Science.gov

Sample records for inhibits phosphatidylinositol turnover

  1. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    SciTech Connect

    Boura, Evzen Nencka, Radim

    2015-10-01

    The phosphatidylinositol 4-kinases (PI4Ks) synthesize phosphatidylinositol 4-phosphate (PI4P), a key member of the phosphoinositide family. PI4P defines the membranes of Golgi and trans-Golgi network (TGN) and regulates trafficking to and from the Golgi. Humans have two type II PI4Ks (α and β) and two type III enzymes (α and β). Recently, the crystal structures were solved for both type II and type III kinase revealing atomic details of their function. Importantly, the type III PI4Ks are hijacked by +RNA viruses to create so-called membranous web, an extensively phosphorylated and modified membrane system dedicated to their replication. Therefore, selective and potent inhibitors of PI4Ks have been developed as potential antiviral agents. Here we focus on the structure and function of PI4Ks and their potential in human medicine.

  2. Neomycin inhibits the phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate stimulation of plasma membrane ATPase activity

    SciTech Connect

    Chen, Qiuyun; Boss, W.F. )

    1991-05-01

    The inositol phospholipids, phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP{sub 2}), have been shown to increase the vanadate-sensitive ATPase activity of plant plasma membranes. In this paper, the authors show the effect of various concentrations of phosphatidyinositol, PIP, and PIP{sub 2} on the plasma membrane vanadate-sensitive ATPase activity. PIP and PIP{sub 2} at concentrations at 10 nanomoles per 30 microgram membrane protein per milliliter of reaction mixture caused a twofold and 1.8-fold increase in the ATPase activity, respectively. The effect of these negatively charged phospholipids on the ATPase activity was inhibited by adding the positively charged aminoglycoside, neomycin. Neomycin did not affect the endogenous plasma membrane ATPase activity in the absence of exogenous lipids.

  3. Phosphatidylinositol inhibits respiratory syncytial virus infection

    PubMed Central

    Numata, Mari; Kandasamy, Pitchaimani; Nagashima, Yoji; Fickes, Rachel; Murphy, Robert C.; Voelker, Dennis R.

    2015-01-01

    Respiratory syncytial virus (RSV) infects nearly all children under age 2, and reinfection occurs throughout life, seriously impacting adults with chronic pulmonary diseases. Recent data demonstrate that the anionic pulmonary surfactant lipid phosphatidylglycerol (PG) exerts a potent antiviral effect against RSV in vitro and in vivo. Phosphatidylinositol (PI) is also an anionic pulmonary surfactant phospholipid, and we tested its antiviral activity. PI liposomes completely suppress interleukin-8 production from BEAS2B epithelial cells challenged with RSV. The presence of PI during viral challenge in vitro reduces infection by a factor of >103. PI binds RSV with high affinity, preventing virus attachment to epithelial cells. Intranasal inoculation with PI along with RSV in mice reduces the viral burden 30-fold, eliminates the influx of inflammatory cells, and reduces tissue histopathology. Pharmacological doses of PI persist for >6 h in mouse lung. Pretreatment of mice with PI at 2 h prior to viral infection effectively suppresses inflammation and reduces the viral burden by 85%. These data demonstrate that PI has potent antiviral properties, a long residence time in the extracellular bronchoalveolar compartment, and a significant prophylaxis window. The findings demonstrate PG and PI have complementary roles as intrinsic, innate immune antiviral mediators in the lung. PMID:25561461

  4. Muscarinic cholinergic ligand binding to intact mouse pituitary tumor cells (AtT-20/D16-16) coupling with two biochemical effectors: adenylate cyclase and phosphatidylinositol turnover.

    PubMed

    Akiyama, K; Vickroy, T W; Watson, M; Roeske, W R; Reisine, T D; Smith, T L; Yamamura, H I

    1986-03-01

    (-)-[3H]Quinuclidinyl benzilate (QNB) binding to muscarinic receptors on intact mouse pituitary tumor cells (AtT-20/D16-16) was characterized in an attempt to correlate radioligand binding properties with receptor-coupled biochemical responses. Performing rinse time studies for 2 hr produced a remarkably improved ratio of specific/total (+)-[3H]QNB binding (85%). Kinetic experiments yielded association (k+1) and dissociation (k-1) rate constants of 2.2 X 10(8) M-1 min-1 and 6.8 X 10(-3) min-1, respectively. Receptor occupancy curves demonstrated a uniform population of specific, saturable (-)-[3H]QNB binding sites with a Hill coefficient equal to 1.0 and an apparent dissociation constant (Kd) equal to 34 pM under our conditions. Stereoselectivity was observed with the enantiomers (dexetimide and levetimide) of benzetimide (a factor of 4300). Concentrations of carbachol that produced a half-maximal inhibition of cyclic AMP formation and a concentration of carbachol for producing half-maximal stimulation of phosphatidylinositol turnover in the intact cells were 0.45 and 170 microM, respectively. Schild analysis revealed that pirenzepine, a nonclassical muscarinic antagonist, had a 40-fold greater affinity for reversing carbachol-stimulated phosphatidylinositol turnover (inhibition constant or Ki = 7 nM), compared to its antagonism of the carbachol-mediated inhibition of isoproterenol-stimulated cyclic AMP formation (Ki = 280 nM). Interestingly, pirenzepine inhibited (-)-[3H]QNB binding with a Ki value of 72 nM. In contrast, atropine was nearly equipotent (Ki = 0.3-0.5 nM) in binding studies and in both effector systems. PMID:3005550

  5. Mitogenic stimuli and phosphatidylinositol (PI) turnover in cultured 3T3 fibroblasts

    SciTech Connect

    Kohler, C.; Petersen, R.

    1986-03-01

    The hydrolysis of PI and polyphosphoinositides by phopholipase C is an early and rapid response to cell activation by a variety of neurotransmitters, hormones, growth factors and pharmacological agonists. The authors have examined the role of PI turnover and the generation of second messengers (diacylglycerol and inositol trisphosphate) in the mitogenic response of cultured Balb/c and Swiss 3T3 cells to polypeptide growth factors. Cells were prelabelled with /sup 3/H inositol for 18-20 hours, washed and suspended in Herpes + Li/sup +/ buffer, and stimulated with platelet-derived growth factor (PDGF), vasopressin, insulin, and other growth factors. PI turnover was measured as the increase in total inositol phosphate (IP) production. IP1, IP2, and IP3 were characterized by sequential elution from a Dowex column. Partially purified PDGF produced a 2-4 fold stimulation of total IP production. This was seen as early as 30 seconds after stimulation and increased for up to 1-2 hours. Balb/c cells were more sensitive than Swiss cells to the mitogenic and PI effects of PDGF. Other mitogenic stimuli had differential effects on PI turnover. Vasopressin (4-400 ng/ml) markedly stimulated PI turnover (3-6 fold) in Swiss, but not Balb/c cells. Insulin (100 ng/ml - 10 ..mu..g/ml) increased total IP to a greater degree in Balb/c cells. Epidermal growth factor (10 ng/ml - 10 ..mu..g/ml) had no effect on PI turnover and fibroblast growth factor (10 ng/ml - 10 ..mu..g/ml) only stimulated at the higher concentrations in Swiss cells. Thrombin (1U/ml - 10 U/ml) produced a 1.5 - 2 fold stimulation in Balb/c cells. Thus, various polypeptide growth factors have differential effects on PI turnover depending on their mitogenic potential and the effector cell type.

  6. L-alpha-glycerylphosphorylcholine inhibits the transfer function of phosphatidylinositol transfer protein alpha.

    PubMed

    Komatsu, Hiroaki; Westerman, Jan; Snoek, Gerry T; Taraschi, Theodore F; Janes, Nathan

    2003-12-30

    Phosphatidylinositol transfer protein alpha (PITP-alpha) is a bifunctional phospholipid transfer protein that is highly selective for phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho). Polar lipid metabolites, including L-alpha-glycerylphosphorylcholine (GroPCho), increasingly have been linked to changes in cellular function and to disease. In this study, polar lipid metabolites of PtdIns and PtdCho were tested for their ability to influence PITP-alpha activity. GroPCho inhibited the ability of PITP-alpha to transfer PtdIns or PtdCho between liposomes. The IC(50) of both processes was dependent on membrane composition. D-myo-inositol 1-phosphate and glycerylphosphorylinositol modestly enhanced PITP-alpha-mediated phospholipid transfer. Choline, phosphorylcholine (PCho), CDP-choline, glyceryl-3-phosphate, myo-inositol and D-myo-inositol 1,4,5-trisphosphate had little effect. Membrane surface charge was a strong determinant of the GroPCho inhibition with the inhibition being greatest for highly anionic membranes. GroPCho was shown to enhance the binding of PITP-alpha to anionic vesicles. In membranes of low surface charge, phosphatidylethanolamine (PtdEtn) was a determinant enabling the GroPCho inhibition. Anionic charge and PtdEtn content appeared to increase the strength of PITP-alpha-membrane interactions. The GroPCho-enhanced PITP-alpha-membrane binding was sufficient to cause inhibition, but not sufficient to account for the extent of inhibition observed. Processes associated with strengthened PITP-alpha-membrane binding in the presence of GroPCho appeared to impair the phospholipid insertion/extraction process. PMID:14729069

  7. Inhibition of phosphatidylinositol-3-kinase causes increased sensitivity to radiation through a PKB-dependent mechanism

    SciTech Connect

    Gottschalk, Alexander R. . E-mail: gottschalk@radonc17.ucsf.edu; Doan, Albert; Nakamura, Jean L.; Stokoe, David; Haas-Kogan, Daphne A.

    2005-11-15

    Purpose: To identify whether inhibition of phosphatidylinositol-3-kinase (PI3K) causes increased radiosensitivity through inhibition of protein kinase B (PKB), implicating PKB as an important therapeutic target in prostate cancer. Methods and Materials: The prostate cancer cell line LNCaP was treated with the PI3K inhibitor LY294002, radiation, and combinations of the two therapies. Apoptosis and survival were measured by cell cycle analysis, Western blot analysis for cleaved poly (ADP-ribose) polymerase, and clonogenic survival. To test the hypothesis that inhibition of PKB is responsible for LY294002-induced radiosensitivity, LNCaP cells expressing a constitutively active form of PKB were used. Results: The combination of PI3K inhibition and radiation caused an increase in apoptosis and a decrease in clonogenic survival when compared to either modality alone. The expression of constitutively activated PKB blocked apoptosis induced by combination of PI3K inhibition and radiation and prevented radiosensitization by LY294002. Conclusion: These data indicate that PI3K inhibition increases sensitivity of prostate cancer cell lines to ionizing radiation through inactivation of PKB. Therefore, PTEN mutations, which lead to PKB activation, may play an important role in the resistance of prostate cancer to radiation therapy. Targeted therapy against PKB could be beneficial in the management of prostate cancer patients.

  8. Phosphatidylinositol 4,5-bisphosphate competitively inhibits phorbol ester binding to protein kinase C

    SciTech Connect

    Chauhan, A.; Cauhan, V.P.S.; Deshmukh, D.S.; Brokerhoff, H. )

    1989-06-13

    Calcium phospholipid dependent protein kinase C (PKC) is activated by diacylglycerol (DG) and by phorbol esters and is recognized to be the phorbol ester receptor of cells; DG displaces phorbol ester competitively from PKC. A phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}), can also activate PKC in the presence of phosphatidylserine (PS) and Ca{sup 2+} with a K{sub PIP{sub 2}} of 0.04 mol %. Preliminary experiments have suggested a common binding site for PIP{sub 2} and DG on PKC. Here, the authors investigate the effect of PIP{sub 2} on phorbol ester binding to PKC in a mixed micellar assay. In the presence of 20 mol % PS, PIP{sub 2} inhibited specific binding of ({sup 3}H)phorbol 12,13-dibutyrate (PDBu) in a dose-dependent fashion up to 85% at 1 mol %. Inhibition of binding was more pronounced with PIP{sub 2} than with DG. Scatchard analysis indicated that the decrease in binding of PDBu in the presence of PIP{sub 2} is the result of an altered affinity for the phorbol ester rather than of a change in maximal binding. The plot of apparent dissociation constants (K{sub d{prime}}) against PIP{sub 2} concentration was linear over a range of 0.01-1 mol % with a K{sub i} of 0.043 mol % and confirmed the competitive nature of inhibition between PDBu and PIP{sub 2}. Competition between PIP{sub 2} and phorbol ester could be determined in a liposomal assay system also. These results indicate that PIP{sub 2}, DG, and phorbol ester all compete for the same activator-receiving region on the regulatory moiety of protein kinase C, and they lend support to the suggestion that PIP{sub 2} is a primary activator of the enzyme.

  9. Gentamicin inhibits degradation of phosphatidylinositol in primary culture of rabbit proximal tubular cells

    SciTech Connect

    Josepovitz, C.; Ramsammy, L.; Kalovanides, G.J.

    1986-03-01

    Gentamicin (G) induces a phosphatidylinositol (PI) enriched phospholipidosis in renal proximal tubular cells, the cause of which has been attributed to inhibition of degradation by lysosomal phospholipases. To test this hypothesis the authors measured the effect of G on phospholipid (PL) metabolism in primary cultures of rabbit proximal tubular cells. Cells incubated in medium containing G (10/sup -5/-10/sup -3/M) accumulated G and PL in a dose and time dependent manner. At the end of 6 days the total PL of cells incubated in G (10/sup -3/M) was 413 +/- 39 nmol/mg protein compared to 288 +/- 13 nmol/mg protein in control cells. The cell content of PI increased 335% above baseline. To assess the role of impaired degradation in the accumulation of PI, cells were incubated in medium containing (/sup 3/H)myoinositol for two days to label the PI pool after which cells were exposed to G (10/sup -3/M) for 2,4 or 6 days and the decline of (/sup 3/H)PI was determined. In control cultures the time for (/sup 3/H)PI to decline 50% was 1.17 days. In cultures exposed to G the t 1/2 was 2.88 days. The authors conclude that rabbit proximal tubular cells grown in primary culture accumulate G and develop a PI-enriched phospholipidosis which is due at least in part to decreased degradation of PI. The results lend strong support to the hypothesis that G-induced phospholipidosis reflects inhibition of lysosomal phospholipases.

  10. The cytomegalovirus homolog of interleukin-10 requires phosphatidylinositol 3-kinase activity for inhibition of cytokine synthesis in monocytes.

    PubMed

    Spencer, Juliet V

    2007-02-01

    Human cytomegalovirus (CMV) has evolved numerous strategies for evading host immune defenses, including piracy of cellular cytokines. A viral homolog of interleukin-10, designated cmvIL-10, binds to the cellular IL-10 receptor and effects potent immune suppression. The signaling pathways employed by cmvIL-10 were investigated, and the classic IL-10R/JAK1/Stat3 pathway was found to be activated in monocytes. However, inhibition of JAK1 had little effect on cmvIL-10-mediated suppression of tumor necrosis factor alpha (TNF-alpha) production. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway had a more significant impact on TNF-alpha levels but did not completely relieve the immune suppression, demonstrating that cmvIL-10 stimulates multiple signaling pathways to modulate cell function. PMID:17121792

  11. Relationship between phosphatidylinositol (PI) turnover and Ca/sup 2 +/ utilization induced by. cap alpha. /sub 1/-adrenoceptor stimulation in rat aorta

    SciTech Connect

    Chiu, A.T.; P.B.M.W.M. Timmermans

    1986-03-05

    The authors have recently demonstrated that stimulation of ..cap alpha../sub 1/-adrenoceptors in rat aorta can activate two distinct processes of Ca/sup 2 +/ utilization for contraction. Sgd 101/75 (indanidine) was found to exclusively facilitate an influx of extracellular Ca/sup 2 +/ which was sensitive to nifedipine inhibition, whereas norepinephrine (NE) elicited both influx and intracellular release of Ca/sup 2 +/. The latter process was insensitive to nifedipine. In this study, the causal relationship between ..cap alpha../sub 1/-receptor activation and the mediatory responses, such as PI turnover has been evaluated. NE (1 x 10/sup -5/ M) maximally induced a /sup 45/Ca/sup 2 +/ efflux and also maximally increased the accumulation of /sup 3/H-inositol-1-PO/sub 4/ (IP) in the presence of 10 mM LiCl in a time-dependent fashion (0-60 min). This accumulation reached 1000% over control at 60 min of stimulation which could be abolished by 10/sup -6/ M prazosin and partially by 10/sup -6/ M yohimbine, while it was unaffected by nifedipine. Potassium depolarization as well as Sgd 101/75 (1 x 10/sup -5/ M) only slightly invoked IP production. However, the effect of NE on IP formation was antagonized by Sgd 101/75. These results support the concept that PI turnover mediates primarily the process of intracellular Ca/sup 2 +/ release subsequent to ..cap alpha../sub 1/-receptor activation in rat aorta.

  12. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    SciTech Connect

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-10-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca{sup 2+} concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.

  13. Clionosterol and ethyl cholestan-22-enol isolated from the rhizome of Polygala tenuifolia inhibit phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Le, Thi Kim Van; Jeong, Jin Ju; Kim, Dong-Hyun

    2012-01-01

    Phosphatidylinositol 3-kinase (PI3K)/Akt inhibitors were isolated from the rhizome of Polygala tenuifolia WILLD (PT, Polygalaceae), which has been used in traditional Chinese medicine for inflammation, dementia, amnesia, neurasthenia and cancer, by activity-guided fractionation. For the assay of PI3K/Akt pathway, cytoprotective Tat-transduced CHME5 cells, which are the cytoprotective phenotype against lypopolysaccharide (LPS)/cycloheximide (CHX), were used. We isolated 4 anti-cytoprotective compounds, clionasterol (1), ethyl cholestan-22-enol (2), 3-O-β-D-glucosyl ethyl cholestan-22-enol (3), and 3-O-β-D-glucopyranosyl clionasterol (4) from EtOAc fraction of PT against Tat-transduced CHME5 cells. Of them, (1) and (2) most potently abolished cytoprotective effect of Tat-transduced CHME5 cells. These constituents (1) and (2) inhibited the activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and its downstream molecules, Akt/glycogen synthase kinase (GSK)3β, in PI3K/Akt cell survival signaling pathway, but did not suppress the activation of PI3K. Based on these finding, (1) and (2) may abolish the cytoprotective phenotype of Tat-transduced CHME5 cells by inhibiting PDK1 phosphorylation in PI3K/Akt pathway. PMID:22863942

  14. Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor β-mediated phosphatidylinositol-3 kinase/Akt signaling

    PubMed Central

    Nguyen, Cuong Thach; Luong, Truc Thanh; Kim, Gyu-Lee; Pyo, Suhkneung; Rhee, Dong-Kwon

    2014-01-01

    Background Ginseng has been shown to exert antistress effects both in vitro and in vivo. However, the effects of ginseng on stress in brain cells are not well understood. This study investigated how Korean Red Ginseng (KRG) controls hydrogen peroxide-induced apoptosis via regulation of phosphatidylinositol-3 kinase (PI3K)/Akt and estrogen receptor (ER)-β signaling. Methods Human neuroblastoma SK-N-SH cells were pretreated with KRG and subsequently exposed to H2O2. The ability of KRG to inhibit oxidative stress-induced apoptosis was assessed in MTT cytotoxicity assays. Apoptotic protein expression was examined by Western blot analysis. The roles of ER-β, PI3K, and p-Akt signaling in KRG regulation of apoptosis were studied using small interfering RNAs and/or target antagonists. Results Pretreating SK-N-SH cells with KRG decreased expression of the proapoptotic proteins p-p53 and caspase-3, but increased expression of the antiapoptotic protein BCL2. KRG pretreatment was also associated with increased ER-β, PI3K, and p-Akt expression. Conversely, ER-β inhibition with small interfering RNA or inhibitor treatment increased p-p53 and caspase-3 levels, but decreased BCL2, PI3K, and p-Akt expression. Moreover, inhibition of PI3K/Akt signaling diminished p-p53 and caspase-3 levels, but increased BCL2 expression. Conclusion Collectively, the data indicate that KRG represses oxidative stress-induced apoptosis by enhancing PI3K/Akt signaling via upregulation of ER-β expression. PMID:25535479

  15. Fatty acid stimulation of membrane phosphatidylinositol hydrolysis by brain phosphatidylinositol phosphodiesterase.

    PubMed Central

    Irvine, R F; Letcher, A J; Dawson, R M

    1979-01-01

    The hydrolysis of membrane-bound phosphatidylinositol in rat liver microsomal fraction by the soluble phosphatidylinositol phosphodiesterase from rat brain was markedly stimulated by oleic acid or arachidonic acid. The stimulation did not require added calcium, although it was abolished by EDTA. Lysophosphatidylcholine also totally suppressed the stimulation. A possible role for the fatty acid content of a membrane in controlling phosphatidylinositol turnover is suggested. PMID:220968

  16. Autophagy and endosomal trafficking inhibition by Vibrio cholerae MARTX toxin phosphatidylinositol-3-phosphate-specific phospholipase A1 activity

    PubMed Central

    Agarwal, Shivani; Kim, Hyunjin; Chan, Robin B.; Agarwal, Shivangi; Williamson, Rebecca; Cho, Wonhwa; Paolo, Gilbert D.; Satchell, Karla J. F.

    2015-01-01

    Vibrio cholerae, responsible for acute gastroenteritis secretes a large multifunctional-autoprocessing repeat-in-toxin (MARTX) toxin linked to evasion of host immune system, facilitating colonization of small intestine. Unlike other effector domains of the multifunctional toxin that target cytoskeleton, the function of alpha-beta hydrolase (ABH) remained elusive. This study demonstrates that ABH is an esterase/lipase with catalytic Ser–His–Asp triad. ABH binds with high affinity to phosphatidylinositol-3-phosphate (PtdIns3P) and cleaves the fatty acid in PtdIns3P at the sn1 position in vitro making it the first PtdIns3P-specific phospholipase A1 (PLA1). Expression of ABH in vivo reduces intracellular PtdIns3P levels and its PtdIns3P-specific PLA1 activity blocks endosomal and autophagic pathways. In accordance with recent studies acknowledging the potential of extracellular pathogens to evade or exploit autophagy to prevent their clearance and facilitate survival, this is the first report highlighting the role of ABH in inhibiting autophagy and endosomal trafficking induced by extracellular V. cholerae. PMID:26498860

  17. Hyperbaric hyperoxia reversibly inhibits erythrocyte phospholipid fatty acid turnover

    NASA Technical Reports Server (NTRS)

    Dise, Craig A.; Clark, James M.; Lambersten, Christian J.; Goodman, David B. P.

    1987-01-01

    The effect of hyperbaric hyperoxia on the acylation of membrane phospholipid was studied by measuring the rates of activation of exogenous tritiated oleic acid to acyl thioester and of transesterification of the thioester into membrane phospholipids in intact human erythrocytes obtained 1 h after an exposure of the subjects to a hyperbaric oxygen atmosphere (3.5 h, 100 pct O2, 3 ATA). Exposure to pure oxygen was found to inhibit both the acylation and transesterification reactions by more than 30 percent, with partial recovery detected 24 h later. On the other hand, no rate changes were observed when isolated membranes from the same batches of cells were used in similar experiments. It is suggested that the decrease in the incorporation of tritiated oleic acid after hyperbaric hyperoxia may reflect an early event in the pathogenesis of oxygen-induced cellular injury and that it may be a useful index for the assessment of the tolerance of tissues to hyperoxia.

  18. Protein turnover and cellular autophagy in growing and growth-inhibited 3T3 cells

    SciTech Connect

    Papadopoulos, T.; Pfeifer, U. )

    1987-07-01

    The relationship between growth, protein degradation, and cellular autophagy was tested in growing and in growth-inhibited 3T3 cell monolayers. For the biochemical evaluation of DNA and protein metabolism, growth-inhibited 3T3 cell monolayers with high cell density and growing 3T3 cell monolayers with low cell density were labeled simultaneously with ({sup 14}C)thymidine and ({sup 3}H)leucine. The evaluation of the DNA turnover and additional ({sup 3}H)thymidine autoradiography showed that 24 to 5% of 3T3 cells continue to replicate even in the growth-inhibited state, where no accumulation of protein and DNA can be observed. Cell loss, therefore, has to be assumed to compensate for the ongoing cell proliferation. When the data of protein turnover were corrected for cell loss, it was found that the rate constant of protein synthesis in nongrowing monolayers was reduced to half the value found in growing monolayers. Simultaneously, the rate constant of protein degradation in nongrowing monolayers was increased to about 1.5-fold the value of growing monolayers. These data are in agreement with the assumption that cellular autophagy represents a major pathway of regulating protein degradation in 3T3 cells and that the regulation of autophagic protein degradation is of relevance for the transition from a growing to a nongrowing state.

  19. Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A/sub 2/

    SciTech Connect

    Burch, R.M.; Axelrod, J.

    1987-09-01

    In Swiss 3T3 fibroblasts bradykinin stimulated inositol phosphate (InsP) formation and prostaglandin E/sub 2/ (PGE/sub 2/) synthesis. The EC/sub 50/ values for stimulation of PGE/sub 2/ synthesis and InsP formation by bradykinin were similar, 200 pM and 275 pM, respectively. Guanosine-5'-(..gamma..-thio)triphosphate stimulated PGE/sub 2/ synthesis and InsP formation, and guanosine-5'-(..beta..-thio)diphosphate inhibited both PGE/sub 2/ synthesis and InsP formation stimulated by bradykinin. Neither bradykinin-stimulated PGE/sub 2/ synthesis nor InsP formation was sensitive to pertussis toxin. Phorbol ester, dexamethasone, and cycloheximide distinguished between bradykinin-stimulated PGE/sub 2/ synthesis and InsP formation. Phorbol 12-myristate 13-acetate enhanced bradykinin-stimulated PGE/sub 2/ synthesis but inhibited bradykinin-stimulated InsP formation. Pretreatment of cells with dexamethasone for 24 hr inhibited bradykinin-stimulated PGE/sub 2/ synthesis but was without effect on bradykinin-stimulated InsP formation. Cycloheximide inhibited on bradykinin-stimulated InsP formation. When bradykinin was added to cells prelabeled with (/sup 3/H) choline, the phospholipase A/sub 2/ products lysophosphatidylcholine and glycerophosphocholine were generated. The data suggest that bradykinin receptors are coupled by GTP-binding proteins to both phospholipase C and phospholipase A/sub 2/ and that phospholipase A/sub 2/ is the enzyme that catalyzes release of arachidonate for prostaglandin synthesis.

  20. Biosynthesis of mycobacterial phosphatidylinositol mannosides.

    PubMed Central

    Morita, Yasu S; Patterson, John H; Billman-Jacobe, Helen; McConville, Malcolm J

    2004-01-01

    All mycobacterial species, including pathogenic Mycobacterium tuberculosis, synthesize an abundant class of phosphatidylinositol mannosides (PIMs) that are essential for normal growth and viability. These glycolipids are important cell-wall and/or plasma-membrane components in their own right and can also be hyperglycosylated to form other wall components, such as lipomannan and lipoarabinomannan. We have investigated the steps involved in the biosynthesis of the major PIM species in a new M. smegmatis cell-free system. A number of apolar and polar PIM intermediates were labelled when this system was continuously labelled or pulse-chase-labelled with GDP-[3H]Man, and the glycan head groups and the acylation states of these species were determined by chemical and enzymic treatments and octyl-Sepharose chromatography respectively. These analyses showed that (1) the major apolar PIM species, acyl-PIM2, can be synthesized by at least two pathways that differ in the timing of the first acylation step, (2) early PIM intermediates containing a single mannose residue can be modified with two fatty acid residues, (3) formation of polar PIM species from acyl-PIM2 is amphomycin-sensitive, indicating that polyprenol phosphate-Man, rather than GDP-Man, is the donor for these reactions, (4) modification of acylated PIM4 with alpha1-2- or alpha1-6-linked mannose residues is probably the branch point in the biosyntheses of polar PIM and lipoarabinomannan respectively and (5) GDP strongly inhibits the synthesis of early PIM intermediates and increases the turnover of polyprenol phosphate-Man. These findings are incorporated into a revised pathway for mycobacterial PIM biosynthesis. PMID:14627436

  1. Myristoylated alanine-rich C kinase substrate (MARCKS) produces reversible inhibition of phospholipase C by sequestering phosphatidylinositol 4,5-bisphosphate in lateral domains.

    PubMed

    Glaser, M; Wanaski, S; Buser, C A; Boguslavsky, V; Rashidzada, W; Morris, A; Rebecchi, M; Scarlata, S F; Runnels, L W; Prestwich, G D; Chen, J; Aderem, A; Ahn, J; McLaughlin, S

    1996-10-18

    The myristoylated alanine-rich protein kinase C substrate (MARCKS) is a major protein kinase C (PKC) substrate in many different cell types. MARCKS is bound to the plasma membrane, and several recent studies suggest that this binding requires both hydrophobic insertion of its myristate chain into the bilayer and electrostatic interaction of its cluster of basic residues with acidic lipids. Phosphorylation of MARCKS by PKC introduces negative charges into the basic cluster, reducing its electrostatic interaction with acidic lipids and producing translocation of MARCKS from membrane to cytoplasm. The present study shows that physiological concentrations of MARCKS (<10 microM) inhibit phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) in phospholipid vesicles. A peptide corresponding to the basic cluster, MARCKS(151-175), produces a similar inhibition, which was observed with both PLC-delta1 and -beta1. Direct fluorescence microscopy observations demonstrate that the MARCKS peptide forms lateral domains enriched in the acidic lipids phosphatidylserine and PIP2 but not PLC, which accounts for the observed inhibition of PIP2 hydrolysis. Phosphorylation of MARCKS(151-175) by PKC releases the inhibition and allows PLC to produce a burst of inositol 1,4, 5-trisphosphate and diacylglycerol. PMID:8824266

  2. Dehydroglyasperin D Inhibits the Proliferation of HT-29 Human Colorectal Cancer Cells Through Direct Interaction With Phosphatidylinositol 3-kinase

    PubMed Central

    Jung, Sung Keun; Jeong, Chul-Ho

    2016-01-01

    Background: Despite recent advances in therapy, colorectal cancer still has a grim prognosis. Although licorice has been used in East Asian traditional medicine, the molecular properties of its constituents including dehydroglyasperin D (DHGA-D) remain unknown. We sought to evaluate the inhibitory effect of DHGA-D on colorectal cancer cell proliferation and identify the primary signaling molecule targeted by DHGA-D. Methods: We evaluated anchorage-dependent and -independent cell growth in HT-29 human colorectal adenocarcinoma cells. The target protein of DHGA-D was identified by Western blot analysis with a specific antibody, and direct interaction between DHGA-D and the target protein was confirmed by kinase and pull-down assays. Cell cycle analysis by flow cytometry and further Western blot analysis was performed to identify the signaling pathway involved. Results: DHGA-D significantly suppressed anchorage-dependent and -independent HT-29 colorectal cancer cell proliferation. DHGA-D directly suppressed phosphatidylinositol 3-kinase (PI3K) activity and subsequent Akt phosphorylation and bound to the p110 subunit of PI3K. DHGA-D also significantly induced G1 cell cycle arrest, together with the suppression of glycogen synthase kinase 3β and retinoblastoma phosphorylation and cyclin D1 expression. Conclusions: DHGA-D has potent anticancer activity and targets PI3K in human colorectal adenocarcinoma HT-29 cells. To our knowledge, this is the first report to detail the molecular basis of DHGA-D in suppressing colorectal cancer cell growth. PMID:27051646

  3. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    SciTech Connect

    McDonald, Gail T.; Sullivan, Richard; Pare, Genevieve C.; Graham, Charles H.

    2010-11-15

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G{sub 1} phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21{sup Waf1/Cip1} and p27{sup Kip1}; and knockdown of p27{sup kip1} with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  4. Echinacea purpurea root extract inhibits TNF release in response to Pam3Csk4 in a phosphatidylinositol-3-kinase dependent manner.

    PubMed

    Fast, David J; Balles, John A; Scholten, Jeffrey D; Mulder, Timothy; Rana, Jatinder

    2015-10-01

    Polysaccharides derived from Echinacea have historically been shown to be immunostimulatory. We describe in this work however the anti-inflammatory effect of a water extract of Echinacea purpurea roots (EPRW) that inhibited Pam3Csk4 stimulated production of TNFα by human monocytic THP-1 cells. The polyphenols and alkylamides typically found in Echinacea extracts were absent in EPRW suggesting that the anti-inflammatory component(s) was a polysaccharide. This anti-inflammatory activity was shown to be mediated by the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway as chemical inhibition of PI3K abolished the EPRW anti-inflammatory effect. Demonstration of phosphorylation of Akt and ribosomal S6 proteins, downstream targets of PI3K confirmed EPRW-mediated activation of this pathway. In conclusion, this observation suggests that non-alkylamide/non-polyphenolic phytochemicals from Echinacea may contribute in part to some of the anti-inflammatory therapeutic effects such as reduced severity of symptoms that have been observed in vivo in the treatment of upper respiratory tract infections with Echinacea. PMID:26190752

  5. Activation of pp70/85 S6 kinases in interleukin-2-responsive lymphoid cells is mediated by phosphatidylinositol 3-kinase and inhibited by cyclic AMP.

    PubMed Central

    Monfar, M; Lemon, K P; Grammer, T C; Cheatham, L; Chung, J; Vlahos, C J; Blenis, J

    1995-01-01

    Activation of phosphatidylinositol 3-kinase (PI3K) and activation of the 70/85-kDa S6 protein kinases (alpha II and alpha I isoforms, referred to collectively as pp70S6k) have been independently linked to the regulation of cell proliferation. We demonstrate that these kinases lie on the same signalling pathway and that PI3K mediates the activation of pp70 by the cytokine interleukin-2 (IL-2). We also show that the activation of pp70S6k can be blocked at different points along the signalling pathway by using specific inhibitors of T-cell proliferation. Inhibition of PI3K activity with structurally unrelated but highly specific PI3K inhibitors (wortmannin or LY294002) results in inhibition of IL-2-dependent but not phorbol ester (conventional protein kinase C [cPKC])-dependent pp70S6k activation. The T-cell immunosuppressant rapamycin potently antagonizes IL-2-(PI3K)- and phorbol ester (cPKC)-mediated activation of pp70S6k. Thus, wortmannin and rapamycin antagonize IL-2-mediated activation of pp70S6k at distinct points along the PI3K-regulated signalling pathway, or rapamycin antagonizes another pathway required for pp70S6k activity. Agents that raise the concentration of intracellular cyclic AMP (cAMP) and activate cAMP-dependent protein kinase (PKA) also inhibit IL-2-dependent activation of pp70S6k. In this case, inhibition appears to occur at least two points in this signalling path. Like rapamycin, PKA appears to act downstream of cPKC-mediated pp70S6k activation, and like wortmannin, PKA antagonizes IL-2-dependent activation of PI3K. The results with rapamycin and wortmannin are of added interest since the yeast and mammalian rapamycin targets resemble PI3K in the catalytic domain. PMID:7528328

  6. Resveratrol Inhibits LPS-Induced MAPKs Activation via Activation of the Phosphatidylinositol 3-Kinase Pathway in Murine RAW 264.7 Macrophage Cells

    PubMed Central

    Liu, Bin; Deng, Yi-Shu; Zhan, Dong; Chen, Yuan-Li; He, Ying; Liu, Jing; Zhang, Zong-Ji; Sun, Jun; Lu, Di

    2012-01-01

    Background Resveratrol is a natural polyphenolic compound that has cardioprotective, anticancer and anti-inflammatory properties. We investigated the capacity of resveratrol to protect RAW 264.7 cells from inflammatory insults and explored mechanisms underlying inhibitory effects of resveratrol on RAW 264.7 cells. Methodology/Principal Findings Murine RAW 264.7 cells were treated with resveratrol (1, 5, and 10 µM) and/or LPS (5 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by ELISA, RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of Akt, cyclic AMP-responsive element-binding protein (CREB), mitogen-activated protein kinases (MAPKs) cascades, AMP-activated protein kinase (AMPK) and expression of SIRT1(Silent information regulator T1) were measured by western blot. Wortmannin (1 µM), a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor, was used to determine if PI3-K/Akt signaling pathway might be involved in resveratrol’s action on RAW 264.7 cells. Resveratrol significantly attenuated the LPS-induced expression of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in RAW 264.7 cells. Resveratrol increased Akt phosphorylation in a time-dependent manner. Wortmannin, a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor, blocked the effects of resveratrol on LPS-induced RAW 264.7 cells activation. In addition, PI3-K inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of cyclic AMP-responsive element-binding protein (CREB) and mitogen-activated protein kinases (MAPKs) cascades. Meanwhile, PI3-K is essential for resveratrol-mediated phosphorylation of AMPK and expression of SIRT1. Conclusion and Implications This investigation

  7. Autophagy inhibition enhances colorectal cancer apoptosis induced by dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235

    PubMed Central

    YANG, XIAOYU; NIU, BINGXUAN; WANG, LIBO; CHEN, MEILING; KANG, XIAOCHUN; WANG, LUONAN; JI, YINGHUA; ZHONG, JIATENG

    2016-01-01

    Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway performs a central role in tumorigenesis and is constitutively activated in many malignancies. As a novel dual PI3K/mTOR inhibitor currently undergoing evaluation in a phase I/II clinical trial, NVP-BEZ235 indicates a significant antitumor efficacy in diverse solid tumors, including colorectal cancer (CRC). Autophagy is a catabolic process that maintains cellular homeostasis and reduces diverse stresses through lysosomal recycling of the unnecessary and damaged cell components. This process is also observed to antagonize the antitumor efficacy of PI3K/mTOR inhibitor agents such as NVP-BEZ235, via apoptosis inhibition. In the present study, we investigated anti-proliferative and apoptosis-inducing ability of NVP-BEZ235 in SW480 cells and the crosstalk between autophagy and apoptosis in SW480 cells treated with NVP-BEZ235 in combination with an autophagy inhibitor. The results revealed that, NVP-BEZ235 effectively inhibit the growth of SW480 cells by targeting the PI3K/mTOR signaling pathway and induced apoptosis. The inhibition of autophagy with 3-methyladenine or chloroquine inhibitors in combination with NVP-BEZ235 in SW480 cells enhanced the apoptotic rate as componets to NVP-BEZ235 alone. In conclusion, the findings provide a rationale for chemotherapy targeting the PI3K/mTOR signaling pathway presenting a potential therapeutic strategy to enhance the efficacy of dual PI3K/mTOR inhibitor NVP-BEZ235 in combination with an autophagy inhibitor in CRC treatment and treatment of other tumors. PMID:27347108

  8. Effect of phosphatidylinositol-3 kinase inhibition on ovotoxicity caused by 4-vinylcyclohexene diepoxide and 7, 12-dimethylbenz[a]anthracene in neonatal rat ovaries

    SciTech Connect

    Keating, Aileen F.; Mark, Connie J.; Sen, Nivedita; Sipes, I. Glenn; Hoyer, Patricia B.

    2009-12-01

    4-vinylcyclohexene diepoxide (VCD) is an ovotoxicant that specifically destroys primordial and small primary follicles in the ovaries of mice and rats. In contrast, 7,12-dimethylbenz[a]anthracene (DMBA) is ovotoxic to all ovarian follicle classes. This study investigated phosphatidylinositol-3 kinase signaling involvement in VCD- and DMBA-induced ovotoxicity. Postnatal day (PND) 4 Fischer 344 (F344) rat whole ovaries were cultured for 2-12 days in vehicle control, VCD (30 muM), or DMBA (1 muM), +- PI3 kinase inhibitor LY294002 (20 muM) or its inactive analog LY303511 (20 muM). Following culture, ovaries were histologically evaluated, and healthy follicles were classified and counted. PI3 kinase inhibition had no effect on primordial follicle number, but reduced (P < 0.05) small primary and larger follicles beginning on day 4. VCD caused primordial and small primary follicle loss (P < 0.05) beginning on day 6. With PI3 kinase inhibition, VCD did not affect primordial follicles (P > 0.05) at any time, but did cause loss (P < 0.05) of small primary follicles. DMBA exposure caused primordial and small primary follicle loss (P < 0.05) on day 6. Further, DMBA-induced primordial and small primary follicle loss was greater with PI3 kinase inhibition (P < 0.05) than with DMBA alone. These results support that (1) PI3 kinase mediates primordial to small primary follicle recruitment, (2) VCD, but not DMBA, enhances ovotoxicity by increasing primordial to small primary follicle recruitment, and (3) in addition to xenobiotic-induced ovotoxicity, VCD is also a useful model chemical with which to elucidate signaling mechanisms involved in primordial follicle recruitment.

  9. Effect of phosphatidylinositol-3 kinase inhibition on ovotoxicity caused by 4-vinylcyclohexene diepoxide and 7, 12-dimethylbenz[a]anthracene in neonatal rat ovaries.

    PubMed

    Keating, Aileen F; J Mark, Connie; Sen, Nivedita; Sipes, I Glenn; Hoyer, Patricia B

    2009-12-01

    4-vinylcyclohexene diepoxide (VCD) is an ovotoxicant that specifically destroys primordial and small primary follicles in the ovaries of mice and rats. In contrast, 7,12-dimethylbenz[a]anthracene (DMBA) is ovotoxic to all ovarian follicle classes. This study investigated phosphatidylinositol-3 kinase signaling involvement in VCD- and DMBA-induced ovotoxicity. Postnatal day (PND) 4 Fischer 344 (F344) rat whole ovaries were cultured for 2-12 days in vehicle control, VCD (30 microM), or DMBA (1 microM), +/-PI3 kinase inhibitor LY294002 (20 microM) or its inactive analog LY303511 (20 microM). Following culture, ovaries were histologically evaluated, and healthy follicles were classified and counted. PI3 kinase inhibition had no effect on primordial follicle number, but reduced (P<0.05) small primary and larger follicles beginning on day 4. VCD caused primordial and small primary follicle loss (P<0.05) beginning on day 6. With PI3 kinase inhibition, VCD did not affect primordial follicles (P>0.05) at any time, but did cause loss (P<0.05) of small primary follicles. DMBA exposure caused primordial and small primary follicle loss (P<0.05) on day 6. Further, DMBA-induced primordial and small primary follicle loss was greater with PI3 kinase inhibition (P<0.05) than with DMBA alone. These results support that (1) PI3 kinase mediates primordial to small primary follicle recruitment, (2) VCD, but not DMBA, enhances ovotoxicity by increasing primordial to small primary follicle recruitment, and (3) in addition to xenobiotic-induced ovotoxicity, VCD is also a useful model chemical with which to elucidate signaling mechanisms involved in primordial follicle recruitment. PMID:19695275

  10. Blueberry Phytochemicals Inhibit Growth and Metastatic Potential of MDA-MB-231 Breast Cancer Cells Through Modulation of the Phosphatidylinositol 3-Kinase Pathway

    PubMed Central

    Adams, Lynn S.; Phung, Sheryl; Yee, Natalie; Seeram, Navindra P.; Li, Liya; Chen, Shiuan

    2010-01-01

    Dietary phytochemicals are known to exhibit a variety of anti-carcinogenic properties. This study investigated the chemopreventive activity of blueberry extract in triple negative breast cancer cell lines in vitro and in vivo. Blueberry decreased cell proliferation in HCC38, HCC1937 and MDA-MB-231 cells with no effect on the non-tumorigenic MCF-10A cell line. Decreased metastatic potential of MDA-MB-231 cells by blueberry was shown through inhibition of cell motility using wound healing assays and migration through a PET membrane. Blueberry treatment decreased the activity of matrix metalloproteinase 9 and the secretion of urokinase-type plasminogen activator while increasing tissue inhibitor of metalloproteinase-1 and plasminogen activator inhibitor-1 secretion in MDA-MB-231 conditioned medium as shown by western blotting. Cell signaling pathways that control the expression/activation of these processes were investigated via western blotting and reporter gene assay. Treatment with blueberry decreased phosphatidylinositol 3-kinase (PI3K)/AKT and nuclear factor kappa-B (NFκB) activation in MDA-MB-231 cells where protein kinase C (PKC) and extracellular regulated kinase (ERK) were not affected. In vivo, the efficacy of blueberry to inhibit triple negative breast tumor growth was evaluated using the MDA-MB-231 xenograft model. Tumor weight and proliferation (Ki-67 expression) were decreased in blueberry treated mice, where apoptosis (caspase-3 expression) was increased compared to controls. Immunohistochemical analysis of tumors from blueberry-fed mice showed decreased activation of AKT and p65 NFκB signaling proteins with no effect on the phosphorylation of ERK. These data illustrate the inhibitory effect of blueberry phytochemicals on the growth and metastatic potential of MDA-MB-231 cells through modulation of the PI3K/AKT/NFκB pathway. PMID:20388778

  11. The hepatocyte growth factor antagonist NK4 inhibits indoleamine-2,3-dioxygenase expression via the c-Met-phosphatidylinositol 3-kinase-AKT signaling pathway.

    PubMed

    Wang, Dongdong; Saga, Yasushi; Sato, Naoto; Nakamura, Toshikazu; Takikawa, Osamu; Mizukami, Hiroaki; Matsubara, Shigeki; Fujiwara, Hiroyuki

    2016-06-01

    Indoleamine-2,3-dioxygenase (IDO) is an immunosuppressive enzyme involved in tumor malignancy. However, the regulatory mechanism underlying its involvement remains largely uncharacterized. The present study aimed to investigate the hypothesis that NK4, an antagonist of hepatocyte growth factor (HGF), can regulate IDO and to characterize the signaling mechanism involved. Following successful transfection of the human ovarian cancer cell line SKOV-3 (which constitutively expresses IDO) with an NK4 expression vector, we observed that NK4 expression suppressed IDO expression; furthermore, NK4 expression did not suppress cancer cell growth in vitro [in the absence of natural killer (NK) cells], but did influence tumor growth in vivo. In addition, NK4 enhanced the sensitivity of cancer cells to NK cells in vitro and promoted NK cell accumulation in the tumor stroma in vivo. In an effort to clarify the mechanisms by which NK4 interacts with IDO, we performed investigations utilizing various biochemical inhibitors. The results of these investigations were as follows. First, c-Met (a receptor of HGF) tyrosine kinase inhibitor PHA-665752, and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 both suppress IDO expression. Second, enhanced expression of PTEN (a known tumor suppressor) via negative regulation within a PI3K-AKT pathway, inhibits IDO expression. Conversely, neither the MEK1/2 inhibitor U0126 nor the STAT3 inhibitor WP1066 affects IDO expression. These results suggest that NK4 inhibits IDO expression via a c-Met-PI3K-AKT signaling pathway. PMID:27082119

  12. The hepatocyte growth factor antagonist NK4 inhibits indoleamine-2,3-dioxygenase expression via the c-Met-phosphatidylinositol 3-kinase-AKT signaling pathway

    PubMed Central

    WANG, DONGDONG; SAGA, YASUSHI; SATO, NAOTO; NAKAMURA, TOSHIKAZU; TAKIKAWA, OSAMU; MIZUKAMI, HIROAKI; MATSUBARA, SHIGEKI; FUJIWARA, HIROYUKI

    2016-01-01

    Indoleamine-2,3-dioxygenase (IDO) is an immunosuppressive enzyme involved in tumor malignancy. However, the regulatory mechanism underlying its involvement remains largely uncharacterized. The present study aimed to investigate the hypothesis that NK4, an antagonist of hepatocyte growth factor (HGF), can regulate IDO and to characterize the signaling mechanism involved. Following successful transfection of the human ovarian cancer cell line SKOV-3 (which constitutively expresses IDO) with an NK4 expression vector, we observed that NK4 expression suppressed IDO expression; furthermore, NK4 expression did not suppress cancer cell growth in vitro [in the absence of natural killer (NK) cells], but did influence tumor growth in vivo. In addition, NK4 enhanced the sensitivity of cancer cells to NK cells in vitro and promoted NK cell accumulation in the tumor stroma in vivo. In an effort to clarify the mechanisms by which NK4 interacts with IDO, we performed investigations utilizing various biochemical inhibitors. The results of these investigations were as follows. First, c-Met (a receptor of HGF) tyrosine kinase inhibitor PHA-665752, and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 both suppress IDO expression. Second, enhanced expression of PTEN (a known tumor suppressor) via negative regulation within a PI3K-AKT pathway, inhibits IDO expression. Conversely, neither the MEK1/2 inhibitor U0126 nor the STAT3 inhibitor WP1066 affects IDO expression. These results suggest that NK4 inhibits IDO expression via a c-Met-PI3K-AKT signaling pathway. PMID:27082119

  13. Efficacy of phosphatidylinositol-3 kinase inhibitors with diverse isoform selectivity profiles for inhibiting the survival of chronic lymphocytic leukemia cells.

    PubMed

    Göckeritz, Elisa; Kerwien, Susan; Baumann, Michael; Wigger, Marion; Vondey, Verena; Neumann, Lars; Landwehr, Thomas; Wendtner, Clemens M; Klein, Christian; Liu, Ningshu; Hallek, Michael; Frenzel, Lukas P; Krause, Günter

    2015-11-01

    Pharmacological inhibition of phosphatiylinositide-3-kinase (PI3K)-mediated signaling holds great promise for treating chronic lymphocytic leukemia (CLL). Therefore we assessed three structurally related PI3K inhibitors targeting the PI3K-δ isoform for their ability to inhibit the survival of freshly isolated CLL cells. The purely PI3K-δ-selective inhibitor idelalisib was compared to copanlisib (BAY 80-6946) and duvelisib (IPI-145), with isoform target profiles that additionally include PI3K-α or PI3K-γ, respectively. The concentrations leading to half-maximal reduction of the survival of CLL cells were more than ten-fold lower for copanlisib than for idelalisib and duvelisib. At concentrations reflecting the biological availability of the different inhibitors, high levels of apoptotic response among CLL samples were attained more consistently with copanlisib than with idelalisib. Copanlisib selectively reduced the survival of CLL cells compared to T cells and to B cells from healthy donors. In addition copanlisib and duvelisib impaired the migration of CLL cells towards CXCL12 to a greater extent than equimolar idelalisib. Similarly copanlisib and duvelisib reduced the survival of CLL cells in co-cultures with the bone marrow stroma cell line HS-5 more strongly than idelalisib. Survival inhibition by copanlisib and idelalisib was enhanced by the monoclonal CD20 antibodies rituximab and obinutuzumab (GA101), while antibody-dependent cellular cytotoxicity mediated by alemtuzumab and peripheral blood mononuclear cells was not substantially impaired by both PI3K inhibitors for the CLL-derived JVM-3 cell line as target cells. Taken together, targeting the α- and δ- p110 isoforms with copanlisib may be a useful strategy for the treatment of CLL and warrants further clinical investigation. PMID:25912635

  14. Insulin Receptor Substrate 2-mediated Phosphatidylinositol 3-kinase Signaling Selectively Inhibits Glycogen Synthase Kinase 3β to Regulate Aerobic Glycolysis*

    PubMed Central

    Landis, Justine; Shaw, Leslie M.

    2014-01-01

    Insulin receptor substrate 1 (IRS-1) and IRS-2 are cytoplasmic adaptor proteins that mediate the activation of signaling pathways in response to ligand stimulation of upstream cell surface receptors. Despite sharing a high level of homology and the ability to activate PI3K, only Irs-2 positively regulates aerobic glycolysis in mammary tumor cells. To determine the contribution of Irs-2-dependent PI3K signaling to this selective regulation, we generated an Irs-2 mutant deficient in the recruitment of PI3K. We identified four tyrosine residues (Tyr-649, Tyr-671, Tyr-734, and Tyr-814) that are essential for the association of PI3K with Irs-2 and demonstrate that combined mutation of these tyrosines inhibits glucose uptake and lactate production, two measures of aerobic glycolysis. Irs-2-dependent activation of PI3K regulates the phosphorylation of specific Akt substrates, most notably glycogen synthase kinase 3β (Gsk-3β). Inhibition of Gsk-3β by Irs-2-dependent PI3K signaling promotes glucose uptake and aerobic glycolysis. The regulation of unique subsets of Akt substrates by Irs-1 and Irs-2 may explain their non-redundant roles in mammary tumor biology. Taken together, our study reveals a novel mechanism by which Irs-2 signaling preferentially regulates tumor cell metabolism and adds to our understanding of how this adaptor protein contributes to breast cancer progression. PMID:24811175

  15. Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine.

    PubMed

    Isayev, Orkhan; Rausch, Vanessa; Bauer, Nathalie; Liu, Li; Fan, Pei; Zhang, Yiyao; Gladkich, Jury; Nwaeburu, Clifford C; Mattern, Jürgen; Mollenhauer, Martin; Rückert, Felix; Zach, Sebastian; Haberkorn, Uwe; Gross, Wolfgang; Schönsiegel, Frank; Bazhin, Alexandr V; Herr, Ingrid

    2014-07-15

    According to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy. Four established and 3 primary PDA cell lines, non-malignant cells, and 3 patient-tumor-derived CSC-enriched spheroidal cultures were analyzed by glucose turnover measurements, MTT and ATP assays, flow cytometry of ALDH1 activity and annexin positivity, colony and spheroid formation, western blotting, electrophoretic mobility shift assay, xenotransplantation, and immunohistochemistry. The effect of siRNA-mediated inhibition of LDH-A and LDH-B was also investigated. The PDA cells exhibited a high glucose metabolism, and glucose withdrawal or LDH inhibition by siRNA prevented growth and colony formation. Treatment with the anti-glycolytic agent 3-bromopyruvate almost completely blocked cell viability, self-renewal potential, NF-κB binding activity, and stem cell-related signaling and reverted gemcitabine resistance. 3-bromopyruvate was less effective in weakly malignant PDA cells and did not affect non-malignant cells, predicting minimal side effects. 3-bromopyruvate inhibited in vivo tumor engraftment and growth on chicken eggs and mice and enhanced the efficacy of gemcitabine by influencing the expression of markers of proliferation, apoptosis, self-renewal, and metastasis. Most importantly, primary CSC-enriched spheroidal cultures were eliminated by 3-bromopyruvate. These findings propose that CSCs may be specifically dependent on a high glucose turnover and suggest 3-bromopyruvate for therapeutic intervention. PMID:25015789

  16. Inhibition of Autophagy as a Strategy to Augment Radiosensitization by the Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235S⃞

    PubMed Central

    Cerniglia, George J.; Karar, Jayashree; Tyagi, Sonia; Christofidou-Solomidou, Melpo; Rengan, Ramesh; Koumenis, Constantinos

    2012-01-01

    We investigated the effect of 2-methyl-2-{4-[3-methyl-2-oxo-8-(quinolin-3-yl)-2,3-dihydro-1H-imidazo[4,5-c]quinolin-1-yl]phenyl} propanenitrile (NVP-BEZ235) (Novartis, Basel Switzerland), a dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor currently being tested in phase I clinical trials, in radiosensitization. NVP-BEZ235 radiosensitized a variety of cancer cell lines, including SQ20B head and neck carcinoma cells and U251 glioblastoma cells. NVP-BEZ235 also increased in vivo radiation response in SQ20B xenografts. Knockdown of Akt1, p110α, or mTOR resulted in radiosensitization, but not to the same degree as with NVP-BEZ235. NVP-BEZ235 interfered with DNA damage repair after radiation as measured by the CometAssay and resolution of phosphorylated H2A histone family member X foci. NVP-BEZ235 abrogated the radiation-induced phosphorylation of both DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated. Knockdown of either p110α or mTOR failed to decrease the phosphorylation of DNA-PKcs, suggesting that the effect of the drug was direct rather than mediated via p110α or mTOR. The treatment of cells with NVP-BEZ235 also promoted autophagy. To assess the importance of this process in radiosensitization, we used the autophagy inhibitors 3-methyladenine and chloroquine and found that either drug increased cell killing after NVP-BEZ235 treatment and radiation. Knocking down the essential autophagy proteins autophagy related 5 (ATG5) and beclin1 increased NVP-BEZ235-mediated radiosensitization. Furthermore, NVP-BEZ235 radiosensitized autophagy-deficient ATG5(−/−) fibroblasts to a greater extent than ATG5(+/+) cells. We conclude that NVP-BEZ235 radiosensitizes cells and induces autophagy by apparently distinct mechanisms. Inhibiting autophagy via pharmacologic or genetic means increases radiation killing after NVP-BEZ235 treatment; hence, autophagy seems to be cytoprotective in this

  17. Turnover Begets Turnover

    ERIC Educational Resources Information Center

    Castle, Nicholas G.

    2005-01-01

    Purpose: This study examined the association between turnover of caregivers and turnover of nursing home top management. The top managers examined were administrators and directors of nursing, and the caregivers examined were registered nurses, licensed practical nurses, and nurse aides. Design and Methods: The data came from a survey of 419…

  18. Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant of Staphylococcus aureus.

    PubMed Central

    Sieradzki, K; Tomasz, A

    1997-01-01

    A highly vancomycin-resistant mutant (MIC = 100 microg/ml) of Staphylococcus aureus, mutant VM, which was isolated in the laboratory by a step-pressure procedure, continued to grow and synthesize peptidoglycan in the presence of vancomycin (50 microg/ml) in the medium, but the antibiotic completely inhibited cell wall turnover and autolysis, resulting in the accumulation of cell wall material at the cell surface and inhibition of daughter cell separation. Cultures of mutant VM removed vancomycin from the growth medium through binding the antibiotic to the cell walls, from which the antibiotic could be quantitatively recovered in biologically active form. Vancomycin blocked the in vitro hydrolysis of cell walls by autolytic enzyme extracts, lysostaphin and mutanolysin. Analysis of UDP-linked peptidoglycan precursors showed no evidence for the presence of D-lactate-terminating muropeptides. While there was no significant difference in the composition of muropeptide units of mutant and parental cell walls, the peptidoglycan of VM had a significantly lower degree of cross-linkage. These observations and the results of vancomycin-binding studies suggest alterations in the structural organization of the mutant cell walls such that access of the vancomycin molecules to the sites of wall biosynthesis is blocked. PMID:9098053

  19. Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant of Staphylococcus aureus.

    PubMed

    Sieradzki, K; Tomasz, A

    1997-04-01

    A highly vancomycin-resistant mutant (MIC = 100 microg/ml) of Staphylococcus aureus, mutant VM, which was isolated in the laboratory by a step-pressure procedure, continued to grow and synthesize peptidoglycan in the presence of vancomycin (50 microg/ml) in the medium, but the antibiotic completely inhibited cell wall turnover and autolysis, resulting in the accumulation of cell wall material at the cell surface and inhibition of daughter cell separation. Cultures of mutant VM removed vancomycin from the growth medium through binding the antibiotic to the cell walls, from which the antibiotic could be quantitatively recovered in biologically active form. Vancomycin blocked the in vitro hydrolysis of cell walls by autolytic enzyme extracts, lysostaphin and mutanolysin. Analysis of UDP-linked peptidoglycan precursors showed no evidence for the presence of D-lactate-terminating muropeptides. While there was no significant difference in the composition of muropeptide units of mutant and parental cell walls, the peptidoglycan of VM had a significantly lower degree of cross-linkage. These observations and the results of vancomycin-binding studies suggest alterations in the structural organization of the mutant cell walls such that access of the vancomycin molecules to the sites of wall biosynthesis is blocked. PMID:9098053

  20. The psychoactive compound of Cannabis sativa, Δ(9)-tetrahydrocannabinol (THC) inhibits the human trophoblast cell turnover.

    PubMed

    Costa, M A; Fonseca, B M; Marques, F; Teixeira, N A; Correia-da-Silva, G

    2015-08-01

    The noxious effects of cannabis consumption for fertility and pregnancy outcome are recognized for years. Its consumption during gestation is associated with alterations in foetal growth, low birth weight and preterm labor. The main psychoactive molecule of cannabis, Δ(9)-tetrahydrocannabinol (THC) impairs the production of reproductive hormones and is also able to cross the placenta barrier. However, its effect on the main placental cells, the trophoblasts, are unknown. Actually, the role of THC in cell survival/death of primary human cytotrophoblasts (CTs) and syncytiotrophoblasts (STs) and in the syncytialization process remains to be explored. Here, we show that THC has a dual effect, enhancing MTT metabolism at low concentrations, whereas higher doses decreased cell viability, on both trophoblast phenotypes, though the effects on STs were more evident. THC also diminished the generation of oxidative and nitrative stress and the oxidized form of glutathione, whereas the reduced form of this tripeptide was increased, suggesting that THC prevents ST cell death due to an antioxidant effect. Moreover, this compound enhanced the mitochondrial function of STs, as observed by the increased MTT metabolism and intracellular ATP levels. These effects were independent of cannabinoid receptors activation. Besides, THC impaired CT differentiation into STs, since it decreased the expression of biochemical and morphological biomarkers of syncytialization, through a cannabinoid receptor-dependent mechanism. Together, these results suggest that THC interferes with trophoblast turnover, preventing trophoblast cell death and differentiation, and contribute to disclose the cellular mechanisms that lead to pregnancy complications in women that consume cannabis-derived drugs during gestation. PMID:26070387

  1. Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion

    PubMed Central

    Liu, Kai; Jian, Youli; Sun, Xiaojuan; Yang, Chengkui; Gao, Zhiyang; Zhang, Zhili; Liu, Xuezhao; Li, Yang; Xu, Jing; Jing, Yudong; Mitani, Shohei; He, Sudan

    2016-01-01

    Phosphatidylinositol 3-phosphate (PtdIns3P) plays a central role in endosome fusion, recycling, sorting, and early-to-late endosome conversion, but the mechanisms that determine how the correct endosomal PtdIns3P level is achieved remain largely elusive. Here we identify two new factors, SORF-1 and SORF-2, as essential PtdIns3P regulators in Caenorhabditis elegans. Loss of sorf-1 or sorf-2 leads to greatly elevated endosomal PtdIns3P, which drives excessive fusion of early endosomes. sorf-1 and sorf-2 function coordinately with Rab switching genes to inhibit synthesis of PtdIns3P, allowing its turnover for endosome conversion. SORF-1 and SORF-2 act in a complex with BEC-1/Beclin1, and their loss causes elevated activity of the phosphatidylinositol 3-kinase (PI3K) complex. In mammalian cells, inactivation of WDR91 and WDR81, the homologs of SORF-1 and SORF-2, induces Beclin1-dependent enlargement of PtdIns3P-enriched endosomes and defective degradation of epidermal growth factor receptor. WDR91 and WDR81 interact with Beclin1 and inhibit PI3K complex activity. These findings reveal a conserved mechanism that controls appropriate PtdIns3P levels in early-to-late endosome conversion. PMID:26783301

  2. Dual inhibition of phosphatidylinositol 3'-kinase and mammalian target of rapamycin using NVP-BEZ235 as a novel therapeutic approach for mucinous adenocarcinoma of the ovary.

    PubMed

    Kudoh, Akiko; Oishi, Tetsuro; Itamochi, Hiroaki; Sato, Seiya; Naniwa, Jun; Sato, Shinya; Shimada, Muneaki; Kigawa, Junzo; Harada, Tasuku

    2014-03-01

    Ovarian mucinous adenocarcinoma (MAC) resists standard chemotherapy and is associated with poor prognosis. A more effective treatment is needed urgently. The present study assessed the possibility of molecular-targeted therapy with a novel dual inhibitor of phosphatidylinositol 3'-kinase (PI3K) and mammalian target of rapamycin (mTOR), NVP-BEZ235 (BEZ235) to treat of MAC. Seven human MAC cell lines were used in this study. The sensitivity of the cells to BEZ235, temsirolimus, and anticancer agents was determined with the WST-8 assay. Cell cycle distribution was assessed by flow cytometry, and the expression of proteins in apoptotic pathways and molecules of the PI3K/Akt/mTOR signaling pathways was determined by Western blot analysis. We also examined the effects of BEZ235 on tumor growth in nude mice xenograft models. The cell lines showed half-maximal inhibitory concentration values of BEZ235 from 13 to 328 nmol/L. Low half-maximal inhibitory concentration values to BEZ235 were observed in MCAS and OMC-1 cells; these 2 lines have an activating mutation in the PIK3CA gene. NVP-BEZ235 down-regulated the protein expression of phosphorylated (p-) Akt, p-p70S6K, and p-4E-BP1, suppressed cell cycle progression, up-regulated the expression of cleaved PARP and cleaved caspase 9, and increased apoptotic cells. Synergistic effects were observed on more than 5 cell lines when BEZ235 was combined with paclitaxel or cisplatin. The treatment of mice bearing OMC-1 or RMUG-S with BEZ235 significantly suppressed tumor growth in MAC xenograft models without severe weight loss. We conclude that the PI3K/Akt/mTOR pathway is a potential therapeutic target and that BEZ235 should be explored as a therapeutic agent for MAC. PMID:24552895

  3. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    PubMed

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis. PMID:26979714

  4. Phospholipid turnover during phagocytosis in human polymorphonuclear leucocytes

    PubMed Central

    García Gil, Merche; Alonso, Fernando; Alvarez Chiva, Vicente; Sánchez Crespo, Mariano; Mato, José M.

    1982-01-01

    We have previously observed that the phagocytosis of zymosan particles coated with complement by human polymorphonuclear leucocytes is accompanied by a time- and dose-dependent inhibition of phosphatidylcholine synthesis by transmethylation [García Gil, Alonso, Sánchez Crespo & Mato (1981) Biochem. Biophys. Res. Commun. 101, 740–748]. The present studies show that phosphatidylcholine synthesis by a cholinephosphotransferase reaction is enhanced, up to 3-fold, during phagocytosis by polymorphonuclear cells. This effect was tested by both measuring the incorporation of radioactivity into phosphatidylcholine in cells labelled with [Me-14C]choline, and by assaying the activity of CDP-choline:diacylglycerol cholinephosphotransferase. The time course of CDP-choline:diacylglycerol cholinephosphotransferase activation by zymosan mirrors the inhibition of phospholipid methyltransferase activity previously reported. The extent of incorporation of radioactivity into phosphatidylcholine induced by various doses of zymosan correlates with the physiological response of the cells to this stimulus. This effect was specific for phosphatidylcholine, and phosphatidyl-ethanolamine turnover was not affected by zymosan. The purpose of this enhanced phosphatidylcholine synthesis is not to provide phospholipid molecules rich in arachidonic acid. The present studies show that about 80% of the arachidonic acid generated in response to zymosan derives from phosphatidylinositol. A transient accumulation of arachidonoyldiacylglycerol has also been observed, which indicates that a phospholipase C is responsible, at least in part, for the generation of arachidonic acid. Finally, isobutylmethylxanthine and quinacrine, inhibitors of phosphatidylinositol turnover, inhibit both arachidonic acid generation and phagocytosis, indicating a function for this pathway during this process. PMID:6181780

  5. Interleukin-3, but not granulocyte-macrophage colony-stimulating factor and interleukin-5, inhibits apoptosis of human basophils through phosphatidylinositol 3-kinase: requirement of NF-kappaB-dependent and -independent pathways.

    PubMed

    Zheng, Xueyan; Karsan, Aly; Duronio, Vincent; Chu, Fanny; Walker, David C; Bai, Tony R; Schellenberg, R Robert

    2002-11-01

    Basophils are key effector cells of allergic reactions. Although proinflammatory cytokines, such as interleukin (IL)-3, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-5, inhibit eosinophil apoptosis in vitro, little is known about basophil apoptosis, and the signalling mechanisms required for basophil survival remain undefined. To address this issue, we used a novel negative-selection system to isolate human basophils to a purity of > 95%, and evaluated apoptosis by morphology using light and transmission electron microscopy, and by annexin-V binding and propidium iodide incorporation using flow cytometry. In this study, we demonstrated that the spontaneous rate of apoptotic basophils was higher than that of eosinophils as, at 24 hr, 57.6 +/- 4.7% of basophils underwent apoptosis compared with 39.5 +/- 3.8% of eosinophils. In addition, basophil cell death was significantly inhibited when cultured with IL-3 for 48 hr (84.6 +/- 4.9% vehicle-treated cells versus 40.9 +/- 3.9% IL-3-treated cells). IL-3 also up-regulated basophil CD69 surface expression. The effects of IL-3 on apoptosis and CD69 surface expression of human basophils were completely blocked by LY294002 (LY), a potent inhibitor of phosphatidylinositol 3-kinase (PI3-K), but only partially inhibited by lactacystin, a proteasome inhibitor that prevents degradation of IkappaB and NF-kappaB translocation. These observations reveal the novel finding that IL-3 prevents basophil apoptosis through the activation of PI3-K, which is only partially NF-kappaB dependent. As basophils are active participants in allergic reactions and IL-3 is one of the abundant proinflammatory cytokines in secretions from allergic tissue, we suggest that IL-3-mediated inhibition of basophil apoptosis may exacerbate the inflammation associated with allergic disorders. PMID:12423306

  6. Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation.

    PubMed

    Borradaile, Nica M; de Dreu, Linda E; Huff, Murray W

    2003-10-01

    The flavonoid naringenin improves hyperlipidemia and hyperglycemia in streptozotocin-treated rats. In HepG2 human hepatoma cells, naringenin inhibits apolipoprotein B (apoB) secretion primarily by inhibiting microsomal triglyceride transfer protein and enhances LDL receptor (LDLr)-mediated apoB-containing lipoprotein uptake. Phosphatidylinositol 3-kinase (PI3K) activation by insulin increases sterol regulatory element-binding protein (SREBP)-1 and LDLr expression and inhibits apoB secretion in hepatocytes. Thus, we determined whether naringenin activates this pathway. Insulin and naringenin induced PI3K-dependent increases in cytosolic and nuclear SREBP-1 and LDLr expression. Similar PI3K-mediated increases in SREBP-1 were observed in McA-RH7777 rat hepatoma cells, which express predominantly SREBP-1c. Reductions in HepG2 cell media apoB with naringenin were partially attenuated by wortmannin, whereas the effect of insulin was completely blocked. Both treatments reduced apoB100 secretion in wild-type and LDLr(-/-) mouse hepatocytes to the same extent. Insulin and naringenin increased HepG2 cell PI3K activity and decreased insulin receptor substrate (IRS)-2 levels. In sharp contrast to insulin, naringenin did not induce tyrosine phosphorylation of IRS-1. We conclude that naringenin increases LDLr expression in HepG2 cells via PI3K-mediated upregulation of SREBP-1, independent of IRS-1 phosphorylation. Although this pathway may not regulate apoB secretion in primary hepatocytes, PI3K activation by this novel mechanism may explain the insulin-like effects of naringenin in vivo. PMID:14514640

  7. 7,3',4'-Trihydroxyisoflavone inhibits epidermal growth factor-induced proliferation and transformation of JB6 P+ mouse epidermal cells by suppressing cyclin-dependent kinases and phosphatidylinositol 3-kinase.

    PubMed

    Lee, Dong Eun; Lee, Ki Won; Song, Nu Ry; Seo, Sang Kwon; Heo, Yong-Seok; Kang, Nam Joo; Bode, Ann M; Lee, Hyong Joo; Dong, Zigang

    2010-07-01

    Numerous in vitro and in vivo studies have shown that isoflavones exhibit anti-proliferative activity against epidermal growth factor (EGF) receptor-positive malignancies of the breast, colon, skin, and prostate. 7,3',4'-Trihydroxyisoflavone (7,3',4'-THIF) is one of the metabolites of daidzein, a well known soy isoflavone, but its chemopreventive activity and the underlying molecular mechanisms are poorly understood. In this study, 7,3',4'-THIF prevented EGF-induced neoplastic transformation and proliferation of JB6 P+ mouse epidermal cells. It significantly blocked cell cycle progression of EGF-stimulated cells at the G(1) phase. As shown by Western blot, 7,3',4'-THIF suppressed the phosphorylation of retinoblastoma protein at Ser-795 and Ser-807/Ser-811, which are the specific sites of phosphorylation by cyclin-dependent kinase (CDK) 4. It also inhibited the expression of G(1) phase-regulatory proteins, including cyclin D1, CDK4, cyclin E, and CDK2. In addition to regulating the expression of cell cycle-regulatory proteins, 7,3',4'-THIF bound to CDK4 and CDK2 and strongly inhibited their kinase activities. It also bound to phosphatidylinositol 3-kinase (PI3K), strongly inhibiting its kinase activity and thereby suppressing the Akt/GSK-3beta/AP-1 pathway and subsequently attenuating the expression of cyclin D1. Collectively, these results suggest that CDKs and PI3K are the primary molecular targets of 7,3',4'-THIF in the suppression of EGF-induced cell proliferation. These insights into the biological actions of 7,3',4'-THIF provide a molecular basis for the possible development of new chemoprotective agents. PMID:20444693

  8. Light-stimulated inositolphospholipid turnover in Samanea saman leaf pulvini

    SciTech Connect

    Morse, M.J.; Crain, R.C.; Satter, R.L.

    1987-10-01

    Leaflets of Samanea saman open and close rhythmically, driven by an endogenous circadian clock. Light has a rapid, direct effect on the movements and also rephases the rhythm. The authors investigated whether light signals might be mediated by increased inositolphospholipid turnover, a mechanism for signal transduction that is widely utilized in animal systems. Samanea motor organs (pulvini) labeled with (/sup 3/H)inositol were irradiated briefly (5-30 sec) with white light, and membrane-localized phosphatidylinositol phosphates and their aqueous breakdown products, the inositol phosphates, were examined. After a 15-sec or longer light pulse, labeled phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate decreased and their labeled metabolic products inositol 1,4-biphosphate and inositol 1,4,5-trisphosphate increased changes characteristic of inositolphospholipid turnover. The authors conclude that inositolphospholipid turnover may act as a phototransduction mechanism in Samanea pulvini in a manner that is similar to that reported in animal systems.

  9. 8-Prenylnaringenin inhibits epidermal growth factor-induced MCF-7 breast cancer cell proliferation by targeting phosphatidylinositol-3-OH kinase activity.

    PubMed

    Brunelli, Elisa; Pinton, Giulia; Chianale, Federica; Graziani, Andrea; Appendino, Giovanni; Moro, Laura

    2009-02-01

    8-Prenylnaringenin (8PN), one of the strongest plant-derived oestrogen receptors (ERs) ligand, has been suggested to have potential cancer chemo-preventive activities and anti-angiogenic properties. Because published data suggest that ERs serve as nodal point that allows interactions between hormones and growth factors mediated pathways, we decided to investigate the effects exerted by 8PN on Epidermal growth factor (EGF)-elicited pathways in breast cancer cells. Here we show that in ER positive MCF-7 cells, 8PN interferes with EGF induced cell proliferation by strongly inhibiting activation of PI(3)K/Akt pathway, without affecting EGFR expression or tyrosine phosphorylation, and exerting a synergistic activation of Erk1/2 phosphorylation. Moreover, we demonstrate that 8PN is a direct inhibitor of PI(3)K activity as it is shown by in vitro experiments with the purified enzyme and by its inability to impair serine phosphorylation of a constitutive active form of Akt. These findings suggest that inhibition of PI(3)K is a novel mechanism which contributes to 8PN activity to inhibit cancer cell survival and EGF induced proliferation. PMID:19103290

  10. Inhibition of TREK-2 K(+) channels by PI(4,5)P2: an intrinsic mode of regulation by intracellular ATP via phosphatidylinositol kinase.

    PubMed

    Woo, Joohan; Shin, Dong Hoon; Kim, Hyun Jong; Yoo, Hae Young; Zhang, Yin-Hua; Nam, Joo Hyun; Kim, Woo Kyung; Kim, Sung Joon

    2016-08-01

    TWIK-related two-pore domain K(+) channels 1 and 2 (TREKs) are activated under various physicochemical conditions. However, the directions in which they are regulated by PI(4,5)P2 and intracellular ATP are not clearly presented yet. In this study, we investigated the effects of ATP and PI(4,5)P2 on overexpressed TREKs (HEK293T and COS-7) and endogenously expressed TREK-2 (mouse astrocytes and WEHI-231 B cells). In all of these cells, both TREK-1 and TREK-2 currents were spontaneously increased by dialysis with ATP-free pipette solution for whole-cell recording (ITREK-1,w-c and ITREK-2w-c) or by membrane excision for inside-out patch clamping without ATP (ITREK-1,i-o and ITREK-2,i-o). Steady state ITREK-2,i-o was reversibly decreased by 3 mM ATP applied to the cytoplasmic side, and this reduction was prevented by wortmannin, a PI-kinase inhibitor. An exogenous application of PI(4,5)P2 inhibited the spontaneously increased ITREKs,i-o, suggesting that intrinsic PI(4,5)P2 maintained by intracellular ATP and PI kinase may set the basal activity of TREKs in the intact cells. The inhibition of intrinsic TREK-2 by ATP was more prominent in WEHI-231 cells than astrocytes. Interestingly, unspecific screening of negative charges by poly-L-lysine also inhibited ITREK-2,i-o. Application of PI(4,5)P2 after the poly-L-lysine treatment showed dose-dependent dual effects, initial activation and subsequent inhibition of ITREK-2,i-o at low and high concentrations, respectively. In HEK293T cells coexpressing TREK-2 and a voltage-sensitive PI(4,5)P2 phosphatase, sustained depolarization increased ITREK-2,w-c initially (<5 s) but then decreased the current below the control level. In HEK293T cells coexpressing TREK-2 and type 3 muscarinic receptor, application of carbachol induced transient activation and sustained suppression of ITREK-2,w-c and cell-attached ITREK-2. The inhibition of TREK-2 by unspecific electrostatic quenching, extensive dephosphorylation, or sustained hydrolysis

  11. Cancer-testis antigen MAGE-C2 binds Rbx1 and inhibits ubiquitin ligase-mediated turnover of cyclin E

    PubMed Central

    Wang, Jingjing; Guo, Chengli; Li, Yan; Li, Bing; Zhang, Yu; Yin, Yanhui

    2015-01-01

    Cancer-testis antigen MAGE-C2 is normally expressed in testis but aberrantly expressed in various kinds of tumors. Its functions in tumor cells are mostly unknown. Here, we show that MAGE-C2 binds directly to the RING domain protein Rbx1, and participates in Skp1-Cullin1-F box protein (SCF) complex. Furthermore, MAGE-C2 can inhibit the E3 ubiquitin ligase activity of SCF complex. Ablation of endogenous MAGE-C2 decreases the level of cyclin E and accelerates cyclin E turnover by inhibiting ubiquitin-mediated proteasome degradation. Overexpression of MAGE-C2 increases the level of cyclin E and promotes G1-S transition and cell proliferation, and the results are further confirmed by knockdown of MAGE-C2. Overall, the study indicates that MAGE-C2 is involved in SCF complex and increases the stability of cyclin E in tumor cells. PMID:26540345

  12. Phosphatidylinositol 3-Kinase/AKT Pathway Inhibition by Doxazosin Promotes Glioblastoma Cells Death, Upregulation of p53 and Triggers Low Neurotoxicity

    PubMed Central

    Gaelzer, Mariana Maier; Coelho, Bárbara Paranhos; de Quadros, Alice Hoffmann; Hoppe, Juliana Bender; Terra, Silvia Resende; Guerra, Maria Cristina Barea; Usach, Vanina; Guma, Fátima Costa Rodrigues; Gonçalves, Carlos Alberto Saraiva; Setton-Avruj, Patrícia; Battastini, Ana Maria Oliveira; Salbego, Christianne Gazzana

    2016-01-01

    Glioblastoma is the most frequent and malignant brain tumor. Treatment includes chemotherapy with temozolomide concomitant with surgical resection and/or irradiation. However, a number of cases are resistant to temozolomide, as well as the human glioblastoma cell line U138-MG. We investigated doxazosin’s (an antihypertensive drug) activity against glioblastoma cells (C6 and U138-MG) and its neurotoxicity on primary astrocytes and organoptypic hippocampal cultures. For this study, the following methods were used: citotoxicity assays, flow cytometry, western-blotting and confocal microscopy. We showed that doxazosin induces cell death on C6 and U138-MG cells. We observed that doxazosin’s effects on the PI3K/Akt pathway were similar as LY294002 (PI3K specific inhibitor). In glioblastoma cells treated with doxasozin, Akt levels were greatly reduced. Upon examination of activities of proteins downstream of Akt we observed upregulation of GSK-3β and p53. This led to cell proliferation inhibition, cell death induction via caspase-3 activation and cell cycle arrest at G0/G1 phase in glioblastoma cells. We used in this study Lapatinib, a tyrosine kinase inhibitor, as a comparison with doxazosin because they present similar chemical structure. We also tested the neurocitotoxicity of doxazosin in primary astrocytes and organotypic cultures and observed that doxazosin induced cell death on a small percentage of non-tumor cells. Aggressiveness of glioblastoma tumors and dismal prognosis require development of new treatment agents. This includes less toxic drugs, more selective towards tumor cells, causing less damage to the patient. Therefore, our results confirm the potential of doxazosin as an attractive therapeutic antiglioma agent. PMID:27123999

  13. Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis

    PubMed Central

    Jeschke, Andreas; Zehethofer, Nicole; Lindner, Buko; Krupp, Jessica; Schwudke, Dominik; Haneburger, Ina; Jovic, Marko; Backer, Jonathan M.; Balla, Tamas; Hilbi, Hubert; Haas, Albert

    2015-01-01

    Professional phagocytic cells ingest microbial intruders by engulfing them into phagosomes, which subsequently mature into microbicidal phagolysosomes. Phagosome maturation requires sequential fusion of the phagosome with early endosomes, late endosomes, and lysosomes. Although various phosphoinositides (PIPs) have been detected on phagosomes, it remained unclear which PIPs actually govern phagosome maturation. Here, we analyzed the involvement of PIPs in fusion of phagosomes with various endocytic compartments and identified phosphatidylinositol 4-phosphate [PI(4)P], phosphatidylinositol 3-phosphate [PI(3)P], and the lipid kinases that generate these PIPs, as mediators of phagosome–lysosome fusion. Phagosome–early endosome fusion required PI(3)P, yet did not depend on PI(4)P. Thus, PI(3)P regulates phagosome maturation at early and late stages, whereas PI(4)P is selectively required late in the pathway. PMID:25825728

  14. Aluminum inhibits neurofilament assembly, cytoskeletal incorporation, and axonal transport. Dynamic nature of aluminum-induced perikaryal neurofilament accumulations as revealed by subunit turnover.

