Science.gov

Sample records for inhibits pro-inflammatory gene

  1. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases

    PubMed Central

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G. J.; Eleni Ourailidou, Maria; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J.; Dekker, Frank J.

    2016-01-01

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, applications of histone acetyltransferase inhibitors to reduce inflammatory responses are interesting. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4 μM for histone acetyltransferase p300). C646 was described to regulate the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. Interestingly, this pathway has been implicated in asthma and COPD. Therefore we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, here we demonstrate that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7 μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  2. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases.

    PubMed

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G J; Ourailidou, Maria E; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J; Dekker, Frank J

    2016-02-15

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, histone acetyltransferase inhibitors could reduce inflammatory responses. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4μM for histone acetyltransferase p300). C646 was described to affect the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. This pathway has been implicated in asthma and COPD. Therefore, we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, we demonstrate here that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  3. Indole derivatives inhibit hepatitis C virus replication through induction of pro-inflammatory cytokines.

    PubMed

    Lee, S; Jin, G; Kim, D; Son, S; Lee, K; Lee, C

    2015-03-01

    Previously, we discovered a series of indole derivatives as a new class of hepatitis C virus (HCV) replication inhibitors by using a target-free chemical genetic strategy. Through a structure-activity relationship study, the compound 12e was identified as the most potent inhibitor of this class (EC50 = 1.1 μmol/l) with minimal cytotoxicity (CC50 = 61.8 μmol/l). In order to gain insight into its detailed antiviral mechanism of action, we performed PCR array analyses and found that 12e was able to activate transcription of a number of pro-inflammatory as well as antiviral cytokine genes including CXCL-8, IL-1α, TNF-α, IL-3, IRAK-1, and DDX58. Their induction by 12e was verified by individual RT-PCR analyses. In addition, 12e was found to stimulate secretion of soluble factors with anti-HCV replication activity. Among the 12e-induced pro-inflammatory cytokines, CXCL-8 showed a strong positive correlation between its transcriptional activation and antiviral potency. Interestingly, a recombinant CXCL-8 protein also reduced HCV replication, though only moderately. In conclusion, we found a novel mode of action of indole derivatives in inhibiting HCV replication, particularly the induction of pro-inflammatory cytokines. PMID:25790053

  4. Perilla frutescens Leaf Extract Inhibits Mite Major Allergen Der p 2-induced Gene Expression of Pro-Allergic and Pro-Inflammatory Cytokines in Human Bronchial Epithelial Cell BEAS-2B

    PubMed Central

    Liu, Jer-Yuh; Chen, Yi-Ching; Lin, Chun-Hsiang; Kao, Shao-Hsuan

    2013-01-01

    Perilla frutescens has been used in traditional medicine for respiratory diseases due to its anti-bacterial and anti-inflammatory activity. This study aimed to investigate effects of Perilla frutescens leaf extract (PFE) on expression of pro-allergic and pro-inflammatory cytokines in airway epithelial cells exposed to mite major allergen Der p 2 (DP2) and the underlying mechanisms. Our results showed that PFE up to 100 µg/mL had no cytotoxic effect on human bronchial epithelial cell BEAS-2B. Further investigations revealed that PFE dose-dependently diminished mRNA expression of pro-allergic cytokine IL-4, IL-5, IL-13 and GM-CSF, as well as pro-inflammatory cytokine IL-6, IL-8 and MCP-1 in BEAS-2B cells treated with DP2. In parallel to mRNA, the DP-2-elevated levels of the tested cytokines were decreased. Further investigation showed that DP2-indued phosphorylation of p38 MAPK (P38) and JNK, but not Erk1/2, was also suppressed by PFE. In addition, PFE elevated cytosolic IκBα level and decreased nuclear NF-κB level in DP2-stimulated BEAS-2B cells. Taken together, these findings revealed that PFE significantly diminished both mRNA expression and protein levels of pro-allergic and pro-inflammatory cytokines in response to DP2 through inhibition of P38/JNK and NK-κB activation. These findings suggest that PFE should be beneficial to alleviate both allergic and inflammatory responses on airway epithelium in response to aeroallergens. PMID:24204835

  5. Microencapsulated drug delivery: a new approach to pro-inflammatory cytokine inhibition

    PubMed Central

    Oettinger, Carl W.; D'Souza, Martin J.

