Science.gov

Sample records for inhibits neuronal cell

  1. Nicotine inhibits potassium currents in Aplysia bag cell neurons.

    PubMed

    White, Sean H; Sturgeon, Raymond M; Magoski, Neil S

    2016-06-01

    Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPβS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K(+) with Cs(+) Consistent with an underlying mechanism of direct inhibition of one or more K(+) channels, nicotine was found to rapidly reduce the fast-inactivating A-type K(+) current as well as both components of the delayed-rectifier K(+) current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K(+) channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time. PMID:26864763

  2. Trimethyltin chloride inhibits neuronal cell differentiation in zebrafish embryo neurodevelopment.

    PubMed

    Kim, Jin; Kim, C-Yoon; Song, Juha; Oh, Hanseul; Kim, Cheol-Hee; Park, Jae-Hak

    2016-01-01

    Trimethyltin chloride (TMT) is a neurotoxicant widely present in the aquatic environment, primarily from effluents of the plastic industry. It is known to cause acute neuronal death in the limbic-cerebellar system, particularly in the hippocampus. However, relatively few studies have estimated the effects of TMT toxicity on neurodevelopment. In this study, we confirmed the dose-dependent effects of TMT on neurodevelopmental stages through analysis of morphological changes and fluorescence assays using HuC-GFP and olig2-dsRed transgenic zebrafish embryos. In addition, we analyzed the expression of genes and proteins related to neurodevelopment. Exposure of embryos to TMT for 4days post fertilization (dpf) elicited a concentration-related decrease in body length and increase in axial malformation. TMT affected the fluorescent CNS structure by decreasing pattern of HuC-GFP and olig2-dsRed transgenic zebrafish. In addition, it significantly modulated the expression patterns of Sonic hedgehog a (Shha), Neurogenin1 (Ngn1), Embryonic lethal abnormal vision like protein 3 (Elavl3), and Glial fibrillary acidic protein (Gfap). The overexpression of Shha and Ngn1, and downregulation of Elavl3 and Gfap, indicate repression of proneural cell differentiation. Our study demonstrates that TMT inhibits specific neurodevelopmental stages in zebrafish embryos and suggests a possible mechanism for the toxicity of TMT in vertebrate neurodevelopment. PMID:26687135

  3. Humanin Derivatives Inhibit Necrotic Cell Death in Neurons.

    PubMed

    Cohen, Aviv; Lerner-Yardeni, Jenny; Meridor, David; Kasher, Roni; Nathan, Ilana; Parola, Abraham H

    2015-01-01

    Humanin and its derivatives are peptides known for their protective antiapoptotic effects against Alzheimer's disease. Herein, we identify a novel function of the humanin-derivative AGA(C8R)-HNG17 (namely, protection against cellular necrosis). Necrosis is one of the main modes of cell death, which was until recently considered an unmoderated process. However, recent findings suggest the opposite. We have found that AGA(C8R)-HNG17 confers protection against necrosis in the neuronal cell lines PC-12 and NSC-34, where necrosis is induced in a glucose-free medium by either chemohypoxia or by a shift from apoptosis to necrosis. Our studies in traumatic brain injury models in mice, where necrosis is the main mode of neuronal cell death, have shown that AGA(C8R)-HNG17 has a protective effect. This result is demonstrated by a decrease in a neuronal severity score and by a reduction in brain edema, as measured by magnetic resonance imaging (MRI). An insight into the peptide's antinecrotic mechanism was attained through measurements of cellular ATP levels in PC-12 cells under necrotic conditions, showing that the peptide mitigates a necrosis-associated decrease in ATP levels. Further, we demonstrate the peptide's direct enhancement of the activity of ATP synthase activity, isolated from rat-liver mitochondria, suggesting that AGA(C8R)-HNG17 targets the mitochondria and regulates cellular ATP levels. Thus, AGA(C8R)-HNG17 has potential use for the development of drug therapies for necrosis-related diseases, for example, traumatic brain injury, stroke, myocardial infarction, and other conditions for which no efficient drug-based treatment is currently available. Finally, this study provides new insight into the mechanisms underlying the antinecrotic mode of action of AGA(C8R)-HNG17. PMID:26062019

  4. Humanin Derivatives Inhibit Necrotic Cell Death in Neurons

    PubMed Central

    Cohen, Aviv; Lerner-Yardeni, Jenny; Meridor, David; Kasher, Roni; Nathan, Ilana; Parola, Abraham H

    2015-01-01

    Humanin and its derivatives are peptides known for their protective antiapoptotic effects against Alzheimer’s disease. Herein, we identify a novel function of the humanin-derivative AGA(C8R)-HNG17 (namely, protection against cellular necrosis). Necrosis is one of the main modes of cell death, which was until recently considered an unmoderated process. However, recent findings suggest the opposite. We have found that AGA(C8R)-HNG17 confers protection against necrosis in the neuronal cell lines PC-12 and NSC-34, where necrosis is induced in a glucose-free medium by either chemohypoxia or by a shift from apoptosis to necrosis. Our studies in traumatic brain injury models in mice, where necrosis is the main mode of neuronal cell death, have shown that AGA(C8R)-HNG17 has a protective effect. This result is demonstrated by a decrease in a neuronal severity score and by a reduction in brain edema, as measured by magnetic resonance imaging (MRI). An insight into the peptide’s antinecrotic mechanism was attained through measurements of cellular ATP levels in PC-12 cells under necrotic conditions, showing that the peptide mitigates a necrosis-associated decrease in ATP levels. Further, we demonstrate the peptide’s direct enhancement of the activity of ATP synthase activity, isolated from rat-liver mitochondria, suggesting that AGA(C8R)-HNG17 targets the mitochondria and regulates cellular ATP levels. Thus, AGA(C8R)-HNG17 has potential use for the development of drug therapies for necrosis-related diseases, for example, traumatic brain injury, stroke, myocardial infarction, and other conditions for which no efficient drug-based treatment is currently available. Finally, this study provides new insight into the mechanisms underlying the antinecrotic mode of action of AGA(C8R)-HNG17. PMID:26062019

  5. Neurite formation by neurons derived from adult rat hippocampal progenitor cells is susceptible to myelin inhibition.

    PubMed

    Mellough, Carla B; Cho, Seongeun; Wood, Andrew; Przyborski, Stefan

    2011-09-01

    Myelin-associated inhibitors expressed following injury to the adult central nervous system (CNS) induce growth cone collapse and retraction of the axonal cytoskeleton. Myelin-associated glycoprotein (MAG) is a bi-functional molecule that promotes neuritogenesis in some immature neurons during development then becomes inhibitory to neurite outgrowth as neurons mature. Progress is being made towards the elucidation of the downstream events that regulate myelin inhibition of regeneration in neuronal populations. However it is not known how adult-derived neural stem cells or progenitors respond to myelin during neuronal differentiation and neuritogenesis. Here we examine the effect of MAG on neurons derived from an adult rat hippocampal progenitor cell line (AHPCs). We show that, unlike their developmental counterparts, AHPC-derived neurons are susceptible to MAG inhibition of neuritogenesis during differentiation and display a 57% reduction in neurite outgrowth when compared with controls. We demonstrate that this effect can be overcome (by up to 69%) by activation of the neurotrophin, cyclic AMP and protein kinase A pathways or by Rho-kinase suppression. We also demonstrate that combination of these factors enhanced neurite outgrowth from differentiating neurons in the presence of MAG. This work provides important information for the successful generation of new neurons from adult neural stem cell populations within compromised adult circuitry and is thus directly relevant to endogenous repair and regeneration of the adult CNS. PMID:21256909

  6. Inhibition of telomerase causes vulnerability to endoplasmic reticulum stress-induced neuronal cell death.

    PubMed

    Hosoi, Toru; Nakatsu, Kanako; Shimamoto, Akira; Tahara, Hidetoshi; Ozawa, Koichiro

    2016-08-26

    Endoplasmic reticulum (ER) stress is implicated in several diseases, such as cancer and neurodegenerative diseases. In the present study, we investigated the possible involvement of telomerase in ER stress-induced cell death. ER stress-induced cell death was ameliorated in telomerase reverse transcriptase (TERT) over-expressing MCF7 cells (MCF7-TERT cell). Telomerase specific inhibitor, BIBR1532, reversed the inhibitory effect of TERT on ER stress-induced cell death in MCF7-TERT cells. These findings suggest that BIBR1532 may specifically inhibit telomerase activity, thereby inducing cell death in ER stress-exposed cells. TERT was expressed in the SH-SY5Y neuroblastoma cell line. To analyze the possible involvement of telomerase in ER stress-induced neuronal cell death, we treated SH-SY5Y neuroblastoma cells with BIBR1532 and analyzed ER stress-induced cell death. We found that BIBR1532 significantly enhanced the ER stress-induced neuronal cell death. These findings suggest that inhibition of telomerase activity may enhance vulnerability to neuronal cell death caused by ER stress. PMID:27443785

  7. Effects of NMDA receptor inhibition by phencyclidine on the neuronal differentiation of PC12 cells.

    PubMed

    Lee, Eunsook; Williams, Zakia; Goodman, Carl B; Oriaku, Ebenezer T; Harris, Cynthia; Thomas, Mathews; Soliman, Karam F A

    2006-07-01

    Phencyclidine (PCP) is a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist and exposing the developing brain to PCP has been shown to cause deficits in neurobehavioral functions. In the present study we tested the effects of PCP, as an NMDA receptor inhibitor, on the neuronal differentiation and biogenic amines levels including norepinephrine (NE), epinephrine, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), serotonin (5-HT), and 5-hydroxyindole-3-acetic acid (5-HIAA) in the rat pheochromocytoma (PC12) cells. After PC12 cells were differentiated with nerve growth factor (NGF) in the presence of PCP, NMDA binding kinetics, biogenic amines analysis and NMDA receptor protein expression assay were conducted. The results showed that NMDA receptor binding activities were significantly increased after differentiated with NGF in PC12 cells. B(max) values were increased in differentiated cells by four-folds, whereas K(d) values were not changed. All of biogenic amines were significantly increased in differentiated cells. On the other hand, PCP at 50 and 100 microM inhibited neuronal differentiation in a dose-dependent manner in NGF-stimulated PC12 cells without affecting cell viability. PCP treatment during differentiation significantly reduced NMDA binding activity and biogenic amine levels. Western blotting analysis revealed that NMDA receptor protein expression was significantly higher in NGF-differentiated cells and PCP treatment decreased the expression of NMDA receptor proteins. These results indicate that NMDA receptor functions and monoaminergic nervous systems are significantly stimulated during NGF-induced differentiation. PCP suppresses neuronal outgrowth and hampers neuronal functions possibly by inhibiting NMDA receptor functions and biogenic amine production, implying the suppressive effects of PCP exposure on neuronal developments. PMID:16580729

  8. Tocilizumab inhibits neuronal cell apoptosis and activates STAT3 in cerebral infarction rat model

    PubMed Central

    Wang, Shaojun; Zhou, Jun; Kang, Weijie; Dong, Zhaoni; Wang, Hezuo

    2016-01-01

    Cerebral infarction is a severe hypoxic ischemic necrosis with accelerated neuronal cell apoptosis in the brain. As a monoclonal antibody against interleukin 6, tocilizumab (TCZ) is widely used in immune diseases, whose function in cerebral infarction has not been studied. This study aims to reveal the role of TCZ in regulating neuronal cell apoptosis in cerebral infarction. The cerebral infarction rat model was constructed by middle cerebral artery occlusion and treated with TCZ. Cell apoptosis in hippocampus and cortex of the brain was examined with TUNEL method. Rat neuronal cells cultured in oxygen-glucose deprivation (OGD) conditions and treated with TCZ were used to compare cell viability and apoptosis. Apoptosis-related factors including B-cell lymphoma extra large (Bcl-xL) and Caspase 3, as well as the phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in brain cortex were analyzed from the protein level. Results indicated that TCZ treatment could significantly prevent the promoted cell apoptosis caused by cerebral infarction or OGD (P < 0.05 or P < 0.01). In brain cortex of the rat model, TCZ up-regulated Bcl-xL and down-regulated Caspase 3, consistent with the inhibited cell apoptosis. It also promoted tyrosine 705 phosphorylation of STAT3, which might be the potential regulatory mechanism of TCZ in neuronal cells. This study provided evidence for the protective role of TCZ against neuronal cell apoptosis in cerebral infarction. Based on these fundamental data, TCZ is a promising option for treating cerebral infarction, but further investigations on related mechanisms are still necessary. PMID:26773188

  9. The anti-hypertensive drug reserpine induces neuronal cell death through inhibition of autophagic flux.

    PubMed

    Lee, Kang Il; Kim, Min Ju; Koh, Hyongjong; Lee, Jin I; Namkoong, Sim; Oh, Won Keun; Park, Junsoo

    2015-07-10

    Reserpine is a well-known medicine for the treatment of hypertension and schizophrenia, but its administration can induce Parkinson's disease (PD)-like symptoms in humans and animals. Reserpine inhibits the vesicular transporter of monoamines and depletes the brain of monoamines such as dopamine. However, the cellular function of reserpine is not fully understood. In this report, we present one possible mechanism by which reserpine may contribute to PD-like symptoms. Reserpine treatment induced the formation of enlarged autophagosomes by inhibiting the autophagic flux and led to accumulation of p62, an autophagy adapter molecule. In particular, reserpine treatment increased the level of α-synuclein protein and led to accumulation of α-synuclein in autophagosomes. Treatment with rapamycin enhanced the effect of reserpine by further increasing the level of α-synuclein and neuronal cell death. Drosophila raised on media containing reserpine showed loss of dopaminergic neurons. Furthermore, cotreatment with reserpine and rapamycin aggravated the loss of dopaminergic neurons. Our results suggest that reserpine contributes to the loss of dopaminergic neurons by interfering with autophagic flux. PMID:25976674

  10. Botulinum neurotoxin dose-dependently inhibits release of neurosecretory vesicle-vargeted luciferase from neuronal cells.

    PubMed

    Pathe-Neuschäfer-Rube, Andrea; Neuschäfer-Rube, Frank; Genz, Lara; Püchel, Gerhard P

    2015-01-01

    Botulinum toxin is a bacterial toxin that inhibits neurotransmitter release from neurons and thereby causes a flaccid paralysis. It is used as drug to treat a number of serious ailments and, more frequently, for aesthetic medical interventions. Botulinum toxin for pharmacological applications is isolated from bacterial cultures. Due to partial denaturation of the protein, the specific activity of these preparations shows large variations.Because of its extreme potential toxicity, pharmacological preparations must be carefully tested for their activity. For the current gold standard, the mouse lethality assay, several hundred thousand mice are killed per year. Alternative methods have been developed that suffer from one or more of the following deficits: In vitro enzyme assays test only the activity of the catalytic subunit of the toxin. Enzymatic and cell based immunological assays are specific for just one of the different serotypes. The current study takes a completely different approach that overcomes these limitations: Neuronal cell lines were stably transfected with plasmids coding for luciferases of different species, which were N-terminally tagged with leader sequences that redirect the luciferase into neuro-secretory vesicles. From these vesicles, luciferases were released upon depolarization of the cells. The depolarization-dependent release was efficiently inhibited by of botulinum toxin in a concentration range (1 to 100 pM) that is used in pharmacological preparations. The new assay might thus be an alternative to the mouse lethality assay and the immunological assays already in use. PMID:26389683

  11. Tryptanthrin induces growth inhibition and neuronal differentiation in the human neuroblastoma LA-N-1 cells.

    PubMed

    Liao, Xuemei; Leung, Kwok Nam

    2013-04-25

    Neuroblastoma is one of the most common extracranial solid cancers found in young children. The prognosis of neuroblastoma patients in advanced stages having N-myc amplification remains poor despite intensive multimodal therapy. Agents that trigger neuroblastoma cells to undergo cellular differentiation and thereby stop proliferation have attracted considerable interest as an alternative therapy. Tryptanthrin (12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline) is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants known as Banlangen. It has been shown to possess various biological activities, such as anti-microbial, anti-inflammatory and anti-tumor activities. However, its effects and mechanism(s) of action on human neuroblastoma cells remain poorly understood. Therefore, the objective of this study is to investigate the effects of tryptanthrin on the growth and differentiation of human neuroblastoma LA-N-1 cells with N-myc amplification. Our results show that tryptanthrin inhibited the growth of the human neuroblastoma cells in a dose- and time-dependent manner. Mechanistic studies indicated that tryptanthrin induced cell cycle arrest of the human neuroblastoma LA-N-1 cells at the G0/G1 phase. Tryptanthrin also induced neuronal differentiation of LA-N-1 cells, as assessed by morphological criteria, enhancement of acetylcholine esterase activity and up-regulation of various differentiation markers. Moreover, tryptanthrin treatment led to the significant reduction of N-myc expression in LA-N-1 cells while siRNA directed against N-myc induced morphological differentiation of LA-N-1 cells. These results, when taken together, suggest that tryptanthrin suppressed the growth and induced neuronal differentiation in the human neuroblastoma LA-N-1 cells and might be exploited as a potential therapeutic candidate for the treatment of high-risk neuroblastomas with N-myc-amplification. PMID:23500671

  12. The Ubiquitin Ligase Praja1 Reduces NRAGE Expression and Inhibits Neuronal Differentiation of PC12 Cells

    PubMed Central

    Teuber, Jan; Mueller, Bettina; Fukabori, Ryoji; Lang, Daniel; Albrecht, Anne; Stork, Oliver

    2013-01-01

    Evidence suggests that regulated ubiquitination of proteins plays a critical role in the development and plasticity of the central nervous system. We have previously identified the ubiquitin ligase Praja1 as a gene product induced during fear memory consolidation. However, the neuronal function of this enzyme still needs to be clarified. Here, we investigate its involvement in the nerve growth factor (NGF)-induced differentiation of rat pheochromocytoma (PC12) cells. Praja1 co-localizes with cytoskeleton components and the neurotrophin receptor interacting MAGE homologue (NRAGE). We observed an enhanced expression of Praja1 after 3 days of NGF treatment and a suppression of neurite formation upon Praja1 overexpression in stably transfected PC12 cell lines, which was associated with a proteasome-dependent reduction of NRAGE levels. Our data suggest that Praja1, through ubiquitination and degradation of NRAGE, inhibits neuronal differentiation. The two murine isoforms, Praja1.1 and Praja1.2, appear to be functionally homologous in this respect. PMID:23717400

  13. The ubiquitin ligase Praja1 reduces NRAGE expression and inhibits neuronal differentiation of PC12 cells.

    PubMed

    Teuber, Jan; Mueller, Bettina; Fukabori, Ryoji; Lang, Daniel; Albrecht, Anne; Stork, Oliver

    2013-01-01

    Evidence suggests that regulated ubiquitination of proteins plays a critical role in the development and plasticity of the central nervous system. We have previously identified the ubiquitin ligase Praja1 as a gene product induced during fear memory consolidation. However, the neuronal function of this enzyme still needs to be clarified. Here, we investigate its involvement in the nerve growth factor (NGF)-induced differentiation of rat pheochromocytoma (PC12) cells. Praja1 co-localizes with cytoskeleton components and the neurotrophin receptor interacting MAGE homologue (NRAGE). We observed an enhanced expression of Praja1 after 3 days of NGF treatment and a suppression of neurite formation upon Praja1 overexpression in stably transfected PC12 cell lines, which was associated with a proteasome-dependent reduction of NRAGE levels. Our data suggest that Praja1, through ubiquitination and degradation of NRAGE, inhibits neuronal differentiation. The two murine isoforms, Praja1.1 and Praja1.2, appear to be functionally homologous in this respect. PMID:23717400

  14. Selective Inhibition of MAPK Phosphatases by Zinc Accounts for ERK1/2-dependent Oxidative Neuronal Cell Death

    PubMed Central

    Ho, Yeung; Samarasinghe, Ranmal; Knoch, Megan E.; Lewis, Marcia; Aizenman, Elias; DeFranco, Donald B.

    2008-01-01

    Oxidative stress induced by glutathione depletion in the mouse HT22 neuroblastoma cell line and embryonic rat immature cortical neurons causes a delayed, sustained activation of extracellular signal-regulated kinases-1/2 (ERK1/2), which is required for cell death. This sustained activation of ERK1/2 is mediated primarily by a selective inhibition of distinct ERK1/2-directed phosphatases either by enhanced degradation (i.e. for Mitogen activated protein kinase [MAPK] Phosphatase-1) or as shown here by reductions in enzymatic activity (i.e. for Protein Phosphatase type 2A [PP-2A]). The inhibition of ERK1/2 phosphatases in HT22 cells and immature neurons subjected to glutathione depletion results from oxidative stress as phosphatase activity is restored in cells treated with the antioxidant butylated hydroxyanisole (BHA). This leads to reduced ERK1/2 activation and neuroprotection. Furthermore, an increase in free intracellular zinc that accompanies glutathione-induced oxidative stress in HT22 cells and immature neurons contributes to selective inhibition of ERK1/2 phosphatase activity and cell death. Finally, ERK1/2 also functions to maintain elevated levels of zinc. Thus the elevation of intracellular zinc within neurons subjected to oxidative stress can trigger a robust positive feedback loop operating through activated ERK1/2 that rapidly sets into motion a zinc-dependent pathway of cell death. PMID:18635668

  15. The transcription factor six1 inhibits neuronal and promotes hair cell fate in the developing zebrafish (Danio rerio) inner ear.

    PubMed

    Bricaud, Olivier; Collazo, Andres

    2006-10-11

    The developmental processes leading to the differentiation of mechanosensory hair cells and statoacoustic ganglion neurons from the early otic epithelium remain unclear. Possible candidates include members of the Pax-Six-Eya-Dach (paired box-sine oculis homeobox-eyes absent-dachshund) gene regulatory network. We cloned zebrafish six1 and studied its function in inner ear development. Gain- and loss-of-function experiments show that six1 has opposing roles in hair cell and neuronal lineages. It promotes hair cell fate and, conversely, inhibits neuronal fate by differentially affecting cell proliferation and cell death in these lineages. By independently targeting hair cells with atoh1a (atonal homolog 1a) knockdown or neurons with neurog1 (neurogenin 1) knockdown, we showed that the remaining cell population, neurons or hair cells, respectively, is still affected by gain or loss of six1 function. six1 interacts with other members of the Pax-Six-Eya-Dach regulatory network, in particular dacha and dachb in the hair cell but not neuronal lineage. Unlike in mouse, six1 does not appear to be dependent on eya1, although it seems to be important for the regulation of eya1 and pax2b expression in the ventral otic epithelium. Furthermore, six1 expression appears to be regulated by pax2b and also by foxi1 (forkhead box I1) as expected for an early inducer of the otic placode. Our results are the first to demonstrate a dual role for a member of the Pax-Six-Eya-Dach regulatory network in inner ear development. PMID:17035528

  16. Inhibition of HIF-prolyl-4-hydroxylases prevents mitochondrial impairment and cell death in a model of neuronal oxytosis.

    PubMed

    Neitemeier, S; Dolga, A M; Honrath, B; Karuppagounder, S S; Alim, I; Ratan, R R; Culmsee, C

    2016-01-01

    Mitochondrial impairment induced by oxidative stress is a main characteristic of intrinsic cell death pathways in neurons underlying the pathology of neurodegenerative diseases. Therefore, protection of mitochondrial integrity and function is emerging as a promising strategy to prevent neuronal damage. Here, we show that pharmacological inhibition of hypoxia-inducible factor prolyl-4-hydroxylases (HIF-PHDs) by adaptaquin inhibits lipid peroxidation and fully maintains mitochondrial function as indicated by restored mitochondrial membrane potential and ATP production, reduced formation of mitochondrial reactive oxygen species (ROS) and preserved mitochondrial respiration, thereby protecting neuronal HT-22 cells in a model of glutamate-induced oxytosis. Selective reduction of PHD1 protein using CRISPR/Cas9 technology also reduced both lipid peroxidation and mitochondrial impairment, and attenuated glutamate toxicity in the HT-22 cells. Regulation of activating transcription factor 4 (ATF4) expression levels and related target genes may mediate these beneficial effects. Overall, these results expose HIF-PHDs as promising targets to protect mitochondria and, thereby, neurons from oxidative cell death. PMID:27148687

  17. Inhibition of HIF-prolyl-4-hydroxylases prevents mitochondrial impairment and cell death in a model of neuronal oxytosis

    PubMed Central

    Neitemeier, S; Dolga, A M; Honrath, B; Karuppagounder, S S; Alim, I; Ratan, R R; Culmsee, C

    2016-01-01

    Mitochondrial impairment induced by oxidative stress is a main characteristic of intrinsic cell death pathways in neurons underlying the pathology of neurodegenerative diseases. Therefore, protection of mitochondrial integrity and function is emerging as a promising strategy to prevent neuronal damage. Here, we show that pharmacological inhibition of hypoxia-inducible factor prolyl-4-hydroxylases (HIF-PHDs) by adaptaquin inhibits lipid peroxidation and fully maintains mitochondrial function as indicated by restored mitochondrial membrane potential and ATP production, reduced formation of mitochondrial reactive oxygen species (ROS) and preserved mitochondrial respiration, thereby protecting neuronal HT-22 cells in a model of glutamate-induced oxytosis. Selective reduction of PHD1 protein using CRISPR/Cas9 technology also reduced both lipid peroxidation and mitochondrial impairment, and attenuated glutamate toxicity in the HT-22 cells. Regulation of activating transcription factor 4 (ATF4) expression levels and related target genes may mediate these beneficial effects. Overall, these results expose HIF-PHDs as promising targets to protect mitochondria and, thereby, neurons from oxidative cell death. PMID:27148687

  18. Cofilin Inhibition Restores Neuronal Cell Death in Oxygen-Glucose Deprivation Model of Ischemia.

    PubMed

    Madineni, Anusha; Alhadidi, Qasim; Shah, Zahoor A

    2016-03-01

    Ischemia is a condition associated with decreased blood supply to the brain, eventually leading to death of neurons. It is associated with a diverse cascade of responses involving both degenerative and regenerative mechanisms. At the cellular level, the changes are initiated prominently in the neuronal cytoskeleton. Cofilin, a cytoskeletal actin severing protein, is known to be involved in the early stages of apoptotic cell death. Evidence supports its intervention in the progression of disease states like Alzheimer's and ischemic kidney disease. In the present study, we have hypothesized the possible involvement of cofilin in ischemia. Using PC12 cells and mouse primary cultures of cortical neurons, we investigated the potential role of cofilin in ischemia in two different in vitro ischemic models: chemical induced oxidative stress and oxygen-glucose deprivation/reperfusion (OGD/R). The expression profile studies demonstrated a decrease in phosphocofilin levels in all models of ischemia, implying stress-induced cofilin activation. Furthermore, calcineurin and slingshot 1L (SSH) phosphatases were found to be the signaling mediators of the cofilin activation. In primary cultures of cortical neurons, cofilin was found to be significantly activated after 1 h of OGD. To delineate the role of activated cofilin in ischemia, we knocked down cofilin by small interfering RNA (siRNA) technique and tested the impact of cofilin silencing on neuronal viability. Cofilin siRNA-treated neurons showed a significant reduction of cofilin levels in all treatment groups (control, OGD, and OGD/R). Additionally, cofilin siRNA-reduced cofilin mitochondrial translocation and caspase 3 cleavage, with a concomitant increase in neuronal viability. These results strongly support the active role of cofilin in ischemia-induced neuronal degeneration and apoptosis. We believe that targeting this protein mediator has a potential for therapeutic intervention in ischemic brain injury and stroke

  19. Inhibiting Matrix Metalloproteinase 3 Ameliorates Neuronal Loss in the Ganglion Cell Layer of Rats in Retinal Ischemia/Reperfusion.

    PubMed

    Hu, Tu; You, Qiuting; Chen, Dan; Tong, Jianbin; Shang, Lei; Luo, Jia; Qiu, Yi; Yu, Huimin; Zeng, Leping; Huang, Jufang

    2016-05-01

    It has been demonstrated that matrix metalloproteinase 3 (MMP3) is integrally involved in the neuronal degeneration of the central nervous system by promoting glial activation, neuronal apoptosis and damage to the brain-blood barrier. However, whether MMP3 also contributes to the neuronal degeneration induced by retinal ischemia/reperfusion is still uncertain. In the present study, we detected the cellular localization of MMP3 in adult rat retinae and explored the relationship of its expression with neuronal loss in the ganglion cell layer (GCL) in retinal ischemia/reperfusion. We found that MMP3 was widely expressed in many cells throughout the layers of the rat retinae, including Vertebrate neuron-specific nuclear protein (NeuN)-, parvalbumin-, calbindin-, protein kinase C-α-, glial fibrillary acidic protein-, glutamine synthetase- and CD11b-positive cells. Furthermore, all rats were treated with high intraocular pressure (HIOP) for 1 h (h) and sacrificed at 6 h, 1 day (d), 3 d, and 7 d after HIOP. Compared to the normal control, the expression of both proenzyme MMP3 and active MMP3 were significantly up-regulated after HIOP treatment without alteration of the laminar distribution pattern. Moreover, inhibiting MMP3 ameliorated the loss of NeuN-positive cells in the GCL following HIOP. In summary, our data demonstrates that MMP3 is expressed in multiple types of neurons and glial cells in normal rat retinae. Simultaneously, the up-regulation of its expression and activity are closely involved in neuronal loss in the GCL in retinal ischemia/reperfusion. PMID:26830289

  20. The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type

    PubMed Central

    Lee, Vallent; Maguire, Jamie

    2014-01-01

    The diversity of GABAA receptor (GABAAR) subunits and the numerous configurations during subunit assembly give rise to a variety of receptors with different functional properties. This heterogeneity results in variations in GABAergic conductances across numerous brain regions and cell types. Phasic inhibition is mediated by synaptically-localized receptors with a low affinity for GABA and results in a transient, rapidly desensitizing GABAergic conductance; whereas, tonic inhibition is mediated by extrasynaptic receptors with a high affinity for GABA and results in a persistent GABAergic conductance. The specific functions of tonic versus phasic GABAergic inhibition in different cell types and the impact on specific neural circuits are only beginning to be unraveled. Here we review the diversity in the magnitude of tonic GABAergic inhibition in various brain regions and cell types, and highlight the impact on neuronal excitability in different neuronal circuits. Further, we discuss the relevance of tonic inhibition in various physiological and pathological contexts as well as the potential of targeting these receptor subtypes for treatment of diseases, such as epilepsy. PMID:24550784

  1. Cocaine decreases cell survival and inhibits neurite extension of rat locus coeruleus neurons.

    PubMed

    Snow, D M; Smith, J D; Booze, R M; Welch, M A; Mactutus, C F

    2001-01-01

    Cocaine use during pregnancy is affiliated with neurobehavioral abnormalities in offspring that are associated with problems of attention. Given the putative role of the noradrenergic system in attentional processes, impairments in the noradrenergic system may underlie specific attentionally sensitive, neurobehavioral alterations. Recent data using a clinically relevant intravenous (iv) route of administration show that the norepinephrine cell bodies of the locus coeruleus (LC) are a primary target for in utero cocaine exposure. Cell survival and neurite outgrowth of LC neurons were studied using two paradigms: (1) in vitro, using a physiologically relevant concentration of cocaine, and (2) in vivo, using a clinically relevant intravenous rat model. Fetal cocaine exposure significantly decreased neuronal survival (in vitro: P=.0001, n=24; in vivo: P=.0337, n=30), reduced neurite initiation (in vitro: P=.001, n=24; in vivo: P=.0169, n=30), decreased the number of neurites elaborated (in vivo: P=.0031, n=30), and reduced total neurite length (in vivo: P=.0237, n=30). The results of this novel approach toward an understanding of noradrenergic neurons as they respond to cocaine during development suggest that cocaine may affect behavior by negatively regulating neuronal pathfinding and synaptic connectivity. PMID:11418264

  2. Butylphthalide Suppresses Neuronal Cells Apoptosis and Inhibits JNK-Caspase3 Signaling Pathway After Brain Ischemia /Reperfusion in Rats.

    PubMed

    Wen, Xiang-Ru; Tang, Man; Qi, Da-Shi; Huang, Xiao-Jing; Liu, Hong-Zhi; Zhang, Fang; Wu, Jian; Wang, Yi-Wen; Zhang, Xun-Bao; Guo, Ji-Qiang; Wang, Shu-Ling; Liu, Yong; Wang, Yu-Lan; Song, Yuan-Jian

    2016-10-01

    Although Butylphthalide (BP) has protective effects that reduce ischemia-induced brain damage and neuronal cell death, little is known about the precise mechanisms occurring during cerebral ischemia/reperfusion (I/R). Therefore, the aim of this study was to investigate the neuroprotective mechanisms of BP against ischemic brain injury induced by cerebral I/R through inhibition of the c-Jun N-terminal kinase (JNK)-Caspase3 signaling pathway. BP in distilled non-genetically modified Soybean oil was administered intragastrically three times a day at a dosage of 15 mg/(kg day) beginning at 20 min after I/R in Sprague-Dawley rats. Immunohistochemical staining and Western blotting were performed to examine the expression of related proteins, and TUNEL-staining was used to detect the percentage of neuronal apoptosis in the hippocampal CA1 region. The results showed that BP could significantly protect neurons against cerebral I/R-induced damage. Furthermore, the expression of p-JNK, p-Bcl2, p-c-Jun, FasL, and cleaved-caspase3 was also decreased in the rats treated with BP. In summary, our results imply that BP could remarkably improve the survival of CA1 pyramidal neurons in I/R-induced brain injury and inhibit the JNK-Caspase3 signaling pathway. PMID:27015680

  3. G9a inhibition promotes neuronal differentiation of human bone marrow mesenchymal stem cells through the transcriptional induction of RE-1 containing neuronal specific genes.

    PubMed

    Kim, Ho-Tae; Jeong, Sin-Gu; Cho, Goang-Won

    2016-06-01

    Recent studies have shown that epigenomic modifications are significantly associated with neuronal differentiation. Many neuronal specific genes contain the repressor element-1 (RE-1), which recruits epigenetic modulators, such as the histone methyltransferase G9a and interrupts the expression of neuronal genes in non-neuronal cells. This study investigated the functional role of G9a during neuronal differentiation of human bone marrow mesenchymal stem cells (BM-MSCs). Human BM-MSCs treated with the G9a inhibitor BIX01294 showed an increased expression of various neuronal-lineage genes. Using genomic sequence analysis, we identified RE-1 consensus sequences in the proximal region of several neuronal-specific genes. Chromatin immunoprecipitation (ChIP) assay results have showed that H3K9me2 (dimethylation of lysine 9 on histone 3) occupancy at RE-1-containing sequences from neuronal-specific genes was significantly decreased in BIX01294-MSCs. When BIX01294-MSCs were differentiated with neuronal induction medium, cells differentiated more effectively into neuron-like cells, complete with a cell body and dendrites. Expression of neuronal-specific genes containing the RE-1 sequences was significantly increased in differentiated BIX01294-MSCs, as confirmed by immunocytochemical staining and immunoblotting. Thus, this study shows that BIX01294 pretreated human BM-MSCs can be effectively differentiated into neuron-like cells by induced expression of neuronal-specific genes containing RE-1 sequences. PMID:26952575

  4. Dual Inhibition of Activin/Nodal/TGF-β and BMP Signaling Pathways by SB431542 and Dorsomorphin Induces Neuronal Differentiation of Human Adipose Derived Stem Cells

    PubMed Central

    Madhu, Vedavathi; Dighe, Abhijit S.; Cui, Quanjun; Deal, D. Nicole

    2016-01-01

    Damage to the nervous system can cause devastating diseases or musculoskeletal dysfunctions and transplantation of progenitor stem cells can be an excellent treatment option in this regard. Preclinical studies demonstrate that untreated stem cells, unlike stem cells activated to differentiate into neuronal lineage, do not survive in the neuronal tissues. Conventional methods of inducing neuronal differentiation of stem cells are complex and expensive. We therefore sought to determine if a simple, one-step, and cost effective method, previously reported to induce neuronal differentiation of embryonic stem cells and induced-pluripotent stem cells, can be applied to adult stem cells. Indeed, dual inhibition of activin/nodal/TGF-β and BMP pathways using SB431542 and dorsomorphin, respectively, induced neuronal differentiation of human adipose derived stem cells (hADSCs) as evidenced by formation of neurite extensions, protein expression of neuron-specific gamma enolase, and mRNA expression of neuron-specific transcription factors Sox1 and Pax6 and matured neuronal marker NF200. This process correlated with enhanced phosphorylation of p38, Erk1/2, PI3K, and Akt1/3. Additionally, in vitro subcutaneous implants of SB431542 and dorsomorphin treated hADSCs displayed significantly higher expression of active-axonal-growth-specific marker GAP43. Our data offers novel insights into cell-based therapies for the nervous system repair. PMID:26798350

  5. Inhibition Controls Asynchronous States of Neuronal Networks

    PubMed Central

    Treviño, Mario

    2016-01-01

    Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks. PMID:27274721

  6. Time course of morphine's effects on adult hippocampal subgranular zone reveals preferential inhibition of cells in S phase of the cell cycle and a subpopulation of immature neurons.

    PubMed

    Arguello, A A; Harburg, G C; Schonborn, J R; Mandyam, C D; Yamaguchi, M; Eisch, A J

    2008-11-11

    Opiates, such as morphine, decrease neurogenesis in the adult hippocampal subgranular zone (SGZ), raising the possibility that decreased neurogenesis contributes to opiate-induced cognitive deficits. However, there is an incomplete understanding of how alterations in cell cycle progression and progenitor maturation contribute to this decrease. The present study examined how morphine regulates progenitor cell cycle, cell death and immature SGZ neurons (experiment 1) as well as the progression of SGZ progenitors through key stages of maturation (experiment 2). In experiment 1, mice received sham or morphine pellets (s.c., 0 and 48 h) and bromodeoxyuridine (BrdU) 2 h prior to sacrifice (24, 72 or 96 h). Morphine decreased both the number of S phase and total cycling cells, as there were fewer cells immunoreactive (IR) for the S phase marker BrdU and the cell cycle marker Ki67. The percentage of Ki67-IR cells that were BrdU-IR was decreased after 24 but not 96 h of morphine, suggesting a disproportionate effect on S phase cells relative to all cycling cells at this time point. Cell death (activated caspase-3 counts) was increased after 24 but not 96 h. In experiment 2, nestin-green fluorescent protein (GFP) mice given BrdU 1 day prior to morphine or sham surgery (0 and 48 h, sacrifice 96 h) had fewer Ki67-IR cells, but no change in BrdU-IR cell number, suggesting that this population of BrdU-IR cells was less sensitive to morphine. Interestingly, examination of key stages of progenitor cell maturation revealed that morphine increased the percent of BrdU-IR cells that were type 2b and decreased the percent that were immature neurons. These data suggest that chronic morphine decreases SGZ neurogenesis by inhibiting dividing cells, particularly those in S phase, and progenitor cell progression to a more mature neuronal stage. PMID:18832014

  7. Activation of delta-opioid receptors inhibits neuronal-like calcium channels and distal steps of Ca(2+)-dependent secretion in human small-cell lung carcinoma cells.

    PubMed

    Sher, E; Cesare, P; Codignola, A; Clementi, F; Tarroni, P; Pollo, A; Magnelli, V; Carbone, E

    1996-06-01

    Human small-cell lung carcinoma (SCLC) cells express neuronal-like voltage-operated calcium channels (VOCCs) and release mitogenic hormones such as serotonin (5-HT). Opioid peptides, on the other hand, have been shown to reduce SCLC cell proliferation by an effective autocrine pathway. Here we show that in GLC8 SCLC cells, only delta-opioid receptor subtype mRNA is expressed. Consistently, the selective delta-opioid agonist [D-Pen2-Pen5]-enkephalin (DPDPE), but not mu and kappa agonists, potently and dose-dependently inhibits high-threshold (HVA) VOCCs in these cells. As in peripheral neurons, this modulation is largely voltage-dependent, mediated by pertussis toxin (PTX)-sensitive G-proteins, cAMP-independent, and mainly affecting N-type VOCCs. With the same potency and selectivity, DPDPE also antagonizes the Ca(2+)-dependent release of [3H]serotonin ([3H]5-HT) from GLC8 cells. However, DPDPE inhibits not only the depolarization-induced release, but also the Ca(2+)-dependent secretion induced by thapsigargin or ionomycin. This suggests that besides inhibiting HVA VOCCs, opioids also exert a direct depressive action on the secretory apparatus in GLC8 cells. This latter effect also is mediated by a PTX-sensitive G-protein but, contrary to VOCC inhibition, it can be reversed by elevations of cAMP levels. These results show for the first time that opioids effectively depress both Ca2+ influx and Ca(2+)-dependent hormone release in SCLC cells by using multiple modulatory pathways. It can be speculated that the two mechanisms may contribute to the opioid antimitogenic action on lung neuroendocrine carcinoma cells. PMID:8642411

  8. Anion-selective channelrhodopsin expressed in neuronal cell culture and in vivo in murine brain: Light-induced inhibition of generation of action potentials.

    PubMed

    Dolgikh, D A; Malyshev, A Yu; Salozhin, S V; Nekrasova, O V; Petrovskaya, L E; Roshchin, M V; Borodinova, A A; Feldman, T B; Balaban, P M; Kirpichnikov, M P; Ostrovsky, M A

    2015-01-01

    Anionic channelrhodopsin slow ChloC was expressed in the culture of nerve cells and in vivo in mouse brain. We demonstrated ability of slow ChloC to suppress effectively the activity of the neuron in response to the illumination with the visible light. It has been shown for a first time that slow ChloC works equally efficiently in both neuronal culture and in the whole brain being expressed in vivo. Thus, slow ChloC could be considered as an effective optogenetic tool capable in response to light stimulation to inhibit the generation of action potentials in the neuron. PMID:26728740

  9. Microtubule-Associated Protein 2, a Marker of Neuronal Differentiation, Induces Mitotic Defects, Inhibits Growth of Melanoma Cells, and Predicts Metastatic Potential of Cutaneous Melanoma

    PubMed Central

    Soltani, Mohammad H.; Pichardo, Rita; Song, Ziqui; Sangha, Namrata; Camacho, Fabian; Satyamoorthy, Kapaettu; Sangueza, Omar P.; Setaluri, Vijayasaradhi

    2005-01-01

    Dynamic instability of microtubules is critical for mitotic spindle assembly and disassembly during cell division, especially in rapidly dividing tumor cells. Microtubule-associated proteins (MAPs) are a family of proteins that influence this property. We showed previously that MAP2, a neuron-specific protein that stabilizes microtubules in the dendrites of postmitotic neurons, is induced in primary cutaneous melanoma but is absent in metastatic melanomas. We proposed that induction of a microtubule-stabilizing protein in primary melanoma could disrupt the dynamic instability of microtubules, inhibit cell division and prevent or delay tumor progression. Here we show, by Kaplan-Meier survival and multivariate Cox regression analysis, that patients diagnosed with MAP2+ primary melanomas have significantly better metastatic disease-free survival than those with MAP2− disease. Investigation of the mechanisms that underlie the effect of MAP2 on melanoma progression showed that MAP2 expression in metastatic melanoma cell lines leads to microtubule stabilization, cell cycle arrest in G2-M phase and growth inhibition. Disruption of microtubule dynamics by MAP2 resulted in multipolar mitotic spindles, defects in cytokinesis and accumulation of cells with large nuclei, similar to those seen in vivo in MAP2+ primary melanomas cells. These data suggest that ectopic activation of a neuronal differentiation gene in melanoma during early tumor progression inhibits cell division and correlates with inhibition or delay of metastasis. PMID:15920168

  10. Inhibition of mouse GPM6A expression leads to decreased differentiation of neurons derived from mouse embryonic stem cells.

    PubMed

    Michibata, Hideo; Okuno, Tsuyoshi; Konishi, Nae; Wakimoto, Koji; Kyono, Kiyoshi; Aoki, Kan; Kondo, Yasushi; Takata, Kazuyuki; Kitamura, Yoshihisa; Taniguchi, Takashi

    2008-08-01

    Glycoprotein M6A (GPM6A) is known as a transmembrane protein and an abundant cell surface protein on neurons in the central nervous system (CNS). However, the function of GPM6A is still unknown in the differentiation of neurons derived from embryonic stem (ES) cells. To investigate the function of GPM6A, we generated knockdown mouse ES cell lines (D3m-shM6A) using a short hairpin RNA (shRNA) expression vector driven by the U6 small nuclear RNA promoter, which can significantly suppress the expression of mouse GPM6A mRNA. Real-time polymerase chain reaction (real-time PCR) and immunocytochemical analysis showed that expression of shRNA against GPM6A markedly reduced the expression of neuroectodermal-associated genes (OTX1, Lmx1b, En1, Pax2, Pax5, Sox1, Sox2, and Wnt1), and also the number of neural stem cells (NSC) derived from D3mshM6A cells compared to control vector-transfected mouse ES cells (D3m-Mock). Moreover, our results show a decrease in both the number of neuronal markers and the number of differentiating neuronal cells (cholinergic, catecholaminergic, and GABAergic neurons) from NSC in D3m-shM6A cells. Hence, our findings suggest that expression level of GPM6A is directly or indirectly associated with the differentiation of neurons derived from undifferentiated ES cells. PMID:18522499

  11. Development of a pluripotent stem cell derived neuronal model to identify chemically induced pathway perturbations in relation to neurotoxicity: Effects of CREB pathway inhibition

    SciTech Connect

    Pistollato, Francesca; Louisse, Jochem; Scelfo, Bibiana; Mennecozzi, Milena; Accordi, Benedetta; Basso, Giuseppe; Gaspar, John Antonydas; Zagoura, Dimitra; Barilari, Manuela; Palosaari, Taina; Sachinidis, Agapios; Bremer-Hoffmann, Susanne

    2014-10-15

    According to the advocated paradigm shift in toxicology, acquisition of knowledge on the mechanisms underlying the toxicity of chemicals, such as perturbations of biological pathways, is of primary interest. Pluripotent stem cells (PSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer a unique opportunity to derive physiologically relevant human cell types to measure molecular and cellular effects of such pathway modulations. Here we compared the neuronal differentiation propensity of hESCs and hiPSCs with the aim to develop novel hiPSC-based tools for measuring pathway perturbation in relation to molecular and cellular effects in vitro. Among other fundamental pathways, also, the cAMP responsive element binding protein (CREB) pathway was activated in our neuronal models and gave us the opportunity to study time-dependent effects elicited by chemical perturbations of the CREB pathway in relation to cellular effects. We show that the inhibition of the CREB pathway, using 2-naphthol-AS-E-phosphate (KG-501), induced an inhibition of neurite outgrowth and synaptogenesis, as well as a decrease of MAP2{sup +} neuronal cells. These data indicate that a CREB pathway inhibition can be related to molecular and cellular effects that may be relevant for neurotoxicity testing, and, thus, qualify the use of our hiPSC-derived neuronal model for studying chemical-induced neurotoxicity resulting from pathway perturbations. - Highlights: • HESCs derived neuronal cells serve as benchmark for iPSC based neuronal toxicity test development. • Comparisons between hESCs and hiPSCs demonstrated variability of the epigenetic state • CREB pathway modulation have been explored in relation to the neurotoxicant exposure KG-501 • hiPSC might be promising tools to translate theoretical AoPs into toxicological in vitro tests.

  12. Inhibition of Neuronal Cell Mitochondrial Complex I with Rotenone Increases Lipid β-Oxidation, Supporting Acetyl-Coenzyme A Levels*

    PubMed Central

    Worth, Andrew J.; Basu, Sankha S.; Snyder, Nathaniel W.; Mesaros, Clementina; Blair, Ian A.

    2014-01-01

    Rotenone is a naturally occurring mitochondrial complex I inhibitor with a known association with parkinsonian phenotypes in both human populations and rodent models. Despite these findings, a clear mechanistic link between rotenone exposure and neuronal damage remains to be determined. Here, we report alterations to lipid metabolism in SH-SY5Y neuroblastoma cells exposed to rotenone. The absolute levels of acetyl-CoA were found to be maintained despite a significant decrease in glucose-derived acetyl-CoA. Furthermore, palmitoyl-CoA levels were maintained, whereas the levels of many of the medium-chain acyl-CoA species were significantly reduced. Additionally, using isotopologue analysis, we found that β-oxidation of fatty acids with varying chain lengths helped maintain acetyl-CoA levels. Rotenone also induced increased glutamine utilization for lipogenesis, in part through reductive carboxylation, as has been found previously in other cell types. Finally, palmitoylcarnitine levels were increased in response to rotenone, indicating an increase in fatty acid import. Taken together, these findings show that alterations to lipid and glutamine metabolism play an important compensatory role in response to complex I inhibition by rotenone. PMID:25122772

  13. Cholinergic inhibition of neocortical pyramidal neurons.

    PubMed

    Gulledge, Allan T; Stuart, Greg J

    2005-11-01

    Acetylcholine (ACh) is a central neurotransmitter critical for normal cognitive function. Here we show that transient muscarinic acetylcholine receptor activation directly inhibits neocortical layer 5 pyramidal neurons. Using whole-cell and cell-attached recordings from neurons in slices of rat somatosensory cortex, we demonstrate that transient activation of M1-type muscarinic receptors induces calcium release from IP3-sensitive intracellular calcium stores and subsequent activation of an apamin-sensitive, SK-type calcium-activated potassium conductance. ACh-induced hyperpolarizing responses were blocked by atropine and pirenzepine but not by methoctramine or GABA receptor antagonists (picrotoxin, SR 95531 [2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide], and CGP 55845 [(2S)-3-[[(15)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid]). Responses were associated with a 31 +/- 5% increase in membrane conductance, had a reversal potential of -93 +/- 1 mV, and were eliminated after internal calcium chelation with BAPTA, blockade of IP3 receptors, or extracellular application of cadmium but not by sodium channel blockade with tetrodotoxin. Calcium-imaging experiments demonstrated that ACh-induced hyperpolarizing, but not depolarizing, responses were correlated with large increases in intracellular calcium. Surprisingly, transient increases in muscarinic receptor activation were capable of generating hyperpolarizing responses even during periods of tonic muscarinic activation sufficient to depolarize neurons to action potential threshold. Furthermore, eserine, an acetylcholinesterase inhibitor similar to those used therapeutically in the treatment of Alzheimer's disease, disproportionately enhanced the excitatory actions of acetylcholine while reducing the ability of acetylcholine to generate inhibitory responses during repeated applications of ACh. These data demonstrate that acetylcholine can directly inhibit the

  14. GSK3β, But Not GSK3α, Inhibits the Neuronal Differentiation of Neural Progenitor Cells As a Downstream Target of Mammalian Target of Rapamycin Complex1

    PubMed Central

    Ahn, Jyhyun; Jang, Jiwon; Choi, Jinyong; Lee, Junsub; Oh, Seo-Ho; Lee, Junghun; Yoon, Keejung

    2014-01-01

    Glycogen synthase kinase 3 (GSK3) acts as an important regulator during the proliferation and differentiation of neural progenitor cells (NPCs), but the roles of the isoforms of this molecule (GSK3α and GSK3β) have not been clearly defined. In this study, we investigated the functions of GSK3α and GSK3β in the context of neuronal differentiation of murine NPCs. Treatment of primary NPCs with a GSK3 inhibitor (SB216763) resulted in an increase in the percentage of TuJ1-positive immature neurons, suggesting an inhibitory role of GSK3 in embryonic neurogenesis. Downregulation of GSK3β expression increased the percentage of TuJ1-positive cells, while knock-down of GSK3α seemed to have no effect. When primary NPCs were engineered to stably express either isoform of GSK3 using retroviral vectors, GSK3β, but not GSK3α, inhibited neuronal differentiation and helped the cells to maintain the characteristics of NPCs. Mutant GSK3β (Y216F) failed to suppress neuronal differentiation, indicating that the kinase activity of GSK3β is important for this regulatory function. Similar results were obtained in vivo when a retroviral vector expressing GSK3β was delivered to E9.5 mouse brains using the ultrasound image-guided gene delivery technique. In addition, SB216763 was found to block the rapamycin-mediated inhibition of neuronal differentiation of NPCs. Taken together, our results demonstrate that GSK3β, but not GSK3α, negatively controls the neuronal differentiation of progenitor cells and that GSK3β may act downstream of the mammalian target of rapamycin complex1 signaling pathway. PMID:24397546

  15. Proliferation inhibition of astrocytes, neurons, and non-glial cells by intracellularly expressed human immunodeficiency virus type 1 (HIV-1) Tat protein.

    PubMed

    Zhou, Betty Y; He, Johnny J

    2004-04-15

    Human immunodeficiency virus type 1 Tat protein is one of the soluble neurotoxins. Most studies have to date focused on Tat as an extracellular molecule and its role in neuronal apoptosis, as recombinant Tat protein is often used in these studies. In this study, we expressed Tat protein in astrocytes and neurons, and examined its effects on these cells. We found that Tat expression resulted in growth inhibition of astrocytes, neurons, as well as non-glial cells 293T. We further showed that Tat interacted with a number of cell cycle-related proteins including cyclin A, cyclin B, cyclin D3, Cdk2, Cdk4, Cdk1/Cdc2, cdc6, p27, p53, p63, hdlg, and PCNA. These data demonstrate that Tat inhibited cell proliferation when expressed intracellularly, and suggest that Tat interactions with multiple cell cycle regulators may account for this anti-proliferative effect. These results support the notion that Tat-induced neuropathogenesis is mediated by multiple mechanisms involving both intracellular and extracellular Tat protein. PMID:15050687

  16. Feedforward and Feedback inhibition in Neostriatal GABAergic Spiny Neurons

    PubMed Central

    Tepper, James M.; Wilson, Charles J.; Koós, Tibor

    2008-01-01

    There are two distinct inhibitory GABAergic circuits in the neostriatum. The feedforward circuit consists of a relatively small population of GABAergic interneurons that receives excitatory input from the neocortex and exerts monosynaptic inhibition onto striatal spiny projection neurons. The feedback circuit comprises the numerous spiny projection neurons and their interconnections via local axon collaterals. This network has long been assumed to provide the majority of striatal GABAergic inhibition and to sharpen and shape striatal output through lateral inhibition, producing increased activity in the most strongly excited spiny cells at the expense of their less strongly excited neighbors. Recent results, mostly from recording experiments of synaptically connected pairs of neurons, have revealed that the two GABAergic circuits differ markedly in terms of the total number of synapses made by each, the strength of the postsynaptic response detected at the soma, the extent of presynaptic convergence and divergence and the net effect of the activation of each circuit on the postsynaptic activity of the spiny neuron. These data have revealed that the feedforward inhibition is powerful and widespread, with spiking in a single interneuron being capable of significantly delaying or even blocking the generation of spikes in a large number of postsynaptic spiny neurons. In contrast, the postsynaptic effects of spiking in a single presynaptic spiny neuron on postsynaptic spiny neurons are weak when measured at the soma, and unable to significantly affect spike timing or generation. Further, reciprocity of synaptic connections between spiny neurons is only rarely observed. These results suggest that the bulk of the fast inhibition that has the strongest effects on spiny neuron spike timing comes from the feedforward interneuronal system whereas the axon collateral feedback system acts principally at the dendrites to control local excitability as well as the overall level of

  17. Molecular Mechanisms of Cross-inhibition Between Nicotinic Acetylcholine Receptors and P2X Receptors in Myenteric Neurons and HEK-293 cells

    PubMed Central

    Decker, Dima A.; Galligan, James J.

    2010-01-01

    Background P2X2 and nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic excitation in the enteric nervous system. P2X receptors and nAChRs are functionally linked. This study examined the mechanisms responsible for interactions between P2X2 and α3β4subunit-containing nAChRs. Methods The function of P2X2 and α3β4 nAChRs expressed by HEK-293 cells and guinea pig ileum myenteric neurons in culture was studied using whole-cell patch clamp techniques. Results In HEK-293 cells expressing α3β4 nAChRs and P2X2 receptors, co-application of ATP and ACh caused inward currents that were 56 ± 7% of the current that should occur if these channels functioned independently (P < 0.05, n = 9); we call this interaction cross-inhibition. Cross-inhibition did not occur in HEK-293 cells expressing α3β4 nAChRs and a C-terminal tail truncated P2X2 receptor (P2X2TR)(P >0.05, n = 8). Intracellular application of the C-terminal tail of the P2X2 receptor blocked nAChR-P2X receptor cross-inhibition in HEK-293 cells and myenteric neurons. In the absence of ATP, P2X2 receptors constitutively inhibited nAChR currents in HEK-293 cells expressing both receptors. Constitutive inhibition did not occur in HEK-293 cells expressing α3β4 nAChRs transfected with P2X2TR. Currents caused by low (≤30 μM), but not high (≥100 μM) concentrations of ATP in cells expressing P2X2 receptors were inhibited by co-expression with α3β4 nAChRs. Conclusions The C-terminal tail of P2X2 receptors mediates cross-inhibition between α3β4 nAChR-P2X2 receptors. The closed state of P2X2 receptors and nAChRs can also cause cross inhibition. These interactions may modulate transmission at enteric synapses that use ATP and acetylcholine as co-transmitters. PMID:20426799

  18. Inhibition of Pathogenic Mutant SOD1 Aggregation in Cultured Motor Neuronal Cells by Prevention of Its SUMOylation on Lysine 75.

    PubMed

    Dangoumau, Audrey; Marouillat, Sylviane; Burlaud Gaillard, Julien; Uzbekov, Rustem; Veyrat-Durebex, Charlotte; Blasco, Hélène; Arnoult, Christophe; Corcia, Philippe; Andres, Christian R; Vourc'h, Patrick

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective death of motor neurons. Mutations in the SOD1 gene encoding the superoxide dismutase 1 are present in 15% of familial ALS cases and in 2% of sporadic cases. These mutations are associated with the formation of SOD1-positive aggregates. The mechanisms of aggregation remain unknown, but posttranslational modifications of SOD1 may be involved. Here, we report that NSC-34 motor neuronal cells expressing mutant SOD1 contained aggregates positive for small ubiquitin modifier-1 (SUMO-1), and in parallel a reduced level of free SUMO-1. CLEM (correlative light and electron microscopy) analysis showed nonorganized cytosolic aggregates for all mutations tested (SOD1A4V, SOD1V31A, and SOD1G93C). We next show that preventing the SUMOylation of mutant SOD1 by the substitution of lysine 75, the SUMOylation site of SOD1, significantly reduces the number of motor neuronal cells with aggregates. These results support the need for further research on the SUMOylation pathways, which may be a potential therapeutic target in ALS. PMID:26605782

  19. Leptin Acts via Lateral Hypothalamic Area Neurotensin Neurons to Inhibit Orexin Neurons by Multiple GABA-Independent Mechanisms

    PubMed Central

    Goforth, Paulette B.; Leinninger, Gina M.; Patterson, Christa M.

    2014-01-01

    The adipocyte-derived hormone leptin modulates neural systems appropriately for the status of body energy stores. Leptin inhibits lateral hypothalamic area (LHA) orexin (OX; also known as hypocretin)-producing neurons, which control feeding, activity, and energy expenditure, among other parameters. Our previous results suggest that GABAergic LHA leptin receptor (LepRb)-containing and neurotensin (Nts)-containing (LepRbNts) neurons lie in close apposition with OX neurons and control Ox mRNA expression. Here, we show that, similar to leptin, activation of LHA Nts neurons by the excitatory hM3Dq DREADD (designer receptor exclusively activated by designer drugs) hyperpolarizes membrane potential and suppresses action potential firing in OX neurons in mouse hypothalamic slices. Furthermore, ablation of LepRb from Nts neurons abrogated the leptin-mediated inhibition, demonstrating that LepRbNts neurons mediate the inhibition of OX neurons by leptin. Leptin did not significantly enhance GABAA-mediated inhibitory synaptic transmission, and GABA receptor antagonists did not block leptin-mediated inhibition of OX neuron activity. Rather, leptin diminished the frequency of spontaneous EPSCs onto OX neurons. Furthermore, leptin indirectly activated an ATP-sensitive potassium (KATP) channel in OX neurons, which was required for the hyperpolarization of OX neurons by leptin. Although Nts did not alter OX activity, galanin, which is coexpressed in LepRbNts neurons, inhibited OX neurons, whereas the galanin receptor antagonist M40 (galanin-(1–12)-Pro3-(Ala-Leu)2-Ala amide) prevented the leptin-induced hyperpolarization of OX cells. These findings demonstrate that leptin indirectly inhibits OX neurons by acting on LHA LepRbNts neurons to mediate two distinct GABA-independent mechanisms of inhibition: the presynaptic inhibition of excitatory neurotransmission and the opening of KATP channels. PMID:25143620

  20. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    SciTech Connect

    Nakashima, Yukiko; Morimoto, Mayuka; Toda, Ken-ichi; Shinya, Tomohiro; Sato, Keizo; Takahashi, Satoru

    2015-07-03

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.

  1. Diversity of vestibular nuclei neurons targeted by cerebellar nodulus inhibition

    PubMed Central

    Meng, Hui; Blázquez, Pablo M; Dickman, J David; Angelaki, Dora E

    2014-01-01

    Abstract A functional role of the cerebellar nodulus and ventral uvula (lobules X and IXc,d of the vermis) for vestibular processing has been strongly suggested by direct reciprocal connections with the vestibular nuclei, as well as direct vestibular afferent inputs as mossy fibres. Here we have explored the types of neurons in the macaque vestibular nuclei targeted by nodulus/ventral uvula inhibition using orthodromic identification from the caudal vermis. We found that all nodulus-target neurons are tuned to vestibular stimuli, and most are insensitive to eye movements. Such non-eye-movement neurons are thought to project to vestibulo-spinal and/or thalamo-cortical pathways. Less than 20% of nodulus-target neurons were sensitive to eye movements, suggesting that the caudal vermis can also directly influence vestibulo-ocular pathways. In general, response properties of nodulus-target neurons were diverse, spanning the whole continuum previously described in the vestibular nuclei. Most nodulus-target cells responded to both rotation and translation stimuli and only a few were selectively tuned to translation motion only. Other neurons were sensitive to net linear acceleration, similar to otolith afferents. These results demonstrate that, unlike the flocculus and ventral paraflocculus which target a particular cell group, nodulus/ventral uvula inhibition targets a large diversity of cell types in the vestibular nuclei, consistent with a broad functional significance contributing to vestibulo-ocular, vestibulo-thalamic and vestibulo-spinal pathways. PMID:24127616

  2. Nigral inhibition of GABAergic neurons in mouse superior colliculus.

    PubMed

    Kaneda, Katsuyuki; Isa, Kaoru; Yanagawa, Yuchio; Isa, Tadashi

    2008-10-22

    The current dominant concept for the control of saccadic eye movements by the basal ganglia is that release from tonic GABAergic inhibition by the substantia nigra pars reticulata (SNr) triggers burst firings of intermediate gray layer (SGI) neurons in the superior colliculus (SC) to allow saccade initiation. This hypothesis is based on the assumption that SNr cells inhibit excitatory projection neurons in the SGI. Here we show that nigrotectal fibers are connected to local GABAergic neurons in the SGI with a similar frequency to non-GABAergic neurons. This was accomplished by applying neuroanatomical tracing and slice electrophysiological experiments in GAD67-green fluorescent protein (GFP) knock-in mice, in which GABAergic neurons specifically express GFP. We also found that GABA(A), but not GABA(B), receptors subserve nigrotectal transmission. The present results revealed a novel aspect on the role of the basal ganglia in the control of saccades, e.g., the SNr not only regulates burst initiation but also modulates the spatiotemporal properties of premotor neurons via connections to local GABAergic neurons in the SC. PMID:18945914

  3. Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons.

    PubMed

    Mardinly, A R; Spiegel, I; Patrizi, A; Centofante, E; Bazinet, J E; Tzeng, C P; Mandel-Brehm, C; Harmin, D A; Adesnik, H; Fagiolini, M; Greenberg, M E

    2016-03-17

    Inhibitory neurons regulate the adaptation of neural circuits to sensory experience, but the molecular mechanisms by which experience controls the connectivity between different types of inhibitory neuron to regulate cortical plasticity are largely unknown. Here we show that exposure of dark-housed mice to light induces a gene program in cortical vasoactive intestinal peptide (VIP)-expressing neurons that is markedly distinct from that induced in excitatory neurons and other subtypes of inhibitory neuron. We identify Igf1 as one of several activity-regulated genes that are specific to VIP neurons, and demonstrate that IGF1 functions cell-autonomously in VIP neurons to increase inhibitory synaptic input onto these neurons. Our findings further suggest that in cortical VIP neurons, experience-dependent gene transcription regulates visual acuity by activating the expression of IGF1, thus promoting the inhibition of disinhibitory neurons and affecting inhibition onto cortical pyramidal neurons. PMID:26958833

  4. Some Commonly Used Brominated Flame Retardants Cause Ca2+-ATPase Inhibition, Beta-Amyloid Peptide Release and Apoptosis in SH-SY5Y Neuronal Cells

    PubMed Central

    Al-Mousa, Fawaz; Michelangeli, Francesco

    2012-01-01

    Brominated flame retardants (BFRs) are chemicals commonly used to reduce the flammability of consumer products and are considered pollutants since they have become widely dispersed throughout the environment and have also been shown to bio-accumulate within animals and man. This study investigated the cytotoxicity of some of the most commonly used groups of BFRs on SH-SY5Y human neuroblastoma cells. The results showed that of the BFRs tested, hexabromocyclododecane (HBCD), tetrabromobisphenol-A (TBBPA) and decabromodiphenyl ether (DBPE), all are cytotoxic at low micromolar concentrations (LC50 being 2.7±0.7µM, 15±4µM and 28±7µM, respectively). They induced cell death, at least in part, by apoptosis through activation of caspases. They also increased intracellular [Ca2+] levels and reactive-oxygen-species within these neuronal cells. Furthermore, these BFRs also caused rapid depolarization of the mitochondria and cytochrome c release in these neuronal cells. Elevated intracellular [Ca2+] levels appear to occur through a mechanism involving microsomal Ca2+-ATPase inhibition and this maybe responsible for Ca2+-induced mitochondrial dysfunction. In addition, µM levels of these BFRs caused β-amyloid peptide (Aβ-42) processing and release from these cells with a few hours of exposure. These results therefore shows that these pollutants are both neurotoxic and amyloidogenic in-vitro. PMID:22485137

  5. Neuroprotective effect of Citrus unshiu immature peel and nobiletin inhibiting hydrogen peroxide-induced oxidative stress in HT22 murine hippocampal neuronal cells

    PubMed Central

    Cho, Hyun Woo; Jung, Su Young; Lee, Gyeong Hwan; Cho, Jung Hee; Choi, In Young

    2015-01-01

    Background: Oxidative stress-induced cell damage is common in the etiology of several neurobiological disorders, including Alzheimer's disease and Parkinson's disease. In a case study, nobiletin-rich Citrus reticulata peels could prevent the progression of cognitive impairment in donepezil-preadministered Alzheimer's disease patients. Objective: In this study, we investigated the effects and underlying mechanism of nobiletin and Citrus unshiu immature peel (CUIP) water extract, which contains nobiletin as a major compound, on hydrogen peroxide-induced oxidative stress in HT22 cells, a murine hippocampal neuronal model. Materials and Methods: HT22 cells were treated with hydrogen peroxide in the presence or absence of various concentrations of CUIP and nobiletin. Cytotoxicity and apoptotic protein levels were measured by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and Western blotting. Results: Pretreatment with CUIP and nobiletin inhibited cell death due to hydrogen peroxide. Hydrogen peroxide-induced the expression of phospho-Jun N-terminal kinases (p-JNK) and p-p38 proteins in HT22 cells; however CUIP and nobiletin suppressed p-JNK and p-p38 without changing JNK or p38. Regarding apoptosis, caspase 3, B-cell lymphoma 2 (Bcl-2), and Bax protein expression was determined. CUIP and nobiletin suppressed caspase 3 and Bax expression, but they induced Bcl-2 expression in HT22 cells. Conclusion: These results show that CUIP and nobiletin can protect against hydrogen peroxide-induced cell death in HT22 neurons via mitogen-activated protein kinases and apoptotic pathways. PMID:26664016

  6. Eugenol Inhibits the GABAA Current in Trigeminal Ganglion Neurons

    PubMed Central

    Lee, Sang Hoon; Moon, Jee Youn; Jung, Sung Jun; Kang, Jin Gu; Choi, Seung Pyo; Jang, Jun Ho

    2015-01-01

    Eugenol has sedative, antioxidant, anti-inflammatory, and analgesic effects, but also serves as an irritant through the regulation of a different set of ion channels. Activation of gamma aminobutyric acid (GABA) receptors on sensory neurons leads to the stabilization of neuronal excitability but contributes to formalin-induced inflammatory pain. In this study, we examined the effect of eugenol on the GABA-induced current in rat trigeminal ganglia (TG) neurons and in human embryonic kidney (HEK) 293 cells expressing the GABAA receptor α1β2γ2 subtype using the whole-cell patch clamp technique. RT-PCR and Western blot analysis were used to confirm the expression of GABAA receptor γ2 subunit mRNA and protein in the TG and hippocampus. Eugenol decreased the amplitude ratio of the GABA-induced current to 27.5 ± 3.2% (p < 0.05) in TG neurons, which recovered after a 3-min washout. In HEK 293 cells expressing the α1β2γ2 subtype, eugenol inhibited GABA-induced currents in a dose-dependent manner. Application of eugenol also decreased the GABA response in the presence of a G-protein blocker. Eugenol pretreatment with different concentrations of GABA resulted in similar inhibition of the GABA-induced current in a non-competitive manner. In conclusion, eugenol inhibits the GABA-induced current in TG neurons and HEK 293 cells expressing the GABAA receptor in a reversible, dose-dependent, and non-competitive manner, but not via the G-protein pathway. We suggest that the GABAA receptor could be a molecular target for eugenol in the modulation of nociceptive information. PMID:25635877

  7. Gammaherpesvirus Infection of Human Neuronal Cells

    PubMed Central

    Jha, Hem Chandra; Mehta, Devan; Lu, Jie; El-Naccache, Darine; Shukla, Sanket K.; Kovacsics, Colleen; Kolson, Dennis

    2015-01-01

    ABSTRACT Gammaherpesviruses human herpesvirus 4 (HHV4) and HHV8 are two prominent members of the herpesvirus family associated with a number of human cancers. HHV4, also known as Epstein-Barr virus (EBV), a ubiquitous gammaherpesvirus prevalent in 90 to 95% of the human population, is clinically associated with various neurological diseases such as primary central nervous system lymphoma, multiple sclerosis, Alzheimer’s disease, cerebellar ataxia, and encephalitis. However, the possibility that EBV and Kaposi’s sarcoma-associated herpesvirus (KSHV) can directly infect neurons has been largely overlooked. This study has, for the first time, characterized EBV infection in neural cell backgrounds by using the Sh-Sy5y neuroblastoma cell line, teratocarcinoma Ntera2 neurons, and primary human fetal neurons. Furthermore, we also demonstrated KSHV infection of neural Sh-Sy5y cells. These neuronal cells were infected with green fluorescent protein-expressing recombinant EBV or KSHV. Microscopy, genetic analysis, immunofluorescence, and Western blot analyses for specific viral antigens supported and validated the infection of these cells by EBV and KSHV and showed that the infection was efficient and productive. Progeny virus produced from infected neuronal cells efficiently infected fresh neuronal cells, as well as peripheral blood mononuclear cells. Furthermore, acyclovir was effective at inhibiting the production of virus from neuronal cells similar to lymphoblastoid cell lines; this suggests active lytic replication in infected neurons in vitro. These studies represent a potentially new in vitro model of EBV- and KSHV-associated neuronal disease development and pathogenesis. PMID:26628726

  8. Cellular prion protein promotes post-ischemic neuronal survival, angioneurogenesis and enhances neural progenitor cell homing via proteasome inhibition

    PubMed Central

    Doeppner, T R; Kaltwasser, B; Schlechter, J; Jaschke, J; Kilic, E; Bähr, M; Hermann, D M; Weise, J

    2015-01-01

    Although cellular prion protein (PrPc) has been suggested to have physiological roles in neurogenesis and angiogenesis, the pathophysiological relevance of both processes remain unknown. To elucidate the role of PrPc in post-ischemic brain remodeling, we herein exposed PrPc wild type (WT), PrPc knockout (PrP−/−) and PrPc overexpressing (PrP+/+) mice to focal cerebral ischemia followed by up to 28 days reperfusion. Improved neurological recovery and sustained neuroprotection lasting over the observation period of 4 weeks were observed in ischemic PrP+/+ mice compared with WT mice. This observation was associated with increased neurogenesis and angiogenesis, whereas increased neurological deficits and brain injury were noted in ischemic PrP−/− mice. Proteasome activity and oxidative stress were increased in ischemic brain tissue of PrP−/− mice. Pharmacological proteasome inhibition reversed the exacerbation of brain injury induced by PrP−/−, indicating that proteasome inhibition mediates the neuroprotective effects of PrPc. Notably, reduced proteasome activity and oxidative stress in ischemic brain tissue of PrP+/+ mice were associated with an increased abundance of hypoxia-inducible factor 1α and PACAP-38, which are known stimulants of neural progenitor cell (NPC) migration and trafficking. To elucidate effects of PrPc on intracerebral NPC homing, we intravenously infused GFP+ NPCs in ischemic WT, PrP−/− and PrP+/+ mice, showing that brain accumulation of GFP+ NPCs was greatly reduced in PrP−/− mice, but increased in PrP+/+ animals. Our results suggest that PrPc induces post-ischemic long-term neuroprotection, neurogenesis and angiogenesis in the ischemic brain by inhibiting proteasome activity. PMID:26673668

  9. Estragole blocks neuronal excitability by direct inhibition of Na+ channels

    PubMed Central

    Silva-Alves, K.S.; Ferreira-da-Silva, F.W.; Peixoto-Neves, D.; Viana-Cardoso, K.V.; Moreira-Júnior, L.; Oquendo, M.B.; Oliveira-Abreu, K.; Albuquerque, A.A.C.; Coelho-de-Souza, A.N.; Leal-Cardoso, J.H.

    2013-01-01

    Estragole is a volatile terpenoid, which occurs naturally as a constituent of the essential oils of many plants. It has several pharmacological and biological activities. The objective of the present study was to investigate the mechanism of action of estragole on neuronal excitability. Intact and dissociated dorsal root ganglion neurons of rats were used to record action potential and Na+ currents with intracellular and patch-clamp techniques, respectively. Estragole blocked the generation of action potentials in cells with or without inflexions on their descendant (repolarization) phase (Ninf and N0 neurons, respectively) in a concentration-dependent manner. The resting potentials and input resistances of Ninf and N0 cells were not altered by estragole (2, 4, and 6 mM). Estragole also inhibited total Na+ current and tetrodotoxin-resistant Na+ current in a concentration-dependent manner (IC50 of 3.2 and 3.6 mM, respectively). Kinetic analysis of Na+ current in the presence of 4 mM estragole showed a statistically significant reduction of fast and slow inactivation time constants, indicating an acceleration of the inactivation process. These data demonstrate that estragole blocks neuronal excitability by direct inhibition of Na+ channel conductance activation. This action of estragole is likely to be relevant to the understanding of the mechanisms of several pharmacological effects of this substance. PMID:24345915

  10. Sumatriptan Inhibits TRPV1 Channels in Trigeminal Neurons

    PubMed Central

    Evans, M. Steven; Cheng, Xiangying; Jeffry, Joseph A.; Disney, Kimberly E.; Premkumar, Louis S.

