexpression altered vascular endothelial growth factor (VEGF)/basic fibroblast growth factor-induced angiogenesis. In nude mice with LS174 xenografts, NT-4 overexpression inhibited tumor angiogenesis and growth. In addition, these NT-4-involved inhibitory effects were associated with decreased tumor cell proliferation and increased tumor cell apoptosis. Using an orthotopic peritoneal carcinomatosis model, we demonstrated that NT-4 overexpression decreased colorectal cancer carcinomatosis. Moreover, carcinomatosis-related ascites formation was significantly decreased in mice transplanted with NT-4 LS174 cells versus control LS174 cells. The antiangiogenic activity of NT-4 was probably mediated by binding to its receptor neogenin. Netrin-4 had a direct effect on neither in vitro apoptosis and proliferation of cultured LS174 cells nor the VEGF-induced acute increase in vascular permeability in vivo. We propose that NT-4 overexpression decreases tumor growth and carcinomatosis, probably via an antiangiogenic effect, underlying the potential therapeutic interest in NT-4 in the treatment of colorectal cancer growth and carcinomatosis. PMID:21406174

  3. RSUME inhibits VHL and regulates its tumor suppressor function.

    PubMed

    Gerez, J; Tedesco, L; Bonfiglio, J J; Fuertes, M; Barontini, M; Silberstein, S; Wu, Y; Renner, U; Páez-Pereda, M; Holsboer, F; Stalla, G K; Arzt, E

    2015-09-10

    Somatic mutations or loss of von Hippel-Lindau (pVHL) happen in the majority of VHL disease tumors, which present a constitutively active Hypoxia Inducible Factor (HIF), essential for tumor growth. Recently described mechanisms for pVHL modulation shed light on the open question of the HIF/pVHL pathway regulation. The aim of the present study was to determine the molecular mechanism by which RSUME stabilizes HIFs, by studying RSUME effect on pVHL function and to determine the role of RSUME on pVHL-related tumor progression. We determined that RSUME sumoylates and physically interacts with pVHL and negatively regulates the assembly of the complex between pVHL, Elongins and Cullins (ECV), inhibiting HIF-1 and 2α ubiquitination and degradation. We found that RSUME is expressed in human VHL tumors (renal clear-cell carcinoma (RCC), pheochromocytoma and hemangioblastoma) and by overexpressing or silencing RSUME in a pVHL-HIF-oxygen-dependent degradation stability reporter assay, we determined that RSUME is necessary for the loss of function of type 2 pVHL mutants. The functional RSUME/pVHL interaction in VHL-related tumor progression was further confirmed using a xenograft assay in nude mice. RCC clones, in which RSUME was knocked down and express either pVHL wt or type 2 mutation, have an impaired tumor growth, as well as HIF-2α, vascular endothelial growth factor A and tumor vascularization diminution. This work shows a novel mechanism for VHL tumor progression and presents a new mechanism and factor for targeting tumor-related pathologies with pVHL/HIF altered function. PMID:25500545

  4. The p53 target gene desmocollin 3 acts as a novel tumor suppressor through inhibiting EGFR/ERK pathway in human lung cancer.

    PubMed

    Cui, Tiantian; Chen, Yuan; Yang, Linlin; Knösel, Thomas; Huber, Otmar; Pacyna-Gengelbach, Manuela; Petersen, Iver

    2012-12-01

    Desmosomes are intercellular junctions that confer strong cell-cell adhesion. Altered expression of desmocollin 3 (DSC3), a member of the desmosomal cadherin family, was found in various cancers; however, its functional involvement in carcinogenesis has not yet been elucidated. Expression/localization of DSC3 was analyzed by real-time reverse transcription-PCR, western blotting, immunofluorescence and immunohistochemistry. Methylation status of DSC3 was examined by demethylation tests, methylation-specific PCR and bisulfite sequencing. It turned out that downregulation of DSC3 in lung cancer cells was associated with DNA hypermethylation. In primary lung tumors, DSC3 was a potential diagnostic marker for lung squamous cell carcinoma, and DSC3 DNA hypermethylation was correlated with poor clinical outcome. To investigate the effect of the tumor suppressor gene p53 on DSC3, transient transfection with a wild-type p53-expression vector was performed. Overexpression of p53 resulted in an increased expression of DSC3 in a DSC3-unmethylated lung cancer cell line H2170, but not in H1299, a DSC3-methylated cell line. However, combination of p53 transfection with demethylation agent 5-aza-2'-deoxycytidine treatment led to increased expression of DSC3 in H1299 cells. Furthermore, functional studies after stable transfection of a DSC3 expression vector showed that ectopic expression of DSC3 inhibited cell proliferation, anchorage-independent growth, migration, as well as invasion, and most interestingly led to reduced phosphorylation levels of extracellular signal-regulated kinase1/2. Taken together, our data suggested that DSC3 acts as a novel tumor suppressor gene through inhibition of epidermal growth factor receptor/extracellular signal-regulated kinase signaling in lung cancer cells. PMID:22941060

  5. Inhibition of Human Colon Cancer Growth by Antibody-Directed Human LAK Cells in SCID Mice

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Nakada, Tetsuya; Puisieux, Isabelle

    1993-03-01

    Advanced human colon cancer does not respond to lymphokine-activated killer (LAK) cells. In order to direct cytotoxic cells to the tumor, human LAK cells linked with antibodies to a tumor cell surface antigen were tested with established hepatic metastases in severe combined immunodeficient (SCID) mice. These cells had increased uptake into the tumor and suppression of tumor growth as compared with LAK cells alone, thereby improving the survival of tumor-bearing mice. Thus, tumor growth can be inhibited by targeted LAK cells, and SCID mice can be used to test the antitumor properties of human effector cells.

  6. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    SciTech Connect

    Tong, Qingyi; Qing, Yong; Wu, Yang; Hu, Xiaojuan; Jiang, Lei; Wu, Xiaohua

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  7. Inhibition of tumor cell proliferation and motility by fibroblasts is both contact and soluble factor dependent

    PubMed Central

    Alkasalias, Twana; Flaberg, Emilie; Kashuba, Vladimir; Alexeyenko, Andrey; Pavlova, Tatiana; Savchenko, Andrii; Szekely, Laszlo; Klein, George; Guven, Hayrettin

    2014-01-01

    Normal human and murine fibroblasts can inhibit proliferation of tumor cells when cocultured in vitro. The inhibitory capacity varies depending on the donor and the site of origin of the fibroblast. We showed previously that effective inhibition requires formation of a morphologically intact fibroblast monolayer before seeding of the tumor cells. Here we show that inhibition is extended to motility of tumor cells and we dissect the factors responsible for these inhibitory functions. We find that inhibition is due to two different sets of molecules: (i) the extracellular matrix (ECM) and other surface proteins of the fibroblasts, which are responsible for contact-dependent inhibition of tumor cell proliferation; and (ii) soluble factors secreted by fibroblasts when confronted with tumor cells (confronted conditioned media, CCM) contribute to inhibition of tumor cell proliferation and motility. However, conditioned media (CM) obtained from fibroblasts alone (nonconfronted conditioned media, NCM) did not inhibit tumor cell proliferation and motility. In addition, quantitative PCR (Q-PCR) data show up-regulation of proinflammatory genes. Moreover, comparison of CCM and NCM with an antibody array for 507 different soluble human proteins revealed differential expression of growth differentiation factor 15, dickkopf-related protein 1, endothelial-monocyte-activating polypeptide II, ectodysplasin A2, Galectin-3, chemokine (C-X-C motif) ligand 2, Nidogen1, urokinase, and matrix metalloproteinase 3. PMID:25404301

  8. Tetrahydro Iso-Alpha Acids and Hexahydro Iso-Alpha Acids from Hops Inhibit Proliferation of Human Hepatocarcinoma Cell Lines and Reduce Diethylnitrosamine Induced Liver Tumor Formation in Rats.

    PubMed

    Stärkel, Peter; De Saeger, Christine; Delire, Bénédicte; Magat, Julie; Jordan, Bénédicte; Konda, Veera R; Tripp, Mathew L; Borbath, Ivan

    2015-01-01

    Chronic inflammation plays important role in the pathogenesis of hepatocellular carcinoma (HCC). To date, no antiinflammatory approach has shown its efficacy in preventing HCC occurrence in humans. Because tetra- and hexahydro isoalpha acids (THIAA and HHIAA) from hops elicit antiinflammatory properties, we evaluated these compounds for antitumor effects in vitro in human HCC cell lines (HepG2, Hep3B, Huh7) and in vivo in diethylnitrosamine (DEN)-induced animal model of HCC. In human HCC cell lines, THIAA and HHIAA reduced cell proliferation and viability which was associated with the inhibition of the NF-κB-DNA binding and tumor necrosis factor α mRNA expression. Both compounds also inhibited phosphorylation of the mTOR effector p70S6 kinase without affecting ERK, AKT, JNK, and GSK3β phosphorylation or activator protein-1 activation. In DEN-treated rats, administration of THIAA and HHIAA in food reduced the tumor numbers and the expression of the cellular transformation marker glutathione-S-transferase in the liver. In conclusion, THIAA and HHIAA show antitumor properties in vitro in human HCC cell lines as well as in vivo in a chemically induced animal model of HCC. PMID:25941903

  9. Inhibition Effect of a Custom Peptide on Lung Tumors

    PubMed Central

    Huang, Chih-Yu; Huang, Hsuan-Yu; Forrest, Michael D.; Pan, Yun-Ru; Wu, Wei-Jen; Chen, Hueih-Min

    2014-01-01

    Cecropin B is a natural antimicrobial peptide and CB1a is a custom, engineered modification of it. In vitro, CB1a can kill lung cancer cells at concentrations that do not kill normal lung cells. Furthermore, in vitro, CB1a can disrupt cancer cells from adhering together to form tumor-like spheroids. Mice were xenografted with human lung cancer cells; CB1a could significantly inhibit the growth of tumors in this in vivo model. Docetaxel is a drug in present clinical use against lung cancers; it can have serious side effects because its toxicity is not sufficiently limited to cancer cells. In our studies in mice: CB1a is more toxic to cancer cells than docetaxel, but dramatically less toxic to healthy cells. PMID:25310698

  10. α-santalol inhibits the angiogenesis and growth of human prostate tumor growth by targeting vascular endothelial growth factor receptor 2-mediated AKT/mTOR/P70S6K signaling pathway

    PubMed Central

    2013-01-01

    Background VEGF receptor 2 (VEGFR2) inhibitors, as efficient antiangiogenesis agents, have been applied in the cancer treatment. However, recently, most of these anticancer drugs have some adverse effects. Discovery of novel VEGFR2 inhibitors as anticancer drug candidates is still needed. Methods We used α-santalol and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVECs) and Prostate tumor cells (PC-3 or LNCaP) in vitro. Tumor xenografts in nude mice were used to examine the in vivo activity of α-santalol. Results α-santalol significantly inhibits HUVEC proliferation, migration, invasion, and tube formation. Western blot analysis indicated that α-santalol inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including AKT, ERK, FAK, Src, mTOR, and pS6K in HUVEC, PC-3 and LNCaP cells. α-santalol treatment inhibited ex vivo and in vivo angiogenesis as evident by rat aortic and sponge implant angiogenesis assay. α-santalol significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model. The antiangiogenic effect by CD31 immunohistochemical staining indicated that α-santalol inhibited tumorigenesis by targeting angiogenesis. Furthermore, α-santalol reduced the cell viability and induced apoptosis in PC-3 cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Molecular docking simulation indicated that α-santalol form hydrogen bonds and aromatic interactions within the ATP-binding region of the VEGFR2 kinase unit. Conclusion α-santalol inhibits angiogenesis by targeting VEGFR2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy. PMID:24261856

  11. AIF inhibits tumor metastasis by protecting PTEN from oxidation

    PubMed Central

    Shen, Shao-Ming; Guo, Meng; Xiong, Zhong; Yu, Yun; Zhao, Xu-Yun; Zhang, Fei-Fei; Chen, Guo-Qiang

    2015-01-01

    Apoptosis-inducing factor (AIF) exerts dual roles on cell death and survival, but its substrates as a putative oxidoreductase and roles in tumorigenesis remain elusive. Here, we report that AIF physically interacts with and inhibits the oxidation of phosphatase and tensin homolog on chromosome ten (PTEN), a tumor suppressor susceptible for oxidation-mediated inactivation. More intriguingly, we also identify PTEN as a mitochondrial protein and the ectopic expression of mitochondrial targeting sequence-carrying PTEN almost completely inhibits Akt phosphorylation in PTEN-deficient cells. AIF knockdown causes oxidation-mediated inactivation of the lipid phosphatase activity of PTEN, with ensuing activation of Akt kinase, phosphorylation of the Akt substrate GSK-3β, and activation of β-catenin signaling in cancer cells. Through its effect on β-catenin signaling, AIF inhibits epithelial–mesenchymal transition (EMT) and metastasis of cancer cells in vitro and in orthotopically implanted xenografts. Accordingly, the expression of AIF is correlated with the survival of human patients with cancers of multiple origins. These results identify PTEN as the substrate of AIF oxidoreductase and reveal a novel function for AIF in controlling tumor metastasis. PMID:26415504

  12. Knockdown of astrocyte elevated gene-1 inhibits tumor growth and modifies microRNAs expression profiles in human colorectal cancer cells

    SciTech Connect

    Huang, Sujun; Wu, Binwen; Li, Dongfeng; Zhou, Weihong; Deng, Gang; Zhang, Kaijun; Li, Youjia

    2014-02-14

    Highlights: • AEG-1 expression in CRC cell lines and down-regulation or upregulation of AEG-1 in vitro. • Knockdown of AEG-1 inhibits cell proliferation, colony formation and invasion. • Upregulation of AEG-1 enhances proliferation, invasion and colony formation. • Knockdown of AEG-1 accumulates G0/G1-phase cells and promotes apoptosis in CRC cells. • AEG-1 knockdown increases 5-FU cytotoxicity. - Abstract: Astrocyte elevated gene-1 (AEG-1), upregulated in various types of malignancies including colorectal cancer (CRC), has been reported to be associated with the carcinogenesis. MicroRNAs (miRNAs) are widely involved in the initiation and progression of cancer. However, the functional significance of AEG-1 and the relationship between AEG-1 and microRNAs in human CRC remains unclear. The aim of this study was to investigate whether AEG-1 could serve as a potential therapeutic target of human CRC and its possible mechanism. We adopted a strategy of ectopic overexpression or RNA interference to upregulate or downregulate expression of AEG-1 in CRC models. Their phenotypic changes were analyzed by Western blot, MTT and transwell matrix penetration assays. MicroRNAs expression profiles were performed using microarray analysis followed by validation using qRT-PCR. Knockdown of AEG-1 could significantly inhibit colon cancer cell proliferation, colony formation, invasion and promotes apoptosis. Conversely, upregulation of AEG-1 could significantly enhance cell proliferation, invasion and reduced apoptisis. AEG-1 directly contributes to resistance to chemotherapeutic drug. Targeted downregulation of AEG-1 might improve the expression of miR-181a-2{sup ∗}, -193b and -193a, and inversely inhibit miR-31 and -9{sup ∗}. Targeted inhibition of AEG-1 can lead to modification of key elemental characteristics, such as miRNAs, which may become a potential effective therapeutic strategy for CRC.

  13. Vitamin E metabolite 13'-carboxychromanols inhibit pro-inflammatory enzymes, induce apoptosis and autophagy in human cancer cells by modulating sphingolipids and suppress colon tumor development in mice.

    PubMed

    Jang, Yumi; Park, Na-Young; Rostgaard-Hansen, Agnetha Linn; Huang, Jianjie; Jiang, Qing

    2016-06-01

    Vitamin E forms are substantially metabolized to various carboxychromanols including 13'-carboxychromanols (13'-COOHs) that are found at high levels in feces. However, there is limited knowledge about functions of these metabolites. Here we studied δT-13'-COOH and δTE-13'-COOH, which are metabolites of δ-tocopherol and δ-tocotrienol, respectively. δTE-13'-COOH is also a natural constituent of a traditional medicine Garcinia Kola. Both 13'-COOHs are much stronger than tocopherols in inhibition of pro-inflammatory and cancer promoting cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX), and in induction of apoptosis and autophagy in colon cancer cells. The anticancer effects by 13'-COOHs appeared to be partially independent of inhibition of COX-2/5-LOX. Using liquid chromatography tandem mass spectrometry, we found that 13'-COOHs increased intracellular dihydrosphingosine and dihydroceramides after short-time incubation in HCT-116 cells, and enhanced ceramides while decreased sphingomyelins during prolonged treatment. Modulation of sphingolipids by 13'-COOHs was observed prior to or coinciding with biochemical manifestation of cell death. Pharmaceutically blocking the increase of these sphingolipids partially counteracted 13'-COOH-induced cell death. Further, 13'-COOH inhibited dihydroceramide desaturase without affecting the protein expression. In agreement with these mechanistic findings, δTE-13'-COOH significantly suppressed the growth and multiplicity of colon tumor in mice. Our study demonstrates that 13'-COOHs have anti-inflammatory and anticancer activities, may contribute to in vivo anticancer effect of vitamin E forms and are promising novel cancer prevention agents. PMID:27016075

  14. Isoliquiritigenin Induces Apoptosis and Inhibits Xenograft Tumor Growth of Human Lung Cancer Cells by Targeting Both Wild Type and L858R/T790M Mutant EGFR*

    PubMed Central

    Jung, Sung Keun; Lee, Mee-Hyun; Lim, Do Young; Kim, Jong Eun; Singh, Puja; Lee, Sung-Young; Jeong, Chul-Ho; Lim, Tae-Gyu; Chen, Hanyong; Chi, Young-In; Kundu, Joydeb Kumar; Lee, Nam Hyouck; Lee, Charles C.; Cho, Yong-Yeon; Bode, Ann M.; Lee, Ki Won; Dong, Zigang

    2014-01-01

    Non-small-cell lung cancer (NSCLC) is associated with diverse genetic alterations including mutation of epidermal growth factor receptor (EGFR). Isoliquiritigenin (ILQ), a chalcone derivative, possesses anticancer activities. In the present study, we investigated the effects of ILQ on the growth of tyrosine kinase inhibitor (TKI)-sensitive and -resistant NSCLC cells and elucidated its underlying mechanisms. Treatment with ILQ inhibited growth and induced apoptosis in both TKI-sensitive and -resistant NSCLC cells. ILQ-induced apoptosis was associated with the cleavage of caspase-3 and poly-(ADP-ribose)-polymerase, increased expression of Bim, and reduced expression of Bcl-2. In vitro kinase assay results revealed that ILQ inhibited the catalytic activity of both wild type and double mutant (L858R/T790M) EGFR. Treatment with ILQ inhibited the anchorage-independent growth of NIH3T3 cells stably transfected with either wild type or double-mutant EGFR with or without EGF stimulation. ILQ also reduced the phosphorylation of Akt and ERK1/2 in both TKI-sensitive and -resistant NSCLC cells, and attenuated the kinase activity of Akt1 and ERK2 in vitro. ILQ directly interacted with both wild type and double-mutant EGFR in an ATP-competitive manner. A docking model study showed that ILQ formed two hydrogen bonds (Glu-762 and Met-793) with wild type EGFR and three hydrogen bonds (Lys-745, Met-793, and Asp-855) with mutant EGFR. ILQ attenuated the xenograft tumor growth of H1975 cells, which was associated with decreased expression of Ki-67 and diminished phosphorylation of Akt and ERK1/2. Taken together, ILQ suppresses NSCLC cell growth by directly targeting wild type or mutant EGFR. PMID:25368326

  15. Inhibition of IL-17A in tumor microenvironment augments cytotoxicity of tumor-infiltrating lymphocytes in tumor-bearing mice.

    PubMed

    Hayata, Keiji; Iwahashi, Makoto; Ojima, Toshiyasu; Katsuda, Masahiro; Iida, Takeshi; Nakamori, Mikihito; Ueda, Kentaro; Nakamura, Masaki; Miyazawa, Motoki; Tsuji, Toshiaki; Yamaue, Hiroki

    2013-01-01

    It remains controversial whether IL-17A promotes or inhibits cancer progression. We hypothesized that IL-17A that is locally produced in the tumor microenvironment has an important role in angiogenesis and tumor immunity. We investigated the effect of inhibiting IL-17A at tumor sites on tumor growth and on local and systemic anti-tumor immunity. MC38 or B16 cells were inoculated subcutaneously into mice, and intratumoral injection of an adenovirus vector expressing siRNA against the mouse IL-17A gene (Ad-si-IL-17) significantly inhibited tumor growth in both tumor models compared with control mice. Inhibition of IL-17A at tumor sites significantly suppressed CD31, MMP9, and VEGF expression in tumor tissue. The cytotoxic activity of CD8(+) T cells from tumor-infiltrating lymphocytes in mice treated with Ad-si-IL-17 was significantly higher than in control mice; however, CD8(+) T cells from splenocytes had similar activity levels. Suppression of IL-17A at tumor sites led to a Th1-dominant environment, and moreover, eliminated myeloid-derived suppressor cells and regulatory T cells at tumor sites but not in splenocytes. In conclusion, blockade of IL-17A at tumor sites helped suppress tumor growth by inhibiting angiogenesis as well as cytotoxic T lymphocytes activation at tumor sites. PMID:23372655

  16. Decorin: A Growth Factor Antagonist for Tumor Growth Inhibition

    PubMed Central

    Järvinen, Tero A. H.; Prince, Stuart

    2015-01-01

    Decorin (DCN) is the best characterized member of the extracellular small leucine-rich proteoglycan family present in connective tissues, typically in association with or “decorating” collagen fibrils. It has substantial interest to clinical medicine owing to its antifibrotic, anti-inflammatory, and anticancer effects. Studies on DCN knockout mice have established that a lack of DCN is permissive for tumor development and it is regarded as a tumor suppressor gene. A reduced expression or a total disappearance of DCN has been reported to take place in various forms of human cancers during tumor progression. Furthermore, when used as a therapeutic molecule, DCN has been shown to inhibit tumor progression and metastases in experimental cancer models. DCN affects the biology of various types of cancer by targeting a number of crucial signaling molecules involved in cell growth, survival, metastasis, and angiogenesis. The active sites for the neutralization of different growth factors all reside in different parts of the DCN molecule. An emerging concept that multiple proteases, especially those produced by inflammatory cells, are capable of cleaving DCN suggests that native DCN could be inactivated in a number of pathological inflammatory conditions. In this paper, we review the role of DCN in cancer. PMID:26697491

  17. Clodronate inhibits tumor angiogenesis in mouse models of ovarian cancer

    PubMed Central

    Reusser, Nicole M; Dalton, Heather J; Pradeep, Sunila; Gonzalez-Villasana, Vianey; Jennings, Nicholas B; Vasquez, Hernan G; Wen, Yunfei; Rupaimoole, Rajesh; Nagaraja, Archana S; Gharpure, Kshipra; Miyake, Takahito; Huang, Jie; Hu, Wei; Lopez-Berestein, Gabriel; Sood, Anil K

    2014-01-01

    Purpose Bisphosphonates have been shown to inhibit and deplete macrophages. The effects of bisphosphonates on other cell types in the tumor microenvironment have been insufficiently studied. Here, we sought to determine the effects of bisphosphonates on ovarian cancer angiogenesis and growth via their effect on the microenvironment, including macrophage, endothelial and tumor cell populations. Experimental Design Using in vitro and in vivo models, we examined the effects of clodronate on angiogenesis and macrophage density, and the overall effect of clodronate on tumor size and metastasis. Results Clodronate inhibited the secretion of pro-angiogenic cytokines by endothelial cells and macrophages, and decreased endothelial migration and capillary tube formation. In treated mice, clodronate significantly decreased tumor size, number of tumor nodules, number of tumor-associated macrophages and tumor capillary density. Conclusions Clodronate is a potent inhibitor of tumor angiogenesis. These results highlight clodronate as a potential therapeutic for cancer. PMID:24841852

  18. Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma.

    PubMed

    Xiao, Zhenyu; Chung, Haniee; Banan, Babak; Manning, Pamela T; Ott, Katherine C; Lin, Shin; Capoccia, Benjamin J; Subramanian, Vijay; Hiebsch, Ronald R; Upadhya, Gundumi A; Mohanakumar, Thalachallour; Frazier, William A; Lin, Yiing; Chapman, William C

    2015-05-01

    Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival times. The efficacy of current systemic therapies for HCC is limited. In this study, we used xenograft tumor models to investigate the use of antibodies that block CD47 and inhibit HCC tumor growth. Immunostaining of tumor tissue and HCC cell lines demonstrated CD47 over-expression in HCC as compared to normal hepatocytes. Macrophage phagocytosis of HCC cells was increased after treatment with CD47 antibodies (CD47mAbs) that block CD47 binding to SIRPα. Further, CD47 blockade inhibited tumor growth in both heterotopic and orthotopic models of HCC, and promoted the migration of macrophages into the tumor mass. Our results demonstrate that targeting CD47 by specific antibodies has potential immunotherapeutic efficacy in human HCC. PMID:25721088

  19. Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma

    PubMed Central

    Xiao, Zhenyu; Chung, Haniee; Banan, Babak; Manning, Pamela T.; Ott, Katherine C.; Lin, Shin; Capoccia, Benjamin J.; Subramanian, Vijay; Hiebsch, Ronald R.; Upadhya, Gundumi A.; Mohanakumar, Thalachallour; Frazier, William A.; Lin, Yiing; Chapman, William C.