    2012-01-01

    Context: This article reviews the use of albumin microcapsules 3–4 mm in size containing cytokine inhibiting drugs which include neutralizing antibodies to TNF and IL1, CNI-1493, antisense oligonucleotides to TNF and NF-kappaB, and the antioxidant catalase. Objective: Describe the effects, cellular uptake and distribution of microencapsulated drugs and the effect in both a peritonitis model of infection and a model of adjuvant-induced arthritis. Methods: The studies performed by our group are reviewed, the only such studies available. Results: Microencapsulation of these compounds produced high intracellular drug concentrations due to rapid uptake by phagocytic cells, including endothelial cells, without toxicity. All compounds produced excellent inhibition of TNF and IL1 resulting in improved animal survival in a peritonitis model of septic shock and inflammation in an arthritis model. Conclusion: Albumin microencapsulated pro-inflammatory cytokine inhibiting compounds are superior to equivalent concentration of these compounds administered in solution form. PMID:22348221

  6. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    PubMed Central

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  7. Absent in Melanoma 2 (AIM2) limits pro-inflammatory cytokine transcription in cardiomyocytes by inhibiting STAT1 phosphorylation.

    PubMed

    Furrer, Antonia; Hottiger, Michael O; Valaperti, Alan

    2016-06-01

    Interferon (IFN)-γ is highly upregulated during heart inflammation and enhances the production of pro-inflammatory cytokines. Absent in Melanoma 2 (AIM2) is an IFN-inducible protein implicated as a component of the inflammasome. Here we seek to determine the role of AIM2 during inflammation in cardiac cells. We found that the presence of AIM2, but not of the other inflammasome components Nod-like receptor (NLR) NLRP3 or NLRC4, specifically limited the transcription of the pro-inflammatory cytokines interleukin (IL)-6, IP-10, and tumor necrosis factor (TNF)-α in HL-1 mouse cardiomyocytes stimulated with IFN-γ and lipopolysaccharides (LPS). Similarly, AIM2 reduced pro-inflammatory cytokine transcription in primary mouse neonatal cardiomyocytes (MNC), but not in primary mouse neonatal cardiac fibroblasts (MNF). Interestingly, AIM2-dependent reduction of pro-inflammatory cytokines in cardiomyocytes was independent of Caspase-1. Mechanistically, AIM2 reduced pro-inflammatory cytokine transcription in cardiomyocytes by interacting with and inhibiting the phosphorylation of STAT1. In AIM2-depleted cardiomyocytes, increased STAT1 phosphorylation enhanced the NF-κB pathway by promoting NF-κB p65 phosphorylation and acetylation. These results show for the first time that AIM2 plays an important anti-inflammatory, yet inflammasome-independent function in cardiomyocytes. Our findings will help to further understand how the various heart cell types differently react to inflammatory stimuli. PMID:27148820

  8. Cardamonin, inhibits pro-inflammatory mediators in activated RAW 264.7 cells and whole blood.

    PubMed

    Ahmad, Syahida; Israf, Daud A; Lajis, Nordin Hj; Shaari, Khozirah; Mohamed, Habsah; Wahab, Afiza A; Ariffin, Khaizurin T; Hoo, Wei Yee; Aziz, Nasaruddin A; Kadir, Arifah A; Sulaiman, Mohamad R; Somchit, Muhammad N