    PubMed

    Shea, T B; Wheeler, E; Jung, C

    1997-01-01

    The mechanism by which aluminum induces formation of perikaryal neurofilament (NF) inclusions remains unclear. Aluminum treatment inhibits: 1. The incorporation of newly synthesized NF subunits into Triton-insoluble cytoskeleton of axonal neurites; 2. Their degradation and dephosphorylation; 3. Their translocation into axonal neurites. It also fosters the accumulation of phosphorylated NFs within perikarya. In the present study, we addressed the relationship among these effects. Aluminum reduced the assembly of newly synthesized NF subunits into NFs. During examination of those subunits that did assemble in the presence of aluminum, it was revealed that aluminum also interfered with transport of newly assembled NFs into axonal neurites. Similarly, a delay in axonal transport of microinjected biotinylated NF-H was observed in aluminum-treated cells. Aluminum also inhibited the incorporation of newly synthesized and microinjected subunits into the Triton-insoluble cytoskeleton within both perikarya and neurites. Once incorporated into Triton-insoluble cytoskeletons, however, biotinylated subunits were retained within perikarya of aluminum-treated cells to a greater extent than within untreated cells. Notably, these subunits were depleted in the presence and absence of aluminum within 48 h, despite the persistence of the aluminum-induced perikaryal accumulation itself, suggesting that individual NF subunits undergo turnover even within aluminum-induced perikaryal accumulations. These findings demonstrate that aluminum interferes with multiple aspects of neurofilament dynamics and furthermore leaves open the possibility that aluminum-induced perikaryal NF whorls may not represent permanent structures, but rather may require continued recruitment of cytoskeletal constituents. PMID:9437656

  15. Turnover Time

    EPA Science Inventory

    Ecosystems contain energy and materials such as carbon, nitrogen, phosphorus, and water, and are open to their flow-through. Turnover time refers to the amount of time required for replacement by flow-through of the energy or substance of interest contained in the system, and is ...

  16. Disruption of G1-phase phospholipid turnover by inhibition of Ca2+-independent phospholipase A2 induces a p53-dependent cell-cycle arrest in G1 phase.

    PubMed

    Zhang, Xu Hannah; Zhao, Chunying; Seleznev, Konstantin; Song, Keying; Manfredi, James J; Ma, Zhongmin Alex

    2006-03-15

    The G1 phase of the cell cycle is characterized by a high rate of membrane phospholipid turnover. Cells regulate this turnover by coordinating the opposing actions of CTP:phosphocholine cytidylyltransferase and the group VI Ca2+-independent phospholipase A2 (iPLA2). However, little is known about how such turnover affects cell-cycle progression. Here, we show that G1-phase phospholipid turnover is essential for cell proliferation. Specific inhibition of iPLA2 arrested cells in the G1 phase of the cell cycle. This G1-phase arrest was associated with marked upregulation of the tumour suppressor p53 and the expression of cyclin-dependent kinase inhibitor p21cip1. Inactivation of iPLA2 failed to arrest p53-deficient HCT cells in the G1 phase and caused massive apoptosis of p21-deficient HCT cells, suggesting that this G1-phase arrest requires activation of p53 and expression of p21cip1. Furthermore, downregulation of p53 by siRNA in p21-deficient HCT cells reduced the cell death, indicating that inhibition of iPLA2 induced p53-dependent apoptosis in the absence of p21cip1. Thus, our study reveals hitherto unrecognized cooperation between p53 and iPLA2 to monitor membrane-phospholipid turnover in G1 phase. Disrupting the G1-phase phospholipid turnover by inhibition of iPLA2 activates the p53-p21cip1 checkpoint mechanism, thereby blocking the entry of G1-phase cells into S phase. PMID:16492706

  17. Inhibition of angiogenesis and tumor growth in the brain. Suppression of endothelial cell turnover by penicillamine and the depletion of copper, an angiogenic cofactor.

    PubMed Central

    Brem, S. S.; Zagzag, D.; Tsanaclis, A. M.; Gately, S.; Elkouby, M. P.; Brien, S. E.

    1990-01-01

    Microvascular proliferation, a hallmark of malignant brain tumors, represents an attractive target of anticancer research, especially because of the quiescent nonproliferative endothelium of the normal brain. Cerebral neoplasms sequester copper, a trace metal that modulates angiogenesis. Using a rabbit brain tumor model, normocupremic animals developed large vascularized VX2 carcinomas. By contrast, small, circumscribed, relatively avascular tumors were found in the brains of rabbits copper-depleted by diet and penicillamine treatment (CDPT). The CDPT rabbits showed a significant decrease in serum copper, copper staining of tumor cell nuclei, microvascular density, the tumor volume, endothelial cell turnover, and an increase in the vascular permeability (breakdown of the blood-brain barrier), as well as peritumoral brain edema. In non-tumor-bearing animals, CDPT did not alter the vascular permeability or the brain water content. CDPT also inhibited the intracerebral growth of the 9L gliosarcoma in F-344 rats, with a similar increase of the peritumoral vascular permeability and the brain water content. CDPT failed to inhibit tumor growth and the vascularization of the VX2 carcinoma in the thigh muscle or the metastases to the lung, findings that may reflect regional differences in the responsiveness of the endothelium, the distribution of copper, or the activity of cuproenzymes. Metabolic and pharmacologic withdrawal of copper suppresses intracerebral tumor angiogenesis; angiosuppression is a novel biologic response modifier for the in situ control of tumor growth in the brain. Images Figure 2 Figure 4 Figure 5 Figure 6 Figure 8 Figure 10 Figure 12 Figure 15 Figure 16 PMID:1700617

  18. Phosphatidylinositol kinase from rabbit reticulocytes

    SciTech Connect

    Tuazon, P.T.; Heng, A.B.W.; Traugh, J.A.

    1986-05-01

    Phosphatidylinositol (PI) kinase was isolated from the postribosomal supernatant of rabbit reticulocytes. This activity was identified by the formation of a product that comigrated with phosphatidylinositol-4-phosphate (PIP) when purified PI was phosphorylated in the presence of (/sup 32/P)ATP and Mg/sup 2 +/. Three major peaks of PI kinase activity were resolved by chromatography on DEAE-cellulose. The first peak eluted at 50-100 mM NaCl together with several serine protein kinases, casein kinase (CK) I and protease activated kinase (PAK) I and II. The PI kinase was subsequently separated from the protein kinases by chromatography on phosphocellulose. The second peak eluted at 125-160 mM NaCl and contained another lipid kinase activity that produced a product which comigrated with phosphatidic acid on thin layer chromatography. The third peak, which eluted at 165-200 mM NaCl, partly comigrated with casein kinase (CK) II and an active protein kinase(s) which phosphorylated mixed histone and histone I. CK II and the histone kinase activities were also separated by chromatography on phosphocelluslose. The different forms of PI kinase were characterized and compared with respect to substrate and salt requirements.

  19. Measuring Phosphatidylinositol Generation on Biological Membranes.

    PubMed

    Waugh, Mark

    2016-01-01

    Phosphatidylinositol (PI) is a phospholipid molecule required for the generation of seven different phosphoinositide lipids which have a diverse range of signaling and trafficking functions. The precise mechanism of phosphatidylinositol supply during receptor activated signaling and the cellular compartmentation of the synthetic process are still incompletely understood and remain controversial despite several decades of research in this area. The synthesis of phosphatidylinositol requires the activity of an enzyme called phosphatidylinositol synthase, also known as CDIPT, which catalyzes a reversible headgroup exchange reaction on its substrate liponucleotide CDP-diacylglycerol resulting in the incorporation of inositol to generate phosphatidylinositol and the release of CMP. This protocol describes a method for locating PI synthase activity in isolated, intact biological membranes and vesicles. PMID:26552689

  20. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg.

    PubMed

    Mortensen, Stefan P; González-Alonso, José; Damsgaard, Rasmus; Saltin, Bengt; Hellsten, Ylva

    2007-06-01

    Prostaglandins, nitric oxide (NO) and endothelial-derived hyperpolarizing factors (EDHFs) are substances that have been proposed to be involved in the regulation of skeletal muscle blood flow during physical activity. We measured haemodynamics, plasma ATP at rest and during one-legged knee-extensor exercise (19 +/- 1 W) in nine healthy subjects with and without intra-arterial infusion of indomethacin (Indo; 621 +/- 17 microg min(-1)), Indo + N(G)-monomethyl-L-arginine (L-NMMA; 12.4 +/- 0.3 mg min(-1)) (double blockade) and Indo + L-NMMA + tetraethylammonium chloride (TEA; 12.4 +/- 0.3 mg min(-1)) (triple blockade). Double and triple blockade lowered leg blood flow (LBF) at rest (P<0.05), while it remained unchanged with Indo. During exercise, LBF and vascular conductance were 2.54 +/- 0.10 l min(-1) and 25 +/- 1 mmHg, respectively, in control and they were lower with double (33 +/- 3 and 36 +/- 4%, respectively) and triple (26 +/- 4 and 28 +/- 3%, respectively) blockade (P<0.05), while there was no difference with Indo. The lower LBF and vascular conductance with double and triple blockade occurred in parallel with a lower O(2) delivery, cardiac output, heart rate and plasma [noradrenaline] (P<0.05), while blood pressure remained unchanged and O(2) extraction and femoral venous plasma [ATP] increased. Despite the increased O(2) extraction, leg was 13 and 17% (triple and double blockade, respectively) lower than control in parallel to a lower femoral venous temperature and lactate release (P<0.05). These results suggest that NO and prostaglandins play important roles in skeletal muscle blood flow regulation during moderate intensity exercise and that EDHFs do not compensate for the impaired formation of NO and prostaglandins. Moreover, inhibition of NO and prostaglandin formation is associated with a lower aerobic energy turnover and increased concentration of vasoactive ATP in plasma. PMID:17347273

  1. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils

    SciTech Connect

    Traynor-Kaplan, A.E.; Thompson, B.L.; Harris, A.L.; Taylor, P.; Omann, G.M.; Sklar, L.A. )

    1989-09-15

    We recently showed that phosphatidylinositol trisphosphate (PIP3) was present in a unique lipid fraction generated in neutrophils during activation. Here, we demonstrate that the band containing this fraction isolated from thin layer chromatography consists primarily of PIP3 and that only small amounts of radiolabeled PIP3 exist prior to activation. In addition, high performance liquid chromatography of deacylated phospholipids from stimulated cells reveals an increase in a fraction eluting ahead of glycerophosphoinositol 4,5-P2. After removal of the glycerol we found that it coeluted with inositol 1,3,4-P3 when resubjected to high performance liquid chromatography. Thus, we have detected a second, novel form of phosphatidylinositol bisphosphate in activated neutrophils, PI-(3,4)P2. The elevation of PIP3 through the formyl peptide receptor is blocked by pretreatment with pertussis toxin, implicating mediation of the increase in PIP3 by a guanosine triphosphate-binding (G) protein. The rise in PIP3 is not secondary to calcium elevation. Buffering the rise in intracellular calcium did not diminish the increase in PIP3. The elevation of PIP3 appears to occur during activation with physiological agonists, its level varying with the degree of activation. Leukotriene B4, which elicits many of the same responses as stimulation of the formyl peptide receptor but with minimal oxidant production, stimulates a much attenuated rise in PIP3. Isoproterenol, which inhibits oxidant production also reduces the rise in PIP3. Hence formation of PI(3,4)P2 and PIP3 (presumed to be PI(3,4,5)P3) correlates closely with the early events of neutrophil activation.

  2. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils.

    PubMed

    Traynor-Kaplan, A E; Thompson, B L; Harris, A L; Taylor, P; Omann, G M; Sklar, L A

    1989-09-15

    We recently showed that phosphatidylinositol trisphosphate (PIP3) was present in a unique lipid fraction generated in neutrophils during activation. Here, we demonstrate that the band containing this fraction isolated from thin layer chromatography consists primarily of PIP3 and that only small amounts of radiolabeled PIP3 exist prior to activation. In addition, high performance liquid chromatography of deacylated phospholipids from stimulated cells reveals an increase in a fraction eluting ahead of glycerophosphoinositol 4,5-P2. After removal of the glycerol we found that it coeluted with inositol 1,3,4-P3 when resubjected to high performance liquid chromatography. Thus, we have detected a second, novel form of phosphatidylinositol bisphosphate in activated neutrophils, PI-(3,4)P2. The elevation of PIP3 through the formyl peptide receptor is blocked by pretreatment with pertussis toxin, implicating mediation of the increase in PIP3 by a guanosine triphosphate-binding (G) protein. The rise in PIP3 is not secondary to calcium elevation. Buffering the rise in intracellular calcium did not diminish the increase in PIP3. The elevation of PIP3 appears to occur during activation with physiological agonists, its level varying with the degree of activation. Leukotriene B4, which elicits many of the same responses as stimulation of the formyl peptide receptor but with minimal oxidant production, stimulates a much attenuated rise in PIP3. Isoproterenol, which inhibits oxidant production also reduces the rise in PIP3. Hence formation of PI(3,4)P2 and PIP3 (presumed to be PI(3,4,5)P3) correlates closely with the early events of neutrophil activation. PMID:2549071

  3. Structural basis for phosphatidylinositol-phosphate biosynthesis

    PubMed Central

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-01-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis. PMID:26510127

  4. Structural basis for phosphatidylinositol-phosphate biosynthesis.

    PubMed

    Clarke, Oliver B; Tomasek, David; Jorge, Carla D; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R; Shapiro, Lawrence; Hendrickson, Wayne A; Santos, Helena; Mancia, Filippo

    2015-01-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis. PMID:26510127

  5. Structural basis for phosphatidylinositol-phosphate biosynthesis

    NASA Astrophysics Data System (ADS)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  6. Phosphatidylinositol 3-kinase in myogenesis.

    PubMed

    Kaliman, P; Zorzano, A

    1997-08-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) has been cloned and characterized in a wide range of organisms. PI 3-kinases are activated by a diversity of extracellular stimuli and are involved in multiple cell processes such as cell proliferation, protein trafficking, cell motility, differentiation, regulation of cytoskeletal structure, and apoptosis. It has recently been shown that PI 3-kinase is a crucial second messenger in the signaling of myogenesis. Two structurally unrelated highly specific inhibitors of PI 3-kinase-wortmannin and LY294002-block the morphological and biochemical differentiation program of different skeletal-muscle cell models. Moreover, L6E9 myoblasts overexpressing a dominant-negative mutant of PI 3-kinase p85 regulatory subunit (Δp85) are unable to differentiate. Furthermore, PI 3-kinase is specifically involved in the insulinlike growth factor (IGF)-dependent myogenic pathway. Indeed, the ability of IGF-I, des-1,3-IGF-I, and IGF-II to promote cell fusion and muscle-specific protein expression is impaired after treatment with PI 3-kinase inhibitors or in cells overexpressing Δp85. The identification of additional key downstream elements of the IGF/PI 3-kinase myogenic cascade is crucial to a detailed understanding of the process of muscle differentiation and may generate new tools for skeletal and cardiac muscle regeneration therapies. (Trends Cardiovasc Med 1997;7:198-202). © 1997, Elsevier Science Inc. PMID:21235885

  7. Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells.

    PubMed

    Vermeer, Joop E M; Thole, Julie M; Goedhart, Joachim; Nielsen, Erik; Munnik, Teun; Gadella, Theodorus W J

    2009-01-01

    Polyphosphoinositides represent a minor group of phospholipids, accounting for less than 1% of the total. Despite their low abundance, these molecules have been implicated in various signalling and membrane trafficking events. Phosphatidylinositol 4-phosphate (PtdIns4P) is the most abundant polyphosphoinositide. (32)Pi-labelling studies have shown that the turnover of PtdIns4P is rapid, but little is known about where in the cell or plant this occurs. Here, we describe the use of a lipid biosensor that monitors PtdIns4P dynamics in living plant cells. The biosensor consists of a fusion between a fluorescent protein and a lipid-binding domain that specifically binds PtdIns4P, i.e. the pleckstrin homology domain of the human protein phosphatidylinositol-4-phosphate adaptor protein-1 (FAPP1). YFP-PH(FAPP1) was expressed in four plant systems: transiently in cowpea protoplasts, and stably in tobacco BY-2 cells, Medicago truncatula roots and Arabidopsis thaliana seedlings. All systems allowed YFP-PH(FAPP1) expression without detrimental effects. Two distinct fluorescence patterns were observed: labelling of motile punctate structures and the plasma membrane. Co-expression studies with organelle markers revealed strong co-labelling with the Golgi marker STtmd-CFP, but not with the endocytic/pre-vacuolar marker GFP-AtRABF2b. Co-expression with the Ptdins3P biosensor YFP-2 x FYVE revealed totally different localization patterns. During cell division, YFP-PH(FAPP1) showed strong labelling of the cell plate, but PtdIns3P was completely absent from the newly formed cell membrane. In root hairs of M. truncatula and A. thaliana, a clear PtdIns4P gradient was apparent in the plasma membrane, with the highest concentration in the tip. This only occurred in growing root hairs, indicating a role for PtdIns4P in tip growth. PMID:18785997

  8. Biochemical and Genetic Evidence for the Presence of Multiple Phosphatidylinositol- and Phosphatidylinositol 4,5-Bisphosphate-Specific Phospholipases C in Tetrahymena▿‡

    PubMed Central

    Leondaritis, George; Sarri, Theoni; Dafnis, Ioannis; Efstathiou, Antonia; Galanopoulou, Dia

    2011-01-01

    Eukaryotic phosphoinositide-specific phospholipases C (PI-PLC) specifically hydrolyze phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], produce the Ca2+-mobilizing agent inositol 1,4,5-trisphosphate, and regulate signaling in multicellular organisms. Bacterial PtdIns-specific PLCs, also present in trypanosomes, hydrolyze PtdIns and glycosyl-PtdIns, and they are considered important virulence factors. All unicellular eukaryotes studied so far contain a single PI-PLC-like gene. In this report, we show that ciliates are an exception, since we provide evidence that Tetrahymena species contain two sets of functional genes coding for both bacterial and eukaryotic PLCs. Biochemical characterization revealed two PLC activities that differ in their phosphoinositide substrate utilization, subcellular localization, secretion to extracellular space, and sensitivity to Ca2+. One of these activities was identified as a typical membrane-associated PI-PLC activated by low-micromolar Ca2+, modestly activated by GTPγS in vitro, and inhibited by the compound U73122 [1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione]. Importantly, inhibition of PI-PLC in vivo resulted in rapid upregulation of PtdIns(4,5)P2 levels, suggesting its functional importance in regulating phosphoinositide turnover in Tetrahymena. By in silico and molecular analysis, we identified two PLC genes that exhibit significant similarity to bacterial but not trypanosomal PLC genes and three eukaryotic PI-PLC genes, one of which is a novel inactive PLC similar to proteins identified only in metazoa. Comparative studies of expression patterns and PI-PLC activities in three T. thermophila strains showed a correlation between expression levels and activity, suggesting that the three eukaryotic PI-PLC genes are functionally nonredundant. Our findings imply the presence of a conserved and elaborate PI-PLC-Ins(1,4,5)P3-Ca2+ regulatory axis in ciliates. PMID:21169416

  9. Subcellular localization of yeast Sec14 homologues and their involvement in regulation of phospholipid turnover.

    PubMed

    Schnabl, Martina; Oskolkova, Olga V; Holic, Roman; Brezná, Barbara; Pichler, Harald; Zágorsek, Milos; Kohlwein, Sepp D; Paltauf, Fritz; Daum, Günther; Griac, Peter

    2003-08-01

    Sec14p of the yeast Saccharomyces cerevisiae is involved in protein secretion and regulation of lipid synthesis and turnover in vivo, but acts as a phosphatidylinositol-phosphatidylcholine transfer protein in vitro. In this work, the five homologues of Sec14p, Sfh1p-Sfh5p, were subjected to biochemical and cell biological analysis to get a better view of their physiological role. We show that overexpression of SFH2 and SFH4 suppressed the sec14 growth defect in a more and SFH1 in a less efficient way, whereas overexpression of SFH3 and SFH5 did not complement sec14. Using C-terminal yEGFP fusions, Sfh2p, Sfh4p and Sfh5p are mainly localized to the cytosol and microsomes similar to Sec14p. Sfh1p was detected in the nucleus and Sfh3p in lipid particles and in microsomes. In contrast to Sec14p, which inhibits phospholipase D1 (Pld1p), overproduction of Sfh2p and Sfh4p resulted in the activation of Pld1p-mediated phosphatidylcholine turnover. Interestingly, Sec14p and the two homologues Sfh2p and Sfh4p downregulate phospholipase B1 (Plb1p)-mediated turnover of phosphatidylcholine in vivo. In summary, Sfh2p and Sfh4p are the Sec14p homologues with the most pronounced functional similarity to Sec14p, whereas the other Sfh proteins appear to be functionally less related to Sec14p. PMID:12869188

  10. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells

    PubMed Central

    Strachan, Debbie C; Ruffell, Brian; Oei, Yoko; Bissell, Mina J; Coussens, Lisa M; Pryer, Nancy; Daniel, Dylan

    2013-01-01

    Increased numbers of tumor-infiltrating macrophages correlate with poor disease outcome in patients affected by several types of cancer, including breast and prostate carcinomas. The colony stimulating factor 1 receptor (CSF1R) signaling pathway drives the recruitment of tumor-associated macrophages (TAMs) to the neoplastic microenvironment and promotes the differentiation of TAMs toward a pro-tumorigenic phenotype. Twelve clinical trials are currently evaluating agents that target the CSF1/CSF1R signaling pathway as a treatment against multiple malignancies, including breast carcinoma, leukemia, and glioblastoma. The blockade of CSF1R signaling has been shown to greatly decrease the number of macrophages in a tissue-specific manner. However, additional mechanistic insights are needed in order to understand how macrophages are depleted and the global effects of CSF1R inhibition on other tumor-infiltrating immune cells. Using BLZ945, a highly selective small molecule inhibitor of CSF1R, we show that CSF1R inhibition attenuates the turnover rate of TAMs while increasing the number of CD8+ T cells that infiltrate cervical and breast carcinomas. Specifically, we find that BLZ945 decreased the growth of malignant cells in the mouse mammary tumor virus-driven polyomavirus middle T antigen (MMTV-PyMT) model of mammary carcinogenesis. Furthermore, we show that BLZ945 prevents tumor progression in the keratin 14-expressing human papillomavirus type 16 (K14-HPV-16) transgenic model of cervical carcinogenesis. Our results demonstrate that TAMs undergo a constant turnover in a CSF1R-dependent manner, and suggest that continuous inhibition of the CSF1R pathway may be essential to maintain efficacious macrophage depletion as an anticancer therapy. PMID:24498562

  11. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8(+) T cells.

    PubMed

    Strachan, Debbie C; Ruffell, Brian; Oei, Yoko; Bissell, Mina J; Coussens, Lisa M; Pryer, Nancy; Daniel, Dylan

    2013-12-01

    Increased numbers of tumor-infiltrating macrophages correlate with poor disease outcome in patients affected by several types of cancer, including breast and prostate carcinomas. The colony stimulating factor 1 receptor (CSF1R) signaling pathway drives the recruitment of tumor-associated macrophages (TAMs) to the neoplastic microenvironment and promotes the differentiation of TAMs toward a pro-tumorigenic phenotype. Twelve clinical trials are currently evaluating agents that target the CSF1/CSF1R signaling pathway as a treatment against multiple malignancies, including breast carcinoma, leukemia, and glioblastoma. The blockade of CSF1R signaling has been shown to greatly decrease the number of macrophages in a tissue-specific manner. However, additional mechanistic insights are needed in order to understand how macrophages are depleted and the global effects of CSF1R inhibition on other tumor-infiltrating immune cells. Using BLZ945, a highly selective small molecule inhibitor of CSF1R, we show that CSF1R inhibition attenuates the turnover rate of TAMs while increasing the number of CD8(+) T cells that infiltrate cervical and breast carcinomas. Specifically, we find that BLZ945 decreased the growth of malignant cells in the mouse mammary tumor virus-driven polyomavirus middle T antigen (MMTV-PyMT) model of mammary carcinogenesis. Furthermore, we show that BLZ945 prevents tumor progression in the keratin 14-expressing human papillomavirus type 16 (K14-HPV-16) transgenic model of cervical carcinogenesis. Our results demonstrate that TAMs undergo a constant turnover in a CSF1R-dependent manner, and suggest that continuous inhibition of the CSF1R pathway may be essential to maintain efficacious macrophage depletion as an anticancer therapy. PMID:24498562

  12. An essential role of phosphatidylinositol 3-kinase in myogenic differentiation

    PubMed Central

    Jiang, Bing-Hua; Zheng, Jenny Z.; Vogt, Peter K.

    1998-01-01

    The oncogene p3k, coding for a constitutively active form of phosphatidylinositol 3-kinase (PI 3-kinase; EC 2.7.1.137), strongly enhances myogenic differentiation in cultures of chicken-embryo myoblasts. It increases the size of the myotubes and induces elevated levels of the muscle-specific proteins MyoD, myosin heavy chain, creatine kinase, and desmin. Inhibition of PI 3-kinase activity with LY294002 or with dominant-negative mutants of PI 3-kinase interferes with myogenic differentiation and with the induction of muscle-specific genes. PI 3-kinase is therefore an upstream mediator for the expression of the muscle-specific genes and is both necessary and rate-limiting for the process of myogenesis. PMID:9826674

  13. A new chemical probe for phosphatidylinositol kinase activity.

    PubMed

    Sherratt, Allison R; Nasheri, Neda; McKay, Craig S; O'Hara, Shifawn; Hunt, Ashley; Ning, Zhibin; Figeys, Daniel; Goto, Natalie K; Pezacki, John Paul

    2014-06-16

    Phosphatidylinositol kinases (PIKs) are key enzymatic regulators of membrane phospholipids and membrane environments that control many aspects of cellular function, from signal transduction to secretion, through the Golgi apparatus. Here, we have developed a photoreactive "clickable" probe, PIK-BPyne, to report the activity of PIKs. We investigated the selectivity and efficiency of the probe to both inhibit and label PIKs, and we compared PIK-BPyne to a wortmannin activity-based probe also known to target PIKs. We found that PIK-BPyne can act as an effective in situ activity-based probe, and for the first time, report changes in PI4K-IIIβ activity induced by the hepatitis C virus. These results establish the utility of PIK-BPyne for activity-based protein profiling studies of PIK function in native biological systems. PMID:24850173

  14. Altered bone turnover during spaceflight

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Morey, E. R.; Liu, C.; Baylink, D. J.

    1982-01-01

    Modifications in calcium metabolism during spaceflight were studied, using parameters that reflect bone turnover. Bone formation rate, medullary area, bone length, bone density, pore size distribution, and differential bone cell number were evaluated in growing rate both immediately after and 25 days after orbital spaceflights aboard the Soviet biological satellites Cosmos 782 and 936. The primary effect of space flight on bone turnover was a reversible inhibition of bone formation at the periosteal surface. A simultaneous increase in the length of the periosteal arrest line suggests that bone formation ceased along corresponding portions of that surface. Possible reasons include increased secretion of glucocorticoids and mechanical unloading of the skeleton due to near-weightlessness, while starvation and immobilization are excluded as causes.

  15. Purification and characterization of phosphatidylinositol synthase from human placenta.

    PubMed

    Antonsson, B E

    1994-02-01

    Phosphatidylinositol synthase (CDP-1,2-diacyl-sn-glycerol:myoinositol 3-phosphatidyltransferase, EC 2.7.8.11) was purified from the microsomal fraction of human placenta. The Triton X-100-extracted enzyme was purified 8300-fold over the microsomal fraction by affinity chromatography on CDP-diacylglycerol-Sepharose followed by ion-exchange chromatography on Mono Q. The purified enzyme had a molecular mass of 24,000 Da on SDS/PAGE. The enzyme had a pH optimum at 9.0, required Mn2+ or Mg2+, and was inhibited by Ca2+ and Zn2+. The Km for myo-inositol was determined to be 0.28 mM. Optimal activity was obtained at 0.2-0.4 mM CDP-diacylglycerol; higher concentrations of the lipid substrate inhibited the enzyme reaction. The enzyme was inhibited by nucleoside di- and tri-phosphates, Pi and PPi. CDP competitively inhibited the enzyme reaction with a Kis of 4 mM. The optimal temperature for the PtdIns synthase reaction was 50 degrees C. PMID:8110188

  16. Mechanism of substrate specificity of phosphatidylinositol phosphate kinases.

    PubMed

    Muftuoglu, Yagmur; Xue, Yi; Gao, Xiang; Wu, Dianqing; Ha, Ya

    2016-08-01

    The phosphatidylinositol phosphate kinase (PIPK) family of enzymes is primarily responsible for converting singly phosphorylated phosphatidylinositol derivatives to phosphatidylinositol bisphosphates. As such, these kinases are central to many signaling and membrane trafficking processes in the eukaryotic cell. The three types of phosphatidylinositol phosphate kinases are homologous in sequence but differ in catalytic activities and biological functions. Type I and type II kinases generate phosphatidylinositol 4,5-bisphosphate from phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate, respectively, whereas the type III kinase produces phosphatidylinositol 3,5-bisphosphate from phosphatidylinositol 3-phosphate. Based on crystallographic analysis of the zebrafish type I kinase PIP5Kα, we identified a structural motif unique to the kinase family that serves to recognize the monophosphate on the substrate. Our data indicate that the complex pattern of substrate recognition and phosphorylation results from the interplay between the monophosphate binding site and the specificity loop: the specificity loop functions to recognize different orientations of the inositol ring, whereas residues flanking the phosphate binding Arg244 determine whether phosphatidylinositol 3-phosphate is exclusively bound and phosphorylated at the 5-position. This work provides a thorough picture of how PIPKs achieve their exquisite substrate specificity. PMID:27439870

  17. Coated vesicles contain a phosphatidylinositol kinase.

    PubMed

    Campbell, C R; Fishman, J B; Fine, R E

    1985-09-15

    When coated vesicles (CVs) are incubated with [gamma-32P]ATP, radioactivity is rapidly incorporated into a compound identified by thin layer chromatography as phosphatidylinositol 4-phosphate. This activity has been identified in CVs isolated from bovine brain as well as from rat liver and chick embryo skeletal muscle. Phosphatidylinositol (PI) kinase is not separated from CVs during agarose electrophoresis, which produces CVs of greater than 95% purity, indicating that the activity present does not derive from contamination. The specific activity of these highly purified CVs was demonstrated to be approximately twice that of synaptic plasma membranes, further ruling out contamination from this source. The PI kinase remains associated with the vesicle upon removal of clathrin and its associated proteins and is solubilized by nonionic detergents, suggesting it is an integral membrane protein. We have been unable to demonstrate the formation of significant amounts of phosphatidylinositol 4,5-bisphosphate in any of our CV preparations. In the presence of exogenous PI, activity is stimulated, with maximal phosphorylation occurring at 0.1 mM. The enzyme appears to be maximally stimulated by 200 mM MgCl2 and 1 mM ATP and is most active at pH 7.25. Calculations indicate that, under optimal conditions, approximately 25 molecules of PIP are produced per CV within 60 s, suggesting that these structures may play an important role in cellular PI metabolism. PMID:2863269

  18. Protein turnover in Azotobacter vinelandii during encystment and germination.

    PubMed

    Ruppen, M E; Garner, G; Sadoff, H L

    1983-12-01

    Protein turnover occurs during differentiation of Azotobacter vinelandii 12837 to the extent of 50% during encystment and 7% during germination. The addition of rifampin at the initiation of encystment prevents encystment and inhibits turnover. In germinating cysts, protein turnover is essential owing to an apparent lack of certain amino acid biosynthetic enzymes. The capacity to synthesize sulfur-containing amino acids from inorganic precursors is regained about halfway through the germination process. PMID:6643391

  19. Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels.

    PubMed

    Trebak, Mohamed; Lemonnier, Loic; DeHaven, Wayne I; Wedel, Barbara J; Bird, Gary S; Putney, James W

    2009-02-01

    The canonical transient receptor potential (TRPC) proteins have been recognized as key players in calcium entry pathways activated through phospholipase-C-coupled receptors. While it is clearly demonstrated that members of the TRPC3/6/7 subfamily are activated by diacylglycerol, the mechanism by which phospholipase C activates members of the TRPC1/4/5 subfamily remains a mystery. In this paper, we provide evidence for both negative and positive modulatory roles for membrane polyphosphoinositides in the regulation of TRPC5 channels. Depletion of polyphosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate (PIP2) through inhibition of phosphatidylinositol 4-kinase activates calcium entry and membrane currents in TRPC5-expressing but not in TRPC3- or TRPC7-expressing cells. Inclusion of polyphosphatidylinositol 4-phosphate or PIP2, but not phosphatidylinositol 3,4,5-trisphosphate, in the patch pipette inhibited TRPC5 currents. Paradoxically, depletion of PIP2 with a directed 5-phosphatase strategy inhibited TRPC5. Furthermore, when the activity of single TRPC5 channels was examined in excised patches, the channels were robustly activated by PIP2. These findings indicate complex functions for regulation of TRPC5 by PIP2, and we propose that membrane polyphosphoinositides may have at least two distinct functions in regulating TRPC5 channel activity. PMID:18665391

  20. Phosphatidylinositol(4,5)bisphosphate and phosphatidylinositol(4)phosphate in plant tissues. [Pisum sativum

    SciTech Connect

    Irvine, R.F.; Letcher, A.J.; Lander, D.J. ); Dawson, A.P. ); Musgrave, A. ); Drobak, B.K. )

    1989-03-01

    Pea (Pisum sativum) leaf discs or swimming suspensions of Chlamydomonas eugametos were radiolabeled with ({sup 3}H)myo-inositol or ({sup 32}P)Pi and the lipids were extracted, deacylated, and their glycerol moieties removed. The resulting inositol trisphosphate and bisphosphate fractions were examined by periodate degradation, reduction and dephosphorylation, or by incubation with human red cell membranes. Their likely structures were identified as D-myo-inositol(1,4,5)trisphosphate and D-myo-inositol(1,4,)-bisphosphate. It is concluded that plants contain phosphatidylinositol(4)phosphate and phosphatidylinositol(4,5)bisphosphate; no other polyphosphoinositides were detected.

  1. Inhibitory effects of ethanol on phosphatidylinositol breakdown in pancreatic acini

    SciTech Connect

    Towner, S.J.; Peppin, J.F.; Tsukamoto, H.

    1986-03-01

    Recently the physiological relationship between the phospholipid effect and secretagogue-induced cellular function has begun to be understood. In this study, the authors investigated acute and chronic effects of ethanol on phosphatidylinositol (PI) synthesis and breakdown in pancreatic acini. Five pairs of male Wistar rats were intragastrically infused for 30 days with high fat diet (25% total calories) plus ethanol or isocaloric dextrose. After intoxication, isolated in HEPES media, followed by 30 min incubation with CCK-8 (0, 100, 300 or 600 pM) and ethanol (0 or 100 mM). Acinar lipids were extracted and counted for labeled PI. Incorporation of /sup 3/H-inositol into alcoholic acinar PI was reduced to 38.2% of that in controls. A percent maximal PI break down by CCK-8 was similar in the two groups (13-24% of basal). However, the magnitude of PI breakdown was markedly lower in alcoholic acini (482 vs 1081 dpm) due to the decreased PI synthesis rate. The presence of 100 mM ethanol in the media further inhibited the breakdown by 50% in this group. These results strongly indicate that chronic ethanol intoxication inhibits PI synthesis and breakdown in pancreatic acini, and that this inhibition can be potentiated by acute ethanol administration.

  2. Inhibition of mRNA turnover in yeast by an xrn1 mutation enhances the requirement for eIF4E binding to eIF4G and for proper capping of transcripts by Ceg1p.

    PubMed Central

    Brown, J T; Yang, X; Johnson, A W

    2000-01-01

    Null mutants of XRN1, encoding the major cytoplasmic exoribonuclease in yeast, are viable but accumulate decapped, deadenylated transcripts. A screen for mutations synthetic lethal with xrn1Delta identified a mutation in CDC33, encoding eIF4E. This mutation (glutamate to glycine at position 72) affected a highly conserved residue involved in interaction with eIF4G. Synthetic lethality between xrn1 and cdc33 was not relieved by high-copy expression of eIF4G or by disruption of the yeast eIF4E binding protein Caf20p. High-copy expression of a mutant eIF4G defective for eIF4E binding resulted in a dominant negative phenotype in an xrn1 mutant, indicating the importance of this interaction in an xrn1 mutant. Another allele of CDC33, cdc33-1, along with mutations in CEG1, encoding the nuclear guanylyltransferase, were also synthetic lethal with xrn1Delta, whereas mutations in PRT1, encoding a subunit of eIF3, were not. Mutations in CDC33, CEG1, PRT1, PAB1, and TIF4631, encoding eIF4G1, have been shown to lead to destabilization of mRNAs. Although such destabilization in cdc33, ceg1, and pab1 mutants can be partially suppressed by an xrn1 mutation, we observed synthetic lethality between xrn1 and either cdc33 or ceg1 and no suppression of the inviability of a pab1 null mutation by xrn1Delta. Thus, the inhibition of mRNA turnover by blocking Xrn1p function does not suppress the lethality of defects upstream in the turnover pathway but it does enhance the requirement for (7)mG caps and for proper formation of the eIF4E/eIF4G cap recognition complex. PMID:10790382

  3. Human cardiac phospholipase D activity is tightly controlled by phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Kurz, Thomas; Kemken, Dorit; Mier, Kenneth; Weber, Isabel; Richardt, Gert

    2004-02-01

    Phospholipase D (PLD) plays a central role in receptor-mediated breakdown of choline phospholipids and formation of phosphatidic acid (PA), an important regulator of cardiac function. However, specific mechanisms that regulate myocardial PLD activity remain largely unknown, particularly in the human heart. We hypothesized that phosphatidylinositol 4,5-bisphosphate (PIP2), best known as substrate for phospholipase C (PLC) isozymes, plays a critical role in regulating myocardial PLD activity. We examined the effect of PIP2 on human myocardial PLD activity in vitro by utilizing a fluorescence HPLC assay. PIP2 increased 10-fold the maximal activity of a partially solubilized PLD from human atrial myocardium. PIP2-stimulated PLD activity was accompanied by a consecutive increase in diacylglycerol, indicating dephosphorylation of PA by PA phosphohydrolase. Likewise, phosphatidylinositol 3,4,5-trisphosphate, which is produced from PIP2 by phosphatidylinositol 3-kinase, increased PLD activity with about the same potency but with somewhat lower efficacy. In contrast, other phospholipids were ineffective, indicating that the action of PIP2 on PLD is highly specific. Neomycin, a high-affinity ligand of PIP2, inhibited PLD activity in human atrial myocardium, but had no effect on the activity of partially solubilized enzyme. The addition of PIP2 restored the sensitivity of solubilized PLD to neomycin inhibition, indicating that neomycin inhibits PLD activity by binding to endogenous PIP2. Our results demonstrate a critical role for PIP2 in human cardiac PLD activity and suggest that PIP2 synthesis (by phosphatidylinositol 4-phosphate 5-kinase) and hydrolysis (by PIP2-specific PLC) could be important determinants in regulating PLD signal transduction in the human heart. PMID:14871550

  4. The role of phosphatidylinositol signaling pathway in regulating serotonin-induced oocyte maturation in Mercenaria mercenaria

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Zhang, Tao

    2011-05-01

    Serotonin (5-HT) has been found to stimulate meiotic maturation of oocytes in many molluscs. During maturation, several signaling pathways are involved, especially the phosphatidylinositol and cAMP pathways. In order to examine the possible role of the phosphatidylinositol signaling pathway in regulating oocyte maturation in Mercenaria mercenaria, the effects of the activator/inhibitor of phospholipase (PLC) and protein kinase C (PKC) on serotonin-induced maturation were studied. Results show that high-concentrations of neomycin (inhibitor of PLC) blocked oocyte maturation, while 9, 10-dimethyl-1, 2-benzanthracene (DMBA, activator of PLC) promoted oocyte maturation in the presence of serotonin. It was also found that in the presence of serotonin, phorbol 12-myristate 13-acetate (PMA, activator of PKC) inhibited oocyte maturation, while sphingosine (inhibitor of PKC) stimulated oocyte maturation. These results indicate that serotonin-induced oocyte maturation requires the activation of the phosphatidylinositol pathway. Decrease of PLC inhibited serotonin-induced oocyte maturation, whereas a decrease of PKC stimulated the maturation. Thus, our study indicates that serotonin promotes maturation of M. mercenaria oocytes through PLC stimulated increase in calcium ion concentration via inositol-1, 4, 5-trisphosphate (IP3) but not PKC.

  5. Phosphatidylinositol kinase activities in Trypanosoma cruzi epimastigotes.

    PubMed

    Gimenez, Alba Marina; Gesumaría, María Celeste; Schoijet, Alejandra C; Alonso, Guillermo D; Flawiá, Mirtha M; Racagni, Graciela E; Machado, Estela E

    2015-01-01

    Phosphatidylinositol (PtdIns) metabolism through phosphatidylinositol kinase (PIKs) activities plays a central role in different signaling pathways. In Trypanosoma cruzi, causative agent of Chagas disease, PIKs have been proposed as target for drug design in order to combat this pathogen. In this work, we studied the classes of PI4K, PIPK and PI3K that could participate in signaling pathways in T. cruzi epimastigote forms. For this reason, we analyzed their enzymatic parameters and detailed responses to avowed kinase inhibitors (adenosine, sodium deoxycholate, wortmannin and LY294002) and activators (Ca(2+), phosphatidic acid, spermine and heparin). Our results suggest the presence and activity of a class III PI4K, a class I PIPK, a class III PI3K previously described (TcVps34) and a class I PI3K. Class I PI3K enzyme, here named TcPI3K, was cloned and expressed in a bacterial system, and their product was tested for kinase activity. The possible participation of TcPI3K in central cellular events of the parasite is also discussed. PMID:26493613

  6. Arachidonic acid-mediated inhibition of a potassium current in the giant neurons of Aplysia

    SciTech Connect

    Carlson, R.O.

    1990-01-01

    Biochemical and electrophysiological approaches were used to investigate the role of arachidonic acid (AA) in the modulation of an inwardly rectifying potassium current (I{sub R}) in the giant neurons of the marine snail, Aplysia californica. Using ({sup 3}H)AA as tracer, the intracellular free AA pool in Aplysia ganglia was found to be in a state of constant and rapid turnover through deacylation and reacylation of phospholipid, primarily phosphatidyl-inositol. This constant turnover was accompanied by a constant release of free AA and eicosanoids into the extracellular medium. The effects of three pharmacological agents were characterized with regard to AA metabolism in Aplysia ganglia. 4-O-tetra-decanoylphorbol 13-acetate (TPA), an activator of protein kinase C, stimulated liberation of AA from phospholipid, and 4-bromophenacylbromide (BPB), an inhibitor of phospholipate A{sub 2}, inhibited this liberation. Indomethacin at 250 {mu}M was found to inhibit uptake of AA, likely through inhibition of acyl-CoA synthetase. These agents were also found to modulate I{sub R} in ways which were consistent with their biological effects: TPA inhibited I{sub R}, and both BPB and indomethacin stimulated I{sub R} . Modulation of I{sub R} by these substances was found not to involve cAMP metabolism. Acute application of exogenous AA did not affect I{sub R}; however, I{sub R} in giant neurons was found to be inhibited after dialysis with AA or other unsaturated fatty acids. Also, after perfusion with BSA overnight, a treatment which strips the giant neurons of AA in lipid storage, I{sub R} was found to have increased over 2-fold. This perfusion-induced increase was inhibited by the presence of AA or by pretreatment of the giant neurons with BPB. These results suggest AA, provided through constant turnover from phospholipid, mediates constitutive inhibition of I{sub R}.

  7. Phosphatidylinositol-3-kinase regulates mast cell ion channel activity.

    PubMed

    Lam, Rebecca S; Shumilina, Ekaterina; Matzner, Nicole; Zemtsova, Irina M; Sobiesiak, Malgorzata; Lang, Camelia; Felder, Edward; Dietl, Paul; Huber, Stephan M; Lang, Florian

    2008-01-01

    Stimulation of the mast cell IgE-receptor (FcepsilonRI) by antigen leads to stimulation of Ca(2+) entry with subsequent mast cell degranulation and release of inflammatory mediators. Ca(2+) further activates Ca(2+)-activated K(+) channels, which in turn provide the electrical driving force for Ca(2+) entry. Since phosphatidylinositol (PI)-3-kinase has previously been shown to be required for mast cell activation and degranulation, we explored, whether mast cell Ca(2+) and Ca(2+)-activated K(+) channels may be sensitive to PI3-kinase activity. Whole-cell patch clamp experiments and Fura-2 fluorescence measurements for determination of cytosolic Ca(2+) concentration were performed in mouse bone marrow-derived mast cells either treated or untreated with the PI3-kinase inhibitors LY-294002 (10 muM) and wortmannin (100 nM). Antigen-stimulated Ca(2+) entry but not Ca(2+) release from the intracellular stores was dramatically reduced upon PI3-kinase inhibition. Ca(2+) entry was further inhibited by TRPV blocker ruthenium red (10 muM). Ca(2+) entry following readdition after Ca(+)-store depletion with thapsigargin was again decreased by LY-294002, pointing to inhibition of store-operated channels (SOCs). Moreover, inhibition of PI3-kinase abrogated IgE-stimulated, but not ionomycin-induced stimulation of Ca(2+)-activated K(+) channels. These observations disclose PI3-kinase-dependent regulation of Ca(2+) entry and Ca(2+)-activated K(+)-channels, which in turn participate in triggering mast cell degranulation. PMID:18769043

  8. Inhibition by islet-activating protein, pertussis toxin, of P2-purinergic receptor-mediated iodide efflux and phosphoinositide turnover in FRTL-5 cells

    SciTech Connect

    Okajima, F.; Sho, K.; Kondo, Y.

    1988-08-01

    Exposure of FRTL-5 thyroid cells to ATP (1 microM to 1 mM) resulted in the stimulation of I- efflux in association with the induction of inositol trisphosphate production and intracellular Ca2+ mobilization. Nonhydrolyzable ATP derivatives, ADP and GTP, were also as effective in magnitude as ATP, whereas neither AMP nor adenosine exerted significant effect on I- efflux, suggesting a P2-purinergic receptor-mediated activation of I- efflux. Treatment of the cells with the islet-activating protein (IAP) pertussis toxin, which ADP-ribosylated a 41,000 mol wt membrane protein, effectively suppressed the phosphoinositide response to ATP in addition to ATP-dependent I- efflux at agonist concentrations below 10 microM. In contrast, the I- efflux stimulated by TSH, A23187, or phorbol myristate acetate was insusceptible to IAP. The IAP substrate, probably GTP-binding protein, is hence proposed to mediate the activation of P2-purinergic receptor-linked phospholipase-C in FRTL-5 cells. However, the responses to ATP, its nonhydrolyzable derivatives, or ADP at the higher agonist concentrations, especially above 100 microM, were only partially inhibited by IAP, even though the IAP substrate was totally ADP ribosylated by the toxin. The responses to GTP in the whole concentration range tested were not influenced by IAP treatment. Thus, signals arising from the P2-receptor might be transduced to phospholipase-C by two different pathways, i.e. IAP-sensitive and insensitive ones, and result in the stimulation of I- efflux.

  9. Phosphatidylinositol 4-Phosphate Negatively Regulates Chloroplast Division in Arabidopsis[OPEN

    PubMed Central

    Okazaki, Kumiko; Miyagishima, Shin-ya; Wada, Hajime

    2015-01-01

    Chloroplast division is performed by the constriction of envelope membranes at the division site. Although constriction of a ring-like protein complex has been shown to be involved in chloroplast division, it remains unknown how membrane lipids participate in the process. Here, we show that phosphoinositides with unknown function in envelope membranes are involved in the regulation of chloroplast division in Arabidopsis thaliana. PLASTID DIVISION1 (PDV1) and PDV2 proteins interacted specifically with phosphatidylinositol 4-phosphate (PI4P). Inhibition of phosphatidylinositol 4-kinase (PI4K) decreased the level of PI4P in chloroplasts and accelerated chloroplast division. Knockout of PI4Kβ2 expression or downregulation of PI4Kα1 expression resulted in decreased levels of PI4P in chloroplasts and increased chloroplast numbers. PI4Kα1 is the main contributor to PI4P synthesis in chloroplasts, and the effect of PI4K inhibition was largely abolished in the pdv1 mutant. Overexpression of DYNAMIN-RELATED PROTEIN5B (DRP5B), another component of the chloroplast division machinery, which is recruited to chloroplasts by PDV1 and PDV2, enhanced the effect of PI4K inhibition, whereas overexpression of PDV1 and PDV2 had additive effects. The amount of DRP5B that associated with chloroplasts increased upon PI4K inhibition. These findings suggest that PI4P is a regulator of chloroplast division in a PDV1- and DRP5B-dependent manner. PMID:25736058

  10. Phosphatidylinositol 3-Monophosphate Is Involved in Toxoplasma Apicoplast Biogenesis

    PubMed Central

    Tawk, Lina; Dubremetz, Jean-François; Montcourrier, Philippe; Chicanne, Gaëtan; Merezegue, Fabrice; Richard, Véronique; Payrastre, Bernard; Meissner, Markus; Vial, Henri J.; Roy, Christian

    2011-01-01

    Apicomplexan parasites cause devastating diseases including malaria and toxoplasmosis. They harbour a plastid-like, non-photosynthetic organelle of algal origin, the apicoplast, which fulfils critical functions for parasite survival. Because of its essential and original metabolic pathways, the apicoplast has become a target for the development of new anti-apicomplexan drugs. Here we show that the lipid phosphatidylinositol 3-monophosphate (PI3P) is involved in apicoplast biogenesis in Toxoplasma gondii. In yeast and mammalian cells, PI3P is concentrated on early endosomes and regulates trafficking of endosomal compartments. Imaging of PI3P in T. gondii showed that the lipid was associated with the apicoplast and apicoplast protein-shuttling vesicles. Interference with regular PI3P function by over-expression of a PI3P specific binding module in the parasite led to the accumulation of vesicles containing apicoplast peripheral membrane proteins around the apicoplast and, ultimately, to the loss of the organelle. Accordingly, inhibition of the PI3P-synthesising kinase interfered with apicoplast biogenesis. These findings point to an unexpected implication for this ubiquitous lipid and open new perspectives on how nuclear encoded proteins traffic to the apicoplast. This study also highlights the possibility of developing specific pharmacological inhibitors of the parasite PI3-kinase as novel anti-apicomplexan drugs. PMID:21379336

  11. Phosphatidylinositol 3-monophosphate is involved in toxoplasma apicoplast biogenesis.

    PubMed

    Tawk, Lina; Dubremetz, Jean-François; Montcourrier, Philippe; Chicanne, Gaëtan; Merezegue, Fabrice; Richard, Véronique; Payrastre, Bernard; Meissner, Markus; Vial, Henri J; Roy, Christian; Wengelnik, Kai; Lebrun, Maryse

    2011-02-01

    Apicomplexan parasites cause devastating diseases including malaria and toxoplasmosis. They harbour a plastid-like, non-photosynthetic organelle of algal origin, the apicoplast, which fulfils critical functions for parasite survival. Because of its essential and original metabolic pathways, the apicoplast has become a target for the development of new anti-apicomplexan drugs. Here we show that the lipid phosphatidylinositol 3-monophosphate (PI3P) is involved in apicoplast biogenesis in Toxoplasma gondii. In yeast and mammalian cells, PI3P is concentrated on early endosomes and regulates trafficking of endosomal compartments. Imaging of PI3P in T. gondii showed that the lipid was associated with the apicoplast and apicoplast protein-shuttling vesicles. Interference with regular PI3P function by over-expression of a PI3P specific binding module in the parasite led to the accumulation of vesicles containing apicoplast peripheral membrane proteins around the apicoplast and, ultimately, to the loss of the organelle. Accordingly, inhibition of the PI3P-synthesising kinase interfered with apicoplast biogenesis. These findings point to an unexpected implication for this ubiquitous lipid and open new perspectives on how nuclear encoded proteins traffic to the apicoplast. This study also highlights the possibility of developing specific pharmacological inhibitors of the parasite PI3-kinase as novel anti-apicomplexan drugs. PMID:21379336

  12. Phosphatidylinositol 3-kinase-dependent, MEK-independent proliferation in response to CaR activation

    SciTech Connect

    Bilderback, Tim R.; Lee, Fred; Auersperg, Nelly; Rodland, Karin D.

    2002-07-02

    Although ovarian surface epithelial (OSE) cells are responsible for the majority of ovarian tumors, we know relatively little about the pathway(s) that are responsible for regulating their proliferation. We found that phosphatidylinositol 3-kinase (PI3K) is activated in OSE cells in response to elevated extracellular calcium, and the PI3K inhibitors wortmannin and LY29004 inhibited ERK activation by approximately 75%, similar to effects of the MEK2 inhibitor PD98059. However, in assays of proliferation we found that PD98059 inhibited proliferation by approximately 50%, while wortmannin inhibited greater than 90% of the proliferative response to elevated calcium. Expression of a dominant negative PI3K totally inhibited ERK activation in response to calcium. These results demonstrate that ERK activation cannot account for the full proliferative effect of elevated calcium in OSE cells, and suggest the presence of an ERK independent, PI3K dependant component in the proliferative response.

  13. Structure-Based Design of a Novel Series of Potent, Selective Inhibitors of the Class I Phosphatidylinositol 3-Kinases

    SciTech Connect

    Smith, Adrian L.; D’Angelo, Noel D.; Bo, Yunxin Y.; Booker, Shon K.; Cee, Victor J.; Herberich, Brad; Hong, Fang-Tsao; Jackson, Claire L.M.; Lanman, Brian A.; Liu, Longbin; Nishimura, Nobuko; Pettus, Liping H.; Reed, Anthony B.; Tadesse, Seifu; Tamayo, Nuria A.; Wurz, Ryan P.; Yang, Kevin; Andrews, Kristin L.; Whittington, Douglas A.; McCarter, John D.; Miguel, Tisha San; Zalameda, Leeanne; Jiang, Jian; Subramanian, Raju; Mullady, Erin L.; Caenepeel, Sean; Freeman, Daniel J.; Wang, Ling; Zhang, Nancy; Wu, Tian; Hughes, Paul E.; Norman, Mark H.

    2012-09-17

    A highly selective series of inhibitors of the class I phosphatidylinositol 3-kinases (PI3Ks) has been designed and synthesized. Starting from the dual PI3K/mTOR inhibitor 5, a structure-based approach was used to improve potency and selectivity, resulting in the identification of 54 as a potent inhibitor of the class I PI3Ks with excellent selectivity over mTOR, related phosphatidylinositol kinases, and a broad panel of protein kinases. Compound 54 demonstrated a robust PD-PK relationship inhibiting the PI3K/Akt pathway in vivo in a mouse model, and it potently inhibited tumor growth in a U-87 MG xenograft model with an activated PI3K/Akt pathway.

  14. Activation of phosphatidylinositol 3-kinase by insulin.

    PubMed Central

    Ruderman, N B; Kapeller, R; White, M F; Cantley, L C

    1990-01-01

    Insulin action appears to require the protein-tyrosine kinase domain of the beta subunit of the insulin receptor. Despite this, the identities and biochemical functions of the cellular targets of this tyrosine kinase are unknown. A phosphatidylinositol 3-kinase (PI 3-kinase) that phosphorylates the D-3 position of the inositol ring associates with several protein-tyrosine kinases. Here we report that PI 3-kinase activity is immunoprecipitated from insulin-stimulated CHO cells by antiphosphotyrosine and anti-insulin receptor antibodies. Insulin as low as 0.3 nM increased immunoprecipitable PI 3-kinase activity within 1 min. Increases in activity were much greater in CHO cells expressing the human insulin receptor (100,000 receptors per cell) than in control CHO cells (2000 receptors per cell). During insulin stimulation, various lipid products of the PI 3-kinase either appeared or increased in quantity in intact cells, suggesting that the appearance of immunoprecipitable PI 3-kinase reflects an increase in its activity in vivo. These results indicate that insulin at physiological concentrations regulates the PI 3-kinase and suggest that this regulation involves a physical association between the insulin receptor and the PI 3-kinase and tyrosyl phosphorylation. Images PMID:2154747

  15. Immunochemical characterization of phosphatidylinositol 4-phosphate kinase from rat brain.

    PubMed Central

    van Dongen, C J; Kok, J W; Schrama, L H; Oestreicher, A B; Gispen, W H

    1986-01-01

    Affinity-purified antibodies were used to identify a protein of molecular mass 45 kDa (45 kDa protein) in rat brain cytosol as phosphatidylinositol 4-phosphate (PtdIns4P) kinase. Antibodies were raised in rabbits by immunization with the purified 45 kDa protein. Anti-(45 kDa protein) immunoglobulins were isolated by affinity chromatography of the antiserum on a solid immunosorbent, which was prepared by coupling a soluble rat brain fraction, the DEAE-cellulose pool containing 10-15% 45 kDa protein, to CNBr-activated Sepharose 4B. The purified IgGs were specific for the 45 kDa protein as judged by immunoblot and by immunoprecipitation. The purified anti-(45 kDa protein) IgGs inhibited the enzyme activity of partially purified PtdIns4P kinase, whereas preimmune IgGs were ineffective. Immunoprecipitation of the 45 kDa protein from the partially purified enzyme preparation with the purified IgGs resulted in a concomitant decrease in the amount of 45 kDa protein and in PtdIns4P kinase activity. The amount of 45 kDa protein remaining in the supernatant and the activity of PtdIns4P kinase correlated with a coefficient of r = 0.87. The evidence presented lends further support for the notion that the catalytic activity of PtdIns4P kinase in rat brain cytosol resides in a 45 kDa protein. Images Fig. 1. Fig. 2. PMID:3010943

  16. Nuclear Phosphatidylinositol Signaling: Focus on Phosphatidylinositol Phosphate Kinases and Phospholipases C.

    PubMed

    Poli, Alessandro; Billi, Anna Maria; Mongiorgi, Sara; Ratti, Stefano; McCubrey, James A; Suh, Pann-Ghill; Cocco, Lucio; Ramazzotti, Giulia

    2016-08-01

    Phosphatidylinositol (PI) metabolism represents the core of a network of signaling pathways which modulate many cellular functions including cell proliferation, cell differentiation, apoptosis, and membrane trafficking. An array of kinases, phosphatases, and lipases acts on PI creating an important number of second messengers involved in different cellular processes. Although, commonly, PI signaling was described to take place at the plasma membrane, many evidences indicated the existence of a PI cycle residing in the nuclear compartment of eukaryotic cells. The discovery of this mechanism shed new light on many nuclear functions, such as gene transcription, DNA modifications, and RNA expression. As these two PI cycles take place independently of one another, understanding how nuclear lipid signaling functions and modulates nuclear output is fundamental in the study of many cellular processes. J. Cell. Physiol. 231: 1645-1655, 2016. © 2015 Wiley Periodicals, Inc. PMID:26626942

  17. Mechanism of protein kinase C activation by phosphatidylinositol 4,5-bisphosphate

    SciTech Connect

    Lee, Myungho; Bell, R.M. )

    1991-01-29

    The mechanism of protein kinase C (PKC) activation by phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}), phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol (PI) was investigated by using Triton X-100 mixed micellar methods. The activation of PKC by PIP{sub 2}, for which maximal activity was 60% of that elicited by sn-1,2-diacylglycerol (DAG), was similar to activation by DAG in several respects: (1) activation by PIP{sub 2} and DAG required phosphatidylserine (PS) as a phospholipid cofactor, (2) PIP{sub 2} and DAG reduced the concentration of Ca{sup 2+} and PS required for activation, (3) the concentration dependences of activation by PIP{sub 2} and DAG depended on the concentration of PS, and (4) PIP{sub 2} and DAG complemented one another to achieve maximal activation. On the other hand, PIP{sub 2} activation of the PKC differed from activation by DAG in several respects. With increasing concentrations of PIP{sub 2}, (1) the optimal concentration of PS required was constant at 12 mol%, (2) the maximal activity at 12 mol% PS increased, and (3) the cooperativity for PS decreased. PIP{sub 2} did not inhibit ({sup 3}H)phorbol 12,13-dibutyrate (PDBu) binding of PKC at saturating levels of PS; however, at subsaturating levels of PS, PIP{sub 2} enhanced ({sup 3}H)PDBu binding by acting as a phospholipid cofactor. PIP did not function as an activator but served as a phospholipid cofactor in the presence of PS. These data establish that PIP{sub 2}, PIP, and PI can function to spare, in part, the PS phospholipid cofactor requirement of PKC, and they demonstrate that PIP{sub 2} but not PIP and PI can function as a lipid activator of PKC by mechanisms distinct from those of DAG and phorbol esters.

  18. Integrating Turnover Reasons and Shocks with Turnover Decision Processes

    ERIC Educational Resources Information Center

    Maertz, Carl P., Jr.; Kmitta, Kayla R.

    2012-01-01

    We interviewed and classified 186 quitters from many jobs and organizations via a theoretically-based protocol into five decision process types. We then tested exploratory hypotheses comparing users of these types on their propensity to report certain turnover reasons and turnover shocks. "Impulsive-type quitters," with neither a job offer in hand…

  19. Phosphatidylinositol-3-kinase as a putative target for anticancer action of clotrimazole.

    PubMed

    Furtado, Cristiane M; Marcondes, Mariah C; Carvalho, Renato S; Sola-Penna, Mauro; Zancan, Patricia

    2015-05-01

    Clotrimazole (CTZ) has been proposed as an antitumoral agent because of its properties that inhibit glycolytic enzymes and detach them from the cytoskeleton. However, the broad effects of the drug, e.g., acting on different enzymes and pathways, indicate that CTZ might also affect several signaling pathways. In this study, we show that CTZ interferes with the human breast cancer cell line MCF-7 after a short incubation period (4 h), thereby diminishing cell viability, promoting apoptosis, depolarizing mitochondria, inhibiting key glycolytic regulatory enzymes, decreasing the intracellular ATP content, and permeating plasma membranes. CTZ treatment also interferes with autophagy. Moreover, when the incubation is performed under hypoxic conditions, certain effects of CTZ are enhanced, such as phosphatidylinositol-3-phosphate kinase (PI3K), which is inhibited upon CTZ treatment; this inhibition is potentiated under hypoxia. CTZ-induced PI3K inhibition is not caused by upstream effects of CTZ because the drug does not affect the interaction of the PI3K regulatory subunit and the insulin receptor substrate (IRS)-1. Additionally, CTZ directly inhibits human purified PI3K in a dose-dependent and reversible manner. Pharmacologic and in silico results suggest that CTZ may bind to the PI3K catalytic site. Therefore, we conclude that PI3K is a novel, putative target for the antitumoral effects of CTZ, interfering with autophagy, apoptosis, cell division and viability. PMID:25794423

  20. Commitment Profiles and Employee Turnover

    ERIC Educational Resources Information Center

    Stanley, Laura; Vandenberghe, Christian; Vandenberg, Robert; Bentein, Kathleen

    2013-01-01

    We examined how affective (AC), normative (NC), perceived sacrifice (PS), and few alternatives (FA) commitments combine to form profiles and determine turnover intention and turnover. We theorized that three mechanisms account for how profiles operate, i.e., the degree to which membership is internally regulated, the perceived desirability and…

  1. Occupational stress and employee turnover.

    PubMed

    Bridger, Robert S; Day, Andrea J; Morton, Kate

    2013-01-01

    Questionnaire data captured in January-March 2007 were examined in relation to turnover in males and females during the next five years. In general, most of the workplace stressors (such as role conflict or peer support) were not antecedents of turnover in any group. Junior personnel with psychological strain in 2007 had an increased risk of turnover in the next five years. Low commitment to the service in 2007 increased the odds of turnover in male and female juniors and in female officers. Female juniors with less effective skills for coping with stress and who exercised less frequently on a weekly basis were more likely to leave. An incidental finding was that the odds of turnover were three times greater in female officers with children than in female officers with no children. Stress management interventions focusing on effective coping and sports and exercise participation which are targeted appropriately may improve retention. PMID:24047248

  2. Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A sup 31 P NMR study

    SciTech Connect

    Shashidhar, M.S.; Kuppe, A. ); Volwerk, J.J.; Griffith, O.H.

    1990-09-04

    The inositol phosphate products formed during the cleavage of phosphatidylinositol by phosphatidylinositol-specific phospholipase C from Bacillus cereus were analyzed by {sup 31}P NMR. {sup 31}P NMR spectroscopy can distinguish between the inositol phosphate species and phosphatidylinositol. Chemical shift values (with reference to phosphoric acid) observed are {minus}0.41, 3.62, 4.45, and 16.30 ppm for phosphatidylinositol, myo-inositol 1-monophosphate, myo-inositol 2-monophosphate, and myo-inositol 1,2-cyclic monophosphate, respectively. It is shown that under a variety of experimental conditions this phospholipase C cleaves phosphatidylinositol via an intramolecular phosphotransfer reaction producing diacylglycerol and D-myo-inositol 1,2-cyclic monophosphate. The authors also report the new and unexpected observation that the phosphatidylinositol-specific phospholipase C from B. cereus is able to hydrolyze the inositol cyclic phosphate to form D-myo-inositol 1-monophosphate. The enzyme, therefore, possesses phosphotransferase and cyclic phosphodiesterase activities. The second reaction requires thousandfold higher enzyme concentrations to be observed by {sup 31}P NMR. This reaction was shown to be regiospecific in that only the 1-phosphate was produced and stereospecific in that only D-myo-inositol 1,2-cyclic monophosphate was hydrolyzed. Inhibition with a monoclonal antibody specific for the B.cereus phospholipase C showed that the cyclic phosphodiesterase activity is intrinsic to the bacterial enzyme. They propose a two-step mechanism for the phosphatidyl-inositol-specific phospholipase C from B. cereus involving sequential phosphotransferase and cyclic phosphodiesterase activities. This mechanism bears a resemblance to the well-known two-step mechanism of pancreatic ribonuclease, RNase A.

  3. Phosphatidylinositol 3-kinase pathway activation in breast cancer brain metastases

    PubMed Central

    2011-01-01

    Introduction Activation status of the phosphatidylinositol 3-kinase (PI3K) pathway in breast cancer brain metastases (BCBMs) is largely unknown. We examined expression of phospho(p)-AKT, p-S6, and phosphatase and tensin homologue (PTEN) in BCBMs and their implications for overall survival (OS) and survival after BCBMs. Secondary analyses included PI3K pathway activation status and associations with time to distant recurrence (TTDR) and time to BCBMs. Similar analyses were also conducted among the subset of patients with triple-negative BCBMs. Methods p-AKT, p-S6, and PTEN expression was assessed with immunohistochemistry in 52 BCBMs and 12 matched primary BCs. Subtypes were defined as hormone receptor (HR)+/HER2-, HER2+, and triple-negative (TNBC). Survival analyses were performed by using a Cox model, and survival curves were estimated with the Kaplan-Meier method. Results Expression of p-AKT and p-S6 and lack of PTEN (PTEN-) was observed in 75%, 69%, and 25% of BCBMs. Concordance between primary BCs and matched BCBMs was 67% for p-AKT, 58% for p-S6, and 83% for PTEN. PTEN- was more common in TNBC compared with HR+/HER2- and HER2+. Expression of p-AKT, p-S6, and PTEN- was not associated with OS or survival after BCBMs (all, P > 0.06). Interestingly, among all patients, PTEN- correlated with shorter time to distant and brain recurrence. Among patients with TNBC, PTEN- in BCBMs was associated with poorer overall survival. Conclusions The PI3K pathway is active in most BCBMs regardless of subtype. Inhibition of this pathway represents a promising therapeutic strategy for patients with BCBMs, a group of patients with poor prognosis and limited systemic therapeutic options. Although expression of the PI3K pathway did not correlate with OS and survival after BCBM, PTEN- association with time to recurrence and OS (among patients with TNBC) is worthy of further study. PMID:22132754

  4. Actin Turnover-Mediated Gravity Response in Maize Root Apices

    PubMed Central

    Mancuso, Stefano; Barlow, Peter W; Volkmann, Dieter

    2006-01-01

    The dynamic actin cytoskeleton has been proposed to be linked to gravity sensing in plants but the mechanistic understanding of these processes remains unknown. We have performed detailed pharmacological analyses of the role of the dynamic actin cytoskeleton in gravibending of maize (Zea mays) root apices. Depolymerization of actin filaments with two drugs having different mode of their actions, cytochalasin D and latrunculin B, stimulated root gravibending. By contrast, drug-induced stimulation of actin polymerization and inhibition of actin turnover, using two different agents phalloidin and jasplakinolide, compromised the root gravibending. Importantly, all these actin drugs inhibited root growth to similar extents suggesting that high actin turnover is essential for the gravity-related growth responses rather than for the general growth process. Both latrunculin B and cytochalasin D treatments inhibited root growth but restored gravibending of the decapped root apices, indicating that there is a strong potential for effective actin-mediated gravity sensing outside the cap. This elusive gravity sensing outside the root cap is dependent not only on the high rate of actin turnover but also on weakening of myosin activities, as general inhibition of myosin ATPases induced stimulation of gravibending of the decapped root apices. Collectively, these data provide evidence for the actin turnover-mediated gravity sensing outside the root cap. PMID:19521476

  5. Spatiotemporal control of phosphatidylinositol 4-phosphate by Sac2 regulates endocytic recycling

    PubMed Central

    Hsu, FoSheng; Hu, Fenghua

    2015-01-01

    It is well established that the spatial- and temporal-restricted generation and turnover of phosphoinositides (PIs) by a cascade of PI-metabolizing enzymes is a key regulatory mechanism in the endocytic pathway. Here, we demonstrate that the Sac1 domain–containing protein Sac2 is a PI 4-phosphatase that specifically hydrolyzes phosphatidylinositol 4-phosphate in vitro. We further show that Sac2 colocalizes with early endosomal markers and is recruited to transferrin (Tfn)-containing vesicles during endocytic recycling. Exogenous expression of the catalytically inactive mutant Sac2C458S resulted in altered cellular distribution of Tfn receptors and delayed Tfn recycling. Furthermore, genomic ablation of Sac2 caused a similar perturbation on Tfn and integrin recycling as well as defects in cell migration. Structural characterization of Sac2 revealed a unique pleckstrin-like homology Sac2 domain conserved in all Sac2 orthologues. Collectively, our findings provide evidence for the tight regulation of PIs by Sac2 in the endocytic recycling pathway. PMID:25869669

  6. Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans.

    PubMed

    Darwich, Adam S; Aslam, Umair; Ashcroft, Darren M; Rostami-Hodjegan, Amin

    2014-12-01

    Due to the rapid turnover of the small intestinal epithelia, the rate at which enterocyte renewal occurs plays an important role in determining the level of drug-metabolizing enzymes in the gut wall. Current physiologically based pharmacokinetic (PBPK) models consider enzyme and enterocyte recovery as a lumped first-order rate. An assessment of enterocyte turnover would enable enzyme and enterocyte renewal to be modeled more mechanistically. A literature review together with statistical analysis was employed to establish enterocyte turnover in human and preclinical species. A total of 85 studies was identified reporting enterocyte turnover in 1602 subjects in six species. In mice, the geometric weighted combined mean (WX) enterocyte turnover was 2.81 ± 1.14 days (n = 169). In rats, the weighted arithmetic mean enterocyte turnover was determined to be 2.37 days (n = 501). Humans exhibited a geometric WX enterocyte turnover of 3.48 ± 1.55 days for the gastrointestinal epithelia (n = 265), displaying comparable turnover to that of cytochrome P450 enzymes in vitro (0.96-4.33 days). Statistical analysis indicated humans to display longer enterocyte turnover as compared with preclinical species. Extracted data were too sparse to support regional differences in small intestinal enterocyte turnover in humans despite being indicated in mice. The utilization of enterocyte turnover data, together with in vitro enzyme turnover in PBPK modeling, may improve the predictions of metabolic drug-drug interactions dependent on enzyme turnover (e.g., mechanism-based inhibition and enzyme induction) as well as absorption of nanoparticle delivery systems and intestinal metabolism in special populations exhibiting altered enterocyte turnover. PMID:25233858

  7. Inositolphosphoglycan mediators structurally related to glycosyl phosphatidylinositol anchors: synthesis, structure and biological activity.

    PubMed

    Martín-Lomas, M; Khiar, N; García, S; Koessler, J L; Nieto, P M; Rademacher, T W

    2000-10-01

    The preparation of the pseudopentasaccharide 1a, an inositol-phosphoglycan (IPG) that contains the conserved linear structure of glycosyl phosphatidylinositol anchors (GPI anchors), was carried out by using a highly convergent 2+3-block synthesis approach which involves imidate and sulfoxide glycosylation reactions. The preferred solution conformation of this structure was determined by using NMR spectroscopy and molecular dynamics simulations prior to carrying out quantitative structure--activity relationship studies in connection with the insulin signalling process. The ability of 1a to stimulate lipogenesis in rat adipocytes as well as to inhibit cAMP dependent protein kinase and to activate pyruvate dehydrogenase phosphatase was investigated. Compound 1a did not show any significant activity, which may be taken as a strong indication that the GPI anchors are not the precursors of the IPG mediators. PMID:11072827

  8. Mutations in p53 change phosphatidylinositol acyl chain composition

    PubMed Central

    Naguib, Adam; Bencze, Gyula; Engle, Dannielle; Chio, Iok I. C.; Herzka, Tali; Watrud, Kaitlin; Bencze, Szilvia; Tuveson, David A.; Pappin, Darryl J; Trotman, Lloyd C.

    2014-01-01

    Phosphatidylinositol phosphate (PIP) second messengers relay extracellular growth cues through the phosphorylation status of the inositol sugar, a signal transduction system that is deregulated in cancer. In stark contrast to PIP inositol head group phosphorylation, changes in phosphatidylinositol (PI) lipid acyl chains in cancer have remained ill-defined. Here, we apply a mass spectrometry-based method capable of unbiased high-throughput identification and quantification of cellular PI acyl chain composition. Using this approach we find that PI lipid chains represent a cell-specific fingerprint and are unperturbed by serum-mediated signaling in contrast to the inositol head group. We find that mutation of Trp53 results in PIs containing reduced-length fatty acid moieties. Our results suggest that the anchoring tails of lipid second messengers form an additional layer of PIP signaling in cancer that operates independently of PTEN/PI3-Kinase activity, but is instead linked somehow to p53. PMID:25543136

  9. Phosphatidylinositol 3-kinase and the actin network are not required for the stimulation of glucose transport caused by mitochondrial uncoupling: comparison with insulin action.

    PubMed Central

    Tsakiridis, T; Vranic, M; Klip, A

    1995-01-01

    In L6 myotubes insulin stimulates glucose transport through the translocation of glucose transporters GLUT1, GLUT3 and GLUT4 from intracellular stores to the plasma membrane. An intact actin network and phosphatidylinositol 3-kinase activity are required for this process. Glucose transport is also stimulated by the mitochondrial ATP-production uncoupler dinitrophenol. We show here that, in serum-depleted myotubes, dinitrophenol induced translocation of GLUT1 and GLUT4, but not GLUT3. This response was not affected by inhibiting phosphatidylinositol 3-kinase or disassembling the actin network. Insulin, but not dinitrophenol, caused tyrosine phosphorylation of several polypeptides, including the insulin-receptor substrate-1 and mitogen-activated protein kinase. Similarly, insulin, but not dinitrophenol, caused actin reorganization, which was inhibited by wortmannin. We conclude that insulin and dinitrophenol stimulate glucose transport by different mechanisms. Images Figure 2 Figure 3 Figure 4 PMID:7619042

  10. Isolation of insulin-sensitive phosphatidylinositol-glycan from rat adipocytes. Its impaired breakdown in the streptozotocin-diabetic rat.

    PubMed Central

    Macaulay, S L; Larkins, R G

    1990-01-01

    In this study an insulin-sensitive glycophospholipid from rat adipocytes was isolated and partially characterized. A material that activated pyruvate dehydrogenase was extracted from rat adipocyte membrane supernatants. Its release was stimulated by insulin and phosphatidylinositol-specific-phospholipase C and its activity was destroyed by nitrous acid deamination. These findings suggested that insulin might stimulate breakdown of a glycophospholipid containing inositol and glucosamine, as previously reported for some other cell types [Low & Saltiel (1988) Science 239, 268-275]. A lipid that incorporated [3H]glucosamine, [3H]galactose, [3H]inositol, and [3H]myristate and whose turnover was stimulated by insulin was subsequently isolated from intact adipocytes by sequential t.l.c. using an acidic solvent system followed by a basic solvent system. The effects of insulin on turnover of the lipid in these cells were transient, with maximal effects at 1 min, and there was a typical concentration-response curve to insulin (0.07 nM-7 nM), with effects being detected over the physiological range of insulin concentrations. In contrast with studies in other cells, there was appreciable turnover of the sugar labels. The majority of the [3H]glucosamine and [3H]galactose labels were cycled through to triacylglycerol in the adipocyte. However, of that recovered in the glycophospholipid band, a major proportion (less than 40%) was recovered as the native label. Digestion of the purified molecule with phosphatidylinositol-specific phospholipase C generated a material that activated both pyruvate dehydrogenase and low-Km cyclic AMP phosphodiesterase. Impairment in insulin-stimulated breakdown of the molecule in adipocytes of streptozotocin-diabetic rats was found, consistent with the impaired insulin activation of pyruvate dehydrogenase and glucose utilization seen in this model. These findings suggest that insulin stimulates breakdown of this glycophospholipid by stimulating an

  11. Copper-deficient mice have higher cardiac norepinephrine turnover

    SciTech Connect

    Gross, A.M.; Prohaska, J.R. )

    1989-02-01

    Male Swiss albino mice were studied at 6 weeks of age. Their dams were fed a copper-deficient diet (modified AIN-76A) starting 4 days after birth and given deionized water (-Cu) or water with CuSO{sub 4} added (+Cu) (20 {mu}g Cu/ml). When 3 weeks of age mice were weaned and housed in stainless steel cages on the respective treatment of their dams. Turnover of norepinephrine (NE) was studied in 8 experiments using 2 separate techniques. The first procedure used {alpha}-methyl-p-tyrosine methyl ester (300 mg/kg i.p.) to inhibit tyrosine hydroxlase activity. The loss of residual NE was determined by HPLC with electrochemical detection. Regression lines were constructed and fractional turnover (%/h) and calculated turnover (ng/g/h) were determined for heart, cerebellum and adrenal gland. In 4 experiments loss of NE in cerebellum of -Cu ad +Cu mice was equivalent. Loss of NE from adrenal gland could not be detected in the 8 h time course. Loss of NE, both fractional turnover and calculated turnover, from heart of -Cu mice was 4-5 fold higher compared to +Cu controls. A second method using m- hydroxybenzylhydrazine (NSD-1015) (100 mg/kg i.p.), which inhibits aromatic amino acid decarboxylase, confirmed the results. For all 4 experiments the cardiac accumulation of L-DOPA (measured by HPLC) was faster in -Cu mice compared to controls. The higher turnover rate of NE in heart and perhaps other sympathetic nerves may contribute to the higher urinary NE output observed previously.