    2011-01-01

    Objective To understand a possible role for transient potential receptor vanilloid 1 (TRPV1) ion channels in sumatriptan relief of pain mediated by trigeminal nociceptors. Background TRPV1 channels are expressed in small nociceptive sensory neurons. In dorsal root ganglia (DRG), TRPV1-containing nociceptors mediate certain types of inflammatory pain. Neurogenic inflammation of cerebral dura and blood vessels in the trigeminal nociceptive system is thought to be important in migraine pain, but the ion channels important in transducing migraine pain are not known. Sumatriptan is an agent effective in treatment of migraine and cluster headache. We hypothesized that sumatriptan might modulate activity of TRPV1 channels found in the trigeminal nociceptive system. Methods We used immunohistochemistry to detect the presence of TRPV1 channel protein, whole cell recording in acutely dissociated trigeminal ganglia (TG) to detect functionality of TRPV1 channels, and whole cell recording in trigeminal nucleus caudalis (TNC) to detect effects on release of neurotransmitters from trigeminal neurons onto second order sensory neurons. Effects specifically on TG neurons that project to cerebral dura were assessed by labeling dural nociceptors with DiI. Results Immunohistochemistry demonstrated that TRPV1 channels are present in cerebral dura, trigeminal ganglion, and in the trigeminal nucleus caudalis. Capsaicin, a TRPV1 agonist, produced depolarization and repetitive action potential firing in current clamp recordings and large inward currents in voltage clamp recordings from acutely dissociated TG neurons, demonstrating that TRPV1 channels are functional in trigeminal neurons. Capsaicin increased spontaneous excitatory postsynaptic currents (sEPSCs) in neurons of layer II in TNC slices, showing that these channels have a physiological effect on central synaptic transmission. Sumatriptan (10 μM), a selective anti-migraine drug inhibited TRPV1-mediated inward currents in TG. and

  11. The Neuroprotective Effects of Justicidin A on Amyloid Beta25-35-Induced Neuronal Cell Death Through Inhibition of Tau Hyperphosphorylation and Induction of Autophagy in SH-SY5Y Cells.

    PubMed

    Gu, Ming-Yao; Kim, Joonki; Yang, Hyun Ok

    2016-06-01

    Justicidin A is a structurally defined arylnaphthalide lignan, which has been shown anti-cancer activity; however, the neuroprotective effect of justicidin A is still untested. In this study, we investigated the action of justicidin A on amyloid beta (Aβ)25-35-induced neuronal cell death via inhibition of the hyperphosphorylation of tau and induction of autophagy in SH-SY5Y cells. Pretreatment with justicidin A significantly elevated cell viability in cells treated with Aβ25-35. Western blot data demonstrated that justicidin A inhibited the Aβ25-35-induced up-regulation the levels of hyperphosphorylation of tau in SH-SY5Y cells. In addition, treatment with justicidin A significantly induced autophagy as measured by the increasing LC3 II/I ratio, an important autophagy marker. These studies showed that justicidin A inhibited activity of glycogen synthase kinase-3beta (GSK-3β), which is an important kinase in up-stream signaling pathways; inhibited hyperphosphorylation of tau in AD; and enhanced activity of AMP-activated protein kinase (AMPK), which is the key molecule for both hyperphosphorylation of tau and induction of autophagy. These data provide the first evidence that justicidin A protects SH-SY5Y cells from Aβ25-35-induced neuronal cell death through inhibition of hyperphosphorylation of tau and induction of autophagy via regulation the activity of GSK-3β and AMPK, and they also provide some insights into the relationship between tau protein hyperphosphorylation and autophagy. Thus, we conclude that justicidin A may have a potential role for neuroprotection and, therefore, may be used as a therapeutic agent for AD. PMID:26887582

  12. Lidocaine Inhibits HCN Currents in Rat Spinal Substantia Gelatinosa Neurons

    PubMed Central

    Hu, Tao; Liu, Nana; Lv, Minhua; Ma, Longxian; Peng, Huizhen; Peng, Sicong

    2016-01-01

    BACKGROUND: Lidocaine, which blocks voltage-gated sodium channels, is widely used in surgical anesthesia and pain management. Recently, it has been proposed that the hyperpolarization-activated cyclic nucleotide (HCN) channel is one of the other novel targets of lidocaine. Substantia gelatinosa in the spinal dorsal horn, which plays key roles in modulating nociceptive information from primary afferents, comprises heterogeneous interneurons that can be electrophysiologically categorized by firing pattern. Our previous study demonstrated that a substantial proportion of substantia gelatinosa neurons reveal the presence of HCN current (Ih); however, the roles of lidocaine and HCN channel expression in different types of substantia gelatinosa neurons remain unclear. METHODS: By using the whole-cell patch-clamp technique, we investigated the effect of lidocaine on Ih in rat substantia gelatinosa neurons of acute dissociated spinal cord slices. RESULTS: We found that lidocaine rapidly decreased the peak Ih amplitude with an IC50 of 80 μM. The inhibition rate on Ih was not significantly different with a second application of lidocaine in the same neuron. Tetrodotoxin, a sodium channel blocker, did not affect lidocaine’s effect on Ih. In addition, lidocaine shifted the half-activation potential of Ih from −109.7 to −114.9 mV and slowed activation. Moreover, the reversal potential of Ih was shifted by −7.5 mV by lidocaine. In the current clamp, lidocaine decreased the resting membrane potential, increased membrane resistance, delayed rebound depolarization latency, and reduced the rebound spike frequency. We further found that approximately 58% of substantia gelatinosa neurons examined expressed Ih, in which most of them were tonically firing. CONCLUSIONS: Our studies demonstrate that lidocaine strongly inhibits Ih in a reversible and concentration-dependent manner in substantia gelatinosa neurons, independent of tetrodotoxin-sensitive sodium channels. Thus, our

  13. Senegenin inhibits neuronal apoptosis after spinal cord contusion injury

    PubMed Central

    Zhang, Shu-quan; Wu, Min-fei; Gu, Rui; Liu, Jia-bei; Li, Ye; Zhu, Qing-san; Jiang, Jin-lan

    2016-01-01

    Senegenin has been shown to inhibit neuronal apoptosis, thereby exerting a neuroprotective effect. In the present study, we established a rat model of spinal cord contusion injury using the modified Allen's method. Three hours after injury, senegenin (30 mg/g) was injected into the tail vein for 3 consecutive days. Senegenin reduced the size of syringomyelic cavities, and it substantially reduced the number of apoptotic cells in the spinal cord. At the site of injury, Bax and Caspase-3 mRNA and protein levels were decreased by senegenin, while Bcl-2 mRNA and protein levels were increased. Nerve fiber density was increased in the spinal cord proximal to the brain, and hindlimb motor function and electrophysiological properties of rat hindlimb were improved. Taken together, our results suggest that senegenin exerts a neuroprotective effect by suppressing neuronal apoptosis at the site of spinal cord injury. PMID:27212931

  14. Senegenin inhibits neuronal apoptosis after spinal cord contusion injury.

    PubMed

    Zhang, Shu-Quan; Wu, Min-Fei; Gu, Rui; Liu, Jia-Bei; Li, Ye; Zhu, Qing-San; Jiang, Jin-Lan

    2016-04-01

    Senegenin has been shown to inhibit neuronal apoptosis, thereby exerting a neuroprotective effect. In the present study, we established a rat model of spinal cord contusion injury using the modified Allen's method. Three hours after injury, senegenin (30 mg/g) was injected into the tail vein for 3 consecutive days. Senegenin reduced the size of syringomyelic cavities, and it substantially reduced the number of apoptotic cells in the spinal cord. At the site of injury, Bax and Caspase-3 mRNA and protein levels were decreased by senegenin, while Bcl-2 mRNA and protein levels were increased. Nerve fiber density was increased in the spinal cord proximal to the brain, and hindlimb motor function and electrophysiological properties of rat hindlimb were improved. Taken together, our results suggest that senegenin exerts a neuroprotective effect by suppressing neuronal apoptosis at the site of spinal cord injury. PMID:27212931

  15. Neuronal cell cycle: the neuron itself and its circumstances

    PubMed Central

    Frade, José M; Ovejero-Benito, María C

    2015-01-01

    Neurons are usually regarded as postmitotic cells that undergo apoptosis in response to cell cycle reactivation. Nevertheless, recent evidence indicates the existence of a defined developmental program that induces DNA replication in specific populations of neurons, which remain in a tetraploid state for the rest of their adult life. Similarly, de novo neuronal tetraploidization has also been described in the adult brain as an early hallmark of neurodegeneration. The aim of this review is to integrate these recent developments in the context of cell cycle regulation and apoptotic cell death in neurons. We conclude that a variety of mechanisms exists in neuronal cells for G1/S and G2/M checkpoint regulation. These mechanisms, which are connected with the apoptotic machinery, can be modulated by environmental signals and the neuronal phenotype itself, thus resulting in a variety of outcomes ranging from cell death at the G1/S checkpoint to full proliferation of differentiated neurons. PMID:25590687

  16. Inhibition of TYRO3/Akt signaling participates in hypoxic injury in hippocampal neurons

    PubMed Central

    Zhu, Yan-zhen; Wang, Wei; Xian, Na; Wu, Bing

    2016-01-01

    In this study, we investigated the role of the TYRO3/Akt signaling pathway in hypoxic injury to hippocampal neurons. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that hypoxia inhibited the proliferation and viability of hippocampal neurons. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay demonstrated that hypoxia induced neuronal apoptosis in a time-dependent manner, with a greater number of apoptotic cells with longer hypoxic exposure. Immunofluorescence labeling revealed that hypoxia suppressed TYRO3 expression. Western blot assay showed that hypoxia decreased Akt phosphorylation levels in a time-dependent manner. Taken together, these findings suggest that hypoxia inhibits the proliferation of hippocampal neurons and promotes apoptosis, and that the inhibition of the TYRO3/Akt signaling pathway plays an important role in hypoxia-induced neuronal injury. PMID:27335558

  17. Efficient Generation of Hypothalamic Neurons from Human Pluripotent Stem Cells.

    PubMed

    Wang, Liheng; Egli, Dieter; Leibel, Rudolph L

    2016-01-01

    The hypothalamus comprises neuronal clusters that are essential for body weight regulation and other physiological functions. Insights into the complex cellular physiology of this region of the brain are critical to understanding the pathogenesis of obesity, but human hypothalamic cells are largely inaccessible for direct study. Here we describe a technique for generation of arcuate-like hypothalamic neurons from human pluripotent stem (hPS) cells. Early activation of SHH signaling and inhibition of BMP and TGFβ signaling, followed by timed inhibition of NOTCH, can efficiently differentiate hPS cells into NKX2.1+ hypothalamic progenitors. Subsequent incubation with BDNF induces the differentiation and maturation of pro-opiomelanocortin and neuropeptide Y neurons, which are major cell types in the arcuate hypothalamus. These neurons have molecular and cellular characteristics consistent with arcuate neurons. © 2016 by John Wiley & Sons, Inc. PMID:27367166

  18. Perturbation of neuronal cobalamin transport by lysosomal enzyme inhibition

    PubMed Central

    Zhao, Hua; Ruberu, Kalani; Li, Hongyun; Garner, Brett

    2014-01-01

    Cbl (cobalamin) utilization as an enzyme cofactor is dependent on its efficient transit through lysosomes to the cytosol and mitochondria. We have previously proposed that pathophysiological perturbations in lysosomal function may inhibit intracellular Cbl transport with consequences for down-stream metabolic pathways. In the current study, we used both HT1080 fibroblasts and SH-SY5Y neurons to assess the impact that protease inhibitors, chloroquine and leupeptin (N-acetyl-L-leucyl-L-leucyl-L-argininal), have on the distribution of [57Co]Cbl in lysosomes, mitochondria and cytosol. Under standard cell culture conditions the distribution of [57Co]Cbl in both neurons and fibroblasts was ~5% in lysosomes, 14% in mitochondria and 81% in cytosol. Treatment of cells with either 25 μM chloroquine or 40 μM leupeptin for 48 h significantly increased the lysosomal [57Co]Cbl levels, by 4-fold in fibroblasts and 10-fold in neurons, and this was associated with reduced cytosolic and mitochondrial [57Co]Cbl concentrations. Based on Western blotting of LAMP2 in fractions recovered from an OptiPrep density gradient, lysosomal Cbl trapping was associated with an expansion of the lysosomal compartment and an increase in a subpopulation of lysosomes with increased size and density. Moreover, the decreased mitochondrial Cbl that was associated with lysosomal Cbl trapping was correlated with decreased incorporation of [14C] propionate into cellular proteins/macromolecules, indicating an inhibition of Cbl-dependent Mm-CoA (methylmalonyl-coenzyme A) mutase activity. These results add support to the idea that lysosomal dysfunction may significantly impact upon Cbl transport and utilization. PMID:24393046

  19. Basal forebrain neuronal inhibition enables rapid behavioral stopping

    PubMed Central

    Mayse, Jeffrey D.; Nelson, Geoffrey M.; Avila, Irene; Gallagher, Michela; Lin, Shih-Chieh

    2015-01-01

    Cognitive inhibitory control, the ability to rapidly suppress responses inappropriate for the context, is essential for flexible and adaptive behavior. While most studies on inhibitory control have focused on the fronto-basal-ganglia circuit, here we explore a novel hypothesis and show that rapid behavioral stopping is enabled by neuronal inhibition in the basal forebrain (BF). In rats performing the stop signal task, putative noncholinergic BF neurons with phasic bursting responses to the go signal were inhibited nearly completely by the stop signal. The onset of BF neuronal inhibition was tightly coupled with and temporally preceded the latency to stop, the stop signal reaction time. Artificial inhibition of BF activity in the absence of the stop signal was sufficient to reproduce rapid behavioral stopping. These results reveal a novel subcortical mechanism of rapid inhibitory control by the BF, which provides bidirectional control over the speed of response generation and inhibition. PMID:26368943

  20. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity.

    PubMed

    Bal-Price, A; Brown, G C

    2001-09-01

    Glia undergo inflammatory activation in most CNS pathologies and are capable of killing cocultured neurons. We investigated the mechanisms of this inflammatory neurodegeneration using a mixed culture of neurons, microglia, and astrocytes, either when the astrocytes were activated directly with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) or LPS/IFN-gamma-activated microglia were added to mixed neuronal cultures. In either case, activated glia caused 75-100% necrotic cell death within 48 hr, which was completely prevented by inhibitors of inducible nitric oxide synthase (iNOS) (aminoguanidine or 1400W). Activated astrocytes or microglia produced nitric oxide (NO) (steady-state level approximately 0.5 microm), which immediately inhibited the cellular respiration of cocultured neurons, as did authentic NO. NO donors also decreased ATP levels and stimulated lactate production by neurons, consistent with NO-induced respiratory inhibition. NO donors or a specific respiratory inhibitor caused rapid (<1 min) release of glutamate from neuronal and neuronal-astrocytic cultures and subsequent neuronal death that was blocked by an antagonist of NMDA receptor (MK-801). MK-801 also blocked neuronal death induced by activated glia. High oxygen also prevented NO-induced neuronal death, consistent with death being induced by NO inhibition of cytochrome c oxidation in competition with oxygen. Thus activated glia kill neurons via NO from iNOS, which inhibits neuronal respiration resulting in glutamate release and subsequent excitotoxicity. This may contribute to neuronal cell death in inflammatory, infectious, ischemic, and neurodegenerative diseases. PMID:11517237

  1. Induction of hypertension blunts baroreflex inhibition of vasopressin neurons in the rat.

    PubMed

    Han, Su Young; Bouwer, Gregory T; Seymour, Alexander J; Korpal, Aaron K; Schwenke, Daryl O; Brown, Colin H

    2015-11-01

    Vasopressin secretion from the posterior pituitary gland is determined by action potential discharge of hypothalamic magnocellular neurosecretory cells. Vasopressin is a potent vasoconstrictor, but vasopressin levels are paradoxically elevated in some patients with established hypertension. To determine whether vasopressin neurons are excited in hypertension, extracellular single-unit recordings of vasopressin neurons from urethane-anaesthetized Cyp1a1-Ren2 rats with inducible angiotensin-dependent hypertension were made. The basal firing rate of vasopressin neurons was higher in hypertensive Cyp1a1-Ren2 rats than in non-hypertensive Cyp1a1-Ren2 rats. The increase in firing rate was specific to vasopressin neurons because oxytocin neuron firing rate was unaffected by the induction of hypertension. Intravenous injection of the α1-adrenoreceptor agonist, phenylephrine (2.5 μg/kg), transiently increased mean arterial blood pressure to cause a baroreflex-induced inhibition of heart rate and vasopressin neuron firing rate (by 52 ± 9%) in non-hypertensive rats. By contrast, intravenous phenylephrine did not inhibit vasopressin neurons in hypertensive rats, despite a similar increase in mean arterial blood pressure and inhibition of heart rate. Circulating angiotensin II can excite vasopressin neurons via activation of afferent inputs from the subfornical organ. However, the increase in vasopressin neuron firing rate and the loss of inhibition by intravenous phenylephrine were not blocked by intra-subfornical organ infusion of the angiotensin AT1 receptor antagonist, losartan. It can be concluded that increased vasopressin neuron activity at the onset of hypertension is driven, at least in part, by reduced baroreflex inhibition of vasopressin neurons and that this might exacerbate the increase in blood pressure at the onset of hypertension. PMID:26342194

  2. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation

    PubMed Central

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-01-01

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson’s disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD. PMID:26499517

  3. Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat

    PubMed Central

    Choi, Won-Seok; Kruse, Shane E.; Palmiter, Richard D.; Xia, Zhengui

    2008-01-01

    Inhibition of mitochondrial complex I is one of the leading hypotheses for dopaminergic neuron death associated with Parkinson's disease (PD). To test this hypothesis genetically, we used a mouse strain lacking functional Ndufs4, a gene encoding a subunit required for complete assembly and function of complex I. Deletion of the Ndufs4 gene abolished complex I activity in midbrain mesencephalic neurons cultured from embryonic day (E) 14 mice, but did not affect the survival of dopaminergic neurons in culture. Although dopaminergic neurons were more sensitive than other neurons in these cultures to cell death induced by rotenone, MPP+, or paraquat treatments, the absence of complex I activity did not protect the dopaminergic neurons, as would be expected if these compounds act by inhibiting complex 1. In fact, the dopaminergic neurons were more sensitive to rotenone. These data suggest that dopaminergic neuron death induced by treatment with rotenone, MPP+, or paraquat is independent of complex I inhibition. PMID:18812510

  4. Direct inhibition of arcuate proopiomelanocortin neurons: a potential mechanism for the orexigenic actions of dynorphin

    PubMed Central

    Zhang, Xiaobing; van den Pol, Anthony N

    2013-01-01

    Dynorphin, an endogenous ligand of kappa (κ) opioid receptors, has multiple roles in the brain, and plays a positive role in energy balance and food intake. However, the mechanism for this is unclear. With immunocytochemistry, we find that axonal dynorphin immunoreactivity in the arcuate nucleus is strong, and that a large number of dynorphin-immunoreactive boutons terminate on or near anorexigenic proopiomelanocortin (POMC) cells. Here we provide evidence from whole-cell patch-clamp recording that dynorphin-A (Dyn-A) directly and dose-dependently inhibits arcuate nucleus POMC neurons. Dyn-A inhibition was eliminated by the κ opioid receptor antagonist nor-BNI, but not by the μ receptor antagonist CTAP. The inhibitory effect was mimicked by the κ2 receptor agonist GR89696, but not by the κ1 receptor agonist U69593. No presynaptic effect of κ2 agonists was found. These results suggest that Dyn-A inhibits POMC neurons through activation of the κ2 opioid receptor. In whole-cell voltage clamp, Dyn-A opened G-protein-coupled inwardly rectifying potassium (GIRK)-like channels on POMC neurons. Dynorphin attenuated glutamate and GABA neurotransmission to POMC neurons. In contrast to the strong inhibition of POMC neurons by Dyn-A, we found a weaker direct inhibitory effect of Dyn-A on arcuate nucleus neuropeptide Y (NPY) neurons mediated by both κ1 and κ2 receptors. Taken together, these results indicate a direct inhibitory effect of Dyn-A on POMC neurons through activation of the κ2 opioid receptor and GIRK channels. A number of orexigenic hypothalamic neurons release dynorphin along with other neuropeptides. The inhibition of anorexigenic POMC neurons may be one mechanism underlying the orexigenic actions of dynorphin. PMID:23318874

  5. Neuronal cell lines as model dorsal root ganglion neurons

    PubMed Central

    Yin, Kathleen; Baillie, Gregory J

    2016-01-01

    Background Dorsal root ganglion neuron-derived immortal cell lines including ND7/23 and F-11 cells have been used extensively as in vitro model systems of native peripheral sensory neurons. However, while it is clear that some sensory neuron-specific receptors and ion channels are present in these cell lines, a systematic comparison of the molecular targets expressed by these cell lines with those expressed in intact peripheral neurons is lacking. Results In this study, we examined the expression of RNA transcripts in the human neuroblastoma-derived cell line, SH-SY5Y, and two dorsal root ganglion hybridoma cell lines, F-11 and ND7/23, using Illumina next-generation sequencing, and compared the results with native whole murine dorsal root ganglions. The gene expression profiles of these three cell lines did not resemble any specific defined dorsal root ganglion subclass. The cell lines lacked many markers for nociceptive sensory neurons, such as the Transient receptor potential V1 gene, but expressed markers for both myelinated and unmyelinated neurons. Global gene ontology analysis on whole dorsal root ganglions and cell lines showed similar enrichment of biological process terms across all samples. Conclusions This paper provides insights into the receptor repertoire expressed in common dorsal root ganglion neuron-derived cell lines compared with whole murine dorsal root ganglions, and illustrates the limits and potentials of these cell lines as tools for neuropharmacological exploration. PMID:27130590

  6. Inhibiting the inhibition: a neuronal network for sound localization in reverberant environments.

    PubMed

    Pecka, Michael; Zahn, Thomas P; Saunier-Rebori, Bernadette; Siveke, Ida; Felmy, Felix; Wiegrebe, Lutz; Klug, Achim; Pollak, George D; Grothe, Benedikt

    2007-02-14

    The precedence effect describes the phenomenon whereby echoes are spatially fused to the location of an initial sound by selectively suppressing the directional information of lagging sounds (echo suppression). Echo suppression is a prerequisite for faithful sound localization in natural environments but can break down depending on the behavioral context. To date, the neural mechanisms that suppress echo directional information without suppressing the perception of echoes themselves are not understood. We performed in vivo recordings in Mongolian gerbils of neurons of the dorsal nucleus of the lateral lemniscus (DNLL), a GABAergic brainstem nucleus that targets the auditory midbrain, and show that these DNLL neurons exhibit inhibition that persists tens of milliseconds beyond the stimulus offset, so-called persistent inhibition (PI). Using in vitro recordings, we demonstrate that PI stems from GABAergic projections from the opposite DNLL. Furthermore, these recordings show that PI is attributable to intrinsic features of this GABAergic innervation. Implementation of these physiological findings into a neuronal model of the auditory brainstem demonstrates that, on a circuit level, PI creates an enhancement of responsiveness to lagging sounds in auditory midbrain cells. Moreover, the model revealed that such response enhancement is a sufficient cue for an ideal observer to identify echoes and to exhibit echo suppression, which agrees closely with the percepts of human subjects. PMID:17301185

  7. Inhibition in Superior Colliculus Neurons in a Brightness Discrimination Task?

    PubMed Central

    Ratcliff, Roger; Hasegawa, Yukako T.; Hasegawa, Ryohei P.; Childers, Russ; Smith, Philip L.; Segraves, Mark A.

    2016-01-01

    Simultaneous recordings were collected from between two and four buildup neurons from the left and right superior colliculi in rhesus monkeys in a simple two-choice brightness discrimination task. The monkeys were required to move their eyes to one of two response targets to indicate their decision. Neurons were identified whose receptive fields were centered on the response targets. The functional role of inhibition was examined by conditionalizing firing rate on a high versus low rate in target neurons 90 ms to 30 ms before the saccade and examining the firing rate in both contralateral and ipsilateral neurons. Two models with racing diffusion processes were fit to the behavioral data, and the same analysis was performed on simulated paths in the diffusion processes that have been found to represent firing rate. The results produce converging evidence for the lack of a functional role for inhibition between neural populations corresponding to the two decisions. PMID:21492006

  8. MS-275 inhibits aroclor 1254-induced SH-SY5Y neuronal cell toxicity by preventing the formation of the HDAC3/REST complex on the synapsin-1 promoter.

    PubMed

    Formisano, Luigi; Guida, Natascia; Laudati, Giusy; Mascolo, Luigi; Di Renzo, Gianfranco; Canzoniero, Lorella M T

    2015-02-01

    Polychlorinated biphenyl (PCB) exposure has been associated with neurodegenerative diseases, such as Parkinson's disease, amyotrophic lateral sclerosis, and dementia. Neuronal death elicited by the PCB mixture Aroclor 1254 (A1254) has been attributed to an increase in RE-1-silencing transcription factor (REST), which, in turn, correlates with a decrease in the synapsin-1 promoter gene. Although histone deacetylase (HDAC) inhibitors are known to be neuroprotective in several neurologic disorders, the core mechanisms governing this effect are not yet understood. Here, to examine how HDAC class I [N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)aminomethyl]-benzamide (MS-275)] and HDAC class II [3-[5-(3-(3-fluorophenyl)-3-oxopropen-1-yl)-1-methyl-1H-pyrrol-2-yl]-N-hydroxy-2-propenamide (MC-1568)] inhibitors prevent A1254-induced neuronal cell death, we exposed SH-SY5Y neuroblastoma cells to A1254. Exposure to A1254 (30.6 μM) for 24 and 48 hours resulted in a time-dependent cell death. Indeed, after 48 hours, MS-275, but not MC-1568, reverted A1254-induced cell death in a dose-dependent manner. Furthermore, A1254 significantly increased HDAC3, but not HDAC1 or HDAC2. Interestingly, REST physically interacted with HDAC3 after A1254 exposure. Chromatin immunoprecipitation assays revealed that MS-275 reverted the increased levels of HDAC3 binding and decreased acetylation of histone H3 within the synapsin-1 promoter region, thus reverting synapsin-1 mRNA reduction. Moreover, REST knockdown by small interfering RNA (siRNA) prevented HDAC3 from binding to the synapsin-1 promoter. Likewise, HDAC3 siRNA significantly reduced A1254-induced cell toxicity in SH-SY5Y cells and cortical neurons. Hence, this study demonstrates that inhibition of HDAC class I attenuates A1254-induced neuronal cell death by preventing HDAC3 binding and histone deacetylation within the synapsin-1 promoter region. PMID:25467131

  9. Attenuation of Magnesium Sulfate on CoCl₂-Induced Cell Death by Activating ERK1/2/MAPK and Inhibiting HIF-1α via Mitochondrial Apoptotic Signaling Suppression in a Neuronal Cell Line.

    PubMed

    Huang, Chih-Yang; Hsieh, You-Liang; Ju, Da-Tong; Lin, Chien-Chung; Kuo, Chia-Hua; Liou, Yi-Fan; Ho, Tsung-Jung; Tsai, Chang-Hai; Tsai, Fuu-Jen; Lin, Jing-Ying

    2015-08-31

    Magnesium sulfate (MgSO₄) ameliorates hypoxia/ischemia-induced neuronal apoptosis in a rat model. This study aimed to investigate the mechanisms governing the anti-apoptotic effect of MgSO₄ on cobalt chloride (CoCl₂)-exposed NB41A3 mouse neuroblastoma cells. MgSO₄ increased the viability of NB41A3 cells treated with CoCl₂ in a dose-dependent manner. MgSO₄ treatment was shown to lead to an increase in the anti-apoptotic Bcl-2 family proteins, with a concomitant decrease in the pro-apoptotic proteins. MgSO₄ also attenuated the CoCl₂-induced disruption of mitochondrial membrane potential (ΔΨ(m)) and reduced the release of cytochrome c form the mitochondria to the cytosol. Furthermore, exposure to CoCl₂ caused activation of the hypoxia-inducible factor 1α (HIF-1α). On the other hand, MgSO₄ markedly reduced CoCl₂-induced HIF-1α activation and suppressed HIF-1α downstream protein BNIP3. MgSO₄ treatment induced ERK1/2 activation and attenuated CoCl₂-induced activation of p38 and JNK. Addition of the ERK1/2 inhibitor U0126 significantly reduced the ability of MgSO₄ to protect neurons from CoCl₂-induced mitochondrial apoptotic events. However, incubation of cultures with the p38 and JNK inhibitors did not significantly affect MgSO₄-mediated neuroprotection. MgSO₄ appears to suppress CoCl₂-induced NB41A3 cell death by activating ERK1/2/ MAPK pathways, which further modulates the role of Bcl-2 family proteins and mitochondria in NB41A3 cells. Our data suggest that MgSO₄ may act as a survival factor that preserves mitochondrial integrity and inhibits apoptotic pathways. PMID:26211648

  10. Perampanel Inhibition of AMPA Receptor Currents in Cultured Hippocampal Neurons

    PubMed Central

    Chen, Chao-Yin; Matt, Lucas; Hell, Johannes Wilhelm; Rogawski, Michael A.

    2014-01-01

    Perampanel is an aryl substituted 2-pyridone AMPA receptor antagonist that was recently approved as a treatment for epilepsy. The drug potently inhibits AMPA receptor responses but the mode of block has not been characterized. Here the action of perampanel on AMPA receptors was investigated by whole-cell voltage-clamp recording in cultured rat hippocampal neurons. Perampanel caused a slow (τ∼1 s at 3 µM), concentration-dependent inhibition of AMPA receptor currents evoked by AMPA and kainate. The rates of block and unblock of AMPA receptor currents were 1.5×105 M−1 s−1 and 0.58 s−1, respectively. Perampanel did not affect NMDA receptor currents. The extent of block of non-desensitizing kainate-evoked currents (IC50, 0.56 µM) was similar at all kainate concentrations (3–100 µM), demonstrating a noncompetitive blocking action. Parampanel did not alter the trajectory of AMPA evoked currents indicating that it does not influence AMPA receptor desensitization. Perampanel is a selective negative allosteric AMPA receptor antagonist of high-affinity and slow blocking kinetics. PMID:25229608

  11. Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb.

    PubMed

    Najac, Marion; Sanz Diez, Alvaro; Kumar, Arvind; Benito, Nuria; Charpak, Serge; De Saint Jan, Didier

    2015-03-11

    The activity of mitral and tufted cells, the principal neurons of the olfactory bulb, is modulated by several classes of interneurons. Among them, diverse periglomerular (PG) cell types interact with the apical dendrites of mitral and tufted cells inside glomeruli at the first stage of olfactory processing. We used paired recording in olfactory bulb slices and two-photon targeted patch-clamp recording in vivo to characterize the properties and connections of a genetically identified population of PG cells expressing enhanced yellow fluorescent protein (EYFP) under the control of the Kv3.1 potassium channel promoter. Kv3.1-EYFP(+) PG cells are axonless and monoglomerular neurons that constitute ∼30% of all PG cells and include calbindin-expressing neurons. They respond to an olfactory nerve stimulation with a short barrage of excitatory inputs mediated by mitral, tufted, and external tufted cells, and, in turn, they indiscriminately release GABA onto principal neurons. They are activated by even the weakest olfactory nerve input or by the discharge of a single principal neuron in slices and at each respiration cycle in anesthetized mice. They participate in a fast-onset intraglomerular lateral inhibition between principal neurons from the same glomerulus, a circuit that reduces the firing rate and promotes spike timing variability in mitral cells. Recordings in other PG cell subtypes suggest that this pathway predominates in generating glomerular inhibition. Intraglomerular lateral inhibition may play a key role in olfactory processing by reducing the similarity of principal cells discharge in response to the same incoming input. PMID:25762678

  12. Target cell-specific modulation of neuronal activity by astrocytes

    NASA Astrophysics Data System (ADS)

    Kozlov, A. S.; Angulo, M. C.; Audinat, E.; Charpak, S.

    2006-06-01

    Interaction between astrocytes and neurons enriches the behavior of brain circuits. By releasing glutamate and ATP, astrocytes can directly excite neurons and modulate synaptic transmission. In the rat olfactory bulb, we demonstrate that the release of GABA by astrocytes causes long-lasting and synchronous inhibition of mitral and granule cells. In addition, astrocytes release glutamate, leading to a selective activation of granule-cell NMDA receptors. Thus, by releasing excitatory and inhibitory neurotransmitters, astrocytes exert a complex modulatory control on the olfactory network. glutamate | GABA | inhibition | olfactory bulb | synchronization

  13. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells.

    PubMed

    Uğuz, Abdülhadi Cihangir; Öz, Ahmi; Nazıroğlu, Mustafa

    2016-08-01

    Neurological diseases such as Alzheimer's and Parkinson's diseases are incurable progressive neurological disorders caused by the degeneration of neuronal cells and characterized by motor and non-motor symptoms. Curcumin, a turmeric product, is an anti-inflammatory agent and an effective reactive oxygen and nitrogen species scavenging molecule. Hydrogen peroxide (H2O2) is the main source of oxidative stress, which is claimed to be the major source of neurological disorders. Hence, in this study we aimed to investigate the effect of curcumin on Ca(2+) signaling, oxidative stress parameters, mitochondrial depolarization levels and caspase-3 and -9 activities that are induced by the H2O2 model of oxidative stress in SH-SY5Y neuronal cells. SH-SY5Y neuronal cells were divided into four groups namely, the control, curcumin, H2O2, and curcumin + H2O2 groups. The dose and duration of curcumin and H2O2 were determined from published data. The cells in the curcumin, H2O2, and curcumin + H2O2 groups were incubated for 24 h with 5 µM curcumin and 100 µM H2O2. Lipid peroxidation and cytosolic free Ca(2+) concentrations were higher in the H2O2 group than in the control group; however, their levels were lower in the curcumin and curcumin + H2O2 groups than in the H2O2 group alone. Reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) values were lower in the H2O2 group although they were higher in the curcumin and curcumin + H2O2 groups than in the H2O2 group. Caspase-3 activity was lower in the curcumin group than in the H2O2 group. In conclusion, curcumin strongly induced modulator effects on oxidative stress, intracellular Ca(2+) levels, and the caspase-3 and -9 values in an experimental oxidative stress model in SH-SY5Y cells. PMID:26608462

  14. Inhibition of aminoacylase 3 protects rat brain cortex neuronal cells from the toxicity of 4-hydroxy-2-nonenal mercapturate and 4-hydroxy-2-nonenal

    SciTech Connect

    Tsirulnikov, Kirill; Abuladze, Natalia; Bragin, Anatol; Faull, Kym; Cascio, Duilio; Damoiseaux, Robert; Schibler, Matthew J.; Pushkin, Alexander

    2012-09-15

    4-Hydroxy-2-nonenal (4HNE) and acrolein (ACR) are highly reactive neurotoxic products of lipid peroxidation that are implicated in the pathogenesis and progression of Alzheimer's and Parkinson's diseases. Conjugation with glutathione (GSH) initiates the 4HNE and ACR detoxification pathway, which generates the mercapturates of 4HNE and ACR that can be excreted. Prior work has shown that the efficiency of the GSH-dependent renal detoxification of haloalkene derived mercapturates is significantly decreased upon their deacetylation because of rapid transformation of the deacetylated products into toxic compounds mediated by β-lyase. The enzymes of the GSH-conjugation pathway and β-lyases are expressed in the brain, and we hypothesized that a similar toxicity mechanism may be initiated in the brain by the deacetylation of 4HNE- and ACR-mercapturate. The present study was performed to identify an enzyme(s) involved in 4HNE- and ACR-mercapturate deacetylation, characterize the brain expression of this enzyme and determine whether its inhibition decreases 4HNE and 4HNE-mercapturate neurotoxicity. We demonstrated that of two candidate deacetylases, aminoacylases 1 (AA1) and 3 (AA3), only AA3 efficiently deacetylates both 4HNE- and ACR-mercapturate. AA3 was further localized to neurons and blood vessels. Using a small molecule screen we generated high-affinity AA3 inhibitors. Two of them completely protected rat brain cortex neurons expressing AA3 from the toxicity of 4HNE-mercapturate. 4HNE-cysteine (4HNE-Cys) was also neurotoxic and its toxicity was mostly prevented by a β-lyase inhibitor, aminooxyacetate. The results suggest that the AA3 mediated deacetylation of 4HNE-mercapturate may be involved in the neurotoxicity of 4HNE.

  15. Cocaine sensitization inhibits the hyperpolarization-activated cation current Ih and reduces cell size in dopamine neurons of the ventral tegmental area.

    PubMed

    Arencibia-Albite, Francisco; Vázquez, Rafael; Velásquez-Martinez, María C; Jiménez-Rivera, Carlos A

    2012-04-01

    The progressive augmentation of motor activity that results from repeated cocaine administration is termed behavioral sensitization. This phenomenon is thought to be a critical component in compulsive drug taking and relapse. Still, the cellular mechanisms that underlie sensitization remain elusive. Cocaine abuse, nonetheless, is known to evoke neuroplastic adaptations in dopamine (DA) neurotransmission originating from the midbrain's ventral tegmental area (VTA). Here, we report that concomitant with the development of locomotor sensitization to cocaine the hyperpolarization-activated cation current (I(h)) amplitude is depressed by ∼40% in VTA DA cells. Such effect did not result from a negative shift in I(h) voltage dependence. Nonstationary fluctuation analysis indicates that this inhibition was caused by an ∼45% reduction in the number of h-channels with no change in their unitary properties. The cocaine-induced I(h) depression was accompanied by a reduction in cell capacitance of similar magnitude (∼33%), leaving h-current density unaltered. Two implications follow from these data. First, I(h) inhibition may contribute to cocaine addiction by increasing bursting probability in DA cells and this effect could be intensified by the decrease in cell capacitance. Second, the cocaine-induced diminution of DA cell capacitance may also lead to reward tolerance promoting drug-seeking behaviors. PMID:22262829

  16. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration.

    PubMed

    Häusser, M; Clark, B A

    1997-09-01

    Irregular firing patterns are observed in most central neurons in vivo, but their origin is controversial. Here, we show that two types of inhibitory neurons in the cerebellar cortex fire spontaneously and regularly in the absence of synaptic input but generate an irregular firing pattern in the presence of tonic synaptic inhibition. Paired recordings between synaptically connected neurons revealed that single action potentials in inhibitory interneurons cause highly variable delays in action potential firing in their postsynaptic cells. Activity in single and multiple inhibitory interneurons also significantly reduces postsynaptic membrane time constant and input resistance. These findings suggest that the time window for synaptic integration is a dynamic variable modulated by the level of tonic inhibition, and that rate coding and temporal coding strategies may be used in parallel in the same cell type. PMID:9331356

  17. Stat3 inhibition in neural lineage cells.

    PubMed

    Chiba, Tomohiro; Mack, Laura; Delis, Natalia; Brill, Boris; Groner, Bernd

    2012-06-01

    Abstract Deregulation of signal transducer and activator of transcription 3 (Stat3) is attracting attentions in neurological disorders of elderly populations, e.g., Stat3 is inactivated in hippocampal neurons of Alzheimer's disease (AD) brains, whereas it is often constitutively activated in glioblastoma multiforme (GBM), correlating with poor prognosis. Stat3-inhibiting drugs have been intensively developed for chemotherapy based on the fact that GBM, in many cases, are "addicted" to Stat3 activation. Stat3 inhibitors, however, potentially have unfavorable side effects on postmitotic neurons, normal permanent residents in the central nervous system. It is, therefore, of great importance to address detailed cellular responses of neural lineage cells including normal neurons, astrocytes, and neuronal/glial cancer cell lines to several classes of Stat3 inhibitors focusing on their effective concentrations. Here, we picked up five human and mouse cancer cell lines (Neuro-2a and SH-SY5Y neuroblastoma cell lines and Tu-9648, U-87MG, and U-373MG glioblastoma cell lines) and treated with various Stat3 inhibitors. Among them, Stattic, FLLL31, and resveratrol potently suppressed P-Stat3 and cell viability in all the tested cell lines. Stat3 knockdown or expression of dominant-negative Stat3 further sensitized cells to the inhibitors. Expression of familial AD-related mutant amyloid precursor protein sensitized neuronal cells, not glial cells, to Stat3 inhibitors by reducing P-Stat3 levels. Primary neurons and astrocytes also responded to Stat3 inhibitors with similar sensitivities to those observed in cancer cell lines. Thus, Stat3 inhibitors should be carefully targeted to GBM cells to avoid potential neurotoxicity leading to AD-like neuropsychiatric dysfunctions. PMID:25436682

  18. Astroglial U87 Cells Protect Neuronal SH-SY5Y Cells from Indirect Effect of Radiation by Reducing DNA Damage and Inhibiting Fas Mediated Apoptotic Pathway in Coculture System.

    PubMed

    Saeed, Yasmeen; Rehman, Abdul; Xie, Bingjie; Xu, Jin; Hong, Ma; Hong, Qing; Deng, Yulin

    2015-08-01

    Recent studies provide the evidence that indirect effects of radiation could lead to neuronal cells death but underlying mechanism is not completely understood. On the other hand astroglial cells are known to protect neuronal cells against stress conditions in vivo and invitro. Yet, the fate of neuronal cells and the neuroprotective effect of coculture system (with glial cells) in response to indirect radiation exposure remain rarely discussed. Here, we purpose that the indirect effect of radiation may induce DNA damage by cell cycle arrest and receptor mediated apoptotic cascade which lead to apoptotic death of neuronal SH-SY5Y cells. We also hypothesized that coculture (with glial U87) may relieved the neuronal SH-SY5Y cells from toxicity of indirect effects radiation by reducing DNA damage and expression of apoptotic proteins in vitro. In the present study irradiated cell conditioned medium (ICCM) was used as source of indirect effect of radiation. Neuronal SH-SY5Y cells were exposed to ICCM with and without coculture with (glial U87) in transwell coculture system respectively. Various endpoints such as, cell survival number assay, Annexin V/PI assay, cell cycle analysis by flow cytometer, mRNA level of Fas receptor by q RT-PCR, expression of key apoptotic proteins by western blot and estimation of neurotrophic factors by ELISA method were analyzed into neuronal SH-SY5Y cells with and without co culture after ICCM exposure respectively. We found that ICCM induced DNA damage in neuronal SH-SY5Y cells by significant increase in cell cycle arrest at S-phase (***P < 0.001) which was further supported by over expression of P53 protein (**P < 0.01). While coculture (with glial U87), significantly reduced the ICCM induced cell cycle arrest and expression of P53 ((###) P < 0.001) neuronal SH-SY5Y cells. Further investigation of the underlying apoptotic mechanism revealed that in coculture system; ICCM induced elevated level of FAS mRNA level was significantly reduced

  19. Toxoplasma gondii Actively Inhibits Neuronal Function in Chronically Infected Mice

    PubMed Central

    Haroon, Fahad; Händel, Ulrike; Angenstein, Frank; Goldschmidt, Jürgen; Kreutzmann, Peter; Lison, Holger; Fischer, Klaus-Dieter; Scheich, Henning; Wetzel, Wolfram; Schlüter, Dirk; Budinger, Eike

    2012-01-01

    Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii–infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca2+) imaging studies revealed that tachyzoites actively manipulated Ca2+ signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca2+ uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca2+ stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host. PMID:22530040

  20. Toxoplasma gondii actively inhibits neuronal function in chronically infected mice.

    PubMed

    Haroon, Fahad; Händel, Ulrike; Angenstein, Frank; Goldschmidt, Jürgen; Kreutzmann, Peter; Lison, Holger; Fischer, Klaus-Dieter; Scheich, Henning; Wetzel, Wolfram; Schlüter, Dirk; Budinger, Eike

    2012-01-01

    Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii-infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca(2+)) imaging studies revealed that tachyzoites actively manipulated Ca(2+) signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca(2+) uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca(2+) stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host. PMID:22530040

  1. Brain-derived neurotrophic factor acutely inhibits AMPA-mediated currents in developing sensory relay neurons.

    PubMed

    Balkowiec, A; Kunze, D L; Katz, D M

    2000-03-01

    Brain-derived neurotrophic factor (BDNF) is expressed by many primary sensory neurons that no longer require neurotrophins for survival, indicating that BDNF may be used as a signaling molecule by the afferents themselves. Because many primary afferents also express glutamate, we investigated the possibility that BDNF modulates glutamatergic AMPA responses of newborn second-order sensory relay neurons. Perforated-patch, voltage-clamp recordings were made from dissociated neurons of the brainstem nucleus tractus solitarius (nTS), a region that receives massive primary afferent input from BDNF-containing neurons in the nodose and petrosal cranial sensory ganglia. Electrophysiological analysis was combined in some experiments with anterograde labeling of primary afferent terminals to specifically analyze responses of identified second-order neurons. Our data demonstrate that BDNF strongly inhibits AMPA-mediated currents in a large subset of nTS cells. Specifically, AMPA responses were either completely abolished or markedly inhibited by BDNF in 73% of postnatal day (P0) cells and in 82% of identified P5 second-order sensory relay neurons. This effect of BDNF is mimicked by NT-4, but not NGF, and blocked by the Trk tyrosine kinase inhibitor K252a, consistent with a requirement for TrkB receptor activation. Moreover, analysis of TrkB expression in culture revealed a close correlation between the percentage of nTS neurons in which BDNF inhibits AMPA currents and the percentage of neurons that exhibit TrkB immunoreactivity. These data document a previously undefined mechanism of acute modulation of AMPA responses by BDNF and indicate that BDNF may regulate glutamatergic transmission at primary afferent synapses. PMID:10684891

  2. Programming embryonic stem cells to neuronal subtypes

    PubMed Central

    Peljto, Mirza; Wichterle, Hynek

    2010-01-01

    Richness of neural circuits and specificity of neuronal connectivity depends on the diversification of nerve cells into functionally and molecularly distinct subtypes. While efficient methods for directed differentiation of embryonic stem cells (ESCs) into multiple principal neuronal classes have been established, only a few studies systematically examined the subtype diversity of in vitro derived nerve cells. Here we review evidence based on molecular and in vivo transplantation studies that ESC-derived spinal motor neurons and cortical layer V pyramidal neurons acquire subtype specific functional properties. We discuss similarities and differences in the role of cell intrinsic transcriptional programs, extrinsic signals and cell-cell interactions during subtype diversification of the two classes of nerve cells. We conclude that the high degree of fidelity with which differentiating ESCs recapitulate normal embryonic development provides a unique opportunity to explore developmental processes underlying specification of mammalian neuronal diversity in a simplified and experimentally accessible system. PMID:20970319

  3. Transcriptional Inhibition of REST by NeuroD2 during Neuronal Differentiation

    PubMed Central

    Ravanpay, Ali C.; Hansen, Stacey J.; Olson, James M.

    2010-01-01

    For a progenitor cell to become a neuron, three activities must occur: neuronal differentiation program must be activated, elements repressing neuronal differentiation must be deactivated and competing differentiation programs must be silenced. It is known that NeuroD2 and related bHLH transcription factors induce neuronal differentiation, REST represses neuronal differentiation, and Zfhx1a prevents myogenic gene expression. We demonstrate that NeuroD2 suppresses REST during differentiation in culture. In the hippocampus of NeuroD2 knockout mice, higher level of REST is detected. Functional significance of NeuroD2-REST interplay is uncovered by showing that forced expression of REST interferes with neuronal differentiation in culture. NeuroD2 inhibits REST indirectly by involving the inhibitor of myogenic genes, Zfhx1a, which binds response elements in REST 5′-UTR. Our study supports a model wherein NeuroD2 induces transcription of neuronal genes and Zfhx1a, which in turn de-represses neuronal differentiation by down-regulating REST, and suppresses competing myogenic fate. PMID:20346398

  4. Ca2+-induced uncoupling of Aplysia bag cell neurons.

    PubMed

    Dargaei, Zahra; Standage, Dominic; Groten, Christopher J; Blohm, Gunnar; Magoski, Neil S

    2015-02-01

    Electrical transmission is a dynamically regulated form of communication and key to synchronizing neuronal activity. The bag cell neurons of Aplysia are a group of electrically coupled neuroendocrine cells that initiate ovulation by secreting egg-laying hormone during a prolonged period of synchronous firing called the afterdischarge. Accompanying the afterdischarge is an increase in intracellular Ca2+ and the activation of protein kinase C (PKC). We used whole cell recording from paired cultured bag cell neurons to demonstrate that electrical coupling is regulated by both Ca2+ and PKC. Elevating Ca2+ with a train of voltage steps, mimicking the onset of the afterdischarge, decreased junctional current for up to 30 min. Inhibition was most effective when Ca2+ entry occurred in both neurons. Depletion of Ca2+ from the mitochondria, but not the endoplasmic reticulum, also attenuated the electrical synapse. Buffering Ca2+ with high intracellular EGTA or inhibiting calmodulin kinase prevented uncoupling. Furthermore, activating PKC produced a small but clear decrease in junctional current, while triggering both Ca2+ influx and PKC inhibited the electrical synapse to a greater extent than Ca2+ alone. Finally, the amplitude and time course of the postsynaptic electrotonic response were attenuated after Ca2+ influx. A mathematical model of electrically connected neurons showed that excessive coupling reduced recruitment of the cells to fire, whereas less coupling led to spiking of essentially all neurons. Thus a decrease in electrical synapses could promote the afterdischarge by ensuring prompt recovery of electrotonic potentials or making the neurons more responsive to current spreading through the network. PMID:25411460

  5. Tyrphostins protect neuronal cells from oxidative stress.

    PubMed

    Sagara, Yutaka; Ishige, Kumiko; Tsai, Cindy; Maher, Pamela

    2002-09-27

    Tyrphostins are a family of tyrosine kinase inhibitors originally synthesized as potential anticarcinogenic compounds. Because tyrphostins have chemical structures similar to those of the phenolic antioxidants, we decided to test the protective efficacy of tyrphostins against oxidative stress-induced nerve cell death (oxytosis). Many commercially available tyrphostins, at concentrations ranging from 0.5 to 200 microm, protect both HT-22 hippocampal cells and rat primary neurons from oxytosis brought about by treatment with glutamate, as well as by treatment with homocysteic acid and buthionine sulfoximine. The tyrphostins protect nerve cells by three distinct mechanisms. Some tyrphostins, such as A25, act as antioxidants and eliminate the reactive oxygen species that accumulate as a result of glutamate treatment. These tyrphostins also protect cells from hydrogen peroxide and act as antioxidants in an in vitro assay. In contrast, tyrphostins A9 and AG126 act as mitochondrial uncouplers, collapsing the mitochondrial membrane potential and thereby reducing the generation of reactive oxygen species from mitochondria during glutamate toxicity. Finally, the third group of tyrphostins does not appear to be effective as antioxidants but rather protects cells by increasing the basal level of cellular glutathione. Therefore, the effects of tyrphostins on cells are not limited to their ability to inhibit tyrosine kinases. PMID:12121989

  6. Inhibition of medulloblastoma cell invasion by Slit.

    PubMed

    Werbowetski-Ogilvie, T E; Seyed Sadr, M; Jabado, N; Angers-Loustau, A; Agar, N Y R; Wu, J; Bjerkvig, R; Antel, J P; Faury, D; Rao, Y; Del Maestro, R F

    2006-08-24

    Invasion of brain tumor cells has made primary malignant brain neoplasms among the most recalcitrant to therapeutic strategies. We tested whether the secreted protein Slit2, which guides the projection of axons and developing neurons, could modulate brain tumor cell invasion. Slit2 inhibited the invasion of medulloblastoma cells in a variety of in vitro models. The effect of Slit2 was inhibited by the Robo ectodomain. Time-lapse videomicroscopy indicated that Slit2 reduced medulloblastoma invasion rate without affecting cell direction or proliferation. Both medulloblastoma and glioma tumors express Robo1 and Slit2, but only medulloblastoma invasion is inhibited by recombinant Slit2 protein. Downregulation of activated Cdc42 may contribute to this differential response. Our findings reinforce the concept that neurodevelopmental cues such as Slit2 may provide insights into brain tumor invasion. PMID:16636676

  7. Tabernaemontana divaricata extract inhibits neuronal acetylcholinesterase activity in rats.

    PubMed

    Chattipakorn, Siriporn; Pongpanparadorn, Anucha; Pratchayasakul, Wasana; Pongchaidacha, Anchalee; Ingkaninan, Kornkanok; Chattipakorn, Nipon

    2007-03-01

    The current pharmacotherapy for Alzheimer's disease (AD) is the use of acetylcholinesterase inhibitors (AChE-Is). A previous in vitro study showed that Tabernaemontana divaricata extract (TDE) can inhibit AChE activity. However, neither the AChE inhibitory effects nor the effect on neuronal activity of TDE has been investigated in vivo. To determine those effects of TDE in animal models, the Ellman's colorimetric method was implemented to investigate the cortical and circulating cholinesterase (ChE) activity, and Fos expression was used to determine the neuronal activity in the cerebral cortex, following acute administration of TDE with various doses (250, 500 and 1000 mg/kg) and at different time points. All doses of TDE 2 h after a single administration significantly inhibited cortical AChE activity and enhanced neuronal activity in the cerebral cortex. The enhancement of Fos expression and AChE inhibitory effects in the cerebral cortex among the three TDE-treated groups was not significantly different. A 2 h interval following all doses of TDE administration had no effect on circulating ChE activity. However, TDE significantly inhibited circulating AChE 10, 30 and 60 min after administration. Our findings suggest that TDE is a reversible AChE-I and could be beneficial as a novel therapeutic agent for AD. PMID:17023131

  8. Activation and inhibition of tph2 serotonergic neurons operate in tandem to influence larval zebrafish preference for light over darkness

    PubMed Central

    Cheng, Ruey-Kuang; Krishnan, Seetha; Jesuthasan, Suresh

    2016-01-01

    Serotonergic neurons have been implicated in a broad range of processes, but the principles underlying their effects remain a puzzle. Here, we ask how these neurons influence the tendency of larval zebrafish to swim in the light and avoid regions of darkness. Pharmacological inhibition of serotonin synthesis reduces dark avoidance, indicating an involvement of this neuromodulator. Calcium imaging of tph2-expressing cells demonstrates that a rostral subset of dorsal raphe serotonergic neurons fire continuously while the animal is in darkness, but are inhibited in the light. Optogenetic manipulation of tph2 neurons by channelrhodopsin or halorhodopsin expression modifies preference, confirming a role for these neurons. In particular, these results suggest that fish prefer swimming in conditions that elicits lower activity in tph2 serotonergic neurons in the rostral raphe. PMID:26868164

  9. Transglutaminase inhibition protects against oxidative stress-induced neuronal death downstream of pathological ERK activation

    PubMed Central

    Basso, Manuela; Berlin, Jill; Li, Xia; Sleiman, Sama F.; Ko, Brendan; Haskew-Layton, Renee; Kim, Eunhee; Antonyak, Marc A.; Cerione, Richard A.; Iismaa, Siiri E.; Willis, Dianna; Cho, Sunghee; Ratan, Rajiv R.

    2012-01-01

    Molecular deletion of transglutaminase 2 (TG2) has been shown to improve function and survival in a host of neurological conditions including stroke, Huntington’s disease, and Parkinson’s disease. However, unifying schemes by which these crosslinking or polyaminating enzymes participate broadly in neuronal death have yet to be presented. Unexpectedly, we found that in addition to TG2, TG1 gene expression level is significantly induced following stroke in vivo or due to oxidative stress in vitro. Forced expression of TG1 or TG2 proteins is sufficient to induce neuronal death in Rattus novergicus cortical neurons in vitro. Accordingly, molecular deletion of TG2 alone is insufficient to protect Mus musculus neurons from oxidative death. By contrast, structurally diverse inhibitors used at concentrations that inhibit TG1 and TG2 simultaneously are neuroprotective. These small molecules inhibit increases in neuronal transamidating activity induced by oxidative stress; they also protect neurons downstream of pathological ERK activation when added well after the onset of the death stimulus. Together, these studies suggest that multiple TG isoforms, not only TG2, participate in oxidative stress-induced cell death signaling; and that isoform non-selective inhibitors of TG will be most efficacious in combating oxidative death in neurological disorders. PMID:22573678

  10. Prostaglandin E2-increased thermosensitivity of anterior hypothalamic neurons is associated with depressed inhibition.

    PubMed

    Tabarean, Iustin V; Behrens, M Margarita; Bartfai, Tamas; Korn, Henri

    2004-02-24

    Temperature responses of anterior hypothalamic neurons are considered key elements in the regulation of the temperature setpoint of homeotherms. We have investigated the sensitivity to warming of cultured neurons of the AH from mice with electrophysiological and immunocytochemical techniques. In control experiments, only approximately 9% of the 3- to 5-week-old cells exhibited changes of their basic firing rate when the temperature was raised from 37 degrees C to 40 degrees C. This ratio was increased to 27% after the cultures were "primed" by adding prostaglandin E2 (PGE2), an endogenous pyrogen, in the extracellular medium. In these neurons the firing rate was significantly increased, and the frequency of the gamma gamma-aminobutyric acid (GABA) inhibitory postsynaptic potentials was markedly decreased. In contrast, the resting potential and membrane resistance of the recorded cells remained unchanged. PGE2 was found to decrease the level of phosphorylation of the extracellular signal-regulated kinases 1 and 2 in a subset of GABAergic neurons that express the E-prostanoid receptor type 3. Inhibition of ERK1/2 by U0126 mimicked the effects of PGE2. These data indicate that PGE2 acts primarily on the excitability of GABAergic presynaptic cells, most likely via alterations of voltage-gated K+ channels. Our results also suggest that far from being an inherent property of a specialized class of neurons, the degree of thermosensitivity can be strongly modulated by synaptic activity and is a more adaptive property of hypothalamic neurons than previously thought. PMID:14983053

  11. Morphological homogeneity of neurons: searching for outlier neuronal cells.

    PubMed

    Zawadzki, Krissia; Feenders, Christoph; Viana, Matheus P; Kaiser, Marcus; Costa, Luciano da F

    2012-10-01

    We report a morphology-based approach for the automatic identification of outlier neurons, as well as its application to the NeuroMorpho.org database, with more than 5,000 neurons. Each neuron in a given analysis is represented by a feature vector composed of 20 measurements, which are then projected into a two-dimensional space by applying principal component analysis. Bivariate kernel density estimation is then used to obtain the probability distribution for the group of cells, so that the cells with highest probabilities are understood as archetypes while those with the smallest probabilities are classified as outliers. The potential of the methodology is illustrated in several cases involving uniform cell types as well as cell types for specific animal species. The results provide insights regarding the distribution of cells, yielding single and multi-variate clusters, and they suggest that outlier cells tend to be more planar and tortuous. The proposed methodology can be used in several situations involving one or more categories of cells, as well as for detection of new categories and possible artifacts. PMID:22615032

  12. Blockade of store-operated calcium entry alleviates high glucose-induced neurotoxicity via inhibiting apoptosis in rat neurons.

    PubMed

    Xu, Zhenkuan; Xu, Wenzhe; Song, Yan; Zhang, Bin; Li, Feng; Liu, Yuguang

    2016-07-25

    Altered store-operated calcium entry (SOCE) has been suggested to be involved in many diabetic complications. However, the association of altered SOCE and diabetic neuronal damage remains unclear. This study aimed to investigate the effects of altered SOCE on primary cultured rat neuron injury induced by high glucose. Our data demonstrated that high glucose increased rat neuron injury and upregulated the expression of store-operated calcium channel (SOC). Inhibition of SOCE by a pharmacological inhibitor and siRNA knockdown of stromal interaction molecule 1 weakened the intracellular calcium overload, restored mitochondrial membrane potential, downregulated cytochrome C release and inhibited cell apoptosis. As well, treatment with the calcium chelator BAPTA-AM prevented cell apoptosis by ameliorating the high glucose-increased intracellular calcium level. These findings suggest that SOCE blockade may alleviate high glucose-induced neuronal damage by inhibiting apoptosis. SOCE might be a promising therapeutic target in diabetic neurotoxicity. PMID:27234048

  13. NFκB-inducing kinase inhibits NFκB activity specifically in neurons of the CNS.

    PubMed

    Mao, Xianrong; Phanavanh, Bounleut; Hamdan, Hamdan; Moerman-Herzog, Andréa M; Barger, Steven W

    2016-04-01

    The control of NFκB in CNS neurons appears to differ from that in other cell types. Studies have reported induction of NFκB in neuronal cultures and immunostaining in vivo, but others have consistently detected little or no transcriptional activation by NFκB in brain neurons. To test if neurons lack some component of the signal transduction system for NFκB activation, we transfected cortical neurons with several members of this signaling system along with a luciferase-based NFκB-reporter plasmid; RelA was cotransfected in some conditions. No component of the NFκB pathway was permissive for endogenous NFκB activity, and none stimulated the activity of exogenous RelA. Surprisingly, however, the latter was inhibited by cotransfection of NFκB-inducing kinase (NIK). Fluorescence imaging of RelA indicated that co-expression of NIK sequestered RelA in the cytoplasm, similar to the effect of IκBα. NIK-knockout mice showed elevated expression of an NFκB-reporter construct in neurons in vivo. Cortical neurons cultured from NIK-knockout mice showed elevated expression of an NFκB-reporter transgene. Consistent with data from other cell types, a C-terminal fragment of NIK suppressed RelA activity in astrocytes as well as neurons. Therefore, the inhibitory ability of the NIK C-terminus was unbiased with regard to cell type. However, inhibition of NFκB by full-length NIK is a novel outcome that appears to be specific to CNS neurons. This has implications for unique aspects of transcription in the CNS, perhaps relevant to aspects of development, neuroplasticity, and neuroinflammation. Full-length NIK was found to inhibit (down arrow) transcriptional activation of NFκB in neurons, while it elevated (up arrow) activity in astrocytes. Deletion constructs corresponding to the N-terminus or C-terminus also inhibited NFκB in neurons, while only the C-terminus did so in astrocytes. One possible explanation is that the inhibition in neurons occurs via two different

  14. Lung inflation inhibits rapidly adapting receptor relay neurons in the rat.

    PubMed

    Ezure, K; Tanaka, I

    2000-06-01

    Pulmonary slowly adapting receptors (SARs) and rapidly adapting receptors (RARs) are important components of various respiratory reflexes. In anesthetized, paralyzed and artificially ventilated rats, we found an inhibitory linkage from the former to the latter system at the level of their second-order relay neurons (P cells and RAR cells, respectively). Lung inflation which activates RARs as well as SARs suppressed RAR cell activity evoked by electrical stimulation of the vagus nerve. Intracellular recordings from RAR cells showed IPSPs locked to electrical stimulation of the ipsilateral and contralateral vagus nerves at an intensity just above the threshold for P cell activation. Activation of P cells with glutamate suppressed RAR cell firing. Since P cells project to the area of RAR cells, taken together, these results strongly suggest that P cells synaptically inhibit RAR cells. PMID:10852230

  15. Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss

    PubMed Central

    Moon, Jeong-mi; Xu, Lijun; Giffard, Rona G

    2013-01-01

    MicroRNA (miRNA), miR-181a, is enriched in the brain, and inhibition of miR-181a reduced astrocyte death in vitro and infarct volume after stroke in vivo. This study investigated the role of miR-181a in neuronal injury in vitro and hippocampal neuronal loss in vivo after forebrain ischemia. miR-181a levels were altered by transfection with mimic or antagomir. N2a cells subjected to serum deprivation and oxidative stress showed less cell death when miR-181a was reduced and increased death when miR-181a increased; protection was associated with increased Bcl-2 protein. In contrast, transfected primary neurons did not show altered levels of cell death when miR-181a levels changed. Naive male rats and rats stereotactically infused with miR-181a antagomir or control were subjected to forebrain ischemia and cornus ammonis (CA)1 neuronal survival and protein levels were assessed. Forebrain ischemia increased miR-181a expression and decreased Bcl-2 protein in the hippocampal CA1 region. miR-181a antagomir reduced miR-181a levels, reduced CA1 neuronal loss, increased Bcl-2 protein, and significantly prevented the decrease of glutamate transporter 1. Thus, miR-181a antagomir reduced evidence of astrocyte dysfunction and increased CA1 neuronal survival. miR-181a inhibition is thus a potential target in the setting of forebrain or global cerebral ischemia as well as focal ischemia. PMID:24002437

  16. In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning

    PubMed Central

    Formentini, Laura; Pereira, Marta P; Sánchez-Cenizo, Laura; Santacatterina, Fulvio; Lucas, José J; Navarro, Carmen; Martínez-Serrano, Alberto; Cuezva, José M

    2014-01-01

    A key transducer in energy conservation and signaling cell death is the mitochondrial H+-ATP synthase. The expression of the ATPase inhibitory factor 1 (IF1) is a strategy used by cancer cells to inhibit the activity of the H+-ATP synthase to generate a ROS signal that switches on cellular programs of survival. We have generated a mouse model expressing a mutant of human IF1 in brain neurons to assess the role of the H+-ATP synthase in cell death in vivo. The expression of hIF1 inhibits the activity of oxidative phosphorylation and mediates the shift of neurons to an enhanced aerobic glycolysis. Metabolic reprogramming induces brain preconditioning affording protection against quinolinic acid-induced excitotoxicity. Mechanistically, preconditioning involves the activation of the Akt/p70S6K and PARP repair pathways and Bcl-xL protection from cell death. Overall, our findings provide the first in vivo evidence highlighting the H+-ATP synthase as a target to prevent neuronal cell death. PMID:24521670

  17. Paliperidone Protects SH-SY5Y Cells Against MK-801-Induced Neuronal Damage Through Inhibition of Ca(2+) Influx and Regulation of SIRT1/miR-134 Signal Pathway.

    PubMed

    Zhu, Dexiao; Zhang, Jing; Wu, Jintao; Li, Guibao; Yao, Wei; Hao, Jing; Sun, Jinhao

    2016-05-01

    Schizophrenia is a serious psychotic disease. Recently, increasing evidences support that neurodegeneration occurs in the brain of schizophrenia patients with progressive morphological changes. Paliperidone, an atypical antipsychotic drug, could attenuate psychotic symptom and protect neurons from different stressors. However, the underlying mechanisms are largely unknown. In this study, we used SH-SY5Y cells to evaluate the neuroprotective capability of paliperidone against the neurotoxicity induced by N-methyl-D-aspartate receptor antagonist, MK-801. And, we also explored the possible molecular mechanism. Neurotoxicity of 100 μM MK-801, which reduced the cell viability, was diminished by 100 μM paliperidone using MTT and LDH assays (both p < 0.05). Analysis with Hoechst 33342/PI double staining demonstrated that exposure to MK-801 (100 μM) for 24 h led to the death of 30 % of cultured cells (p < 0.05). Moreover, the patch clamp technique was employed to detect voltage calcium channel changes; the results showed that paliperidone effectively blocked the Ca(2+) influx through inhibiting the voltage-gated calcium channels (p < 0.05). Furthermore, paliperidone significantly reversed MK-801 induced increase of SIRT1 and decrease of miR-134 expression (both p < 0.05). Finally, SIRT1 inhibitor nicotinamide blocked MK-801 injury effects and suppressed miR-134 expression. Taken together, our results demonstrated that paliperidone could protect SH-SY5Y cells against MK-801 induced neurotoxicity via inhibition of Ca(2+) influx and regulation of SIRT1/miR-134 pathway, providing a promising and potential therapeutic target for schizophrenia. PMID:26055227

  18. Insulin-like growth factor-1 inhibits adult supraoptic neurons via complementary modulation of mechanoreceptors and glycine receptors.

    PubMed

    Ster, Jeanne; Colomer, Claude; Monzo, Cécile; Duvoid-Guillou, Anne; Moos, Françoise; Alonso, Gérard; Hussy, Nicolas

    2005-03-01

    In the CNS, insulin-like growth factor-1 (IGF-1) is mainly known for its trophic effect both during development and in adulthood. Here, we show than in adult rat supraoptic nucleus (SON), IGF-1 receptor immunoreactivity is present in neurons, whereas IGF-1 immunoreactivity is found principally in astrocytes and more moderately in neurons. In vivo application of IGF-1 within the SON acutely inhibits the activity of both vasopressin and oxytocin neurons, the two populations of SON neuroendocrine cells. Recordings of acutely isolated SON neurons showed that this inhibition occurs through two rapid and reversible mechanisms, both involving the neuronal IGF-1 receptor but different intracellular messengers. IGF-1 inhibits Gd3+-sensitive and osmosensitive mechanoreceptor cation current via phosphatidylinositol-3 (PI3) kinase activation. IGF-1 also potentiates taurine-activated glycine receptor (GlyR) Cl- currents by increasing the agonist sensitivity through a extremely rapid (within a second) PI3 kinase-independent mechanism. Both mechanoreceptor channels and GlyR, which form the excitatory and inhibitory components of SON neuron osmosensitivity, are active at rest, and their respective inhibition and potentiation will both be inhibitory, leading to strong decrease in neuronal activity. It will be of interest to determine whether IGF-1 is released by neurons, thus participating in an inhibitory autocontrol, or astrocytes, then joining the growing family of glia-to-neuron transmitters that modulate neuronal and synaptic activity. Through the opposite and complementary acute regulation of mechanoreceptors and GlyR, IGF-1 appears as a new important neuromodulator in the adult CNS, participating in the complex integration of neural messages that regulates the level of neuronal excitability. PMID:15745952

  19. Phosphodiesterase 7 Inhibition Preserves Dopaminergic Neurons in Cellular and Rodent Models of Parkinson Disease

    PubMed Central

    Morales-Garcia, Jose A.; Redondo, Miriam; Alonso-Gil, Sandra; Gil, Carmen; Perez, Concepción; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2011-01-01

    Background Phosphodiesterase 7 plays a major role in down-regulation of protein kinase A activity by hydrolyzing cAMP in many cell types. This cyclic nucleotide plays a key role in signal transduction in a wide variety of cellular responses. In the brain, cAMP has been implicated in learning, memory processes and other brain functions. Methodology/Principal Findings Here we show a novel function of phosphodiesterase 7 inhibition on nigrostriatal dopaminergic neuronal death. We found that S14, a heterocyclic small molecule inhibitor of phosphodiesterase 7, conferred significant neuronal protection against different insults both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures. S14 treatment also reduced microglial activation, protected dopaminergic neurons and improved motor function in the lipopolysaccharide rat model of Parkinson disease. Finally, S14 neuroprotective effects were reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase A. Conclusions/Significance Our findings demonstrate that phosphodiesterase 7 inhibition can protect dopaminergic neurons against different insults, and they provide support for the therapeutic potential of phosphodiesterase 7 inhibitors in the treatment of neurodegenerative disorders, particularly Parkinson disease. PMID:21390306

  20. Inhibition of M current in sensory neurons by exogenous proteases: a signaling pathway mediating inflammatory nociception.

    PubMed

    Linley, John E; Rose, Kirstin; Patil, Mayur; Robertson, Brian; Akopian, Armen N; Gamper, Nikita

    2008-10-29

    Inflammatory pain is thought to be mediated in part through the action of inflammatory mediators on membrane receptors of peripheral nerve terminals, however, the downstream signaling events which lead to pain are poorly understood. In this study we investigated the nociceptive pathways induced by activation of protease-activated receptor 2 (PAR-2) in damage-sensing (nociceptive) neurons from rat dorsal root ganglion (DRG). We found that activation of PAR-2 in these cells strongly inhibited M-type potassium currents (conducted by Kv7 potassium channels). Such inhibition caused depolarization of the neuronal resting membrane potential leading, ultimately, to nociception. Consistent with this mechanism, injection of the specific M channel blocker XE991 into rat paw induced nociception in a concentration-dependent manner. Injection of a PAR-2 agonist peptide also induced nociception but coinjection of XE991 and the PAR-2 agonist did not result in summation of nociception, suggesting that the action of both agents may share a similar mechanism. We also studied the signaling pathway of M current inhibition by PAR-2 using patch-clamp and fluorescence imaging of DRG neurons. These experiments revealed that the PAR-2 effect was mediated by phospholipase C (PLC). Further experiments demonstrated that M current inhibition required concurrent rises in cytosolic Ca(2+) concentration and depletion of membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)). We propose that PLC- and Ca(2+)/PIP(2)-mediated inhibition of M current in sensory neurons may represent one of the general mechanisms underlying pain produced by inflammatory mediators, and may therefore open up a new therapeutic window for treatment of this major clinical problem. PMID:18971466

  1. Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration

    PubMed Central

    Zheng, Xinde; Boyer, Leah; Jin, Mingji; Kim, Yongsung; Fan, Weiwei; Bardy, Cedric; Berggren, Travis; Evans, Ronald M; Gage, Fred H; Hunter, Tony

    2016-01-01

    mTOR inhibition is beneficial in neurodegenerative disease models and its effects are often attributable to the modulation of autophagy and anti-apoptosis. Here, we report a neglected but important bioenergetic effect of mTOR inhibition in neurons. mTOR inhibition by rapamycin significantly preserves neuronal ATP levels, particularly when oxidative phosphorylation is impaired, such as in neurons treated with mitochondrial inhibitors, or in neurons derived from maternally inherited Leigh syndrome (MILS) patient iPS cells with ATP synthase deficiency. Rapamycin treatment significantly improves the resistance of MILS neurons to glutamate toxicity. Surprisingly, in mitochondrially defective neurons, but not neuroprogenitor cells, ribosomal S6 and S6 kinase phosphorylation increased over time, despite activation of AMPK, which is often linked to mTOR inhibition. A rapamycin-induced decrease in protein synthesis, a major energy-consuming process, may account for its ATP-saving effect. We propose that a mild reduction in protein synthesis may have the potential to treat mitochondria-related neurodegeneration. DOI: http://dx.doi.org/10.7554/eLife.13378.001 PMID:27008180

  2. SIRT2 regulates insulin sensitivity in insulin resistant neuronal cells.

    PubMed

    Arora, Amita; Dey, Chinmoy Sankar

    2016-06-10

    Insulin resistance in brain is well-associated with pathophysiology of deficits in whole-body energy metabolism, neurodegenerative diseases etc. Among the seven sirtuins, SIRT2 is the major deacetylase expressed in brain. Inhibition of SIRT2 confers neuroprotection in case of Parkinson's disease (PD) and Huntington's disease (HD). However, the role of this sirtuin in neuronal insulin resistance is not known. In this study, we report the role of SIRT2 in regulating insulin-sensitivity in neuronal cells in vitro. Using approaches like pharmacological inhibition of SIRT2, siRNA mediated SIRT2 knockdown and over-expression of wild-type and catalytically-mutated SIRT2, we observed that downregulation of SIRT2 ameliorated the reduced activity of AKT and increased insulin-stimulated glucose uptake in insulin resistant neuro-2a cells. The data was supported by over expression of catalytically-inactive SIRT2 in insulin-resistant human SH-SY5Y neuronal cells. Data highlights a crucial role of SIRT2 in regulation of neuronal insulin sensitivity under insulin resistant condition. PMID:27163642

  3. An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo

    PubMed Central

    Wietek, Jonas; Beltramo, Riccardo; Scanziani, Massimo; Hegemann, Peter; Oertner, Thomas G.; Simon Wiegert, J.