    2016-01-01

    Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival times. The efficacy of current systemic therapies for HCC is limited. In this study, we used xenograft tumor models to investigate the use of antibodies that block CD47 and inhibit HCC tumor growth. Immunostaining of tumor tissue and HCC cell lines demonstrated CD47 over-expression in HCC as compared to normal hepatocytes. Macrophage phagocytosis of HCC cells was increased after treatment with CD47 antibodies (CD47mAbs) that block CD47 binding to SIRPα. Further, CD47 blockade inhibited tumor growth in both heterotopic and orthotopic models of HCC, and promoted the migration of macrophages into the tumor mass. Our results demonstrate that targeting CD47 by specific antibodies has potential immunotherapeutic efficacy in human HCC. PMID:25721088

  20. Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tumor necrosis factor-α and matrix metalloproteinase-13 in human chondrocytes

    PubMed Central

    Rasheed, Zafar; Anbazhagan, Arivarasu N; Akhtar, Nahid; Ramamurthy, Sangeetha; Voss, Frank R; Haqqi, Tariq M

    2009-01-01

    Introduction The major risk factor for osteoarthritis (OA) is aging, but the mechanisms underlying this risk are only partly understood. Age-related accumulation of advanced glycation end products (AGEs) can activate chondrocytes and induce the production of proinflammatory cytokines and matrix metalloproteinases (MMPs). In the present study, we examined the effect of epigallocatechin-3-gallate (EGCG) on AGE-modified-BSA (AGE-BSA)-induced activation and production of TNFα and MMP-13 in human OA chondrocytes. Methods Human chondrocytes were derived from OA cartilage by enzymatic digestion and stimulated with in vitro-generated AGE-BSA. Gene expression of TNFα and MMP-13 was measured by quantitative RT-PCR. TNFα protein in culture medium was determined using cytokine-specific ELISA. Western immunoblotting was used to analyze the MMP-13 production in the culture medium, phosphorylation of mitogen-activated protein kinases (MAPKs), and the activation of NF-κB. DNA binding activity of NF-κB p65 was determined using a highly sensitive and specific ELISA. IκB kinase (IKK) activity was determined using an in vitro kinase activity assay. MMP-13 activity in the culture medium was assayed by gelatin zymography. Results EGCG significantly decreased AGE-stimulated gene expression and production of TNFα and MMP-13 in human chondrocytes. The inhibitory effect of EGCG on the AGE-BSA-induced expression of TNFα and MMP-13 was mediated at least in part via suppression of p38-MAPK and JNK activation. In addition, EGCG inhibited the phosphorylating activity of IKKβ kinase in an in vitro activity assay and EGCG inhibited the AGE-mediated activation and DNA binding activity of NF-κB by suppressing the degradation of its inhibitory protein IκBα in the cytoplasm. Conclusions These novel pharmacological actions of EGCG on AGE-BSA-stimulated human OA chondrocytes provide new suggestions that EGCG or EGCG-derived compounds may inhibit cartilage degradation by suppressing AGE

  1. Xanthatin, a novel potent inhibitor of VEGFR2 signaling, inhibits angiogenesis and tumor growth in breast cancer cells

    PubMed Central

    Yu, Yao; Yu, Jing; Pei, Chong Gang; Li, Yun Yan; Tu, Ping; Gao, Gui Ping; Shao, Yi

    2015-01-01

    Anti-angiogenesis targeting vascular endothelial growth factor receptor 2 (VEGFR2) has emerged as an important tool for cancer treatment. In this study, we described a novel VEGFR2 inhibitor, xanthatin, which inhibits tumor angiogenesis and growth. The biochemical profiles of xanthatin were investigated using kinase assay, migration assay, tube formation, Matrigel plug assay, western blot, immunofluorescence and human tumor xenograft model. Xanthatin significantly inhibited growth, migration and tube formation of human umbilical vascular endothelial cell as well as inhibited vascular endothelial growth factor (VEGF)-stimulated angiogenesis. In addition, it inhibited VEGF-induced phosphorylation of VEGFR2 and its downstream signaling regulator. Moreover, xanthatin directly inhibit proliferation of breast cancer cells MDA-MB-231. Oral administration of xanthatin could markedly inhibit human tumor xenograft growth and decreased microvessel densities (MVD) in tumor sections. Taken together, these preclinical evaluations suggest that xanthatin inhibits angiogenesis and may be a promising anticancer drug candidate. PMID:26617743

  2. Clinically Relevant Doses of Candesartan Inhibit Growth of Prostate Tumor Xenografts In Vivo through Modulation of Tumor Angiogenesis

    PubMed Central

    Alhusban, Ahmed; Al-Azayzih, Ahmad; Goc, Anna; Gao, Fei; Fagan, Susan C.

    2014-01-01

    Angiotensin II receptor type 1 blockers (ARBs), widely used antihypertensive drugs, have also been investigated for their anticancer effects. The effect of ARBs on prostate cancer in experimental models compared with meta-analysis data from clinical trials is conflicting. Whereas this discrepancy might be due to the use of supratherapeutic doses of ARBs in cellular and animal models as compared with the clinical doses used in human trials, further investigation of the effects of clinical doses of ARBs on prostate cancer in experimental models is warranted. In the current study, we sought to determine the effects of candesartan on prostate cancer cellular function in vitro and tumor growth in vivo, and characterize the underlying mechanisms. Our analysis indicated that clinically relevant doses of candesartan significantly inhibited growth of PC3 cell tumor xenografts in mice. Interestingly, the same concentrations of candesartan actually promoted prostate cancer cellular function in vitro, through a modest but significant inhibition in apoptosis. Inhibition of tumor growth by candesartan was associated with a decrease in vascular endothelial growth factor (VEGF) expression in tumors and inhibition of tumor angiogenesis, but normalization of tumor vasculature. Although candesartan did not impair PC3 cell viability, it inhibited endothelial-barrier disruption by tumor-derived factors. Furthermore, candesartan significantly inhibited expression of VEGF in PC3 and DU145 cell lines independent of angiotensin II type 2 receptor, but potentially via angiotensin II type 1 receptor inhibition. Our findings clearly demonstrate the therapeutic potential of candesartan for prostate cancer and establish a link between ARBs, VEGF expression, and prostate tumor angiogenesis. PMID:24990940

  3. Pharmacological inhibition of p38 MAPK reduces tumor growth in patient-derived xenografts from colon tumors

    PubMed Central

    Papaioannou, Marilena; Lopez-Casas, Pedro Pablo; Llonch, Elisabet; Hidalgo, Manuel; Gorgoulis, Vassilis G.; Nebreda, Angel R.

    2015-01-01

    Colorectal cancer is a major health problem and the second cause of cancer related death in western countries. Signaling pathways that control tissue homeostasis are often deregulated during tumorigenesis and contribute to tumor development. Studies in mouse models have shown that the p38 MAPK pathway regulates homeostasis in colon epithelial cells but also plays an important role in colon tumor maintenance. In this study, we have investigated the role of p38 MAPK signaling in patient-derived xenografts (PDXs) from three different human colon tumors representing clinical heterogeneity and that recapitulate the human tumor conditions both at histological and molecular levels. We have found that PH797804, a chemical inhibitor of p38 MAPK, reduces tumor growth of the three PDXs, which correlates with impaired colon tumor cell proliferation and survival. The inhibition of p38 MAPK in PDXs results in downregulation of the IL-6/STAT3 signaling pathway, which is a key regulator of colon tumorigenesis. Our results show the importance of p38 MAPK in human colon tumor growth using a preclinical model, and support that inhibition of p38 MAPK signaling may have therapeutic interest for colon cancer treatment. PMID:25890501

  4. Human Cytomegalovirus Inhibits Erythropoietin Production

    PubMed Central

    Dzabic, Mensur; Bakker, Frank; Davoudi, Belghis; Jeffery, Hannah; Religa, Piotr; Bojakowski, Krzysztof; Yaiw, Koon-Chu; Rahbar, Afsar; Söderberg-Naucler, Cecilia

    2014-01-01

    Anemia is a feature of CKD and a complication of renal transplantation, often caused by impaired production of erythropoietin. The kidney is a target organ for human cytomegalovirus (hCMV) in such patients, but it is not known whether hCMV effects erythropoietin production. We found that kidneys from patients with CKD were positive for hCMV protein and that blood levels of hCMV IgG inversely correlated with red blood cell count. In mice, systemic murine cytomegalovirus infection decreased serum erythropoietin levels. In human erythropoietin-producing cells, hCMV inhibited hypoxia-induced expression of erythropoietin mRNA and protein. hCMV early gene expression was responsible, as ultraviolet-inactivated virus had no effect and valganciclovir treatment showed that late gene expression was nonessential. Hypoxia-induced gene transcription is controlled by the transcription factors hypoxia-inducible transcription factor (HIF)-1α and HIF2α, which are constitutively produced but stable only under low oxygen conditions. We found that hCMV inhibited constitutive production of HIF2α mRNA. HIF2α is thought to be the master regulator of erythropoietin transcription. Single-cell analysis revealed that nuclear accumulation of HIF2α was inhibited in hCMV-infected cells, and the extent of inhibition correlated with hCMV protein expression. Our findings suggest that renal hCMV infection could induce or exacerbate anemia in patients. PMID:24722450

  5. PTEN: Multiple Functions in Human Malignant Tumors

    PubMed Central

    Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Cesta Incani, Ursula; Del Curatolo, Anais; Inzerilli, Nicola; Nuzzo, Carmen M. A.; Vaccaro, Vanja; Vari, Sabrina; Cognetti, Francesco; Ciuffreda, Ludovica

    2015-01-01

    PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors. PMID:25763354

  6. INHIBITION OF INTERCELLULAR COMMUNICATION BETWEEN MOUSE HEPATOCYTES BY TUMOR PROMOTERS

    EPA Science Inventory

    Tumor promoters can inhibit gap junction-mediated intercellular communication in cultured cells. The authors evaluated the effects of tumor promoters on intercellular communication between B6C3F1 mouse hepatocytes in primary culture. Intercellular communication between donor and ...

  7. Fraxetin inhibits the induction of anti-Fas IgM, tumor necrosis factor-alpha and interleukin-1beta-mediated apoptosis by Fas pathway inhibition in human osteoblastic cell line MG-63.

    PubMed

    Kuo, Po-Lin; Huang, Yu-Ting; Chang, Cheng-Hsiung; Chang, Jiunn-Kae

    2006-07-01

    The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients with inflamed synovium, such as in rheumatoid arthritis (RA). By means of alkaline phosphatase (ALP) activity and osteocalcin ELISA assay, we have shown that fraxetin exhibits a significant induction of differentiation in the human osteoblast-like cell line MG-63. In addition, we also assessed whether fraxetin affects inflammatory cytokine-mediated apoptosis in osteoblast cells. TNF-alpha or IL-1beta enhance apoptotic DNA fragmentation in anti-Fas IgM-treated MG-63 cells by increasing Fas receptor expression. However, TNF-alpha or IL-1beta treatment alone does not induce apoptosis. Treatment of MG-63 cells with fraxetin not only inhibited anti-Fas IgM-induced apoptosis, but also blocked the synergetic effect of anti-Fas IgM with TNF-alpha or IL-1beta on cell death. The apoptotic inhibition of fraxetin is associated with inhibition of TNF-alpha and IL-1beta-mediated Fas expression and enhancement of FLIP expression, resulting in a decrease of caspase-8 and caspase-3 activation. These results indicate a potential use of fraxetin in preventing osteoporosis by inhibiting inflammatory cytokine-mediated apoptosis in osteoblast cells. PMID:16714221

  8. Suicide HSVtk gene delivery by neurotensin-polyplex nanoparticles via the bloodstream and GCV Treatment specifically inhibit the growth of human MDA-MB-231 triple negative breast cancer tumors xenografted in athymic mice.

    PubMed

    Castillo-Rodríguez, Rosa A; Arango-Rodríguez, Martha L; Escobedo, Lourdes; Hernandez-Baltazar, Daniel; Gompel, Anne; Forgez, Patricia; Martínez-Fong, Daniel

    2014-01-01

    The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55-60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier. PMID:24824754

  9. Suicide HSVtk Gene Delivery by Neurotensin-Polyplex Nanoparticles via the Bloodstream and GCV Treatment Specifically Inhibit the Growth of Human MDA-MB-231 Triple Negative Breast Cancer Tumors Xenografted in Athymic Mice

    PubMed Central

    Castillo-Rodríguez, Rosa A.; Arango-Rodríguez, Martha L.; Escobedo, Lourdes; Hernandez-Baltazar, Daniel; Gompel, Anne

    2014-01-01

    The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55–60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier. PMID:24824754

  10. X-ray sensitivity of human tumor cells in vitro

    SciTech Connect

    Weichselbaum, R.R.; Nove, J.; Little, J.B.

    1980-04-01

    Clonally-derived cells from ten human malignant tumors considered radiocurable (breast, neuroblastoma, medulloblastoma) or non-radiocurable (osteosarcoma, hypernephroma, glioblastoma, melanoma) were studied in cell culture and their in vitro x-ray survival curve parameters determined (anti n, D/sub 0/). There were no significant differences among the tumor cell lines suggesting that survival parameters in vitro do not explain differences in clinical radiocurability. Preliminary investigation with density inhibited human tumor cells indicate that such an approach may yield information regarding inherent cellular differences in radiocurability.

  11. Segetoside I, a plant-derived bisdesmosidic saponin, induces apoptosis in human hepatoma cells in vitro and inhibits tumor growth in vivo.

    PubMed

    Firempong, Caleb Kesse; Zhang, Hui Yun; Wang, Yan; Chen, Jingjing; Cao, Xia; Deng, Wenwen; Zhou, Jie; Wang, Qiang; Tong, Shan-Shan; Yu, Jiangnan; Xu, Ximing

    2016-08-01

    Segetoside I is a plant-derived bisdesmosidic saponin from Vaccaria segetalis (Neck) with reported anticancer activities. This development has raised an interest in the therapeutic potential of segetoside I. Here, we report the in vitro and in vivo antitumor activities of segetoside I against some selected cancer cell lines (HepG2, human hepatoma; H22, mouse hepatoma; MCF-7, breast cancer; U251, gliocoma; BGC, HGC & SGC, gastric cancinoma; Lovo-1,colon cancer). MTT bioassay analysis showed that HepG2 cells were the most sensitive to segetoside I compared with other cancer cell lines, with lower toxicity in healthy mouse embryonic fibroblast cells. Segetoside I pretreatment of HepG2 resulted in apoptotic induction, dose-dependent DNA fragmentation, inhibition of cell migration, up-regulation of Bax and down-regulation of Bcl-2, which indicated that an apoptotic signaling event could have been initiated. The segetoside I also suppressed hepato-tumour growth in mice with virtually no cytotoxicity and prolonged animal survival, making it a strong oncology drug agent. These findings showed that segetoside I exhibited its antitumor activity via apoptotic induction and significantly support the possible application of the antitumor agent as a potential chemotherapeutic candidate worthy of further investigations. PMID:27180010

  12. Nanoelectroablation of Murine Tumors Triggers a CD8-Dependent Inhibition of Secondary Tumor Growth

    PubMed Central

    Nuccitelli, Richard; Berridge, Jon Casey; Mallon, Zachary; Kreis, Mark; Athos, Brian; Nuccitelli, Pamela

    2015-01-01

    We have used both a rat orthotopic hepatocellular carcinoma model and a mouse allograft tumor model to study liver tumor ablation with nanosecond pulsed electric fields (nsPEF). We confirm that nsPEF treatment triggers apoptosis in rat liver tumor cells as indicated by the appearance of cleaved caspase 3 and 9 within two hours after treatment. Furthermore we provide evidence that nsPEF treatment leads to the translocation of calreticulin (CRT) to the cell surface which is considered a damage-associated molecular pattern indicative of immunogenic cell death. We provide direct evidence that nanoelectroablation triggers a CD8-dependent inhibition of secondary tumor growth by comparing the growth rate of secondary orthotopic liver tumors in nsPEF-treated rats with that in nsPEF-treated rats depleted of CD8+ cytotoxic T-cells. The growth of these secondary tumors was severely inhibited as compared to tumor growth in CD8-depleated rats, with their average size only 3% of the primary tumor size after the same one-week growth period. In contrast, when we depleted CD8+ T-cells the second tumor grew more robustly, reaching 54% of the size of the first tumor. In addition, we demonstrate with immunohistochemistry that CD8+ T-cells are highly enriched in the secondary tumors exhibiting slow growth. We also showed that vaccinating mice with nsPEF-treated isogenic tumor cells stimulates an immune response that inhibits the growth of secondary tumors in a CD8+-dependent manner. We conclude that nanoelectroablation triggers the production of CD8+ cytotoxic T-cells resulting in the inhibition of secondary tumor growth. PMID:26231031

  13. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells

    PubMed Central

    Maeng, Yong-Sun; Lee, Rina; Lee, Boram; Choi, Seung-il; Kim, Eung Kweon

    2016-01-01

    Metastasis is the main cause of mortality in cancer patients. Although there are many anti-cancer drugs targeting tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression; in particular, lymphangiogenesis is pivotal for metastasis in cancer. Here we report that lithium inhibits colon cancer metastasis by blocking lymphangiogenesis. Lithium reduces the expression of transforming growth factor-β-induced protein (TGFBIp) in colon cancer cells by inhibiting Smad3 phosphorylation via GSK3β inactivation. Moreover, lithium inhibits lymphatic endothelial cell migration, which is increased upon TGFBIp expression in tumor cells. Lithium had no significant effect on SW620 tumor growth in vitro and in vivo; however, it inhibited lymphangiogenesis in tumors. In tumor xenografts model, lithium was found to prevent metastasis to the lungs, liver, and lymph nodes by inhibiting TGFBIp-induced tumor lymphangiogenesis. Collectively, our findings demonstrate a novel role of lithium in the inhibition of colon cancer metastasis by blocking TGFBIp expression, and thereby TGFBIp-induced lymphangiogenesis, in primary tumors. PMID:26857144

  14. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells.

    PubMed

    Maeng, Yong-Sun; Lee, Rina; Lee, Boram; Choi, Seung-Il; Kim, Eung Kweon

    2016-01-01

    Metastasis is the main cause of mortality in cancer patients. Although there are many anti-cancer drugs targeting tumor growth, anti-metastatic agents are rarely developed. Angiogenesis and lymphangiogenesis are crucial for cancer progression; in particular, lymphangiogenesis is pivotal for metastasis in cancer. Here we report that lithium inhibits colon cancer metastasis by blocking lymphangiogenesis. Lithium reduces the expression of transforming growth factor-β-induced protein (TGFBIp) in colon cancer cells by inhibiting Smad3 phosphorylation via GSK3β inactivation. Moreover, lithium inhibits lymphatic endothelial cell migration, which is increased upon TGFBIp expression in tumor cells. Lithium had no significant effect on SW620 tumor growth in vitro and in vivo; however, it inhibited lymphangiogenesis in tumors. In tumor xenografts model, lithium was found to prevent metastasis to the lungs, liver, and lymph nodes by inhibiting TGFBIp-induced tumor lymphangiogenesis. Collectively, our findings demonstrate a novel role of lithium in the inhibition of colon cancer metastasis by blocking TGFBIp expression, and thereby TGFBIp-induced lymphangiogenesis, in primary tumors. PMID:26857144

  15. Genistein suppresses FLT4 and inhibits human colorectal cancer metastasis.

    PubMed

    Xiao, Xiao; Liu, Zhiguo; Wang, Rui; Wang, Jiayin; Zhang, Song; Cai, Xiqiang; Wu, Kaichun; Bergan, Raymond C; Xu, Li; Fan, Daiming

    2015-02-20

    Dietary consumption of genistein, found in soy, has been associated with a potentially protective role in colorectal cancer (CRC) development and progression. Herein we demonstrate that genistein will inhibit human CRC cell invasion and migration, that it does so at non-cytotoxic concentrations and we demonstrate this in multiple human CRC cell lines. After orthotopic implantation of human CRC tumors into mice, oral genistein did not inhibit tumor growth, but did inhibit distant metastasis formation, and was non-toxic to mice. Using a qPCR array, we screened for genistein-induced changes in gene expression, followed by Western blot confirmation, demonstrating that genistein downregulated matrix metalloproteinase 2 and Fms-Related Tyrosine Kinase 4 (FLT4; vascular endothelial growth factor receptor 3). After demonstrating that genistein suppressed neo-angiogenesis in mouse tumors, we examined FLT4 expression in primary CRC and adjacent normal colonic tissue from 60 human subjects, demonstrating that increased FLT4 significantly correlates with increased stage and decreased survival. In summary, we demonstrate for the first time that genistein inhibits human CRC metastasis at dietary, non-toxic, doses. FLT4 is identified as a marker of metastatic disease, and as a response marker for small molecule therapeutics that inhibit CRC metastasis. PMID:25605009

  16. Polyphenols in brewed green tea inhibit prostate tumor xenograft growth by localizing to the tumor and decreasing oxidative stress and angiogenesis.

    PubMed

    Henning, Susanne M; Wang, Piwen; Said, Jonathan; Magyar, Clara; Castor, Brandon; Doan, Ngan; Tosity, Carmen; Moro, Aune; Gao, Kun; Li, Luyi; Heber, David

    2012-11-01

    It has been demonstrated in various animal models that the oral administration of green tea (GT) extracts in drinking water can inhibit tumor growth, but the effects of brewed GT on factors promoting tumor growth, including oxidant damage of DNA and protein, angiogenesis and DNA methylation, have not been tested in an animal model. To explore these potential mechanisms, brewed GT was administered instead of drinking water to male severe combined immunodeficiency (SCID) mice with androgen-dependent human LAPC4 prostate cancer cell subcutaneous xenografts. Tumor volume was decreased significantly in mice consuming GT, and tumor size was significantly correlated with GT polyphenol (GTP) content in tumor tissue. There was a significant reduction in hypoxia-inducible factor 1-alpha and vascular endothelial growth factor protein expression. GT consumption significantly reduced oxidative DNA and protein damage in tumor tissue as determined by 8-hydroxydeoxyguanosine/deoxyguanosine ratio and protein carbonyl assay, respectively. Methylation is known to inhibit antioxidative enzymes such as glutathione S-transferase pi to permit reactive oxygen species promotion of tumor growth. GT inhibited tumor 5-cytosine DNA methyltransferase 1 mRNA and protein expression significantly, which may contribute to the inhibition of tumor growth by reactivation of antioxidative enzymes. This study advances our understanding of tumor growth inhibition by brewed GT in an animal model by demonstrating tissue localization of GTPs in correlation with inhibition of tumor growth. Our results suggest that the inhibition of tumor growth is due to GTP-mediated inhibition of oxidative stress and angiogenesis in the LAPC4 xenograft prostate tumor in SCID mice. PMID:22405694

  17. The retinoblastoma gene in human pituitary tumors

    SciTech Connect

    Cryns, V.L.; Arnold, A.; Alexander, J.M.; Klibanski, A. )

    1993-09-01

    Functional inactivation of the retinoblastoma (RB) tumor suppressor gene is important in the pathogenesis of many human tumors. Recently, the frequent occurrence of pituitary tumors was reported in mice genetically engineered to have one defective RB allele, a genetic background analogous to that of patients with familial retinoblastoma. The molecular pathogenesis of human pituitary tumors is largely unknown, and the potential role of RB gene inactivation in these neoplasms has not been examined. Consequently, the authors studied 20 human pituitary tumors (12 clinically nonfunctioning tumors, 4 somatotroph adenomas, 2 prolactinomas, and 2 corticotrophy adenomas) for tumor-specific allelic loss of the RB gene using a highly informative polymorphic locus within the gene. Control leukocyte DNA samples from 18 of these 20 patients were heterozygous at this locus, permitting genetic evaluation of their paired tumor specimens. In contrast to the pituitary tumors in the mouse model, none of these 18 human tumors exhibited RB allelic loss. These findings indicate that RB gene inactivation probably does not play an important role in the pathogenesis of common types of human pituitary tumors. 24 refs., 1 fig.

  18. CBL enhances breast tumor formation by inhibiting tumor suppressive activity of TGF-β signaling.

    PubMed

    Kang, J M; Park, S; Kim, S J; Hong, H Y; Jeong, J; Kim, H-S; Kim, S-J

    2012-12-13

    Casitas B-lineage lymphoma (CBL) protein family functions as multifunctional adaptor proteins and E3 ubiquitin ligases that are implicated as regulators of signaling in various cell types. Recent discovery revealed mutations of proto-oncogenic CBL in the linker region and RING finger domain in human acute myeloid neoplasm, and these transforming mutations induced carcinogenesis. However, the adaptor function of CBL mediated signaling pathway during tumorigenesis has not been well characterized. Here, we show that CBL is highly expressed in breast cancer cells and significantly inhibits transforming growth factor-β (TGF-β) tumor suppressive activity. Knockdown of CBL expression resulted in the increased expression of TGF-β target genes, PAI-I and CDK inhibitors such as p15(INK4b) and p21(Cip1). Furthermore, we demonstrate that CBL is frequently overexpressed in human breast cancer tissues, and the loss of CBL decreases the tumorigenic activity of breast cancer cells in vivo. CBL directly binds to Smad3 through its proline-rich motif, thereby preventing Smad3 from interacting with Smad4 and blocking nuclear translocation of Smad3. CBL-b, one of CBL protein family, also interacted with Smad3 and knockdown of both CBL and CBL-b further enhanced TGF-β transcriptional activity. Our findings provide evidence for a previously undescribed mechanism by which oncogenic CBL can block TGF-β tumor suppressor activity. PMID:22310290

  19. Ex-vivo in-vitro inhibition of lipopolysaccharide stimulated tumor necrosis factor-alpha and interleukin-1 beta secretion in human whole blood by extractum urticae dioicae foliorum.

    PubMed

    Obertreis, B; Ruttkowski, T; Teucher, T; Behnke, B; Schmitz, H

    1996-04-01

    An extract of Urtica dioica folium (IDS 23, Rheuma-Hek), monographed positively for adjuvant therapy of rheumatic diseases and with known effects in partial inhibition of prostaglandin and leukotriene synthesis in vitro, was investigated with respect to effects of the extract on the lipopolysaccharide (LPS) stimulated secretion of proinflammatory cytokines in human whole blood of healthy volunteers. In the assay system used, LPS stimulated human whole blood showed a straight increase of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) secretion reaching maximum concentrations within 24 h following a plateau and slight decrease up to 65 h, respectively. The concentrations of these cytokines was strongly positively correlated with the number of monocytes/macrophages of each volunteer. TNF-alpha and IL-1 beta concentration after LPS stimulation was significantly reduced by simultaneously given IDS 23 in a strictly dose dependent manner. At time 24 h these cytokine concentrations were reduced by 50.8% and 99.7%, respectively, using the highest test IDS 23 assay concentration of 5 mg/ml (p < 0.001). After 65 h the corresponding inhibition was 38.9% and 99.9%, respectively (p < 0.001). On the other hand IDS 23 showed no inhibition but stimulated IL-6 secretion in absence of LPS alone. Simultaneously given LPS and IDS 23 resulted in no further increase. In contrast to described effects on arachidonic acid cascade in vitro, tested Urtica dioica phenol carbon acid derivates and flavonoides such as caffeic malic acid, caffeic acid, chlorogenic acid, quercetin and rutin did not influence LPS stimulated TNF-alpha, IL-1 beta and IL-6 secretion in tested concentrations up to 5 x 10(-5) mol/l. These further findings on the pharmacological mechanism of action of Urticae dioica folia may explain the positive effects of this extract in the treatment of rheumatic diseases. PMID:8740085

  20. cdk4 Deficiency Inhibits Skin Tumor Development but Does Not Affect Normal Keratinocyte Proliferation

    PubMed Central

    Rodriguez-Puebla, Marcelo L.; Miliani de Marval, Paula L.; LaCava, Margaret; Moons, David S.; Kiyokawa, Hiroaki; Conti, Claudio J.

    2002-01-01

    Most human tumors have mutations that result in deregulation of the cdk4/cyclin-Ink4-Rb pathway. Overexpression of D-type cyclins or cdk4 and inactivation of Ink4 inhibitors are common in human tumors. Conversely, lack of cyclin D1 expression results in significant reduction in mouse skin and mammary tumor development. However, complete elimination of tumor development was not observed in these models, suggesting that other cyclin/cdk complexes play an important role in tumorigenesis. Here we described the effects of cdk4 deficiency on mouse skin proliferation and tumor development. Cdk4 deficiency resulted in a 98% reduction in the number of tumors generated through the two-stage carcinogenesis model. The absence of cdk4 did not affect normal keratinocyte proliferation and both wild-type and cdk4 knockout epidermis are equally affected after topical treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), resulting in epidermal hyperplasia. In similar fashion, cdk4 knockout keratinocytes proliferated well in an in vivo model of wound-induced proliferation. Biochemical studies in mouse epidermis showed that cdk6 activity increased twofold in cdk4-deficient mice compared to wild-type siblings. These results suggest that therapeutic approaches to inhibit cdk4 activity could provide a target to inhibit tumor development with minimal or no effect in normal tissue. PMID:12163365

  1. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature.