  12. Phosphatidylinositol 4,5-bisphosphate (PIP2) controls magnesium gatekeeper TRPM6 activity

    PubMed Central

    Xie, Jia; Sun, Baonan; Du, Jianyang; Yang, Wenzhong; Chen, Hsiang-Chin; Overton, Jeffrey D.; Runnels, Loren W.; Yue, Lixia

    2011-01-01

    TRPM6 is crucial for human Mg2+ homeostasis as patients carrying TRPM6 mutations develop hypomagnesemia and secondary hypocalcemia (HSH). However, the activation mechanism of TRPM6 has remained unknown. Here we demonstrate that phosphatidylinositol-4,5-bisphophate (PIP2) controls TRPM6 activation and Mg2+ influx. Stimulation of PLC-coupled M1-receptors to deplete PIP2 potently inactivates TRPM6. Translocation of over-expressed 5-phosphatase to cell membrane to specifically hydrolyze PIP2 also completely inhibits TRPM6. Moreover, depolarization-induced-activation of the voltage-sensitive-phosphatase (Ci-VSP) simultaneously depletes PIP2 and inhibits TRPM6. PLC-activation induced PIP2-depletion not only inhibits TRPM6, but also abolishes TRPM6-mediated Mg2+ influx. Furthermore, neutralization of basic residues in the TRP domain leads to nonfunctional or dysfunctional mutants with reduced activity by PIP2, suggesting that they are likely to participate in interactions with PIP2. Our data indicate that PIP2 is required for TRPM6 channel function; hydrolysis of PIP2 by PLC-coupled hormones/agonists may constitute an important pathway for TRPM6 gating, and perhaps Mg2+ homeostasis. PMID:22180838

  13. Lovastatin-Induced Phosphatidylinositol-4-Phosphate 5-Kinase Diffusion from Microvilli Stimulates ROMK Channels

    PubMed Central

    Liu, Bing-Chen; Yang, Li-Li; Lu, Xiao-Yu; Song, Xiang; Li, Xue-Chen; Chen, Guangping; Li, Yichao; Yao, Xincheng; Humphrey, Donald R.; Eaton, Douglas C.

    2015-01-01

    We recently showed that lovastatin attenuates cyclosporin A (CsA)-induced damage of cortical collecting duct (CCD) principal cells by reducing intracellular cholesterol. Previous studies showed that, in cell expression models or artificial membranes, exogenous cholesterol directly inhibits inward rectifier potassium channels, including Kir1.1 (Kcnj1; the gene locus for renal outer medullary K+ [ROMK1] channels). Therefore, we hypothesized that lovastatin might stimulate ROMK1 by reducing cholesterol in CCD cells. Western blots showed that mpkCCDc14 cells express ROMK1 channels with molecular masses that approximate the molecular masses of ROMK1 in renal tubules detected before and after treatment with DTT. Confocal microscopy showed that ROMK1 channels were not in the microvilli, where cholesterol-rich lipid rafts are located, but rather, the planar regions of the apical membrane of mpkCCDc14 cells. Furthermore, phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], an activator of ROMK channels, was detected mainly in the microvilli under resting conditions along with the kinase responsible for PI(4,5)P2 synthesis, phosphatidylinositol-4-phosphate 5-kinase, type I γ [PI(4)P5K I γ], which may explain the low basal open probability and increased sensitivity to tetraethylammonium observed here for this channel. Notably, lovastatin induced PI(4)P5K I γ diffusion into planar regions and elevated PI(4,5)P2 and ROMK1 open probability in these regions through a cholesterol-associated mechanism. However, exogenous cholesterol alone did not induce these effects. These results suggest that lovastatin stimulates ROMK1 channels, at least in part, by inducing PI(4,5)P2 synthesis in planar regions of the renal CCD cell apical membrane, suggesting that lovastatin could reduce cyclosporin-induced nephropathy and associated hyperkalemia. PMID:25349201

  14. Lovastatin-Induced Phosphatidylinositol-4-Phosphate 5-Kinase Diffusion from Microvilli Stimulates ROMK Channels.

    PubMed

    Liu, Bing-Chen; Yang, Li-Li; Lu, Xiao-Yu; Song, Xiang; Li, Xue-Chen; Chen, Guangping; Li, Yichao; Yao, Xincheng; Humphrey, Donald R; Eaton, Douglas C; Shen, Bao-Zhong; Ma, He-Ping

    2015-07-01

    We recently showed that lovastatin attenuates cyclosporin A (CsA)-induced damage of cortical collecting duct (CCD) principal cells by reducing intracellular cholesterol. Previous studies showed that, in cell expression models or artificial membranes, exogenous cholesterol directly inhibits inward rectifier potassium channels, including Kir1.1 (Kcnj1; the gene locus for renal outer medullary K(+) [ROMK1] channels). Therefore, we hypothesized that lovastatin might stimulate ROMK1 by reducing cholesterol in CCD cells. Western blots showed that mpkCCDc14 cells express ROMK1 channels with molecular masses that approximate the molecular masses of ROMK1 in renal tubules detected before and after treatment with DTT. Confocal microscopy showed that ROMK1 channels were not in the microvilli, where cholesterol-rich lipid rafts are located, but rather, the planar regions of the apical membrane of mpkCCDc14 cells. Furthermore, phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], an activator of ROMK channels, was detected mainly in the microvilli under resting conditions along with the kinase responsible for PI(4,5)P2 synthesis, phosphatidylinositol-4-phosphate 5-kinase, type I γ [PI(4)P5K I γ], which may explain the low basal open probability and increased sensitivity to tetraethylammonium observed here for this channel. Notably, lovastatin induced PI(4)P5K I γ diffusion into planar regions and elevated PI(4,5)P2 and ROMK1 open probability in these regions through a cholesterol-associated mechanism. However, exogenous cholesterol alone did not induce these effects. These results suggest that lovastatin stimulates ROMK1 channels, at least in part, by inducing PI(4,5)P2 synthesis in planar regions of the renal CCD cell apical membrane, suggesting that lovastatin could reduce cyclosporin-induced nephropathy and associated hyperkalemia. PMID:25349201

  15. Phosphatidylserine stimulation of Drs2p·Cdc50p lipid translocase dephosphorylation is controlled by phosphatidylinositol-4-phosphate.

    PubMed

    Jacquot, Aurore; Montigny, Cédric; Hennrich, Hanka; Barry, Raphaëlle; le Maire, Marc; Jaxel, Christine; Holthuis, Joost; Champeil, Philippe; Lenoir, Guillaume

    2012-04-13

    Here, Drs2p, a yeast lipid translocase that belongs to the family of P(4)-type ATPases, was overexpressed in the yeast Saccharomyces cerevisiae together with Cdc50p, its glycosylated partner, as a result of the design of a novel co-expression vector. The resulting high yield allowed us, using crude membranes or detergent-solubilized membranes, to measure the formation from [γ-(32)P]ATP of a (32)P-labeled transient phosphoenzyme at the catalytic site of Drs2p. Formation of this phosphoenzyme could be detected only if Cdc50p was co-expressed with Drs2p but was not dependent on full glycosylation of Cdc50p. It was inhibited by orthovanadate and fluoride compounds. In crude membranes, the phosphoenzyme formed at steady state at 4 °C displayed ADP-insensitive but temperature-sensitive decay. Solubilizing concentrations of dodecyl maltoside left this decay rate almost unaltered, whereas several other detergents accelerated it. Unexpectedly, the dephosphorylation rate for the solubilized Drs2p·Cdc50p complex was inhibited by the addition of phosphatidylserine. Phosphatidylserine exerted its anticipated accelerating effect on the dephosphorylation of Drs2p·Cdc50p complex only in the additional presence of phosphatidylinositol-4-phosphate. These results explain why phosphatidylinositol-4-phosphate tightly controls Drs2p-catalyzed lipid transport and establish the functional relevance of the Drs2p·Cdc50p complex overexpressed here. PMID:22351780

  16. Turnover in the Advancement Profession

    ERIC Educational Resources Information Center

    Iarrobino, Jon D.

    2006-01-01

    Recruitment and retention is an area with which most organizations are concerned. Excessive turnover has exorbitant costs and wastes valuable time. Institutions of higher education are no exception. One of the most vital operations in nonprofit colleges and universities is its Office of Institutional Advancement. More and more, an institution of…

  17. Hexamethylenebisacetamide modulation of thyroglobulin and protein levels in thyroid cells is not mediated by phosphatidylinositol-3-kinase: a study with wortmannin.

    PubMed

    Aouani, A; Samih, N; Amphoux-Fazekas, T; Hovsépian, S; Fayet, G

    1999-04-01

    Hexamethylenebisacetamide (HMBA) induces in murine erythroleukemia cells (MELC) the commitment to terminal differentiation leading to globin gene expression. In the thyroid, HMBA acts as a growth factor and also as a differentiating agent. In the present paper, we studied the effect of HMBA on the very specific thyroid marker thyroglobulin (Tg) in two different thyroid cell systems, i.e., porcine cells in primary culture and ovine cells in long term culture. Using wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, we investigated whether this enzyme is involved in HMBA mode of action. We found that HMBA is a positive modulator of Tg production in porcine cells, but a negative effector in the OVNIS cell line. As all HMBA effects studied in the present paper, i.e., Tg production and total protein levels, are not inhibited by wortmannin, we suggest the non-involvement of phosphatidylinositol-3-kinase in HMBA mode of action. PMID:10650339

  18. Productive Entry of Foot-and-Mouth Disease Virus via Macropinocytosis Independent of Phosphatidylinositol 3-Kinase

    PubMed Central

    Han, Shi-Chong; Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Wei, Yan-Quan; Feng, Xia; Yao, Xue-Ping; Cao, Sui-Zhong; Xiang Liu, Ding; Liu, Xiang-Tao

    2016-01-01

    Virus entry is an attractive target for therapeutic intervention. Here, using a combination of electron microscopy, immunofluorescence assay, siRNA interference, specific pharmacological inhibitors, and dominant negative mutation, we demonstrated that the entry of foot-and-mouth disease virus (FMDV) triggered a substantial amount of plasma membrane ruffling. We also found that the internalization of FMDV induced a robust increase in fluid-phase uptake, and virions internalized within macropinosomes colocalized with phase uptake marker dextran. During this stage, the Rac1-Pak1 signaling pathway was activated. After specific inhibition on actin, Na+/H+ exchanger, receptor tyrosine kinase, Rac1, Pak1, myosin II, and protein kinase C, the entry and infection of FMDV significantly decreased. However, inhibition of phosphatidylinositol 3-kinase (PI3K) did not reduce FMDV internalization but increased the viral entry and infection to a certain extent, implying that FMDV entry did not require PI3K activity. Results showed that internalization of FMDV exhibited the main hallmarks of macropinocytosis. Moreover, intracellular trafficking of FMDV involves EEA1/Rab5-positive vesicles. The present study demonstrated macropinocytosis as another endocytic pathway apart from the clathrin-mediated pathway. The findings greatly expand our understanding of the molecular mechanisms of FMDV entry into cells, as well as provide potential insights into the entry mechanisms of other picornaviruses. PMID:26757826

  19. Productive Entry of Foot-and-Mouth Disease Virus via Macropinocytosis Independent of Phosphatidylinositol 3-Kinase.

    PubMed

    Han, Shi-Chong; Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Wei, Yan-Quan; Feng, Xia; Yao, Xue-Ping; Cao, Sui-Zhong; Xiang Liu, Ding; Liu, Xiang-Tao

    2016-01-01

    Virus entry is an attractive target for therapeutic intervention. Here, using a combination of electron microscopy, immunofluorescence assay, siRNA interference, specific pharmacological inhibitors, and dominant negative mutation, we demonstrated that the entry of foot-and-mouth disease virus (FMDV) triggered a substantial amount of plasma membrane ruffling. We also found that the internalization of FMDV induced a robust increase in fluid-phase uptake, and virions internalized within macropinosomes colocalized with phase uptake marker dextran. During this stage, the Rac1-Pak1 signaling pathway was activated. After specific inhibition on actin, Na(+)/H(+) exchanger, receptor tyrosine kinase, Rac1, Pak1, myosin II, and protein kinase C, the entry and infection of FMDV significantly decreased. However, inhibition of phosphatidylinositol 3-kinase (PI3K) did not reduce FMDV internalization but increased the viral entry and infection to a certain extent, implying that FMDV entry did not require PI3K activity. Results showed that internalization of FMDV exhibited the main hallmarks of macropinocytosis. Moreover, intracellular trafficking of FMDV involves EEA1/Rab5-positive vesicles. The present study demonstrated macropinocytosis as another endocytic pathway apart from the clathrin-mediated pathway. The findings greatly expand our understanding of the molecular mechanisms of FMDV entry into cells, as well as provide potential insights into the entry mechanisms of other picornaviruses. PMID:26757826

  20. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways

    PubMed Central

    Zwang, N. A.; Zhang, R.; Germana, S.; Fan, M. Y.; Hastings, W. D.; Cao, A.; Turka, L. A.

    2016-01-01

    Phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated (MEK) signaling are central to the survival and proliferation of many cell types. Multiple lines of investigation in murine models have shown that control of the PI3K pathway is particularly important for regulatory T cell (Treg) stability and function. PI3K and MEK inhibitors are being introduced into the clinic, and we hypothesized that pharmacologic inhibition of PI3K, and possibly MEK, in mixed cultures of human mononuclear cells would preferentially affect CD4+ and CD8+ lymphocytes compared with Tregs. We tested this hypothesis using four readouts: proliferation, activation, functional suppression, and signaling. Results showed that Tregs were less susceptible to inhibition by both δ and α isoform–specific PI3K inhibitors and by an MEK inhibitor compared with their conventional CD4+ and CD8+ counterparts. These studies suggest less functional reliance on PI3K and MEK signaling in Tregs compared with conventional CD4+ and CD8+ lymphocytes. Therefore, the PI3K and MEK pathways are attractive pharmacologic targets for transplantation and treatment of autoimmunity. PMID:27017850

  1. Coordination of Golgi functions by phosphatidylinositol 4-kinases

    PubMed Central

    Graham, Todd R.; Burd, Christopher G.

    2010-01-01

    Phosphatidylinositol 4-kinases (PI4Ks) regulate vesicle-mediated export from the Golgi apparatus via phosphatidylinositol 4-phosphate (PtdIns4P) binding effector proteins that control vesicle budding reactions and regulate membrane dynamics. From the characterization of Golgi PI4K effectors emerges evidence that vesicle budding and lipid dynamics are tightly coupled via a regulatory network that ensures that the appropriate membrane composition is established before a transport vesicle buds from the Golgi. An important hub of this network is protein kinase D, which regulates the activity of PI4K and several PtdIns4P effectors that control sphingolipid and sterol content of Golgi membranes. Other newly identified PtdIns4P effectors include Vps74/GOLPH3, a phospholipid flippase and a Rab GEF that orchestrate membrane transformation events facilitating vesicle formation and targeting. Here, we discuss how PtdIns4P signaling is integrated with membrane biosynthetic and vesicle budding machineries to potentially coordinate these critical functions of the Golgi apparatus. PMID:21282087

  2. Chemical synthesis and immunosuppressive activity of dipalmitoyl phosphatidylinositol hexamannoside.

    PubMed

    Ainge, Gary D; Compton, Benjamin J; Hayman, Colin M; Martin, William John; Toms, Steven M; Larsen, David S; Harper, Jacquie L; Painter, Gavin F

    2011-06-17

    Phosphatidylinositol mannosides (PIMs) isolated from mycobacteria have been identified as an important class of phosphoglycolipids with significant immune-modulating properties. We present here the synthesis of dipalmitoyl phosphatidylinositol hexamannoside (PIM(6)) 1 and the first reported functional biology of a synthetic PIM(6). Key steps in the synthetic protocol included the selective glycosylation of an inositol 2,6-diol with a suitably protected mannosyl donor and construction of the glycan core utilizing a [3 + 4] thio-glycosylation strategy. The target 1 was purified by reverse phase chromatography and characterized by standard spectroscopic methods, HPLC, and chemical modification by deacylation to dPIM(6). The (1)H NMR spectrum of synthetic dPIM(6) obtained from 1 matched that of dPIM(6) obtained from nature. PIM(6) (1) exhibited dendritic cell-dependent suppression of CD8(+) T cell expansion in a human mixed lymphocyte reaction consistent with the well established immunosuppressive activity of whole mycobacteria. PMID:21574597

  3. Phosphatidylinositol transfer proteins: sequence motifs in structural and evolutionary analyses

    PubMed Central

    Wyckoff, Gerald J.; Solidar, Ada; Yoden, Marilyn D.

    2016-01-01

    Phosphatidylinositol transfer proteins (PITP) are a family of monomeric proteins that bind and transfer phosphatidylinositol and phosphatidylcholine between membrane compartments. They are required for production of inositol and diacylglycerol second messengers, and are found in most metazoan organisms. While PITPs are known to carry out crucial cell-signaling roles in many organisms, the structure, function and evolution of the majority of family members remains unexplored; primarily because the ubiquity and diversity of the family thwarts traditional methods of global alignment. To surmount this obstacle, we instead took a novel approach, using MEME and a parsimony-based analysis to create a cladogram of conserved sequence motifs in 56 PITP family proteins from 26 species. In keeping with previous functional annotations, three clades were supported within our evolutionary analysis; two classes of soluble proteins and a class of membrane-associated proteins. By, focusing on conserved regions, the analysis allowed for in depth queries regarding possible functional roles of PITP proteins in both intra- and extra- cellular signaling.

  4. Purification of phosphatidylinositol kinase from bovine brain myelin.

    PubMed Central

    Saltiel, A R; Fox, J A; Sherline, P; Sahyoun, N; Cuatrecasas, P

    1987-01-01

    A membrane-bound phosphatidylinositol (PI) kinase (EC 2.7.1.67) was purified by affinity chromatography from bovine brain myelin. This enzyme activity was solubilized with non-ionic detergent and chromatographed on an anion-exchange column. Further purification was achieved by affinity chromatography on PI covalently coupled to epoxy-activated Sepharose, which was eluted with a combination of PI and detergent. The final step in the purification was by gel filtration on an Ultrogel AcA44 column. This procedure afforded greater than 5500-fold purification of the enzyme from whole brain myelin. The resulting activity exhibited a major silver-stained band on SDS/polyacrylamide-gel electrophoresis with an apparent Mr 45,000. The identity of this band as PI kinase was corroborated by demonstration of enzyme activity in the gel region corresponding to that of the stained protein. The purified enzyme exhibited a non-linear dependence on PI as substrate, with two apparent kinetic components. The lower-affinity component exhibited a Km similar to that observed for the phosphorylation of phosphatidylinositol 4-phosphate by the enzyme. PMID:3036072

  5. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells.

    PubMed

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1996-08-01

    Skeletal muscle differentiation involves myoblast alignment, elongation, and fusion into multinucleate myotubes, together with the induction of regulatory and structural muscle-specific genes. Here we show that two phosphatidylinositol 3-kinase inhibitors, LY294002 and wortmannin, blocked an essential step in the differentiation of two skeletal muscle cell models. Both inhibitors abolished the capacity of L6E9 myoblasts to form myotubes, without affecting myoblast proliferation, elongation, or alignment. Myogenic events like the induction of myogenin and of glucose carrier GLUT4 were also blocked and myoblasts could not exit the cell cycle, as measured by the lack of mRNA induction of p21 cyclin-dependent kinase inhibitor. Overexpresssion of MyoD in 10T1/2 cells was not sufficient to bypass the myogenic differentiation blockade by LY294002. Upon serum withdrawal, 10T1/2-MyoD cells formed myotubes and showed increased levels of myogenin and p21. In contrast, LY294002-treated cells exhibited none of these myogenic characteristics and maintained high levels of Id, a negative regulator of myogenesis. These data indicate that whereas phosphatidylinositol 3-kinase is not indispensable for cell proliferation or in the initial events of myoblast differentiation, i.e. elongation and alignment, it appears to be essential for terminal differentiation of muscle cells. PMID:8702591

  6. A revised biosynthetic pathway for phosphatidylinositol in Mycobacteria.

    PubMed

    Morii, Hiroyuki; Ogawa, Midori; Fukuda, Kazumasa; Taniguchi, Hatsumi; Koga, Yosuke

    2010-11-01

    For the last decade, it has been believed that phosphatidylinositol (PI) in mycobacteria is synthesized from free inositol and CDP-diacylglycerol by PI synthase in the presence of ATP. The role of ATP in this process, however, is not understood. Additionally, the PI synthase activity is extremely low compared with the PI synthase activity of yeast. When CDP-diacylglycerol and [(14)C]1L-myo-inositol 1-phosphate were incubated with the cell wall components of Mycobacterium smegmatis, both phosphatidylinositol phosphate (PIP) and PI were formed, as identified by fast atom bombardment-mass spectrometry and thin-layer chromatography. PI was formed from PIP by incubation with the cell wall components. Thus, mycobacterial PI was synthesized from CDP-diacylglycerol and myo-inositol 1-phosphate via PIP, which was dephosphorylated to PI. The gene-encoding PIP synthase from four species of mycobacteria was cloned and expressed in Escherichia coli, and PIP synthase activity was confirmed. A very low, but significant level of free [(3)H]inositol was incorporated into PI in mycobacterial cell wall preparations, but not in recombinant E. coli cell homogenates. This activity could be explained by the presence of two minor PI metabolic pathways: PI/inositol exchange reaction and phosphorylation of inositol by ATP prior to entering the PIP synthase pathway. PMID:20798167

  7. Chronic Teacher Turnover in Urban Elementary Schools

    ERIC Educational Resources Information Center

    Guin, Kacey

    2004-01-01

    This study examines the characteristics of elementary schools that experience chronic teacher turnover and the impacts of turnover on a school's working climate and ability to effectively function. Based on evidence from staff climate surveys and case studies, it is clear that high turnover schools face significant organizational challenges.…

  8. Estimating Teacher Turnover Costs: A Case Study

    ERIC Educational Resources Information Center

    Levy, Abigail Jurist; Joy, Lois; Ellis, Pamela; Jablonski, Erica; Karelitz, Tzur M.

    2012-01-01

    High teacher turnover in large U.S. cities is a critical issue for schools and districts, and the students they serve; but surprisingly little work has been done to develop methodologies and standards that districts and schools can use to make reliable estimates of turnover costs. Even less is known about how to detect variations in turnover costs…

  9. Measuring Staff Turnover in Nursing Homes

    ERIC Educational Resources Information Center

    Castle, Nicholas G.

    2006-01-01

    Purpose: In this study the levels of staff turnover reported in the nursing home literature (1990-2003) are reviewed, as well as the definitions of turnover used in these prior studies. With the use of primary data collected from 354 facilities, the study addresses the various degrees of bias that result, depending on how staff turnover is defined…

  10. Using Turnover as a Recruitment Strategy

    ERIC Educational Resources Information Center

    Duncan, Sandra

    2009-01-01

    Teacher turnover is notoriously high in the field of early childhood education with an estimated 33% of staff exiting the workplace each year. Turnover is costly. Not only do high levels of turnover negatively impact children's growth and development, it also erodes the program's economic stability and wherewithal to provide effective operations…

  11. How Teacher Turnover Harms Student Achievement

    ERIC Educational Resources Information Center

    Ronfeldt, Matthew; Loeb, Susanna; Wyckoff, James

    2013-01-01

    Researchers and policymakers often assume that teacher turnover harms student achievement, though recent studies suggest this may not be the case. Using a unique identification strategy that employs school-by-grade level turnover and two classes of fixed-effects models, this study estimates the effects of teacher turnover on over 850,000 New York…

  12. Benchmarking of homogeneous electrocatalysts: overpotential, turnover frequency, limiting turnover number.

    PubMed

    Costentin, Cyrille; Passard, Guillaume; Savéant, Jean-Michel

    2015-04-29

    In relation to contemporary energy challenges, a number of molecular catalysts for the activation of small molecules, mainly based on transition metal complexes, have been developed. The time has thus come to develop tools allowing the benchmarking of these numerous catalysts. Two main factors of merit are addressed. One involves their intrinsic catalytic performances through the comparison of "catalytic Tafel plots" relating the turnover frequency to the overpotential independently of the characteristics of the electrochemical cell. The other examines the effect of deactivation of the catalyst during the course of electrolysis. It introduces the notion of the limiting turnover number as a second key element of catalyst benchmarking. How these two factors combine with one another to control the course of electrolysis is analyzed in detail, leading to procedures that allow their separate estimation from measurements of the current, the charge passed, and the decay of the catalyst concentration. Illustrative examples from literature data are discussed. PMID:25757058

  13. Foot-and-mouth disease virus replicates independently of phosphatidylinositol 4-phosphate and type III phosphatidylinositol 4-kinases.

    PubMed

    Berryman, Stephen; Moffat, Katy; Harak, Christian; Lohmann, Volker; Jackson, Terry

    2016-08-01

    Picornaviruses form replication complexes in association with membranes in structures called replication organelles. Common themes to emerge from studies of picornavirus replication are the need for cholesterol and phosphatidylinositol 4-phosphate (PI4P). In infected cells, type III phosphatidylinositol 4-kinases (PI4KIIIs) generate elevated levels of PI4P, which is then exchanged for cholesterol at replication organelles. For the enteroviruses, replication organelles form at Golgi membranes in a process that utilizes PI4KIIIβ. Other picornaviruses, for example the cardioviruses, are believed to initiate replication at the endoplasmic reticulum and subvert PI4KIIIα to generate PI4P. Here we investigated the role of PI4KIII in foot-and-mouth disease virus (FMDV) replication. Our results showed that, in contrast to the enteroviruses and the cardioviruses, FMDV replication does not require PI4KIII (PI4KIIIα and PI4KIIIβ), and PI4P levels do not increase in FMDV-infected cells and PI4P is not seen at replication organelles. These results point to a unique requirement towards lipids at the FMDV replication membranes. PMID:27093462

  14. An intrinsic mechanism of secreted protein aging and turnover

    PubMed Central

    Yang, Won Ho; Aziz, Peter V.; Heithoff, Douglas M.; Mahan, Michael J.; Smith, Jeffrey W.; Marth, Jamey D.

    2015-01-01

    The composition and functions of the secreted proteome are controlled by the life spans of different proteins. However, unlike intracellular protein fate, intrinsic factors determining secreted protein aging and turnover have not been identified and characterized. Almost all secreted proteins are posttranslationally modified with the covalent attachment of N-glycans. We have discovered an intrinsic mechanism of secreted protein aging and turnover linked to the stepwise elimination of saccharides attached to the termini of N-glycans. Endogenous glycosidases, including neuraminidase 1 (Neu1), neuraminidase 3 (Neu3), beta-galactosidase 1 (Glb1), and hexosaminidase B (HexB), possess hydrolytic activities that temporally remodel N-glycan structures, progressively exposing different saccharides with increased protein age. Subsequently, endocytic lectins with distinct binding specificities, including the Ashwell–Morell receptor, integrin αM, and macrophage mannose receptor, are engaged in N-glycan ligand recognition and the turnover of secreted proteins. Glycosidase inhibition and lectin deficiencies increased protein life spans and abundance, and the basal rate of N-glycan remodeling varied among distinct proteins, accounting for differences in their life spans. This intrinsic multifactorial mechanism of secreted protein aging and turnover contributes to health and the outcomes of disease. PMID:26489654

  15. Turnover: strategies for staff retention.

    PubMed

    SnowAntle, S

    1990-01-01

    This discussion has focused on a number of areas where organizations may find opportunities for more effectively managing employee retention. Given the multitude of causes and consequences, there is no one quick fix. Effective management of employee retention requires assessment of the entire human resources process, that is, recruitment, selection, job design, compensation, supervision, work conditions, etc. Regular and systematic diagnosis of turnover and implementation of multiple strategies and evaluation are needed (Mobley, 1982). PMID:10106673

  16. Supervisory Turnover in Outpatient Substance Abuse Treatment

    PubMed Central

    Knight, Danica K.; Broome, Kirk M.; Edwards, Jennifer R.; Flynn, Patrick M.

    2009-01-01

    Staff turnover is a significant issue within substance abuse treatment, with implications for service delivery and organizational health. This study examined factors associated with turnover among supervisors in outpatient substance abuse treatment. Turnover was conceptualized as being an individual response to organizational-level influences, and predictors represent aggregate program measures. Participants included 532 staff (including 467 counselors and 65 clinical/program directors) from 90 programs in four regions of the USA. Using logistic regression, analyses of structural factors indicated that programs affiliated with a parent organization and those providing more counseling hours to clients had higher turnover rates. When measures of job attitudes were included, only parent affiliation and collective appraisal of satisfaction were related to turnover. Subsequent analyses identified a trend toward increased supervisory turnover when satisfaction was low following the departure of a previous supervisor. These findings suggest that organizational-level factors can be influential in supervisory turnover. PMID:19949883

  17. Trypanosoma brucei Bloodstream Forms Depend upon Uptake of myo-Inositol for Golgi Complex Phosphatidylinositol Synthesis and Normal Cell Growth.

    PubMed

    González-Salgado, Amaia; Steinmann, Michael; Major, Louise L; Sigel, Erwin; Reymond, Jean-Louis; Smith, Terry K; Bütikofer, Peter

    2015-06-01

    myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na(+)- or H(+)-linked myo-inositol transporters. While Na(+)-coupled myo-inositol transporters are found exclusively in the plasma membrane, H(+)-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H(+)-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol. PMID:25888554

  18. The study on phosphatidylinositol-specific phospholipase C from Bacillus thuringiensis: synthesis of homogeneous substrates, substrate specificity and other properties.

    PubMed

    Kume, T; Taguchi, R; Tomita, M; Tokuyama, S; Morizawa, K; Nakachi, O; Hirano, J; Ikezawa, H

    1992-08-01

    The properties of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis were studied in detail. The enzyme was extremely thermostable in 0.1% bovine serum albumin and retained 73% of its activity at 100 degrees C for 10 min, while it was labile in the absence of albumin. The enzymatic activity was inhibited by HgCl2 or p-chloromercuriphenylsulfonic acid and restored by dithiothreitol. The kinetic parameters (Km and Vmax) of PI-PLC were determined for the mixed micelle of yeast phosphatidylinositol (PI)/Triton X-100 or sodium deoxycholate. Four PIs having different acyl chains: dilauroylphosphatidylinositol (DLPI), dimyristoylphosphatidylinositol (DMPI), dipalmitoylphosphatidylinositol (DPPI) and dioleoylphosphatidylinositol (DOPI) were synthesized from yeast PI through the processes of deacylation and reacylation, identified by infrared (IR) and Fourier transform nuclear magnetic resonance (FT-NMR) spectra, and subjected to the action of PI-PLC. All the synthetic PIs were hydrolyzed by this enzyme, with DLPI and DMPI being the best substrates. PI-PLC did not catalyze the hydrolysis of the phosphatidylnucleosides 5'-phosphatidylcytidine, 5'-phosphatidyluridine, 5'-phosphatidylthymidine, 5'-phosphatidyladenosine and 5'-phosphatidyl-2'-deoxyadenosine. PMID:1423768

  19. Trypanosoma brucei Bloodstream Forms Depend upon Uptake of myo-Inositol for Golgi Complex Phosphatidylinositol Synthesis and Normal Cell Growth

    PubMed Central

    González-Salgado, Amaia; Steinmann, Michael; Major, Louise L.; Sigel, Erwin; Reymond, Jean-Louis

    2015-01-01

    myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na+- or H+-linked myo-inositol transporters. While Na+-coupled myo-inositol transporters are found exclusively in the plasma membrane, H+-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H+-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol. PMID:25888554

  20. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs

    PubMed Central

    Nile, Aaron H; Bankaitis, Vytas A; Grabon, Aby

    2011-01-01

    Inositol and phosphoinositide signaling pathways represent major regulatory systems in eukaryotes. The physiological importance of these pathways is amply demonstrated by the variety of diseases that involve derangements in individual steps in inositide and phosphoinositide production and degradation. These diseases include numerous cancers, lipodystrophies and neurological syndromes. Phosphatidylinositol transfer proteins (PITPs) are emerging as fascinating regulators of phosphoinositide metabolism. Recent advances identify PITPs (and PITP-like proteins) to be coincidence detectors, which spatially and temporally coordinate the activities of diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. These insights are providing new ideas regarding mechanisms of inherited mammalian diseases associated with derangements in the activities of PITPs and PITP-like proteins. PMID:21603057

  1. Illuminating the phosphatidylinositol 3-kinase/Akt pathway

    NASA Astrophysics Data System (ADS)

    Ni, Qiang; Fosbrink, Matthew; Zhang, Jin

    2008-02-01

    Genetically encodable fluorescent biosensors based on fluorescence resonance energy transfer (FRET) are being developed for analyzing spatiotemporal dynamics of various signaling events in living cells, as these events are often dynamically regulated and spatially compartmentalized within specific signaling context. In particular, to investigate the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in the cellular context, we have developed a series of such biosensors that enable dynamic visualization of several key signaling events in this pathway, namely InPAkt for lipid second messenger dynamics, BAKR for Akt activity, and ReAktion for the action of Akt during its multi-step activation process. Discussed here are several studies that have been carried out with these novel biosensors. First, we examined nuclear phosphatidylinositol-3,4,5-triphosphate (PIP 3) in living cells using nucleus-targeted InPAkt. Second, we analyzed signal propagation from the plasma membrane to the nucleus by using plasma membrane-targeted InPAkt and nucleus-targeted BKAR to simultaneously monitor PIP 3 dynamics and Akt activity in the same cell. Of note, results from these co-imaging experiments suggest that active Akt can dissociate from the plasma membrane and translocate into the nucleus in the presence of high levels of PIP 3 at the plasma membrane. This finding has led to a further study of the action of Akt during its activation process, particularly focusing on how Akt dissociates from the membrane. In this regard, a live-cell molecular analysis using ReAktion reveals a conformational change in Akt that is critically dependent on the existence of a phosphorylatable T308 in the activation loop. Subsequently this has led to the discovery of new regulatory roles of this critical phosphorylation event of Akt for ensuring its proper activation and function.

  2. Frequent phosphatidylinositol-3-kinase mutations in proliferative breast lesions.

    PubMed

    Ang, Daphne C; Warrick, Andrea L; Shilling, Amy; Beadling, Carol; Corless, Christopher L; Troxell, Megan L

    2014-05-01

    The phosphatidylinositol-3-kinase pathway is one of the most commonly altered molecular pathways in invasive breast carcinoma, with phosphatidylinositol-3-kinase catalytic subunit (PIK3CA) mutations in 25% of invasive carcinomas. Ductal carcinoma in situ (DCIS), benign papillomas, and small numbers of columnar cell lesions harbor an analogous spectrum of PIK3CA and AKT1 mutations, yet there is little data on usual ductal hyperplasia and atypical ductal and lobular neoplasias. We screened 192 formalin-fixed paraffin-embedded breast lesions from 75 patients for point mutations using a multiplexed panel encompassing 643 point mutations across 53 genes, including 58 PIK3CA substitutions. PIK3CA point mutations were identified in 31/62 (50%) proliferative lesions (usual ductal hyperplasia and columnar cell change), 10/14 (71%) atypical hyperplasias (atypical ductal hyperplasia and flat epithelial atypia), 7/16 (44%) lobular neoplasias (atypical lobular hyperplasia and lobular carcinoma in situ), 10/21 (48%) DCIS, and 13/37 (35%) invasive carcinomas. In genotyping multiple lesions of different stage from the same patient/specimen, we found considerable heterogeneity; most notably, in 12 specimens the proliferative lesion was PIK3CA mutant but the concurrent carcinoma was wild type. In 11 additional specimens, proliferative epithelium and cancer contained different point mutations. The frequently discordant genotypes of usual ductal hyperplasia/columnar cell change and concurrent carcinoma support a role for PIK3CA-activating point mutations in breast epithelial proliferation, perhaps more so than transformation. Further, these data suggest that proliferative breast lesions are heterogeneous and may represent non-obligate precursors of invasive carcinoma. PMID:24186142

  3. Changes in phosphoinositide turnover, Ca sup 2+ mobilization, and protein phosphorylation in platelets from NIDDM patients

    SciTech Connect

    Ishii, H.; Umeda, F.; Hashimoto, T.; Nawata, H. )

    1990-12-01

    Enhanced platelet functions have been demonstrated in patients with non-insulin-dependent diabetes mellitus (NIDDM). This study evaluated abnormalities in platelet signal transduction in diabetic patients, including turnover of phosphoinositides, mobilization of intracellular Ca2+, and phosphorylation of 20,000- and 47,000-Mr proteins (P20 and P47). Washed platelets were obtained from 6 patients with NIDDM whose platelet aggregation rates were abnormally elevated (DM-A group), 11 NIDDM patients with normal platelet aggregation rates (DM-B group), and 8 age-matched healthy control subjects. The mass and specific radioactivity of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol (PI), and phosphatidic acid (PA) in 32P-labeled platelets were not different among the three groups. Hydrolysis of PIP2, PIP, and PI; accumulation of PA; and phosphorylation of P20 in platelets stimulated by 0.05 U/ml thrombin were significantly increased in the DM-A group compared with the control or DM-B group. There was no difference in P47 phosphorylation among the three groups. On the contrary, P20 and P47 phosphorylation induced by 50 nM of 12-O-tetradecanoylphorbol-13-acetate, an activator of protein kinase C, was significantly decreased in the DM-A group. Additionally, the intracellular free Ca2+ concentration (( Ca2+)i) was measured with the fluorescent Ca2+ indicator fura 2. Although the basal (Ca2+)i value was similar in the three groups, the rise in (Ca2+)i induced by 0.05 U/ml thrombin in the presence and the absence of extracellular Ca2+ was significantly higher in the DM-A group than the other groups.

  4. Purification of a histamine H3 receptor negatively coupled to phosphoinositide turnover in the human gastric cell line HGT1.

    PubMed

    Cherifi, Y; Pigeon, C; Le Romancer, M; Bado, A; Reyl-Desmars, F; Lewin, M J

    1992-12-15

    The histamine H3 receptor agonist (R)alpha-methylhistamine (MeHA) inhibited, in a nanomolar range, basal and carbachol-stimulated inositol phosphate formation in the human gastric tumoral cell line HGT1-clone 6. The inhibition was reversed by micromolar concentrations of the histamine H3 receptor antagonist thioperamide and was sensitive to cholera or pertussis toxin treatment. Using [3H]N alpha-MeHA as specific tracer, high affinity binding sites were demonstrated with a Bmax of 54 +/- 3 fmol/mg of protein and a KD of either 0.61 +/- 0.04 or 2.2 +/- 0.4 nM, in the absence or presence of 50 microM GTP[gamma]S, respectively. The binding sites were solubilized by Triton X-100 and prepurified by gel chromatography. They were separated from the histamine H2 receptor sites by filtration through Sepharose-famotidine and finally retained on Sepharose-thioperamide. The purified sites concentrated in one single silver-stained protein band of 70 kDa in SDS-polyacrylamide gel electrophoresis. They specifically bound [3H]N alpha-MeHA with a KD of 1.6 +/- 0.1 nM and a Bmax of 12,000 +/- 750 pmol/mg of protein. This corresponds to a 90,225-fold purification over cell lysate and a purity degree of 84%. Binding was competitively displaced by N alpha-MeHA (IC50 = 5.8 +/- 0.7 nM), (R) alpha-MeHA (IC50 = 9 +/- 1 nM), and thioperamide (IC50 = 85 +/- 10 nM), but not by famotidine (H2 antagonist) or by mepyramine (H1 antagonist). These findings provide the first evidence for solubilization, purification, and molecular mass characterization of the histamine H3 receptor protein and for the negative coupling of this receptor phosphatidylinositol turnover through a so far unidentified G protein. PMID:1334091

  5. Enhanced inositide turnover in brain during bicuculline-induced status epilepticus

    SciTech Connect

    Van Rooijen, L.A.; Vadnal, R.; Dobard, P.; Bazan, N.G.

    1986-04-29

    Because brain inositides are enriched in the 1-stearoyl-2-arachidonoyl species, they form a likely source for the tetraenoic free fatty acids (FFA) and diacylglycerols (DG) that are accumulated during seizures. To study inositide turnover during bicuculline-induced seizures, rats were injected intraventricularly and bilaterally with 10-20 microCi /sup 32/P, mechanically ventilated and sacrificed by 6.5 KW head-focused microwave irradiation. Seizure activity was recorded by electroencephalography. Bicuculline-induced seizure activity resulted in: a) almost 50% increase in /sup 32/P labeling of phosphatidic acid (PA); phosphatidylinositol (PI) and phosphatidylinositol 4,5-bisphosphate (PIP2) also increased (24% and 36%, respectively); b) no change in other lipids; and c) water-soluble phosphodiesteratic degradation products, analyzed by high voltage paper electrophoresis, increased 24% in the amount of radiotracer recovered as inositol 1,4-bisphosphate (IP2) and by 44% in the amount recovered as inositol 1,4,5-trisphosphate (IP3). These data indicate that during experimental status epilepticus the cerebral inositide cycle is accelerated: PIP2----(IP3----IP2----IP----I) + DG----PA----PI----PIP----PIP2.

  6. Stereoselective synthesis of glycobiosyl phosphatidylinositol, a part structure of the glycosyl-phosphatidylinositol (GPI) anchor of Trypanosoma brucei.

    PubMed

    Murakata, C; Ogawa, T

    1992-10-01

    O-alpha-D-Mannopyranosyl-(1-->4)-O-2-amino-2-deoxy-alpha-D-glucopyranosy l- (1-->6)-1D-myo-inositol 1-(1,2-di-O-myristoyl-sn-glycer-3-yl hydrogen phosphate), a part structure of the glycosyl-phosphatidylinositol (GPI) anchor of Trypanosoma brucei, was synthesised efficiently by the phosphonate approach. The glycobiosylinositol core was prepared in a stereocontrolled manner from 1D-2,3,4,5-tetra-O-benzyl-1-O-(4-methoxybenzyl)-myo-inositol, tert-butyldimethylsilyl 2-azido-3,6-di-O-benzyl-2-deoxy-alpha-D-glucopyranoside, and methyl 3,6-di-O-acetyl-2,6-di-O-benzyl-2-thio-alpha-D-mannopyranoside. PMID:1468082

  7. Evaluation of Phosphatidylinositol-4-Kinase IIIα as a Hepatitis C Virus Drug Target

    PubMed Central

    Brault, Martine; Pilote, Louise; Uyttersprot, Nathalie; Gaillard, Elias T.; Stoltz, James H.; Knight, Brian L.; Pantages, Lynn; McFarland, Mary; Breitfelder, Steffen; Chiu, Tim T.; Mahrouche, Louiza; Faucher, Anne-Marie; Cartier, Mireille; Cordingley, Michael G.; Bethell, Richard C.; Jiang, Huiping; White, Peter W.

    2012-01-01

    Phosphatidylinositol-4-kinase IIIα (PI4KIIIα) is an essential host cell factor for hepatitis C virus (HCV) replication. An N-terminally truncated 130-kDa form was used to reconstitute an in vitro biochemical lipid kinase assay that was optimized for small-molecule compound screening and identified potent and specific inhibitors. Cell culture studies with PI4KIIIα inhibitors demonstrated that the kinase activity was essential for HCV RNA replication. Two PI4KIIIα inhibitors were used to select cell lines harboring HCV replicon mutants with a 20-fold loss in sensitivity to the compounds. Reverse genetic mapping isolated an NS4B-NS5A segment that rescued HCV RNA replication in PIK4IIIα-deficient cells. HCV RNA replication occurs on specialized membranous webs, and this study with PIK4IIIα inhibitor-resistant mutants provides a genetic link between NS4B/NS5A functions and PI4-phosphate lipid metabolism. A comprehensive assessment of PI4KIIIα as a drug target included its evaluation for pharmacologic intervention in vivo through conditional transgenic murine lines that mimic target-specific inhibition in adult mice. Homozygotes that induce a knockout of the kinase domain or knock in a single amino acid substitution, kinase-defective PI4KIIIα, displayed a lethal phenotype with a fairly widespread mucosal epithelial degeneration of the gastrointestinal tract. This essential host physiologic role raises doubt about the pursuit of PI4KIIIα inhibitors for treatment of chronic HCV infection. PMID:22896614

  8. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate

    PubMed Central

    Nilius, Bernd; Mahieu, Frank; Prenen, Jean; Janssens, Annelies; Owsianik, Grzegorz; Vennekens, Rudi; Voets, Thomas

    2006-01-01

    Transient receptor potential (TRP) channel, melastatin subfamily (TRPM)4 is a Ca2+-activated monovalent cation channel that depolarizes the plasma membrane and thereby modulates Ca2+ influx through Ca2+-permeable pathways. A typical feature of TRPM4 is its rapid desensitization to intracellular Ca2+ ([Ca2+]i). Here we show that phosphatidylinositol 4,5-biphosphate (PIP2) counteracts desensitization to [Ca2+]i in inside-out patches and rundown of TRPM4 currents in whole-cell patch-clamp experiments. PIP2 shifted the voltage dependence of TRPM4 activation towards negative potentials and increased the channel's Ca2+ sensitivity 100-fold. Conversely, activation of the phospholipase C (PLC)-coupled M1 muscarinic receptor or pharmacological depletion of cellular PIP2 potently inhibited currents through TRPM4. Neutralization of basic residues in a C-terminal pleckstrin homology (PH) domain accelerated TRPM4 current desensitization and strongly attenuated the effect of PIP2, whereas mutations to the C-terminal TRP box and TRP domain had no effect on the PIP2 sensitivity. Our data demonstrate that PIP2 is a strong positive modulator of TRPM4, and implicate the C-terminal PH domain in PIP2 action. PLC-mediated PIP2 breakdown may constitute a physiologically important brake on TRPM4 activity. PMID:16424899

  9. Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis.

    PubMed

    Xu, Qingwen; Zhang, Yuxia; Wei, Qing; Huang, Yan; Hu, Jinghua; Ling, Kun

    2016-01-01

    Defective primary cilia are causative to a wide spectrum of human genetic disorders, termed ciliopathies. Although the regulation of ciliogenesis is intensively studied, how it is initiated remains unclear. Here we show that type Iγ phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (PIPKIγ) and inositol polyphosphate-5-phosphatase E (INPP5E), a Joubert syndrome protein, localize to the centrosome and coordinate the initiation of ciliogenesis. PIPKIγ counteracts INPP5E in regulating tau-tubulin kinase-2 (TTBK2) recruitment to the basal body, which promotes the removal of microtubule capping protein CP110 and the subsequent axoneme elongation. Interestingly, INPP5E and its product-PtdIns(4)P-accumulate at the centrosome/basal body in non-ciliated, but not ciliated, cells. PtdIns(4)P binding to TTBK2 and the distal appendage protein CEP164 compromises the TTBK2-CEP164 interaction and inhibits the recruitment of TTBK2. Our results reveal that PtdIns(4)P homoeostasis, coordinated by PIPKIγ and INPP5E at the centrosome/ciliary base, is vital for ciliogenesis by regulating the CEP164-dependent recruitment of TTBK2. PMID:26916822

  10. Multistep Compositional Remodeling of Supported Lipid Membranes by Interfacially Active Phosphatidylinositol Kinases.

    PubMed

    Tabaei, Seyed R; Guo, Feng; Rutaganira, Florentine U; Vafaei, Setareh; Choong, Ingrid; Shokat, Kevan M; Glenn, Jeffrey S; Cho, Nam-Joon

    2016-05-17

    The multienzyme catalytic phosphorylation of phosphatidylinositol (PI) in a supported lipid membrane platform is demonstrated for the first time. One-step treatment with PI 4-kinase IIIβ (PI4Kβ) yielded PI 4-phosphate (PI4P), while a multistep enzymatic cascade of PI4Kβ followed by PIP 5-kinase produced PI-4,5-bisphosphate (PI(4,5)P2 or PIP2). By employing quartz crystal microbalance with dissipation monitoring, we were able to track membrane association of kinase enzymes for the first time as well as detect PI4P and PI(4,5)P2 generation based on subsequent antibody binding to the supported lipid bilayers. Pharmacologic inhibition of PI4Kβ by a small molecule inhibitor was also quantitatively assessed, yielding an EC50 value that agrees well with conventional biochemical readout. Taken together, the development of a PI-containing supported membrane platform coupled with surface-sensitive measurement techniques for kinase studies opens the door to exploring the rich biochemistry and pharmacological targeting of membrane-associated phosphoinositides. PMID:27118725

  11. Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis

    PubMed Central

    Xu, Qingwen; Zhang, Yuxia; Wei, Qing; Huang, Yan; Hu, Jinghua; Ling, Kun

    2016-01-01

    Defective primary cilia are causative to a wide spectrum of human genetic disorders, termed ciliopathies. Although the regulation of ciliogenesis is intensively studied, how it is initiated remains unclear. Here we show that type Iγ phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (PIPKIγ) and inositol polyphosphate-5-phosphatase E (INPP5E), a Joubert syndrome protein, localize to the centrosome and coordinate the initiation of ciliogenesis. PIPKIγ counteracts INPP5E in regulating tau-tubulin kinase-2 (TTBK2) recruitment to the basal body, which promotes the removal of microtubule capping protein CP110 and the subsequent axoneme elongation. Interestingly, INPP5E and its product—PtdIns(4)P—accumulate at the centrosome/basal body in non-ciliated, but not ciliated, cells. PtdIns(4)P binding to TTBK2 and the distal appendage protein CEP164 compromises the TTBK2-CEP164 interaction and inhibits the recruitment of TTBK2. Our results reveal that PtdIns(4)P homoeostasis, coordinated by PIPKIγ and INPP5E at the centrosome/ciliary base, is vital for ciliogenesis by regulating the CEP164-dependent recruitment of TTBK2. PMID:26916822

  12. A pivotal role of phosphatidylinositol 3-kinase in delaying of methyl jasmonate-induced leaf senescence.

    PubMed

    Liu, Jian; Zhou, Jun; Xing, Da

    2016-06-01

    Phosphatidylinositol 3-kinase (PI3K) and its product PI3P are involved in plant development and stress responses. Our recent report has suggested that down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). In vitro and in vivo experiment revealed that PI3K interact with VHA-B2. The inhibition of V-ATPase activity suppressed the vacuolar acidification and enhanced the stomatal opening, thereby accelerating MeJA-induced leaf senescence. It was shown that there is close relationship between PI3K and V-ATPase. However, the factor which initiates the PI3K-V-ATPase pathway needs further improvement, and the domain of VHA-B that binds to PI3K is still not clear enough. By using the Arabidopsis and MeJA as the research model, studies have been performed to investigate the upstream regulation of PI3K and downstream function of PI3K-V-ATPase pathway in the plant senescence. PMID:26906642

  13. Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation.

    PubMed

    Bijur, Gautam N; Jope, Richard S

    2003-12-01

    We describe here a new component of the phosphatidylinositol 3-kinase/Akt signaling pathway that directly impacts mitochondria. Akt (protein kinase B) was shown for the first time to be localized in mitochondria, where it was found to reside in the matrix and the inner and outer membranes, and the level of mitochondrial Akt was very dynamically regulated. Stimulation of a variety of cell types with insulin-like growth factor-1, insulin, or stress (induced by heat shock), induced translocation of Akt to the mitochondria within only several minutes of stimulation, causing increases of nearly eight- to 12-fold, and the mitochondrial Akt was in its phosphorylated, active state. Two mitochondrial proteins were identified to be phosphorylated following stimulation of mitochondrial Akt, the beta-subunit of ATP synthase and glycogen synthase kinase-3beta. The finding that mitochondrial glycogen synthase kinase-3beta was rapidly and substantially modified by Ser9 phosphorylation, which inhibits its activity, following translocation of Akt to the mitochondria is the first evidence for a regulatory mechanism affecting mitochondrial glycogen synthase kinase-3beta. These results demonstrate that signals emanating from plasma membrane receptors or generated by stress rapidly modulate Akt and glycogen synthase kinase-3beta in mitochondria. PMID:14713298

  14. Platelet activation by bacterial phospholipase C involves phosphoinositide turnover and phosphorylation of 47,000 dalton but not 20,000 dalton protein

    SciTech Connect

    Huzoor-Akbar; Anwer, K.

    1986-05-01

    This study was conducted to examine the role of phosphoinositides (PIns) and phosphorylation of 47,000 dalton (P47) and 20,000 dalton (P20) proteins in platelet activation by bacterial phospholipase C (PLC). PLC induced serotonin secretion (SS) and platelet aggregation (PA) in a concentration dependent manner. PLC (0.02 U/ml) caused phosphorylation of P47 in a time dependent manner (27% at 0.5 min to 378% at 7 min). PLC did not induce more than 15% phosphorylation of P20 by 7 min. Aspirin (500 ..mu..M) blocked phosphorylation of P20 but did not inhibit SS, PA or phosphorylation of P47. PLC (0.04 U/ml) decreased radioactivity (cpm) in /sup 32/P labeled phosphatidylinositol (PI), PI-4,5-bis-PO4 (PIP2) and PI-4-PO4 (PIP) by 20%, 12% and 7.5% respectively at 15 sec. The level of PI but not that of PIP2 returned to base line in 3 min. PIP level increased above control values within one min. PLC increased phosphatidic acid level (75% at 0.5 min. to 1545% at 3 min). In other experiments PLC produced diacylglycerol (DAG) in a time and concentration dependent manner. However, no DAG was detectable in the first 60 sec. These data suggest that: (a) PIns turnover and phosphorylation of P47 but not that of P20 is involved in platelet activation by PLC; and (b) DAG production from outer membrane phospholipids is not a prerequisite for platelet activation by PLC.

  15. Revisiting nurse turnover costs: adjusting for inflation.

    PubMed

    Jones, Cheryl Bland

    2008-01-01

    Organizational knowledge of nurse turnover costs is important, but gathering these data frequently may not always be feasible in today's fast-paced and complex healthcare environment. The author presents a method to inflation adjust baseline nurse turnover costs using the Consumer Price Index. This approach allows nurse executives to gain current knowledge of organizational nurse turnover costs when primary data collection is not practical and to determine costs and potential savings if nurse retention investments are made. PMID:18157000

  16. Guide to good practices for operations turnover

    SciTech Connect

    1998-12-01

    This Guide to Good Practices is written to enhance understanding of, and provide direction for, Operations Turnover, Chapter XII of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered when planning or reviewing operations turnover programs. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Operations Turnover is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for a formal operations turnover program to promote safe and efficient operations.

  17. Antiplatelet drugs in patients with enhanced platelet turnover: biomarkers versus platelet function testing.

    PubMed

    Freynhofer, Matthias K; Gruber, Susanne C; Grove, Erik L; Weiss, Thomas W; Wojta, Johann; Huber, Kurt

    2015-08-31

    Platelets are key players in atherothrombosis. Antiplatelet therapy comprising aspirin alone or with P2Y12-inhibitors are effective for prevention of atherothrombotic complications. However, there is interindividual variability in the response to antiplatelet drugs, leaving some patients at increased risk of recurrent atherothrombotic events. Several risk factors associated with high on-treatment platelet reactivity (HTPR), including elevated platelet turnover, have been identified. Platelet turnover is adequately estimated from the fraction of reticulated platelets. Reticulated platelets are young platelets, characterised by residual messenger RNA. They are larger, haemostatically more active and there is evidence that platelet turnover is a causal and prognostic factor in atherothrombotic disease. Whether platelet turnover per se represents a key factor in pathogenesis, progression and prognosis of atherothrombotic diseases (with focus on acute coronary syndromes) or whether it merely facilitates insufficient platelet inhibition will be discussed in this state-of-the art review. PMID:26272640

  18. Mapping the Hsp90 Genetic Network Reveals Ergosterol Biosynthesis and Phosphatidylinositol-4-Kinase Signaling as Core Circuitry Governing Cellular Stress

    PubMed Central

    O’Meara, Teresa R.; Valaei, Seyedeh Fereshteh; Diezmann, Stephanie; Cowen, Leah E.

    2016-01-01

    Candida albicans is a leading human fungal pathogen that causes life-threatening systemic infections. A key regulator of C. albicans stress response, drug resistance, morphogenesis, and virulence is the molecular chaperone Hsp90. Targeting Hsp90 provides a powerful strategy to treat fungal infections, however, the therapeutic utility of current inhibitors is compromised by toxicity due to inhibition of host Hsp90. To identify components of the Hsp90-dependent circuitry governing virulence and drug resistance that are sufficiently divergent for selective targeting in the pathogen, we pioneered chemical genomic profiling of the Hsp90 genetic network in C. albicans. Here, we screen mutant collections covering ~10% of the genome for hypersensitivity to Hsp90 inhibition in multiple environmental conditions. We identify 158 HSP90 chemical genetic interactors, most of which are important for growth only in specific environments. We discovered that the sterol C-22 desaturase gene ERG5 and the phosphatidylinositol-4-kinase (PI4K) gene STT4 are HSP90 genetic interactors under multiple conditions, suggesting a function upstream of Hsp90. By systematic analysis of the ergosterol biosynthetic cascade, we demonstrate that defects in ergosterol biosynthesis induce cellular stress that overwhelms Hsp90’s functional capacity. By analysis of the phosphatidylinositol pathway, we demonstrate that there is a genetic interaction between the PI4K Stt4 and Hsp90. We also establish that Stt4 is required for normal actin polarization through regulation of Wal1, and suggest a model in which defects in actin remodeling induces stress that creates a cellular demand for Hsp90 that exceeds its functional capacity. Consistent with this model, actin inhibitors are synergistic with Hsp90 inhibitors. We highlight new connections between Hsp90 and virulence traits, demonstrating that Erg5 and Stt4 enable activation of macrophage pyroptosis. This work uncovers novel circuitry regulating Hsp90

  19. Mapping the Hsp90 Genetic Network Reveals Ergosterol Biosynthesis and Phosphatidylinositol-4-Kinase Signaling as Core Circuitry Governing Cellular Stress.

    PubMed

    O'Meara, Teresa R; Veri, Amanda O; Polvi, Elizabeth J; Li, Xinliu; Valaei, Seyedeh Fereshteh; Diezmann, Stephanie; Cowen, Leah E

    2016-06-01

    Candida albicans is a leading human fungal pathogen that causes life-threatening systemic infections. A key regulator of C. albicans stress response, drug resistance, morphogenesis, and virulence is the molecular chaperone Hsp90. Targeting Hsp90 provides a powerful strategy to treat fungal infections, however, the therapeutic utility of current inhibitors is compromised by toxicity due to inhibition of host Hsp90. To identify components of the Hsp90-dependent circuitry governing virulence and drug resistance that are sufficiently divergent for selective targeting in the pathogen, we pioneered chemical genomic profiling of the Hsp90 genetic network in C. albicans. Here, we screen mutant collections covering ~10% of the genome for hypersensitivity to Hsp90 inhibition in multiple environmental conditions. We identify 158 HSP90 chemical genetic interactors, most of which are important for growth only in specific environments. We discovered that the sterol C-22 desaturase gene ERG5 and the phosphatidylinositol-4-kinase (PI4K) gene STT4 are HSP90 genetic interactors under multiple conditions, suggesting a function upstream of Hsp90. By systematic analysis of the ergosterol biosynthetic cascade, we demonstrate that defects in ergosterol biosynthesis induce cellular stress that overwhelms Hsp90's functional capacity. By analysis of the phosphatidylinositol pathway, we demonstrate that there is a genetic interaction between the PI4K Stt4 and Hsp90. We also establish that Stt4 is required for normal actin polarization through regulation of Wal1, and suggest a model in which defects in actin remodeling induces stress that creates a cellular demand for Hsp90 that exceeds its functional capacity. Consistent with this model, actin inhibitors are synergistic with Hsp90 inhibitors. We highlight new connections between Hsp90 and virulence traits, demonstrating that Erg5 and Stt4 enable activation of macrophage pyroptosis. This work uncovers novel circuitry regulating Hsp90

  20. Acanthamoeba castellanii Induces Host Cell Death via a Phosphatidylinositol 3-Kinase-Dependent Mechanism

    PubMed Central

    Sissons, James; Kim, Kwang Sik; Stins, Monique; Jayasekera, Samantha; Alsam, Selwa; Khan, Naveed Ahmed

    2005-01-01

    Granulomatous amoebic encephalitis due to Acanthamoeba castellanii is a serious human infection with fatal consequences, but it is not clear how the circulating amoebae interact with the blood-brain barrier and transmigrate into the central nervous system. We studied the effects of an Acanthamoeba encephalitis isolate belonging to the T1 genotype on human brain microvascular endothelial cells, which constitute the blood-brain barrier. Using an apoptosis-specific enzyme-linked immunosorbent assay, we showed that Acanthamoeba induces programmed cell death in brain microvascular endothelial cells. Next, we observed that Acanthamoeba specifically activates phosphatidylinositol 3-kinase. Acanthamoeba-mediated brain endothelial cell death was abolished using LY294002, a phosphatidylinositol 3-kinase inhibitor. These results were further confirmed using brain microvascular endothelial cells expressing dominant negative forms of phosphatidylinositol 3-kinase. This is the first demonstration that Acanthamoeba-mediated brain microvascular endothelial cell death is dependent on phosphatidylinositol 3-kinase. PMID:15845472

  1. Phosphatidylinositol 3-Kinase Couples Localised Calcium Influx to Activation of Akt in Central Nerve Terminals.

    PubMed

    Nicholson-Fish, Jessica C; Cousin, Michael A; Smillie, Karen J

    2016-03-01

    The efficient retrieval of synaptic vesicle membrane and cargo in central nerve terminals is dependent on the efficient recruitment of a series of endocytosis modes by different patterns of neuronal activity. During intense neuronal activity the dominant endocytosis mode is activity-dependent endocytosis (ADBE). Triggering of ADBE is linked to calcineurin-mediated dynamin I dephosphorylation since the same stimulation intensities trigger both. Dynamin I dephosphorylation is maximised by a simultaneous inhibition of its kinase glycogen synthase kinase 3 (GSK3) by the protein kinase Akt, however it is unknown how increased neuronal activity is transduced into Akt activation. To address this question we determined how the activity-dependent increases in intracellular free calcium ([Ca(2+)]i) control activation of Akt. This was achieved using either trains of high frequency action potentials to evoke localised [Ca(2+)]i increases at active zones, or a calcium ionophore to raise [Ca(2+)]i uniformly across the nerve terminal. Through the use of either non-specific calcium channel antagonists or intracellular calcium chelators we found that Akt phosphorylation (and subsequent GSK3 phosphorylation) was dependent on localised [Ca(2+)]i increases at the active zone. In an attempt to determine mechanism, we antagonised either phosphatidylinositol 3-kinase (PI3K) or calmodulin. Activity-dependent phosphorylation of both Akt and GSK3 was arrested on inhibition of PI3K, but not calmodulin. Thus localised calcium influx in central nerve terminals activates PI3K via an unknown calcium sensor to trigger the activity-dependent phosphorylation of Akt and GSK3. PMID:26198194

  2. Insulin Receptor Substrate 1, the Hub Linking Follicle-stimulating Hormone to Phosphatidylinositol 3-Kinase Activation.

    PubMed

    Law, Nathan C; Hunzicker-Dunn, Mary E

    2016-02-26

    The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K. We report that in the absence of FSH, granulosa cells secrete a subthreshold concentration of insulin-like growth factor-1 (IGF-1) that primes the IGF-1 receptor (IGF-1R) but fails to promote tyrosine phosphorylation of IRS1. FSH via PKA acts to sensitize IRS1 to the tyrosine kinase activity of the IGF-1R by activating protein phosphatase 1 (PP1) to promote dephosphorylation of inhibitory Ser/Thr residues on IRS1, including Ser(789). Knockdown of PP1β blocks the ability of FSH to activate PI3K in the presence of endogenous IGF-1. Activation of PI3K thus requires both PKA-mediated relief of IRS1 inhibition and IGF-1R-dependent tyrosine phosphorylation of IRS1. Treatment with FSH and increasing concentrations of exogenous IGF-1 triggers synergistic IRS1 tyrosine phosphorylation at PI3K-activating residues that persists downstream through protein kinase B (AKT) and FOXO1 (forkhead box protein O1) to drive synergistic expression of genes that underlies follicle maturation. Based on the ability of GPCR agonists to synergize with IGFs to enhance gene expression in other cell types, PP1 activation to relieve IRS1 inhibition may be a more general mechanism by which GPCRs act with the IGF-1R to activate PI3K/AKT. PMID:26702053

  3. Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B

    PubMed Central

    Jiang, Bing-Hua; Aoki, Masahiro; Zheng, Jenny Z.; Li, Jian; Vogt, Peter K.

    1999-01-01

    The oncogene p3k, coding for a constitutively active form of phosphatidylinositol 3-kinase (PI 3-kinase), strongly activates myogenic differentiation. Inhibition of endogenous PI 3-kinase activity with the specific inhibitor LY294002, or with dominant-negative mutants of PI 3-kinase, interferes with myotube formation and with the expression of muscle-specific proteins. Here we demonstrate that a downstream target of PI 3-kinase, serine-threonine kinase Akt, plays an important role in myogenic differentiation. Expression of constitutively active forms of Akt dramatically enhances myotube formation and expression of the muscle-specific proteins MyoD, creatine kinase, myosin heavy chain, and desmin. Transdominant negative forms of Akt inhibit myotube formation and the expression of muscle-specific proteins. The inhibition of myotube formation and the reduced expression of muscle-specific proteins caused by the PI 3-kinase inhibitor LY294002 are completely reversed by constitutively active forms of Akt. Wild-type cellular Akt effects a partial reversal of LY294002-induced inhibition of myogenic differentiation. This result suggests that Akt can substitute for PI 3-kinase in the stimulation of myogenesis; Akt may be an essential downstream component of PI 3-kinase-induced muscle differentiation. PMID:10051597

  4. Dynamic Aspects of Voluntary Turnover: An Integrated Approach to Curvilinearity in the Performance-Turnover Relationship

    ERIC Educational Resources Information Center

    Becker, William J.; Cropanzano, Russell

    2011-01-01

    Previous research pertaining to job performance and voluntary turnover has been guided by 2 distinct theoretical perspectives. First, the push-pull model proposes that there is a quadratic or curvilinear relationship existing between these 2 variables. Second, the unfolding model of turnover posits that turnover is a dynamic process and that a…

  5. Employee Turnover among Full-time Public Librarians.

    ERIC Educational Resources Information Center

    Rubin, Richard

    1989-01-01

    A study of employee turnover in 31 public libraries in the American Midwest established baseline turnover rates and examined the relationship of gender to turnover behavior. Findings showed that: turnover rates are low compared to other occupations; and turnover rates of males and females are similar. (28 references) (Author/MES)

  6. Role of RIP1 in physiological enterocyte turnover in mouse small intestine via nonapoptotic death.

    PubMed

    Matsuoka, Yosuke; Tsujimoto, Yoshihide

    2015-01-01

    Enterocyte shedding in the small intestine is often referred as an example of programmed cell death. However, little is known about the underlying mechanisms, although both apoptotic and nonapoptotic cell death have been suggested to play an important role. Here, we show by electron microscope that the majority of cells dying in the mouse small intestine do not display apoptotic characteristics. Chemical biological approach in vivo and in an organ culture showed that necrostatin-1 (Nec-1), an inhibitor of receptor-interacting protein 1 (RIP1, also called RIPK1), inhibited the shedding/nonapoptotic death of enterocyte, resulting in suppression of physiological enterocyte turnover. Moreover, RIP1 knockdown in vivo and RIP1 haploinsufficiency significantly suppressed physiological enterocyte turnover. Unlike Nec-1-sensitive (RIP1-dependent) cell death, so called necroptosis, which is also dependent on RIP3, physiological enterocyte turnover in RIP3-deficient mice was executed normally and still inhibited by Nec-1. As inhibition of the shedding/nonapoptotic death of enterocyte by Nec-1 resulted in suppression of crypt cell proliferation, the shedding process plays a dominant role over cell proliferation in maintaining homeostasis of enterocyte turnover. These results indicate that RIP1 plays a major role in physiological enterocyte turnover through a RIP3-independent nonapoptotic death mechanism in the mouse small intestine. PMID:25348793

  7. Molecular Dynamics Simulations of Phosphatidylinositol Bisphosphate (PIP2)

    NASA Astrophysics Data System (ADS)

    Slochower, David; Janmey, Paul

    2012-02-01

    We are interested in the dynamics of membranes containing the highly charged phospholipid phosphatidylinositol bisphosphate (PIP2 or PtdInsP2). We performed a geometry optimization at the Hartree-Fock 6-31+G* level of theory to determine the biological conformation of the phospholipid headgroup in the presence of water and partial charge distribution. The angle between the headgroup and the acyl chains that form an anchor in the membrane is 94 ^o, indicating that the inositol ring may lie flat along the surface of the inner plasma membrane. Next, we employed hybrid quantum mechanics/molecular mechanics simulations to investigate the protonation state of PIP2 and its interactions with physiological divalent cations such as magnesium and calcium. Based on preliminary data, we propose that the binding of magnesium to PIP2 is mediated by a water molecule that is absent when calcium binds. These results may explain the ability of calcium to induce the formation of PIP2 clusters and phase separation from other phospholipids.

  8. Phosphatidylinositol 3 kinase modulation of trophoblast cell differentiation

    PubMed Central

    2010-01-01

    Background The trophoblast lineage arises as the first differentiation event during embryogenesis. Trophoblast giant cells are one of several end-stage products of trophoblast cell differentiation in rodents. These cells are located at the maternal-fetal interface and are capable of invasive and endocrine functions, which are necessary for successful pregnancy. Rcho-1 trophoblast stem cells can be effectively used as a model for investigating trophoblast cell differentiation. In this report, we evaluated the role of the phosphatidylinositol 3-kinase (PI3K) signaling pathway in the regulation of trophoblast cell differentiation. Transcript profiles from trophoblast stem cells, differentiated trophoblast cells, and differentiated trophoblast cells following disruption of PI3K signaling were generated and characterized. Results Prominent changes in gene expression accompanied the differentiation of trophoblast stem cells. PI3K modulated the expression of a subset of trophoblast cell differentiation-dependent genes. Among the PI3K-responsive genes were those encoding proteins contributing to the invasive and endocrine phenotypes of trophoblast giant cells. Conclusions Genes have been identified with differential expression patterns associated with trophoblast stem cells and trophoblast cell differentiation; a subset of these genes are regulated by PI3K signaling, including those impacting the differentiated trophoblast giant cell phenotype. PMID:20840781

  9. Employee Turnover: An Empirical and Methodological Assessment.

    ERIC Educational Resources Information Center

    Muchinsky, Paul M.; Tuttle, Mark L.

    1979-01-01

    Reviews research on the prediction of employee turnover. Groups predictor variables into five general categories: attitudinal (job satisfaction), biodata, work-related, personal, and test-score predictors. Consistent relationships between common predictor variables and turnover were found for four categories. Eight methodological problems/issues…

  10. Principal Turnover. Information Capsule. Volume 0914

    ERIC Educational Resources Information Center

    Blazer, Christie

    2010-01-01

    Recent studies indicate that school districts are facing increasing rates of principal turnover. Frequent principal changes deprive schools of the leadership stability they need to succeed, disrupt long-term school reform efforts, and may even be linked to increased teacher turnover and lower levels of student achievement. This Information Capsule…

  11. Employee Turnover: Evidence from a Case Study.

    ERIC Educational Resources Information Center

    Borland, Jeff

    1997-01-01

    Patterns of employee turnover from a medium-sized law firm in Australia were examined in regard to theories of worker mobility (matching, sectoral shift, and incentive). Results support a role for matching effects, but personnel practices affect the timing of turnover. Matching and incentive-based theories do not explain the high rates of turnover…

  12. Contextual Factors Related to Elementary Principal Turnover

    ERIC Educational Resources Information Center

    Partlow, Michelle C.

    2007-01-01

    The issue of school leadership instability and how it affects schools and student achievement has been studied. The question of how to predict turnover of the principal remains an unknown. The purpose of this research was to search for possible relationships between certain contextual variables and principal turnover and to test the independent…

  13. Predicting Employee Turnover from Communication Networks.

    ERIC Educational Resources Information Center

    Feeley, Thomas H.; Barnett, George A.

    1997-01-01

    Investigates three social network models of employee turnover: a structural equivalence model, a social influence model, and an erosion model. Administers a communication network questionnaire to all 170 employees of an organization. Finds support for all three models of turnover, with the erosion model explaining more of the variance than do the…

  14. Mitochondrial Turnover in the Heart

    PubMed Central

    Gustafsson, Åsa B.

    2010-01-01

    Mitochondrial quality control is increasingly recognized as an essential element in maintaining optimally functioning tissues. Mitochondrial quality control depends upon a balance between biogenesis and autophagic destruction. Mitochondrial dynamics (fusion and fission) allows for the redistribution of mitochondrial components. We speculate that this permits sorting of highly functional components into one end of a mitochondrion, while damaged components are segregated at the other end, to be jettisoned by asymmetric fission followed by selective mitophagy. Ischemic preconditioning requires autophagy/mitophagy, resulting in selective elimination of damaged mitochondria, leaving behind a population of robust mitochondria with a higher threshold for opening of the mitochondrial permeability transition pore. In this review we will consider the factors that regulate mitochondrial biogenesis and destruction, the machinery involved in both processes, and the biomedical consequences associated with altered mitochondrial turnover. PMID:21147177

  15. Social Disadvantage and Network Turnover

    PubMed Central

    2015-01-01

    Objectives. Research shows that socially disadvantaged groups—especially African Americans and people of low socioeconomic status (SES)—experience more unstable social environments. I argue that this causes higher rates of turnover within their personal social networks. This is a particularly important issue among disadvantaged older adults, who may benefit from stable networks. This article, therefore, examines whether social disadvantage is related to various aspects of personal network change. Method. Social network change was assessed using longitudinal egocentric network data from the National Social Life, Health, and Aging Project, a study of older adults conducted between 2005 and 2011. Data collection in Wave 2 included a technique for comparing respondents’ confidant network rosters between waves. Rates of network losses, deaths, and additions were modeled using multivariate Poisson regression. Results. African Americans and low-SES individuals lost more confidants—especially due to death—than did whites and college-educated respondents. African Americans also added more confidants than whites. However, neither African Americans nor low-SES individuals were able to match confidant losses with new additions to the extent that others did, resulting in higher levels of confidant network shrinkage. These trends are partly, but not entirely, explained by disadvantaged individuals’ poorer health and their greater risk of widowhood or marital dissolution. Discussion. Additional work is needed to shed light on the role played by race- and class-based segregation on group differences in social network turnover. Social gerontologists should examine the role these differences play in explaining the link between social disadvantage and important outcomes in later life, such as health decline. PMID:24997286

  16. Plasma membrane associated phospholipase C from human platelets: Synergistic stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis by thrombin and guanosine 5 prime -O-(3-thiotriphosphate)

    SciTech Connect

    Baldassare, J.J.; Henderson, P.A.; Fisher, G.J. )

    1989-01-10

    The effects of thrombin and GTP{gamma}S on the hydrolysis of phosphoinositides by membrane-associated phospholipase C (PLC) from human platelets were examined with endogenous ({sup 3}H)inositol-labeled membranes or with lipid vesicles containing either ({sup 3}H)phosphatidylinositol or ({sup 3}H)phosphatidylinositol 4,5-bisphosphate. GTP{gamma}S (1 {mu}M) or thrombin (1 unit/mL) did not stimulate release of inositol trisphosphate (IP{sub 3}), inositol bisphosphate (IP{sub 2}), or inositol phosphate (IP) from ({sup 3}H)inositol-labeled membranes. IP{sub 2} and IP{sub 3}, but not IP, from ({sup 3}H)inositol-labeled membranes were, however, stimulated 3-fold by GTP{gamma}S (1 {mu}M) plus thrombin (1 unit/mL). A higher concentration of GTP{gamma}S (100 {mu}M) alone also stimulated IP{sub 2} and IP{sub 3}, but not IP, release. In the presence of 1 mM calcium, release of IP{sub 2} and IP{sub 3} was increased 6-fold over basal levels; however, formation of IP was not observed. At submicromolar calcium concentration, hydrolysis of exogenous phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}) by platelet membrane associated PLC was also markedly enhanced by GTP{gamma}S (100 {mu}M) or GTP{gamma}S (1 {mu}M) plus thrombin (1 unit/mL). Under identical conditions, exogenous phosphatidylinositol (PI) was not hydrolyzed. The same substrate specificity was observed when the membrane-associated PLC was activated with 1 mM calcium. Thrombin-induced hydrolysis of PIP{sub 2} was inhibited by treatment of the membranes with pertussis toxin or pretreatment of intact platelets with 12-O-tetradecanoyl-13-acetate (TPA) prior to preparation of membranes. Pertussis toxin did not inhibit GTP{gamma}S (100 {mu}M) or calcium (1 mM) dependent PIP{sub 2} breakdown, while TPA inhibited GTP{gamma}S-dependent but not calcium-dependent phospholipase C activity.