    2006-05-24

    Some chalcones, such as hydroxychalcones have been reported previously to inhibit major pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha) and reactive oxygen species production by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase (MAPK) pathway and nuclear translocation of critical transcription factors. In this report, the effects of cardamonin (2',4'-dihydroxy-6'-methoxychalcone), a chalcone that we have previously isolated from Alpinia rafflesiana, was evaluated upon two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds namely RAW 264.7 cells and whole blood. Cardamonin inhibited NO and PGE(2) production from lipopolysaccharide- and interferon-gamma-induced RAW cells and whole blood with IC(50) values of 11.4 microM and 26.8 microM, respectively. Analysis of thromboxane B(2) (TxB(2)) secretion from whole blood either stimulated via the COX-1 or COX-2 pathway revealed that cardamonin inhibits the generation of TxB(2) via both pathways with IC(50) values of 2.9 and 1.1 microM, respectively. Analysis of IC(50) ratios determined that cardamonin was more COX-2 selective in its inhibition of TxB(2) with a ratio of 0.39. Cardamonin also inhibited the generation of intracellular reactive oxygen species and secretion of TNF-alpha from RAW 264.7 cells in a dose responsive manner with IC(50) values of 12.8 microM and 4.6 microM, respectively. However, cardamonin was a moderate inhibitor of lipoxygenase activity when tested in an enzymatic assay system, in which not a single concentration tested was able to cause an inhibition of more than 50%. Our results suggest that cardamonin acts upon major pro-inflammatory mediators in a similar fashion as described by previous work on other closely related synthetic hydroxychalcones and strengthens the conclusion of the importance of the methoxyl moiety substitution on

  9. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation.

    PubMed

    Hartig, Ellen I; Zhu, Shusen; King, Benjamin L; Coffman, James A

    2016-01-01

    Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  10. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  11. Inhibition of pro-inflammatory responses and antioxidant capacity of Mexican blackberry (Rubus spp.) extracts.

    PubMed

    Cuevas-Rodríguez, Edith O; Dia, Vermont P; Yousef, Gad G; García-Saucedo, Pedro A; López-Medina, José; Paredes-López, Octavio; Gonzalez de Mejia, Elvira; Lila, Mary Ann

    2010-09-01

    Total polyphenolic and anthocyanin- and proanthocyanidin-rich fractions from wild blackberry genotypes (WB-3, WB-7, WB-10, and WB-11), a domesticated noncommercial breeding line (UM-601), and a commercial cultivar (Tupy) were evaluated for inhibition of pro-inflammatory responses [nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression, cyclooxygenase-2 (COX-2) expression, and prostaglandin E2 (PGE2)] in RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). At 50 microM [cyanidin-3-O-glucoside (C3G) or catechin equivalent], most fractions significantly (P<0.05) inhibited all markers. The anthocyanin-rich fraction from WB-10 and the proanthocyanidin-rich fraction from UM-601 exhibited the highest NO inhibitory activities (IC50=16.1 and 15.1 microM, respectively). Proanthocyanidin-rich fractions from the wild WB-10 showed the highest inhibition of iNOS expression (IC50=8.3 microM). Polyphenolic-rich fractions from WB-7 and UM-601 were potent inhibitors of COX-2 expression (IC50=19.1 and 19.3 microM C3G equivalent, respectively). For most of the extracts, antioxidant capacity was significantly correlated with NO inhibition. Wild genotypes of Mexican blackberries, as rich sources of polyphenolics that have both antioxidant and anti-inflammatory properties, showed particular promise for inclusion in plant improvement programs designed to develop new varieties with nutraceutical potential. PMID:20715775

  12. Silver nanoparticles induce pro-inflammatory gene expression and inflammasome activation in human monocytes.

    PubMed

    Murphy, A; Casey, A; Byrne, G; Chambers, G; Howe, O

    2016-10-01

    A complete cytotoxic profile of exposure to silver (AgNP) nanoparticles investigating their biological effects on the innate immune response of circulating white blood cells is required to form a complete understanding of the risk posed. This was explored by measuring AgNP-stimulated gene expression of the pro-inflammatory cytokines interleukin-1 (IL-1), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) in THP-1 monocytes. A further study, on human monocytes extracted from a cohort of blood samples, was carried out to compare with the AgNP immune response in THP-1 cells along with the detection of pro-IL-1β which is a key mediator of the inflammasome complex. The aims of the study were to clearly demonstrate that AgNP can significantly up-regulate pro-inflammatory cytokine gene expression of IL-1, IL-6 and TNF-α in both THP-1 cells and primary blood monocytes thus indicating a rapid response to AgNP in circulation. Furthermore, a role for the inflammasome in AgNP response was indicated by pro-IL-1β cleavage and release. These results highlight the potential inflammatory effects of AgNP exposure and the responses evoked should be considered with respect to the potential harm that exposure may cause. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26968431

  13. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity.