    2015-01-01

    Channelrhodopsins are light-gated cation channels that have been widely used for optogenetic stimulation of electrically excitable cells. Replacement of a glutamic acid in the central gate with a positively charged amino acid residue reverses the ion selectivity and produces chloride-conducting ChRs (ChloCs). Expressed in neurons, published ChloCs produced a strong shunting effect but also a small, yet significant depolarization from the resting potential. Depending on the state of the neuron, the net result of illumination might therefore be inhibitory or excitatory with respect to action potential generation. Here we report two additional amino acid substitutions that significantly shift the reversal potential of improved ChloC (iChloC) to the reversal potential of endogenous GABAA receptors. As a result, light-evoked membrane depolarization was strongly reduced and spike initiation after current injection or synaptic stimulation was reliably inhibited in iChloC-transfected neurons in vitro. In the primary visual cortex of anesthetized mice, activation of iChloC suppressed spiking activity evoked by visual stimulation. Due to its high operational light sensitivity, iChloC makes it possible to inhibit neurons in a large volume of brain tissue from a small, point-like light source. PMID:26443033

  4. Light activates output from evening neurons and inhibits output from morning neurons in the Drosophila circadian clock.

    PubMed

    Picot, Marie; Cusumano, Paola; Klarsfeld, André; Ueda, Ryu; Rouyer, François

    2007-11-01

    Animal circadian clocks are based on multiple oscillators whose interactions allow the daily control of complex behaviors. The Drosophila brain contains a circadian clock that controls rest-activity rhythms and relies upon different groups of PERIOD (PER)-expressing neurons. Two distinct oscillators have been functionally characterized under light-dark cycles. Lateral neurons (LNs) that express the pigment-dispersing factor (PDF) drive morning activity, whereas PDF-negative LNs are required for the evening activity. In constant darkness, several lines of evidence indicate that the LN morning oscillator (LN-MO) drives the activity rhythms, whereas the LN evening oscillator (LN-EO) does not. Since mutants devoid of functional CRYPTOCHROME (CRY), as opposed to wild-type flies, are rhythmic in constant light, we analyzed transgenic flies expressing PER or CRY in the LN-MO or LN-EO. We show that, under constant light conditions and reduced CRY function, the LN evening oscillator drives robust activity rhythms, whereas the LN morning oscillator does not. Remarkably, light acts by inhibiting the LN-MO behavioral output and activating the LN-EO behavioral output. Finally, we show that PDF signaling is not required for robust activity rhythms in constant light as opposed to its requirement in constant darkness, further supporting the minor contribution of the morning cells to the behavior in the presence of light. We therefore propose that day-night cycles alternatively activate behavioral outputs of the Drosophila evening and morning lateral neurons. PMID:18044989

  5. Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2

    PubMed Central

    Liske, Holly; Qian, Xiang; Anikeeva, Polina; Deisseroth, Karl; Delp, Scott

    2013-01-01

    The effect of electrical stimulation on neuronal membrane potential is frequency dependent. Low frequency electrical stimulation can evoke action potentials, whereas high frequency stimulation can inhibit action potential transmission. Optical stimulation of channelrhodopsin-2 (ChR2) expressed in neuronal membranes can also excite action potentials. However, it is unknown whether optical stimulation of ChR2-expressing neurons produces a transition from excitation to inhibition with increasing light pulse frequencies. Here we report optical inhibition of motor neuron and muscle activity in vivo in the cooled sciatic nerves of Thy1-ChR2-EYFP mice. We also demonstrate all-optical single-wavelength control of neuronal excitation and inhibition without co-expression of inhibitory and excitatory opsins. This all-optical system is free from stimulation-induced electrical artifacts and thus provides a new approach to investigate mechanisms of high frequency inhibition in neuronal circuits in vivo and in vitro. PMID:24173561

  6. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification

    PubMed Central

    Schumacher, Jennifer A.; Wang, Xiaohong; Merrill, Sean A.; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M.; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons. PMID:26771544

  7. Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer's disease model mice.

    PubMed

    Woodling, Nathaniel S; Colas, Damien; Wang, Qian; Minhas, Paras; Panchal, Maharshi; Liang, Xibin; Mhatre, Siddhita D; Brown, Holden; Ko, Novie; Zagol-Ikapitte, Irene; van der Hart, Marieke; Khroyan, Taline V; Chuluun, Bayarsaikhan; Priyam, Prachi G; Milne, Ginger L; Rassoulpour, Arash; Boutaud, Olivier; Manning-Boğ, Amy B; Heller, H Craig; Andreasson, Katrin I

    2016-07-01

    Identifying preventive targets for Alzheimer's disease is a central challenge of modern medicine. Non-steroidal anti-inflammatory drugs, which inhibit the cyclooxygenase enzymes COX-1 and COX-2, reduce the risk of developing Alzheimer's disease in normal ageing populations. This preventive effect coincides with an extended preclinical phase that spans years to decades before onset of cognitive decline. In the brain, COX-2 is induced in neurons in response to excitatory synaptic activity and in glial cells in response to inflammation. To identify mechanisms underlying prevention of cognitive decline by anti-inflammatory drugs, we first identified an early object memory deficit in APPSwe-PS1ΔE9 mice that preceded previously identified spatial memory deficits in this model. We modelled prevention of this memory deficit with ibuprofen, and found that ibuprofen prevented memory impairment without producing any measurable changes in amyloid-β accumulation or glial inflammation. Instead, ibuprofen modulated hippocampal gene expression in pathways involved in neuronal plasticity and increased levels of norepinephrine and dopamine. The gene most highly downregulated by ibuprofen was neuronal tryptophan 2,3-dioxygenase (Tdo2), which encodes an enzyme that metabolizes tryptophan to kynurenine. TDO2 expression was increased by neuronal COX-2 activity, and overexpression of hippocampal TDO2 produced behavioural deficits. Moreover, pharmacological TDO2 inhibition prevented behavioural deficits in APPSwe-PS1ΔE9 mice. Taken together, these data demonstrate broad effects of cyclooxygenase inhibition on multiple neuronal pathways that counteract the neurotoxic effects of early accumulating amyloid-β oligomers. PMID:27190010

  8. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons. PMID:26771544

  9. Prostaglandin E2-increased thermosensitivity of anterior hypothalamic neurons is associated with depressed inhibition

    PubMed Central

    Tabarean, Iustin V.; Behrens, M. Margarita; Bartfai, Tamas; Korn, Henri

    2004-01-01

    Temperature responses of anterior hypothalamic neurons are considered key elements in the regulation of the temperature setpoint of homeotherms. We have investigated the sensitivity to warming of cultured neurons of the AH from mice with electrophysiological and immunocytochemical techniques. In control experiments, only ≈9% of the 3- to 5-week-old cells exhibited changes of their basic firing rate when the temperature was raised from 37°C to 40°C. This ratio was increased to 27% after the cultures were “primed” by adding prostaglandin E2 (PGE2), an endogenous pyrogen, in the extracellular medium. In these neurons the firing rate was significantly increased, and the frequency of the gamma γ-aminobutyric acid (GABA) inhibitory postsynaptic potentials was markedly decreased. In contrast, the resting potential and membrane resistance of the recorded cells remained unchanged. PGE2 was found to decrease the level of phosphorylation of the extracellular signal-regulated kinases 1 and 2 in a subset of GABAergic neurons that express the E-prostanoid receptor type 3. Inhibition of ERK1/2 by U0126 mimicked the effects of PGE2. These data indicate that PGE2 acts primarily on the excitability of GABAergic presynaptic cells, most likely via alterations of voltage-gated K+ channels. Our results also suggest that far from being an inherent property of a specialized class of neurons, the degree of thermosensitivity can be strongly modulated by synaptic activity and is a more adaptive property of hypothalamic neurons than previously thought. PMID:14983053

  10. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells.

    PubMed

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-09-01

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A₂. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death. PMID:26402700

  11. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    PubMed Central

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-01-01

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death. PMID:26402700

  12. Response-dependent dynamics of cell-specific inhibition in cortical networks in vivo

    PubMed Central

    El-Boustani, Sami; Sur, Mriganka

    2014-01-01

    In the visual cortex, inhibitory neurons alter the computations performed by target cells via combination of two fundamental operations, division and subtraction. The origins of these operations have been variously ascribed to differences in neuron classes, synapse location or receptor conductances. Here, by utilizing specific visual stimuli and single optogenetic probe pulses, we show that the function of parvalbumin-expressing and somatostatin-expressing neurons in mice in vivo is governed by the overlap of response timing between these neurons and their targets. In particular, somatostatin-expressing neurons respond at longer latencies to small visual stimuli compared with their target neurons and provide subtractive inhibition. With large visual stimuli, however, they respond at short latencies coincident with their target cells and switch to provide divisive inhibition. These results indicate that inhibition mediated by these neurons is a dynamic property of cortical circuits rather than an immutable property of neuronal classes. PMID:25504329

  13. Domain-specific antibodies against the B2 chain of laminin inhibit neuronal migration in the neonatal rat cerebellum.

    PubMed

    Liesi, P; Hager, G; Dodt, H U; Seppälä, I; Zieglgänsberger, W

    1995-02-01

    Although the spatial and temporal patterns of neuronal migration have been analyzed in great detail, little direct evidence is available as to what extracellular matrix molecules are involved. Because there is indirect evidence implicating the extracellular matrix protein laminin in neuronal migration, we investigated the effects of antibodies against a synthetic peptide derived from a neurite outgrowth domain of the B2 chain of laminin on neuronal migration in living cerebellar slices. We show by using infrared video microscopy that divalent Fab2 fragments of these antibodies inhibit granule neuronal movement in living slices of (P8) rat cerebellum. This inhibition of neuronal movement manifests itself by cessation of both radial and horizontal translocations of nuclei inside the granule neuronal processes. Fab2 fragments of antibodies against the intact (native) laminin molecule or Fab2 fragments from the preimmune serum do not affect nuclear translocation. Immunocytochemistry shows binding of the divalent Fab2 fragments of the B2 chain-specific antibodies to the Purkinje and Bergmann glial cell areas, and as punctate deposits in between the cells of the external granule cell layer. Native laminin antibodies bind to the basement membranes, and binding of the Fab2 fragments from the preimmune sera cannot be demonstrated. These results indicate that neuronal migration in the postnatal rat cerebellum in vivo involves nuclear translocation that can be inhibited by antibodies against a neurite outgrowth domain of the B2 chain of laminin. Thus, migration of cerebellar granule neurons may depend on the interaction between a neurite outgrowth domain of the B2 chain of laminin and neuronal cytoskeleton involved in nuclear movement. PMID:7745613

  14. Inhibition of Cerebellar Granule Cell Turning by Alcohol

    PubMed Central

    Kumada, Tatsuro; Komuro, Yutaro; Li, Ying; Hu, Taofang; Wang, Zhe; Littner, Yoav; Komuro, Hitoshi

    2010-01-01

    Ectopic neurons are often found in the brains of fetal alcohol spectrum disorders (FASD) and fetal alcohol syndrome (FAS) patients, suggesting that alcohol exposure impairs neuronal cell migration. Although it has been reported that alcohol decreases the speed of neuronal cell migration, little is known about whether alcohol also affects the turning of neurons. Here we show that ethanol exposure inhibits the turning of cerebellar granule cells in vivo and in vitro. First, in vivo studies using P10 mice demonstrated that a single i.p. injection of ethanol not only reduces the number of turning granule cells but also alters the mode of turning at the EGL-ML border of the cerebellum. Second, in vitro analysis using microexplant cultures of P0-P3 mouse cerebella revealed that ethanol directly reduces the frequency of spontaneous granule cell turning in a dose-dependent manner. Third, the action of ethanol on the frequency of granule cell turning was significantly ameliorated by stimulating Ca2+ and cGMP signaling or by inhibiting cAMP signaling. Taken together, these results indicate that ethanol affects the frequency and mode of cerebellar granule cell turning through alteration of the Ca2+ and cyclic nucleotide signaling pathways, suggesting that the abnormal allocation of neurons found in the brains of FASD and FSA patients results, at least in part, from impaired turning of immature neurons by alcohol. PMID:20691765

  15. Caspase Inhibition Extends the Commitment to Neuronal Death Beyond Cytochrome c Release to the Point of Mitochondrial Depolarization

    PubMed Central

    Deshmukh, Mohanish; Kuida, Keisuke; Johnson, Eugene M.

    2000-01-01

    Nerve growth factor (NGF) deprivation induces a Bax-dependent, caspase-dependent programmed cell death in sympathetic neurons. We examined whether the release of cytochrome c was accompanied by the loss of mitochondrial membrane potential during sympathetic neuronal death. NGF- deprived, caspase inhibitor–treated mouse sympathetic neurons maintained mitochondrial membrane poten-tial for 25–30 h after releasing cytochrome c. NGF- deprived sympathetic neurons became committed to die, as measured by the inability of cells to be rescued by NGF readdition, at the time of cytochrome c release. In the presence of caspase inhibitor, however, this commitment to death was extended beyond the point of cytochrome c release, but only up to the subsequent point of mitochondrial membrane potential loss. Caspase-9 deficiency also arrested NGF-deprived sympathetic neurons after release of cytochrome c, and permitted these neurons to be rescued with NGF readdition. Commitment to death in the NGF-deprived, caspase- 9–deficient sympathetic neurons was also coincident with the loss of mitochondrial membrane potential. Thus, caspase inhibition extended commitment to death in trophic factor–deprived sympathetic neurons and allowed recovery of neurons arrested after the loss of cytochrome c, but not beyond the subsequent loss of mitochondrial membrane potential. PMID:10893262

  16. Hydroxysafflor Yellow A Protects Neurons From Excitotoxic Death through Inhibition of NMDARs

    PubMed Central

    Wang, Xingtao; Ma, Zhiyuan; Fu, Zhongxiao; Gao, Su; Yang, Liu; Jin, Yan; Sun, Hui; Wang, Chaoyun; Fan, Weiming; Chen, Lin; Zheng, Qing-Yin; Bi, Guoqiang

    2016-01-01

    Excessive glutamate release causes overactivation of N-methyl d-aspartate receptors (NMDARs), leading to excitatory neuronal damage in cerebral ischemia. Hydroxysafflor yellow A (HSYA), a compound extracted from Carthamus tinctorius L., has been reported to exert a neuroprotective effect in many pathological conditions, including brain ischemia. However, the underlying mechanism of HSYA's effect on neurons remains elusive. In the present study, we conducted experiments using patch-clamp recording of mouse hippocampal slices. In addition, we performed Ca2+ imaging, Western blots, as well as mitochondrial-targeted circularly permuted yellow fluorescent protein transfection into cultured hippocampal neurons in order to decipher the physiological mechanism underlying HSYA's neuroprotective effect. Through the electrophysiology experiments, we found that HSYA inhibited NMDAR-mediated excitatory postsynaptic currents without affecting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and γ-aminobutyric acid A-type receptor-mediated currents. This inhibitory effect of HSYA on NMDARs was concentration dependent. HSYA did not show any preferential inhibition of either N-methyl d-aspartate receptor subtype 2A- or N-methyl d-aspartate receptor subtype 2B- subunit-containing NMDARs. Additionally, HSYA exhibits a facilitatory effect on paired NMDAR-mediated excitatory postsynaptic currents. Furthermore, HSYA reduced the magnitude of NMDAR-mediated membrane depolarization currents evoked by oxygen-glucose deprivation, and suppressed oxygen-glucose deprivation–induced and NMDAR-dependent ischemic long-term potentiation, which is believed to cause severe reperfusion damage after ischemia. Through the molecular biology experiments, we found that HSYA inhibited the NMDA-induced and NMDAR-mediated intracellular Ca2+ concentration increase in hippocampal cultures, reduced apoptotic and necrotic cell deaths, and prevented mitochondrial damage. Together, our data

  17. Hydroxysafflor Yellow A Protects Neurons From Excitotoxic Death through Inhibition of NMDARs.

    PubMed

    Wang, Xingtao; Ma, Zhiyuan; Fu, Zhongxiao; Gao, Su; Yang, Liu; Jin, Yan; Sun, Hui; Wang, Chaoyun; Fan, Weiming; Chen, Lin; Zheng, Qing-Yin; Bi, Guoqiang; Ma, Chun-Lei

    2016-01-01

    Excessive glutamate release causes overactivation of N-methyld-aspartate receptors (NMDARs), leading to excitatory neuronal damage in cerebral ischemia. Hydroxysafflor yellow A (HSYA), a compound extracted from Carthamus tinctorius L., has been reported to exert a neuroprotective effect in many pathological conditions, including brain ischemia. However, the underlying mechanism of HSYA's effect on neurons remains elusive. In the present study, we conducted experiments using patch-clamp recording of mouse hippocampal slices. In addition, we performed Ca(2+) imaging, Western blots, as well as mitochondrial-targeted circularly permuted yellow fluorescent protein transfection into cultured hippocampal neurons in order to decipher the physiological mechanism underlying HSYA's neuroprotective effect.Through the electrophysiology experiments, we found that HSYA inhibited NMDAR-mediated excitatory postsynaptic currents without affecting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor and γ-aminobutyric acid A-type receptor-mediated currents. This inhibitory effect of HSYA on NMDARs was concentration dependent. HSYA did not show any preferential inhibition of either N-methyld-aspartate receptor subtype 2A- or N-methyld-aspartate receptor subtype 2B- subunit-containing NMDARs. Additionally, HSYA exhibits a facilitatory effect on paired NMDAR-mediated excitatory postsynaptic currents. Furthermore, HSYA reduced the magnitude of NMDAR-mediated membrane depolarization currents evoked by oxygen-glucose deprivation, and suppressed oxygen-glucose deprivation-induced and NMDAR-dependent ischemic long-term potentiation, which is believed to cause severe reperfusion damage after ischemia. Through the molecular biology experiments, we found that HSYA inhibited the NMDA-induced and NMDAR-mediated intracellular Ca(2+)concentration increase in hippocampal cultures, reduced apoptotic and necrotic cell deaths, and prevented mitochondrial damage. Together, our data

  18. Exocytosis in non-neuronal cells.

    PubMed

    Thorn, Peter; Zorec, Robert; Rettig, Jens; Keating, Damien J

    2016-06-01

    Exocytosis is the process by which stored neurotransmitters and hormones are released via the fusion of secretory vesicles with the plasma membrane. It is a dynamic, rapid and spatially restricted process involving multiple steps including vesicle trafficking, tethering, docking, priming and fusion. For many years great steps have been undertaken in our understanding of how exocytosis occurs in different cell types, with significant focus being placed on synaptic release and neurotransmission. However, this process of exocytosis is an essential component of cell signalling throughout the body and underpins a diverse array of essential physiological pathways. Many similarities exist between different cell types with regard to key aspects of the exocytosis pathway, such as the need for Ca(2+) to trigger it or the involvement of members of the N-ethyl maleimide-sensitive fusion protein attachment protein receptor protein families. However, it is also equally clear that non-neuronal cells have acquired highly specialized mechanisms to control the release of their own unique chemical messengers. This review will focus on several important non-neuronal cell types and discuss what we know about the mechanisms they use to control exocytosis and how their specialized output is relevant to the physiological role of each individual cell type. These include enteroendocrine cells, pancreatic β cells, astrocytes, lactotrophs and cytotoxic T lymphocytes. Non-neuronal cells have acquired highly specialized mechanisms to control the release of unique chemical messengers, such as polarised fusion of insulin granules in pancreatic β cells targeted towards the vasculature (top). This review discusses mechanisms used in several important non-neuronal cell types to control exocytosis, and the relevance of intermediate vesicle fusion pore states (bottom) and their specialized output to the physiological role of each cell type. These include enteroendocrine cells, pancreatic β cells

  19. Distinct forms of synaptic inhibition and neuromodulation regulate calretinin-positive neuron excitability in the spinal cord dorsal horn.

    PubMed

    Smith, K M; Boyle, K A; Mustapa, M; Jobling, P; Callister, R J; Hughes, D I; Graham, B A

    2016-06-21

    The dorsal horn (DH) of the spinal cord contains a heterogenous population of neurons that process incoming sensory signals before information ascends to the brain. We have recently characterized calretinin-expressing (CR+) neurons in the DH and shown that they can be divided into excitatory and inhibitory subpopulations. The excitatory population receives high-frequency excitatory synaptic input and expresses delayed firing action potential discharge, whereas the inhibitory population receives weak excitatory drive and exhibits tonic or initial bursting discharge. Here, we characterize inhibitory synaptic input and neuromodulation in the two CR+ populations, in order to determine how each is regulated. We show that excitatory CR+ neurons receive mixed inhibition from GABAergic and glycinergic sources, whereas inhibitory CR+ neurons receive inhibition, which is dominated by glycine. Noradrenaline and serotonin produced robust outward currents in excitatory CR+ neurons, predicting an inhibitory action on these neurons, but neither neuromodulator produced a response in CR+ inhibitory neurons. In contrast, enkephalin (along with selective mu and delta opioid receptor agonists) produced outward currents in inhibitory CR+ neurons, consistent with an inhibitory action but did not affect the excitatory CR+ population. Our findings show that the pharmacology of inhibitory inputs and neuromodulator actions on CR+ cells, along with their excitatory inputs can define these two subpopulations further, and this could be exploited to modulate discrete aspects of sensory processing selectively in the DH. PMID:27045594

  20. Neuropharmacological properties of neurons derived from human stem cells.

    PubMed

    Coyne, Leanne; Shan, Mu; Przyborski, Stefan A; Hirakawa, Ryoko; Halliwell, Robert F

    2011-09-01

    Human pluripotent stem cells have enormous potential value in neuropharmacology and drug discovery yet there is little data on the major classes and properties of receptors and ion channels expressed by neurons derived from these stem cells. Recent studies in this lab have therefore used conventional patch-clamp electrophysiology to investigate the pharmacological properties of the ligand and voltage-gated ion channels in neurons derived and maintained in vitro from the human stem cell (hSC) line, TERA2.cl.SP12. TERA2.cl.SP12 stem cells were differentiated with retinoic acid and used in electrophysiological experiments 28-50 days after beginning differentiation. HSC-derived neurons generated large whole cell currents with depolarizing voltage steps (-80 to 30 mV) comprised of an inward, rapidly inactivating component and a delayed, slowly deactivating outward component. The fast inward current was blocked by the sodium channel blocker tetrodotoxin (0.1 μM) and the outward currents were significantly reduced by tetraethylammonium ions (TEA, 5 mM) consistent with the presence of functional Na and K ion channels. Application of the inhibitory neurotransmitters, GABA (0.1-1000 μM) or glycine (0.1-1000 μM) evoked concentration dependent currents. The GABA currents were inhibited by the convulsants, picrotoxin (10 μM) and bicuculline (3 μM), potentiated by the NSAID mefenamic acid (10-100 μM), the general anaesthetic pentobarbital (100 μM), the neurosteroid allopregnanolone and the anxiolytics chlordiazepoxide (10 μM) and diazepam (10 μM) all consistent with the expression of GABA(A) receptors. Responses to glycine were reversibly blocked by strychnine (10 μM) consistent with glycine-gated chloride channels. The excitatory agonists, glutamate (1-1000 μM) and NMDA (1-1000 μM) activated concentration-dependent responses from hSC-derived neurons. Glutamate currents were inhibited by kynurenic acid (1 mM) and NMDA responses were blocked by MgCl(2) (2 mM) in a

  1. Gut–neuron interaction via Hh signaling regulates intestinal progenitor cell differentiation in Drosophila

    PubMed Central

    Han, Hui; Pan, Chenyu; Liu, Chunying; Lv, Xiangdong; Yang, Xiaofeng; Xiong, Yue; Lu, Yi; Wu, Wenqing; Han, Junhai; Zhou, Zhaocai; Jiang, Hai; Zhang, Lei; Zhao, Yun

    2015-01-01

    Intestinal homeostasis is maintained by intestinal stem cells (ISCs) and their progenies. A complex autonomic nervous system spreads over posterior intestine. However, whether and how neurons regulate posterior intestinal homeostasis is largely unknown. Here we report that neurons regulate Drosophila posterior intestinal homeostasis. Specifically, downregulation of neuronal Hedgehog (Hh) signaling inhibits the differentiation of ISCs toward enterocytes (ECs), whereas upregulated neuronal Hh signaling promotes such process. We demonstrate that, among multiple sources of Hh ligand, those secreted by ECs induces similar phenotypes as does neuronal Hh. In addition, intestinal JAK/STAT signaling responds to activated neuronal Hh signaling, suggesting that JAK/STAT signaling acts downstream of neuronal Hh signaling in intestine. Collectively, our results indicate that neuronal Hh signaling is essential for the determination of ISC fate.

  2. Detection of Temperature Difference in Neuronal Cells

    PubMed Central

    Tanimoto, Ryuichi; Hiraiwa, Takumi; Nakai, Yuichiro; Shindo, Yutaka; Oka, Kotaro; Hiroi, Noriko; Funahashi, Akira

    2016-01-01

    For a better understanding of the mechanisms behind cellular functions, quantification of the heterogeneity in an organism or cells is essential. Recently, the importance of quantifying temperature has been highlighted, as it correlates with biochemical reaction rates. Several methods for detecting intracellular temperature have recently been established. Here we develop a novel method for sensing temperature in living cells based on the imaging technique of fluorescence of quantum dots. We apply the method to quantify the temperature difference in a human derived neuronal cell line, SH-SY5Y. Our results show that temperatures in the cell body and neurites are different and thus suggest that inhomogeneous heat production and dissipation happen in a cell. We estimate that heterogeneous heat dissipation results from the characteristic shape of neuronal cells, which consist of several compartments formed with different surface-volume ratios. Inhomogeneous heat production is attributable to the localization of specific organelles as the heat source. PMID:26925874

  3. Phasic, suprathreshold excitation and sustained inhibition underlie neuronal selectivity for short-duration sounds.

    PubMed

    Alluri, Rishi K; Rose, Gary J; Hanson, Jessica L; Leary, Christopher J; Vasquez-Opazo, Gustavo A; Graham, Jalina A; Wilkerson, Jeremy

    2016-03-29

    Sound duration is important in acoustic communication, including speech recognition in humans. Although duration-selective auditory neurons have been found, the underlying mechanisms are unclear. To investigate these mechanisms we combined in vivo whole-cell patch recordings from midbrain neurons, extraction of excitatory and inhibitory conductances, and focal pharmacological manipulations. We show that selectivity for short-duration stimuli results from integration of short-latency, sustained inhibition with delayed, phasic excitation; active membrane properties appeared to amplify responses to effective stimuli. Blocking GABAAreceptors attenuated stimulus-related inhibition, revealed suprathreshold excitation at all stimulus durations, and decreased short-pass selectivity without changing resting potentials. Blocking AMPA and NMDA receptors to attenuate excitation confirmed that inhibition tracks stimulus duration and revealed no evidence of postinhibitory rebound depolarization inherent to coincidence models of duration selectivity. These results strongly support an anticoincidence mechanism of short-pass selectivity, wherein inhibition and suprathreshold excitation show greatest temporal overlap for long duration stimuli. PMID:26976602

  4. Neuroprotective effect of acute melatonin treatment on hippocampal neurons against irradiation by inhibition of caspase-3

    PubMed Central

    LI, JIANGUO; ZHANG, GUOWEI; MENG, ZHUANGZHI; WANG, LINGZHAN; LIU, HAIYING; LIU, QIANG; BUREN, BATU

    2016-01-01

    Neuronal cell apoptosis is associated with various factors that induce neurological damage, including radiation exposure. When administered prior to exposure to radiation, a protective agent may prevent cellular and molecular injury. The present study aimed to investigate whether melatonin exerts a neuroprotective effect by inhibiting the caspase cell death pathway. Male Sprague-Dawley rats were administered melatonin (100 mg/kg body weight) 30 min prior to radiation exposure in red light during the evening. In order to elucidate whether melatonin has a neuroprotective role, immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick-end labeling, Nissl staining, reverse transcription-quantitative polymerase chain reaction, reactive oxygen species analysis and western blotting were performed. At 24 h post-melatonin treatment, caspase-3 mRNA and protein expression levels were significantly decreased. These results demonstrated that melatonin may protect hippocampal neurons via the inhibition of caspase-3 when exposed to irradiation. Therefore, caspase-3 inhibition serves a neuroprotective and antioxidant role in the interventional treatment of melatonin. The results of the present study suggested that melatonin may have a potential therapeutic effect against irradiation; however, further studies are required in order to elucidate the underlying antioxidant mechanisms. PMID:27313671

  5. Interleukin-1beta induces hyperpolarization and modulates synaptic inhibition in preoptic and anterior hypothalamic neurons.

    PubMed

    Tabarean, I V; Korn, H; Bartfai, T

    2006-09-15

    Most of the inflammatory effects of the cytokine interleukin 1beta (IL-1beta) are mediated by induction of cyclooxygenase (COX)2 and the subsequent synthesis and release of prostaglandin E2. This transcription-dependent process takes 45-60 min, but IL-1beta, a well-characterized endogenous pyrogen also exerts faster neuronal actions in the preoptic area/anterior hypothalamus. Here, we have studied the fast (1-3 min) signaling by IL-1beta using whole-cell patch clamp recordings in preoptic area/anterior hypothalamus neurons. Exposure to IL-1beta (0.1-1 nM) hyperpolarized a subset ( approximately 20%) of preoptic area/anterior hypothalamus neurons, decreased their input resistance and reduced their firing rate. These effects were associated with an increased frequency of bicuculline-sensitive spontaneous inhibitory postsynaptic currents and putative miniature inhibitory postsynaptic currents, strongly suggesting a presynaptic mechanism of action. These effects require the type 1 interleukin 1 receptor (IL-1R1), and the adapter protein myeloid differentiation primary response protein (MyD88), since they were not observed in cultures obtained from IL-1R1 (-/-) or from MyD88 (-/-) mice. Ceramide, a second messenger of the IL-1R1-dependent fast signaling cascade, is produced by IL-1R1-MyD88-mediated activation of the neutral sphingomyelinase. C2-ceramide, its cell penetrating analog, also increased the frequency of miniature inhibitory postsynaptic currents in a subset of cells. Both IL-1beta and ceramide reduced the delayed rectifier and the A-type K(+) currents in preoptic area/anterior hypothalamus neurons. The latter effect may account in part for the increased spontaneous inhibitory postsynaptic current frequency as suggested by experiments with the A-type K(+) channel blockers 4-aminopyridine. Taken together our data suggest that IL-1beta inhibits the activity of preoptic area/anterior hypothalamus neurons by increasing the presynaptic release of GABA. PMID

  6. GCP II inhibition rescues neurons from gp120IIIB-induced neurotoxicity.

    PubMed

    Thomas, Ajit G; Bodner, Amos; Ghadge, Ghanashyam; Roos, Raymond P; Slusher, Barbara S

    2009-09-01

    Excessive glutamate neurotransmission has been implicated in neuronal injury in many disorders of the central nervous system (CNS), including human immunodeficiency virus (HIV)-associated dementia. Gp120IIIB is a strain of a HIV glycoprotein with specificity for the CXCR4 receptor that induces neuronal apoptosis in in vitro models of acquired immunodeficiency syndrome (AIDS)-induced neurodegeneration. Since the catabolism of the neuropeptide N-acetylaspartylglutamate (NAAG) by glutamate carboxypeptidase (GCP) II increases cellular glutamate, an event associated with excitotoxicity, we hypothesized that inhibition of GCP II may prevent gp120IIIB-induced cell death. Furthermore, through GCP II inhibition, increased NAAG may be neuroprotective via its agonist effects at the mGlu(3) receptor. To ascertain the therapeutic potential of GCP II inhibitors, embryonic day 17 hippocampal cultures were exposed to gp120IIIB in the presence of a potent and highly selective GCP II inhibitor, 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). 2-PMPA was found to abrogate gp120IIIB-induced toxicity in a dose-dependent manner. Additionally, 2-PMPA was neuroprotective when applied up to 2 h after the application of gp120IIIB. The abrogation of apoptosis by 2-PMPA was reversed with administration of mGlu(3) receptor antagonists and with antibodies to transforming growth factor (TGF)-beta. Further, consistent with the localization of GCP II, 2-PMPA failed to provide neuroprotection in the absence of glia. GCP II activity and its inhibition by 2-PMPA were confirmed in the hippocampal cultures using radiolabeled NAAG and high-performance liquid chromatography (HPLC) analysis. Taken together, these data suggest that GCP II is involved in mediating gp120-induced apoptosis in hippocampal neurons and GCP II inhibitors may have potential in the treatment of neuronal injury related to AIDS. PMID:19995130

  7. The relative contributions of MNTB and LNTB neurons to inhibition in the medial superior olive assessed through single and paired recordings.

    PubMed

    Roberts, Michael T; Seeman, Stephanie C; Golding, Nace L

    2014-01-01

    The medial superior olive (MSO) senses microsecond differences in the coincidence of binaural signals, a critical cue for detecting sound location along the azimuth. An important component of this circuit is provided by inhibitory neurons of the medial and lateral nuclei of the trapezoid body (MNTB and LNTB, respectively). While MNTB neurons are fairly well described, little is known about the physiology of LNTB neurons. Using whole cell recordings from gerbil brainstem slices, we found that LNTB and MNTB neurons have similar membrane time constants and input resistances and fire brief action potentials, but only LNTB neurons fire repetitively in response to current steps. We observed that LNTB neurons receive graded excitatory and inhibitory synaptic inputs, with at least some of the latter arriving from other LNTB neurons. To address the relative timing of inhibition to the MSO from the LNTB versus the MNTB, we examined inhibitory responses to auditory nerve stimulation using a slice preparation that retains the circuitry from the auditory nerve to the MSO intact. Despite the longer physical path length of excitatory inputs driving contralateral inhibition, inhibition from both pathways arrived with similar latency and jitter. An analysis of paired whole cell recordings between MSO and MNTB neurons revealed a short and reliable delay between the action potential peak in MNTB neurons and the onset of the resulting IPSP (0.55 ± 0.01 ms, n = 4, mean ± SEM). Reconstructions of biocytin-labeled neurons showed that MNTB axons ranged from 580 to 858 μm in length (n = 4). We conclude that while both LNTB and MNTB neurons provide similarly timed inhibition to MSO neurons, the reliability of inhibition from the LNTB at higher frequencies is more constrained relative to that from the MNTB due to differences in intrinsic properties, the strength of excitatory inputs, and the presence of feedforward inhibition. PMID:24860434

  8. Inhibition of spontaneous EPSCs and IPSCs by presynaptic GABAB receptors on rat supraoptic magnocellular neurons.

    PubMed Central

    Kabashima, N; Shibuya, I; Ibrahim, N; Ueta, Y; Yamashita, H

    1997-01-01

    1. The function of presynaptic GABA receptors in the regulation of transmitter release in supraoptic nucleus (SON) magnocellular neurons was investigated by recording spontaneous postsynaptic currents from rat magnocellular SON neurons in a slice preparation (150 microns thick, 1.8 mm in diameter) using the whole-cell patch-clamp technique. 2. Both the spontaneous EPSCs and IPSCs were TTX resistant. The EPSCs were abolished by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), whereas the IPSCs were abolished by picrotoxin, suggesting that the EPSCs and IPSCs are synaptic inputs from glutamatergic and GABAergic neurons, respectively. 3. The selective GABAB agonist, baclofen, reduced the frequency of both the EPSCs and IPSCs without affecting the amplitude. The time constant of the decay phase of both the EPSCs and IPSCs remained unchanged after baclofen application. 4. The reduction of the frequency of the synaptic currents by baclofen was dose dependent (10 nM to 100 microM) and the EC50 values were 5.8 and 8.5 microM for the EPSCs and IPSCs, respectively. 5. The effect of baclofen (10 microM) was antagonized by the selective GABAB antagonist, 2-hydroxy-saclofen (2OH-saclofen), at 300 microM. 6. When given alone, 2OH-saclofen (100 microM) increased the frequency of both the EPSCs and IPSCs without affecting their amplitude, suggesting that endogenously released GABA in the slice acts on presynaptic GABAB receptors. 7. The GABAA agonist, muscimol, reduced the frequency of EPSCs, and picrotoxin increased the frequency of the EPSCs, suggesting that GABAA receptors also participate in the presynaptic inhibition of glutamate release. 8. Taken together, these data suggest that GABAB receptors are present on the presynaptic terminals of both GABA and glutamate neurons in the SON, and that these presynaptic GABAB receptors play an important role in the regulation of the neuronal activity in SON magnocellular neurons. Images Figure 1 PMID:9350623

  9. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    PubMed

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. PMID:26074079

  10. SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth

    PubMed Central

    Sun, Ye; Ju, Meihua; Lin, Zhiqiang; Fredrick, Thomas W.; Evans, Lucy P.; Tian, Katherine T.; Saba, Nicholas J.; Morss, Peyton C.; Pu, William T.; Chen, Jing; Stahl, Andreas; Joyal, Jean-Sébastien; Smith, Lois E. H.

    2015-01-01

    Neurons and glial cells in the retina contribute to neovascularization, or the formation of abnormal new blood vessels, in proliferative retinopathy, a condition that can lead to vision loss or blindness. We identified a mechanism by which suppressor of cytokine signaling 3 (SOCS3) in neurons and glial cells prevents neovascularization. We found that Socs3 expression was increased in the retinal ganglion cell and inner nuclear layers after oxygen-induced retinopathy. Mice with Socs3 deficiency in neuronal and glial cells had substantially reduced vaso-obliterated retinal areas and increased pathological retinal neovascularization in response to oxygen-induced retinopathy, suggesting that loss of neuronal/glial SOCS3 increased both retinal vascular regrowth and pathological neovascularization. Furthermore, retinal expression of Vegfa (which encodes vascular endothelial growth factor A) was higher in these mice than in Socs3 flox/flox controls, indicating that neuronal and glial Socs3 suppressed Vegfa expression during pathological conditions. Lack of neuronal and glial SOCS3 resulted in greater phosphorylation and activation of STAT3, which led to increased expression of its gene target Vegfa, and increased endothelial cell proliferation. In summary, SOCS3 in neurons and glial cells inhibited the STAT3-mediated secretion of VEGF from these cells, which suppresses endothelial cell activation, resulting in decreased endothelial cell proliferation and angiogenesis. These results suggest that neuronal and glial cell SOCS3 limits pathological retinal angiogenesis by suppressing VEGF signaling. PMID:26396267

  11. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    PubMed Central

    Robinson, Samuel D.; Lee, Tet Woo; Christie, David L.; Birch, Nigel P.

    2015-01-01

    NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM) but not high (50 μM) concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-aminopyridine (4-AP). Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and receptor-associated protein (RAP), a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs. PMID:26500501

  12. WNT3 Inhibits Cerebellar Granule Neuron Progenitor Proliferation and Medulloblastoma Formation via MAPK Activation

    PubMed Central

    Ayrault, Olivier; Kim, Jee Hae; Zhu, Xiaodong; Murphy, David A.; Van Aelst, Linda; Roussel, Martine F.; Hatten, Mary E.

    2013-01-01

    During normal cerebellar development, the remarkable expansion of granule cell progenitors (GCPs) generates a population of granule neurons that outnumbers the total neuronal population of the cerebral cortex, and provides a model for identifying signaling pathways that may be defective in medulloblastoma. While many studies focus on identifying pathways that promote growth of GCPs, a critical unanswered question concerns the identification of signaling pathways that block mitogenic stimulation and induce early steps in differentiation. Here we identify WNT3 as a novel suppressor of GCP proliferation during cerebellar development and an inhibitor of medulloblastoma growth in mice. WNT3, produced in early postnatal cerebellum, inhibits GCP proliferation by down-regulating pro-proliferative target genes of the mitogen Sonic Hedgehog (SHH) and the bHLH transcription factor Atoh1. WNT3 suppresses GCP growth through a non-canonical Wnt signaling pathway, activating prototypic mitogen-activated protein kinases (MAPKs), the Ras-dependent extracellular-signal-regulated kinases 1/2 (ERK1/2) and ERK5, instead of the classical β-catenin pathway. Inhibition of MAPK activity using a MAPK kinase (MEK) inhibitor reversed the inhibitory effect of WNT3 on GCP proliferation. Importantly, WNT3 inhibits proliferation of medulloblastoma tumor growth in mouse models by a similar mechanism. Thus, the present study suggests a novel role for WNT3 as a regulator of neurogenesis and repressor of neural tumors. PMID:24303070

  13. Murine Mueller cells are progenitor cells for neuronal cells and fibrous tissue cells

    SciTech Connect

    Florian, Christian; Langmann, Thomas; Weber, Bernhard H.F.; Morsczeck, Christian

    2008-09-19

    Mammalian Mueller cells have been reported to possess retinal progenitor cell properties and generate new neurons after injury. This study investigates murine Mueller cells under in vitro conditions for their capability of dedifferentiation into retinal progenitor cells. Mueller cells were isolated from mouse retina, and proliferating cells were expanded in serum-containing medium. For dedifferentiation, the cultured cells were transferred to serum-replacement medium (SRM) at different points in time after their isolation. Interestingly, early cell passages produced fibrous tissue in which extracellular matrix proteins and connective tissue markers were differentially expressed. In contrast, aged Mueller cell cultures formed neurospheres in SRM that are characteristic for neuronal progenitor cells. These neurospheres differentiated into neuron-like cells after cultivation on laminin/ornithine cell culture substrate. Here, we report for the first time that murine Mueller cells can be progenitors for both, fibrous tissue cells and neuronal cells, depending on the age of the cell culture.

  14. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines

    PubMed Central

    Gibson, Gary E.; Xu, Hui; Chen, Huan-Lian; Chen, Wei; Denton, Travis; Zhang, Sheng

    2015-01-01

    Reversible post-translation modifications of proteins are common in all cells and appear to regulate many processes. Nevertheless, the enzyme(s) responsible for the alterations and the significance of the modification are largely unknown. Succinylation of proteins occurs and causes large changes in the structure of proteins; however, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins are unknown. These studies focused on succinylation of mitochondrial proteins. The results demonstrate that the α-ketoglutarate dehydrogenase complex (KGDHC) can serve as a trans-succinylase that mediates succinylation in an α-ketoglutarate-dependent manner. Inhibition of KGDHC reduced suc-cinylation of both cytosolic and mitochondrial proteins in cultured neurons and in a neuronal cell line. Purified KGDHC can succinylate multiple proteins including other enzymes of the tricarboxylic acid (TCA) cycle leading to modification of their activity. Inhibition of KGDHC also modifies acetylation by modifying the pyruvate dehydrogenase complex. The much greater effectiveness of KGDHC than succinyl CoA suggests that the catalysis due to the E2k suc-cinyltransferase is important. Succinylation appears to be a major signaling system and it can be mediated by KGDHC. PMID:25772995

  15. Brefeldin A-inhibited guanine exchange factor 2 regulates filamin A phosphorylation and neuronal migration.

    PubMed

    Zhang, Jingping; Neal, Jason; Lian, Gewei; Shi, Bingxing; Ferland, Russell J; Sheen, Volney

    2012-09-01

    Periventricular heterotopia (PH) is a human malformation of cortical development associated with gene mutations in ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2 encodes for Big2 protein) and Filamin A (FLNA). PH is thought to derive from neuroependymal disruption, but the extent to which neuronal migration contributes to this phenotype is unknown. Here, we show that Arfgef2 null mice develop PH and exhibit impaired neural migration with increased protein expression for both FlnA and phosphoFlnA at Ser2152. Big2 physically interacts with FlnA and overexpression of phosphomimetic Ser2512 FLNA impairs neuronal migration. FlnA phosphorylation directs FlnA localization toward the cell cytoplasm, diminishes its binding affinity to actin skeleton, and alters the number and size of paxillin focal adhesions. Collectively, our results demonstrate a molecular mechanism whereby Big2 inhibition promotes phosphoFlnA (Ser2152) expression, and increased phosphoFlnA impairs its actin binding affinity and the distribution of focal adhesions, thereby disrupting cell intrinsic neuronal migration. PMID:22956851

  16. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors.

    PubMed

    Kolko, Miriam; de Turco, Elena B; Diemer, Nils Henrik; Bazan, Nicolas G

    2002-10-28

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H]Arachidonic acid release induced by both sPLA and glutamate was partially blocked by MK-801, indicating that the glutamate-NMDA-cPLA pathway contributes to sPLA -induced arachidonic acid release. Systemic administration of MK-801 to rats that had sPLA injected into the right striatum significantly decreased neuronal cell death. We conclude that glutamatergic synaptic activity modulates sPLA -induced neuronal cell death. PMID:12395100

  17. Presynaptic inhibition of gamma lobe neurons is required for olfactory learning in Drosophila.

    PubMed

    Zhang, Shixing; Roman, Gregg

    2013-12-16

    The loss of heterotrimeric G(o) signaling through the expression of pertussis toxin (PTX) within either the α/β or γ lobe mushroom body neurons of Drosophila results in the impaired aversive olfactory associative memory formation. Herein, we focus on the cellular effects of G(o) signaling in the γ lobe mushroom body neurons during memory formation. Expression of PTX in the γ lobes specifically inhibits G(o) activation, leading to poor olfactory learning and an increase in odor-elicited synaptic vesicle release. In the γ lobe neurons, training decreases synaptic vesicle release elicited by the unpaired conditioned stimulus -, while leaving presynaptic activation by the paired conditioned stimulus + unchanged. PTX expression in γ lobe neurons inhibits the generation of this differential synaptic activation by conditioned stimuli after negative reinforcement. Hyperpolarization of the γ lobe neurons or the inhibition of presynaptic activity through the expression of dominant negative dynamin transgenes ameliorated the memory impairment caused by PTX, indicating that the disinhibition of these neurons by PTX was responsible for the poor memory formation. The role for γ lobe inhibition, carried out by G(o) activation, indicates that an inhibitory circuit involving these neurons plays a positive role in memory acquisition. This newly uncovered requirement for inhibition of odor-elicited activity within the γ lobes is consistent with these neurons serving as comparators during learning, perhaps as part of an odor salience modification mechanism. PMID:24291093

  18. Indomethacin inhibits tetrodotoxin-resistant Na(+) channels at acidic pH in rat nociceptive neurons.

    PubMed

    Nakamura, Michiko; Jang, Il-Sung

    2016-06-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are well-known inhibitors of cyclooxygenases (COXs) and are widely used for the treatment of inflammatory pain; however several NSAIDs display COX-independent analgesic action including the inhibition of voltage-gated Na(+) channels expressed in primary afferent neurons. In the present study, we examined whether NSAIDs modulate tetrodotoxin-resistant (TTX-R) Na(+) channels and if this modulation depends on the extracellular pH. The TTX-R Na(+) currents were recorded from small-sized trigeminal ganglion neurons by using a whole-cell patch clamp technique. Among eight NSAIDs tested in this study, several drugs, including aspirin and ibuprofen, did not affect TTX-R Na(+) channels either at pH 7.4 or at pH 6.0. However, we found that indomethacin, and, to a lesser extent, ibuprofen and naproxen potently inhibited the peak amplitude of TTX-R Na(+) currents at pH 6.0. The indomethacin-induced inhibition of TTX-R Na(+) channels was more potent at depolarized membrane potentials. Indomethacin significantly shifted both the voltage-activation and voltage-inactivation relationships to depolarizing potentials at pH 6.0. Indomethacin accelerated the development of inactivation and retarded the recovery from inactivation of TTX-R Na(+) channels at pH 6.0. Given that indomethacin and several other NSAIDs could further suppress local nociceptive signals by inhibiting TTX-R Na(+) channels at an acidic pH in addition to the classical COX inhibition, these drugs could be particularly useful for the treatment of inflammatory pain. PMID:26898291

  19. Inhibition of the neuronal NFκB pathway attenuates bortezomib-induced neuropathy in a mouse model.

    PubMed

    Alé, Albert; Bruna, Jordi; Calls, Aina; Karamita, Maria; Haralambous, Sylva; Probert, Lesley; Navarro, Xavier; Udina, Esther

    2016-07-01

    Bortezomib is a proteasome inhibitor with a remarkable antitumor activity, used in the clinic as first line treatment for multiple myeloma. One hallmark of bortezomib mechanism of action in neoplastic cells is the inhibition of nuclear factor kappa B (NFκB), a transcription factor involved in cell survival and proliferation. Bortezomib-induced peripheral neuropathy is a dose-limiting toxicity that often requires adjustment of treatment and affects patient's prognosis and quality of life. Since disruption of NFκB pathway can also affect neuronal survival, we assessed the role of NFκB in bortezomib-induced neuropathy by using a transgenic mouse that selectively provides blockage of the NFκB pathway in neurons. Interestingly, we observed that animals with impaired NFκB activation developed significantly less severe neuropathy than wild type animals, with particular preservation of large myelinated fibers, thus suggesting that neuronal NFκB activation plays a positive role in bortezomib induced neuropathy and that bortezomib treatment might induce neuropathy by inhibiting NFκΒ in non-neuronal cell types or by targeting other signaling pathways. Therefore, inhibition of NFκB might be a promising strategy for the cotreatment of cancer and neuropathy. PMID:27211850

  20. Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Chia; Liu, Kuang-Kai; Chang, Huan-Cheng; Hwang, Eric; Chao, Jui-I.

    2014-05-01

    Nanodiamond is a promising carbon nanomaterial developed for biomedical applications. Here, we show fluorescent nanodiamond (FND) with the biocompatible properties that can be used for the labeling and tracking of neuronal differentiation and neuron cells derived from embryonal carcinoma stem (ECS) cells. The fluorescence intensities of FNDs were increased by treatment with FNDs in both the mouse P19 and human NT2/D1 ECS cells. FNDs were taken into ECS cells; however, FNDs did not alter the cellular morphology and growth ability. Moreover, FNDs did not change the protein expression of stem cell marker SSEA-1 of ECS cells. The neuronal differentiation of ECS cells could be induced by retinoic acid (RA). Interestingly, FNDs did not affect on the morphological alteration, cytotoxicity and apoptosis during the neuronal differentiation. Besides, FNDs did not alter the cell viability and the expression of neuron-specific marker β-III-tubulin in these differentiated neuron cells. The existence of FNDs in the neuron cells can be identified by confocal microscopy and flow cytometry. Together, FND is a biocompatible and readily detectable nanomaterial for the labeling and tracking of neuronal differentiation process and neuron cells from stem cells.

  1. A new method to effectively and rapidly generate neurons from SH-SY5Y cells.

    PubMed

    Yang, HongNa; Wang, Jing; Sun, JinHua; Liu, XiaoDun; Duan, Wei-Ming; Qu, TingYu

    2016-01-01

    It is well known that neurons differentiated from SH-SY5Y cells can serve as cell models for neuroscience research; i.e., neurotoxicity and tolerance to morphine in vitro. To differentiate SH-SY5Y cells into neurons, RA (retinoic acid) is commonly used to produce the inductive effect. However, the percentage of neuronal cells produced from SH-SY5Y cells is low, either from the use of RA treatment alone or from the combined application of RA and other chemicals. In the current study, we used CM-hNSCs (conditioned medium of human neural stem cells) as the combinational inducer with RA to prompt neuronal differentiation of SH-SY5Y cells. We found that neuronal differentiation was improved and that neurons were greatly increased in the differentiated SH-SY5Y cells using a combined treatment of CM-hNSCs and RA compared to RA treatment alone. The neuronal percentage was higher than 80% (about 88%) on the 3rd day and about 91% on the 7th day examined after a combined treatment with CM-hNSCs and RA. Cell maturation and neurite growth of these neuronal cells were also improved. In addition, the use of CM-hNSCs inhibited the apoptosis of RA-treated SH-SY5Y cells in culture. We are the first to report the use of CM-hNSCs in combination with RA to induce neuronal differentiation of RA-treated SH-SY5Y cells. Our method can rapidly and effectively promote the neuronal production of SH-SY5Y cells in culture conditions. PMID:26497914

  2. Basal Forebrain Cholinergic Neurons Primarily Contribute to Inhibition of Electroencephalogram Delta Activity, Rather Than Inducing Behavioral Wakefulness in Mice.

    PubMed

    Chen, Li; Yin, Dou; Wang, Tian-Xiao; Guo, Wei; Dong, Hui; Xu, Qi; Luo, Yan-Jia; Cherasse, Yoan; Lazarus, Michael; Qiu, Zi-Long; Lu, Jun; Qu, Wei-Min; Huang, Zhi-Li

    2016-07-01

    The basal forebrain (BF) cholinergic neurons have long been thought to be involved in behavioral wakefulness and cortical activation. However, owing to the heterogeneity of BF neurons and poor selectivity of traditional methods, the precise role of BF cholinergic neurons in regulating the sleep-wake cycle remains unclear. We investigated the effects of cell-selective manipulation of BF cholinergic neurons on the sleep-wake behavior and electroencephalogram (EEG) power spectrum using the pharmacogenetic technique, the 'designer receptors exclusively activated by designer drugs (DREADD)' approach, and ChAT-IRES-Cre mice. Our results showed that activation of BF cholinergic neurons expressing hM3Dq receptors significantly and lastingly decreased the EEG delta power spectrum, produced low-delta non-rapid eye movement sleep, and slightly increased wakefulness in both light and dark phases, whereas inhibition of BF cholinergic neurons expressing hM4Di receptors significantly increased EEG delta power spectrum and slightly decreased wakefulness. Next, the projections of BF cholinergic neurons were traced by humanized Renilla green fluorescent protein (hrGFP). Abundant and highly dense hrGFP-positive fibers were observed in the secondary motor cortex and cingulate cortex, and sparse hrGFP-positive fibers were observed in the ventrolateral preoptic nucleus, a known sleep-related structure. Finally, we found that activation of BF cholinergic neurons significantly increased c-Fos expression in the secondary motor cortex and cingulate cortex, but decreased c-Fos expression in the ventrolateral preoptic nucleus. Taken together, these findings reveal that the primary function of BF cholinergic neurons is to inhibit EEG delta activity through the activation of cerebral cortex, rather than to induce behavioral wakefulness. PMID:26797244

  3. Reinnervation of Hair Cells by Auditory Neurons after Selective Removal of Spiral Ganglion Neurons

    PubMed Central

    Martinez-Monedero, Rodrigo; Corrales, C. Eduardo; Cuajungco, Math P.; Heller, Stefan; Edge, Albert S.B.

    2007-01-01

    Hearing loss can be caused by primary degeneration of spiral ganglion neurons or by secondary degeneration of these neurons after hair cell loss. The replacement of auditory neurons would be an important step in any attempt to restore auditory function in patients with damaged inner ear neurons or hair cells. Application of β-bungarotoxin, a toxin derived from snake venom, to an explant of the cochlea eradicates spiral ganglion neurons while sparing the other cochlear cell types. The toxin was found to bind to the neurons and to cause apoptotic cell death without affecting hair cells or other inner ear cell types as indicated by TUNEL staining, and, thus, the toxin provides a highly specific means of deafferentation of hair cells. We therefore used the denervated organ of Corti for the study of neuronal regeneration and synaptogenesis with hair cells and found that spiral ganglion neurons obtained from the cochlea of an untreated newborn mouse reinnervated hair cells in the toxin-treated organ of Corti and expressed synaptic vesicle markers at points of contact with hair cells. These findings suggest that it may be possible to replace degenerated neurons by grafting new cells into the organ of Corti. PMID:16408287

  4. Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity

    PubMed Central

    Fenk, Lorenz A.; de Bono, Mario

    2015-01-01

    Carbon dioxide (CO2) gradients are ubiquitous and provide animals with information about their environment, such as the potential presence of prey or predators. The nematode Caenorhabditis elegans avoids elevated CO2, and previous work identified three neuron pairs called “BAG,” “AFD,” and “ASE” that respond to CO2 stimuli. Using in vivo Ca2+ imaging and behavioral analysis, we show that C. elegans can detect CO2 independently of these sensory pathways. Many of the C. elegans sensory neurons we examined, including the AWC olfactory neurons, the ASJ and ASK gustatory neurons, and the ASH and ADL nociceptors, respond to a rise in CO2 with a rise in Ca2+. In contrast, glial sheath cells harboring the sensory endings of C. elegans’ major chemosensory neurons exhibit strong and sustained decreases in Ca2+ in response to high CO2. Some of these CO2 responses appear to be cell intrinsic. Worms therefore may couple detection of CO2 to that of other cues at the earliest stages of sensory processing. We show that C. elegans persistently suppresses oviposition at high CO2. Hermaphrodite-specific neurons (HSNs), the executive neurons driving egg-laying, are tonically inhibited when CO2 is elevated. CO2 modulates the egg-laying system partly through the AWC olfactory neurons: High CO2 tonically activates AWC by a cGMP-dependent mechanism, and AWC output inhibits the HSNs. Our work shows that CO2 is a more complex sensory cue for C. elegans than previously thought, both in terms of behavior and neural circuitry. PMID:26100886

  5. Heat pulse excitability of vestibular hair cells and afferent neurons.

    PubMed

    Rabbitt, Richard D; Brichta, Alan M; Tabatabaee, Hessam; Boutros, Peter J; Ahn, JoongHo; Della Santina, Charles C; Poppi, Lauren A; Lim, Rebecca

    2016-08-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in <3 ms and decaying with a time constant of ∼24 ms. The inhibitory component dominated whole cell currents in 50% of hair cells at -68 mV and in 67% of hair cells at -60 mV. Responses were quantified and described on the basis of first principles of thermodynamics. Results identify key molecular targets underlying heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  6. Translaminar Inhibitory Cells Recruited by Layer 6 Cortico-Thalamic Neurons Suppress Visual Cortex

    PubMed Central

    Bortone, Dante S.; Olsen, Shawn R.; Scanziani, Massimo

    2014-01-01

    Summary In layer 6 (L6), a principal output layer of the mammalian cerebral cortex, a population of excitatory neurons defined by the NTSR1-Cre mouse line inhibit cortical responses to visual stimuli. Here we show that of the two major types of excitatory neurons existing in L6, the NTSR1-Cre line selectively targets those whose axon innervate both cortex and thalamus and not those whose axons remain within the cortex. These cortico-thalamic neurons mediate widespread inhibition across all cortical layers by recruiting fast-spiking inhibitory neurons whose cell-body resides in deep cortical layers yet whose axons arborize throughout all layers. This study reveals a circuit by which L6 modulates cortical activity and identifies an inhibitory neuron able to regulate the strength of cortical responses throughout cortical depth. PMID:24656931

  7. Sialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG.

    PubMed

    Al-Bashir, Najat; Mellado, Wilfredo; Filbin, Marie T

    2016-01-01

    Myelin-Associated Glycoprotein (MAG), a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig) super-family. Importantly, MAG (also known as Siglec-4) is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins), MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inhibitory effect of axonal growth. Previously, we showed that MAG binds sialic acid through domain 1 at Arg118 and is able to inhibit axonal growth through domain 5. We developed a neurite outgrowth (NOG) assay, in which both wild type MAG and mutated MAG (MAG Arg118) are expressed on cells. In addition we also developed a soluble form NOG in which we utilized soluble MAG-Fc and mutated MAG (Arg118-Fc). Only MAG-Fc is able to inhibit NOG, but not mutated MAG (Arg118)-Fc that has been mutated at its sialic acid binding site. However, both forms of membrane bound MAG- and MAG (Arg118)- expressing cells still inhibit NOG. Here, we review various results from different groups regarding MAG's inhibition of axonal growth. Also, we propose a model in which the sialic acid binding is not necessary for the inhibition induced by the membrane form of MAG, but it is necessary for the soluble form of MAG. This finding highlights the importance of understanding the different mechanisms by which MAG inhibits NOG in both the soluble fragmented form and the membrane-bound form in myelin debris following CNS damage. PMID:27065798

  8. Sialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG

    PubMed Central

    Al-Bashir, Najat; Mellado, Wilfredo; Filbin, Marie T.

    2016-01-01

    Myelin-Associated Glycoprotein (MAG), a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig) super-family. Importantly, MAG (also known as Siglec-4) is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins), MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inhibitory effect of axonal growth. Previously, we showed that MAG binds sialic acid through domain 1 at Arg118 and is able to inhibit axonal growth through domain 5. We developed a neurite outgrowth (NOG) assay, in which both wild type MAG and mutated MAG (MAG Arg118) are expressed on cells. In addition we also developed a soluble form NOG in which we utilized soluble MAG-Fc and mutated MAG (Arg118-Fc). Only MAG-Fc is able to inhibit NOG, but not mutated MAG (Arg118)-Fc that has been mutated at its sialic acid binding site. However, both forms of membrane bound MAG- and MAG (Arg118)- expressing cells still inhibit NOG. Here, we review various results from different groups regarding MAG’s inhibition of axonal growth. Also, we propose a model in which the sialic acid binding is not necessary for the inhibition induced by the membrane form of MAG, but it is necessary for the soluble form of MAG. This finding highlights the importance of understanding the different mechanisms by which MAG inhibits NOG in both the soluble fragmented form and the membrane-bound form in myelin debris following CNS damage. PMID:27065798

  9. Remote and reversible inhibition of neurons and circuits by small molecule induced potassium channel stabilization

    PubMed Central

    Auffenberg, Eva; Jurik, Angela; Mattusch, Corinna; Stoffel, Rainer; Genewsky, Andreas; Namendorf, Christian; Schmid, Roland M.; Rammes, Gerhard; Biel, Martin; Uhr, Manfred; Moosmang, Sven; Michalakis, Stylianos; Wotjak, Carsten T.; Thoeringer, Christoph K.

    2016-01-01

    Manipulating the function of neurons and circuits that translate electrical and chemical signals into behavior represents a major challenges in neuroscience. In addition to optogenetic methods using light-activatable channels, pharmacogenetic methods with ligand induced modulation of cell signaling and excitability have been developed. However, they are largely based on ectopic expression of exogenous or chimera proteins. Now, we describe the remote and reversible expression of a Kir2.1 type potassium channel using the chemogenetic technique of small molecule induced protein stabilization. Based on shield1-mediated shedding of a destabilizing domain fused to a protein of interest and inhibition of protein degradation, this principle has been adopted for biomedicine, but not in neuroscience so far. Here, we apply this chemogenetic approach in brain research for the first time in order to control a potassium channel in a remote and reversible manner. We could show that shield1-mediated ectopic Kir2.1 stabilization induces neuronal silencing in vitro and in vivo in the mouse brain. We also validated this novel pharmacogenetic method in different neurobehavioral paradigms.The DD-Kir2.1 may complement the existing portfolio of pharmaco- and optogenetic techniques for specific neuron manipulation, but it may also provide an example for future applications of this principle in neuroscience research. PMID:26757616

  10. α-Synuclein and neuronal cell death

    PubMed Central

    Cookson, Mark R

    2009-01-01

    α-Synuclein is a small protein that has special relevance for understanding Parkinson disease and related disorders. Not only is α-synuclein found in Lewy bodies characteristic of Parkinson disease, but also mutations in the gene for α-synuclein can cause an inherited form of Parkinson disease and expression of normal α-synuclein can increase the risk of developing Parkinson disease in sporadic, or non-familial, cases. Both sporadic and familial Parkinson disease are characterized by substantial loss of several groups of neurons, including the dopaminergic cells of the substantia nigra that are the target of most current symptomatic therapies. Therefore, it is predicted that α-synuclein, especially in its mutant forms or under conditions where its expression levels are increased, is a toxic protein in the sense that it is associated with an increased rate of neuronal cell death. This review will discuss the experimental contexts in which α-synuclein has been demonstrated to be toxic. I will also outline what is known about the mechanisms by which α-synuclein triggers neuronal damage, and identify some of the current gaps in our knowledge about this subject. Finally, the therapeutic implications of toxicity of α-synuclein will be discussed. PMID:19193223

  11. Anesthetic activation of central respiratory chemoreceptor neurons involves inhibition of a THIK-1-like background K+ current

    PubMed Central

    Lazarenko, Roman M.; Fortuna, Michal G.; Shi, Yingtang; Mulkey, Daniel K.; Takakura, Ana C.; Moreira, Thiago S.; Guyenet, Patrice G.; Bayliss, Douglas A.

    2010-01-01

    At surgical depths of anesthesia, inhalational anesthetics cause a loss of motor response to painful stimuli (i.e., immobilization) that is characterized by profound inhibition of spinal motor circuits. Yet, although clearly depressed, the respiratory motor system continues to provide adequate ventilation under these same conditions. Here, we show that isoflurane causes robust activation of CO2/pH-sensitive, Phox2b-expressing neurons located in the retrotrapezoid nucleus (RTN) of the rodent brainstem, in vitro and in vivo. In brainstem slices from Phox2b-eGFP mice, the firing of pH-sensitive RTN neurons was strongly increased by isoflurane, independent of prevailing pH conditions. At least two ionic mechanisms contributed to anesthetic activation of RTN neurons: activation of a Na+-dependent cationic current and inhibition of a background K+ current. Single cell RT-PCR analysis of dissociated GFP-labeled RTN neurons revealed expression of THIK-1 (K2P13.1), a channel that shares key properties with the native RTN current (i.e., suppression by inhalational anesthetics, weak rectification, inhibition by extracellular Na+, and pH-insensitivity). Isoflurane also increased firing rate of RTN chemosensitive neurons in urethane-anesthetized rats, again independent of CO2 levels. In these animals, isoflurane transiently enhanced activity of the respiratory system, an effect that was most prominent at low levels of respiratory drive and mediated largely by an increase in respiratory frequency. These data indicate that inhalational anesthetics cause activation of RTN neurons, which serve an important integrative role in respiratory control; the increased drive provided by enhanced RTN neuronal activity may contribute, in part, to maintaining respiratory motor activity under immobilizing anesthetic conditions. PMID:20610767

  12. Single cell ganglioside catabolism in primary cerebellar neurons and glia

    PubMed Central

    Essaka, David C.; Prendergast, Jillian; Keithley, Richard B.; Hindsgaul, Ole; Palcic, Monica M.

    2013-01-01

    Cell-to-cell heterogeneity in ganglioside catabolism was determined by profiling fluorescent tetramethylrhodamine-labeled GM1 (TMR-GM1) breakdown in individual primary neurons and glia from the rat cerebellum. Cells isolated from 5–6 day old rat cerebella were cultured for 7 days, and then incubated for 14 h with TMR-GM1. Intact cells were recovered from cultures by mild proteolysis, paraformaldehyde fixed, and subjected to single cell analysis. Individual cells were captured in a capillary, lysed, and the released single-cell contents subjected to capillary electrophoresis with quantitative laser-induced fluorescent detection of the catabolic products. Non-neuronal cells on average took up much more exogenous TMR-GM1 than neuronal cells, and catabolized it more extensively. After 14 h of incubation, non-neuronal cells retained only 14% of the TMR products as GM1 and GM2, compared to >50% for neurons. On average, non-neuronal cells contained 74% of TMR-labeled product as TMR-ceramide, compared to only 42% for neurons. Non-neuronal cells retained seven times as much TMR-GM3 (7%) compared to neuronal cells (1%). To confirm the observed single cell metabolomics, we lysed and compared TMR-GM1 catabolic profiles from mixed neuron/glial cell cultures and from cultures depleted of non-neuronal cells by treatment with the antimitotic agent cytosine arabinoside. The whole culture catabolic profiles were consistent with the average profiles of single neurons and glia. We conclude that the ultrasensitive analytic methods described accurately reflect single cell ganglioside catabolism in different cell populations from the brain. PMID:22407243

  13. microRNA-22 attenuates neuronal cell apoptosis in a cell model of traumatic brain injury

    PubMed Central

    Ma, Ji; Shui, Shaofeng; Han, Xinwei; Guo, Dong; Li, Tengfei; Yan, Lei

    2016-01-01

    Traumatic brain injury (TBI) is a major cause of injury-related deaths, and the mechanism of TBI has become a research focus, but little is known about the mechanism of microRNAs in TBI. The aim of this study is the role of microRNA-22 (miR-22) in TBI-induced neuronal cell apoptosis. Rat cortical neurons were cultured and the TBI model was induced by scratch injury in vitro, before which miR-22 level was altered by transfection of agomir or antagomir. Lactate dehydrogenase (LDH) release and TUNEL assays were performed to examine neuronal cell injury and apoptosis. The activity of caspase 3 (CASP3) and level changes of several apoptosis factors including B-cell lymphoma 2 (BCL2), BCL2-associated X protein (BAX), phosphatase and tensin homolog (PTEN) and v-AKT murine thymoma viral oncogene homolog 1 (AKT1) were detected. Results showed that TBI model cells possessed a downregulated miR-22 level (P < 0.001) and more LDH release and apoptotic cells indicating the aggravated neuronal cell injury and apoptosis induced by TBI. miR-22 agomir attenuated neuronal cell injury and apoptosis of the TBI model. It also caused the corresponding changes in CASP3 activity and other apoptosis factors, with cleaved CASP3, BAX and PTEN inhibited and BCL2 and phosphorylated AKT1 promoted, while miR-22 antagomir had the opposite effects. So miR-22 has neuroprotective roles of attenuating neuronal cell injury and apoptosis induced by TBI, which may be associated with its regulation on apoptosis factors. This study reveals miR-22 as a potential approach to TBI treatment and detailed mechanism remains to be uncovered. PMID:27186313

  14. Mitochondrial impairment induced by 3-nitropropionic acid is enhanced by endogenous metalloprotease activity inhibition in cultured rat striatal neurons.

    PubMed

    de Oca Balderas, Pavel Montes; Ospina, Gabriel Gutiérrez; Del Ángel, Abel Santamaría

    2013-06-24

    Metalloproteases from the metzincin family mediate molecule processing at the cell membrane termed ectodomain shedding (ES). This mechanism enables the generation of intracellular and extracellular fragments from cell membrane molecules that exert additional functions involved in cell processes including cell death, beyond those of full length molecules. Micotoxin 3-nitropropionic acid (3-NP) induces striatal neuronal degeneration in vivo and in vitro through mitochondrial complex II inhibition. In this study, we hypothesized that metalloproteases regulate mitochondrial activity in cultured rat striatal neurons undergoing degeneration. To test this idea, striatal neuronal cultures characterized by NeuN and GAD-67 expression were treated with 3-NP together with the metalloprotease inhibitor GM6001 and their mitochondrial activity was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Our results showed that metalloprotease inhibition potentiated mitochondrial activity impairment induced by 3-NP whereas the inhibitor alone had no effect. These results indicate that metalloproteases regulate and promote mitochondrial functionality in striatal neurons undergoing degeneration induced by 3-NP. Since NMDA receptor is involved in the excitotoxic neuronal death triggered by 3-NP and is known to undergo ES, we analyzed NMDAR subunit NR1 phenotypic distribution by immunofluorescence. 3-NP and GM6001 induced abnormal perinuclear NR1 accumulation that was not observed with 3-NP or GM6001 alone. This observation suggests that metalloproteases are involved in NR1 cellular reorganization induced by 3-NP, and that their inhibition results in abnormal NR1 distribution. Together results indicate that endogenous metalloproteases are activated during striatal neurodegeneration induced by 3-NP eliciting an adaptative or compensatory response that protects mitochondrial functionality. PMID:23643981

  15. Tributyltin induces oxidative stress and neuronal injury by inhibiting glutathione S-transferase in rat organotypic hippocampal slice cultures.

    PubMed

    Ishihara, Yasuhiro; Kawami, Tomohito; Ishida, Atsuhiko; Yamazaki, Takeshi

    2012-06-01

    Tributyltin (TBT) has been used as a heat stabilizer, agricultural pesticide and antifouling agents on ships, boats and fish-farming nets; however, the neurotoxicity of TBT has recently become a concern. TBT is suggested to stimulate the generation of reactive oxygen species (ROS) inside cells. The aim of this study was to determine the mechanism of neuronal oxidative injury induced by TBT using rat organotypic hippocampal slice cultures. The treatment of rat hippocampal slices with TBT induced ROS production, lipid peroxidation and cell death. Pretreatment with antioxidants such as superoxide dismutase, catalase or trolox, suppressed the above phenomena induced by TBT, indicating that TBT elicits oxidative stress in hippocampal slices, which causes neuronal cell death. TBT dose-dependently inhibited glutathione S-transferase (GST), but not glutathione peroxidase or glutathione reductase in the cytosol of rat hippocampus. The treatment of hippocampal slices with TBT decreased the GST activity. Pretreatment with reduced glutathione attenuated the reduction of GST activity and cell death induced by TBT, indicating that the decrease in GST activity by TBT is involved in hippocampal cell death. When hippocampal slices were treated with sulforaphane, the expression and activity of GST were increased. Notably, TBT-induced oxidative stress and cell death were significantly suppressed by pretreatment with sulforaphane. These results indicate that GST inhibition could contribute, at least in part, to the neuronal cell death induced by TBT in hippocampal slices. This study is the first report to show the link between neuronal oxidative injury and the GST inhibition elicited by TBT. PMID:22449404

  16. Early Exercise Protects against Cerebral Ischemic Injury through Inhibiting Neuron Apoptosis in Cortex in Rats.

    PubMed

    Zhang, Pengyue; Zhang, Yuling; Zhang, Jie; Wu, Yi; Jia, Jie; Wu, Junfa; Hu, Yongshan

    2013-01-01

    Early exercise is an effective strategy for stroke treatment, but the underlying mechanism remains poorly understood. Apoptosis plays a critical role after stroke. However, it is unclear whether early exercise inhibits apoptosis after stroke. The present study investigated the effect of early exercise on apoptosis induced by ischemia. Adult SD rats were subjected to transient focal cerebral ischemia by middle cerebral artery occlusion model (MCAO) and were randomly divided into early exercise group, non-exercise group and sham group. Early exercise group received forced treadmill training initiated at 24 h after operation. Fourteen days later, the cell apoptosis were detected by TdT-mediated dUTP-biotin nick-end labeling (TUNEL) and Fluoro-Jade-B staining (F-J-B). Caspase-3, cleaved caspase-3 and Bcl-2 were determined by western blotting. Cerebral infarct volume and motor function were evaluated by cresyl violet staining and foot fault test respectively. The results showed that early exercise decreased the number of apoptotic cells (118.74 ± 6.15 vs. 169.65 ± 8.47, p < 0.05, n = 5), inhibited the expression of caspase-3 and cleaved caspase-3 (p < 0.05, n = 5), and increased the expression of Bcl-2 (p < 0.05, n = 5). These data were consistent with reduced infarct volume and improved motor function. These results suggested that early exercise could provide neuroprotection through inhibiting neuron apoptosis. PMID:23502470

  17. Inhibition of the Rho/ROCK pathway prevents neuronal degeneration in vitro and in vivo following methylmercury exposure

    SciTech Connect

    Fujimura, Masatake; Usuki, Fusako; Kawamura, Miwako; Izumo, Shuji

    2011-01-01

    Methylmercury (MeHg) is an environmental neurotoxicant which induces neuropathological changes in both the central nervous and peripheral sensory nervous systems. Our recent study demonstrated that down-regulation of Ras-related C3 botulinum toxin substrate 1 (Rac1), which is known to promote neuritic extension, preceded MeHg-induced damage in cultured cortical neurons, suggesting that MeHg-mediated axonal degeneration is due to the disturbance of neuritic extension. Therefore we hypothesized that MeHg-induced axonal degeneration might be caused by neuritic extension/retraction incoordination. This idea brought our attention to the Ras homolog gene (Rho)/Rho-associated coiled coil-forming protein kinase (ROCK) pathway because it has been known to be associated with the development of axon and apoptotic neuronal cell death. Here we show that inhibition of the Rho/ROCK pathway prevents MeHg-intoxication both in vitro and in vivo. A Rho inhibitor, C3 toxin, and 2 ROCK inhibitors, Fasudil and Y-27632, significantly protected against MeHg-induced axonal degeneration and apoptotic neuronal cell death in cultured cortical neuronal cells exposed to 100 nM MeHg for 3 days. Furthermore, Fasudil partially prevented the loss of large pale neurons in dorsal root ganglia, axonal degeneration in dorsal spinal root nerves, and vacuolar degeneration in the dorsal columns of the spinal cord in MeHg-intoxicated model rats (20 ppm MeHg in drinking water for 28 days). Hind limb crossing sign, a characteristic MeHg-intoxicated sign, was significantly suppressed in this model. The results suggest that inhibition of the Rho/ROCK pathway rescues MeHg-mediated neuritic extension/retraction incoordination and is effective for the prevention of MeHg-induced axonal degeneration and apoptotic neuronal cell death.