    PubMed

    Sills, A K; Williams, J I; Tyler, B M; Epstein, D S; Sipos, E P; Davis, J D; McLane, M P; Pitchford, S; Cheshire, K; Gannon, F H; Kinney, W A; Chao, T L; Donowitz, M; Laterra, J; Zasloff, M; Brem, H

    1998-07-01

    The novel aminosterol, squalamine, inhibits angiogenesis and tumor growth in multiple animal models. This effect is mediated, at least in part, by blocking mitogen-induced proliferation and migration of endothelial cells, thus preventing neovascularization of the tumor. Squalamine has no observable effect on unstimulated endothelial cells, is not directly cytotoxic to tumor cells, does not alter mitogen production by tumor cells, and has no obvious effects on the growth of newborn vertebrates. Squalamine was also found to have remarkable effects on the primitive vascular bed of the chick chorioallantoic membrane, which has striking similarities to tumor capillaries. Squalamine may thus be well suited for treatment of tumors and other diseases characterized by neovascularization in humans. PMID:9661892

  2. Salmonella overcomes tumor immune tolerance by inhibition of tumor indoleamine 2, 3-dioxygenase 1 expression.

    PubMed

    Kuan, Yu-Diao; Lee, Che-Hsin

    2016-01-01

    Over the past decades, Salmonella has been proven capable of inhibiting tumor growth. It can specifically target tumors and due to its facultative anaerobic property, can be more penetrative than other drug therapies. However, the molecular mechanism by which Salmonella inhibits tumor growth is still incompletely known. The antitumor therapeutic effect mediated by Salmonella is associated with an inflammatory immune response at the tumor site and a T cell-dependent immune response. Many tumors have been proven to have a high expression of indoleamine 2, 3-dioxygenase 1 (IDO), which is a rate-limiting enzyme that catalyzes tryptophan to kynurenine, thus causing immune tolerance within the tumor microenvironment. With decreased expression of IDO, increased immune response can be observed, which might be helpful when developing cancer immunotherapy. The expression of IDO was decreased after tumor cells were infected with Salmonella. In addition, Western blot analysis showed that the expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and phospho-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells were decreased after Salmonella infection. In conclusion, our results indicate that Salmonella inhibits IDO expression and plays a crucial role in anti-tumor therapy, which might be a promising strategy combined with other cancer treatments. PMID:26517244

  3. Vascular tumors have increased p70 S6-kinase activation and are inhibited by topical rapamycin.

    PubMed

    Du, Wa; Gerald, Damien; Perruzzi, Carole A; Rodriguez-Waitkus, Paul; Enayati, Ladan; Krishnan, Bhuvaneswari; Edmonds, Joseph; Hochman, Marcelo L; Lev, Dina C; Phung, Thuy L

    2013-10-01

    Vascular tumors are endothelial cell neoplasms whose cellular and molecular mechanisms, leading to tumor formation, are poorly understood, and current therapies have limited efficacy with significant side effects. We have investigated mechanistic (mammalian) target of rapamycin (mTOR) signaling in benign and malignant vascular tumors, and the effects of mTOR kinase inhibitor as a potential therapy for these lesions. Human vascular tumors (infantile hemangioma and angiosarcoma) were analyzed by immunohistochemical stains and western blot for the phosphorylation of p70 S6-kinase (S6K) and S6 ribosomal protein (S6), which are activated downstream of mTOR complex-1 (mTORC1). To assess the function of S6K, tumor cells with genetic knockdown of S6K were analyzed for cell proliferation and migration. The effects of topical rapamycin, an mTOR inhibitor, on mTORC1 and mTOR complex-2 (mTORC2) activities, as well as on tumor growth and migration, were determined. Vascular tumors showed increased activation of S6K and S6. Genetic knockdown of S6K resulted in reduced tumor cell proliferation and migration. Rapamycin fully inhibited mTORC1 and partially inhibited mTORC2 activities, including the phosphorylation of Akt (serine 473) and PKCα, in vascular tumor cells. Rapamycin significantly reduced vascular tumor growth in vitro and in vivo. As a potential localized therapy for cutaneous vascular tumors, topically applied rapamycin effectively reduced tumor growth with limited systemic drug absorption. These findings reveal the importance of mTOR signaling pathways in benign and malignant vascular tumors. The mTOR pathway is an important therapeutic target in vascular tumors, and topical mTOR inhibitors may provide an alternative and well-tolerated therapy for the treatment of cutaneous vascular lesions. PMID:23938603

  4. Morelloflavone, a biflavonoid, inhibits tumor angiogenesis by targeting Rho GTPases and ERK signaling pathways

    PubMed Central

    Pang, Xiufeng; Yi, Tingfang; Yi, Zhengfang; Cho, Sung Gook; Qu, Weijing; Pinkaew, Decha; Fujise, Ken; Liu, Mingyao

    2009-01-01

    Morelloflavone, a biflavonoid extracted from Garcinia dulcis, has shown anti-oxidative, antiviral, and anti-inflammatory properties. However, the function and the mechanism of this compound in cancer treatment and tumor angiogenesis have not been elucidated to date. In this study, we postulated that morelloflavone might have the ability to inhibit angiogenesis, the pivotal step in tumor growth, invasiveness and metastasis. We demonstrated that morelloflavone could inhibit vascular endothelial growth factor (VEGF)-induced cell proliferation, migration, invasion, and capillary-like tube formation of primary cultured human umbilical endothelial cells (HUVECs) in a dose-dependent manner. Morelloflavone effectively inhibited microvessel sprouting of endothelial cells in the rat aortic ring assay and the formation of new blood microvessels induced by VEGF in the mouse Matrigel plug assay. Furthermore, morelloflavone inhibited tumor growth and tumor angiogenesis of prostate cancer cells (PC-3) in xenograft mouse tumor model in vivo, suggesting that morelloflavone inhibited tumorigenesis by targeting angiogenesis. To understand the underlying mechanism of morelloflavone on the inhibitory effect of tumor growth and angiogenesis, we demonstrated that morelloflavone could inhibit the activation of both RhoA and Rac1 GTPases, but have little effect on the activation of Cdc42 GTPase. Additionally, morelloflavone inhibited the phosphorylation and activation of Raf/MEK/ERK pathway kinases without affecting VEGFR2 activity. Together, our results indicate that morelloflavone exerts anti-angiogenic action by targeting the activation of Rho-GTPases and ERK signaling pathways. These findings are the first to reveal the novel functions of morelloflavone in tumor angiogenesis and its molecular basis for the anticancer action. PMID:19147565

  5. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    PubMed

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease. PMID:14517400

  6. Bicarbonate Increases Tumor pH and Inhibits Spontaneous Metastases

    PubMed Central

    Robey, Ian F.; Baggett, Brenda K.; Kirkpatrick, Nathaniel D.; Roe, Denise J.; Dosescu, Julie; Sloane, Bonnie F.; Hashim, Arig Ibrahim; Morse, David L.; Raghunand, Natarajan; Gatenby, Robert A.; Gillies, Robert J.

    2010-01-01

    The external pH of solid tumors is acidic as a consequence of increased metabolism of glucose and poor perfusion. Acid pH has been shown to stimulate tumor cell invasion and metastasis in vitro and in cells before tail vein injection in vivo. The present study investigates whether inhibition of this tumor acidity will reduce the incidence of in vivo metastases. Here, we show that oral NaHCO3 selectively increased the pH of tumors and reduced the formation of spontaneous metastases in mouse models of metastatic breast cancer. This treatment regimen was shown to significantly increase the extracellular pH, but not the intracellular pH, of tumors by 31P magnetic resonance spectroscopy and the export of acid from growing tumors by fluorescence microscopy of tumors grown in window chambers. NaHCO3 therapy also reduced the rate of lymph node involvement, yet did not affect the levels of circulating tumor cells, suggesting that reduced organ metastases were not due to increased intravasation. In contrast, NaHCO3 therapy significantly reduced the formation of hepatic metastases following intrasplenic injection, suggesting that it did inhibit extravasation and colonization. In tail vein injections of alternative cancer models, bicarbonate had mixed results, inhibiting the formation of metastases from PC3M prostate cancer cells, but not those of B16 melanoma. Although the mechanism of this therapy is not known with certainty, low pH was shown to increase the release of active cathepsin B, an important matrix remodeling protease. PMID:19276390

  7. Temporal mTOR inhibition protects Fbxw7-deficient mice from radiation-induced tumor development

    PubMed Central

    Liu, Yueyong; Huang, Yurong; Wang, Zeran; Huang, Yong; Li, Xiaohua; Louie, Alexander; Wei, Guangwei; Mao, Jian-Hua

    2013-01-01

    FBXW7 acts as a tumor suppressor in numerous types of human cancers through ubiquitination of different oncoproteins including mTOR. However, how the mutation/loss of Fbxw7 results in tumor development remains largely unknown. Here we report that downregulation of mTOR by radiation is Fbxw7-dependent, and short-term mTOR inhibition by rapamycin after exposure to radiation significantly postpones tumor development in Fbxw7/p53 double heterozygous (Fbxw7+/−p53+/−) mice but not in p53 single heterozygous (p53+/−) mice. Tumor latency of rapamycin treated Fbxw7+/−p53+/− mice is remarkably similar to those of p53+/− mice while placebo treated Fbxw7+/−p53+/− mice develop tumor significantly earlier than placebo treated p53+/− mice. Furthermore, we surprisingly find that, although temporal treatment of rapamycin is given at a young age, the inhibition of mTOR activity sustainably remains in tumors. These results indicate that inhibition of mTOR signaling pathway suppresses the contribution of Fbxw7 loss toward tumor development. PMID:23454868

  8. DT-13 inhibits cancer cell migration by regulating NMIIA indirectly in the tumor microenvironment.

    PubMed

    Du, Hongzhi; Huang, Yue; Hou, Xiaoyin; Yu, Xiaowen; Lin, Sensen; Wei, Xiaohui; Li, Ruiming; Khan, Ghulam Jilany; Yuan, Shengtao; Sun, Li

    2016-08-01

    Tumor metastasis is one of the main causes of mortality among patients with malignant tumors. Previous studies concerning tumor metastasis have merely focused on the cancer cells in the tumor. However, an increasing number of studies show that the tumor microenvironment plays a vital role in the progression of cancer, particularly in tumor metastasis. Since fibroblasts and adipocytes are two of the most representative mesenchymal cells in the tumor microenvironment, we established a hypoxia-induced cancer-associated fibroblast (CAF) model and a chemically induced adipocyte model to reveal the effect of the microenvironment on cancer development. In these models, the conditioned medium from the tumor microenvironment was found to significantly promote the migration of human lung cancer cell line 95D and regulate the expression of non-muscle myosin IIA (NMIIA), which is consistent with results in the published literature. Then, we confirmed the hypothesis that the tumor microenvironment can regulate NMIIA in cancer cells and facilitate migration by using the non-muscle myosin II inhibitor, blebbistatin. Thus, this is the first report that the tumor microenvironment can promote cancer cell migration by regulating the expression of NMIIA. Our present data also indicated that DT-13, the saponin monomer 13 of dwarf lilyturf tuber, inhibited cancer cell migration in the tumor microenvironment model. Further results showed that DT-13 exhibited anti-migratory effects by inhibiting the c-raf/ERK1/2 signaling pathway. Consequently, our research confirmed that DT-13 significantly inhibited 95D cell migration in vitro, indicating the potential anti-metastatic effect of DT-13 on lung cancer and the scientific basis for drug development. PMID:27350172

  9. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    SciTech Connect

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-12-12

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells.

  10. Infrared Spectra of Human Breast Tumor Tissue and Experimental Animal Tumors

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Belkov, M. V.; Skornyakov, I. V.; Pekhnyo, V. I.; Kozachkova, A. N.; Tsarik, H. V.; Kutsenko, I. P.; Sharykina, N. I.; Butra, V. A.

    2015-01-01

    We have used Fourier transform IR spectroscopy methods to conduct comparative studies of human breast tumors and sarcoma 180 tumor grafted into mice. The IR spectral parameters used to identify tumor tissue in mice with the sarcoma 180 strain proved to be identical to the parameters for human breast tissue in cancer. In the presence of a malignant tumor in humans, the most intense C=O vibrational bands in the protein molecules are observed in the interval 1710-1680 cm-1. For a benign tumor, in the IR spectra of breast tissue the intense bands are located in the interval 1670-1650 cm-1. We spectroscopically monitored the diagnosis and the chemotherapy process using the model of sarcoma 180 in mice. As the therapeutic drugs, we used synthesized coordination compounds based on palladium complexes with diphosphonic acid derivatives. We demonstrate the promising potential of palladium complexes with zoledronic acid as an effective cytostatic. In therapy using a palladium complex with zoledronic acid, the effect of tumor growth inhibition is accompanied by a change in its spectral characteristics. The parameters of the IR spectra for tumor tissue after treatment are close to those of the IR spectra for healthy tissue.

  11. CA-1H, a novel oxazole bearing analogue of combretastatin A-4, disrupts the tumor vasculatures and inhibits the tumor growth via inhibiting tubulin polymerization.

    PubMed

    Han, Fuguo; Wang, Peng; Zhang, Wei; Li, Jing; Zhang, Qun; Qi, Xin; Liu, Ming

    2016-05-01

    Vascular disrupting agents destroy established tumor vasculatures selectively, and have achieved encouraging antitumor activity in both pre-clinical and clinical trials. In the present study, we reported the vascular disruption and antitumor effects of CA-1H and its prodrug CA-1HP, oxazole bearing analogues of combretastatin A-4 (CA4). CA-1H was a tighter binder of tubulin than CA4 with the same binding site to chochcine and CA4, and inhibited tubulin polymerization both in cell free system and in human umbilical vein endothelial cells (HUVECs). Furthermore, CA-1H significantly disrupted the microtubulin skeleton in proliferating HUVECs rather than the quiescent ones, damaged the HUVECs-preformed tubes markedly, and lead to necrosis in tumor tissues in NCI-H1975 xenograft mice. Continuous administration for 19 days, CA-1HP could inhibit the NCI-H1975 xenograft tumor growth significantly without obvious weight loss and normal tissue damage, in addition, CA-1HP also inhibited the tumor growth in H22 hepatocellular carcinoma bearing mice; and combination CA-1HP with cisplatin showed more potent antitumor activity than used alone. Taken together, our present investigation suggested that CA-1H was a potential vascular disrupting agent for further development of antitumor drugs. PMID:27133052

  12. Marked inhibition of tumor growth in a malignant glioma tumor model by a novel synthetic matrix metalloproteinase inhibitor AG3340.

    PubMed

    Price, A; Shi, Q; Morris, D; Wilcox, M E; Brasher, P M; Rewcastle, N B; Shalinsky, D; Zou, H; Appelt, K; Johnston, R N; Yong, V W; Edwards, D; Forsyth, P

    1999-04-01

    Synthetic matrix metalloproteinase (MMP) inhibitors have activity against a variety of tumors in preclinical models but have not been studied in gliomas. We determined the effect of AG3340, a novel synthetic MMP inhibitor with Ki values against gelatinases in the low picomolar range, on the growth of a human malignant glioma cell line (U87) in SCID-NOD mice. Mice were injected s.c. with U87 cells. Tumors were allowed to grow to a size of approximately 0.5 x 0.5 cm (after about 3 weeks), and the mice were randomized to receive either: (a) 100 mg/kg AG3340 in vehicle; or (b) vehicle control (0.5% carboxymethyl cellulose, 0.1% pluronic F68), both given daily i.p. Tumor area was measured twice weekly, and animals were sacrificed when moribund, or earlier if premorbid histology was examined. In vivo inhibition of tumor growth was profound, with AG3340 decreasing tumor size by 78% compared with controls after 31 days (when controls were sacrificed; P < 0.01, Wilcoxon test). Control animals survived 31 days after the i.p. injections began, and AG3340 mice survived 71 days, representing a >2-fold increase in survival associated with tumor growth delay. Histological examination found that AG3340-treated tumors were smaller, had lower rates of proliferation, and significantly less invasion than control-treated tumors. Hepatic or pulmonary metastases were not seen in either group. In a separate experiment, the tumors were smaller and sampled after a shorter duration of treatment; the changes in proliferation were more marked and occurred earlier than differences in tumor invasion between the two groups. Furthermore, in vitro cell growth was not inhibited at AG3340 concentrations of <1 mM. AG3340 plasma concentrations in vivo, 1 h after administration, ranged from 67 to 365 nM. Thus, AG3340 produced a profound inhibition of glioma tumor growth and invasion. AG3340 markedly increased survival in this in vivo glioma model. Treatment with AG3340 may be potentially useful in

  13. Inhibition of endothelial Cdk5 reduces tumor growth by promoting non-productive angiogenesis

    PubMed Central

    Merk, Henriette; Zhang, Siwei; Lehr, Thorsten; Müller, Christoph; Ulrich, Melanie; Bibb, James A.; Adams, Ralf H.; Bracher, Franz; Zahler, Stefan; Vollmar, Angelika M.; Liebl, Johanna

    2016-01-01

    Therapeutic success of VEGF-based anti-angiogenic tumor therapy is limited due to resistance. Thus, new strategies for anti-angiogenic cancer therapy based on novel targets are urgently required. Our previous in vitro work suggested that small molecule Cdk5 inhibitors affect angiogenic processes such as endothelial migration and proliferation. Moreover, we recently uncovered a substantial role of Cdk5 in the development of lymphatic vessels. Here we pin down the in vivo impact of endothelial Cdk5 inhibition in angiogenesis and elucidate the underlying mechanism in order to judge the potential of Cdk5 as a novel anti-angiogenic and anti-cancer target. By the use of endothelial-specific Cdk5 knockout mouse models and various endothelial and tumor cell based assays including human tumor xenograft models, we show that endothelial-specific knockdown of Cdk5 results in excessive but non-productive angiogenesis during development but also in tumors, which subsequently leads to inhibition of tumor growth. As Cdk5 inhibition disrupted Notch function by reducing the generation of the active Notch intracellular domain (NICD) and Cdk5 modulates Notch-dependent endothelial cell proliferation and sprouting, we propose that the Dll4/Notch driven angiogenic signaling hub is an important and promising mechanistic target of Cdk5. In fact, Cdk5 inhibition can sensitize tumors to conventional anti-angiogenic treatment as shown in tumor xenograft models. In summary our data set the stage for Cdk5 as a drugable target to inhibit Notch-driven angiogenesis condensing the view that Cdk5 is a promising target for cancer therapy. PMID:26755662

  14. 3,4-Dihydroxybenzaldehyde Derived from Prunus mume Seed Inhibits Oxidative Stress and Enhances Estradiol Secretion in Human Ovarian Granulosa Tumor Cells.

    PubMed

    Kono, Ryohei; Nomura, Sachiko; Okuno, Yoshiharu; Nakamura, Misa; Maeno, Akihiro; Kagiya, Tomoko; Tokuda, Akihiko; Inada, Ken-Ichi; Matsuno, Akira; Utsunomiya, Tomoko; Utsunomiya, Hirotoshi

    2014-06-28

    Granulosa cells form ovarian follicles and play important roles in the growth and maturation of oocytes. The protection of granulosa cells from cellular injury caused by oxidative stress is an effective therapy for female infertility. We here investigated an effective bioactive compound derived from Prunus mume seed extract that protects granulosa cells from hydrogen peroxide (H2O2)-induced apoptosis. We detected the bioactive compound, 3,4-dihydroxybenzaldehyde (3,4-DHBA), via bioactivity-guided isolation and found that it inhibited the H2O2-induced apoptosis of granulosa cells. We also showed that 3,4-DHBA promoted estradiol secretion in granulosa cells and enhanced the mRNA expression levels of steroidogenic factor 1, a promoter of key steroidogenic enzymes. These results suggest that P. mume seed extract may have clinical potential for the prevention and treatment of female infertility. PMID:25320407

  15. Cytogenetics of human brain tumors

    SciTech Connect

    Finkernagel, S.W.; Kletz, T.; Day-Salvatore, D.L.

    1994-09-01

    Chromosome studies of 55 brain tumors, including meningiomas, gliomas, astrocyomas and pituatary adenomas, were performed. Primary and first passage cultures were successfully obtained in 75% of these samples with an average of 18 G-banded metaphases analyzed per tumor. 44% of all the brain tumors showed numerical and or structural abnormalities. 46% of the primary and 38% of the first passage cultures showed similar numerical gains/losses and complex karyotypic changes. The most frequent numerical abnormalities (n {ge} 5) included loss of chromosomes 10, 22, and Y. The structural abnormalities most often seen involved 1p, 2, 5, 7, 17q and 19. This is an ongoing study which will attempt to correlate tumor type with specific karyotypic changes and to see if any of the observed chromosomal abnormalities provide prognostic indicators.

  16. Somatostatin receptor-1 induces cell cycle arrest and inhibits tumor growth in pancreatic cancer.

    PubMed

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E

    2008-11-01

    Functional somatostatin receptors (SSTR) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G(0)/G(1) growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n = 5, P < 0.05, Student's t-test), and inhibited tumor weight by 69% and 47% (n = 5, P < 0.05, Student's t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  17. Somatostatin Receptor-1 Induces Cell Cycle Arrest and Inhibits Tumor Growth in Pancreatic Cancer

    PubMed Central

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F. Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E.

    2010-01-01

    Functional somatostatin receptors (SSTRs) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G0/G1 growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n=5, p<0.05, t-test), and inhibited tumor weight by 69% and 47%, (n=5, p<0.05, t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  18. Lactic Acid Bacteria Inducing a Weak Interleukin-12 and Tumor Necrosis Factor Alpha Response in Human Dendritic Cells Inhibit Strongly Stimulating Lactic Acid Bacteria but Act Synergistically with Gram-Negative Bacteria

    PubMed Central

    Zeuthen, Louise Hjerrild; Christensen, Hanne Risager; Frøkiær, Hanne

    2006-01-01

    The development and maintenance of immune homeostasis indispensably depend on signals from the gut flora. Lactic acid bacteria (LAB), which are gram-positive (G+) organisms, are plausible significant players and have received much attention. Gram-negative (G−) commensals, such as members of the family Enterobacteriaceae, may, however, be immunomodulators that are as important as G+ organisms but tend to be overlooked. Dendritic cells (DCs) are crucial immune regulators, and therefore, the present study aimed at investigating differences among human gut flora-derived LAB and G− bacteria in their patterns of DC polarization. Human monocyte-derived DCs were exposed to UV-killed bacteria, and cytokine secretion and surface marker expression were analyzed. Profound differences in the DC polarization patterns were found among the strains. While strains of LAB varied greatly in their capacity to induce interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-α), G− strains were consistently weak IL-12 and TNF-α inducers. All strains induced significant amounts of IL-10, but G− bacteria were far more potent IL-10 inducers than LAB. Interestingly, we found that when weakly IL-12- and TNF-α-inducing LAB and strong IL-12- and TNF-α-inducing LAB were mixed, the weakly IL-12- and TNF-α-inducing LAB efficiently inhibited otherwise strong IL-12- and TNF-α-inducing LAB, yet when weakly IL-12- and TNF-α-inducing LAB were mixed with G− bacteria, they synergistically induced IL-12 and TNF-α. Furthermore, strong IL-12- and TNF-α-inducing LAB efficiently up-regulated surface markers (CD40, CD83, CD86, and HLA-DR), which were inhibited by weakly IL-12- and TNF-α-inducing LAB. All G− bacteria potently up-regulated surface markers; however, these markers were not inhibited by weakly IL-12- and TNF-α-inducing LAB. These much divergent DC stimulation patterns among intestinal bacteria, which encompass both antagonistic and synergistic relationships, support the

  19. Synergistic tumor suppression by combined inhibition of telomerase and CDKN1A

    PubMed Central

    Gupta, Romi; Dong, Yuying; Solomon, Peter D.; Wettersten, Hiromi I.; Cheng, Christopher J.; Min, JIn-Na; Henson, Jeremy; Dogra, Shaillay Kumar; Hwang, Sung H.; Hammock, Bruce D.; Zhu, Lihua J.; Reddel, Roger R.; Saltzman, W. Mark; Weiss, Robert H.; Chang, Sandy; Green, Michael R.; Wajapeyee, Narendra

    2014-01-01

    Tumor suppressor p53 plays an important role in mediating growth inhibition upon telomere dysfunction. Here, we show that loss of the p53 target gene cyclin-dependent kinase inhibitor 1A (CDKN1A, also known as p21WAF1/CIP1) increases apoptosis induction following telomerase inhibition in a variety of cancer cell lines and mouse xenografts. This effect is highly specific to p21, as loss of other checkpoint proteins and CDK inhibitors did not affect apoptosis. In telomerase, inhibited cell loss of p21 leads to E2F1- and p53-mediated transcriptional activation of p53-upregulated modulator of apoptosis, resulting in increased apoptosis. Combined genetic or pharmacological inhibition of telomerase and p21 synergistically suppresses tumor growth. Furthermore, we demonstrate that simultaneous inhibition of telomerase and p21 also suppresses growth of tumors containing mutant p53 following pharmacological restoration of p53 activity. Collectively, our results establish that inactivation of p21 leads to increased apoptosis upon telomerase inhibition and thus identify a genetic vulnerability that can be exploited to treat many human cancers containing either wild-type or mutant p53. PMID:25024194

  20. Drugs Which Inhibit Osteoclast Function Suppress Tumor Growth through Calcium Reduction in Bone

    PubMed Central

    Li, Xin; Liao, Jinhui; Park, Serk In; Koh, Amy J; Sadler, William D; Pienta, Kenneth J; Rosol, Thomas J; McCauley, Laurie K

    2011-01-01

    Prostate carcinoma frequently metastasizes to bone where the microenvironment facilitates its growth. Inhibition of bone resorption is effective in reducing tumor burden and bone destruction in prostate cancer. However, whether drugs that inhibit osteoclast function inhibit tumor growth independent of inhibition of bone resorption is unclear. Calcium is released during bone resorption and the calcium sensing receptor is an important regulator of cancer cell proliferation. The goal of this investigation was to elucidate the role of calcium released during bone resorption and to determine the impact of drugs which suppress bone resorption on tumor growth in bone. To compare tumor growth in a skeletal versus non-skeletal site, equal numbers of canine prostate cancer cells expressing luciferase (ACE-1luc) prostate cancer cells were inoculated into a simple collagen matrix, neonatal mouse vertebrae (vossicles), human de-proteinized bone, or a mineralized collagen matrix. Implants were placed subcutaneously into athymic mice. Luciferase activity was used to track tumor growth weekly and at one month tumors were dissected for histologic analysis. Luciferase activity and tumor size were greater in vossicles, de-proteinized bone and mineralized collagen matrix versus non-mineralized collagen implants. The human osteoblastic prostate carcinoma cell line C4-2b also grew better in a mineral rich environment with a greater proliferation of C4-2b cells reflected by Ki-67 staining. Zoledronic acid (ZA), a bisphosphonate, and recombinant OPG-Fc, a RANKL inhibitor, were administered to mice bearing vertebral implants (vossicles) containing ACE-1 osteoblastic prostate cancer cells. Vossicles or collagen matrices were seeded with ACE-1luc cells subcutaneously in athymic mice (2 vossicles, 2 collagen implants/mouse). Mice received ZA (5μg/mouse, twice/week), (OPG-Fc at 10mg/kg, 3 times/week) or vehicle, and luciferase activity was measured weekly. Histologic analysis of the tumors

  1. Ozone selectively inhibits growth of human cancer cells

    SciTech Connect

    Sweet, F.; Kao, M.S.; Lee, S.C.; Hagar, W.L.; Sweet, W.E.