  17. Effect of Diet and Cold Exposure on Norepinephrine Turnover in Brown Adipose Tissue of the Rat

    PubMed Central

    Young, James B.; Saville, Elizabeth; Rothwell, Nancy J.; Stock, Michael J.; Landsberg, Lewis

    1982-01-01

    Brown adipose tissue (BAT) is an important site of adaptive changes in thermogenesis in the rat. The sympathetic nervous system, which richly supplies BAT, is thought to play an important role in the regulation of BAT thermogenesis because catecholamines stimulate and beta adrenergic blocking agents inhibit oxygen consumption in this tissue. The present studies were carried out to assess directly sympathetic activity in BAT in response to cold exposure and to changes in dietary intake, both of which alter heat production in the rat. Sympathetic activity was determined from the rate of norepinephrine (NE) turnover in interscapular brown adipose tissue (IBAT) after preliminary experiments validated the use of NE turnover techniques in IBAT. Acute exposure to 4°C increased NE turnover in IBAT 4- to 12-fold compared with ambient temperature controls, depending upon the interval over which the turnover measurement was made, while in the heart NE turnover doubled in response to the same cold stimulus. In animals exposed to cold continuously for 10 d before study, NE turnover measurements in IBAT and in the heart were elevated comparably to those obtained during acute exposure. Alterations in feeding were also associated with changes in NE turnover in IBAT. Fasting for 2 d decreased NE turnover in IBAT (-35% from 29.2±4.2 ng NE/h to 18.9±5.9) and in heart (-52%). In animals fed a “cafeteria” diet, a model of voluntary overfeeding in the rat, NE turnover was increased in both IBAT (+108% from 24.8±4.5 ng NE/h to 51.7±6.8) and heart (+66%). Because ganglionic blockade exerted a greater effect on NE turnover in IBAT in cafeteria-fed rats than in controls, the increase in NE turnover in IBAT with this overfeeding regimen reflects enhanced central sympathetic outflow. Thus NE turnover techniques can be satisfactorily applied to the assessment of sympathetic nervous system activity in IBAT. The experiments reported here demonstrate changes in sympathetic activity in

  18. Vinculin acts as a sensor in lipid regulation of adhesion-site turnover.

    PubMed

    Chandrasekar, Indra; Stradal, Theresia E B; Holt, Mark R; Entschladen, Frank; Jockusch, Brigitte M; Ziegler, Wolfgang H

    2005-04-01

    The dynamics of cell adhesion sites control cell morphology and motility. Adhesion-site turnover is thought to depend on the local availability of the acidic phospholipid phosphatidylinositol-4,5-bisphosphate (PIP(2)). PIP(2) can bind to many cell adhesion proteins such as vinculin and talin, but the consequences of this interaction are poorly understood. To study the significance of phospholipid binding to vinculin for adhesion-site turnover and cell motility, we constructed a mutant, vinculin-LD, deficient in acidic phospholipid binding yet with functional actin-binding sites. When expressed in cells, vinculin-LD was readily recruited to adhesion sites, as judged by fluorescence recovery after photobleaching (FRAP) analysis, but cell spreading and migration were strongly impaired, and PIP(2)-dependent disassembly of adhesions was suppressed. Thus, PIP(2) binding is not essential for vinculin activation and recruitment, as previously suggested. Instead, we propose that PIP(2) levels can regulate the uncoupling of adhesion sites from the actin cytoskeleton, with vinculin functioning as a sensor. PMID:15769850

  19. Phosphatidylinositol 4-Kinase Activation Is an Early Response to Salicylic Acid in Arabidopsis Suspension Cells1[W

    PubMed Central

    Krinke, Ondřej; Ruelland, Eric; Valentová, Olga; Vergnolle, Chantal; Renou, Jean-Pierre; Taconnat, Ludivine; Flemr, Matyáš; Burketová, Lenka; Zachowski, Alain

    2007-01-01

    Salicylic acid (SA) has a central role in defense against pathogen attack. In addition, its role in such diverse processes as germination, flowering, senescence, and thermotolerance acquisition has been documented. However, little is known about the early signaling events triggered by SA. Using Arabidopsis (Arabidopsis thaliana) suspension cells as a model, it was possible to show by in vivo metabolic phospholipid labeling with 33Pi that SA addition induced a rapid and early (in few minutes) decrease in a pool of phosphatidylinositol (PI). This decrease paralleled an increase in PI 4-phosphate and PI 4,5-bisphosphate. These changes could be inhibited by two different inhibitors of type III PI 4-kinases, phenylarsine oxide and 30 μm wortmannin; no inhibitory effect was seen with 1 μm wortmannin, a concentration inhibiting PI 3-kinases but not PI 4-kinases. We therefore undertook a study of the effects of wortmannin on SA-responsive transcriptomes. Using the Complete Arabidopsis Transcriptome MicroArray chip, we could identify 774 genes differentially expressed upon SA treatment. Strikingly, among these genes, the response to SA of 112 of them was inhibited by 30 μm wortmannin, but not by 1 μm wortmannin. PMID:17496105

  20. Eps15 Homology Domain 1-associated Tubules Contain Phosphatidylinositol-4-Phosphate and Phosphatidylinositol-(4,5)-Bisphosphate and Are Required for Efficient Recycling

    PubMed Central

    Jović, Marko; Kieken, Fabien; Naslavsky, Naava

    2009-01-01

    The C-terminal Eps15 homology domain (EHD) 1/receptor-mediated endocytosis-1 protein regulates recycling of proteins and lipids from the recycling compartment to the plasma membrane. Recent studies have provided insight into the mode by which EHD1-associated tubular membranes are generated and the mechanisms by which EHD1 functions. Despite these advances, the physiological function of these striking EHD1-associated tubular membranes remains unknown. Nuclear magnetic resonance spectroscopy demonstrated that the Eps15 homology (EH) domain of EHD1 binds to phosphoinositides, including phosphatidylinositol-4-phosphate. Herein, we identify phosphatidylinositol-4-phosphate as an essential component of EHD1-associated tubules in vivo. Indeed, an EHD1 EH domain mutant (K483E) that associates exclusively with punctate membranes displayed decreased binding to phosphatidylinositol-4-phosphate and other phosphoinositides. Moreover, we provide evidence that although the tubular membranes to which EHD1 associates may be stabilized and/or enhanced by EHD1 expression, these membranes are, at least in part, pre-existing structures. Finally, to underscore the function of EHD1-containing tubules in vivo, we used a small interfering RNA (siRNA)/rescue assay. On transfection, wild-type, tubule-associated, siRNA-resistant EHD1 rescued transferrin and β1 integrin recycling defects observed in EHD1-depleted cells, whereas expression of the EHD1 K483E mutant did not. We propose that phosphatidylinositol-4-phosphate is an essential component of EHD1-associated tubules that also contain phosphatidylinositol-(4,5)-bisphosphate and that these structures are required for efficient recycling to the plasma membrane. PMID:19369419

  1. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    SciTech Connect

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  2. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools.

    PubMed

    Goto, Asako; Charman, Mark; Ridgway, Neale D

    2016-01-15

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to determine how OSBP controls the availability of PI-4P for this metabolic pathway. Treatment of fibroblasts or Chinese hamster ovary (CHO) cells with 25OH caused a 50-70% reduction in Golgi-associated immunoreactive PI-4P that correlated with Golgi localization of OSBP. In contrast, 25OH caused an OSBP-dependent enrichment in Golgi PI-4P that was detected with a pleckstrin homology domain probe. The cellular mass of phosphatidylinositol monophosphates and Golgi PI-4P measured with an unbiased PI-4P probe (P4M) was unaffected by 25OH and OSBP silencing, indicating that OSBP shifts the distribution of PI-4P upon localization to ER-Golgi contact sites. The PI-4P and sterol binding activities of OSBP were both required for 25OH activation of sphingomyelin synthesis, suggesting that 25OH must be exchanged for PI-4P to be concentrated at contact sites. We propose a model wherein 25OH activation of OSBP promotes the binding and retention of PI-4P at ER-Golgi contact sites. This pool of PI-4P specifically recruits pleckstrin homology domain-containing proteins involved in lipid transfer and metabolism, such as CERT. PMID:26601944

  3. Bimodal regulation of an Elk subfamily K+ channel by phosphatidylinositol 4,5-bisphosphate

    PubMed Central

    Li, Xiaofan; Anishkin, Andriy; Liu, Hansi; van Rossum, Damian B.; Chintapalli, Sree V.; Sassic, Jessica K.; Gallegos, David; Pivaroff-Ward, Kendra

    2015-01-01

    Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates Shaker K+ channels and voltage-gated Ca2+ channels in a bimodal fashion by inhibiting voltage activation while stabilizing open channels. Bimodal regulation is conserved in hyperpolarization-activated cyclic nucleotide–gated (HCN) channels, but voltage activation is enhanced while the open channel state is destabilized. The proposed sites of PIP2 regulation in these channels include the voltage-sensor domain (VSD) and conserved regions of the proximal cytoplasmic C terminus. Relatively little is known about PIP2 regulation of Ether-á-go-go (EAG) channels, a metazoan-specific family of K+ channels that includes three gene subfamilies, Eag (Kv10), Erg (Kv11), and Elk (Kv12). We examined PIP2 regulation of the Elk subfamily potassium channel human Elk1 to determine whether bimodal regulation is conserved within the EAG K+ channel family. Open-state stabilization by PIP2 has been observed in human Erg1, but the proposed site of regulation in the distal C terminus is not conserved among EAG family channels. We show that PIP2 strongly inhibits voltage activation of Elk1 but also stabilizes the open state. This stabilization produces slow deactivation and a mode shift in voltage gating after activation. However, removal of PIP2 has the net effect of enhancing Elk1 activation. R347 in the linker between the VSD and pore (S4–S5 linker) and R479 near the S6 activation gate are required for PIP2 to inhibit voltage activation. The ability of PIP2 to stabilize the open state also requires these residues, suggesting an overlap in sites central to the opposing effects of PIP2 on channel gating. Open-state stabilization in Elk1 requires the N-terminal eag domain (PAS domain + Cap), and PIP2-dependent stabilization is enhanced by a conserved basic residue (K5) in the Cap. Our data shows that PIP2 can bimodally regulate voltage gating in EAG family channels, as has been proposed for Shaker and HCN channels. PIP2 regulation

  4. Phosphatidylinositol 3-kinase CB association with preoperative radiotherapy response in rectal adenocarcinoma

    PubMed Central

    Yu, Wei-Dong; Peng, Yi-Fan; Pan, Hong-Da; Wang, Lin; Li, Kun; Gu, Jin

    2014-01-01

    AIM: To examine the correlation of phosphatidylinositol 3-kinase (PIK3) CB expression with preoperative radiotherapy response in patients with stage II/III rectal adenocarcinoma. METHODS: PIK3CB immunoexpression was retrospectively assessed in pretreatment biopsies from 208 patients with clinical stage II/III rectal adenocarcinoma, who underwent radical surgery after 30-Gy/10-fraction preoperative radiotherapy. The relation between PIK3CB expression and tumor regression grade, clinicopathological characteristics, and survival time was statistically analyzed. Western blotting and in vitro clonogenic formation assay were used to detect PIK3CB expression in four colorectal cancer cell lines (HCT116, HT29, LoVo, and LS174T) treated with 6-Gy ionizing radiation. Pharmacological assays were used to evaluate the therapeutic relevance of TGX-221 (a PIK3CB-specific inhibitor) in the four colorectal cancer cell lines. RESULTS: Immunohistochemical staining indicated that PIK3CB was more abundant in rectal adenocarcinoma tissues with poor response to preoperative radiotherapy. High expression of PIK3CB was closely correlated with tumor height (P < 0.05), ypT stage (P < 0.05), and high-degree tumor regression grade (P < 0.001). High expression of PIK3CB was a potential prognostic factor for local recurrence-free survival (P < 0.05) and metastasis-free survival (P < 0.05). High expression of PIK3CB was also associated with poor therapeutic response and adverse outcomes in rectal adenocarcinoma patients treated with 30-Gy/10-fraction preoperative radiotherapy. In vitro, PIK3CB expression was upregulated in all four colorectal cancer cell lines concurrently treated with 6-Gy ionizing radiation, and the PIK3CB-specific inhibitor TGX-221 effectively inhibited the clonogenic formation of these four colorectal cancer cell lines. CONCLUSION: PIK3CB is critically involved in response to preoperative radiotherapy and may serve as a novel target for therapeutic intervention. PMID:25473181

  5. Analysis of cellular phosphatidylinositol (3,4,5)-trisphosphate levels and distribution using confocal fluorescent microscopy.

    PubMed

    Palmieri, Michelle; Nowell, Cameron J; Condron, Melanie; Gardiner, James; Holmes, Andrew B; Desai, Jayesh; Burgess, Antony W; Catimel, Bruno

    2010-11-01

    We have developed an immunocytochemistry method for the semiquantitative detection of phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) at the cell plasma membrane. This protocol combines the use of a glutathione S-transferase-tagged pleckstrin homology (PH) domain of the general phosphoinositides-1 receptor (GST-GRP1PH) with fluorescence confocal microscopy and image segmentation using cell mask software analysis. This methodology allows the analysis of PI(3,4,5)P3 subcellular distribution in resting and epidermal growth factor (EGF)-stimulated HEK293T cells and in LIM1215 (wild-type phosphoinositide 3-kinase (PI3K)) and LIM2550 (H1047R mutation in PI3K catalytic domain) colonic carcinoma cells. Formation of PI(3,4,5)P3 was observed 5min following EGF stimulation and resulted in an increase of the membrane/cytoplasm fluorescence ratio from 1.03 to 1.53 for HEK293T cells and from 2.2 to 3.3 for LIM1215 cells. Resting LIM2550 cells stained with GST-GRP1PH had an elevated membrane/cytoplasm fluorescence ratio of 9.8, suggesting constitutive PI3K activation. The increase in the membrane/cytoplasm fluorescent ratio was inhibited in a concentration-dependent manner by the PI3K inhibitor LY294002. This cellular confocal imaging assay can be used to directly assess the effects of PI3K mutations in cancer cell lines and to determine the potential specificity and effectiveness of PI3K inhibitors in cancer cells. PMID:20599646

  6. Signal-dependent Hydrolysis of Phosphatidylinositol 4,5-Bisphosphate without Activation of Phospholipase C

    PubMed Central

    Lev, Shaya; Katz, Ben; Tzarfaty, Vered; Minke, Baruch

    2012-01-01

    In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P2 in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P2 was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P2 is not an inhibitor of TRPL channel activation. PI(4,5)P2 hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P2 levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P2 is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating. PMID:22065576

  7. Gliotoxin Suppresses Macrophage Immune Function by Subverting Phosphatidylinositol 3,4,5-Trisphosphate Homeostasis

    PubMed Central

    Schlam, Daniel; Canton, Johnathan; Carreño, Marvin; Kopinski, Hannah; Freeman, Spencer A.; Grinstein, Sergio

    2016-01-01

    ABSTRACT Aspergillus fumigatus, an opportunistic fungal pathogen, spreads in the environment by releasing numerous conidia that are capable of reaching the small alveolar airways of mammalian hosts. In otherwise healthy individuals, macrophages are responsible for rapidly phagocytosing and eliminating these conidia, effectively curbing their germination and consequent invasion of pulmonary tissue. However, under some circumstances, the fungus evades phagocyte-mediated immunity and persists in the respiratory tree. Here, we report that A. fumigatus escapes macrophage recognition by strategically targeting phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] metabolism through gliotoxin, a potent immunosuppressive mycotoxin. Time-lapse microscopy revealed that, in response to the toxin, macrophages cease to ruffle, undergo abrupt membrane retraction, and fail to phagocytose large targets effectively. Gliotoxin was found to prevent integrin activation and interfere with actin dynamics, both of which are instrumental for phagocytosis; similar effects were noted in immortalized and primary phagocytes. Detailed studies of the underlying molecular mechanisms of toxicity revealed that inhibition of phagocytosis is attributable to impaired accumulation of PtdIns(3,4,5)P3 and the associated dysregulation of downstream effectors, including Rac and/or Cdc42. Strikingly, in response to the diacylglycerol mimetic phorbol 12-myristate 13-acetate, gliotoxin-treated macrophages reactivate beta integrins, reestablish actin dynamics, and regain phagocytic capacity, despite the overt absence of plasmalemmal PtdIns(3,4,5)P3. Together, our findings identify phosphoinositide metabolism as a critical upstream target of gliotoxin and also indicate that increased diacylglycerol levels can bypass the requirement for PtdIns(3,4,5)P3 signaling during membrane ruffling and phagocytosis. PMID:27048806

  8. Supramolecular nanoparticles that target phosphatidylinositol-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy

    PubMed Central

    Kulkarni, Ashish A.; Roy, Bhaskar; Rao, Poornima S.; Wyant, Gregory A.; Mahmoud, Ayaat; Ramachandran, Madhumitha; Sengupta, Poulomi; Goldman, Aaron; Kotamraju, Venkata Ramana; Basu, Sudipta; Mashelkar, Raghunath A; Ruoslahti, Erkki; Dinulescu, Daniela M.; Sengupta, Shiladitya

    2013-01-01

    The centrality of phosphatidylinositol-3-kinase (PI3K) in cancer etiology is well established, but clinical translation of PI3K inhibitors has been limited by feedback signaling, suboptimal intra-tumoral concentration and an insulin resistance ‘class effect’. The current study was designed to explore the use of supramolecular nanochemistry for targeting PI3K to enhance antitumor efficacy and potentially overcome these limitations. PI3K inhibitor structures were rationally modified using a cholesterol-based derivative, facilitating supramolecular nanoassembly with L-α-phosphatidylcholine and DSPE-PEG. The supramolecular nanoparticles that were assembled were physicochemically characterized and functionally evaluated in vitro. Antitumor efficacy was quantified in vivo using 4T1 breast cancer and K-RasLSL/+/Ptenfl/fl ovarian cancer models, with effects on glucose homeostasis evaluated using an insulin sensitivity test. The use of PI103 and PI828 as surrogate molecules to engineer the supramolecular nanoparticles highlighted the need to keep design principles in perspective; specifically, potency of the active molecule and the linker chemistry were critical principles for efficacy, similar to antibody-drug conjugates. We found that the supramolecular nanoparticles exerted a temporally-sustained inhibition of phosphorylation of Akt, mTOR, S6K and 4EBP in vivo. These effects were associated with increased antitumor efficacy and survival as compared with PI103 and PI828. Efficacy was further increased by decorating the nanoparticle surface with tumor-homing peptides. Notably, the use of supramolecular nanoparticles abrogated the insulin resistance that has been associated widely with other PI3K inhibitors. This study provides a preclinical foundation for the use of supramolecular nanochemistry to overcome current challenges associated with PI3K inhibitors, offering a paradigm for extension to other molecularly targeted therapeutics being explored for cancer treatment

  9. Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis.

    PubMed

    Hunter, S W; Brennan, P J

    1990-06-01

    The recent availability (Hunter, S.W., Gaylord, H., and Brennan, P.J. (1986) J. Biol. Chem. 261, 12345-12351) of the well known arabinomannan of Mycobacterium leprae and Mycobacterium tuberculosis as the pure native lipoarabinomannan has resulted in its implication in key aspects of the immunopathogenesis of leprosy and tuberculosis. We had indicated that the lipid moiety of lipoarabinomannan is probably based on a diacylglycerol unit in that glycerol and the two fatty acids, hexadecanoate and 10-methyloctadecanoate, were identified. In addition, lipoarabinomannan was also shown to contain myo-inositol 1-phosphate. Evidence is now presented, based on selective radiolabeling and analysis of various cleavage fragments, that the inositol phosphate exists as both an alkalilable phosphodiester and as part of a phosphatidylinositol "membrane anchor." The mannan of M. tuberculosis was also isolated as the native lipomannan. It also apparently contains a phosphatidylinositol unit but is devoid of the alkali-labile inositol phosphate residues. These lipopolysaccharides are apparently multiglycosylated versions of the well known myocobacterial mannosyl phosphatidylinositols and are prokaryotic versions of the growing list of phosphatidylinositol-anchored macromolecules. Immunogold labeling demonstrates that lipoarabinomannan is a true antigenic capsular or extracellular product of M. tuberculosis. The presence of a phosphatidylinositol residue on lipoarabinomannan may explain its interaction with macrophage membranes and role in mycobacterial pathogenesis. PMID:2111816

  10. Improvements to Kramers turnover theory

    NASA Astrophysics Data System (ADS)

    Pollak, Eli; Ankerhold, Joachim

    2013-04-01

    The Kramers turnover problem, that is, obtaining a uniform expression for the rate of escape of a particle over a barrier for any value of the external friction was solved in the 1980s. Two formulations were given, one by Mel'nikov and Meshkov (MM) [V. I. Mel'nikov and S. V. Meshkov, J. Chem. Phys. 85, 1018 (1986), 10.1063/1.451844], which was based on a perturbation expansion for the motion of the particle in the presence of friction. The other, by Pollak, Grabert, and Hänggi (PGH) [E. Pollak, H. Grabert, and P. Hänggi, J. Chem. Phys. 91, 4073 (1989), 10.1063/1.456837], valid also for memory friction, was based on a perturbation expansion for the motion along the collective unstable normal mode of the particle. Both theories did not take into account the temperature dependence of the average energy loss to the bath. Increasing the bath temperature will reduce the average energy loss. In this paper, we analyse this effect, using a novel perturbation theory. We find that within the MM approach, the thermal energy gained from the bath diverges, the average energy gain becomes infinite implying an essential failure of the theory. Within the PGH approach increasing the bath temperature reduces the average energy loss but only by a finite small amount of the order of the inverse of the reduced barrier height. Then, this does not seriously affect the theory. Analysis and application for a cubic potential and Ohmic friction are presented.

  11. Plagued by Turnover? Train Your Managers.

    ERIC Educational Resources Information Center

    Dobbs, Kevin

    2000-01-01

    Dissatisfaction with managers is a major cause of employee turnover The Charles Schwab Corporation surveys employees annually and holds employee focus groups and online town meetings. The information is used for the coaching and training of department heads. (JOW)

  12. Coping with Turnovers in School Food Service.

    ERIC Educational Resources Information Center

    Pannell, Dorothy V.

    1988-01-01

    Labor shortages, cost increases, and turnover have prompted Fairfax County Schools, Virginia, food service managers to offer training programs and recruitment bonuses, to use more convenience foods, and to price out every service. (MLF)

  13. Biomimetic catalysis: Taking on the turnover challenge

    NASA Astrophysics Data System (ADS)

    Hooley, Richard J.

    2016-03-01

    Emulating the efficiency with which enzymes catalyse reactions has often been used as inspiration to develop self-assembled cages. Now two studies present approaches to achieving catalyst turnover -- one of the biggest challenges in achieving truly biomimetic catalysis.

  14. Metabolism of Phosphatidylinositol 4-Kinase IIIα-Dependent PI4P Is Subverted by HCV and Is Targeted by a 4-Anilino Quinazoline with Antiviral Activity

    PubMed Central

    Bianco, Annalisa; Reghellin, Veronica; Donnici, Lorena; Fenu, Simone; Alvarez, Reinaldo; Baruffa, Chiara; Peri, Francesco; Pagani, Massimiliano; Abrignani, Sergio; Neddermann, Petra; De Francesco, Raffaele

    2012-01-01

    4-anilino quinazolines have been identified as inhibitors of HCV replication. The target of this class of compounds was proposed to be the viral protein NS5A, although unequivocal proof has never been presented. A 4-anilino quinazoline moiety is often found in kinase inhibitors, leading us to formulate the hypothesis that the anti-HCV activity displayed by these compounds might be due to inhibition of a cellular kinase. Type III phosphatidylinositol 4-kinase α (PI4KIIIα) has recently been identified as a host factor for HCV replication. We therefore evaluated AL-9, a compound prototypical of the 4-anilino quinazoline class, on selected phosphatidylinositol kinases. AL-9 inhibited purified PI4KIIIα and, to a lesser extent, PI4KIIIβ. In Huh7.5 cells, PI4KIIIα is responsible for the phosphatidylinositol-4 phosphate (PI4P) pool present in the plasma membrane. Accordingly, we observed a gradual decrease of PI4P in the plasma membrane upon incubation with AL-9, indicating that this agent inhibits PI4KIIIα also in living cells. Conversely, AL-9 did not affect the level of PI4P in the Golgi membrane, suggesting that the PI4KIIIβ isoform was not significantly inhibited under our experimental conditions. Incubation of cells expressing HCV proteins with AL-9 induced abnormally large clusters of NS5A, a phenomenon previously observed upon silencing PI4KIIIα by RNA interference. In light of our findings, we propose that the antiviral effect of 4-anilino quinazoline compounds is mediated by the inhibition of PI4KIIIα and the consequent depletion of PI4P required for the HCV membranous web. In addition, we noted that HCV has a profound effect on cellular PI4P distribution, causing significant enrichment of PI4P in the HCV-membranous web and a concomitant depletion of PI4P in the plasma membrane. This observation implies that HCV – by recruiting PI4KIIIα in the RNA replication complex – hijacks PI4P metabolism, ultimately resulting in a markedly altered subcellular

  15. Phosphatidylinositol 4-Phosphate 5-Kinases in the Regulation of T Cell Activation.

    PubMed

    Porciello, Nicla; Kunkl, Martina; Viola, Antonella; Tuosto, Loretta

    2016-01-01

    Phosphatidylinositol 4,5-biphosphate kinases (PIP5Ks) are critical regulators of T cell activation being the main enzymes involved in the synthesis of phosphatidylinositol 4,5-biphosphate (PIP2). PIP2 is indeed a pivotal regulator of the actin cytoskeleton, thus controlling T cell polarization and migration, stable adhesion to antigen-presenting cells, spatial organization of the immunological synapse, and co-stimulation. Moreover, PIP2 also serves as a precursor for the second messengers inositol triphosphate, diacylglycerol, and phosphatidylinositol 3,4,5-triphosphate, which are essential for the activation of signaling pathways regulating cytokine production, cell cycle progression, survival, metabolism, and differentiation. Here, we discuss the impact of PIP5Ks on several T lymphocyte functions with a specific focus on the role of CD28 co-stimulation in PIP5K compartimentalization and activation. PMID:27242793

  16. Phosphatidylinositol 4-Phosphate 5-Kinases in the Regulation of T Cell Activation

    PubMed Central

    Porciello, Nicla; Kunkl, Martina; Viola, Antonella; Tuosto, Loretta

    2016-01-01

    Phosphatidylinositol 4,5-biphosphate kinases (PIP5Ks) are critical regulators of T cell activation being the main enzymes involved in the synthesis of phosphatidylinositol 4,5-biphosphate (PIP2). PIP2 is indeed a pivotal regulator of the actin cytoskeleton, thus controlling T cell polarization and migration, stable adhesion to antigen-presenting cells, spatial organization of the immunological synapse, and co-stimulation. Moreover, PIP2 also serves as a precursor for the second messengers inositol triphosphate, diacylglycerol, and phosphatidylinositol 3,4,5-triphosphate, which are essential for the activation of signaling pathways regulating cytokine production, cell cycle progression, survival, metabolism, and differentiation. Here, we discuss the impact of PIP5Ks on several T lymphocyte functions with a specific focus on the role of CD28 co-stimulation in PIP5K compartimentalization and activation. PMID:27242793

  17. The costs of nurse turnover, part 2: application of the Nursing Turnover Cost Calculation Methodology.

    PubMed

    Jones, Cheryl Bland

    2005-01-01

    This is the second article in a 2-part series focusing on nurse turnover and its costs. Part 1 (December 2004) described nurse turnover costs within the context of human capital theory, and using human resource accounting methods, presented the updated Nursing Turnover Cost Calculation Methodology. Part 2 presents an application of this method in an acute care setting and the estimated costs of nurse turnover that were derived. Administrators and researchers can use these methods and cost information to build a business case for nurse retention. PMID:15647669

  18. Spatial turnover in the global avifauna

    PubMed Central

    Gaston, Kevin J; Davies, Richard G; Orme, C. David L; Olson, Valerie A; Thomas, Gavin H; Ding, Tzung-Su; Rasmussen, Pamela C; Lennon, Jack J; Bennett, Peter M; Owens, Ian P.F; Blackburn, Tim M

    2007-01-01

    Despite its wide implications for many ecological issues, the global pattern of spatial turnover in the occurrence of species has been little studied, unlike the global pattern of species richness. Here, using a database on the breeding distributions of birds, we present the first global maps of variation in spatial turnover for an entire taxonomic class, a pattern that has to date remained largely a matter of conjecture, based on theoretical expectations and extrapolation of inconsistent patterns from different biogeographic realms. We use these maps to test four predictions from niche theory as to the form that this variation should take, namely that turnover should increase with species richness, towards lower latitudes, and with the steepness of environmental gradients and that variation in turnover is determined principally by rare (restricted) species. Contrary to prediction, we show that turnover is high both in areas of extremely low and high species richness, does not increase strongly towards the tropics, and is related both to average environmental conditions and spatial variation in those conditions. These results are closely associated with a further important and novel finding, namely that global patterns of spatial turnover are driven principally by widespread species rather than the restricted ones. This complements recent demonstrations that spatial patterns of species richness are also driven principally by widespread species, and thus provides an important contribution towards a unified model of how terrestrial biodiversity varies both within and between the Earth's major land masses. PMID:17472910

  19. On gigahertz spectral turnovers in pulsars

    NASA Astrophysics Data System (ADS)

    Rajwade, K.; Lorimer, D. R.; Anderson, L. D.

    2016-01-01

    Pulsars are known to emit non-thermal radio emission that is generally a power-law function of frequency. In some cases, a turnover is seen at frequencies around 100 MHz. Kijak et al. have reported the presence of a new class of `Gigahertz Peaked Spectrum' (GPS) pulsars that show spectral turnovers at frequencies around 1 GHz. We apply a model based on free-free thermal absorption to explain these turnovers in terms of surrounding material such as the dense environments found in H II regions, pulsar wind nebulae, or in cold, partially ionized molecular clouds. We show that the turnover frequency depends on the electron temperature of the environment close to the pulsar, as well as the emission measure along the line of sight. We fitted this model to the radio fluxes of known GPS pulsars and show that it can replicate the GHz turnover. From the thermal absorption model, we demonstrate that normal pulsars would exhibit a GPS-like behaviour if they were in a dense environment. We discuss the application of this model in the context of determining the population of neutron stars within the central parsec of the Galaxy. We show that a non-negligible fraction of this population might exhibit high-frequency spectral turnovers, which has implications on the detectability of these sources in the Galactic Centre.

  20. Doxorubicin enhances nucleosome turnover around promoters.

    PubMed

    Yang, Fan; Kemp, Christopher J; Henikoff, Steven

    2013-05-01

    Doxorubicin is an anthracycline DNA intercalator that is among the most commonly used anticancer drugs. Doxorubicin causes DNA double-strand breaks in rapidly dividing cells, although whether it also affects general chromatin properties is unknown. Here, we use a metabolic labeling strategy to directly measure nucleosome turnover to examine the effect of doxorubicin on chromatin dynamics in squamous cell carcinoma cell lines derived from genetically defined mice. We find that doxorubicin enhances nucleosome turnover around gene promoters and that turnover correlates with gene expression level. Consistent with a direct action of doxorubicin, enhancement of nucleosome turnover around promoters gradually increases with time of exposure to the drug. Interestingly, enhancement occurs both in wild-type cells and in cells lacking either the p53 tumor suppressor gene or the master regulator of the DNA damage response, ATM, suggesting that doxorubicin action on nucleosome dynamics is independent of the DNA damage checkpoint. In addition, another anthracycline drug, aclarubicin, shows similar effects on enhancing nucleosome turnover around promoters. Our results suggest that anthracycline intercalation promotes nucleosome turnover around promoters by its effect on DNA topology, with possible implications for mechanisms of cell killing during cancer chemotherapy. PMID:23602475

  1. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity

    PubMed Central

    Sobol, Margarita; Yildirim, Sukriye; Philimonenko, Vlada V; Marášek, Pavel; Castaño, Enrique; Hozák, Pavel

    2013-01-01

    To maintain growth and division, cells require a large-scale production of rRNAs which occurs in the nucleolus. Recently, we have shown the interaction of nucleolar phosphatidylinositol 4,5-bisphosphate (PIP2) with proteins involved in rRNA transcription and processing, namely RNA polymerase I (Pol I), UBF, and fibrillarin. Here we extend the study by investigating transcription-related localization of PIP2 in regards to transcription and processing complexes of Pol I. To achieve this, we used either physiological inhibition of transcription during mitosis or inhibition by treatment the cells with actinomycin D (AMD) or 5,6-dichloro-1β-d-ribofuranosyl-benzimidazole (DRB). We show that PIP2 is associated with Pol I subunits and UBF in a transcription-independent manner. On the other hand, PIP2/fibrillarin colocalization is dependent on the production of rRNA. These results indicate that PIP2 is required not only during rRNA production and biogenesis, as we have shown before, but also plays a structural role as an anchor for the Pol I pre-initiation complex during the cell cycle. We suggest that throughout mitosis, PIP2 together with UBF is involved in forming and maintaining the core platform of the rDNA helix structure. Thus we introduce PIP2 as a novel component of the NOR complex, which is further engaged in the renewed rRNA synthesis upon exit from mitosis. PMID:24513678

  2. Wnt5a promotes migration of human osteosarcoma cells by triggering a phosphatidylinositol-3 kinase/Akt signals

    PubMed Central

    2014-01-01

    Wnt5a is classified as a non-transforming Wnt family member and plays complicated roles in oncogenesis and cancer metastasis. However, Wnt5a signaling in osteosarcoma progression remains poorly defined. In this study, we found that Wnt5a stimulated the migration of human osteosarcoma cells (MG-63), with the maximal effect at 100 ng/ml, via enhancing phosphorylation of phosphatidylinositol-3 kinase (PI3K)/Akt. PI3K and Akt showed visible signs of basal phosphorylation and elevated phosphorylation at 15 min after stimulation with Wnt5a. Pharmaceutical inhibition of PI3K with LY294002 significantly blocked the Wnt5a-induced activation of Akt (p-Ser473) and decreased Wnt5a-induced cell migration. Akt siRNA remarkably inhibited Wnt5a-induced cell migration. Additionally, Wnt5a does not alter the total expression and phosphorylation of β-catenin in MG-63 cells. Taken together, we demonstrated for the first time that Wnt5a promoted osteosarcoma cell migration via the PI3K/Akt signaling pathway. These findings could provide a rationale for designing new therapy targeting osteosarcoma metastasis. PMID:24524196

  3. A Trypanosoma cruzi Phosphatidylinositol 3-Kinase (TcVps34) Is Involved in Osmoregulation and Receptor-mediated Endocytosis*S⃞

    PubMed Central

    Schoijet, Alejandra C.; Miranda, Kildare; Girard-Dias, Wendell; de Souza, Wanderley; Flawiá, Mirtha M.; Torres, Héctor N.; Docampo, Roberto; Alonso, Guillermo D.

    2008-01-01

    Trypanosoma cruzi, the etiological agent of Chagas disease, has the ability to respond to a variety of environmental changes during its life cycle both in the insect vector and in the vertebrate host. Because regulation of transcription initiation seems to be nonfunctional in this parasite, it is important to investigate other regulatory mechanisms of adaptation. Regulatory mechanisms at the level of signal transduction pathways involving phosphoinositides are good candidates for this purpose. Here we report the identification of the first phosphatidylinositol 3-kinase (PI3K) in T. cruzi, with similarity with its yeast counterpart, Vps34p. TcVps34 specifically phosphorylates phosphatidylinositol to produce phosphatidylinositol 3-phosphate, thus confirming that it belongs to class III PI3K family. Overexpression of TcVps34 resulted in morphological and functional alterations related to vesicular trafficking. Although inhibition of TcVps34 with specific PI3K inhibitors, such as wortmannin and LY294,000, resulted in reduced regulatory volume decrease after hyposmotic stress, cells overexpressing this enzyme were resistant to these inhibitors. Furthermore, these cells were able to recover their original volume faster than wild type cells when they were submitted to severe hyposmotic stress. In addition, in TcVps34-overexpressing cells, the activities of vacuolar-H+-ATPase and vacuolar H+-pyrophosphatase were altered, suggesting defects in the acidification of intracellular compartments. Furthermore, receptor-mediated endocytosis was partially blocked although fluid phase endocytosis was not affected, confirming a function for TcVps34 in membrane trafficking. Taken together, these results strongly support that TcVps34 plays a prominent role in vital processes for T. cruzi survival such as osmoregulation, acidification, and vesicular trafficking. PMID:18801733

  4. Ca2+ Influx through Store-operated Calcium Channels Replenishes the Functional Phosphatidylinositol 4,5-Bisphosphate Pool Used by Cysteinyl Leukotriene Type I Receptors*

    PubMed Central

    Alswied, Abdullah; Parekh, Anant B.

    2015-01-01

    Oscillations in cytoplasmic Ca2+ concentration are a universal mode of signaling following physiological levels of stimulation with agonists that engage the phospholipase C pathway. Sustained cytoplasmic Ca2+ oscillations require replenishment of the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2), the source of the Ca2+-releasing second messenger inositol trisphosphate. Here we show that cytoplasmic Ca2+ oscillations induced by cysteinyl leukotriene type I receptor activation run down when cells are pretreated with Li+, an inhibitor of inositol monophosphatases that prevents PIP2 resynthesis. In Li+-treated cells, cytoplasmic Ca2+ signals evoked by an agonist were rescued by addition of exogenous inositol or phosphatidylinositol 4-phosphate (PI4P). Knockdown of the phosphatidylinositol 4-phosphate 5 (PIP5) kinases α and γ resulted in rapid loss of the intracellular Ca2+ oscillations and also prevented rescue by PI4P. Knockdown of talin1, a protein that helps regulate PIP5 kinases, accelerated rundown of cytoplasmic Ca2+ oscillations, and these could not be rescued by inositol or PI4P. In Li+-treated cells, recovery of the cytoplasmic Ca2+ oscillations in the presence of inositol or PI4P was suppressed when Ca2+ influx through store-operated Ca2+ channels was inhibited. After rundown of the Ca2+ signals following leukotriene receptor activation, stimulation of P2Y receptors evoked prominent inositol trisphosphate-dependent Ca2+ release. Therefore, leukotriene and P2Y receptors utilize distinct membrane PIP2 pools. Our findings show that store-operated Ca2+ entry is needed to sustain cytoplasmic Ca2+ signaling following leukotriene receptor activation both by refilling the Ca2+ stores and by helping to replenish the PIP2 pool accessible to leukotriene receptors, ostensibly through control of PIP5 kinase activity. PMID:26468289

  5. Ca2+ Influx through Store-operated Calcium Channels Replenishes the Functional Phosphatidylinositol 4,5-Bisphosphate Pool Used by Cysteinyl Leukotriene Type I Receptors.

    PubMed

    Alswied, Abdullah; Parekh, Anant B

    2015-12-01

    Oscillations in cytoplasmic Ca(2+) concentration are a universal mode of signaling following physiological levels of stimulation with agonists that engage the phospholipase C pathway. Sustained cytoplasmic Ca(2+) oscillations require replenishment of the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2), the source of the Ca(2+)-releasing second messenger inositol trisphosphate. Here we show that cytoplasmic Ca(2+) oscillations induced by cysteinyl leukotriene type I receptor activation run down when cells are pretreated with Li(+), an inhibitor of inositol monophosphatases that prevents PIP2 resynthesis. In Li(+)-treated cells, cytoplasmic Ca(2+) signals evoked by an agonist were rescued by addition of exogenous inositol or phosphatidylinositol 4-phosphate (PI4P). Knockdown of the phosphatidylinositol 4-phosphate 5 (PIP5) kinases α and γ resulted in rapid loss of the intracellular Ca(2+) oscillations and also prevented rescue by PI4P. Knockdown of talin1, a protein that helps regulate PIP5 kinases, accelerated rundown of cytoplasmic Ca(2+) oscillations, and these could not be rescued by inositol or PI4P. In Li(+)-treated cells, recovery of the cytoplasmic Ca(2+) oscillations in the presence of inositol or PI4P was suppressed when Ca(2+) influx through store-operated Ca(2+) channels was inhibited. After rundown of the Ca(2+) signals following leukotriene receptor activation, stimulation of P2Y receptors evoked prominent inositol trisphosphate-dependent Ca(2+) release. Therefore, leukotriene and P2Y receptors utilize distinct membrane PIP2 pools. Our findings show that store-operated Ca(2+) entry is needed to sustain cytoplasmic Ca(2+) signaling following leukotriene receptor activation both by refilling the Ca(2+) stores and by helping to replenish the PIP2 pool accessible to leukotriene receptors, ostensibly through control of PIP5 kinase activity. PMID:26468289

  6. The costs of nurse turnover: part 1: an economic perspective.

    PubMed

    Jones, Cheryl Bland

    2004-12-01

    Nurse turnover is costly for healthcare organizations. Administrators and nurse executives need a reliable estimate of nurse turnover costs and the origins of those costs if they are to develop effective measures of reducing nurse turnover and its costs. However, determining how to best capture and quantify nurse turnover costs can be challenging. Part 1 of this series conceptualizes nurse turnover via human capital theory and presents an update of a previously developed method for determining the costs of nurse turnover, the Nursing Turnover Cost Calculation Method. Part 2 (January 2005) presents a recent application of the methodology in an acute care hospital. PMID:15632752

  7. Asymmetric distribution of the phosphatidylinositol-linked phospho-oligosaccharide that mimics insulin action in the plasma membrane.

    PubMed

    Varela, I; Alvarez, J F; Clemente, R; Ruiz-Albusac, J M; Mato, J M

    1990-03-10

    We have investigated the topography of a glycosyl-phosphatidylinositol implicated in insulin action by a combination of two complementary methods: (a) chemical labelling with a non-permeable (isethionyl acetimidate) and a permeable (ethyl acetimidate) probe; and (b) enzymatic modifications with beta-galactosidase (EC 3.2.1.23) or phosphatidylinositol-specific phospholipase C (EC 3.1.4.3). Using the first approach the majority of the glycosyl-phosphatidylinositol is found in the outer surface of intact hepatocytes, adipocytes, fibroblasts and lymphocytes, but not in erythrocytes which presented only a 20% of the total labelled glycosyl-phosphatidylinositol to the exterior. Upon insulin addition (10 nM), about 60% of the total glycosyl-phosphatidylinositol was hydrolysed in both hepatocytes and adipocytes but not in erythrocytes. In agreement with the extracellular localization in hepatocytes and with the proposed role of this glycolipid in insulin action, treatment of rat hepatocytes with beta-galactosidase from Escherichia coli, an enzyme that hydrolyses the oligosaccharide moiety of the glycosyl-phosphatidylinositol, cleaved 65% of the total glycophospholipid and blocked the effect of insulin (but not of glucagon) on pyruvate kinase (EC 2.7.1.40). Similar treatment with phosphatidylinositol-specific phospholipase C from Bacillus cereus hydrolysed 62% of the total glycosyl-phosphatidylinositol. From the various approaches used it is concluded that the majority of this glycophospholipid is at the outer surface in a variety of insulin-sensitive cells. PMID:2138537

  8. Addressing employee turnover and retention: keeping your valued performers.

    PubMed

    McConnell, Charles R

    2011-01-01

    Employee turnover and employee retention are inextricably linked; to control turnover is to enhance retention. Turnover is a relatively simple concept; however, considerable confusion often results when addressing turnover because of differences in how it is defined; that is, what is counted, how it is counted, and how the turnover rates are expressed. Turnover is also costly, although not enough attention is paid to its cost because so much of it is indirect and thus not readily visible. There are a variety of causes of turnover, some that can be corrected and some that cannot be avoided. Reducing or otherwise controlling turnover requires continuing management attention to its causes and constant recognition of what can and should be controlled and what cannot be controlled. Ongoing attention to turnover is an essential part of the department manager's role; every improvement in turnover is a direct improvement in retention, with eventual positive effects on the bottom line. PMID:21808181

  9. Predictors of Staff Turnover and Turnover Intentions within Addiction Treatment Settings: Change Over Time Matters

    PubMed Central

    Garner, Bryan R; Hunter, Brooke D

    2014-01-01

    This study examined the extent to which changes over time in clinicians’ responses to measures of work attitude (eg, job satisfaction) and psychological climate (eg, supervisor support) could predict actual turnover and turnover intentions above and beyond absolute levels of these respective measures. Longitudinal data for this study were collected from a sample of clinicians (N = 96) being trained to implement an evidence-based treatment for adolescent substance use disorders. Supporting findings from a recent staff turnover study, we found job satisfaction change was able to predict actual turnover above and beyond average levels of job satisfaction. Representing new contributions to the staff turnover literature, we also found that change over time in several other key measures (eg, job satisfaction, role manageability, role clarity) explained a significant amount of variance in turnover intentions above and beyond the absolute level of each respective measure. A key implication of the current study is that organizations seeking to improve their ability to assess risk for staff turnover may want to consider assessing staff at multiple points in time in order to identify systematic changes in key employee attitudes like turnover intentions and job satisfaction. PMID:25336960

  10. Predictors of Staff Turnover and Turnover Intentions within Addiction Treatment Settings: Change Over Time Matters.

    PubMed

    Garner, Bryan R; Hunter, Brooke D

    2014-01-01

    This study examined the extent to which changes over time in clinicians' responses to measures of work attitude (eg, job satisfaction) and psychological climate (eg, supervisor support) could predict actual turnover and turnover intentions above and beyond absolute levels of these respective measures. Longitudinal data for this study were collected from a sample of clinicians (N = 96) being trained to implement an evidence-based treatment for adolescent substance use disorders. Supporting findings from a recent staff turnover study, we found job satisfaction change was able to predict actual turnover above and beyond average levels of job satisfaction. Representing new contributions to the staff turnover literature, we also found that change over time in several other key measures (eg, job satisfaction, role manageability, role clarity) explained a significant amount of variance in turnover intentions above and beyond the absolute level of each respective measure. A key implication of the current study is that organizations seeking to improve their ability to assess risk for staff turnover may want to consider assessing staff at multiple points in time in order to identify systematic changes in key employee attitudes like turnover intentions and job satisfaction. PMID:25336960

  11. Binding of receptor-recognized forms of alpha2-macroglobulin to the alpha2-macroglobulin signaling receptor activates phosphatidylinositol 3-kinase.

    PubMed

    Misra, U K; Pizzo, S V

    1998-05-29

    Ligation of the alpha2-macroglobulin (alpha2M) signaling receptor by receptor-recognized forms of alpha2M (alpha2M*) initiates mitogenesis secondary to increased intracellular Ca2+. We report here that ligation of the alpha2M signaling receptor also causes a 1. 5-2.5-fold increase in wortmannin-sensitive phosphatidylinositol 3-kinase (PI3K) activity as measured by the quantitation of phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 formation was alpha2M* concentration-dependent with a maximal response at approximately 50 pM ligand concentration. The peak formation of PIP3 occurred at 10 min of incubation. The alpha2M receptor binding fragment mutant K1370R which binds to the alpha2M signaling receptor activating the signaling cascade, increased PIP3 formation by 2-fold. The mutant K1374A, which binds very poorly to the alpha2M signaling receptor, did not cause any increase in PIP3 formation. alpha2M*-induced DNA synthesis was inhibited by wortmannin. 1, 2Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acetoxymethylester a chelator of intracellular Ca2+, drastically reduced alpha2M*-induced increases in PIP3 formation. We conclude that PI3K is involved in alpha2M*-induced mitogenesis in macrophages and intracellular Ca2+ plays a role in PI3K activation. PMID:9593670

  12. Type I phosphatidylinositol 4-phosphate 5-kinase homo- and heterodimerization determines its membrane localization and activity.

    PubMed

    Lacalle, Rosa Ana; de Karam, Juan C; Martínez-Muñoz, Laura; Artetxe, Ibai; Peregil, Rosa M; Sot, Jesús; Rojas, Ana M; Goñi, Félix M; Mellado, Mario; Mañes, Santos

    2015-06-01

    Type I phosphatidylinositol 4-phosphate 5-kinases (PIP5KIs; α, β, and γ) are a family of isoenzymes that produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] using phosphatidylinositol 4-phosphate as substrate. Their structural homology with the class II lipid kinases [type II phosphatidylinositol 5-phosphate 4-kinase (PIP4KII)] suggests that PIP5KI dimerizes, although this has not been formally demonstrated. Neither the hypothetical structural dimerization determinants nor the functional consequences of dimerization have been studied. Here, we used Förster resonance energy transfer, coprecipitation, and ELISA to show that PIP5KIβ forms homo- and heterodimers with PIP5KIγ_i2 in vitro and in live human cells. Dimerization appears to be a general phenomenon for PIP5KI isoenzymes because PIP5KIβ/PIP5KIα heterodimers were also detected by mass spectrometry. Dimerization was independent of actin cytoskeleton remodeling and was also observed using purified proteins. Mutagenesis studies of PIP5KIβ located the dimerization motif at the N terminus, in a region homologous to that implicated in PIP4KII dimerization. PIP5KIβ mutants whose dimerization was impaired showed a severe decrease in PI(4,5)P2 production and plasma membrane delocalization, although their association to lipid monolayers was unaltered. Our results identify dimerization as an integral feature of PIP5K proteins and a central determinant of their enzyme activity. PMID:25713054

  13. Osteopontin stimulates gelsolin-associated phosphoinositide levels and phosphatidylinositol triphosphate-hydroxyl kinase.

    PubMed Central

    Chellaiah, M; Hruska, K

    1996-01-01

    Based on previous studies demonstrating activation of phosphatidylinositol 3-hydroxyl kinase (PI3-kinase) and stimulation of a change in cell shape, we examined the effect of osteopontin on the association of phospholipids with gelsolin, an actin-capping/severing protein. Osteopontin stimulated a rapid increase in phosphatidylinositol bisphosphate and phosphatidylinositol triphosphate levels associated with gelsolin in Triton-soluble fractions of cell lysates. The increased levels of phosphatidylinositol triphosphate associated with gelsolin were due to stimulation of PI3-kinase activity associated with gelsolin in the Triton-soluble fractions, and they were blocked by the PI3-kinase inhibitor wortmannin. Osteopontin stimulated translocation of PI3-kinase from the Triton-insoluble to Triton-soluble gelsolin. Osteopontin also decreased Triton-soluble gelsolin/actin complexes consistent with actin uncapping, and increased F-actin levels, which were also blocked by wortmannin. The osteopontin effects were mediated through binding to the alpha(v)beta 3 integrin. Taken together, our studies indicate that osteopontin/alpha(v)beta 3-mediated changes in gelsolin-associated phosphoinositide levels and PI3-kinase activity are related to stimulation of F-actin formation in osteoclasts. Images PMID:8744948

  14. Phosphatidylinositol-4-phosphate 5-Kinase Isoforms Exhibit Acyl Chain Selectivity for Both Substrate and Lipid Activator*

    PubMed Central

    Shulga, Yulia V.; Anderson, Richard A.; Topham, Matthew K.; Epand, Richard M.

    2012-01-01

    Phosphatidylinositol 4,5-bisphosphate is mostly produced in the cell by phosphatidylinositol-4-phosphate 5-kinases (PIP5K) and has a crucial role in numerous signaling events. Here we demonstrate that in vitro all three isoforms of PIP5K, α, β, and γ, discriminate among substrates with different acyl chains for both the substrates phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol (PtdIns) although to different extents, with isoform γ being the most selective. Fully saturated dipalmitoyl-PtdIns4P was a poor substrate for all three isoforms, but both the 1-stearoyl-2-arachidonoyl and the 1-stearoyl-2-oleoyl forms of PtdIns4P were good substrates. Vmax was greater for the 1-stearoyl-2-arachidonoyl form compared with the 1-stearoyl-2-oleoyl form, although for PIP5Kβ the difference was small. For the α and γ isoforms, Km was much lower for 1-stearoyl-2-oleoyl PtdIns4P, making this lipid the better substrate of the two under most conditions. Activation of PIP5K by phosphatidic acid is also acyl chain-dependent. Species of phosphatidic acid with two unsaturated acyl chains are much better activators of PIP5K than those containing one saturated and one unsaturated acyl chain. PtdIns is a poor substrate for PIP5K, but it also shows acyl chain selectivity. Curiously, there is no acyl chain discrimination among species of phosphatidic acid in the activation of the phosphorylation of PtdIns. Together, our findings indicate that PIP5K isoforms α, β, and γ act selectively on substrates and activators with different acyl chains. This could be a tightly regulated mechanism of producing physiologically active unsaturated phosphatidylinositol 4,5-bisphosphate species in the cell. PMID:22942276

  15. Roles of the ITAM and PY motifs of Epstein-Barr virus latent membrane protein 2A in the inhibition of epithelial cell differentiation and activation of {beta}-catenin signaling.

    PubMed

    Morrison, Jennifer A; Raab-Traub, Nancy

    2005-02-01

    Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is important for maintenance of latency in infected B lymphocytes. Through its immunoreceptor tyrosine-based activation motif (ITAM) and PY motifs, LMP2A is able to block B-cell receptor (BCR) signaling, bind BCR-associated kinases, and manipulate the turnover of itself and these kinases via a PY-mediated interaction with the Nedd4 family of ubiquitin ligases. In epithelial cells, LMP2A has been shown to activate the phosphatidylinositol 3'-OH kinase/Akt and beta-catenin signaling pathways. In the present study, the biological consequences of LMP2A expression in the normal human foreskin keratinocyte (HFK) cell line were investigated and the importance of the ITAM and PY motifs for LMP2A signaling effects in HFK cells was ascertained. The ITAM was essential for the activation of Akt by LMP2A in HFK cells, while both the ITAM and PY motifs contributed to LMP2A-mediated accumulation and nuclear translocation of the oncoprotein beta-catenin. LMP2A inhibited induction of differentiation in an assay conducted with semisolid methylcellulose medium, and the PY motifs were critical for this inhibition. LMP2A is expressed in the EBV-associated epithelial malignancies nasopharyngeal carcinoma and gastric carcinoma, and these data indicate that LMP2A affects cellular processes that likely contribute to carcinogenesis. PMID:15681438

  16. The effector domain of myristoylated alanine-rich C kinase substrate binds strongly to phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Wang, J; Arbuzova, A; Hangyás-Mihályné, G; McLaughlin, S

    2001-02-16

    Both the myristoylated alanine-rich protein kinase C substrate protein (MARCKS) and a peptide corresponding to its basic effector domain, MARCKS-(151-175), inhibit phosphoinositide-specific phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP(2)) in vesicles (Glaser, M., Wanaski, S., Buser, C. A., Boguslavsky, V., Rashidzada, W., Morris, A., Rebecchi, M., Scarlata, S. F., Runnels, L. W., Prestwich, G. D., Chen, J., Aderem, A., Ahn, J., and McLaughlin, S. (1996) J. Biol. Chem. 271, 26187-26193). We report here that adding 10-100 nm MARCKS-(151-175) to a subphase containing either PLC-delta or -beta inhibits hydrolysis of PIP(2) in a monolayer and that this inhibition is due to the strong binding of the peptide to PIP(2). Two direct binding measurements, based on centrifugation and fluorescence, show that approximately 10 nm PIP(2), in the form of vesicles containing 0.01%, 0.1%, or 1% PIP(2), binds 50% of MARCKS-(151-175). Both electrophoretic mobility measurements and competition experiments suggest that MARCKS-(151-175) forms an electroneutral complex with approximately 4 PIP(2). MARCKS-(151-175) binds equally well to PI(4,5)P(2) and PI(3,4)P(2). Local electrostatic interactions of PIP(2) with MARCKS-(151-175) contribute to the binding energy because increasing the salt concentration from 100 to 500 mm decreases the binding 100-fold. We hypothesize that the effector domain of MARCKS can bind a significant fraction of the PIP(2) in the plasma membrane, and release the bound PIP(2) upon interaction with Ca(2+)/calmodulin or phosphorylation by protein kinase C. PMID:11053422

  17. Ras, Rac1, and phosphatidylinositol-3-kinase (PI3K) signaling in nitric oxide induced endothelial cell migration.

    PubMed

    Eller-Borges, Roberta; Batista, Wagner L; da Costa, Paulo E; Tokikawa, Rita; Curcio, Marli F; Strumillo, Scheilla T; Sartori, Adriano; Moraes, Miriam S; de Oliveira, Graciele A; Taha, Murched O; Fonseca, Fábio V; Stern, Arnold; Monteiro, Hugo P

    2015-05-01

    The small GTP-binding proteins Ras and Rac1 are molecular switches exchanging GDP for GTP and converting external signals in response to a variety of stimuli. Ras and Rac1 play an important role in cell proliferation, cell differentiation, and cell migration. Rac1 is directly involved in the reorganization and changes in the cytoskeleton during cell motility. Nitric oxide (NO) stimulates the Ras - ERK1/2 MAP kinases signaling pathway and is involved in the interaction between Ras and the phosphatidyl-inositol-3 Kinase (PI3K) signaling pathway and cell migration. This study utilizes bradykinin (BK), which promotes endogenous production of NO, in an investigation of the role of NO in the activation of Rac1 in rabbit aortic endothelial cells (RAEC). NO-derived from BK stimulation of RAEC and incubation of the cells with the s-nitrosothiol S-nitrosoglutathione (GSNO) activated Rac1. NO-derived from BK stimulation promoted RAEC migration over a period of 12 h. The use of RAEC permanently transfected with the dominant negative mutant of Ras (Ras(N17)) or with the non-nitrosatable mutant of Ras (Ras(C118S)); and the use of specific inhibitors of: Ras, PI3K, and Rac1 resulted in inhibition of NO-mediated Rac1 activation. BK-stimulated s-nitrosylation of Ras in RAEC mediates Rac1 activation and cell migration. Inhibition of NO-mediated Rac1 activation resulted in inhibition of endothelial cell migration. In conclusion, the NO indirect activation of Rac1 involves the direct participation of Ras and PI3K in the migration of endothelial cells stimulated with BK. PMID:25819133

  18. Leptin induces macrophage lipid body formation by a phosphatidylinositol 3-kinase- and mammalian target of rapamycin-dependent mechanism.

    PubMed

    Maya-Monteiro, Clarissa M; Almeida, Patricia E; D'Avila, Heloisa; Martins, Aline S; Rezende, Ana Paula; Castro-Faria-Neto, Hugo; Bozza, Patricia T

    2008-01-25

    Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Lipid bodies (lipid droplets) are emerging as dynamic organelles with roles in lipid metabolism and inflammation. Here we investigated the roles of leptin in signaling pathways involved in cytoplasmic lipid body biogenesis and leukotriene B(4) synthesis in macrophages. Our results demonstrated that leptin directly activated macrophages and induced the formation of adipose differentiation-related protein-enriched lipid bodies. Newly formed lipid bodies were sites of 5-lipoxygenase localization and correlated with an enhanced capacity of leukotriene B(4) production. We demonstrated that leptin-induced macrophage activation was dependent on phosphatidylinositol 3-kinase (PI3K) activity, since the lipid body formation was inhibited by LY294002 and was absent in the PI3K knock-out mice. Leptin induces phosphorylation of p70(S6K) and 4EBP1 key downstream signaling intermediates of the mammalian target of rapamycin (mTOR) pathway in a rapamycin-sensitive mechanism. The mTOR inhibitor, rapamycin, inhibited leptin-induced lipid body formation, both in vivo and in vitro. In addition, rapamycin inhibited leptin-induced adipose differentiation-related protein accumulation in macrophages and lipid body-dependent leukotriene synthesis, demonstrating a key role for mTOR in lipid body biogenesis and function. Our results establish PI3K/mTOR as an important signaling pathway for leptin-induced cytoplasmic lipid body biogenesis and adipose differentiation-related protein accumulation. Furthermore, we demonstrate a previously unrecognized link between intracellular (mTOR) and systemic (leptin) nutrient sensors in macrophage lipid metabolism. Leptin-induced increased formation of cytoplasmic lipid bodies and enhanced inflammatory mediator production in macrophages may have implications for obesity-related cardiovascular diseases. PMID:18039669

  19. Quantification of isotopic turnover in agricultural systems

    NASA Astrophysics Data System (ADS)

    Braun, A.; Auerswald, K.; Schnyder, H.

    2012-04-01

    The isotopic turnover, which is a proxy for the metabolic rate, is gaining scientific importance. It is quantified for an increasing range of organisms, from microorganisms over plants to animals including agricultural livestock. Additionally, the isotopic turnover is analyzed on different scales, from organs to organisms to ecosystems and even to the biosphere. In particular, the quantification of the isotopic turnover of specific tissues within the same organism, e.g. organs like liver and muscle and products like milk and faeces, has brought new insights to improve understanding of nutrient cycles and fluxes, respectively. Thus, the knowledge of isotopic turnover is important in many areas, including physiology, e.g. milk synthesis, ecology, e.g. soil retention time of water, and medical science, e.g. cancer diagnosis. So far, the isotopic turnover is quantified by applying time, cost and expertise intensive tracer experiments. Usually, this comprises two isotopic equilibration periods. A first equilibration period with a constant isotopic input signal is followed by a second equilibration period with a distinct constant isotopic input signal. This yields a smooth signal change from the first to the second signal in the object under consideration. This approach reveals at least three major problems. (i) The input signals must be controlled isotopically, which is almost impossible in many realistic cases like free ranging animals. (ii) Both equilibration periods may be very long, especially when the turnover rate of the object under consideration is very slow, which aggravates the first problem. (iii) The detection of small or slow pools is improved by large isotopic signal changes, but large isotopic changes also involve a considerable change in the input material; e.g. animal studies are usually carried out as diet-switch experiments, where the diet is switched between C3 and C4 plants, since C3 and C4 plants differ strongly in their isotopic signal. The

  20. Uncoupling binding of substrate CO from turnover by vanadium nitrogenase

    PubMed Central

    Lee, Chi Chung; Fay, Aaron W.; Weng, Tsu-Chien; Krest, Courtney M.; Hedman, Britt; Hodgson, Keith O.; Hu, Yilin; Ribbe, Markus W.

    2015-01-01

    Biocatalysis by nitrogenase, particularly the reduction of N2 and CO by this enzyme, has tremendous significance in environment- and energy-related areas. Elucidation of the detailed mechanism of nitrogenase has been hampered by the inability to trap substrates or intermediates in a well-defined state. Here, we report the capture of substrate CO on the resting-state vanadium-nitrogenase in a catalytically competent conformation. The close resemblance of this active CO-bound conformation to the recently described structure of CO-inhibited molybdenum-nitrogenase points to the mechanistic relevance of sulfur displacement to the activation of iron sites in the cofactor for CO binding. Moreover, the ability of vanadium-nitrogenase to bind substrate in the resting-state uncouples substrate binding from subsequent turnover, providing a platform for generation of defined intermediate(s) of both CO and N2 reduction. PMID:26515097

  1. Mitochondrial protein turnover: methods to measure turnover rates on a large scale

    PubMed Central

    Chan, X’avia CY; Black, Caitlin M; Lin, Amanda J; Ping, Peipei; Lau, Edward

    2016-01-01

    Mitochondrial proteins carry out diverse cellular functions including ATP synthesis, ion homeostasis, cell death signaling, and fatty acid metabolism and biogenesis. Compromised mitochondrial quality control is implicated in various human disorders including cardiac diseases. Recently it has emerged that mitochondrial protein turnover can serve as an informative cellular parameter to characterize mitochondrial quality and uncover disease mechanisms. The turnover rate of a mitochondrial protein reflects its homeostasis and dynamics under the quality control systems acting on mitochondria at a particular cell state. This review article summarizes some recent advances and outstanding challenges for measuring the turnover rates of mitochondrial proteins in health and disease. PMID:25451168

  2. Stimulation of CD28 triggers an association between CD28 and phosphatidylinositol 3-kinase in Jurkat T cells.

    PubMed

    Truitt, K E; Hicks, C M; Imboden, J B

    1994-03-01

    The T cell surface molecule CD28 can provide costimulatory signals that permit the full activation of T cells. Here we demonstrate that stimulation of CD28, either by B7, its natural ligand, or by the anti-CD28 monoclonal antibody 9.3, induces an association between CD28 and phosphatidylinositol 3-kinase (PI3-K) in Jurkat T cells, raising the possibility that an interaction with PI3-K contributes to CD28-mediated signaling. To examine the mechanism of the association, we synthesized tyrosine-phosphorylated oligopeptides corresponding to each of the four tyrosines in the CD28 cytoplasmic domain. When added to lysates of B7-stimulated Jurkat cells, the oligopeptide corresponding to Tyr 173 inhibits the coimmunoprecipitation of PI3-K with CD28; the other oligopeptides have no effect. Tyr 173 is contained within the sequence YMNM, a motif that is also found in the platelet-derived growth factor receptor and that, when phosphorylated, forms a high affinity binding site for the p85 subunit of PI3-K. These observations suggest that phosphorylation of Tyr 173 may mediate the interaction between CD28 and PI3-K. However, because CD28 is not known to be phosphorylated, it remains possible that CD28 interacts with PI3-K through a mechanism independent of tyrosine phosphorylation. PMID:7509360

  3. Nitroglycerin drives endothelial nitric oxide synthase activation via the phosphatidylinositol 3-kinase/protein kinase B pathway.

    PubMed

    Mao, Mao; Sudhahar, Varadarajan; Ansenberger-Fricano, Kristine; Fernandes, Denise C; Tanaka, Leonardo Y; Fukai, Tohru; Laurindo, Francisco R M; Mason, Ronald P; Vasquez-Vivar, Jeannette; Minshall, Richard D; Stadler, Krisztian; Bonini, Marcelo G

    2012-01-15

    Nitroglycerin (GTN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GTN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GTN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1-50nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP(3), probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GTN pharmacological action at pharmacologically relevant doses. PMID:22037515

  4. BKM-120 (Buparlisib): A Phosphatidyl-Inositol-3 Kinase Inhibitor with Anti-Invasive Properties in Glioblastoma.

    PubMed

    Speranza, Maria-Carmela; Nowicki, Michal O; Behera, Prajna; Cho, Choi-Fong; Chiocca, E Antonio; Lawler, Sean E

    2016-01-01

    Glioblastoma is an aggressive, invasive tumor of the central nervous system (CNS). There is a widely acknowledged need for anti-invasive therapeutics to limit glioblastoma invasion. BKM-120 is a CNS-penetrant pan-class I phosphatidyl-inositol-3 kinase (PI3K) inhibitor in clinical trials for solid tumors, including glioblastoma. We observed that BKM-120 has potent anti-invasive effects in glioblastoma cell lines and patient-derived glioma cells in vitro. These anti-migratory effects were clearly distinguishable from cytostatic and cytotoxic effects at higher drug concentrations and longer durations of drug exposure. The effects were reversible and accompanied by changes in cell morphology and pronounced reduction in both cell/cell and cell/substrate adhesion. In vivo studies showed that a short period of treatment with BKM-120 slowed tumor spread in an intracranial xenografts. GDC-0941, a similar potent and selective PI3K inhibitor, only caused a moderate reduction in glioblastoma cell migration. The effects of BKM-120 and GDC-0941 were indistinguishable by in vitro kinase selectivity screening and phospho-protein arrays. BKM-120 reduced the numbers of focal adhesions and the velocity of microtubule treadmilling compared with GDC-0941, suggesting that mechanisms in addition to PI3K inhibition contribute to the anti-invasive effects of BKM-120. Our data suggest the CNS-penetrant PI3K inhibitor BKM-120 may have anti-invasive properties in glioblastoma. PMID:26846842

  5. MEF2 Is a Converging Hub for Histone Deacetylase 4 and Phosphatidylinositol 3-Kinase/Akt-Induced Transformation

    PubMed Central

    Di Giorgio, Eros; Clocchiatti, Andrea; Piccinin, Sara; Sgorbissa, Andrea; Viviani, Giulia; Peruzzo, Paolo; Romeo, Salvatore; Rossi, Sabrina; Dei Tos, Angelo Paolo; Maestro, Roberta

    2013-01-01

    The MEF2-class IIa histone deacetylase (HDAC) axis operates in several differentiation pathways and in numerous adaptive responses. We show here that nuclear active HDAC4 and HDAC7 display transforming capability. HDAC4 oncogenic potential depends on the repression of a limited set of genes, most of which are MEF2 targets. Genes verified as targets of the MEF2-HDAC axis are also under the influence of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway that affects MEF2 protein stability. A signature of MEF2 target genes identified by this study is recurrently repressed in soft tissue sarcomas. Correlation studies depicted two distinct groups of soft tissue sarcomas: one in which MEF2 repression correlates with PTEN downregulation and a second group in which MEF2 repression correlates with HDAC4 levels. Finally, simultaneous pharmacological inhibition of the PI3K/Akt pathway and of MEF2-HDAC interaction shows additive effects on the transcription of MEF2 target genes and on sarcoma cells proliferation. Overall, our work pinpoints an important role of the MEF2-HDAC class IIa axis in tumorigenesis. PMID:24043307

  6. Nitroglycerin drives endothelial nitric oxide synthase activation via the phosphatidylinositol 3-kinase/protein kinase B pathway

    PubMed Central

    Mao, Mao; Sudhahar, Varadarajan; Ansenberger-Fricano, Kristine; Fernandes, Denise C.; Tanaka, Leonardo Y.; Fukai, Tohru; Laurindo, Francisco R.M.; Mason, Ronald P.; Vasquez-Vivar, Jeannette; Minshall, Richard D.; Stadler, Krisztian; Bonini, Marcelo G.

    2012-01-01

    Nitroglycerin (GTN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GTN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GTN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1–50 nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP3, probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GTN pharmacological action at pharmacologically relevant doses. PMID:22037515

  7. Nuclear and nucleolar localization signals and their targeting function in phosphatidylinositol 4-kinase PI4K230

    SciTech Connect

    Kakuk, Annamaria; Friedlaender, Elza; Vereb, Gyoergy; Lisboa, Duarte; Bagossi, Peter; Toth, Gabor; Gergely, Pal; Vereb, Gyoergy

    2008-08-01

    PI4K230, an isoform of phosphatidylinositol 4-kinase, known primarily as a cytoplasmic membrane-bound enzyme, was detected recently also in the nucleolus of several cells. Here we provide mechanistic insight on the targeting function of its putative nuclear localization signal (NLS) sequences using molecular modeling, digitonin-permeabilized HeLa cells and binding to various importins. The synthetic sequence {sup 916}NFNHIHKRIRRVADKYLSG{sup 934} comprising a putative monopartite NLS (NLS1), targeted covalently bound fluorescent BSA to the nucleoplasm via classical importin {alpha}/{beta} mechanism employing importins {alpha}1 and {alpha}3 but not {alpha}5. This transport was inhibited by wheat germ agglutinin and GTP{gamma}S. The sequence {sup 1414}SKKTNRGSQLHKYYMKRRTL{sup 1433}, a putative bipartite NLS (NLS2) proved ineffective in nuclear targeting if conjugated to fluorescently labeled BSA. Nonetheless, NLS2 or either of its basic clusters directed to the nucleolus soybean trypsin inhibitor that can pass the nuclear pore complex passively; moreover, an expressed 58 kDa fragment of PI4K230 (AA1166-1667) comprising NLS2 was also imported into the nucleus by import factors of reticulocyte lysate or by importin {alpha}1/{beta} or {alpha}3/{beta} complexes and localized to the nucleolus. We conclude that the putative bipartite NLS itself is a nucleolar targeting signal, and for nuclear import PI4K230 requires a larger sequence around it or, alternatively, the monopartite NLS.

  8. Avian reovirus σA and σNS proteins activate the phosphatidylinositol 3-kinase-dependent Akt signalling pathway.

    PubMed

    Xie, Liji; Xie, Zhixun; Huang, Li; Fan, Qing; Luo, Sisi; Huang, Jiaoling; Deng, Xianwen; Xie, Zhiqin; Zeng, Tingting; Zhang, Yanfang; Wang, Sheng

    2016-08-01

    The present study was conducted to identify avian reovirus (ARV) proteins that can activate the phosphatidylinositol 3-kinase (PI3K)-dependent Akt pathway. Based on ARV protein amino acid sequence analysis, σA, σNS, μA, μB and μNS were identified as putative proteins capable of mediating PI3K/Akt pathway activation. The recombinant plasmids σA-pcAGEN, σNS-pcAGEN, μA-pcAGEN, μB-pcAGEN and μNS-pcAGEN were constructed and used to transfect Vero cells, and the expression levels of the corresponding genes were quantified by immunofluorescence and Western blot analysis. Phosphorylated Akt (P-Akt) levels in the transfected cells were measured by flow cytometry and Western blot analysis. The results showed that the σA, σNS, μA, μB and μNS genes were expressed in Vero cells. σA-expressing and σNS-expressing cells had higher P-Akt levels than negative control cells, pcAGEN-expressing cells and cells designed to express other proteins (i.e., μA, μB and μNS). Pre-treatment with the PI3K inhibitor LY294002 inhibited Akt phosphorylation in σA- and σNS-expressing cells. These results indicate that the σA and σNS proteins can activate the PI3K/Akt pathway. PMID:27233800

  9. Icaritin requires Phosphatidylinositol 3 kinase (PI3K)/Akt signaling to counteract skeletal muscle atrophy following mechanical unloading

    PubMed Central

    ZHANG, Zong-Kang; LI, Jie; LIU, Jin; GUO, Baosheng; LEUNG, Albert; ZHANG, Ge; ZHANG, Bao-Ting

    2016-01-01

    Counteracting muscle atrophy induced by mechanical unloading/inactivity is of great clinical need and challenge. A therapeutic agent that could counteract muscle atrophy following mechanical unloading in safety is desired. This study showed that natural product Icaritin (ICT) could increase the phosphorylation level of Phosphatidylinositol 3 kinase (PI3K) at p110 catalytic subunit and promote PI3K/Akt signaling markers in C2C12 cells. This study further showed that the high dose ICT treatment could significantly attenuate the decreases in the phosphorylation level of PI3K at p110 catalytic subunit and its downstream markers related to protein synthesis, and inhibit the increases in protein degradation markers at mRNA and protein levels in rat soleus muscle following 28-day hindlimb unloading. In addition, the decreases in soleus muscle mass, muscle fiber cross-sectional area, twitch force, specific force, contraction time and half relaxation time could be significantly attenuated by the high dose ICT treatment. The low dose ICT treatment could moderately attenuate the above changes induced by unloading. Wortmannin, a specific inhibitor of PI3K at p110 catalytic subunit, could abolish the above effects of ICT in vitro and in vivo, indicating that PI3K/Akt signaling could be required by ICT to counteract skeletal muscle atrophy following mechanical unloading. PMID:26831566

  10. Hepatitis C virus NS5A protein cooperates with phosphatidylinositol 4-kinase IIIα to induce mitochondrial fragmentation

    PubMed Central

    Siu, Gavin Ka Yu; Zhou, Fan; Yu, Mei Kuen; Zhang, Leiliang; Wang, Tuanlao; Liang, Yongheng; Chen, Yangchao; Chan, Hsiao Chang; Yu, Sidney

    2016-01-01

    Hepatitis C virus (HCV) has long been observed to take advantage of the host mitochondria to support viral replication and assembly. The HCV core protein has been implicated to fragment host mitochondria. In this report, we have discovered that the non-structural protein 5A (NS5A) plays an instructive role in attaching ER with mitochondria, causing mitochondrial fragmentation. Dynamin-related protein 1(Drp1), a host protein essential to mitochondrial membrane fission, does not play a role in NS5A-induced mitochondrial fragmentation. Instead, phosphatidylinositol 4-kinase IIIα (PI4KA), which has been demonstrated to bind to NS5A and is required to support HCV life cycle, is required for NS5A to induce mitochondrial fragmentation. Both NS5A and core are required by HCV to fragment the mitochondria, as inhibiting either of their respective downstream proteins, PI4KA or Drp1, resulted in lengthening of mitochondria tubules in HCVcc-infected cells. By fragmenting the mitochondria, NS5A renders the cells more resistant to mitochondria mediated apoptosis. This finding indicates previously-ignored contribution of NS5A in HCV-induced mitochondria dysfunction. PMID:27010100

  11. Hepatitis C virus NS5A protein cooperates with phosphatidylinositol 4-kinase IIIα to induce mitochondrial fragmentation.

    PubMed

    Siu, Gavin Ka Yu; Zhou, Fan; Yu, Mei Kuen; Zhang, Leiliang; Wang, Tuanlao; Liang, Yongheng; Chen, Yangchao; Chan, Hsiao Chang; Yu, Sidney

    2016-01-01

    Hepatitis C virus (HCV) has long been observed to take advantage of the host mitochondria to support viral replication and assembly. The HCV core protein has been implicated to fragment host mitochondria. In this report, we have discovered that the non-structural protein 5A (NS5A) plays an instructive role in attaching ER with mitochondria, causing mitochondrial fragmentation. Dynamin-related protein 1(Drp1), a host protein essential to mitochondrial membrane fission, does not play a role in NS5A-induced mitochondrial fragmentation. Instead, phosphatidylinositol 4-kinase IIIα (PI4KA), which has been demonstrated to bind to NS5A and is required to support HCV life cycle, is required for NS5A to induce mitochondrial fragmentation. Both NS5A and core are required by HCV to fragment the mitochondria, as inhibiting either of their respective downstream proteins, PI4KA or Drp1, resulted in lengthening of mitochondria tubules in HCVcc-infected cells. By fragmenting the mitochondria, NS5A renders the cells more resistant to mitochondria mediated apoptosis. This finding indicates previously-ignored contribution of NS5A in HCV-induced mitochondria dysfunction. PMID:27010100

  12. BKM-120 (Buparlisib): A Phosphatidyl-Inositol-3 Kinase Inhibitor with Anti-Invasive Properties in Glioblastoma

    PubMed Central

    Speranza, Maria-Carmela; Nowicki, Michal O.; Behera, Prajna; Cho, Choi-Fong; Chiocca, E. Antonio; Lawler, Sean E.

    2016-01-01

    Glioblastoma is an aggressive, invasive tumor of the central nervous system (CNS). There is a widely acknowledged need for anti-invasive therapeutics to limit glioblastoma invasion. BKM-120 is a CNS-penetrant pan-class I phosphatidyl-inositol-3 kinase (PI3K) inhibitor in clinical trials for solid tumors, including glioblastoma. We observed that BKM-120 has potent anti-invasive effects in glioblastoma cell lines and patient-derived glioma cells in vitro. These anti-migratory effects were clearly distinguishable from cytostatic and cytotoxic effects at higher drug concentrations and longer durations of drug exposure. The effects were reversible and accompanied by changes in cell morphology and pronounced reduction in both cell/cell and cell/substrate adhesion. In vivo studies showed that a short period of treatment with BKM-120 slowed tumor spread in an intracranial xenografts. GDC-0941, a similar potent and selective PI3K inhibitor, only caused a moderate reduction in glioblastoma cell migration. The effects of BKM-120 and GDC-0941 were indistinguishable by in vitro kinase selectivity screening and phospho-protein arrays. BKM-120 reduced the numbers of focal adhesions and the velocity of microtubule treadmilling compared with GDC-0941, suggesting that mechanisms in addition to PI3K inhibition contribute to the anti-invasive effects of BKM-120. Our data suggest the CNS-penetrant PI3K inhibitor BKM-120 may have anti-invasive properties in glioblastoma. PMID:26846842

  13. A Turnover Model for the Mexican Maquiladoras.

    ERIC Educational Resources Information Center

    Maertz, Carl P.; Stevens, Michael J.; Campion, Michael A.

    2003-01-01

    From interviews with 47 Mexican maquiladora workers, a model of voluntary turnover was created and compared with models from the United States, Canada, England, and Australia. Despite similarities, the cultural and economic environment affected the precise content of antecedents in the Mexican model. (Contains 63 references.) (SK)

  14. Home Visitor Job Satisfaction and Turnover.

    ERIC Educational Resources Information Center

    Buchbinder, Sharon B.; Duggan, Anne K.; Young, Elizabeth; Fuddy, Loretta; Sia, Cal

    This paper summarizes findings of a 3-year study of the job satisfaction and turnover of home visitors, both professional and paraprofessional, in programs which link families-at-risk for impaired functioning to medical home care and other resources. Specifically, the study examined: (1) home visitor personal characteristics that influence…

  15. Job Turnover Intentions Among Pharmacy Faculty

    PubMed Central

    Conklin, Mark H.

    2007-01-01

    Objectives To determine the primary reasons why pharmacy faculty intend to remain or leave their current institution and why they left their most recent academic institution, and the relative contribution of various organizational and individual characteristics toward explaining variance in turnover intentions. Methods A survey instrument was e-mailed to pharmacy faculty members asking respondents to indicate up to 5 reasons for their intentions and up to 5 reasons why they left a previous institution. The survey also elicited perceptions on quality of work life in addition to demographic and institutional data, upon which turnover intentions were regressed using a forward-conditional procedure. Organizational commitment as a moderator of turnover intentions was regressed over the remaining variables not acting directly on employer intentions. Results Just over 1 in 5 respondents indicated intentions to leave their current academic institution. Excessive workload, seeking a new challenge, poor salary, and poor relationships with college or school administrators were frequently cited as reasons for leaving. Turnover intentions are influenced directly by department chair support and organizational commitment, which moderates various support and satisfaction variables. Conclusions Pharmacy faculty members’ decision to remain or leave an institution is dependent upon developing a sense of commitment toward the institution. Commitment is facilitated by support from the institution and department chair, in addition to a sense of satisfaction with the teaching environment. PMID:17786250

  16. Teacher Turnover in Charter Schools. Research Brief

    ERIC Educational Resources Information Center

    Stuit, David; Smith, Thomas M.