  18. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    PubMed

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. PMID:27163199

  19. Closing the Phenotypic Gap between Transformed Neuronal Cell Lines in Culture and Untransformed Neurons

    NASA Technical Reports Server (NTRS)

    Myers, Tereance A.; Nickerson, Cheryl A.; Kaushal, Deepak; Ott, C. Mark; HonerzuBentrup, Kerstin; Ramamurthy, Rajee; Nelman-Gonzales, Mayra; Pierson, Duane L.; Philipp, Mario T.

    2008-01-01

    Studies of neuronal dysfunction in the central nervous system (CNS) are frequently limited by the failure of primary neurons to propagate in vitro. Neuronal cell lines can be substituted for primary cells but they often misrepresent normal conditions. We hypothesized that a dimensional (3-D) cell culture system would drive the phenotype of transformed neurons closer to that of untransformed cells. In our studies comparing 3-D versus 2-dimensional (2-D) culture, neuronal SH-SY5Y (SY) cells underwent distinct morphological changes combined with a significant drop in their rate of cell division. Expression of the proto-oncogene N-myc and the RNA binding protein HuD was decreased in 3-D culture as compared to standard 2-D conditions. We observed a decline in the anti-apoptotic protein Bcl-2 in 3-D culture, coupled with increased expression of the pro-apoptotic proteins Bax and Bak. Moreover, thapsigargin (TG)-induced apoptosis was enhanced in the 3-D cells. Microarray analysis demonstrated significantly differing mRNA levels for over 700 genes in the cells of each culture type. These results indicate that a 3-D culture approach narrows the phenotypic gap between neuronal cell lines and primary neurons. The resulting cells may readily be used for in vitro research of neuronal pathogenesis.

  20. TETRAMETHRIN AND DDT INHIBIT SPONTANEOUS FIRING IN CORTICAL NEURONAL NETWORKS

    EPA Science Inventory

    The insecticidal and neurotoxic effects of pyrethroids result from prolonged sodium channel inactivation, which causes alterations in neuronal firing and communication. Previously, we determined the relative potencies of 11 type I and type II pyrethroid insecticides using microel...

  1. Calpastatin inhibits motor neuron death and increases survival of hSOD1(G93A) mice.

    PubMed

    Rao, Mala V; Campbell, Jabbar; Palaniappan, Arti; Kumar, Asok; Nixon, Ralph A

    2016-04-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease with a poorly understood cause and no effective treatment. Given that calpains mediate neurodegeneration in other pathological states and are abnormally activated in ALS, we investigated the possible ameliorative effects of inhibiting calpain over-activation in hSOD1(G93A) transgenic (Tg) mice in vivo by neuron-specific over-expression of calpastatin (CAST), the highly selective endogenous inhibitor of calpains. Our data indicate that over-expression of CAST in hSOD1(G93A) mice, which lowered calpain activation to levels comparable to wild-type mice, inhibited the abnormal breakdown of cytoskeletal proteins (spectrin, MAP2 and neurofilaments), and ameliorated motor axon loss. Disease onset in hSOD1(G93A) /CAST mice compared to littermate hSOD1(G93A) mice is delayed, which accounts for their longer time of survival. We also find that neuronal over-expression of CAST in hSOD1(G93A) transgenic mice inhibited production of putative neurotoxic caspase-cleaved tau and activation of Cdk5, which have been implicated in neurodegeneration in ALS models, and also reduced the formation of SOD1 oligomers. Our data indicate that inhibition of calpain with CAST is neuroprotective in an ALS mouse model. CAST (encoding calpastatin) inhibits hyperactivated calpain to prevent motor neuron disease operating through a cascade of events as indicated in the schematic, with relevance to amyotrophic lateral sclerosis (ALS). We propose that over-expression of CAST in motor neurons of hSOD1(G93A) mice inhibits activation of CDK5, breakdown of cytoskeletal proteins (NFs, MAP2 and Tau) and regulatory molecules (Cam Kinase IV, Calcineurin A), and disease-causing proteins (TDP-43, α-Synuclein and Huntingtin) to prevent neuronal loss and delay neurological deficits. In our experiments, CAST could also inhibit cleavage of Bid, Bax, AIF to prevent mitochondrial, ER and lysosome-mediated cell death mechanisms. Similarly

  2. Phenotype-dependent inhibition of glutamatergic transmission on nucleus accumbens medium spiny neurons by the abused inhalant toluene.

    PubMed

    Beckley, Jacob T; Randall, Patrick K; Smith, Rachel J; Hughes, Benjamin A; Kalivas, Peter W; Woodward, John J

    2016-05-01

    Abused inhalants are voluntarily inhaled at high concentrations to produce intoxicating effects. Results from animal studies show that the abused inhalant toluene triggers behaviors, such as self-administration and conditioned place preference, which are commonly associated with addictive drugs. However, little is known about how toluene affects neurons within the nucleus accumbens (NAc), a brain region within the basal ganglia that mediates goal-directed behaviors and is implicated in the development and maintenance of addictive behaviors. Here we report that toluene inhibits a component of the after-hyperpolarization potential, and dose-dependently inhibits N-methyl-D-aspartate (NMDA)-mediated currents in rat NAc medium spiny neurons (MSN). Moreover, using the multivariate statistical technique, partial least squares discriminative analysis to analyze electrophysiological measures from rat NAc MSNs, we show that toluene induces a persistent depression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-mediated currents in one subtype of NAc MSNs, and that the electrophysiological features of MSN neurons predicts their sensitivity to toluene. The CB1 receptor antagonist AM281 blocked the toluene-induced long-term depression of AMPA currents, indicating that this process is dependent on endocannabinoid signaling. The neuronal identity of recorded cells was examined using dual histochemistry and shows that toluene-sensitive NAc neurons are dopamine D2 MSNs that express preproenkephalin mRNA. Overall, the results from these studies indicate that physiological characteristics obtained from NAc MSNs during whole-cell patch-clamp recordings reliably predict neuronal phenotype, and that the abused inhalant toluene differentially depresses excitatory neurotransmission in NAc neuronal subtypes. PMID:25752326

  3. Manganese inhibits the ability of astrocytes to promote neuronal differentiation

    SciTech Connect

    Giordano, Gennaro; Pizzurro, Daniella; VanDeMark, Kathryn; Guizzetti, Marina; Costa, Lucio G.

    2009-10-15

    Manganese (Mn) is a known neurotoxicant and developmental neurotoxicant. As Mn has been shown to accumulate in astrocytes, we sought to investigate whether Mn would alter astrocyte-neuronal interactions, specifically the ability of astrocytes to promote differentiation of neurons. We found that exposure of rat cortical astrocytes to Mn (50-500 {mu}M) impaired their ability to promote axonal and neurite outgrowth in hippocampal neurons. This effect of Mn appeared to be mediated by oxidative stress, as it was reversed by antioxidants (melatonin and PBN) and by increasing glutathione levels, while it was potentiated by glutathione depletion in astrocytes. As the extracellular matrix protein fibronectin plays an important role in astrocyte-mediated neuronal neurite outgrowth, we also investigated the effect of Mn on fibronectin. Mn caused a concentration-dependent decrease of fibronectin protein and mRNA in astrocytes lysate and of fibronectin protein in astrocyte medium; these effects were also antagonized by antioxidants. Exposure of astrocytes to two oxidants, H{sub 2}O{sub 2} and DMNQ, similarly impaired their neuritogenic action, and led to a decreased expression of fibronectin. Mn had no inhibitory effect on neurite outgrowth when applied directly onto hippocampal neurons, where it actually caused a small increase in neuritogenesis. These results indicate that Mn, by targeting astrocytes, affects their ability to promote neuronal differentiation by a mechanism which is likely to involve oxidative stress.

  4. Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice.

    PubMed

    Cao, Xuehong; Xu, Pingwen; Oyola, Mario G; Xia, Yan; Yan, Xiaofeng; Saito, Kenji; Zou, Fang; Wang, Chunmei; Yang, Yongjie; Hinton, Antentor; Yan, Chunling; Ding, Hongfang; Zhu, Liangru; Yu, Likai; Yang, Bin; Feng, Yuxin; Clegg, Deborah J; Khan, Sohaib; DiMarchi, Richard; Mani, Shaila K; Tong, Qingchun; Xu, Yong

    2014-10-01

    Binge eating afflicts approximately 5% of US adults, though effective treatments are limited. Here, we showed that estrogen replacement substantially suppresses binge-like eating behavior in ovariectomized female mice. Estrogen-dependent inhibition of binge-like eating was blocked in female mice specifically lacking estrogen receptor-α (ERα) in serotonin (5-HT) neurons in the dorsal raphe nuclei (DRN). Administration of a recently developed glucagon-like peptide-1-estrogen (GLP-1-estrogen) conjugate designed to deliver estrogen to GLP1 receptor-enhanced regions effectively targeted bioactive estrogens to the DRN and substantially suppressed binge-like eating in ovariectomized female mice. Administration of GLP-1 alone reduced binge-like eating, but not to the same extent as the GLP-1-estrogen conjugate. Administration of ERα-selective agonist propylpyrazole triol (PPT) to murine DRN 5-HT neurons activated these neurons in an ERα-dependent manner. PPT also inhibited a small conductance Ca2+-activated K+ (SK) current; blockade of the SK current prevented PPT-induced activation of DRN 5-HT neurons. Furthermore, local inhibition of the SK current in the DRN markedly suppressed binge-like eating in female mice. Together, our data indicate that estrogens act upon ERα to inhibit the SK current in DRN 5-HT neurons, thereby activating these neurons to suppress binge-like eating behavior and suggest ERα and/or SK current in DRN 5-HT neurons as potential targets for anti-binge therapies. PMID:25157819

  5. β2-Agonists Inhibit TNF-α-Induced ICAM-1 Expression in Human Airway Parasympathetic Neurons

    PubMed Central

    Nie, Zhenying; Fryer, Allison D.; Jacoby, David B.

    2012-01-01

    Background Major basic protein released from eosinophils to airway parasympathetic nerves blocks inhibitory M2 muscarinic receptors on the parasympathetic nerves, increasing acetylcholine release and potentiating reflex bronchoconstriction. Recruitment of eosinophils to airway parasympathetic neurons requires neural expression of both intercellular adhesion molecular-1 (ICAM-1) and eotaxin. We have shown that inflammatory cytokines induce eotaxin and ICAM-1 expression in parasympathetic neurons. Objective To test whether the β2 agonist albuterol, which is used to treat asthma, changes TNF-alpha-induced eotaxin and ICAM-1 expression in human parasympathetic neurons. Methods Parasympathetic neurons were isolated from human tracheas and grown in serum-free medium for one week. Cells were incubated with either (R)-albuterol (the active isomer), (S)-albuterol (the inactive isomer) or (R,S)-albuterol for 90 minutes before adding 2 ng/ml TNF-alpha for another 4 hours (for mRNA) or 24 hours (for protein). Results and Conclusions Baseline expression of eotaxin and ICAM-1 were not changed by any isomer of albuterol as measured by real time RT-PCR. TNF-alpha induced ICAM-1 expression was significantly inhibited by (R)-albuterol in a dose dependent manner, but not by (S) or (R,S)-albuterol. Eotaxin expression was not changed by TNF-alpha or by any isomer of albuterol. The β-receptor antagonist propranolol blocked the inhibitory effect of (R)-albuterol on TNF-alpha-induced ICAM-1 expression. Clinical Implication The suppressive effect of (R)-albuterol on neural ICAM-1 expression may be an additional mechanism for decreasing bronchoconstriction, since it would decrease eosinophil recruitment to the airway nerves. PMID:23049757

  6. Distinct sites on tenascin-C mediate repellent or adhesive interactions with different neuronal cell types.

    PubMed

    Husmann, K; Carbonetto, S; Schachner, M

    1995-11-01

    In this study we have determined the binding specificities of four different neuronal cell types to tenascin-C (TN-C) and laminin using a cell adhesion assay. TN-C was repulsive for small cerebellar neurons and PC12 phaeochromocytoma cells, since after short-term adhesion to the substrate-bound molecule with a maximum of cell binding at 45 min, the cells detached from the substrate and after 22 h only about 25% of the originally adherent cells were still bound. For N2A neuroblastoma cells and retinal cells TN-C was an adhesive substrate, since the number of adherent cells did not decrease after the initial attachment period. All four cell types adhered well to laminin at all time points studied. For short-term adhesion of small cerebellar neurons and PC12 cells two binding sites were identified on TN-C, one being localized within the epidermal growth factor-like repeats three to five and the second within fibronectin type III-like repeats three and four. One binding site for N2A and retinal cells was localized within fibronectin type III-like repeat seven. Binding of small cerebellar neurons to TN-C was dependent on Ca2+, but not on Mg2+ and was inhibitable by polyclonal antibodies to beta 1 integrin. Short-term adhesion of small cerebellar neurons was also inhibitable with a mixture of recombinant fragments of TN-C encompassing the whole molecule, although the specific inhibitory activity of this mixture was ten-fold lower on a molar basis when compared to the native molecule. Our observations indicate that different neuronal cell types use distinct binding sites on TN-C for repellent or adhesive interactions and that beta 1 integrin is involved in the recognition event leading to repulsion of small cerebellar neurons. PMID:8821032

  7. Astrocytic αVβ3 Integrin Inhibits Neurite Outgrowth and Promotes Retraction of Neuronal Processes by Clustering Thy-1

    PubMed Central

    Herrera-Molina, Rodrigo; Frischknecht, Renato; Maldonado, Horacio; Seidenbecher, Constanze I.; Gundelfinger, Eckart D.; Hetz, Claudio; Aylwin, María de la Luz; Schneider, Pascal; Quest, Andrew F. G.; Leyton, Lisette

    2012-01-01

    Thy-1 is a membrane glycoprotein suggested to stabilize or inhibit growth of neuronal processes. However, its precise function has remained obscure, because its endogenous ligand is unknown. We previously showed that Thy-1 binds directly to αVβ3 integrin in trans eliciting responses in astrocytes. Nonetheless, whether αVβ3 integrin might also serve as a Thy-1-ligand triggering a neuronal response has not been explored. Thus, utilizing primary neurons and a neuron-derived cell line CAD, Thy-1-mediated effects of αVβ3 integrin on growth and retraction of neuronal processes were tested. In astrocyte-neuron co-cultures, endogenous αVβ3 integrin restricted neurite outgrowth. Likewise, αVβ3-Fc was sufficient to suppress neurite extension in Thy-1(+), but not in Thy-1(−) CAD cells. In differentiating primary neurons exposed to αVβ3-Fc, fewer and shorter dendrites were detected. This effect was abolished by cleavage of Thy-1 from the neuronal surface using phosphoinositide-specific phospholipase C (PI-PLC). Moreover, αVβ3-Fc also induced retraction of already extended Thy-1(+)-axon-like neurites in differentiated CAD cells as well as of axonal terminals in differentiated primary neurons. Axonal retraction occurred when redistribution and clustering of Thy-1 molecules in the plasma membrane was induced by αVβ3 integrin. Binding of αVβ3-Fc was detected in Thy-1 clusters during axon retraction of primary neurons. Moreover, αVβ3-Fc-induced Thy-1 clustering correlated in time and space with redistribution and inactivation of Src kinase. Thus, our data indicates that αVβ3 integrin is a ligand for Thy-1 that upon binding not only restricts the growth of neurites, but also induces retraction of already existing processes by inducing Thy-1 clustering. We propose that these events participate in bi-directional astrocyte-neuron communication relevant to axonal repair after neuronal damage. PMID:22479590

  8. Inhibition of catechol-O-methyl transferase (COMT) by tolcapone restores reductions in microtubule-associated protein 2 (MAP2) and synaptophysin (SYP) following exposure of neuronal cells to neurotropic HIV.

    PubMed

    Lee, Ting Ting; Chana, Gursharan; Gorry, Paul R; Ellett, Anne; Bousman, Chad A; Churchill, Melissa J; Gray, Lachlan R; Everall, Ian P

    2015-10-01

    This investigation aimed to assess whether inhibition of cathecol-O-methyl transferase (COMT) by tolcapone could provide neuroprotection against HIV-associated neurodegenerative effects. This study was conducted based on a previous work, which showed that a single nucleotide polymorphism (SNP) at position 158 (val158met) in COMT, resulted in 40 % lower COMT activity. Importantly, this reduction confers a protective effect against HIV-associated neurocognitive disorders (HAND), which have been linked to HIV-associated brain changes. SH-SY5Y-differentiated neurons were exposed to macrophage-propagated HIV (neurotropic MACS2-Br strain) in the presence or absence of tolcapone for 6 days. RNA was extracted, and qPCR was performed using Qiagen RT2 custom array consisting of genes for neuronal and synaptic integrity, COMT and pro-inflammatory markers. Immunofluorescence was conducted to validate the gene expression changes at the protein level. Our findings demonstrated that HIV significantly increased the messenger RNA (mRNA) expression of COMT while reducing the expression of microtubule-associated protein 2 (MAP2) (p = 0.0015) and synaptophysin (SYP) (p = 0.012) compared to control. A concomitant exposure of tolcapone ameliorated the perturbed expression of MAP2 (p = 0.009) and COMT (p = 0.024) associated with HIV. Immunofluorescence revealed a trend reduction of SYP and MAP2 with exposure to HIV and that concomitant exposure of tolcapone increased SYP (p = 0.016) compared to HIV alone. Our findings demonstrated in vitro that inhibition of COMT can ameliorate HIV-associated neurodegenerative changes that resulted in the decreased expression of the structural and synaptic components MAP2 and SYP. As HIV-associated dendritic and synaptic damage are contributors to HAND, inhibition of COMT may represent a potential strategy for attenuating or preventing some of the symptoms of HAND. PMID:26037113

  9. Agmatine Ameliorates High Glucose-Induced Neuronal Cell Senescence by Regulating the p21 and p53 Signaling

    PubMed Central

    Song, Juhyun; Lee, Byeori; Kang, Somang; Oh, Yumi; Kim, Eosu; Kim, Chul-Hoon; Song, Ho-Taek

    2016-01-01

    Neuronal senescence caused by diabetic neuropathy is considered a common complication of diabetes mellitus. Neuronal senescence leads to the secretion of pro-inflammatory cytokines, the production of reactive oxygen species, and the alteration of cellular homeostasis. Agmatine, which is biosynthesized by arginine decarboxylation, has been reported in previous in vitro to exert a protective effect against various stresses. In present study, agmatine attenuated the cell death and the expression of pro-inflammatory cytokines such as IL-6, TNF-alpha and CCL2 in high glucose in vitro conditions. Moreover, the senescence associated-β-galatosidase's activity in high glucose exposed neuronal cells was reduced by agmatine. Increased p21 and reduced p53 in high glucose conditioned cells were changed by agmatine. Ultimately, agmatine inhibits the neuronal cell senescence through the activation of p53 and the inhibition of p21. Here, we propose that agmatine may ameliorate neuronal cell senescence in hyperglycemia. PMID:26924930

  10. Agmatine Ameliorates High Glucose-Induced Neuronal Cell Senescence by Regulating the p21 and p53 Signaling.

    PubMed

    Song, Juhyun; Lee, Byeori; Kang, Somang; Oh, Yumi; Kim, Eosu; Kim, Chul-Hoon; Song, Ho-Taek; Lee, Jong Eun

    2016-02-01

    Neuronal senescence caused by diabetic neuropathy is considered a common complication of diabetes mellitus. Neuronal senescence leads to the secretion of pro-inflammatory cytokines, the production of reactive oxygen species, and the alteration of cellular homeostasis. Agmatine, which is biosynthesized by arginine decarboxylation, has been reported in previous in vitro to exert a protective effect against various stresses. In present study, agmatine attenuated the cell death and the expression of pro-inflammatory cytokines such as IL-6, TNF-alpha and CCL2 in high glucose in vitro conditions. Moreover, the senescence associated-β-galatosidase's activity in high glucose exposed neuronal cells was reduced by agmatine. Increased p21 and reduced p53 in high glucose conditioned cells were changed by agmatine. Ultimately, agmatine inhibits the neuronal cell senescence through the activation of p53 and the inhibition of p21. Here, we propose that agmatine may ameliorate neuronal cell senescence in hyperglycemia. PMID:26924930

  11. RARβ regulates neuronal cell death and differentiation in the avian ciliary ganglion

    PubMed Central

    Boerries, Melanie; Busch, Hauke

    2015-01-01

    ABSTRACT Programmed cell death during chicken ciliary ganglion (CG) development is mostly discussed as an extrinsically regulated process, guided either by the establishment of a functional balance between preganglionic and postganglionic activity or the availability of target‐derived neurotrophic factors. We found that the expression of the gene coding for the nuclear retinoic acid receptor β (RARB) is transiently upregulated prior to and during the execution phase of cell death in the CG. Using retroviral vectors, the expression of RARB was knocked down during embryonic development in ovo. The knockdown led to a significant increase in CG neuron number after the cell death phase. BrdU injections and active caspase‐3 staining revealed that this increase in neuron number was due to an inhibition of apoptosis during the normal cell death phase. Furthermore, apoptotic neuron numbers were significantly increased at a stage when cell death is normally completed. While the cholinergic phenotype of the neurons remained unchanged after RARB knockdown, the expression of the proneural gene Cash1 was increased, but somatostatin‐like immunoreactivity, a hallmark of the mature choroid neuron population, was decreased. Taken together, these results point toward a delay in neuronal differentiation as well as cell death. The availability of nuclear retinoic acid receptor β (RARβ) and RARβ‐induced transcription of genes could therefore be a new intrinsic cue for the maturation of CG neurons and their predisposition to undergo cell death. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1204–1218, 2015 PMID:25663354

  12. The neuronal cell-surface molecule mitogenic for Schwann cells is a heparin-binding protein.

    PubMed Central

    Ratner, N; Hong, D M; Lieberman, M A; Bunge, R P; Glaser, L

    1988-01-01

    The cell surface of embryonic peripheral neurons provides a mitogenic stimulus for Schwann cells. We report (i) the solubilization of this mitogenic activity from rat dorsal root ganglion neurons grown in tissue culture and (ii) the solubilization and partial purification of mitogenic activity from neonatal rat brains. Extracted mitogenic activity is peripheral rather than intrinsic to the membrane, stable after extraction, and active as a mitogen in the absence of serum (the most stringent criterion defining the neuronal mitogen). We have previously provided evidence suggesting that a neuronal cell-surface heparan sulfate proteoglycan is required for expression of the neurons' mitogenic activity. We now show that mitogenic activity can be extracted from the membrane dissociated from proteoglycan as assayed by its ability to bind to immobilized heparin. After dissociation, low concentrations of heparin (1 micrograms/ml) inhibit the ability of the mitogen to stimulate Schwann cell division. Basic fibroblast growth factor (FGF) is weakly mitogenic for Schwann cells, but it is not present in mitogenic brain extracts (based on immunoblotting). Immunodepletion experiments with specific antibodies to FGF indicate that the mitogenic activity extracted from neurons is not a form of this heparin-binding mitogen. Acidic FGF is not mitogenic for Schwann cells and is not present in mitogenic brain extracts. We suggest that these and previous data indicate the neurite mitogen is a proteoglycan-growth factor complex that limits mitogenic activity to the axonal surface, protects mitogen against inactivation by other proteoglycans, and provides for effective presentation of mitogen to the Schwann cell. PMID:3413130

  13. Distinct cognitive effects and underlying transcriptome changes upon inhibition of individual miRNAs in hippocampal neurons

    PubMed Central

    Malmevik, Josephine; Petri, Rebecca; Knauff, Pina; Brattås, Per Ludvik; Åkerblom, Malin; Jakobsson, Johan

    2016-01-01

    MicroRNAs (miRNA) are small, non-coding RNAs mediating post-transcriptional regulation of gene expression. miRNAs have recently been implicated in hippocampus-dependent functions such as learning and memory, although the roles of individual miRNAs in these processes remain largely unknown. Here, we achieved stable inhibition using AAV-delivered miRNA sponges of individual, highly expressed and brain-enriched miRNAs; miR-124, miR-9 and miR-34, in hippocampal neurons. Molecular and cognitive studies revealed a role for miR-124 in learning and memory. Inhibition of miR-124 resulted in an enhanced spatial learning and working memory capacity, potentially through altered levels of genes linked to synaptic plasticity and neuronal transmission. In contrast, inhibition of miR-9 or miR-34 led to a decreased capacity of spatial learning and of reference memory, respectively. On a molecular level, miR-9 inhibition resulted in altered expression of genes related to cell adhesion, endocytosis and cell death, while miR-34 inhibition caused transcriptome changes linked to neuroactive ligand-receptor transduction and cell communication. In summary, this study establishes distinct roles for individual miRNAs in hippocampal function. PMID:26813637

  14. Obesity attenuates D2 autoreceptor‐mediated inhibition of putative ventral tegmental area dopaminergic neurons

    PubMed Central

    Koyama, Susumu; Mori, Masayoshi; Kanamaru, Syohei; Sazawa, Takuya; Miyazaki, Ayano; Terai, Hiroki; Hirose, Shinichi

    2014-01-01

    Abstract The ventral tegmental area (VTA) in the midbrain is important for food reward. High‐fat containing palatable foods have reinforcing effects and accelerate obesity. We have previously reported that diet‐induced obesity selectively decreased the spontaneous activity of VTA GABA neurons, but not dopamine neurons. The spontaneous activity of VTA dopamine neurons is regulated by D2 autoreceptors. In this study, we hypothesized that obesity would affect the excitability of VTA dopamine neurons via D2 autoreceptors. To examine this hypothesis, we compared D2 receptor‐mediated responses of VTA dopamine neurons between lean and obese mice. Mice fed on a high‐fat (45%) diet and mice fed on a standard diet were used as obese and lean models, respectively. Brain slice preparations were made from these two groups. Spontaneous activity of VTA neurons was recorded by extracellular recording. Putative VTA dopamine neurons were identified by firing inhibition with a D2 receptor agonist quinpirole, and electrophysiological criteria (firing frequency <5 Hz and action potential current duration >1.2 msec). Single‐dose application of quinpirole (3−100 nmol/L) exhibited similar firing inhibition of putative VTA dopamine neurons between lean and obese mice. In stepwise application by increasing quinpirole concentrations of 3, 10, 30, and 100 nmol/L subsequently, quinpirole‐induced inhibition of firing decreased in putative VTA dopamine neurons of obese mice compared with those of lean mice. In conclusion, high‐fat diet‐induced obesity attenuated D2 receptor‐mediated inhibition of putative VTA dopamine neurons due to the acceleration of D2 receptor desensitization. PMID:24793981

  15. Opioids inhibit visceral afferent activation of catecholamine neurons in the solitary tract nucleus.

    PubMed

    Cui, R J; Roberts, B L; Zhao, H; Andresen, M C; Appleyard, S M

    2012-10-11

    Brainstem A2/C2 catecholamine (CA) neurons within the solitary tract nucleus (NTS) influence many homeostatic functions, including food intake, stress, respiratory and cardiovascular reflexes. They also play a role in both opioid reward and withdrawal. Injections of opioids into the NTS modulate many autonomic functions influenced by catecholamine neurons including food intake and cardiac function. We recently showed that NTS-CA neurons are directly activated by incoming visceral afferent inputs. Here we determined whether opioid agonists modulate afferent activation of NTS-CA neurons using transgenic mice with EGFP expressed under the control of the tyrosine hydroxylase promoter (TH-EGFP) to identify catecholamine neurons. The opioid agonist Met-enkephalin (Met-Enk) significantly attenuated solitary tract-evoked excitatory postsynaptic currents (ST-EPSCs) in NTS TH-EGFP neurons by 80%, an effect reversed by wash or the mu opioid receptor-specific antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP). Met-Enk had a significantly greater effect to inhibit afferent inputs onto TH-EGFP-positive neurons than EGFP-negative neurons, which were only inhibited by 50%. The mu agonist, DAMGO, also inhibited the ST-EPSC in TH-EGFP neurons in a dose-dependent manner. In contrast, neither the delta agonist DPDPE, nor the kappa agonist, U69,593, consistently inhibited the ST-EPSC amplitude. Met-Enk and DAMGO increased the paired pulse ratio, decreased the frequency, but not amplitude, of mini-EPSCs and had no effect on holding current, input resistance or current-voltage relationships in TH-EGFP neurons, suggesting a presynaptic mechanism of action on afferent terminals. Met-Enk significantly reduced both the basal firing rate of NTS TH-EGFP neurons and the ability of afferent stimulation to evoke an action potential. These results suggest that opioids inhibit NTS-CA neurons by reducing an excitatory afferent drive onto these neurons through presynaptic inhibition of

  16. Intraganglionic interactions between satellite cells and adult sensory neurons.

    PubMed

    Christie, Kimberly; Koshy, Dilip; Cheng, Chu; Guo, GuiFang; Martinez, Jose A; Duraikannu, Arul; Zochodne, Douglas W

    2015-07-01

    Perineuronal satellite cells have an intimate anatomical relationship with sensory neurons that suggests close functional collaboration and mutual support. We examined several facets of this relationship in adult sensory dorsal root ganglia (DRG). Collaboration included the support of process outgrowth by clustering of satellite cells, induction of distal branching behavior by soma signaling, the capacity of satellite cells to respond to distal axon injury of its neighboring neurons, and evidence of direct neuron-satellite cell exchange. In vitro, closely adherent coharvested satellite cells routinely clustered around new outgrowing processes and groups of satellite cells attracted neurite processes. Similar clustering was encountered in the pseudounipolar processes of intact sensory neurons within intact DRG in vivo. While short term exposure of distal growth cones of unselected adult sensory neurons to transient gradients of a PTEN inhibitor had negligible impacts on their behavior, exposure of the soma induced early and substantial growth of their distant neurites and branches, an example of local soma signaling. In turn, satellite cells sensed when distal neuronal axons were injured by enlarging and proliferating. We also observed that satellite cells were capable of internalizing and expressing a neuron fluorochrome label, diamidino yellow, applied remotely to distal injured axons of the neuron and retrogradely transported to dorsal root ganglia sensory neurons. The findings illustrate a robust interaction between intranganglionic neurons and glial cells that involve two way signals, features that may be critical for both regenerative responses and ongoing maintenance. PMID:25979201

  17. Preventive effects of imperatorin on perfluorohexanesulfonate-induced neuronal apoptosis via inhibition of intracellular calcium-mediated ERK pathway

    PubMed Central

    Lee, Eunkyung; Choi, So-Young; Yang, Jae-Ho

    2016-01-01

    Early life neuronal exposure to environmental toxicants has been suggested to be an important etiology of neurodegenerative disease development. Perfluorohexanesulfonate (PFHxS), one of the major perfluoroalkyl compounds, is widely distributed environmental contaminants. We have reported that PFHxS induces neuronal apoptosis via ERK-mediated pathway. Imperatorin is a furanocoumarin found in various edible plants and has a wide range of pharmacological effects including neuroprotection. In this study, the effects of imperatorin on PFHxS-induced neuronal apoptosis and the underlying mechanisms are examined using cerebellar granule cells (CGC). CGC were isolated from seven-day old rats and were grown in culture for seven days. Caspase-3 activity and TUNEL staining were used to determine neuronal apoptosis. PFHxS-induced apoptosis of CGC was significantly reduced by imperatorin and PD98059, an ERK pathway inhibitor. PFHxS induced a persistent increase in intracellular calcium, which was significantly blocked by imperatorin, NMDA receptor antagonist, MK801 and the L-type voltage-dependent calcium channel blockers, diltiazem and nifedipine. The activation of caspase-3 by PFHxS was also inhibited by MK801, diltiazem and nifedipine. PFHxS-increased ERK activation was inhibited by imperatorin, MK801, diltiazem and nifedipine. Taken together, imperatorin protects CGC against PFHxS-induced apoptosis via inhibition of NMDA receptor/intracellular calcium-mediated ERK pathway. PMID:27382356

  18. Preventive effects of imperatorin on perfluorohexanesulfonate-induced neuronal apoptosis via inhibition of intracellular calcium-mediated ERK pathway.

    PubMed

    Lee, Eunkyung; Choi, So-Young; Yang, Jae-Ho; Lee, Youn Ju

    2016-07-01

    Early life neuronal exposure to environmental toxicants has been suggested to be an important etiology of neurodegenerative disease development. Perfluorohexanesulfonate (PFHxS), one of the major perfluoroalkyl compounds, is widely distributed environmental contaminants. We have reported that PFHxS induces neuronal apoptosis via ERK-mediated pathway. Imperatorin is a furanocoumarin found in various edible plants and has a wide range of pharmacological effects including neuroprotection. In this study, the effects of imperatorin on PFHxS-induced neuronal apoptosis and the underlying mechanisms are examined using cerebellar granule cells (CGC). CGC were isolated from seven-day old rats and were grown in culture for seven days. Caspase-3 activity and TUNEL staining were used to determine neuronal apoptosis. PFHxS-induced apoptosis of CGC was significantly reduced by imperatorin and PD98059, an ERK pathway inhibitor. PFHxS induced a persistent increase in intracellular calcium, which was significantly blocked by imperatorin, NMDA receptor antagonist, MK801 and the L-type voltage-dependent calcium channel blockers, diltiazem and nifedipine. The activation of caspase-3 by PFHxS was also inhibited by MK801, diltiazem and nifedipine. PFHxS-increased ERK activation was inhibited by imperatorin, MK801, diltiazem and nifedipine. Taken together, imperatorin protects CGC against PFHxS-induced apoptosis via inhibition of NMDA receptor/intracellular calcium-mediated ERK pathway. PMID:27382356

  19. Graphene electrodes for stimulation of neuronal cells

    NASA Astrophysics Data System (ADS)

    Koerbitzer, Berit; Krauss, Peter; Nick, Christoph; Yadav, Sandeep; Schneider, Joerg J.; Thielemann, Christiane

    2016-06-01

    Graphene has the ability to improve the electrical interface between neuronal cells and electrodes used for recording and stimulation purposes. It provides a biocompatible coating for common electrode materials such as gold and improves the electrode properties. Graphene electrodes are also prepared on SiO2 substrate to benefit from its optical properties like transparency. We perform electrochemical and Raman characterization of gold electrodes with graphene coating and compare them with graphene on SiO2 substrate. It was found that the substrate plays an important role in the performance of graphene and show that graphene on SiO2 substrate is a very promising material combination for stimulation electrodes.

  20. Cryopreserved rat cortical cells develop functional neuronal networks on microelectrode arrays.

    PubMed

    Otto, Frauke; Görtz, Philipp; Fleischer, Wiebke; Siebler, Mario

    2003-09-30

    Neurons growing on microelectrode arrays (MEAs) are promising tools to investigate principal neuronal network mechanisms and network responses to pharmaceutical substances. However, broad application of these tools, e.g. in pharmaceutical substance screening, requires neuronal cells that provide stable activity on MEAs. Cryopreserved cortical neurons (CCx) from embryonic rats were cultured on MEAs and their immunocytochemical and electrophysiological properties were compared with acutely dissociated neurons (Cx). Both cell types formed neuritic networks and expressed the neuron-specific markers microtubule associated protein 2, synaptophysin, neurofilament and gamma-aminobutyric acid (GABA). Spontaneous spike activity (SSA) was recorded after 9 up to 74 days in vitro (DIV) in CCx and from 5 to 30 DIV in Cx, respectively. Cx and CCx exhibited synchronized burst activity with similar spiking characteristics. Tetrodotoxin (TTX) abolished the SSA of both cell types reversibly. In CCx SSA-inhibition occurred with an IC50 of 1.1 nM for TTX, 161 microM for magnesium, 18 microM for D,L-2-amino-5-phosphonovaleric acid (APV) and 1 microM for GABA. CCx cells were easy to handle and developed long living, stable and active neuronal networks on MEAs with similar characteristics as Cx. Thus, these neurochips seem to be suitable for studying neuronal network properties and screening in pharmaceutical research. PMID:12948560

  1. Prospects for replacement of auditory neurons by stem cells.

    PubMed

    Shi, Fuxin; Edge, Albert S B

    2013-03-01

    Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment. PMID:23370457

  2. Prospects for Replacement of Auditory Neurons by Stem Cells

    PubMed Central

    Shi, Fuxin; Edge, Albert S.B.

    2013-01-01

    Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment. PMID:23370457

  3. Morphine sulfate concomitantly decreases neuronal differentiation and opioid receptor expression in mouse embryonic stem cells.

    PubMed

    Dholakiya, Sanjay L; Aliberti, Angela; Barile, Frank A

    2016-04-15

    Opioids have been shown to affect prenatal and postnatal neural development in mammals. The present study investigates the impact of morphine sulfate (MS) treatment on neuronal differentiation as well as μ-opioid receptor (MOR) expression in mouse embryonic stem (mES) cells. Stem cells were manipulated in culture to differentiate in 3 sequential stages: Stage 1, cell transformation to embryoid bodies (EB); Stage 2, EB cell differentiation to neural progenitor (NP) cells; and, Stage 3, NP cell differentiation to neurons/astrocytes co-cultured cells. Using RT-PCR and flow cytometry analyses, cell types were confirmed by monitoring expression of Oct4, nestin, microtubule-associated protein 2 (mtap-2), and glial fibrillary acidic protein (GFAP) as cell-specific markers for stem cells, NP cells, neurons, and astrocytes, respectively. Similarly, gene expression for MOR, κ-opioid receptor (KOR), and δ-opioid receptor (DOR) was confirmed in each cell type. In order to investigate the effects of MS on differentiation, cells were treated with MS (1, 10, 100 μM) at either early (Stage 1) or late (Stage 3) stage of cellular differentiation. At Stage 1 exposure, MOR gene expression and neuroectoderm specific marker expression of nestin were down-regulated in both EB and NP cells. In addition, the opioid down-regulated GFAP in differentiated neurons/astrocytes co-cultured cells. Late stage treatment with MS resulted in a down-regulation of mtap-2 and GFAP in differentiated neurons/astrocytes co-cultured cells. Moreover, late stage treatment with MS and naltrexone inhibited the effect of MS on neuronal differentiation, suggesting that MS treatment interferes with differentiation via MOR activation. Together, the results show that MS exposure at early and late stage of cellular differentiation significantly decreases genotype and phenotype in differentiated neuronal cells. The results of this study have implications regarding the potential effect of opiates on fetal brain

  4. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines.

    PubMed

    Gibson, Gary E; Xu, Hui; Chen, Huan-Lian; Chen, Wei; Denton, Travis T; Zhang, Sheng

    2015-07-01

    Reversible post-translation modifications of proteins are common in all cells and appear to regulate many processes. Nevertheless, the enzyme(s) responsible for the alterations and the significance of the modification are largely unknown. Succinylation of proteins occurs and causes large changes in the structure of proteins; however, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins remain unknown. These studies focused on succinylation of mitochondrial proteins. The results demonstrate that the α-ketoglutarate dehydrogenase complex (KGDHC) can serve as a trans-succinylase that mediates succinylation in an α-ketoglutarate-dependent manner. Inhibition of KGDHC reduced succinylation of both cytosolic and mitochondrial proteins in cultured neurons and in a neuronal cell line. Purified KGDHC can succinylate multiple proteins including other enzymes of the tricarboxylic acid cycle leading to modification of their activity. Inhibition of KGDHC also modifies acetylation by modifying the pyruvate dehydrogenase complex. The much greater effectiveness of KGDHC than succinyl-CoA suggests that the catalysis owing to the E2k succinyltransferase is important. Succinylation appears to be a major signaling system and it can be mediated by KGDHC. Reversible post-translation modifications of proteins are common and may regulate many processes. Succinylation of proteins occurs and causes large changes in the structure of proteins. However, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins remains unknown. The results demonstrate that the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) can succinylate multiple mitochondrial proteins and alter their function. Succinylation appears to be a major signaling system and it can be mediated by KGDHC. PMID:25772995

  5. p90 RSK-1 associates with and inhibits neuronal nitric oxide synthase

    PubMed Central

    Song, Tao; Sugimoto, Katsuyoshi; Ihara, Hideshi; Mizutani, Akihiro; Hatano, Naoya; Kume, Kodai; Kambe, Toshie; Yamaguchi, Fuminori; Tokuda, Masaaki; Watanabe, Yasuo

    2006-01-01

    Evidence is presented that RSK1 (ribosomal S6 kinase 1), a downstream target of MAPK (mitogen-activated protein kinase), directly phosphorylates nNOS (neuronal nitric oxide synthase) on Ser847 in response to mitogens. The phosphorylation thus increases greatly following EGF (epidermal growth factor) treatment of rat pituitary tumour GH3 cells and is reduced by exposure to the MEK (MAPK/extracellular-signal-regulated kinase kinase) inhibitor PD98059. Furthermore, it is significantly enhanced by expression of wild-type RSK1 and antagonized by kinase-inactive RSK1 or specific reduction of endogenous RSK1. EGF treatment of HEK-293 (human embryonic kidney) cells, expressing RSK1 and nNOS, led to inhibition of NOS enzyme activity, associated with an increase in phosphorylation of nNOS at Ser847, as is also the case in an in vitro assay. In addition, these phenomena were significantly blocked by treatment with the RSK inhibitor Ro31-8220. Cells expressing mutant nNOS (S847A) proved resistant to phosphorylation and decrease of NOS activity. Within minutes of adding EGF to transfected cells, RSK1 associated with nNOS and subsequently dissociated following more prolonged agonist stimulation. EGF-induced formation of the nNOS–RSK1 complex was significantly decreased by PD98059 treatment. Treatment with EGF further revealed phosphorylation of nNOS on Ser847 in rat hippocampal neurons and cerebellar granule cells. This EGF-induced phosphorylation was partially blocked by PD98059 and Ro31-8220. Together, these data provide substantial evidence that RSK1 associates with and phosphorylates nNOS on Ser847 following mitogen stimulation and suggest a novel role for RSK1 in the regulation of nitric oxide function in brain. PMID:16984226

  6. Serotonergic neuron regulation informed by in vivo single-cell transcriptomics.

    PubMed

    Spaethling, Jennifer M; Piel, David; Dueck, Hannah; Buckley, Peter T; Morris, Jacqueline F; Fisher, Stephen A; Lee, Jaehee; Sul, Jai-Yoon; Kim, Junhyong; Bartfai, Tamas; Beck, Sheryl G; Eberwine, James H

    2014-02-01

    Despite the recognized importance of the dorsal raphe (DR) serotonergic (5-HT) nuclei in the pathophysiology of depression and anxiety, the molecular components/putative drug targets expressed by these neurons are poorly characterized. Utilizing the promoter of an ETS domain transcription factor that is a stable marker of 5-HT neurons (Pet-1) to drive 5-HT neuronal expression of YFP, we identified 5-HT neurons in live acute slices. We isolated RNA from single 5-HT neurons in the ventromedial and lateral wings of the DR and performed single-cell RNA-Seq analysis identifying >500 G-protein coupled receptors (GPCRs) including receptors for classical transmitters, lipid signals, and peptides as well as dozens of orphan-GPCRs. Using these data to inform our selection of receptors to assess, we found that oxytocin and lysophosphatidic acid 1 receptors are translated and active in costimulating, with the α1-adrenergic receptor, the firing of DR 5-HT neurons, while the effects of histamine are inhibitory and exerted at H3 histamine receptors. The inhibitory histamine response provides evidence for tonic in vivo histamine inhibition of 5-HT neurons. This study illustrates that unbiased single-cell transcriptomics coupled with functional analyses provides novel insights into how neurons and neuronal systems are regulated. PMID:24192459

  7. A ROCK Inhibitor Blocks the Inhibitory Effect of Chondroitin Sulfate Proteoglycan on Morphological Changes of Mesenchymal Stromal/Stem Cells into Neuron-Like Cells.

    PubMed

    Lim, Hee-Suk; Joe, Young Ae

    2013-11-01

    Chondroitin sulfate proteoglycan (CSPG) inhibits neurite outgrowth of various neuronal cell types, and CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK pathway. Mesenchymal stromal/stem cells (MSCs) have the potential to differentiate into neuron-like cells under specific conditions and have been shown to differentiate into neuron-like cells by co-treatment with the ROCK inhibitor Y27632 and the hypoxia condition mimicking agent CoCl2. In this study, we addressed the hypothesis that a ROCK inhibitor might be beneficial to regenerate neurons during stem cell therapy by preventing transplanted MSCs from inhibition by CSPG in damaged tissues. Indeed, dose-dependent inhibition by CSPG pretreatment was observed during morphological changes of Wharton's jelly-derived MSCs (WJ-MSCs) induced by Y27632 alone. The formation of neurite-like structures was significantly inhibited when WJ-MSCs were pre-treated with CSPG before induction under Y27632 plus CoCl2 conditions, and pretreatment with a protein kinase C inhibitor reversed such inhibition. However, CSPG treatment resulted in no significant inhibition of the WJ-MSC morphological changes into neuron-like cells after initiating induction by Y27632 plus CoCl2. No marked changes were detected in expression levels of neuronal markers induced by Y27632 plus CoCl2 upon CSPG treatment. CSPG also blocked the morphological changes of human bone marrow-derived MSCs into neuron-like cells under other neuronal induction condition without the ROCK inhibitor, and Y27632 pre-treatment blocked the inhibitory effect of CSPG. These results suggest that a ROCK inhibitor can be efficiently used in stem cell therapy for neuronal induction by avoiding hindrance from CSPG. PMID:24404335

  8. Suppression of KV7/KCNQ potassium channel enhances neuronal differentiation of PC12 cells.

    PubMed

    Zhou, Najing; Huang, Sha; Li, Li; Huang, Dongyang; Yan, Yunli; Du, Xiaona; Zhang, Hailin

    2016-10-01

    Membrane potential shift driven by electrical activity is critical in determining the cell fate of proliferation or differentiation. As such, the ion channels that underlie the membrane electrical activity play an important role in cell proliferation/differentiation. KV7/KCNQ potassium channels are critical in determining the resting membrane potentials in many neuronal cells. However, the role of these channels in cell differentiation is not well studied. In the present study, we used PC12 cells as well as primary cultured rat cortical neurons to study the role and mechanism of KV7/KCNQ in neuronal differentiation. NGF induced PC12 cell differentiation into neuron-like cells with growth of neurites showing typical growth cone-like extensions. The Kv7/KCNQ blocker XE991 promoted NGF-induced neurite outgrowth, whereas Kv7/KCNQ opener retigabine (RTG) inhibited outgrowth. M-type Kv7 channels are likely involved in regulating neurite growth because overexpression of KCNQ2/Q3 inhibited neurite growth whereas suppression of KCNQ2/Q3 with shRNA promoted neurite growth. Membrane depolarization possibly underpins enhanced neurite growth induced by the suppression of Kv7/KCNQ. Additionally, high extracellular K(+) likely induced membrane depolarization and also promoted neurite growth. Finally, T-type Ca(2+) channels may be involved in membrane-depolarization-induced neurite growth. This study provides a new perspective for understanding neuronal differentiation as well as KV7/KCNQ channel function. PMID:27450567

  9. Filamin A regulates neuronal migration through brefeldin A-inhibited guanine exchange factor 2-dependent Arf1 activation.

    PubMed

    Zhang, Jingping; Neal, Jason; Lian, Gewei; Hu, Jianjun; Lu, Jie; Sheen, Volney

    2013-10-01

    Periventricular heterotopias is a malformation of cortical development, characterized by ectopic neuronal nodules around ventricle lining and caused by an initial migration defect during early brain development. Human mutations in the Filamin A (FLNA) and ADP-ribosylation factor guanine exchange factor 2 [ARFGEF2; encoding brefeldin-A-inhibited guanine exchange factor-2 (BIG2)] genes give rise to this disorder. Previously, we have reported that Big2 inhibition impairs neuronal migration and binds to FlnA, and its loss promotes FlnA phosphorylation. FlnA phosphorylation dictates FlnA-actin binding affinity and consequently alters focal adhesion size and number to effect neuronal migration. Here we show that FlnA loss similarly impairs migration, reciprocally enhances Big2 expression, but also alters Big2 subcellular localization in both null and conditional FlnA mice. FlnA phosphorylation promotes relocalization of Big2 from the Golgi toward the lipid ruffles, thereby activating Big2-dependent Arf1 at the cell membrane. Loss of FlnA phosphorylation or Big2 function impairs Arf1-dependent vesicle trafficking at the periphery, and Arf1 is required for maintenance of cell-cell junction connectivity and focal adhesion assembly. Loss of Arf1 activity disrupts neuronal migration and cell adhesion. Collectively, these studies demonstrate a potential mechanism whereby coordinated interactions between actin (through FlnA) and vesicle trafficking (through Big2-Arf) direct the assembly and disassembly of membrane protein complexes required for neuronal migration and neuroependymal integrity. PMID:24089482

  10. Alternative functions of core cell cycle regulators in neuronal migration, neuronal maturation, and synaptic plasticity

    PubMed Central

    Frank, Christopher L.; Tsai, Li-Huei

    2009-01-01

    Recent studies have demonstrated that boundaries separating a cycling cell from a post-mitotic neuron are not as concrete as expected. Novel and unique physiological functions in neurons have been ascribed for proteins fundamentally required for cell cycle progression and control. These “core” cell cycle regulators serve diverse post-mitotic functions that span various developmental stages of a neuron, including neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis, and synaptic maturation and plasticity. In this review, we detail the non-proliferative post-mitotic roles that these cell cycle proteins have recently been reported to play, the significance of their expression in neurons, mechanistic insight when available, and future prospects. PMID:19447088

  11. Impaired Respiratory and Body Temperature Control Upon Acute Serotonergic Neuron Inhibition

    PubMed Central

    Ray, Russell; Corcoran, Andrea; Brust, Rachael; Kim, Jun Chul; Richerson, George B.; Nattie, Eugene; Dymecki, Susan M.

    2013-01-01

    Physiological homeostasis is essential for organism survival. Highly responsive neuronal networks are involved but constituent neurons are just beginning to be resolved. To query brain serotonergic neurons in homeostasis, we used a synthetic GPCR (Di)-based neuronal silencing tool, mouse RC∷FPDi, designed for cell type-specific, ligand (clozapine-N-oxide, CNO)-inducible and reversible suppression of action potential firing. In mice harboring Di-expressing serotonergic neurons, CNO administration by systemic injection attenuated the chemoreflex that normally increases respiration in response to tissue CO2 elevation and acidosis. At the cellular level, CNO suppressed firing rate increases evoked by CO2/acidosis. Body thermoregulation at room temperature was also disrupted following CNO triggering of Di; core temperatures plummeted, then recovered. This work establishes that serotonergic neurons regulate life-sustaining respiratory and thermoregulatory networks, and demonstrates a noninvasive tool for mapping neuron function. PMID:21798952

  12. Cortical cell and neuron density estimates in one chimpanzee hemisphere.

    PubMed

    Collins, Christine E; Turner, Emily C; Sawyer, Eva Kille; Reed, Jamie L; Young, Nicole A; Flaherty, David K; Kaas, Jon H

    2016-01-19

    The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates. PMID:26729880

  13. Cortical cell and neuron density estimates in one chimpanzee hemisphere

    PubMed Central

    Collins, Christine E.; Turner, Emily C.; Sawyer, Eva Kille; Reed, Jamie L.; Young, Nicole A.; Flaherty, David K.; Kaas, Jon H.

    2016-01-01

    The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm2 of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates. PMID:26729880

  14. Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment

    PubMed Central

    Ravanelli, Andrew M.; Appel, Bruce

    2015-01-01

    During spinal cord development, ventral neural progenitor cells that express the transcription factors Olig1 and Olig2, called pMN progenitors, produce motor neurons and then oligodendrocytes. Whether motor neurons and oligodendrocytes arise from common or distinct progenitors in vivo is not known. Using zebrafish, we found that motor neurons and oligodendrocytes are produced sequentially by distinct progenitors that have distinct origins. When olig2+ cells were tracked during the peak period of motor neuron formation, most differentiated as motor neurons without further cell division. Using time-lapse imaging, we found that, as motor neurons differentiated, more dorsally positioned neuroepithelial progenitors descended to the pMN domain and initiated olig2 expression. Inhibition of Hedgehog signaling during motor neuron differentiation blocked the ventral movement of progenitors, the progressive initiation of olig2 expression, and oligodendrocyte formation. We therefore propose that the motor neuron-to-oligodendrocyte switch results from Hedgehog-mediated recruitment of glial-fated progenitors to the pMN domain subsequent to neurogenesis. PMID:26584621

  15. Vinexin-β deficiency protects against cerebral ischaemia/reperfusion injury by inhibiting neuronal apoptosis.

    PubMed

    Li, Mingchang; Guo, Sen; Zhang, Peng; Gong, Jun; Zheng, Ankang; Zhang, Yan; Li, Hongliang

    2015-07-01

    Vinexin-β is an adaptor protein that regulates cell adhesion, cytoskeletal organization and signal transduction. Our previous work showed that Vinexin-β protects against cardiac hypertrophy. However, its function in stroke is largely unknown. In the present study, we observed a significant increase in Vinexin-β expression in both human intracerebral haemorrhage and mouse cerebral ischaemia/reperfusion (I/R) injury model, indicating that Vinexin-β is involved in stroke. Next, using Vinexin-β knockout mice, we further demonstrated that Vinexin-β deficiency significantly protected against cerebral I/R injury, as demonstrated by a dramatic decrease in the infarct volume and an improvement in neurological function. Additionally, immunofluorescence and western blotting showed that the deletion of Vinexin-β attenuated neuronal apoptosis. Mechanically, we found that Akt signalling was up-regulated in the brains of the Vinexin-β knockout mice compared with those of the WT control mice after ischaemic injury. Taken together, our results demonstrate that the deletion of Vinexin-β potently protects against ischaemic injury by inhibiting neuronal apoptosis, and this effect may occur via the up-regulation of Akt signalling. Our findings revealed that Vinexin-β acts as a novel modulator of ischaemic injury, suggesting that Vinexin-β may represent an attractive therapeutic target for the prevention of stroke. PMID:25824575

  16. Inhibition of mammillary body neurons by direct activation of Group II metabotropic glutamate receptors

    PubMed Central

    Lee, Charles C.

    2016-01-01

    The mammillary body is an important neural component of limbic circuitry implicated in learning and memory. Excitatory and inhibitory inputs, primarily mediated by glutamate and gamma-amino butyric acid (GABA), respectively, converge and integrate in this region, before sending information to the thalamus. One potentially overlooked mechanism for inhibition of mammillary body neurons is through direct activation of Group II metabotropic glutamate receptors (mGluRs). Here, whole-cell patch clamp recordings of in vitro slice preparations containing the mammillary body nuclei of the mouse were employed to record responses to bath application of pharmacological agents to isolate the direct effect of activating Group II mGluRs. Application of the Group II mGluR specific agonist, APDC, resulted in a hyperpolarization of the membrane potential in mammillary body neurons, likely resulting from the opening of a potassium conductance. These data suggest that glutamatergic inputs to the mammillary body may be attenuated via Group II mGluRs and implicates a functional role for these receptors in memory-related circuits and broadly throughout the central nervous system. PMID:27390777

  17. Interplay between low threshold voltage-gated K(+) channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis.

    PubMed

    Hamlet, William R; Liu, Yu-Wei; Tang, Zheng-Quan; Lu, Yong

    2014-01-01

    Central auditory neurons that localize sound in horizontal space have specialized intrinsic and synaptic cellular mechanisms to tightly control the threshold and timing for action potential generation. However, the critical interplay between intrinsic voltage-gated conductances and extrinsic synaptic conductances in determining neuronal output are not well understood. In chicken, neurons in the nucleus laminaris (NL) encode sound location using interaural time difference (ITD) as a cue. Along the tonotopic axis of NL, there exist robust differences among low, middle, and high frequency (LF, MF, and HF, respectively) neurons in a variety of neuronal properties such as low threshold voltage-gated K(+) (LTK) channels and depolarizing inhibition. This establishes NL as an ideal model to examine the interactions between LTK currents and synaptic inhibition across the tonotopic axis. Using whole-cell patch clamp recordings prepared from chicken embryos (E17-E18), we found that LTK currents were larger in MF and HF neurons than in LF neurons. Kinetic analysis revealed that LTK currents in MF neurons activated at lower voltages than in LF and HF neurons, whereas the inactivation of the currents was similar across the tonotopic axis. Surprisingly, blockade of LTK currents using dendrotoxin-I (DTX) tended to broaden the duration and increase the amplitude of the depolarizing inhibitory postsynaptic potentials (IPSPs) in NL neurons without dependence on coding frequency regions. Analyses of the effects of DTX on inhibitory postsynaptic currents led us to interpret this unexpected observation as a result of primarily postsynaptic effects of LTK currents on MF and HF neurons, and combined presynaptic and postsynaptic effects in LF neurons. Furthermore, DTX transferred subthreshold IPSPs to spikes. Taken together, the results suggest a critical role for LTK currents in regulating inhibitory synaptic strength in ITD-coding neurons at various frequencies. PMID:24904297

  18. Neuron-derived orphan receptor 1 transduces survival signals in neuronal cells in response to hypoxia-induced apoptotic insults.

    PubMed

    Chio, Chung-Ching; Wei, Li; Chen, Tyng Guey; Lin, Chien-Min; Shieh, Ja-Ping; Yeh, Poh-Shiow; Chen, Ruei-Ming

    2016-06-01

    OBJECT Hypoxia can induce cell death or trigger adaptive mechanisms to guarantee cell survival. Neuron-derived orphan receptor 1 (NOR-1) works as an early-response protein in response to a variety of environmental stresses. In this study, the authors evaluated the roles of NOR-1 in hypoxia-induced neuronal insults. METHODS Neuro-2a cells were exposed to oxygen/glucose deprivation (OGD). Cell viability, cell morphology, cas-pase-3 activity, DNA fragmentation, and cell apoptosis were assayed to determine the mechanisms of OGD-induced neuronal insults. RNA and protein analyses were carried out to evaluate the effects of OGD on expressions of NOR-1, cAMP response element-binding (CREB), and cellular inhibitor of apoptosis protein 2 (cIAP2) genes. Translations of these gene expressions were knocked down using RNA interference. Mice subjected to traumatic brain injury (TBI) and NOR-1 was immunodetected. RESULTS Exposure of neuro-2a cells to OGD decreased cell viability in a time-dependent manner. Additionally, OGD led to cell shrinkage, DNA fragmentation, and cell apoptosis. In parallel, treatment of neuro-2a cells with OGD time dependently increased cellular NOR-1 mRNA and protein expressions. Interestingly, administration of TBI also augmented NOR-1 levels in the impacted regions of mice. As to the mechanism, exposure to OGD increased nuclear levels of the transcription factor CREB protein. Downregulating CREB expression using RNA interference simultaneously inhibited OGD-induced NOR-1 mRNA expression. Also, levels of cIAP2 mRNA and protein in neuro-2a cells were augmented by OGD. After reducing cIAP2 translation, OGD-induced cell death was reduced. Sequentially, application of NOR-1 small interfering RNA to neuro-2a cells significantly inhibited OGD-induced cIAP2 mRNA expression and concurrently alleviated hypoxia-induced alterations in cell viability, caspase-3 activation, DNA damage, and cell apoptosis. CONCLUSIONS This study shows that NOR-1 can transduce survival

  19. Infundibular gonadotropin-releasing hormone neurons are inhibited by direct opioid and autoregulatory synapses in juvenile monkeys.

    PubMed

    Thind, K K; Goldsmith, P C

    1988-03-01

    A consistent group of gonadotropin-releasing hormone (GnRH) cell bodies occurs in the ventral hypothalamic tract at the infundibular lip (IL), just below the arcuate nucleus (ARC), at the site of the so-called GnRH 'pulse generator'. Immunocytochemical studies were performed to examine contacts between these GnRH neurons and nearby opioid peptide (OP) neurons in the ARC. Vibratome sections of the medial basal hypothalamus were obtained from colchicine-treated, perfusion-fixed juvenile female rhesus macaques. They were sequentially immunostained for GnRH using the peroxidase antiperoxidase (PAP) technique and for adrenocorticotropic hormone (to identify OP neurons) using colloidal gold. The PAP and colloidal gold markers could be clearly differentiated at both the light and electron microscopic levels. OP+ and GnRH+ neuronal cell bodies occurred close together in the ARC-IL region, sometimes within the same electron microscope grid square. At the electron microscopic level, OP+ axons formed symmetrical synapses with GnRH+ somata and proximal axons, suggesting a pronounced inhibitory influence on GnRH neuronal activity. Examples of OP+/GnRH+ axodendritic and dendrodendritic contacts were also observed. Furthermore, symmetrical synapses between GnRH+ axons and GnRH+ perikarya or dendrites were occasionally present. The data obtained here clearly indicate that direct OP inhibition of GnRH 'pulse generator' neurons occurs at the ARC-IL in juvenile primates. It is suggested that these OP neurons help mediate steroid-negative feedback at the hypothalamic level. Furthermore, it is suggested that OP/GnRH and GnRH/GnRH inhibitory contacts may play a role in maturation and control of reproductive function. PMID:2834660

  20. Presynaptic dopamine D2-like receptors inhibit excitatory transmission onto rat ventral tegmental dopaminergic neurones

    PubMed Central

    Koga, Eiko; Momiyama, Toshihiko

    2000-01-01

    The effects of dopamine (DA) on non-NMDA glutamatergic transmission onto dopaminergic neurones in the ventral tegmental area (VTA) were examined in rat midbrain slices using the whole-cell patch-clamp technique. EPSCs in dopaminergic neurones evoked by focal stimulation within the VTA were reversibly blocked by 5 μm CNQX in the presence of bicuculline (20 μm), strychnine (0.5 μm) and D-amino-5-phosphonopentanoic acid (D-AP5, 25 μm). Bath application of DA reduced the amplitude of EPSCs up to 65.1 ± 9.52% in a concentration-dependent manner between 0.3–1000 μm (IC50, 16.0 μm) without affecting the holding current at −60 mV measured using a Cs+-filled electrode. The effect of DA on evoked EPSCs was mimicked by the D2-like receptor agonist quinpirole but not by the D1-like receptor agonist SKF 81297, and was antagonized by the D2-like receptor antagonist sulpiride (KB, 0.96 μm), but not by the D1-like receptor antagonist SCH 23390 (KB, 228.6 μm). Dopamine (30 μm) reduced the mean frequency of spontaneous miniature EPSCs (mEPSCs) without affecting their mean amplitude, and the DA-induced effect on the mEPSCs was dependent on the external Ca2+ concentration. These results suggest that afferent glutamatergic fibres which terminate on VTA dopaminergic neurones possess presynaptic D2-like receptors, activation of which inhibits glutamate release by reducing Ca2+ influx. PMID:10673553

  1. Phenazopyridine induces and synchronizes neuronal differentiation of embryonic stem cells.

    PubMed

    Suter, David M; Preynat-Seauve, Olivier; Tirefort, Diderik; Feki, Anis; Krause, Karl-Heinz

    2009-09-01

    Embryonic stem (ES) cells are powerful tools to understand mechanisms of neuronal differentiation and to engineer neurons for in vitro studies and cell therapy. We developed a screening approach to identify small organic molecules driving neuronal differentiation of ES cells. For this purpose, we used a lentivector carrying a dual luciferase reporter system to engineer an ES cell line which allowed us to screen for small organic molecules enhancing neuronal differentiation. One of them, phenazopyridine, was further analysed in human ES cells. Phenazopyridine: (i) enhanced neuronal differentiation, (ii) increased cell survival, (iii) decreased the amount of non-neuronal and undifferentiated cells and (iv) synchronized the cellular differentiation state. Phenazopyridine allowed the development of a differentiation protocol compatible with the generation of clinical grade neural precursors, which were able differentiate into different neuronal subtypes, astrocytes and oligodendrocytes. In summary, we describe a powerful approach to identify small molecules directing stem cell differentiation. This led to the establishment of a new application for an old drug and the development of a novel clinical grade protocol for neuronal differentiation of ES cells. PMID:20196783

  2. Leucokinin mimetic elicits aversive behavior in mosquito Aedes aegypti (L.) and inhibits the sugar taste neuron.

    PubMed

    Kwon, Hyeogsun; Ali Agha, Moutaz; Smith, Ryan C; Nachman, Ronald J; Marion-Poll, Frédéric; Pietrantonio, Patricia V

    2016-06-21

    Insect kinins (leucokinins) are multifunctional peptides acting as neurohormones and neurotransmitters. In females of the mosquito vector Aedes aegypti (L.), aedeskinins are known to stimulate fluid secretion from the renal organs (Malpighian tubules) and hindgut contractions by activating a G protein-coupled kinin receptor designated "Aedae-KR." We used protease-resistant kinin analogs 1728, 1729, and 1460 to evaluate their effects on sucrose perception and feeding behavior. In no-choice feeding bioassays (capillary feeder and plate assays), the analog 1728, which contains α-amino isobutyric acid, inhibited females from feeding on sucrose. It further induced quick fly-away or walk-away behavior following contact with the tarsi and the mouthparts. Electrophysiological recordings from single long labellar sensilla of the proboscis demonstrated that mixing the analog 1728 at 1 mM with sucrose almost completely inhibited the detection of sucrose. Aedae-KR was immunolocalized in contact chemosensory neurons in prothoracic tarsi and in sensory neurons and accessory cells of long labellar sensilla in the distal labellum. Silencing Aedae-KR by RNAi significantly reduced gene expression and eliminated the feeding-aversion behavior resulting from contact with the analog 1728, thus directly implicating the Aedae-KR in the aversion response. To our knowledge, this is the first report that kinin analogs modulate sucrose perception in any insect. The aversion to feeding elicited by analog 1728 suggests that synthetic molecules targeting the mosquito Aedae-KR in the labellum and tarsi should be investigated for the potential to discover novel feeding deterrents of mosquito vectors. PMID:27274056

  3. Current status of neuronal cell xenotransplantation.

    PubMed

    Vadori, Marta; Aron Badin, Romina; Hantraye, Philippe; Cozzi, Emanuele

    2015-11-01

    Neural cell transplantation has long been considered as an option for the treatment of neurodegenerative disorders. To date, several patients with Parkinson's and Huntington's diseases have been treated with human fetal-derived neurons with disparate results. However, the limited efficacy to date combined with the scarce availability of human fetal tissues and ethical concerns render this procedure inapplicable to a wide population scale. With a view to overcoming these shortcomings, transplantation of pig-derived cell precursors has been proposed and applied in preclinical and clinical trials. Recently long-term survival (more than 18 months) associated with clinical efficacy has been reported following transplantation of genetically engineered porcine neural precursors in fully immunosuppressed primate recipients. Despite the promising results obtained to date, several questions remain unanswered. In particular, the ideal xenogeneic cell-products to transplant, the extent of the immune response against the implanted xenograft and the most suitable therapeutic strategies to improve engraftment are all issues that still need to be thoroughly addressed. The present review describes the current knowledge in the pig-to-primate xenotransplantation field. In this context, recent data on human-to-nonhuman primate xenogeneic stem cell-based treatments for neurological disorders are discussed. PMID:26403068

  4. RGMa inhibits neurite outgrowth of neuronal progenitors from murine enteric nervous system via the neogenin receptor in vitro.

    PubMed

    Metzger, Marco; Conrad, Sabine; Skutella, Thomas; Just, Lothar

    2007-12-01

    The enteric nervous system (ENS) in vertebrate embryos is formed by neural crest-derived cells. During development, these cells undergo extensive migration from the vagal and sacral regions to colonize the entire gut, where they differentiate into neurons and glial cells. Guidance molecules like netrins, semaphorins, slits, and ephrins are known to be involved in neuronal migration and axon guidance. In the CNS, the repulsive guidance molecule (RGMa) has been implicated in neuronal differentiation, migration, and apoptosis. Recently, we described the expression of the subtypes RGMa and RGMb and their receptor neogenin during murine gut development. In the present study, we investigated the influence of RGMa on neurosphere cultures derived from fetal ENS. In functional in vitro assays, RGMa strongly inhibited neurite outgrowth of differentiating progenitors via the receptor neogenin. The repulsive effect of RGMa on processes of differentiated enteric neural progenitors could be demonstrated by collapse assay. The influence of the RGM receptor on ENS was also analyzed in neogenin knockout mice. In the adult large intestine of mutants we observed disturbed ganglia formation in the myenteric plexus. Our data indicate that RGMa may be involved in differentiation processes of enteric neurons in the murine gut. PMID:17953666

  5. Pan-neuronal maturation but not neuronal subtype differentiation of adult neural stem cells is mechanosensitive

    PubMed Central

    Keung, Albert J.; Dong, Meimei; Schaffer, David V.; Kumar, Sanjay

    2013-01-01

    Most past studies of the biophysical regulation of stem cell differentiation have focused on initial lineage commitment or proximal differentiation events. It would be valuable to understand whether biophysical inputs also influence distal endpoints more closely associated with physiological function, such as subtype specification in neuronal differentiation. To explore this question, we cultured adult neural stem cells (NSCs) on variable stiffness ECMs under conditions that promote neuronal fate commitment for extended time periods to allow neuronal subtype differentiation. We find that ECM stiffness does not modulate the expression of NeuroD1 and TrkA/B/C or the percentages of pan-neuronal, GABAergic, or glutamatergic neuronal subtypes. Interestingly, however, an ECM stiffness of 700 Pa maximizes expression of pan-neuronal markers. These results suggest that a wide range of stiffnesses fully permit pan-neuronal NSC differentiation, that an intermediate stiffness optimizes expression of pan-neuronal genes, and that stiffness does not impact commitment to particular neuronal subtypes. PMID:23660869

  6. Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture.

    PubMed

    Schulz, Thomas C; Noggle, Scott A; Palmarini, Gail M; Weiler, Deb A; Lyons, Ian G; Pensa, Kate A; Meedeniya, Adrian C B; Davidson, Bruce P; Lambert, Nevin A; Condie, Brian G

    2004-01-01

    The use of human embryonic stem cells (hESCs) as a source of dopaminergic neurons for Parkinson's disease cell therapy will require the development of simple and reliable cell differentiation protocols. The use of cell cocultures, added extracellular signaling factors, or transgenic approaches to drive hESC differentiation could lead to additional regulatory as well as cell production delays for these therapies. Because the neuronal cell lineage seems to require limited or no signaling for its formation, we tested the ability of hESCs to differentiate to form dopamine-producing neurons in a simple serum-free suspension culture system. BG01 and BG03 hESCs were differentiated as suspension aggregates, and neural progenitors and neurons were detectable after 2-4 weeks. Plated neurons responded appropriately to electrophysiological cues. This differentiation was inhibited by early exposure to bone morphogenic protein (BMP)-4, but a pulse of BMP-4 from days 5 to 9 caused induction of peripheral neuronal differentiation. Real-time polymerase chain reaction and whole-mount immunocytochemistry demonstrated the expression of multiple markers of the midbrain dopaminergic phenotype in serum-free differentiations. Neurons expressing tyrosine hydroxylase (TH) were killed by 6-hydroxydopamine (6-OHDA), a neurotoxic catecholamine. Upon plating, these cells released dopamine and other catecholamines in response to K+ depolarization. Surviving TH+ neurons, derived from the cells differentiated in serum-free suspension cultures, were detected 8 weeks after transplantation into 6-OHDA-lesioned rat brains. This work suggests that hESCs can differentiate in simple serum-free suspension cultures to produce the large number of cells required for transplantation studies. PMID:15579641

  7. Acid Sensing Ion Channels (ASICs) in NS20Y cells - potential role in neuronal differentiation.

    PubMed

    O'Bryant, Zaven; Leng, Tiandong; Liu, Mingli; Inoue, Koichi; Vann, Kiara T; Xiong, Zhi-Gang

    2016-01-01

    Cultured neuronal cell lines can express properties of mature neurons if properly differentiated. Although the precise mechanisms underlying neuronal differentiation are not fully understood, the expression and activation of ion channels, particularly those of Ca(2+)-permeable channels, have been suggested to play a role. In this study, we explored the presence and characterized the properties of acid-sensing ion channels (ASICs) in NS20Y cells, a neuronal cell line previously used for the study of neuronal differentiation. In addition, the potential role of ASICs in cell differentiation was explored. Reverse Transcription Polymerase Chain Reaction and Western blot revealed the presence of ASIC1 subunits in these cells. Fast drops of extracellular pH activated transient inward currents which were blocked, in a dose dependent manner, by amiloride, a non-selective ASIC blocker, and by Psalmotoxin-1 (PcTX1), a specific inhibitor for homomeric ASIC1a and heteromeric ASIC1a/2b channels. Incubation of cells with PcTX1 significantly reduced the differentiation of NS20Y cells induced by cpt-cAMP, as evidenced by decreased neurite length, dendritic complexity, decreased expression of functional voltage gated Na(+) channels. Consistent with ASIC1a inhibition, ASIC1a knockdown with small interference RNA significantly attenuates cpt-cAMP-induced increase of neurite outgrowth. In summary, we described the presence of functional ASICs in NS20Y cells and demonstrate that ASIC1a plays a role in the differentiation of these cells. PMID:27342076

  8. Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition

    PubMed Central

    Duguid, Ian; Branco, Tiago; Chadderton, Paul; Arlt, Charlotte; Powell, Kate; Häusser, Michael

    2015-01-01

    Classical feed-forward inhibition involves an excitation–inhibition sequence that enhances the temporal precision of neuronal responses by narrowing the window for synaptic integration. In the input layer of the cerebellum, feed-forward inhibition is thought to preserve the temporal fidelity of granule cell spikes during mossy fiber stimulation. Although this classical feed-forward inhibitory circuit has been demonstrated in vitro, the extent to which inhibition shapes granule cell sensory responses in vivo remains unresolved. Here we combined whole-cell patch-clamp recordings in vivo and dynamic clamp recordings in vitro to directly assess the impact of Golgi cell inhibition on sensory information transmission in the granule cell layer of the cerebellum. We show that the majority of granule cells in Crus II of the cerebrocerebellum receive sensory-evoked phasic and spillover inhibition prior to mossy fiber excitation. This preceding inhibition reduces granule cell excitability and sensory-evoked spike precision, but enhances sensory response reproducibility across the granule cell population. Our findings suggest that neighboring granule cells and Golgi cells can receive segregated and functionally distinct mossy fiber inputs, enabling Golgi cells to regulate the size and reproducibility of sensory responses. PMID:26432880

  9. NT-3 attenuates the growth of human neuron cells through the ERK pathway.

    PubMed

    Li, Ruifeng; Wu, Yimin; Jiang, Dianming

    2016-08-01

    Spinal cord injury is a devastating health problem that affects thousands of individuals each year. The neurons were destroyed. NT-3 is a recently discovered neurotrophin. This study sought to understand the potential involvement of MAPKs in NT-3-mediated growth inhibition of human neurons. We applied different concentrations of NT-3 and observed the growth rate of the cells and the changes in the phosphorylation state of the MAPKs ERK1/2, JNK and p38. This study discovered that NT-3-induced HNC growth was promoted primarily by phosphorylated ERK1/2, and that this phosphorylation, as well p90(rsk)phosphorylation, was mediated by TrkC. The ERK1/2 pathway is known to play an essential role in the NT-3-mediated growth of human neurons. In conclusion, our study suggests that NT-3 promotes the growth of human neurons cells primarily through the TrkC/ERK pathway. PMID:25501303

  10. Excitation and inhibition onto central courtship neurons biases Drosophila mate choice

    PubMed Central

    Kallman, Benjamin R; Kim, Heesoo; Scott, Kristin

    2015-01-01

    The ability to distinguish males from females is essential for productive mate selection and species propagation. Recent studies in Drosophila have identified different classes of contact chemosensory neurons that detect female or male pheromones and influence courtship decisions. Here, we examine central neural pathways in the male brain that process female and male pheromones using anatomical, calcium imaging, optogenetic, and behavioral studies. We find that sensory neurons that detect female pheromones, but not male pheromones, activate a novel class of neurons in the ventral nerve cord to cause activation of P1 neurons, male-specific command neurons that trigger courtship. In addition, sensory neurons that detect male pheromones, as well as those that detect female pheromones, activate central mAL neurons to inhibit P1. These studies demonstrate that the balance of excitatory and inhibitory drives onto central courtship-promoting neurons controls mating decisions. DOI: http://dx.doi.org/10.7554/eLife.11188.001 PMID:26568316

  11. Dopaminergic neurons inhibit striatal output via non-canonical release of GABA

    PubMed Central

    Tritsch, Nicolas X.; Ding, Jun B.; Sabatini, Bernardo L.