    1980-08-01

    The growth of human cancer cells from lung, breast, and uterine tumors was selectively inhibited in a dose-dependent manner by ozone at 0.3 to 0.8 part per million of ozone in ambient air during 8 days of culture. Human lung diploid fibroblasts served as noncancerous control cells. The presence of ozone at 0.3 to 0.5 part per million inhibited cancer cell growth 40 and 60 percent, respectively. The noncancerous lung cells were unaffected at these levels. Exposure to ozone at 0.8 part per million inhibited cancer cell growth more than 90 percent and control cell growth less than 50 percent. Evidently, the mechanisms for defense against ozone damage are impaired in human cancer cells.

  2. Low-molecular-weight fractions of Alcalase hydrolyzed egg ovomucin extract exert anti-inflammatory activity in human dermal fibroblasts through the inhibition of tumor necrosis factor-mediated nuclear factor κB pathway.

    PubMed

    Sun, Xiaohong; Chakrabarti, Subhadeep; Fang, Jun; Yin, Yulong; Wu, Jianping

    2016-07-01

    Ovomucin is a mucin-like protein from egg white with a variety of biological functions. We hypothesized that ovomucin-derived peptides might exert anti-inflammatory activity. The specific objectives were to test the anti-inflammatory activities of different ovomucin hydrolysates and its various fractions in human dermal fibroblasts, and to understand the possible molecular mechanisms. Three ovomucin hydrolysates were prepared and desalted; only the desalted Alcalase hydrolysate showed anti-inflammatory activity. Desalting of ovomucin hydrolysate enriched the proportion of low-molecular-weight (MW) peptides. Indeed, ultrafiltration of this hydrolysate displayed comparable anti-inflammatory activity in dermal fibroblasts, indicating the responsible role of low-MW bioactive peptides in exerting the beneficial biological function. The anti-inflammatory activity of low-MW peptides was regulated through the inhibition of tumor necrosis factor-mediated nuclear factor κ-light-chain-enhancer of activated B cells activity. Our study demonstrated that both peptide composition and MW distribution play important roles in anti-inflammatory activity. The low-MW fractions prepared from ovomucin Alcalase hydrolysate may have potential applications for maintenance of dermal health and treatment of skin diseases. PMID:27333955

  3. Downregulation of tetrahydrobiopterin inhibits tumor angiogenesis in BALB/c-nu mice with hepatocellular carcinoma

    PubMed Central

    Dai, Youguo; Cui, Jin; Gan, Ping; Li, Weiming

    2016-01-01

    Hepatocellular carcinoma (HCC) is a highly vascular tumor, and treatment options for patients of advanced-stage are limited. Nitric oxide (NO), which is derived from endothelial nitric oxide synthase (eNOS), provides crucial signals for angiogenesis in the tumor microenvironment. Tetrahydrobiopterin (BH4) is an essential cofactor eNOS and represents a critical determinant of NO production. To examine whether treatment of 2,4-diamino-6-hydroxypyrimidine (DAHP) inhibits angiogenesis of HCC, BALB/c-nu mice were injected with HepG-2 cells with DAHP. Supplemental DAHP treatment decreased K-ras mRNA transcripts, inhibition of phosphorylation of eNOS and Akt, inhibition of guanosine triphosphate cyclohydrolase (GTPCH), and decreased significantly NO synthesis, and then inhibited angiogenesis, compared with the results observed in the saline group. Histopathology demonstrated angiogenesis and tumor formation were significantly inhibited in HCC. DAHP downregulates GTPCH protein expression, corresponding to decreased levels of BH4 and the contents of NO. In addition, DAHP downregulates eNOS and Akt protein expression, corresponding to decreased eNOS phosphorylation at Ser1177 and Akt phosphorylation, compared with the saline control. We suggest that DAHP, recognized as a specific competitive inhibitor of GTPCH, can decrease tumor BH4 and NO by the inhibition of the wild-type Ras-PI3K/Akt pathway, and then inhibiting angiogenesis, and may provide a novel and promising way to target BH4 synthetic pathways to inhibit angiogenesis and to control potential progression of HCC. Whether DAHP has a therapeutic potential will require more direct testing in humans. PMID:27279530

  4. Inhibition of apoptosis as a mechanism of tumor promotion.

    PubMed

    Wright, S C; Zhong, J; Larrick, J W

    1994-06-01

    Recent evidence supports the concept that tumor growth in vivo depends on evasion of normal homeostatic control mechanisms that operate through induction of cell death by apoptosis. This study tested the hypothesis that a common property shared by known or suspected tumor promoters is the ability to block the process of apoptosis. A total of 10 tumor promoters were tested and all were found to inhibit DNA fragmentation and cell death of 7 different cell lines triggered into apoptosis by diverse agents. Resistance to apoptosis could be induced rapidly (within 1 h) by treating with relatively high concentrations of promoters. However, low physiological concentrations of promoters could also induce complete resistance to apoptosis after prolonged exposure (5-15 days of culture). Like tumor promotion in vivo, promoter-induced resistance to apoptosis was reversible after culturing in the absence of promoter. These findings provide new insight into the mechanism of tumor promotion and suggest a novel in vitro screening assay to detect new tumor-promoting agents in the environment. PMID:8005393

  5. BmKCT toxin inhibits glioma proliferation and tumor metastasis.

    PubMed

    Fan, Shaozhong; Sun, Zhengbo; Jiang, Dahe; Dai, Chao; Ma, Yibao; Zhao, Zhenhuan; Liu, Hui; Wu, Yingliang; Cao, Zhijian; Li, Wenxin

    2010-05-28

    Malignant gliomas are the most common primary brain tumors associated with significant morbidity and mortality. How to target the tumor in situ, and inhibit tumor cell proliferation and invasion is the key for therapy. Gliomas express a glioma-specific chloride ion channel that is sensitive to toxins including BmKCT. In the current study, the inhibitory effect of BmKCT on glioma growth was observed in vivo using the glioma/SD rat model. Furthermore, BmKCT prevented the metastasis of glioma cells in vivo. Moreover, biodistribution experiments with (l3l)I-labeled or Cy5.5-conjugated BmKCT revealed that BmKCT selectively targeted the glioma in situ. Our data suggest that BmKCT could be exploited as a potential therapeutic for glioma diagnosis and therapy. PMID:19906483

  6. 2-Methoxycinnamaldehyde inhibits tumor angiogenesis by suppressing Tie2 activation.

    PubMed

    Yamakawa, Daishi; Kidoya, Hiroyasu; Sakimoto, Susumu; Jia, Weizhen; Takakura, Nobuyuki

    2011-11-11

    Blood vessels are mainly composed of intraluminal endothelial cells (ECs) and mural cells adhering to the ECs on their basal side. Immature blood vessels lacking mural cells are leaky; thus, the process of mural cell adhesion to ECs is indispensable for stability of the vessels during physiological angiogenesis. However, in the tumor microenvironment, although some blood vessels are well-matured, the majority is immature. Because mural cell adhesion to ECs also has a marked anti-apoptotic effect, angiogenesis inhibitors that destroy immature blood vessels may not affect mature vessels showing more resistance to apoptosis. Activation of Tie2 receptor tyrosine kinase expressed in ECs mediates pro-angiogenic effects via the induction of EC migration but also facilitates vessel maturation via the promotion of cell adhesion between mural cells and ECs. Therefore, inhibition of Tie2 has the advantage of completely inhibiting angiogenesis. Here, we isolated a novel small molecule Tie2 kinase inhibitor, identified as 2-methoxycinnamaldehyde (2-MCA). We found that 2-MCA inhibits both sprouting angiogenesis and maturation of blood vessels, resulting in inhibition of tumor growth. Our results suggest a potent clinical benefit of disrupting these two using Tie2 inhibitors. PMID:22033407

  7. Kalkitoxin Inhibits Angiogenesis, Disrupts Cellular Hypoxic Signaling, and Blocks Mitochondrial Electron Transport in Tumor Cells

    PubMed Central

    Morgan, J. Brian; Liu, Yang; Coothankandaswamy, Veena; Mahdi, Fakhri; Jekabsons, Mika B.; Gerwick, William H.; Valeriote, Frederick A.; Zhou, Yu-Dong; Nagle, Dale G.

    2015-01-01

    The biologically active lipopeptide kalkitoxin was previously isolated from the marine cyanobacterium Moorea producens (Lyngbya majuscula). Kalkitoxin exhibited N-methyl-d-aspartate (NMDA)-mediated neurotoxicity and acted as an inhibitory ligand for voltage-sensitive sodium channels in cultured rat cerebellar granule neurons. Subsequent studies revealed that kalkitoxin generated a delayed form of colon tumor cell cytotoxicity in 7-day clonogenic cell survival assays. Cell line- and exposure time-dependent cytostatic/cytotoxic effects were previously observed with mitochondria-targeted inhibitors of hypoxia-inducible factor-1 (HIF-1). The transcription factor HIF-1 functions as a key regulator of oxygen homeostasis. Therefore, we investigated the ability of kalkitoxin to inhibit hypoxic signaling in human tumor cell lines. Kalkitoxin potently and selectively inhibited hypoxia-induced activation of HIF-1 in T47D breast tumor cells (IC50 5.6 nM). Mechanistic studies revealed that kalkitoxin inhibits HIF-1 activation by suppressing mitochondrial oxygen consumption at electron transport chain (ETC) complex I (NADH-ubiquinone oxidoreductase). Further studies indicate that kalkitoxin targets tumor angiogenesis by blocking the induction of angiogenic factors (i.e., VEGF) in tumor cells. PMID:25803180

  8. Inhibition of PAI-1 Limits Tumor Angiogenesis Regardless of Angiogenic Stimuli in Malignant Pleural Mesothelioma.

    PubMed

    Takayama, Yusuke; Hattori, Noboru; Hamada, Hironobu; Masuda, Takeshi; Omori, Keitaro; Akita, Shin; Iwamoto, Hiroshi; Fujitaka, Kazunori; Kohno, Nobuoki

    2016-06-01

    Malignant pleural mesothelioma (MPM) is an aggressive malignant tumor that secretes various angiogenic factors. The main inhibitor of plasminogen activators, PAI-1 (SERPINE1), has been implicated in tumor progression and angiogenesis, and high PAI-1 expression has been associated with poor prognosis in MPM patients. In this study, we examined the antiangiogenic effects of PAI-1 inhibition in MPM. We administered the PAI-1 inhibitor, SK-216, to orthotopic mouse models in which MPM cells expressing high levels of VEGF (VEGFA) or bFGF (FGF2) were intrapleurally transplanted. SK-216 administration reduced tumor weights and the degree of angiogenesis in intrapleural tumors, irrespective of their angiogenic expression profiles. In addition, a combination of SK-216 and the chemotherapeutic agent cisplatin significantly reduced tumor weights compared with monotherapy, prolonging the survival of animals compared with cisplatin treatment alone. Furthermore, SK-216 inhibited migration and tube formation of cultured human umbilical vein endothelial cells induced by various angiogenic factors known to be secreted by MPM. These findings suggest that PAI-1 inactivation by SK-216 may represent a general strategy for inhibiting angiogenesis, including for the treatment of MPM. Cancer Res; 76(11); 3285-94. ©2016 AACR. PMID:27197170

  9. Inhibition of DNA methylation promotes breast tumor sensitivity to netrin-1 interference.

    PubMed

    Grandin, Mélodie; Mathot, Pauline; Devailly, Guillaume; Bidet, Yannick; Ghantous, Akram; Favrot, Clementine; Gibert, Benjamin; Gadot, Nicolas; Puisieux, Isabelle; Herceg, Zdenko; Delcros, Jean-Guy; Bernet, Agnès; Mehlen, Patrick; Dante, Robert

    2016-01-01

    In a number of human cancers, NTN1 upregulation inhibits apoptosis induced by its so-called dependence receptors DCC and UNC5H, thus promoting tumor progression. In other cancers however, the selective inhibition of this dependence receptor death pathway relies on the silencing of pro-apoptotic effector proteins. We show here that a substantial fraction of human breast tumors exhibits simultaneous DNA methylation-dependent loss of expression of NTN1 and of DAPK1, a serine threonine kinase known to transduce the netrin-1 dependence receptor pro-apoptotic pathway. The inhibition of DNA methylation by drugs such as decitabine restores the expression of both NTN1 and DAPK1 in netrin-1-low cancer cells. Furthermore, a combination of decitabine with NTN1 silencing strategies or with an anti-netrin-1 neutralizing antibody potentiates tumor cell death and efficiently blocks tumor growth in different animal models. Thus, combining DNA methylation inhibitors with netrin-1 neutralizing agents may be a valuable strategy for combating cancer. PMID:27378792

  10. Inhibition of Ovarian Tumor Growth by Targeting the HU177 Cryptic Collagen Epitope.

    PubMed

    Caron, Jennifer M; Ames, Jacquelyn J; Contois, Liangru; Liebes, Leonard; Friesel, Robert; Muggia, Franco; Vary, Calvin P H; Oxburgh, Leif; Brooks, Peter C

    2016-06-01

    Evidence suggests that stromal cells play critical roles in tumor growth. Uncovering new mechanisms that control stromal cell behavior and their accumulation within tumors may lead to development of more effective treatments. We provide evidence that the HU177 cryptic collagen epitope is selectively generated within human ovarian carcinomas and this collagen epitope plays a role in SKOV-3 ovarian tumor growth in vivo. The ability of the HU177 epitope to regulate SKOV-3 tumor growth depends in part on its ability to modulate stromal cell behavior because targeting this epitope inhibited angiogenesis and, surprisingly, the accumulation of α-smooth muscle actin-expressing stromal cells. Integrin α10β1 can serve as a receptor for the HU177 epitope in α-smooth muscle actin-expressing stromal cells and subsequently regulates Erk-dependent migration. These findings are consistent with a mechanism by which the generation of the HU177 collagen epitope provides a previously unrecognized α10β1 ligand that selectively governs angiogenesis and the accumulation of stromal cells, which in turn secrete protumorigenic factors that contribute to ovarian tumor growth. Our findings provide a new mechanistic understanding into the roles by which the HU177 epitope regulates ovarian tumor growth and provide new insight into the clinical results from a phase 1 human clinical study of the monoclonal antibody D93/TRC093 in patients with advanced malignant tumors. PMID:27216148

  11. Tumor necrosis factor-alpha inhibits stem cell factor-induced proliferation of human bone marrow progenitor cells in vitro. Role of p55 and p75 tumor necrosis factor receptors.

    PubMed Central

    Rusten, L S; Smeland, E B; Jacobsen, F W; Lien, E; Lesslauer, W; Loetscher, H; Dubois, C M; Jacobsen, S E

    1994-01-01

    Stem cell factor (SCF), a key regulator of hematopoiesis, potently synergizes with a number of hematopoietic growth factors. However, little is known about growth factors capable of inhibiting the actions of SCF. TNF-alpha has been shown to act as a bidirectional regulator of myeloid cell proliferation and differentiation. This study was designed to examine interactions between TNF-alpha and SCF. Here, we demonstrate that TNF-alpha potently and directly inhibits SCF-stimulated proliferation of CD34+ hematopoietic progenitor cells. Furthermore, TNF-alpha blocked all colony formation stimulated by SCF in combination with granulocyte colony-stimulating factor (CSF) or CSF-1. The synergistic effect of SCF observed in combination with GM-CSF or IL-3 was also inhibited by TNF-alpha, resulting in colony numbers similar to those obtained in the absence of SCF. These effects of TNF-alpha were mediated through the p55 TNF receptor, whereas little or no inhibition was signaled through the p75 TNF receptor. Finally, TNF-alpha downregulated c-kit cell-surface expression on CD34+ bone marrow cells, and this was predominantly a p55 TNF receptor-mediated event as well. Images PMID:7518828

  12. Sesquiterpenoid Lactones in Tanacetum huronense Inhibit Human Glioblastoma Cell Proliferation.

    PubMed

    Dissanayake, Amila A; Bejcek, Bruce E; Zhang, Chuan-Rui; Nair, Muraleedharan G

    2016-05-01

    Tanacetum huronense (Lake Huron tansy), which is native to the upper Midwest region of USA and Canada, was examined for the presence of anticancer compounds using an in vitro human tumor cell proliferation inhibition assay, with glioblastoma derived cell line U-87 MG. Bioassay-directed purification of the ethyl acetate extract of the aerial portion of this plant identified six active sesquiterpenoid lactones (1-6). Among these, compounds 5 and 6 are new structural analogs. One of the most abundant isolates, tanacin (4), exhibited the greatest inhibition with an IC50 value of 4.5 μg/mL. PMID:27319121

  13. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth.

    PubMed

    Sano, Michael B; Arena, Christopher B; Bittleman, Katelyn R; DeWitt, Matthew R; Cho, Hyung J; Szot, Christopher S; Saur, Dieter; Cissell, James M; Robertson, John; Lee, Yong W; Davalos, Rafael V

    2015-01-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models. PMID:26459930

  14. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth

    NASA Astrophysics Data System (ADS)

    Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; Dewitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.

    2015-10-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models.

  15. Bursts of Bipolar Microsecond Pulses Inhibit Tumor Growth

    PubMed Central

    Sano, Michael B.; Arena, Christopher B.; Bittleman, Katelyn R.; DeWitt, Matthew R.; Cho, Hyung J.; Szot, Christopher S.; Saur, Dieter; Cissell, James M.; Robertson, John; Lee, Yong W.; Davalos, Rafael V.

    2015-01-01

    Irreversible electroporation (IRE) is an emerging focal therapy which is demonstrating utility in the treatment of unresectable tumors where thermal ablation techniques are contraindicated. IRE uses ultra-short duration, high-intensity monopolar pulsed electric fields to permanently disrupt cell membranes within a well-defined volume. Though preliminary clinical results for IRE are promising, implementing IRE can be challenging due to the heterogeneous nature of tumor tissue and the unintended induction of muscle contractions. High-frequency IRE (H-FIRE), a new treatment modality which replaces the monopolar IRE pulses with a burst of bipolar pulses, has the potential to resolve these clinical challenges. We explored the pulse-duration space between 250 ns and 100 μs and determined the lethal electric field intensity for specific H-FIRE protocols using a 3D tumor mimic. Murine tumors were exposed to 120 bursts, each energized for 100 μs, containing individual pulses 1, 2, or 5 μs in duration. Tumor growth was significantly inhibited and all protocols were able to achieve complete regressions. The H-FIRE protocol substantially reduces muscle contractions and the therapy can be delivered without the need for a neuromuscular blockade. This work shows the potential for H-FIRE to be used as a focal therapy and merits its investigation in larger pre-clinical models. PMID:26459930

  16. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate

    PubMed Central

    Goldman, Corey K.; Kendall, Richard L.; Cabrera, Gustavo; Soroceanu, Liliana; Heike, Yuji; Gillespie, G. Yancey; Siegal, Gene P.; Mao, Xianzhi; Bett, Andrew J.; Huckle, William R.; Thomas, Kenneth A.; Curiel, David T.

    1998-01-01

    Vascular endothelial growth factor (VEGF) is a potent and selective vascular endothelial cell mitogen and angiogenic factor. VEGF expression is elevated in a wide variety of solid tumors and is thought to support their growth by enhancing tumor neovascularization. To block VEGF-dependent angiogenesis, tumor cells were transfected with cDNA encoding the native soluble FLT-1 (sFLT-1) truncated VEGF receptor which can function both by sequestering VEGF and, in a dominant negative fashion, by forming inactive heterodimers with membrane-spanning VEGF receptors. Transient transfection of HT-1080 human fibrosarcoma cells with a gene encoding sFLT-1 significantly inhibited their implantation and growth in the lungs of nude mice following i.v. injection and their growth as nodules from cells injected s.c. High sFLT-1 expressing stably transfected HT-1080 clones grew even slower as s.c. tumors. Finally, survival was significantly prolonged in mice injected intracranially with human glioblastoma cells stably transfected with the sflt-1 gene. The ability of sFLT-1 protein to inhibit tumor growth is presumably attributable to its paracrine inhibition of tumor angiogenesis in vivo, since it did not affect tumor cell mitogenesis in vitro. These results not only support VEGF receptors as antiangiogenic targets but also demonstrate that sflt-1 gene therapy might be a feasible approach for inhibiting tumor angiogenesis and growth. PMID:9671758

  17. Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma

    PubMed Central

    Van Beijnum, Judy R.; Cerisoli, Francesco; Scaria, Puthupparampil V.; Verheul, Mark; Van Berkel, Maaike P.; Pieters, Ebel H. E.; Van Haastert, Rick J.; Yousefi, Afrouz; Mastrobattista, Enrico; Storm, Gert; Berezikov, Eugene; Cuppen, Edwin; Woodle, Martin; Schaapveld, Roel Q. J.; Prevost, Gregoire P.; Griffioen, Arjan W.; Van Noort, Paula I.; Schiffelers, Raymond M.

    2014-01-01

    Tumor-angiogenesis is the multi-factorial process of sprouting of endothelial cells (EC) into micro-vessels to provide tumor cells with nutrients and oxygen. To explore miRNAs as therapeutic angiogenesis-inhibitors, we performed a functional screen to identify miRNAs that are able to decrease EC viability. We identified miRNA-7 (miR-7) as a potent negative regulator of angiogenesis. Introduction of miR-7 in EC resulted in strongly reduced cell viability, tube formation, sprouting and migration. Application of miR-7 in the chick chorioallantoic membrane assay led to a profound reduction of vascularization, similar to anti-angiogenic drug sunitinib. Local administration of miR-7 in an in vivo murine neuroblastoma tumor model significantly inhibited angiogenesis and tumor growth. Finally, systemic administration of miR-7 using a novel integrin-targeted biodegradable polymeric nanoparticles that targets both EC and tumor cells, strongly reduced angiogenesis and tumor proliferation in mice with human glioblastoma xenografts. Transcriptome analysis of miR-7 transfected EC in combination with in silico target prediction resulted in the identification of OGT as novel target gene of miR-7. Our study provides a comprehensive validation of miR-7 as novel anti-angiogenic therapeutic miRNA that can be systemically delivered to both EC and tumor cells and offers promise for miR-7 as novel anti-tumor therapeutic. PMID:25149532

  18. ICAM-1 suppresses tumor metastasis by inhibiting macrophage M2 polarization through blockade of efferocytosis.

    PubMed

    Yang, M; Liu, J; Piao, C; Shao, J; Du, J

    2015-01-01

    Efficient clearance of apoptotic cells (efferocytosis) can profoundly influence tumor-specific immunity. Tumor-associated macrophages are M2-polarized macrophages that promote key processes in tumor progression. Efferocytosis stimulates M2 macrophage polarization and contributes to cancer metastasis, but the signaling mechanism underlying this process is unclear. Intercellular cell adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein member of the immunoglobulin superfamily, which has been implicated in mediating cell-cell interaction and outside-in cell signaling during the immune response. We report that ICAM-1 expression is inversely associated with macrophage infiltration and the metastasis index in human colon tumors by combining Oncomine database analysis and immunohistochemistry for ICAM-1. Using a colon cancer liver metastasis model in ICAM-1-deficient (ICAM-1(-/-)) mice and their wild-type littermates, we found that loss of ICAM-1 accelerated liver metastasis of colon carcinoma cells. Moreover, ICAM-1 deficiency increased M2 macrophage polarization during tumor progression. We further demonstrated that ICAM-1 deficiency in macrophages led to promotion of efferocytosis of apoptotic tumor cells through activation of the phosphatidylinositol 3 kinase/Akt signaling pathway. More importantly, coculture of ICAM-1(-/-) macrophages with apoptotic cancer cells resulted in an increase of M2-like macrophages, which was blocked by an efferocytosis inhibitor. Our findings demonstrate a novel role for ICAM-1 in suppressing M2 macrophage polarization via downregulation of efferocytosis in the tumor microenvironment, thereby inhibiting metastatic tumor progression. PMID:26068788

  19. Compromised GABAergic inhibition contributes to tumor-associated epilepsy.

    PubMed

    MacKenzie, Georgina; O'Toole, Kate K; Moss, Stephen J; Maguire, Jamie

    2016-10-01

    Glioblastoma Multiforme (GBM) is the most common form of primary brain tumor with 30-50% of patients presenting with epilepsy. These tumor-associated seizures are often resistant to traditional antiepileptic drug treatment and persist after tumor resection. This suggests that changes in the peritumoral tissue underpin epileptogenesis. It is known that glioma cells extrude pathological concentrations of glutamate which is thought to play a role in tumor progression and the development of epilepsy. Given that pathological concentrations of glutamate have been shown to dephosphorylate and downregulate the potassium chloride cotransporter KCC2, we hypothesized that glioma-induced alterations in KCC2 in the peritumoral region may play a role in tumor-associated epilepsy. Consistent with this hypothesis, we observe a decrease in total KCC2 expression and a dephosphorylation of KCC2 at residue Ser940 in a glioma model which exhibits hyperexcitability and the development of spontaneous seizures. To determine whether the reduction of KCC2 could potentially contribute to tumor-associated epilepsy, we generated mice with a focal knockdown of KCC2 by injecting AAV2-Cre-GFP into the cortex of floxed KCC2 mice. The AAV2-Cre-mediated knockdown of KCC2 was sufficient to induce the development of spontaneous seizures. Further, blocking NKCC1 with bumetanide to offset the loss of KCC2 reduced the seizure susceptibility in glioma-implanted mice. These findings support a mechanism of tumor-associated epilepsy involving downregulation of KCC2 in the peritumoral region leading to compromised GABAergic inhibition and suggest that modulating chloride homeostasis may be useful for seizure control. PMID:27513374

  20. CDC42 inhibition suppresses progression of incipient intestinal tumors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutations in the APC or Beta-catenin genes are well-established initiators of colorectal cancer, yet modifiers that facilitate the survival and progression of nascent tumor cells are not well defined. Using genetic and pharmacologic approaches in mouse colorectal cancer and human colorectal cancer x...