    2010-01-01

    The current study aimed to contribute to a deeper understanding of the organizational conditions of charter schools by examining teacher turnover. Using data from the National Center for Education Statistics (NCES) 2003-04 Schools and Staffing Survey (SASS) and the Teacher Follow-Up Survey (TFS), researchers from the National Center on School…

  17. Turnover of Public School Superintendents in Arizona

    ERIC Educational Resources Information Center

    Meyer, Joyce Ntsoaki

    2013-01-01

    This study used a descriptive qualitative design utilizing a phenomenological approach to determine and examine the reasons behind the voluntary or involuntary turnover of Arizona school superintendents. Open-ended questions were used to interview five superintendents who had left their districts between 2008 and 2013 about their perceptions on…

  18. Cusp catastrophe model of employee turnover.

    PubMed

    Sheridan, J E; Abelson, M A

    1983-09-01

    A cusp catastrophe model is developed to explain job turnover of nursing employees. The temporal dynamics of the catastrophe model suggest that leavers experience lower organization commitment than do stayers prior to termination. Leavers' perceptions of job tension and commitment appear to cross the threshold levels prior to the termination dates. PMID:10262614

  19. Employee Development and Turnover Intention: Theory Validation

    ERIC Educational Resources Information Center

    Rahman, Wali; Nas, Zekeriya

    2013-01-01

    Purpose: This study aims to examine the pattern of behavior of turnover intentions in developing countries "vis-a-vis" the one in advanced countries through the empirical data from public universities in Khyber Pakhtunkhwa, Pakistan. The study provides empirical evidence from academia in Pakistan, thereby enriching the understanding of…

  20. Antecedents of Norwegian Beginning Teachers' Turnover Intentions

    ERIC Educational Resources Information Center

    Tiplic, Dijana; Brandmo, Christian; Elstad, Eyvind

    2015-01-01

    This study aims at exploring several individual, organizational, and contextual factors that may affect beginning teachers' turnover intentions during their first years of practice. The sample consists of 227 beginning teachers (69% female and 31% male) from 133 schools in Norway. The results show four important antecedents of beginning teachers'…

  1. Normal Bone Turnover in Transient Hyperphosphatasemia

    PubMed Central

    Kutilek, Stepan; Cervickova, Barbora; Bebova, Pavla; Kmonickova, Marie; Nemec, Vladimir

    2012-01-01

    Transient hyperphosphatasemia of infancy and early childhood (THI) is characterized by a temporary isolated elevation of serum alkaline phosphatase activity (ALP), predominantly its bone or liver isoform, in either sick or healthy children under 5 years of age. Return to normal ALP levels usually occurs within four months. Spontaneous rise of ALP might concern the physician, especially when treating seriously ill children. However, THI is considered a benign biochemical disorder with no clinical consequences. Some existing reports support the hypothesis that THI is a result of increased bone turnover. We present evidence of normal bone turnover in two children with THI. In a one-year-old girl and a boy of the same age, high ALP levels (31 and 109 μkat/L, respectively) were accidentally detected. The children had no signs of metabolic bone disease or of liver disease. The high ALP levels returned to normal in two months, thus fulfilling the diagnosis of THI. In both patients, serum parathyroid hormone and bone turnover markers, serum CrossLaps, and serum osteocalcin were neither elevated, nor did these markers follow the ALP dynamics, thus reflecting normal bone turnover in THI. Children with THI should be spared from extensive investigations and unnecessary vitamin D treatment. Conflict of interest:None declared. PMID:22664360

  2. Costing Child Protective Services Staff Turnover.

    ERIC Educational Resources Information Center

    Graef, Michelle I.; Hill, Erick L.

    2000-01-01

    Details process of determining a child welfare agency's actual dollar costs directly attributed to protective services staff turnover, using the agency's human resources database and interviews with administrative personnel. Provides formulas and process for calculating specific cost elements due to employee separation, replacement, and training.…

  3. Director Turnover: An Australian Academic Development Study

    ERIC Educational Resources Information Center

    Fraser, Kym; Ryan, Yoni

    2012-01-01

    Although it can be argued that directors of central academic development units (ADUs) are critical to the implementation of university teaching and learning strategies, it would appear there is a high director turnover rate. While research in the USA, the UK, and Australia illustrates that ADUs are frequently closed or restructured, that research…

  4. Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones.

    PubMed Central

    Creba, J A; Downes, C P; Hawkins, P T; Brewster, G; Michell, R H; Kirk, C J

    1983-01-01

    Rat hepatocytes rapidly incorporate [32P]Pi into phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]; their monoester phosphate groups approach isotopic equilibrium with the cellular precursor pools within 1 h. Upon stimulation of these prelabelled cells with Ca2+-mobilizing stimuli (V1-vasopressin, angiotensin, alpha 1-adrenergic, ATP) there is a rapid fall in the labelling of PtdIns4P and PtdIns(4,5)P2. Pharmacological studies suggest that each of the four stimuli acts at a different population of receptors. Insulin, glucagon and prolactin do not provoke disappearance of labelled PtdIns4P and PtdIns(4,5)P2. The labelling of PtdIns4P and PtdIns(4,5)P2 in cells stimulated with vasopressin or angiotensin initially declines at a rate of 0.5-1.0% per s, reaches a minimum after 1-2 min and then returns towards the initial value. The dose-response curves for the vasopressin- and angiotensin-stimulated responses lie close to the respective receptor occupation curves, rather than at the lower hormone concentrations needed to evoke activation of glycogen phosphorylase. Disappearance of labelled PtdIns4P and PtdIns(4,5)P2 is not observed when cells are incubated with the ionophore A23187. The hormone-stimulated polyphosphoinositide disappearance is reduced, but not abolished, in Ca2+-depleted cells. These hormonal effects are not modified by 8-bromo cyclic GMP, cycloheximide or delta-hexachlorocyclohexane. The absolute rate of polyphosphoinositide breakdown in stimulated cells is similar to the rate previously reported for the disappearance of phosphatidylinositol [Kirk, Michell & Hems (1981) Biochem. J. 194, 155-165]. It seems likely that these changes in polyphosphoinositide labelling are caused by hormonal activation of the breakdown of PtdIns(4,5)P2 (and may be also PtdIns4P) by the action of a polyphosphoinositide phosphodiesterase. We therefore suggest that the initial response to hormones is breakdown of PtdIns(4,5)P2

  5. Looking for a Challenge? Watch That Labour Turnover!

    ERIC Educational Resources Information Center

    Wilkinson, Roderick

    1975-01-01

    Low labor turnover is an essential factor in the success of an enterprise. Steps in dealing with the turnover problem include: establish the objective, get the facts, decide what to do, take action, and check results. (MW)

  6. Staff turnover: occasional friend, frequent foe, and continuing frustration.

    PubMed

    McConnell, C R

    1999-09-01

    Turnover appears to be a relatively simple concept. However, considerable confusion results when discussing turnover because of differences in how it is defined--what is counted, how it is counted, and how the rate of turnover is expressed. Turnover is also costly, although not enough attention is paid to turnover's cost because so much of it is indirect and thus not readily visible. There are a variety of causes of turnover, some which can be corrected and some which cannot be avoided. Reducing or otherwise controlling turnover requires continuing management attention to its causes and constant recognition of what can and should be controlled and what cannot be controlled. Ongoing attention to turnover is an essential part of the department manager's role. PMID:10747463

  7. A concept analysis of turnover intention: implications for nursing management.

    PubMed

    Takase, Miyuki

    2010-01-01

    This paper provides a review and concept analysis of turnover intention. The aim was to promote Nurse Managers' understanding of the meanings and mechanisms of turnover intention, which could help them counteract nurse turnover. Sixty-six papers published between January 1998 and August 2007 were collected from CINAHL, PubMed, and PsycINFO databases, and were subjected to Rogers' concept analysis. The results showed that turnover intention is a multi-stage process involving the voluntary departure of employees from their current position, and is triggered by negative psychological responses to internal/external job context. These psychological responses evolve into withdrawal cognition and behaviours, and lead to actual turnover. To prevent nurse turnover, Nurse Managers should closely observe the internal and external causes of turnover, and the stage of nurses' turnover intention. PMID:20394269

  8. Work-Related Variables and Turnover Intention among Registered Nurses.

    ERIC Educational Resources Information Center

    Pooyan, Abdullah; And Others

    1990-01-01

    Health institutions have become more interested in the causes of job turnover among registered nurses. Proper management of job turnover can improve the financial health and long-term survival of health care institutions. (Author)

  9. Gaussian Process Modeling of Protein Turnover.

    PubMed

    Rahman, Mahbubur; Previs, Stephen F; Kasumov, Takhar; Sadygov, Rovshan G

    2016-07-01

    We describe a stochastic model to compute in vivo protein turnover rate constants from stable-isotope labeling and high-throughput liquid chromatography-mass spectrometry experiments. We show that the often-used one- and two-compartment nonstochastic models allow explicit solutions from the corresponding stochastic differential equations. The resulting stochastic process is a Gaussian processes with Ornstein-Uhlenbeck covariance matrix. We applied the stochastic model to a large-scale data set from (15)N labeling and compared its performance metrics with those of the nonstochastic curve fitting. The comparison showed that for more than 99% of proteins, the stochastic model produced better fits to the experimental data (based on residual sum of squares). The model was used for extracting protein-decay rate constants from mouse brain (slow turnover) and liver (fast turnover) samples. We found that the most affected (compared to two-exponent curve fitting) results were those for liver proteins. The ratio of the median of degradation rate constants of liver proteins to those of brain proteins increased 4-fold in stochastic modeling compared to the two-exponent fitting. Stochastic modeling predicted stronger differences of protein turnover processes between mouse liver and brain than previously estimated. The model is independent of the labeling isotope. To show this, we also applied the model to protein turnover studied in induced heart failure in rats, in which metabolic labeling was achieved by administering heavy water. No changes in the model were necessary for adapting to heavy-water labeling. The approach has been implemented in a freely available R code. PMID:27229456

  10. AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain.

    PubMed Central

    Welters, P; Takegawa, K; Emr, S D; Chrispeels, M J

    1994-01-01

    The cDNA encoding phosphatidylinositol (PI) 3-kinase was cloned from Arabidopsis thaliana, and the derived amino acid sequence (AtVPS34) has a significantly higher homology to yeast PI 3-kinase (VPS34) than to the mammalian (p110). The protein has two conserved domains: a catalytic site with the ATP-binding site near the C terminus and a calcium-dependent lipid-binding domain near the N terminus. The plant cDNA does not rescue a yeast vps34 deletion mutant, but a chimeric gene in which the coding sequence for the C-terminal third of VPS34 is replaced by the corresponding sequence from the plant gene does rescue the yeast mutant. PI 3-kinase activity is detectable in extracts from plants that overexpress the plant PI 3-kinase. Expression of antisense constructs gives rise to second-generation transformed plants severely inhibited in growth and development. Images PMID:7972072

  11. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    SciTech Connect

    Kouchi, Zen; Fujiwara, Yuki; Yamaguchi, Hideki; Nakamura, Yoshikazu; Fukami, Kiyoko

    2011-05-20

    Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  12. Superintendent Turnover in Kentucky. Issues & Answers. REL 2011-No. 113

    ERIC Educational Resources Information Center

    Johnson, Jerry; Huffman, Tyler; Madden, Karen; Shope, Shane

    2011-01-01

    This study examines superintendent turnover in Kentucky public school districts for 1998/99-2007/08, looking at how turnover varies by rural status, Appalachian and non-Appalachian region, and 2007/08 school district characteristics. Key findings include: (1) Kentucky school districts averaged one superintendent turnover during 1998/99-2007/08;…

  13. Salary and Ranking and Teacher Turnover: A Statewide Study

    ERIC Educational Resources Information Center

    Garcia, Cynthia Martinez; Slate, John R.; Delgado, Carmen Tejeda

    2009-01-01

    This study examined three years of data obtained from the Academic Excellence Indicator System of the State of Texas regarding teacher turnover rate and teacher salary. Across all public school districts, teacher salary was consistently negatively related to teacher turnover; that is, where salary was lower, turnover rate was higher When data were…

  14. A Ministudy of employee turnover in US hospitals.

    PubMed

    Collins, Sandra K; McKinnies, Richard C; Matthews, Eric P; Collins, Kevin S

    2015-01-01

    A ministudy was conducted to collect self-reported employee turnover rates in US hospitals. The results indicate many hospitals are struggling with high employee turnover rates. Widespread variances in ratings were observed across hospitals, which may be due to lack of consistency in how they each calculate their employee turnover. This makes benchmarking for the purposes of performance improvement challenging. PMID:25627851

  15. Investing in Leadership: The District's Role in Managing Principal Turnover

    ERIC Educational Resources Information Center

    Mascall, Blair; Leithwood, Kenneth

    2010-01-01

    This article presents the results of research into the impact of principal turnover on schools, and the ability of schools to mitigate the negative effects of frequent turnover by distributing leadership in the schools. The findings from this qualitative and quantitative analysis show that rapid principal turnover does indeed have a negative…

  16. Job Turnover and Job Satisfaction among Nursing Home Aides.

    ERIC Educational Resources Information Center

    Waxman, Howard M.; And Others

    1984-01-01

    Interviewed 234 aides in seven nursing homes concerning job turnover rate, job satisfaction, and perception of milieu. A positive association found between turnover rate and aides' perceptions of the homes' order, organization, and control suggested that job turnover would lessen with more involvement in the decision-making process. (JAC)

  17. Employee Turnover in the Federal Government. A Special Study.

    ERIC Educational Resources Information Center

    Musell, R. Mark

    A study of employee turnover in the Federal government showed that in 1984, about 195,000 full-time, nonpostal Federal workers with permanent appointments left Federal jobs or transferred to other Federal agencies--representing a turnover rate of 11.5 percent. The turnover was about three percentage points higher for white-collar workers than for…

  18. High School Band Students' Perspectives of Teacher Turnover

    ERIC Educational Resources Information Center

    Kloss, Thomas E.

    2013-01-01

    Teacher turnover remains an important issue in education. The least researched perspectives, though, are those of the students who experience teacher turnover. The purpose of this study was to examine how high school band students experience teacher turnover. A total of twelve students were interviewed, representing three schools that experienced…

  19. Job Satisfaction, Commitment, Withdrawal Cognitions and Turnover: A Longitudinal Study.

    ERIC Educational Resources Information Center

    Kerber, Kenneth W.; Campbell, James P.

    Recent research on organizational turnover has examined the validity of the turnover decision process, in particular, the model of employee turnover proposed by Mobley (1977). This study followed-up on a previous (Kerber and Campbell, 1986) study of new employees of a large computer company in which participants completed a questionnaire that…

  20. A Novel, Broad-Spectrum Inhibitor of Enterovirus Replication That Targets Host Cell Factor Phosphatidylinositol 4-Kinase IIIβ

    PubMed Central

    van der Schaar, Hilde M.; Leyssen, Pieter; Thibaut, Hendrik J.; de Palma, Armando; van der Linden, Lonneke; Lanke, Kjerstin H. W.; Lacroix, Céline; Verbeken, Erik; Conrath, Katja; MacLeod, Angus M.; Mitchell, Dale R.; Palmer, Nicholas J.; van de Poël, Hervé; Andrews, Martin

    2013-01-01

    Despite their high clinical and socioeconomic impacts, there is currently no approved antiviral therapy for the prophylaxis or treatment of enterovirus infections. Here we report on a novel inhibitor of enterovirus replication, compound 1, 2-fluoro-4-(2-methyl-8-(3-(methylsulfonyl)benzylamino)imidazo[1,2-a]pyrazin-3-yl)phenol. This compound exhibited a broad spectrum of antiviral activity, as it inhibited all tested species of enteroviruses and rhinoviruses, with 50% effective concentrations ranging between 4 and 71 nM. After a lengthy resistance selection process, coxsackievirus mutants resistant to compound 1 were isolated that carried substitutions in their 3A protein. Remarkably, the same substitutions were recently shown to provide resistance to inhibitors of phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ), a lipid kinase that is essential for enterovirus replication, suggesting that compound 1 may also target this host factor. Accordingly, compound 1 directly inhibited PI4KIIIβ in an in vitro kinase activity assay. Furthermore, the compound strongly reduced the PI 4-phosphate levels of the Golgi complex in cells. Rescue of coxsackievirus replication in the presence of compound 1 by a mutant PI4KIIIβ carrying a substitution in its ATP-binding pocket revealed that the compound directly binds the kinase at this site. Finally, we determined that an analogue of compound 1, 3-(3-fluoro-4-methoxyphenyl)-2-methyl-N-(pyridin-4-ylmethyl)imidazo[1,2-a]pyrazin-8-amine, is well tolerated in mice and has a dose-dependent protective activity in a coxsackievirus serotype B4-induced pancreatitis model. PMID:23896472

  1. Phosphatidylinositol (4,5)-Bisphosphate Regulation of N-Methyl-d-aspartate Receptor Channels in Cortical Neurons

    PubMed Central

    Mandal, Madhuchhanda

    2009-01-01

    The membrane phospholipid phosphatidylinositol (4,5)-bisphosphate (PIP2) has been implicated in the regulation of several ion channels and transporters. In this study, we examined the impact of PIP2 on N-methyl-d-aspartate receptors (NMDARs) in cortical neurons. Blocking PIP2 synthesis by inhibiting phosphoinositide-4 kinase, or stimulating PIP2 hydrolysis via activation of phospholipase C (PLC), or blocking PIP2 function with an antibody caused a significant reduction of NMDAR-mediated currents. On the other hand, inhibition of PLC or application of PIP2 caused an enhancement of NMDAR currents. These electrophysiological effects were accompanied by changes in NMDAR surface clusters induced by agents that manipulate PIP2 levels. The PIP2 regulation of NMDAR currents was abolished by the dynamin inhibitory peptide, which blocks receptor internalization. Agents perturbing actin stability prevented PIP2 regulation of NMDAR currents, suggesting the actin-dependence of this effect of PIP2. Cofilin, a major actin depolymerizing factor, which has a common binding sequence for actin and PIP2, was required for PIP2 regulation of NMDAR currents. It is noteworthy that the PIP2 regulation of NMDAR channels was impaired in a transgenic mouse model of Alzheimer's disease, probably because of the amyloid-β disruption of PIP2 metabolism. Taken together, our data suggest that continuous synthesis of PIP2 at the membrane might be important for the maintenance of NMDARs at the cell surface. When PIP2 is lost, cofilin is released from the PIP2 complex and is rendered free to depolymerize actin. With the actin cytoskeleton no longer intact, NMDARs are internalized via a dynamin/clathrin-dependent mechanism, leading to reduced NMDAR currents. PMID:19770351

  2. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity.

    PubMed

    Abd-El-Haliem, Ahmed M; Vossen, Jack H; van Zeijl, Arjan; Dezhsetan, Sara; Testerink, Christa; Seidl, Michael F; Beck, Martina; Strutt, James; Robatzek, Silke; Joosten, Matthieu H A J

    2016-09-01

    Plants possess effective mechanisms to quickly respond to biotic and abiotic stresses. The rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs early after the stimulation of plant immune-receptors. Genomes of different plant species encode multiple PLC homologs belonging to one class, PLCζ. Here we determined whether all tomato homologs encode active enzymes and whether they can generate signals that are distinct from one another. We searched the recently completed tomato (Solanum lycopersicum) genome sequence and identified a total of seven PLCs. Recombinant proteins were produced for all tomato PLCs, except for SlPLC7. The purified proteins showed typical PLC activity, as different PLC substrates were hydrolysed to produce diacylglycerol. We studied SlPLC2, SlPLC4 and SlPLC5 enzymes in more detail and observed distinct requirements for Ca(2+) ions and pH, for both their optimum activity and substrate preference. This indicates that each enzyme could be differentially and specifically regulated in vivo, leading to the generation of PLC homolog-specific signals in response to different stimuli. PLC overexpression and specific inhibition of PLC activity revealed that PLC is required for both specific effector- and more general "pattern"-triggered immunity. For the latter, we found that both the flagellin-triggered response and the internalization of the corresponding receptor, Flagellin Sensing 2 (FLS2) of Arabidopsis thaliana, are suppressed by inhibition of PLC activity. Altogether, our data support an important role for PLC enzymes in plant defence signalling downstream of immune receptors. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:26825689

  3. Phosphatidylinositol 5-phosphate 4-kinase γ (PI5P4Kγ), a lipid signalling enigma.

    PubMed

    Giudici, Maria-Luisa; Clarke, Jonathan H; Irvine, Robin F

    2016-05-01

    The phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are an important family of enzymes, whose physiological roles are being teased out by a variety of means. Phosphatidylinositol-5-phosphate 4-kinase γ (PI5P4Kγ) is especially intriguing as its in vitro activity is very low. Here we review what is known about this enzyme and discuss some recent advances towards an understanding of its physiology. Additionally, the effects of the ATP-competitive inhibitor I-OMe Tyrphostin AG-538 on all three mammalian PI5P4Ks was explored, including two PI5P4Kγ mutants with altered ATP- or PI5P-binding sites. The results suggest a strategy for targeting non-ATP binding sites on inositol lipid kinases. PMID:26710750

  4. Histones Cause Aggregation and Fusion of Lipid Vesicles Containing Phosphatidylinositol-4-Phosphate

    PubMed Central

    Lete, Marta G.; Sot, Jesus; Gil, David; Valle, Mikel; Medina, Milagros; Goñi, Felix M.; Alonso, Alicia

    2015-01-01

    In a previous article, we demonstrated that histones (H1 or histone octamers) interact with negatively charged bilayers and induce extensive aggregation of vesicles containing phosphatidylinositol-4-phosphate (PIP) and, to a lesser extent, vesicles containing phosphatidylinositol (PI). Here, we found that vesicles containing PIP, but not those containing PI, can undergo fusion induced by histones. Fusion was demonstrated through the observation of intervesicular mixing of total lipids and inner monolayer lipids, and by ultrastructural and confocal microscopy studies. Moreover, in both PI- and PIP-containing vesicles, histones caused permeabilization and release of vesicular aqueous contents, but the leakage mechanism was different (all-or-none for PI and graded release for PIP vesicles). These results indicate that histones could play a role in the remodeling of the nuclear envelope that takes place during the mitotic cycle. PMID:25692591

  5. Defining the Interaction of Human Soluble Lectin ZG16p and Mycobacterial Phosphatidylinositol Mannosides.

    PubMed

    Hanashima, Shinya; Götze, Sebastian; Liu, Yan; Ikeda, Akemi; Kojima-Aikawa, Kyoko; Taniguchi, Naoyuki; Varón Silva, Daniel; Feizi, Ten; Seeberger, Peter H; Yamaguchi, Yoshiki

    2015-07-01

    ZG16p is a soluble mammalian lectin that interacts with mannose and heparan sulfate. Here we describe detailed analysis of the interaction of human ZG16p with mycobacterial phosphatidylinositol mannosides (PIMs) by glycan microarray and NMR. Pathogen-related glycan microarray analysis identified phosphatidylinositol mono- and di-mannosides (PIM1 and PIM2) as novel ligand candidates of ZG16p. Saturation transfer difference (STD) NMR and transferred NOE experiments with chemically synthesized PIM glycans indicate that PIMs preferentially interact with ZG16p by using the mannose residues. The binding site of PIM was identified by chemical-shift perturbation experiments with uniformly (15)N-labeled ZG16p. NMR results with docking simulations suggest a binding mode of ZG16p and PIM glycan; this will help to elucidate the physiological role of ZG16p. PMID:25919894

  6. Relationship of hormone-sensitive and hormone-insensitive phosphatidylinositol to phosphatidylinositol 4,5-bisphosphate in the WRK-1 cell

    SciTech Connect

    Not Available

    1986-01-05

    Two distinct pools of phosphatidylinositol (PI) in the WRK-1 rat mammary tumor cell, one whose metabolism is enhanced in response to vasopressin and another which is insensitive to hormonal manipulation have been previously characterized. The purpose of the present study was to examine the relationship between cellular phosphatidylinositol 4,5-bisphosphate (PIP/sub 2/) and each of the two PI pools. In WRK-1 cells, vasopressin induces the rapid loss of PIP/sub 2/ and the accumulation of inositol phosphates. By making use of kinetic differences in /sup 32/P/sub i/ uptake into the two pools of PI and assessing radioactivity levels in the 1-phosphate of PIP/sub 2/, it was determined that hormone-sensitive PI is the precursor of approximately 60% of the cellular PIP/sub 2/; the remainder is synthesized from the hormone-insensitive pool. Additional data indicate that PIP/sub 2/ derived from hormone-sensitive PI is likewise hormone-sensitive, while that synthesized from hormone-insensitive PI remains stable over a long period of time and is not affected by the presence of vasopressin.

  7. Inositol lipids: from an archaeal origin to phosphatidylinositol 3,5-bisphosphate faults in human disease.

    PubMed

    Michell, Robert H

    2013-12-01

    The last couple of decades have seen an extraordinary transformation in our knowledge and understanding of the multifarious biological roles of inositol phospholipids. Herein, I briefly consider two topics. The first is the role that recently acquired biochemical and genomic information - especially from archaeons - has played in illuminating the possible evolutionary origins of the biological employment of inositol in lipids, and some questions that these studies raise about the 'classical' biosynthetic route to phosphatidylinositol. The second is the growing recognition of the importance in eukaryotic cells of phosphatidylinositol 3,5-bisphosphate. Phosphatidylinositol 3,5-bisphosphate only entered our phosphoinositide consciousness quite recently, but it is speedily gathering a plethora of roles in diverse cellular processes and diseases thereof. These include: control of endolysosomal vesicular trafficking and of the activity of ion channels and pumps in the endolysosomal compartment; control of constitutive and stimulated protein traffic to and from plasma membrane subdomains; control of the nutrient and stress-sensing target of rapamycin complex 1 pathway (TORC1); and regulation of key genes in some central metabolic pathways. PMID:23902363

  8. Phosphatidylinositol-3-phosphate is light-regulated and essential for survival in retinal rods

    PubMed Central

    He, Feng; Agosto, Melina A.; Anastassov, Ivan A.; Tse, Dennis Y.; Wu, Samuel M.; Wensel, Theodore G.

    2016-01-01

    Phosphoinositides play important roles in numerous intracellular membrane pathways. Little is known about the regulation or function of these lipids in rod photoreceptor cells, which have highly active membrane dynamics. Using new assays with femtomole sensitivity, we determined that whereas levels of phosphatidylinositol-3,4-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate were below detection limits, phosphatidylinositol-3-phosphate (PI(3)P) levels in rod inner/outer segments increased more than 30-fold after light exposure. This increase was blocked in a rod-specific knockout of the PI-3 kinase Vps34, resulting in failure of endosomal and autophagy-related membranes to fuse with lysosomes, and accumulation of abnormal membrane structures. At early ages, rods displayed normal morphology, rhodopsin trafficking, and light responses, but underwent progressive neurodegeneration with eventual loss of both rods and cones by twelve weeks. The degeneration is considerably faster than in rod knockouts of autophagy genes, indicating defects in endosome recycling or other PI(3)P-dependent membrane trafficking pathways are also essential for rod survival. PMID:27245220

  9. Phosphatidylinositol-3-phosphate is light-regulated and essential for survival in retinal rods.

    PubMed

    He, Feng; Agosto, Melina A; Anastassov, Ivan A; Tse, Dennis Y; Wu, Samuel M; Wensel, Theodore G

    2016-01-01

    Phosphoinositides play important roles in numerous intracellular membrane pathways. Little is known about the regulation or function of these lipids in rod photoreceptor cells, which have highly active membrane dynamics. Using new assays with femtomole sensitivity, we determined that whereas levels of phosphatidylinositol-3,4-bisphosphate and phosphatidylinositol-3,4,5-trisphosphate were below detection limits, phosphatidylinositol-3-phosphate (PI(3)P) levels in rod inner/outer segments increased more than 30-fold after light exposure. This increase was blocked in a rod-specific knockout of the PI-3 kinase Vps34, resulting in failure of endosomal and autophagy-related membranes to fuse with lysosomes, and accumulation of abnormal membrane structures. At early ages, rods displayed normal morphology, rhodopsin trafficking, and light responses, but underwent progressive neurodegeneration with eventual loss of both rods and cones by twelve weeks. The degeneration is considerably faster than in rod knockouts of autophagy genes, indicating defects in endosome recycling or other PI(3)P-dependent membrane trafficking pathways are also essential for rod survival. PMID:27245220

  10. Phosphatidylinositol phosphate-dependent regulation of Xenopus ENaC by MARCKS protein

    PubMed Central

    Bao, Hui-Fang; Alli, Alia A.; Aldrugh, Yasir; Song, John Z.; Ma, He-Ping; Yu, Ling; Al-Khalili, Otor; Eaton, Douglas C.

    2012-01-01

    Phosphatidylinositol phosphates (PIPs) are known to regulate epithelial sodium channels (ENaC). Lipid binding assays and coimmunoprecipitation showed that the amino-terminal domain of the β- and γ-subunits of Xenopus ENaC can directly bind to phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 3,4,5-trisphosphate (PIP3), and phosphatidic acid (PA). Similar assays demonstrated various PIPs can bind strongly to a native myristoylated alanine-rich C-kinase substrate (MARCKS), but weakly or not at all to a mutant form of MARCKS. Confocal microscopy demonstrated colocalization between MARCKS and PIP2. Confocal microscopy also showed that MARCKS redistributes from the apical membrane to the cytoplasm after PMA-induced MARCKS phosphorylation or ionomycin-induced intracellular calcium increases. Fluorescence resonance energy transfer studies revealed ENaC and MARCKS in close proximity in 2F3 cells when PKC activity and intracellular calcium concentrations are low. Transepithelial current measurements from Xenopus 2F3 cells treated with PMA and single-channel patch-clamp studies of Xenopus 2F3 cells treated with a PKC inhibitor altered Xenopus ENaC activity, which suggest an essential role for MARCKS in the regulation of Xenopus ENaC activity. PMID:22791334

  11. Organisation turnover among registered nurses: an exploratory model.

    PubMed

    Bloom, J R; Alexander, J A; Flatt, S

    1988-11-01

    In light of current concerns over nursing shortages and productivity, turnover among hospital nurses has assumed renewed importance as a managerial issue. This study examines the thesis that organisation of hospital work is a determinant of voluntary turnover among registered nurses. This perspective differs from previous work in this area in that both turnover and its determinants are conceptualised at the organisational rather than individual level, thus opening the way for administrative intervention to reduce turnover. The conceptual model is tested using multiple regression techniques on a sample of 310 community hospitals. Results suggest the importance of administrative work structures and the professionalisation of the workforce as contributors to higher turnover. PMID:10296903

  12. Turnover intention in new graduate nurses: a multivariate analysis

    PubMed Central

    Beecroft, Pauline C; Dorey, Frederick; Wenten, Madé

    2008-01-01

    Title Turnover intention in new graduate nurses: a multivariate analysis Aim This paper is a report of a study to determine the relationship of new nurse turnover intent with individual characteristics, work environment variables and organizational factors and to compare new nurse turnover with actual turnover in the 18 months of employment following completion of a residency. Background Because of their influence on patient safety and health outcomes nurse turnover and turnover intent have received considerable attention worldwide. When nurse staffing is inadequate, especially during nursing shortages, unfavourable clinical outcomes have been documented. Method Prospective data collection took place from 1999 to 2006 with 889 new paediatric nurses who completed the same residency. Scores on study instruments were related to likelihood of turnover intent using logistic regression analysis models. Relationships between turnover intent and actual turnover were compared using Kaplan–Meier survivorship. Results The final model demonstrated that older respondents were more likely to have turnover intent if they did not get their ward choice. Also higher scores on work environment and organizational characteristics contributed to likelihood that the new nurse would not be in the turnover intent group. These factors distinguish a new nurse with turnover intent from one without 79% of the time. Increased seeking of social support was related to turnover intent and older new graduates were more likely to be in the turnover intent group if they did not get their ward choice. Conclusion When new graduate nurses are satisfied with their jobs and pay and feel committed to the organization, the odds against turnover intent decrease. What is already known about this topic There is concern in many countries about nurse turnover and the resulting effects on patient safety and quality of care. Decreasing ability to recruit experienced nurses has increased the emphasis on

  13. Norepinephrine turnover in brown adipose tissue is stimulated by a single meal

    SciTech Connect

    Glick, Z.; Raum, W.J.

    1986-07-01

    A single meal stimulates brown adipose tissue (BAT) thermogenesis in rats. In the present study the role of norepinephrine in this thermogenic response was assessed from the rate of its turnover in BAT after a single test meal. For comparison, norepinephrine turnover was determined in the heart and spleen. A total of 48 male Wistar rats (200 g) were trained to eat during two feeding sessions per day. On the experimental day, one group (n = 24) was meal deprived and the other (n = 24) was given a low-protein high-carbohydrate test meal for 2 h. The synthesis inhibition method with ..cap alpha..-methyl-p-tyrosine was employed to determine norepinephrine turnover from its concentration at four hourly time points after the meal. Tissue concentrations of norepinephrine were determined by radioimmunoassay. Norepinephrine concentration and turnover rate were increased more than threefold in BAT of the meal-fed compared with the meal-deprived rats. Neither were significantly altered by the meal in the heart or spleen. The data suggest that norepinephrine mediates a portion of the thermic effect of meals that originate in BAT.

  14. Replicator dynamics with turnover of players

    NASA Astrophysics Data System (ADS)

    Juul, Jeppe; Kianercy, Ardeshir; Bernhardsson, Sebastian; Pigolotti, Simone

    2013-08-01

    We study adaptive dynamics in games where players abandon the population at a given rate and are replaced by naive players characterized by a prior distribution over the admitted strategies. We demonstrate how such a process leads macroscopically to a variant of the replicator equation, with an additional term accounting for player turnover. We study how Nash equilibria and the dynamics of the system are modified by this additional term for prototypical examples such as the rock-paper-scissors game and different classes of two-action games played between two distinct populations. We conclude by showing how player turnover can account for nontrivial departures from Nash equilibria observed in data from lowest unique bid auctions.

  15. Health Care Workplace Discrimination and Physician Turnover

    PubMed Central

    Nunez-Smith, Marcella; Pilgrim, Nanlesta; Wynia, Matthew; Desai, Mayur M.; Bright, Cedric; Krumholz, Harlan M.; Bradley, Elizabeth H.

    2013-01-01

    Objective To examine the association between physician race/ethnicity, workplace discrimination, and physician job turnover. Methods Cross-sectional, national survey conducted in 2006–2007 of practicing physicians [n = 529] randomly identified via the American Medical Association Masterfile and The National Medical Association membership roster. We assessed the relationships between career racial/ethnic discrimination at work and several career-related dependent variables, including 2 measures of physician turnover, career satisfaction, and contemplation of career change. We used standard frequency analyses, odds ratios and χ2 statistics, and multivariate logistic regression modeling to evaluate these associations. Results Physicians who self-identified as nonmajority were significantly more likely to have left at least 1 job because of workplace discrimination (black, 29%; Asian, 24%; other race, 21%; Hispanic/Latino, 20%; white, 9%). In multivariate models, having experienced racial/ethnic discrimination at work was associated with high job turnover [adjusted odes ratio, 2.7; 95% CI, 1.4–4.9]. Among physicians who experienced work-place discrimination, only 45% of physicians were satisfied with their careers (vs 88% among those who had not experienced workplace discrimination, p value < .01], and 40% were con-templating a career change (vs 10% among those who had not experienced workplace discrimination, p value < .001). Conclusion Workplace discrimination is associated with physician job turnover, career dissatisfaction, and contemplation of career change. These findings underscore the importance of monitoring for workplace discrimination and responding when opportunities for intervention and retention still exist. PMID:20070016

  16. Strategies to manage low-bone turnover.

    PubMed

    Spasovski, G

    2009-01-01

    A change in paradigm occurred lately whereby not hypocalcemia but hypercalcemia and positive calcium balance were considered negative factors. Namely, the use of calcium- based binders in combination with vitamin D analogues, has been shown to lead to an over-suppression of parathyroid hormone (PTH) and development of low-bone turnover adynamic bone disease (ABD). The changing prevalence of various types of bone diseases from a high to low-bone turnover goes in line with the presence of increased risk for vascular calcification (VC), morbidity and mortality in the dialysis population. The attenuation of the previous great expectations in calcium-based phosphate binders and vitamin D-analogues entailed a new treatment strategy to preserve bone and vascular health. Hence, a new evidence for treatment of ABD with various types of non calcium based binders and low calcium dialysate is presented. Sevelamer treatment has reduced calcium concentration and increased PTH levels, resulting in the improvement of markers of bone turnover, increased bone formation and improved trabecular architecture, providing a slower progression of VC. Data on lanthanum beneficial effect on ABD histology have been demonstrated in long-term clinical studies. Although there is a slow release of lanthanum from its bone deposits after discontinuation of the treatment and no association with aluminium- like bone toxicity, there is still an ongoing scientific debate about its long-term toxic potential. Finally, reducing the number of calcium based binders and low calcium dialysate (1.25 mmol/l) has been reported to have an impact on the evolution towards markers reflecting higher bone turnover. Then, adoption of the non calcium-based binders should be reserved to high risk patients with ABD and progression of vascular calcifications associated with increased morbidity and mortality. PMID:19668299

  17. Turnover of soil monosaccharides: Recycling versus Stabilization

    NASA Astrophysics Data System (ADS)

    Basler, Anna; Dyckmans, Jens

    2014-05-01

    Soil organic matter (SOM) represents a mixture of differently degradable compounds. Each of these compounds are characterised by different dynamics due to different chemical recalcitrance, transformation or stabilisation processes in soil. Carbohydrates represent one of these compounds and contribute up to 25 % to the soil organic matter. Vascular plants are the main source of pentose sugars (Arabinose and Xylose), whereas hexoses (Galactose and Mannose) are primarily produced by microorganisms. Several studies suggest that the mean turnover times of the carbon in soil sugars are similar to the turnover dynamics of the bulk carbon in soil. The aim of the study is to characterise the influence of stabilisation and turnover of soil carbohydrates. Soil samples are collected from (i) a continuous maize cropping experiment ('Höhere Landbauschule' Rotthalmünster, Bavaria) established 1979 on a Stagnic Luvisol and (ii) from a continuous wheat cropping, established 1969, as reference site. The effect of stabilisation is estimated by the comparison of turnover times of microbial and plant derived soil carbohydrates. As the dynamics of plant derived carbohydrate are solely influenced by stabilisation processes, whereas the dynamics of microbial derived carbohydrates are affected by recycling of organic carbon compounds derived by C3 plant substrate as well as stabilisation processes. The compound specific isotopic analysis (CSIA) of soil carbohydrates was performed using a HPLC/o/IRMS system. The chromatographic and mass spectrometric subunits were coupled with a LC-Isolink interface. Soil sugars were extracted after mild hydrolysis using 4 M trifluoroacetic acid (TFA). Chromatographic separation of the sugars was achieved using a low strength 0.25 mM NaOH solution as mobile phase at a ?ow rate of 250 μL min-1 at 10 ° C.

  18. Forest turnover rates follow global and regional patterns of productivity

    USGS Publications Warehouse

    Stephenson, N.L.; van Mantgem, P.J.

    2005-01-01

    Using a global database, we found that forest turnover rates (the average of tree mortality and recruitment rates) parallel broad-scale patterns of net primary productivity. First, forest turnover was higher in tropical than in temperate forests. Second, as recently demonstrated by others, Amazonian forest turnover was higher on fertile than infertile soils. Third, within temperate latitudes, turnover was highest in angiosperm forests, intermediate in mixed forests, and lowest in gymnosperm forests. Finally, within a single forest physiognomic type, turnover declined sharply with elevation (hence with temperature). These patterns of turnover in populations of trees are broadly similar to the patterns of turnover in populations of plant organs (leaves and roots) found in other studies. Our findings suggest a link between forest mass balance and the population dynamics of trees, and have implications for understanding and predicting the effects of environmental changes on forest structure and terrestrial carbon dynamics. ??2005 Blackwell Publishing Ltd/CNRS.

  19. Generational differences in registered nurse turnover.

    PubMed

    LeVasseur, Sandra A; Wang, Chen-Yen; Mathews, Barbara; Boland, Mary

    2009-08-01

    The chronic nature of the nursing workforce shortage in the United States is a continuing concern. As the nationwide gap between supply and demand grows, it remains unknown what impact turnover will have on nursing, access to care, and efforts to improve quality and safety of health care. It also remains unclear whether the recent turnover trends among new graduate registered nurses differ from past generational cohorts of new nurses. The aims of this study were to identify the reasons why registered nurses turnover by generational cohort (Veterans, Baby Boomers, and GenXMs) and to compare the length of time nurses were employed in their first five nursing positions by generational cohort. The findings suggest the three generational cohorts displayed similar reasons for leaving nursing positions with relocation, career advancement, and personal/family reasons reported most frequently. Except for the first nursing position, significant generational effects were found in the length of time Veterans, Baby Boomer, and GenXMs stayed employed in their nursing positions. It remains unknown why the GenXMs displayed a significantly shorter length of employment time in their second, third, fourth, and fifth nursing positions. The decline in length of employment time displayed in both the Baby Boomers and GenXMs may be an issue of concern requiring future research. PMID:20026454

  20. Single Turnover Autophosphorylation Cycle of the PKA RIIβ Holoenzyme.

    PubMed

    Zhang, Ping; Knape, Matthias J; Ahuja, Lalima G; Keshwani, Malik M; King, Charles C; Sastri, Mira; Herberg, Friedrich W; Taylor, Susan S

    2015-07-01

    To provide tight spatiotemporal signaling control, the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) holoenzyme typically nucleates a macromolecular complex or a "PKA signalosome." Using the RIIβ holoenzyme as a prototype, we show how autophosphorylation/dephosphorylation of the RIIβ subunit, as well as cAMP and metal ions, contribute to the dynamics of PKA signaling. While we showed previously that the RIIβ holoenzyme could undergo a single turnover autophosphorylation with adenosine triphosphate and magnesium (MgATP) and trap both products in the crystal lattice, we asked here whether calcium could trap an ATP:RIIβ holoenzyme since the RIIβ holoenzyme is located close to ion channels. The 2.8Å structure of an RIIβp2:C2:(Ca2ADP)2 holoenzyme, supported by biochemical and biophysical data, reveals a trapped single phosphorylation event similar to MgATP. Thus, calcium can mediate a single turnover event with either ATP or adenosine-5'-(β,γ-imido)triphosphate (AMP-PNP), even though it cannot support steady-state catalysis efficiently. The holoenzyme serves as a "product trap" because of the slow off-rate of the pRIIβ subunit, which is controlled by cAMP, not by phosphorylation of the inhibitor site. By quantitatively defining the RIIβ signaling cycle, we show that release of pRIIβ in the presence of cAMP is reduced by calcium, whereas autophosphorylation at the phosphorylation site (P-site) inhibits holoenzyme reassociation with the catalytic subunit. Adding a single phosphoryl group to the preformed RIIβ holoenzyme thus creates a signaling cycle in which phosphatases become an essential partner. This previously unappreciated molecular mechanism is an integral part of PKA signaling for type II holoenzymes. PMID:26158466

  1. Phosphatidylinositol-4,5-biphosphate (PIP2) differentially regulates the interaction of human erythrocyte protein 4.1 (4.1R) with membrane proteins.

    PubMed

    An, Xiuli; Zhang, Xihui; Debnath, Gargi; Baines, Anthony J; Mohandas, Narla

    2006-05-01

    Human erythrocyte protein 4.1 (4.1R) participates in organizing the plasma membrane by linking several surface-exposed transmembrane proteins to the internal cytoskeleton. In the present study, we characterized the interaction of 4.1R with phosphatidylinositol-4,5-bisphosphate (PIP2) and assessed the effect of PIP2 on the interaction of 4.1R with membrane proteins. We found that 4.1R bound to PIP2-containing liposomes through its N-terminal 30 kDa membrane-binding domain and PIP2 binding induced a conformational change in this domain. Phosphatidylinositol-4-phosphate (PIP) was a less effective inducer of this conformational change, and phosphatidylinositol (PI) and inositol-1,4,5-phosphate (IP3) induced no change. Replacement of amino acids K63,64 and K265,266 by alanine abolished the interaction of the membrane-binding domain with PIP2. Importantly, binding of PIP2 to 4.1R selectively modulated the ability of 4.1R to interact with its different binding partners. While PIP2 significantly enhanced the binding of 4.1R to glycophorin C (GPC), it inhibited the binding of 4.1R to band 3 in vitro. PIP2 had no effect on 4.1R binding to p55. Furthermore, GPC was more readily extracted by Triton X-100 from adenosine triphosphate (ATP)-depleted erythrocytes, implying that the GPC-4.1R interaction may be regulated by PIP2 in situ. These findings define an important role for PIP2 in regulating the function of 4.1R. Because 4.1R and its family members (4.1R, 4.1B, 4.1G, and 4.1N) are widely expressed and the PIP2-binding motifs are highly conserved, it is likely that the functions of other 4.1 proteins are similarly regulated by PIP2 in many different cell types. PMID:16669616

  2. Structure-Based Design of an Organoruthenium Phosphatidyl-inositol-3-Kinase Inhibitor Reveals a Switch Governing Lipid Kinase Potency and Selectivity

    SciTech Connect

    Xie,P.; Williams, D.; Atilla-Gokcumen, G.; Milk, L.; Xiao, M.; Smalley, K.; Herlyn, M.; Meggers, E.; Marmorstein, R.

    2008-01-01

    Mutations that constitutively activate the phosphatidyl-inositol-3-kinase (PI3K) signaling pathway, including alterations in PI3K, PTEN, and AKT, are found in a variety of human cancers, implicating the PI3K lipid kinase as an attractive target for the development of therapeutic agents to treat cancer and other related diseases. In this study, we report on the combination of a novel organometallic kinase inhibitor scaffold with structure-based design to develop a PI3K inhibitor, called E5E2, with an IC50 potency in the mid-low-nanomolar range and selectivity against a panel of protein kinases. We also show that E5E2 inhibits phospho-AKT in human melanoma cells and leads to growth inhibition. Consistent with a role for the PI3K pathway in tumor cell invasion, E5E2 treatment also inhibits the migration of melanoma cells in a 3D spheroid assay. The structure of the PI3K?/E5E2 complex reveals the molecular features that give rise to this potency and selectivity toward lipid kinases with implications for the design of a subsequent generation of PI3K-isoform-specific organometallic inhibitors.

  3. Transcriptional signature of epidermal keratinocytes subjected to in vitro scratch wounding reveals selective roles for ERK1/2, p38, and phosphatidylinositol 3-kinase signaling pathways.

    PubMed

    Fitsialos, Giorgos; Chassot, Anne-Amandine; Turchi, Laurent; Dayem, Manal A; LeBrigand, Kevin; Moreilhon, Chimène; Meneguzzi, Guerrino; Buscà, Roser; Mari, Bernard; Barbry, Pascal; Ponzio, Gilles

    2007-05-18

    Covering denuded dermal surfaces after injury requires migration, proliferation, and differentiation of skin keratinocytes. To clarify the major traits controlling these intermingled biological events, we surveyed the genomic modifications occurring during the course of a scratch wound closure of cultured human keratinocytes. Using a DNA microarray approach, we report the identification of 161 new markers of epidermal repair. Expression data, combined with functional analysis performed with specific inhibitors of ERK, p38(MAPK) and phosphatidylinositol 3-kinase (PI3K), demonstrate that kinase pathways exert very selective functions by precisely controlling the expression of specific genes. Inhibition of the ERK pathway totally blocks the wound closure and inactivates many early transcription factors and EGF-type growth factors. p38(MAPK) inhibition only delays "healing," probably in line with the control of genes involved in the propagation of injury-initiated signaling. In contrast, PI3K inhibition accelerates the scratch closure and potentiates the scratch-dependent stimulation of three genes related to epithelial cell transformation, namely HAS3, HBEGF, and ETS1. Our results define in vitro human keratinocyte wound closure as a repair process resulting from a fine balance between positive signals controlled by ERK and p38(MAPK) and negative ones triggered by PI3K. The perturbation of any of these pathways might lead to dysfunction in the healing process, similar to those observed in pathological wounding phenotypes, such as hypertrophic scars or keloids. PMID:17363378

  4. Dynamic aspects of voluntary turnover: an integrated approach to curvilinearity in the performance-turnover relationship.

    PubMed

    Becker, William J; Cropanzano, Russell

    2011-03-01

    Previous research pertaining to job performance and voluntary turnover has been guided by 2 distinct theoretical perspectives. First, the push-pull model proposes that there is a quadratic or curvilinear relationship existing between these 2 variables. Second, the unfolding model of turnover posits that turnover is a dynamic process and that a downward performance change may increase the likelihood of organizational separation. Drawing on decision theory, we propose and test an integrative framework. This approach incorporates both of these earlier models. Specifically, we argue that individuals are most likely to voluntarily exit when they are below-average performers who are also experiencing a downward performance change. Furthermore, the interaction between this downward change and performance partially accounts for the curvilinear relationship proposed by the push-pull model. Findings from a longitudinal field study supported this integrative theory. PMID:20853945

  5. Mutations in Encephalomyocarditis Virus 3A Protein Uncouple the Dependency of Genome Replication on Host Factors Phosphatidylinositol 4-Kinase IIIα and Oxysterol-Binding Protein

    PubMed Central

    Dorobantu, Cristina M.; Albulescu, Lucian; Lyoo, Heyrhyoung; van Kampen, Mirjam; De Francesco, Raffaele; Lohmann, Volker; Harak, Christian; van der Schaar, Hilde M.; Strating, Jeroen R. P. M.; Gorbalenya, Alexander E.

    2016-01-01

    ABSTRACT Positive-strand RNA [(+)RNA] viruses are true masters of reprogramming host lipid trafficking and synthesis to support virus genome replication. Via their membrane-associated 3A protein, picornaviruses of the genus Enterovirus (e.g., poliovirus, coxsackievirus, and rhinovirus) subvert Golgi complex-localized phosphatidylinositol 4-kinase IIIβ (PI4KB) to generate “replication organelles” (ROs) enriched in phosphatidylinositol 4-phosphate (PI4P). PI4P lipids serve to accumulate oxysterol-binding protein (OSBP), which subsequently transfers cholesterol to the ROs in a PI4P-dependent manner. Single-point mutations in 3A render enteroviruses resistant to both PI4KB and OSBP inhibition, indicating coupled dependency on these host factors. Recently, we showed that encephalomyocarditis virus (EMCV), a picornavirus that belongs to the Cardiovirus genus, also builds PI4P/cholesterol-enriched ROs. Like the hepatitis C virus (HCV) of the Flaviviridae family, it does so by hijacking the endoplasmic reticulum (ER)-localized phosphatidylinositol 4-kinase IIIα (PI4KA). Here we provide genetic evidence for the critical involvement of EMCV protein 3A in this process. Using a genetic screening approach, we selected EMCV mutants with single amino acid substitutions in 3A, which rescued RNA virus replication upon small interfering RNA (siRNA) knockdown or pharmacological inhibition of PI4KA. In the presence of PI4KA inhibitors, the mutants no longer induced PI4P, OSBP, or cholesterol accumulation at ROs, which aggregated into large cytoplasmic clusters. In contrast to the enterovirus escape mutants, we observed little if any cross-resistance of EMCV mutants to OSBP inhibitors, indicating an uncoupled level of dependency of their RNA replication on PI4KA and OSBP activities. This report may contribute to a better understanding of the roles of PI4KA and OSBP in membrane modifications induced by (+)RNA viruses. IMPORTANCE Positive-strand RNA viruses modulate lipid

  6. Mutations in Encephalomyocarditis Virus 3A Protein Uncouple the Dependency of Genome Replication on Host Factors Phosphatidylinositol 4-Kinase IIIα and Oxysterol-Binding Protein.

    PubMed

    Dorobantu, Cristina M; Albulescu, Lucian; Lyoo, Heyrhyoung; van Kampen, Mirjam; De Francesco, Raffaele; Lohmann, Volker; Harak, Christian; van der Schaar, Hilde M; Strating, Jeroen R P M; Gorbalenya, Alexander E; van Kuppeveld, Frank J M

    2016-01-01

    Positive-strand RNA [(+)RNA] viruses are true masters of reprogramming host lipid trafficking and synthesis to support virus genome replication. Via their membrane-associated 3A protein, picornaviruses of the genus Enterovirus (e.g., poliovirus, coxsackievirus, and rhinovirus) subvert Golgi complex-localized phosphatidylinositol 4-kinase IIIβ (PI4KB) to generate "replication organelles" (ROs) enriched in phosphatidylinositol 4-phosphate (PI4P). PI4P lipids serve to accumulate oxysterol-binding protein (OSBP), which subsequently transfers cholesterol to the ROs in a PI4P-dependent manner. Single-point mutations in 3A render enteroviruses resistant to both PI4KB and OSBP inhibition, indicating coupled dependency on these host factors. Recently, we showed that encephalomyocarditis virus (EMCV), a picornavirus that belongs to the Cardiovirus genus, also builds PI4P/cholesterol-enriched ROs. Like the hepatitis C virus (HCV) of the Flaviviridae family, it does so by hijacking the endoplasmic reticulum (ER)-localized phosphatidylinositol 4-kinase IIIα (PI4KA). Here we provide genetic evidence for the critical involvement of EMCV protein 3A in this process. Using a genetic screening approach, we selected EMCV mutants with single amino acid substitutions in 3A, which rescued RNA virus replication upon small interfering RNA (siRNA) knockdown or pharmacological inhibition of PI4KA. In the presence of PI4KA inhibitors, the mutants no longer induced PI4P, OSBP, or cholesterol accumulation at ROs, which aggregated into large cytoplasmic clusters. In contrast to the enterovirus escape mutants, we observed little if any cross-resistance of EMCV mutants to OSBP inhibitors, indicating an uncoupled level of dependency of their RNA replication on PI4KA and OSBP activities. This report may contribute to a better understanding of the roles of PI4KA and OSBP in membrane modifications induced by (+)RNA viruses. IMPORTANCE Positive-strand RNA viruses modulate lipid homeostasis to

  7. Nrbf2 Protein Suppresses Autophagy by Modulating Atg14L Protein-containing Beclin 1-Vps34 Complex Architecture and Reducing Intracellular Phosphatidylinositol-3 Phosphate Levels*

    PubMed Central

    Zhong, Yu; Morris, Deanna H.; Jin, Lin; Patel, Mittul S.; Karunakaran, Senthil K.; Fu, You-Jun; Matuszak, Emily A.; Weiss, Heidi L.; Chait, Brian T.; Wang, Qing Jun

    2014-01-01

    Autophagy is a tightly regulated lysosomal degradation pathway for maintaining cellular homeostasis and responding to stresses. Beclin 1 and its interacting proteins, including the class III phosphatidylinositol-3 kinase Vps34, play crucial roles in autophagy regulation in mammals. We identified nuclear receptor binding factor 2 (Nrbf2) as a Beclin 1-interacting protein from Becn1−/−;Becn1-EGFP/+ mouse liver and brain. We also found that Nrbf2-Beclin 1 interaction required the N terminus of Nrbf2. We next used the human retinal pigment epithelial cell line RPE-1 as a model system and showed that transiently knocking down Nrbf2 by siRNA increased autophagic flux under both nutrient-rich and starvation conditions. To investigate the mechanism by which Nrbf2 regulates autophagy, we demonstrated that Nrbf2 interacted and colocalized with Atg14L, suggesting that Nrbf2 is a component of the Atg14L-containing Beclin 1-Vps34 complex. Moreover, ectopically expressed Nrbf2 formed cytosolic puncta that were positive for isolation membrane markers. These results suggest that Nrbf2 is involved in autophagosome biogenesis. Furthermore, we showed that Nrbf2 deficiency led to increased intracellular phosphatidylinositol-3 phosphate levels and diminished Atg14L-Vps34/Vps15 interactions, suggesting that Nrbf2-mediated Atg14L-Vps34/Vps15 interactions likely inhibit Vps34 activity. Therefore, we propose that Nrbf2 may interact with the Atg14L-containing Beclin 1-Vps34 protein complex to modulate protein-protein interactions within the complex, leading to suppression of Vps34 activity, autophagosome biogenesis, and autophagic flux. This work reveals a novel aspect of the intricate mechanism for the Beclin 1-Vps34 protein-protein interaction network to achieve precise control of autophagy. PMID:25086043

  8. A BAR-Domain Protein SH3P2, Which Binds to Phosphatidylinositol 3-Phosphate and ATG8, Regulates Autophagosome Formation in Arabidopsis[C][W

    PubMed Central

    Zhuang, Xiaohong; Wang, Hao; Lam, Sheung Kwan; Gao, Caiji; Wang, Xiangfeng; Cai, Yi; Jiang, Liwen

    2013-01-01

    Autophagy is a well-defined catabolic mechanism whereby cytoplasmic materials are engulfed into a structure termed the autophagosome. In plants, little is known about the underlying mechanism of autophagosome formation. In this study, we report that SH3 DOMAIN-CONTAINING PROTEIN2 (SH3P2), a Bin-Amphiphysin-Rvs domain–containing protein, translocates to the phagophore assembly site/preautophagosome structure (PAS) upon autophagy induction and actively participates in the membrane deformation process. Using the SH3P2–green fluorescent protein fusion as a reporter, we found that the PAS develops from a cup-shaped isolation membranes or endoplasmic reticulum–derived omegasome-like structures. Using an inducible RNA interference (RNAi) approach, we show that RNAi knockdown of SH3P2 is developmentally lethal and significantly suppresses autophagosome formation. An in vitro membrane/lipid binding assay demonstrates that SH3P2 is a membrane-associated protein that binds to phosphatidylinositol 3-phosphate. SH3P2 may facilitate membrane expansion or maturation in coordination with the phosphatidylinositol 3-kinase (PI3K) complex during autophagy, as SH3P2 promotes PI3K foci formation, while PI3K inhibitor treatment inhibits SH3P2 from translocating to autophagosomes. Further interaction analysis shows that SH3P2 associates with the PI3K complex and interacts with ATG8s in Arabidopsis thaliana, whereby SH3P2 may mediate autophagy. Thus, our study has identified SH3P2 as a novel regulator of autophagy and provided a conserved model for autophagosome biogenesis in Arabidopsis. PMID:24249832

  9. Upregulation of heme oxygenase-1 by Epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/Akt and ERK pathways.

    PubMed

    Wu, C C; Hsu, M C; Hsieh, C W; Lin, J B; Lai, P H; Wung, B S

    2006-05-15

    Heme oxygenase-1 (HO-1) is a cytoprotective enzyme activated by various phytochemicals and we examined the ability of Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, to upregulate HO-1 expression in endothelial cells (ECs). We demonstrate that EGCG induces HO-1 expression in a concentration- and time-dependent manner. Furthermore, EGCG-mediated HO-1 induction was abrogated in the presence of actinomycin D and cycloheximide, indicating that this upregulation of HO-1 occurred at the transcriptional level. EGCG also upregulates Nrf2 levels in nuclear extracts and increases ARE-luciferase activity. Furthermore, EGCG is the most potent inducer of HO-1 expression of the different green tea constituents that we analyzed, but had no detectable cytotoxic effects over the 25-100 microM dosage range. The inhibition of intracellular ROS production by N-acetylcysteine (NAC), glutathione (GSH), superoxide dismutase (SOD), catalase and the mitochondrial complex I inhibitor, rotenone, results in a decrease in EGCG-dependent HO-1 expression. In addition, we determined that tyrosine kinase is involved in EGCG induction of HO-1 as this is abrogated by genistein. ECs treated with EGCG exhibit activation of Akt and ERK1/2. In addition, pharmacological inhibitors of phosphatidylinositol 3-kinase and MEK1/2, which are upstream of Akt and ERK1/2, respectively, attenuate EGCG-induced HO-1 expression. On the other hand, pretreatment of these cells with EGCG exerts significant cytoprotective effects against H2O2, suggesting that the induction of HO-1 is an important component in the protection against oxidative stress. Hence, EGCG is a novel phytochemical inducer of HO-1 expression and we further identify the principal underlying mechanisms involved in this process. PMID:16378625

  10. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana.

    PubMed

    Fujimoto, Masaru; Suda, Yasuyuki; Vernhettes, Samantha; Nakano, Akihiko; Ueda, Takashi

    2015-02-01

    The oriented deposition of cellulose microfibrils in the plant cell wall plays a crucial role in various plant functions such as cell growth, organ formation and defense responses. Cellulose is synthesized by cellulose synthase complexes (CSCs) embedded in the plasma membrane (PM), which comprise the cellulose synthases (CESAs). The abundance and localization of CSCs at the PM should be strictly controlled for precise regulation of cellulose deposition, which strongly depends on the membrane trafficking system. However, the mechanism of the intracellular transport of CSCs is still poorly understood. In this study, we explored requirements for phosphoinositides (PIs) in CESA trafficking by analyzing the effects of inhibitors of PI synthesis in Arabidopsis thaliana expressing green fluorescent protein-tagged CESA3 (GFP-CESA3). We found that a shift to a sucrose-free condition accelerated re-localization of PM-localized GFP-CESA3 into the periphery of the Golgi apparatus via the clathrin-enriched trans-Golgi network (TGN). Treatment with wortmannin (Wm), an inhibitor of phosphatidylinositol 3- (PI3K) and 4- (PI4K) kinases, and phenylarsine oxide (PAO), a more specific inhibitor for PI4K, inhibited internalization of GFP-CESA3 from the PM. In contrast, treatment with LY294002, which impairs the PI3K activity, did not exert such an inhibitory effect on the sequestration of GFP-CESA3, but caused a predominant accumulation of GFP-CESA3 at the ring-shaped periphery of the Golgi apparatus, resulting in the removal of GFP-CESA3 from the PM. These results indicate that PIs are essential elements for localization and intracellular transport of CESA3 and that PI4K and PI3K are required for distinct steps in secretory and/or endocytic trafficking of CESA3. PMID:25516570

  11. Activation of phosphatidylinositol 3-kinase/Akt signaling mediates sorafenib-induced invasion and metastasis in hepatocellular carcinoma.

    PubMed

    Wang, Haiyong; Xu, Litao; Zhu, Xiaoyan; Wang, Peng; Chi, Huiying; Meng, Zhiqiang

    2014-10-01

    Sorafenib, an antiangiogenic agent, can promote tumor invasion and metastasis. The phosphatidylinositol 3-kinase (PI3K)/Akt/Snail-dependent pathway plays an important role in tumor invasion and metastasis. Yet, little is known concerning the role of the PI3K/Akt/Snail-dependent pathway in sorafenib‑induced invasion and metastasis of hepatic carcinoma (HCC). A human HCC orthotopic xenograft model was established, and sorafenib (30 mg/kg/day) was administered orally. Tumor growth and intrahepatic metastasis were assessed, and immunohistochemistry was applied to analyze the activation of the PI3K/Akt/Snail-dependent pathway. HCC cell lines were treated with sorafenib (1, 5 and 10 µM), and proliferation, migration and invasion were assessed. Western blotting and real-time polymerase chain reaction (RT-PCR) were used to examine the related gene expression of epithelial-mesenchymal transition (EMT) markers and the PI3K/Akt/Snail-dependent pathway. Sorafenib inhibited tumor growth and promoted intrahepatic invasion and metastasis of the orthotopic tumors grown from SMMC7721-GFP cells in vivo. Additionally, sorafenib promoted EMT and invasion and metastasis of HCC cells in vitro. Importantly, sorafenib enhanced PI3K and Akt activation and upregulation of the expression of transcription factor Snail, a critical EMT mediator. The upregulation of transcription factor Snail expression by sorafenib may be related to activation of the PI3K/AKT signaling pathway. The PI3K/Akt/Snail-dependent pathway may mediate the pro-invasive and pro-metastatic effects of sorafenib on HCC by inducing EMT. PMID:25070581

  12. Acute effects of dichloroacetate in the depancreatized dog: glucose synthesis and turnover.

    PubMed

    Searle, G L; Felts, J M; Shakelford, R

    1982-07-01

    Blood glucose turnover (entry and removal rates) and the rate of recycling of radiolabelled glucose carbon into newly synthesized blood glucose have been evaluated before and acutely after the administration of dichloroacetate to depancreatized dogs. Blood glucose concentration began to decline immediately after dichloroacetate administration and fell to new steady state levels within 1.5-3 h. Analysis of blood glucose kinetics during the decline demonstrated a 52% (average) reduction in the rate of hepatic glucose supply. Glucose supply remained reduced over the duration of these studies (3-4.5 h). Glucose turnover in the steady state following dichloroacetate administration averaged 62% of pretreatment values. Cori cycle activity was depressed by 63% after dichloroacetate administration. The results of these studies are consistent with the hypothesis that a major mechanism underlying the hypoglycaemic action of this drug is the inhibition of glucose synthesis. PMID:7117727

  13. Organizational commitment and turnover of nursing home administrators.

    PubMed

    Castle, Nicholas G

    2006-01-01

    In this investigation, the associations between organizational commitment (OC), intent-to-turnover, and actual turnover of a large sample of nursing home administrators (NHAs) are examined. Data used come from a mail survey, from which 632 responses were received from the NHAs (response rate = 63%). The one-year turnover rate of NHAs was 39 percent, and in almost all cases (87%) these NHAs had also exhibited low OC scores. The intent-to-turnover results show thinking about quitting comes before searching for a new position, which in turn both comes before the intention to quit. Multivariate analyses show work overload has a strong and robust association with both intent-to-turnover and turnover of NHAs, and may indicate that NHAs are leaving their positions because they are understaffed. PMID:16648695

  14. The implications of linking the dynamic performance and turnover literatures.

    PubMed

    Sturman, M C; Trevor, C O

    2001-08-01

    This article examines how the literatures of dynamic performance and the performance-turnover relationship inform each other. The nonrandom performance turnover relationship suggests that dynamic performance studies may be biased by their elimination of participants who do not remain for the entire study period. The authors demonstrated that the performance slopes of those who leave an organization differ from the performance slopes of those who remain. This finding suggests that studies of the performance-turnover relationship need to consider employee performance trends when predicting turnover. Replicating and extending the research of D. A. Harrison, M. Virick, and S. William (1996), the authors found that performance changes from the previous month and performance trends measured over a longer time period explained variance in voluntary turnover beyond current performance. Finally, the authors showed that performance trends interacted with current performance in the prediction of voluntary turnover. PMID:11519652

  15. Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions

    SciTech Connect

    Conn, P.J.; Sanders-Bush, E.

    1985-07-01

    In rat cerebral cortex, serotonin (5-HT) stimulates phosphoinositide turnover with an EC50 of 1 microM in the presence of pargyline. The EC50 is 16-fold higher in the absence of pargyline. Selective S2 antagonists inhibit 5-HT-stimulated phosphoinositide turnover. Schild analysis of the blockade by ketanserin of the 5-HT effect gives an estimated Kd of ketanserin for the phosphoinositide-linked receptor of 11.7 nM, which agrees with the Kd (3.5 nM) of (/sup 3/H)ketanserin for the S2 site. Furthermore, MK-212, 5-HT and 5-fluorotryptamine stimulate phosphoinositide turnover with potencies that resemble their potencies at the S2 but not the S1 binding site. Of 11 agonists tested, the tryptamine derivatives tend to be more efficacious than the piperazine derivatives. The selective S1 agonist 8-hydroxy-2-(di-N-propylamino)tetralin is inactive at stimulating phosphoinositide turnover. No significant relationship exists between the regional distributions of 5-HT-stimulated phosphoinositide turnover and S2 binding sites. Furthermore, the S2 antagonist ketanserin is less potent and less efficacious in hippocampus and limbic forebrain than in cerebral cortex. These data suggest that 5-HT-stimulated phosphoinositide turnover is linked to the S2 binding site in rat cerebral cortex. However, 5-HT increases phosphoinositide turnover in subcortical regions by mechanisms other than stimulation of the S2 receptor.

  16. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana.

    PubMed

    Leprince, Anne-Sophie; Magalhaes, Nelly; De Vos, Delphine; Bordenave, Marianne; Crilat, Emilie; Clément, Gilles; Meyer, Christian; Munnik, Teun; Savouré, Arnould

    2014-01-01

    Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose. PMID:25628629

  17. Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae.

    PubMed Central

    Flick, J S; Thorner, J

    1993-01-01

    Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphatidylinositol-specific phospholipase C (PI-PLC) generates two second messengers, inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. The polymerase chain reaction was used to isolate a Saccharomyces cerevisiae gene (PLC1) that encodes a protein of 869 amino acids (designated Plc1p) that bears greatest resemblance to the delta isoforms of mammalian PI-PLC in terms of overall sequence similarity and domain arrangement. Plc1p contains the conserved X and Y domains found in all higher eukaryotic PI-PLCs (51 and 29% identity, respectively, to the corresponding domains of rat delta 1 PI-PLC) and also contains a presumptive Ca(2+)-binding site (an E-F hand motif). Plc1p, modified by in-frame insertion of a His6 tract and a c-myc epitope near its amino terminus, was overexpressed from the GAL1 promoter, partially purified by nickel chelate affinity chromatography, and shown to be an active PLC enzyme in vitro with properties similar to those of its mammalian counterparts. Plc1p activity was strictly Ca2+ dependent: at a high Ca2+ concentration (0.1 mM), the enzyme hydrolyzed PIP2 at a faster rate than phosphatidylinositol, and at a low Ca2+ concentration (0.5 microM), it hydrolyzed PIP2 exclusively. Cells carrying either of two different deletion-insertion mutations (plc1 delta 1::HIS3 and plc1 delta 2::LEU2) were viable but displayed several distinctive phenotypes, including temperature-sensitive growth (inviable above 35 degrees C), osmotic sensitivity, and defects in the utilization of galactose, raffinose, and glycerol at permissive temperatures (23 to 30 degrees C). The findings reported here suggest that hydrolysis of PIP2 in S. cerevisiae is required for a number of nutritional and stress-related responses. Images PMID:8395015

  18. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    PubMed Central

    Leprince, Anne-Sophie; Magalhaes, Nelly; De Vos, Delphine; Bordenave, Marianne; Crilat, Emilie; Clément, Gilles; Meyer, Christian; Munnik, Teun; Savouré, Arnould

    2015-01-01

    Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose. PMID:25628629

  19. Turnover intentions and voluntary turnover: the moderating roles of self-monitoring, locus of control, proactive personality, and risk aversion.

    PubMed

    Allen, David G; Weeks, Kelly P; Moffitt, Karen R

    2005-09-01

    This article explores moderators of the relationship between turnover intentions and turnover behavior to better explain why some employees translate intentions into behavior and other employees do not. Individual differences in self-monitoring, locus of control, proactive personality, and risk aversion were examined. Results indicate that self-monitoring and risk aversion moderate the intentions-turnover link. Specifically, the relationship between turnover intentions and turnover is stronger for low self-monitors and those lower in risk aversion. Locus of control moderated the relationship in 1 of 2 samples such that the relationship was stronger for those with an internal locus of control. Proactive personality, however, did not directly moderate the relationship between intentions and turnover behaviors. PMID:16162070

  20. Dynamics of Adipocyte Turnover in Humans

    SciTech Connect

    Spalding, K; Arner, E; Westermark, P; Bernard, S; Buchholz, B; Bergmann, O; Blomqvist, L; Hoffstedt, J; Naslund, E; Britton, T; Concha, H; Hassan, M; Ryden, M; Frisen, J; Arner, P

    2007-07-16

    Obesity is increasing in an epidemic fashion in most countries and constitutes a public health problem by enhancing the risk for cardiovascular disease and metabolic disorders such as type 2 diabetes. Owing to the increase in obesity, life expectancy may start to decrease in developed countries for the first time in recent history. The factors determining fat mass in adult humans are not fully understood, but increased lipid storage in already developed fat cells is thought to be most important. We show that adipocyte number is a major determinant for the fat mass in adults. However, the number of fat cells stays constant in adulthood in lean and obese and even under extreme conditions, indicating that the number of adipocytes is set during childhood and adolescence. To establish the dynamics within the stable population of adipocytes in adults, we have measured adipocyte turnover by analyzing the integration of {sup 14}C derived from nuclear bomb tests in genomic DNA. Approximately 10% of fat cells are renewed annually at all adult ages and levels of body mass index. Neither adipocyte death nor generation rate is altered in obesity, suggesting a tight regulation of fat cell number that is independent of metabolic profile in adulthood. The high turnover of adipocytes establishes a new therapeutic target for pharmacological intervention in obesity.

  1. Cytoplasmic mRNA turnover and ageing

    PubMed Central

    Borbolis, Fivos; Syntichaki, Popi

    2015-01-01

    Messenger RNA (mRNA) turnover that determines the lifetime of cytoplasmic mRNAs is a means to control gene expression under both normal and stress conditions, whereas its impact on ageing and age-related disorders has just become evident. Gene expression control is achieved at the level of the mRNA clearance as well as mRNA stability and accessibility to other molecules. All these processes are regulated by cis-acting motifs and trans-acting factors that determine the rates of translation and degradation of transcripts. Specific messenger RNA granules that harbor the mRNA decay machinery or various factors, involved in translational repression and transient storage of mRNAs, are also part of the mRNA fate regulation. Their assembly and function can be modulated to promote stress resistance to adverse conditions and over time affect the ageing process and the lifespan of the organism. Here, we provide insights into the complex relationships of ageing modulators and mRNA turnover mechanisms. PMID:26432921

  2. Activation of exocytosis by cross-linking of the IgE receptor is dependent on ADP-ribosylation factor 1-regulated phospholipase D in RBL-2H3 mast cells: evidence that the mechanism of activation is via regulation of phosphatidylinositol 4,5-bisphosphate synthesis.

    PubMed Central

    Way, G; O'luanaigh, N; Cockcroft, S

    2000-01-01

    The physiological stimulus to exocytosis in mast cells is the cross-linking of the high-affinity IgE receptor, FcepsilonR1, with antigen. We demonstrate a novel function for ADP-ribosylation factor 1 (ARF1) in the regulation of antigen-stimulated secretion using cytosol-depleted RBL-2H3 mast cells for reconstitution of secretory responses. When antigen is used as the stimulus, ARF1 also reconstitutes phospholipase D activation. Using ethanol to divert the phosphatidic acid (the product of phospholipase D activity) to phosphatidylethanol causes inhibition of ARF1-reconstituted secretion. In addition. ARF1 causes an increase in phosphatidylinositol 4,5-bisphosphate (PIP(2)) levels at the expense of phosphatidylinositol 4-monophosphate. The requirement for PIP(2) in exocytosis was confirmed by using phosphatidylinositol transfer protein (PITPalpha) to increase PIP(2) levels. Exocytosis, restored by either ARF1 or PITPalpha, was inhibited when PIP(2) levels were depleted by phospholipase Cdelta1. We conclude that the function of ARF1 and PITPalpha is to increase the local synthesis of PIP(2), the function of which in exocytosis is likely to be linked to lipid-protein interactions, whereby recruitment of key components of the exocytotic machinery are targeted to the appropriate membrane compartment. PMID:10657240

  3. ZSTK474, a specific class I phosphatidylinositol 3-kinase inhibitor, induces G1 arrest and autophagy in human breast cancer MCF-7 cells

    PubMed Central

    Wang, Yaochen; Liu, Jing; Qiu, Yuling; Jin, Meihua; Chen, Xi; Fan, Guanwei; Wang, Ran; Kong, Dexin

    2016-01-01

    Multifaceted activities of class I phosphatidylinositol 3-kinase (PI3K) inhibitor ZSTK474 were investigated on human breast cancer cell MCF-7. ZSTK474 inhibited proliferation of MCF-7 cells potently. Flow cytometric analysis indicated that ZSTK474 induced cell cycle arrest at G1 phase, but no obvious apoptosis occurred. Western blot analysis suggested that blockade of PI3K/Akt/GSK-3β/cyclin D1/p-Rb pathway might contribute to the G1 arrest induced. Moreover, we demonstrated that ZSTK474 induced autophagy in MCF-7 cells by use of various assays including monodansylcadaverine (MDC) staining, transmission electron microscopy (TEM), tandem mRFP-GFP-LC3 fluorescence microscopy, and western blot detection of the autophagy protein markers of LC3B II, p62 and Atg 5. Inhibition of class I PI3K and the downstream mTOR might be involved in the autophagy-inducing effect. Combinational use of ZSTK474 and autophagy inhibitors enhanced cell viability, suggesting ZSTK474-induced autophagy might contribute to the antitumor activity. Our report supports the application of ZSTK474, which is being evaluated in clinical trials, for breast cancer therapy. PMID:26918351

  4. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation.