    2012-01-01

    The substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) contain the two largest populations of dopamine (DA)-releasing neurons in the mammalian brain. These neurons extend elaborate projections in striatum, a large subcortical structure implicated in motor planning and reward-based learning. Phasic activation of dopaminergic neurons in response to salient or reward-predicting stimuli is thought to modulate striatal output via the release of DA to promote and reinforce motor action1–4. Here we show that activation of DA neurons in striatal slices rapidly inhibits action potential firing in both direct-and indirect-pathway striatal projection neurons (SPNs) through vesicular release of the inhibitory transmitter γ-aminobutyric acid (GABA). GABA is released directly from dopaminergic axons but in a manner that is independent of the vesicular GABA transporter VGAT. Instead GABA release requires activity of the vesicular monoamine transporter VMAT2, which is the vesicular transporter for DA. Furthermore, VMAT2 expression in GABAergic neurons lacking VGAT is sufficient to sustain GABA release. Thus, these findings expand the repertoire of synaptic mechanisms employed by DA neurons to influence basal ganglia circuits, reveal a novel substrate whose transport is dependent on VMAT2, and demonstrate that GABA can function as a bona fide co-transmitter in monoaminergic neurons. PMID:23034651

  12. Microinfusion of Bupropion Inhibits Putative GABAergic Neuronal Activity of the Ventral Tegmental Area

    PubMed Central

    Amirabadi, Sanaz; Pakdel, Firouz Ghaderi; Shahabi, Parviz; Naderi, Somayyeh; Osalou, Mostafa Ashrafi; Cankurt, Ulker

    2014-01-01

    Introduction The most common interpretation for the mechanisms of antidepression is the increase of the brain monoamine levels such as dopamine (DA). The increase of DA can reduce depression but it can also decrease the monoamine release because of autoreceptor inhibition. Although bupropion can decrease the dopamine release, there is evidence about stimulatory effects of chronic application of bupropion on ventral tegmental area (VTA) neurons. In this study, the intra-VTA acute microinfusion of bupropion on putative VTA non-Dopaminergic (VTA-nonDA) neuronal firing rates was evaluated by a single neuron recording technique. Methods Animals were divided into 7 groups (sham, and 6 bupropion-microinfused groups with 1, 10-1, 10-2, 10-3, 10-4, and 10-5 mol, 1 µl/3 min, intra-VTA). A single neuron recording technique was done according to the stereotaxic coordination. After 10 min baseline recording, ACSF or bupropion was microinfused. The recording continued to recovery period in the treated groups. The prestimulus time (PST) and interspike interval (ISI) histograms were calculated for every single unit. The assessment of the drug effect was carried out by one-way analysis of variance (ANOVA) and Post-hoc test. Results 126 non-DA neurons were separated. Bupropion could inhibit 116 neurons and 11 neurons had no significant response. Maximum inhibition was 79.1% of baseline firing rate with 44.3 min duration. The inhibitory effect of bupropion was dose-dependent. Discussion The acute inhibitory effects of bupropion on VTA-nonDA neurons can explain the fast inhibitory effects of bupropion and other antidepressants on the VTA. These data can explain some side effects of antidepressants. PMID:25337378

  13. Neurokinins inhibit low threshold inactivating K+ currents in capsaicin responsive DRG neurons

    PubMed Central

    Sculptoreanu, Adrian; Artim, Debra E.; de Groat, William C.

    2009-01-01

    Neurokinins (NK) released from terminals of dorsal root ganglion (DRG) neurons may control firing of these neurons by an autofeedback mechanism. In this study we used patch clamp recording techniques to determine if NKs alter excitability of rat L4-S3 DRG neurons by modulating K+ currents. In capsaicin (CAPS)-responsive phasic neurons substance P (SP) lowered action potential (AP) threshold and increased the number of APs elicited by depolarizing current pulses. SP and a selective NK2 agonist, [βAla8]-neurokinin A (4–10) also inhibited low threshold inactivating K+ currents isolated by blocking non-inactivating currents with a combination of high TEA, (−) verapamil and nifedipine. Currents recorded under these conditions were heteropodatoxin-sensitive (Kv4 blocker) and α-dendrotoxin insensitive (Kv1.1 and Kv1.2 blocker). SP and NKA elicited a >10 mV positive shift of the voltage dependence of activation of the low threshold currents. This effect was absent in CAPS-unresponsive neurons. The effect of SP or NKA on K+ currents in CAPS-responsive phasic neurons was fully reversed by an NK2 receptor antagonist (MEN10376) but only partially reversed by a PKC inhibitor (bisindolylmaleimide). An NK1 selective agonist ([Sar9, Met11]-substance P) or direct activation of PKC with phorbol 12,13-dibutyrate, did not change firing in CAPS-responsive neurons, but did inhibit various types of K+ currents that activated over a wide range of voltages. These data suggest that the excitability of CAPS-responsive phasic afferent neurons is increased by activation of NK2 receptors and that this is due in part to inhibition and a positive voltage shift in the activation of heteropodatoxin-sensitive Kv4 channels. PMID:19631644

  14. Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice

    PubMed Central

    Cao, Xuehong; Xu, Pingwen; Oyola, Mario G.; Xia, Yan; Yan, Xiaofeng; Saito, Kenji; Zou, Fang; Wang, Chunmei; Yang, Yongjie; Hinton, Antentor; Yan, Chunling; Ding, Hongfang; Zhu, Liangru; Yu, Likai; Yang, Bin; Feng, Yuxin; Clegg, Deborah J.; Khan, Sohaib; DiMarchi, Richard; Mani, Shaila K.; Tong, Qingchun; Xu, Yong

    2014-01-01

    Binge eating afflicts approximately 5% of US adults, though effective treatments are limited. Here, we showed that estrogen replacement substantially suppresses binge-like eating behavior in ovariectomized female mice. Estrogen-dependent inhibition of binge-like eating was blocked in female mice specifically lacking estrogen receptor-α (ERα) in serotonin (5-HT) neurons in the dorsal raphe nuclei (DRN). Administration of a recently developed glucagon-like peptide-1–estrogen (GLP-1–estrogen) conjugate designed to deliver estrogen to GLP1 receptor–enhanced regions effectively targeted bioactive estrogens to the DRN and substantially suppressed binge-like eating in ovariectomized female mice. Administration of GLP-1 alone reduced binge-like eating, but not to the same extent as the GLP-1–estrogen conjugate. Administration of ERα-selective agonist propylpyrazole triol (PPT) to murine DRN 5-HT neurons activated these neurons in an ERα-dependent manner. PPT also inhibited a small conductance Ca2+-activated K+ (SK) current; blockade of the SK current prevented PPT-induced activation of DRN 5-HT neurons. Furthermore, local inhibition of the SK current in the DRN markedly suppressed binge-like eating in female mice. Together, our data indicate that estrogens act upon ERα to inhibit the SK current in DRN 5-HT neurons, thereby activating these neurons to suppress binge-like eating behavior and suggest ERα and/or SK current in DRN 5-HT neurons as potential targets for anti-binge therapies. PMID:25157819

  15. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    SciTech Connect

    Park, Kyoung Ho; Yeo, Sang Won; Troy, Frederic A.

    2014-10-17

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.

  16. Combretastatin A-4 efficiently inhibits angiogenesis and induces neuronal apoptosis in zebrafish.

    PubMed

    Shi, Yun-Wei; Yuan, Wei; Wang, Xin; Gong, Jie; Zhu, Shun-Xing; Chai, Lin-Lin; Qi, Jia-Ling; Qin, Yin-Yin; Gao, Yu; Zhou, Yu-Ling; Fan, Xiao-Le; Ji, Chun-Ya; Wu, Jia-Yi; Wang, Zhi-Wei; Liu, Dong

    2016-01-01

    Cis-stilbene combretastatin A-4 (CA-4) and a large group of its derivant compounds have been shown significant anti-angiogenesis activity. However the side effects even the toxicities of these chemicals were not evaluated adequately. The zebrafish model has become an important vertebrate model for evaluating drug effects. The testing of CA-4 on zebrafish is so far lacking and assessment of CA-4 on this model will provide with new insights of understanding the function of CA-4 on angiogenesis, the toxicities and side effects of CA-4. We discovered that 7-9 ng/ml CA-4 treatments resulted in developmental retardation and morphological malformation, and led to potent angiogenic defects in zebrafish embryos. Next, we demonstrated that intraperitoneal injection of 5, 10 and 20 mg/kg CA-4 obviously inhibited vessel plexus formation in regenerated pectoral fins of adult zebrafish. Interestingly, we proved that CA-4 treatment induced significant cell apoptosis in central nervous system of zebrafish embryos and adults. Furthermore, it was demonstrated that the neuronal apoptosis induced by CA-4 treatment was alleviated in p53 mutants. In addition, notch1a was up-regulated in CA-4 treated embryos, and inhibition of Notch signaling by DAPT partially rescued the apoptosis in zebrafish central nervous system caused by CA-4. PMID:27452835

  17. Combretastatin A-4 efficiently inhibits angiogenesis and induces neuronal apoptosis in zebrafish

    PubMed Central

    Shi, Yun-Wei; Yuan, Wei; Wang, Xin; Gong, Jie; Zhu, Shun-Xing; Chai, Lin-Lin; Qi, Jia-Ling; Qin, Yin-Yin; Gao, Yu; Zhou, Yu-Ling; Fan, Xiao-Le; Ji, Chun-Ya; Wu, Jia-Yi; Wang, Zhi-Wei; Liu, Dong

    2016-01-01

    Cis-stilbene combretastatin A-4 (CA-4) and a large group of its derivant compounds have been shown significant anti-angiogenesis activity. However the side effects even the toxicities of these chemicals were not evaluated adequately. The zebrafish model has become an important vertebrate model for evaluating drug effects. The testing of CA-4 on zebrafish is so far lacking and assessment of CA-4 on this model will provide with new insights of understanding the function of CA-4 on angiogenesis, the toxicities and side effects of CA-4. We discovered that 7–9 ng/ml CA-4 treatments resulted in developmental retardation and morphological malformation, and led to potent angiogenic defects in zebrafish embryos. Next, we demonstrated that intraperitoneal injection of 5, 10 and 20 mg/kg CA-4 obviously inhibited vessel plexus formation in regenerated pectoral fins of adult zebrafish. Interestingly, we proved that CA-4 treatment induced significant cell apoptosis in central nervous system of zebrafish embryos and adults. Furthermore, it was demonstrated that the neuronal apoptosis induced by CA-4 treatment was alleviated in p53 mutants. In addition, notch1a was up-regulated in CA-4 treated embryos, and inhibition of Notch signaling by DAPT partially rescued the apoptosis in zebrafish central nervous system caused by CA-4. PMID:27452835

  18. Inhibition of Cytohesins Protects against Genetic Models of Motor Neuron Disease.

    PubMed

    Zhai, Jinbin; Zhang, Lei; Mojsilovic-Petrovic, Jelena; Jian, Xiaoying; Thomas, Jeffrey; Homma, Kengo; Schmitz, Anton; Famulok, Michael; Ichijo, Hidenori; Argon, Yair; Randazzo, Paul A; Kalb, Robert G

    2015-06-17

    Mutant genes that underlie Mendelian forms of amyotrophic lateral sclerosis (ALS) and biochemical investigations of genetic disease models point to potential driver pathophysiological events involving endoplasmic reticulum (ER) stress and autophagy. Several steps in these cell biological processes are known to be controlled physiologically by small ADP-ribosylation factor (ARF) signaling. Here, we investigated the role of ARF guanine nucleotide exchange factors (GEFs), cytohesins, in models of ALS. Genetic or pharmacological inhibition of cytohesins protects motor neurons in vitro from proteotoxic insults and rescues locomotor defects in a Caenorhabditis elegans model of disease. Cytohesins form a complex with mutant superoxide dismutase 1 (SOD1), a known cause of familial ALS, but this is not associated with a change in GEF activity or ARF activation. ER stress evoked by mutant SOD1 expression is alleviated by antagonism of cytohesin activity. In the setting of mutant SOD1 toxicity, inhibition of cytohesin activity enhances autophagic flux and reduces the burden of misfolded SOD1. These observations suggest that targeting cytohesins may have potential benefits for the treatment of ALS. PMID:26085633

  19. Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment.

    PubMed

    Shi, Ming; Du, Fang; Liu, Yang; Li, Li; Cai, Jing; Zhang, Guo-Feng; Xu, Xiao-Fei; Lin, Tian; Cheng, Hao-Ran; Liu, Xue-Dong; Xiong, Li-Ze; Zhao, Gang

    2013-11-01

    Vibroacoustic disease, a progressive and systemic disease, mainly involving the central nervous system, is caused by excessive exposure to low-frequency but high-intensity noise generated by various heavy transportations and machineries. Infrasound is a type of low-frequency noise. Our previous studies demonstrated that infrasound at a certain intensity caused neuronal injury in rats but the underlying mechanism(s) is still largely unknown. Here, we showed that glial cell-expressed TRPV4, a Ca(2+)-permeable mechanosensitive channel, mediated infrasound-induced neuronal injury. Among different frequencies and intensities, infrasound at 16 Hz and 130 dB impaired rat learning and memory abilities most severely after 7-14 days exposure, a time during which a prominent loss of hippocampal CA1 neurons was evident. Infrasound also induced significant astrocytic and microglial activation in hippocampal regions following 1- to 7-day exposure, prior to neuronal apoptosis. Moreover, pharmacological inhibition of glial activation in vivo protected against neuronal apoptosis. In vitro, activated glial cell-released proinflammatory cytokines IL-1β and TNF-α were found to be key factors for this neuronal apoptosis. Importantly, infrasound induced an increase in the expression level of TRPV4 both in vivo and in vitro. Knockdown of TRPV4 expression by siRNA or pharmacological inhibition of TRPV4 in cultured glial cells decreased the levels of IL-1β and TNF-α, attenuated neuronal apoptosis, and reduced TRPV4-mediated Ca(2+) influx and NF-κB nuclear translocation. Finally, using various antagonists we revealed that calmodulin and protein kinase C signaling pathways were involved in TRPV4-triggered NF-κB activation. Thus, our results provide the first evidence that glial cell-expressed TRPV4 is a potential key factor responsible for infrasound-induced neuronal impairment. PMID:24002225

  20. A novel O2-sensing mechanism in rat glossopharyngeal neurones mediated by a halothane-inhibitable background K+ conductance.

    PubMed

    Campanucci, Verónica A; Fearon, Ian M; Nurse, Colin A

    2003-05-01

    Modulation of K+ channels by hypoxia is a common O2-sensing mechanism in specialised cells. More recently, acid-sensitive TASK-like background K+ channels, which play a key role in setting the resting membrane potential, have been implicated in O2-sensing in certain cell types. Here, we report a novel O2 sensitivity mediated by a weakly pH-sensitive background K+ conductance in nitric oxide synthase (NOS)-positive neurones of the glossopharyngeal nerve (GPN). This conductance was insensitive to 30 mM TEA, 5 mM 4-aminopyridine (4-AP) and 200 microM Cd2+, but was reversibly inhibited by hypoxia (O2 tension (PO2) = 15 mmHg), 2-5 mM halothane, 10 mM barium and 1 mM quinidine. Notably, the presence of halothane occluded the inhibitory effect of hypoxia. Under current clamp, these agents depolarised GPN neurones. In contrast, arachidonic acid (5-10 microM) caused membrane hyperpolarisation and potentiation of the background K+ current. This pharmacological profile suggests the O2-sensitive conductance in GPN neurones is mediated by a class of background K+ channels different from the TASK family; it appears more closely related to the THIK (tandem pore domain halothane-inhibited K+) subfamily, or may represent a new member of the background K+ family. Since GPN neurones are thought to provide NO-mediated efferent inhibition of the carotid body (CB), these channels may contribute to the regulation of breathing during hypoxia via negative feedback control of CB function, as well as to the inhibitory effect of volatile anaesthetics (e.g. halothane) on respiration. PMID:12640017

  1. Inhibiting cholesterol degradation induces neuronal sclerosis and epileptic activity in mouse hippocampus.

    PubMed

    Chali, Farah; Djelti, Fathia; Eugene, Emmanuel; Valderrama, Mario; Marquer, Catherine; Aubourg, Patrick; Duykaerts, Charles; Miles, Richard; Cartier, Nathalie; Navarro, Vincent

    2015-05-01

    Elevations in neuronal cholesterol have been associated with several degenerative diseases. An enhanced excitability and synchronous firing in surviving neurons are among the sequels of neuronal death in these diseases and also in some epileptic syndromes. Here, we attempted to increase neuronal cholesterol levels, using a short hairpin RNA to suppress expression of the enzyme cytochrome P450 family 46, subfamily A, polypeptide 1 gene (CYP46A1). This protein hydroxylates cholesterol and so facilitates transmembrane extrusion. A short hairpin RNA CYP46A1construction coupled to the adeno-associated virus type 5 was injected focally and unilaterally into mouse hippocampus. It was selectively expressed first in neurons of the cornu ammonis (hippocampus) (CA)3a region. Cytoplasmic and membrane cholesterol increased, and the neuronal soma volume increased and then decreased before pyramidal cells died. As CA3a pyramidal cells died, interictal electroencephalographic (EEG) events occurred during exploration and non-rapid eye movement sleep. With time, neuronal death spread to involve pyramidal cells and interneurons of the CA1 region. CA1 neuronal death was correlated with a delayed local expression of phosphorylated tau. Astrocytes were activated throughout the hippocampus and microglial activation was specific to regions of neuronal death. CA1 neuronal death was correlated with distinct aberrant EEG activity. During exploratory behaviour and rapid eye movement sleep, EEG oscillations at 7-10 Hz (theta) could accelerate to 14-21 Hz (beta) waves. They were accompanied by low-amplitude, high-frequency oscillations of peak power at ~300 Hz and a range of 250-350 Hz. Although episodes of EEG acceleration were not correlated with changes in exploratory behaviour, they were followed in some animals by structured seizure-like discharges. These data strengthen links between increased cholesterol, neuronal sclerosis and epileptic behaviour. PMID:25847620

  2. Inhibiting cholesterol degradation induces neuronal sclerosis and epileptic activity in mouse hippocampus

    PubMed Central

    Chali, Farah; Djelti, Fathia; Eugene, Emmanuel; Valderrama, Mario; Marquer, Catherine; Aubourg, Patrick; Duykaerts, Charles; Miles, Richard; Cartier, Nathalie; Navarro, Vincent

    2015-01-01

    Elevations in neuronal cholesterol have been associated with several degenerative diseases. An enhanced excitability and synchronous firing in surviving neurons are among the sequels of neuronal death in these diseases and also in some epileptic syndromes. Here, we attempted to increase neuronal cholesterol levels, using a short hairpin RNA (shRNA) to suppress expression of the enzyme CYP46A1. This protein hydroxylates cholesterol and so facilitates trans-membrane extrusion. A sh-RNA CYP46A1construction coupled to an adeno-associated virus (AAV5) was injected focally and unilaterally into mouse hippocampus. It was selectively expressed first in neurons of the CA3a region. Cytoplasmic and membrane cholesterol increased, neuronal soma volume increased and then decreased before pyramidal cells died. As CA3a pyramidal cells died, inter-ictal EEG events occurred during exploration and non-REM sleep. With time, neuronal death spread to involve pyramidal cells and interneurons of the CA1 region. CA1 neuronal death was correlated with a delayed local expression of phosphorylated tau. Astrocytes were activated throughout the hippocampus and microglial activation was specific to regions of neuronal death. CA1 neuronal death was correlated with distinct aberrant EEG activity. During exploratory behaviour and rapid eye movement sleep, EEG oscillations at 7-10 Hz (theta) could accelerate to 14-21 Hz (beta) waves. They were accompanied by low amplitude, high-frequency oscillations of peak power at ~300Hz and a range of 250-350 Hz. While episodes of EEG acceleration were not correlated with changes in exploratory behaviour, they were followed in some animals by structured seizure-like discharges. These data strengthen links between increased cholesterol, neuronal sclerosis and epileptic behavior PMID:25847620

  3. JNK Inhibition Inhibits Lateral Line Neuromast Hair Cell Development

    PubMed Central

    Cai, Chengfu; Lin, Jinchao; Sun, Shaoyang; He, Yingzi

    2016-01-01

    JNK signaling is known to play a role in regulating cell behaviors such as cell cycle progression, cell proliferation, and apoptosis, and recent studies have suggested important roles for JNK signaling in embryonic development. However, the precise function of JNK signaling in hair cell development remains poorly studied. In this study, we used the small molecule JNK inhibitor SP600125 to examine the effect of JNK signaling abrogation on the development of hair cells in the zebrafish lateral line neuromast. Our results showed that SP600125 reduced the numbers of both hair cells and supporting cells in neuromasts during larval development in a dose-dependent manner. Additionally, JNK inhibition strongly inhibited the proliferation of neuromast cells, which likely explains the decrease in the number of differentiated hair cells in inhibitor-treated larvae. Furthermore, western blot and in situ analysis showed that JNK inhibition induced cell cycle arrest through induction of p21 expression. We also showed that SP600125 induced cell death in developing neuromasts as measured by cleaved caspase-3 immunohistochemistry, and this was accompanied with an induction of p53 gene expression. Together these results indicate that JNK might be an important regulator in the development of hair cells in the lateral line in zebrafish by controlling both cell cycle progression and apoptosis. PMID:26903805

  4. Novel functions of core cell cycle regulators in neuronal migration.

    PubMed

    Godin, Juliette D; Nguyen, Laurent

    2014-01-01

    The cerebral cortex is one of the most intricate regions of the brain, which required elaborated cell migration patterns for its development. Experimental observations show that projection neurons migrate radially within the cortical wall, whereas interneurons migrate along multiple tangential paths to reach the developing cortex. Tight regulation of the cell migration processes ensures proper positioning and functional integration of neurons to specific cerebral cortical circuits. Disruption of neuronal migration often lead to cortical dysfunction and/or malformation associated with neurological disorders. Unveiling the molecular control of neuronal migration is thus fundamental to understand the physiological or pathological development of the cerebral cortex. Generation of functional cortical neurons is a complex and stratified process that relies on decision of neural progenitors to leave the cell cycle and generate neurons that migrate and differentiate to reach their final position in the cortical wall. Although accumulating work shed some light on the molecular control of neuronal migration, we currently do not have a comprehensive understanding of how cell cycle exit and migration/differentiation are coordinated at the molecular level. The current chapter tends to lift the veil on this issue by discussing how core cell cycle regulators, and in particular p27(Kip1) acts as a multifunctional protein to control critical steps of neuronal migration through activities that go far beyond cell cycle regulation. PMID:24243100

  5. PARP-1 Inhibition Attenuates Neuronal Loss, Microglia Activation and Neurological Deficits after Traumatic Brain Injury

    PubMed Central

    Loane, David J.; Zhao, Zaorui; Kabadi, Shruti V.; Hanscom, Marie; Byrnes, Kimberly R.; Faden, Alan I.

    2014-01-01

    Abstract Traumatic brain injury (TBI) causes neuronal cell death as well as microglial activation and related neurotoxicity that contribute to subsequent neurological dysfunction. Poly (ADP-ribose) polymerase (PARP-1) induces neuronal cell death through activation of caspase-independent mechanisms, including release of apoptosis inducing factor (AIF), and microglial activation. Administration of PJ34, a selective PARP-1 inhibitor, reduced cell death of primary cortical neurons exposed to N-Methyl-N'-Nitro-N-Nitrosoguanidine (MNNG), a potent inducer of AIF-dependent cell death. PJ34 also attenuated lipopolysaccharide and interferon-γ-induced activation of BV2 or primary microglia, limiting NF-κB activity and iNOS expression as well as decreasing generation of reactive oxygen species and TNFα. Systemic administration of PJ34 starting as late as 24 h after controlled cortical impact resulted in improved motor function recovery in mice with TBI. Stereological analysis demonstrated that PJ34 treatment reduced the lesion volume, attenuated neuronal cell loss in the cortex and thalamus, and reduced microglial activation in the TBI cortex. PJ34 treatment did not improve cognitive performance in a Morris water maze test or reduce neuronal cell loss in the hippocampus. Overall, our data indicate that PJ34 has a significant, albeit selective, neuroprotective effect after experimental TBI, and its therapeutic effect may be from multipotential actions on neuronal cell death and neuroinflammatory pathways. PMID:24476502

  6. Conantokins inhibit NMDAR-dependent calcium influx in developing rat hippocampal neurons in primary culture with resulting effects on CREB phosphorylation

    PubMed Central

    Huang, Luoxiu; Balsara, Rashna D.; Sheng, Zhenyu; Castellino, Francis J.

    2010-01-01

    The effects of conantokin (con)-G, con-R[1-17], and con-T on ion flow through N-methyl-D-aspartate receptor (NMDAR) ion channels were determined in cultured primary rat hippocampal neurons. The potency of con-G diminished, whereas inhibition by con-R[1-17] and con-T did not change, as the neurons matured. Con-G, con-R[1-17], and con-T effectively diminished NMDA-induced Ca2+ influx into the cells. A similar age-dependent decrease in con-G-mediated inhibition of the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) was observed, compared to con-R[1-17] and con-T. The effects of the conantokins on NMDA-induced cAMP response element-binding protein (CREB) phosphorylation in immature (DIV 9) and mature (DIV 16) neurons showed that, at DIV 9, con-G, con-R[1-17], and con-T inhibited NMDA-mediated P-CREB levels, whereas in DIV 16 neurons the conantokins did not inhibit overall levels of NMDA-induced P-CREB. In contrast, P-CREB levels were enhanced through inhibition of the protein phosphatases, PP1 and PP2B (calcineurin). This ability of conantokins to sustain CREB phosphorylation can thus enhance neuronal survival and plasticity. PMID:20600930

  7. Inhibition to retinal rod bipolar cells is regulated by light levels

    PubMed Central

    Mazade, Reece E.; Klein, Justin S.

    2013-01-01

    The retina responds to a wide range of light stimuli by adaptation of retinal signaling to background light intensity and the use of two different photoreceptors: rods that sense dim light and cones that sense bright light. Rods signal to rod bipolar cells that receive significant inhibition from amacrine cells in the dark, especially from a rod bipolar cell-activated GABAergic amacrine cell. This inhibition modulates the output of rod bipolar cells onto downstream neurons. However, it was not clear how the inhibition of rod bipolar cells changes when rod signaling is limited by an adapting background light and cone signaling becomes dominant. We found that both light-evoked and spontaneous rod bipolar cell inhibition significantly decrease with light adaptation. This suggests a global decrease in the activity of amacrine cells that provide input to rod bipolar cells with light adaptation. However, inhibition to rod bipolar cells is also limited by GABAergic connections between amacrine cells, which decrease GABAergic input to rod bipolar cells. When we removed this serial inhibition, the light-evoked inhibition to rod bipolar cells remained after light adaptation. These results suggest that decreased inhibition to rod bipolar cells after light adaptation is due to decreased rod pathway activity as well as an active increase in inhibition between amacrine cells. Together these serve to limit rod bipolar cell inhibition after light adaptation, when the rod pathway is inactive and modulation of the signal is not required. This suggests an efficiency mechanism in the retina to limit unnecessary signaling. PMID:23596335

  8. Arachidonic acid-mediated inhibition of a potassium current in the giant neurons of Aplysia

    SciTech Connect

    Carlson, R.O.

    1990-01-01

    Biochemical and electrophysiological approaches were used to investigate the role of arachidonic acid (AA) in the modulation of an inwardly rectifying potassium current (I{sub R}) in the giant neurons of the marine snail, Aplysia californica. Using ({sup 3}H)AA as tracer, the intracellular free AA pool in Aplysia ganglia was found to be in a state of constant and rapid turnover through deacylation and reacylation of phospholipid, primarily phosphatidyl-inositol. This constant turnover was accompanied by a constant release of free AA and eicosanoids into the extracellular medium. The effects of three pharmacological agents were characterized with regard to AA metabolism in Aplysia ganglia. 4-O-tetra-decanoylphorbol 13-acetate (TPA), an activator of protein kinase C, stimulated liberation of AA from phospholipid, and 4-bromophenacylbromide (BPB), an inhibitor of phospholipate A{sub 2}, inhibited this liberation. Indomethacin at 250 {mu}M was found to inhibit uptake of AA, likely through inhibition of acyl-CoA synthetase. These agents were also found to modulate I{sub R} in ways which were consistent with their biological effects: TPA inhibited I{sub R}, and both BPB and indomethacin stimulated I{sub R} . Modulation of I{sub R} by these substances was found not to involve cAMP metabolism. Acute application of exogenous AA did not affect I{sub R}; however, I{sub R} in giant neurons was found to be inhibited after dialysis with AA or other unsaturated fatty acids. Also, after perfusion with BSA overnight, a treatment which strips the giant neurons of AA in lipid storage, I{sub R} was found to have increased over 2-fold. This perfusion-induced increase was inhibited by the presence of AA or by pretreatment of the giant neurons with BPB. These results suggest AA, provided through constant turnover from phospholipid, mediates constitutive inhibition of I{sub R}.

  9. Disruption of Kcc2-dependent inhibition of olfactory bulb output neurons suggests its importance in odour discrimination

    PubMed Central

    Gödde, Kathrin; Gschwend, Olivier; Puchkov, Dmytro; Pfeffer, Carsten K.; Carleton, Alan; Jentsch, Thomas J.

    2016-01-01

    Synaptic inhibition in the olfactory bulb (OB), the first relay station of olfactory information, is believed to be important for odour discrimination. We interfered with GABAergic inhibition of mitral and tufted cells (M/T cells), the principal neurons of the OB, by disrupting their potassium-chloride cotransporter 2 (Kcc2). Roughly, 70% of mice died around 3 weeks, but surviving mice appeared normal. In these mice, the resulting increase in the intracellular Cl− concentration nearly abolished GABA-induced hyperpolarization of mitral cells (MCs) and unexpectedly increased the number of perisomatic synapses on MCs. In vivo analysis of odorant-induced OB electrical activity revealed increased M/T cell firing rate, altered phasing of action potentials in the breath cycle and disrupted separation of odour-induced M/T cell activity patterns. Mice also demonstrated a severely impaired ability to discriminate chemically similar odorants or odorant mixtures. Our work suggests that precisely tuned GABAergic inhibition onto M/T cells is crucial for M/T cell spike pattern separation needed to distinguish closely similar odours. PMID:27389623

  10. Disruption of Kcc2-dependent inhibition of olfactory bulb output neurons suggests its importance in odour discrimination.

    PubMed

    Gödde, Kathrin; Gschwend, Olivier; Puchkov, Dmytro; Pfeffer, Carsten K; Carleton, Alan; Jentsch, Thomas J

    2016-01-01

    Synaptic inhibition in the olfactory bulb (OB), the first relay station of olfactory information, is believed to be important for odour discrimination. We interfered with GABAergic inhibition of mitral and tufted cells (M/T cells), the principal neurons of the OB, by disrupting their potassium-chloride cotransporter 2 (Kcc2). Roughly, 70% of mice died around 3 weeks, but surviving mice appeared normal. In these mice, the resulting increase in the intracellular Cl(-) concentration nearly abolished GABA-induced hyperpolarization of mitral cells (MCs) and unexpectedly increased the number of perisomatic synapses on MCs. In vivo analysis of odorant-induced OB electrical activity revealed increased M/T cell firing rate, altered phasing of action potentials in the breath cycle and disrupted separation of odour-induced M/T cell activity patterns. Mice also demonstrated a severely impaired ability to discriminate chemically similar odorants or odorant mixtures. Our work suggests that precisely tuned GABAergic inhibition onto M/T cells is crucial for M/T cell spike pattern separation needed to distinguish closely similar odours. PMID:27389623

  11. Rapid and efficient generation of neurons from human pluripotent stem cells in a multititre plate format.

    PubMed

    Zhang, Miao; Schöler, Hans R; Greber, Boris

    2013-01-01

    Existing protocols for the generation of neurons from human pluripotent stem cells (hPSCs) are often tedious in that they are multistep procedures involving the isolation and expansion of neural precursor cells, prior to terminal differentiation. In comparison to these time-consuming approaches, we have recently found that combined inhibition of three signaling pathways, TGFβ/SMAD2, BMP/SMAD1, and FGF/ERK, promotes rapid induction of neuroectoderm from hPSCs, followed by immediate differentiation into functional neurons. Here, we have adapted our procedure to a novel multititre plate format, to further enhance its reproducibility and to make it compatible with mid-throughput applications. It comprises four days of neuroectoderm formation in floating spheres (embryoid bodies), followed by a further four days of differentiation into neurons under adherent conditions. Most cells obtained with this protocol appear to be bipolar sensory neurons. Moreover, the procedure is highly efficient, does not require particular expert skills, and is based on a simple chemically defined medium with cost-efficient small molecules. Due to these features, the procedure may serve as a useful platform for further functional investigation as well as for cell-based screening approaches requiring human sensory neurons or neurons of any type. PMID:23486189

  12. Ethanol inhibition of aspartyl-asparaginyl-β-hydroxylase in fetal alcohol spectrum disorder: Potential link to the impairments in central nervous system neuronal migration

    PubMed Central

    de la Monte, Suzanne M.; Tong, Ming; Carlson, Rolf I.; Carter, Jade J.; Longato, Lisa; Silbermann, Elizabeth; Wands, Jack R.

    2010-01-01

    Fetal alcohol spectrum disorder (FASD) is caused by prenatal exposure to alcohol and associated with hypoplasia and impaired neuronal migration in the cerebellum. Neuronal survival and motility are stimulated by insulin and insulin-like growth factor (IGF), whose signaling pathways are major targets of ethanol neurotoxicity. To better understand the mechanisms of ethanol-impaired neuronal migration during development, we examined the effects of chronic gestational exposure to ethanol on aspartyl (asparaginyl)-β-hydroxylase (AAH) expression, because AAH is regulated by insulin/IGF and mediates neuronal motility. Pregnant Long—Evans rats were pair-fed isocaloric liquid diets containing 0, 8, 18, 26, or 37% ethanol by caloric content from gestation day 6 through delivery. Cerebella harvested from postnatal day 1 pups were used to examine AAH expression in tissue, and neuronal motility in Boyden chamber assays. We also used cerebellar neuron cultures to examine the effects of ethanol on insulin/IGF—stimulated AAH expression, and assess the role of GSK-3β—mediated phosphorylation on AAH protein levels. Chronic gestational exposure to ethanol caused dose-dependent impairments in neuronal migration and corresponding reductions in AAH protein expression in developing cerebella. In addition, prenatal ethanol exposure inhibited insulin and IGF-I—stimulated directional motility in isolated cerebellar granule neurons. Ethanol-treated neuronal cultures (50 mM × 96 h) also had reduced levels of AAH protein. Mechanistically, we showed that AAH protein could be phosphorylated on Ser residues by GSK-3β, and that chemical inhibition of GSK-3β and/or global Caspases increases AAH protein in both control- and ethanol-exposed cells. Ethanol-impaired neuronal migration in FASD is associated with reduced AAH expression. Because ethanol increases the activities of both GSK-3β and Caspases, the inhibitory effect of ethanol on neuronal migration could be mediated by increased

  13. Astrocyte-Specific Overexpression of Nrf2 Protects Striatal Neurons from Mitochondrial Complex II Inhibition

    PubMed Central

    Calkins, Marcus J.; Vargas, Marcelo R.; Johnson, Delinda A.; Johnson, Jeffrey A.

    2010-01-01

    Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that is known to regulate a variety of cytoprotective genes through the antioxidant response element (ARE). This endogenous response is one of the major pathways by which cells are protected from xenobiotic or innate oxidative insults. Furthermore, in neural systems, astrocyte-specific activation of Nrf2 is known to protect neurons. In previous work, our laboratory found that Nrf2 protects from intrastriatal injections of the mitochondrial complex II inhibitor malonate. Here, we extend these results to show that multiple methods of astrocyte-specific Nrf2 overexpression provide protection from neurotoxicity in vivo. GFAP-Nrf2 transgenic mice are significantly more resistant to malonate lesioning. This outcome is associated with an increased basal resistance, but more so, an enhanced Nrf2 response to lesioning that attenuated the ensuing neurotoxicity. Furthermore, striatal transplantation of neuroprogenitor cells overexpressing Nrf2 that differentiate into astrocytes after grafting also significantly reduced malonate toxicity. Overall, these data establish that enhanced astrocytic Nrf2 response and Nrf2 preconditioning are both sufficient to protect from acute lesions from mitochondrial complex II inhibition. PMID:20211941

  14. Salubrinal inhibits the expression of proteoglycans and favors neurite outgrowth from cortical neurons in vitro.

    PubMed

    Barreda-Manso, M Asunción; Yanguas-Casás, Natalia; Nieto-Sampedro, Manuel; Romero-Ramírez, Lorenzo

    2015-07-01

    After CNS injury, astrocytes and mesenchymal cells attempt to restore the disrupted glia limitans by secreting proteoglycans and extracellular matrix proteins (ECMs), forming the so-called glial scar. Although the glial scar is important in sealing the lesion, it is also a physical and functional barrier that prevents axonal regeneration. The synthesis of secretory proteins in the RER is under the control of the initiation factor of translation eIF2α. Inhibiting the synthesis of secretory proteins by increasing the phosphorylation of eIF2α, might be a pharmacologically efficient way of reducing proteoglycans and other profibrotic proteins present in the glial scar. Salubrinal, a neuroprotective drug, decreased the expression and secretion of proteoglycans and other profibrotic proteins induced by EGF or TGFβ, maintaining eIF2α phosphorylated. Besides, Salubrinal also reduced the transcription of proteoglycans and other profibrotic proteins, suggesting that it induced the degradation of non-translated mRNA. In a model in vitro of the glial scar, cortical neurons grown on cocultures of astrocytes and fibroblasts with TGFβ treated with Salubrinal, showed increased neurite outgrowth compared to untreated cells. Our results suggest that Salubrinal may be considered of therapeutic value facilitating axonal regeneration, by reducing overproduction and secretion of proteoglycans and profibrotic protein inhibitors of axonal growth. PMID:25882497

  15. Ribosome association contributes to restricting mRNAs to the cell body of hippocampal neurons.

    PubMed

    Lu, Z; McLaren, R S; Winters, C A; Ralston, E

    1998-12-01

    In neurons, mRNAs are differentially sorted to axons, dendrites, and the cell body. Recently, regions of certain mRNAs have been identified that target those mRNAs for translocation to the processes. However, the mechanism by which many, if not most mRNAs are retained in the cell body is not understood. Total inhibition of translation, by puromycin or cycloheximide, results in the mislocalization of cell body mRNAs to dendrites. We have examined the effect of translational inhibitors on the localization of ferritin mRNA, the translation of which can also be inhibited specifically by reducing iron levels. Using nonisotopic in situ hybridization, ferritin mRNA is found restricted to the cell body of cultured rat hippocampal neurons. Following treatment with either puromycin or cycloheximide, it migrates into dendrites. Control experiments reveal that the drugs affect neither the viability of the neuronal cultures, nor the steady-state level of ferritin mRNA. When transcription and protein synthesis are inhibited simultaneously, ferritin mRNA is found in the dendrites of puromycin, but not of cycloheximide-treated neurons. However, the localization of ferritin mRNA is unaffected by changes in iron concentration that regulate its translation rate specifically. We propose a model whereby cell body-restricted mRNAs are maintained in that location by association with ribosomes and with another cell component, which traps mRNAs when they are freed of ribosome association. The release of all mRNA species, as happens after total protein synthesis inhibition, floods the system and allows cell body mRNAs to diffuse into dendrites. In contrast, the partial release of the single ferritin mRNA species does not saturate the trapping system and the mRNA is retained in the cell body. PMID:9888989

  16. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells

    PubMed Central

    Merkle, Florian T.; Maroof, Asif; Wataya, Takafumi; Sasai, Yoshiki; Studer, Lorenz; Eggan, Kevin; Schier, Alexander F.

    2015-01-01

    Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin-releasing hormone (CRH) or thyrotropin-releasing hormone. Hypothalamic neurons can be generated using a ‘self-patterning’ strategy that yields a broad array of cell types, or via a more reproducible directed differentiation approach. Stem cell-derived human hypothalamic neurons share characteristic morphological properties and gene expression patterns with their counterparts in vivo, and are able to integrate into the mouse brain. These neurons could form the basis of cellular models, chemical screens or cellular therapies to study and treat common human diseases. PMID:25670790

  17. High sensitivity of mouse neuronal cells to tetanus toxin requires a GPI-anchored protein.

    PubMed

    Munro, P; Kojima, H; Dupont, J L; Bossu, J L; Poulain, B; Boquet, P

    2001-11-30

    Tetanus neurotoxin (TeNT) produced by Clostridium tetani specifically cleaves VAMP/synaptobrevin (VAMP) in central neurons, thereby causing inhibition of neurotransmitter release and ensuing spastic paralysis. Although polysialogangliosides act as components of the neurotoxin binding sites on neurons, evidence has accumulated indicating that a protein moiety is implicated as a receptor of TeNT. We have observed that treatment of cultured mouse neuronal cells with the phosphatidylinositol-specific phospholipase C (PIPLC) inhibited TeNT-induced cleavage of VAMP. Also, we have shown that the blocking effects of TeNT on neuroexocytosis can be prevented by incubation of Purkinje cell preparation with PIPLC. In addition, treatment of cultured mouse neuronal cells with cholesterol sequestrating agents such as nystatin and filipin, which disrupt clustering of GPI-anchored proteins in lipid rafts, prevented intraneuronal VAMP cleavage by TeNT. Our results demonstrate that high sensitivity of neurons to TeNT requires rafts and one or more GPI-anchored protein(s) which act(s) as a pivotal receptor for the neurotoxin. PMID:11716521

  18. CGRP inhibits neurons of the bed nucleus of the stria terminalis: implications for the regulation of fear and anxiety.

    PubMed

    Gungor, Nur Zeynep; Pare, Denis

    2014-01-01

    The bed nucleus of the stria terminalis (BNST) is thought to generate anxiety-like states via its projections to autonomic and neuroendocrine regulatory structures of the brain. However, because most BNST cells are GABAergic, they are expected to inhibit target neurons. In contrast with this, infusion of calcitonin gene-related peptide (CGRP) into BNST was reported to potentiate anxiety while activating BNST targets. The present study aimed to shed light on this paradox. The CGRP innervation of BNST originates in the pontine parabrachial nucleus and targets its anterolateral sector (BNST-AL). Thus, we investigated the effects of CGRP on BNST-AL neurons using patch recordings in vitro in male rats. CGRP did not alter the passive properties of BNST-AL cells but increased the amplitude of IPSPs evoked by stimulation of the stria terminalis (ST). However, IPSP paired-pulse ratios were unchanged by CGRP, and there was no correlation between IPSP potentiation and variance, suggesting that CGRP acts postsynaptically. Consistent with this, CGRP hyperpolarized the GABA-A reversal of BNST-AL cells. These results indicate that CGRP increases ST-evoked GABA-A IPSPs and hyperpolarizes their reversal potential through a postsynaptic change in Cl(-) homeostasis. Overall, our findings suggest that CGRP potentiates anxiety-like behaviors and increases neural activity in BNST targets, by inhibiting BNST-AL cells, supporting the conclusion that BNST-AL exerts anxiolytic effects. PMID:24381268

  19. Tempol moderately extends survival in a hSOD1(G93A) ALS rat model by inhibiting neuronal cell loss, oxidative damage and levels of non-native hSOD1(G93A) forms.

    PubMed

    Linares, Edlaine; Seixas, Luciana V; dos Prazeres, Janaina N; Ladd, Fernando V L; Ladd, Aliny A B L; Coppi, Antonio A; Augusto, Ohara

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive dysfunction and death of motor neurons by mechanisms that remain unclear. Evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. Cyclic nitroxides are an alternative worth exploring because they are multifunctional antioxidants that display low toxicity in vivo. Here, we examine the effects of the cyclic nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) on ALS onset and progression in transgenic female rats over-expressing the mutant hSOD1(G93A) . Starting at 7 weeks of age, a high dose of tempol (155 mg/day/rat) in the rat´s drinking water had marginal effects on the disease onset but decelerated disease progression and extended survival by 9 days. In addition, tempol protected spinal cord tissues as monitored by the number of neuronal cells, and the reducing capability and levels of carbonylated proteins and non-native hSOD1 forms in spinal cord homogenates. Intraperitoneal tempol (26 mg/rat, 3 times/week) extended survival by 17 days. This group of rats, however, diverted to a decelerated disease progression. Therefore, it was inconclusive whether the higher protective effect of the lower i.p. dose was due to higher tempol bioavailability, decelerated disease development or both. Collectively, the results show that tempol moderately extends the survival of ALS rats while protecting their cellular and molecular structures against damage. Thus, the results provide proof that cyclic nitroxides are alternatives worth to be further tested in animal models of ALS. PMID:23405225

  20. Tempol Moderately Extends Survival in a hSOD1G93A ALS Rat Model by Inhibiting Neuronal Cell Loss, Oxidative Damage and Levels of Non-Native hSOD1G93A Forms

    PubMed Central

    Linares, Edlaine; Seixas, Luciana V.; dos Prazeres, Janaina N.; Ladd, Fernando V. L.; Ladd, Aliny A. B. L.; Coppi, Antonio A.; Augusto, Ohara

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive dysfunction and death of motor neurons by mechanisms that remain unclear. Evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. Cyclic nitroxides are an alternative worth exploring because they are multifunctional antioxidants that display low toxicity in vivo. Here, we examine the effects of the cyclic nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) on ALS onset and progression in transgenic female rats over-expressing the mutant hSOD1G93A . Starting at 7 weeks of age, a high dose of tempol (155 mg/day/rat) in the rat´s drinking water had marginal effects on the disease onset but decelerated disease progression and extended survival by 9 days. In addition, tempol protected spinal cord tissues as monitored by the number of neuronal cells, and the reducing capability and levels of carbonylated proteins and non-native hSOD1 forms in spinal cord homogenates. Intraperitoneal tempol (26 mg/rat, 3 times/week) extended survival by 17 days. This group of rats, however, diverted to a decelerated disease progression. Therefore, it was inconclusive whether the higher protective effect of the lower i.p. dose was due to higher tempol bioavailability, decelerated disease development or both. Collectively, the results show that tempol moderately extends the survival of ALS rats while protecting their cellular and molecular structures against damage. Thus, the results provide proof that cyclic nitroxides are alternatives worth to be further tested in animal models of ALS. PMID:23405225

  1. μ-Opioid receptor activation and noradrenaline transport inhibition by tapentadol in rat single locus coeruleus neurons

    PubMed Central

    Sadeghi, Mahsa; Tzschentke, Thomas M; Christie, MacDonald J

    2015-01-01

    BACKGROUND AND PURPOSE Tapentadol is a novel analgesic that combines moderate μ-opioid receptor agonism and noradrenaline reuptake inhibition in a single molecule. Both mechanisms of action are involved in producing analgesia; however, the potency and efficacy of tapentadol in individual neurons has not been characterized. EXPERIMENTAL APPROACH Whole-cell patch-clamp recordings of G-protein-coupled inwardly rectifying K+ (KIR3.x) currents were made from rat locus coeruleus neurons in brain slices to investigate the potency and relative efficacy of tapentadol and compare its intrinsic activity with other clinically used opioids. KEY RESULTS Tapentadol showed agonist activity at μ receptors and was approximately six times less potent than morphine with respect to KIR3.x current modulation. The intrinsic activity of tapentadol was lower than [Met]enkephalin, morphine and oxycodone, but higher than buprenorphine and pentazocine. Tapentadol inhibited the noradrenaline transporter (NAT) with potency similar to that at μ receptors. The interaction between these two mechanisms of action was additive in individual LC neurons. CONCLUSIONS AND IMPLICATIONS Tapentadol displays similar potency for both µ receptor activation and NAT inhibition in functioning neurons. The intrinsic activity of tapentadol at the μ receptor lies between that of buprenorphine and oxycodone, potentially explaining the favourable profile of side effects, related to μ receptors. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24372103

  2. Functional Integration of Grafted Neural Stem Cell-Derived Dopaminergic Neurons Monitored by Optogenetics in an In Vitro Parkinson Model

    PubMed Central

    Tønnesen, Jan; Parish, Clare L.; Sørensen, Andreas T.; Andersson, Angelica; Lundberg, Cecilia; Deisseroth, Karl; Arenas, Ernest; Lindvall, Olle; Kokaia, Merab

    2011-01-01

    Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinson's disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D2 autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD. PMID:21394212

  3. GABA and GAD expression in the X-organ sinus gland system of the Procambarus clarkii crayfish: inhibition mediated by GABA between X-organ neurons.

    PubMed

    Pérez-Polanco, Paola; Garduño, Julieta; Cebada, Jorge; Zarco, Natanael; Segovia, José; Lamas, Mónica; García, Ubaldo

    2011-09-01

    In crustaceans, the X-organ-sinus gland (XO-SG) neurosecretory system is formed of distinct populations of neurons that produce two families of neuropeptides: crustacean hyperglycemic hormone and adipokinetic hormone/red pigment-concentrating hormone. On the basis of electrophysiological evidence, it has been proposed that γ-aminobutyric acid (GABA) regulates both electrical and secretory activity of the XO-SG system. In this work we observed that depolarizing current pulses to neurons located in the external rim of the X-organ induced repetitive firing that suppressed the spontaneous firing of previously active X-organ neurons. Picrotoxin reversibly blocked this inhibitory effect suggesting that the GABA released from the stimulated neuron inhibited neighboring cells. Immunoperoxidase in X-organ serial sections showed co-localization of GABA and glutamic acid decarboxylase (GAD) including the aforementioned neurons. Immunofluorescence in whole mount preparations showed that two subpopulations of crustacean hyperglycemic hormone-containing neurons colocalized with GABA. The expression of GAD mRNA was determined in crayfish tissue and X-organ single cells by RT-PCR. Bioinformatics analysis shows, within the amplified region, 90.4% consensus and 41.9% identity at the amino acid level compared with Drosophila melanogaster and Caenorhabditis elegans. We suggest that crustacean hyperglycemic hormone-GABA-containing neurons can regulate the excitability of other X-organ neurons that produce different neurohormones. PMID:21626307

  4. Tracing Synaptic Connectivity onto Embryonic Stem Cell-Derived Neurons

    PubMed Central

    Garcia, Isabella; Huang, Longwen; Ung, Kevin; Arenkiel, Benjamin R.

    2012-01-01

    Transsynaptic circuit tracing using genetically modified Rabies virus (RV) is an emerging technology for identifying synaptic connections between neurons. Complementing this methodology, it has become possible to assay the basic molecular and cellular properties of neuronal lineages derived from embryonic stem (ES) cells in vitro, and these properties are under intense investigation towards devising cell replacement therapies. Here, we report the generation of a novel mouse ES cell (mESC) line that harbors the genetic elements to allow RV-mediated transsynaptic circuit tracing in ES cell-derived neurons and their synaptic networks. To facilitate transsynaptic tracing, we have engineered a new reporter allele by introducing cDNA encoding tdTomato, the Rabies-G glycoprotein, and the avian TVA receptor into the ROSA26 locus by gene targeting. We demonstrate high-efficiency differentiation of these novel mESCs into functional neurons, show their capacity to functionally connect with primary neuronal cultures as evidenced by immunohistochemistry and electrophysiological recordings, and show their ability to act as source cells for presynaptic tracing of neuronal networks in vitro and in vivo. Together, our data highlight the potential for using genetically engineered stem cells to investigate fundamental mechanisms of synapse and circuit formation with unambiguous identification of presynaptic inputs onto neuronal populations of interest. PMID:22996827

  5. ROCK inhibition enhances neurite outgrowth in neural stem cells by upregulating YAP expression in vitro

    PubMed Central

    Jia, Xu-feng; Ye, Fei; Wang, Yan-bo; Feng, Da-xiong

    2016-01-01

    Spontaneous axonal regeneration of neurons does not occur after spinal cord injury because of inhibition by myelin and other inhibitory factors. Studies have demonstrated that blocking the Rho/Rho-kinase (ROCK) pathway can promote neurite outgrowth in spinal cord injury models. In the present study, we investigated neurite outgrowth and neuronal differentiation in neural stem cells from the mouse subventricular zone after inhibition of ROCK in vitro. Inhibition of ROCK with Y-27632 increased neurite length, enhanced neuronal differentiation, and upregulated the expression of two major signaling pathway effectors, phospho-Akt and phospho-mitogen-activated protein kinase, and the Hippo pathway effector YAP. These results suggest that inhibition of ROCK mediates neurite outgrowth in neural stem cells by activating the Hippo signaling pathway. PMID:27482229

  6. Interaction of leech neurons with topographical gratings: comparison with rodent and human neuronal lines and primary cells

    PubMed Central

    Tonazzini, Ilaria; Pellegrini, Monica; Pellegrino, Mario; Cecchini, Marco

    2014-01-01

    Controlling and improving neuronal cell migration and neurite outgrowth are critical elements of tissue engineering applications and development of artificial neuronal interfaces. To this end, a promising approach exploits nano/microstructured surfaces, which have been demonstrated to be capable of tuning neuronal differentiation, polarity, migration and neurite orientation. Here, we investigate the neurite contact guidance of leech neurons on plastic gratings (GRs; anisotropic topographies composed of alternating lines of grooves and ridges). By high-resolution microscopy, we quantitatively evaluate the changes in tubulin cytoskeleton organization and cell morphology and in the neurite and growth cone development. The topography-reading process of leech neurons on GRs is mediated by filopodia and is more responsive to 4-µm-period GRs than to smaller period GRs. Leech neuron behaviour on GRs is finally compared and validated with several other neuronal cells, from murine differentiated embryonic stem cells and primary hippocampal neurons to differentiated human neuroblastoma cells. PMID:24501675

  7. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity.

    PubMed

    Wicher, Dieter; Derst, Christian; Gautier, Hélène; Lapied, Bruno; Heinemann, Stefan H; Agricola, Hans-Jürgen

    2007-01-01

    The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK) in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK) in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR), we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM) neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC(50)=11pM) due to reduction of a pacemaker Ca(2+) current through cAMP-inhibited pTRPgamma channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca(2+) concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH): PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPgamma channel that is activated by AKH under conditions of food shortage. PMID:18946521

  8. The Satiety Signaling Neuropeptide Perisulfakinin Inhibits the Activity of Central Neurons Promoting General Activity

    PubMed Central

    Wicher, Dieter; Derst, Christian; Gautier, Hélène; Lapied, Bruno; Heinemann, Stefan H.; Agricola, Hans-Jürgen

    2007-01-01

    The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK) in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK) in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR), we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM) neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC50=11pM) due to reduction of a pacemaker Ca2+ current through cAMP-inhibited pTRPγ channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca2+ concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH): PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPγ channel that is activated by AKH under conditions of food shortage. PMID:18946521

  9. pH-dependent inhibition of tetrodotoxin-resistant Na(+) channels by diclofenac in rat nociceptive neurons.

    PubMed

    Nakamura, Michiko; Jang, Il-Sung

    2016-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the treatment of inflammatory pain. It is well established that NSAIDs exert their analgesic effects by inhibiting cyclooxygenase to prevent the production of prostaglandins; however, several NSAIDs including diclofenac also modulate other ion channels expressed in nociceptive neurons. In this study, we investigated the pH-dependent effects of diclofenac on tetrodotoxin-resistant (TTX-R) Na(+) channels in rat trigeminal sensory neurons by using the whole-cell patch clamp technique. Diclofenac decreased the peak amplitude of TTX-R Na(+) currents (INa) in a concentration dependent manner. While diclofenac had little effect on the voltage-activation relationship, it significantly shifted the steady-state fast inactivation relationship toward hyperpolarized potentials. Diclofenac increased the extent of use-dependent inhibition of TTX-R Na(+) currents. Diclofenac also significantly accelerated the development of inactivation and retarded the recovery from inactivation of TTX-R Na(+) channels. The effects of diclofenac on TTX-R Na(+) channels were stronger at pH 6.0 than at pH7.4 for most of the parameters tested. Considering that the extracellular pH falls in inflamed tissues, and that TTX-R Na(+) channels expressed on nociceptive neurons are implicated in the prostaglandin-mediated development and maintenance of inflammatory hyperalgesia, our findings could provide an additional analgesic effect of diclofenac under acidic pH conditions. PMID:26176424

  10. Transnitrosylation of XIAP Regulates Caspase-Dependent Neuronal Cell Death

    PubMed Central

    Nakamura, Tomohiro; Wang, Lei; Wong, Catherine C. L.; Scott, Fiona L.; Eckelman, Brendan P.; Han, Xuemei; Tzitzilonis, Christos; Meng, Fanjun; Gu, Zezong; Holland, Emily A.; Clemente, Arjay T.; Okamoto, Shu-ichi; Salvesen, Guy S.; Riek, Roland; Yates, John R.; Lipton, Stuart A.

    2010-01-01

    SUMMARY X-linked inhibitor of apoptosis (XIAP) is a potent antagonist of caspase apoptotic activity. XIAP also functions as an E3 ubiquitin ligase, targeting caspases for degradation. However, molecular pathways controlling XIAP activities remain unclear. Here we report that nitric oxide (NO) reacts with XIAP by S-nitrosylating its RING domain (forming SNO-XIAP), thereby inhibiting E3 ligase and antiapoptotic activity. NO-mediated neurotoxicity and caspase activation have been linked to several neurodegenerative disorders, including Alzheimer’s, Parkinson’s, and Huntington’s diseases. We find significant SNO-XIAP formation in brains of patients with these diseases, implicating this reaction in the etiology of neuronal damage. Conversely, S-nitrosylation of caspases is known to inhibit apoptotic activity. Unexpectedly, we find that SNO-caspase transnitrosylates (transfers its NO group) to XIAP, forming SNO-XIAP, and thus promotes cell injury and death. These findings provide unique insights into the regulation of caspase activation in neurodegenerative disorders mediated, at least in part, by nitrosative stress. PMID:20670888

  11. Pain Inhibition by Optogenetic Activation of Specific Anterior Cingulate Cortical Neurons

    PubMed Central

    Gu, Ling; Uhelski, Megan L.; Anand, Sanjay; Romero-Ortega, Mario; Kim, Young-tae; Fuchs, Perry N.; Mohanty, Samarendra K.

    2015-01-01

    Cumulative evidence from both humans and animals suggests that the anterior cingulate cortex (ACC) is important for pain-related perception, and thus a likely target for pain relief therapy. However, use of existing electrode based ACC stimulation has not significantly reduced pain, at least in part due to the lack of specificity and likely co-activation of both excitatory and inhibitory neurons. Herein, we report a dramatic reduction of pain behavior in transgenic mice by optogenetic stimulation of the inhibitory neural circuitry of the ACC expressing channelrhodopsin-2. Electrophysiological measurements confirmed that stimulation of ACC inhibitory neurons is associated with decreased neural activity in the ACC. Further, a distinct optogenetic stimulation intensity and frequency-dependent inhibition of spiking activity in the ACC was observed. Moreover, we confirmed specific electrophysiological responses from different neuronal units in the thalamus, in response to particular types of painful stimuli (i,e., formalin injection, pinch), which we found to be modulated by optogenetic control of the ACC inhibitory neurons. These results underscore the inhibition of the ACC as a clinical alternative in inhibiting chronic pain, and leads to a better understanding of the pain processing circuitry of the cingulate cortex. PMID:25714399

  12. Combined administration of secretin and oxytocin inhibits chronic colitis and associated activation of forebrain neurons

    PubMed Central

    Welch, Martha G.; Anwar, Muhammad; Chang, Christine Y.; Gross, Kara J.; Ruggiero, David A.; Gershon, Michael D.

    2011-01-01

    Background The pathogenesis of inflammatory bowel disease is unknown; however, the disorder is aggravated by psychological stress and is itself psychologically stressful. Chronic intestinal inflammation, moreover, has been reported to activate forebrain neurons. We tested the hypotheses that the chronically inflamed bowel signals to the brain through the vagi and that administration of a combination of secretin (S) and oxytocin (OT) inhibits this signaling. Methods Three daily enemas containing 2,4,6-trinitrobenzene sulfonic acid (TNBS), which were given to rats produced chronic colitis and ongoing activation of Fos in brain neurons. Key Results Fos was induced in neurons in the paraventricular nucleus of the hypothalamus, basolateral amygdala, central amygdala, and piriform cortex. Subdiaphragmatic vagotomy failed to inhibit this activation of Fos, suggesting that colitis activates forebrain neurons independently of the vagi. When administered intravenously, but not when given intracerebroventricularly, in doses that were individually ineffective, combined S/OT prevented colitis-associated activation of central neurons. Strikingly, S/OT decreased inflammatory infiltrates into the colon and colonic expression of tumor necrosis factor-α and interferon-γ. Conclusions & Inferences These observations suggest that chronic colonic inflammation is ameliorated by the systemic administration of S/OT, which probably explains the parallel ability of systemic S/OT to inhibit the colitis-associated activation of forebrain neurons. It is possible that S and OT, which are endogenous to the colon, might normally combine to restrict the severity of colonic inflammatory responses and that advantage might be taken of this system to develop novel means of treating inflammation-associated intestinal disorders. PMID:20210978

  13. Genetic Inhibition of CaMKII in Dorsal Striatal Medium Spiny Neurons Reduces Functional Excitatory Synapses and Enhances Intrinsic Excitability

    PubMed Central

    Klug, Jason R.; Mathur, Brian N.; Kash, Thomas L.; Wang, Hui-Dong; Matthews, Robert T.; Robison, A. J.; Anderson, Mark E.; Deutch, Ariel Y.; Lovinger, David M.; Colbran, Roger J.; Winder, Danny G.

    2012-01-01

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) is abundant in striatal medium spiny neurons (MSNs). CaMKII is dynamically regulated by changes in dopamine signaling, as occurs in Parkinson's disease as well as addiction. Although CaMKII has been extensively studied in the hippocampus where it regulates excitatory synaptic transmission, relatively little is known about how it modulates neuronal function in the striatum. Therefore, we examined the impact of selectively overexpressing an EGFP-fused CaMKII inhibitory peptide (EAC3I) in striatal medium spiny neurons (MSNs) using a novel transgenic mouse model. EAC3I-expressing cells exhibited markedly decreased excitatory transmission, indicated by a decrease in the frequency of spontaneous excitatory postsynaptic currents (sEPSCs). This decrease was not accompanied by changes in the probability of release, levels of glutamate at the synapse, or changes in dendritic spine density. CaMKII regulation of the AMPA receptor subunit GluA1 is a major means by which the kinase regulates neuronal function in the hippocampus. We found that the decrease in striatal excitatory transmission seen in the EAC3I mice is mimicked by deletion of GluA1. Further, while CaMKII inhibition decreased excitatory transmission onto MSNs, it increased their intrinsic excitability. These data suggest that CaMKII plays a critical role in setting the excitability rheostat of striatal MSNs by coordinating excitatory synaptic drive and the resulting depolarization response. PMID:23028932

  14. α-Lipoic acid inhibits sevoflurane-induced neuronal apoptosis through PI3K/Akt signalling pathway.

    PubMed

    Ma, Rong; Wang, Xiang; Peng, Peipei; Xiong, Jingwei; Dong, Hongquan; Wang, Lixia; Ding, Zhengnian

    2016-01-01

    Sevoflurane is a widely used anaesthetic agent, including in anaesthesia of children and infants. Recent studies indicated that the general anaesthesia might cause the cell apoptosis in the brain. This issue raises the concerns about the neuronal toxicity induced by the application of anaesthetic agents, especially in the infants and young children. In this study, we used Morris water maze, western blotting and immunohistochemistry to elucidate the role of α-lipoic acid in the inhibition of neuronal apoptosis. We found that sevoflurane led to the long-term cognitive impairment in the young rats. This adverse effect may be caused by the neuronal death in the hippocampal region, mediated through PI3K/Akt signalling pathway. We also showed that α-lipoic acid offset the effect of sevoflurane on the neuronal apoptosis and cognitive dysfunction. This study elucidated the potential clinical role of α-lipoic acid, providing a promising way in the prevention and treatment of long-term cognitive impairment induced by sevoflurane general anesthesia. PMID:26781804

  15. Reelin-dependent ApoER2 downregulation uncouples newborn neurons from progenitor cells

    PubMed Central

    Pérez-Martínez, F. Javier; Luque-Río, Álvaro; Sakakibara, Akira; Hattori, Mitsuharu; Miyata, Takaki; Luque, Juan M.

    2012-01-01

    Summary Reelin and its receptor machinery are well known to be required for the migration and positioning of neocortical projection neurons. More recently, reelin has been shown both necessary and sufficient to determine the rate of neocortical neurogenesis. The molecular links underlying its seemingly distinct proliferative and post-proliferative functions remain unknown. Here we reveal an enriched expression of functional reelin receptors, largely of Apolipoprotein E Receptor 2 (ApoER2), in radial glia basal processes and intermediate progenitor cells during mid/late cortical development. In vivo, ApoER2 overexpression inhibits neuronal migration. In contrast, precluding excessive levels of ApoER2 in reelin-deficient cortices, by either ApoER2 knock-down or the transgenic expression of reelin in neural progenitor cells, improves neuronal migration and positioning. Our study provides groundwork for the highly orchestrated clearance of neocortical neurons from their birth site, suggesting that a reelin-dependent ApoER2 downregulation mechanism uncouples newborn neurons from progenitor cells, thereby enabling neurons to migrate. PMID:23259060

  16. Propofol protects hippocampal neurons from apoptosis in ischemic brain injury by increasing GLT-1 expression and inhibiting the activation of NMDAR via the JNK/Akt signaling pathway.

    PubMed

    Gong, Hong-Yan; Zheng, Fang; Zhang, Chao; Chen, Xi-Yan; Liu, Jing-Jing; Yue, Xiu-Qin

    2016-09-01

    Ischemic brain injury (IBI) can cause nerve injury and is a leading cause of morbidity and mortality worldwide. The neuroprotective effects of propofol against IBI have been previously demonstrated. However, the neuroprotective effects of propofol on hippocampal neurons are not yet entirely clear. In the present study, models of IBI were established in hypoxia-exposed hippocampal neuronal cells. Cell viability assay and apoptosis assay were performed to examine the neuroprotective effects of propofol on hippocampal neurons in IBI. A significant decrease in cell viability and a significant increase in cell apoptosis were observed in the IBI group compared with the control group, accompanied by a decrease in glial glutamate transporter-1 (GLT‑1) expression as determined by RT-qPCR and western blot analysis. The effects of IBI were reversed by propofol treatment. The siRNA-mediated knockdown of GLT‑1 in the hypoxia-exposed hippocampal neuronal cells led to an increase in cell apoptosis, Jun N-terminal kinase (JNK) activation and N-methyl-D‑aspartate (NMDA) receptor (NR1 and NR2B) activation, as well as to a decrease in cell viability and a decrease in Akt activation. The effects of RNA interference-mediated GLT‑1 gene silencing on cell viability, JNK activation, NMDAR activation, cell apoptosis and Akt activation in the hippocampal neuronal cells were slightly reversed by propofol treatment. The JNK agonist, anisomycin, and the Akt inhibitor, LY294002, both significantly blocked the effects of propofol on hippocampal neuronal cell viability and apoptosis in IBI. The decrease in JNK activation and the increase in Akt activation caused by GLT‑1 overexpression were reversed by NMDA. Collectively, our findings suggest that propofol treatment protects hippocampal neurons against IBI by enhancing GLT‑1 expression and inhibiting the activation of NMDAR via the JNK/Akt signaling pathway. PMID:27430327

  17. Generation of Neuronal Progenitor Cells and Neurons from Mouse Sleeping Beauty Transposon–Generated Induced Pluripotent Stem Cells

    PubMed Central

    Klincumhom, Nuttha; Pirity, Melinda K.; Berzsenyi, Sara; Ujhelly, Olga; Muenthaisong, Suchitra; Rungarunlert, Sasitorn; Tharasanit, Theerawat; Techakumphu, Mongkol

    2012-01-01

    Abstract Mouse embryonic stem cells (ESCs) and induced pluripotent stem (iPS) cells can be used as models of neuronal differentiation for the investigation of mammalian neurogenesis, pharmacological testing, and development of cell-based therapies. Recently, mouse iPS cell lines have been generated by Sleeping Beauty (SB) transposon-mediated transgenesis (SB-iPS). In this study, we determined for the first time the differentiation potential of mouse SB-iPS cells to form neuronal progenitor cells (NPCs) and neurons. Undifferentiated SB-iPS and ES cells were aggregated into embryoid bodies (EBs) and cultured in neuronal differentiation medium supplemented with 5 μM all-trans retinoic acid. Thereafter, EBs were dissociated and plated to observe further neuronal differentiation. Samples were fixed on days 10 and 14 for immunocytochemistry staining using the NPC markers Pax6 and Nestin and the neuron marker βIII-tubulin/Tuj1. Nestin-labeled cells were analyzed further by flow cytometry. Our results demonstrated that SB-iPS cells can generate NPCs and differentiate further into neurons in culture, although SB-iPS cells produced less nestin-positive cells than ESCs (6.12±1.61 vs. 74.36±1.65, respectively). In conclusion, the efficiency of generating SB-iPS cells–derived NPCs needs to be improved. However, given the considerable potential of SB-iPS cells for drug testing and as therapeutic models in neurological disorders, continuing investigation of their neuronal differentiation ability is required. PMID:22917491

  18. Signal Transducer and Activator of Transcription-5 Mediates Neuronal Apoptosis Induced by Inhibition of Rac GTPase Activity*

    PubMed Central

    Stankiewicz, Trisha R.; Loucks, F. Alexandra; Schroeder, Emily K.; Nevalainen, Marja T.; Tyler, Kenneth L.; Aktories, Klaus; Bouchard, Ron J.; Linseman, Daniel A.

    2012-01-01

    In several neuronal cell types, the small GTPase Rac is essential for survival. We have shown previously that the Rho family GTPase inhibitor Clostridium difficile toxin B (ToxB) induces apoptosis in primary rat cerebellar granule neurons (CGNs) principally via inhibition of Rac GTPase function. In the present study, incubation with ToxB activated a proapoptotic Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, and a pan-JAK inhibitor protected CGNs from Rac inhibition. STAT1 expression was induced by ToxB; however, CGNs from STAT1 knock-out mice succumbed to ToxB-induced apoptosis as readily as wild-type CGNs. STAT3 displayed enhanced tyrosine phosphorylation following treatment with ToxB, and a reputed inhibitor of STAT3, cucurbitacin (JSI-124), reduced CGN apoptosis. Unexpectedly, JSI-124 failed to block STAT3 phosphorylation, and CGNs were not protected from ToxB by other known STAT3 inhibitors. In contrast, STAT5A tyrosine phosphorylation induced by ToxB was suppressed by JSI-124. In addition, roscovitine similarly inhibited STAT5A phosphorylation and protected CGNs from ToxB-induced apoptosis. Consistent with these results, adenoviral infection with a dominant negative STAT5 mutant, but not wild-type STAT5, significantly decreased ToxB-induced apoptosis of CGNs. Finally, chromatin immunoprecipitation with a STAT5 antibody revealed increased STAT5 binding to the promoter region of prosurvival Bcl-xL. STAT5 was recruited to the Bcl-xL promoter region in a ToxB-dependent manner, and this DNA binding preceded Bcl-xL down-regulation, suggesting transcriptional repression. These data indicate that a novel JAK/STAT5 proapoptotic pathway significantly contributes to neuronal apoptosis induced by the inhibition of Rac GTPase. PMID:22378792

  19. Signal transducer and activator of transcription-5 mediates neuronal apoptosis induced by inhibition of Rac GTPase activity.

    PubMed

    Stankiewicz, Trisha R; Loucks, F Alexandra; Schroeder, Emily K; Nevalainen, Marja T; Tyler, Kenneth L; Aktories, Klaus; Bouchard, Ron J; Linseman, Daniel A

    2012-05-11

    In several neuronal cell types, the small GTPase Rac is essential for survival. We have shown previously that the Rho family GTPase inhibitor Clostridium difficile toxin B (ToxB) induces apoptosis in primary rat cerebellar granule neurons (CGNs) principally via inhibition of Rac GTPase function. In the present study, incubation with ToxB activated a proapoptotic Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, and a pan-JAK inhibitor protected CGNs from Rac inhibition. STAT1 expression was induced by ToxB; however, CGNs from STAT1 knock-out mice succumbed to ToxB-induced apoptosis as readily as wild-type CGNs. STAT3 displayed enhanced tyrosine phosphorylation following treatment with ToxB, and a reputed inhibitor of STAT3, cucurbitacin (JSI-124), reduced CGN apoptosis. Unexpectedly, JSI-124 failed to block STAT3 phosphorylation, and CGNs were not protected from ToxB by other known STAT3 inhibitors. In contrast, STAT5A tyrosine phosphorylation induced by ToxB was suppressed by JSI-124. In addition, roscovitine similarly inhibited STAT5A phosphorylation and protected CGNs from ToxB-induced apoptosis. Consistent with these results, adenoviral infection with a dominant negative STAT5 mutant, but not wild-type STAT5, significantly decreased ToxB-induced apoptosis of CGNs. Finally, chromatin immunoprecipitation with a STAT5 antibody revealed increased STAT5 binding to the promoter region of prosurvival Bcl-xL. STAT5 was recruited to the Bcl-xL promoter region in a ToxB-dependent manner, and this DNA binding preceded Bcl-xL down-regulation, suggesting transcriptional repression. These data indicate that a novel JAK/STAT5 proapoptotic pathway significantly contributes to neuronal apoptosis induced by the inhibition of Rac GTPase. PMID:22378792

  20. Balance between Excitation and Inhibition Controls the Temporal Organization of Neuronal Avalanches

    NASA Astrophysics Data System (ADS)

    Lombardi, F.; Herrmann, H. J.; Perrone-Capano, C.; Plenz, D.; de Arcangelis, L.

    2012-06-01

    Neuronal avalanches, measured in vitro and in vivo, exhibit a robust critical behavior. Their temporal organization hides the presence of correlations. Here we present experimental measurements of the waiting time distribution between successive avalanches in the rat cortex in vitro. This exhibits a nonmonotonic behavior not usually found in other natural processes. Numerical simulations provide evidence that this behavior is a consequence of the alternation between states of high and low activity, named up and down states, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods, both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homeostatic mechanisms.