  1. Casiopeina II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation.

    PubMed

    Marín-Hernández, Alvaro; Gallardo-Pérez, Juan Carlos; López-Ramírez, Sayra Y; García-García, Jorge Donato; Rodríguez-Zavala, José Salud; Ruiz-Ramírez, Lena; Gracia-Mora, Isabel; Zentella-Dehesa, Alejandro; Sosa-Garrocho, Marcela; Macías-Silva, Marina; Moreno-Sánchez, Rafael; Rodríguez-Enríquez, Sara

    2012-05-01

    The copper-based drug Casiopeina II-gly (CasII-gly) shows potent antineoplastic effect and diminishes mitochondrial metabolism on several human and rodent malignant tumors. To elucidate whether CasII-gly also affects glycolysis, (a) the flux through the complete pathway and the initial segment and (b) the activities of several glycolytic enzymes of AS-30D hepatocarcinoma cells were determined. CasII-gly (IC₅₀ = 0.74-6.7 μM) was more effective to inhibit 24-72 h growth of several human carcinomas than 3-bromopyruvate (3BrPyr) (IC₅₀ = 45-100 μM) with no apparent effect on normal human-proliferating lymphocytes and HUVECs. In short-term 60-min experiments, CasII-gly increased tumor cell lactate production and glycogen breakdown. CasII-gly was 1.3-21 times more potent than 3BrPyr and cisplatin to inhibit tumor HK. As CasII-gly inhibited the soluble and mitochondrial HK activities and the flux through the HK-TPI glycolytic segment, whereas PFK-1, GAPDH, PGK, PYK activities and HPI-TPI segment flux were not affected, the data suggested glycogenolysis activation induced by HK inhibition. Accordingly, glycogen-depleted as well as oligomycin-treated cancer cells became more sensitive to CasII-gly. The inhibition time-course of HK by CasII-gly was slower than that of OxPhos in AS-30D cells, indicating that glycolytic toxicity was secondary to mitochondria, the primary CasII-gly target. In long-term 24-h experiments with HeLa cells, 5 μM CasII-gly inhibited OxPhos (80%), glycolysis (40%), and HK (42%). The present data indicated that CasII-gly is an effective multisite anticancer drug simultaneously targeting mitochondria and glycolysis. PMID:22349057

  2. Dopamine D2 receptor agonists inhibit lung cancer progression by reducing angiogenesis and tumor infiltrating myeloid derived suppressor cells.

    PubMed

    Hoeppner, Luke H; Wang, Ying; Sharma, Anil; Javeed, Naureen; Van Keulen, Virginia P; Wang, Enfeng; Yang, Ping; Roden, Anja C; Peikert, Tobias; Molina, Julian R; Mukhopadhyay, Debabrata

    2015-01-01

    We sought to determine whether Dopamine D2 Receptor (D2R) agonists inhibit lung tumor progression and identify subpopulations of lung cancer patients that benefit most from D2R agonist therapy. We demonstrate D2R agonists abrogate lung tumor progression in syngeneic (LLC1) and human xenograft (A549) orthotopic murine models through inhibition of tumor angiogenesis and reduction of tumor infiltrating myeloid derived suppressor cells. Pathological examination of human lung cancer tissue revealed a positive correlation between endothelial D2R expression and tumor stage. Lung cancer patients with a smoking history exhibited greater levels of D2R in lung endothelium. Our results suggest D2R agonists may represent a promising individualized therapy for lung cancer patients with high levels of endothelial D2R expression and a smoking history. PMID:25226814

  3. Dopamine D2 Receptor Agonists Inhibit Lung Cancer Progression by Reducing Angiogenesis and Tumor Infiltrating Myeloid Derived Suppressor Cells

    PubMed Central

    Hoeppner, Luke H.; Wang, Ying; Sharma, Anil; Javeed, Naureen; Van Keulen, Virginia P.; Wang, Enfeng; Yang, Ping; Roden, Anja C.; Peikert, Tobias; Molina, Julian R.; Mukhopadhyay, Debabrata

    2014-01-01

    We sought to determine whether Dopamine D2 Receptor (D2R) agonists inhibit lung tumor progression and identify subpopulations of lung cancer patients that benefit most from D2R agonist therapy. We demonstrate D2R agonists abrogate lung tumor progression in syngeneic (LLC1) and human xenograft (A549) orthotopic murine models through inhibition of tumor angiogenesis and reduction of tumor infiltrating myeloid derived suppressor cells. Pathological examination of human lung cancer tissue revealed a positive correlation between endothelial D2R expression and tumor stage. Lung cancer patients with a smoking history exhibited greater levels of D2R in lung endothelium. Our results suggest D2R agonists may represent a promising individualized therapy for lung cancer patients with high levels of endothelial D2R expression and a smoking history. PMID:25226814

  4. Pharmacological inhibition of KIT activates MET signaling in gastrointestinal stromal tumors

    PubMed Central

    Cohen, Noah A.; Zeng, Shan; Seifert, Adrian M.; Kim, Teresa S.; Sorenson, Eric C.; Greer, Jonathan B.; Beckman, Michael J.; Santamaria-Barria, Juan A.; Crawley, Megan H.; Green, Benjamin L.; Rossi, Ferdinand; Besmer, Peter; Antonescu, Cristina R.; DeMatteo, Ronald P.

    2015-01-01

    Gastrointestinal stromal tumors (GIST) are the most common adult sarcomas and the oncogenic driver is usually a KIT or PDGFRA mutation. While GIST are often initially sensitive to imatinib or other tyrosine kinase inhibitors, resistance generally develops necessitating backup strategies for therapy. In this study, we determined that a subset of human GIST specimens that acquired imatinib resistance acquired expression of activated forms of the MET oncogene. MET activation also developed after imatinib therapy in a mouse model of GIST (KitV558del/+ mice), where it was associated with increased tumor hypoxia. MET activation also occurred in imatinib-sensitive human GIST cell lines after imatinib treatment in vitro. MET inhibition by crizotinib or RNA interference was cytotoxic to an imatinib-resistant human GIST cell population. Moreover, combining crizotinib and imatinib was more effective than imatinib alone in imatinib-sensitive GIST models. Lastly, cabozantinib, a dual MET and KIT small molecule inhibitor, was markedly more effective than imatinib in multiple preclinical models of imatinib-sensitive and imatinib-resistant GIST. Collectively, our findings showed that activation of compensatory MET signaling by KIT inhibition may contribute to tumor resistance. Furthermore, our work offered a preclinical proof of concept for MET inhibition by cabozantinib as an effective strategy for GIST treatment. PMID:25836719

  5. A polypeptide from shark troponin I can inhibit angiogenesis and tumor growth.

    PubMed

    Xie, Qiuling; Yao, Sheng; Chen, Xiaojia; Xu, Lihui; Peng, Wendan; Zhang, Ling; Zhang, Qihao; Liang, Xu-Fang; Hong, An

    2012-02-01

    The shark troponin I gene (TnI) was found for the first time in this study to inhibit endothelial cell proliferation and angiogenesis. This shark TnI had 68.9% amino acid homology with human TnI, whereas the polypeptide from Lys91 to Leu123, which is thought to be the active site of TnI, had 78.8% homology with the corresponding fragment of human TnI. However, the polypeptide of shark had higher activity to inhibit the proliferation of HUVEC and tumor cell lines than that of human TnI. To investigate the anti-angiogenesis and anti-tumor effect of the shark TnI polypeptide, the DNA sequence of polypeptide (Lys91-Leu123) of white-spot catshark TnI(psTnI) was cloned and fused with the His-SUMO cDNA, followed by expression in Escherichia coli. After its purification by Ni(2+) affinity chromatography, the fusion His-SUMO-psTnI protein was digested with the SUMO enzyme to release psTnI. The inhibitory ability of this recombinant shark TnI polypeptide for angiogenesis was confirmed by chicken embryo allantoic membrane (CAM) test and IHC analysis. It was also found by breast carcinoma xenograft study in Balb/c mice that this polypeptide could inhibit tumor growth in vivo. PMID:21750912

  6. Inhibition of Receptor Signaling and of Glioblastoma-derived Tumor Growth by a Novel PDGFRβ Aptamer

    PubMed Central

    Camorani, Simona; Esposito, Carla L; Rienzo, Anna; Catuogno, Silvia; Iaboni, Margherita; Condorelli, Gerolama; de Franciscis, Vittorio; Cerchia, Laura

    2014-01-01

    Platelet-derived growth factor receptor β (PDGFRβ) is a cell-surface tyrosine kinase receptor implicated in several cellular processes including proliferation, migration, and angiogenesis. It represents a compelling therapeutic target in many human tumors, including glioma. A number of tyrosine kinase inhibitors under development as antitumor agents have been found to inhibit PDGFRβ. However, they are not selective as they present multiple tyrosine kinase targets. Here, we report a novel PDGFRβ-specific antagonist represented by a nuclease-resistant RNA-aptamer, named Gint4.T. This aptamer is able to specifically bind to the human PDGFRβ ectodomain (Kd: 9.6 nmol/l) causing a strong inhibition of ligand-dependent receptor activation and of downstream signaling in cell lines and primary cultures of human glioblastoma cells. Moreover, Gint4.T aptamer drastically inhibits cell migration and proliferation, induces differentiation, and blocks tumor growth in vivo. In addition, Gint4.T aptamer prevents PDGFRβ heterodimerization with and resultant transactivation of epidermal growth factor receptor. As a result, the combination of Gint4.T and an epidermal growth factor receptor–targeted aptamer is better at slowing tumor growth than either single aptamer alone. These findings reveal Gint4.T as a PDGFRβ-drug candidate with translational potential. PMID:24566984

  7. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells.

    PubMed

    Gao, Xin; Wang, Xuefeng; Yang, Qianting; Zhao, Xin; Wen, Wen; Li, Gang; Lu, Junfeng; Qin, Wenxin; Qi, Yuan; Xie, Fang; Jiang, Jingting; Wu, Changping; Zhang, Xueguang; Chen, Xinchun; Turnquist, Heth; Zhu, Yibei; Lu, Binfeng

    2015-01-01

    Cancer immunotherapy has shown great promise as a new standard cancer therapeutic modality. However, the response rates are limited for current approach that depends on enhancing spontaneous antitumor immune responses. Therefore, increasing tumor immunogenicity by expressing appropriate cytokines should further improve the current immunotherapy. IL-33 is a member of the IL-1 family of cytokines and is released by necrotic epithelial cells or activated innate immune cells and is thus considered a "danger" signal. The role of IL-33 in promoting type 2 immune responses and tissue inflammation has been well established. However, whether IL-33 drives antitumor immune responses is controversial. Our previous work established that IL-33 promoted the function of CD8(+) T cells. In this study, we showed that the expression of IL-33 in two types of cancer cells potently inhibited tumor growth and metastasis. Mechanistically, IL-33 increased numbers and IFN-γ production by CD8(+) T and NK cells in tumor tissues, thereby inducing a tumor microenvironment favoring tumor eradication. Importantly, IL-33 greatly increased tumor Ag-specific CD8(+) T cells. Furthermore, both NK and CD8(+) T cells were required for the antitumor effect of IL-33. Moreover, depletion of regulatory T cells worked synergistically with IL-33 expression for tumor elimination. Our studies established "alarmin" IL-33 as a promising new cytokine for tumor immunotherapy through promoting cancer-eradicating type 1 immune responses. PMID:25429071

  8. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells

    PubMed Central

    Gao, Xin; Wang, Xuefeng; Yang, Qianting; Zhao, Xin; Wen, Wen; Li, Gang; Lu, Junfeng; Qin, Wenxin; Qi, Yuan; Xie, Fang; Jiang, Jingting; Wu, Changping; Zhang, Xueguang; Chen, Xinchun; Turnquist, Heth; Zhu, Yibei; Lu, Binfeng

    2014-01-01

    Cancer immunotherapy has shown great promise as a new standard cancer therapeutic modality. However, the response rates are limited for current approach that depends on enhancing spontaneous antitumor immune responses. Therefore, increasing tumor immunogenicity by expressing appropriate cytokines should further improve the current immunotherapy. Interleukin-33 is a member of the IL-1 family of cytokines and is released by necrotic epithelial cells or activated innate immune cells and is thus considered a “danger” signal. The role of IL-33 in promoting type 2 immune responses and tissue inflammation has been well established. However, whether IL-33 drives antitumor immune responses is controversial. Our previous work established that IL-33 promoted the function of CD8+ T cells. Here, we showed that the expression of IL-33 in two types of cancer cells potently inhibited tumor growth and metastasis. Mechanistically, IL-33 increased numbers and IFNγ production by CD8+ T and NK cells in tumor tissues, thereby inducing a tumor microenvironment favoring tumor eradication. Importantly, IL-33 greatly increased tumor-antigen-specific CD8+ T cells. Furthermore, both NK and CD8+ T cells were required for the antitumor effect of IL-33. Moreover, depletion of regulatory T cells (Treg) worked synergistically with IL-33 expression for tumor elimination. Our studies established “alarmin” IL-33 as a promising new cytokine for tumor immunotherapy through promoting cancer-eradicating type 1 immune responses. PMID:25429071

  9. Photoactivation of lysosomally sequestered sunitinib after angiostatic treatment causes vascular occlusion and enhances tumor growth inhibition

    PubMed Central

    Nowak-Sliwinska, P; Weiss, A; van Beijnum, J R; Wong, T J; Kilarski, W W; Szewczyk, G; Verheul, H M W; Sarna, T; van den Bergh, H; Griffioen, A W

    2015-01-01

    The angiogenesis inhibitor sunitinib is a tyrosine kinase inhibitor that acts mainly on the VEGF and PDGF pathways. We have previously shown that sunitinib is sequestered in the lysosomes of exposed tumor and endothelial cells. This phenomenon is part of the drug-induced resistance observed in the clinic. Here, we demonstrate that when exposed to light, sequestered sunitinib causes immediate destruction of the lysosomes, resulting in the release of sunitinib and cell death. We hypothesized that this photoactivation of sunitinib could be used as a vaso-occlusive vascular-targeting approach to treating cancer. Spectral properties of sunitinib and its lysosomal accumulation were measured in vitro. The human A2780 ovarian carcinoma transplanted onto the chicken chorioallantoic membrane (CAM) and the Colo-26 colorectal carcinoma model in Balb/c mice were used to test the effects of administrating sunitinib and subsequently exposing tumor tissue to light. Tumors were subsequently resected and subject to immunohistochemical analysis. In A2780 ovarian carcinoma tumors, treatment with sunitinib+light resulted in immediate specific angio-occlusion, leading to a necrotic tumor mass 24 h after treatment. Tumor growth was inhibited by 70% as compared with the control group (**P<0.0001). Similar observations were made in the Colo-26 colorectal carcinoma, where light exposure of the sunitinib-treated mice inhibited tumor growth by 50% as compared with the control and by 25% as compared with sunitinib-only-treated tumors (N≥4; P=0.0002). Histology revealed that photoactivation of sunitinib resulted in a change in tumor vessel architecture. The current results suggest that the spectral properties of sunitinib can be exploited for application against certain cancer indications. PMID:25675301

  10. PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion

    PubMed Central

    Mense, Sarah M.; Barrows, Douglas; Hodakoski, Cindy; Steinbach, Nicole; Schoenfeld, David; Su, William; Hopkins, Benjamin D.; Su, Tao; Fine, Barry; Hibshoosh, Hanina; Parsons, Ramon

    2016-01-01

    The tumor suppressor PTEN restrains cell migration and invasion by a mechanism that is independent of inhibition of the PI3K pathway and decreased activation of the kinase AKT. PREX2, a widely distributed GEF that activates the GTPase RAC1, binds to and inhibits PTEN. We used mouse embryonic fibroblasts and breast cancer cell lines to show that PTEN suppresses cell migration and invasion by blocking PREX2 activity. In addition to metabolizing the phosphoinositide PIP3, PTEN inhibited PREX2-induced invasion by a mechanism that required the tail domain of PTEN, but not its lipid phosphatase activity. Fluorescent nucleotide exchange assays revealed that PTEN inhibited the GEF activity of PREX2 toward RAC1. PREX2 is a frequently mutated GEF in cancer, and examination of human tumor data showed that PREX2 mutation was associated with high PTEN expression. Therefore, we tested whether cancer-derived somatic PREX2 mutants, which accelerate tumor formation of immortalized melanocytes, were inhibited by PTEN. The three stably expressed, somatic PREX2 cancer mutants that we tested were resistant to PTEN-mediated inhibition of invasion but retained the ability to inhibit the lipid phosphatase activity of PTEN. In vitro analysis showed that PTEN did not block the GEF activity of two PREX2 cancer mutants and had a reduced binding affinity for the third. Thus, PTEN antagonized migration and invasion by restraining PREX2 GEF activity, and PREX2 mutants are likely selected in cancer to escape PTEN-mediated inhibition of invasion. PMID:25829446

  11. Wee1 inhibition potentiates Wip1-dependent p53-negative tumor cell death during chemotherapy

    PubMed Central

    Clausse, V; Goloudina, A R; Uyanik, B; Kochetkova, E Y; Richaud, S; Fedorova, O A; Hammann, A; Bardou, M; Barlev, N A; Garrido, C; Demidov, O N

    2016-01-01

    Inactivation of p53 found in more than half of human cancers is often associated with increased tumor resistance to anti-cancer therapy. We have previously shown that overexpression of the phosphatase Wip1 in p53-negative tumors sensitizes them to chemotherapeutic agents, while protecting normal tissues from the side effects of anti-cancer treatment. In this study, we decided to search for kinases that prevent Wip1-mediated sensitization of cancer cells, thereby interfering with efficacy of genotoxic anti-cancer drugs. To this end, we performed a flow cytometry-based screening in order to identify kinases that regulated the levels of γH2AX, which were used as readout. Another criterion of the screen was increased sensitivity of p53-negative tumor cells to cisplatin (CDDP) in a Wip1-dependent manner. We have found that a treatment with a low dose (75 nM) of MK-1775, a recently described specific chemical inhibitor of Wee1, decreases CDDP-induced H2AX phosphorylation in p53-negative cells and enhances the Wip1-sensitization of p53-negative tumors. We were able to reduce CDDP effective concentration by 40% with a combination of Wip1 overexpression and Wee1 kinase inhibition. We have observed that Wee1 inhibition potentiates Wip1-dependent tumor sensitization effect by reducing levels of Hipk2 kinase, a negative regulator of Wip1 pathway. In addition, during CDDP treatment, the combination of Wee1 inhibition and Wip1 overexpression has a mild but significant protective effect in normal cells and tissues. Our results indicate that inhibition of the negative regulators of Wip1 pathway, Wee1 and Hipk2, in p53-negative tumors could potentiate efficiency of chemotherapeutic agents without concomitant increase of cytotoxicity in normal tissues. The development and clinical use of Wee1 and Hipk1 kinase chemical inhibitors might be a promising strategy to improve anti-cancer therapy. PMID:27077811

  12. Wee1 inhibition potentiates Wip1-dependent p53-negative tumor cell death during chemotherapy.

    PubMed

    Clausse, V; Goloudina, A R; Uyanik, B; Kochetkova, E Y; Richaud, S; Fedorova, O A; Hammann, A; Bardou, M; Barlev, N A; Garrido, C; Demidov, O N

    2016-01-01

    Inactivation of p53 found in more than half of human cancers is often associated with increased tumor resistance to anti-cancer therapy. We have previously shown that overexpression of the phosphatase Wip1 in p53-negative tumors sensitizes them to chemotherapeutic agents, while protecting normal tissues from the side effects of anti-cancer treatment. In this study, we decided to search for kinases that prevent Wip1-mediated sensitization of cancer cells, thereby interfering with efficacy of genotoxic anti-cancer drugs. To this end, we performed a flow cytometry-based screening in order to identify kinases that regulated the levels of γH2AX, which were used as readout. Another criterion of the screen was increased sensitivity of p53-negative tumor cells to cisplatin (CDDP) in a Wip1-dependent manner. We have found that a treatment with a low dose (75 nM) of MK-1775, a recently described specific chemical inhibitor of Wee1, decreases CDDP-induced H2AX phosphorylation in p53-negative cells and enhances the Wip1-sensitization of p53-negative tumors. We were able to reduce CDDP effective concentration by 40% with a combination of Wip1 overexpression and Wee1 kinase inhibition. We have observed that Wee1 inhibition potentiates Wip1-dependent tumor sensitization effect by reducing levels of Hipk2 kinase, a negative regulator of Wip1 pathway. In addition, during CDDP treatment, the combination of Wee1 inhibition and Wip1 overexpression has a mild but significant protective effect in normal cells and tissues. Our results indicate that inhibition of the negative regulators of Wip1 pathway, Wee1 and Hipk2, in p53-negative tumors could potentiate efficiency of chemotherapeutic agents without concomitant increase of cytotoxicity in normal tissues. The development and clinical use of Wee1 and Hipk1 kinase chemical inhibitors might be a promising strategy to improve anti-cancer therapy. PMID:27077811

  13. Potentiation of platinum antitumor effects in human lung tumor xenografts by the angiogenesis inhibitor squalamine: effects on tumor neovascularization.

    PubMed

    Schiller, J H; Bittner, G

    1999-12-01

    Squalamine is a novel anti-angiogenic aminosterol that is postulated to inhibit neovascularization by selectively inhibiting the sodium-hydrogen antiporter exchanger. To determine how to most effectively use this agent in patients with cancer, we examined the antitumor effects of squalamine with or without cytotoxic agents in human lung cancer xenografts and correlated these observations with the degree of tumor neovascularization. No direct cytotoxic effects of squalamine against tumor cells were observed in vitro with or without cisplatin. Squalamine was effective in inhibiting the establishment of H460 human tumors in BALBc nude mice but was ineffective in inhibiting the growth of H460, CALU-6, or NL20T-A human tumor xenografts when administered i.p. to mice bearing established tumors. However, when combined with cisplatin or carboplatin, squalamine increased tumor growth delay by > or =1.5-fold in the three human lung carcinoma cell lines compared with cisplatin or carboplatin alone. No enhancement of antitumor activity was observed when squalamine was combined with paclitaxel, vinorelbine, gemcitabine, or docetaxel. Repeated cycles of squalamine plus cisplatin administration delayed H460 tumor growth >8.6-fold. Squalamine plus cisplatin reduced CD31 vessel formation by 25% compared with controls, squalamine alone, or cisplatin alone; however, no inhibition in CD31 vessel formation was observed when squalamine was combined with vinorelbine. These data demonstrate that the combination of squalamine and a platinum analog has significant preclinical antitumor activity against human lung cancer that is related to the anti-angiogenic effects of squalamine. PMID:10632372

  14. Resveratrol-loaded nanocapsules inhibit murine melanoma tumor growth.

    PubMed

    Carletto, Bruna; Berton, Juliana; Ferreira, Tamara Nascimento; Dalmolin, Luciana Facco; Paludo, Katia Sabrina; Mainardes, Rubiana Mara; Farago, Paulo Vitor; Favero, Giovani Marino

    2016-08-01

    In this study, resveratrol-loaded nanocapsules were developed and its antitumor activity tested on a melanoma mice model. These nanocapsules were spherically-shaped and presented suitable size, negative charge and high encapsulation efficiency for their use as a modified-release system of resveratrol. Nanoencapsulation leads to the drug amorphization. Resveratrol-loaded nanoparticles reduced cell viability of murine melanoma cells. There was a decrease in tumor volume, an increase in the necrotic area and inflammatory infiltrate of melanoma when resveratrol-loaded nanocapsules were compared to free resveratrol in treated mice. Nanoencapsulation of resveratrol also prevented metastasis and pulmonary hemorrhage. This modified-release technology containing resveratrol can be used as a feasible approach in order to inhibit murine melanoma tumor growth. PMID:27070053

  15. Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model.

    PubMed

    Zhang, Chenran; Gao, Liquan; Cai, Yuehong; Liu, Hao; Gao, Duo; Lai, Jianhao; Jia, Bing; Wang, Fan; Liu, Zhaofei

    2016-04-01

    Tumor-associated macrophages (TAMs) play essential roles in tumor invasion and metastasis, and contribute to drug resistance. Clinical evidence suggests that TAM levels are correlated with local tumor relapse, distant metastasis, and poor prognosis in patients. In this study, we synthesized a TAM-targeted probe (IRD-αCD206) by conjugating a monoclonal anti-CD206 antibody with a near-infrared phthalocyanine dye. We then investigated the potential application of the IRD-αCD206 probe to near-infrared fluorescence (NIRF) imaging and photoimmunotherapy (PIT) of tumors resistant to treatment with the kinase inhibitor sorafenib. Sorafenib treatment had no effect on tumor growth in a 4T1 mouse model of breast cancer, but induced M2 macrophage polarization in tumors. M2 macrophage recruitment by sorafenib-treated 4T1 tumors was noninvasively visualized by in vivo NIRF imaging of IRD-αCD206. Small-animal single-photon emission computed tomography (SPECT)/CT and intratumoral microdistribution analysis indicated TAM-specific localization of the IRD-αCD206 probe in 4T1 tumors after several rounds of sorafenib treatment. Upon light irradiation, IRD-αCD206 suppressed the growth of sorafenib-resistant tumors. In vivo CT imaging and ex vivo histological analysis confirmed the inhibition of lung metastasis in mice by IRD-αCD206 PIT. These results demonstrate the utility of the IRD-αCD206 probe for TAM-targeted diagnostic imaging and treatment of tumors that are resistant to conventional therapeutics. PMID:26803407

  16. MIF Maintains the Tumorigenic Capacity of Brain Tumor-Initiating Cells by Directly Inhibiting p53.

    PubMed

    Fukaya, Raita; Ohta, Shigeki; Yaguchi, Tomonori; Matsuzaki, Yumi; Sugihara, Eiji; Okano, Hideyuki; Saya, Hideyuki; Kawakami, Yutaka; Kawase, Takeshi; Yoshida, Kazunari; Toda, Masahiro

    2016-05-01

    Tumor-initiating cells thought to drive brain cancer are embedded in a complex heterogeneous histology. In this study, we isolated primary cells from 21 human brain tumor specimens to establish cell lines with high tumorigenic potential and to identify the molecules enabling this capability. The morphology, sphere-forming ability upon expansion, and differentiation potential of all cell lines were indistinguishable in vitro However, testing for tumorigenicity revealed two distinct cell types, brain tumor-initiating cells (BTIC) and non-BTIC. We found that macrophage migration inhibitory factor (MIF) was highly expressed in BTIC compared with non-BTIC. MIF bound directly to both wild-type and mutant p53 but regulated p53-dependent cell growth by different mechanisms, depending on glioma cell line and p53 status. MIF physically interacted with wild-type p53 in the nucleus and inhibited its transcription-dependent functions. In contrast, MIF bound to mutant p53 in the cytoplasm and abrogated transcription-independent induction of apoptosis. Furthermore, MIF knockdown inhibited BTIC-induced tumor formation in a mouse xenograft model, leading to increased overall survival. Collectively, our findings suggest that MIF regulates BTIC function through direct, intracellular inhibition of p53, shedding light on the molecular mechanisms underlying the tumorigenicity of certain malignant brain cells. Cancer Res; 76(9); 2813-23. ©2016 AACR. PMID:26980763

  17. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Wenjing; Yang, Licong; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Zhou, Yunshan; Liu, Jie

    2014-06-01

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies.