    PubMed

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-11-10

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  14. Inhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts

    PubMed Central

    Sibi, G.; Rabina, Santa

    2016-01-01

    Objective: The aim of this study was to determine the in vitro anti-inflammatory activities of solvent fractions from Chlorella vulgaris by inhibiting the production of pro-inflammatory mediators and cytokines. Methods: Methanolic extracts (80%) of C. vulgaris were prepared and partitioned with solvents of increasing polarity viz., n-hexane, chloroform, ethanol, and water. Various concentrations of the fractions were tested for cytotoxicity in RAW 264.7 cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the concentrations inducing cell growth inhibition by about 50% (IC50) were chosen for further studies. Lipopolysaccharide (LPS) stimulated RAW 264.7 cells were treated with varying concentrations of C. vulgaris fractions and examined for its effects on nitric oxide (NO) production by Griess assay. The release of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) were quantified using enzyme-linked immunosorbent assay using Celecoxib and polymyxin B as positive controls. Results: MTT assay revealed all the solvent fractions that inhibited cell growth in a dose-dependent manner. Of all the extracts, 80% methanolic extract exhibited the strongest anti-inflammatory activity by inhibiting NO production (P < 0.01), PGE2 (P < 0.05), TNF-α, and IL-6 (P < 0.001) release in LPS induced RAW 264.7 cells. Both hexane and chloroform fractions recorded a significant (P < 0.05) and dose-dependent inhibition of LPS induced inflammatory mediators and cytokines in vitro. The anti-inflammatory effect of ethanol and aqueous extracts was not significant in the study. Conclusion: The significant inhibition of inflammatory mediators and cytokines by fractions from C. vulgaris suggests that this microalga would be a potential source of developing anti-inflammatory agents and a good alternate for conventional steroidal and nonsteroidal anti-inflammatory drugs. SUMMARY C. vulgaris extracts have potential anti

  15. Original inhibition method of excessive synthesis of pro-inflammatory cytokine of tumour necrosis factor α

    PubMed Central

    Zinchuk, AleXander; Holubovska, Olga; Shkurba, Andrij; Hrytsko, Roman; Vorozhbyt, Olga; Richniak, Mykhailo

    2015-01-01

    Influence on pro- and anti-inflammatory cytokines of an ill person is an urgent aspect of treatment of many diseases. For inhibition of synthesis of a high level of pro-inflammatory cytokines, medications which are recombinant monoclonal antibodies, especially to tumour necrosis factor α (TNF-α), are used. However, these methods of treatment require further improvement by elaborating new approaches with a wider spectrum of influence on the immune system. A completely new method of reduction in high activity of TN F-α with the method of intradermal autoleukocyte immunization is presented in the article. Investigation was performed in a group of patients with psoriasis (24) with a high level of TNF-α in the blood (over 30 pg/ml). Simultaneously such investigation was performed on patients with psoriasis (9) without TNF-α detected (0 pg/ml). As a result of immunization, a significant reduction in TNF-α occurred in all patients with its high level, in 16 (66.7%) from 24 patients – to 0-5 pg/ml. The level of reduction and duration of the achieved effect was of an individual character and requires further investigation. However, the achieved results prove the expediency of administration of this immunization method for patients requiring reduction of TNF-α synthesis. However, the content of TNF-α in blood serum could not be detected in most patients with a low level of cytokine (in 6 from 9) after immunization (as well as before immunization), but an increase in its level from 0 to 5-8 pg/ml was observed in 3 patients. On the basis of the conducted research, the authors suggest that the influence of immunization on cytokine synthesis depends on the condition of immune cells and correlation of pro- and anti-inflammatory cytokines in a patient's skin. PMID:26648779

  16. Antioxidants inhibit SAA formation and pro-inflammatory cytokine release in a human cell model of alkaptonuria

    PubMed Central

    Spreafico, Adriano; Millucci, Lia; Ghezzi, Lorenzo; Geminiani, Michela; Braconi, Daniela; Amato, Loredana; Chellini, Federico; Frediani, Bruno; Moretti, Elena; Collodel, Giulia; Bernardini, Giulia