  1. De novo KCNB1 mutations in infantile epilepsy inhibit repetitive neuronal firing

    PubMed Central

    Saitsu, Hirotomo; Akita, Tenpei; Tohyama, Jun; Goldberg-Stern, Hadassa; Kobayashi, Yu; Cohen, Roni; Kato, Mitsuhiro; Ohba, Chihiro; Miyatake, Satoko; Tsurusaki, Yoshinori; Nakashima, Mitsuko; Miyake, Noriko; Fukuda, Atsuo; Matsumoto, Naomichi

    2015-01-01

    The voltage-gated Kv2.1 potassium channel encoded by KCNB1 produces the major delayed rectifier potassium current in pyramidal neurons. Recently, de novo heterozygous missense KCNB1 mutations have been identified in three patients with epileptic encephalopathy and a patient with neurodevelopmental disorder. However, the frequency of KCNB1 mutations in infantile epileptic patients and their effects on neuronal activity are yet unknown. We searched whole exome sequencing data of a total of 437 patients with infantile epilepsy, and found novel de novo heterozygous missense KCNB1 mutations in two patients showing psychomotor developmental delay and severe infantile generalized seizures with high-amplitude spike-and-wave electroencephalogram discharges. The mutation located in the channel voltage sensor (p.R306C) disrupted sensitivity and cooperativity of the sensor, while the mutation in the channel pore domain (p.G401R) selectively abolished endogenous Kv2 currents in transfected pyramidal neurons, indicating a dominant-negative effect. Both mutants inhibited repetitive neuronal firing through preventing production of deep interspike voltages. Thus KCNB1 mutations can be a rare genetic cause of infantile epilepsy, and insufficient firing of pyramidal neurons would disturb both development and stability of neuronal circuits, leading to the disease phenotypes. PMID:26477325

  2. Distinct ensembles of medial prefrontal cortex neurons are activated by threatening stimuli that elicit excitation vs. inhibition of movement.

    PubMed

    Halladay, Lindsay R; Blair, Hugh T

    2015-08-01

    Neural circuits controlling defensive behavior were investigated by recording single units in medial prefrontal cortex (mPFC) and dorsolateral periaqueductal gray (dlPAG) while rats expressed conditioned fear responses to an auditory conditioned stimulus (CS; 20-s train of white noise pips) previously paired with an aversive unconditioned stimulus (US; 2-s train of periorbital shocks). The CS elicited conditioned movement inhibition (CMI; characterized by decreased movement speed and freezing) when rats had not recently encountered the US, whereas the CS elicited conditioned movement excitation (CME; characterized by increased movement speed and flight behavior) after recent US encounters. Many mPFC neurons were "strategy-selective" cells that changed their firing rates only when the CS elicited CME (15/71) or CMI (13/71) responses, whereas few mPFC cells (4/71) responded nonselectively to the CS during either response. By contrast, many dlPAG neurons (20/74) responded nonselectively to the CS, but most (40/74) were excited by the CS selectively during CME trials (and none during CMI trials). CME-selective neurons in dlPAG responded phasically after CS pips that elicited CME responses, whereas CME-selective neurons in mPFC showed tonically elevated activity before and after pips that evoked CME responses. These findings suggest that, at the time when the CS occurs, tonic firing rates of CME- and CMI-selective mPFC neurons may bias the rat's choice of whether to express CME vs. CMI responses, perhaps via projections to downstream structures (such as amygdala and PAG) that influence how sensory stimuli are mapped onto motor circuits that drive the expression of competing behaviors. PMID:25972588

  3. Distinct ensembles of medial prefrontal cortex neurons are activated by threatening stimuli that elicit excitation vs. inhibition of movement

    PubMed Central

    Blair, Hugh T.

    2015-01-01

    Neural circuits controlling defensive behavior were investigated by recording single units in medial prefrontal cortex (mPFC) and dorsolateral periaqueductal gray (dlPAG) while rats expressed conditioned fear responses to an auditory conditioned stimulus (CS; 20-s train of white noise pips) previously paired with an aversive unconditioned stimulus (US; 2-s train of periorbital shocks). The CS elicited conditioned movement inhibition (CMI; characterized by decreased movement speed and freezing) when rats had not recently encountered the US, whereas the CS elicited conditioned movement excitation (CME; characterized by increased movement speed and flight behavior) after recent US encounters. Many mPFC neurons were “strategy-selective” cells that changed their firing rates only when the CS elicited CME (15/71) or CMI (13/71) responses, whereas few mPFC cells (4/71) responded nonselectively to the CS during either response. By contrast, many dlPAG neurons (20/74) responded nonselectively to the CS, but most (40/74) were excited by the CS selectively during CME trials (and none during CMI trials). CME-selective neurons in dlPAG responded phasically after CS pips that elicited CME responses, whereas CME-selective neurons in mPFC showed tonically elevated activity before and after pips that evoked CME responses. These findings suggest that, at the time when the CS occurs, tonic firing rates of CME- and CMI-selective mPFC neurons may bias the rat's choice of whether to express CME vs. CMI responses, perhaps via projections to downstream structures (such as amygdala and PAG) that influence how sensory stimuli are mapped onto motor circuits that drive the expression of competing behaviors. PMID:25972588

  4. Inhibition of A5 Neurons Facilitates the Occurrence of REM Sleep-Like Episodes in Urethane-Anesthetized Rats: A New Role for Noradrenergic A5 Neurons?

    PubMed

    Fenik, Victor B; Marchenko, Vitaliy; Davies, Richard O; Kubin, Leszek

    2012-01-01

    When rapid eye movement (REM) sleep occurs, noradrenergic cells become silent, with the abolition of activity in locus coeruleus (LC) neurons seen as a key event permissive for the occurrence of REM sleep. However, it is not known whether silencing of other than LC noradrenergic neurons contributes to the generation of REM sleep. In urethane-anesthetized rats, stereotyped REM sleep-like episodes can be repeatedly elicited by injections of the cholinergic agonist, carbachol, into a discrete region of the dorsomedial pons. We used this preparation to test whether inhibition of ventrolateral pontine noradrenergic A5 neurons only, or together with LC neurons, also can elicit REM sleep-like effects. To silence noradrenergic cells, we sequentially injected the α(2)-adrenergic agonist clonidine (20-40 nl, 0.75 mM) into both A5 regions and then the LC. In two rats, successful bilateral clonidine injections into the A5 region elicited the characteristic REM sleep-like episodes (hippocampal theta rhythm, suppression of hypoglossal nerve activity, reduced respiratory rate). In five rats, bilateral clonidine injections into the A5 region and then into one LC triggered REM sleep-like episodes, and in two rats injections into both A5 and then both LC were needed to elicit the effect. In contrast, in three rats, uni- or bilateral clonidine injections only into the LC had no effect, and clonidine injections placed in another six rats outside of the A5 and/or LC regions were without effect. The REM sleep-like episodes elicited by clonidine had similar magnitude of suppression of hypoglossal nerve activity (by 75%), similar pattern of hippocampal changes, and similar durations (2.5-5.3 min) to the episodes triggered in the same preparation by carbachol injections into the dorsomedial pontine reticular formation. Thus, silencing of A5 cells may importantly enable the occurrence of REM sleep-like episodes, at least under anesthesia. This is a new role for noradrenergic A5

  5. Inhibition of A5 Neurons Facilitates the Occurrence of REM Sleep-Like Episodes in Urethane-Anesthetized Rats: A New Role for Noradrenergic A5 Neurons?

    PubMed Central

    Fenik, Victor B.; Marchenko, Vitaliy; Davies, Richard O.; Kubin, Leszek

    2012-01-01

    When rapid eye movement (REM) sleep occurs, noradrenergic cells become silent, with the abolition of activity in locus coeruleus (LC) neurons seen as a key event permissive for the occurrence of REM sleep. However, it is not known whether silencing of other than LC noradrenergic neurons contributes to the generation of REM sleep. In urethane-anesthetized rats, stereotyped REM sleep-like episodes can be repeatedly elicited by injections of the cholinergic agonist, carbachol, into a discrete region of the dorsomedial pons. We used this preparation to test whether inhibition of ventrolateral pontine noradrenergic A5 neurons only, or together with LC neurons, also can elicit REM sleep-like effects. To silence noradrenergic cells, we sequentially injected the α2-adrenergic agonist clonidine (20–40 nl, 0.75 mM) into both A5 regions and then the LC. In two rats, successful bilateral clonidine injections into the A5 region elicited the characteristic REM sleep-like episodes (hippocampal theta rhythm, suppression of hypoglossal nerve activity, reduced respiratory rate). In five rats, bilateral clonidine injections into the A5 region and then into one LC triggered REM sleep-like episodes, and in two rats injections into both A5 and then both LC were needed to elicit the effect. In contrast, in three rats, uni- or bilateral clonidine injections only into the LC had no effect, and clonidine injections placed in another six rats outside of the A5 and/or LC regions were without effect. The REM sleep-like episodes elicited by clonidine had similar magnitude of suppression of hypoglossal nerve activity (by 75%), similar pattern of hippocampal changes, and similar durations (2.5–5.3 min) to the episodes triggered in the same preparation by carbachol injections into the dorsomedial pontine reticular formation. Thus, silencing of A5 cells may importantly enable the occurrence of REM sleep-like episodes, at least under anesthesia. This is a new role for noradrenergic A5

  6. η-Secretase processing of APP inhibits neuronal activity in the hippocampus.

    PubMed

    Willem, Michael; Tahirovic, Sabina; Busche, Marc Aurel; Ovsepian, Saak V; Chafai, Magda; Kootar, Scherazad; Hornburg, Daniel; Evans, Lewis D B; Moore, Steven; Daria, Anna; Hampel, Heike; Müller, Veronika; Giudici, Camilla; Nuscher, Brigitte; Wenninger-Weinzierl, Andrea; Kremmer, Elisabeth; Heneka, Michael T; Thal, Dietmar R; Giedraitis, Vilmantas; Lannfelt, Lars; Müller, Ulrike; Livesey, Frederick J; Meissner, Felix; Herms, Jochen; Konnerth, Arthur; Marie, Hélène; Haass, Christian

    2015-10-15

    Alzheimer disease (AD) is characterized by the accumulation of amyloid plaques, which are predominantly composed of amyloid-β peptide. Two principal physiological pathways either prevent or promote amyloid-β generation from its precursor, β-amyloid precursor protein (APP), in a competitive manner. Although APP processing has been studied in great detail, unknown proteolytic events seem to hinder stoichiometric analyses of APP metabolism in vivo. Here we describe a new physiological APP processing pathway, which generates proteolytic fragments capable of inhibiting neuronal activity within the hippocampus. We identify higher molecular mass carboxy-terminal fragments (CTFs) of APP, termed CTF-η, in addition to the long-known CTF-α and CTF-β fragments generated by the α- and β-secretases ADAM10 (a disintegrin and metalloproteinase 10) and BACE1 (β-site APP cleaving enzyme 1), respectively. CTF-η generation is mediated in part by membrane-bound matrix metalloproteinases such as MT5-MMP, referred to as η-secretase activity. η-Secretase cleavage occurs primarily at amino acids 504-505 of APP695, releasing a truncated ectodomain. After shedding of this ectodomain, CTF-η is further processed by ADAM10 and BACE1 to release long and short Aη peptides (termed Aη-α and Aη-β). CTFs produced by η-secretase are enriched in dystrophic neurites in an AD mouse model and in human AD brains. Genetic and pharmacological inhibition of BACE1 activity results in robust accumulation of CTF-η and Aη-α. In mice treated with a potent BACE1 inhibitor, hippocampal long-term potentiation was reduced. Notably, when recombinant or synthetic Aη-α was applied on hippocampal slices ex vivo, long-term potentiation was lowered. Furthermore, in vivo single-cell two-photon calcium imaging showed that hippocampal neuronal activity was attenuated by Aη-α. These findings not only demonstrate a major functionally relevant APP processing pathway, but may also indicate potential

  7. Dopamine Regulation of Lateral Inhibition between Striatal Neurons Gates the Stimulant Actions of Cocaine.

    PubMed

    Dobbs, Lauren K; Kaplan, Alanna R; Lemos, Julia C; Matsui, Aya; Rubinstein, Marcelo; Alvarez, Veronica A

    2016-06-01

    Striatal medium spiny neurons (MSNs) form inhibitory synapses on neighboring striatal neurons through axon collaterals. The functional relevance of this lateral inhibition and its regulation by dopamine remains elusive. We show that synchronized stimulation of collateral transmission from multiple indirect-pathway MSNs (iMSNs) potently inhibits action potentials in direct-pathway MSNs (dMSNs) in the nucleus accumbens. Dopamine D2 receptors (D2Rs) suppress lateral inhibition from iMSNs to disinhibit dMSNs, which are known to facilitate locomotion. Surprisingly, D2R inhibition of synaptic transmission was larger at axon collaterals from iMSNs than their projections to the ventral pallidum. Targeted deletion of D2Rs from iMSNs impaired cocaine's ability to suppress lateral inhibition and increase locomotion. These impairments were rescued by chemogenetic activation of Gi-signaling in iMSNs. These findings shed light on the functional significance of lateral inhibition between MSNs and offer a novel synaptic mechanism by which dopamine gates locomotion and cocaine exerts its canonical stimulant response. VIDEO ABSTRACT. PMID:27181061

  8. Cannabinoids Inhibit Acid-Sensing Ion Channel Currents in Rat Dorsal Root Ganglion Neurons

    PubMed Central

    Qiu, Chun-Yu; Cai, Qi; Zou, Pengcheng; Wu, Heming; Hu, Wang-Ping

    2012-01-01

    Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs) in rat dorsal root ganglion (DRG) neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration–response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids. PMID:23029075

  9. Lysophosphatidylethanolamine increases intracellular Ca(2+) through LPA(1) in PC-12 neuronal cells.

    PubMed

    Lee, Jung-Min; Park, Soo-Jin; Im, Dong-Soon

    2015-05-29

    G protein-coupled receptors (GPCRs) have been implicated in lysophosphatidylethanolamine (LPE)-induced increases in intracellular Ca(2+) ([Ca(2+)]i), but in different cell types, this response may be dependent or independent of lysophosphatidic acid (LPA) GPCR. The effects of LPEs from Grifola frondosa on the neuronal differentiation and apoptosis of PC-12 neuronal cells have been previously reported. In the present study, the authors sought to identify the mechanism responsible for the effects of LPEs in PC-12 neuronal cells. LPE increase [Ca(2+)]i concentration-dependently in PC-12 neuronal cells, but this LPE-induced [Ca(2+)]i increase was less than that elicited by LPA. Studies using specific inhibitors showed that LPE-induced Ca(2+) response was mediated via pertussis toxin-sensitive Gi/o proteins, edelfosine-sensitive phospholipase C, and 2-APB-sensitive IP3 receptor and by Ca(2+) influx across the cell membrane, and that this did not involve the conversion of LPE to LPA. Furthermore, LPE- and LPA-induced responses were found to show homologous and heterologous desensitization in PC-12 cells. VPC32183 and Ki16425 (antagonists of LPA1 and LPA3) inhibited LPE-induced [Ca(2+)]i increases. Furthermore, AM-095 (a specific inhibitor of LPA1) inhibited LPE-induced Ca(2+) response completely in PC-12 cells. These findings indicate LPE increases [Ca(2+)]i via a LPA1/Gi/o proteins/phospholipase C/IP3/Ca(2+) rise/Ca(2+) influx pathway in PC-12 neuronal cells. PMID:25888792

  10. Independent controls for neocortical neuron production and histogenetic cell death

    NASA Technical Reports Server (NTRS)

    Verney, C.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.; Caviness, V. S. Jr

    2000-01-01

    We estimated the proportion of cells eliminated by histogenetic cell death during the first 2 postnatal weeks in areas 1, 3 and 40 of the mouse parietal neocortex. For each layer and for the subcortical white matter in each neocortical area, the number of dying cells per mm(2) was calculated and the proportionate cell death for each day of the 2-week interval was estimated. The data show that cell death proceeds essentially uniformly across the neocortical areas and layers and that it does not follow either the spatiotemporal gradient of cell cycle progression in the pseudostratified ventricular epithelium of the cerebral wall, the source of neocortical neurons, or the 'inside-out' neocortical neuronogenetic sequence. Therefore, we infer that the control mechanisms of neocortical histogenetic cell death are independent of mechanisms controlling neuronogenesis or neuronal migration but may be associated with the ingrowth, expansion and a system-wide matching of neuronal connectivity. Copyright 2000 S. Karger AG, Basel.

  11. Heme oxygenase-1 induction prevents neuronal damage triggered during mitochondrial inhibition: role of CO and bilirubin.

    PubMed

    Orozco-Ibarra, Marisol; Estrada-Sánchez, Ana María; Massieu, Lourdes; Pedraza-Chaverrí, José

    2009-06-01

    Heme oxygenase (HO) catalyzes the breakdown of heme to iron, carbon monoxide (CO), and biliverdin, the latter being further reduced to bilirubin (BR). A protective role of the inducible isoform, HO-1, has been described in pathological conditions associated with reactive oxygen species (ROS) and oxidative damage. The aim of this study was to investigate the role of HO-1 in the neurotoxicity induced by the mitochondrial toxin 3-nitropropionic acid (3-NP) in primary cultures of cerebellar granule neurons (CGNs). Toxicity of 3-NP is associated with ROS production, and this metabolic toxin has been used to mimic pathological conditions such as Huntington's disease. We found that cell death caused by 3-NP exposure was exacerbated by inhibition of HO with tin mesoporphyrin (SnMP). In addition, HO-1 up-regulation induced by the exposure to cobalt protoporphyrin (CoPP) before the incubation with 3-NP, prevented the cell death and the increase in ROS induced by 3-NP. Interestingly, addition of SnMP to CoPP-pretreated CGNs exposed to 3-NP, abolished the protective effect of CoPP suggesting that HO activity was responsible for this protective effect. This was additionally supported by the fact that CORM-2, a CO-releasing molecule, and BR, were able to protect against cell death and the increase in ROS induced by 3-NP. Our data clearly show that HO-1 elicits in CGNs a neuroprotective action against the neurotoxicity of 3-NP and that CO and BR may be involved, at least in part, in this protective effect. The present results increase our knowledge about the role of HO-1 in neuropathological conditions. PMID:19063990

  12. Citalopram increases the differentiation efficacy of bone marrow mesenchymal stem cells into neuronal-like cells

    PubMed Central

    Verdi, Javad; Mortazavi-Tabatabaei, Seyed Abdolreza; Sharif, Shiva; Verdi, Hadi; Shoae-Hassani, Alireza

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was significantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These findings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics. PMID:25206899

  13. Linalool suppresses voltage-gated currents in sensory neurons and cerebellar Purkinje cells.

    PubMed

    Narusuye, K; Kawai, F; Matsuzaki, K; Miyachi, E

    2005-02-01

    Linalool is a major component of essential oils and possesses various biological effects in sensory or central nervous systems. To investigate the pharmacological and biophysical effects of linalool on voltage-gated currents in sensory neurons, we used the whole-cell patch clamp and the Ca(2+) imaging techniques. Under the voltage clamp, membrane depolarization generated time- and voltage-dependent current responses in newt olfactory receptor cells (ORCs). Linalool significantly and reversibly suppressed the voltage-gated currents in ORCs. The dose-suppression relation of linalool for the voltage-gated Na(+) current could be fitted by the Hill equation with a half-blocking concentration of 0.56 mM and a Hill coefficient of 1.2. To test whether linalool suppresses voltage-gated currents in ORCs specifically or suppresses currents in other neurons generally, we next examined the effects of linalool on voltage-gated currents in newt retinal neurons and rat cerebellar Purkinje cells. Linalool suppressed the voltage-gated currents not only in retinal horizontal cells and ganglion cells but also in Purkinje cells. Furthermore, bath application of linalool inhibited the KCl-induced [Ca(2+)](i) response of ORCs, suggesting that linalool suppresses Ca(2+) currents in ORCs. These results suggest that linalool non-selectively suppresses the voltage-gated currents in newt sensory neurons and rat cerebellar Purkinje cells. PMID:15365786

  14. Generation of serotonin neurons from human pluripotent stem cells

    PubMed Central

    Lu, Jianfeng; Zhong, Xuefei; Liu, Huisheng; Hao, Ling; Huang, Cindy Tzu-Ling; Sherafat, Mohammad Amin; Jones, Jeffrey; Ayala, Melvin; Li, Lingjun; Zhang, Su-Chun

    2016-01-01

    Serotonin neurons located in the raphe nucleus of the hindbrain have crucial roles in regulating brain functions and have been implicated in various psychiatric disorders. Yet functional human serotonin neurons are not available for in vitro studies. Through manipulation of the WNT pathway, we demonstrate efficient differentiation of human pluripotent stem cells (hPSCs) to cells resembling central serotonin neurons, primarily those located in the rhombomeric segments 2–3 of the rostral raphe, which participate in high-order brain functions. The serotonin neurons express a series of molecules essential for serotonergic development, including tryptophan hydroxylase 2, exhibit typical electrophysiological properties and release serotonin in an activity-dependent manner. When treated with the FDA-approved drugs tramadol and escitalopram oxalate, they release or uptake serotonin in a dose- and time-dependent manner, suggesting the utility of these cells for the evaluation of drug candidates. PMID:26655496

  15. 5-HT1B receptors inhibit glutamate release from primary afferent terminals in rat medullary dorsal horn neurons

    PubMed Central

    Choi, I-S; Cho, J-H; An, C-H; Jung, J-K; Hur, Y-K; Choi, J-K; Jang, I-S

    2012-01-01

    BACKGROUND AND PURPOSE Although 5-HT1B receptors are expressed in trigeminal sensory neurons, it is still not known whether these receptors can modulate nociceptive transmission from primary afferents onto medullary dorsal horn neurons. EXPERIMENTAL APPROACH Primary afferent-evoked EPSCs were recorded from medullary dorsal horn neurons of rat horizontal brain stem slices using a conventional whole-cell patch clamp technique under a voltage-clamp condition. KEY RESULTS CP93129, a selective 5-HT1B receptor agonist, reversibly and concentration-dependently decreased the amplitude of glutamatergic EPSCs and increased the paired-pulse ratio. In addition, CP93129 reduced the frequency of spontaneous miniature EPSCs without affecting the current amplitude. The CP93129-induced inhibition of EPSCs was significantly occluded by GR55562, a 5-HT1B/1D receptor antagonist, but not LY310762, a 5-HT1D receptor antagonist. Sumatriptan, an anti-migraine drug, also decreased EPSC amplitude, and this effect was partially blocked by either GR55562 or LY310762. On the other hand, primary afferent-evoked EPSCs were mediated by the Ca2+ influx passing through both presynaptic N-type and P/Q-type Ca2+ channels. The CP93129-induced inhibition of EPSCs was significantly occluded by ω-conotoxin GVIA, an N-type Ca2+ channel blocker. CONCLUSIONS AND IMPLICATIONS The present results suggest that the activation of presynaptic 5-HT1B receptors reduces glutamate release from primary afferent terminals onto medullary dorsal horn neurons, and that 5-HT1B receptors could be, at the very least, a potential target for the treatment of pain from orofacial tissues. LINKED ARTICLE This article is commented on by Connor, pp. 353–355 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01963.x PMID:22462474

  16. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    PubMed

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. PMID:26839375

  17. Estrogen Receptor β-Selective Agonists Stimulate Calcium Oscillations in Human and Mouse Embryonic Stem Cell-Derived Neurons

    PubMed Central

    Zhang, Lili; Blackman, Brigitte E.; Schonemann, Marcus D.; Zogovic-Kapsalis, Tatjana; Pan, Xiaoyu; Tagliaferri, Mary; Harris, Heather A.; Cohen, Isaac; Reijo Pera, Renee A.; Mellon, Synthia H.; Weiner, Richard I.; Leitman, Dale C.

    2010-01-01

    Estrogens are used extensively to treat hot flashes in menopausal women. Some of the beneficial effects of estrogens in hormone therapy on the brain might be due to nongenomic effects in neurons such as the rapid stimulation of calcium oscillations. Most studies have examined the nongenomic effects of estrogen receptors (ER) in primary neurons or brain slices from the rodent brain. However, these cells can not be maintained continuously in culture because neurons are post-mitotic. Neurons derived from embryonic stem cells could be a potential continuous, cell-based model to study nongenomic actions of estrogens in neurons if they are responsive to estrogens after differentiation. In this study ER-subtype specific estrogens were used to examine the role of ERα and ERβ on calcium oscillations in neurons derived from human (hES) and mouse embryonic stem cells. Unlike the undifferentiated hES cells the differentiated cells expressed neuronal markers, ERβ, but not ERα. The non-selective ER agonist 17β-estradiol (E2) rapidly increased [Ca2+]i oscillations and synchronizations within a few minutes. No change in calcium oscillations was observed with the selective ERα agonist 4,4′,4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT). In contrast, the selective ERβ agonists, 2,3-bis(4-Hydroxyphenyl)-propionitrile (DPN), MF101, and 2-(3-fluoro-4-hydroxyphenyl)-7-vinyl-1,3 benzoxazol-5-ol (ERB-041; WAY-202041) stimulated calcium oscillations similar to E2. The ERβ agonists also increased calcium oscillations and phosphorylated PKC, AKT and ERK1/2 in neurons derived from mouse ES cells, which was inhibited by nifedipine demonstrating that ERβ activates L-type voltage gated calcium channels to regulate neuronal activity. Our results demonstrate that ERβ signaling regulates nongenomic pathways in neurons derived from ES cells, and suggest that these cells might be useful to study the nongenomic mechanisms of estrogenic compounds. PMID:20668547

  18. Active immunization against vasoactive intestinal polypeptide decreases neuronal recruitment and inhibits reproduction in zebra finches.

    PubMed

    Vistoropsky, Yulia; Heiblum, Rachel; Smorodinsky, Nechama-Ina; Barnea, Anat

    2016-08-15

    Neurogenesis and neuronal recruitment occur in adult brains of many vertebrates, and the hypothesis is that these phenomena contribute to the brain plasticity that enables organisms to adjust to environmental changes. In mammals, vasoactive intestinal polypeptide (VIP) is known to have many neuroprotective properties, but in the avian brain, although widely distributed, its role in neuronal recruitment is not yet understood. In the present study we actively immunized adult zebra finches against VIP conjugated to KLH and compared neuronal recruitment in their brains, with brains of control birds, which were immunized against KLH. We looked at two forebrain regions: the nidopallium caudale (NC), which plays a role in vocal communication, and the hippocampus (HC), which is involved in the processing of spatial information. Our data demonstrate that active immunization against VIP reduces neuronal recruitment, inhibits reproduction, and induces molting, with no change in plasma prolactin levels. Thus, our observations suggest that VIP has a direct positive role in neuronal recruitment and reproduction in birds. J. Comp. Neurol. 524:2516-2528, 2016. © 2016 Wiley Periodicals, Inc. PMID:26801210

  19. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation

    PubMed Central

    Williams, Kathryn R.; McAninch, Damian S.; Stefanovic, Snezana; Xing, Lei; Allen, Megan; Li, Wenqi; Feng, Yue; Mihailescu, Mihaela Rita; Bassell, Gary J.

    2016-01-01

    Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development. PMID:26658614

  20. Electroacupuncture regulates glucose-inhibited neurons in treatment of simple obesity.

    PubMed

    Yu, Zhi; Xia, Youbing; Ju, Chuanhui; Shao, Qinghua; Mao, Zhen; Gu, Yun; Xu, Bin

    2013-03-25

    The glucose-inhibited neurons present in the lateral hypothalamic area are regarded as glucose detectors. This structure is involved in the regulation of food intake through extracellular blood glucose concentrations, and plays a crucial role in obesity onset. In the present study, obesity models established with high fat feeding were treated with electroacupuncture at Zusanli (ST36)/Inner Court (ST44) on the left side and Tianshu (ST25) bilaterally. We found that electroacupuncture could effectively reduce body weight and the fat-weight ratio, and decrease serum leptin, resistin, tumor necrosis factor alpha, and neuropeptide Y levels, while increase serum adiponectin and cholecystokinin-8 levels. This treatment altered the electrical activity of glucose-inhibited neurons in the lateral hypothalamic area, with electroacupuncture at Zusanli/Inner Court exerting an inhibitory effect, while electroacupuncture at bilateral Tianshu exerting an excitatory effect. These data suggest that electroacupuncture at the lower limbs and abdominal cavity is an effective means for regulating the activity of glucose-inhibited neurons in the lateral hypothalamic area and for improving the secretory function of adipose tissue. PMID:25206728

  1. Electroacupuncture regulates glucose-inhibited neurons in treatment of simple obesity★

    PubMed Central

    Yu, Zhi; Xia, Youbing; Ju, Chuanhui; Shao, Qinghua; Mao, Zhen; Gu, Yun; Xu, Bin

    2013-01-01

    The glucose-inhibited neurons present in the lateral hypothalamic area are regarded as glucose detectors. This structure is involved in the regulation of food intake through extracellular blood glucose concentrations, and plays a crucial role in obesity onset. In the present study, obesity models established with high fat feeding were treated with electroacupuncture at Zusanli (ST36)/Inner Court (ST44) on the left side and Tianshu (ST25) bilaterally. We found that electroacupuncture could effectively reduce body weight and the fat-weight ratio, and decrease serum leptin, resistin, tumor necrosis factor alpha, and neuropeptide Y levels, while increase serum adiponectin and cholecystokinin-8 levels. This treatment altered the electrical activity of glucose-inhibited neurons in the lateral hypothalamic area, with electroacupuncture at Zusanli/Inner Court exerting an inhibitory effect, while electroacupuncture at bilateral Tianshu exerting an excitatory effect. These data suggest that electroacupuncture at the lower limbs and abdominal cavity is an effective means for regulating the activity of glucose-inhibited neurons in the lateral hypothalamic area and for improving the secretory function of adipose tissue. PMID:25206728

  2. Identification of a neuronal gene expression signature: role of cell cycle arrest in murine neuronal differentiation in vitro

    PubMed Central

    Felfly, Hady; Xue, Jin; Zambon, Alexander C.; Muotri, Alysson; Zhou, Dan

    2011-01-01

    Stem cells are a potential key strategy for treating neurodegenerative diseases in which the generation of new neurons is critical. A better understanding of the characteristics and molecular properties of neural stem cells (NSCs) and differentiated neurons can help with assessing neuronal maturity and, possibly, in devising better therapeutic strategies. We have performed an in-depth gene expression profiling study of murine NSCs and primary neurons derived from embryonic mouse brains. Microarray analysis revealed a neuron-specific gene expression signature that distinguishes primary neurons from NSCs, with elevated levels of transcripts involved in neuronal functions, such as neurite development and axon guidance in primary neurons and decreased levels of multiple cytokine transcripts. Among the differentially expressed genes, we found a statistically significant enrichment of genes in the ephrin, neurotrophin, CDK5, and actin pathways, which control multiple neuronal-specific functions. We then artificially blocked the cell cycle of NSCs with mitomycin C (MMC) and examined cellular morphology and gene expression signatures. Although these MMC-treated NSCs displayed a neuronal morphology and expressed some neuronal differentiation marker genes, their gene expression patterns were very different from primary neurons. We conclude that 1) fully differentiated mouse primary neurons display a specific neuronal gene expression signature; 2) cell cycle block at the S phase in NSCs with MMC does not induce the formation of fully differentiated neurons; 3) cytokines change their expression pattern during differentiation of NSCs into neurons; and 4) signaling pathways of ephrin, neurotrophin, CDK5, and actin, related to major neuronal features, are dynamically enriched in genes showing changes in expression level. PMID:21677276

  3. Rho kinase inhibition following traumatic brain injury in mice promotes functional improvement and acute neuron survival but has little effect on neurogenesis, glial responses or neuroinflammation.

    PubMed

    Bye, Nicole; Christie, Kimberly J; Turbic, Alisa; Basrai, Harleen S; Turnley, Ann M

    2016-05-01

    Inhibition of the Rho/Rho kinase pathway has been shown to be beneficial in a variety of neural injuries and diseases. In this manuscript we investigate the role of Rho kinase inhibition in recovery from traumatic brain injury using a controlled cortical impact model in mice. Mice subjected to a moderately severe TBI were treated for 1 or 4weeks with the Rho kinase inhibitor Y27632, and functional outcomes and neuronal and glial cell responses were analysed at 1, 7 and 35days post-injury. We hypothesised that Y27632-treated mice would show functional improvement, with augmented recruitment of neuroblasts from the SVZ and enhanced survival of newborn neurons in the pericontusional cortex, with protection against neuronal degeneration, neuroinflammation and modulation of astrocyte reactivity and blood-brain-barrier permeability. While Rho kinase inhibition enhanced recovery of motor function after trauma, there were no substantial increases in the recruitment of DCX(+) neuroblasts or the number of BrdU(+) or EdU(+) labelled newborn neurons in the pericontusional cortex of Y27632-treated mice. Inhibition of Rho kinase significantly reduced the number of degenerating cortical neurons at 1day post-injury compared to saline controls but had no longer term effect on neuronal degeneration, with only modest effects on astrocytic reactivity and macrophage/microglial responses. Overall, this study showed that Rho kinase contributes to acute neurodegenerative processes in the injured cortex but does not play a significant role in SVZ neural precursor cell-derived adult neurogenesis, glial responses or blood-brain barrier permeability following a moderately severe brain injury. PMID:26896832

  4. The role of NO synthase isoforms in PDT-induced injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Berezhnaya, E. V.; Uzdensky, A. B.

    2015-03-01

    Nitric oxide (NO) is an important second messenger, involved in the implementation of various cell functions. It regulates various physiological and pathological processes such as neurotransmission, cell responses to stress, and neurodegeneration. NO synthase is a family of enzymes that synthesize NO from L-arginine. The activity of different NOS isoforms depends both on endogenous and exogenous factors. In particular, it is modulated by oxidative stress, induced by photodynamic therapy (PDT). We have studied the possible role of NOS in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Antinecrotic and proapoptotic effects of NO on the glial cells were found using inhibitory analysis. We have shown the role of inducible NO synthase in photoinduced apoptosis and involvement of neuronal NO synthase in photoinduced necrosis of glial cells in the isolated crayfish stretch receptor. The activation of NO synthase was evaluated using NADPH-diaphorase histochemistry, a marker of neurons expressing the enzyme. The activation of NO synthase in the isolated crayfish stretch receptor was evaluated as a function of time after PDT. Photodynamic treatment induced transient increase in NO synthase activity and then slowly inhibited this enzyme.

  5. Neuronal cell growth on polymeric scaffolds studied by CARS microscopy

    NASA Astrophysics Data System (ADS)

    Enejder, Annika; Fink, Helen; Kuhn, Hans-Georg

    2012-03-01

    For studies of neuronal cell integration and neurite outgrowth in polymeric scaffold materials as a future alternative for the treatment of damages in the neuronal system, we have developed a protocol employing CARS microscopy for imaging of neuronal networks. The benefits of CARS microscopy come here to their best use; (i) the overall three-dimensional (3D) arrangement of multiple cells and their neurites can be visualized without the need for chemical preparations or physical sectioning, potentially affecting the architecture of the soft, fragile scaffolds and (ii) details on the interaction between single cells and scaffold fibrils can be investigated by close-up images at sub-micron resolution. The establishment of biologically more relevant 3D neuronal networks in a soft hydrogel composed of native Extra Cellular Matrix (ECM) components was compared with conventional two-dimensional networks grown on a stiff substrate. Images of cells in the hydrogel scaffold reveal significantly different networking characteristics compared to the 2D networks, raising the question whether the functionality of neurons grown as layers in conventional cultivation dishes represents that of neurons in the central and peripheral nervous systems.

  6. Sex stratified neuronal cultures to study ischemic cell death pathways.

    PubMed

    Fairbanks, Stacy L; Vest, Rebekah; Verma, Saurabh; Traystman, Richard J; Herson, Paco S

    2013-01-01

    Sex differences in neuronal susceptibility to ischemic injury and neurodegenerative disease have long been observed, but the signaling mechanisms responsible for those differences remain unclear. Primary disassociated embryonic neuronal culture provides a simplified experimental model with which to investigate the neuronal cell signaling involved in cell death as a result of ischemia or disease; however, most neuronal cultures used in research today are mixed sex. Researchers can and do test the effects of sex steroid treatment in mixed sex neuronal cultures in models of neuronal injury and disease, but accumulating evidence suggests that the female brain responds to androgens, estrogens, and progesterone differently than the male brain. Furthermore, neonate male and female rodents respond differently to ischemic injury, with males experiencing greater injury following cerebral ischemia than females. Thus, mixed sex neuronal cultures might obscure and confound the experimental results; important information might be missed. For this reason, the Herson Lab at the University of Colorado School of Medicine routinely prepares sex-stratified primary disassociated embryonic neuronal cultures from both hippocampus and cortex. Embryos are sexed before harvesting of brain tissue and male and female tissue are disassociated separately, plated separately, and maintained separately. Using this method, the Herson Lab has demonstrated a male-specific role for the ion channel TRPM2 in ischemic cell death. In this manuscript, we share and discuss our protocol for sexing embryonic mice and preparing sex-stratified hippocampal primary disassociated neuron cultures. This method can be adapted to prepare sex-stratified cortical cultures and the method for embryo sexing can be used in conjunction with other protocols for any study in which sex is thought to be an important determinant of outcome. PMID:24378980

  7. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons

    PubMed Central

    Orellana, Juan A.; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J.; Stehberg, Jimmy; Sáez, Juan C.

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression. PMID:25883550

  8. HSPC280, a winged helix protein expressed in the subventricular zone of the developing ganglionic eminences, inhibits neuronal differentiation.

    PubMed

    Stylianopoulou, Electra; Kalamakis, Georgios; Pitsiani, Margarita; Fysekis, Ioannis; Ypsilantis, Petros; Simopoulos, Constantinos; Skavdis, George; Grigoriou, Maria E

    2016-02-01

    Winged helix proteins have critical roles in a variety of developmental processes. During a screening for genes expressed in the developing forebrain, we identified HSPC280, a non-typical winged helix protein, which shares similarity with a protein-protein interaction domain found in the proteins of the actin-binding Rho-activating protein family. In this work, we analyzed HSPC280 expression during mouse development as well as during neuronal differentiation of mouse Neuro2a cells. HSPC280 expression is tightly regulated; during mouse development, it was detected predominantly in the ganglionic eminences of the ventral telencephalon, from their appearance at E11.5 to P0, with the highest levels between E13.5 and E15.5, a period that correlates with the peak of neurogenesis in these structures. Comparative expression analysis of HSPC280 with Dlx2, cyclinD2 and Lhx6 revealed that, within the ganglionic eminences, HSPC280 was restricted in the proliferating cell population of the subventricular zone, in a pattern similar to that of cyclinD2. Finally, we showed that HSPC280 is a nuclear protein which, when overexpressed in Neuro2a cells, it inhibited neuronal differentiation in vitro, suggesting its involvement in the mechanisms controlling neural progenitor cells proliferation. PMID:26537243

  9. Arachidonic acid mediates muscarinic inhibition and enhancement of N-type Ca2+ current in sympathetic neurons

    PubMed Central

    Liu, Liwang; Rittenhouse, Ann R.

    2003-01-01

    N-type Ca2+ channels participate in acute activity-dependent processes such as regulation of Ca2+-activated K+ channels and in more prolonged events such as gene transcription and long-term depression. A slow postsynaptic M1 muscarinic receptor-mediated modulation of N-type current in superior cervical ganglion neurons may be important in regulating these processes. This slow pathway inhibits N-type current by using a diffusible second messenger that has remained unidentified for more than a decade. Using whole-cell patch–clamp techniques, which isolate the slow pathway, we found that the muscarinic agonist oxotremorine methiodide not only inhibits currents at positive potentials but enhances N-type current at negative potentials. Enhancement was also observed in cell-attached patches. These findings provide evidence for N-type Ca2+-current enhancement by a classical neurotransmitter. Moreover, enhancement and inhibition of current by oxotremorine methiodide mimics modulation observed with direct application of a low concentration of arachidonic acid (AA). Although no transmitter has been reported to use AA as a second messenger to modulate any Ca2+ current in either neuronal or nonneuronal cells, we nevertheless tested whether a fatty acid signaling cascade was involved. Blocking phospholipase C, phospholipase A2, or AA but not AA metabolism minimized muscarinic modulation of N-type current, supporting the participation of these molecules in the slow pathway. A role for the G protein Gq was also confirmed by blocking muscarinic modulation of Ca2+ currents with anti-Gqα antibody. Our finding that AA participates in the slow pathway strongly suggests that it may be the previously unknown diffusible second messenger. PMID:12496347

  10. An experimental electronic model for a neuronal cell

    NASA Astrophysics Data System (ADS)

    Campos-Cantón, I.; Rangel-López, A.; Martel-Gallegos, G.; Zarazúa, S.; Vertiz-Hérnandez, A.

    2014-04-01

    Over the last two decades, the study of information transmission in living beings has acquired great relevance, because it regulates and conducts the functioning of all of the organs in the body. In information transmission pathways, the neuron plays an important role in that it receives, transmits, and processes electrical signals from different parts of the human body; these signals are transmitted as electrical impulses called action potentials, and they transmit information from one neuron to another. In this work, and with the aim of developing experiments for teaching biological processes, we implemented an electronic circuit of the neuron cell device and its mathematical model based on piecewise linear functions.

  11. Preparation of Neuronal Co-cultures with Single Cell Precision

    PubMed Central

    Dinh, Ngoc-Duy; Chiang, Ya-Yu; Hardelauf, Heike; Waide, Sarah; Janasek, Dirk; West, Jonathan

    2014-01-01

    Microfluidic embodiments of the Campenot chamber have attracted great interest from the neuroscience community. These interconnected co-culture platforms can be used to investigate a variety of questions, spanning developmental and functional neurobiology to infection and disease propagation. However, conventional systems require significant cellular inputs (many thousands per compartment), inadequate for studying low abundance cells, such as primary dopaminergic substantia nigra, spiral ganglia, and Drosophilia melanogaster neurons, and impractical for high throughput experimentation. The dense cultures are also highly locally entangled, with few outgrowths (<10%) interconnecting the two cultures. In this paper straightforward microfluidic and patterning protocols are described which address these challenges: (i) a microfluidic single neuron arraying method, and (ii) a water masking method for plasma patterning biomaterial coatings to register neurons and promote outgrowth between compartments. Minimalistic neuronal co-cultures were prepared with high-level (>85%) intercompartment connectivity and can be used for high throughput neurobiology experiments with single cell precision. PMID:24894871

  12. Rescuing neuronal cell death by RAIDD- and PIDD- derived peptides and its implications for therapeutic intervention in neurodegenerative diseases

    PubMed Central

    Jang, Tae-Ho; Lim, In-Hye; Kim, Chang Min; Choi, Jae Young; Kim, Eun-Ae; Lee, Tae-Jin; Park, Hyun Ho

    2016-01-01

    Caspase-2 is known to be involved in oxidative-stress mediated neuronal cell death. In this study, we demonstrated that rotenone-induced neuronal cell death is mediated by caspase-2 activation via PIDDosome formation. Our newly designed TAT-fused peptides, which contains wild-type helix number3 (H3) from RAIDD and PIDD, blocked the PIDDosome formation in vitro. Furthermore, peptides inhibited rotenone-induced caspase-2-dependent apoptosis in neuronal cells. These results suggest that PIDD- or RAIDD-targeted peptides might be effective at protecting against rotenone-induced neurotoxicity. Our peptides are novel neuronal cell apoptosis inhibitors that might serve as a prototype for development of drugs for the treatment of neurodegenerative diseases. PMID:27502430

  13. Rescuing neuronal cell death by RAIDD- and PIDD- derived peptides and its implications for therapeutic intervention in neurodegenerative diseases.

    PubMed

    Jang, Tae-Ho; Lim, In-Hye; Kim, Chang Min; Choi, Jae Young; Kim, Eun-Ae; Lee, Tae-Jin; Park, Hyun Ho

    2016-01-01

    Caspase-2 is known to be involved in oxidative-stress mediated neuronal cell death. In this study, we demonstrated that rotenone-induced neuronal cell death is mediated by caspase-2 activation via PIDDosome formation. Our newly designed TAT-fused peptides, which contains wild-type helix number3 (H3) from RAIDD and PIDD, blocked the PIDDosome formation in vitro. Furthermore, peptides inhibited rotenone-induced caspase-2-dependent apoptosis in neuronal cells. These results suggest that PIDD- or RAIDD-targeted peptides might be effective at protecting against rotenone-induced neurotoxicity. Our peptides are novel neuronal cell apoptosis inhibitors that might serve as a prototype for development of drugs for the treatment of neurodegenerative diseases. PMID:27502430

  14. STAT3 modulation to enhance motor neuron differentiation in human neural stem cells.

    PubMed

    Natarajan, Rajalaxmi; Singal, Vinamrata; Benes, Richard; Gao, Junling; Chan, Hoi; Chen, Haijun; Yu, Yongjia; Zhou, Jia; Wu, Ping

    2014-01-01

    Spinal cord injury or amyotrophic lateral sclerosis damages spinal motor neurons and forms a glial scar, which prevents neural regeneration. Signal transducer and activator of transcription 3 (STAT3) plays a critical role in astrogliogenesis and scar formation, and thus a fine modulation of STAT3 signaling may help to control the excessive gliogenic environment and enhance neural repair. The objective of this study was to determine the effect of STAT3 inhibition on human neural stem cells (hNSCs). In vitro hNSCs primed with fibroblast growth factor 2 (FGF2) exhibited a lower level of phosphorylated STAT3 than cells primed by epidermal growth factor (EGF), which correlated with a higher number of motor neurons differentiated from FGF2-primed hNSCs. Treatment with STAT3 inhibitors, Stattic and Niclosamide, enhanced motor neuron differentiation only in FGF2-primed hNSCs, as shown by increased homeobox gene Hb9 mRNA levels as well as HB9+ and microtubule-associated protein 2 (MAP2)+ co-labeled cells. The increased motor neuron differentiation was accompanied by a decrease in the number of glial fibrillary acidic protein (GFAP)-positive astrocytes. Interestingly, Stattic and Niclosamide did not affect the level of STAT3 phosphorylation; rather, they perturbed the nuclear translocation of phosphorylated STAT3. In summary, we demonstrate that FGF2 is required for motor neuron differentiation from hNSCs and that inhibition of STAT3 further increases motor neuron differentiation at the expense of astrogliogenesis. Our study thus suggests a potential benefit of targeting the STAT3 pathway for neurotrauma or neurodegenerative diseases. PMID:24945434

  15. (S)-lacosamide inhibition of CRMP2 phosphorylation reduces postoperative and neuropathic pain behaviors through distinct classes of sensory neurons identified by constellation pharmacology.

    PubMed

    Moutal, Aubin; Chew, Lindsey A; Yang, Xiaofang; Wang, Yue; Yeon, Seul Ki; Telemi, Edwin; Meroueh, Seeneen; Park, Ki Duk; Shrinivasan, Raghuraman; Gilbraith, Kerry B; Qu, Chaoling; Xie, Jennifer Y; Patwardhan, Amol; Vanderah, Todd W; Khanna, May; Porreca, Frank; Khanna, Rajesh

    2016-07-01

    Chronic pain affects the life of millions of people. Current treatments have deleterious side effects. We have advanced a strategy for targeting protein interactions which regulate the N-type voltage-gated calcium (CaV2.2) channel as an alternative to direct channel block. Peptides uncoupling CaV2.2 interactions with the axonal collapsin response mediator protein 2 (CRMP2) were antinociceptive without effects on memory, depression, and reward/addiction. A search for small molecules that could recapitulate uncoupling of the CaV2.2-CRMP2 interaction identified (S)-lacosamide [(S)-LCM], the inactive enantiomer of the Food and Drug Administration-approved antiepileptic drug (R)-lacosamide [(R)-LCM, Vimpat]. We show that (S)-LCM, but not (R)-LCM, inhibits CRMP2 phosphorylation by cyclin dependent kinase 5, a step necessary for driving CaV2.2 activity, in sensory neurons. (S)-lacosamide inhibited depolarization-induced Ca influx with a low micromolar IC50. Voltage-clamp electrophysiology experiments demonstrated a commensurate reduction in Ca currents in sensory neurons after an acute application of (S)-LCM. Using constellation pharmacology, a recently described high content phenotypic screening platform for functional fingerprinting of neurons that uses subtype-selective pharmacological agents to elucidate cell-specific combinations (constellations) of key signaling proteins that define specific cell types, we investigated if (S)-LCM preferentially acts on certain types of neurons. (S)-lacosamide decreased the dorsal root ganglion neurons responding to mustard oil, and increased the number of cells responding to menthol. Finally, (S)-LCM reversed thermal hypersensitivity and mechanical allodynia in a model of postoperative pain, and 2 models of neuropathic pain. Thus, using (S)-LCM to inhibit CRMP2 phosphorylation is a novel and efficient strategy to treat pain, which works by targeting specific sensory neuron populations. PMID:26967696

  16. Bax inactivation in lurcher mutants rescues cerebellar granule cells but not purkinje cells or inferior olivary neurons.

    PubMed

    Selimi, F; Vogel, M W; Mariani, J

    2000-07-15

    Lurcher is a gain-of-function mutation in the delta2 glutamate receptor gene (Grid2) that turns the receptor into a leaky ion channel. The expression of the Lurcher gene in heterozygous (Grid2(Lc/+)) mutants induces the death of almost all Purkinje cells starting from the second postnatal week. Ninety percent of the granule cells and 60-75% of the inferior olivary neurons die because of the loss of their target neurons, the Purkinje cells. The apoptotic nature of the neurodegeneration has been demonstrated previously by the presence of activated caspase-3 and DNA fragmentation. Bax, a pro-apoptotic gene of the Bcl-2 family, has been shown to be involved in developmental neuronal death. To study the role of Bax in Grid2(Lc/+) neurodegeneration, double mutants with Grid2(Lc/)+ mice and Bax knock-out mice (Bax-/-) were generated. Bax deletion had no effect on the death of Purkinje cells and inferior olivary neurons, although a temporary rescue of some Purkinje cells could be detected in P15 Grid2(Lc/)+;Bax-/- animals. From postnatal day 15 (P15) to P60, the number of granule cells in Grid2(Lc/)+;Bax-/-mice did not significantly change and was significantly increased compared with the number found in Grid2(Lc/)+;Bax+/+ mice. Granule cell number in P60 Grid2(Lc/)+;Bax-/- mice corresponded to 70% of the number found in wild-type mice. Our results show that Bax inactivation in Grid2(Lc/+) mice does not rescue intrinsic Purkinje cell death or the target-related cell death of olivary neurons, but Bax inactivation does inhibit persistently target-related cell death in cerebellar granule cells. PMID:10884318

  17. Epigallocatechin gallate (EGCG) attenuates infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation.

    PubMed

    Cai, Jing; Jing, Da; Shi, Ming; Liu, Yang; Lin, Tian; Xie, Zhen; Zhu, Yi; Zhao, Haibo; Shi, Xiaodan; Du, Fang; Zhao, Gang

    2014-07-01

    Infrasound, a kind of common environmental noise and a major contributor of vibroacoustic disease, can induce the central nervous system (CNS) damage. However, no relevant anti-infrasound drugs have been reported yet. Our recent studies have shown that infrasound resulted in excessive microglial activation rapidly and sequential inflammation, revealing a potential role of microglia in infrasound-induced CNS damage. Epigallocatechin gallate (EGCG), a major bioactive component in green tea, has the capacity of protecting against various neurodegenerative diseases via an anti-inflammatory mechanism. However, it is still unknown to date whether EGCG acts on infrasound-induced microglial activation and neuronal damage. We showed that, after 1-, 2- or 5-day exposure of rats to 16 Hz, 130 dB infrasound (2 h/day), EGCG significantly inhibited infrasound-induced microglial activation in rat hippocampal region, evidenced by reduced expressions of Iba-1 (a marker for microglia) and proinflammatory cytokines (IL-1β, IL-6, IL-18 and TNF-α). Moreover, infrasound-induced neuronal apoptosis in rat hippocampi was significantly suppressed by EGCG. EGCG also inhibited infrasound-induced activation of primary microglia in vitro and decreased the levels of proinflammatory cytokines in the supernatants of microglial culture, which were toxic to cultured neurons. Furthermore, EGCG attenuated infrasound-induced increases in nuclear NF-κB p65 and phosphorylated IκBα, and ameliorated infrasound-induced decrease in IκB in microglia. Therefore, our study provides the first evidence that EGCG acts against infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation through a potential NF-κB pathway-related mechanism, suggesting that EGCG can be used as a promising drug for the treatment of infrasound-induced CNS damage. PMID:24746834

  18. Inhibition of Neuronal Degenerin/Epithelial Na+ Channels by the Multiple Sclerosis Drug 4-Aminopyridine*

    PubMed Central

    Boiko, Nina; Kucher, Volodymyr; Eaton, Benjamin A.; Stockand, James D.

    2013-01-01

    The voltage-gated K+ (Kv) channel blocker 4-aminopyridine (4-AP) is used to target symptoms of the neuroinflammatory disease multiple sclerosis (MS). By blocking Kv channels, 4-AP facilitates action potential conduction and neurotransmitter release in presynaptic neurons, lessening the effects of demyelination. Because they conduct inward Na+ and Ca2+ currents that contribute to axonal degeneration in response to inflammatory conditions, acid-sensing ion channels (ASICs) contribute to the pathology of MS. Consequently, ASICs are emerging as disease-modifying targets in MS. Surprisingly, as first demonstrated here, 4-AP inhibits neuronal degenerin/epithelial Na+ (Deg/ENaC) channels, including ASIC and BLINaC. This effect is specific for 4-AP compared with its heterocyclic base, pyridine, and the related derivative, 4-methylpyridine; and akin to the actions of 4-AP on the structurally unrelated Kv channels, dose- and voltage-dependent. 4-AP has differential actions on distinct ASICs, strongly inhibiting ASIC1a channels expressed in central neurons but being without effect on ASIC3, which is enriched in peripheral sensory neurons. The voltage dependence of the 4-AP block and the single binding site for this inhibitor are consistent with 4-AP binding in the pore of Deg/ENaC channels as it does Kv channels, suggesting a similar mechanism of inhibition in these two classes of channels. These findings argue that effects on both Kv and Deg/ENaC channels should be considered when evaluating the actions of 4-AP. Importantly, the current results are consistent with 4-AP influencing the symptoms of MS as well as the course of the disease because of inhibitory actions on Kv and ASIC channels, respectively. PMID:23404498

  19. Hypothermic Preconditioning Reverses Tau Ontogenesis in Human Cortical Neurons and is Mimicked by Protein Phosphatase 2A Inhibition

    PubMed Central

    Rzechorzek, Nina M.; Connick, Peter; Livesey, Matthew R.; Borooah, Shyamanga; Patani, Rickie; Burr, Karen; Story, David; Wyllie, David J.A.; Hardingham, Giles E.; Chandran, Siddharthan

    2015-01-01

    Hypothermia is potently neuroprotective, but the molecular basis of this effect remains obscure. Changes in neuronal tau protein are of interest, since tau becomes hyperphosphorylated in injury-resistant, hypothermic brains. Noting inter-species differences in tau isoforms, we have used functional cortical neurons differentiated from human pluripotent stem cells (hCNs) to interrogate tau modulation during hypothermic preconditioning at clinically-relevant temperatures. Key tau developmental transitions (phosphorylation status and splicing shift) are recapitulated during hCN differentiation and subsequently reversed by mild (32 °C) to moderate (28 °C) cooling — conditions which reduce oxidative and excitotoxic stress-mediated injury in hCNs. Blocking a major tau kinase decreases hCN tau phosphorylation and abrogates hypothermic neuroprotection, whilst inhibition of protein phosphatase 2A mimics cooling-induced tau hyperphosphorylation and protects normothermic hCNs from oxidative stress. These findings indicate a possible role for phospho-tau in hypothermic preconditioning, and suggest that cooling drives human tau towards an earlier ontogenic phenotype whilst increasing neuronal resilience to common neurotoxic insults. This work provides a critical step forward in understanding how we might exploit the neuroprotective benefits of cooling without cooling patients. PMID:26870825

  20. Inhibition of histone deacetylation protects wild-type but not gelsolin-deficient neurons from oxygen/glucose deprivation.

    PubMed

    Meisel, Andreas; Harms, Christoph; Yildirim, Ferah; Bösel, Julian; Kronenberg, Golo; Harms, Ulrike; Fink, Klaus B; Endres, Matthias

    2006-08-01

    Histone acetylation and deacetylation participate in the epigenetic regulation of gene expression. In this paper, we demonstrate that pre-treatment with the histone deacetylation inhibitor trichostatin A (TSA) enhances histone acetylation in primary cortical neurons and protects against oxygen/glucose deprivation, a model for ischaemic cell death in vitro. The actin-binding protein gelsolin was identified as a mediator of neuroprotection by TSA. TSA enhanced histone acetylation of the gelsolin promoter region, and up-regulated gelsolin messenger RNA and protein expression in a dose- and time-dependent manner. Double-label confocal immunocytochemistry visualized the up-regulation of gelsolin and histone acetylation within the same neuron. Together with gelsolin up-regulation, TSA pre-treatment decreased levels of filamentous actin. The neuroprotective effect of TSA was completely abolished in neurons lacking gelsolin gene expression. In conclusion, we demonstrate that the enhancement of gelsolin gene expression correlates with neuroprotection induced by the inhibition of histone deacetylation. PMID:16895577

  1. Short Conduction Delays Cause Inhibition Rather than Excitation to Favor Synchrony in Hybrid Neuronal Networks of the Entorhinal Cortex

    PubMed Central

    Fernandez, Fernando R.; White, John A.; Canavier, Carmen C.

    2012-01-01

    How stable synchrony in neuronal networks is sustained in the presence of conduction delays is an open question. The Dynamic Clamp was used to measure phase resetting curves (PRCs) for entorhinal cortical cells, and then to construct networks of two such neurons. PRCs were in general Type I (all advances or all delays) or weakly type II with a small region at early phases with the opposite type of resetting. We used previously developed theoretical methods based on PRCs under the assumption of pulsatile coupling to predict the delays that synchronize these hybrid circuits. For excitatory coupling, synchrony was predicted and observed only with no delay and for delays greater than half a network period that cause each neuron to receive an input late in its firing cycle and almost immediately fire an action potential. Synchronization for these long delays was surprisingly tight and robust to the noise and heterogeneity inherent in a biological system. In contrast to excitatory coupling, inhibitory coupling led to antiphase for no delay, very short delays and delays close to a network period, but to near-synchrony for a wide range of relatively short delays. PRC-based methods show that conduction delays can stabilize synchrony in several ways, including neutralizing a discontinuity introduced by strong inhibition, favoring synchrony in the case of noisy bistability, and avoiding an initial destabilizing region of a weakly type II PRC. PRCs can identify optimal conduction delays favoring synchronization at a given frequency, and also predict robustness to noise and heterogeneity. PMID:22241969

  2. Hypothermic Preconditioning Reverses Tau Ontogenesis in Human Cortical Neurons and is Mimicked by Protein Phosphatase 2A Inhibition.

    PubMed

    Rzechorzek, Nina M; Connick, Peter; Livesey, Matthew R; Borooah, Shyamanga; Patani, Rickie; Burr, Karen; Story, David; Wyllie, David J A; Hardingham, Giles E; Chandran, Siddharthan

    2016-01-01

    Hypothermia is potently neuroprotective, but the molecular basis of this effect remains obscure. Changes in neuronal tau protein are of interest, since tau becomes hyperphosphorylated in injury-resistant, hypothermic brains. Noting inter-species differences in tau isoforms, we have used functional cortical neurons differentiated from human pluripotent stem cells (hCNs) to interrogate tau modulation during hypothermic preconditioning at clinically-relevant temperatures. Key tau developmental transitions (phosphorylation status and splicing shift) are recapitulated during hCN differentiation and subsequently reversed by mild (32 °C) to moderate (28 °C) cooling--conditions which reduce oxidative and excitotoxic stress-mediated injury in hCNs. Blocking a major tau kinase decreases hCN tau phosphorylation and abrogates hypothermic neuroprotection, whilst inhibition of protein phosphatase 2A mimics cooling-induced tau hyperphosphorylation and protects normothermic hCNs from oxidative stress. These findings indicate a possible role for phospho-tau in hypothermic preconditioning, and suggest that cooling drives human tau towards an earlier ontogenic phenotype whilst increasing neuronal resilience to common neurotoxic insults. This work provides a critical step forward in understanding how we might exploit the neuroprotective benefits of cooling without cooling patients. PMID:26870825

  3. Valproic acid promotes neuronal differentiation by induction of neuroprogenitors in human bone-marrow mesenchymal stromal cells.

    PubMed

    Jeong, Sin-Gu; Ohn, Takbum; Kim, Seung Hyun; Cho, Goang-Won

    2013-10-25

    Recent studies have shown that the inhibition of histone deacetylases (HDACs) induces the differentiation of diverse cancer and stem cells, which suggests HDAC inhibitors may be good candidates for the induction of stem cell differentiation. In this study, we investigated the effects of a HDAC inhibitor, valproic acid (VPA), for the neuronal differentiation of human bone marrow-mesenchymal stromal cells (hBM-MSCs). VPA-treated MSCs had significant increases in their expression of the neuro-progenitor marker Nestin, Musashi, CD133, and GFAP, as measured by real-time PCR and immunoblot analysis. When VPA-pretreated MSCs were differentiated with neuronal induction media (VPA-dMSCs), they exhibited a cell body and dendritic morphology similar to neurons. The number and neurite length of these VPA-dMSCs significantly increased compared to differentiated MSCs (dMSCs). The VPA-dMSCs and dMSCs had significantly increased transcripts of neuronal-specific marker genes, including Nestin, Musashi, CD133, GFAP, NeuN, MAP-2, NF-M, KCNH1, and KCNH5. The cells also showed a higher expression of the neuronal marker proteins Nestin and NF-M from immunocytochemical staining and immunoblot analysis. This study has shown that VPA pretreatment of hBM-MSCs, following their incubation with neuronal induction media, effectively stimulates neuronal cell differentiation to BM-MSCs. PMID:24021810

  4. Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells.

    PubMed

    Lund, Carina; Pulli, Kristiina; Yellapragada, Venkatram; Giacobini, Paolo; Lundin, Karolina; Vuoristo, Sanna; Tuuri, Timo; Noisa, Parinya; Raivio, Taneli

    2016-08-01

    Gonadotropin-releasing hormone (GnRH) neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs) into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs) by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders. PMID:27426041

  5. Kuwanon V Inhibits Proliferation, Promotes Cell Survival and Increases Neurogenesis of Neural Stem Cells

    PubMed Central

    Kong, Sun-Young; Park, Min-Hye; Lee, Mina; Kim, Jae-Ouk; Lee, Ha-Rim; Han, Byung Woo; Svendsen, Clive N.; Sung, Sang Hyun; Kim, Hyun-Jung

    2015-01-01

    Neural stem cells (NSCs) have the ability to proliferate and differentiate into neurons and glia. Regulation of NSC fate by small molecules is important for the generation of a certain type of cell. The identification of small molecules that can induce new neurons from NSCs could facilitate regenerative medicine and drug development for neurodegenerative diseases. In this study, we screened natural compounds to identify molecules that are effective on NSC cell fate determination. We found that Kuwanon V (KWV), which was isolated from the mulberry tree (Morus bombycis) root, increased neurogenesis in rat NSCs. In addition, during NSC differentiation, KWV increased cell survival and inhibited cell proliferation as shown by 5-bromo-2-deoxyuridine pulse experiments, Ki67 immunostaining and neurosphere forming assays. Interestingly, KWV enhanced neuronal differentiation and decreased NSC proliferation even in the presence of mitogens such as epidermal growth factor and fibroblast growth factor 2. KWV treatment of NSCs reduced the phosphorylation of extracellular signal-regulated kinase 1/2, increased mRNA expression levels of the cyclin-dependent kinase inhibitor p21, down-regulated Notch/Hairy expression levels and up-regulated microRNA miR-9, miR-29a and miR-181a. Taken together, our data suggest that KWV modulates NSC fate to induce neurogenesis, and it may be considered as a new drug candidate that can regenerate or protect neurons in neurodegenerative diseases. PMID:25706719

  6. Growth behavior of cochlear nucleus neuronal cells on semiconductor substrates.

    PubMed

    Rak, Kristen; Wasielewski, Natalia; Radeloff, Andreas; Scherzed, Agmal; Jablonka, Sibylle; Hagen, Rudolf; Mlynski, Robert

    2011-05-01

    Auditory brainstem implants provide sound information by direct stimulation of the cochlear nucleus to patients with dysfunctional or absent cranial nerve VIII. In contrast to patients with cochlear implants, the use of the auditory brainstem implants is less successful. This cannot be fully explained by the difference location of stimulation but a rather unspecific neuronal stimulation. The aim of this study was to further examine neuronal cells of the cochlear nucleus and to test their interactions with semiconductor substrates as a potential electrode material for improved auditory brainstem implants. The cochlear nuclei of postnatal day 7 rats were microsurgically dissected. The tissue was dissociated enzymatically and plated on coverslips as control and on the semiconductor substrates silicon or silicon nitride. After 4 days in culture the morphology and growth of dissociated cells was determined by fluorescence and scanning electron microscopy. Dissociated cells of the cochlear nucleus showed reduced cell growth on semiconductor substrates compared with controls. SEM analysis demonstrated close contact of neurons with supporting cells in culture and good adherence of neuronal growth cones on the used materials. These findings present basic knowledge for the development of neuron-electrode interfaces for future auditory brainstem implants. PMID:21370446

  7. Cell cycle inhibition as a strategy for treatment of central nervous system diseases which must not block normal neurogenesis

    PubMed Central

    Liu, Da-Zhi; Ander, Bradley P.; Sharp, Frank R.

    2009-01-01

    Classically, the cell cycle is regarded as the central process leading to cellular proliferation. However, increasing evidence over the last decade supports the notion that neuronal cell cycle re-entry results in post-mitotic death. A mature neuron that re-enters the cell cycle can neither advance to a new G0 quiescent state nor revert to its earlier G0 state. This presents a critical dilemma to the neuron from which death may be an unavoidable, but necessary, outcome for adult neurons attempting to complete the cell cycle. In contrast, tumor cells that undergo aberrant cell cycle re-entry divide and can survive. Thus, cell cycle inhibition strategies are of interest in cancer treatment, but may also represent an important means of protecting neurons. In this review, we put forth the concept of the “expanded cell cycle” and summarize the cell cycle proteins, signal transduction events and mitogenic molecules that can drive a neuron into the cell cycle in various CNS diseases. We also discuss the pharmacological approaches that interfere with the mitogenic pathways and prevent mature neurons from attempting cell cycle re-entry, protecting them from cell death. Lastly, future attempts at blocking the cell cycle to rescue mature neurons from injury should be designed so as to not block normal neurogenesis. PMID:19944161

  8. Differentiation patterns of mouse embryonic stem cells and induced pluripotent stem cells into neurons.

    PubMed

    Nakamura, Mai; Kamishibahara, Yu; Kitazawa, Ayako; Kawaguchi, Hideo; Shimizu, Norio

    2016-05-01

    Mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have the ability to differentiate in vitro into various cell lineages including neurons. The differentiation of these cells into neurons has potential applications in regenerative medicine. Previously, we reported that a chick dorsal root ganglion (DRG)-conditioned medium (CM) promoted the differentiation of mouse ES and iPS cells into neurons. Here, we used real-time PCR to investigate the differentiation patterns of ES and iPS cells into neurons when DRG-CM was added. DRG-CM promoted the expression levels of βIII-tubulin gene (a marker of postmitotic neurons) in ES and iPS cells. ES cells differentiated into neurons faster than iPS cells, and the maximum peaks of gene expression involved in motor, sensory, and dopaminergic neurons were different. Rho kinase (ROCK) inhibitors could be very valuable at numerous stages in the production and use of stem cells in basic research and eventual cell-based therapies. Thus, we investigated whether the addition of a ROCK inhibitor Y-27632 and DRG-CM on the basis of the differentiation patterns promotes the neuronal differentiation of ES cells. When the ROCK inhibitor was added to the culture medium at the initial stages of cultivation, it stimulated the neuronal differentiation of ES cells more strongly than that stimulated by DRG-CM. Moreover, the combination of the ROCK inhibitor and DRG-CM promoted the neuronal differentiation of ES cells when the ROCK inhibitor was added to the culture medium at day 3. The ROCK inhibitor may be useful for promoting neuronal differentiation of ES cells. PMID:25354731

  9. The ventrolateral preoptic nucleus is required for propofol-induced inhibition of locus coeruleus neuronal activity.

    PubMed

    Zhang, Yu; Yu, Tian; Yuan, Jie; Yu, Bu-Wei

    2015-12-01

    The mechanisms underlying the unconsciousness of general anesthesia are not completely understood. Accumulating evidence indicates the ventrolateral preoptic nucleus (VLPO) in the endogenous sleep circuits may contribute to loss of consciousness (LOC) induced by GABA-enhancing anesthetics. However, there are few studies that look into distinct sleep pathway in the sleep-wake system. In the neural pathway from VLPO to the locus coeruleus (LC), we compared the inhibition effect of propofol on the LC activity before and after VLPO lesion in vivo rats. Systemic administration of propofol (20 mg/kg, i.p.) in normal rats caused a fast and obvious inhibition of LC neurons spontaneous firing (from 0.24 ± 0.06 to 0.12 ± 0.03 Hz). The LC neuronal firing rate of VLPO lesion rats only decreased to 0.18 ± 0.05 Hz (P = 0.021 vs. non-VLPO rats) after the propofol injection, and the time to reach the maximal inhibition level was also prolonged in VLPO lesion rats (2.3 ± 0.7 vs. 5.8 ± 1.2 min, P = 0.037). Microinjections of a selective GABAA receptor antagonist (SR95531) into the LC fully reversed the inhibitory effect of propofol on the LC neuronal activity, but did not significantly affect the latency to loss of righting reflex of rats after propofol administration (3.4 ± 0.9 vs. 3.7 ± 1.2 min, P = 0.639). Our results indicated that VLPO is necessary for the propofol-induced inhibition of LC activity, but the LC may not play an important role in the propofol-induced LOC. PMID:26306695

  10. Fetal calf serum-mediated inhibition of neurite growth from ciliary ganglion neurons in vitro.

    PubMed

    Davis, G E; Skaper, S D; Manthorpe, M; Moonen, G; Varon, S

    1984-01-01

    Embryonic chick ciliary ganglion (CG) neurons cultured in fetal calf serum-containing medium have been previously reported to extend neurites on polyornithine (PORN) substrata precoated with a neurite-promoting factor (PNPF) from rat schwannoma-conditioned medium. On PORN substrata alone, however, no neuritic growth occurred. This was interpreted as evidence that PORN was an incompetent substratum for ciliary neuritic growth. In this study, we now find that an untreated PORN substratum allows neuritic growth in serum-free defined medium. When PNPF was added to PORN, a more rapid and extensive neuritic response occurred. After 5 hr of culture, a 60% neuritic response occurred on PNPF/PORN, whereas no neurons initiated neurites until 10-12 hr on PORN. The inhibitory effect of fetal calf serum noted above on PORN could be obtained in part by pretreating the substratum with serum for 1 hr. Maximal inhibitory effects in the PORN pretreatment were achieved after 30 min and were not further improved by treatments up to 4 hr. Bovine serum albumin was also found to inhibit neurite growth on PORN to about 60% of the inhibition obtained by an equivalent amount of serum protein. Fetal calf serum was shown to cause a 15% reduction in the percentage of neurons bearing neurites after its addition to 18-hr serum-free PORN cultures and to cause statistically significant reductions in neurite lengths measured 2 hr later. PMID:6481819

  11. Dynamin Inhibition Blocks Botulinum Neurotoxin Type A Endocytosis in Neurons and Delays Botulism*

    PubMed Central

    Harper, Callista B.; Martin, Sally; Nguyen, Tam H.; Daniels, Shari J.; Lavidis, Nickolas A.; Popoff, Michel R.; Hadzic, Gordana; Mariana, Anna; Chau, Ngoc; McCluskey, Adam; Robinson, Phillip J.; Meunier, Frederic A.

    2011-01-01

    The botulinum neurotoxins (BoNTs) are di-chain bacterial proteins responsible for the paralytic disease botulism. Following binding to the plasma membrane of cholinergic motor nerve terminals, BoNTs are internalized into an endocytic compartment. Although several endocytic pathways have been characterized in neurons, the molecular mechanism underpinning the uptake of BoNTs at the presynaptic nerve terminal is still unclear. Here, a recombinant BoNT/A heavy chain binding domain (Hc) was used to unravel the internalization pathway by fluorescence and electron microscopy. BoNT/A-Hc initially enters cultured hippocampal neurons in an activity-dependent manner into synaptic vesicles and clathrin-coated vesicles before also entering endosomal structures and multivesicular bodies. We found that inhibiting dynamin with the novel potent Dynasore analog, Dyngo-4aTM, was sufficient to abolish BoNT/A-Hc internalization and BoNT/A-induced SNAP25 cleavage in hippocampal neurons. Dyngo-4a also interfered with BoNT/A-Hc internalization into motor nerve terminals. Furthermore, Dyngo-4a afforded protection against BoNT/A-induced paralysis at the rat hemidiaphragm. A significant delay of >30% in the onset of botulism was observed in mice injected with Dyngo-4a. Dynamin inhibition therefore provides a therapeutic avenue for the treatment of botulism and other diseases caused by pathogens sharing dynamin-dependent uptake mechanisms. PMID:21832053

  12. The natural history of sound localization in mammals – a story of neuronal inhibition

    PubMed Central

    Grothe, Benedikt; Pecka, Michael

    2014-01-01

    Our concepts of sound localization in the vertebrate brain are widely based on the general assumption that both the ability to detect air-borne sounds and the neuronal processing are homologous in archosaurs (present day crocodiles and birds) and mammals. Yet studies repeatedly report conflicting results on the neuronal circuits and mechanisms, in particular the role of inhibition, as well as the coding strategies between avian and mammalian model systems. Here we argue that mammalian and avian phylogeny of spatial hearing is characterized by a convergent evolution of hearing air-borne sounds rather than by homology. In particular, the different evolutionary origins of tympanic ears and the different availability of binaural cues in early mammals and archosaurs imposed distinct constraints on the respective binaural processing mechanisms. The role of synaptic inhibition in generating binaural spatial sensitivity in mammals is highlighted, as it reveals a unifying principle of mammalian circuit design for encoding sound position. Together, we combine evolutionary, anatomical and physiological arguments for making a clear distinction between mammalian processing mechanisms and coding strategies and those of archosaurs. We emphasize that a consideration of the convergent nature of neuronal mechanisms will significantly increase the explanatory power of studies of spatial processing in both mammals and birds. PMID:25324726

  13. Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters

    PubMed Central

    Newman, Eric A.