  18. Antibody against CD44s Inhibits Pancreatic Tumor Initiation and Post-Radiation Recurrence in Mice

    PubMed Central

    Li, Ling; Hao, Xinbao; Qin, Jun; Tang, Wenhua; He, Fengtian; Smith, Amber; Zhang, Min; Simeone, Diane M.; Qiao, Xiaotan T.; Chen, Zhi-Nan; Lawrence, Theodore S.; Xu, Liang

    2014-01-01

    Background & Aims CD44s is a surface marker of tumor-initiating cells (TICs); high tumor levels correlate with metastasis and recurrence, as well as poor outcomes of patients. Monoclonal antibodies against CD44s might eliminate TICs with minimal toxicity. This strategy is unclear for treatment of pancreatic cancer, and little is known about how anti-CD44s affect pancreatic cancer initiation or recurrence after radiotherapy. Methods 192 pairs of human pancreatic adenocarcinoma and adjacent non-tumor pancreatic tissues were collected from patients undergoing surgery. We measured CD44s levels in tissue samples and pancreatic cancer cell lines by immunohistochemistry, real-time PCR and immunoblot; levels were correlated with patient survival times. We studied the effects of anti-CD44s in mice with human pancreatic tumor xenografts, and used flow cytometry to determine effects on TICs. Changes in CD44s signaling were examined by real-time PCR, immunoblot, reporter assay, and in vitro tumorsphere formation assays. Results Levels of CD44s were significantly higher in pancreatic cancer than adjacent non-tumor tissues. Patients whose tumors expressed high levels of CD44s had a median survival of 10 months, compared to 43 months for those with low levels. Anti-CD44s reduced growth, metastasis, and post-radiation recurrence of pancreatic xenograft tumors in mice. The antibody reduced the number of TICs in cultured pancreatic cancer cells and in xenograft tumors, as well as their tumorigenicity. In cultured pancreatic cancer cell lines, anti-CD44s downregulated the stem cell self-renewal genes Nanog, Sox-2, and Rex-1 and inhibited STAT3-mediated cell proliferation and survival signaling. Conclusions The TIC marker CD44s is upregulated in human pancreatic tumors and associated with patient survival time. CD44s is required for initiation, growth, metastasis, and post-radiation recurrence of xenograft tumors in mice. Anti-CD44s eliminated bulk tumor cells as well as TICs from the

  19. Oridonin inhibits tumor growth in glioma by inducing cell cycle arrest and apoptosis.

    PubMed

    Zhang, X-H; Liu, Y-X; Jia, M; Han, J-S; Zhao, M; Ji, S-P; Li, A-M

    2014-01-01

    Glioma is the most common malignant intracranial tumors. Despite newly developed therapies, these treatments mainly target oncogenic signals, and unfortunately, fail to provide enough survival benefit in both human patients and mouse xenograft models, especially the first-generation therapies. Oridonin is purified from the Chinese herb Rabdosia rubescens and considered to exert extensive anti-cancer effects on human tumorigenesis. In this study, we systemically investigated the role of Oridonin in tumor growth and the underlying mechanisms in human glioma. We found that Oridonin inhibited cell proliferations in a dose- and time-dependent manner in both glioma U87 and U251 cells. Moreover, these anti-cancer effects were also confirmed in a mouse model bearing glioma. Furthermore, cell cycle arrest in S phase was observed in Oridonin-mediated growth inhibition by flow cytometry. Cell cycle arrest in S phase led to eventual cell apoptosis, as revealed by Hoechst 33342 staining and annexin V/PI double-staining. The cell apoptosis might be accomplished through a mitochondrial manner. In all, we were the first to our knowledge to report that Oridonin could exert anti-cancer effects on tumor growth in human glioma by inducing cell cycle arrest and eventual cell apoptosis. The identification of Oridonin as a critical mediator of glioma growth may potentiate Oridonin as a novel therapeutic strategies in glioma treatments. PMID:25553351

  20. Methylthioadenosine (MTA) inhibits melanoma cell proliferation and in vivo tumor growth

    PubMed Central

    2010-01-01

    Background Melanoma is the most deadly form of skin cancer without effective treatment. Methylthioadenosine (MTA) is a naturally occurring nucleoside with differential effects on normal and transformed cells. MTA has been widely demonstrated to promote anti-proliferative and pro-apoptotic responses in different cell types. In this study we have assessed the therapeutic potential of MTA in melanoma treatment. Methods To investigate the therapeutic potential of MTA we performed in vitro proliferation and viability assays using six different mouse and human melanoma cell lines wild type for RAS and BRAF or harboring different mutations in RAS pathway. We also have tested its therapeutic capabilities in vivo in a xenograft mouse melanoma model and using variety of molecular techniques and tissue culture we investigated its anti-proliferative and pro-apoptotic properties. Results In vitro experiments showed that MTA treatment inhibited melanoma cell proliferation and viability in a dose dependent manner, where BRAF mutant melanoma cell lines appear to be more sensitive. Importantly, MTA was effective inhibiting in vivo tumor growth. The molecular analysis of tumor samples and in vitro experiments indicated that MTA induces cytostatic rather than pro-apoptotic effects inhibiting the phosphorylation of Akt and S6 ribosomal protein and inducing the down-regulation of cyclin D1. Conclusions MTA inhibits melanoma cell proliferation and in vivo tumor growth particularly in BRAF mutant melanoma cells. These data reveal a naturally occurring drug potentially useful for melanoma treatment. PMID:20529342

  1. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    PubMed Central

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  2. Oridonin Inhibits Tumor Growth and Metastasis through Anti-Angiogenesis by Blocking the Notch Signaling

    PubMed Central

    Li, Jingjie; Deng, Huayun; Song, Yajuan; Zhai, Dong; Peng, Yi; Lu, Xiaoling; Liu, Mingyao; Zhao, Yongxiang; Yi, Zhengfang

    2014-01-01

    While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs) proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases. PMID:25485753

  3. Allosteric antibody inhibition of human hepsin protease.

    PubMed

    Koschubs, Tobias; Dengl, Stefan; Dürr, Harald; Kaluza, Klaus; Georges, Guy; Hartl, Christiane; Jennewein, Stefan; Lanzendörfer, Martin; Auer, Johannes; Stern, Alvin; Huang, Kuo-Sen; Packman, Kathryn; Gubler, Ueli; Kostrewa, Dirk; Ries, Stefan; Hansen, Silke; Kohnert, Ulrich; Cramer, Patrick; Mundigl, Olaf

    2012-03-15

    Hepsin is a type II transmembrane serine protease that is expressed in several human tissues. Overexpression of hepsin has been found to correlate with tumour progression and metastasis, which is so far best studied for prostate cancer, where more than 90% of such tumours show this characteristic. To enable improved future patient treatment, we have developed a monoclonal humanized antibody that selectively inhibits human hepsin and does not inhibit other related proteases. We found that our antibody, hH35, potently inhibits hepsin enzymatic activity at nanomolar concentrations. Kinetic characterization revealed non-linear, slow, tight-binding inhibition. This correlates with the crystal structure we obtained for the human hepsin-hH35 antibody Fab fragment complex, which showed that the antibody binds hepsin around α3-helix, located far from the active centre. The unique allosteric mode of inhibition of hH35 is distinct from the recently described HGFA (hepatocyte growth factor activator) allosteric antibody inhibition. We further explain how a small change in the antibody design induces dramatic structural rearrangements in the hepsin antigen upon binding, leading to complete enzyme inactivation. PMID:22132769

  4. Targeting BRCA1 localization to augment breast tumor sensitivity to poly(ADP-ribose) polymerase inhibition

    PubMed Central

    Yang, Eddy S.; Nowsheen, Somaira; Rahman, Mohammad A.; Cook, Rebecca S.; Xia, Fen

    2013-01-01

    Poly(ADP-ribose) polymerase inhibitors have gained recent attention due to their highly selective killing of BRCA1/2 mutated and DNA double strand break (DSB) repair deficient tumors. Unfortunately, the majority of sporadic breast cancers carry wild-type BRCA1/2 and are proficient in DSB repair. We and others have shown that BRCA1 is a nuclear/cytoplasm shuttling protein which is transiently exported from the nucleus to the cytosol upon various stimuli. Thus, we hypothesized that depletion of nuclear BRCA1 would compromise DSB repair and subsequently render sporadic tumors susceptible to PARP inhibition. Indeed, in human sporadic breast cancer cells with functional BRCA1 and proficient DSB repair, a transient nuclear depletion of BRCA1 and subsequent HR repair deficit was induced with either truncated BRCA1 or irradiation. This rendered these human sporadic breast cancer cells susceptible to PARP inhibition. These observations were confirmed genetically using mislocated BRCA1 mutants as well as in vivo in mice bearing breast tumor xenografts. These data support the potential strategy of targeting BRCA1 location to convert BRCA1-proficient sporadic tumors to be susceptible to the synthetic lethal combination with PARP inhibitors. PMID:22962264

  5. HDAC6 inhibition restores ciliary expression and decreases tumor growth

    PubMed Central

    Gradilone, Sergio A; Radtke, Brynn N; Bogert, Pamela S; Huang, Bing Q; Gajdos, Gabriella B; LaRusso, Nicholas F

    2013-01-01

    Primary cilia are multisensory organelles recently found to be absent in some tumor cells, but the mechanisms of deciliation and the role of cilia in tumor biology remain unclear. Cholangiocytes, the epithelial cells lining the biliary tree, normally express primary cilia and their interaction with bile components regulates multiple processes, including proliferation and transport. Utilizing cholangiocarcinoma (CCA) as a model, we found primary cilia are reduced in CCA by a mechanism involving histone deacetylase 6 (HDAC6). The experimental deciliation of normal cholangiocyte cells increased the proliferation rate and induced anchorage-independent growth. Furthermore, deciliation induced the activation of MAPK and Hedgehog signaling, two important pathways involved in CCA development. We found HDAC6 is overexpressed in CCA and overexpression of HDAC6 in normal cholangiocytes induced deciliation, and increased both proliferation and anchorage-independent growth. To evaluate the effect of cilia restoration on tumor cells, we targeted HDAC6 by shRNA or by the pharmacologic inhibitor, tubastatin-A. Both approaches restored the expression of primary cilia in CCA cell lines and decreased cell proliferation and anchorage-independent growth. The effects of tubastatin-A were abolished when CCA cells were rendered unable to regenerate cilia by stable transfection of IFT88-shRNA. Finally, inhibition of HDAC6 by tubastatin-A also induced a significant decrease in tumor growth in a CCA animal model. Our data support a key role for primary cilia in malignant transformation, provide a plausible mechanism for their involvement, and suggest that restoration of primary cilia in tumor cells by HDAC6 targeting may be a potential therapeutic approach for CCA. PMID:23370327

  6. MRI and MRS of human brain tumors.

    PubMed

    Hou, Bob L; Hu, Jiani

    2009-01-01

    The purpose of this chapter is to provide an introduction to magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) of human brain tumors, including the primary applications and basic terminology involved. Readers who wish to know more about this broad subject should seek out the referenced books (1. Tofts (2003) Quantitative MRI of the brain. Measuring changes caused by disease. Wiley; Bradley and Stark (1999) 2. Magnetic resonance imaging, 3rd Edition. Mosby Inc; Brown and Semelka (2003) 3. MRI basic principles and applications, 3rd Edition. Wiley-Liss) or reviews (4. Top Magn Reson Imaging 17:127-36, 2006; 5. JMRI 24:709-724, 2006; 6. Am J Neuroradiol 27:1404-1411, 2006).MRI is the most popular means of diagnosing human brain tumors. The inherent difference in the magnetic resonance (MR) properties of water between normal tissues and tumors results in contrast differences on the image that provide the basis for distinguishing tumors from normal tissues. In contrast to MRI, which provides spatial maps or images using water signals of the tissues, proton MRS detects signals of tissue metabolites. MRS can complement MRI because the observed MRS peaks can be linked to inherent differences in biochemical profiles between normal tissues and tumors.The goal of MRI and MRS is to characterize brain tumors, including tumor core, edge, edema, volume, types, and grade. The commonly used brain tumor MRI protocol includes T2-weighted images and T1-weighted images taken both before and after the injection of a contrast agent (typically gadolinium: Gd). The commonly used MRS technique is either point-resolved spectroscopy (PRESS) or stimulated echo acquisition mode (STEAM). PMID:19381963

  7. Müllerian inhibiting substance/anti-Müllerian hormone: A novel treatment for gynecologic tumors

    PubMed Central

    Kim, Jang Heub; MacLaughlin, David T.

    2014-01-01

    Müllerian inhibiting substance (MIS), also called anti-Müllerian hormone (AMH), is a member of the transforming growth factor-β super-family of growth and differentiation response modifiers. It is produced in immature Sertoli cells in male embryos and binds to MIS/AMH receptors in primordial Müllerian ducts to cause regression of female reproductive structures that are the precursors to the fallopian tubes, the surface epithelium of the ovaries, the uterus, the cervix, and the upper third of the vagina. Because most gynecologic tumors originate from Müllerian duct-derived tissues, and since MIS/AMH causes regression of the Müllerian duct in male embryos, it is expected to inhibit the growth of gynecologic tumors. Purified recombinant human MIS/AMH causes growth inhibition of epithelial ovarian cancer cells and cell lines in vitro and in vitro via MIS receptor-mediated mechanism. Furthermore, several lines of evidence suggest that MIS/AMH inhibits proliferation in tissues and cell lines of other MIS/AMH receptor-expressing gynecologic tumors such as cervical, endometrial, breast, and in endometriosis as well. These findings indicate that bioactive MIS/AMH recombinant protein should be tested in patients against tumors expressing the MIS/AMH receptor complex, perhaps beginning with ovarian cancer because it has the worst prognosis. The molecular tools to identify MIS/AMH receptor expressing ovarian and other cancers are in place, thus, it is possible to select patients for treatment. An MIS/AMH ELISA exists to follow administered doses of MIS/AMH, as well. Clinical trials await the production of sufficient supplies of qualified recombinant human MIS/AMH for this purpose. PMID:25264524

  8. Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis.

    PubMed

    Qi, Cuiling; Zhou, Qin; Li, Bin; Yang, Yang; Cao, Liu; Ye, Yuxiang; Li, Jiangchao; Ding, Yi; Wang, Huiping; Wang, Jintao; He, Xiaodong; Zhang, Qianqian; Lan, Tian; Lee, Kenneth Ka Ho; Li, Weidong; Song, Xiaoyu; Zhou, Jia; Yang, Xuesong; Wang, Lijing

    2014-10-30

    Angiogenesis is involved in the development, progression and metastasis of various human cancers. Herein, we report the discovery of glipizide, a widely used drug for type 2 diabetes mellitus, as a promising anticancer agent through the inhibition of tumor angiogenesis. By high-throughput screening (HTS) of an FDA approved drug library utilizing our in vivo chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, glipizide has been identified to significantly inhibit blood vessel formation and development. Moreover, glipizide was found to suppress tumor angiogenesis, tumor growth and metastasis using xenograft tumor and MMTV-PyMT transgenic mouse models. We further revealed that the anticancer capability of glipizide is not attributed to its antiproliferative effects, which are not significant against various human cancer cell lines. To investigate whether its anticancer efficacy is associated with the glucose level alteration induced by glipizide application, glimepiride, another medium to long-acting sulfonylurea antidiabetic drug in the same class, was employed for the comparison studies in the same fashion. Interestingly, glimepiride has demonstrated no significant impact on the tumor growth and metastasis, indicating that the anticancer effects of glipizide is not ascribed to its antidiabetic properties. Furthermore, glipizide suppresses endothelial cell migration and the formation of tubular structures, thereby inhibiting angiogenesis by up-regulating the expression of natriuretic peptide receptor A. These findings uncover a novel mechanism of glipizide as a potential cancer therapy, and also for the first time, provide direct evidence to support that treatment with glipizide may reduce the cancer risk for diabetic patients. PMID:25294818

  9. A Novel Potent Oral Series of VEGFR2 Inhibitors Abrogate Tumor Growth by Inhibiting Angiogenesis.

    PubMed

    Bold, Guido; Schnell, Christian; Furet, Pascal; McSheehy, Paul; Brüggen, Josef; Mestan, Jürgen; Manley, Paul W; Drückes, Peter; Burglin, Marion; Dürler, Ursula; Loretan, Jacqueline; Reuter, Robert; Wartmann, Markus; Theuer, Andreas; Bauer-Probst, Beatrice; Martiny-Baron, Georg; Allegrini, Peter; Goepfert, Arnaud; Wood, Jeanette; Littlewood-Evans, Amanda

    2016-01-14

    This paper describes the identification of 6-(pyrimidin-4-yloxy)-naphthalene-1-carboxamides as a new class of potent and selective human vascular endothelial growth factor receptor 2 (VEGFR2) tyrosine kinase inhibitors. In biochemical and cellular assays, the compounds exhibit single-digit nanomolar potency toward VEGFR2. Compounds of this series show good exposure in rodents when dosed orally. They potently inhibit VEGF-driven angiogenesis in a chamber model and rodent tumor models at daily doses of less than 3 mg/kg by targeting the tumor vasculature as demonstrated by ELISA for TIE-2 in lysates or by immunohistochemical analysis. This novel series of compounds shows a potential for the treatment of solid tumors and other diseases where angiogenesis plays an important role. PMID:26629594

  10. Anticancer activity of MPT0G157, a derivative of indolylbenzenesulfonamide, inhibits tumor growth and angiogenesis.

    PubMed

    Huang, Yen-Chia; Huang, Fang-I; Mehndiratta, Samir; Lai, Ssu-Chia; Liou, Jing-Ping; Yang, Chia-Ron

    2015-07-30

    Histone deacetylases (HDACs) display multifaceted functions by coordinating the interaction of signal pathways with chromatin structure remodeling and the activation of non-histone proteins; these epigenetic regulations play an important role during malignancy progression. HDAC inhibition shows promise as a new strategy for cancer therapy; three HDAC inhibitors have been approved. We previously reported that N-hydroxy-3-{4-[2-(2-methyl-1H-indol-3-yl)-ethylsulfamoyl]-phenyl}-acrylamide (MPT0G157), a novel indole-3-ethylsulfamoylphenylacrylamide compound, demonstrated potent HDAC inhibition and anti-inflammatory effects. In this study, we evaluated its anti-cancer activity in vitro and in vivo. MPT0G157 treatment significantly inhibited different tumor growth at submicromolar concentration and was particularly potent in human colorectal cancer (HCT116) cells. Apoptosis and inhibited HDACs activity induced by MPT0G157 was more potent than that by the marketed drugs PXD101 (Belinostat) and SAHA (Vorinostat). In an in vivo model, MPT0G157 markedly inhibited HCT116 xenograft tumor volume and reduced matrigel-induced angiogenesis. The anti-angiogenetic effect of MPT0G157 was found to increase the hyperacetylation of heat shock protein 90 (Hsp90) and promote hypoxia-inducible factor-1α (HIF-1α) degradation followed by down-regulation of vascular endothelial growth factor (VEGF) expression. Our results demonstrate that MPT0G157 has potential as a new drug candidate for cancer therapy. PMID:26087180

  11. Anticancer activity of MPT0G157, a derivative of indolylbenzenesulfonamide, inhibits tumor growth and angiogenesis

    PubMed Central

    Mehndiratta, Samir; Lai, Ssu-Chia; Liou, Jing-Ping; Yang, Chia-Ron

    2015-01-01

    Histone deacetylases (HDACs) display multifaceted functions by coordinating the interaction of signal pathways with chromatin structure remodeling and the activation of non-histone proteins; these epigenetic regulations play an important role during malignancy progression. HDAC inhibition shows promise as a new strategy for cancer therapy; three HDAC inhibitors have been approved. We previously reported that N-hydroxy-3-{4-[2-(2-methyl-1H-indol-3-yl)-ethylsulfamoyl]-phenyl}-acrylamide (MPT0G157), a novel indole-3-ethylsulfamoylphenylacrylamide compound, demonstrated potent HDAC inhibition and anti-inflammatory effects. In this study, we evaluated its anti-cancer activity in vitro and in vivo. MPT0G157 treatment significantly inhibited different tumor growth at submicromolar concentration and was particularly potent in human colorectal cancer (HCT116) cells. Apoptosis and inhibited HDACs activity induced by MPT0G157 was more potent than that by the marketed drugs PXD101 (Belinostat) and SAHA (Vorinostat). In an in vivo model, MPT0G157 markedly inhibited HCT116 xenograft tumor volume and reduced matrigel-induced angiogenesis. The anti-angiogenetic effect of MPT0G157 was found to increase the hyperacetylation of heat shock protein 90 (Hsp90) and promote hypoxia-inducible factor-1α (HIF-1α) degradation followed by down-regulation of vascular endothelial growth factor (VEGF) expression. Our results demonstrate that MPT0G157 has potential as a new drug candidate for cancer therapy. PMID:26087180

  12. Targeting Tumor Vasculature Endothelial Cells and Tumor Cells for Immunotherapy of Human Melanoma in a Mouse Xenograft Model

    NASA Astrophysics Data System (ADS)

    Hu, Zhiwei; Sun, Ying; Garen, Alan

    1999-07-01

    An immunotherapy treatment for cancer that targets both the tumor vasculature and tumor cells has shown promising results in a severe combined immunodeficient mouse xenograft model of human melanoma. The treatment involves systemic delivery of an immunoconjugate molecule composed of a tumor-targeting domain conjugated to the Fc effector domain of human IgG1. The effector domain induces a cytolytic immune response against the targeted cells by natural killer cells and complement. Two types of targeting domains were used. One targeting domain is a human single-chain Fv molecule that binds to a chondroitin sulfate proteoglycan expressed on the surface of most human melanoma cells. Another targeting domain is factor VII (fVII), a zymogen that binds with high specificity and affinity to the transmembrane receptor tissue factor (TF) to initiate the blood coagulation cascade. TF is expressed by endothelial cells lining the tumor vasculature but not the normal vasculature, and also by many types of tumor cells including melanoma. Because the binding of a fVII immunoconjugate to TF might cause disseminated intravascular coagulation, the active site of fVII was mutated to inhibit coagulation without affecting the affinity for TF. The immunoconjugates were encoded as secreted molecules in a replication-defective adenovirus vector, which was injected into the tail vein of severe combined immunodeficient mice. The results demonstrate that a mutated fVII immunoconjugate, administered separately or together with a single-chain Fv immunoconjugate that binds to the tumor cells, can inhibit the growth or cause regression of an established human tumor xenograft. This procedure could be effective in treating a broad spectrum of human solid tumors that express TF on vascular endothelial cells and tumor cells.

  13. Suppression of KSHV-induced angiopoietin-2 inhibits angiogenesis, infiltration of inflammatory cells, and tumor growth.

    PubMed

    Yu, Xiaolan; Sha, Jingfeng; Xiang, Shao; Qin, Sanhai; Conrad, Patricia; Ghosh, Santosh K; Weinberg, Aaron; Ye, Fengchun

    2016-08-01

    Kaposi's sarcoma (KS) is a highly angiogenic and inflammatory neoplasia. The angiogenic and inflammatory cytokine angiopoietin-2 (Ang-2) is strongly expressed in KS due to Kaposi's sarcoma-associated herpesvirus (KSHV) infection. In the present study, we determined how Ang-2 contributes to development of KS by using telomerase-immortalized human umbilical vein endothelial cells (TIVE) as a model, which become malignantly transformed and express increased levels of Ang-2 following KSHV infection. Ang-2 released from TIVE-KSHV cells induces tyrosine phosphorylation of Tie-2 receptor from both human and mouse endothelial cells and promotes angiogenesis in nude mice. Functional inhibition or expressional "knock-down" of Ang-2 in these cells blocks angiogenesis and inhibits tumor growth. Ang-2 suppression also reduces the numbers of infiltrating monocytes/macrophages in tumors. In transwell-based cell migration assays, Ang-2 indeed enhances migration of human monocytes in a dose-dependent manner. These results underscore a pivotal role of KSHV-induced Ang-2 in KS tumor development by promoting both angiogenesis and inflammation. Our data also suggest that selective drug targeting of Ang-2 may be used for treatment of KS. PMID:27294705

  14. Disruption of the protein interaction between FAK and IGF-1R inhibits melanoma tumor growth.

    PubMed

    Ucar, Deniz A; Kurenova, Elena; Garrett, Timothy J; Cance, William G; Nyberg, Carl; Cox, Audrey; Massoll, Nicole; Ostrov, David A; Lawrence, Nicholas; Sebti, Said M; Zajac-Kaye, Maria; Hochwald, Steven N

    2012-09-01

    FAK (focal adhesion kinase) and IGF-1R (insulin-like growth factor receptor-1) directly interact with each other and thereby activate crucial signaling pathways that benefit cancer cells. Inhibition of FAK and IGF-1R function has been shown to significantly decrease cancer cell proliferation and increase sensitivity to chemotherapy and radiation treatment. As a novel approach in human melanoma, we evaluated the effect of a small-molecule compound that disrupts the protein interaction of FAK and IGF-1R. Previously, using virtual screening and functional testing, we identified a lead compound (INT2-31) that targets the known FAK-IGF-1R protein interaction site. We studied the ability of this compound to disrupt FAK-IGF-1R protein interactions, inhibit downstream signaling, decrease human melanoma cell proliferation, alter cell cycle progression, induce apoptosis and decrease tumor growth in vivo. INT2-31 blocked the interaction of FAK and IGF-1R in vitro and in vivo in melanoma cells and tumor xenografts through precluding the activation of IRS-1, leading to reduced phosphorylation of AKT upon IGF-1 stimulation. As a result, INT2-31 significantly inhibited cell proliferation and viability (range 0.05-10 μM). More importantly, 15 mg/kg of INT2-31 given for 21 d via intraperitoneal injection disrupted the interaction of FAK and IGF-1R and effectively decreased phosphorylation of tumor AKT, resulting in significant melanoma tumor regression in vivo. Our data suggest that the FAK-IGF-1R protein interaction is an important target, and disruption of this interaction with a novel small molecule (INT2-31) has potential anti-neoplastic therapeutic effects in human melanoma. PMID:22894899

  15. Anti-Metastatic and Anti-Tumor Growth Effects of Origanum majorana on Highly Metastatic Human Breast Cancer Cells: Inhibition of NFκB Signaling and Reduction of Nitric Oxide Production

    PubMed Central

    Al Dhaheri, Yusra; Attoub, Samir; Arafat, Kholoud; AbuQamar, Synan; Viallet, Jean; Saleh, Alaaeldin; Al Agha, Hala; Eid, Ali; Iratni, Rabah