    PubMed Central

    King, W G; Mattaliano, M D; Chan, T O; Tsichlis, P N; Brugge, J S

    1997-01-01

    Cell attachment to fibronectin stimulates the integrin-dependent interaction of p85-associated phosphatidylinositol (PI) 3-kinase with integrin-dependent focal adhesion kinase (FAK) as well as activation of the Ras/mitogen-activated protein (MAP) kinase pathway. However, it is not known if this PI 3-kinase-FAK interaction increases the synthesis of the 3-phosphorylated phosphoinositides (3-PPIs) or what role, if any, is played by activated PI 3-kinase in integrin signaling. We demonstrate here the integrin-dependent accumulation of the PI 3-kinase products, PI 3,4-bisphosphate [PI(3,4)P2] and PI(3,4,5)P3, as well as activation of AKT kinase, a serine/threonine kinase that can be stimulated by binding of PI(3,4)P2. The PI 3-kinase inhibitors wortmannin and LY294002 significantly decreased the integrin-induced accumulation of the 3-PPIs and activation of AKT kinase, without having significant effects on the levels of PI(4,5)P2 or tyrosine phosphorylation of paxillin. These inhibitors also reduced cell adhesion/spreading onto fibronectin but had no effect on attachment to polylysine. Interestingly, integrin-mediated Erk-2, Mek-1, and Raf-1 activation, but not Ras-GTP loading, was inhibited at least 80% by wortmannin and LY294002. In support of the pharmacologic results, fibronectin activation of Erk-2 and AKT kinases was completely inhibited by overexpression of a dominant interfering p85 subunit of PI 3-kinase. We conclude that integrin-mediated adhesion to fibronectin results in the accumulation of the PI 3-kinase products PI(3,4)P2 and PI(3,4,5)P3 as well as the PI 3-kinase-dependent activation of the kinases Raf-1, Mek-1, Erk-2, and AKT and that PI 3-kinase may function upstream of Raf-1 but downstream of Ras in integrin activation of Erk-2 MAP and AKT kinases. PMID:9234699

  5. Inhibitory actions of the phosphatidylinositol 3-kinase inhibitor LY294002 on the human Kv1.5 channel

    PubMed Central

    Wu, J; Ding, W-G; Matsuura, H; Tsuji, K; Zang, W-J; Horie, M

    2009-01-01

    Background and purpose: Kv1.5 channels conduct the ultra-rapid delayed rectifier potassium current (IKur), and in humans, Kv1.5 channels are highly expressed in cardiac atria but are scarce in ventricles. Pharmacological blockade of human Kv1.5 (hKv1.5) has been regarded as effective for prevention and treatment of re-entry-based atrial tachyarrhythmias. Here we examined blockade of hKv1.5 channels by LY294002, a well-known inhibitor of phosphatidylinositol 3-kinase (PI3K). Experimental approach: hKv1.5 channels were heterologously expressed in Chinese hamster ovary cells. Effects of LY294002 on wild-type and mutant (T462C, H463C, T480A, R487V, A501V, I502A, I508A, L510A and V516A) hKv1.5 channels were examined by using the whole-cell patch-clamp method. Key results: LY294002 rapidly and reversibly inhibited hKv1.5 current in a concentration-dependent manner (IC50 of 7.9 µmol·L−1). In contrast, wortmannin, a structurally distinct inhibitor of PI3K, had little inhibitory effect on hKv1.5 current. LY294002 block of hKv1.5 current developed with time during depolarizing voltage-clamp steps, and this blockade was also voltage-dependent with a steep increase over the voltage range for channel openings. The apparent binding (k+1) and unbinding (k−1) rate constants were calculated to be 1.6 µmol·L−1−1·s−1 and 5.7 s−1 respectively. Inhibition by LY294002 was significantly reduced in several hKv1.5 mutant channels: T480A, R487V, I502A, I508A, L510A and V516A. Conclusions and implications: LY294002 acts directly on hKv1.5 currents as an open channel blocker, independently of its effects on PI3K activity. Amino acid residues located in the pore region (Thr480, Arg487) and the S6 segment (Ile502, Ile508, Leu510, Val516) appear to constitute potential binding sites for LY294002. PMID:19154427

  6. Total synthesis of tetraacylated phosphatidylinositol hexamannoside and evaluation of its immunomodulatory activity

    PubMed Central

    Patil, Pratap S.; Cheng, Ting-Jen Rachel; Zulueta, Medel Manuel L.; Yang, Shih-Ting; Lico, Larry S.; Hung, Shang-Cheng

    2015-01-01

    Tuberculosis, aggravated by drug-resistant strains and HIV co-infection of the causative agent Mycobacterium tuberculosis, is a global problem that affects millions of people. With essential immunoregulatory roles, phosphatidylinositol mannosides are among the cell-envelope components critical to the pathogenesis and survival of M. tuberculosis inside its host. Here we report the first synthesis of the highly complex tetraacylated phosphatidylinositol hexamannoside (Ac2PIM6), having stearic and tuberculostearic acids as lipid components. Our effort makes use of stereoelectronic and steric effects to control the regioselective and stereoselective outcomes and minimize the synthetic steps, particularly in the key desymmetrization and functionalization of myo-inositol. A short synthesis of tuberculostearic acid in six steps from the Roche ester is also described. Mice exposed to the synthesized Ac2PIM6 exhibit increased production of interleukin-4 and interferon-γ, and the corresponding adjuvant effect is shown by the induction of ovalbumin- and tetanus toxoid-specific antibodies. PMID:26037164

  7. Phosphatidylinositol 4-Phosphate 5-Kinase β Controls Recruitment of Lipid Rafts into the Immunological Synapse.

    PubMed

    Kallikourdis, Marinos; Trovato, Anna Elisa; Roselli, Giuliana; Muscolini, Michela; Porciello, Nicla; Tuosto, Loretta; Viola, Antonella

    2016-02-15

    Phosphatidylinositol 4,5-biphosphate (PIP2) is critical for T lymphocyte activation serving as a substrate for the generation of second messengers and the remodeling of actin cytoskeleton necessary for the clustering of lipid rafts, TCR, and costimulatory receptors toward the T:APC interface. Spatiotemporal analysis of PIP2 synthesis in T lymphocytes suggested that distinct isoforms of the main PIP2-generating enzyme, phosphatidylinositol 4-phosphate 5-kinase (PIP5K), play a differential role on the basis of their distinct localization. In this study, we analyze the contribution of PIP5Kβ to T cell activation and show that CD28 induces the recruitment of PIP5Kβ to the immunological synapse, where it regulates filamin A and lipid raft accumulation, as well as T cell activation, in a nonredundant manner. Finally, we found that Vav1 and the C-terminal 83 aa of PIP5Kβ are pivotal for the PIP5Kβ regulatory functions in response to CD28 stimulation. PMID:26773155

  8. Localized Biphasic Changes in Phosphatidylinositol-4,5-Bisphosphate at Sites of Phagocytosis

    PubMed Central

    Botelho, Roberto J.; Teruel, Mary; Dierckman, Renee; Anderson, Richard; Wells, Alan; York, John D.; Meyer, Tobias; Grinstein, Sergio

    2000-01-01

    Phagocytosis requires localized and transient remodeling of actin filaments. Phosphoinositide signaling is believed to play an important role in cytoskeletal organization, but it is unclear whether lipids, which can diffuse along the membrane, can mediate the focal actin assembly required for phagocytosis. We used imaging of fluorescent chimeras of pleckstrin homology and C1 domains in live macrophages to monitor the distribution of phosphatidylinositol-4,5-bisphosphate (4,5-PIP2) and diacylglycerol, respectively, during phagocytosis. Our results reveal a sequence of exquisitely localized, coordinated steps in phospholipid metabolism: a focal, rapid accumulation of 4,5-PIP2 accompanied by recruitment of type Iα phosphatidylinositol phosphate kinase to the phagosomal cup, followed by disappearance of the phosphoinositide as the phagosome seals. Loss of 4,5-PIP2 correlated with mobilization of phospholipase Cγ (PLCγ) and with the localized formation of diacylglycerol. The presence of 4,5-PIP2 and active PLCγ at the phagosome was shown to be essential for effective particle ingestion. The temporal sequence of phosphoinositide metabolism suggests that accumulation of 4,5-PIP2 is involved in the initial recruitment of actin to the phagocytic cup, while its degradation contributes to the subsequent cytoskeletal remodeling. PMID:11134066

  9. Tumor Phosphatidylinositol-3-Kinase Signaling and Development of Metastatic Disease in Locally Advanced Rectal Cancer

    PubMed Central

    Ree, Anne Hansen; Kristensen, Annette Torgunrud; Saelen, Marie Grøn; de Wijn, Rik; Edvardsen, Hege; Jovanovic, Jovana; Abrahamsen, Torveig Weum; Dueland, Svein; Flatmark, Kjersti

    2012-01-01

    Background Recognizing EGFR as key orchestrator of the metastatic process in colorectal cancer, but also the substantial heterogeneity of responses to anti-EGFR therapy, we examined the pattern of composite tumor kinase activities governed by EGFR-mediated signaling that might be implicated in development of metastatic disease. Patients and Methods Point mutations in KRAS, BRAF, and PIK3CA and ERBB2 amplification were determined in primary tumors from 63 patients with locally advanced rectal cancer scheduled for radical treatment. Using peptide arrays with tyrosine kinase substrates, ex vivo phosphopeptide profiles were generated from the same baseline tumor samples and correlated to metastasis-free survival. Results Unsupervised clustering analysis of the resulting phosphorylation of 102 array substrates defined two tumor classes, both consisting of cases with and without KRAS/BRAF mutations. The smaller cluster group of patients, with tumors generating high ex vivo phosphorylation of phosphatidylinositol-3-kinase-related substrates, had a particularly aggressive disease course, with almost a half of patients developing metastatic disease within one year of follow-up. Conclusion High phosphatidylinositol-3-kinase-mediated signaling activity of the primary tumor, rather than KRAS/BRAF mutation status, was identified as a hallmark of poor metastasis-free survival in patients with locally advanced rectal cancer undergoing radical treatment of the pelvic cavity. PMID:23226389

  10. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy

    PubMed Central

    Yu, Xinlei; Long, Yun Chau; Shen, Han-Ming

    2015-01-01

    Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases. PMID:26018563

  11. Chemical Synthesis and Molecular Recognition of Phosphatase-Resistant Analogues of Phosphatidylinositol-3-phosphate

    PubMed Central

    Xu, Yong; Lee, Stephanie A.; Kutateladze, Tatiana G.; Sbrissa, Diego; Shisheva, Assia; Prestwich, Glenn D.

    2008-01-01

    The remodeling of phosphatidylinositol polyphosphates in cellular membranes by phosphatases and kinases orchestrates the signaling by these lipids in space and time. In order to provide chemical tools to study of the changes in cell physiology mediated by these lipids, three new metabolically-stabilized (ms) analogues of phosphatidylinositol-3-phosphate (PtdIns(3)P were synthesized. We describe herein the total asymmetric synthesis of 3-methylphosphonate, 3-monofluoromethylphosphonate and 3-phosphorothioate analogues of PtdIns(3)P. From differentially protected D-myo-inositol key intermediates, a versatile phosphoramidite reagent was employed in the synthesis of PtdIns(3)P analogues with diacylglyceryl moieties containing dioleoyl, dipalmitoyl and dibutyryl chains. In addition, we introduce a new phosphorlyation reagent, monofluoromethylphosphonyl chloride, which has general applications for the preparation of “pKa-matched” monofluorophosphonates. These ms-PtdIns(3)P analogues exhibited reduced binding activities with 15N-labelled FYVE and PX domains, as significant 1H and 15N chemical shift changes in the FYVE domain were induced by titrating ms-PtdIns(3)Ps into membrane-mimetic dodecylphosphocholine (DPC) micelles. In addition, the PtdIns(3)P analogues with dioleyl and dipalmitoyl chains were substrates for the 5-kinase enzyme PIKfyve; the corresponding phosphorylated ms-PI(3,5)P2 products were detected by radio-TLC analysis. PMID:16417379

  12. Identification of the Interactome of a Palmitoylated Membrane Protein, Phosphatidylinositol 4-Kinase Type II Alpha.

    PubMed

    Gokhale, Avanti; Ryder, Pearl V; Zlatic, Stephanie A; Faundez, Victor

    2016-01-01

    Phosphatidylinositol 4-kinases (PI4K) are enzymes responsible for the production of phosphatidylinositol 4-phosphates, important intermediates in several cell signaling pathways. PI4KIIα is the most abundant membrane-associated kinase in mammalian cells and is involved in a variety of essential cellular functions. However, the precise role(s) of PI4KIIα in the cell is not yet completely deciphered. Here we present an experimental protocol that uses a chemical cross-linker, DSP, combined with immunoprecipitation and immunoaffinity purification to identify novel PI4KIIα interactors. As predicted, PI4KIIα participates in transient, low-affinity interactions that are stabilized by the use of DSP. Using this optimized protocol we have successfully identified actin cytoskeleton regulators-the WASH complex and RhoGEF1, as major novel interactors of PI4KIIα. While this chapter focuses on the PI4KIIα interactome, this protocol can and has been used to generate other membrane interactome networks. PMID:26552673

  13. Phosphatidylinositol 4,5-bisphosphate phospholipase C and phosphomonoesterase in Dunaliella salina membranes

    SciTech Connect

    Einspahr, K.J.; Peeler, T.C.; Thompson, G.A. Jr. )

    1989-07-01

    In comparison with other cell organelles, the Dunaliella salina plasma membrane was found to be highly enriched in phospholipase C activity toward exogenous ({sup 3}H)phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}). Based on release of ({sup 3}H)inositol phosphates, the plasma membrane exhibited a PIP{sub 2}-phospholipase C activity nearly tenfold higher than the nonplasmalemmal, nonchloroplast bottom phase (BP) membrane fraction and 47 times higher than the chloroplast membrane fraction. The majority of phospholipase activity was clearly of a phospholipase C nature since over 80% of ({sup 3}H)inositol phosphates released were recovered as ({sup 3}H)inositol trisphosphate (IP{sub 3}). These results suggest a plausible mechanism for the rapid breakdown of PIP{sub 2} and phosphatidylinositol 4-phosphate (PIP) following hypoosmotic shock. The authors have also examined some of the in vitro characteristics of the plasma membrane phospholipase C activity and have found it to be calcium sensitive, reaching maximal activity at 10 micromolar free (Ca{sup 2+}). They also report here that 100 micromolar GTP{gamma}S stimulates phospholipase C activity over a range of free (Ca{sup 2+}). Together, these results provide evidence that the plasma membrane PIP{sub 2}-phospholipase C of D. salina may be subject to Ca{sup 2+} and G-protein regulation.

  14. Protein turnover, nitrogen balance and rehabilitation.

    PubMed

    Fern, E B; Waterlow, J C

    1983-01-01

    Not many studies have been done on protein turnover during recovery from malnutrition. Some relevant information can, however, be obtained from measurements on normal growing animals, since rehabilitation and normal growth have in common a rapid rate of net protein synthesis. The key question is the extent to which net gain in protein results from an increase in synthesis or a decrease in breakdown or both. Different studies have used different methods, and all methods for measuring protein turnover have some disadvantages and sources of error. It is important to bear this in mind in evaluating the results. Consequently, part of this paper will be devoted to questions of methodology. Whole body protein turnover has been measured in children recovering from severe malnutrition. During the phase of rapid catch-up growth the rate of protein synthesis is increased. As might be expected, it increases linearly with the rate of weight gain. At the same time there is a smaller increase in the rate of protein breakdown. The resultant of these two processes is that, over and above the basal rate of protein synthesis, 1.4 grams of protein have to be synthesized for 1 gram to be laid down. Very similar results have been obtained in rapidly growing young pigs. Experimental studies on muscle growth in general confirm the conclusion that, at least in muscle, rapid growth is associated with rapid rates of protein breakdown as well as of synthesis. This has been shown in muscles of young growing rats, as well as in muscles in which hypertrophy has been induced by stretch or other stimuli. In contrast, the evidence suggests that rapid growth involves a fall in the rate of protein degradation. The magnitude of the nitrogen balance under any conditions is determined by the difference between synthesis and breakdown. In the absence of any storage of amino acids, this must be the same as the difference between intake and excretion (S - B = I - E). A question of great interest is whether

  15. Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites

    SciTech Connect

    de Chaffoy de Courcelles, D.; Leysen, J.E.; De Clerck, F.; Van Belle, H.; Janssen, P.A.

    1985-06-25

    Upon stimulation with serotonin of washed human platelets prelabeled with (/sup 32/P)orthophosphate, the authors found an approximately 250% increase in (/sup 32/P)phosphatidic acid (PA) formation, a small decrease in (/sup 32/P)phosphatidylinositol 4,5-bisphosphate, and a concomitant increase in (/sup 32/P)phosphatidylinositol 4-phosphate. Using (/sup 3/H)arachidonate for prelabeling, (/sup 3/H)diacylglycerol accumulated transiently at 10 s after addition of the agonist, (/sup 3/H)PA increased but to a lower extent compared to /sup 32/P-labeled lipid, and the formation of both (/sup 3/H)polyphosphoinositides increased. The serotonin-induced dose-dependent changes in (/sup 32/P)PA correlate with its effect on the changes in slope of aggregation of platelets. The potency of 13 drugs to antagonize the serotonin-induced PA formation closely corresponds to both their potency to inhibit platelet aggregation and their binding affinity for serotonin-S2 receptor sites. It is suggested that at least part of the signal transducing system following activation of the serotonin-S2 receptors involves phospholipase C catalyzed inositol lipid breakdown yielding diacylglycerol which is subsequently phosphorylated to PA.

  16. Job Search, Intentions, and Turnover: The Mismatched Trilogy.

    ERIC Educational Resources Information Center

    Kirschenbaum, Alan; Weisberg, Jacob

    1994-01-01

    Interviews with 477 Israeli blue-collar workers showed that neither intent to leave nor actual job search significantly explained actual turnover, resulting from lack of available opportunities. "Passive" search seems to occur before intent emerges; active search may bring together perceived and actual opportunities and lead to turnover. (SK)

  17. How Multiple Interventions Influenced Employee Turnover: A Case Study.

    ERIC Educational Resources Information Center

    Hatcher, Timothy

    1999-01-01

    A 3-year study of 46 textile industry workers identified causes of employee turnover (supervision, training, organizational communication) using performance analysis. A study of multiple interventions based on the analysis resulted in changes in orientation procedures, organizational leadership, and climate, reducing turnover by 24%. (SK)

  18. Estimating Cause: Teacher Turnover and School Effectiveness in Michigan

    ERIC Educational Resources Information Center

    Keesler, Venessa; Schneider, Barbara

    2010-01-01

    The purpose of this paper is investigate issues related to within-school teacher supply and school-specific teacher turnover within the state of Michigan using state administrative data on Michigan's teaching force. This paper 1) investigates the key predictors of teacher turnover and mobility, 2) develops a profile of schools that are likely to…

  19. Analysis of the Educational Personnel System: IV. Teacher Turnover.

    ERIC Educational Resources Information Center

    Keeler, Emmett B.

    This report attempts to predict the rates of teacher turnover in the 1970s, which teachers will leave the profession, and what the effects of turnover will be on the educational personnel system. The overall termination rate has varied from six to 11 percent over the last 15 years. An analysis of recent changes in the teaching profession is used…

  20. Re-Examining the Relationship between Age and Voluntary Turnover

    ERIC Educational Resources Information Center

    Ng, Thomas W. H.; Feldman, Daniel C.

    2009-01-01

    In their quantitative review of the literature, Healy, Lehman, and McDaniel [Healy, M. C., Lehman, M., & McDaniel, M. A. (1995). Age and voluntary turnover: A quantitative review. "Personnel Psychology, 48", 335-345] concluded that age is only weakly related to voluntary turnover (average r = -0.08). However, with the significant changes in…

  1. The Link between Training Satisfaction, Work Engagement and Turnover Intention

    ERIC Educational Resources Information Center

    Memon, Mumtaz Ali; Salleh, Rohani; Baharom, Mohamed Noor Rosli

    2016-01-01

    Purpose: The purpose of this paper is to examine the casual relationship between training satisfaction, work engagement (WE) and turnover intention and the mediating role of WE between training satisfaction and turnover intention. Design/methodology/approach: Data were collected from 409 oil and gas professionals using an email survey…

  2. Organizational Characteristics Associated with Staff Turnover in Nursing Homes

    ERIC Educational Resources Information Center

    Castle, Nicholas G.; Engberg, John

    2006-01-01

    Purpose: The association between certified nurse aide, licensed practical nurse, and registered nurse turnover and the organizational characteristics of nursing homes are examined. Design and Methods: Hypotheses for eight organizational characteristics are examined (staffing levels, top management turnover, resident case mix, facility quality,…

  3. Predicting Turnover: Validating the Intent to Leave Child Welfare Scale

    ERIC Educational Resources Information Center

    Auerbach, Charles; Schudrich, Wendy Zeitlin; Lawrence, Catherine K.; Claiborne, Nancy; McGowan, Brenda G.

    2014-01-01

    A number of proxies have been used in child welfare workforce research to represent actual turnover; however, there have been no psychometric studies to validate a scale specifically designed for this purpose. The Intent to Leave Child Welfare Scale is a proxy for actual turnover that measures workers' intention to leave. This scale was…

  4. Understanding the Impacts of Induction Programs on Beginning Teacher Turnover

    ERIC Educational Resources Information Center

    Kang, Seok

    2010-01-01

    This study examines impacts of mentoring and induction activities on beginning teacher turnover using the School and Staffing Survey (SASS) of 1999-2000 and the Teacher Follow-up Survey (TFS) of 2000-2001. In order to improve understanding of the influence of induction programs on beginning teacher turnover, three models are developed to achieve…

  5. Voluntary Turnover and Women Administrators in Higher Education

    ERIC Educational Resources Information Center

    Jo, Victoria H.

    2008-01-01

    A salient characteristic about the U.S. workforce is the continual process of voluntary employee turnover, which can be problematic for employers who invest a substantial amount of time and money in recruiting and training employees. This paper discusses the effects of workplace policies and practices on the voluntary turnover of women…

  6. Pexophagy and peroxisomal protein turnover in plants.

    PubMed

    Young, Pierce G; Bartel, Bonnie

    2016-05-01

    Peroxisomes are dynamic, vital organelles that sequester a variety of oxidative reactions and their toxic byproducts from the remainder of the cell. The oxidative nature of peroxisomal metabolism predisposes the organelle to self-inflicted damage, highlighting the need for a mechanism to dispose of damaged peroxisomes. In addition, the metabolic requirements of plant peroxisomes change during development, and obsolete peroxisomal proteins are degraded. Although pexophagy, the selective autophagy of peroxisomes, is an obvious mechanism for executing such degradation, pexophagy has only recently been described in plants. Several recent studies in the reference plant Arabidopsis thaliana implicate pexophagy in the turnover of peroxisomal proteins, both for quality control and during functional transitions of peroxisomal content. In this review, we describe our current understanding of the occurrence, roles, and mechanisms of pexophagy in plants. PMID:26348128

  7. Temperature dependence of turnover in a Sc(OTf)3-catalyzed intramolecular Schmidt reaction

    PubMed Central

    Fehl, Charlie; Hirt, Erin E.; Li, Sze-Wan; Aubé, Jeffrey

    2015-01-01

    The intramolecular Schmidt reaction of ketones and tethered azides is an efficient method for the generation of amides and lactams. This reaction is catalyzed by Lewis acids, which tightly bind the strongly basic amide product and result in product inhibition. We report herein conditions to achieve a catalytic Schmidt reaction using substoichiometric amounts of the heat-stable Lewis acid Sc(OTf)3. This species was shown to effectively release products of the Schmidt reaction in a temperature-dependent fashion. Thus, heat was able to promote catalyst turnover. A brief substrate scope was conducted using these conditions. PMID:26085693

  8. Role of TGF-β in a Mouse Model of High Turnover Renal Osteodystrophy†

    PubMed Central

    Liu, Shiguang; Song, Wenping; Boulanger, Joseph H; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C; Bellido, Teresita M; Ledbetter, Steven R; Schiavi, Susan C

    2014-01-01

    , our data suggests that elevated TGF-β may contribute to the pathogenesis of high turnover disease partially through inhibition of β-catenin signaling. PMID:24166835

  9. S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover.

    PubMed

    Mieulet, Virginie; Roceri, Mila; Espeillac, Catherine; Sotiropoulos, Athanassia; Ohanna, Mickael; Oorschot, Viola; Klumperman, Judith; Sandri, Marco; Pende, Mario

    2007-08-01

    A defect in protein turnover underlies multiple forms of cell atrophy. Since S6 kinase (S6K)-deficient cells are small and display a blunted response to nutrient and growth factor availability, we have hypothesized that mutant cell atrophy may be triggered by a change in global protein synthesis. By using mouse genetics and pharmacological inhibitors targeting the mammalian target of rapamycin (mTOR)/S6K pathway, here we evaluate the control of translational target phosphorylation and protein turnover by the mTOR/S6K pathway in skeletal muscle and liver tissues. The phosphorylation of ribosomal protein S6 (rpS6), eukaryotic initiation factor-4B (eIF4B), and eukaryotic elongation factor-2 (eEF2) is predominantly regulated by mTOR in muscle cells. Conversely, in liver, the MAPK and phosphatidylinositol 3-kinase pathways also play an important role, suggesting a tissue-specific control. S6K deletion in muscle mimics the effect of the mTOR inhibitor rapamycin on rpS6 and eIF4B phosphorylation without affecting eEF2 phosphorylation. To gain insight on the functional consequences of these modifications, methionine incorporation and polysomal distribution were assessed in muscle cells. Rates and rapamycin sensitivity of global translation initiation are not altered in S6K-deficient muscle cells. In addition, two major pathways of protein degradation, autophagy and expression of the muscle-specific atrophy-related E3 ubiquitin ligases, are not affected by S6K deletion. Our results do not support a role for global translational control in the growth defect due to S6K deletion, suggesting specific modes of growth control and translational target regulation downstream of mTOR. PMID:17494629

  10. Does a Corresponding Set of Variables for Explaining Voluntary Organizational Turnover Transfer to Explaining Voluntary Occupational Turnover?

    ERIC Educational Resources Information Center

    Blau, Gary

    2007-01-01

    This study proposed and tested corresponding sets of variables for explaining voluntary organizational versus occupational turnover for a sample of medical technologists. This study is believed to be the first test of the Rhodes and Doering (1983) occupational change model using occupational turnover data. Results showed that corresponding job…

  11. Long-lived reactive species formed on proteins induce changes in protein and lipid turnover.

    PubMed

    Davies, Michael

    2014-10-01

    Proteins are major targets for oxidative damage in vivo due to their high abundance and rapid rates of reaction with both one-electron (radical) and two-electron oxidants (e.g. singlet oxygen, hypochlorous acid, peroxynitrous acid, reactive aldehydes). The turnover of both native and modified proteins is critical for maintenance of cell homeostasis, with this occurring via multiple pathways including proteasomes (for cytosolic species), the Lon protease (in mitochondria), and the endo-lysosomal systems (both extra- and intra-cellular species). Evidence has been presented for both enhanced and diminished rates of catabolism of modified proteins, as well as altered turnover of native (unmodified) proteins as a result of damage to these systems, potentially as a result of the accumulation of damaged proteins. In recent studies we have shown that long-lived reactive species forms on proteins (hydroperoxides, chloramines and aldehydes) can modify the activity of proteasomal and lysosomal enzymes. Some of the above species are efficient inhibitors of the tryptic and chymotryptic activities of the 26S proteasome, as well as lysosomal cathepsin and acid lipase activities. These are key species in the turnover of both proteins and lipoproteins. The loss of enzyme activity is accompanied in many cases, by oxidation of critical thiol residues via molecular reactions. For reactive aldehydes (either free or protein-bound) direct enzyme inhibition can occur as well as modulation of protein levels and, in the case of lysosomes, changes in lysosomal numbers. Overall, these data indicate that the formation of reactive species on proteins can modulate cell function by multiple pathways including interference with the turnover of native proteins (including critical cell signalling molecules) and alterations in the rate of clearance of modified proteins. Both pathways may contribute to the development of a number of human pathologies associated with oxidative damage. PMID:26461411

  12. Estradiol regulates the insulin-like growth factor-I (IGF-I) signalling pathway: A crucial role of phosphatidylinositol 3-kinase (PI 3-kinase) in estrogens requirement for growth of MCF-7 human breast carcinoma cells

    SciTech Connect

    Bernard, Laurence; Legay, Christine; Adriaenssens, Eric; Mougel, Alexandra; Ricort, Jean-Marc . E-mail: ricort@lbpa.ens-cachan.fr

    2006-12-01

    Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. With a view to investigating the molecular mechanisms implicated, we studied the effect of estradiol on the expression of proteins implicated in the insulin-like growth factor signalling pathway. Estradiol dose- and time-dependently increased the expression of insulin receptor substrate-1 and the p85/p110 subunits of phosphatidylinositol 3-kinase but did not change those of ERK2 and Akt/PKB. ICI 182,780 did not inhibit estradiol-induced IRS-1 and p85 expression. Moreover, two distinct estradiol-BSA conjugate compounds were as effective as estradiol in inducing IRS-1 and p85/p110 expression indicating the possible implication of an estradiol membrane receptor. Comparative analysis of steroids-depleted and steroids-treated cells showed that IGF-I only stimulates cell growth in the latter condition. Nevertheless, expression of a constitutively active form of PI 3-kinase in steroid-depleted cells triggers proliferation. These results demonstrate that estradiol positively regulates essential proteins of the IGF signalling pathway and put in evidence that phosphatidylinositol 3-kinase plays a central role in the synergistic pro-proliferative action of estradiol and IGF-I.

  13. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The internalization of oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors’ cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants ...

  14. Staff turnover in statewide implementation of ACT: relationship with ACT fidelity and other team characteristics

    PubMed Central

    Rollins, Angela L.; Salyers, Michelle P.; Tsai, Jack; Lydick, Jennifer M.

    2010-01-01

    Staff turnover on assertive community treatment (ACT) teams is a poorly understood phenomenon. This study examined annual turnover and fidelity data collected in a statewide implementation of ACT over a 5-year period. Mean annual staff turnover across all observations was 30.0%. Turnover was negatively correlated with overall fidelity at Year 1 and 3. The team approach fidelity item was negatively correlated with staff turnover at Year 3. For 13 teams with 3 years of follow-up data, turnover rates did not change over time. Most ACT staff turnover rates were comparable or better than other turnover rates reported in the mental health and substance abuse literature. PMID:20012481

  15. Mechanistic similarities in docking of the FYVE and PX domains to phosphatidylinositol 3-phosphate containing membranes

    PubMed Central

    Kutateladze, Tatiana G.

    2007-01-01

    Phosphatidylinositol 3-phosphate [PtdIns(3)P], a phospholipid produced by PI 3-kinases in early endosomes and multivesicular bodies, often serves as a marker of endosomal membranes. PtdIns(3)P recruits and activates effector proteins containing the FYVE or PX domain and therefore regulates a variety of biological processes including endo- and exocytosis, membrane trafficking, protein sorting, signal transduction and cytoskeletal rearrangement. Structures and PtdIns(3)P binding modes of several FYVE and PX domains have recently been characterized, unveiling the molecular basis underlying multiple cellular functions of these proteins. Here, structural and functional aspects and current mechanisms of the multivalent membrane anchoring by the FYVE and PX domains are reviewed and compared. PMID:17707914

  16. Propranolol Improves Impaired Hepatic Phosphatidylinositol 3-Kinase/Akt Signaling after Burn Injury

    PubMed Central

    Brooks, Natasha C; Song, Juquan; Boehning, Darren; Kraft, Robert; Finnerty, Celeste C; Herndon, David N; Jeschke, Marc G

    2012-01-01

    Severe burn injury is associated with induction of the hepatic endoplasmic reticulum (ER) stress response. ER stress leads to activation of c-Jun N-terminal kinase (JNK), suppression of insulin receptor signaling via phosphorylation of insulin receptor substrate 1 and subsequent insulin resistance. Marked and sustained increases in catecholamines are prominent after a burn. Here, we show that administration of propranolol, a nonselective β1/2 adrenergic receptor antagonist, attenuates ER stress and JNK activation. Attenuation of ER stress by propranolol results in increased insulin sensitivity, as determined by activation of hepatic phosphatidylinositol 3-kinase and Akt. We conclude that catecholamine release is responsible for the ER stress response and impaired insulin receptor signaling after burn injury. PMID:22396018

  17. Calcium Promotes the Formation of Syntaxin 1 Mesoscale Domains through Phosphatidylinositol 4,5-Bisphosphate*

    PubMed Central

    Platen, Mitja; Junius, Meike; Diederichsen, Ulf; Schaap, Iwan A. T.; Honigmann, Alf; Jahn, Reinhard; van den Bogaart, Geert

    2016-01-01

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor component of total plasma membrane lipids, but it has a substantial role in the regulation of many cellular functions, including exo- and endocytosis. Recently, it was shown that PI(4,5)P2 and syntaxin 1, a SNARE protein that catalyzes regulated exocytosis, form domains in the plasma membrane that constitute recognition sites for vesicle docking. Also, calcium was shown to promote syntaxin 1 clustering in the plasma membrane, but the molecular mechanism was unknown. Here, using a combination of superresolution stimulated emission depletion microscopy, FRET, and atomic force microscopy, we show that Ca2+ acts as a charge bridge that specifically and reversibly connects multiple syntaxin 1/PI(4,5)P2 complexes into larger mesoscale domains. This transient reorganization of the plasma membrane by physiological Ca2+ concentrations is likely to be important for Ca2+-regulated secretion. PMID:26884341

  18. Discovery of selective phosphatidylinositol 3-kinase inhibitors to treat hematological malignancies.

    PubMed

    Zhu, Jingyu; Hou, Tingjun; Mao, Xinliang

    2015-08-01

    The phosphatidylinositol 3-kinase (PI3K) signaling pathway is associated with chemoresistance and poor prognosis of many cancers, including hematological malignancies (HM), such as leukemia, lymphomas, and multiple myeloma (MM). Targeting PI3K is emerging as a promising strategy in the treatment of these blood cancers. Recent approval of idelalisib, a specific inhibitor of PI3Kδ, for the treatment of several types of HM, is likely to attract more interest in search for novel PI3K inhibitors. Here, we discuss classic and cutting-edge techniques and strategies to identify PI3K inhibitors for the treatment of HM. Each technique has its own strengths and limitations, and their combined application will accelerate the drug discovery process with fewer associated costs. PMID:25857437

  19. Clinical development of phosphatidylinositol 3-kinase inhibitors for non-Hodgkin lymphoma

    PubMed Central

    2013-01-01

    Phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway is extensively explored in cancers. It functions as an important regulator of cell growth, survival and metabolism. Activation of this pathway also predicts poor prognosis in numerous human malignancies. Drugs targeting this signaling pathway have been developed and have shown preliminary clinical activity. Accumulating evidence has highlighted the important role of PI3K in non-Hodgkin lymphoma (NHL), especially in the disease initiation and progression. Therapeutic functions of PI3K inhibitors in NHL have been demonstrated both in vivo and in vitro. This review will summarize recent advances in the activation of PI3K signaling in different types of NHL and the applications of PI3K inhibitors in NHL treatment. PMID:24252186

  20. Identification and quantification of phosphatidylinositol in infant formulas by liquid chromatography-mass spectrometry.

    PubMed

    Liu, Zhiqian; Cocks, Ben; Patel, Andy; Oglobline, Alex; Richardson, Graeme; Rochfort, Simone

    2016-08-15

    Using LC-LTQ-Orbitrap MS we were able to identify 10 major phosphatidylinositol (PI) species present in 32 infant formulas (IF) collected from Australia, Europe and the USA. Based on the species fingerprint, the 32 formulas can be classified into several distinct groups by PCA analysis; this grouping pattern reflects origin and the label information of the formulas. The total content of all PI species was determined by LC-Triple Quadrupole MS in negative MRM mode using external standard calibration. The content of PI showed large variation between formulas and was very high in certain cases, which is believed to be related to the use of soybean lecithin in these products. Our study indicates that the content and speciation of PIs have significant contribution to the total amount of inositol in all 32 products surveyed; this contribution may be important for the fine nutritional profile and biological functions of IF products. PMID:27006229

  1. Role of Phosphatidylinositol-3-Kinase Pathway in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Du, Li; Shen, Jingping; Weems, Andrew; Lu, Shi-Long

    2012-01-01

    Activation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most frequently observed molecular alterations in many human malignancies, including head and neck squamous cell carcinoma (HNSCC). A growing body of evidence demonstrates the prime importance of the PI3K pathway at each stage of tumorigenesis, that is, tumor initiation, progression, recurrence, and metastasis. Expectedly, targeting the PI3K pathway yields some promising results in both preclinical studies and clinical trials for certain cancer patients. However, there are still many questions that need to be answered, given the complexity of this pathway and the existence of its multiple feedback loops and interactions with other signaling pathways. In this paper, we will summarize recent advances in the understanding of the PI3K pathway role in human malignancies, with an emphasis on HNSCC, and discuss the clinical applications and future direction of this field. PMID:22666248

  2. Understanding the factors that determine registered nurses' turnover intentions.

    PubMed

    Osuji, Joseph; Uzoka, Faith-Michael; Aladi, Flora; El-Hussein, Mohammed

    2014-01-01

    Turnover among registered nurses (RNs) produces a negative impact on the health outcomes of any health care organization. It is also recognized universally as a problem in the nursing profession. Little is known about the turnover intentions and career orientations of RNs working in Calgary, Alberta, Canada. The aim of this study is to contribute to the knowledge of and to advance the discussion on the turnover of nursing professionals. The study population consisted of RNs employed in the five major hospitals in Calgary. There were 193 surveys returned, representing a response rate of 77.2%. The results show that age and education have a negative effect on turnover intention. Education was found to have a significant negative effect on career satisfaction but not on job satisfaction and organizational commitment. Length of service has a significant negative effect on turnover intention. Role ambiguity has significant highly negative effect on career satisfaction. Growth opportunity and supervisor support have a very significant positive effect on job satisfaction, career satisfaction, and organizational commitment. External career opportunities and organizational commitment do not seem to have a significant effect on turnover intention. Career satisfaction, on the other hand, had negative significant effects on turnover intention. PMID:25087326

  3. A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Iwasaki, Hirohide; Murata, Yoshimichi; Kim, Youngjun; Hossain, Md Israil; Worby, Carolyn A; Dixon, Jack E; McCormack, Thomas; Sasaki, Takehiko; Okamura, Yasushi

    2008-06-10

    Phosphatidylinositol lipids play diverse physiological roles, and their concentrations are tightly regulated by various kinases and phosphatases. The enzymatic activity of Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP), recently identified as a member of the PTEN (phosphatase and tensin homolog deleted on chromosome 10) family of phosphatidylinositol phosphatases, is regulated by its own voltage-sensor domain in a voltage-dependent manner. However, a detailed mechanism of Ci-VSP regulation and its substrate specificity remain unknown. Here we determined the in vitro substrate specificity of Ci-VSP by measuring the phosphoinositide phosphatase activity of the Ci-VSP cytoplasmic phosphatase domain. Despite the high degree of identity shared between the active sites of PTEN and Ci-VSP, Ci-VSP dephosphorylates not only the PTEN substrate, phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], but also, unlike PTEN, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Enzymatic action on PI(4,5)P2 removes the phosphate at position 5 of the inositol ring, resulting in the production of phosphatidylinositol 4-phosphate [PI(4)P]. The active site Cys-X(5)-Arg (CX(5)R) sequence of Ci-VSP differs with that of PTEN only at amino acid 365 where a glycine residue in Ci-VSP is replaced by an alanine in PTEN. Ci-VSP with a G365A mutation no longer dephosphorylates PI(4,5)P2 and is not capable of inducing depolarization-dependent rundown of a PI(4,5)P2-dependent potassium channel. These results indicate that Ci-VSP is a PI(3,4,5)P3/PI(4,5)P2 phosphatase that uniquely functions in the voltage-dependent regulation of ion channels through regulation of PI(4,5)P2 levels. PMID:18524949

  4. Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors.

    PubMed Central

    Hu, P; Margolis, B; Skolnik, E Y; Lammers, R; Ullrich, A; Schlessinger, J

    1992-01-01

    One of the immediate cellular responses to stimulation by various growth factors is the activation of a phosphatidylinositol (PI) 3-kinase. We recently cloned the 85-kDa subunit of PI 3-kinase (p85) from a lambda gt11 expression library, using the tyrosine-phosphorylated carboxy terminus of the epidermal growth factor (EGF) receptor as a probe (E. Y. Skolnik, B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger, Cell 65:83-90, 1991). In this study, we have examined the association of p85 with EGF and platelet-derived growth factor (PDGF) receptors and the tyrosine phosphorylation of p85 in 3T3 (HER14) cells in response to EGF and PDGF treatment. Treatment of cells with EGF or PDGF markedly increased the amount of p85 associated with EGF and PDGF receptors. Binding assays with glutathione S-transferase (GST) fusion proteins demonstrated that either Src homology region 2 (SH2) domain of p85 is sufficient for binding to EGF and PDGF receptors and that receptor tyrosine autophosphorylation is required for binding. Binding of a GST fusion protein expressing the N-terminal SH2 domain of p85 (GST-N-SH2) to EGF and PDGF receptors was half-maximally inhibited by 2 and 24 mM phosphotyrosine (P-Tyr), respectively, suggesting that the N-SH2 domain interacts more stably with PDGF receptors than with EGF receptors. The amount of receptor-p85 complex detected in HER14 cells treated with EGF or PDGF. Growth factor treatment also increased the amount of p85 found in anti-PDGF-treated HER14 cells, suggesting that the vast majority of p85 in the anti-P-Tyr fraction is receptor associated but not phosphorylated on tyrosine residues. Only upon transient overexpression of p85 and PDGF receptor did p85 become tyrosine phosphorylated. These are consistent with the hypothesis that p85 functions as an adaptor molecule that targets PI 3-kinase to activated growth factor receptors. Images PMID:1372091

  5. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235.

    PubMed

    McMillin, Douglas W; Ooi, Melissa; Delmore, Jake; Negri, Joseph; Hayden, Patrick; Mitsiades, Nicolas; Jakubikova, Jana; Maira, Sauveur-Michel; Garcia-Echeverria, Carlos; Schlossman, Robert; Munshi, Nikhil C; Richardson, Paul G; Anderson, Kenneth C; Mitsiades, Constantine S

    2009-07-15

    The phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway mediates proliferation, survival, and drug resistance in multiple myeloma (MM) cells. Here, we tested the anti-MM activity of NVP-BEZ235 (BEZ235), which inhibits PI3K/Akt/mTOR signaling at the levels of PI3K and mTOR. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric survival assays showed that MM cell lines exhibited dose- and time-dependent decreased viability after exposure to BEZ235 (IC(50), 25-800 nmol/L for 48 hours). MM cells highly sensitive (IC(50), <25 nmol/L) to BEZ235 (e.g., MM.1S, MM.1R, Dox40, and KMS-12-PE) included both lines sensitive and resistant to conventional (dexamethasone, cytotoxic chemotherapeutics) agents. Pharmacologically relevant BEZ235 concentrations (25-400 nmol/L) induced rapid commitment to and induction of MM.1S and OPM-2 cell death. Furthermore, normal donor peripheral blood mononuclear cells were less sensitive (IC(50), >800 nmol/L) than the majority of MM cell lines tested, suggesting a favorable therapeutic index. In addition, BEZ235 was able to target MM cells in the presence of exogenous interleukin-6, insulin-like growth factor-1, stromal cells, or osteoclasts, which are known to protect against various anti-MM agents. Molecular profiling revealed that BEZ235 treatment decreased the amplitude of transcriptional signatures previously associated with myc, ribosome, and proteasome function, as well as high-risk MM and undifferentiated human embryonic stem cells. In vivo xenograft studies revealed significant reduction in tumor burden (P = 0.011) and survival (P = 0.028) in BEZ235-treated human MM tumor-bearing mice. Combinations of BEZ235 with conventional (e.g., dexamethasone and doxorubicin) or novel (e.g., bortezomib) anti-MM agents showed lack of antagonism. These results indicate that BEZ235 merits clinical testing, alone and in combination with other agents, in MM. PMID:19584292

  6. Characterization of FAB1 phosphatidylinositol kinases in Arabidopsis pollen tube growth and fertilization.

    PubMed

    Serrazina, Susana; Dias, Fernando Vaz; Malhó, Rui

    2014-08-01

    In yeast and animal cells, phosphatidylinositol-3-monophosphate 5-kinases produce phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) and have been implicated in endomembrane trafficking and pH control in the vacuole. In plants, PtdIns(3,5)P2 is synthesized by the Fab1 family, four orthologs of which exist in Arabidopsis: FAB1A and FAB1B, both from the PIKfyve/Fab1 family; FAB1C and FAB1D, both without a PIKfyve domain and of unclear role. Using a reverse genetics and cell biology approach, we investigated the function of the Arabidopsis genes encoding FAB1B and FAB1D, both highly expressed in pollen. Pollen viability, germination and tube morphology were not significantly affected in homozygous mutant plants. In vivo, mutant pollen fertilized ovules leading to normal seeds and siliques. The same result was obtained when mutant ovules were fertilized with wild-type pollen. Double mutant pollen for the two genes was able to fertilize and develop plants no different from the wild-type. At the cellular level, fab1b and fab1d pollen tubes were found to exhibit perturbations in membrane recycling, vacuolar acidification and decreased production of reactive oxygen species (ROS). Subcellular imaging of FAB1B-GFP revealed that the protein localized to the endomembrane compartment, whereas FAB1D-GFP localized mostly to the cytosol and sperm cells. These results were discussed considering possible complementary roles of FAB1B and FAB1D. PMID:24807078

  7. Increasing Phosphatidylinositol (4,5)-Bisphosphate Biosynthesis Affects Basal Signaling and Chloroplast Metabolism in Arabidopsis thaliana

    PubMed Central

    Im, Yang Ju; Smith, Caroline M.; Phillippy, Brian Q.; Strand, Deserah; Kramer, David M.; Grunden, Amy M.; Boss, Wendy F.

    2014-01-01

    One challenge in studying the second messenger inositol(1,4,5)-trisphosphate (InsP3) is that it is present in very low amounts and increases only transiently in response to stimuli. To identify events downstream of InsP3, we generated transgenic plants constitutively expressing the high specific activity, human phosphatidylinositol 4-phosphate 5-kinase Iα (HsPIPKIα). PIP5K is the enzyme that synthesizes phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2); this reaction is flux limiting in InsP3 biosynthesis in plants. Plasma membranes from transgenic Arabidopsis expressing HsPIPKIα had 2–3 fold higher PIP5K specific activity, and basal InsP3 levels in seedlings and leaves were >2-fold higher than wild type. Although there was no significant difference in photosynthetic electron transport, HsPIPKIα plants had significantly higher starch (2–4 fold) and 20% higher anthocyanin compared to controls. Starch content was higher both during the day and at the end of dark period. In addition, transcripts of genes involved in starch metabolism such as SEX1 (glucan water dikinase) and SEX4 (phosphoglucan phosphatase), DBE (debranching enzyme), MEX1 (maltose transporter), APL3 (ADP-glucose pyrophosphorylase) and glucose-6-phosphate transporter (Glc6PT) were up-regulated in the HsPIPKIα plants. Our results reveal that increasing the phosphoinositide (PI) pathway affects chloroplast carbon metabolism and suggest that InsP3 is one component of an inter-organelle signaling network regulating chloroplast metabolism. PMID:27135490

  8. Chronic alteration in phosphatidylinositol 4,5-bisphosphate levels regulates capsaicin and mustard oil responses

    PubMed Central

    Patil, Mayur J.; Belugin, Sergei; Akopian, Armen N.

    2011-01-01

    There is an agreement that acute (in minutes) hydrolysis and accumulation of phosphatidylinositol 4,5-bisphosphate (PIP2) modulate TRPV1 and TRPA1 activities. Since inflammation results in PIP2 depletion, persisting for long periods (hours-to-days) in pain models and in clinic, we examined whether chronic depletion and accumulation of PIP2 affects capsaicin and mustard oil responses. In addition we also wanted to evaluate whether the effects of PIP2 depend on TRPV1 and TRPA1 co-expression, and whether the PIP2 actions vary in expression cells versus sensory neurons. Chronic PIP2 production was stimulated by over-expression of phosphatidylinositol-4-phosphate-5-kinase, while PIP2-specific phospholipid 5′-phosphatase was selected to reduce plasma membrane levels of PIP2. Our results demonstrate that capsaicin (100 nM; CAP) responses and receptor tachyphylaxis are not significantly influenced by chronic changes in PIP2 levels in wild-type (WT) or TRPA1 null-mutant sensory neurons, as well as CHO cells expressing TRPV1 alone or with TRPA1. However, low concentrations of CAP (20 nM) produced a higher response after PIP2 depletion in cells containing TRPV1 alone, but not TRPV1 together with TRPA1. Mustard oil (25 μM; MO) responses were also not affected by PIP2 in WT sensory neurons and cells co-expressing TRPA1 and TRPV1. In contrast, PIP2 reduction leads to pronounced tachyphylaxis to MO in cells with both channels. Chronic effect of PIP2 on TRPA1 activity depends on presence of the TRPV1 channel and cell type (CHO vs. sensory neurons). In summary, chronic alterations in PIP2 levels regulate magnitude of CAP and MO responses, as well as MO-tachyphylaxis. This regulation depends on co-expression profile of TRPA1 and TRPV1 and cell type. PMID:21337373

  9. Distribution and neuronal expression of phosphatidylinositol phosphate kinase IIγ in the mouse brain

    PubMed Central

    Clarke, Jonathan H; Emson, Piers C; Irvine, Robin F

    2009-01-01

    The role of cellular phosphatidylinositol 5-phosphate (PtdIns5P), as a signalling molecule or as a substrate for the production of small, compartmentalized pools of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], may be dependent on cell type and subcellular localization. PtdIns5P levels are primarily regulated by the PtdIns5P 4-kinases (type II PIP kinases or PIP4Ks), and we have investigated the expression and localization in the brain of the least-studied PIP4K isoform, PIP4Kγ. In situ hybridization and immunohistochemistry, using antisense oligonucleotide probes and a PIP4Kγ-specific antibody, revealed that this isoform has a restricted CNS expression profile. The use of antibodies to different cell markers showed that this expression is limited to neurons, particularly the cerebellar Purkinje cells, pyramidal cells of the hippocampus, large neuronal cell types in the cerebral cortex including pyramidal cells, and mitral cells in the olfactory bulb and is not expressed in cerebellar, hippocampal formation, or olfactory bulb granule cells. In neurons expressing this enzyme, PIP4Kγ has a vesicular distribution and shows partial colocalization with markers of cellular compartments of the endomembrane trafficking pathway. The PIP4Kγ isoform expression is established after day 7 of postnatal development. Overall, our data suggest that PIP4Kγ may have a role in neuron function, specifically in the regulation of vesicular transport, in specific regions of the developed brain. J. Comp. Neurol. 517:296–312, 2009. © 2009 Wiley-Liss, Inc. PMID:19757494

  10. Phosphatidylinositol-anchored glycoproteins of PC12 pheochromocytoma cells and brain

    SciTech Connect

    Margolis, R.K.; Goossen, B.; Margolis, R.U.

    1988-05-03

    PC12 pheochromocytoma cells and cultures of early postnatal rat cerebellium were labeled with (/sup 3/H)glucosamine, (/sup 3/H)fucose, (/sup 3/H)leucine, (/sup 3/H)ethanolamine, or sodium (/sup 35/S)sulfate and treated with a phosphatidylinositol-specific phospholipase C. Enzyme treatment of (/sup 3/H) glucosamine- or (/sup 3/H)fucose-labeled PC12 cells led to a 15-fold increase in released glycoproteins. On sodium dodecyl sulfate-polyacrylamide gel ectrophoresis, most of the released material migrated as a broad band with an apparent molecular size of 32,000 daltons (Da), which was specifically immunoprecipitated by a monoclonal antibody to the Thy-l glycoprotein. A second glycoprotein, with an apparent molecular size of 158,000 Da, was also released. After treatment with endo-..beta..-galactosidase, 40-45% of the (/sup 3/H)glucosamine of (/sup 3/H)fucose radioactivity in the phospholipase-released glycoproteins was converted to products of disaccharide size, and the molecular size of the 158-kDa glycoprotein decreased to 145 kDa, demonstrating that it contains fucosylated poly-(N-acetyllactosaminyl) oligosaccharides. The phospholipase also released labeled Thy-1 and the 158-kDa glycoprotein from PC12 cells cultured in the presence of (/sup 3/H)ethanolamine, which specifically labels this component of the phosphatidylinositol membrane-anchoring sequence,while in the lipid-free protein residue of cells not treated with phospholipase, Thy-1 and a doublet at 46/48 kDa were the only labeled proteins. Sulfated glycoproteins of 155, 132/134, 61, and 21 kDa are the predominant species released by phospholipase, which does not affect a major 44-kDa protein seen in (/sup 3/H)ethanolamine-labeled brain cultures. The 44-48- and 155/158-kDa proteins may be common to both PC12 cells and brain.

  11. Chronic alteration in phosphatidylinositol 4,5-biphosphate levels regulates capsaicin and mustard oil responses.

    PubMed

    Patil, Mayur J; Belugin, Sergei; Akopian, Armen N

    2011-06-01

    There is an agreement that acute (in minutes) hydrolysis and accumulation of phosphatidylinositol 4,5-bisphosphate (PIP(2) ) modulate TRPV1 and TRPA1 activities. Because inflammation results in PIP(2) depletion, persisting for long periods (hours to days) in pain models and in the clinic, we examined whether chronic depletion and accumulation of PIP(2) affect capsaicin (CAP) and mustard oil (MO) responses. In addition, we wanted to evaluate whether the effects of PIP(2) depend on TRPV1 and TRPA1 coexpression and whether the PIP(2) actions vary in expression cells vs. sensory neurons. Chronic PIP(2) production was stimulated by overexpression of phosphatidylinositol-4-phosphate-5-kinase, and PIP(2) -specific phospholipid 5'-phosphatase was selected to reduce plasma membrane levels of PIP(2) . Our results demonstrate that CAP (100 nM) responses and receptor tachyphylaxis are not significantly influenced by chronic changes in PIP(2) levels in wild-type (WT) or TRPA1 null-mutant sensory neurons as well as CHO cells expressing TRPV1 alone or with TRPA1. However, low concentrations of CAP (20 nM) produced a higher response after PIP(2) depletion in cells containing TRPV1 alone but not TRPV1 together with TRPA1. MO (25 μM) responses were also not affected by PIP(2) in WT sensory neurons and cells coexpressing TRPA1 and TRPV1. In contrast, PIP(2) reduction leads to pronounced tachyphylaxis to MO in cells with both channels. Chronic effect of PIP(2) on TRPA1 activity depends on presence of the TRPV1 channel and cell type (CHO vs. sensory neurons). In summary, chronic alterations in PIP(2) levels regulate magnitude of CAP and MO responses as well as MO tachyphylaxis. This regulation depends on coexpression profile of TRPA1 and TRPV1 and cell type. PMID:21337373

  12. Turnover of metallothioneins in rat liver.

    PubMed Central

    Andersen, R D; Winter, W P; Maher, J J; Bernstein, I A

    1978-01-01

    Two electrophoretically distinguishable metallothioneins were isolated from the livers of Cd2+-treated rats and had thiol group/metal ratios of 3:1, a total metal content, in each of these proteins, of 3.6 atoms of Cd2+ + 2.4 atoms of Zn2+/molecule and 4.2 atoms of Cd2+ + 2.8 atoms of Zn2+/molecule and respective apoprotein mol.wts. of 5844 and 6251. Studies with 1 h pulse labels of [3H]cysteine, given after a single injection of ZnCl2 or CdCl2, showed that these metals stimulated radioactive isotope incorporation into the metallothioneins over the control value by 10- and 15-fold respectively. This stimulation was maximal at 4 h after a single CdCl2 injection and decreased to control values by 16 h, suggesting that either a translational event is responding to free intracellular Cd2+ or a short-lived mRNA is being produced or stabilized in response to the metal treatment. In rats chronically exposed to CdCl2, the metallothioneins increased to 0.2% of the liver wet weight from a control value of 2--4 mumol/kg of liver, with a maximum rate of accumulation of 2--3 mumol/h per kg of liver. The turnover of these proteins in control animals was 0.3--0.6 mumoles/h per kg of liver, measured by the rate of disappearance of 203Hg2+, which binds irreversibly to the metallothioneins. Pretreatment with CdCl2 completely stopped the rapid 203Hg turnover observed in untreated animals. Unlike CdCl2, treatment with ZnCl2 increased the concentration of metallothioneins to a new steady-state pool, 11 mumole/kg of liver, after 10 h. The increase in the zinc-thionein pool by exposure to ZnCl2 in vivo was determined to be primarily due to a stimulation of metallothionein biosynthesis. PMID:697759

  13. Src-family tyrosine kinases in activation of ERK-1 and p85/p110-phosphatidylinositol 3-kinase by G/CCKB receptors.

    PubMed

    Daulhac, L; Kowalski-Chauvel, A; Pradayrol, L; Vaysse, N; Seva, C

    1999-07-16

    We have analyzed in Chinese hamster ovary cells the upstream mediators by which the G protein-coupled receptor, gastrin/CCKB, activates the extracellular-regulated kinases (ERKs) and p85/p110-phosphatidylinositol 3-kinase (PI 3-kinase) pathways. Overexpression of an inhibitory mutant of Shc completely blocked gastrin-stimulated Shc.Grb2 complex formation but partially inhibited ERK-1 activation by this peptide. Expression of Csk, which inactivates Src-family kinases, totally inhibited gastrin-induced Src-like activity detected in anti-Src and anti-Shc precipitates but diminished by 50% Shc phosphorylation and ERK-1 activation. We observed a rapid tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and an increase in Src-like kinase activity in anti-IRS-1 immunoprecipitates from gastrin-stimulated cells, suggesting that IRS-1 may be a direct substrate of Src. This hypothesis was supported by the inhibition of gastrin-induced Src. IRS-1 complex formation and IRS-1 phosphorylation in Csk-transfected cells. In addition, the increase in PI 3-kinase activity measured in anti-p85 or anti-IRS-1 precipitates following gastrin stimulation was abolished by Csk. Our results demonstrate the existence of two mechanisms in gastrin-mediated ERKs activation. One requires Shc phosphorylation by Src-family kinases, and the other one is independent of these two proteins. They also indicate that tyrosine phosphorylation of IRS-1 by Src-family kinases could lead to the recruitment and the activation of the p85/p110-PI 3-kinase in response to gastrin. PMID:10400698

  14. Adhesion-related kinase induction of migration requires phosphatidylinositol-3-kinase and ras stimulation of rac activity in immortalized gonadotropin-releasing hormone neuronal cells.

    PubMed

    Nielsen-Preiss, Sheila M; Allen, Melissa P; Xu, Mei; Linseman, Daniel A; Pawlowski, John E; Bouchard, R J; Varnum, Brian C; Heidenreich, Kim A; Wierman, Margaret E

    2007-06-01

    GnRH neurons migrate into the hypothalamus during development. Although migratory defects may result in disordered activation of the reproductive axis and lead to delayed or absent sexual maturation, specific factors regulating GnRH neuronal migration remain largely unknown. The receptor tyrosine kinase, adhesion-related kinase (Ark) (also known as Axl, UFO, and Tyro7), has been implicated in the migration of GnRH neuronal cells. Binding of its ligand, growth arrest-specific gene 6 (Gas6), promotes cytoskeletal remodeling and migration of NLT GnRH neuronal cells via Rac and p38 MAPK. Here, we examined the Axl effectors proximal to Rac in the signaling pathway. Gas6/Axl-induced lamellipodia formation and migration were blocked after phosphatidylinositol-3-kinase (PI3K) inhibition in GnRH neuronal cells. The p85 subunit of PI3K coimmunoprecipitated with Axl and was phosphorylated in a Gas6-sensitive manner. In addition, PI3K inhibition in GnRH neuronal cells diminished Gas6-induced Rac activation. Exogenous expression of a dominant-negative form of Ras also decreased GnRH neuronal lamellipodia formation, migration, and Rac activation. PI3K inhibition blocked Ras in addition to Rac activation and migration. In contrast, pharmacological blockade of the phospholipase C gamma effectors, protein kinase C or calcium/calmodulin protein kinase II, had no effect on Gas6/Axl signaling to promote Rac activation or stimulate cytoskeletal reorganization and migration. Together, these data show that the PI3K-Ras pathway is a major mediator of Axl actions upstream of Rac to induce GnRH neuronal cell migration. PMID:17332061

  15. Insulin-like growth factors require phosphatidylinositol 3-kinase to signal myogenesis: dominant negative p85 expression blocks differentiation of L6E9 muscle cells.

    PubMed

    Kaliman, P; Canicio, J; Shepherd, P R; Beeton, C A; Testar, X; Palacín, M; Zorzano, A

    1998-01-01

    Phosphatidylinositol 3 (PI 3)-kinases are potently inhibited by two structurally unrelated membrane-permeant reagents: wortmannin and LY294002. By using these two inhibitors we first suggested the involvement of a PI 3-kinase activity in muscle cell differentiation. However, several reports have described that these compounds are not as selective for PI 3-kinase activity as assumed. Here we show that LY294002 blocks the myogenic pathway elicited by insulin-like growth factors (IGFs), and we confirm the specific involvement of PI 3-kinase in IGF-induced myogenesis by overexpressing in L6E9 myoblasts a dominant negative p85 PI 3-kinase-regulatory subunit (L6E9-delta p85). IGF-I, des(1-3)IGF-I, or IGF-II induced L6E9 skeletal muscle cell differentiation as measured by myotube formation, myogenin gene expression, and GLUT4 glucose carrier induction. The addition of LY294002 to the differentiation medium totally inhibited these IGF-induced myogenic events without altering the expression of a non-muscle-specific protein, beta1-integrin. Independent clones of L6E9 myoblasts expressing a dominant negative mutant of the p85-regulatory subunit (delta p85) showed markedly impaired glucose transport activity and formation of p85/p110 complexes in response to insulin, consistent with the inhibition of PI 3-kinase activity. IGF-induced myogenic parameters in L6E9-delta p85 cells, ie. cell fusion and myogenin gene and GLUT4 expression, were severely impaired compared with parental cells or L6E9 cells expressing wild-type p85. In all, data presented here indicate that PI 3-kinase is essential for IGF-induced muscle differentiation and that the specific PI 3-kinase subclass involved in myogenesis is the heterodimeric p85-p110 enzyme. PMID:9440811

  16. Insulin-like growth factor-II, phosphatidylinositol 3-kinase, nuclear factor-kappaB and inducible nitric-oxide synthase define a common myogenic signaling pathway.

    PubMed

    Kaliman, P; Canicio, J; Testar, X; Palacín, M; Zorzano, A

    1999-06-18

    Insulin-like growth factors (IGFs) are potent inducers of skeletal muscle differentiation and phosphatidylinositol (PI) 3-kinase activity is essential for this process. Here we show that IGF-II induces nuclear factor-kappaB (NF-kappaB) and nitric-oxide synthase (NOS) activities downstream from PI 3-kinase and that these events are critical for myogenesis. Differentiation of rat L6E9 myoblasts with IGF-II transiently induced NF-kappaB DNA binding activity, inducible nitric-oxide synthase (iNOS) expression, and nitric oxide (NO) production. IGF-II-induced iNOS expression and NO production were blocked by NF-kappaB inhibition. Both NF-kappaB and NOS activities were essential for IGF-II-induced terminal differentiation (myotube formation and expression of skeletal muscle proteins: myosin heavy chain, GLUT 4, and caveolin 3), which was totally blocked by NF-kappaB or NOS inhibitors in rat and human myoblasts. Moreover, the NOS substrate L-Arg induced myogenesis in the absence of IGFs in both rat and human myoblasts, and this effect was blocked by NOS inhibition. Regarding the mechanisms involved in IGF-II activation of NF-kappaB, PI 3-kinase inhibition prevented NF-kappaB activation, iNOS expression, and NO production. Moreover, IGF-II induced, through a PI 3-kinase-dependent pathway, a decrease in IkappaB-alpha protein content that correlated with a decrease in the amount of IkappaB-alpha associated with p65 NF-kappaB. PMID:10364173

  17. Investigating Histone Acetylation Stoichiometry and Turnover Rate.

    PubMed

    Fan, J; Baeza, J; Denu, J M

    2016-01-01

    Histone acetylation is a dynamic epigenetic modification that functions in the regulation of DNA-templated reactions, such as transcription. This lysine modification is reversibly controlled by histone (lysine) acetyltransferases and deacetylases. Here, we present methods employing isotopic labeling and mass spectrometry (MS) to comprehensively investigate histone acetylation dynamics. Turnover rates of histone acetylation are determined by measuring the kinetics of labeling from (13)C-labeled precursors of acetyl-CoA, which incorporates (13)C-carbon onto histones via the acetyltransferase reaction. Overall histone acetylation states are assessed from complete protease digestion to single amino acids, which is followed by MS analysis. Determination of site-specific acetylation stoichiometry is achieved by chemically acetylating endogenous histones with isotopic acetic anhydride, followed by trypsin digestion and LC-MS analysis. Combining metabolic labeling with stoichiometric analysis permits determination of both acetylation level and acetylation dynamics. When comparing genetic, diet, or environmental perturbations, these methods permit both a global and site-specific evaluation of how histone acetylation is dynamically regulated. PMID:27423860

  18. Triacylglycerol turnover in the failing heart.

    PubMed

    Carley, Andrew N; Lewandowski, E Douglas

    2016-10-01

    No longer regarded as physiologically inert the endogenous triacylglyceride (TAG) pool within the cardiomyocyte is now recognized to play a dynamic role in metabolic regulation. Beyond static measures of content, the relative rates of interconversion among acyl intermediates are more closely linked to dynamic processes of physiological function in normal and diseased hearts, with the potential for both adaptive and maladaptive contributions. Indeed, multiple inefficiencies in cardiac metabolism have been identified in the decompensated, hypertrophied and failing heart. Among the intracellular responses to physiological, metabolic and pathological stresses, TAG plays a central role in the balance of lipid handling and signaling mechanisms. TAG dynamics are profoundly altered from normal in both diabetic and pathologically stressed hearts. More than just expansion or contraction of the stored lipid pool, the turnover rates of TAG are sensitive to and compete against other enzymatic pathways, anabolic and catabolic, for reactive acyl-CoA units. The rates of TAG synthesis and lipolysis thusly affect multiple components of cardiomyocyte function, including energy metabolism, cell signaling, and enzyme activation, as well as the regulation of gene expression in both normal and diseased states. This review examines the multiple etiologies and metabolic consequences of the failing heart and the central role of lipid storage dynamics in the pathogenic process. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26993578

  19. Turnover of cytokeratin polypeptides in mouse hepatocytes

    SciTech Connect

    Denk, H.; Lackinger, E.; Zatloukal, K. ); Franke, W.W. )

    1987-11-01

    The turnover of cytokeratin polypeptides A (equivalent to No. 8 of the human cytokeratin catalog) and D (equivalent to human cytokeratin No. 18) of mouse hepatocytes was studied by pulse-labeling of mouse liver proteins after intraperitoneal injection of L-(guanido{sup 14}C)arginine and ({sup 14}C)sodium bicarbonate. With L-(guanido-{sup 14}C)arginine a rapid increase in the specific radioactivity of both cytokeratins was observed which reached a plateau between 12 and 24 h. With ({sup 14}C)sodium bicarbonate maximal specific radioactivity was obtained at 6 h followed by a rapid decrease to half maximum values within the subsequent 6 h and then a slower decrease. Half-lives were determined from the decrease of specific radioactivities after pulse-labeling by least-squares plots and found to be 84 h (for cytokeratin component A) and 104 h (component D) for arginine labeling . Values obtained after bicarbonate labeling were similar (95 h for A and 98 h for D). These results show that liver cytokeratins are relatively stable proteins and suggest that components A and D are synthesized and degraded at similar rates, probably in a coordinate way.

  20. The effect of various stimulated altitudes on the turnover of norepinephrine and dopamine in the central nervous system of rats.

    PubMed

    Prioux-Guyonneau, M; Cretet, E; Jacquot, C; Rapin, J R; Cohen, Y

    1979-06-12

    The elimination rate constant, half-life and turnover time of dopamine (DA) and norepinephrine (NE) were determined, after inhibiting their biosynthesis by alpha-methyl-para-tyrosine (alpha MT), in the hypothalamus, striatum and the remainder of the brain of rats exposed to different degrees of hypobaric hypoxia, corresponding to altitudes of 1,800, 3,800, 5,200 and 7,000 meters. The effects varied as a function of the degree of hypoxia and the brain region studied. The turnover time of NE in the hypothalamus remained unchanged, regardless of the altitude, while in the rest of the brain the rate constant of neurotransmitter elimination decreased inversely as a linear function of the degree of hypoxia. On the contrary, the changes of the DA turnover time in the striatum and the rest of the brain, were biphasic, being accelerated by moderate altitudes (1,800 m) and retarded by the two highest simulated altitudes studied as a function of hypoxia. The differential effects of hypoxia on NE and DA turnovers are attributed to different sensitivities of the respective enzyme systems. PMID:573440

  1. Comparison of the effects of eleven histamine H1-receptor antagonists on monoamine turnover in the mouse brain.

    PubMed

    Oishi, R; Shishido, S; Yamori, M; Saeki, K

    1994-02-01

    To compare in vivo effects of eleven compounds of different classes of histamine H1-receptor antagonists (alcoholamines: diphenhydramine, carbinoxamine, and clemastine; ethylenediamines: mepyramine, tripelennamine, and clemizole; alkylamines: triprolidine and chlorpheniramine; piperazines: meclizine and homochlorcyclizine; phenothiazines: promethazine) on neuronal uptake of dopamine (DA), noradrenaline (NA), and 5-hydroxytryptamine (5-HT), the effects on the turnover of these monoamines were examined in the mouse brain, based on the alpha-methyl-p-tyrosine-induced depletion of DA and NA or probenecid-induced accumulation of 5-hydroxyindoleacetic acid. The DA turnover was reduced remarkably by diphenhydramine, tripelennamine, and promethazine, and also significantly by chlorpheniramine, mepyramine, clemizole, and homochlorcyclizine, at doses used in the ordinary animal experiments. The 5-HT turnover was reduced markedly by mepyramine, tripelennamine, and chlorpheniramine. In contrast, the NA turnover was increased by promethazine and homochlorcyclizine, possibly due to their antagonistic effects on alpha-adrenoceptors. These results suggest that (1) the degree of inhibition of the uptake of DA and 5-HT by histamine H1-receptor antagonists is considerably different, (2) most H1-antagonists have little influence on NA uptake and some compounds enhance NA release, and that (3) carbinoxamine, clemastine, triprolidine, and meclizine have comparatively weak influences on monoamine metabolism. These effects on brain monoamine systems may be related to some central actions of histamine H1-receptor antagonists, such as an addiction to these compounds combined with opioids. PMID:7513381

  2. Proteasome regulates turnover of toxic human amylin in pancreatic cells.

    PubMed

    Singh, Sanghamitra; Trikha, Saurabh; Sarkar, Anjali; Jeremic, Aleksandar M

    2016-09-01

    Toxic human amylin (hA) oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Although recent studies demonstrated a causal connection between hA uptake and toxicity in pancreatic cells, the mechanism of amylin's clearance following its internalization and its relationship to toxicity is yet to be determined, and hence was investigated here. Using pancreatic rat insulinoma β-cells and human islets as model systems, we show that hA, following its internalization, first accumulates in the cytosol followed by its translocation into nucleus, and to a lesser extent lysosomes, keeping the net cytosolic amylin content low. An increase in hA accumulation in the nucleus of pancreatic cells correlated with its cytotoxicity, suggesting that its excessive accumulation in the nucleus is detrimental. hA interacted with 20S core and 19S lid subunits of the β-cell proteasomal complex, as suggested by immunoprecipitation and confocal microscopy studies, which subsequently resulted in a decrease in the proteasome's proteolytic activity in these cells. In vitro binding and activity assays confirmed an intrinsic and potent ability of amylin to interact with the 20S core complex thereby modulating its proteolytic activity. Interestingly, less toxic and aggregation incapable rat amylin (rA) showed a comparable inhibitory effect on proteasome activity and protein ubiquitination, decoupling amylin aggregation/ toxicity and amylin-induced protein stress. In agreement with these studies, inhibition of proteasomal proteolytic activity significantly increased intracellular amylin content and toxicity. Taken together, our results suggest a pivotal role of proteasomes in amylin's turnover and detoxification in pancreatic cells. PMID:27340132

  3. CL316243 induces phosphatidylinositol 3,4,5-triphosphate production in rat adipocytes in an adenosine deaminase-, pertussis toxin-, or wortmannin-sensitive manner.

    PubMed

    Ohsaka, Y; Nomura, Y

    2016-07-18

    The effect of beta(3)-adrenoceptor (beta(3)-AR) agonists on adipocytes treated or not treated with signaling modulators has not been sufficiently elucidated. Using rat epididymal adipocytes (adipocytes) labeled with [(32)P]orthophosphate, we found that treatment with the selective beta(3)-AR agonist CL316243 (CL; 1 microM) induces phosphatidylinositol (PI) 3,4,5-triphosphate (PI[3,4,5]P(3)) production and that this response is inhibited by adenosine deaminase (ADA, an adenosine-degrading enzyme; 2 U/ml), pertussis toxin (PTX, an inactivator of inhibitory guanine-nucleotide-binding protein; 1 microg/ml), or wortmannin (WT, a PI-kinase inhibitor; 3 microM). The results showed that CL induced PI(3,4,5)P(3) production in intact adipocytes and that this production was affected by signaling modulators. Taken together, our findings indicate that CL produces PI(3,4,5)P(3) in an ADA-sensitive, PTX-sensitive, or WT-sensitive manner and will advance understanding of the effect of beta(3)-AR agonists on adipocytes. PMID:26988163

  4. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis

    SciTech Connect

    Ren, J.; Pei-Chen Lin, C.; Pathak, M. C.; Temple, B. R. S.; Nile, A. H.; Mousley, C. J.; Duncan, M. C.; Eckert, D. M.; Leiker, T. J.; Ivanova, P. T.; Myers, D. S.; Murphy, R. C.; Brown, H. A.; Verdaasdonk, J.; Bloom, K. S.; Ortlund, E. A.; Neiman, A. M.; Bankaitis, V. A.

    2014-01-08

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.

  5. The C-terminal tail inhibitory phosphorylation sites of PTEN regulate its intrinsic catalytic activity and the kinetics of its binding to phosphatidylinositol-4,5-bisphosphate.

    PubMed

    Chia, Yeong-Chit Joel; Catimel, Bruno; Lio, Daisy Sio Seng; Ang, Ching-Seng; Peng, Benjamin; Wu, Hong; Zhu, Hong-Jian; Cheng, Heung-Chin

    2015-12-01

    Dephosphorylation of four major C-terminal tail sites and occupancy of the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]-binding site of PTEN cooperate to activate its phospholipid phosphatase activity and facilitate its recruitment to plasma membrane. Our investigation of the mechanism by which phosphorylation of these C-terminal sites controls the PI(4,5)P2-binding affinity and catalytic activity of PTEN resulted in the following findings. First, dephosphorylation of all four sites leads to full activation; and phosphorylation of any one site significantly reduces the intrinsic catalytic activity of PTEN. These findings suggest that coordinated inhibition of the upstream protein kinases and activation of the protein phosphatases targeting the four sites are needed to fully activate PTEN phosphatase activity. Second, PI(4,5)P2 cannot activate the phosphopeptide phosphatase activity of PTEN, suggesting that PI(4,5)P2 can only activate the phospholipid phosphatase activity but not the phosphoprotein phosphatase activity of PTEN. Third, dephosphorylation of all four sites significantly decreases the affinity of PTEN for PI(4,5)P2. Since PI(4,5)P2 is a major phospholipid co-localizing with the phospholipid- and phosphoprotein-substrates in plasma membrane, we hypothesise that the reduced affinity facilitates PTEN to "hop" on the plasma membrane to dephosphorylate these substrates. PMID:26471078

  6. Lenz-Majewski mutations in PTDSS1 affect phosphatidylinositol 4-phosphate metabolism at ER-PM and ER-Golgi junctions.

    PubMed

    Sohn, Mira; Ivanova, Pavlina; Brown, H Alex; Toth, Daniel J; Varnai, Peter; Kim, Yeun Ju; Balla, Tamas

    2016-04-19

    Lenz-Majewski syndrome (LMS) is a rare disease characterized by complex craniofacial, dental, cutaneous, and limb abnormalities combined with intellectual disability. Mutations in thePTDSS1gene coding one of the phosphatidylserine (PS) synthase enzymes, PSS1, were described as causative in LMS patients. Such mutations render PSS1 insensitive to feedback inhibition by PS levels. Here we show that expression of mutant PSS1 enzymes decreased phosphatidylinositol 4-phosphate (PI4P) levels both in the Golgi and the plasma membrane (PM) by activating the Sac1 phosphatase and altered PI4P cycling at the PM. Conversely, inhibitors of PI4KA, the enzyme that makes PI4P in the PM, blocked PS synthesis and reduced PS levels by 50% in normal cells. However, mutant PSS1 enzymes alleviated the PI4P dependence of PS synthesis. Oxysterol-binding protein-related protein 8, which was recently identified as a PI4P-PS exchanger between the ER and PM, showed PI4P-dependent membrane association that was significantly decreased by expression of PSS1 mutant enzymes. Our studies reveal that PS synthesis is tightly coupled to PI4P-dependent PS transport from the ER. Consequently, PSS1 mutations not only affect cellular PS levels and distribution but also lead to a more complex imbalance in lipid homeostasis by disturbing PI4P metabolism. PMID:27044099

  7. 1α,25-Dihydroxyvitamin D3–Induced Myeloid Cell Differentiation Is Regulated by a Vitamin D Receptor–Phosphatidylinositol 3-Kinase Signaling Complex

    PubMed Central

    Hmama, Zakaria; Nandan, Devki; Sly, Laura; Knutson, Keith L.; Herrera-Velit, Patricia; Reiner, Neil E.

    1999-01-01

    1α,25-dihydroxyvitamin D3 (D3) promotes the maturation of myeloid cells and surface expressions of CD14 and CD11b, markers of cell differentiation in response to D3. To examine how these responses are regulated, THP-1 cells were grown in serum-free medium and incubated with D3. This was associated with rapid and transient increases in phosphatidylinositol 3-kinase (PI 3-kinase) activity. Furthermore, induction of CD14 expression in response to D3 was abrogated by (a) the PI 3-kinase inhibitors LY294002 and wortmannin; (b) antisense oligonucleotides to mRNA for the p110 catalytic subunit of PI 3-kinase; and (c) a dominant negative mutant of PI 3-kinase. In THP-1 cells, induction of CD11b expression by D3 was also abrogated by LY294002 and wortmannin. Similarly, LY294002 and wortmannin inhibited D3-induced expression of both CD14 and CD11b in peripheral blood monocytes. In contrast to CD14 and CD11b, hormone-induced expression of the Cdk inhibitor p21 in THP-1 cells was unaffected by either wortmannin or LY294002. These findings suggest that PI 3-kinase selectively regulates D3-induced monocyte differentiation, independent of any effects on p21. PMID:10587349

  8. Non-Smad transforming growth factor-β signaling regulated by focal adhesion kinase binding the p85 subunit of phosphatidylinositol 3-kinase.

    PubMed

    Hong, Min; Wilkes, Mark C; Penheiter, Sumedha G; Gupta, Shiv K; Edens, Maryanne; Leof, Edward B

    2011-05-20

    TGF-β modulates numerous diverse cellular phenotypes including growth arrest in epithelial cells and proliferation in fibroblasts. Although the Smad pathway is fundamental for the majority of these responses, recent evidence indicates that non-Smad pathways may also have a critical role. Here we report a novel mechanism whereby the nonreceptor tyrosine focal adhesion kinase (FAK) functions as an adaptor necessary for cell type-specific responses to TGF-β. We show that in contrast to Smad actions, non-Smad pathways, including c-Abl, PAK2, and Akt, display an obligate requirement for FAK. Interestingly, this occurs in Src null SYF cells and is independent of FAK tyrosine phosphorylation, kinase activity, and/or proline-rich sequences in the C-terminal FAT domain. FAK binds the phosphatidylinositol 3-kinase (PI3K) p85 regulatory subunit following TGF-β treatment in a subset of fibroblasts but not epithelial cells and has an obligate role in TGF-β-stimulated anchorage-independent growth and migration. Together, these results uncover a new scaffolding role for FAK as the most upstream component regulating the profibrogenic action of TGF-β and suggest that inhibiting this interaction may be useful in treating a number of fibrotic diseases. PMID:21454615

  9. Macrophage migration inhibitory factor induces phosphorylation of Mdm2 mediated by phosphatidylinositol 3-kinase/Akt kinase: Role of this pathway in decidual cell survival.

    PubMed

    Costa, Adriana Fraga; Gomes, Sara Zago; Lorenzon-Ojea, Aline R; Martucci, Mariane; Faria, Miriam Rubio; Pinto, Décio Dos Santos; Oliveira, Sergio F; Ietta, Francesca; Paulesu, Luana; Bevilacqua, Estela

    2016-05-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway has an anti-apoptotic effect through several downstream targets, which includes activation of the transformed mouse 3T3 cell double-minute 2 (Mdm2) protein, its translocation to the nucleus and degradation of the tumor suppressor p53. We show that Mif, the Macrophage Migration Inhibitory Factor, an important cytokine at the maternal fetal interface in several species, triggers phosphorylation of Mdm2 protein in a PI3K/Akt-dependent manner, thereby preventing apoptosis in cultured mouse decidual cells. Inhibition of Akt and PI3K suppresses the pathway. Mif treatment also changes the nuclear translocation of p53 and interferes with the apoptotic fate of these cells when challenged with reactive oxygen species. In conclusion, an important mechanism has been found underlying decidual cell survival through Akt signaling pathway activated by Mif, suggesting a role for this cytokine in decidual homeostasis and in the integrity of the maternal-fetal barrier that is essential for successful gestation. PMID:27208405

  10. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress–induced membrane biogenesis

    PubMed Central

    Ren, Jihui; Pei-Chen Lin, Coney; Pathak, Manish C.; Temple, Brenda R. S.; Nile, Aaron H.; Mousley, Carl J.; Duncan, Mara C.; Eckert, Debra M.; Leiker, Thomas J.; Ivanova, Pavlina T.; Myers, David S.; Murphy, Robert C.; Brown, H. Alex; Verdaasdonk, Jolien; Bloom, Kerry S.; Ortlund, Eric A.; Neiman, Aaron M.; Bankaitis, Vytas A.

    2014-01-01

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches. PMID:24403601

  11. Glycosyl Phosphatidylinositol-Anchored C34 Peptide Derived From Human Immunodeficiency Virus Type 1 Gp41 Is a Potent Entry Inhibitor.