    2015-01-01

    Astrocytes in the brain release transmitters that actively modulate neuronal excitability and synaptic efficacy. Astrocytes also release vasoactive agents that contribute to neurovascular coupling. As reviewed in this article, Müller cells, the principal retinal glial cells, modulate neuronal activity and blood flow in the retina. Stimulated Müller cells release ATP which, following its conversion to adenosine by ectoenzymes, hyperpolarizes retinal ganglion cells by activation of A1 adenosine receptors. This results in the opening of G protein-coupled inwardly rectifying potassium (GIRK) channels and small conductance Ca2+-activated K+ (SK) channels. Tonic release of ATP also contributes to the generation of tone in the retinal vasculature by activation of P2X receptors on vascular smooth muscle cells. Vascular tone is lost when glial cells are poisoned with the gliotoxin fluorocitrate. The glial release of vasoactive metabolites of arachidonic acid, including prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs), contributes to neurovascular coupling in the retina. Neurovascular coupling is reduced when neuronal stimulation of glial cells is interrupted and when the synthesis of arachidonic acid metabolites is blocked. Neurovascular coupling is compromised in diabetic retinopathy owing to the loss of glial-mediated vasodilation. This loss can be reversed by inhibiting inducible nitric oxide synthase. It is likely that future research will reveal additional important functions of the release of transmitters from glial cells. PMID:26009774

  14. Dynamics of fast and slow inhibition from cerebellar Golgi cells allow flexible control of synaptic integration

    PubMed Central

    Crowley, John J.; Fioravante, Diasynou; Regehr, Wade G.

    2011-01-01

    Throughout the brain, multiple interneuron types influence distinct aspects of synaptic processing. Interneuron diversity can thereby promote differential firing from neurons receiving common excitation. In contrast, Golgi cells are the sole interneurons regulating granule cell spiking evoked by mossy fibers, thereby gating inputs to the cerebellar cortex. Here, we examine how this single interneuron type modifies activity in its targets. We find that GABAA-mediated transmission at unitary Golgi cell → granule cell synapses consists of varying contributions of fast synaptic currents and sustained inhibition. Fast IPSCs depress and slow IPSCs gradually build during high frequency Golgi cell activity. Consequently, fast and slow inhibition differentially influence granule cell spike timing during persistent mossy fiber input. Furthermore, slow inhibition reduces the gain of the mossy fiber → granule cell input-output curve, while fast inhibition increases the threshold. Thus, a lack of interneuron diversity need not prevent flexible inhibitory control of synaptic processing. PMID:19778512

  15. Iron overload triggers mitochondrial fragmentation via calcineurin-sensitive signals in HT-22 hippocampal neuron cells.

    PubMed

    Park, Junghyung; Lee, Dong Gil; Kim, Bokyung; Park, Sun-Ji; Kim, Jung-Hak; Lee, Sang-Rae; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2015-11-01

    The accumulation of iron in neurons has been proposed to contribute to the pathology of numerous neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. However, insufficient research has been conducted on the precise mechanism underlying iron toxicity in neurons. In this study, we investigated mitochondrial dynamics in hippocampal HT-22 neurons exposed to ferric ammonium citrate (FAC) as a model of iron overload and neurodegeneration. Incubation with 150 μM FAC for 48 h resulted in decreased cell viability and apoptotic death in HT-22 cells. The FAC-induced iron overload triggered mitochondrial fragmentation, which was accompanied by Drp1(Ser637) dephosphorylation. Iron chelation with deferoxamine prevented the FAC-induced mitochondrial fragmentation and apoptotic cell death by inhibiting Drp1(Ser637) dephosphorylation. In addition, a S637D mutation of Drp1, which resulted in a phosphorylation-mimetic form of Drp1 at Ser637, protected against the FAC-induced mitochondrial fragmentation and neuronal apoptosis. FK506 and cyclosporine A, inhibitors of calcineurin activation, determined that calcineurin was associated with the iron-induced changes in mitochondrial morphology and the phosphorylation levels of Drp1. These results indicate that the FAC-induced dephosphorylation of Drp1-dependent mitochondrial fragmentation was rescued by the inhibition of calcineurin activation. Therefore, these findings suggest that calcineurin-mediated phosphorylation of Drp1(Ser637) acts as a key regulator of neuronal cell loss by modulating mitochondrial dynamics in iron-induced toxicity. These results may contribute to the development of novel therapies for treatment of neurodegenerative disorders related to iron toxicity. PMID:26318285

  16. Cystatin C protects neuronal cells against mutant copper-zinc superoxide dismutase-mediated toxicity

    PubMed Central

    Watanabe, S; Hayakawa, T; Wakasugi, K; Yamanaka, K

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective and progressive loss of motor neurons. Cystatin C (CysC), an endogenous cysteine protease inhibitor, is a major protein component of Bunina bodies observed in the spinal motor neurons of sporadic ALS and is decreased in the cerebrospinal fluid of ALS patients. Despite prominent deposition of CysC in ALS, the roles of CysC in the central nervous system remain unknown. Here, we identified the neuroprotective activity of CysC against ALS-linked mutant Cu/Zn-superoxide dismutase (SOD1)-mediated toxicity. We found that exogenously added CysC protected neuronal cells including primary cultured motor neurons. Moreover, the neuroprotective property of CysC was dependent on the coordinated activation of two distinct pathways: autophagy induction through AMPK-mTOR pathway and inhibition of cathepsin B. Furthermore, exogenously added CysC was transduced into the cells and aggregated in the cytosol under oxidative stress conditions, implying a relationship between the neuroprotective activity of CysC and Bunina body formation. These data suggest CysC is an endogenous neuroprotective agent and targeting CysC in motor neurons may provide a novel therapeutic strategy for ALS. PMID:25356866

  17. Inhibition of N-methyl-D-aspartate receptors increases paraoxon-induced apoptosis in cultured neurons

    SciTech Connect

    Wu Xuan; Tian Feng; Okagaki, Peter; Marini, Ann M. . E-mail: amarini@usuhs.mil

    2005-10-01

    Organophosphorus (OP) compounds, used as insecticides and chemical warfare agents, are potent neurotoxins. We examined the neurotoxic effect of paraoxon (O,O-diethyl O-p-nitrophenyl phosphate), an organophosphate compound, and the role of NMDA receptors as a mechanism of action in cultured cerebellar granule cells. Paraoxon is neurotoxic to cultured rat cerebellar granule cells in a time- and concentration-dependent manner. Cerebellar granule cells are less sensitive to the neurotoxic effects of paraoxon on day in vitro (DIV) 4 than neurons treated on DIV 8. Surprisingly, the N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, enhances paraoxon-mediated neurotoxicity suggesting that NMDA receptors may play a protective role. Pretreatment with a subtoxic concentration of N-methyl-D-aspartate (NMDA) [100 {mu}M] protects about 40% of the vulnerable neurons that would otherwise die from paraoxon-induced neurotoxicity. Moreover, addition of a neuroprotective concentration of NMDA 3 h after treatment with paraoxon provides the same level of protection. Because paraoxon-mediated neuronal cell death is time-dependent, we hypothesized that apoptosis may be involved. Paraoxon increases apoptosis about 10-fold compared to basal levels. The broad-spectrum caspase inhibitor (Boc-D-FMK) and the caspase-9-specific inhibitor (Z-LEHD-FMK) protect against paraoxon-mediated apoptosis, paraoxon-stimulated caspase-3 activity and neuronal cell death. MK-801 increases, whereas NMDA blocks paraoxon-induced apoptosis and paraoxon-stimulated caspase-3 activity. These results suggest that activation of NMDA receptors protect neurons against paraoxon-induced neurotoxicity by blocking apoptosis initiated by paraoxon.

  18. Interactions between glutamate, dopamine, and the neuronal signature of response inhibition in the human striatum.

    PubMed

    Lorenz, Robert C; Gleich, Tobias; Buchert, Ralph; Schlagenhauf, Florian; Kühn, Simone; Gallinat, Jürgen

    2015-10-01

    Response inhibition is a basic mechanism in cognitive control and dysfunctional in major psychiatric disorders. The neuronal mechanisms are in part driven by dopamine in the striatum. Animal data suggest a regulatory role of glutamate on the level of the striatum. We used a trimodal imaging procedure of the human striatum including F18-DOPA positron emission tomography, proton magnetic resonance spectroscopy, and functional magnetic resonance imaging of a stop signal task. We investigated dopamine synthesis capacity and glutamate concentration in vivo and their relation to functional properties of response inhibition. A mediation analysis revealed a significant positive association between dopamine synthesis capacity and inhibition-related neural activity in the caudate nucleus. This relationship was significantly mediated by striatal glutamate concentration. Furthermore, stop signal reaction time was inversely related to striatal activity during inhibition. The data show, for the first time in humans, an interaction between dopamine, glutamate, and the neural signature of response inhibition in the striatum. This finding stresses the importance of the dopamine-glutamate interaction for behavior and may facilitate the understanding of psychiatric disorders characterized by impaired response inhibition. PMID:26177932

  19. Directing neuronal cell growth on implant material surfaces by microstructuring.

    PubMed

    Reich, Uta; Fadeeva, Elena; Warnecke, Athanasia; Paasche, Gerrit; Müller, Peter; Chichkov, Boris; Stöver, Timo; Lenarz, Thomas; Reuter, Günter

    2012-05-01

    For best hearing sensation, electrodes of auditory prosthesis must have an optimal electrical contact to the respective neuronal cells. To improve the electrode-nerve interface, microstructuring of implant surfaces could guide neuronal cells toward the electrode contact. To this end, femtosecond laser ablation was used to generate linear microgrooves on the two currently relevant cochlear implant materials, silicone elastomer and platinum. Silicone surfaces were structured by two different methods, either directly, by laser ablation or indirectly, by imprinting using laser-microstructured molds. The influence of surface structuring on neurite outgrowth was investigated utilizing a neuronal-like cell line and primary auditory neurons. The pheochromocytoma cell line PC-12 and primary spiral ganglion cells were cultured on microstructured auditory implant materials. The orientation of neurite outgrowth relative to the microgrooves was determined. Both cell types showed a preferred orientation in parallel to the microstructures on both, platinum and on molded silicone elastomer. Interestingly, microstructures generated by direct laser ablation of silicone did not influence the orientation of either cell type. This shows that differences in the manufacturing procedures can affect the ability of microstructured implant surfaces to guide the growth of neurites. This is of particular importance for clinical applications, since the molding technique represents a reproducible, economic, and commercially feasible manufacturing procedure for the microstructured silicone surfaces of medical implants. PMID:22287482

  20. Recording axonal conduction to evaluate the integration of pluripotent cell-derived neurons into a neuronal network.

    PubMed

    Shimba, Kenta; Sakai, Koji; Takayama, Yuzo; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-10-01

    Stem cell transplantation is a promising therapy to treat neurodegenerative disorders, and a number of in vitro models have been developed for studying interactions between grafted neurons and the host neuronal network to promote drug discovery. However, methods capable of evaluating the process by which stem cells integrate into the host neuronal network are lacking. In this study, we applied an axonal conduction-based analysis to a co-culture study of primary and differentiated neurons. Mouse cortical neurons and neuronal cells differentiated from P19 embryonal carcinoma cells, a model for early neural differentiation of pluripotent stem cells, were co-cultured in a microfabricated device. The somata of these cells were separated by the co-culture device, but their axons were able to elongate through microtunnels and then form synaptic contacts. Propagating action potentials were recorded from these axons by microelectrodes embedded at the bottom of the microtunnels and sorted into clusters representing individual axons. While the number of axons of cortical neurons increased until 14 days in vitro and then decreased, those of P19 neurons increased throughout the culture period. Network burst analysis showed that P19 neurons participated in approximately 80% of the bursting activity after 14 days in vitro. Interestingly, the axonal conduction delay of P19 neurons was significantly greater than that of cortical neurons, suggesting that there are some physiological differences in their axons. These results suggest that our method is feasible to evaluate the process by which stem cell-derived neurons integrate into a host neuronal network. PMID:26303583

  1. Non-catalytic roles for TET1 protein negatively regulating neuronal differentiation through srGAP3 in neuroblastoma cells.

    PubMed

    Gao, Jie; Ma, Yue; Fu, Hua-Lin; Luo, Qian; Wang, Zhen; Xiao, Yu-Huan; Yang, Hao; Cui, Da-Xiang; Jin, Wei-Lin

    2016-05-01

    The methylcytosine dioxygenases TET proteins (TET1, TET2, and TET3) play important regulatory roles in neural function. In this study, we investigated the role of TET proteins in neuronal differentiation using Neuro2a cells as a model. We observed that knockdown of TET1, TET2 or TET3 promoted neuronal differentiation of Neuro2a cells, and their overexpression inhibited VPA (valproic acid)-induced neuronal differentiation, suggesting all three TET proteins negatively regulate neuronal differentiation of Neuro2a cells. Interestingly, the inducing activity of TET protein is independent of its enzymatic activity. Our previous studies have demonstrated that srGAP3 can negatively regulate neuronal differentiation of Neuro2a cells. Furthermore, we revealed that TET1 could positively regulate srGAP3 expression independent of its catalytic activity, and srGAP3 is required for TET-mediated neuronal differentiation of Neuro2a cells. The results presented here may facilitate better understanding of the role of TET proteins in neuronal differentiation, and provide a possible therapy target for neuroblastoma. PMID:27113584

  2. YiQiFuMai Powder Injection Ameliorates Cerebral Ischemia by Inhibiting Endoplasmic Reticulum Stress-Mediated Neuronal Apoptosis

    PubMed Central

    Hu, Yang

    2016-01-01

    YiQiFuMai (YQFM) powder injection as a modern preparation derived from Sheng Mai San, a traditional Chinese medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. However, its neuroprotective effect and underlying mechanism in cerebral ischemia remain to be explored. The present study was designed to investigate the neuroprotective effect of YQFM on endoplasmic reticulum (ER) stress-mediated neuronal apoptosis in the permanent middle cerebral artery occlusion- (MCAO-) injured mice and the oxygen-glucose deprivation- (OGD-) induced pheochromocytoma (PC12) cells. The results showed that single administration of YQFM (1.342 g/kg, i.p.) could reduce the brain infarction and improve the neurological deficits and the cerebral blood flow (CBF) after MCAO for 24 h in mice. Moreover, incubation with YQFM (100, 200, and 400 μg/mL) could increase the cell viability, decrease the caspase-3 activity, and inhibit the cell apoptosis in OGD-induced PC12 cells for 12 h. In addition, YQFM treatment could significantly modulate cleaved caspase-3 and Bcl-2 expressions and inhibit the expressions of ER stress-related marker proteins and signaling pathways in vivo and in vitro. In conclusion, our findings provide the first evidence that YQFM ameliorates cerebral ischemic injury linked with modulating ER stress-related signaling pathways, which provided some new insights for its prevention and treatment of cerebral ischemia diseases. PMID:27087890

  3. Procaspase-activating compound 1 induces a caspase-3-dependent cell death in cerebellar granule neurons

    SciTech Connect

    Aziz, Gulzeb; Akselsen, Oyvind W.; Hansen, Trond V.; Paulsen, Ragnhild E.

    2010-09-15

    Procaspase-activating compound 1, PAC-1, has been introduced as a direct activator of procaspase-3 and has been suggested as a therapeutic agent against cancer. Its activation of procaspase-3 is dependent on the chelation of zinc. We have tested PAC-1 and an analogue of PAC-1 as zinc chelators in vitro as well as their ability to activate caspase-3 and induce cell death in chicken cerebellar granule neuron cultures. These neurons are non-dividing, primary cells with normal caspase-3. The results reported herein show that PAC-1 chelates zinc, activates procaspase-3, and leads to caspase-3-dependent cell death in neurons, as the specific caspase-3-inhibitor Ac-DEVD-cmk inhibited both the caspase-3 activity and cell death. Thus, chicken cerebellar granule neurons is a suitable model to study mechanisms of interference with apoptosis of PAC-1 and similar compounds. Furthermore, the present study also raises concern about potential neurotoxicity of PAC-1 if used in cancer therapy.

  4. Crosstalk between Ca2+ signaling and mitochondrial H2O2 is required for rotenone inhibition of mTOR signaling pathway leading to neuronal apoptosis

    PubMed Central

    Zhou, Qian; Zhang, Ruijie; Zhang, Hai; Liu, Wen; Xu, Chong; Liu, Lei; Huang, Shile; Chen, Long

    2016-01-01

    Rotenone, a neurotoxic pesticide, induces loss of dopaminergic neurons related to Parkinson's disease. Previous studies have shown that rotenone induces neuronal apoptosis partly by triggering hydrogen peroxide (H2O2)-dependent suppression of mTOR pathway. However, the underlying mechanism is not fully understood. Here, we show that rotenone elevates intracellular free calcium ion ([Ca2+]i) level, and activates CaMKII, resulting in inhibition of mTOR signaling and induction of neuronal apoptosis. Chelating [Ca2+]i with BAPTA/AM, preventing extracellular Ca2+ influx using EGTA, inhibiting CaMKII with KN93, or silencing CaMKII significantly attenuated rotenone-induced H2O2 production, mTOR inhibition, and cell death. Interestingly, using TTFA, antimycin A, catalase or Mito-TEMPO, we found that rotenone-induced mitochondrial H2O2 also in turn elevated [Ca2+]i level, thereby stimulating CaMKII, leading to inhibition of mTOR pathway and induction of neuronal apoptosis. Expression of wild type mTOR or constitutively active S6K1, or silencing 4E-BP1 strengthened the inhibitory effects of catalase, Mito-TEMPO, BAPTA/AM or EGTA on rotenone-induced [Ca2+]i elevation, CaMKII phosphorylation and neuronal apoptosis. Together, the results indicate that the crosstalk between Ca2+ signaling and mitochondrial H2O2 is required for rotenone inhibition of mTOR-mediated S6K1 and 4E-BP1 pathways. Our findings suggest that how to control over-elevation of intracellular Ca2+ and overproduction of mitochondrial H2O2 may be a new approach to deal with the neurotoxicity of rotenone. PMID:26859572

  5. Crosstalk between Ca2+ signaling and mitochondrial H2O2 is required for rotenone inhibition of mTOR signaling pathway leading to neuronal apoptosis.

    PubMed

    Liu, Chunxiao; Ye, Yangjing; Zhou, Qian; Zhang, Ruijie; Zhang, Hai; Liu, Wen; Xu, Chong; Liu, Lei; Huang, Shile; Chen, Long

    2016-02-16

    Rotenone, a neurotoxic pesticide, induces loss of dopaminergic neurons related to Parkinson's disease. Previous studies have shown that rotenone induces neuronal apoptosis partly by triggering hydrogen peroxide (H2O2)-dependent suppression of mTOR pathway. However, the underlying mechanism is not fully understood. Here, we show that rotenone elevates intracellular free calcium ion ([Ca2+]i) level, and activates CaMKII, resulting in inhibition of mTOR signaling and induction of neuronal apoptosis. Chelating [Ca2+]i with BAPTA/AM, preventing extracellular Ca2+ influx using EGTA, inhibiting CaMKII with KN93, or silencing CaMKII significantly attenuated rotenone-induced H2O2 production, mTOR inhibition, and cell death. Interestingly, using TTFA, antimycin A, catalase or Mito-TEMPO, we found that rotenone-induced mitochondrial H2O2 also in turn elevated [Ca2+]i level, thereby stimulating CaMKII, leading to inhibition of mTOR pathway and induction of neuronal apoptosis. Expression of wild type mTOR or constitutively active S6K1, or silencing 4E-BP1 strengthened the inhibitory effects of catalase, Mito-TEMPO, BAPTA/AM or EGTA on rotenone-induced [Ca2+]i elevation, CaMKII phosphorylation and neuronal apoptosis. Together, the results indicate that the crosstalk between Ca2+ signaling and mitochondrial H2O2 is required for rotenone inhibition of mTOR-mediated S6K1 and 4E-BP1 pathways. Our findings suggest that how to control over-elevation of intracellular Ca2+ and overproduction of mitochondrial H2O2 may be a new approach to deal with the neurotoxicity of rotenone. PMID:26859572

  6. Bilateral inhibition generates neuronal responses tuned to interaural level differences in the auditory brainstem of the barn owl.

    PubMed

    Adolphs, R

    1993-09-01

    I investigated the neural algorithms by which neurons gain selectivity for interaural level difference in the brainstem of the barn owl (Tyto alba). Differences in the timing and in the level of sounds at the ears are used by this owl to encode, respectively, azimuthal and vertical position of sound sources in space. These two cues are processed in two parallel neural pathways. Below the level of the inferior colliculus, all neurons in the pathway that processes level differences show responses to this cue that are monotonic, and thus not selective for a particular level difference. Only in the inferior colliculus, which contains a map of auditory space, are neurons sharply tuned to specific interaural level differences. How are these response properties generated from those of the nuclei that provide input to the inferior colliculus? I show that the posterior subdivision of the nucleus ventralis lemnisci lateralis (VLVp) projects bilaterally to the lateral shell of the central nucleus of the inferior colliculus, the input stage to the map of auditory space. Both these nuclei are part of the pathway that processes interaural level differences. Manipulations of the responses in VLVp affected the responses to level differences in the inferior colliculus; responses to time differences were unaffected. By systematically increasing or decreasing neural activity in VLVp, I show that the VLVp on each side provides inhibition to the colliculus at large level differences. This results in a peaked response that is tuned to level differences in the inferior colliculus. Some cells in the lateral shell of the inferior colliculus appear to receive direct GABAergic inhibition from VLVp. I suggest that this circuitry and the algorithms it supports are the neural substrates that allow the barn owl to exploit level differences for computation of sound source elevation. PMID:7690063

  7. Neuronal Firing Rate Homeostasis Is Inhibited by Sleep and Promoted by Wake.

    PubMed

    Hengen, Keith B; Torrado Pacheco, Alejandro; McGregor, James N; Van Hooser, Stephen D; Turrigiano, Gina G

    2016-03-24

    Homeostatic mechanisms stabilize neural circuit function by keeping firing rates within a set-point range, but whether this process is gated by brain state is unknown. Here, we monitored firing rate homeostasis in individual visual cortical neurons in freely behaving rats as they cycled between sleep and wake states. When neuronal firing rates were perturbed by visual deprivation, they gradually returned to a precise, cell-autonomous set point during periods of active wake, with lengthening of the wake period enhancing firing rate rebound. Unexpectedly, this resetting of neuronal firing was suppressed during sleep. This raises the possibility that memory consolidation or other sleep-dependent processes are vulnerable to interference from homeostatic plasticity mechanisms. PAPERCLIP. PMID:26997481

  8. Inhibition of phosphodiesterase 2 reverses impaired cognition and neuronal remodeling caused by chronic stress.

    PubMed

    Xu, Ying; Pan, Jianchun; Sun, Jiao; Ding, Lianshu; Ruan, Lina; Reed, Miranda; Yu, Xuefeng; Klabnik, Jonathan; Lin, Dan; Li, Jianxin; Chen, Ling; Zhang, Chong; Zhang, Hanting; O'Donnell, James M

    2015-02-01

    Chronic stress and neuronal vulnerability have recently been recognized as factors contributing to cognitive disorders. One way to modify neuronal vulnerability is through mediation of phosphodiesterase 2 (PDE2), an enzyme that exerts its action on cognitive processes via the control of intracellular second messengers, cGMP and, to a lesser extent, cAMP. This study explored the effects of a PDE2 inhibitor, Bay 60-7550, on stress-induced learning and memory dysfunction in terms of its ramification on behavioral, morphologic, and molecular changes. Bay 60-7550 reversed stress-induced cognitive impairment in the Morris water maze, novel object recognition, and location tasks (object recognition test and/or object location test), effects prevented by treatment with 7-NI, a selective inhibitor of neuronal nitric oxide synthase; MK801, a glutamate receptor (NMDAR) inhibitor; myr-AIP, a CaMKII inhibitor; and KT5823, a protein kinase G inhibitor. Bay 60-7550 also ameliorated stress-induced structural remodeling in the CA1 of the hippocampus, leading to increases in dendritic branching, length, and spine density. However, the neuroplasticity initiated by Bay 60-7550 was not seen in the presence of 7-NI, MK801, myr-AIP, or KT5823. PDE2 inhibition reduced stress-induced extracellular-regulated protein kinase activation and attenuated stress-induced decreases in transcription factors (e.g., Elk-1, TORC1, and CREB phosphorylation) and plasticity-related proteins (e.g., Egr-1 and brain-derived neurotrophic factor). Pretreatment with inhibitors of NMDA, CaMKII, neuronal nitric oxide synthase, and protein kinase G (or protein kinase A) blocked the effects of Bay 60-7550 on cGMP or cAMP signaling. These findings indicate that the effect of PDE2 inhibition on stress-induced memory impairment is potentially mediated via modulation of neuroplasticity-related NMDAR-CaMKII-cGMP/cAMP signaling. PMID:25442113

  9. A 24-Residue Peptide (p5), Derived from p35, the Cdk5 Neuronal Activator, Specifically Inhibits Cdk5-p25 Hyperactivity and Tau Hyperphosphorylation*

    PubMed Central

    Zheng, Ya-Li; Amin, Niranjana D.; Hu, Ya-Fang; Rudrabhatla, Parvathi; Shukla, Varsha; Kanungo, Jyotshnabala; Kesavapany, Sashi; Grant, Philip; Albers, Wayne; Pant, Harish C.

    2010-01-01

    The activity of Cdk5-p35 is tightly regulated in the developing and mature nervous system. Stress-induced cleavage of the activator p35 to p25 and a p10 N-terminal domain induces deregulated Cdk5 hyperactivity and perikaryal aggregations of hyperphosphorylated Tau and neurofilaments, pathogenic hallmarks in neurodegenerative diseases, such as Alzheimer disease and amyotrophic lateral sclerosis, respectively. Previously, we identified a 125-residue truncated fragment of p35 called CIP that effectively and specifically inhibited Cdk5-p25 activity and Tau hyperphosphorylation induced by Aβ peptides in vitro, in HEK293 cells, and in neuronal cells. Although these results offer a possible therapeutic approach to those neurodegenerative diseases assumed to derive from Cdk5-p25 hyperactivity and/or Aβ induced pathology, CIP is too large for successful therapeutic regimens. To identify a smaller, more effective peptide, in this study we prepared a 24-residue peptide, p5, spanning CIP residues Lys245–Ala277. p5 more effectively inhibited Cdk5-p25 activity than did CIP in vitro. In neuron cells, p5 inhibited deregulated Cdk5-p25 activity but had no effect on the activity of endogenous Cdk5-p35 or on any related endogenous cyclin-dependent kinases in HEK293 cells. Specificity of p5 inhibition in cortical neurons may depend on the p10 domain in p35, which is absent in p25. Furthermore, we have demonstrated that p5 reduced Aβ(1–42)-induced Tau hyperphosphorylation and apoptosis in cortical neurons. These results suggest that p5 peptide may be a unique and useful candidate for therapeutic studies of certain neurodegenerative diseases. PMID:20720012

  10. Valproic acid enhances the efficacy of radiation therapy by protecting normal hippocampal neurons and sensitizing malignant glioblastoma cells

    PubMed Central

    Thotala, Dinesh; Karvas, Rowan M.; Engelbach, John A.; Garbow, Joel R.; Hallahan, Andrew N.; DeWees, Todd A.; Laszlo, Andrei; Hallahan, Dennis E.

    2015-01-01

    Neurocognitive deficits are serious sequelae that follow cranial irradiation used to treat patients with medulloblastoma and other brain neoplasms. Cranial irradiation causes apoptosis in the subgranular zone of the hippocampus leading to cognitive deficits. Valproic acid (VPA) treatment protected hippocampal neurons from radiation-induced damage in both cell culture and animal models. Radioprotection was observed in VPA-treated neuronal cells compared to cells treated with radiation alone. This protection is specific to normal neuronal cells and did not extend to cancer cells. In fact, VPA acted as a radiosensitizer in brain cancer cells. VPA treatment induced cell cycle arrest in cancer cells but not in normal neuronal cells. The level of anti-apoptotic protein Bcl-2 was increased and the pro-apoptotic protein Bax was reduced in VPA treated normal cells. VPA inhibited the activities of histone deacetylase (HDAC) and glycogen synthase kinase-3β (GSK3β), the latter of which is only inhibited in normal cells. The combination of VPA and radiation was most effective in inhibiting tumor growth in heterotopic brain tumor models. An intracranial orthotopic glioma tumor model was used to evaluate tumor growth by using dynamic contrast-enhanced magnetic resonance (DCE MRI) and mouse survival following treatment with VPA and radiation. VPA, in combination with radiation, significantly delayed tumor growth and improved mouse survival. Overall, VPA protects normal hippocampal neurons and not cancer cells from radiation-induced cytotoxicity both in vitro and in vivo. VPA treatment has the potential for attenuating neurocognitive deficits associated with cranial irradiation while enhancing the efficiency of glioma radiotherapy. PMID:26413814

  11. Neuroprotective Effects of Agmatine Against Cell Damage Caused by Glucocorticoids in Cultured Rat Hippocampal Neurons

    PubMed Central

    Zhu, M.-Y.; Wang, W.-P.; Bissette, G.

    2010-01-01

    In the present study the neuroprotective effects of agmatine against neuronal damage caused by glucocorticoids were examined in cultured rat hippocampal neurons. Spectrophotometric measurements of lactate dehydrogenase activities, β-tubulin III immunocytochemical staining, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end-labeling assay (TUNEL) labeling and caspase-3 assays were carried out to detect cell damage or possible involved mechanisms. Our results show that dexamethasone and corticosterone produced a concentration-dependent increase of lactate dehydrogenase release in 12-day hippocampal cultures. Addition of 100 μM agmatine into media prevented the glucocorticoid-induced increase of lactate dehydrogenase release, an effect also shared with the specific N-methyl-d-aspartate receptor antagonist MK801 and glucocorticoid receptor antagonists mifepristone and spironolactone. Arcaine, an analog of agmatine with similar structure as agmatine, also blocked glucocorticoid-induced increase of lactate dehydrogenase release. Spermine and putrescine, the endogenous polyamine and metabolic products of agmatine without the guanidino moiety of agmatine, have no appreciable effect on glucocorticoid-induced injuries, indicating a structural relevance for this neuroprotection. Immunocytochemical staining with β-tubulin III confirmed the substantial neuronal injuries caused by glucocorticoids and the neuroprotective effects of agmatine against these neuronal injuries. TUNEL labeling demonstrated that agmatine significantly reduced TUNEL-positive cell numbers induced by exposure of cultured neurons to dexamethasone. Moreover, exposure of hippocampal neurons to dexamethasone significantly increased caspase-3 activity, which was inhibited by co-treatment with agmatine. Taken together, these results demonstrate that agmatine can protect cultured hippocampal neurons from glucocorticoid-induced neurotoxicity, through a possible blockade of

  12. Autophagy inhibition in endogenous and nutrient-deprived conditions reduces dorsal root ganglia neuron survival and neurite growth in vitro.

    PubMed

    Clarke, Joseph-Patrick; Mearow, Karen

    2016-07-01

    Peripheral neuropathies can result in cytoskeletal changes in axons, ultimately leading to Wallerian degeneration and cell death. Recently, autophagy has been studied as a potential target for improving axonal survival and growth during peripheral nerve damage. This study investigates the influence of autophagy on adult dorsal root ganglia (DRG) neuron survival and axonal growth under control and nutrient deprivation conditions. Constitutive autophagy was modulated with pharmacological activators (rapamycin; Rapa) and inhibitors (3-methyladenine, bafilomycin A1) in conjunction with either a nutrient-stable environment (standard culture medium) or a nutrient-deprived environment (Hank's balanced salt solution + Ca(2+) /Mg(2+) ). The results demonstrated that autophagy inhibition decreased cell viability and reduced neurite growth and branching complexity. Although autophagy was upregulated with nutrient deprivation compared with the control, it was not further activated by rapamycin, suggesting a threshold level of autophagy. Overall, both cellular and biochemical approaches combined to show the influence of autophagy on adult DRG neuron survival and growth. © 2016 Wiley Periodicals, Inc. PMID:27018986

  13. Spike patterning of a stochastic phase model neuron given periodic inhibition

    NASA Astrophysics Data System (ADS)

    Nesse, William H.; Clark, Gregory A.; Bressloff, Paul C.

    2007-03-01

    We present a phase model of a repetitively firing neuron possessing a phase-dependent stochastic response to periodic inhibition. We analyze the dynamics in terms of a stochastic phase map and determine the invariant phase distribution. We use the latter to compute both the distribution of interspike intervals (ISIs) and the stochastic winding number (mean firing rate) as a function of the input frequency. We show that only low-order phase locking persists in the presence of weak phase dependence, and is characterized statistically by a multimodal ISI distribution and a nonmonotonic variation in the stochastic winding number as a function of input frequency.

  14. Live cell calcium imaging of dissociated vomeronasal neurons.

    PubMed

    Kaur, Angeldeep; Dey, Sandeepa; Stowers, Lisa

    2013-01-01

    Sensory neurons in the vomeronasal organ (VNO) are thought to mediate a specialized olfactory response. Currently, very little is known about the identity of stimulating ligands or their cognate receptors that initiate neural activation. Each sensory neuron is thought to express 1 of approximately 250 variants of Vmn1Rs, Vmn2Rs (A, B, or D), or FPRs which enables it to be tuned to a subset of ligands (Touhara and Vosshall, Annu Rev Physiol 71:307-332, 2009). The logic of how different sources of native odors or purified ligands are detected by this complex sensory repertoire remains mostly unknown. Here, we describe a method to compare and analyze the response of VNO sensory neurons to multiple stimuli using conventional calcium imaging. This method differs from other olfactory imaging approaches in that we dissociate the tightly packed sensory epithelium into individual single cells. The advantages of this approach include (1) the use of a relatively simple approach and inexpensive microscopy, (2) comparative analysis of several hundreds of neurons to multiple stimuli with single-cell resolution, and (3) the possibility of isolating single cells of interest to further analyze by molecular biology techniques including in situ RNA hybridization, immunofluorescence, or creating single-cell cDNA libraries (Malnic et al., Cell 96:713-723, 1999). PMID:24014362

  15. Induction of midbrain dopaminergic neurons from primate embryonic stem cells by coculture with sertoli cells.

    PubMed

    Yue, Fengming; Cui, Li; Johkura, Kohei; Ogiwara, Naoko; Sasaki, Katsunori

    2006-07-01

    The aim of this study was to produce dopaminergic neurons from primate embryonic stem (ES) cells following coculture with mouse Sertoli cells. After 3 weeks of induction, immunostaining revealed that 90% +/- 9% of the colonies contained tyrosine hydroxylase-positive (TH(+)) neurons, and 60% +/- 7% of the tubulin beta III-positive (Tuj III(+)) neurons were TH(+). Reverse transcription-polymerase chain reaction analyses showed that Sertoli-induced neurons expressed midbrain dopaminergic neuron markers, including TH, dopamine transporter, aromatic amino acid decarboxylase (AADC), receptors such as TrkB and TrkC, and transcription factors NurrI and Lmx1b. Neurons that had been differentiated on Sertoli cells were positive for Pax2, En1, and AADC, midbrain-related markers, and negative for dopamine-beta-hydroxylase, a marker of noradrenergic neurons. These Sertoli cell-induced dopaminergic cells can release dopamine when depolarized by high K(+). Sertoli cell-conditioned medium contained glial cell line-derived neurotrophic factor (GDNF) and supported neuronal differentiation. After pretreatment with anti-GDNF antibody, the percentage of Tuj III(+) colonies was reduced to 14%. Thus, GDNF contributed significantly to inducing primate ES cells into dopaminergic neurons. When transplanted into a 6-hydroxydopamine-treated Parkinson's disease model, primate-derived dopaminergic neurons integrated into the mouse striatum. Two weeks after transplantation, surviving TH(+) cells were present. These TH(+) cells survived for 2 months. Therefore, the induction method of coculture ES cells with Sertoli cells provides an unlimited source of primate cells for the study of pathogenesis and transplantation in Parkinson's disease. PMID:16822882

  16. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles

    PubMed Central

    Carvalho-de-Souza, João L.; Treger, Jeremy S.; Dang, Bobo; Kent, Stephen B. H.; Pepperberg, David R.; Bezanilla, Francisco

    2015-01-01

    Summary Unmodified neurons can be directly stimulated with light to produce action potentials, but such techniques have lacked localization of the delivered light energy. Here we show that gold nanoparticles can be conjugated to high-avidity ligands for a variety of cellular targets. Once bound to a neuron, these particles transduce millisecond pulses of light into heat which changes membrane capacitance, depolarizing the cell and eliciting action potentials. Compared to non-functionalized nanoparticles, ligand-conjugated nanoparticles highly resist convective washout, and enable photothermal stimulation with lower delivered energy and resulting temperature increase. Ligands targeting three different membrane proteins were tested; all showed similar activity and washout resistance. This suggests that many types of ligands can be bound to nanoparticles, preserving ligand and nanoparticle function, and that many different cell phenotypes can be targeted by appropriate choice of ligand. The findings have applications as an alternative to optogenetics, and potentially for therapies involving neuronal photostimulation. PMID:25772189

  17. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles.

    PubMed

    Carvalho-de-Souza, João L; Treger, Jeremy S; Dang, Bobo; Kent, Stephen B H; Pepperberg, David R; Bezanilla, Francisco

    2015-04-01

    Unmodified neurons can be directly stimulated with light to produce action potentials, but such techniques have lacked localization of the delivered light energy. Here we show that gold nanoparticles can be conjugated to high-avidity ligands for a variety of cellular targets. Once bound to a neuron, these particles transduce millisecond pulses of light into heat, which changes membrane capacitance, depolarizing the cell and eliciting action potentials. Compared to non-functionalized nanoparticles, ligand-conjugated nanoparticles highly resist convective washout and enable photothermal stimulation with lower delivered energy and resulting temperature increase. Ligands targeting three different membrane proteins were tested; all showed similar activity and washout resistance. This suggests that many types of ligands can be bound to nanoparticles, preserving ligand and nanoparticle function, and that many different cell phenotypes can be targeted by appropriate choice of ligand. The findings have applications as an alternative to optogenetics and potentially for therapies involving neuronal photostimulation. PMID:25772189

  18. Integrating human stem cell expansion and neuronal differentiation in bioreactors

    PubMed Central

    Serra, Margarida; Brito, Catarina; Costa, Eunice M; Sousa, Marcos FQ; Alves, Paula M

    2009-01-01

    Background Human stem cells are cellular resources with outstanding potential for cell therapy. However, for the fulfillment of this application, major challenges remain to be met. Of paramount importance is the development of robust systems for in vitro stem cell expansion and differentiation. In this work, we successfully developed an efficient scalable bioprocess for the fast production of human neurons. Results The expansion of undifferentiated human embryonal carcinoma stem cells (NTera2/cl.D1 cell line) as 3D-aggregates was firstly optimized in spinner vessel. The media exchange operation mode with an inoculum concentration of 4 × 105 cell/mL was the most efficient strategy tested, with a 4.6-fold increase in cell concentration achieved in 5 days. These results were validated in a bioreactor where similar profile and metabolic performance were obtained. Furthermore, characterization of the expanded population by immunofluorescence microscopy and flow cytometry showed that NT2 cells maintained their stem cell characteristics along the bioreactor culture time. Finally, the neuronal differentiation step was integrated in the bioreactor process, by addition of retinoic acid when cells were in the middle of the exponential phase. Neurosphere composition was monitored and neuronal differentiation efficiency evaluated along the culture time. The results show that, for bioreactor cultures, we were able to increase significantly the neuronal differentiation efficiency by 10-fold while reducing drastically, by 30%, the time required for the differentiation process. Conclusion The culture systems developed herein are robust and represent one-step-forward towards the development of integrated bioprocesses, bridging stem cell expansion and differentiation in fully controlled bioreactors. PMID:19772662

  19. Deep Brain Stimulation: More Complex than the Inhibition of Cells and Excitation of Fibers.

    PubMed

    Florence, Gerson; Sameshima, Koichi; Fonoff, Erich T; Hamani, Clement

    2016-08-01

    High-frequency deep brain stimulation (DBS) is an effective treatment for some movement disorders. Though mechanisms underlying DBS are still unclear, commonly accepted theories include a "functional inhibition" of neuronal cell bodies and the excitation of axonal projections near the electrodes. It is becoming clear, however, that the paradoxical dissociation "local inhibition" and "distant excitation" is far more complex than initially thought. Despite an initial increase in neuronal activity following stimulation, cells are often unable to maintain normal ionic concentrations, particularly those of sodium and potassium. Based on currently available evidence, we proposed an alternative hypothesis. Increased extracellular concentrations of potassium during DBS may change the dynamics of both cells and axons, contributing not only to the intermittent excitation and inhibition of these elements but also to interrupt abnormal pathological activity. In this article, we review mechanisms through which high extracellular potassium may mediate some of the effects of DBS. PMID:26150316

  20. Differential inhibition of cardiac and neuronal Na(+) channels by the selective serotonin-norepinephrine reuptake inhibitors duloxetine and venlafaxine.

    PubMed

    Stoetzer, Carsten; Papenberg, Bastian; Doll, Thorben; Völker, Marc; Heineke, Joerg; Stoetzer, Marcus; Wegner, Florian; Leffler, Andreas

    2016-07-15

    Duloxetine and venlafaxine are selective serotonin-norepinephrine-reuptake-inhibitors used as antidepressants and co-analgesics. While venlafaxine rather than duloxetine induce cardiovascular side-effects, neither of the substances are regarded cardiotoxic. Inhibition of cardiac Na(+)-channels can be associated with cardiotoxicity, and duloxetine was demonstrated to block neuronal Na(+)-channels. The aim of this study was to investigate if the non-life threatening cardiotoxicities of duloxetine and venlafaxine correlate with a weak inhibition of cardiac Na(+)-channels. Effects of duloxetine, venlafaxine and amitriptyline were examined on endogenous Na(+)-channels in neuroblastoma ND7/23 cells and on the α-subunits Nav1.5, Nav1.7 and Nav1.8 with whole-cell patch clamp recordings. Tonic block of the cardiac Na(+)-channel Nav1.5 and rat-cardiomyocytes (CM) revealed a higher potency for duloxetine (Nav 1.5 IC50 14±1µM, CM IC50 27±3µM) as compared to venlafaxine (Nav 1.5 IC50 671±26µM, CM IC50 452±34µM). Duloxetine was as potent as the cardiotoxic antidepressant amitriptyline (IC50 13±1µM). While venlafaxine almost failed to induce use-dependent block on Nav1.5 and cardiomyocytes, low concentrations of duloxetine (1, 10µM) induced prominent use-dependent block similar to amitriptyline. Duloxetine, but not venlafaxine stabilized fast and slow inactivation and delayed recovery from inactivation. Duloxetine induced an unselective inhibition of neuronal Na(+)-channels (IC50 ND7/23 23±1µM, Nav1.7 19±2µM, Nav1.8 29±2). Duloxetine, but not venlafaxine inhibits cardiac Na(+)-channels with a potency similar to amitriptyline. These data indicate that an inhibition of Na(+)-channels does not predict a clinically relevant cardiotoxicity. PMID:27130441

  1. Catecholaminergic neurons result from intracerebral implantation of embryonal carcinoma cells.

    PubMed Central

    Wojcik, B E; Nothias, F; Lazar, M; Jouin, H; Nicolas, J F; Peschanski, M

    1993-01-01

    A replication-defective retrovirus was used to introduce the marker gene nlsLacZ into the murine embryonal carcinoma (EC) cell line PCC7-S-aza-R-1009. Undifferentiated EC cells were implanted into the central nervous system of adult rats. One month later, the grafted cells continued to express the nlsLacZ gene. Immunohistochemical analysis demonstrated the presence of EC-derived neurons. These neurons were capable of expressing tyrosine hydroxylase and extended neurites into the host parenchyma. EC-derived glial cells could not be detected. There was no evidence of tumorigenicity. These results demonstrate the utility of EC cells for introduction of exogenous gene products into the central nervous system in experimental models of gene therapy. Images PMID:8094557

  2. Neuronal cell types and connectivity: lessons from the retina

    PubMed Central

    Seung, H. Sebastian; Sümbül, Uygar

    2014-01-01

    We describe recent progress towards defining neuronal cell types in the mouse retina, and attempt to extract lessons that may be generally useful in the mammalian brain. Achieving a comprehensive catalog of retinal cell types now appears within reach, because researchers have achieved consensus concerning two fundamental challenges. The first is accuracy—defining pure cell types rather than settling for neuronal classes that are mixtures of types. The second is completeness—developing methods guaranteed to eventually identify all cell types, as well as criteria for determining when all types have been found. Case studies illustrate how these two challenges are handled by combining state-of-the-art molecular, anatomical and physiological techniques. Progress is also being made in observing and modeling connectivity between cell types. Scaling up to larger brain regions, such as the cortex, will require not only technical advances but careful consideration of the challenges of accuracy and completeness. PMID:25233310

  3. Uncoupling of ATP-depletion and cell death in human dopaminergic neurons.

    PubMed

    Pöltl, Dominik; Schildknecht, Stefan; Karreman, Christiaan; Leist, Marcel

    2012-08-01

    The mitochondrial inhibitor 1-methyl-4-phenylpyridinium (MPP(+)) is the toxicologically relevant metabolite of 1-methyl-4-phenyltetrahydropyridine (MPTP), which causes relatively selective degeneration of dopaminergic neurons in the substantia nigra. Dopaminergic LUHMES cells were used to investigate whether ATP-depletion can be uncoupled from cell death as a downstream event in these fully post-mitotic human neurons. Biochemical assays indicated that in the homogeneously differentiated cell cultures, MPP(+) was taken up by the dopamine transporter (DAT). MPP(+) then triggered oxidative stress and caspase activation, as well as ATP-depletion followed by cell death. Enhanced survival of the neurons in the presence of agents interfering with mitochondrial pathology, such as the fission inhibitor Mdivi-1 or a Bax channel blocker suggested a pivotal role of mitochondria in this model. However, these compounds did not prevent cellular ATP-depletion. To further investigate whether cells could be rescued despite respiratory chain inhibition by MPP(+), we have chosen a diverse set of pharmacological inhibitors well-known to interfere with MPP(+) toxicity. The antioxidant ascorbate, the iron chelator desferoxamine, the stress kinase inhibitor CEP1347, and different caspase inhibitors reduced cell death, but allowed ATP-depletion in protected cells. None of these compounds interfered with MPP(+) accumulation in the cells. These findings suggest that ATP-depletion, as the initial mitochondrial effect of MPP(+), requires further downstream processes to result in neuronal death. These processes may form self-enhancing signaling loops, that aggravate an initial energetic impairment and eventually determine cell fate. PMID:22206971

  4. SOCS3 induces neurite differentiation and promotes neuronal cell survival.

    PubMed

    Mishra, Kanchan Kumar; Gupta, Sakshi; Banerjee, Kakoli

    2016-06-01

    Cytokines and growth factors play an important role in neuronal survival as well as cell death. The family of suppressors of cytokine signalling (SOCS) proteins, which includes SOCS1-7 and cytokine-induced suppressor (CIS), has been shown to act as negative regulators of cytokine-induced signalling. In this report, we highlight the role of SOCS3 in regulating neuronal differentiation and survival. We observed increased SOCS3 expression upon differentiation of PC12 cells as well as neural stem cells. SOCS3 overexpression upregulated differentiation of both neural stem cells and PC12 cells even in the absence of NGF, as evidenced by enhanced neurite outgrowth and upregulation of GAP43, marker associated with neurite outgrowth. siRNA-mediated silencing of SOCS3 confirmed the potential role of SOCS3 in neuritogenesis. We observed that, SOCS3-induced neurite differentiation was mediated via the PI3 kinase pathway. Another interesting observation was that SOCS3 overexpression promoted neuronal cell survival under H2 O2 -mediated stress indicating its fundamental role in cell survival. In conclusion, our results indicate that SOCS3 promotes differentiation and survival of neural cells and could be potentially useful in future therapy for treatment of neurodegenerative disorders. © 2016 IUBMB Life, 68(6):468-476, 2016. PMID:27118613

  5. Characterization of PrP(Sc) transmission from immune cells to neuronal cells.

    PubMed

    Tanaka, Yufuko; Sadaike, Tetsuji; Inoshima, Yasuo; Ishiguro, Naotaka

    2012-10-01

    We investigated PrP(Sc) transmission in neuronal cells, spleen cells and several immune cells using an in vitro cell-to-cell transmission system. The transmission of PrP(Sc) in the supernatant of PrP(Sc)-infected neuronal cells was also investigated. We found that PrP(Sc) transmission was more efficient in the cell-to-cell transmission system than in the supernatant-mediated system. PrP(Sc) was more efficiently transmitted from adherent spleen cells to neuronal cells than from floating spleen cells. The adherent spleen cells were composed of macrophages (80%), dendritic cells (8%) and follicular dendritic cells (3%), indicating that macrophages play an important role in PrP(Sc) transmission from immune cells to neuronal cells. Although PrP(Sc) in the immune cells used as donor cells was gradually degraded, the PrP(Sc) transmitted to neuronal cells was observed by Western blot analysis. Investigation of the mechanism of PrP(Sc) transmission between cells represents an important step towards understanding the pathogenesis of prion diseases. PMID:23246505

  6. Arginine-Rich Polyplexes for Gene Delivery to Neuronal Cells

    PubMed Central

    Morris, Viola B.; Labhasetwar, Vinod

    2015-01-01

    Neuronal gene therapy potentially offers an effective therapeutic intervention to cure or slow the progression of neurological diseases. However, neuronal cells are difficult to transfect with nonviral vectors, and in vivo their transport across the blood-brain barrier (BBB) is inefficient. We synthesized a series of arginine-rich oligopeptides, grafted with polyethyleneimine (PEI) and modified with a short-chain polyethylene glycol (PEG). We hypothesized that the arginine would enhance cellular uptake and transport of these polyplexes across the BBB, with PEG imparting biocompatibility and “stealth” properties and PEI facilitating DNA condensation and gene transfection. The optimized composition of the polyplexes demonstrated hemocompatibility with red blood cells, causing no lysis or aggregation, and showed significantly better cytocompatibility than PEI in vitro. Polyplexes formulated with luciferase-expressing plasmid DNA could transfect rat primary astrocytes and neurons in vitro. Confocal imaging data showed efficient cellular uptake of DNA and its sustained intracellular retention and nuclear localization with polyplexes. Intravenous administration of the optimized polyplexes in mice led to gene expression in the brain, which upon further immunohistochemical analysis demonstrated gene expression in neurons. In conclusion, we have successfully designed a nonviral vector for in vitro and in vivo neuronal gene delivery. PMID:26000961

  7. Phosphoinositide 3-kinase dependent inhibition as a broad basis for opponent coding in Mammalian olfactory receptor neurons.

    PubMed

    Ukhanov, Kirill; Corey, Elizabeth A; Ache, Barry W

    2013-01-01

    Phosphoinositide 3-kinase (PI3K) signaling has been implicated in mediating inhibitory odorant input to mammalian olfactory receptor neurons (ORNs). To better understand the breadth of such inhibition in odor coding, we screened a panel of odorants representing different chemical classes, as well as odorants known to occur in a natural odor object (tomato), for their ability to rapidly activate PI3K-dependent inhibitory signaling. Odorants were screened on dissociated native rat ORNs before and after pre-incubation with the PI3K-isoform specific blockers AS252424 and TGX221. Many different odorants increased their excitatory strength for particular ORNs following PI3K blockade in a manner consistent with activating PI3K-dependent inhibitory signaling in those cells. The PI3K-dependent inhibitory odorants overlapped with conventional excitatory odorants, but did not share the same bias, indicating partial partitioning of the odor space. Finding that PI3K-dependent inhibition can be activated by a wide range of otherwise conventional excitatory odorants strongly implies PI3K-dependent inhibition provides a broad basis for opponent coding in mammalian ORNs. PMID:23585911

  8. Micropatterning neuronal cells on polyelectrolyte multilayers.

    PubMed

    Reyes, Darwin R; Perruccio, Elizabeth M; Becerra, S Patricia; Locascio, Laurie E; Gaitan, Michael

    2004-09-28

    This paper describes an approach to adhere retinal cells on micropatterned polyelectrolyte multilayer (PEM) lines adsorbed on poly(dimethylsiloxane) (PDMS) surfaces using microfluidic networks. PEMs were patterned on flat, oxidized PDMS surfaces by sequentially flowing polyions through a microchannel network that was placed in contact with the PDMS surface. Polyethyleneimine (PEI) and poly(allylamine hydrochloride) (PAH) were the polyions used as the top layer cellular adhesion material. The microfluidic network was lifted off after the patterning was completed and retinal cells were seeded on the PEM/PDMS surfaces. The traditional practice of using blocking agents to prevent the adhesion of cells on unpatterned areas was avoided by allowing the PDMS surface to return to its uncharged state after the patterning was completed. The adhesion of rat retinal cells on the patterned PEMs was observed 5 h after seeding. Cell viability and morphology on the patterned PEMs were assayed. These materials proved to be nontoxic to the cells used in this study regardless of the number of stacked PEM layers. Phalloidin staining of the cytoskeleton revealed no apparent morphological differences in retinal cells compared with those plated on polystyrene or the larger regions of PEI and PAH; however, cells were relatively more elongated when cultured on the PEM lines. Cell-to-cell communication between cells on adjacent PEM lines was observed as interconnecting tubes containing actin that were a few hundred nanometers in diameter and up to 55 microm in length. This approach provides a simple, fast, and inexpensive method of patterning cells onto micrometer-scale features. PMID:15379510

  9. Neuronal networks with NMDARs and lateral inhibition implement winner-takes-all

    PubMed Central

    Shoemaker, Patrick A.

    2015-01-01

    A neural circuit that relies on the electrical properties of NMDA synaptic receptors is shown by numerical and theoretical analysis to be capable of realizing the winner-takes-all function, a powerful computational primitive that is often attributed to biological nervous systems. This biophysically-plausible model employs global lateral inhibition in a simple feedback arrangement. As its inputs increase, high-gain and then bi- or multi-stable equilibrium states may be assumed in which there is significant depolarization of a single neuron and hyperpolarization or very weak depolarization of other neurons in the network. The state of the winning neuron conveys analog information about its input. The winner-takes-all characteristic depends on the nonmonotonic current-voltage relation of NMDA receptor ion channels, as well as neural thresholding, and the gain and nature of the inhibitory feedback. Dynamical regimes vary with input strength. Fixed points may become unstable as the network enters a winner-takes-all regime, which can lead to entrained oscillations. Under some conditions, oscillatory behavior can be interpreted as winner-takes-all in nature. Stable winner-takes-all behavior is typically recovered as inputs increase further, but with still larger inputs, the winner-takes-all characteristic is ultimately lost. Network stability may be enhanced by biologically plausible mechanisms. PMID:25741276

  10. nNOS inhibition during profound asphyxia reduces seizure burden and improves survival of striatal phenotypic neurons in preterm fetal sheep

    PubMed Central

    Drury, Paul P.; Davidson, Joanne O.; Mathai, Sam; van den Heuij, Lotte G.; Ji, Haitao; Bennet, Laura; Tan, Sidhartha; Silverman, Richard B.; Gunn, Alistair J.

    2014-01-01

    Basal ganglia injury after hypoxia-ischemia remains common in preterm infants, and is closely associated with later cerebral palsy. In the present study we tested the hypothesis that a highly selective neuronal nitric oxide synthase (nNOS) inhibitor, JI-10, would improve survival of striatal phenotypic neurons after profound asphyxia, and that the subsequent seizure burden and recovery of EEG are associated with neural outcome. 24 chronically instrumented preterm fetal sheep were randomized to either JI-10 (3 ml of 0.022 mg/ml, n=8) or saline (n=8) infusion 15 min before 25 min complete umbilical cord occlusion, or saline plus sham-occlusion (n=8). Umbilical cord occlusion was associated with reduced numbers of calbindin-28k-, GAD-, NPY-, PV-, Calretinin- and nNOS-positive striatal neurons (p < 0.05 vs. sham occlusion) but not ChAT-positive neurons. JI-10 was associated with increased numbers of calbindin-28k-, GAD-, nNOS-, NPY-, PV-, Calretinin- and ChAT-positive striatal neurons (p < 0.05 vs. saline+occlusion). Seizure burden was strongly associated with loss of calbindin-positive cells (p < 0.05), greater seizure amplitude was associated with loss of GAD-positive cells (p < 0.05), and with more activated microglia in the white matter tracts (p < 0.05). There was no relationship between EEG power after 7 days recovery and total striatal cell loss, but better survival of NPY-positive neurons was associated with lower EEG power. In summary, these findings suggest that selective nNOS inhibition during asphyxia is associated with protection of phenotypic striatal projection neurons and has potential to help reduce basal ganglia injury in some premature babies. PMID:24726307

  11. Expression of a plasma membrane proteolipid during differentiation of neuronal and glial cells in primary culture.

    PubMed

    Shea, T B; Fischer, I; Sapirstein, V

    1986-09-01

    Plasma membrane proteolipid protein (PM-PLP) synthesis was examined in embryonic rat neurons and neonatal rat glial cells during differentiation in culture. Glial cultures were treated with 1 mM N6, O2, dibutyryl cyclic adenosine monophosphate (dbcAMP) following confluency to induce differentiation, which resulted in the elaboration of long cellular processes. However, no changes in the biosynthetic level of PM-PLP was observed during the differentiation of these cells. Neurons differentiated spontaneously in culture, forming cellular aggregates immediately following plating and elaborating a network of neurites over 7 days. The differentiation of neurons was accompanied by a seven-fold increase in PM-PLP synthesis with increases in biosynthetic increase in PM-PLP synthesis with increases in biosynthetic rate observed between days 1 and 3 and between days 3 and 7 in culture. Ultrastructural examination of neurons indicated that the Golgi apparatus was also developing during this period of time, with an increase in both the number of lamellae and generation of vesicles. The transport of PM-PLP to the plasma membrane was therefore examined in neurons at day 7 in culture by pulse labeling experiments with monensin and colchicine. Monensin (1 microM) was found to inhibit the appearance of radiolabeled PM-PLP in the plasma membrane by 63%, indicating that a functional Golgi apparatus is required for transport of PM-PLP to its target membrane. Colchicine (125 microM) also inhibited the appearance of newly synthesized PM-PLP in the plasma membrane by greater than 40%, suggesting that microtubules may also be required for PM-PLP transport to the plasma membrane. PMID:3016181

  12. Ethyl pyruvate attenuates formalin-induced inflammatory nociception by inhibiting neuronal ERK phosphorylation

    PubMed Central

    2012-01-01

    Background Ethyl pyruvate (EP) possesses anti-inflammatory activity. However, the potential anti-nociceptive value of EP for the treatment of the inflammatory nociception is largely unknown. We investigated whether EP could have any anti-nociceptive effect on inflammatory pain, after systemic administration of EP (10, 50, and 100 mg/kg, i.p.), 1 hour before formalin (5%, 50 μl) injection into the plantar surface of the hind paws of rats. Results EP significantly decreased formalin-induced nociceptive behavior during phase II, the magnitude of paw edema, and the activation of c-Fos in L4-L5 spinal dorsal horn. EP also attenuated the phosphorylation of extracellular signal-regulated kinase (ERK) in the neurons of L4-L5 spinal dorsal horn after formalin injection. Interestingly, the i.t. administration of PD98059, an ERK upstream kinase (MEK) inhibitor, completely blocked the formalin-induced inflammatory nociceptive responses. Conclusions These results demonstrate that EP may effectively inhibit formalin-induced inflammatory nociception via the inhibition of neuronal ERK phosphorylation in the spinal dorsal horn, indicating its therapeutic potential in suppressing acute inflammatory pain. PMID:22640699

  13. Evaluation of the toxicity of zinc in the rat olfactory neuronal cell line, Odora.

    PubMed

    Hsieh, H; Amlal, H; Genter, M B

    2015-03-01

    Zinc (Zn) has long been touted as a panacea for common cold. Recently, there has been some controversy over whether an intranasal (IN) zinc gluconate gel, purported to fight colds, causes anosmia, or loss of the sense of smell, in humans. Previous evidence has shown that IN zinc sulfate (ZnSO4) solutions can cause anosmia in humans as well as significant damage to the olfactory epithelium in rodents. Using an in vitro olfactory neuron model (the rat Odora cell line), we tested the hypothesis that Zn toxicity was caused by inhibition of the hydrogen voltage-gated channel 1(HVCN1), leading to acidosis and apoptotic cell death. Following studies to characterize the toxicity of zinc gluconate and ZnSO4, Odora cells were grown on coverslips and loaded with 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester to measure intracellular pH in the presence and absence of Zn salts. While we found that HVCN1 is not functional in Odora cells, we found that olfactory neurons in vitro maintain their intracellular pH through a sodium/proton exchanger, specifically the sodium proton antiporter 1. ZnSO4, at nontoxic levels, had no impact on intracellular pH after acute exposure or after 24 h of incubation with the cells. In conclusion, Zn toxicity is not mediated through an acidification of intracellular pH in olfactory neurons in vitro. PMID:24980442

  14. Control of Mitral/Tufted Cell Output by Selective Inhibition among Olfactory Bulb Glomeruli.

    PubMed

    Economo, Michael N; Hansen, Kyle R; Wachowiak, Matt

    2016-07-20

    Inhibition is fundamental to information processing by neural circuits. In the olfactory bulb (OB), glomeruli are the functional units for odor information coding, but inhibition among glomeruli is poorly characterized. We used two-photon calcium imaging in anesthetized and awake mice to visualize both odorant-evoked excitation and suppression in OB output neurons (mitral and tufted, MT cells). MT cell response polarity mapped uniformly to discrete OB glomeruli, allowing us to analyze how inhibition shapes OB output relative to the glomerular map. Odorants elicited unique patterns of suppression in only a subset of glomeruli in which such suppression could be detected, and excited and suppressed glomeruli were spatially intermingled. Binary mixture experiments revealed that interglomerular inhibition could suppress excitatory mitral cell responses to odorants. These results reveal that inhibitory OB circuits nonlinearly transform odor representations and support a model of selective and nonrandom inhibition among glomerular ensembles. PMID:27346531

  15. Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure.

    PubMed

    Hussy, N; Deleuze, C; Desarménien, M G; Moos, F C

    2000-10-01

    Maintenance of osmotic pressure is a primary regulatory process essential for normal cell function. The osmolarity of extracellular fluids is regulated by modifying the intake and excretion of salts and water. A major component of this regulatory process is the neuroendocrine hypothalamo-neurohypophysial system, which consists of neurons located in the paraventricular and supraoptic nuclei. These neurons synthesize the neurohormones vasopressin and oxytocin and release them in the blood circulation. We here review the mechanisms responsible for the osmoregulation of the activity of these neurons. Notably, the osmosensitivity of the supraoptic nucleus is described including the recent data that suggests an important participation of taurine in the transmission of the osmotic information. Taurine is an amino acid mainly known for its involvement in cell volume regulation, as it is one of the major inorganic osmolytes used by cells to compensate for changes in extracellular osmolarity. In the supraoptic nucleus, taurine is highly concentrated in astrocytes, and released in an osmodependent manner through volume-sensitive anion channels. Via its agonist action on neuronal glycine receptors, taurine is likely to contribute to the inhibition of neuronal activity induced by hypotonic stimuli. This inhibitory influence would complement the intrinsic osmosensitivity of supraoptic neurons, mediated by excitatory mechanoreceptors activated under hypertonic conditions. These observations extend the role of taurine from the regulation of cell volume to that of the whole body fluid balance. They also point to a new role of supraoptic glial cells as active components in a neuroendocrine regulatory loop. PMID:10828380

  16. Inhibition of phosphodiesterase 2 reverses impaired cognition and neuronal remodeling caused by chronic stress

    PubMed Central

    Xu, Ying; Pan, Jianchun; Sun, Jiao; Ding, Lianshu; Ruan, Lina; Reed, Miranda; Yu, Xuefeng; Klabni, Jonathan; Lin, Dan; Li, Jianxin; Chen, Ling; Zhang, Chong; Zhang, Hanting; O’Donnell, James M.

    2014-01-01

    Chronic stress and neuronal vulnerability have recently been recognized as factors contributing to cognitive disorders. One way to modify neuronal vulnerability is through mediation of phosphodiesterase 2 (PDE2), an enzyme that exerts its action on cognitive processes via the control of intracellular second messengers, cGMP and, to a lesser extent, cAMP. This study explored the effects of a PDE2 inhibitor, Bay 60-7550, on stress-induced learning and memory dysfunction in terms of its ramification on behavioral, morphological and molecular changes. Bay 60-7550 reversed stress-induced cognitive impairment in the Morris water maze (MWM), novel object recognition and location tasks (ORT/OLT), effects prevented by treatment with 7-NI, a selective inhibitor of neuronal nitric oxide synthase (nNOS); MK801, a glutamate receptor (NMDAR) inhibitor; myr-AIP, a CaMKII inhibitor; and KT5823, a PKG inhibitor. Bay 60-7550 also ameliorated stress-induced structural remodeling in the CA1 of the hippocampus, leading to increases in dendritic branching, length, and spine density. However, the neuroplasticity initiated by Bay 60-7550 was not seen in the presence of 7-NI, MK801, myr-AIP or KT5823. PDE2 inhibition reduced stress-induced ERK activation and attenuated stress-induced decreases in transcription factors (e.g., Elk-1, TORC1, and pCREB) and plasticity-related proteins (e.g, Egr-1 and BDNF). Pre-treatment with inhibitors of NMDA, CaMKII, nNOS, PKG (or PKA), blocked the effects of Bay 60-7550 on cGMP or cAMP signaling. These findings indicate that the effect of PDE2 inhibition on stress-induced memory impairment is potentially mediated via modulation of neuroplasticity-related, NMDAR-CaMKII-cGMP/cAMP signaling. PMID:25442113

  17. Protection against glucose-induced neuronal death by NAAG and GCP II inhibition is regulated by mGluR3.

    PubMed

    Berent-Spillson, Alison; Robinson, Amanda M; Golovoy, David; Slusher, Barbara; Rojas, Camilo; Russell, James W

    2004-04-01

    Glutamate carboxypeptidase II (GCP II) inhibition has previously been shown to be protective against long-term neuropathy in diabetic animals. In the current study, we have determined that the GCP II inhibitor 2-(phosphonomethyl) pentanedioic acid (2-PMPA) is protective against glucose-induced programmed cell death (PCD) and neurite degeneration in dorsal root ganglion (DRG) neurons in a cell culture model of diabetic neuropathy. In this model, inhibition of caspase activation is mediated through the group II metabotropic glutamate receptor, mGluR3. 2-PMPA neuroprotection is completely reversed by the mGluR3 antagonist (S)-alpha-ethylglutamic acid (EGLU). In contrast, group I and III mGluR inhibitors have no effect on 2-PMPA neuroprotection. Furthermore, we show that two mGluR3 agonists, the direct agonist (2R,4R)-4-aminopyrrolidine-2, 4-dicarboxylate (APDC) and N-acetyl-aspartyl-glutamate (NAAG) provide protection to neurons exposed to high glucose conditions, consistent with the concept that 2-PMPA neuroprotection is mediated by increased NAAG activity. Inhibition of GCP II or mGluR3 may represent a novel mechanism to treat neuronal degeneration under high-glucose conditions. PMID:15030392

  18. Resveratrol Inhibits β-Amyloid-Induced Neuronal Apoptosis through Regulation of SIRT1-ROCK1 Signaling Pathway

    PubMed Central

    Feng, Xiaowen; Liang, Nan; Zhu, Dexiao; Gao, Qing; Peng, Lei; Dong, Haiman; Yue, Qingwei; Liu, Haili; Bao, Lihua; Zhang, Jing; Hao, Jing; Gao, Yingmao; Yu, Xuejie; Sun, Jinhao

    2013-01-01

    Alzheimer’s disease (AD) is characterized by the accumulation of β-amyloid peptide (Aβ) and loss of neurons. Recently, a growing body of evidences have indicated that as a herbal compound naturally derived from grapes, resveratrol modulates the pathophysiology of AD, however, with a largely unclear mechanism. Therefore, we aimed to investigate the protection of resveratrol against the neurotoxicity of β-amyloid peptide 25–35 (Aβ25–35) and further explore its underlying mechanism in the present study. PC12 cells were injuried by Aβ25–35, and resveratrol at different concentrations was added into the culture medium. We observed that resveratrol increased cell viability through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) colorimetric assays. Flow cytometry indicated the reduction of cell apoptosis by resveratrol. Moreover, resveratrol also stabilized the intercellular Ca2+ homeostasis and attenuated Aβ25–35 neurotoxicity. Additionally, Aβ25–35-suppressed silent information regulator 1 (SIRT1) activity was significantly reversed by resveratrol, resulting in the downregulation of Rho-associated kinase 1 (ROCK1). Our results clearly revealed that resveratrol significantly protected PC12 cells and inhibited the β-amyloid-induced cell apoptosis through the upregulation of SIRT1. Moreover, as a downstream signal molecule, ROCK1 was negatively regulated by SIRT1. Taken together, our study demonstrated that SIRT1-ROCK1 pathway played a critical role in the pathomechanism of AD. PMID:23555824

  19. Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb

    PubMed Central

    Burton, Shawn D.

    2015-01-01

    Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE

  20. Plasma leptin inhibits the response of nucleus of the solitary tract neurons to aortic baroreceptor stimulation.

    PubMed

    Ciriello, John

    2013-08-01

    Leptin receptors have been identified within the nucleus of the solitary tract (NTS) and leptin injections into the caudal NTS inhibit the baroreceptor reflex. However, whether plasma leptin alters the discharge of NTS neurons mediating aortic baroreceptor reflex activity is not known. A series of electrophysiological single unit recording experiments was done in the urethane-chloralose anesthetized, paralyzed and artificially ventilated Wistar and Zucker obese rat with either their neuroaxis intact or with mid-collicular transections. Single units in NTS antidromically activated by electrical stimulation of depressor sites in the caudal ventrolateral medulla (CVLM) were found to display a cardiac cycle-related rhythmicity. These units were tested for their responses to stimulation of the aortic depressor nerve (ADN) and intra-carotid injections of leptin (50-200ng/0.1ml). Of 63 single units tested in NTS, 33 were antidromically activated by stimulation of CVLM depressor sites and 18 of these single units responded with a decrease in discharge rate after intracarotid injections of leptin. Thirteen of these leptin responsive neurons (∼72%) were excited by ADN stimulation. Furthermore, the excitatory response of these single units to ADN stimulation was attenuated by about 50% after the intracarotid leptin injection. Intracarotid injections of leptin (200ng/0.1ml) in the Zucker obese rat did not alter the discharge rate of NTS-CVLM projecting neurons. These data suggest that leptin exerts a modulatory effect on brainstem neuronal circuits that control cardiovascular responses elicited during the reflex activation of arterial baroreceptors. PMID:23792336

  1. Carbon disulfide inhibits neurite outgrowth and neuronal migration of dorsal root ganglion in vitro.

    PubMed

    Ding, Ning; Xiang, Yujuan; Jiang, Hao; Zhang, Weiwei; Liu, Huaxiang; Li, Zhenzhong

    2011-12-01

    Carbon disulfide (CS₂) is a neurotoxic industrial solvent and widely used in the vulcanization of rubber, rayon, cellophane, and adhesives. Although the neurotoxicity of CS₂ has been recognized for over a century, the precise mechanism of neurotoxic action of CS₂ remains unknown. In the present study, a embryonic rat dorsal root ganglia (DRG) explants culture model was established. Using the organotypic DRG cultures, the direct neurotoxic effects of CS₂ on outgrowth of neurites and migration of neurons from DRG explants were investigated. The organotypic DRG cultures were exposed to different concentrations of CS₂ (0.01 mmol/L, 0.1 mmol/L, 1 mmol/L). The number of nerve fiber bundles extended from DRG explants decreased significantly in the presence of CS₂ (0.01 mmol/L, 15.00 ± 2.61, p < .05; 0.1 mmol/L, 11.17 ± 1.47, p < .001; 1 mmol/L, 8.00 ± 1.41, p < .001) as compared with that in the absence of CS₂ (17.83 ± 2.48). The number of neurons migrated from DRG explants decreased significantly in the presence of CS₂ (0.01 mmol/L, 79.50 ± 9.40, p < .01; 0.1 mmol/L, 62.50 ± 14.15, p < .001; 1 mmol/L, 34.67 ± 7.58, p < .001) as compared with that in the absence of CS₂ (99.33 ± 15.16). And also, the decreases in the number of nerve fiber bundles and migrated DRG neurons were in a dose-dependent manner of CS₂. These data implicated that CS₂ could inhibit neurite outgrowth and neuronal migration from DRG explants in vitro. PMID:21777162

  2. Low-Dose Bafilomycin Attenuates Neuronal Cell Death Associated with Autophagy-Lysosome Pathway Dysfunction

    PubMed Central

    Pivtoraiko, Violetta N.; Harrington, Adam J.; Mader, Burton J.; Luker, Austin M.; Caldwell, Guy A.; Caldwell, Kim A.; Roth, Kevin A.; Shacka, John J.

    2010-01-01

    We have shown previously that the plecomacrolide antibiotics bafilomycin A1 and B1 significantly attenuate cerebellar granule neuron death resulting from agents that disrupt lysosome function. To further characterize bafilomycin-mediated cytoprotection, we examined its ability to attenuate the death of naïve and differentiated neuronal SH-SY5Y human neuroblastoma cells from agents that induce lysosome dysfunction in vitro, and from in vivo dopaminergic neuron death in C. elegans. Low-dose bafilomycin significantly attenuated SH-SY5Y cell death resulting from treatment with chloroquine, hydroxychloroquine amodiaquine and staurosporine. Bafilomycin also attenuated the chloroquine-induced reduction in processing of cathepsin D, the principal lysosomal aspartic acid protease, to its mature “active” form. Chloroquine induced autophagic vacuole accumulation and inhibited autophagic flux, effects that were attenuated upon treatment with bafilomycin and were associated with a significant decrease in chloroquine-induced accumulation of detergent-insoluble α-synuclein oligomers. In addition, bafilomycin significantly and dose-dependently attenuated dopaminergic neuron death in C. elegans resulting from in vivo over-expression of human wild-type α-synuclein. Together, our findings suggest that low-dose bafilomycin is cytoprotective in part through its maintenance of the autophagy-lysosome pathway, and underscores its therapeutic potential for treating Parkinson Disease and other neurodegenerative diseases that exhibit disruption of protein degradation pathways and accumulation of toxic protein species. PMID:20534000

  3. Signals mediating Klotho-induced neuroprotection in hippocampal neuronal cells.

    PubMed

    Cheng, Meng-Fu; Chen, Li-Jen; Niu, Ho-Shan; Yang, Ting-Ting; Lin, Kao-Chang; Cheng, Juei-Tang

    2015-01-01

    The erythropoietin (Epo) receptor (EpoR) is expressed in the brain and was shown to have neuroprotective effects against brain damage in animal models. A recent study indicated that EpoR and its activity are the downstream effectors of Klotho for cytoprotection in the kidney. Thus, we propose that Klotho can stimulate the expression of EpoR in neuronal cells to enhance Epo-mediated protection. H19-7 hippocampal neuronal cells were treated with recombinant Klotho. In H19-7 cells, Klotho increased the expression of both the EpoR protein and mRNA. Klotho also enhanced the transcription activity of the EpoR promoter in H19-7 cells. Moreover, Klotho augmented the Epo-triggered phosphorylation of Jak2 and Stat5 and protected H19-7 cells from hydrogen peroxide cytotoxicity. The silencing of EpoR abolished the protective effect of Klotho against peroxide-induced cytotoxicity. Finally, the silencing of GATA1 diminished the Klotho-induced increase in EpoR protein and mRNA expression as well as its promoter activity. In conclusion, Klotho increased EpoR expression in neuronal cells through GATA1, thereby enabling EpoR to function as a cytoprotective protein against oxidative injury. PMID:25856523

  4. Ectopic Expression of α6 and δ GABAA Receptor Subunits in Hilar Somatostatin Neurons Increases Tonic Inhibition and Alters Network Activity in the Dentate Gyrus

    PubMed Central

    Tong, Xiaoping; Peng, Zechun; Zhang, Nianhui; Cetina, Yliana; Huang, Christine S.; Wallner, Martin; Otis, Thomas S.