    2013-01-01

    Objective. Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease that currently lacks an appropriate therapy. Recently we provided experimental evidence that AKU is a secondary serum amyloid A (SAA)-based amyloidosis. The aim of the present work was to evaluate the use of antioxidants to inhibit SAA amyloid and pro-inflammatory cytokine release in AKU. Methods. We adopted a human chondrocytic cell AKU model to evaluate the anti-amyloid capacity of a set of antioxidants that had previously been shown to counteract ochronosis in a serum AKU model. Amyloid presence was evaluated by Congo red staining. Homogentisic acid-induced SAA production and pro-inflammatory cytokine release (overexpressed in AKU patients) were evaluated by ELISA and multiplex systems, respectively. Lipid peroxidation was evaluated by means of a fluorescence-based assay. Results. Our AKU model allowed us to prove the efficacy of ascorbic acid combined with N-acetylcysteine, taurine, phytic acid and lipoic acid in significantly inhibiting SAA production, pro-inflammatory cytokine release and membrane lipid peroxidation. Conclusion. All the tested antioxidant compounds were able to reduce the production of amyloid and may be the basis for establishing new therapies for AKU amyloidosis. PMID:23704321

  17. Deletion of macrophage migration inhibitory factor inhibits murine oral carcinogenesis: Potential role for chronic pro-inflammatory immune mediators.

    PubMed

    Oghumu, Steve; Knobloch, Thomas J; Terrazas, Cesar; Varikuti, Sanjay; Ahn-Jarvis, Jennifer; Bollinger, Claire E; Iwenofu, Hans; Weghorst, Christopher M; Satoskar, Abhay R

    2016-09-15

    Oral cancer kills about 1 person every hour each day in the United States and is the sixth most prevalent cancer worldwide. The pro-inflammatory cytokine 'macrophage migration inhibitory factor' (MIF) has been shown to be expressed in oral cancer patients, yet its precise role in oral carcinogenesis is not clear. In this study, we examined the impact of global Mif deletion on the cellular and molecular process occurring during oral carcinogenesis using a well-established mouse model of oral cancer with the carcinogen 4-nitroquinoline-1-oxide (4NQO). C57BL/6 Wild-type (WT) and Mif knock-out mice were administered with 4NQO in drinking water for 16 weeks, then regular drinking water for 8 weeks. Mif knock-out mice displayed fewer oral tumor incidence and multiplicity, accompanied by a significant reduction in the expression of pro-inflammatory cytokines Il-1β, Tnf-α, chemokines Cxcl1, Cxcl6 and Ccl3 and other molecular biomarkers of oral carcinogenesis Mmp1 and Ptgs2. Further, systemic accumulation of myeloid-derived tumor promoting immune cells was inhibited in Mif knock-out mice. Our results demonstrate that genetic Mif deletion reduces the incidence and severity of oral carcinogenesis, by inhibiting the expression of chronic pro-inflammatory immune mediators. Thus, targeting MIF is a promising strategy for the prevention or therapy of oral cancer. PMID:27164411

  18. Effects of deer bone extract on the expression of pro-inflammatory cytokine and cartilage-related genes in monosodium iodoacetate-induced osteoarthritic rats.

    PubMed

    Lee, Hyunji; Choi, Hyeon-Son; Park, Yooheon; Ahn, Chang Won; Jung, Sung Ug; Park, Soo Hyun; Suh, Hyung Joo

    2014-01-01

    Deer bone extract has the potential to relieve the discomfort or the articular cartilaginous damage associated with osteoarthritic (OA) and may be useful as a natural supplement for OA treatment without serious side effects. We analyzed the expression of pro-inflammatory cytokine and cartilage-related genes in monosodium iodoacetate-induced OA rats. Increases in the levels of serum pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α were significantly inhibited by the administration of deer bone extract (p<0.05). Decreases in the expression of collagen type II (COL2) and tissue inhibitors of metalloproteinases (TIMPs) mRNAs in the cartilage were significantly inhibited by deer bone extract treatment (p<0.05). The deer bone extract significantly suppressed the expression of matrix metalloproteinases (MMPs) mRNAs in the cartilage. The deer bone extract induced the up-regulation of COL2 and TIMP mRNAs and the down-regulation of MMP mRNAs by suppressing the expression of pro-inflammatory cytokine mRNAs. PMID:25273135