    PubMed

    Liu, Lihong; Wen, Michael; Zhu, Qianqian; Kimata, Jason T; Zhou, Paul

    2016-09-01

    Lipid rafts of the plasma membrane have been shown to be gateways for HIV-1 budding and entry. In nature, many glycosyl-phosphatidylinositol (GPI) anchored proteins are targeted to the lipid rafts. In the present study we constructed two fusion genes, in which C34 peptide or AVF peptide control was genetically linked with a GPI-attachment signal. Recombinant lentiviruses expressing the fusion genes were used to transduce TZM.bl and CEMss-CCR5 cells. Here, we show that with a GPI attachment signal both C34 and AVF are targeted to the lipid rafts through a GPI anchor. GPI-C34, but not GPI-AVF, in transduced TZM.bl cells efficiently blocks the infection of diverse HIV-1 strains of various subtypes. GPI-C34-transduced CEMss-CCR5 cells are totally resistant to HIV-1 infection. Importantly, maximum percentage of inhibition (MPI) by GPI-C34 is comparable to, if not higher than, a very high concentration of soluble C34. Potent blocking by GPI-C34 is likely due to its high local concentration, which allows GPI-C34 to efficiently bind to the prehairpin intermediate and prevent its transition to six helical bundle, thereby interfering with membrane fusion and virus entry. Our findings should have important implications in GPI-anchor-based therapy against HIV-1. PMID:27155865

  12. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 while oncogenic Ras is a dominant predictor for resistance

    PubMed Central

    Ihle, NathanT.; Lemos, Robert; Wipf, Peter; Yacoub, Adly; Mitchell, Clint; Siwak, Doris; Mills, Gordon B.; Dent, Paul; Kirkpatrick, D Lynn.; Powis, Garth

    2008-01-01

    The novel phosphatidylinositol-3-kinase (PI-3-kinase) inhibitor PX-866 was tested against 13 experimental human tumor xenografts derived from cell lines of various tissue origins. Mutant PI-3-kinase (PIK3CA) and loss of PTEN activity were sufficient but not necessary as predictors of sensitivity to the antitumor activity of the PI-3-K inhibitor PX-866 in the presence of wild type Ras, while mutant oncogenic Ras was a dominant determinant of resistance, even in tumors with coexisting mutations in PIK3CA. The level of activation of PI-3-kinase signaling measured by tumor phospho-Ser473-Akt was insufficient to predict in vivo antitumor response to PX-866. Reverse phase protein array (RPPA) revealed that the Ras dependent down stream targets c-Myc and cyclin B were elevated in cell lines resistant to PX-866 in vivo. Studies using an H-Ras construct to constitutively and preferentially activate the three best defined downstream targets of Ras, namely Raf, RalGDS, and PI-3-kinase, showed that mutant Ras mediates resistance through its ability to utilize multiple pathways for tumorigenesis. The identification of Ras and downstream signaling pathways driving resistance to PI-3-kinase inhibition may serve as an important guide for patient selection as inhibitors enter clinical trials, and for the development of rational combinations with other molecularly targeted agents. PMID:19117997

  13. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis

    SciTech Connect

    Ren, Jihui; Lin, Coney Pei-Chen; Pathak, Manish C.; Temple, Brenda R.S.; Nile, Aaron H.; Mousley, Carl J.; Duncan, Mara C.; Eckert, Debra M.; Leiker, Thomas J.; Ivanova, Pavlina T.; Myers, David S.; Murphy, Robert C.; Brown, H. Alex; Verdaasdonk, Jolien; Bloom, Kerry S.; Ortlund, Eric A.; Neiman, Aaron M.; Bankaitis, Vytas A.

    2014-07-11

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.

  14. Overexpression of Mycobacterium tuberculosis manB, a phosphomannomutase that increases phosphatidylinositol mannoside biosynthesis in Mycobacterium smegmatis and mycobacterial association with human macrophages.

    PubMed

    McCarthy, Travis R; Torrelles, Jordi B; MacFarlane, Amanda Shearer; Katawczik, Melanie; Kutzbach, Beth; Desjardin, Lucy E; Clegg, Steven; Goldberg, Joanna B; Schlesinger, Larry S

    2005-11-01

    Mycobacterium tuberculosis (M. tb) pathogenesis involves the interaction between the mycobacterial cell envelope and host macrophage, a process mediated, in part, by binding of the mannose caps of M. tb lipoarabinomannan (ManLAM) to the macrophage mannose receptor (MR). A presumed critical step in the biosynthesis of ManLAM, and other mannose-containing glycoconjugates, is the conversion of mannose-6-phosphate to mannose-1-phosphate, by a phosphomannomutase (PMM), to produce GDP-mannose, the primary mannose-donor in mycobacteria. We have identified four M. tb H37Rv genes with similarity to known PMMs. Using in vivo complementation of PMM and phosphoglucomutase (PGM) deficient strains of Pseudomonas aeruginosa, and an in vitro enzyme assay, we have identified both PMM and PGM activity from one of these genes, Rv3257c (MtmanB). MtmanB overexpression in M. smegmatis produced increased levels of LAM, lipomannan, and phosphatidylinositol mannosides (PIMs) compared with control strains and led to a 13.3 +/- 3.9-fold greater association of mycobacteria with human macrophages, in a mannan-inhibitable fashion. This increased association was mediated by the overproduction of higher order PIMs that possess mannose cap structures. We conclude that MtmanB encodes a functional PMM involved in the biosynthesis of mannosylated lipoglycans that participate in the association of mycobacteria with macrophage phagocytic receptors. PMID:16238626

  15. Turnover of inositol pentakisphosphates, inositol hexakisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes.

    PubMed Central

    Glennon, M C; Shears, S B

    1993-01-01

    We have used a non-transformed cell model, the primary cultured hepatocyte, to explore the turnover of inositol hexakisphosphate, multiple isomers of inositol pentakisphosphate and two novel diphosphoinositol polyphosphates. All of these compounds gradually accumulated radioactivity throughout a 70 h period of labelling with [3H]inositol. However, a rapid metabolic rate was revealed upon inhibition of diphosphoinositol polyphosphate biphosphatase(s) with 1 mM fluoride for 40 min: this treatment elevated levels of [3H]diphosphoinositol polyphosphates up to 10-fold, indicating that their cellular pools were normally turning over at least 10 times every 40 min. This was accompanied by a turnover of about 10% of the pool of inositol hexakisphosphate. Control experiments established that 200 nM vasopressin brought about a typical activation of phospholipase C in hepatocytes after 62 h of primary culture. This agonist treatment did not affect steady-state levels of [3H]inositol pentakisphosphates, [3H]inositol hexakisphosphate or [3H]diphosphoinositol polyphosphates. However, prolonged treatment of hepatocytes with 2 microM thapsigargin reduced steady-state levels of [3H]diphosphoinositol polyphosphates by 50-70%. This effect of thapsigargin was also observed in the presence of fluoride, indicating that thapsigargin inhibited the rate of synthesis of diphosphoinositol polyphosphates. PMID:8343137

  16. Autoradiographic imaging of phosphoinositide turnover in the brain

    SciTech Connect

    Hwang, P.M.; Bredt, D.S.; Snyder, S.H. )

    1990-08-17

    With ({sup 3}H)cytidine as a precursor, phosphoinositide turnover can be localized in brain slices by selective autoradiography of the product ({sup 3}H)cytidine diphosphate diacylglycerol, which is membrane-bound. In the cerebellum, glutamatergic stimulation elicits an increase of phosphoinositide turnover only in Purkinje cells and the molecular layer. In the hippocampus, both glutamatergic and muscarinic cholinergic stimulation increase phosphoinositide turnover, but with distinct localizations. Cholinergic stimulation affects CA1, CA3, CA4, and subiculum, whereas glutamatergic effects are restricted to the subiculum and CA3. Imaging phosphoinositide turnover in brain slices, which are amenable to electrophysiologic studies, will permit a dynamic localized analysis of regulation of this second messenger in response to synaptic stimulation of specific neuronal pathways.

  17. Examining Teacher Turnover: Past and Present

    ERIC Educational Resources Information Center

    Connor, Rob

    2011-01-01

    This dissertation presents a framework for investigating how school level phenomena may influence African-American teacher retention, attrition, and mobility in K-12 contexts. I argue that prevalent assumptions and inadequate data concerning the state of black educators have inhibited thorough investigation of minority employment trends in K-12…

  18. Turnover rate of cerebrospinal fluid in female sheep: changes related to different light-dark cycles

    PubMed Central

    Thiéry, Jean-Claude; Lomet, Didier; Bougoin, Sylvain; Malpaux, Benoit

    2009-01-01

    Background Sheep are seasonal breeders. The key factor governing seasonal changes in the reproductive activity of the ewe is increased negative feedback of estradiol at the level of the hypothalamus under long-day conditions. It has previously been demonstrated that when gonadotropin secretions are inhibited during long days, there is a higher concentration of estradiol in the cerebrospinal fluid (CSF) than during short days. This suggests an involvement of the CSF and choroid plexus in the neuroendocrine regulatory loop, but the mechanisms underlying this phenomenon remain unknown. One possible explanation of this difference in hormonal content is an effect of concentration or dilution caused by variations in CSF secretion rate. The aim of this study was thus to investigate changes in the CSF turnover rate related to light-dark cycles. Methods The turnover rate of the CSF was estimated by measuring the time taken for the recovery of intraventricular pressure (IVP) after removal of a moderate volume (0.5 to 2 ml) of CSF (slope in mmHg/min). The turnover rate was estimated three times in the same group of sheep: during a natural period of decreasing day-length corresponding to the initial period when gonadotropin activity is stimulated (SG1), during a long-day inhibitory period (IG), and finally during a short-day stimulatory period (SG2). Results The time taken and the speed of recovery of initial IVP differed between groups: 8 min 30 sec, 0.63 ± 0.07 mmHg/min(SG1), 11 min 1 sec, 0.38 ± 0.06 mmHg/min (IG) and 9 min 0 sec, 0.72 ± 0.15 mmHg/min (SG2). Time changes of IVP differed between groups (ANOVA, p < 0.005, SG1 different from IG, p < 0.05). The turnover rate in SG2: 183.16 ± 23.82 μl/min was not significantly different from SG1: 169. 23 ± 51.58 μl/min (Mann-Whitney test, p = 0.41), but was significantly different from IG: 71.33 ± 16.59 μl/min (p = 0.016). Conclusion This study shows that the turnover rate of CSF in ewes changes according to the light

  19. Warming Effects Enzyme Turnover During Decomposition of Subtropical Peat

    NASA Astrophysics Data System (ADS)

    Sihi, D.; Inglett, P.; Inglett, K. S.

    2015-12-01

    Extracellular enzymes are the proximate agents for organic matter degradation, but the turnover rate of enzymes is often assumed in most decomposition models without direct observations. Here, we assess turnover rates of C (ß-D-glucosidase), N (Leucine aminopeptidase), and P (Phosphomonoesterase) degrading enzymes by spiking commercially available enzymes to the dissolved organic matter of two subtropical peats incubated at 15°C and 25°C and monitoring of net activity of spiked enzymes (i.e. the difference between the spiked and the non-spiked samples) over time. Turnover rates of all three enzymes were greater in the samples incubated at 25°C (ranged between 0.006 hr-1 to 0.014 hr-1) as compared to those incubated at 15°C (ranged between 0.002 hr-1 to 0.009 hr-1). Concentrations of dissolved organic matter were positively correlated with the turnover rates (R2 ranged between 0.71-0.77) of all enzyme groups. To our knowledge, this is the first attempt to evaluate the turnover rates of enzymes in wetland soils as a function of warming and dissolved organic matter concentration. The findings suggest that warming-induced changes in the size of soil enzyme pool due to direct (by increasing protease activity) and indirect (by increasing concentrations of dissolved organic matter) effects on their turnover rates has potential to alter soil C stocks in a warmer world.

  20. CERAMIDE SYNTHASE 1 IS REGULATED BY PROTEASOMAL MEDIATED TURNOVER

    PubMed Central

    Sridevi, Priya; Alexander, Hannah; Laviad, Elad L.; Pewzner-Jung, Yael; Hannink, Mark; Futerman, Anthony H.; Alexander, Stephen

    2009-01-01

    Ceramide is an important bioactive lipid, intimately involved in many cellular functions, including the regulation of cell death, and in cancer and chemotherapy. Ceramide is synthesized de novo from sphinganine and acyl CoA via a family of 6 ceramide synthase enzymes, each having a unique preference for different fatty acyl CoA substrates and a unique tissue distribution. However, little is known regarding the regulation of these important enzymes. In this study we focus on ceramide synthase 1 (CerS1) which is the most structurally and functionally distinct of the enzymes, and describe a regulatory mechanism that specifically controls the level of CerS1 via ubiquitination and proteasome dependent protein turnover. We show that both endogenous and ectopically expressed CerS1 have rapid basal turnover and that diverse stresses including chemotherapeutic drugs, UV light and DTT can induce CerS1 turnover. The turnover requires CerS1 activity and is regulated by the opposing actions of p38 MAP kinase and protein kinase C (PKC). p38 MAP kinase is a positive regulator of turnover, while PKC is a negative regulator of turnover. CerS1 is phosphorylated in vivo and activation of PKC increases the phosphorylation of the protein. This study reveals a novel and highly specific mechanism by which CerS1 protein levels are regulated and which directly impacts ceramide homeostasis. PMID:19393694

  1. Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset

    PubMed Central

    2011-01-01

    Background The world's oceans are home to a diverse array of microbial life whose metabolic activity helps to drive the earth's biogeochemical cycles. Metagenomic analysis has revolutionized our access to these communities, providing a system-scale perspective of microbial community interactions. However, while metagenome sequencing can provide useful estimates of the relative change in abundance of specific genes and taxa between environments or over time, this does not investigate the relative changes in the production or consumption of different metabolites. Results We propose a methodology, Predicted Relative Metabolic Turnover (PRMT) that defines and enables exploration of metabolite-space inferred from the metagenome. Our analysis of metagenomic data from a time-series study in the Western English Channel demonstrated considerable correlations between predicted relative metabolic turnover and seasonal changes in abundance of measured environmental parameters as well as with observed seasonal changes in bacterial population structure. Conclusions The PRMT method was successfully applied to metagenomic data to explore the Western English Channel microbial metabalome to generate specific, biologically testable hypotheses. Generated hypotheses linked organic phosphate utilization to Gammaproteobactaria, Plantcomycetes, and Betaproteobacteria, chitin degradation to Actinomycetes, and potential small molecule biosynthesis pathways for Lentisphaerae, Chlamydiae, and Crenarchaeota. The PRMT method can be applied as a general tool for the analysis of additional metagenomic or transcriptomic datasets. PMID:22587810

  2. Uncoupling of bone turnover following hip replacement.

    PubMed

    Whitson, H; DeMarco, D; Reilly, D; Murphy, S; Yett, H S; Mattingly, D; Greenspan, S L

    2002-07-01

    Studies using total hip replacement surgery as a model for acute hip injury have shown that bone mineral density of the proximal femur decreases 6-18% in the 6 months following surgery. To examine the acute biochemical mechanism associated with bone loss, we measured two indicators of bone formation [serum osteocalcin (OC), serum bone-specific alkaline phosphatase (BSAP)], as well as two markers for bone resorption [urine and serum N-telopeptide cross-linked collagen type 1 (NTx)], in 20 patients (10 men, 10 women, mean age 59.4 years) prior to hip replacement and 1-2 days postsurgery. The average OC value (ng/ml) decreased by 57.3% following surgery (7.5 +/- 4.3 to 3.2 +/- 1.1, P <0.001), and the average BSAP level (U/L) decreased by 27.6% (19.9 +/- 5.6 to 14.4 +/- 3.7, P <0.001). In contrast, levels of urine NTx (nmol BCE/mmol Cr) did not change significantly after the surgery (73.9 +/- 47.2 to 70.1 +/- 29.7). In addition, there was no change in serum NTx (nmol BCE) after surgery (11.8 +/- 2.3 to 11.8 +/- 3.0). Six months after surgery, bone mass had not changed significantly from baseline. These findings suggest that there is an uncoupling of bone turnover following hip replacement surgery which is characterized by significant reductions in bone formation without compensatory decreases in bone resorption, potentially leading to bone loss. Longer periods of follow-up are needed to assess long-term bone mass changes. PMID:12200656

  3. Explaining the Gap in Charter and Traditional Public School Teacher Turnover Rates

    ERIC Educational Resources Information Center

    Stuit, David A.; Smith, Thomas M.

    2012-01-01

    This study uses national survey data to examine why charter school teachers are more likely to turnover than their traditional public school counterparts. We test whether the turnover gap is explained by different distributions of factors that are empirically and theoretically linked to turnover risk. We find that the turnover rate of charter…

  4. The Cost of Teacher Turnover in Five School Districts: A Pilot Study

    ERIC Educational Resources Information Center

    Barnes, Gary; Crowe, Edward: Schaefer, Benjamin

    2007-01-01

    In this paper, we report the results of a pilot study of the cost of teacher turnover in five school districts. We examine the rate of turnover, the relationship between turnover and teacher and school characteristics, and the costs associated with recruiting, hiring, and training replacement teachers. We find evidence that turnover costs,…

  5. Reviewing Employee Turnover: Focusing on Proximal Withdrawal States and an Expanded Criterion

    ERIC Educational Resources Information Center

    Hom, Peter W.; Mitchell, Terence R.; Lee, Thomas W.; Griffeth, Rodger W.

    2012-01-01

    We reconceptualize employee turnover to promote researchers' understanding and prediction of why employees quit or stay in employing institutions. A literature review identifies shortcomings with prevailing turnover dimensions. In response, we expand the conceptual domain of the turnover criterion to include multiple types of turnover (notably,…

  6. Regulation of constitutive vascular endothelial growth factor secretion in retinal pigment epithelium/choroid organ cultures: p38, nuclear factor kappaB, and the vascular endothelial growth factor receptor-2/phosphatidylinositol 3 kinase pathway

    PubMed Central

    Westhues, Daniel; Lassen, Jens; Bartsch, Sofia; Roider, Johann

    2013-01-01

    Purpose The retinal pigment epithelium (RPE) is a major source of vascular endothelial growth factor (VEGF) in the eye. Despite the role of VEGF in ocular pathology, VEGF is an important factor in maintaining the choroid and the RPE. Accordingly, the VEGF is constitutively expressed in RPE. In this study, the regulation of constitutive VEGF expression was investigated in an RPE/choroid organ culture. Methods To investigate VEGF regulation, RPE/choroid of porcine origin were used. VEGF content was evaluated with enzyme-linked immunosorbent assay. The influence of several molecular factors was assessed with commercially available inhibitors (SU1498, bisindolylmaleimide, LY294002, nuclear factor kappaB [NFkB] activation inhibitor, mithramycin, YC-1, Stattic, SB203580). For toxicity measurements of inhibitors, primary RPE cells of porcine origin were used, and toxicity was evaluated with methyl thiazolyl tetrazolium assay. Results VEGF secretion as measured in the RPE/choroid organ culture was diminished after long-term (48 h) inhibition of vascular endothelial growth factor receptor-2 by VEGFR-2-antagonist SU1498. VEGF secretion was also diminished after phosphatidylinositol 3 kinase was inhibited by LY294002 for 48 h. Coapplication of the substances did not show an additive effect, suggesting that they use the same pathway in an autocrine-positive VEGF regulation loop. Inhibition of protein kinase C by bisindolylmaleimide, on the other hand, did not influence VEGF secretion in organ culture. Inhibition of the transcription factor SP-1 by mithramycin displayed effects after 24 h and 48 h. Inhibiting hypoxia-inducible factor-1 (HIF-1) and Stat3 did not show any influence on constitutive VEGF secretion. Inhibition of the transcription factor NFkB diminished VEGF secretion after 6 h (earliest measured time point) and remained diminished at all measured time points (24 h, 48 h). The same pattern was found when the inhibitor of mitogen-activated kinase p38 was applied. A

  7. skittles, a Drosophila phosphatidylinositol 4-phosphate 5-kinase, is required for cell viability, germline development and bristle morphology, but not for neurotransmitter release.

    PubMed Central

    Hassan, B A; Prokopenko, S N; Breuer, S; Zhang, B; Paululat, A; Bellen, H J

    1998-01-01

    The phosphatidylinositol pathway is implicated in the regulation of numerous cellular functions and responses to extracellular signals. An important branching point in the pathway is the phosphorylation of phosphatidylinositol 4-phosphate by the phosphatidylinositol 4-phosphate 5-kinase (PIP5K) to generate the second messenger phosphatidylinositol 4,5-bis-phosphate (PIP2). PIP5K and PIP2 have been implicated in signal transduction, cytoskeletal regulation, DNA synthesis, and vesicular trafficking. We have cloned and generated mutations in a Drosophila PIP5K type I (skittles). Our analysis indicates that skittles is required for cell viability, germline development, and the proper structural development of sensory bristles. Surprisingly, we found no evidence for PIP5KI involvement in neural secretion. PMID:9832529

  8. Expression of a phosphorylated p130Cas substrate domain attenuates the phosphatidylinositol 3-kinase/Akt survival pathway in tamoxifen resistant breast cancer cells

    PubMed Central

    Soni, Shefali; Lin, Bor-Tyh; August, Avery; Nicholson, Robert I.; Kirsch, Kathrin H.

    2009-01-01

    Elevated expression of p130Cas/BCAR1 (breast cancer anti estrogen resistance 1) in human breast tumors is a marker of poor prognosis and poor overall survival. Specifically, p130Cas signaling has been associated with antiestrogen resistance, for which the mechanism is currently unknown. TAM-R cells, which were established by long-term exposure of estrogen (E2)-dependent MCF-7 cells to tamoxifen, displayed elevated levels of total and activated p130Cas. Here we have investigated the effects of p130Cas inhibition on growth factor signaling in tamoxifen resistance. To inhibit p130Cas, a phosphorylated substrate domain of p130Cas, that acts as a dominant-negative (DN) p130Cas molecule by blocking signal transduction downstream of the p130Cas substrate domain, as well as knockdown by siRNA was employed. Interference with p130Cas signaling/expression induced morphological changes, which were consistent with a more epithelial-like phenotype. The phenotypic reversion was accompanied by reduced migration, attenuation of the ERK and phosphatidylinositol 3-kinase/Akt pathways, and induction of apoptosis. Apoptosis was accompanied by downregulation of the expression of the anti-apoptotic protein Bcl-2. Importantly, these changes re-sensitized TAM-R cells to tamoxifen treatment by inducing cell death. Therefore, our findings suggest that targeting the product of the BCAR1 gene by a peptide which mimics the phosphorylated substrate domain may provide a new molecular avenue for treatment of antiestrogen resistant breast cancers. PMID:19330798

  9. Activation of S6 kinase in human neutrophils by calcium pyrophosphate dihydrate crystals: protein kinase C-dependent and phosphatidylinositol-3-kinase-independent pathways.

    PubMed Central

    Tudan, C; Jackson, J K; Charlton, L; Pelech, S L; Sahl, B; Burt, H M

    1998-01-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) has been shown previously to be a central enzyme in crystal-induced neutrophil activation. Since activation of the 70 kDa S6 kinase (p70S6K) has been shown to be dependent on PI 3-kinase activation in mammalian cells, and since the former is a key enzyme in the transmission of signals to the cell nucleus, activation of p70(S6K) was investigated in crystal-stimulated neutrophils. Cytosolic fractions from calcium pyrophosphate dihydrate (CPPD)-crystal-activated neutrophils were separated by Mono Q chromatography and analysed for phosphotransferase activity using a range of substrates and probed by Western analysis using antibodies to p70(S6K) and mitogen-activated protein kinase (MAP kinase). CPPD crystals induced a robust, transient activation (peak activity at 2 min) of p70(S6K) that was fully inhibited by pretreatment with rapamycin. This is the first report of the activation of p70(S6K) in neutrophil signal transduction pathways induced by an agonist. This crystal-induced activation of p70(S6K) could also be inhibited by a protein kinase C (PKC) inhibitor (Compound 3), but not by the PI 3-kinase inhibitor wortmannin. CPPD crystals also activated the ERK1 and ERK2 forms of MAP kinase (wortmannin insensitive), PKC (Compound 3 sensitive) and protein kinase B (wortmannin sensitive) in neutrophils. These data suggest that activation of p70(S6K) may proceed through a PI 3-kinase- and protein kinase B-independent but PKC-dependent pathway in crystal-activated neutrophils. PMID:9531494

  10. Rosiglitazone-induced myocardial protection against ischaemia-reperfusion injury is mediated via a phosphatidylinositol 3-kinase/Akt-dependent pathway.

    PubMed

    Zhang, Xue-Jiao; Xiong, Zi-Bo; Tang, An-Li; Ma, Hong; Ma, Yue-Dong; Wu, Jing-Guo; Dong, Yu-Gang

    2010-02-01

    1. Rosiglitazone is widely used in the treatment of Type 2 diabetes. However, in recent years it has become evident that the therapeutic effects of peroxisome proliferator-activated receptor gamma ligands reach far beyond their use as insulin sensitizers. Recently, the ability of rosiglitazone pretreatment to induce cardioprotection following ischaemia-reperfusion (I/R) has been well documented; however, the protective mechanisms have not been elucidated. In the present study, examined the role of the phosphatidylinositol 3-kinase (PI3-K)/Akt signalling pathway in rosiglitazone cardioprotection following I/R injury. 2. Mice were pretreated with 3 mg/kg per day rosiglitazone for 14 days before hearts were subjected to ischaemia (30 min) and reperfusion (2 h). Wortmannin (1.4 mg/kg, i.p.), an inhibitor of PI3-K, was administered 10 min prior to myocardial I/R. Then, activation of the PI3-K/Akt/glycogen synthase kinase (GSK)-3alpha signalling pathway was examined. The effects of PI3-K inhibition on rosiglitazone-induced cardioprotection were also evaluated. 3. Compared with control rats, the ratio of infarct size to ischaemic area (area at risk) and the occurrence of sustained ventricular fibrillation in rosiglitazone-pretreated rats was significantly reduced (P < 0.05). Rosiglitazone pretreatment attenuated cardiac apoptosis, as assessed by ELISA to determine cardiomyocyte DNA fragmentation. Rosiglitazone pretreatment significantly increased levels of phosphorylated (p-) Akt and p-GSK-3alpha in the rat myocardium. Pharmacological inhibition of PI3-K by wortmannin markedly abolished the cardioprotection induced by rosiglitazone. 4. These results indicate that rosiglitazone-induced cardioprotection in I/R injury is mediated via a PI3-K/Akt/GSK-3alpha-dependent pathway. The data also suggest that modulation of PI3-K/Akt/GSK-3alpha-dependent signalling pathways may be a viable strategy to reduce myocardial I/R injury. PMID:19566839

  11. Disruption of GLUT1 glucose carrier trafficking in L6E9 and Sol8 myoblasts by the phosphatidylinositol 3-kinase inhibitor wortmannin.

    PubMed

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1995-12-01

    In this study we have used wortmannin, a highly specific inhibitor of phosphatidylinositol (PI) 3-kinase, to assess the role of this enzyme on GLUT1 glucose carrier distribution and glucose transport activity in myoblasts from two skeletal-muscle cell lines, L6E9 and Sol8. As detected in L6E9 cells, myoblasts exhibited basal and insulin-stimulated PI 3-kinase activities. Incubation of intact myoblasts with wortmannin resulted in a marked inhibition of both basal and insulin-stimulated PI 3-kinase activities. L6E9 and Sol8 myoblasts showed basal and insulin-stimulated glucose transport activities, both of them inhibited by wortmannin in a dose-dependent manner (IC50 approximately 10-20 nM). Concomitantly, immunofluorescence analysis revealed that 1 h treatment with wortmannin led to a dramatic intracellular accumulation of GLUT1 carriers (the main glucose transporter expressed in L6E9 and Sol8 myoblasts) in both cell systems. The effect of wortmannin on GLUT1 cellular redistribution was independent of the presence of insulin. The cellular distribution of two structural plasma-membrane components such as beta 1-integrin or the alpha 1 subunit of the Na(+)-K(+)-ATPase were unaffected by wortmannin in both the absence and the presence of insulin. As a whole, our results indicate that PI 3-kinase is necessary to basal and insulin-stimulated glucose transport in L6E9 and Sol8 myoblasts. Moreover, immunofluorescence assays suggest that in both cellular models there is a constitutive GLUT 1 trafficking pathway (independent of insulin) that involves PI 3-kinase and which, when blocked, locks GLUT1 in a perinuclear compartment. PMID:8526858

  12. Disruption of GLUT1 glucose carrier trafficking in L6E9 and Sol8 myoblasts by the phosphatidylinositol 3-kinase inhibitor wortmannin.

    PubMed Central

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1995-01-01

    In this study we have used wortmannin, a highly specific inhibitor of phosphatidylinositol (PI) 3-kinase, to assess the role of this enzyme on GLUT1 glucose carrier distribution and glucose transport activity in myoblasts from two skeletal-muscle cell lines, L6E9 and Sol8. As detected in L6E9 cells, myoblasts exhibited basal and insulin-stimulated PI 3-kinase activities. Incubation of intact myoblasts with wortmannin resulted in a marked inhibition of both basal and insulin-stimulated PI 3-kinase activities. L6E9 and Sol8 myoblasts showed basal and insulin-stimulated glucose transport activities, both of them inhibited by wortmannin in a dose-dependent manner (IC50 approximately 10-20 nM). Concomitantly, immunofluorescence analysis revealed that 1 h treatment with wortmannin led to a dramatic intracellular accumulation of GLUT1 carriers (the main glucose transporter expressed in L6E9 and Sol8 myoblasts) in both cell systems. The effect of wortmannin on GLUT1 cellular redistribution was independent of the presence of insulin. The cellular distribution of two structural plasma-membrane components such as beta 1-integrin or the alpha 1 subunit of the Na(+)-K(+)-ATPase were unaffected by wortmannin in both the absence and the presence of insulin. As a whole, our results indicate that PI 3-kinase is necessary to basal and insulin-stimulated glucose transport in L6E9 and Sol8 myoblasts. Moreover, immunofluorescence assays suggest that in both cellular models there is a constitutive GLUT 1 trafficking pathway (independent of insulin) that involves PI 3-kinase and which, when blocked, locks GLUT1 in a perinuclear compartment. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8526858

  13. Mechanisms of Acute Eosinophil Mobilization from the Bone Marrow Stimulated by Interleukin 5: The Role of Specific Adhesion Molecules and Phosphatidylinositol 3-Kinase

    PubMed Central

    Palframan, Roger T.; Collins, Paul D.; Severs, Nicholas J.; Rothery, Stephen; Williams, Timothy J.; Rankin, Sara M.

    1998-01-01

    Mobilization of bone marrow eosinophils is a critical early step in their trafficking to the lung during allergic inflammatory reactions. We have shown previously that the cytokine interleukin (IL)-5, generated during an allergic inflammatory reaction in the guinea pig, acts systemically to mobilize eosinophils from the bone marrow. Here, we have investigated the mechanisms underlying this release process. Examination by light and electron microscopy revealed the rapid migration of eosinophils from the hematopoietic compartment and across the bone marrow sinus endothelium in response to IL-5. Using an in situ perfusion system of the guinea pig hind limb, we showed that IL-5 stimulated a dose-dependent selective release of eosinophils from the bone marrow. Eosinophils released from the bone marrow in response to IL-5 expressed increased levels of β2 integrin and a decrease in L-selectin, but no change in α4 integrin levels. A β2 integrin–blocking antibody markedly inhibited the mobilization of eosinophils from the bone marrow stimulated by IL-5. In contrast, an α4 integrin blocking antibody increased the rate of eosinophil mobilization induced by IL-5. In vitro we demonstrated that IL-5 stimulates the selective chemokinesis of bone marrow eosinophils, a process markedly inhibited by two structurally distinct inhibitors of phosphatidylinositol 3-kinase, wortmannin and LY294002. Wortmannin was also shown to block eosinophil release induced by IL-5 in the perfused bone marrow system. The parallel observations on the bone marrow eosinophil release process and responses in isolated eosinophils in vitro suggest that eosinophil chemokinesis is the driving force for release in vivo and that this release process is regulated by α4 and β2 integrins acting in opposite directions. PMID:9802974

  14. IQGAP1 is a novel phosphatidylinositol 4,5 bisphosphate effector in regulation of directional cell migration

    PubMed Central

    Choi, Suyong; Thapa, Narendra; Hedman, Andrew C; Li, Zhigang; Sacks, David B; Anderson, Richard A

    2013-01-01

    Phosphatidylinositol 4,5 bisphosphate (PIP2) is a key lipid messenger for regulation of cell migration. PIP2 modulates many effectors, but the specificity of PIP2 signalling can be defined by interactions of PIP2-generating enzymes with PIP2 effectors. Here, we show that type Iγ phosphatidylinositol 4-phosphate 5-kinase (PIPKIγ) interacts with the cytoskeleton regulator, IQGAP1, and modulates IQGAP1 function in migration. We reveal that PIPKIγ is required for IQGAP1 recruitment to the leading edge membrane in response to integrin or growth factor receptor activation. Moreover, IQGAP1 is a PIP2 effector that directly binds PIP2 through a polybasic motif and PIP2 binding activates IQGAP1, facilitating actin polymerization. IQGAP1 mutants that lack PIPKIγ or PIP2 binding lose the ability to control directional cell migration. Collectively, these data reveal a synergy between PIPKIγ and IQGAP1 in the control of cell migration. PMID:23982733

  15. Identification and characterization of differentially active pools of type IIalpha phosphatidylinositol 4-kinase activity in unstimulated A431 cells.

    PubMed Central

    Waugh, Mark G; Minogue, Shane; Blumenkrantz, Deena; Anderson, J Simon; Hsuan, J Justin

    2003-01-01

    The seven known polyphosphoinositides have been implicated in a wide range of regulated and constitutive cell functions, including cell-surface signalling, vesicle trafficking and cytoskeletal reorganization. In order to understand the spatial and temporal control of these diverse cell functions it is necessary to characterize the subcellular distribution of a wide variety of polyphosphoinositide synthesis and signalling events. The predominant phosphatidylinositol kinase activity in many mammalian cell types involves the synthesis of the signalling precursor, phosphatidylinositol 4-phosphate, in a reaction catalysed by the recently cloned PI4KIIalpha (type IIalpha phosphatidylinositol 4-kinase). However the regulation of this enzyme and the cellular distribution of its product in different organelles are very poorly understood. This report identifies the existence, in unstimulated cells, of two major subcellular membrane fractions, which contain PI4KIIalpha possessing different levels of intrinsic activity. Separation of these membranes from each other and from contaminating activities was achieved by density gradient ultracentrifugation at pH 11 in a specific detergent mixture in which both membrane fractions, but not other membranes, were insoluble. Kinetic comparison of the purified membrane fractions revealed a 4-fold difference in K (m) for phosphatidylinositol and a 3.5-fold difference in V (max), thereby indicating a different mechanism of regulation to that described previously for agonist-stimulated cells. These marked differences in basal activity and the occurrence of this isozyme in multiple organelles emphasize the need to investigate cell signalling via PI4KIIalpha at the level of individual organelles rather than whole-cell lysates. PMID:12954081

  16. Deletion of the gene Pip4k2c, a novel phosphatidylinositol kinase, results in hyperactivation of the immune system.

    PubMed

    Shim, Hyeseok; Wu, Chuan; Ramsamooj, Shivan; Bosch, Kaitlyn N; Chen, Zuojia; Emerling, Brooke M; Yun, Jihye; Liu, Hui; Choo-Wing, Rayman; Yang, Zhiwei; Wulf, Gerburg M; Kuchroo, Vijay Kumar; Cantley, Lewis C

    2016-07-01

    Type 2 phosphatidylinositol-5-phosphate 4-kinase (PI5P4K) converts phosphatidylinositol-5-phosphate to phosphatidylinositol-4,5-bisphosphate. Mammals have three enzymes PI5P4Kα, PI5P4Kβ, and PI5P4Kγ, and these enzymes have been implicated in metabolic control, growth control, and a variety of stress responses. Here, we show that mice with germline deletion of type 2 phosphatidylinositol-5-phosphate 4-kinase gamma (Pip4k2c), the gene encoding PI5P4Kγ, appear normal in regard to growth and viability but have increased inflammation and T-cell activation as they age. Immune cell infiltrates increased in Pip4k2c(-/-) mouse tissues. Also, there was an increase in proinflammatory cytokines, including IFNγ, interleukin 12, and interleukin 2 in plasma of Pip4k2c(-/-) mice. Pip4k2c(-/-) mice had an increase in T-helper-cell populations and a decrease in regulatory T-cell populations with increased proliferation of T cells. Interestingly, mammalian target of rapamycin complex 1 (mTORC1) signaling was hyperactivated in several tissues from Pip4k2c(-/-) mice and treating Pip4k2c(-/-) mice with rapamycin reduced the inflammatory phenotype, resulting in a decrease in mTORC1 signaling in tissues and a decrease in proinflammatory cytokines in plasma. These results indicate that PI5P4Kγ plays a role in the regulation of the immune system via mTORC1 signaling. PMID:27313209

  17. Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate

    PubMed Central

    Gerber, Pehuén Pereyra; Cabrini, Mercedes; Jancic, Carolina; Paoletti, Luciana; Banchio, Claudia; von Bilderling, Catalina; Sigaut, Lorena; Pietrasanta, Lía I.; Duette, Gabriel; Freed, Eric O.; de Saint Basile, Genevieve; Moita, Catarina Ferreira; Moita, Luis Ferreira; Amigorena, Sebastian; Benaroch, Philippe; Geffner, Jorge

    2015-01-01

    During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55Gag is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4+ T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55Gag membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55Gag with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication. PMID:25940347

  18. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues

    PubMed Central

    Ando, Hideaki; Hirose, Matsumi; Gainche, Laura; Kawaai, Katsuhiro; Bonneau, Benjamin; Ijuin, Takeshi; Itoh, Toshiki; Takenawa, Tadaomi; Mikoshiba, Katsuhiko

    2015-01-01

    Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα) and type IIα (PIPKIIα) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3− cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5)P2. PMID:26509711

  19. A human immunoglobulin G receptor exists in both polypeptide-anchored and phosphatidylinositol-glycan-anchored forms.

    PubMed Central

    Scallon, B J; Scigliano, E; Freedman, V H; Miedel, M C; Pan, Y C; Unkeless, J C; Kochan, J P

    1989-01-01

    Several cDNA clones encoding the human immunoglobulin G receptor CD16 were isolated from human lung or peripheral blood leukocyte cDNA libraries. Nucleotide sequence comparisons revealed that the cDNAs could be divided into two groups. cDNA clones in one group encode a protein that terminates 4 amino acids after the putative transmembrane domain. Clones in the second group encode a protein with an extra 21 amino acids that could comprise a cytoplasmic domain. Direct peptide sequencing was used to determine the N terminus of the mature CD16 receptor protein and supported the existence of the two forms of the receptor. Treatment of neutrophils with phosphatidylinositol-specific phospholipase C resulted in the release of a large percentage of the CD16 molecules from the cell surface. In contrast, treatment of natural killer cells with phosphatidylinositol-specific phospholipase C did not release any CD16 from the cell surface. These data demonstrate that both polypeptide-anchored and phosphatidylinositol-glycan-anchored forms of the CD16 molecule exist and that they are differentially expressed on neutrophils and natural killer cells. Images PMID:2525780

  20. Lipidomic profiling in Crohn's disease: Abnormalities in phosphatidylinositols, with preservation of ceramide, phosphatidylcholine and phosphatidylserine composition

    PubMed Central

    Sewell, Gavin W.; Hannun, Yusuf A.; Han, Xianlin; Koster, Grielof; Bielawski, Jacek; Goss, Victoria; Smith, Philip J.; Rahman, Farooq Z.; Vega, Roser; Bloom, Stuart L.; Walker, Ann P.; Postle, Anthony D.; Segal, Anthony W.

    2012-01-01

    Crohn's disease is a chronic inflammatory condition largely affecting the terminal ileum and large bowel. A contributing cause is the failure of an adequate acute inflammatory response as a result of impaired secretion of pro-inflammatory cytokines by macrophages. This defective secretion arises from aberrant vesicle trafficking, misdirecting the cytokines to lysosomal degradation. Aberrant intestinal permeability is also well-established in Crohn's disease. Both the disordered vesicle trafficking and increased bowel permeability could result from abnormal lipid composition. We thus measured the sphingo- and phospholipid composition of macrophages, using mass spectrometry and stable isotope labelling approaches. Stimulation of macrophages with heat-killed Escherichia coli resulted in three main changes; a significant reduction in the amount of individual ceramide species, an altered composition of phosphatidylcholine, and an increased rate of phosphatidylcholine synthesis in macrophages. These changes were observed in macrophages from both healthy control individuals and patients with Crohn's disease. The only difference detected between control and Crohn's disease macrophages was a reduced proportion of newly-synthesised phosphatidylinositol 16:0/18:1 over a defined time period. Shotgun lipidomics analysis of macroscopically non-inflamed ileal biopsies showed a significant decrease in this same lipid species with overall preservation of sphingolipid, phospholipid and cholesterol composition. PMID:22728312

  1. Accumulation of arachidonic acid-containing phosphatidylinositol at the outer edge of colorectal cancer

    PubMed Central

    Hiraide, Takanori; Ikegami, Koji; Sakaguchi, Takanori; Morita, Yoshifumi; Hayasaka, Takahiro; Masaki, Noritaka; Waki, Michihiko; Sugiyama, Eiji; Shinriki, Satoru; Takeda, Makoto; Shibasaki, Yasushi; Miyazaki, Shinichiro; Kikuchi, Hirotoshi; Okuyama, Hiroaki; Inoue, Masahiro; Setou, Mitsutoshi; Konno, Hiroyuki

    2016-01-01

    Accumulating evidence indicates that cancer cells show specific alterations in phospholipid metabolism that contribute to tumour progression in several types of cancer, including colorectal cancer. Questions still remain as to what lipids characterize the outer edge of cancer tissues and whether those cancer outer edge-specific lipid compositions emerge autonomously in cancer cells. Cancer tissue-originated spheroids (CTOSs) that are composed of pure primary cancer cells have been developed. In this study, we aimed to seek out the cancer cell-autonomous acquisition of cancer outer edge-characterizing lipids in colorectal cancer by analysing phospholipids in CTOSs derived from colorectal cancer patients with matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS). A signal at m/z 885.5 in negative ion mode was detected specifically at the surface regions. The signal was identified as an arachidonic acid (AA)-containing phosphatidylinositol (PI), PI(18:0/20:4), by tandem mass spectrometry analysis. Quantitative analysis revealed that the amount of PI(18:0/20:4) in the surface region of CTOSs was two-fold higher than that in the medial region. Finally, PI(18:0/20:4) was enriched at the cancer cells/stromal interface in colorectal cancer patients. These data imply a possible importance of AA-containing PI for colorectal cancer progression, and suggest cells expressing AA-containing PI as potential targets for anti-cancer therapy. PMID:27435310

  2. Correlation between phosphatidylinositol labeling and contraction in rabbit aorta: effect of alpha-1 adrenergic activation

    SciTech Connect

    Villalobos-Molina, R.; Uc, M.; Hong, E.; Garcia-Sainz, J.A.

    1982-07-01

    Activation of rabbit aortic strips with alpha adrenergic agonists increased the labeling (with (/sup 32/P)Pi) of phosphatidylinositol (PI) and phosphatidic acid and contracted the vascular preparations in dose-related fashion. Epinephrine, norepinephrine and methoxamine produced maximal effects, whereas clonidine behaved as partial agonist and B-HT 933 (2-amino-6-ethyl-4,5,7,8-tetrahydro-6H-oxazole-(5,4-d) azepin dihydrochloride) was almost without activity in the two experimental models used. Phenylephrine was a full agonist in producing contraction, but failed to elicit the maximal increase in PI labeling. The EC50 values to produce contraction of aortic strips were lower for all agonists than those required to increase the incorporation of radioactive phosphate into PI, but there was a good correlation between the two sets of data. The increased PI labeling and contraction of aortic strips induced by epinephrine were antagonized by prazosin and yohimbine in dose-related fashion, but the first alpha blocker was about three orders of magnitude more potent than the second in antagonizing the two effects. The present results indicate that both stimulation of PI labeling and contraction are mediated through activation of alpha-1 adrenoceptors in rabbit aorta.

  3. Analysis of Phosphatidylinositol-4,5-Bisphosphate Signaling in Cerebellar Purkinje Spines

    PubMed Central

    Brown, Sherry-Ann; Morgan, Frank; Watras, James; Loew, Leslie M.

    2008-01-01

    A 3D model was developed and used to explore dynamics of phosphatidylinositol-4,5-bisphosphate (PIP2) signaling in cerebellar Purkinje neurons. Long-term depression in Purkinje neurons depends on coincidence detection of climbing fiber stimulus evoking extracellular calcium flux into the cell and parallel fiber stimulus evoking inositol-1,4,5-trisphosphate (IP3)-meditated calcium release from the endoplasmic reticulum. Experimental evidence shows that large concentrations of IP3 are required for calcium release. This study uses computational analysis to explore how the Purkinje cell provides sufficient PIP2 to produce large amounts of IP3. Results indicate that baseline PIP2 concentration levels in the plasma membrane are inadequate, even if the model allows for PIP2 replenishment by lateral diffusion from neighboring dendrite membrane. Lateral diffusion analysis indicates apparent anomalous diffusion of PIP2 in the spiny dendrite membrane, due to restricted diffusion through spine necks. Stimulated PIP2 synthesis and elevated spine PIP2 mediated by a local sequestering protein were explored as candidate mechanisms to supply sufficient PIP2. Stimulated synthesis can indeed lead to high IP3 amplitude of long duration; local sequestration produces high IP3 amplitude, but of short duration. Simulation results indicate that local sequestration could explain the experimentally observed finely tuned timing between parallel fiber and climbing fiber activation. PMID:18487300

  4. Phosphatidylinositol-4,5-Bisphosphate Enhances Anionic Lipid Demixing by the C2 Domain of PKCα

    PubMed Central

    Egea-Jiménez, Antonio L.; Fernández-Martínez, Ana M.; Pérez-Lara, Ángel; de Godos, Ana; Corbalán-García, Senena; Gómez-Fernández, Juan C.

    2014-01-01

    The C2 domain of PKCα (C2α) induces fluorescence self-quenching of NBD-PS in the presence of Ca2+, which is interpreted as the demixing of phosphatidylserine from a mixture of this phospholipid with phosphatidylcholine. Self-quenching of NBD-PS was considerably increased when phosphatidylinositol-4,5-bisphosphate (PIP2) was present in the membrane. When PIP2 was the labeled phospholipid, in the form of TopFluor-PIP2, fluorescence self-quenching induced by the C2 domain was also observed, but this was dependent on the presence of phosphatidylserine. An independent indication of the phospholipid demixing effect given by the C2α domain was obtained by using 2H-NMR, since a shift of the transition temperature of deuterated phosphatidylcholine was observed as a consequence of the addition of the C2α domain, but only in the presence of PIP2. The demixing induced by the C2α domain may have a physiological significance since it means that the binding of PKCα to membranes is accompanied by the formation of domains enriched in activating lipids, like phosphatidylserine and PIP2. The formation of these domains may enhance the activation of the enzyme when it binds to membranes containing phosphatidylserine and PIP2. PMID:24763383

  5. The ML1Nx2 Phosphatidylinositol 3,5-Bisphosphate Probe Shows Poor Selectivity in Cells

    PubMed Central

    Hammond, Gerald R. V.; Takasuga, Shunsuke; Sasaki, Takehiko; Balla, Tamas

    2015-01-01

    Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) is a quantitatively minor phospholipid in eukaryotic cells that plays a fundamental role in regulating endocytic membrane traffic. Despite its clear importance for cellular function and organism physiology, mechanistic details of its biology have so far not been fully elucidated. In part, this is due to a lack of experimental tools that specifically probe for PtdIns(3,5)P2 in cells to unambiguously identify its dynamics and site(s) of action. In this study, we have evaluated a recently reported PtdIns(3,5)P2 biosensor, GFP-ML1Nx2, for its veracity as such a probe. We report that, in live cells, the localization of this biosensor to sub-cellular compartments is largely independent of PtdIns(3,5)P2, as assessed after pharmacological, chemical genetic or genomic interventions that block the lipid’s synthesis. We therefore conclude that it is unwise to interpret the localization of ML1Nx2 as a true and unbiased biosensor for PtdIns(3,5)P2. PMID:26460749

  6. Endothelin-1 stimulates phosphatidylinositol hydrolysis and calcium uptake in isolated canine coronary arteries

    SciTech Connect

    Pang, D.C.; Johns, A.; Patterson, K.; Botelho, L.H.; Rubanyi, G.M.

    1989-01-01

    The effects of synthetic endothelin-1 (ET-1) (10(-10)-3 x 10(-7) M) on isometric force, /sup 45/Ca2+ uptake, and phosphatidylinositol (PI) hydrolysis were determined in isolated canine coronary artery rings. ET-1 caused contraction and stimulated /sup 45/Ca2+ uptake and PI hydrolysis (determined as inositol monophosphate accumulation) in a concentration-dependent manner with EC50 values of 6.3 x 10(-9), 2 x 10(-9), and 3 x 10(-9) M, respectively. Maximal responses were obtained with 3 x 10(-8) M ET-1 for all three parameters. At the maximally effective concentration, ET-1 caused a 1.8-fold increase in the rate of /sup 45/Ca2+ uptake following a 1-min exposure (the shortest time point tested) while the contractile response reached maximum only after 6 min. ET-1 (3 x 10(-8) M) stimulated a biphasic accumulation of inositol monophosphate with an initial rapid 1.4-fold increase detectable between 30 and 60 s followed by a secondary 11.9-fold increase at 30 min. These data show that PI hydrolysis and Ca2+ uptake are early events in the action of ET-1 on coronary artery vascular smooth muscle that precede the maximal contractile response. It is suggested that all of these responses are triggered by the interaction of ET-1 with a cell-surface receptor.

  7. Revealing Transient Interactions between Phosphatidylinositol-specific Phospholipase C and Phosphatidylcholine--Rich Lipid Vesicles

    NASA Astrophysics Data System (ADS)

    Yang, Boqian; He, Tao; Grauffel, Cédric; Reuter, Nathalie; Roberts, Mary; Gershenson, Anne

    2013-03-01

    Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes transiently interact with target membranes. Previous fluorescence correlation spectroscopy (FCS) experiments showed that Bacillus thuringiensis PI-PLC specifically binds to phosphatidylcholine (PC)-rich membranes and preferentially interacts with unilamellar vesicles that show larger curvature. Mutagenesis studies combined with FCS measurements of binding affinity highlighted the importance of interfacial PI-PLC tyrosines in the PC specificity. All-atom molecular dynamics simulations of PI-PLC performed in the presence of a PC membrane indicate these tyrosines are involved in specific cation-pi interactions with choline headgroups. To further understand those transient interactions between PI-PLC and PC-rich vesicles, we monitor single fluorescently labeled PI-PLC proteins as they cycle on and off surface-tethered small unilamellar vesicles using total internal reflection fluorescent microscopy. The residence times on vesicles along with vesicle size information, based on vesicle fluorescence intensity, reveal the time scales of PI-PLC membrane interactions as well as the curvature dependence. The PC specificity and the vesicle curvature dependence of this PI-PLC/membrane interaction provide insight into how the interface modulates protein-membrane interactions. This work was supported by the National Institute of General Medical Science of the National Institutes of Health (R01GM060418).

  8. Phosphatidylinositol 4,5-bisphosphate alters pharmacological selectivity for epilepsy-causing KCNQ potassium channels

    PubMed Central

    Zhou, Pingzheng; Yu, Haibo; Gu, Min; Nan, Fa-jun; Gao, Zhaobing; Li, Min

    2013-01-01

    Pharmacological augmentation of neuronal KCNQ muscarinic (M) currents by drugs such as retigabine (RTG) represents a first-in-class therapeutic to treat certain hyperexcitatory diseases by dampening neuronal firing. Whereas all five potassium channel subtypes (KCNQ1–KCNQ5) are found in the nervous system, KCNQ2 and KCNQ3 are the primary players that mediate M currents. We investigated the plasticity of subtype selectivity by two M current effective drugs, retigabine and zinc pyrithione (ZnPy). Retigabine is more effective on KCNQ3 than KCNQ2, whereas ZnPy is more effective on KCNQ2 with no detectable effect on KCNQ3. In neurons, activation of muscarinic receptor signaling desensitizes effects by retigabine but not ZnPy. Importantly, reduction of phosphatidylinositol 4,5-bisphosphate (PIP2) causes KCNQ3 to become sensitive to ZnPy but lose sensitivity to retigabine. The dynamic shift of pharmacological selectivity caused by PIP2 may be induced orthogonally by voltage-sensitive phosphatase, or conversely, abolished by mutating a PIP2 site within the S4–S5 linker of KCNQ3. Therefore, whereas drug-channel binding is a prerequisite, the drug selectivity on M current is dynamic and may be regulated by receptor signaling pathways via PIP2. PMID:23650395

  9. Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants.

    PubMed

    Huang, Jin; Ghosh, Ratna; Bankaitis, Vytas A

    2016-09-01

    Phosphoinositides and soluble inositol phosphates are essential components of a complex intracellular chemical code that regulates major aspects of lipid signaling in eukaryotes. These involvements span a broad array of biological outcomes and activities, and cells are faced with the problem of how to compartmentalize and organize these various signaling events into a coherent scheme. It is in the arena of how phosphoinositide signaling circuits are integrated and, and how phosphoinositide pools are functionally defined and channeled to privileged effectors, that phosphatidylinositol (PtdIns) transfer proteins (PITPs) are emerging as critical players. As plant systems offer some unique advantages and opportunities for study of these proteins, we discuss herein our perspectives regarding the progress made in plant systems regarding PITP function. We also suggest interesting prospects that plant systems hold for interrogating how PITPs work, particularly in multi-domain contexts, to diversify the biological outcomes for phosphoinositide signaling. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:27038688

  10. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells

    PubMed Central

    Fischer, Karsten; Scotet, Emmanuel; Niemeyer, Marcus; Koebernick, Heidrun; Zerrahn, Jens; Maillet, Sophie; Hurwitz, Robert; Kursar, Mischo; Bonneville, Marc; Kaufmann, Stefan H. E.; Schaible, Ulrich E.

    2004-01-01

    A group of T cells recognizes glycolipids presented by molecules of the CD1 family. The CD1d-restricted natural killer T cells (NKT cells) are primarily considered to be self-reactive. By employing CD1d-binding and T cell assays, the following structural parameters for presentation by CD1d were defined for a number of mycobacterial and mammalian lipids: two acyl chains facilitated binding, and a polar head group was essential for T cell recognition. Of the mycobacterial lipids tested, only a phosphatidylinositol mannoside (PIM) fulfilled the requirements for CD1d binding and NKT cell stimulation. This PIM activated human and murine NKT cells via CD1d, thereby triggering antigen-specific IFN-γ production and cell-mediated cytotoxicity, and PIM-loaded CD1d tetramers identified a subpopulation of murine and human NKT cells. This phospholipid, therefore, represents a mycobacterial antigen recognized by T cells in the context of CD1d. PMID:15243159

  11. Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity

    PubMed Central

    Araki, Yasuhiro; Ku, Wei-Chi; Akioka, Manami; May, Alexander I.; Hayashi, Yu; Arisaka, Fumio; Ishihama, Yasushi

    2013-01-01

    Autophagy is a conserved eukaryotic process of protein and organelle self-degradation within the vacuole/lysosome. Autophagy is characterized by the formation of an autophagosome, for which Vps34-dervied phosphatidylinositol 3-phosphate (PI3P) is essential. In yeast, Vps34 forms two distinct protein complexes: complex I, which functions in autophagy, and complex II, which is involved in protein sorting to the vacuole. Here we identify and characterize Atg38 as a stably associated subunit of complex I. In atg38Δ cells, autophagic activity was significantly reduced and PI3-kinase complex I dissociated into the Vps15–Vps34 and Atg14–Vps30 subcomplexes. We find that Atg38 physically interacted with Atg14 and Vps34 via its N terminus. Further biochemical analyses revealed that Atg38 homodimerizes through its C terminus and that this homodimer formation is indispensable for the integrity of complex I. These data suggest that the homodimer of Atg38 functions as a physical linkage between the Vps15–Vps34 and Atg14–Vps30 subcomplexes to facilitate complex I formation. PMID:24165940

  12. Design and Structural Characterization of Potent and Selective Inhibitors of Phosphatidylinositol 4 Kinase IIIβ.

    PubMed

    Rutaganira, Florentine U; Fowler, Melissa L; McPhail, Jacob A; Gelman, Michael A; Nguyen, Khanh; Xiong, Anming; Dornan, Gillian L; Tavshanjian, Brandon; Glenn, Jeffrey S; Shokat, Kevan M; Burke, John E

    2016-03-10

    Type III phosphatidylinositol 4-kinase (PI4KIIIβ) is an essential enzyme in mediating membrane trafficking and is implicated in a variety of pathogenic processes. It is a key host factor mediating replication of RNA viruses. The design of potent and specific inhibitors of this enzyme will be essential to define its cellular roles and may lead to novel antiviral therapeutics. We previously reported the PI4K inhibitor PIK93, and this compound has defined key functions of PI4KIIIβ. However, this compound showed high cross reactivity with class I and III PI3Ks. Using structure-based drug design, we have designed novel potent and selective (>1000-fold over class I and class III PI3Ks) PI4KIIIβ inhibitors. These compounds showed antiviral activity against hepatitis C virus. The co-crystal structure of PI4KIIIβ bound to one of the most potent compounds reveals the molecular basis of specificity. This work will be vital in the design of novel PI4KIIIβ inhibitors, which may play significant roles as antiviral therapeutics. PMID:26885694

  13. Listeria monocytogenes listeriolysin O and phosphatidylinositol-specific phospholipase C affect adherence to epithelial cells.

    PubMed

    Krawczyk-Balska, Agata; Bielecki, Jacek

    2005-09-01

    Listeria monocytogenes, a foodborn intracellular animal and human pathogen, produces several exotoxins contributing to virulence. Among these are listeriolysin O (LLO), a pore-forming cholesterol-dependent hemolysin, and a phosphatidylinositol-specific phospholipase C (PI-PLC). LLO is known to play an important role in the escape of bacteria from the primary phagocytic vacuole of macrophages, and PI-PLC supports this process. Evidence is accumulating that LLO and PI-PLC are multifunctional virulence factors with many important roles in the host-parasite interaction other than phagosomal membrane disruption. LLO and PI-PLC may induce a number of host cell responses by modulating signal transduction of infected cells via intracellular Ca2+ levels and the metabolism of phospholipids. This would result in the activation of host phospholipase C and protein kinase C. In the present study, using Bacillus sub tilis strains expressing LLO, PI-PLC, and simultaneously LLO and PI-PLC, we show that LLO and PI-PLC enhance bacterial binding to epithelial cells Int407, with LLO being necessary and PI-PLC playing an accessory role. The results of this work suggest that these two listerial proteins act on epithelial cells prior to internalization. PMID:16391652

  14. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism

    SciTech Connect

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori . E-mail: hirokato@pharm.kyoto-u.ac.jp

    2007-08-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85{alpha} and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1.

  15. Accumulation of arachidonic acid-containing phosphatidylinositol at the outer edge of colorectal cancer.

    PubMed

    Hiraide, Takanori; Ikegami, Koji; Sakaguchi, Takanori; Morita, Yoshifumi; Hayasaka, Takahiro; Masaki, Noritaka; Waki, Michihiko; Sugiyama, Eiji; Shinriki, Satoru; Takeda, Makoto; Shibasaki, Yasushi; Miyazaki, Shinichiro; Kikuchi, Hirotoshi; Okuyama, Hiroaki; Inoue, Masahiro; Setou, Mitsutoshi; Konno, Hiroyuki

    2016-01-01

    Accumulating evidence indicates that cancer cells show specific alterations in phospholipid metabolism that contribute to tumour progression in several types of cancer, including colorectal cancer. Questions still remain as to what lipids characterize the outer edge of cancer tissues and whether those cancer outer edge-specific lipid compositions emerge autonomously in cancer cells. Cancer tissue-originated spheroids (CTOSs) that are composed of pure primary cancer cells have been developed. In this study, we aimed to seek out the cancer cell-autonomous acquisition of cancer outer edge-characterizing lipids in colorectal cancer by analysing phospholipids in CTOSs derived from colorectal cancer patients with matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS). A signal at m/z 885.5 in negative ion mode was detected specifically at the surface regions. The signal was identified as an arachidonic acid (AA)-containing phosphatidylinositol (PI), PI(18:0/20:4), by tandem mass spectrometry analysis. Quantitative analysis revealed that the amount of PI(18:0/20:4) in the surface region of CTOSs was two-fold higher than that in the medial region. Finally, PI(18:0/20:4) was enriched at the cancer cells/stromal interface in colorectal cancer patients. These data imply a possible importance of AA-containing PI for colorectal cancer progression, and suggest cells expressing AA-containing PI as potential targets for anti-cancer therapy. PMID:27435310

  16. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism.

    PubMed

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori

    2007-08-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85alpha and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1. PMID:17570359

  17. Phosphatidylinositol 3-Kinase γ is required for the development of experimental cerebral malaria.

    PubMed

    Lacerda-Queiroz, Norinne; Brant, Fatima; Rodrigues, David Henrique; Vago, Juliana Priscila; Rachid, Milene Alvarenga; Sousa, Lirlândia Pires; Teixeira, Mauro Martins; Teixeira, Antonio Lucio

    2015-01-01

    Experimental cerebral malaria (ECM) is characterized by a strong immune response, with leukocyte recruitment, blood-brain barrier breakdown and hemorrhage in the central nervous system. Phosphatidylinositol 3-kinase γ (PI3Kγ) is central in signaling diverse cellular functions. Using PI3Kγ-deficient mice (PI3Kγ-/-) and a specific PI3Kγ inhibitor, we investigated the relevance of PI3Kγ for the outcome and the neuroinflammatory process triggered by Plasmodium berghei ANKA (PbA) infection. Infected PI3Kγ-/- mice had greater survival despite similar parasitemia levels in comparison with infected wild type mice. Histopathological analysis demonstrated reduced hemorrhage, leukocyte accumulation and vascular obstruction in the brain of infected PI3Kγ-/- mice. PI3Kγ deficiency also presented lower microglial activation (Iba-1+ reactive microglia) and T cell cytotoxicity (Granzyme B expression) in the brain. Additionally, on day 6 post-infection, CD3+CD8+ T cells were significantly reduced in the brain of infected PI3Kγ-/- mice when compared to infected wild type mice. Furthermore, expression of CD44 in CD8+ T cell population in the brain tissue and levels of phospho-IkB-α in the whole brain were also markedly lower in infected PI3Kγ-/- mice when compared with infected wild type mice. Finally, AS605240, a specific PI3Kγ inhibitor, significantly delayed lethality in infected wild type mice. In brief, our results indicate a pivotal role for PI3Kγ in the pathogenesis of ECM. PMID:25775137

  18. Modeling the self-organized phosphatidylinositol lipid signaling system in chemotactic cells using quantitative image analysis.

    PubMed

    Shibata, Tatsuo; Nishikawa, Masatoshi; Matsuoka, Satomi; Ueda, Masahiro

    2012-11-01

    A key signaling event that is responsible for gradient sensing in eukaryotic cell chemotaxis is a phosphatidylinositol (PtdIns) lipid reaction system. The self-organization activity of this PtdIns lipid system induces an inherent polarity, even in the absence of an external chemoattractant gradient, by producing a localized PtdIns (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)]-enriched domain on the membrane. Experimentally, we found that such a domain could exhibit two types of behavior: (1) it could be persistent and travel on the membrane, or (2) be stochastic and transient. Taking advantage of the simultaneous visualization of PtdIns(3,4,5)P(3) and the enzyme phosphatase and tensin homolog (PTEN), for which PtdIns(3,4,5)P(3) is a substrate, we statistically demonstrated the inter-dependence of their spatiotemporal dynamics. On the basis of this statistical analysis, we developed a theoretical model for the self-organization of PtdIns lipid signaling that can accurately reproduce both persistent and transient domain formation; these types of formations can be explained by the oscillatory and excitability properties of the system, respectively. PMID:22899720

  19. The Clathrin Adaptor Gga2p Is a Phosphatidylinositol 4-phosphate Effector at the Golgi Exit

    PubMed Central

    Demmel, Lars; Gravert, Maike; Ercan, Ebru; Habermann, Bianca; Müller-Reichert, Thomas; Kukhtina, Viktoria; Haucke, Volker; Baust, Thorsten; Sohrmann, Marc; Kalaidzidis, Yannis; Klose, Christian; Beck, Mike; Peter, Matthias

    2008-01-01

    Phosphatidylinositol 4-phosphate (PI(4)P) is a key regulator of membrane transport required for the formation of transport carriers from the trans-Golgi network (TGN). The molecular mechanisms of PI(4)P signaling in this process are still poorly understood. In a search for PI(4)P effector molecules, we performed a screen for synthetic lethals in a background of reduced PI(4)P and found the gene GGA2. Our analysis uncovered a PI(4)P-dependent recruitment of the clathrin adaptor Gga2p to the TGN during Golgi-to-endosome trafficking. Gga2p recruitment to liposomes is stimulated both by PI(4)P and the small GTPase Arf1p in its active conformation, implicating these two molecules in the recruitment of Gga2p to the TGN, which ultimately controls the formation of clathrin-coated vesicles. PI(4)P binding occurs through a phosphoinositide-binding signature within the N-terminal VHS domain of Gga2p resembling a motif found in other clathrin interacting proteins. These data provide an explanation for the TGN-specific membrane recruitment of Gga2p. PMID:18287542

  20. Phosphatidylinositol kinase is activated in membranes derived from cells treated with epidermal growth factor.

    PubMed Central

    Walker, D H; Pike, L J

    1987-01-01

    The ability of epidermal growth factor (EGF) to stimulate phosphatidylinositol (PtdIns) kinase activity in A431 cells was examined. The incorporation of 32P from [gamma-32P]ATP into PtdIns by A431 membranes was increased in membranes prepared from cells that had been pretreated with EGF. Demonstration of a stimulation of the PtdIns kinase activity by EGF required the use of subconfluent cultures and was dependent on the inclusion of protease inhibitors in the buffers used to prepare the membranes. Stimulation of the PtdIns kinase activity was rapid. The activation peaked 2 min after the addition of EGF and declined slowly thereafter. Half-maximal stimulation of the PtdIns kinase occurred at 7 nM EGF. Kinetic analyses of the reaction indicated that treatment of the cells with EGF resulted in a decrease in the Km for PtdIns with no change in the Vmax. The kinetic parameters for the utilization of ATP were unchanged in the EGF-treated membranes compared to the control membranes. Pretreatment of the cells with the phorbol ester phorbol 12-myristate 13-acetate blocked the ability of EGF to stimulate PtdIns kinase activity. These findings demonstrate that a PtdIns kinase activity in A431 cells is regulated by EGF and provide a good system for examining the mechanism by which EGF stimulates the activity of this intracellular enzyme. PMID:2823265

  1. Human platelets produce 14,15-oxido-5,8,11-eicosatrienoic acid from phosphatidylinositol

    SciTech Connect

    Ballou, L.R.; Lam, B.K.; Wong, P.Y.K.; Cheung, W.Y.

    1987-05-01

    Human platelets contain a soluble enzyme or enzyme system which catalyzes the formation of a compound more polar than arachidonate from 2-arachidonyl-sn-phosphatidylinositol (PtdIns). The C-value and mass spectrum of the compound appears similar to the reported values of 14,15-oxido-5,8,11-eicosatrienoic acid (EET). 2-Arachidonyl-sn-phosphatidylcholine, 2-arachidonyl-sn-phosphatidylethanolamine and arachidonic acid were not substrates for EET production. The reaction was Ca/sup 2 +/-dependent and insensitive to aspirin, mepacrin and indomethacin. EET formation was greatly reduced under nitrogen or carbon monoxide, however, exposure to atmospheric air rapidly restored EET production to a rate comparable to that under air. Further, neither NADPH nor cyanide affected EET formation, suggesting that a cytochrome P-450 system was not involved. Intact platelets prelabeled with (/sup 14/C)arachidonic acid generated at least 0.5 nmole of EET/10/sup 9/ platelets in response to thrombin; other agonists such as collagen, epinephrine, ADP or ionophore A23187 were not effective. Collectively, these data suggest that human platelets possess an enzyme system which appears to catalyze epoxidation of the arachidonyl moiety of PtdIns and its subsequent hydrolysis to yield EET.

  2. Phosphatidylinositol from alcoholic rats is uniquely able to render membranes tolerant to disordering by ethanol

    SciTech Connect

    Ellingson, J.S.; Taraschi, T.F.; Rubin, E.

    1986-05-01

    Rat liver microsomal membranes from rats chronically fed ethanol are resistant (tolerant) to membrane disordering by 50-100 mM ethanol. To identify the molecular basis of tolerance, the authors quantitatively separated microsomal phospholipids (PL's) extracted from control and ethanol-fed rats by preparative HPLC, and examined, by electron spin resonance, the structural properties of multilamellar vesicles (MLV's) prepared by recombining control and alcoholic PL's. MLV's made from alcoholic PL's (mixed in same molar ratios as in microsomes) were tolerant to disordering by ethanol, whereas control MLV's were not. If alcoholic phosphatidylcholine (66.5%), phosphatidylethanolamine (21%) or phosphatidylserine (4.0%) replaced their respective PL in control MLV's, the membranes were not tolerant. In contrast, when 8.5% alcoholic phosphatidylinositol (PI) replaced control PI, the MLV's were tolerant. Alcoholic rat PI (8.5%) also conferred tolerance to MLV's containing 91.5% bovine PL's. The authors conclude that the acquisition of membrane tolerance in alcoholic liver microsomes is related to changes in PI.

  3. Phosphatidylinositol 4,5-bisphosphate alters pharmacological selectivity for epilepsy-causing KCNQ potassium channels.

    PubMed

    Zhou, Pingzheng; Yu, Haibo; Gu, Min; Nan, Fa-jun; Gao, Zhaobing; Li, Min

    2013-05-21

    Pharmacological augmentation of neuronal KCNQ muscarinic (M) currents by drugs such as retigabine (RTG) represents a first-in-class therapeutic to treat certain hyperexcitatory diseases by dampening neuronal firing. Whereas all five potassium channel subtypes (KCNQ1-KCNQ5) are found in the nervous system, KCNQ2 and KCNQ3 are the primary players that mediate M currents. We investigated the plasticity of subtype selectivity by two M current effective drugs, retigabine and zinc pyrithione (ZnPy). Retigabine is more effective on KCNQ3 than KCNQ2, whereas ZnPy is more effective on KCNQ2 with no detectable effect on KCNQ3. In neurons, activation of muscarinic receptor signaling desensitizes effects by retigabine but not ZnPy. Importantly, reduction of phosphatidylinositol 4,5-bisphosphate (PIP2) causes KCNQ3 to become sensitive to ZnPy but lose sensitivity to retigabine. The dynamic shift of pharmacological selectivity caused by PIP2 may be induced orthogonally by voltage-sensitive phosphatase, or conversely, abolished by mutating a PIP2 site within the S4-S5 linker of KCNQ3. Therefore, whereas drug-channel binding is a prerequisite, the drug selectivity on M current is dynamic and may be regulated by receptor signaling pathways via PIP2. PMID:23650395

  4. Phosphatidylinositol 4,5-bisphosphate Directs Spermatid Cell Polarity and Exocyst Localization in Drosophila

    PubMed Central

    Fabian, Lacramioara; Wei, Ho-Chun; Rollins, Janet; Noguchi, Tatsuhiko; Blankenship, J. Todd; Bellamkonda, Kishan; Polevoy, Gordon; Gervais, Louis; Guichet, Antoine; Fuller, Margaret T.

    2010-01-01

    During spermiogenesis, Drosophila melanogaster spermatids coordinate their elongation in interconnected cysts that become highly polarized, with nuclei localizing to one end and sperm tail growth occurring at the other. Remarkably little is known about the signals that drive spermatid polarity and elongation. Here we identify phosphoinositides as critical regulators of these processes. Reduction of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) by low-level expression of the PIP2 phosphatase SigD or mutation of the PIP2 biosynthetic enzyme Skittles (Sktl) results in dramatic defects in spermatid cysts, which become bipolar and fail to fully elongate. Defects in polarity are evident from the earliest stages of elongation, indicating that phosphoinositides are required for establishment of polarity. Sktl and PIP2 localize to the growing end of the cysts together with the exocyst complex. Strikingly, the exocyst becomes completely delocalized when PIP2 levels are reduced, and overexpression of Sktl restores exocyst localization and spermatid cyst polarity. Moreover, the exocyst is required for polarity, as partial loss of function of the exocyst subunit Sec8 results in bipolar cysts. Our data are consistent with a mechanism in which localized synthesis of PIP2 recruits the exocyst to promote targeted membrane delivery and polarization of the elongating cysts. PMID:20237161

  5. Zebrafish Class 1 Phosphatidylinositol Transfer Proteins: PITPβ and Double Cone Cell Outer Segment Integrity in Retina

    PubMed Central

    Ile, Kristina E.; Kassen, Sean; Cao, Canhong; Vihtehlic, Thomas; Shah, Sweety D.; Mousley, Carl J.; Alb, James G.; Huijbregts, Richard P.H.; Stearns, George W.; Brockerhoff, Susan E.; Hyde, David R.; Bankaitis, Vytas A.

    2010-01-01

    Phosphatidylinositol transfer proteins (PITPs) in yeast coordinate lipid metabolism with the activities of specific membrane trafficking pathways. The structurally unrelated metazoan-specific PITPs (mPITPs), on the other hand, are an under-investigated class of proteins. It remains unclear what biological activities mPITPs discharge, and the mechanisms by which these proteins function are also not understood. The soluble class 1 mPITPs include the PITPα and PITPβ isoforms. Of these, the β-isoforms are particularly poorly characterized. Herein, we report the use of zebrafish as a model vertebrate for the study of class 1 mPITP biological function. Zebrafish express PITPα and PITPβ-isoforms (Pitpna and Pitpnb, respectively) and a novel PITPβ-like isoform (Pitpng). Pitpnb expression is particularly robust in double cone cells of the zebrafish retina. Morpholino-mediated protein knockdown experiments demonstrate Pitpnb activity is primarily required for biogenesis/maintenance of the double cone photoreceptor cell outer segments in the developing retina. By contrast, Pitpna activity is essential for successful navigation of early developmental programs. This study reports the initial description of the zebrafish class 1 mPITP family, and the first analysis of PITPβ function in a vertebrate. PMID:20545905

  6. High fat diet induced obesity alters ovarian phosphatidylinositol-3 kinase signaling gene expression

    PubMed Central

    Nteeba, J.; Ross, J.W.; Perfield, J.W.; Keating, A.F.

    2013-01-01

    Insulin regulates ovarian phosphatidylinositol-3-kinase (PI3K) signaling, important for primordial follicle viability and growth activation. This study investigated diet-induced obesity impacts on: 1) insulin receptor (Insr) and insulin receptor substrate 1 (Irs1); 2) PI3K components (Kit ligand (Kitlg), kit (c-Kit), protein kinase B alpha (Akt1) and forkhead transcription factor subfamily 3 (Foxo3a)); 3) xenobiotic biotransformation (microsomal epoxide hydrolase (Ephx1), Cytochrome P450 isoform 2E1 (Cyp2e1), Glutathione S-transferase (Gst) isoforms mu (Gstm) and pi (Gstp)) and 4) microRNA’s 184, 205, 103 and 21 gene expression. INSR, GSTM and GSTP protein levels were also measured. Obese mouse ovaries had decreased Irs1, Foxo3a, Cyp2e1, MiR-103, and MiR-21 but increased Kitlg, Akt1, and miR-184 levels relative to lean littermates. These results support that diet-induced obesity potentially impairs ovarian function through aberrant gene expression. PMID:23954404

  7. Phosphatidylinositol-4-phosphate-dependent membrane traffic is critical for fungal filamentous growth.

    PubMed

    Ghugtyal, Vikram; Garcia-Rodas, Rocio; Seminara, Agnese; Schaub, Sébastien; Bassilana, Martine; Arkowitz, Robert Alan

    2015-07-14

    The phospholipid phosphatidylinositol-4-phosphate [PI(4)P], generated at the Golgi and plasma membrane, has been implicated in many processes, including membrane traffic, yet its role in cell morphology changes, such as the budding to filamentous growth transition, is unknown. We show that Golgi PI(4)P is required for such a transition in the human pathogenic fungus Candida albicans. Quantitative analyses of membrane traffic revealed that PI(4)P is required for late Golgi and secretory vesicle dynamics and targeting and, as a result, is important for the distribution of a multidrug transporter and hence sensitivity to antifungal drugs. We also observed that plasma membrane PI(4)P, which we show is functionally distinct from Golgi PI(4)P, forms a steep gradient concomitant with filamentous growth, despite uniform plasma membrane PI-4-kinase distribution. Mathematical modeling indicates that local PI(4)P generation and hydrolysis by phosphatases are crucial for this gradient. We conclude that PI(4)P-regulated membrane dynamics are critical for morphology changes. PMID:26124136

  8. Phosphatidylinositol-3,4,5-Triphosphate and Cellular Signaling: Implications for Obesity and Diabetes

    PubMed Central

    Manna, Prasenjit; Jain, Sushil K.

    2015-01-01

    Phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3) is one of the most important phosphoinositides and is capable of activating a wide range of proteins through its interaction with their specific binding domains. Localization and activation of these effector proteins regulate a number of cellular functions, including cell survival, proliferation, cytoskeletal rearrangement, intracellular vesicle trafficking, and cell metabolism. Phosphoinositides have been investigated as an important agonist-dependent second messenger in the regulation of diverse physiological events depending upon the phosphorylation status of their inositol group. Dysregulation in formation as well as metabolism of phosphoinositides is associated with various pathophysiological disorders such as inflammation, allergy, cardiovascular diseases, cancer, and metabolic diseases. Recent studies have demonstrated that the impaired metabolism of PtdIns(3,4,5)P3 is a prime mediator of insulin resistance associated with various metabolic diseases including obesity and diabetes. This review examines the current status of the role of PtdIns(3,4,5)P3 signaling in the regulation of various cellular functions and the implications of dysregulated PtdIns(3,4,5)P3 signaling in obesity, diabetes, and their associated complications. PMID:25721445

  9. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells.

    PubMed

    Domingues, Lia; Ismail, Ahmad; Charro, Nuno; Rodríguez-Escudero, Isabel; Holden, David W; Molina, María; Cid, Víctor J; Mota, Luís Jaime

    2016-07-01

    Many bacterial pathogens use specialized secretion systems to deliver virulence effector proteins into eukaryotic host cells. The function of these effectors depends on their localization within infected cells, but the mechanisms determining subcellular targeting of each effector are mostly elusive. Here, we show that the Salmonella type III secretion effector SteA binds specifically to phosphatidylinositol 4-phosphate [PI(4)P]. Ectopically expressed SteA localized at the plasma membrane (PM) of eukaryotic cells. However, SteA was displaced from the PM of Saccharomyces cerevisiae in mutants unable to synthesize the local pool of PI(4)P and from the PM of HeLa cells after localized depletion of PI(4)P. Moreover, in infected cells, bacterially translocated or ectopically expressed SteA localized at the membrane of the Salmonella-containing vacuole (SCV) and to Salmonella-induced tubules; using the PI(4)P-binding domain of the Legionella type IV secretion effector SidC as probe, we found PI(4)P at the SCV membrane and associated tubules throughout Salmonella infection of HeLa cells. Both binding of SteA to PI(4)P and the subcellular localization of ectopically expressed or bacterially translocated SteA were dependent on a lysine residue near the N-terminus of the protein. Overall, this indicates that binding of SteA to PI(4)P is necessary for its localization within host cells. PMID:26676327

  10. An electrostatic switch displaces phosphatidylinositol phosphate kinases from the membrane during phagocytosis

    PubMed Central

    Fairn, Gregory D.; Ogata, Koji; Botelho, Roberto J.; Stahl, Philip D.; Anderson, Richard A.; De Camilli, Pietro; Meyer, Tobias; Wodak, Shoshana

    2009-01-01

    Plasmalemmal phosphatidylinositol (PI) 4,5-bisphosphate (PI4,5P2) synthesized by PI 4-phosphate (PI4P) 5-kinase (PIP5K) is key to the polymerization of actin that drives chemotaxis and phagocytosis. We investigated the means whereby PIP5K is targeted to the membrane and its fate during phagosome formation. Homology modeling revealed that all PIP5K isoforms feature a positively charged face. Together with the substrate-binding loop, this polycationic surface is proposed to constitute a coincidence detector that targets PIP5Ks to the plasmalemma. Accordingly, manipulation of the surface charge displaced PIP5Ks from the plasma membrane. During particle engulfment, PIP5Ks detached from forming phagosomes as the surface charge at these sites decreased. Precluding the change in surface charge caused the PIP5Ks to remain associated with the phagosomal cup. Chemically induced retention of PIP5K-γ prevented the disappearance of PI4,5P2 and aborted phagosome formation. We conclude that a bistable electrostatic switch mechanism regulates the association/dissociation of PIP5Ks from the membrane during phagocytosis and likely other processes. PMID:19951917

  11. Anaerobic Nitrogen Turnover by Sinking Diatom Aggregates at Varying Ambient Oxygen Levels

    PubMed Central

    Stief, Peter; Kamp, Anja; Thamdrup, Bo; Glud, Ronnie N.