    2013-01-01

    Background We have recently reported that Origanummajorana exhibits anticancer activity by promoting cell cycle arrest and apoptosis of the metastatic MDA-MB-231 breast cancer cell line. Here, we extended our study by investigating the effect of O. majorana on the migration, invasion and tumor growth of these cells. Results We demonstrate that non-cytotoxic concentrations of O. majorana significantly inhibited the migration and invasion of the MDA-MB-231 cells as shown by wound-healing and matrigel invasion assays. We also show that O. majorana induce homotypic aggregation of MDA-MB-231 associated with an upregulation of E-cadherin protein and promoter activity. Furthermore, we show that O. majorana decrease the adhesion of MDA-MB-231 to HUVECs and inhibits transendothelial migration of MDA-MB-231 through TNF-α-activated HUVECs. Gelatin zymography assay shows that O. majorana suppresses the activities of matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9). ELISA, RT-PCR and Western blot results revealed that O. majorana decreases the expression of MMP-2, MMP-9, urokinase plasminogen activator receptor (uPAR), ICAM-1 and VEGF. Further investigation revealed that O. majorana suppresses the phosphorylation of IκB, downregulates the nuclear level of NFκB and reduces Nitric Oxide (NO) production in MDA-MB-231 cells. Most importantly, by using chick embryo tumor growth assay, we also show that O. majorana promotes inhibition of tumor growth and metastasis in vivo. Conclusion Our findings identify Origanummajorana as a promising chemopreventive and therapeutic candidate that modulate breast cancer growth and metastasis. PMID:23874773

  16. The c-Met Inhibitor MSC2156119J Effectively Inhibits Tumor Growth in Liver Cancer Models.

    PubMed

    Bladt, Friedhelm; Friese-Hamim, Manja; Ihling, Christian; Wilm, Claudia; Blaukat, Andree

    2014-01-01

    The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase with hepatocyte growth factor (HGF) as its only high-affinity ligand. Aberrant activation of c-Met is associated with many human malignancies, including hepatocellular carcinoma (HCC). We investigated the in vivo antitumor and antimetastatic efficacy of the c-Met inhibitor MSC2156119J (EMD 1214063) in patient-derived tumor explants. BALB/c nude mice were inoculated with MHCC97H cells or with tumor fragments of 10 patient-derived primary liver cancer explants selected according to c-Met/HGF expression levels. MSC2156119J (10, 30, and 100 mg/kg) and sorafenib (50 mg/kg) were administered orally as single-agent treatment or in combination, with vehicle as control. Tumor response, metastases formation, and alpha fetoprotein (AFP) levels were measured. MSC2156119J inhibited tumor growth and induced complete regression in mice bearing subcutaneous and orthotopic MHCC97H tumors. AFP levels were undetectable after 5 weeks of MSC2156119J treatment, and the number of metastatic lung foci was reduced. Primary liver explant models with strong c-Met/HGF activation showed increased responsiveness to MSC2156119J, with MSC2156119J showing similar or superior activity to sorafenib. Tumors characterized by low c-Met expression were less sensitive to MSC2156119J. MSC2156119J was better tolerated than sorafenib, and combination therapy did not improve efficacy. These findings indicate that selective c-Met/HGF inhibition with MSC2156119J is associated with marked regression of c-Met high-expressing tumors, supporting its clinical development as an antitumor treatment for HCC patients with active c-Met signaling. PMID:25256830

  17. RPA inhibition increases replication stress and suppresses tumor growth.

    PubMed

    Glanzer, Jason G; Liu, Shengqin; Wang, Ling; Mosel, Adam; Peng, Aimin; Oakley, Greg G

    2014-09-15

    The ATR/Chk1 pathway is a critical surveillance network that maintains genomic integrity during DNA replication by stabilizing the replication forks during normal replication to avoid replication stress. One of the many differences between normal cells and cancer cells is the amount of replication stress that occurs during replication. Cancer cells with activated oncogenes generate increased levels of replication stress. This creates an increased dependency on the ATR/Chk1 pathway in cancer cells and opens up an opportunity to preferentially kill cancer cells by inhibiting this pathway. In support of this idea, we have identified a small molecule termed HAMNO ((1Z)-1-[(2-hydroxyanilino)methylidene]naphthalen-2-one), a novel protein interaction inhibitor of replication protein A (RPA), a protein involved in the ATR/Chk1 pathway. HAMNO selectively binds the N-terminal domain of RPA70, effectively inhibiting critical RPA protein interactions that rely on this domain. HAMNO inhibits both ATR autophosphorylation and phosphorylation of RPA32 Ser33 by ATR. By itself, HAMNO treatment creates DNA replication stress in cancer cells that are already experiencing replication stress, but not in normal cells, and it acts synergistically with etoposide to kill cancer cells in vitro and slow tumor growth in vivo. Thus, HAMNO illustrates how RPA inhibitors represent candidate therapeutics for cancer treatment, providing disease selectivity in cancer cells by targeting their differential response to replication stress. Cancer Res; 74(18); 5165-72. ©2014 AACR. PMID:25070753

  18. RPA Inhibition increases Replication Stress and Suppresses Tumor Growth

    PubMed Central

    Glanzer, Jason G.; Liu, Shengqin; Wang, Ling; Mosel, Adam; Peng, Aimin; Oakley, Greg G.

    2014-01-01

    The ATR/Chk1 pathway is a critical surveillance network that maintains genomic integrity during DNA replication by stabilizing the replication forks during normal replication to avoid replication stress. One of the many differences between normal cells and cancer cells is the amount of replication stress that occurs during replication. Cancer cells with activated oncogenes generate increased levels of replication stress. This creates an increased dependency on the ATR/Chk1 pathway in cancer cells and opens up an opportunity to preferentially kill cancer cells by inhibiting this pathway. In support of this idea, we have identified a small molecule termed HAMNO ((1Z)-1-[(2-hydroxyanilino)methylidene]naphthalen-2-one), a novel protein interaction inhibitor of replication protein A (RPA), a protein involved in the ATR/Chk1 pathway. HAMNO selectively binds the N-terminal domain of RPA70, effectively inhibiting critical RPA protein interactions which rely on this domain. HAMNO inhibits both ATR autophosphorylation and phosphorylation of RPA32 Ser33 by ATR. By itself, HAMNO treatment creates DNA replication stress in cancer cells that are already experiencing replication stress, but not in normal cells, and it acts synergistically with etoposide to kill cancer cells in vitro and slow tumor growth in vivo. Thus, HAMNO illustrates how RPA inhibitors represent candidate therapeutics for cancer treatment, providing disease selectivity in cancer cells by targeting their differential response to replication stress. PMID:25070753

  19. Modulation of tumor growth by inhibitory Fcγ receptor expressed by human melanoma cells

    PubMed Central

    Cassard, Lydie; Cohen-Solal, Joël F.G.; Galinha, Annie; Sastre-Garau, Xavier; Mathiot, Claire; Galon, Jérôme; Dorval, Thierry; Bernheim, Alain; Fridman, Wolf H.; Sautès-Fridman, Catherine

    2002-01-01

    The efficacy of anti-tumor IgG reflects the balance between opposing signals mediated by activating and inhibitory Fcγ receptors (FcγRs) expressed by effector cells. Here, we show that human malignant melanoma cells express the inhibitory low-affinity Fcγ receptor FcγRIIB1 in 40% of tested metastases. When melanoma cells were grafted in nude mice, a profound inhibition of FcγRIIB1 tumor growth that required the intracytoplasmic region of the receptor was observed. IgG immune complexes (ICs) may be required for this inhibition, since sera from nude mice bearing tumors contained IgG that decreased the proliferation of FcγRIIB1-positive cells in vitro, and tumor development of FcγRIIB1-positive melanoma lines was not inhibited in antibody-defective severe combined immunodeficiency (SCID) mice. Passive immunization of SCID mice with anti–ganglioside GD2 antibody resulted in significant inhibition of growth of FcγRIIB1-positive tumors in an intracytoplasmic-dependent manner. Altogether, these data suggest that human melanoma cells express biologically active inhibitory FcγRIIB1, which regulates their development upon direct interaction with anti-tumor antibodies. Therefore, FcγR expression on human tumors may be one component of the efficacy of antibody-mediated therapies, and FcγR-positive tumors could be the most sensitive candidates for such treatments. PMID:12438452

  20. Inhibition of cytokine production by a tumor cell product.

    PubMed Central

    Farram, E; Nelson, M; Nelson, D S; Moon, D K

    1982-01-01

    Supernatants from cultured mouse and human tumour cells, but not mouse or guinea-pig fibroblasts, inhibited the production of a lymphokine, macrophage chemotactic factor, by PHA-stimulated mouse spleen cells. The supernatants affected spleen cells from old, but not young, mice. They were most active if added at the start of the spleen cell culture and did not act by binding phytohaemagglutinin (PHA). The active material had an approximate molecular weight, on membrane filtration, of 1000-10,000 and could be bound to and eluted from Con A-Sepharose. Tumour supernatant factor(s) of similar molecular weight inhibited the production of interleukin 1 (lymphocyte activating factor) in response to lipopolysaccharide by stimulated thioglycollate-induced peritoneal exudate macrophages, but not by Corynebacterium parvum-activated macrophages. Similar tumour-produced material has been found to inhibit the early phase of delayed-type hypersensitivity reactions in older mice. It is suggested that this effect is due, at least in part, to inhibition of interleukin 1 production leading to inhibition of lymphokine production. PMID:7047385

  1. Triparanol suppresses human tumor growth in vitro and in vivo

    SciTech Connect

    Bi, Xinyu; Han, Xingpeng; Zhang, Fang; He, Miao; Zhang, Yi; Zhi, Xiu-Yi; Zhao, Hong

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Demonstrate Triparanol can block proliferation in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrate Triparanol can induce apoptosis in multiple cancer cells. Black-Right-Pointing-Pointer Proved Triparanol can inhibit Hedgehog signaling in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrated Triparanol can impede tumor growth in vivo in mouse xenograft model. -- Abstract: Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.

  2. mTOR and PDGF pathway blockade inhibits liver metastasis of colorectal cancer by modulating the tumor microenvironment.

    PubMed

    Yuge, Ryo; Kitadai, Yasuhiko; Shinagawa, Kei; Onoyama, Mieko; Tanaka, Shinji; Yasui, Wataru; Chayama, Kazuaki

    2015-02-01

    Tumor growth and metastasis are not determined by cancer cells alone but also by a variety of stromal cells, and platelet-derived growth factor receptors (PDGF-Rs) are overexpressed by various stromal cell populations. Activation of PI3K-AKT-mTOR signaling is frequently observed in many cancer types. We investigated whether the mTOR inhibitor everolimus, alone or in combination with the PDGF-R tyrosine kinase inhibitor nilotinib, can inhibit growth and metastasis of human colon cancer. The effects of nilotinib and everolimus on tumor growth and metastasis were examined in an orthotopic mouse model of human colon cancer and a model of liver metastasis. After treatment with nilotinib (versus distilled water), the stromal reaction of xenografts growing in the cecal wall and liver was significantly decreased. After treatment with everolimus, the stromal reaction did not decrease, but tumor cell proliferation and microvessel density decreased. With the two drugs in combination, both stromal reaction and tumor cell proliferation decreased and apoptosis of tumor cells increased, resulting in remarkable inhibition of tumor growth at both the orthotopic and the metastatic site. Concurrent inhibition of tumor cells and activated stromal cells by a PDGF-R tyrosine kinase inhibitor and an mTOR inhibitor used in combination may represent a novel therapeutic approach for colorectal cancer. PMID:25478811

  3. Cimetidine induces apoptosis of human salivary gland tumor cells.

    PubMed

    Fukuda, Masakatsu; Tanaka, Shin; Suzuki, Seiji; Kusama, Kaoru; Kaneko, Tadayoshi; Sakashita, Hideaki

    2007-03-01

    It has been reported that cimetidine, a histamine type-2 receptor (H2R) antagonist, inhibits the growth of glandular tumors such as colorectal cancer. However, its effects against salivary gland tumors are still unknown. We demonstrated previously that human salivary gland tumor (HSG) cells spontaneously express the neural cell adhesion molecule (NCAM) and also that HSG cell proliferation could be controlled via a homophilic (NCAM-NCAM) binding mechanism and that NCAM may be associated with perineural invasion by malignant salivary gland tumors. In the present study, we investigated the effects of cimetidine via the expression of NCAM on tumor growth and perineural/neural invasion in salivary gland tumor cells. Expression of both NCAM mRNA and protein was found to decrease in a dose-dependent manner upon treatment with cimetidine for 24 h. The MTT assay and confocal laser microscopy clearly showed that HSG cells underwent apoptosis after treatment with cimetidine. Activation of caspases 3, 7, 8 and 9 was observed in HSG cells after cimetidine treatment, thus confirming that the apoptosis was induced by the activated caspases. Apaf-1 activity was also detected in HSG cells in a dose-dependent manner after treatment with cimetidine. We also found that the cimetidine-mediated down-regulation of NCAM expression in HSG cells did not occur via blocking of the histamine receptor, even though H2R expression was observed on HSG cells, as two other H2R antagonists, famotidine and ranitidine, did not show similar effects. We demonstrated for the first time that cimetidine can induce significant apoptosis of salivary gland tumor cells, which express NCAM, at least in part by down-regulation of NCAM expression on the cells. These findings suggest that the growth, development and perineural/neural invasion of salivary gland tumor cells can be blocked by cimetidine administration through down-regulation of NCAM expression, as well as induction of apoptosis. PMID:17273750

  4. Arsenic trioxide inhibits tumor cell growth in malignant rhabdoid tumors in vitro and in vivo by targeting overexpressed Gli1.

    PubMed

    Kerl, Kornelius; Moreno, Natalia; Holsten, Till; Ahlfeld, Julia; Mertins, Julius; Hotfilder, Marc; Kool, Marcel; Bartelheim, Kerstin; Schleicher, Sabine; Handgretinger, Rupert; Schüller, Ulrich; Meisterernst, Michael; Frühwald, Michael C

    2014-08-15

    Rhabdoid tumors are highly aggressive tumors occurring in infants and very young children. Despite multimodal and intensive therapy prognosis remains poor. Molecular analyses have uncovered several deregulated pathways, among them the CDK4/6-Rb-, the WNT- and the Sonic hedgehog (SHH) pathways. The SHH pathway is activated in rhabdoid tumors by GLI1 overexpression. Here, we demonstrate that arsenic trioxide (ATO) inhibits tumor cell growth of malignant rhabdoid tumors in vitro and in a mouse xenograft model by suppressing Gli1. Our data uncover ATO as a promising therapeutic approach to improve prognosis for rhabdoid tumor patients. PMID:24420698

  5. Inhibition in the Human Auditory Cortex

    PubMed Central

    Inui, Koji; Nakagawa, Kei; Nishihara, Makoto; Motomura, Eishi; Kakigi, Ryusuke

    2016-01-01

    Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI) in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms) prepulse. The time course of the inhibition evaluated by prepulses presented at 10–800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20–60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful. PMID:27219470

  6. A recombinant decoy comprising EGFR and ErbB-4 inhibits tumor growth and metastasis

    PubMed Central

    Lindzen, Moshit; Carvalho, Silvia; Starr, Alex; Ben-Chetrit, Nir; Pradeep, Chaluvally-Raghavan; Köstler, Wolfgang J.; Rabinkov, Aaron; Lavi, Sara; Bacus, Sarah S.; Yarden, Yosef

    2011-01-01

    EGF-like growth factors control tumor progression, as well as evasion from the toxic effects of chemotherapy. Accordingly, antibodies targeting the cognate receptors, such as EGFR/ErbB-1 and the co-receptor HER2/ErbB-2, are widely used to treat cancer patients, but agents that target the EGF-like growth factors are not available. To circumvent the existence of 11 distinct ErbB ligands, we constructed a soluble fusion protein (hereinafter: TRAP-Fc) comprising truncated extracellular domains of EGFR/ErbB-1 and ErbB-4. The recombinant TRAP-Fc retained high affinity ligand binding to EGF-like growth factors and partially inhibited growth of a variety of cultured tumor cells. Consistently, TRAP-Fc displayed an inhibitory effect in xenograft models of human cancer, as well as synergy with chemotherapy. Additionally, TRAP-Fc inhibited invasive growth of mammary tumor cells and reduced their metastatic seeding in the lungs of animals. Taken together, the activities displayed by TRAP-Fc reinforce critical roles of EGF-like growth factors in tumor progression, and they warrant further tests of TRAP-Fc in pre-clinical models. PMID:22105361

  7. Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung cancer

    PubMed Central

    Aftab, Blake T.; Dobromilskaya, Irina; Liu, Jun O.; Rudin, Charles M.

    2011-01-01

    The anti-angiogenic agent bevacizumab has been approved for the treatment of non-small cell lung cancer, although the survival benefit associated with this agent is marginal, and toxicities and cost are substantial. A recent screen for selective inhibitors of endothelial cell proliferation identified the oral anti-fungal drug itraconazole as a novel agent with potential anti-angiogenic activity. Here we define and characterize the anti-angiogenic and anti-cancer activities of itraconazole in relevant preclinical models of angiogenesis and lung cancer. Itraconazole consistently demonstrated potent, specific, and dose-dependent inhibition of endothelial cell proliferation, migration, and tube formation in response to both vascular endothelial growth factor (VEGF)- and basic fibroblast growth factor (bFGF)-mediated angiogenic stimulation. In vivo, using primary xenograft models of human non-small cell lung cancer, oral itraconazole showed single agent growth-inhibitory activity associated with induction of tumor HIF1α expression and marked inhibition of tumor vascularity. Itraconazole significantly enhanced the anti-tumor efficacy of the chemotherapeutic agent cisplatin in the same model systems. Taken together, these data suggest that itraconazole has potent and selective inhibitory activity against multiple key aspects of tumor-associated angiogenesis in vitro and in vivo, and strongly support clinical translation of its use. Based on these observations we have initiated a randomized phase II study comparing the efficacy of standard cytotoxic therapy with or without daily oral itraconazole in patients with recurrent metastatic non-small cell lung cancer. PMID:21896639

  8. Inhibition of cystine uptake disrupts the growth of primary brain tumors.

    PubMed

    Chung, Wook Joon; Lyons, Susan A; Nelson, Gina M; Hamza, Hashir; Gladson, Candece L; Gillespie, G Yancey; Sontheimer, Harald

    2005-08-01

    Glial cells play an important role in sequestering neuronally released glutamate via Na+-dependent transporters. Surprisingly, these transporters are not operational in glial-derived tumors (gliomas). Instead, gliomas release glutamate, causing excitotoxic death of neurons in the vicinity of the tumor. We now show that glutamate release from glioma cells is an obligatory by-product of cellular cystine uptake via system xc-, an electroneutral cystine-glutamate exchanger. Cystine is an essential precursor for the biosynthesis of glutathione, a major redox regulatory molecule that protects cells from endogenously produced reactive oxygen species (ROS). Glioma cells, but not neurons or astrocytes, rely primarily on cystine uptake via system xc- for their glutathione synthesis. Inhibition of system xc- causes a rapid depletion of glutathione, and the resulting loss of ROS defense causes caspase-mediated apoptosis. Glioma cells can be rescued if glutathione status is experimentally restored or if glutathione is substituted by alternate cellular antioxidants, confirming that ROS are indeed mediators of cell death. We describe two potent drugs that permit pharmacological inhibition of system xc-. One of these drugs, sulfasalazine, is clinically used to treat inflammatory bowel disease and rheumatoid arthritis. Sulfasalazine was able to reduce glutathione levels in tumor tissue and slow tumor growth in vivo in a commonly used intracranial xenograft animal model for human gliomas when administered by intraperitoneal injection. These data suggest that inhibition of cystine uptake into glioma cells through the pharmacological inhibition of system xc- may be a viable therapeutic strategy with a Food and Drug Administration-approved drug already in hand. PMID:16079392

  9. Cabozantinib inhibits prostate cancer growth and prevents tumor-induced bone lesions

    PubMed Central

    Dai, Jinlu; Zhang, Honglai; Karatsinides, Andreas; Keller, Jill M.; Kozloff, Kenneth M.; Aftab, Dana T.; Schimmoller, Frauke; Keller, Evan T.

    2013-01-01

    Purpose Cabozantinib, an orally available multi-tyrosine kinase inhibitor with activity against MET and vascular endothelial growth factor receptor 2 (VEGFR2), induces resolution of bone scan lesions in men with castration-resistant prostate cancer bone metastases. The purpose of this study was to determine whether cabozantinib elicited a direct anti-tumor effect, an indirect effect through modulating bone, or both. Experimental Design Using human prostate cancer xenograft studies in mice we determined cabozantinib's impact on tumor growth in soft tissue and bone. In vitro studies with cabozantinib were performed using (1) prostate cancer cell lines to evaluate its impact on cell growth, invasive ability and MET and (2) osteoblast cell lines to evaluate its impact on viability and differentiation and VEGFR2. Results Cabozantinib inhibited progression of multiple prostate cancer cell lines (Ace-1,C4-2B, and LuCaP 35) in bone metastatic and soft tissue murine models of prostate cancer, except for PC-3 prostate cancer cells in which it inhibited only subcutaneous growth. Cabozantinib directly inhibited prostate cancer cell viability and induced apoptosis in vitro and in vivo and inhibited cell invasion in vitro. Cabozantinib had a dose-dependent biphasic effect on osteoblast activity and inhibitory effect on osteoclast production in vitro, that was reflected in vivo. It blocked MET and VEGFR2 phosphorylation in prostate cancer cells and osteoblast-like cells, respectively. Conclusion These data indicate that cabozantinib has direct anti-tumor activity; and that its ability to modulate osteoblast activity may contribute to its anti-tumor efficacy. PMID:24097861

  10. Imatinib and Dasatinib Inhibit Hemangiosarcoma and Implicate PDGFR-β and Src in Tumor Growth.

    PubMed

    Dickerson, Erin B; Marley, Kevin; Edris, Wade; Tyner, Jeffrey W; Schalk, Vidya; Macdonald, Valerie; Loriaux, Marc; Druker, Brian J; Helfand, Stuart C

    2013-04-01

    Hemangiosarcoma, a natural model of human angiosarcoma, is an aggressive vascular tumor diagnosed commonly in dogs. The documented expression of several receptor tyrosine kinases (RTKs) by these tumors makes them attractive targets for therapeutic intervention using tyrosine kinase inhibitors (TKIs). However, we possess limited knowledge of the effects of TKIs on hemangiosarcoma as well as other soft tissue sarcomas. We report here on the use of the TKIs imatinib and dasatinib in canine hemangiosarcoma and their effects on platelet-derived growth factor receptor β (PDGFR-β) and Src inhibition. Both TKIs reduced cell viability, but dasatinib was markedly more potent in this regard, mediating cytotoxic effects orders of magnitude greater than imatinib. Dasatinib also inhibited the phosphorylation of the shared PDGFR-β target at a concentration approximately 1000 times less than that needed by imatinib and effectively blocked Src phosphorylation. Both inhibitors augmented the response to doxorubicin, suggesting that clinical responses likely will be improved using both drugs in combination; however, dasatinib was significantly (P < .05) more effective in this context. Despite the higher concentrations needed in cell-based assays, imatinib significantly inhibited tumor growth (P < .05) in a tumor xenograft model, highlighting that disruption of PDGFR-β/PDGF signaling may be important in targeting the angiogenic nature of these tumors. Treatment of a dog with spontaneously occurring hemangiosarcoma established that clinically achievable doses of dasatinib may be realized in dogs and provides a means to investigate the effect of TKIs on soft tissue sarcomas in a large animal model. PMID:23544168

  11. A tissue-engineered therapeutic device inhibits tumor growth in vitro and in vivo.

    PubMed

    Sun, Ming; Wang, Miao; Chen, Muwan; Dagnaes-Hansen, Frederik; Le, Dang Quang Svend; Baatrup, Anette; Horsman, Michael R; Kjems, Jørgen; Bünger, Cody Eric

    2015-05-01

    Bone metastasis is one of the leading causes of death in breast cancer patients. The current treatment is performed as a palliative therapy and the adverse side effects can compromise the patients' quality of life. In order to both effectively treat bone metastasis and avoid the limitation of current strategies, we have invented a drug eluting scaffold with clay matrix release doxorubicin (DESCLAYMR_DOX) to mechanically support the structure after resecting the metastatic tissue while also releasing the anticancer drug doxorubicin which supplements growth inhibition and elimination of the remaining tumor cells. We have previously demonstrated that this device has the capacity to regenerate the bone and provide sustained release of the anticancer drug in vitro. In this study, we focus on the ability of the device to inhibit cancer cell growth in vitro as well as in vivo. Drug-release kinetics was investigated and the cell viability test showed that the tumor inhibitory effect is sustained for up to 4weeks in vitro. Subcutaneous implantation of DESCLAYMR_DOX in athymic mice resulted in significant growth inhibition of human tumor xenografts of breast origin and decelerated multi-organ metastasis formation. Fluorescence images, visualizing doxorubicin, showed a sustained drug release from the DESCLAYMR device in vivo. Furthermore, local use of DESCLAYMR_DOX implantation reduced the incidence of doxorubicin's cardio-toxicity. These results suggest that DESCLAYMR_DOX can be used in reconstructive surgery to support the structure after bone tumor resection and facilitate a sustained release of anticancer drugs in order to prevent tumor recurrence. PMID:25686557

  12. Genetically engineered endostatin-lidamycin fusion proteins effectively inhibit tumor growth and metastasis

    PubMed Central

    2013-01-01

    Background Endostatin (ES) inhibits endothelial cell proliferation, migration, invasion, and tube formation. It also shows antiangiogenesis and antitumor activities in several animal models. Endostatin specifically targets tumor vasculature to block tumor growth. Lidamycin (LDM), which consists of an active enediyne chromophore (AE) and a non-covalently bound apo-protein (LDP), is a member of chromoprotein family of antitumor antibiotics with extremely potent cytotoxicity to cancer cells. Therefore, we reasoned that endostatin-lidamycin (ES-LDM) fusion proteins upon energizing with enediyne chromophore may obtain the combined capability targeting tumor vasculature and tumor cell by respective ES and LDM moiety. Methods In this study, we designed and obtained two new endostatin-based fusion proteins, endostatin-LDP (ES-LDP) and LDP-endostatin (LDP-ES). In vitro, the antiangiogenic effect of fusion proteins was determined by the wound healing assay and tube formation assay and the cytotoxicity of their enediyne-energized analogs was evaluated by CCK-8 assay. Tissue microarray was used to analyze the binding affinity of LDP, ES or ES-LDP with specimens of human lung tissue and lung tumor. The in vivo efficacy of the fusion proteins was evaluated with human lung carcinoma PG-BE1 xenograft and the experimental metastasis model of 4T1-luc breast cancer. Results ES-LDP and LDP-ES disrupted the formation of endothelial tube structures and inhibited endothelial cell migration. Evidently, ES-LDP accumulated in the tumor and suppressed tumor growth and metastasis. ES-LDP and ES show higher binding capability than LDP to lung carcinoma; in addition, ES-LDP and ES share similar binding capability. Furthermore, the enediyne-energized fusion protein ES-LDP-AE demonstrated significant efficacy against lung carcinoma xenograft in athymic mice. Conclusions The ES-based fusion protein therapy provides some fundamental information for further drug development. Targeting both tumor

  13. Inhibition of Rho-Associated Kinase 1/2 Attenuates Tumor Growth in Murine Gastric Cancer.

    PubMed

    Hinsenkamp, Isabel; Schulz, Sandra; Roscher, Mareike; Suhr, Anne-Maria; Meyer, Björn; Munteanu, Bogdan; Fuchser, Jens; Schoenberg, Stefan O; Ebert, Matthias P A; Wängler, Björn; Hopf, Carsten; Burgermeister, Elke

    2016-08-01

    Gastric cancer (GC) remains a malignant disease with high mortality. Patients are frequently diagnosed in advanced stages where survival prognosis is poor. Thus, there is high medical need to find novel drug targets and treatment strategies. Recently, the comprehensive molecular characterization of GC subtypes revealed mutations in the small GTPase RHOA as a hallmark of diffuse-type GC. RHOA activates RHO-associated protein kinases (ROCK1/2) which regulate cell contractility, migration and growth and thus may play a role in cancer. However, therapeutic benefit of RHO-pathway inhibition in GC has not been shown so far. The ROCK1/2 inhibitor 1-(5-isoquinoline sulfonyl)-homopiperazine (HA-1077, fasudil) is approved for cerebrovascular bleeding in patients. We therefore investigated whether fasudil (i.p., 10 mg/kg per day, 4 times per week, 4 weeks) inhibits tumor growth in a preclinical model of GC. Fasudil evoked cell death in human GC cells and reduced the tumor size in the stomach of CEA424-SV40 TAg transgenic mice. Small animal PET/CT confirmed preclinical efficacy. Mass spectrometry imaging identified a translatable biomarker for mouse GC and suggested rapid but incomplete in situ distribution of the drug to gastric tumor tissue. RHOA expression was increased in the neoplastic murine stomach compared with normal non-malignant gastric tissue, and fasudil reduced (auto) phosphorylation of ROCK2 at THR249 in vivo and in human GC cells in vitro. In sum, our data suggest that RHO-pathway inhibition may constitute a novel strategy for treatment of GC and that enhanced distribution of future ROCK inhibitors into tumor tissue may further improve efficacy. PMID:27566106

  14. BROMODICHLOROMETHANE INHIBITS HUMAN PLACENTAL TROPHOBLAST DIFFERENTIATION

    EPA Science Inventory

    BROMODICHLOROMETHANE INHIBITS HUMAN PLACENTAL
    TROPHOBLAST DIFFERENTIATION
    Jiangang Chen, Twanda L. Thirkill, Peter N. Lohstroh, Susan R. Bielmeier, Michael
    G. Narotsky, Deborah S. Best, Randy A. Harrison, Kala Natarajan, Rex A. Pegram,
    Bill L. Lasley, and Gordon C. Do...