  19. Edible blue-green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-κB pathway in macrophages and splenocytes

    PubMed Central

    Ku, Chai Siah; Pham, Tho X.; Park, Youngki; Kim, Bohkyung; Shin, Min; Kang, Insoo; Lee, Jiyoung

    2013-01-01

    Background Chronic inflammation contributes to the development of pathological disorders including insulin resistance and atherosclerosis. Identification of anti-inflammatory natural products can prevent the inflammatory diseases. Methods Anti-inflammatory effects of blue-green algae (BGA), i.e., Nostoc commune var. Sphaeroides Kützing (NO) and Spirulina Platensis (SP), were compared in RAW 264.7 and mouse bone marrow-derived macrophages (BMM) as well as splenocytes from apolipoprotein E knockout (apoE−/−) mice fed BGA. Results When macrophages pretreated with 100 μg/ml NO lipid extract (NOE) or SP lipid extract (SPE) were activated by lipopolysaccharide (LPS), expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), interleukin 1β (IL-1β), and IL-6, were significantly repressed. NOE and SPE also significantly repressed the expression of TNFα and IL-1β in BMM. LPS-induced secretion of IL-6 was lower in splenocytes from apoE−/− fed an atherogenic diet containing 5% NO or SP for 12 weeks. In RAW 264.7 macrophages, NOE and SPE markedly decreased nuclear translocation of NF-κB. The degree of repression of pro-inflammatory gene expression by algal extracts was much stronger than that of SN50, an inhibitor of NF-κB nuclear translocation. Trichostatin A, a pan histone deacetylase inhibitor, increased basal expression of IL-1β and attenuated the repression of the gene expression by SPE. SPE significantly down-regulated mRNA abundance of 11 HDAC isoforms, consequently increasing acetylated histone 3 levels. Conclusion NOE and SPE repress pro-inflammatory cytokine expression and secretion in macrophages and splenocytes via inhibition of NF-κB pathway. Histone acetylation state is likely involved in the inhibition. General significance This study underscores natural products can exert anti-inflammatory effects by epigenetic modifications such as histone acetylation. PMID:23357040

  20. Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9.

    PubMed

    Lindner, Maren; Thümmler, Katja; Arthur, Ariel; Brunner, Sarah; Elliott, Christina; McElroy, Daniel; Mohan, Hema; Williams, Anna; Edgar, Julia M; Schuh, Cornelia; Stadelmann, Christine; Barnett, Susan C; Lassmann, Hans; Mücklisch, Steve; Mudaliar, Manikhandan; Schaeren-Wiemers, Nicole; Meinl, Edgar; Linington, Christopher

    2015-07-01

    Remyelination failure plays an important role in the pathophysiology of multiple sclerosis, but the underlying cellular and molecular mechanisms remain poorly understood. We now report actively demyelinating lesions in patients with multiple sclerosis are associated with increased glial expression of fibroblast growth factor 9 (FGF9), which we demonstrate inhibits myelination and remyelination in vitro. This inhibitory activity is associated with the appearance of multi-branched 'pre-myelinating' MBP+ / PLP+ oligodendrocytes that interact with axons but fail to assemble myelin sheaths; an oligodendrocyte phenotype described previously in chronically demyelinated multiple sclerosis lesions. This inhibitory activity is not due to a direct effect of FGF9 on cells of the oligodendrocyte lineage but is mediated by factors secreted by astrocytes. Transcriptional profiling and functional validation studies demonstrate that these include effects dependent on increased expression of tissue inhibitor of metalloproteinase-sensitive proteases, enzymes more commonly associated with extracellular matrix remodelling. Further, we found that FGF9 induces expression of Ccl2 and Ccl7, two pro-inflammatory chemokines that contribute to recruitment of microglia and macrophages into multiple sclerosis lesions. These data indicate glial expression of FGF9 can initiate a complex astrocyte-dependent response that contributes to two distinct pathogenic pathways involved in the development of multiple sclerosis lesions. Namely, induction of a pro-inflammatory environment and failure of remyelination; a combination of effects predicted to exacerbate axonal injury and loss in patients. PMID:25907862