    2015-01-01

    The role of GABAA receptor (GABAAR)-mediated tonic inhibition in interneurons remains unclear and may vary among subgroups. Somatostatin (SOM) interneurons in the hilus of the dentate gyrus show negligible expression of nonsynaptic GABAAR subunits and very low tonic inhibition. To determine the effects of ectopic expression of tonic GABAAR subtypes in these neurons, Cre-dependent viral vectors were used to express GFP-tagged GABAAR subunits (α6 and δ) selectively in hilar SOM neurons in SOM-Cre mice. In single-transfected animals, immunohistochemistry demonstrated strong expression of either the α6 or δ subunit; in cotransfected animals, both subunits were consistently expressed in the same neurons. Electrophysiology revealed a robust increase of tonic current, with progressively larger increases following transfection of δ, α6, and α6/δ subunits, respectively, indicating formation of functional receptors in all conditions and likely coassembly of the subunits in the same receptor following cotransfection. An in vitro model of repetitive bursting was used to determine the effects of increased tonic inhibition in hilar SOM interneurons on circuit activity in the dentate gyrus. Upon cotransfection, the frequency of GABAAR-mediated bursting in granule cells was reduced, consistent with a reduction in synchronous firing among hilar SOM interneurons. Moreover, in vivo studies of Fos expression demonstrated reduced activation of α6/δ-cotransfected neurons following acute seizure induction by pentylenetetrazole. The findings demonstrate that increasing tonic inhibition in hilar SOM interneurons can alter dentate gyrus circuit activity during strong stimulation and suggest that tonic inhibition of interneurons could play a role in regulating excessive synchrony within the network. SIGNIFICANCE STATEMENT In contrast to many hippocampal interneurons, somatostatin (SOM) neurons in the hilus of the dentate gyrus have very low levels of nonsynaptic GABAARs and exhibit

  5. Inhibition of cell-cell binding by lipid assemblies

    DOEpatents

    Nagy, Jon O.; Bargatze, Robert F.

    2001-05-22

    This invention relates generally to the field of therapeutic compounds designed to interfere between the binding of ligands and their receptors on cell surface. More specifically, it provides products and methods for inhibiting cell migration and activation using lipid assemblies with surface recognition elements that are specific for the receptors involved in cell migration and activation.

  6. NMDA-R inhibition affects cellular process formation in Tilapia melanocytes; a model for pigmented adrenergic neurons in process formation and retraction.

    PubMed

    Ogundele, Olalekan Michael; Okunnuga, Adetokunbo Adedotun; Fabiyi, Temitope Deborah; Olajide, Olayemi Joseph; Akinrinade, Ibukun Dorcas; Adeniyi, Philip Adeyemi; Ojo, Abiodun Ayodele

    2014-06-01

    Parkinson's disease has long been described to be a product of dopamine and (or) melanin loss in the substanstia nigra (SN). Although most studies have focused on dopaminergic neurons, it is important to consider the role of pigment cells in the etiology of the disease and to create an in vitro live cell model for studies involving pigmented adrenergic cells of the SN in Parkinsonism. The Melanocytes share specific features with the pigmented adrenergic neurons as both cells are pigmented, contain adrenergic receptors and have cellular processes. Although the melanocyte cellular processes are relatively short and observable only when stimulated appropriately by epinephrine and other factors or molecules. This study employs the manipulation of N-Methyl-D-Aspartate Receptor (NMDA-R), a major receptor in neuronal development, in the process formation pattern of the melanocyte in order to create a suitable model to depict cellular process elongation and shortening in pigmented adrenergic cells. NMDA-R is an important glutamate receptor implicated in neurogenesis, neuronal migration, maturation and cell death, thus we investigated the role of NMDA-R potentiation by glutamate/KCN and its inhibition by ketamine in the behavior of fish scale melanocytes in vitro. This is aimed at establishing the regulatory role of NMDA-R in this cell type (melanocytes isolated form Tilapia) in a similar manner to what is observable in the mammalian neurons. In vitro live cell culture was prepared in modified Ringer's solution following which the cells were treated as follows; Control, Glutamate, Ketamine, Glutamate + Ketamine, KCN + Ketamine and KCN. The culture was maintained for 10 min and the changes were captured in 3D-Time frame at 0, 5 and 10 min for the control and 5, 7 and 10 min for each of the treatment category. Glutamate treatment caused formation of short cellular processes localized directly on the cell body while ketamine treatment (inhibition of NMDA-R) facilitated

  7. TLR2 Activation Inhibits Embryonic Neural Progenitor Cell Proliferation

    PubMed Central

    Okun, Eitan; Griffioen, Kathleen J.; Gen-Son, Tae; Lee, Jong-Hwan; Roberts, Nicholas J.; Mughal, Mohamed R.; Hutchison, Emmette; Cheng, Aiwu; Arumugam, Thiruma V.; Lathia, Justin D.; van Praag, Henriette; Mattson, Mark P.

    2010-01-01

    Toll-like receptors (TLRs) play essential roles in innate immunity, and increasing evidence indicates that these receptors are expressed in neurons, astrocytes and microglia in the brain, where they mediate responses to infection, stress and injury. To address the possibility that TLR2 heterodimer activation could affect progenitor cells in the developing brain, we analyzed the expression of TLR2 throughout the mouse cortical development, and assessed the role of TLR2 heterodimer activation in neural progenitor cell (NPC) proliferation. TLR2 mRNA and protein was expressed in the cortex in embryonic and early postnatal stages of development, and in cultured cortical NPC. While NPC from TLR2-deficient and wild type embryos had the same proliferative capacity, TLR2 activation by the synthetic bacterial lipopeptides Pam3CSK4 and FSL1, or low molecular weight hyaluronan, an endogenous ligand for TLR2, inhibited neurosphere formation in vitro. Intracerebral in utero administration of TLR2 ligands resulted in ventricular dysgenesis characterized by increased ventricle size, reduced proliferative area around the ventricles, increased cell density, an increase in PH3+ cells and a decrease in BrdU+ cells in the sub-ventricular zone. Our findings indicate that loss of TLR2 does not result in defects in cerebral development. However, TLR2 is expressed and functional in the developing telencephalon from early embryonic stages and infectious agent-related activation of TLR2 inhibits NPC proliferation. TLR2–mediated inhibition of NPC proliferation may therefore be a mechanism by which infection, ischemia and inflammation adversely affect brain development. PMID:20456021

  8. Monaural and Binaural Inhibition Underlying Duration-Tuned Neurons in the Inferior Colliculus

    PubMed Central

    Sayegh, Riziq; Casseday, John H.; Covey, Ellen

    2014-01-01

    Duration-tuned neurons (DTNs) in the mammalian inferior colliculus (IC) arise from a combination of excitatory and inhibitory synaptic inputs. Previous research has shown that the inhibition responsible for creating DTNs has a shorter latency than that of excitation and lasts longer than the stimulus duration. We used monotic and dichotic paired tone stimulation and recorded responses of DTNs from the IC of the bat to assess the relative contributions of each ear in forming duration-tuned circuits. The stimulus consisted of a short best duration (BD) excitatory tone and a longer duration nonexcitatory (NE) tone. In the monotic condition, when the BD and NE tones were presented to the contralateral ear and were sufficiently close in time, the NE tone always suppressed spikes evoked by the BD tone. In the dichotic condition, when the BD tone was presented to the contralateral ear and the NE tone to the ipsilateral ear, half of DTNs no longer showed spike suppression to the NE tone. Of those DTNs with suppression in both conditions, the latency of the inhibition was shorter and the duration of the inhibition was longer in the monotic condition. Therefore, in the monotic condition, DTNs received a contralaterally evoked inhibitory input that preceded the excitatory input to the same neuron. In the dichotic condition, DTNs received an ipsilaterally evoked inhibitory input that was weaker, longer in latency, and shorter in duration than the inputs from the contralateral ear. These findings indicate that the neural mechanisms that create DTNs in the IC are monaural. PMID:24403148

  9. Proneural transcription factors regulate different steps of cortical neuron migration through Rnd-mediated inhibition of RhoA signaling.

    PubMed

    Pacary, Emilie; Heng, Julian; Azzarelli, Roberta; Riou, Philippe; Castro, Diogo; Lebel-Potter, Mélanie; Parras, Carlos; Bell, Donald M; Ridley, Anne J; Parsons, Maddy; Guillemot, François

    2011-03-24

    Little is known of the intracellular machinery that controls the motility of newborn neurons. We have previously shown that the proneural protein Neurog2 promotes the migration of nascent cortical neurons by inducing the expression of the atypical Rho GTPase Rnd2. Here, we show that another proneural factor, Ascl1, promotes neuronal migration in the cortex through direct regulation of a second Rnd family member, Rnd3. Both Rnd2 and Rnd3 promote neuronal migration by inhibiting RhoA signaling, but they control distinct steps of the migratory process, multipolar to bipolar transition in the intermediate zone and locomotion in the cortical plate, respectively. Interestingly, these divergent functions directly result from the distinct subcellular distributions of the two Rnd proteins. Because Rnd proteins also regulate progenitor divisions and neurite outgrowth, we propose that proneural factors, through spatiotemporal regulation of Rnd proteins, integrate the process of neuronal migration with other events in the neurogenic program. PMID:21435554

  10. Low doses of alcohol potentiate GABA sub B inhibition of spontaneous activity of hippocampal CA1 neurons in vivo

    SciTech Connect

    Criado, J.R.; Thies, R. )

    1991-03-11

    Low doses of alcohol facilitate firing of hippocampal neurons. Such doses also enhance the inhibitory actions of GABA. Alcohol is known to potentiate inhibition via GABA{sub A} receptors. However, the effects of alcohol on GABA{sub B} receptor function are not understood. Spontaneous activity of single units was recorded from CA1 neurons of male rats anesthetized with 1.0% halothane. Electrical recordings and local application of drugs were done with multi-barrel pipettes. CA1 pyramidal neurons fired spontaneous bursts of action potentials. Acute alcohol decreased the interval between bursts, a mild excitatory action. Alcohol also more than doubled the period of complete inhibition produced by local application of both GABA and baclofen. These data suggest that GABA{sub B}-mediated inhibition is also potentiated by low doses of alcohol.

  11. Ethanol Activation of PKA Mediates Single-Minded 2 Expression in Neuronal Cells.

    PubMed

    Wang, Xiaolan; Yang, Zhihua; Sun, Yinan; Zhou, Hanjing; Chu, Guangpin; Zhang, Jing; Meng, Xianfang

    2015-12-01

    Prenatal ethanol exposure can cause extensive apoptotic neurodegeneration throughout the developing central nervous system (CNS), which results in cognitive deficits and memory decline. However, the underlying mechanisms need further study. Single-minded 2 (Sim2), a transcriptional repressor, is reportedly involved in diseases that impair learning and memory, such as Down syndrome (DS) and Alzheimer's disease. It is still unknown whether Sim2 is involved in regulating ethanol-mediated neuronal injury that might ultimately lead to neuronal dysfunction and subsequent learning and memory deficits. To study the effects of ethanol on Sim2 expression and neuronal injury, we used animal models and cell culture experiments. Our results indicated that in SH-SY5Y cells, ethanol exposure increased Sim2 expression and levels of cleaved caspase 3, which is a marker for cells undergoing apoptosis. Silencing Sim2 expression attenuated caspase 3 activation and cellular apoptosis. We also found that protein kinase A (PKA) activation induced Sim2 expression, as did ethanol. Inhibiting the PKA signaling pathway with H-89 decreased Sim2 expression and cleavage of caspase 3 that was induced by ethanol in vivo and in vitro. We further found that PKA regulated Sim2 expression at the transcriptional level. These results demonstrate that ethanol leads to increased Sim2 expression via the PKA pathway, ultimately resulting in apoptotic cell death. PMID:25319570

  12. Cellular viability effects of fatty acid amide hydrolase inhibition on cerebellar neurons

    PubMed Central

    2011-01-01

    The endocannabinoid anandamide (ANA) participates in the control of cell death inducing the formation of apoptotic bodies and DNA fragmentation. The aim of this study was to evaluate whether the ANA degrading enzyme, the fatty acid amide hydrolase (FAAH), would induce cellular death. Experiments were performed in cerebellar granule neurons cultured with the FAAH inhibitor, URB597 (25, 50 or 100 nM) as well as endogenous lipids such as oleoylethanolamide (OEA) or palmitoylethanolamide (PEA) and cellular viability was determined by MTT test. Neurons cultured with URB597 (25, 50 or 100 nM) displayed a decrease in cellular viability. In addition, if cultured with OEA (25 nM) or PEA (100 nM), cellular death was found. These results further suggest that URB597, OEA or PEA promote cellular death. PMID:21854612

  13. S6K Promotes Dopaminergic Neuronal Differentiation Through PI3K/Akt/mTOR-Dependent Signaling Pathways in Human Neural Stem Cells.

    PubMed

    Lee, Jeong Eun; Lim, Mi Sun; Park, Jae Hyun; Park, Chang Hwan; Koh, Hyun Chul

    2016-08-01

    It has recently been reported that the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway regulates neuronal differentiation of neural stem cells (NSCs) derived from rats or mice and is essential for the self-renewal of human embryonic stem cells (hESCs). However, the roles of PI3K/Akt/mTOR signaling pathways during proliferation and dopaminergic neuronal differentiation of human neural stem cells (hNSCs) are poorly understood. In this study, we examined the effect of regulation of these intracellular signaling pathways in hNSCs on the potential to maintain proliferation and induce dopaminergic neuronal differentiation. Dopaminergic neuronal differentiation depended on the concentration of insulin in our culture system. Inhibition of PI3K/Akt with LY294002 reduced proliferation and inhibited dopaminergic neuronal differentiation of these cells. We also found that rapamycin, a specific inhibitor of mTOR, significantly reduced neuronal differentiation without affecting proliferation. Inhibition of the Akt/mTOR signaling pathway led to inhibition of p70 ribosomal S6 kinase (S6K) signaling, which reduced dopaminergic neuronal differentiation in hNSCs. Inhibition of S6K by a specific chemical inhibitor, PF-4708671 inhibited dopaminergic neuronal differentiation of hNSCs. As expected, transduction with a dominant negative S6K1 (S6K1-DN) construct impaired dopaminergic neuronal differentiation of hNSCs. Conversely, overexpression of constitutively active S6K1 (S6K1-CA) promoted dopaminergic neuronal differentiation of these cells. In a survival study, 4 weeks after transplantation, no or very few donor cells were viable in striata grafted with S6K1-DN-transduced hNSCs. In contrast, S6K1-CA-transduced hNSCs survived, integrated into striata to generate tubular masses of grafts and differentiated toward TH-positive cells. Taken together, these data demonstrated that insulin promotes dopaminergic neuronal differentiation through a PI

  14. Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson's disease

    PubMed Central

    Ghosh, Anamitra; Roy, Avik; Matras, Joanna; Brahmachari, Saurav; Gendelman, Howard E.; Pahan, Kalipada

    2010-01-01

    Parkinson's disease (PD) is second only to Alzheimer's disease as the most common devastating human neurodegenerative disorder. Despite intense investigation, no interdictive therapy is available for PD. We investigated whether simvastatin, an FDA-approved cholesterol-lowering drug, could protect against nigrostriatal degeneration following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication to model PD in mice. First, MPP+ induced the activation of p21ras and NF-κB in mouse microglial cells. Inhibition of MPP+-induced activation of NF-κB by Δp21ras, a dominant-negative mutant of p21ras, supported the involvement of p21ras in MPP+-induced microglial activation of NF-κB. Interestingly, simvastatin attenuated activation of both p21ras and NF-κB in MPP+-stimulated microglial cells. Consistently, we found a very rapid activation of p21ras in vivo in the substantia nigra pars compacta of MPTP-intoxicated mice. However, after oral administration, simvastatin entered into the nigra, reduced nigral activation of p21ras, attenuated nigral activation of NF-κB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Similarly, pravastatin, another cholesterol-lowering drug, suppressed microglial inflammatory responses and protected dopaminergic neurons in MPTP-intoxicated mice; but at levels less than simvastatin. Furthermore, both the statins administered 2 days after initiation of the disease were still capable of inhibiting the demise of dopaminergic neurons and concomitant loss of neurotransmitters suggesting that statins are capable of slowing down the progression of neuronal loss in the MPTP mouse model. Therefore, we conclude that statins may be of therapeutic benefit for PD patients. PMID:19864567

  15. [NEURONAL DIFFERENTIATION OF PC12 CELL LINE AND MURINE NEURAL STEM CELLS ON THE CARBON NANOTUBES FILMS].

    PubMed

    Posypanova, G A; Gaiduchenko, A I; Moskaleva, E Yu; Fedorov, G E

    2016-01-01

    The study of the interaction of nerve cells with specially designed substrates (scaffolds) with different surface characteristics at the nanoscale is a necessary step in the development of methods of stimulation of regeneration of nervous tissues, as well as to create next generation of bioelectronic devices. A promising material for such scaffolds may be carbon nanotubes (CNT) that are flexible films of graphene rolled into nano-sized cylindrical tubes. CNT were produced by chemical deposition from the gas phase. The analysis of the PC12 cells cultivated on quartz glass coated by carbon nanotubes films using electron and light microscopy has shown that CNT stimulate the proliferation and do not inhibit neuronal differentiation of PC12 cells. We have found that it is possible to obtain differentiated neurons from murine neural stem cells on the quartz glasses covered with CNT films. The data obtained indicate that the CNT films produced by chemical deposition from the gas phase onto quartz glass may be used as the electro conductive scaffold to obtain and study the functions of neural cells and possibly of mature neurons. PMID:27228654

  16. Tuberoinfundibular dopaminergic neurons of the hypothalamus are progestin target cells

    SciTech Connect

    Sar, M.

    1986-03-01

    To find out a direct relationship between progestin target neurons and tuberoinfundibular dopaminergic neurons colocalization of /sup 3/H ORG 2058 (a synthetic progestin) and tyrosine hydroxylase, TH, antibodies were studied by combined autoradiography and immunohistochemistry. Eight 23 day-old ovariectomized and adrenalectomized rats were injected s.c. 17-beta estradiol, daily for 4 days. On the 5th day each animal was injected i.v. 1.0 ug per 100g b.w. of /sup 3/H ORG 2058. Two animals each received 1mg of unlabeled ORG 2058 15 min prior to the injection of /sup 3/H ORG 2058 to show the specificity of localization. Animals were sacrificed after 15 or 30 min, brains were dissected, frozen and processed for autoradiography. The autoradiograms were stained immunohistochemically with antibodies to TH. TH-containing cells in the arcuate nucleus and in the hypothalamic periventricular nucleus (Group A12) showed concentration of radioactivity in their nuclei, while TH cells in Group A11, A13, A14, and in the substantia nigra (Group A9), and ventral tegmental area (Group A10) did not show nuclear concentration of /sup 3/H ORG 2058. Competition studies with unlabeled ORG 2058 abolished the nuclear uptake of radioactivity in TH containing neurons. The results suggest a direct affect of progestin on tuberoinfundibular dopaminergic neurons.

  17. AMP-activated protein kinase is involved in perfluorohexanesulfonate -induced apoptosis of neuronal cells.

    PubMed

    Lee, Youn Ju; Choi, So-Young; Yang, Jae-Ho

    2016-04-01

    Perfluorohexanesulfonate (PFHxS), one of the major perfluoroalkyl compounds (PFCs), has been used in a variety of industrial and consumer applications and detected in serum in the general population. This raised a concern over its possible detrimental health effects, including neurotoxic effects. We have previously shown that PFHxS induced neuronal apoptosis via the NMDA receptor-mediated extracellular signal-regulated kinase (ERK) pathway. Recently, it has been reported that AMP-activated protein kinase (AMPK) acts as a key signal molecule in neuronal excitotoxicity as well as providing a neuroprotective function. In the present study, we have examined the involvement of AMPK in PFHxS-induced neuronal apoptosis using neuronal differentiated PC12 cells. PFHxS induced significant increases in intracellular [Ca(2+)] via the NMDA receptor and the L-type voltage-gated calcium channel (L-VGCC). The inhibition of Ca(2+) loading by the NMDA receptor antagonist, MK801 and the L-VGCC blockers, nifedipine and diltiazem significantly reduced PFHxS-induced apoptosis. PFHxS induced sustained activation of AMPK and the inhibition of AMPK activation by compound C and AMPK siRNA significantly reduced PFHxS-induced caspase-3 activity. These results indicate the pro-apoptotic role of AMPK. The activation of AMPK was attenuated by MK801, nifedipine and diltiazem. However, the activation of AMPK was not affected by the ERK inhibitor, PD98059. Likewise, ERK activation was not affected by compound C but was substantially reduced by MK801, nifedipine or diltiazem. This suggests that the activation of AMPK and ERK is regulated by intracellular Ca(2+) loading in distinct pathways. Taken together, PFHxS-induced neuronal apoptosis is mediated by AMPK and ERK pathways, which are distinctly regulated by increased intracellular Ca(2+) via the NMDA receptor and L-VGCC. PMID:26826296

  18. Transient mitochondrial permeability transition mediates excitotoxicity in glutamate-sensitive NSC34D motor neuron-like cells.

    PubMed

    Liu, Xiaoyun; Xu, Shangcheng; Wang, Pei; Wang, Wang

    2015-09-01

    Excitotoxicity plays a critical role in neurodegenerative disease. Cytosolic calcium overload and mitochondrial dysfunction are among the major mediators of high level glutamate-induced neuron death. Here, we show that the transient opening of mitochondrial permeability transition pore (tMPT) bridges cytosolic calcium signaling and mitochondrial dysfunction and mediates glutamate-induced neuron death. Incubation of the differentiated motor neuron-like NSC34D cells with glutamate (1mM) acutely induces cytosolic calcium transient (30% increase). Glutamate also stimulates tMPT opening, as reflected by a 2-fold increase in the frequency of superoxide flash, a bursting superoxide production event in individual mitochondria coupled to tMPT opening. The glutamate-induced tMPT opening is attenuated by suppressing cytosolic calcium influx and abolished by inhibiting mitochondrial calcium uniporter (MCU) with Ru360 (100 μM) or MCU shRNA. Further, increased cytosolic calcium is sufficient to induce tMPT in a mitochondrial calcium dependent manner. Finally, chronic glutamate incubation (24h) persistently elevates the probability of tMPT opening, promotes oxidative stress and induces neuron death. Attenuating tMPT activity or inhibiting MCU protects NSC34D cells from glutamate-induced cell death. These results indicate that high level glutamate-induced neuron toxicity is mediated by tMPT, which connects increased cytosolic calcium signal to mitochondrial dysfunction. PMID:26024861

  19. Mushroom extract protects against hydrogen peroxide-induced toxicity in hepatic and neuronal human cultured cells.

    PubMed

    Guizani, Nejib; Waly, Mostafa I

    2012-11-15

    Hydrogen peroxide is an oxidative stress agent that is associated with depletion of intracellular glutathione and inhibition of antioxidant enzymes in different cell lines. Consumption of antioxidant-rich foods reduces cellular oxidative stress and its related health problems. This study aimed to assess the antioxidant properties of mushroom, Agaricus bisporous cultivar extract, against hydrogen peroxide induced oxidative stress in cultured human hepatic (HepG2) and neuronal (SH-SY5Y) cells. In this study, hydrogen peroxide caused significant oxidative stress in HepG2 and SH-SY5Y cells as demonstrated by glutathione depletion, impairment of total antioxidant capacity and inhibition of antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase). Agaricusbisporous extract ameliorated the observed hydrogen peroxide-induced oxidative cellular insult as indicated by restoring the activity of glutathione and the assayed antioxidant enzymes to control levels. The results suggest that mushroom extract as antioxidant properties and protects against the oxidative stress induced by hydrogen peroxide-in cultured human hepatic and neuronal cells. PMID:24261122

  20. Microglial activation mediates host neuronal survival induced by neural stem cells.

    PubMed

    Wu, Hui-Mei; Zhang, Li-Feng; Ding, Pei-Shang; Liu, Ya-Jing; Wu, Xu; Zhou, Jiang-Ning

    2014-07-01

    The rational of neural stem cells (NSCs) in the therapy of neurological disease is either to replace dead neurons or to improve host neuronal survival, the latter of which has got less attention and the underlying mechanism is as yet little known. Using a transwell co-culture system, we reported that, in organotypic brain slice cultures, NSCs significantly improved host neuronal viability. Interestingly, this beneficial effect of NSCs was abrogated by a microglial inhibitor minocycline, while it was mimicked by a microglial agonist, Toll-like receptor 9 (TLR9) ligand CpG-ODN, which supports the pro-vital mediation by microglia on this NSCs-improved neuronal survival. Moreover, we showed that NSCs significantly induced host microglial movement and higher expression of a microglial marker IBA-1, the latter of which was positively correlated with TLR9 or extracellular-regulated protein kinases 1/2 (ERK1/2) activation. Real-time PCR revealed that NSCs inhibited the expression of pro-inflammatory molecules, but significantly increased the expression of molecules associated with a neuroprotective phenotype such as CX3CR1, triggering receptor expressed on myeloid cells-2 (TREM2) and insulin growth factor 1 (IGF-1). Similarly, in the microglia cells, NSCs induced the same microglial response as that in the slices. Further treatment with TLR9 ligand CpG-ODN, TLR9 inhibitor chloroquine (CQ) or ERK1/2 inhibitor U0126 demonstrated that TLR9-ERK1/2 pathway was involved in the NSCs-induced microglial activation. Collectively, this study indicated that NSCs improve host neuronal survival by switching microglia from a detrimental to a neuroprotective phenotype in adult mouse brain, and the microglial TLR9-ERK1/2 pathway seems to participate in this NSCs-mediated rescue action. PMID:24725889

  1. α-Dendrotoxin inhibits the ASIC current in dorsal root ganglion neurons from rat.

    PubMed

    Báez, Adriana; Salceda, Emilio; Fló, Martín; Graña, Martín; Fernández, Cecilia; Vega, Rosario; Soto, Enrique

    2015-10-01

    Dendrotoxins are a group of peptide toxins purified from the venom of several mamba snakes. α-Dendrotoxin (α-DTx, from the Eastern green mamba Dendroaspis angusticeps) is a well-known blocker of voltage-gated K(+) channels and specifically of K(v)1.1, K(v)1.2 and K(v)1.6. In this work we show that α-DTx inhibited the ASIC currents in DRG neurons (IC50=0.8 μM) when continuously perfused during 25 s (including a 5 s pulse to pH 6.1), but not when co-applied with the pH drop. Additionally, we show that α-DTx abolished a transient component of the outward current that, in some experiments, appeared immediately after the end of the acid pulse. Our data indicate that α-DTx inhibits ASICs in the high nM range while some Kv are inhibited in the low nM range. The α-DTx selectivity and its potential interaction with ASICs should be taken in consideration when DTx is used in the high nM range. PMID:26314509

  2. Light and hydrogen peroxide inhibit C. elegans Feeding through gustatory receptor orthologs and pharyngeal neurons.

    PubMed

    Bhatla, Nikhil; Horvitz, H Robert

    2015-02-18

    While gustatory sensing of the five primary flavors (sweet, salty, sour, bitter, and savory) has been extensively studied, pathways that detect non-canonical taste stimuli remain relatively unexplored. In particular, while reactive oxygen species cause generalized damage to biological systems, no gustatory mechanism to prevent ingestion of such material has been identified in any organism. We observed that light inhibits C. elegans feeding and used light as a tool to uncover molecular and neural mechanisms for gustation. Light can generate hydrogen peroxide, and we discovered that hydrogen peroxide similarly inhibits feeding. The gustatory receptor family members LITE-1 and GUR-3 are required for the inhibition of feeding by light and hydrogen peroxide. The I2 pharyngeal neurons increase calcium in response to light and hydrogen peroxide, and these responses require GUR-3 and a conserved antioxidant enzyme peroxiredoxin PRDX-2. Our results demonstrate a gustatory mechanism that mediates the detection and blocks ingestion of a non-canonical taste stimulus, hydrogen peroxide. PMID:25640076

  3. Light and hydrogen peroxide inhibit C. elegans feeding through gustatory receptor orthologs and pharyngeal neurons

    PubMed Central

    Bhatla, Nikhil; Horvitz, H. Robert

    2015-01-01

    SUMMARY While gustatory sensing of the five primary flavors (sweet, salty, sour, bitter, and savory) has been extensively studied, pathways that detect non-canonical taste stimuli remain relatively unexplored. In particular, while reactive oxygen species cause generalized damage to biological systems, no gustatory mechanism to prevent ingestion of such material has been identified in any organism. We observed that light inhibits C. elegans feeding and used light as a tool to uncover molecular and neural mechanisms for gustation. Light can generate hydrogen peroxide, and we discovered that hydrogen peroxide similarly inhibits feeding. The gustatory receptor family members LITE-1 and GUR-3 are required for the inhibition of feeding by light and hydrogen peroxide. The I2 pharyngeal neurons increase calcium in response to light and hydrogen peroxide, and these responses require GUR-3 and a conserved antioxidant enzyme peroxiredoxin PRDX-2. Our results demonstrate a gustatory mechanism that mediates the detection and blocks ingestion of a non-canonical taste stimulus, hydrogen peroxide. PMID:25640076

  4. [From the cell theory to the neuron theory].

    PubMed

    Tixier-Vidal, Andrée

    2010-01-01

    The relationship between the cell theory formulated by Schwann (1839) and by Virchow (1855) on the one hand, and, on the other hand, the neuron theory, as formulated by Waldeyer (1891) and by Cajal (1906), are discussed from a historical point of view. Both of them are the result of technical and conceptuel progress. Both of them had to fight against the dominant dogma before being accepted. The cell theory opposed the school of Bichat, the vitalist philosophy and the positivist philosophy of Auguste Comte. The neuron theory, which is clearly based on the cell theory, was mostly concerned with the mode of interneuronal communication; it opposed the concept of contiguity to Golgi's concept of continuity. At present, the cell theory remains central in every field of Biology. By contrast, the neuron theory, which until the middle of the XXth century opened the study of the nervous system to a necessary reductionnist approach, is no longer central to recent developments of neurosciences. PMID:21215242

  5. The population firing rate in the presence of GABAergic tonic inhibition in single neurons and application to general anaesthesia.

    PubMed

    Hutt, Axel

    2012-06-01

    Tonic inhibition has been found experimentally in single neurons and affects the activity of neural populations. This kind of inhibition is supposed to set the background or resting level of neural activity and plays a role in the brains arousal system, e.g. during general anaesthesia. The work shows how to involve tonic inhibition in population rate-coding models by deriving a novel transfer function. The analytical and numerical study of the novel transfer function reveals the impact of tonic inhibition on the population firing rate. Finally, a first application to a recent neural field model for general anaesthesia discusses the origin of the loss of consciousness during anaesthesia. PMID:23730354

  6. Cdk5-mediated inhibition of APC/C-Cdh1 switches on the cyclin D1-Cdk4-pRb pathway causing aberrant S-phase entry of postmitotic neurons

    PubMed Central

    Veas-Pérez de Tudela, Miguel; Maestre, Carolina; Delgado-Esteban, María; Bolaños, Juan P.; Almeida, Angeles

    2015-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that regulates cell cycle progression in proliferating cells. To enter the S-phase, APC/C must be inactivated by phosphorylation of its cofactor, Cdh1. In post-mitotic cells such as neurons APC/C-Cdh1 complex is highly active and responsible for the continuous degradation of mitotic cyclins. However, the specific molecular pathway that determines neuronal cell cycle blockade in post-mitotic neurons is unknown. Here, we show that activation of glutamatergic receptors in rat cortical primary neurons endogenously triggers cyclin-dependent kinase-5 (Cdk5)-mediated phosphorylation of Cdh1 leading to its cytoplasmic accumulation and disassembly from the APC3 core protein, causing APC/C inactivation. Conversely, pharmacological or genetic inhibition of Cdk5 promotes Cdh1 ubiquitination and proteasomal degradation. Furthermore, we show that Cdk5-mediated phosphorylation and inactivation of Cdh1 leads to p27 depletion, which switches on the cyclin D1-cyclin-dependent kinase-4 (Cdk4)-retinoblastoma protein (pRb) pathway to allow the S-phase entry of neurons. However, neurons do not proceed through the cell cycle and die by apoptosis. These results indicate that APC/C-Cdh1 actively suppresses an aberrant cell cycle entry and death of neurons, highlighting its critical function in neuroprotection. PMID:26658992

  7. Protective Effects of Hericium erinaceus Mycelium and Its Isolated Erinacine A against Ischemia-Injury-Induced Neuronal Cell Death via the Inhibition of iNOS/p38 MAPK and Nitrotyrosine

    PubMed Central

    Lee, Kam-Fai; Chen, Jiann-Hwa; Teng, Chih-Chuan; Shen, Chien-Heng; Hsieh, Meng-Chiao; Lu, Chien-Chang; Lee, Ko-Chao; Lee, Li-Ya; Chen, Wan-Ping; Chen, Chin-Chu; Huang, Wen-Shih; Kuo, Hsing-Chun

    2014-01-01

    Hericium erinaceus, an edible mushroom, has been demonstrated to potentiate the effects of numerous biological activities. The aim of this study was to investigate whether H. erinaceus mycelium could act as an anti-inflammatory agent to bring about neuroprotection using a model of global ischemic stroke and the mechanisms involved. Rats were treated with H. erinaceus mycelium and its isolated diterpenoid derivative, erinacine A, after ischemia reperfusion brain injuries caused by the occlusion of the two common carotid arteries. The production of inflammatory cytokines in serum and the infracted volume of the brain were measured. The proteins from the stroke animal model (SAM) were evaluated to determine the effect of H. erinaceus mycelium. H. erinaceus mycelium reduced the total infarcted volumes by 22% and 44% at a concentration of 50 and 300 mg/kg, respectively, compared to the SAM group. The levels of acute inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor á, were all reduced by erinacine A. Levels of nitrotyrosine-containing proteins, phosphorylation of p38 MAPK and CCAAT enhancer-binding protein (C/EBP) and homologous protein (CHOP) expression were attenuated by erinacine A. Moreover, the modulation of ischemia injury factors present in the SAM model by erinacine A seemed to result in the suppression of reactive nitrogen species and the downregulation of inducible NO synthase (iNOS), p38 MAPK and CHOP. These findings confirm the nerve-growth properties of Hericium erinaceus mycelium, which include the prevention of ischemic injury to neurons; this protective effect seems to be involved in the in vivo activity of iNOS, p38 MAPK and CHOP. PMID:25167134

  8. Protective effects of Hericium erinaceus mycelium and its isolated erinacine A against ischemia-injury-induced neuronal cell death via the inhibition of iNOS/p38 MAPK and nitrotyrosine.

    PubMed

    Lee, Kam-Fai; Chen, Jiann-Hwa; Teng, Chih-Chuan; Shen, Chien-Heng; Hsieh, Meng-Chiao; Lu, Chien-Chang; Lee, Ko-Chao; Lee, Li-Ya; Chen, Wan-Ping; Chen, Chin-Chu; Huang, Wen-Shih; Kuo, Hsing-Chun

    2014-01-01

    Hericium erinaceus, an edible mushroom, has been demonstrated to potentiate the effects of numerous biological activities. The aim of this study was to investigate whether H. erinaceus mycelium could act as an anti-inflammatory agent to bring about neuroprotection using a model of global ischemic stroke and the mechanisms involved. Rats were treated with H. erinaceus mycelium and its isolated diterpenoid derivative, erinacine A, after ischemia reperfusion brain injuries caused by the occlusion of the two common carotid arteries. The production of inflammatory cytokines in serum and the infracted volume of the brain were measured. The proteins from the stroke animal model (SAM) were evaluated to determine the effect of H. erinaceus mycelium. H. erinaceus mycelium reduced the total infarcted volumes by 22% and 44% at a concentration of 50 and 300 mg/kg, respectively, compared to the SAM group. The levels of acute inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor á, were all reduced by erinacine A. Levels of nitrotyrosine-containing proteins, phosphorylation of p38 MAPK and CCAAT enhancer-binding protein (C/EBP) and homologous protein (CHOP) expression were attenuated by erinacine A. Moreover, the modulation of ischemia injury factors present in the SAM model by erinacine A seemed to result in the suppression of reactive nitrogen species and the downregulation of inducible NO synthase (iNOS), p38 MAPK and CHOP. These findings confirm the nerve-growth properties of Hericium erinaceus mycelium, which include the prevention of ischemic injury to neurons; this protective effect seems to be involved in the in vivo activity of iNOS, p38 MAPK and CHOP. PMID:25167134

  9. Nitrite-Mediated Antagonism of Cyanide Inhibition of Cytochrome c Oxidase in Dopamine Neurons

    PubMed Central

    Leavesley, Heather B.; Li, Li; Mukhopadhyay, Soma; Borowitz, Joseph L.; Isom, Gary E.

    2010-01-01

    Cyanide inhibits aerobic metabolism by binding to the binuclear heme center of cytochrome c oxidase (CcOX). Amyl nitrite and sodium nitrite (NaNO2) antagonize cyanide toxicity in part by oxidizing hemoglobin to methemoglobin (mHb), which then scavenges cyanide. mHb generation is thought to be a primary mechanism by which the NO2− ion antagonizes cyanide. On the other hand, NO2− can undergo biotransformation to generate nitric oxide (NO), which may then directly antagonize cyanide inhibition of CcOX. In this study, nitrite-mediated antagonism of cyanide inhibition of oxidative phosphorylation was examined in rat dopaminergic N27 cells. NaNO2 produced a time- and concentration-dependent increase in whole-cell and mitochondrial levels of NO. The NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxy 3-oxide (PTIO) reversed this increase in cellular and mitochondrial NO. NO generated from NaNO2 decreased cellular oxygen consumption and inhibited CcOX activity. PTIO reversed the NO-mediated inhibition, thus providing strong evidence that NO mediates the action of NaNO2. Under similar conditions, KCN (20μM) inhibited cellular state-3 oxygen consumption and CcOX activity. Pretreatment with NaNO2 reversed KCN-mediated inhibition of both oxygen consumption and CcOX activity. The NaNO2 antagonism of cyanide was blocked by pretreatment with the NO scavenger PTIO. It was concluded that NaNO2 antagonizes cyanide inhibition of CcOX by generating of NO, which then interacts directly with the binding of KCN × CcOX to reverse the toxicity. In vivo antagonism of cyanide by NO2− appears to be due to both generation of mHb and direct displacement of cyanide from CcOX by NO. PMID:20335280

  10. D1-type dopamine receptors inhibit growth cone motility in cultured retina neurons: evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system.

    PubMed Central

    Lankford, K L; DeMello, F G; Klein, W L

    1988-01-01

    Precedent exists for the early development and subsequent down-regulation of neurotransmitter receptor systems in the vertebrate central nervous system, but the function of such embryonic receptors has not been established. Here we show that stimulation of early-developing dopamine receptors in avian retina cells greatly inhibits the motility of neuronal growth cones. Neurons from embryonic chicken retinas were cultured in low-density monolayers, and their growth cones were observed with phase-contrast or video-enhanced-contrast-differential-interference-contrast (VEC-DIC) microscopy. Approximately 25% of the neurons responded to micromolar dopamine with a rapid reduction in filopodial activity followed by a flattening of growth cones and retraction of neurites. The response occurred at all ages examined (embryonic day-8 retinal neurons cultured on polylysine-coated coverslips for 1-7 days), although neurite retraction was greatest in younger cultures. Effects of dopamine on growth cone function could be reversed by haloperidol or (+)-SCH 23390, whereas forskolin elicited a response similar to dopamine; these data show the response was receptor-mediated, acting through a D1-type system, and are consistent with the use of cAMP as a second messenger. The experiments provide strong support for the hypothesis that neurotransmitters, besides mediating transynaptic signaling in the adult, may have a role in neuronal differentiation as growth regulators. Images PMID:3380807

  11. D1-type dopamine receptors inhibit growth cone motility in cultured retina neurons: evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system.

    PubMed Central

    Lankford, K L; DeMello, F G; Klein, W L

    1988-01-01

    Precedent exists for the early development and subsequent down-regulation of neurotransmitter receptor systems in the vertebrate central nervous system, but the function of such embryonic receptors has not been established. Here we show that stimulation of early-developing dopamine receptors in avian retina cells greatly inhibits the motility of neuronal growth cones. Neurons from embryonic chicken retinas were cultured in low-density monolayers, and their growth cones were observed with phase-contrast or video-enhanced-contrast-differential-interference-contrast (VEC-DIC) microscopy. Approximately 25% of the neurons responded to micromolar dopamine with a rapid reduction in filopodial activity followed by a flattening of growth cones and retraction of neurites. The response occurred at all ages examined (embryonic day-8 retinal neurons cultured on polylysine-coated coverslips for 1-7 days), although neurite retraction was greatest in younger cultures. Effects of dopamine on growth cone function could be reversed by haloperidol or (+)-SCH 23390, whereas forskolin elicited a response similar to dopamine; these data show the response was receptor-mediated, acting through a D1-type system, and are consistent with the use of cAMP as a second messenger. The experiments provide strong support for the hypothesis that neurotransmitters, besides mediating transynaptic signaling in the adult, may have a role in neuronal differentiation as growth regulators. Images PMID:3357895

  12. Neurosteroid interactions with synaptic and extrasynaptic GABAa receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability

    PubMed Central

    Chase Matthew, Carver; Doodipala Samba, Reddy

    2013-01-01

    Rationale Neurosteroids are steroids synthesized within the brain with rapid effects on neuronal excitability. Allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are three widely explored prototype endogenous neurosteroids. They have very different targets and functions compared to conventional steroid hormones. Neuronal GABAa receptors are one of the prime molecular targets of neurosteroids. Objective This review provides a critical appraisal of recent advances in the pharmacology of endogenous neurosteroids that interact with GABAa receptors in the brain. Neurosteroids possess distinct, characteristic effects on the membrane potential and current conductance of the neuron, mainly via potentiation of GABAa receptors at low concentrations and direct activation of receptor chloride channel at higher concentrations. The GABAa receptor mediates two types of inhibition, now characterized as synaptic (phasic) and extrasynaptic (tonic) inhibition. Synaptic release of GABA results in the activation of low-affinity γ2-containing synaptic receptors, while high-affinity δ-containing extrasynaptic receptors are persistently activated by the ambient GABA present in the extracellular fluid. Neurosteroids are potent positive allosteric modulators of synaptic and extrasynaptic GABAa receptors and therefore enhance both phasic and tonic inhibition. Tonic inhibition is specifically more sensitive to neurosteroids. The resulting tonic conductance generates a form of shunting inhibition that controls neuronal network excitability, seizure susceptibility, and behavior. Conclusion The growing understanding of the mechanisms of neurosteroid regulation of the structure and function of the synaptic and extrasynaptic GABAa receptors provide many opportunities to create improved therapies for sleep, anxiety, stress, epilepsy, and other neuropsychiatric conditions. PMID:24071826

  13. [Inhibitory interactions in neuronal networks including cells of the auditory cortex and the medial geniculate body].

    PubMed

    Sil'kis, I G

    1994-01-01

    Cross-correlation method was used for revealing effective inhibitory interactions in neural networks containing simultaneously recorded neurons from different loci of auditory cortex (A1) and medial geniculate body (MGB). It was shown that (i) inhibitory connections were "divergent", i. e., one neuron in A1 (MGB) depressed activity of neurons in different loci of A1 and MGB simultaneously; (ii) inputs to inhibitory neuron were "convergent", i.e., one neuron in A1 (MGB) was excited by neurons from different loci of A1 and MGB simultaneously. There were inhibitory neurons which selectively depressed activity of only one neighbouring neuron. The results allow to suggest that the same inhibitory neuron may be involved in afferent and feedback inhibition. We supposed that the principles of organization of inhibitory connections in thalamo-cortical networks underlie the observed exceptions to mapping (tonotopic) principle of organization of receptive fields of A1 and MGB. PMID:7879428

  14. Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro

    PubMed Central

    Gunewardene, Niliksha; Crombie, Duncan; Dottori, Mirella; Nayagam, Bryony A.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using established in vitro assays. We compared two hiPSC lines against a well-characterized hESC line. After ten days' coculture in vitro, hiPSC-derived neural processes contacted inner and outer hair cells in whole cochlear explant cultures. Neural processes from hiPSC-derived neurons also made contact with hair cells in denervated sensory epithelia explants and expressed synapsin at these points of contact. Interestingly, hiPSC-derived neurons cocultured with hair cells at an early stage of differentiation formed synapses with a higher number of hair cells, compared to hiPSC-derived neurons cocultured at a later stage of differentiation. Notable differences in the innervation potentials of the hiPSC-derived neurons were also observed and variations existed between the hiPSC lines in their innervation efficiencies. Collectively, these data illustrate the promise of hiPSCs for auditory neuron replacement and highlight the need to develop methods to mitigate variabilities observed amongst hiPSC lines, in order to achieve reliable clinical improvements for patients. PMID:26966437

  15. Neuroprotective effect of arctigenin via upregulation of P-CREB in mouse primary neurons and human SH-SY5Y neuroblastoma cells.

    PubMed

    Zhang, Nan; Wen, Qingping; Ren, Lu; Liang, Wenbo; Xia, Yang; Zhang, Xiaodan; Zhao, Dan; Sun, Dong; Hu, Yv; Hao, Haiguang; Yan, Yaping; Zhang, Guangxian; Yang, Jingxian; Kang, Tingguo

    2013-01-01

    Arctigenin (Arc) has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ) production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1) protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN) expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB) induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB. PMID:24025424

  16. Local administration of resveratrol inhibits excitability of nociceptive wide-dynamic range neurons in rat trigeminal spinal nucleus caudalis.

    PubMed

    Shimazu, Yoshihito; Shibuya, Eri; Takehana, Shiori; Sekiguchi, Kenta; Oshima, Katsuo; Kamata, Hiroaki; Karibe, Hiroyuki; Takeda, Mamoru

    2016-06-01

    Although we recently reported that intravenous administration of resveratrol suppresses trigeminal nociception, the precise peripheral effect of resveratrol on nociceptive and non-nociceptive mechanical stimulation-induced trigeminal neuron activity in vivo remains to be determined. The aim of the present study was to investigate whether local subcutaneous administration of resveratrol attenuates mechanical stimulation-induced excitability of trigeminal spinal nucleus caudalis (SpVc) neuron activity in rats, in vivo. Extracellular single-unit recordings were made of SpVc wide-dynamic range (WDR) neuron activity in response to orofacial mechanical stimulation in pentobarbital-anesthetized rats. Neurons responded to non-noxious and noxious mechanical stimulation applied to the orofacial skin. Local subcutaneous administration of resveratrol (1-10mM) into the orofacial skin dose dependently and significantly reduced the mean number of SpVc WDR neurons firing in response to both non-noxious and noxious mechanical stimuli, with the maximal inhibition of discharge frequency in response to both stimuli being seen within 5min. These inhibitory effects were no longer evident after approximately 20min. The mean magnitude of inhibition by resveratrol (10mM) of SpVc neuron discharge frequency was almost equal to that of the local anesthetic 1% lidocaine (37mM). These results suggest that local injection of resveratrol into the peripheral receptive field suppresses the excitability of SpVc neurons, possibly via inhibition of Na(+) channels in the nociceptive nerve terminals of trigeminal ganglion neurons. Therefore, local subcutaneous administration of resveratrol may provide relief of trigeminal nociceptive pain, without side effects, thus contributing to the suite of complementary and alternative medicines used as local anesthetic agents. PMID:27288246

  17. Capillary Isoelectric Focusing of Akt Isoforms Identifies Highly Dynamic Phosphorylation in Neuronal Cells and Brain Tissue.

    PubMed

    Schrötter, Sandra; Leondaritis, George; Eickholt, Britta J

    2016-05-01

    The PI3K/PTEN/Akt pathway has been established as a core signaling pathway that is crucial for the integration of neurons into neuronal circuits and the maintenance of the architecture and function of neurons in the adult brain. Akt1-3 kinases are specifically activated by two phosphorylation events on residues Thr(308) and Ser(473) upon growth factor signaling, which subsequently phosphorylate a vast cohort of downstream targets. However, we still lack a clear understanding of the complexity and regulation of isoform specificity within the PI3K/PTEN/Akt pathway. We utilized a capillary-based isoelectric focusing method to study dynamics of Akt phosphorylation in neuronal cells and the developing brain and identify previously undescribed features of Akt phosphorylation and activation. First, we show that the accumulation of multiple phosphorylation events on Akt forms occur concurrently with Ser(473) and Thr(308) phosphorylation upon acute PI3K activation and provide evidence for uncoupling of Ser(473) and Thr(308) phosphorylation, as well as differential sensitivities of Akt1 forms upon PI3K inhibition. Second, we detect a transient shift in Akt isoform phosphorylation and activation pattern during early postnatal brain development, at stages corresponding to synapse development and maturation. Third, we show differential sensitivities of Ser(473)-Akt species to PTEN deletion in mature neurons, which suggests inherent differences in the Akt pools that are accessible to growth factors as compared with the pools that are controlled by PTEN. Our study demonstrates the presence of complex phosphorylation events of Akt in a time- and signal-dependent manner in neurons. PMID:26945062

  18. Capillary Isoelectric Focusing of Akt Isoforms Identifies Highly Dynamic Phosphorylation in Neuronal Cells and Brain Tissue*

    PubMed Central

    Schrötter, Sandra; Leondaritis, George; Eickholt, Britta J.

    2016-01-01

    The PI3K/PTEN/Akt pathway has been established as a core signaling pathway that is crucial for the integration of neurons into neuronal circuits and the maintenance of the architecture and function of neurons in the adult brain. Akt1–3 kinases are specifically activated by two phosphorylation events on residues Thr308 and Ser473 upon growth factor signaling, which subsequently phosphorylate a vast cohort of downstream targets. However, we still lack a clear understanding of the complexity and regulation of isoform specificity within the PI3K/PTEN/Akt pathway. We utilized a capillary-based isoelectric focusing method to study dynamics of Akt phosphorylation in neuronal cells and the developing brain and identify previously undescribed features of Akt phosphorylation and activation. First, we show that the accumulation of multiple phosphorylation events on Akt forms occur concurrently with Ser473 and Thr308 phosphorylation upon acute PI3K activation and provide evidence for uncoupling of Ser473 and Thr308 phosphorylation, as well as differential sensitivities of Akt1 forms upon PI3K inhibition. Second, we detect a transient shift in Akt isoform phosphorylation and activation pattern during early postnatal brain development, at stages corresponding to synapse development and maturation. Third, we show differential sensitivities of Ser473-Akt species to PTEN deletion in mature neurons, which suggests inherent differences in the Akt pools that are accessible to growth factors as compared with the pools that are controlled by PTEN. Our study demonstrates the presence of complex phosphorylation events of Akt in a time- and signal-dependent manner in neurons. PMID:26945062

  19. Role of autophagy inhibitors and inducers in modulating the toxicity of trimethyltin in neuronal cell cultures.

    PubMed

    Fabrizi, C; Somma, F; Pompili, E; Biagioni, F; Lenzi, P; Fornai, F; Fumagalli, L

    2012-11-01

    Trimethyltin (TMT) is a triorganotin compound which determines neurodegeneration of specific brain areas particularly damaging the limbic system. Earlier ultrastructural studies indicated the formation of autophagic vacuoles in neurons after TMT intoxication. However, no evaluation has been attempted to determine the role of the autophagic pathway in TMT neurotoxicity. To assess the contribution of autophagy to TMT-induced neuronal cell death, we checked the vulnerability of neuronal cultures to TMT after activation or inhibition of autophagy. Our results show that autophagy inhibitors (3-methyladenine and L-asparagine) greatly enhanced TMT neurotoxicity. Conversely, known activators of autophagy, such as lithium and rapamycin, displayed neuroprotection against this toxic compound. Due to its diverse targets, the action of lithium was complex. When lithium was administered according to a chronic treatment protocol (6 days pretreatment) it was able to rescue both hippocampal and cortical neurons from TMT (or from glutamate toxicity used as reference). This effect was accompanied by an increased phosphorylation of glycogen synthase kinase 3 which is a known target for lithium neuroprotection. If the pre-incubation time was reduced to 2 h (acute treatment protocol), lithium was still able to counteract TMT toxicity in hippocampal but not in cortical neurons. The neuroprotective effect of lithium acutely administered against TMT in hippocampal neurons can be completely reverted by an excess of inositol and is possibly related to the inactivation of inositol monophosphatase, a key regulator of autophagy. These data indicate that TMT neurotoxicity can be dramatically modified, at least in vitro, by lithium addition which seems to act through different mechanisms if acutely or chronically administered. PMID:22415064

  20. Dexmedetomidine alleviates postoperative cognitive dysfunction by inhibiting neuron excitation in aged rats

    PubMed Central

    Xiong, Bo; Shi, Qiqing; Fang, Hao

    2016-01-01

    The perioperative stress response is one of the factors leading to postoperative cognitive dysfunction (POCD). Dexmedetomidine (Dex) can reduce the stress response and hippocampus neuroapoptosis, but its mechanism of action on POCD remains unknown. This study investigated the protective effect and possible mechanism of Dex on POCD in aged rats. Ninety-six aged male rats were randomly divided into four groups (n = 24 rats per group): a non-surgical control group, a surgical (model) group, a surgical group receiving a high dose of Dex (12 μg/kg), and a surgical group receiving a low dose of Dex (3 μg/kg). Cognitive function and neuronal apoptosis were evaluated after splenectomy. Compared with the control group, the model group had significantly longer escape latencies and fewer platform crossings in the Morris water-maze test. Immunohistochemistry showed that relaxin-3 and c-fos positive neurons in the hippocampus increased on postoperative days 1 and 3. Greater downregulation of the Bcl-2 protein and upregulation of Fas, caspase-8, and caspase-9 significantly increased neuroapoptosis in the model group. Compared with the model group, rats given Dex had (1) shorter escape latencies, (2) more platform crossings, (3) fewer relaxin-3 and c-fos positive neurons in the hippocampal CA1 area, (4) upregulation of Bcl-2, (5) downregulation of Fas, caspase-8, and caspase-9 proteins, and (6) decreased neuroapoptosis in the hippocampus. Thus, our data suggest that Dex may improve cognitive functioning in aged rats by inhibiting neural over-excitability. The mechanism may operate by restraining relaxin-3 and c-fos expression. PMID:27069541

  1. Ischaemia triggered by spreading neuronal activation is inhibited by vasodilators in rats

    PubMed Central

    Dreier, Jens P; Petzold, Gabor; Tille, Katrin; Lindauer, Ute; Arnold, Guy; Heinemann, Uwe; Einhäupl, Karl M; Dirnagl, Ulrich

    2001-01-01

    It has been previously shown that spreading neuronal activation can generate a cortical spreading ischaemia (CSI) in rats. The purpose of the present study was to investigate whether vasodilators cause CSI to revert to a normal cortical spreading depression (CSD). A KCl-induced CSD travelled from an open cranial window to a closed window where the cortex was superfused with physiological artificial cerebrospinal fluid (ACSF). At the closed window, recordings revealed a short-lasting negative slow potential shift accompanied by a variable, small and short initial hypoperfusion followed by hyperaemia and then oligaemia. In contrast, spreading neuronal activation locally induced CSI at the closed window when ACSF contained a NO. synthase (NOS) inhibitor, NG-nitro-l-arginine, and an increased K+ concentration ([K+]ACSF). CSI was characterised by a sharp and prolonged initial cerebral blood flow decrease to 29 ± 11 % of the baseline and a prolonged negative potential shift. Co-application of a NO. donor, S-nitroso-N-acetylpenicillamine, and NOS inhibitor with high [K+]ACSF re-established a short-lasting negative potential shift and spreading hyperaemia typical of CSD. Similarly, the NO.-independent vasodilator papaverine caused CSI to revert to a pattern characteristic of CSD. In acute rat brain slices, NOS inhibition and high [K+]ACSF did not prolong the negative slow potential shift compared to that induced by high [K+]ACSF alone. The data indicate that the delayed recovery of the slow potential was caused by vasoconstriction during application of high [K+]ACSF and a NOS inhibitor in vivo. This supports the possibility of a vicious circle: spreading neuronal activation induces vasoconstriction, and vasoconstriction prevents repolarisation during CSI. Speculatively, this pathogenetic process could be involved in migraine-induced stroke. PMID:11230523

  2. Prefrontal neurons encode context-based response execution and inhibition in reward seeking and extinction

    PubMed Central

    Moorman, David E.; Aston-Jones, Gary

    2015-01-01

    The prefrontal cortex (PFC) guides execution and inhibition of behavior based on contextual demands. In rodents, the dorsal/prelimbic (PL) medial PFC (mPFC) is frequently considered essential for execution of goal-directed behavior (“go”) whereas ventral/infralimbic (IL) mPFC is thought to control behavioral suppression (“stop”). This dichotomy is commonly seen for fear-related behaviors, and for some behaviors related to cocaine seeking. Overall, however, data for reward-directed behaviors are ambiguous, and few recordings of PL/IL activity have been performed to demonstrate single-neuron correlates. We recorded neuronal activity in PL and IL during discriminative stimulus driven sucrose seeking followed by multiple days of extinction of the reward-predicting stimulus. Contrary to a generalized PL-go/IL-stop hypothesis, we found cue-evoked activity in PL and IL during reward seeking and extinction. Upon analyzing this activity based on resultant behavior (lever press or withhold), we found that neurons in both areas encoded contextually appropriate behavioral initiation (during reward seeking) and withholding (during extinction), where context was dictated by response–outcome contingencies. Our results demonstrate that PL and IL signal contextual information for regulation of behavior, irrespective of whether that involves initiation or suppression of behavioral responses, rather than topographically encoding go vs. stop behaviors. The use of context to optimize behavior likely plays an important role in maximizing utility-promoting exertion of activity when behaviors are rewarded and conservation of energy when not. PMID:26170333

  3. Dynamin-related protein 1 controls the migration and neuronal differentiation of subventricular zone-derived neural progenitor cells

    PubMed Central

    Kim, Hyun Jung; Shaker, Mohammed R.; Cho, Bongki; Cho, Hyo Min; Kim, Hyun; Kim, Joo Yeon; Sun, Woong

    2015-01-01

    Mitochondria are important in many essential cellular functions, including energy production, calcium homeostasis, and apoptosis. The organelles are scattered throughout the cytoplasm, but their distribution can be altered in response to local energy demands, such as cell division and neuronal maturation. Mitochondrial distribution is closely associated with mitochondrial fission, and blocking the fission-promoting protein dynamin-related protein 1 (Drp1) activity often results in mitochondrial elongation and clustering. In this study, we observed that mitochondria were preferentially localized at the leading process of migratory adult neural stem cells (aNSCs), whereas neuronal differentiating cells transiently exhibited perinuclear condensation of mitochondria. Inhibiting Drp1 activity altered the typical migratory cell morphology into round shapes while the polarized mitochondrial distribution was maintained. With these changes, aNSCs failed to migrate, and neuronal differentiation was prevented. Because Drp1 blocking also impaired the mitochondrial membrane potential, we tested whether supplementing with L-carnitine, a compound that restores mitochondrial membrane potential and ATP synthesis, could revert the defects induced by Drp1 inhibition. Interestingly, L-carnitine fully restored the aNSC defects, including cell shrinkage, migration, and impaired neuronal differentiation. These results suggest that Drp1 is required for functionally active mitochondria, and supplementing with ATP can restore the defects induced by Drp1 suppression. PMID:26514444

  4. Inhibition by adenosine A2A receptors of NMDA but not AMPA currents in rat neostriatal neurons

    PubMed Central

    Wirkner, Kerstin; Assmann, Heike; Köles, Laszlo; Gerevich, Zoltan; Franke, Heike; Nörenberg, Wolfgang; Boehm, Rudolf; Illes, Peter

    2000-01-01

    Whole-cell patch clamp experiments were used to investigate the transduction mechanism of adenosine A2A receptors in modulating N-methyl-D-aspartate (NMDA)-induced currents in rat striatal brain slices. The A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine (CGS 21680) inhibited the NMDA, but not the (S)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) current in a subset of striatal neurons. Lucifer yellow-filled pipettes in combination with immunostaining of A2A receptors were used to identify CGS 21680-sensitive cells as typical medium spiny striatal neurons. Dibutyryl cyclic AMP and the protein kinase A activator Sp-cyclic AMPs, but not the protein kinase A inhibitors Rp-cyclic AMPS or PKI(14–24)amide abolished the inhibitory effect of CGS 21680. The phospholipase C inhibitor U-73122, but not the inactive structural analogue U-73343 also interfered with CGS 21680. The activation of protein kinase C by phorbol 12-myristate 13-acetate or the blockade of this enzyme by staurosporine did not alter the effect of CGS 21680. Heparin, an antagonist of inositol 1,4,5-trisphosphate (InsP3) and a more efficient buffering of intracellular Ca2+ by BAPTA instead of EGTA in the pipette solution, abolished the CGS 21680-induced inhibition. The calmodulin antagonist W-7 and cytochalasin B which enhances actin depolymerization also prevented the effect of CGS 21680; the calmodulin kinase II inhibitors CaM kinase II(281–309) and KN-93 but not the inactive structural analogue KN-92 were also effective. The calcineurin inhibitor deltamethrin did not interfere with CGS 21680. It is suggested that the transduction mechanism of A2A receptors to inhibit NMDA receptor channels is the phospholipase C/InsP3/calmodulin and calmodulin kinase II pathway. The adenylate cyclase/protein kinase A and phospholipase C/protein kinase C pathways do not appear to be involved. PMID:10807662

  5. Ginger and Its Pungent Constituents Non-Competitively Inhibit Serotonin Currents on Visceral Afferent Neurons

    PubMed Central

    Jin, Zhenhua; Lee, Goeun; Kim, Sojin; Park, Cheung-Seog; Park, Yong Seek

    2014-01-01

    Nausea and emesis are a major side effect and obstacle for chemotherapy in cancer patients. Employ of antiemetic drugs help to suppress chemotherapy-induced emesis in some patients but not all patients. Ginger, an herbal medicine, has been traditionally used to treat various kinds of diseases including gastrointestinal symptoms. Ginger is effective in alleviating nausea and emesis, particularly, for cytotoxic chemotherapy drug-induced emesis. Ginger-mediated antiemetic effect has been attributed to its pungent constituents-mediated inhibition of serotonin (5-HT) receptor activity but its cellular mechanism of action is still unclear. Emetogenic chemotherapy drugs increase 5-HT concentration and activate visceral vagal afferent nerve activity. Thus, 5-HT mediated vagal afferent activation is essential to provoke emesis during chemotherapy. In this experiment, water extract of ginger and its three major pungent constituent's effect on 5-HT-evoked responses were tested on acutely dispersed visceral afferent neurons with patch-clamp methods. The ginger extract has similar effects to antiemetic drug ondansetron by blocking 5-HT-evoked responses. Pungent constituents of the ginger, [6]-shogaol, [6]-gingerol, and zingerone inhibited 5-HT responses in a dose dependent manner. The order of inhibitory potency for these compounds were [6]-shogaol>[6]-gingerol>zingerone. Unlike well-known competitive 5-HT3 receptor antagonist ondansetron, all tested ginger constituents acted as non-competitive antagonist. Our results imply that ginger and its pungent constituents exert antiemetic effects by blocking 5-HT-induced emetic signal transmission in vagal afferent neurons. PMID:24757377

  6. Ginger and its pungent constituents non-competitively inhibit serotonin currents on visceral afferent neurons.

    PubMed

    Jin, Zhenhua; Lee, Goeun; Kim, Sojin; Park, Cheung-Seog; Park, Yong Seek; Jin, Young-Ho

    2014-04-01

    Nausea and emesis are a major side effect and obstacle for chemotherapy in cancer patients. Employ of antiemetic drugs help to suppress chemotherapy-induced emesis in some patients but not all patients. Ginger, an herbal medicine, has been traditionally used to treat various kinds of diseases including gastrointestinal symptoms. Ginger is effective in alleviating nausea and emesis, particularly, for cytotoxic chemotherapy drug-induced emesis. Ginger-mediated antiemetic effect has been attributed to its pungent constituents-mediated inhibition of serotonin (5-HT) receptor activity but its cellular mechanism of action is still unclear. Emetogenic chemotherapy drugs increase 5-HT concentration and activate visceral vagal afferent nerve activity. Thus, 5-HT mediated vagal afferent activation is essential to provoke emesis during chemotherapy. In this experiment, water extract of ginger and its three major pungent constituent's effect on 5-HT-evoked responses were tested on acutely dispersed visceral afferent neurons with patch-clamp methods. The ginger extract has similar effects to antiemetic drug ondansetron by blocking 5-HT-evoked responses. Pungent constituents of the ginger, [6]-shogaol, [6]-gingerol, and zingerone inhibited 5-HT responses in a dose dependent manner. The order of inhibitory potency for these compounds were [6]-shogaol>[6]-gingerol>zingerone. Unlike well-known competitive 5-HT3 receptor antagonist ondansetron, all tested ginger constituents acted as non-competitive antagonist. Our results imply that ginger and its pungent constituents exert antiemetic effects by blocking 5-HT-induced emetic signal transmission in vagal afferent neurons. PMID:24757377

  7. Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death.

    PubMed

    Hemendinger, Richelle A; Armstrong, Edward J; Brooks, Benjamin Rix

    2011-03-15

    Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC₅₀ (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolate (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC₅₀ (concentration at which 50% of maximal cell death is inhibited) of 0.6 μM and 0.4 μM, respectively. In contrast, MTHF (up to 10 μM) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS. PMID:21237187

  8. Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death

    SciTech Connect

    Hemendinger, Richelle A. Armstrong, Edward J.; Brooks, Benjamin Rix

    2011-03-15

    Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC{sub 50} (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolate (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC{sub 50} (concentration at which 50% of maximal cell death is inhibited) of 0.6 {mu}M and 0.4 {mu}M, respectively. In contrast, MTHF (up to 10 {mu}M) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS.

  9. Inhibition of mast cells by algae.

    PubMed

    Price, Joseph A; Sanny, Charles; Shevlin, Dennis

    2002-01-01

    There is a history of use of algae as foods and as food additives, or nutraceuticals. Although algae are a safe component of human foods and animal feeds, the effects of the algae other than as a source of protein are not clear. We examined the prevalence of an antiinflammatory activity in selected algae using, as an assay system, the inhibition of histamine release from mast cells. Methanolic extracts of eleven algae were examined for activity to inhibit the release of histamine from mast cells in vitro. This activity was found widely among the samples tested. The activities of these extracts were not uniformly stable in acid methanol. Selected extracts studied further did not separate with the use of size-exclusion filtration filters. LH-20 chromatography suggested at least two main elution areas of activity of the Chlorella extract. In summary, we saw wide phylogenetic dispersion of mast cell inhibition activity, suggesting that this antiinflammatory property is common in algae. This effect was apparently due to multiple activities within the algal extracts. PMID:12639395

  10. Ginkgo biloba Extract (EGb 761®) Inhibits Glutamate-induced Up-regulation of Tissue Plasminogen Activator Through Inhibition of c-Fos Translocation in Rat Primary Cortical Neurons.

    PubMed

    Cho, Kyu Suk; Lee, Ian Myungwon; Sim, Seobo; Lee, Eun Joo; Gonzales, Edson Luck; Ryu, Jong Hoon; Cheong, Jae Hoon; Shin, Chan Young; Kwon, Kyoung Ja; Han, Seol-Heui

    2016-01-01

    EGb 761(®) , a standardized extract of Ginkgo biloba leaves, has antioxidant and antiinflammatory properties in experimental models of neurodegenerative disorders such as stroke and Alzheimer's disease. Tissue plasminogen activator (tPA) acts a neuromodulator and plays a crucial role in the manifestation of neurotoxicity leading to exaggerated neuronal cell death in neurological insult conditions. In this study, we investigated the effects of EGb 761 on the basal and glutamate-induced activity and expression of tPA in rat primary cortical neurons. Under basal condition, EGb 761 inhibited both secreted and cellular tPA activities, without altering tPA mRNA level, as modulated by the activation of p38. Compared with basal condition, EGb 761 inhibited the glutamate-induced up-regulation of tPA mRNA resulting in the normalization of overt tPA activity and expression. c-Fos is a component of AP-1, which plays a critical role in the modulation of tPA expression. Interestingly, EGb 761 inhibited c-Fos nuclear translocation without affecting c-Fos expression in glutamate-induced rat primary cortical neurons. These results demonstrated that EGb 761 can modulate tPA activity under basal and glutamate-stimulated conditions by both translational and transcriptional mechanisms. Thus, EGb 761 could be a potential and effective therapeutic strategy in tPA-excessive neurotoxic conditions. PMID:26478151

  11. Cabergoline, Dopamine D2 Receptor Agonist, Prevents Neuronal Cell Death under Oxidative Stress via Reducing Excitotoxicity

    PubMed Central

    Odaka, Haruki; Numakawa, Tadahiro; Adachi, Naoki; Ooshima, Yoshiko; Nakajima, Shingo; Katanuma, Yusuke; Inoue, Takafumi; Kunugi, Hiroshi

    2014-01-01

    Several lines of evidence demonstrate that oxidative stress is involved in the pathogenesis of neurodegenerative diseases, including Parkinson's disease. Potent antioxidants may therefore be effective in the treatment of such diseases. Cabergoline, a dopamine D2 receptor agonist and antiparkinson drug, has been studied using several cell types including mesencephalic neurons, and is recognized as a potent radical scavenger. Here, we examined whether cabergoline exerts neuroprotective effects against oxidative stress through a receptor-mediated mechanism in cultured cortical neurons. We found that neuronal death induced by H2O2 exposure was inhibited by pretreatment with cabergoline, while this protective effect was eliminated in the presence of a dopamine D2 receptor inhibitor, spiperone. Activation of ERK1/2 by H2O2 was suppressed by cabergoline, and an ERK signaling pathway inhibitor, U0126, similarly protected cortical neurons from cell death. This suggested the ERK signaling pathway has a critical role in cabergoline-mediated neuroprotection. Furthermore, increased extracellular levels of glutamate induced by H2O2, which might contribute to ERK activation, were reduced by cabergoline, while inhibitors for NMDA receptor or L-type Ca2+ channel demonstrated a survival effect against H2O2. Interestingly, we found that cabergoline increased expression levels of glutamate transporters such as EAAC1. Taken together, these results suggest that cabergoline has a protective effect on cortical neurons via a receptor-mediated mechanism including repression of ERK1/2 activation and extracellular glutamate accumulation induced by H2O2. PMID:24914776

  12. Liver epithelial cells inhibit proliferation and invasiveness of hepatoma cells.

    PubMed

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Jeng, Wen-Juei; Sheen, I-Shyan; Li, Shih-Yun; Hung, Zih-Hang; Hsiau, Hsin-I; Yu, Ming-Che; Chang, Chiung-Fang

    2016-03-01

    Hepatocellular carcinoma (HCC) is a worldwide malignancy with poor prognosis. Liver progenitors or stem cells could be a potential therapy for HCC treatment since they migrate toward tumors. Rat liver epithelial (RLE) cells have both progenitor and stem cell-like properties. Therefore, our study elucidated the therapeutic effect of RLE cells in rat hepatoma cells. RLE cells were isolated from 10-day old rats and characterized for stem cell marker expression. RLE cells and rat hepatoma cells (H4-IIE-C3 cells) were co-cultured and divided into four groups with different ratios of RLE and hepatoma cells. Group A had only rat hepatoma cells as a control group. The ratios of rat hepatoma and RLE cells in group B, C and D were 5:1, 1:1 and 1:5, respectively. Effective inhibition of cell proliferation and migration was found in group D when compared to group A. There was a significant decrease in Bcl2 expression and increase in late apoptosis of rat hepatoma cells when adding more RLE cells. RLE cells reduced cell proliferation and migration of rat hepatoma cells. These results suggested that RLE cells could be used as a potential cell therapy. PMID:26647726

  13. Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons

    PubMed Central

    Wang, Zun-Yi; McDowell, Thomas; Wang, Peiqing; Alvarez, Roxanne; Gomez, Timothy; Bjorling, Dale E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100 ng/ml) for 30 minutes significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca2+ concentration). Pretreatment with the CB1 agonist ACEA (10 nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling. PMID:25088915

  14. The combination of 1α,25dihydroxyvitaminD3 with resveratrol improves neuronal degeneration by regulating endoplasmic reticulum stress, insulin signaling and inhibiting tau hyperphosphorylation in SH-SY5Y cells.

    PubMed

    Cheng, Jinbo; Xia, Xianghou; Rui, Yehua; Zhang, Zengli; Qin, Liqiang; Han, Shufen; Wan, Zhongxiao

    2016-07-01

    Endoplasmic reticulum (ER) stress is a critical factor involved in the pathogenesis of Alzheimer's disease (AD). Vitamin D and resveratrol are two nutritional factors that have reported neuroprotective effects, and findings from cellular models suggest that resveratrol could potentiate vitamin D's effects. We aimed to determine the effects of vitamin D & resveratrol on ER stress mediated neurodegeneration and whether synergistic effects existed. Tunicamycin and Aβ25-35 was utilized to induce ER stress in SH-SY5Y cells, cells were then incubated with vitamin D and resveratrol. The combination of vitamin D & resveratrol completely reversed tunicamycin and Aβ25-35 induced cytotoxicity in SH-SY5Y cells, as well as elevation in ER stress markers (i.e.GRP78, p-eIF2α and CHOP), insulin signaling disruption (i.e. elevation in p-IRS-1serine307 and reduction in p-Akt serine473) and tau phosphorylation (i.e. reduction in p-GSK3β serine9, and elevation in p-Tau serine396 &404). Further studies are required to clarify whether the observed synergistic effects in the present study would also existed in vivo, this will lay scientific foundation whether the combination of vitamin D with resveratrol might be an effective maneuver in the treatment of AD in human subjects. PMID:27133915

  15. Intracellular acidification by inhibition of the Na+/H+-exchanger leads to caspase-independent death of cerebellar granule neurons resembling paraptosis.

    PubMed

    Schneider, D; Gerhardt, E; Bock, J; Müller, M M; Wolburg, H; Lang, F; Schulz, J B

    2004-07-01

    Potassium withdrawal is commonly used to induce caspase-mediated apoptosis in cerebellar granule neurons in vitro. However, the underlying and cell death-initiating mechanisms are unknown. We firstly investigated potassium efflux through the outward delayed rectifier K+ current (Ik) as a potential mediator. However, tetraethylammoniumchloride, an inhibitor of Ik, was ineffective to block apoptosis after potassium withdrawal. Since potassium withdrawal reduced intracellular pH (pHi) from 7.4 to 7.2, we secondly investigated the effects of intracellular acidosis. To study intracellular acidosis in cerebellar granule neurons, we inhibited the Na+/H+ exchanger (NHE) with 4-isopropyl-3-methylsulfonylbenzoyl-guanidine methanesulfonate (HOE 642) and 5-(N-ethyl-N-isopropyl)-amiloride. Both inhibitors concentration-dependently induced cell death and potentiated cell death after potassium withdrawal. Although inhibition of the NHE induced cell death with morphological criteria of apoptosis in light and electron microscopy including chromatin condensation, positive TUNEL staining and cell shrinkage, no internucleosomal DNA cleavage or activation of caspases was detected. In contrast to potassium withdrawal-induced apoptosis, cell death induced by intracellular acidification was not prevented by insulin-like growth factor-1, cyclo-adenosine-monophosphate, caspase inhi