  15. Dietary phenethyl isothiocyanate inhibition of androgen-responsive LNCaP prostate cancer cell tumor growth correlates with decreased angiogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenethyl isothiocyanate (PEITC), found in certain cruciferous vegetables, has antitumor activity in several cancer models, including prostate cancer. In our xenograft model, dietary administration of PEITC (100-150 mg/kg/d) inhibited androgen-responsive LNCaP human prostate cancer cell tumor growth...

  16. Canonical Wnt/β-catenin signaling drives human schwann cell transformation, progression, and tumor maintenance.

    PubMed

    Watson, Adrienne L; Rahrmann, Eric P; Moriarity, Branden S; Choi, Kwangmin; Conboy, Caitlin B; Greeley, Andrew D; Halfond, Amanda L; Anderson, Leah K; Wahl, Brian R; Keng, Vincent W; Rizzardi, Anthony E; Forster, Colleen L; Collins, Margaret H; Sarver, Aaron L; Wallace, Margaret R; Schmechel, Stephen C; Ratner, Nancy; Largaespada, David A

    2013-06-01

    Genetic changes required for the formation and progression of human Schwann cell tumors remain elusive. Using a Sleeping Beauty forward genetic screen, we identified several genes involved in canonical Wnt signaling as potential drivers of benign neurofibromas and malignant peripheral nerve sheath tumors (MPNSTs). In human neurofibromas and MPNSTs, activation of Wnt signaling increased with tumor grade and was associated with downregulation of β-catenin destruction complex members or overexpression of a ligand that potentiates Wnt signaling, R-spondin 2 (RSPO2). Induction of Wnt signaling was sufficient to induce transformed properties in immortalized human Schwann cells, and downregulation of this pathway was sufficient to reduce the tumorigenic phenotype of human MPNST cell lines. Small-molecule inhibition of Wnt signaling effectively reduced the viability of MPNST cell lines and synergistically induced apoptosis when combined with an mTOR inhibitor, RAD-001, suggesting that Wnt inhibition represents a novel target for therapeutic intervention in Schwann cell tumors. PMID:23535903

  17. Anti-tumor activity of benzylideneacetophenone derivatives via proteasomal inhibition in prostate cancer cells.

    PubMed

    Lee, Yun-hee; Yun, Jaesuk; Jung, Jae-Chul; Oh, Seikwan; Jung, Young-Suk

    2016-05-01

    A number of some chalcone derivatives possess promising biological properties including anti-inflammation, anti-oxidant, and anti-tumor activity. Although it has been shown that some derivatives of chalcone induce apoptosis in different kinds of cancer cells, the involved mechanism of action is not well defined. The purpose of this study is to investigate the primary target of a benzylideneacetophenone derivative (JC3), which is a synthetic compound derived from the chalcone family, in human cancer, using prostate cancer cells as a working model. Herein, we show that JC3 inhibits proteasomal activity as indicated by both in vitro and in cell-based assays. Especially, the JC3-dimer was more potent than monomer in the aspect of proteasome inhibition, which induced apoptosis significantly in the prostate cancer cells. Owing to the critical roles of the proteasome in the biology of human tumor progression, invasion, and metastasis, these findings give an important clue for the development of novel anti-tumor agents. PMID:27348972

  18. Inhibition of the autophagy flux by gingerol enhances TRAIL-induced tumor cell death.

    PubMed

    Nazim, Uddin Md; Jeong, Jae-Kyo; Seol, Jae-Won; Hur, Jin; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2015-05-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a primary anticancer agent and a member of the tumor necrosis factor family that selectively induces apoptosis in various tumor cells, but not in normal cells. Gingerol is a major ginger component with anti-inflammatory and anti‑tumorigenic activities. Autophagy flux is the complete process of autophagy, in which the autophagosomes are lysed by lysosomes. The role of autophagy in cell death or cell survival is controversial. A549 adenocarcinoma cells are TRAIL-resistant. In the present study, we showed that treatment with TRAIL slightly induced cell death, but gingerol treatment enhanced the TRAIL-induced cell death in human lung cancer cells. The combination of gingerol and TRAIL increased accumulation of microtubule-associated protein light chain 3-II and p62, confirming the inhibited autophagy flux. Collectively, our results suggest that gingerol sensitizes human lung cancer cells to TRAIL-induced apoptosis by inhibiting the autophagy flux. PMID:25813697

  19. Morelloflavone, a biflavonoid, inhibits tumor angiogenesis by targeting rho GTPases and extracellular signal-regulated kinase signaling pathways.

    PubMed

    Pang, Xiufeng; Yi, Tingfang; Yi, Zhengfang; Cho, Sung Gook; Qu, Weijing; Pinkaew, Decha; Fujise, Ken; Liu, Mingyao

    2009-01-15

    Morelloflavone, a biflavonoid extracted from Garcinia dulcis, has shown antioxidative, antiviral, and anti-inflammatory properties. However, the function and the mechanism of this compound in cancer treatment and tumor angiogenesis have not been elucidated to date. In this study, we postulated that morelloflavone might have the ability to inhibit angiogenesis, the pivotal step in tumor growth, invasiveness, and metastasis. We showed that morelloflavone could inhibit vascular endothelial growth factor (VEGF)-induced cell proliferation, migration, invasion, and capillary-like tube formation of primary cultured human umbilical vascular endothelial cells in a dose-dependent manner. Morelloflavone effectively inhibited microvessel sprouting of endothelial cells in the mouse aortic ring assay and the formation of new blood microvessels induced by VEGF in the mouse Matrigel plug assay. Furthermore, morelloflavone inhibited tumor growth and tumor angiogenesis of prostate cancer cells (PC-3) in xenograft mouse tumor model in vivo, suggesting that morelloflavone inhibited tumorigenesis by targeting angiogenesis. To understand the underlying mechanism of morelloflavone on the inhibitory effect of tumor growth and angiogenesis, we showed that morelloflavone could inhibit the activation of both RhoA and Rac1 GTPases but have little effect on the activation of Cdc42 GTPase. Additionally, morelloflavone inhibited the phosphorylation and activation of Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase/ERK pathway kinases without affecting VEGF receptor 2 activity. Together, our results indicate that morelloflavone exerts antiangiogenic action by targeting the activation of Rho-GTPases and ERK signaling pathways. These findings are the first to reveal the novel functions of morelloflavone in tumor angiogenesis and its molecular basis for the anticancer action. PMID:19147565

  20. Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization.

    PubMed

    LaMontagne, Kenneth; Littlewood-Evans, Amanda; Schnell, Christian; O'Reilly, Terence; Wyder, Lorenza; Sanchez, Teresa; Probst, Beatrice; Butler, Jeannene; Wood, Alexander; Liau, Gene; Billy, Eric; Theuer, Andreas; Hla, Timothy; Wood, Jeanette

    2006-01-01

    FTY720, a potent immunomodulator, becomes phosphorylated in vivo (FTY-P) and interacts with sphingosine-1-phosphate (S1P) receptors. Recent studies showed that FTY-P affects vascular endothelial growth factor (VEGF)-induced vascular permeability, an important aspect of angiogenesis. We show here that FTY720 has antiangiogenic activity, potently abrogating VEGF- and S1P-induced angiogenesis in vivo in growth factor implant and corneal models. FTY720 administration tended to inhibit primary and significantly inhibited metastatic tumor growth in a mouse model of melanoma growth. In combination with a VEGFR tyrosine kinase inhibitor PTK787/ZK222584, FTY720 showed some additional benefit. FTY720 markedly inhibited tumor-associated angiogenesis, and this was accompanied by decreased tumor cell proliferation and increased apoptosis. In transfected HEK293 cells, FTY-P internalized S1P1 receptors, inhibited their recycling to the cell surface, and desensitized S1P receptor function. Both FTY720 and FTY-P apparently failed to impede VEGF-produced increases in mitogen-activated protein kinase activity in human umbilical vascular endothelial cells (HUVEC), and unlike its activity in causing S1PR internalization, FTY-P did not result in a decrease of surface VEGFR2 levels in HUVEC cells. Pretreatment with FTY720 or FTY-P prevented S1P-induced Ca2+ mobilization and migration in vascular endothelial cells. These data show that functional antagonism of vascular S1P receptors by FTY720 potently inhibits angiogenesis; therefore, this may provide a novel therapeutic approach for pathologic conditions with dysregulated angiogenesis. PMID:16397235

  1. Small rho GTPases mediate tumor-induced inhibition of endocytic activity of dendritic cells.

    PubMed

    Tourkova, Irina L; Shurin, Galina V; Wei, Sheng; Shurin, Michael R

    2007-06-15

    The generation, maturation, and function of dendritic cells (DC) have been shown to be markedly compromised in the tumor microenvironment in animals and humans. However, the molecular mechanisms and intracellular pathways involved in the regulation of the DC system in cancer are not yet fully understood. Recently, we have reported on the role of the small Rho GTPase family members Cdc42, Rac1, and RhoA in regulating DC adherence, motility, and Ag presentation. To investigate involvement of small Rho GTPases in dysregulation of DC function by tumors, we next evaluated how Cdc42, Rac1, and RhoA regulated endocytic activity of DC in the tumor microenvironment. We revealed a decreased uptake of dextran 40 and polystyrene beads by DC generated in the presence of different tumor cell lines, including RM1 prostate, MC38 colon, 3LL lung, and B7E3 oral squamous cell carcinomas in vitro and by DC prepared from tumor-bearing mice ex vivo. Impaired endocytic activity of DC cocultured with tumor cells was associated with decreased levels of active Cdc42 and Rac1. Transduction of DC with the dominant negative Cdc42 and Rac1 genes also led to reduced phagocytosis and receptor-mediated endocytosis. Furthermore, transduction of DC with the constitutively active Cdc42 and Rac1 genes restored endocytic activity of DC that was inhibited by the tumors. Thus, our results suggest that tumor-induced dysregulation of endocytic activity of DC is mediated by reduced activity of several members of the small Rho GTPase family, which might serve as new targets for improving the efficacy of DC vaccines. PMID:17548616

  2. Recombinant TIMP-1-GPI inhibits growth of fibrosarcoma and enhances tumor sensitivity to doxorubicin.

    PubMed

    Bao, Q; Niess, H; Djafarzadeh, R; Zhao, Y; Schwarz, B; Angele, M K; Jauch, K-W; Nelson, P J; Bruns, C J

    2014-09-01

    Fibrosarcomas show a high incidence of recurrence and general resistance to apoptosis. Limiting tumor regrowth and increasing their sensitivity to chemotherapy and apoptosis represent key issues in developing more effective treatments of these tumors. Tissue inhibitor of metalloproteinase 1 (TIMP-1) broadly blocks matrix metalloproteinase (MMP) activity and can moderate tumor growth and metastasis. We previously described generation of a recombinant fusion protein linking TIMP-1 to glycosylphophatidylinositol (GPI) anchor (TIMP-1-GPI) that efficiently directs the inhibitor to cell surfaces. In the present report, we examined the effect of TIMP-1-GPI treatment on fibrosarcoma biology. Exogenously applied TIMP-1-GPI efficiently incorporated into surface membranes of human HT1080 fibrosarcoma cells. It inhibited their proliferation, migration, suppressed cancer cell clone formation, and enhanced apoptosis. Doxorubicin, the standard chemotherapeutic drug for fibrosarcoma, was tested alone or in combination with TIMP-1-GPI. In parallel, the influence of treatment on HT1080 side population cells (exhibiting tumor stem cell-like characteristics) was investigated using Hoechst 33342 staining. The sequential combination of TIMP-1-GPI and doxorubicin showed more than additive effects on apoptosis, while TIMP-1-GPI treatment alone effectively decreased "stem-cell like" side population cells of HT1080. TIMP-1-GPI treatment was validated using HT1080 fibrosarcoma murine xenografts. Growing tumors treated with repeated local injections of TIMP-1-GPI showed dramatically inhibited fibrosarcoma growth and reduced angiogenesis. Intraoperative peritumoral application of GPI-anchored TIMP-1 as an adjuvant to surgery may help maintain tumor control by targeting microscopic residual fibrosarcoma cells and increasing their sensitivity to chemotherapy. PMID:23934106

  3. Tumor promotion and inhibition by phenobarbital in livers of conditional Apc-deficient mice.

    PubMed

    Braeuning, Albert; Gavrilov, Alina; Geissler, Miriam; Wenz, Christine; Colnot, Sabine; Templin, Markus F; Metzger, Ute; Römer, Michael; Zell, Andreas; Schwarz, Michael

    2016-06-01

    Activation of Wnt/β-catenin signaling is important for human and rodent hepatocarcinogenesis. In mice, the tumor promoter phenobarbital (PB) selects for hepatocellular tumors with activating β-catenin mutations via constitutive androstane receptor activation. PB-dependent tumor promotion was studied in mice with genetic inactivation of Apc, a negative regulator of β-catenin, to circumvent the problem of randomly induced mutations by chemical initiators and to allow monitoring of PB- and Wnt/β-catenin-dependent tumorigenesis in the absence of unknown genomic alterations. Moreover, the study was designed to investigate PB-induced proliferation of liver cells with activated β-catenin. PB treatment provided Apc-deficient hepatocytes with only a minor proliferative advantage, and additional connexin 32 deficiency did not affect the proliferative response. PB significantly promoted the outgrowth of Apc-deficient hepatocellular adenoma (HCA), but simultaneously inhibited the formation of Apc-deficient hepatocellular carcinoma (HCC). The probability of tumor promotion by PB was calculated to be much lower for hepatocytes with loss of Apc, as compared to mutational β-catenin activation. Comprehensive transcriptomic and phosphoproteomic characterization of HCA and HCC revealed molecular details of the two tumor types. HCC were characterized by a loss of differentiated hepatocellular gene expression, enhanced proliferative signaling, and massive over-activation of Wnt/β-catenin signaling. In conclusion, PB exerts a dual role in liver tumor formation by promoting the growth of HCA but inhibiting the growth of HCC. Data demonstrate that one and the same compound can produce opposite effects on hepatocarcinogenesis, depending on context, highlighting the necessity to develop a more differentiated view on the tumorigenicity of this model compound. PMID:26838046

  4. CCR-08-0827 Version 2 Targeted inhibition of cyclic AMP phosphodiesterase-4 promotes brain tumor regression

    PubMed Central

    Goldhoff, Patricia; Warrington, Nicole; Limbrick, David D.; Hope, Andrew; Woerner, B. Mark; Jackson, Erin; Perry, Arie; Piwnica-Worms, David; Rubin, Joshua B.

    2008-01-01

    Statement of Clinical Relevance Therapies that can overcome the resistance of malignant brain tumors would be a major clinical advance. Here, we investigate the role of cAMP Phosphodiesterase-4 in stimulating brain tumor growth and the therapeutic utility of cAMP Phosphodiesterase-4 inhibition in the treatment of malignant brain tumors. Cyclic AMP Phosphodiesterase-4 was widely expressed in human brain tumors of glial and neuronal lineage, and forced expression of PDE4A1 accelerated intracranial glioblastoma and medulloblastoma xenograft growth. Moreover, targeted inhibition of PDE4, in combination with standard radiation and chemotherapy, induced a unique regression of established intracranial glioblastoma xenografts. These findings identify PDE4 as a novel molecular target for brain tumor therapy and indicate that PDE4 inhibition should be evaluated in clinical trials for malignant brain tumors. Purpose As favorable outcomes from malignant brain tumors remain limited by poor survival and treatment-related toxicity, novel approaches to cure are essential. Previously, we identified the cyclic AMP phosphodiesterase-4 (PDE4) inhibitor Rolipram as a potent anti-tumor agent. Here, we investigate the role of PDE4 in brain tumors and examine the utility of PDE4 as a therapeutic target. Experimental Design Immunohistochemistry was used to evaluate the expression pattern of a subfamily of PDE4, PDE4A, in multiple brain tumor types. To evaluate the effect of PDE4A on growth, a brain-specific isoform, PDE4A1 was overexpressed in xenografts of Daoy medulloblastoma and U87 glioblastoma cells. To determine therapeutic potential of PDE4 inhibition, Rolipram, temozolomide, and radiation were tested alone and in combination on mice bearing intracranial U87 xenografts. Results We found that PDE4A is expressed in medulloblastoma, glioblastoma, oligodendroglioma, ependymoma and meningioma. Moreover, when PDE4A1 was overexpressed in Daoy medulloblastoma and U87 glioblastoma cells, in

  5. Dual inhibition of cyclooxygenase-2 and soluble epoxide hydrolase synergistically suppresses primary tumor growth and metastasis

    PubMed Central

    Zhang, Guodong; Panigrahy, Dipak; Hwang, Sung Hee; Yang, Jun; Mahakian, Lisa M.; Wettersten, Hiromi I.; Liu, Jun-Yan; Wang, Yanru; Ingham, Elizabeth S.; Tam, Sarah; Kieran, Mark W.; Weiss, Robert H.; Ferrara, Katherine W.; Hammock, Bruce D.

    2014-01-01

    Prostaglandins derived from the cyclooxygenase (COX) pathway and epoxyeicosatrienoic acids (EETs) from the cytochrome P450/soluble epoxide hydrolase (sEH) pathway are important eicosanoids that regulate angiogenesis and tumorigenesis. COX-2 inhibitors, which block the formation of prostaglandins, suppress tumor growth, whereas sEH inhibitors, which increase endogenous EETs, stimulate primary tumor growth and metastasis. However, the functional interactions of these two pathways in cancer are unknown. Using pharmacological inhibitors as probes, we show here that dual inhibition of COX-2 and sEH synergistically inhibits primary tumor growth and metastasis by suppressing tumor angiogenesis. COX-2/sEH dual pharmacological inhibitors also potently suppress primary tumor growth and metastasis by inhibiting tumor angiogenesis via selective inhibition of endothelial cell proliferation. These results demonstrate a critical interaction of these two lipid metabolism pathways on tumorigenesis and suggest dual inhibition of COX-2 and sEH as a potential therapeutic strategy for cancer therapy. PMID:25024195

  6. A soluble form of GAS1 inhibits tumor growth and angiogenesis in a triple negative breast cancer model.

    PubMed

    Jiménez, Adriana; López-Ornelas, Adolfo; Estudillo, Enrique; González-Mariscal, Lorenza; González, Rosa O; Segovia, José

    2014-10-01

    We previously demonstrated the capacity of GAS1 (Growth Arrest Specific 1) to inhibit the growth of gliomas by blocking the GDNF-RET signaling pathway. Here, we show that a soluble form of GAS1 (tGAS1), decreases the number of viable MDA MB 231 human breast cancer cells, acting in both autocrine and paracrine manners when secreted from producing cells. Moreover, tGAS1 inhibits the growth of tumors implanted in female nu/nu mice through a RET-independent mechanism which involves interfering with the Artemin (ARTN)-GFRα3-(GDNF Family Receptor alpha 3) mediated intracellular signaling and the activation of ERK. In addition, we observed that the presence of tGAS1 reduces the vascularization of implanted tumors, by preventing the migration of endothelial cells. The present results support a potential adjuvant role for tGAS1 in the treatment of breast cancer, by detaining tumor growth and inhibiting angiogenesis. PMID:24992044

  7. CDC42 inhibition suppresses progression of incipient intestinal tumors

    PubMed Central

    Sakamori, Ryotaro; Yu, Shiyan; Zhang, Xiao; Hoffman, Andrew; Sun, Jiaxin; Das, Soumyashree; Vedula, Pavan; Li, Guangxun; Fu, Jiang; Walker, Francesca; Yang, Chung S.; Yi, Zheng; Hsu, Wei; Yu, Da-Hai; Shen, Lanlan; Rodriguez, Alexis J.; Taketo, Makoto M.; Bonder, Edward M.; Verzi, Michael P.; Gao, Nan

    2014-01-01

    Mutations in the APC or β-catenin genes are well established initiators of colorectal cancer (CRC), yet modifiers that facilitate the survival and progression of nascent tumor cells are not well defined. Using genetic and pharmacological approaches in mouse CRC and human CRC xenograft models, we show that incipient intestinal tumor cells activate CDC42, an APC-interacting small GTPase, as a crucial step in malignant progression. In the mouse, Cdc42 ablation attenuated the tumorigenicity of mutant intestinal cells carrying single APC or β-catenin mutations. Similarly, human CRC with relatively higher levels of CDC42 activity were particularly sensitive to CDC42 blockade. Mechanistic studies suggested that Cdc42 may be activated at different levels, including at the level of transcriptional activation of the stem-cell-enriched Rho family exchange factor Arhgef4. Our results suggest that early-stage mutant intestinal epithelial cells must recruit the pleiotropic functions of Cdc42 for malignant progression, suggesting its relevance as a biomarker and therapeutic target for selective CRC intervention. PMID:25113996

  8. Structural and Enzymatic Analysis of Tumor-Targeted Antifolates That Inhibit Glycinamide Ribonucleotide Formyltransferase.

    PubMed

    Deis, Siobhan M; Doshi, Arpit; Hou, Zhanjun; Matherly, Larry H; Gangjee, Aleem; Dann, Charles E

    2016-08-16

    Pemetrexed and methotrexate are antifolates used for cancer chemotherapy and inflammatory diseases. These agents have toxic side effects resulting, in part, from nonspecific cellular transport by the reduced folate carrier (RFC), a ubiquitously expressed facilitative transporter. We previously described 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with modifications of the side chain linker and aromatic ring that are poor substrates for RFC but are efficiently transported via folate receptors (FRs) and the proton-coupled folate transporter (PCFT). These targeted antifolates are cytotoxic in vitro toward FR- and PCFT-expressing tumor cells and in vivo with human tumor xenografts in immune-compromised mice, reflecting selective cellular uptake. Antitumor efficacy is due to inhibition of glycinamide ribonucleotide (GAR) formyltransferase (GARFTase) activity in de novo synthesis of purine nucleotides. This study used purified human GARFTase (formyltransferase domain) to assess in vitro inhibition by eight novel thieno- and pyrrolo[2,3-d]pyrimidine antifolates. Seven analogues (AGF23, AGF71, AGF94, AGF117, AGF118, AGF145, and AGF147) inhibited GARFTase with Ki values in the low- to mid-nanomolar concentration range, whereas AGF50 inhibited GARFTase with micromolar potency similar to that of PMX. On the basis of crystal structures of ternary complexes with GARFTase, β-GAR, and the monoglutamyl antifolates, differences in inhibitory potencies correlated well with antifolate binding and the positions of the terminal carboxylates. Our data provide a mechanistic basis for differences in inhibitory potencies between these novel antifolates and a framework for future structure-based drug design. These analogues could be more efficacious than clinically used antifolates, reflecting their selective cellular uptake by FRs and PCFT and potent GARFTase inhibition. PMID:27439469

  9. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by orlistat

    SciTech Connect

    Pemble,C.; Johnson, L.; Kridel, S.; Lowther, W.

    2007-01-01

    Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell-specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-{angstrom}-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibition and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.

  10. A novel recombinant slow-release TNF α-derived peptide effectively inhibits tumor growth and angiogensis.

    PubMed

    Ma, Yi; Zhao, Shaojun; Shen, Shutao; Fang, Shixiong; Ye, Zulu; Shi, Zhi; Hong, An

    2015-01-01

    RMP16, a recombinant TNF α-derived polypeptide comprising a specific human serum albumin (HSA)-binding 7-mer peptide identified by phage display screening (WQRPSSW), a cleavage peptide for Factor Xa (IEGR), and a 20-amino acid bioactive peptide P16 (TNF α segment including amino acid residues 75-94), was prepared by gene-engineering technology. RMP16 showed prolonged half-life, 13.11 hours in mice (half-lives of P16 and TNF α are 5.77 and 29.0 minutes, respectively), and obviously higher receptor selectivity for TNFRI than TNF α. RMP16 had significant inhibition effects for multiple tumor cells, especially prostate cancer Du145 cells, and human vascular endothelial cells but not for human mammary non-tumorigenic epithelial cells. RMP16 can more effectively induce apoptosis and inhibit proliferation for DU145 cells than P16 and TNF α via the caspase-dependent apoptosis pathway and G0/G1 cell cycle arrest. In nude mice with transplanted tumor of DU145 cells, RMP16 significantly induced apoptosis and necrosis of tumor tissues but causing less side effects, and tumor inhibitory rate reached nearly 80%, furthermore, RMP16 can potently inhibit tumor angiogenesis and neovascularization. These findings suggest that RMP16 may represent a promising long-lasting antitumor therapeutic peptide with less TNF α-induced toxicity. PMID:26337231