  1. Tetrandrine suppresses articular inflammatory response by inhibiting pro-inflammatory factors via NF-κB inactivation.

    PubMed

    Gao, Li-Na; Feng, Qi-Shuai; Zhang, Xin-Fang; Wang, Qiang-Song; Cui, Yuan-Lu

    2016-09-01

    Targeting activated macrophages using anti-inflammatory phytopharmaceuticals has been proposed as general therapeutic approaches for rheumatic diseases. Besides macrophages, chondrocytes are another promising target of anti-inflammatory agents. Tetrandrine is a major bisbenzylisoquinoline alkaloid isolated from Stephania tetrandrae S. Moore which has been used for 2,000 years as an antirheumatic herbal drug in China. Although, the anti-inflammatory effect of tetrandrine has been demonstrated, the mechanism has not been clearly clarified. In this study, we designed a comprehensive anti-inflammatory evaluation system for tetrandrine, including complete Freund's adjuvant (CFA)-induced arthritis rat, LPS-induced macrophage RAW 264.7 cells, and chondrogenic ATDC5 cells. The results showed that tetrandrine alleviated CFA-induced foot swelling, synovial inflammation, and pro-inflammatory cytokines secretion. Tetrandrine could inhibit IL-6, IL-1β, and TNF-α expression via blocking the nuclear translocation of nuclear factor (NF)-κB p65 in LPS-induced RAW 264.7 cells. Moreover, ATDC5 cells well responded to LPS induced pro-inflammatory mediators secretion and tissue degradation, and tetrandrine could also inhibit the production of nitric oxide and prostaglandin E2 , as well as the expression of matrix metalloproteinase (MMP)-3 and tissue inhibitor of metalloproteinase (TIMP)-1 via inhibiting IκBα phosphorylation and degradation. In conclusion, the results showed that one of the anti-inflammatory mechanisms of tetrandrine was inhibiting IκBα and NF-κB p65 phosphorylation in LPS-induced macrophage RAW 264.7 cells and chondrogenic ATDC5 cells. Moreover, we introduce a vigorous in vitro cell screening system, LPS-induced murine macrophage RAW 264.7 cells coupling chondrogenic ADTC5 cells, for screening anti-rheumatic drugs. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1557-1568, 2016. PMID:26748661

  2. Inhibition of the pro-inflammatory mediators' production and anti-inflammatory effect of the iridoid scrovalentinoside.

    PubMed

    Bas, Esperanza; Recio, M Carmen; Abdallah, Mohamed; Máñez, Salvador; Giner, Rosa M; Cerdá-Nicolás, Miguel; Ríos, José-Luis

    2007-04-01

    We have studied scrovalentinoside, an iridoid with anti-inflammatory properties isolated from Scrophularia auriculata ssp. pseudoauriculata, as an anti-inflammatory agent in different experimental models of delayed-type hypersensitivity. We found that scrovalentinoside reduced the edema induced by oxazolone at 0.5 mg/ear and sheep red blood cells at 10 mg/kg. The observed effect occurred during the last phase or inflammatory response; during the earlier phase or induction of the delayed-type hypersensitivity reaction, no significant activity was noted. Thus, scrovalentinoside reduced both the edema and cell infiltration in vivo and reduced lymphocyte proliferation in vitro, affecting the cycle principally during the first 48 h. Whereas cells stimulated with phytohemagglutinin changed from the G(0)/G(1) phase to the S and G(2)/M phases, when these same cells were treated with scrovalentinoside (100 microM), they remained in the G(0)/G(1) phase. Finally, scrovalentinoside inhibited the production of the pro-inflammatory mediators' TNF-alpha, IFN-gamma, IL-1beta, IL-2, IL-4, LTB(4), and NO, but had no effect on the production of the anti-inflammatory cytokine IL-10. PMID:17112695

  3. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    SciTech Connect

    Schnabl, Bernd Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-10-17

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NF{kappa}B and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo.