    2016-01-01

    In the world’s oceans, even relatively low oxygen levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here, we show that sinking diatom aggregates can host anaerobic nitrogen cycling at ambient oxygen levels well above the hypoxic threshold. Aggregates were produced from the ubiquitous diatom Skeletonema marinoi and the natural microbial community of seawater. Microsensor profiling through the center of sinking aggregates revealed internal anoxia at ambient 40% air saturation (∼100 μmol O2 L-1) and below. Accordingly, anaerobic nitrate turnover inside the aggregates was evident within this range of ambient oxygen levels. In incubations with 15N-labeled nitrate, individual Skeletonema aggregates produced NO2- (up to 10.7 nmol N h-1 per aggregate), N2 (up to 7.1 nmol N h-1), NH4+ (up to 2.0 nmol N h-1), and N2O (up to 0.2 nmol N h-1). Intriguingly, nitrate stored inside the diatom cells served as an additional, internal nitrate source for dinitrogen production, which may partially uncouple anaerobic nitrate turnover by diatom aggregates from direct ambient nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient oxygen levels. Depending on the extent of intracellular nitrate consumption during the sinking process, diatom aggregates may also be involved in the long-distance export of nitrate to the deep ocean. PMID:26903977

  12. Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization

    PubMed Central

    Datla, Srinivasa Raju; McGrail, Daniel J.; Vukelic, Sasa; Huff, Lauren P.; Lyle, Alicia N.; Pounkova, Lily; Lee, Minyoung; Seidel-Rogol, Bonnie; Khalil, Mazen K.; Hilenski, Lula L.; Terada, Lance S.; Dawson, Michelle R.; Lassègue, Bernard

    2014-01-01

    Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner. PMID:25063792

  13. Turnover-Dependent Inactivation of the Nitrogenase MoFe-Protein at High pH

    PubMed Central

    2013-01-01

    Proton uptake accompanies the reduction of all known substrates by nitrogenase. As a consequence, a higher pH should limit the availability of protons as a substrate essential for turnover, thereby increasing the proportion of more highly reduced forms of the enzyme for further study. The utility of the high-pH approach would appear to be problematic in view of the observation reported by Pham and Burgess [(1993) Biochemistry 32, 13725–13731] that the MoFe-protein undergoes irreversible protein denaturation above pH 8.65. In contrast, we found by both enzyme activity and crystallographic analyses that the MoFe-protein is stable when incubated at pH 9.5. We did observe, however, that at higher pHs and under turnover conditions, the MoFe-protein is slowly inactivated. While a normal, albeit low, level of substrate reduction occurs under these conditions, the MoFe-protein undergoes a complex transformation; initially, the enzyme is reversibly inhibited for substrate reduction at pH 9.5, yet in a second, slower process, the MoFe-protein becomes irreversibly inactivated as measured by substrate reduction activity at the optimal pH of 7.8. The final inactivated MoFe-protein has an increased hydrodynamic radius compared to that of the native MoFe-protein, yet it has a full complement of iron and molybdenum. Significantly, the modified MoFe-protein retains the ability to specifically interact with its nitrogenase partner, the Fe-protein, as judged by the support of ATP hydrolysis and by formation of a tight complex with the Fe-protein in the presence of ATP and aluminum fluoride. The turnover-dependent inactivation coupled to conformational change suggests a mechanism-based transformation that may provide a new probe of nitrogenase catalysis. PMID:24392967

  14. Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization.

    PubMed

    Datla, Srinivasa Raju; McGrail, Daniel J; Vukelic, Sasa; Huff, Lauren P; Lyle, Alicia N; Pounkova, Lily; Lee, Minyoung; Seidel-Rogol, Bonnie; Khalil, Mazen K; Hilenski, Lula L; Terada, Lance S; Dawson, Michelle R; Lassègue, Bernard; Griendling, Kathy K

    2014-10-01

    Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner. PMID:25063792

  15. Effects of catecholamines on rat myocardial metabolism. II. Influence of catecholamines on 32p-incorporation into rat myocardial adenylic nucleotides and their turn-over.

    PubMed

    Merouze, P; Gaudemer, Y; Gautheron, D

    1975-01-01

    1. The influence of catecholamines (adrenaline and noradrenaline) on 32Pi incorporation into intracellular phosphate and adenylic nucleotides has been studied on rat myocardium slices; consequently, the turn-over of nucleotides could be determined and compared under the influence of these two hormones. 2. In order to specify the site of action of these catecholamines, several inhibitors and activators of energetic metabolism were included in the incubation medium: 3'5'-AMP, caffein, ouabain, oligomycin, rotenone + antimycin. 3. Both catecholamines favour Pi exchanges between intra and extracellular spaces; ATP turn-over is greatly increased, while ADP turn-over is slightly decreased, and 32P-incorporation into ADP is increased. 4. 3'5'-AMP and caffein are without effect on Pi penetration; however, caffein increases catecholamine effects on this penetration. ATP turn-over is slightly increased by 3'5'-AMP or caffein. 5. Ouabain decreases ATP turn-over but does not prevent the adrenaline induced acceleration. Inhibitors of oxidative phosphorylation and electron transport decrease ATP-turn-over severely; this inhibition is not released by catecholamines. 6. It is concluded that the catecholamine effects observed are dependent on the oxidative phosphorylations process. The increase of Pi exchange by catecholamines may be related to the increase of extracellular space and cation translocations we observed with the hormones. PMID:173417

  16. Cost of nursing turnover in a Teaching Hospital.

    PubMed

    Ruiz, Paula Buck de Oliveira; Perroca, Marcia Galan; Jericó, Marli de Carvalho

    2016-02-01

    OBJECTIVE To map the sub processes related to turnover of nursing staff and to investigate and measure the nursing turnover cost. METHOD This is a descriptive-exploratory study, classified as case study, conducted in a teaching hospital in the southeastern, Brazil, in the period from May to November 2013. The population was composed by the nursing staff, using Nursing Turnover Cost Calculation Methodology. RESULTS The total cost of turnover was R$314.605,62, and ranged from R$2.221,42 to R$3.073,23 per employee. The costs of pre-hire totaled R$101.004,60 (32,1%), and the hiring process consumed R$92.743,60 (91.8%) The costs of post-hire totaled R$213.601,02 (67,9%), for the sub process decreased productivity, R$199.982,40 (93.6%). CONCLUSION The study identified the importance of managing the cost of staff turnover and the financial impact of the cost of the employee termination, which represented three times the average salary of the nursing staff. PMID:27007427

  17. Counselor emotional exhaustion and turnover intention in therapeutic communities.

    PubMed

    Knudsen, Hannah K; Ducharme, Lori J; Roman, Paul M

    2006-09-01

    Counselor turnover is a significant problem facing substance abuse treatment agencies. Understanding the role of organizational culture in predicting burnout and turnover intention may yield important information on how to address turnover in treatment organizations. Using data collected from 817 counselors employed in a national sample of 253 therapeutic communities (TCs), structural equation modeling was used to estimate the associations between emotional exhaustion, turnover intention, and three measures of organizational culture: centralized decision making, distributive justice, and procedural justice. The model controlled for counselor demographics, credentials, and earnings. Counselors' emotional exhaustion scores were higher in TCs with greater centralized decision making (p < .01) but lower in TCs where greater distributive justice (p < .05) and procedural justice (p < .001) were reported. Likewise, turnover intention was positively associated with centralized decision making (p < .05) and inversely associated with the workplace justice measures (p < .001). These data suggest that management practices in TCs and perhaps in other types of substance abuse treatment facilities likely play a substantial role in counselors' well-being and in their decisions to leave their jobs. Because these practices are not structural features of organizations, they may be targeted for intervention and change. PMID:16919745

  18. Stressful work, psychological job strain, and turnover: a 2-year prospective cohort study of truck drivers.

    PubMed

    de Croon, Einar M; Sluiter, Judith K; Blonk, Roland W B; Broersen, Jake P J; Frings-Dresen, Monique H W

    2004-06-01

    Based on a model that combines existing organizational stress theory and job transition theory, this 2-year longitudinal study examined antecedents and consequences of turnover among Dutch truck drivers. For this purpose, self-reported data on stressful work (job demands and control), psychological strain (need for recovery after work and fatigue), and turnover were obtained from 820 drivers in 1998 and 2000. In agreement with the model, the results showed that strain mediates the influence of stressful work on voluntary turnover. Also in conformity with the model, job movement to any job outside the trucking industry (i.e., interoccupational turnover) resulted in a larger strain reduction as compared to job movement within the trucking industry (intraoccupational turnover). Finally, strain was found to stimulate interoccupational turnover more strongly than it stimulated intraoccupational turnover. These findings provide a thorough validation of existing turnover theory and give new insights into the turnover (decision) process. PMID:15161404

  19. Quality of Working Life: An Antecedent to Employee Turnover Intention

    PubMed Central

    Mosadeghrad, Ali Mohammad

    2013-01-01

    Background: The purpose of this study was to measure the level of quality of work life (QWL) among hospital employees in Iran. Additionally, it aimed to identify the factors that are critical to employees’ QWL. It also aimed to test a theoretical model of the relationship between employees’ QWL and their intention to leave the organization. Methods: A survey study was conducted based on a sample of 608 hospital employees using a validated questionnaire. Face, content and construct validity were conducted on the survey instrument. Results: Hospital employees reported low QWL. Employees were least satisfied with pay, benefits, job promotion, and management support. The most important predictor of QWL was management support, followed by job proud, job security and job stress. An inverse relationship was found between employees QWL and their turnover intention. Conclusion: This study empirically examined the relationships between employees’ QWL and their turnover intention. Managers can take appropriate actions to improve employees’ QWL and subsequently reduce employees’ turnover. PMID:24596835

  20. Factors related to job turnover in physical therapy.

    PubMed

    Harkson, D G; Unterreiner, A S; Shepard, K F

    1982-10-01

    The purpose of this study was to determine the relative importance of personal and work-related factors in relation to job turnover in the physical therapy profession. A survey questionnaire was mailed to a nationwide sample of 820 physical therapists, and 567 responses (69%) were used in the data analyses. The two most important reasons for leaving a job were "desire to pursue a different area of physical therapy" and "insufficient salary to meet financial needs." Significant differences were found in the relative importance of job-turnover factors when the sample was stratified according to physical therapy education level, percentage of time in direct patient care, years in the physical therapy profession, and sex. A careful look at the factors contributing to job turnover will help physical therapy administrators retain staff members. PMID:7122704

  1. Dynamics of Cell Generation and Turnover in the Human Heart.

    PubMed

    Bergmann, Olaf; Zdunek, Sofia; Felker, Anastasia; Salehpour, Mehran; Alkass, Kanar; Bernard, Samuel; Sjostrom, Staffan L; Szewczykowska, Mirosława; Jackowska, Teresa; Dos Remedios, Cris; Malm, Torsten; Andrä, Michaela; Jashari, Ramadan; Nyengaard, Jens R; Possnert, Göran; Jovinge, Stefan; Druid, Henrik; Frisén, Jonas

    2015-06-18

    The contribution of cell generation to physiological heart growth and maintenance in humans has been difficult to establish and has remained controversial. We report that the full complement of cardiomyocytes is established perinataly and remains stable over the human lifespan, whereas the numbers of both endothelial and mesenchymal cells increase substantially from birth to early adulthood. Analysis of the integration of nuclear bomb test-derived (14)C revealed a high turnover rate of endothelial cells throughout life (>15% per year) and more limited renewal of mesenchymal cells (<4% per year in adulthood). Cardiomyocyte exchange is highest in early childhood and decreases gradually throughout life to <1% per year in adulthood, with similar turnover rates in the major subdivisions of the myocardium. We provide an integrated model of cell generation and turnover in the human heart. PMID:26073943

  2. Biogenesis, Turnover, and Mode of Action of Plant MicroRNAs[OPEN

    PubMed Central

    Rogers, Kestrel; Chen, Xuemei

    2013-01-01

    MicroRNAs (miRNAs) are small RNAs that control gene expression through silencing of target mRNAs. Mature miRNAs are processed from primary miRNA transcripts by the endonuclease activity of the DICER-LIKE1 (DCL1) protein complex. Mechanisms exist that allow the DCL1 complex to precisely excise the miRNA from its precursor. Our understanding of miRNA biogenesis, particularly its intersection with transcription and other aspects of RNA metabolism such as splicing, is still evolving. Mature miRNAs are incorporated into an ARGONAUTE (AGO) effector complex competent for target gene silencing but are also subjected to turnover through a degradation mechanism that is beginning to be understood. The mechanisms of miRNA target silencing in plants are no longer limited to AGO-catalyzed slicing, and the contribution of translational inhibition is increasingly appreciated. Here, we review the mechanisms underlying the biogenesis, turnover, and activities of plant miRNAs. PMID:23881412

  3. Human turnover dynamics during sleep: Statistical behavior and its modeling

    NASA Astrophysics Data System (ADS)

    Yoneyama, Mitsuru; Okuma, Yasuyuki; Utsumi, Hiroya; Terashi, Hiroo; Mitoma, Hiroshi

    2014-03-01

    Turnover is a typical intermittent body movement while asleep. Exploring its behavior may provide insights into the mechanisms and management of sleep. However, little is understood about the dynamic nature of turnover in healthy humans and how it can be modified in disease. Here we present a detailed analysis of turnover signals that are collected by accelerometry from healthy elderly subjects and age-matched patients with neurodegenerative disorders such as Parkinson's disease. In healthy subjects, the time intervals between consecutive turnover events exhibit a well-separated bimodal distribution with one mode at ⩽10 s and the other at ⩾100 s, whereas such bimodality tends to disappear in neurodegenerative patients. The discovery of bimodality and fine temporal structures (⩽10 s) is a contribution that is not revealed by conventional sleep recordings with less time resolution (≈30 s). Moreover, we estimate the scaling exponent of the interval fluctuations, which also shows a clear difference between healthy subjects and patients. We incorporate these experimental results into a computational model of human decision making. A decision is to be made at each simulation step between two choices: to keep on sleeping or to make a turnover, the selection of which is determined dynamically by comparing a pair of random numbers assigned to each choice. This decision is weighted by a single parameter that reflects the depth of sleep. The resulting simulated behavior accurately replicates many aspects of observed turnover patterns, including the appearance or disappearance of bimodality and leads to several predictions, suggesting that the depth parameter may be useful as a quantitative measure for differentiating between normal and pathological sleep. These findings have significant clinical implications and may pave the way for the development of practical sleep assessment technologies.

  4. The effect of chemical agents on the turnover of the bound phosphate associated with the sodium-and-potassium ion-stimulated adenosine triphosphatase in ox brain microsomes

    PubMed Central

    Rodnight, R.

    1970-01-01

    1. The effect of chemical agents on the turnover of the Na+-dependent bound phosphate and the simultaneous Na+-dependent hydrolysis of ATP by a membrane preparation from ox brain was studied at an ATP/protein ratio of 12.5pmol/μg. 2. The agents were added immediately after phosphorylation of the preparation in a medium containing 50mm-sodium chloride and 2.5μm-[γ-32P]ATP. 3. Concentrations of sodium chloride above 150mm, calcium chloride to 20mm and suramin to 1.4mm inhibited both phosphorylation and dephosphorylation and concomitantly slowed ATP hydrolysis. At 125mm-sodium chloride dephosphorylation and hydrolysis were slightly slowed without affecting phosphorylation. 4. Ethanol to 1.6m concentration inhibited dephosphorylation without affecting phosphorylation; the bound phosphate was increased and ATP hydrolysis slowed. 5. Ouabain to 4mm concentration partially inhibited ATP hydrolysis and caused a transient (1–2s) rise in bound phosphate followed by a rapid fall to a lower plateau value, which eventually declined to zero by the time ATP hydrolysis was complete. 6. Of the detergents examined Lubrol W, Triton X-100 and sodium deoxycholate had no significant effect on turnover. Sodium dodecyl sulphate and sodium decyl sulphate to 3.5mm and 20mm respectively completely inhibited turnover and ATP hydrolysis and stabilized the bound phosphate. PMID:4250238

  5. Role of Phosphatidylinositol 4,5-Bisphosphate in Regulating EHD2 Plasma Membrane Localization

    PubMed Central

    Simone, Laura C.; Caplan, Steve; Naslavsky, Naava

    2013-01-01

    The four mammalian C-terminal Eps15 homology domain-containing proteins (EHD1-EHD4) play pivotal roles in endocytic membrane trafficking. While EHD1, EHD3 and EHD4 associate with intracellular tubular/vesicular membranes, EHD2 localizes to the inner leaflet of the plasma membrane. Currently, little is known about the regulation of EHD2. Thus, we sought to define the factors responsible for EHD2’s association with the plasma membrane. The subcellular localization of endogenous EHD2 was examined in HeLa cells using confocal microscopy. Although EHD partner proteins typically mediate EHD membrane recruitment, EHD2 was targeted to the plasma membrane independent of two well-characterized binding proteins, syndapin2 and EHBP1. Additionally, the EH domain of EHD2, which facilitates canonical EHD protein interactions, was not required to direct overexpressed EHD2 to the cell surface. On the other hand, several lines of evidence indicate that the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) plays a crucial role in regulating EHD2 subcellular localization. Pharmacologic perturbation of PIP2 metabolism altered PIP2 plasma membrane distribution (as assessed by confocal microscopy), and caused EHD2 to redistribute away from the plasma membrane. Furthermore, overexpressed EHD2 localized to PIP2-enriched vacuoles generated by active Arf6. Finally, we show that although cytochalasin D caused actin microfilaments to collapse, EHD2 was nevertheless maintained at the plasma membrane. Intriguingly, cytochalasin D induced relocalization of both PIP2 and EHD2 to actin aggregates, supporting a role of PIP2 in controlling EHD2 subcellular localization. Altogether, these studies emphasize the significance of membrane lipid composition for EHD2 subcellular distribution and offer new insights into the regulation of this important endocytic protein. PMID:24040268

  6. Eimeria maxima phosphatidylinositol 4-phosphate 5-kinase: locus sequencing, characterization, and cross-phylum comparison.

    PubMed

    Goh, Mei-Yen; Pan, Mei-Zhen; Blake, Damer P; Wan, Kiew-Lian; Song, Beng-Kah

    2011-03-01

    Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) may play an important role in host-cell invasion by the Eimeria species, protozoan parasites which can cause severe intestinal disease in livestock. Here, we report the structural organization of the PIP5K gene in Eimeria maxima (Weybridge strain). Two E. maxima BAC clones carrying the E. maxima PIP5K (EmPIP5K) coding sequences were selected for shotgun sequencing, yielding a 9.1-kb genomic segment. The EmPIP5K coding region was initially identified using in silico gene-prediction approaches and subsequently confirmed by mapping rapid amplification of cDNA ends and RT-PCR-generated cDNA sequence to its genomic segment. The putative EmPIP5K gene was located at position 710-8036 nt on the complimentary strand and comprised of 23 exons. Alignment of the 1147 amino acid sequence with previously annotated PIP5K proteins from other Apicomplexa species detected three conserved motifs encompassing the kinase core domain, which has been shown by previous protein deletion studies to be necessary for PIP5K protein function. Phylogenetic analysis provided further evidence that the putative EmPIP5K protein is orthologous to that of other Apicomplexa. Subsequent comparative gene structure characterization revealed events of intron loss/gain throughout the evolution of the apicomplexan PIP5K gene. Further scrutiny of the genomic structure revealed a possible trend towards "intron gain" between two of the motif regions. Our findings offer preliminary insights into the structural variations that have occurred during the evolution of the PIP5K locus and may aid in understanding the functional role of this gene in the cellular biology of apicomplexan parasites. PMID:20938684

  7. Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase.

    PubMed

    Roy, Avik; Modi, Khushbu K; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias. PMID:25007337

  8. Genetically encoded fluorescent probe to visualize intracellular phosphatidylinositol 3,5-bisphosphate localization and dynamics

    PubMed Central

    Li, Xinran; Wang, Xiang; Zhang, Xiaoli; Zhao, Mingkun; Tsang, Wai Lok; Zhang, Yanling; Yau, Richard Gar Wai; Weisman, Lois S.; Xu, Haoxing

    2013-01-01

    Phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is a low-abundance phosphoinositide presumed to be localized to endosomes and lysosomes, where it recruits cytoplasmic peripheral proteins and regulates endolysosome-localized membrane channel activity. Cells lacking PI(3,5)P2 exhibit lysosomal trafficking defects, and human mutations in the PI(3,5)P2-metabolizing enzymes cause lysosome-related diseases. The spatial and temporal dynamics of PI(3,5)P2, however, remain unclear due to the lack of a reliable detection method. Of the seven known phosphoinositides, only PI(3,5)P2 binds, in the low nanomolar range, to a cytoplasmic phosphoinositide-interacting domain (ML1N) to activate late endosome and lysosome (LEL)-localized transient receptor potential Mucolipin 1 (TRPML1) channels. Here, we report the generation and characterization of a PI(3,5)P2-specific probe, generated by the fusion of fluorescence tags to the tandem repeats of ML1N. The probe was mainly localized to the membranes of Lamp1-positive compartments, and the localization pattern was dynamically altered by either mutations in the probe, or by genetically or pharmacologically manipulating the cellular levels of PI(3,5)P2. Through the use of time-lapse live-cell imaging, we found that the localization of the PI(3,5)P2 probe was regulated by serum withdrawal/addition, undergoing rapid changes immediately before membrane fusion of two LELs. Our development of a PI(3,5)P2-specific probe may facilitate studies of both intracellular signal transduction and membrane trafficking in the endosomes and lysosomes. PMID:24324172

  9. Light- and GTP-activated hydrolysis of phosphatidylinositol bisphosphate in squid photoreceptor membranes

    SciTech Connect

    Baer, K.M.; Saibil, H.R.

    1988-01-05

    Light stimulates the hydrolysis of exogenous, (/sup 3/H)inositol-labeled phosphatidylinositol bisphosphate (PtdInsP2) added to squid photoreceptor membranes, releasing inositol trisphosphate (InsP3). At free calcium levels of 0.05 microM or greater, hydrolysis of the labeled lipid is stimulated up to 4-fold by GTP and light together, but not separately. This activity is the biochemical counterpart of observations on intact retina showing that a rhodopsin-activated GTP-binding protein is involved in visual transduction in invertebrates, and that InsP3 release is correlated with visual excitation and adaptation. Using an in vitro assay, we investigated the calcium and GTP dependence of the phospholipase activity. At calcium concentrations between 0.1 and 0.5 microM, some hydrolysis occurs independently of GTP and light, with a light- and GTP-activated component superimposed. At 1 microM calcium there is no background activity, and hydrolysis absolutely requires both GTP and light. Ion exchange chromatography on Dowex 1 (formate form) of the water-soluble products released at 1 microM calcium reveals that the product is almost entirely InsP3. Invertebrate rhodopsin is homologous in sequence and function to vertebrate visual pigment, which modulates the concentration of cyclic GMP through the mediation of the GTP-binding protein transducin. While there is some evidence that light also modulates PtdInsP2 content in vertebrate photoreceptors, the case for its involvement in phototransduction is stronger for the invertebrate systems. The results reported here support the scheme of rhodopsin----GTP-binding protein----phospholipase C activation in invertebrate photoreceptors.

  10. Phosphatidylinositol induces fluid phase formation and packing defects in phosphatidylcholine model membranes

    PubMed Central

    Peng, Aaron; Pisal, Dipak S.; Doty, Amy; Balu-Iyer, Sathy V.

    2011-01-01

    Liposomes consisted of phosphatidylinositol (PI) and phosphatidylcholine (PC) have been utilized as delivery vehicle for drugs and proteins. In the present work, we studied the effect of soy PI on physical properties of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes such as phase state of lipid bilayer, lipid packing and phase properties using multiple orthogonal biophysical techniques. The 6-dodecanoyl-2-dimethylamino naphthalene (Laurdan) fluorescence studies showed that presence of PI induces the formation of fluid phases in DMPC. Differential scanning calorimetry (DSC), temperature dependent fluorescence anisotropy measurements, and generalized polarization values for Laurdan showed that the presence of as low as 10 mol% of PI induces substantial broadening and shift to lower temperature of phase transition of DMPC. The fluorescence emission intensity of DPH labeled, PI containing DMPC lipid bilayer decreased possibly due to deeper penetration of water molecules in lipid bilayer. In order to further delineate the effect of PI on the physico chemical properties of DMPC is due to either significant hydrophobic mismatch between the acyl chains of the DMPC and that of soy PI or due to the inositol head group, we systematically replaced soy PI with PC species of similar acyl chain composition (DPPC and 18:2 (Cis) PC) or with diacylglycerol (DAG) respectively. The anisotropy of PC membrane containing soy PI showed largest fluidity change compared to other compositions. The data suggests that addition of PI alters structure and dynamics of DMPC bilayer in that it promotes deeper water penetration in the bilayer, induces fluid phase characteristics and causes lipid packing defects that involve its inositol head group. PMID:22024173

  11. The active site of yeast phosphatidylinositol synthase Pis1 is facing the cytosol.

    PubMed

    Bochud, Arlette; Conzelmann, Andreas

    2015-05-01

    Five yeast enzymes synthesizing various glycerophospholipids belong to the CDP-alcohol phosphatidyltransferase (CAPT) superfamily. They only share the so-called CAPT motif, which forms the active site of all these enzymes. Bioinformatic tools predict the CAPT motif of phosphatidylinositol synthase Pis1 as either ER luminal or cytosolic. To investigate the membrane topology of Pis1, unique cysteine residues were introduced into either native or a Cys-free form of Pis1 and their accessibility to the small, membrane permeating alkylating reagent N-ethylmaleimide (NEM) and mass tagged, non-permeating maleimides, in the presence and absence of non-denaturing detergents, was monitored. The results clearly point to a cytosolic location of the CAPT motif. Pis1 is highly sensitive to non-denaturing detergent, and low concentrations (0.05%) of dodecylmaltoside change the accessibility of single substituted Cys in the active site of an otherwise cysteine free version of Pis1. Slightly higher detergent concentrations inactivate the enzyme. Removal of the ER retrieval sequence from (wt) Pis1 enhances its activity, again suggesting an influence of the lipid environment. The central 84% of the Pis1 sequence can be aligned and fitted onto the 6 transmembrane helices of two recently crystallized archaeal members of the CAPT family. Results delineate the accessibility of different parts of Pis1 in their natural context and allow to critically evaluate the performance of different cysteine accessibility methods. Overall the results show that cytosolically made inositol and CDP-diacylglycerol can access the active site of the yeast PI synthase Pis1 from the cytosolic side and that Pis1 structure is strongly affected by mild detergents. PMID:25687304

  12. The association between phosphatidylinositol phosphodiesterase activity and a specific subunit of microtubular protein in rat brain

    PubMed Central

    Quinn, P. J.

    1973-01-01

    1. Supernatant proteins from rat brain were separated into two fractions containing phosphatidylinositol phosphodiesterase activity by chromatography on DEAE-Sephadex A-50. 2. The first fraction sediments in linear sucrose density gradients in two bands corresponding to molecular weights of 66000 and 36000. There was presumptive evidence that the lighter protein constituted the monomeric form of the enzyme. The second fraction sediments predominantly as a single protein of molecular weight 86000. 3. Treatment of rat brain supernatant with [3H]colchicine abolished the second DEAE-Sephadex peak and removed the lighter protein from the first peak. These proteins emerged in the same position as the protein binding [3H]colchicine at high salt concentration; phospholipase activity was recovered from linear sucrose density gradients in positions corresponding to molecular weights 88000 and 43000, together with an aggregate of molecular weight 140000. Electrophoresis on sodium dodecyl sulphate–urea–polyacrylamide gels of this fraction revealed only three proteins: the α and β-subunits of microtubular protein, of molecular weights 56000 and 52000 respectively, and a protein of molecular weight 38000. 4. A sample of microtubular protein from mouse, labelled in vivo with [3H]proline and 32Pi, was added to rat brain supernatant together with an equal amount of the same microtubular protein treated with cyclic AMP and [γ-32P]ATP and the mixture subsequently characterized by ion-exchange chromatography. Some phospholipase activity characteristic of the second peak from DEAE-Sephadex was associated with one fraction of added microtubular protein. This fraction was identified on the basis of the 3H:32P ratio as the β subunit of the protein treated with ATP and cyclic AMP. The subunit of added microtubular protein untreated with nucleotides was not associated with phospholipase activity. PMID:4353236

  13. Enhancement of Morphological Plasticity in Hippocampal Neurons by a Physically Modified Saline via Phosphatidylinositol-3 Kinase

    PubMed Central

    Roy, Avik; Modi, Khushbu K.; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer’s disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias. PMID:25007337

  14. Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation.

    PubMed

    Toulany, Mahmoud; Rodemann, H Peter

    2015-12-01

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a key cascade downstream of several protein kinases, especially membrane-bound receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) family members. Hyperactivation of the PI3K/Akt pathway is correlated with tumor development, progression, poor prognosis, and resistance to cancer therapies, such as radiotherapy, in human solid tumors. Akt/PKB (Protein Kinase B) members are the major kinases that act downstream of PI3K, and these are involved in a variety of cellular functions, including growth, proliferation, glucose metabolism, invasion, metastasis, angiogenesis, and survival. Accumulating evidence indicates that activated Akt is one of the major predictive markers for solid tumor responsiveness to chemo/radiotherapy. DNA double-strand breaks (DNA-DSB), are the prime cause of cell death induced by ionizing radiation. Preclinical in vitro and in vivo studies have shown that constitutive activation of Akt and stress-induced activation of the PI3K/Akt pathway accelerate the repair of DNA-DSB and, consequently, lead to therapy resistance. Analyzing dysregulations of Akt, such as point mutations, gene amplification or overexpression, which results in the constitutive activation of Akt, might be of special importance in the context of radiotherapy outcomes. Such studies, as well as studies of the mechanism(s) by which activated Akt1 regulates repair of DNA-DSB, might help to identify combinations using the appropriate molecular targeting strategies with conventional radiotherapy to overcome radioresistance in solid tumors. In this review, we discuss the dysregulation of the components of upstream regulators of Akt as well as specific modifications of Akt isoforms that enhance Akt activity. Likewise, the mechanisms by which Akt interferes with repair of DNA after exposure to ionizing radiation, will be reviewed. Finally, the current status of Akt targeting in combination with radiotherapy will

  15. Palmitoleate is a mitogen, formed upon stimulation with growth factors, and converted to palmitoleoyl-phosphatidylinositol.

    PubMed

    Koeberle, Andreas; Shindou, Hideo; Harayama, Takeshi; Shimizu, Takao

    2012-08-01

    Controversial correlations between biological activity and concentration of the novel lipokine palmitoleate (9Z-hexadecenoate, 16:1) might depend on the formation of an active 16:1 metabolite. For its identification, we analyzed the glycerophospholipid composition of mouse Swiss 3T3 fibroblasts in response to 16:1 using LC-MS/MS. 16:1 was either supplemented to the cell culture medium or endogenously formed when cells were stimulated with insulin or growth factors as suggested by the enhanced mRNA expression of 16:1-biosynthetic enzymes. The proportion of 1-acyl-2-16:1-sn-phosphatidylinositol (16:1-PI) was time-dependently and specifically increased relative to other glycerophospholipids under both conditions and correlated with the proliferation of fatty acid (16:1, palmitate, oleate, or arachidonate)-supplemented cells. Accordingly, cell proliferation was impaired by blocking 16:1 biosynthesis using the selective stearoyl-CoA desaturase-1 inhibitor CAY10566 and restored by supplementation of 16:1. The accumulation of 16:1-PI occurred throughout cellular compartments and within diverse mouse cell lines (Swiss 3T3, NIH-3T3, and 3T3-L1 cells). To elucidate further whether 16:1-PI is formed through the de novo or remodeling pathway of PI biosynthesis, phosphatidate levels and lyso-PI-acyltransferase activities were analyzed as respective markers. The proportion of 16:1-phosphatidate was significantly increased by insulin and growth factors, whereas lyso-PI-acyltransferases showed negligible activity for 16:1-coenzyme A. The relevance of the de novo pathway for 16:1-PI biosynthesis is supported further by the comparable incorporation rate of deuterium-labeled 16:1 and tritium-labeled inositol into PI for growth factor-stimulated cells. In conclusion, we identified 16:1 or 16:1-PI as mitogen whose biosynthesis is induced by growth factors. PMID:22700983

  16. Protein kinase Cζ exhibits constitutive phosphorylation and phosphatidylinositol-3,4,5-triphosphate-independent regulation

    PubMed Central

    Tobias, Irene S.; Kaulich, Manuel; Kim, Peter K.; Simon, Nitya; Jacinto, Estela; Dowdy, Steven F.; King, Charles C.; Newton, Alexandra C.

    2016-01-01

    Atypical protein kinase C (aPKC) isoenzymes are key modulators of insulin signalling, and their dysfunction correlates with insulin-resistant states in both mice and humans. Despite the engaged interest in the importance of aPKCs to type 2 diabetes, much less is known about the molecular mechanisms that govern their cellular functions than for the conventional and novel PKC isoenzymes and the functionally-related protein kinase B (Akt) family of kinases. Here we show that aPKC is constitutively phosphorylated and, using a genetically-encoded reporter for PKC activity, basally active in cells. Specifically, we show that phosphorylation at two key regulatory sites, the activation loop and turn motif, of the aPKC PKCζ in multiple cultured cell types is constitutive and independently regulated by separate kinases: ribosome-associated mammalian target of rapamycin complex 2 (mTORC2) mediates co-translational phosphorylation of the turn motif, followed by phosphorylation at the activation loop by phosphoinositide-dependent kinase-1 (PDK1). Live cell imaging reveals that global aPKC activity is constitutive and insulin unresponsive, in marked contrast to the insulin-dependent activation of Akt monitored by an Akt-specific reporter. Nor does forced recruitment to phosphoinositides by fusing the pleckstrin homology (PH) domain of Akt to the kinase domain of PKCζ alter either the phosphorylation or activity of PKCζ. Thus, insulin stimulation does not activate PKCζ through the canonical phosphatidylinositol-3,4,5-triphosphate-mediated pathway that activates Akt, contrasting with previous literature on PKCζ activation. These studies support a model wherein an alternative mechanism regulates PKCζ-mediated insulin signalling that does not utilize conventional activation via agonist-evoked phosphorylation at the activation loop. Rather, we propose that scaffolding near substrates drives the function of PKCζ. PMID:26635352

  17. Role of Ca2+ in secretagogue-stimulated breakdown of phosphatidylinositol in rat pancreatic islets.

    PubMed Central

    Axen, K V; Schubart, U K; Blake, A D; Fleischer, N

    1983-01-01

    Breakdown of phosphatidylinositol (PI) has been shown to be increased during Ca2+-mediated stimulation of cellular responses in many systems and has been proposed to be involved in stimulus-secretion coupling. The effects on PI breakdown of insulin secretagogues that alter cellular Ca2+ or cyclic (c)AMP levels were investigated in perifused rat islets of Langerhans. Isolated islets were labeled with myo-[2-3H(N)]inositol and the efflux of 3H-labeled metabolites was monitored. Glucose (16.7 mM) greatly increased 3H release in a manner that paralleled the second phase of the insulin secretory response; by 60 min, the amount of [3H]PI in the islet decreased by 50%. Removal of Ca2+ from the perifusate or blockade of Ca2+ entry through the voltage-dependent channels by D600 (20 microM) abolished the glucose-induced increase in 3H efflux. Depolarization with 47 mM K+, which increases Ca2+ entry, stimulated protracted 3H and insulin release. Glucose-stimulated output of 3H was not prevented by epinephrine (1 microM) even though the insulin response was abolished. In contrast, 3H output was not affected by isobutylmethylxanthine (1 mM), known to raise cellular levels of cAMP, although insulin release was stimulated. These findings indicate that PI breakdown is not related to the exocytotic process since stimulation of insulin release and PI breakdown could be uncoupled, and that it is not associated with cAMP-mediated regulation of insulin release. PI breakdown in islets differs from the immediate, transient phenomenon reported in other systems in both its timing and requirement for Ca2+. It appears to result from the entry of Ca2+ and not to be the mechanism by which glucose initiates Ca2+ influx. PMID:6192142

  18. Dimer Structure of an Interfacially Impaired Phosphatidylinositol-Specific Pholpholipase C

    SciTech Connect

    Shao,C.; Shi, X.; Wehbi, H.; Zambonelli, C.; Head, J.; Seaton, B.; Roberts, M,.

    2007-01-01

    The crystal structure of the W47A/W242A mutant of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis has been solved to 1.8{angstrom} resolution. The W47A/W242A mutant is an interfacially challenged enzyme, and it has been proposed that one or both tryptophan side chains serve as membrane interfacial anchors (Feng, J., Wehbi, H., and Roberts, M. F. (2002) J. Biol. Chem. 277, 19867-19875). The crystal structure supports this hypothesis. Relative to the crystal structure of the closely related (97% identity) wild-type PI-PLC from Bacillus cereus, significant conformational differences occur at the membrane-binding interfacial region rather than the active site. The Trp {yields} Ala mutations not only remove the membrane-partitioning aromatic side chains but also perturb the conformations of the so-called helix B and rim loop regions, both of which are implicated in interfacial binding. The crystal structure also reveals a homodimer, the first such observation for a bacterial PI-PLC, with pseudo-2-fold symmetry. The symmetric dimer interface is stabilized by hydrophobic and hydrogen-bonding interactions, contributed primarily by a central swath of aromatic residues arranged in a quasiherringbone pattern. Evidence that interfacially active wild-type PI-PLC enzymes may dimerize in the presence of phosphatidylcholine vesicles is provided by fluorescence quenching of PI-PLC mutants with pyrene-labeled cysteine residues. The combined data suggest that wild-type PI-PLC can form similar homodimers, anchored to the interface by the tryptophan and neighboring membrane-partitioning residues.

  19. Effects of Isoform-selective Phosphatidylinositol 3-Kinase Inhibitors on Osteoclasts

    PubMed Central

    Shugg, Ryan P. P.; Thomson, Ashley; Tanabe, Natsuko; Kashishian, Adam; Steiner, Bart H.; Puri, Kamal D.; Pereverzev, Alexey; Lannutti, Brian J.; Jirik, Frank R.; Dixon, S. Jeffrey; Sims, Stephen M.

    2013-01-01

    Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15–20 min to 65–75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics. PMID:24133210

  20. Fermentation Temperature Modulates Phosphatidylethanolamine and Phosphatidylinositol Levels in the Cell Membrane of Saccharomyces cerevisiae

    PubMed Central

    Henderson, Clark M.; Zeno, Wade F.; Lerno, Larry A.; Longo, Marjorie L.

    2013-01-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at “normal” temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner. PMID:23811519

  1. Mitotic Membrane Turnover Coordinates Differential Induction of the Heart Progenitor Lineage.

    PubMed

    Cota, Christina D; Davidson, Brad

    2015-09-14

    In response to microenvironmental cues, embryonic cells form adhesive signaling compartments that influence survival and patterning. Dividing cells detach from the surrounding matrix and initiate extensive membrane remodeling, but the in vivo impact of mitosis on adhesion-dependent signaling remains poorly characterized. We investigate in vivo signaling dynamics using the invertebrate chordate, Ciona intestinalis. In Ciona, matrix adhesion polarizes fibroblast growth factor (FGF)-dependent heart progenitor induction. Here, we show that adhesion inhibits mitotic FGF receptor internalization, leading to receptor enrichment along adherent membranes. Targeted disruption of matrix adhesion promotes uniform FGF receptor internalization and degradation while enhanced adhesion suppresses degradation. Chimeric analysis indicates that integrin β chain-specific impacts on induction are dictated by distinct internalization motifs. We also found that matrix adhesion impacts receptor enrichment through Caveolin-rich membrane domains. These results redefine the relationship between cell division and adhesive signaling, revealing how mitotic membrane turnover orchestrates adhesion-dependent signal polarization. PMID:26300448

  2. Gcn5 and SAGA Regulate Shelterin Protein Turnover and Telomere Maintenance

    PubMed Central

    Atanassov, Boyko S.; Evrard, Yvonne A.; Multani, Asha S.; Zhang, Zhijing; Tora, László; Devys, Didier; Chang, Sandy; Dent, Sharon Y.R.

    2009-01-01

    SUMMARY Histone acetyltransferases (HATs) play important roles in gene regulation and DNA repair by influencing the accessibility of chromatin to transcription factors and repair proteins. Here we show that deletion of Gcn5 leads to telomere dysfunction in mouse and human cells. Biochemical studies reveal that depletion of Gcn5 or ubiquitin specific protease 22 (Usp22), which is another bona fide component of the Gcn5-containing SAGA complex, increases ubiquitination and turnover of TRF1, a primary component of the telomeric shelterin complex. Inhibition of the proteasome or over expression of USP22 opposes this effect. The USP22 deubiquitinating module requires association with SAGA complexes for activity, and we find that depletion of Gcn5 compromises this association in mammalian cells. Thus, our results indicate that Gcn5 regulates TRF1 levels through effects on Usp22 activity and SAGA integrity. PMID:19683498

  3. Site-specific human histone H3 methylation stability: fast K4me3 turnover

    PubMed Central

    Zheng, Yupeng; Tipton, Jeremiah D.; Thomas, Paul M.; Kelleher, Neil L.; Sweet, Steve M.M.

    2014-01-01

    We employ stable isotope labelling and quantitative mass spectrometry to track histone methylation stability. We show that H3 trimethyl K9 and K27 are slow to be established on new histones and slow to disappear from old histones, with half-lives of multiple cell divisions. By contrast the transcription-associated marks K4me3 and K36me3 turn over far more rapidly, with half-lives of 6.8 h and 57 h, respectively. Inhibition of demethylases increases K9 and K36 methylation, with K9 showing the largest and most robust increase. We interpret different turnover rates in light of genome-wide localization data and transcription-dependent nucleosome rearrangements proximal to the transcription start site. PMID:24826939

  4. The canonical transient receptor potential 6 channel as a putative phosphatidylinositol 3,4,5-trisphosphate-sensitive calcium entry system.

    PubMed

    Tseng, Ping-Hui; Lin, Ho-Pi; Hu, Hongzhen; Wang, Chunbo; Zhu, Michael Xi; Chen, Ching-Shih

    2004-09-21

    We previously reported that phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), a lipid product of phosphoinositide 3-kinase (PI3K), induced Ca(2+) influx via a noncapacitative pathway in platelets, Jurkat T cells, and RBL-2H3 mast cells. The identity of this Ca(2+) influx system, however, remains unclear. Here, we investigate a potential link between PIP(3)-sensitive Ca(2+) entry and the canonical transient receptor potential (TRPC) channels by developing stable human embryonic kidney (HEK) 293 cell lines expressing TRPC1, TRPC3, TRPC5, and TRPC6. Two lines of evidence support TRPC6 as a putative target by which PIP(3) induces Ca(2+) influx. First, Fura-2 fluorometric Ca(2+) analysis shows the ability of PIP(3) to selectively stimulate [Ca(2+)](i) increase in TRPC6-expressing cells. Second, pull-down analysis indicates specific interactions between biotin-PIP(3) and TRPC6 protein. Our data indicate that PIP(3) activates store-independent Ca(2+) entry in TRPC6 cells via a nonselective cation channel. Although the activating effect of PIP(3) on TRPC6 is reminiscent to that of 1-oleoyl-2-acetyl-sn-glycerol, this activation is not attributable to the diacylglycerol substructure of PIP(3) since other phosphoinositides failed to trigger Ca(2+) responses. The PIP(3)-activated Ca(2+) entry is inhibited by known TRPC6 inhibitors such as Gd(3+) and SKF96365 and is independent of IP(3) production. Furthermore, we demonstrated that TRPC6 overexpression or antisense downregulation significantly alters the amplitude of PIP(3)- and anti-CD3-activated Ca(2+) responses in Jurkat T cells. Consequently, the link between TRPC6 and PIP(3)-mediated Ca(2+) entry provides a framework to account for an intimate relationship between PI3K and PLCgamma in initiating Ca(2+) response to agonist stimulation in T lymphocytes. PMID:15362854

  5. The EphA8 Receptor Regulates Integrin Activity through p110γ Phosphatidylinositol-3 Kinase in a Tyrosine Kinase Activity-Independent Manner

    PubMed Central

    Gu, Changkyu; Park, Soochul

    2001-01-01

    Recent genetic studies suggest that ephrins may function in a kinase-independent Eph receptor pathway. Here we report that expression of EphA8 in either NIH 3T3 or HEK293 cells enhanced cell adhesion to fibronectin via α5β1- or β3 integrins. Interestingly, a kinase-inactive EphA8 mutant also markedly promoted cell attachment to fibronectin in these cell lines. Using a panel of EphA8 point mutants, we have demonstrated that EphA8 kinase activity does not correlate with its ability to promote cell attachment to fibronectin. Analysis using EphA8 extracellular and intracellular domain mutants has revealed that enhanced cell adhesion is dependent on ephrin A binding to the extracellular domain and the juxtamembrane segment of the cytoplasmic domain of the receptor. EphA8-promoted adhesion was efficiently inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor. Additionally, we found that EphA8 had associated PI 3-kinase activity and that the p110γ isoform of PI 3-kinase is associated with EphA8. In vitro binding experiments revealed that the EphA8 juxtamembrane segment was sufficient for the formation of a stable complex with p110γ. Similar results were obtained in assay using cells stripped of endogenous ephrin A ligands by treatment with preclustered ephrin A5-Fc proteins. In addition, a membrane-targeted lipid kinase-inactive p110γ mutant was demonstrated to stably associate with EphA8 and suppress EphA8-promoted cell adhesion to fibronectin. Taken together, these results suggest the presence of a novel mechanism by which the EphA8 receptor localizes p110γ PI 3-kinase to the plasma membrane in a tyrosine kinase-independent fashion, thereby allowing access to lipid substrates to enable the signals required for integrin-mediated cell adhesion. PMID:11416136

  6. Mutations in Nature Conferred a High Affinity Phosphatidylinositol 4,5-Bisphosphate-binding Site in Vertebrate Inwardly Rectifying Potassium Channels.

    PubMed

    Tang, Qiong-Yao; Larry, Trevor; Hendra, Kalen; Yamamoto, Erica; Bell, Jessica; Cui, Meng; Logothetis, Diomedes E; Boland, Linda M

    2015-07-01

    All vertebrate inwardly rectifying potassium (Kir) channels are activated by phosphatidylinositol 4,5-bisphosphate (PIP2) (Logothetis, D. E., Petrou, V. I., Zhang, M., Mahajan, R., Meng, X. Y., Adney, S. K., Cui, M., and Baki, L. (2015) Annu. Rev. Physiol. 77, 81-104; Fürst, O., Mondou, B., and D'Avanzo, N. (2014) Front. Physiol. 4, 404-404). Structural components of a PIP2-binding site are conserved in vertebrate Kir channels but not in distantly related animals such as sponges and sea anemones. To expand our understanding of the structure-function relationships of PIP2 regulation of Kir channels, we studied AqKir, which was cloned from the marine sponge Amphimedon queenslandica, an animal that represents the phylogenetically oldest metazoans. A requirement for PIP2 in the maintenance of AqKir activity was examined in intact oocytes by activation of a co-expressed voltage-sensing phosphatase, application of wortmannin (at micromolar concentrations), and activation of a co-expressed muscarinic acetylcholine receptor. All three mechanisms to reduce the availability of PIP2 resulted in inhibition of AqKir current. However, time-dependent rundown of AqKir currents in inside-out patches could not be re-activated by direct application to the inside membrane surface of water-soluble dioctanoyl PIP2, and the current was incompletely re-activated by the more hydrophobic arachidonyl stearyl PIP2. When we introduced mutations to AqKir to restore two positive charges within the vertebrate PIP2-binding site, both forms of PIP2 strongly re-activated the mutant sponge channels in inside-out patches. Molecular dynamics simulations validate the additional hydrogen bonding potential of the sponge channel mutants. Thus, nature's mutations conferred a high affinity activation of vertebrate Kir channels by PIP2, and this is a more recent evolutionary development than the structures that explain ion channel selectivity and inward rectification. PMID:25957411

  7. Acute intravenous leptin infusion increases glucose turnover but not skeletal muscle glucose uptake in ob/ob mice.

    PubMed

    Burcelin, R; Kamohara, S; Li, J; Tannenbaum, G S; Charron, M J; Friedman, J M

    1999-06-01

    The mouse ob gene encodes leptin, an adipocyte hormone that regulates body weight and energy expenditure. Leptin has potent metabolic effects on fat and glucose metabolism. A mutation of the ob gene results in mice with severe hereditary obesity and diabetes that can be corrected by treatment with the hormone. In lean mice, leptin acutely increases glucose metabolism in an insulin-independent manner, which could account, at least in part, for some of the antidiabetic effect of the hormone. To investigate further the acute effect of leptin on glucose metabolism in insulin-resistant obese diabetic mice, leptin (40 ng x g(-1) x h(-1)) was administered intravenously for 6 h in C57Bl/6J ob/ob mice. Leptin increased glucose turnover and stimulated glucose uptake in brown adipose tissue (BAT), brain, and heart with no increase in heart rate. A slight increase in all splanchnic tissues was also noticed. Conversely, no increase in skeletal muscle or white adipose tissue (WAT) glucose uptake was observed. Plasma insulin concentration increased moderately but neither glucose, glucagon, thyroid hormones, growth hormone, nor IGF-1 levels were different from phosphate-buffered saline-infused C57Bl/6J ob/ob mice. In addition, leptin stimulated hepatic glucose production, which was associated with increased glucose-6-phosphatase activity. Conversely, PEPCK activity was rather diminished. Interestingly, hepatic insulin receptor substrate (IRS)1-associated phosphatidylinositol 3-kinase activity was slightly elevated, but neither the content of glucose transporter GLUT2 nor the phosphorylation state of the insulin receptor and IRS-1 were changed by acute leptin treatment. Hepatic lipid metabolism was not stimulated during the acute leptin infusion, since the content of triglycerides, glycerol, and citrate was unchanged. These findings suggest that in ob/ob mice, the antidiabetic antiobesity effect of leptin could be the result of a profound alteration of glucose metabolism in liver

  8. Differences in Bone Quality between High versus Low Turnover Renal Osteodystrophy

    SciTech Connect

    Porter, Daniel S.; Pienkowski, David; Faugere, Marie-Claude; Malluche, Hartmut H.

    2012-01-01

    Abnormal bone turnover is common in chronic kidney disease (CKD), but its effects on bone quality remain unclear. This study sought to quantify the relationship between abnormal bone turnover and bone quality. Iliac crest bone biopsies were obtained from CKD-5 patients on dialysis with low (n=18) or high (n=17) turnover, and from volunteers (n=12) with normal turnover and normal kidney function. Histomorphometric methods were used to quantify the microstructural parameters; Fourier transform infrared spectroscopy and nanoindentation were used to quantify the material and mechanical properties in bone. Reduced mineral-to-matrix ratio, mineral crystal size, stiffness and hardness were observed in bone with high turnover compared to bone with normal or low turnover. Decreased cancellous bone volume and trabecular thickness were seen in bone with low turnover compared to bone with normal or high turnover. Bone quality, as defined by its microstructural, material, and mechanical properties, is related to bone turnover. These data suggest that turnover related alterations in bone quality may contribute to the known diminished mechanical competence of bone in CKD patients, albeit from different mechanisms for bone with high (material abnormality) vs. low (microstructural alteration) turnover. The present findings suggest that improved treatments for renal osteodystrophy should seek to avoid low or high bone turnover and aim for turnover rates as close to normal as possible.

  9. Increased Intake of Selected Vegetables, Herbs and Fruit may Reduce Bone Turnover in Post-Menopausal Women

    PubMed Central

    Gunn, Caroline Ann; Weber, Janet Louise; McGill, Anne-Thea; Kruger, Marlena Cathorina

    2015-01-01

    Increased consumption of vegetables/herbs/fruit may reduce bone turnover and urinary calcium loss in post-menopausal women because of increased intake of polyphenols and potassium, but comparative human studies are lacking. The main aim was to compare bone turnover markers and urinary calcium excretion in two randomised groups (n = 50) of healthy post-menopausal women consuming ≥9 servings of different vegetables/herbs/fruit combinations (three months). Group A emphasised a generic range of vegetables/herbs/fruit, whereas Group B emphasised specific vegetables/herbs/fruit with bone resorption-inhibiting properties (Scarborough Fair Diet), with both diets controlled for potential renal acid load (PRAL). Group C consumed their usual diet. Plasma bone markers, urinary electrolytes (24 h) and estimated dietary PRAL were assessed at baseline and 12 weeks. Procollagen type I N propeptide (PINP) decreased (−3.2 μg/L, p < 0.01) in the B group only, as did C-terminal telopeptide of type I collagen (CTX) (−0.065 μg/L, p < 0.01) in women with osteopenia compared to those with normal bone mineral density (BMD) within this group. Intervention Groups A and B had decreased PRAL, increased urine pH and significantly decreased urinary calcium loss. Urinary potassium increased in all groups, reflecting a dietary change. In conclusion, Group B demonstrated positive changes in both turnover markers and calcium conservation. PMID:25856221

  10. Increased intake of selected vegetables, herbs and fruit may reduce bone turnover in post-menopausal women.

    PubMed

    Gunn, Caroline Ann; Weber, Janet Louise; McGill, Anne-Thea; Kruger, Marlena Cathorina

    2015-04-01

    Increased consumption of vegetables/herbs/fruit may reduce bone turnover and urinary calcium loss in post-menopausal women because of increased intake of polyphenols and potassium, but comparative human studies are lacking. The main aim was to compare bone turnover markers and urinary calcium excretion in two randomised groups (n = 50) of healthy post-menopausal women consuming ≥ 9 servings of different vegetables/herbs/fruit combinations (three months). Group A emphasised a generic range of vegetables/herbs/fruit, whereas Group B emphasised specific vegetables/herbs/fruit with bone resorption-inhibiting properties (Scarborough Fair Diet), with both diets controlled for potential renal acid load (PRAL). Group C consumed their usual diet. Plasma bone markers, urinary electrolytes (24 h) and estimated dietary PRAL were assessed at baseline and 12 weeks. Procollagen type I N propeptide (PINP) decreased (-3.2 μg/L, p < 0.01) in the B group only, as did C-terminal telopeptide of type I collagen (CTX) (-0.065 μg/L, p < 0.01) in women with osteopenia compared to those with normal bone mineral density (BMD) within this group. Intervention Groups A and B had decreased PRAL, increased urine pH and significantly decreased urinary calcium loss. Urinary potassium increased in all groups, reflecting a dietary change. In conclusion, Group B demonstrated positive changes in both turnover markers and calcium conservation. PMID:25856221

  11. Novel Strategy for Non-Targeted Isotope-Assisted Metabolomics by Means of Metabolic Turnover and Multivariate Analysis

    PubMed Central

    Nakayama, Yasumune; Tamada, Yoshihiro; Tsugawa, Hiroshi; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    Isotope-labeling is a useful technique for understanding cellular metabolism. Recent advances in metabolomics have extended the capability of isotope-assisted studies to reveal global metabolism. For instance, isotope-assisted metabolomics technology has enabled the mapping of a global metabolic network, estimation of flux at branch points of metabolic pathways, and assignment of elemental formulas to unknown metabolites. Furthermore, some data processing tools have been developed to apply these techniques to a non-targeted approach, which plays an important role in revealing unknown or unexpected metabolism. However, data collection and integration strategies for non-targeted isotope-assisted metabolomics have not been established. Therefore, a systematic approach is proposed to elucidate metabolic dynamics without targeting pathways by means of time-resolved isotope tracking, i.e., “metabolic turnover analysis”, as well as multivariate analysis. We applied this approach to study the metabolic dynamics in amino acid perturbation of Saccharomyces cerevisiae. In metabolic turnover analysis, 69 peaks including 35 unidentified peaks were investigated. Multivariate analysis of metabolic turnover successfully detected a pathway known to be inhibited by amino acid perturbation. In addition, our strategy enabled identification of unknown peaks putatively related to the perturbation. PMID:25257997

  12. Qualitative and Quantitative In Vitro Analysis of Phosphatidylinositol Phosphatase Substrate Specificity.

    PubMed

    Ip, Laura Ren Huey; Gewinner, Christina Anja

    2016-01-01

    Phosphoinositides compromise a family of eight membrane lipids which play important roles in many cellular signaling pathways. Signaling through phosphoinositides has been shown in a variety of cellular functions such cell proliferation, cell growth, apoptosis, and vesicle trafficking. Phospholipid phosphatases regulate cell signaling by modifying the concentration of phosphoinositides and their dephosphorylated products. To understand the role of individual lipid phosphatases in phosphoinositide turnover and functional signaling, it is crucial to determine the substrate specificity of the lipid phosphatase of interest. In this chapter we describe how the substrate specificity of an individual lipid phosphatase can be qualitatively and quantitatively measured in an in vitro radiometric assay. In addition, we specify the different expression systems and purification methods required to produce the necessary yield and functionality in order to further characterize these enzymes. The outstanding versatility and sensitivity of this assay system are yet unmatched and are therefore currently considered the standard of the field. PMID:26552675

  13. Teacher Turnover: An Issue of Workgroup Racial Diversity

    ERIC Educational Resources Information Center

    Sohn, Kitae

    2009-01-01

    One neglected aspect of the teacher labor supply is a recent increase in the proportion of minority teachers. Using the Schools and Staffing Survey and the Teacher Follow-up Survey, one can estimate the relationship between workgroup racial diversity and the turnover of White teachers. This approach finds that young White teachers are more likely…

  14. Employees as Customers: Exploring Service Climate, Employee Patronage, and Turnover

    ERIC Educational Resources Information Center

    Abston, Kristie A.; Kupritz, Virginia W.

    2011-01-01

    The role of retail employees as customers was explored by quantitatively examining the influence of service climate and employee patronage on employee turnover intentions. Employees representing all shifts in two stores of a national retailer participated. Results indicated that employee patronage partially mediates the effects of service climate…

  15. Quantifying Assemblage Turnover and Species Contributions at Ecologic Boundaries

    PubMed Central

    Hayek, Lee-Ann C.; Wilson, Brent

    2013-01-01

    Not all boundaries, whether stratigraphical or geographical, are marked by species-level changes in community composition. For example, paleodata for some sites do not show readily discernible glacial-interglacial contrasts. Rather, the proportional abundances of species can vary subtly between glacials and interglacials. This paper presents a simple quantitative measure of assemblage turnover (assemblage turnover index, ATI) that uses changes in species' proportional abundances to identify intervals of community change. A second, functionally-related index (conditioned-on-boundary index, CoBI) identifies species contributions to the total assemblage turnover. With these measures we examine benthonic foraminiferal assemblages to assess glacial/interglacial contrasts at abyssal depths. Our results indicate that these measures, ATI and CoBI, have potential as sequence stratigraphic tools in abyssal depth deposits. Many peaks in the set of values of ATI coincide with terminations at the end of glaciations and delineate peak-bounded ATI intervals (PATIs) separated by boundaries that approximate to glacial terminations and to transgressions at neritic depths. These measures, however, can be used to evaluate the assemblage turnover and composition at any defined ecological or paleoecological boundary. The section used is from Ocean Drilling Program (OPD) Hole 994C, drilled on the Blake Ridge, offshore SE USA. PMID:24130679

  16. Organizational Career Growth, Affective Occupational Commitment and Turnover Intentions

    ERIC Educational Resources Information Center

    Weng, Qingxiong; McElroy, James C.

    2012-01-01

    Survey data, collected from the People's Republic of China, were used to test Weng's (2010) four facet model of career growth and to examine its effect on occupational commitment and turnover intentions. Weng conceptualized career growth as consisting of four factors: career goal progress, professional ability development, promotion speed, and…

  17. Principal Turnover: Upheaval and Uncertainty in Charter Schools?

    ERIC Educational Resources Information Center

    Ni, Yongmei; Sun, Min; Rorrer, Andrea

    2015-01-01

    Purpose: Informed by literature on labor market and school choice, this study aims to examine the dynamics of principal career movements in charter schools by comparing principal turnover rates and patterns between charter schools and traditional public schools. Research Methods/Approach: This study uses longitudinal data on Utah principals and…

  18. An Investigation of Chief Administrator Turnover in International Schools

    ERIC Educational Resources Information Center

    Benson, John

    2011-01-01

    This article explores chief administrator turnover in international schools. Quantitative and qualitative data from the 83 chief administrators who participated in the study suggests that the average tenure of an international school chief administrator is 3.7 years and that the main reason chief administrators leave international schools is…

  19. Relationships between Emotional Labor, Job Performance, and Turnover

    ERIC Educational Resources Information Center

    Goodwin, Robyn E.; Groth, Markus; Frenkel, Stephen J.

    2011-01-01

    The present study investigates the relationship between the emotional labor strategies surface acting and deep acting and organizational outcomes, specifically, employees' overall job performance and turnover. Call center employees from two large financial service organizations completed an online survey about their use of surface and deep acting.…

  20. Chinese Teachers' Work Stress and Their Turnover Intention

    ERIC Educational Resources Information Center

    Liu, Shujie; Onwuegbuzie, Anthony J.

    2012-01-01

    This survey study employed qualitative dominant mixed research to explore the sources of teacher stress in China and the possible reasons for Chinese teachers' turnover intention. The data were collected in Jilin Province of China, and 510 teachers participated in the survey. Quantitatively, 40.4% of the surveyed teachers reported that they…

  1. The Effects of Turnover: What We Know about Teacher Attrition

    ERIC Educational Resources Information Center

    DeAngelis, Karen

    2012-01-01

    School business officials are likely to know better than anyone else about the financial costs to districts and schools associated with teacher attrition. Perhaps less well-known, though, is what else has been learned about this issue in recent years--information that may affect how one thinks about teacher turnover. Here is some of that research:…

  2. The High Cost of Teacher Turnover. Policy Brief

    ERIC Educational Resources Information Center

    National Commission on Teaching and America's Future, 2007

    2007-01-01

    In 2007, the National Commission on Teaching and America's Future (NCTAF) completed an 18-month study of the costs of teacher turnover in five school districts. The selected districts varied in size, location, and demographics enabling exploration of how these variations affected costs. Costs of recruiting, hiring, processing, and training…

  3. Faculty Turnover: Discipline-Specific Attention Is Warranted

    ERIC Educational Resources Information Center

    Xu, Yonghong Jade

    2008-01-01

    This study investigated the importance of discipline variations in understanding faculty turnover behaviors. A representative sample of university faculty in Research and Doctoral universities was obtained from a national database. Faculty members, self-identified into a primary academic area, were grouped into eight discipline clusters according…

  4. Prediction of Military Turnover Using Intentions, Satisfaction, and Performance.

    ERIC Educational Resources Information Center

    Knapp, Deirdre J.; And Others

    Although researchers have examined the link between job attitudes and turnover, some studies claim that civilian samples may not be generalizable to military personnel. This paper addresses two central questions: (1) To what extent does job satisfaction, job performance, and reenlistment intentions predict reenlistment behavior?; (2) To what…

  5. Attitudes toward Money, Intrinsic Job Satisfaction, and Voluntary Turnover.

    ERIC Educational Resources Information Center

    Tang, Thomas Li-Ping; Tang, Theresa Li-Na

    A study was conducted to determine whether employees' attitudes toward money (money ethic endorsement) moderates the relationships between intrinsic job satisfaction on the one hand and thoughts of withdrawal and voluntary turnover on the other. Data were collected from workers in the Department of Mental Health and Mental Retardation in a…

  6. Turnover at the Top: Superintendent Vacancies and the Urban School

    ERIC Educational Resources Information Center

    Buchanan, Bruce

    2006-01-01

    The leadership turnover in America's largest school districts has increased so rapidly that the average urban superintendent tenure is only about two years. In fact, many urban superintendents are hired knowing that they will either be terminated or forced to resign in a short period of time. This cycle has created a class of superintendents who…

  7. Faculty Turnover: An Analysis by Rank, Gender, Ethnicity and Reason.

    ERIC Educational Resources Information Center

    Honeyman, David S., Jr.; Summers, Susan Robinson

    In spring 1992, a study was conducted to determine factors associated with the attrition of faculty at the University of Florida (UF) from fiscal year (FY) 1989 through FY 1990. Specifically, the study sought to determine the relative level of turnover at UF compared to other institutions, the demographics of and motives given by leaving faculty,…

  8. Sustaining Effective Practices in the Face of Principal Turnover

    ERIC Educational Resources Information Center

    Strickland-Cohen, M. Kathleen; McIntosh, Kent; Horner, Robert H.

    2014-01-01

    In the face of principal turnover, a common approach taken by staff is to simply wait until the new school year begins and hope that the new administrator will continue to support current programs. It is our experience that this passive strategy is not as helpful, because there are proactive approaches that are more likely to be successful. The…

  9. Sex-chromosome turnovers induced by deleterious mutation load.

    PubMed

    Blaser, Olivier; Grossen, Christine; Neuenschwander, Samuel; Perrin, Nicolas

    2013-03-01

    In sharp contrast with mammals and birds, many cold-blooded vertebrates present homomorphic sex chromosomes. Empirical evidence supports a role for frequent turnovers, which replace nonrecombining sex chromosomes before they have time to decay. Three main mechanisms have been proposed for such turnovers, relying either on neutral processes, sex-ratio selection, or intrinsic benefits of the new sex-determining genes (due, e.g., to linkage with sexually antagonistic mutations). Here, we suggest an additional mechanism, arising from the load of deleterious mutations that accumulate on nonrecombining sex chromosomes. In the absence of dosage compensation, this load should progressively lower survival rate in the heterogametic sex. Turnovers should occur when this cost outweighs the benefits gained from any sexually antagonistic genes carried by the nonrecombining sex chromosome. We use individual-based simulations of a Muller's ratchet process to test this prediction, and investigate how the relevant parameters (effective population size, strength and dominance of deleterious mutations, size of nonrecombining segment, and strength of sexually antagonistic selection) are expected to affect the rate of turnovers. PMID:23461315

  10. High Classroom Turnover: How Children Get Left Behind.

    ERIC Educational Resources Information Center

    Hartman, Chester

    This book chapter discusses the problem of transiency, or high classroom turnover, in education. Research shows that a disproportionate number of schools with predominantly low-income African American and Hispanic students have low stability, and that such students are much more likely than white, middle-income students to switch schools in the…

  11. Some Determinants of Employee Turnover in a Psychiatric Facility.

    ERIC Educational Resources Information Center

    Zautra, Alex J.; And Others

    1987-01-01

    Used research from illness-prevention and job-enrichment approaches to enhancing quality of work environments to create instruments assessing number of job stressors and level of task interest on psychiatric hospital units. Instruments successfully predicted employee turnover during one year. Job stress and interaction between job stress and task…

  12. Ectomycorrhizal fungal mycelia turnover in a longleaf pine forest.

    PubMed

    Hendricks, Joseph J; Mitchell, Robert J; Kuehn, Kevin A; Pecot, Stephen D

    2016-03-01

    Elucidation of the patterns and controls of carbon (C) flow and nitrogen (N) cycling in forests has been hindered by a poor understanding of ectomycorrhizal fungal mycelia (EFM) dynamics. In this study, EFM standing biomass (based on soil ergosterol concentrations), production (based on ergosterol accrual in ingrowth cores), and turnover rate (the quotient of annual production and average standing biomass estimates) were assessed in a 25-yr-old longleaf pine (Pinus palustris) plantation where C flow was manipulated by foliar scorching and N fertilization for 5 yr before study initiation. In the controls, EFM standing biomass was 30 ± 7 g m(-2) , production was 279 ± 63 g m(-2)  yr(-1) , and turnover rate was 10 ± 3 times yr(-1) . The scorched × fertilized treatment had significantly higher EFM standing biomass (38 ± 8 g m(-2) ), significantly lower production (205 ± 28 g m(-2)  yr(-1) ), and a trend of decreased turnover rate (6 ± 1 times yr(-1) ). The EFM turnover estimates, which are among the first reported for natural systems, indicate that EFM are a dynamic component of ecosystems, and that conventional assessments have probably underestimated the role of EFM in C flow and nutrient cycling. PMID:26537020

  13. 41 CFR 109-27.5002 - Stores inventory turnover ratio.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Stores inventory... PROCUREMENT 27-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5002 Stores inventory turnover ratio. Comparison of investment in stores inventories to annual...

  14. Calcium mobilization and phosphoinositide turnover in fluoride-activated human neutrophils

    SciTech Connect

    Strnad, C.F.; Wong, K.

    1986-05-01

    Fluoride ion, at concentrations above 10 mM, has been found to activate a superoxide production response in human neutrophils which is strongly dependent on the presence of extracellular calcium. In an attempt to further explore the calcium requirement of fluoride-induced neutrophil activation, intracellular calcium concentrations were monitored through use of the fluorescent calcium probe, Quin 2. Fluoride ion, at concentrations between 10 and 20 mM, was found to elicit a rise in intracellular calcium levels which was characterized by a lag period of 4 to 10 min and a prolonged duration of action (greater than 20 min). In contrast, the chemotactic peptide, formylmethionyl-leucyl-phenylalanine (FMLP), induced a rise in intracellular calcium concentration which peaked within 1 min. Preincubation of cells with 1 ..mu..g/ml pertussis toxin resulted in inhibition of the FMLP-induced response, but not that elicited by fluoride. Furthermore, anion exchange chromatography indicated that inositol phosphate accumulation occurred in fluoride-treated cells in association with calcium mobilization. Recent evidence suggests that the FMLP receptor is coupled to phospholipase C and phosphoinositide turnover through a guanine nucleotide binding protein susceptible to inhibition by pertussis toxin. Present results suggest that fluoride ion may serve to activate this protein in a manner resistant to inhibition by pertussis toxin.

  15. Phosphatidylinositol 4,5-biphosphate (PIP2) modulates syntaxin-1A binding to sulfonylurea receptor 2A to regulate cardiac ATP-sensitive potassium (KATP) channels.

    PubMed

    Xie, Li; Liang, Tao; Kang, Youhou; Lin, Xianguang; Sobbi, Roozbeh; Xie, Huanli; Chao, Christin; Backx, Peter; Feng, Zhong-Ping; Shyng, Show-Ling; Gaisano, Herbert Y

    2014-10-01

    Cardiac sarcolemmal syntaxin (Syn)-1A interacts with sulfonylurea receptor (SUR) 2A to inhibit ATP-sensitive potassium (KATP) channels. Phosphatidylinositol 4,5-bisphosphate (PIP2), a ubiquitous endogenous inositol phospholipid, known to bind Kir6.2 subunit to open KATP channels, has recently been shown to directly bind Syn-1A in plasma membrane to form Syn-1A clusters. Here, we sought to determine whether the interaction between Syn-1A and PIP2 interferes with the ability of Syn-1A to bind SUR2A and inhibit KATP channel activity. We found that PIP2 dose-dependently reduced SUR2A binding to GST-Syn-1A by in vitro pulldown assays. FRET studies in intact cells using TIRFM revealed that increasing endogenous PIP2 levels led to increased Syn-1A (-EGFP) cluster formation and a severe reduction in availability of Syn-1A molecules to interact with SUR2A (-mCherry) molecules outside the Syn-1A clusters. Correspondingly, electrophysiological studies employing SUR2A/Kir6.2-expressing HEK cells showed that increasing endogenous or exogenous PIP2 diminished the inhibitory effect of Syn-1A on KATP currents. The physiological relevance of these findings was confirmed by ability of exogenous PIP2 to block exogenous Syn-1A inhibition of cardiac KATP currents in inside-out patches of mouse ventricular myocytes. The effect of PIP2 on physical and functional interactions between Syn-1A and KATP channels is specific and not observed with physiologic concentrations of other phospholipids. To unequivocally demonstrate the specificity of PIP2 interaction with Syn-1A and its impact on KATP channel modulation by Syn-1A, we employed a PIP2-insensitive Syn-1A-5RK/A mutant. The Syn-1A-5RK/A mutant retains the ability to interact with SUR2A in both in vitro binding and in vivo FRET assays, although as expected the interaction is no longer disrupted by PIP2. Interestingly, at physiological PIP2 concentrations, Syn-1A-5RK/A inhibited KATP currents to a greater extent than Syn-1A-WT, indicating

  16. OPTIMIZING MINIRHIZOTRON SAMPLE FREQUENCY FOR ESTIMATING FINE ROOT PRODUCTION AND TURNOVER

    EPA Science Inventory

    The most frequent reason for using minirhizotrons in natural ecosystems is the determination of fine root production and turnover. Our objective is to determine the optimum sampling frequency for estimating fine root production and turnover using data from evergreen (Pseudotsuga ...

  17. Whole body and tissue cholesterol turnover in the baboon

    SciTech Connect

    Dell, R.B.; Mott, G.E.; Jackson, E.M.; Ramakrishnan, R.; Carey, K.D.; McGill, H.C. Jr.; Goodman, D.S.

    1985-03-01

    Cholesterol turnover was studied in four baboons by injecting (/sup 14/C)cholesterol 186 days and (/sup 3/H)cholesterol 4 days before necropsy, and fitting a two- or three-pool model to the resulting specific activity-time data. At necropsy, cholesterol mass and specific activity were determined for the total body and for many tissues. The principal aim of this study was to estimate the extent of cholesterol synthesis in the side pools of the model, by computing the amount of side pool synthesis needed to equal the measured total body cholesterol. Central pool synthesis varied from 61 to 89% of the total cholesterol production rate. Moreover, the finding that the measured total body cholesterol fell within the range obtained from the kinetic analysis by using reasonable assumptions, provides evidence for the physiological validity of the model. A second aim of this study was to explore cholesterol turnover in various tissues. A pool model predicts that rapidly turning over tissues will have higher specific activities at early times and lower specific activities at later times after injection of tracer relative to slowly turning over tissues, except where significant synthesis occurs. Results in all four baboons were similar. Turnover rates for the different tissues loosely fell into three groups which were turning over at fast, intermediate, and slow rates. Finally, the magnitude of variation of cholesterol specific activity was moderate for several distributed tissues (fat, muscle, arteries, and the alimentary tract), but was small for liver. Cholesterol turnover in serial biopsies of skin, muscle, and fat could, however, be fitted with a single pool to estimate tissue turnover rates.

  18. Hypoxic cell turnover in different solid tumor lines

    SciTech Connect

    Ljungkvist, Anna S.E. . E-mail: a.ljungkvist@rther.umcn.nl; Bussink, Johan; Kaanders, Johannes H.A.M.; Rijken, Paulus F.J.W.; Begg, Adrian C.; Raleigh, James A.; Kogel, Albert J. van der

    2005-07-15

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h.

  19. Therapeutic Outcomes of Pectoralis Major Muscle Turnover Flap in Mediastinitis

    PubMed Central

    Bagheri, Reza; Tashnizi, Mohammad Abbasi; Haghi, Seyed Ziaollah; Salehi, Maryam; Rajabnejad, Ata’ollah; Safa, Mohsen Hatami Ghale; Vejdani, Mohammad

    2015-01-01

    Background This study aimed to evaluate the therapeutic results and safety of pectoralis major muscle turnover flaps in the treatment of mediastinitis after coronary artery bypass grafting (CABG) procedures. Methods Data regarding 33 patients with post-CABG deep sternal wound infections (DSWIs) who underwent pectoralis major muscle turnover flap procedures in the Emam Reza and Ghaem Hospitals of Mashhad, Iran were reviewed in this study. For each patient, age, sex, hospital stay duration, remission, recurrence, and associated morbidity and mortality were evaluated. Results Of the 2,447 CABG procedures that were carried out during the time period encompassed by our study, DSWIs occurred in 61 patients (2.5%). Of these 61 patients, 33 patients (nine females [27.3%] and 24 males [72.7%]) with an average age of 63±4.54 years underwent pectoralis major muscle turnover flap placement. Symptoms of infection mainly occurred within the first 10 days after surgery (mean, 10.24±13.62 days). The most common risk factor for DSWIs was obesity (n=16, 48.4%) followed by diabetes mellitus (n=13, 39.4%). Bilateral and unilateral pectoralis major muscle turnover flaps were performed in 20 patients (60.6%) and 13 patients (39.4%), respectively. Complete remission was achieved in 25 patients (75.7%), with no recurrence in the follow-up period. Four patients (12.1%) needed reoperation. The mean hospitalization time was 11.69±6.516 days. Four patients (12.1%) died during the course of the study: three due to the postoperative complication of respiratory failure and one due to pulmonary thromboembolism. Conclusion Pectoralis major muscle turnover flaps are an optimal technique in the treatment of post-CABG mediastinitis. In addition to leading to favorable therapeutic results, this flap is associated with minimal morbidity and mortality, as well as a short hospitalization time. PMID:26290837

  20. Comparison of Acetate Turnover in Methanogenic and Sulfate-Reducing Sediments by Radiolabeling and Stable Isotope Labeling and by Use of Specific Inhibitors: Evidence for Isotopic Exchange

    PubMed Central

    de Graaf, W.; Wellsbury, P.; Parkes, R. J.; Cappenberg, T. E.

    1996-01-01

    Acetate turnover in the methanogenic freshwater anoxic sediments of Lake Vechten, The Netherlands, and in anoxic sediments from the Tamar Estuary, United Kingdom, and the Grosser Jasmunder Bodden, Germany, the latter two dominated by sulfate reduction, was determined. Stable isotopes and radioisotopes, inhibitors (chloroform and fluoroacetate), and methane flux were used to provide independent estimates of acetate turnover. Pore water acetate pool sizes were determined by gas chromatography with a flame ionization detector, and stable isotope-labeled acetate was determined by gas chromatography-mass spectrometry. The appearance of acetates with a different isotope labeling pattern from that initially added demonstrated that isotopic exchange occurred during methanogenic acetate metabolism. The predominant exchange processes were (i) D-H exchange in the methyl group and (ii) (sup13)C-(sup12)C exchange at the carboxyl carbon. These exchanges are most probably caused by the activity of the enzyme complex carbon monoxide dehydrogenase and subsequent methyl group dehydrogenation by tetrahydromethanopterine or a related enzyme. The methyl carbon was not subject to exchange during transformation to methane, and hence acetate with the methyl carbon labeled will provide the most reliable estimate of acetate turnover to methane. Acetate turnover rate estimates with these labels were consistent with independent estimates of acetate turnover (acetate accumulation after inhibition and methane flux). Turnover rates from either radioisotope- or stable isotope-labeled methyl carbon isotopes are, however, dependent on accurate determination of the acetate pool size. The additions of large amounts of stable isotope-labeled acetate elevate the acetate pool size, stimulating acetate consumption and causing deviation from steady-state kinetics. This can, however, be overcome by the application of a non-steady-state model. Isotopic exchange in sediments dominated by sulfate reduction