  4. Carnosol Inhibits Pro-Inflammatory and Catabolic Mediators of Cartilage Breakdown in Human Osteoarthritic Chondrocytes and Mediates Cross-Talk between Subchondral Bone Osteoblasts and Chondrocytes

    PubMed Central

    Sanchez, Christelle; Horcajada, Marie-Noëlle; Membrez Scalfo, Fanny; Ameye, Laurent; Offord, Elizabeth; Henrotin, Yves

    2015-01-01

    Aim The aim of this work was to evaluate the effects of carnosol, a rosemary polyphenol, on pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes and via bone-cartilage crosstalk. Materials and Methods Osteoarthritic (OA) human chondrocytes were cultured in alginate beads for 4 days in presence or absence of carnosol (6 nM to 9 μM). The production of aggrecan, matrix metalloproteinase (MMP)-3, tissue inhibitor of metalloproteinase (TIMP)-1, interleukin (IL)-6 and nitric oxide (NO) and the expression of type II collagen and ADAMTS-4 and -5 were analyzed. Human osteoblasts from sclerotic (SC) or non-sclerotic (NSC) subchondral bone were cultured for 3 days in presence or absence of carnosol before co-culture with chondrocytes. Chondrocyte gene expression was analyzed after 4 days of co-culture. Results In chondrocytes, type II collagen expression was significantly enhanced in the presence of 3 μM carnosol (p = 0.008). MMP-3, IL-6, NO production and ADAMTS-4 expression were down-regulated in a concentration-dependent manner by carnosol (p<0.01). TIMP-1 production was slightly increased at 3 μM (p = 0.02) and ADAMTS-5 expression was decreased from 0.2 to 9 μM carnosol (p<0.05). IL-6 and PGE2 production was reduced in the presence of carnosol in both SC and NSC osteoblasts while alkaline phosphatase activity was not changed. In co-culture experiments preincubation of NSC and SC osteoblasts wih carnosol resulted in similar effects to incubation with anti-IL-6 antibody, namely a significant increase in aggrecan and decrease in MMP-3, ADAMTS-4 and -5 gene expression by chondrocytes. Conclusions Carnosol showed potent inhibition of pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes. Inhibition of matrix degradation and enhancement of formation was observed in chondrocytes cocultured with subchondral osteoblasts preincubated with carnosol indicating a cross-talk between these two cellular compartments, potentially

  5. Effects of SORL1 gene on Alzheimer's disease. Focus on gender, neuropsychiatric symptoms and pro-inflammatory cytokines.

    PubMed

    Olgiati, Paolo; Politis, Antonis; Albani, Diego; Rodilossi, Serena; Polito, Letizia; Zisaki, Aikaterini; Piperi, Christina; Liappas, Ioannis; Stamouli, Evangelia; Mailis, Antonis; Batelli, Sara; Forloni, Gianluigi; Marsano, Agnese; Balestri, Martina; Soldatos, Costantine R; De Ronchi, Diana; Kalofoutis, Anastasios; Serretti, Alessandro

    2013-02-01

    It was suggested that the gene encoding for sorLa, (SORL1) may affect Alzheimer's disease (LOAD) through a female-specific mechanism. The aims of this study were to confirm the role of gender in modulating the association between SORL1 and LOAD and to ascertain the influence of SORL1 on cognitive impairment, neuropsychiatric symptoms (BPSD) and secretion of pro-inflammatory cytokines. Ninety six outpatients with LOAD and 120 unrelated controls were genotyped for APOE and three SNPs at the 5' end of SORL1(intron 6): SNP 8 (rs668387); SNP 9 (rs68902); SNP 10 (rs641120). Clinical evaluation was made with the MMSE, Neuropsychiatric Inventory (NPI) and Cornell Scale for Depression in Dementia (CDDS). ELISPOT assays were used to measure pro-inflammatory cytokine (TNF-alpha; IL-6; IL-1beta; IFN-gamma) production in peripheral blood mononuclear cell (PBMC) supernatant from AD patients. SORL1 SNPs were not associated with LOAD in overall sample. Instead the G-alleles at SNPs 9 (p=0.015) and 10 (p=0.015) and the CGG haplotype (p=0.02) were associated with LOAD in the women subgroup. The TAA haplotype was marginally protective in AD patients being associated with lower BPSD scores (p=0.01). The same haplotype was also associated with higher IL-1beta (p=0.01) production. These genetic effects were not modified by APOE4 allele and controlled for illness duration and treatment. In conclusion, SORL1 does not appear to be a major risk factor for LOAD. Its contribution could be underestimated in our small sample. Sex-specific factors could modulate the association between SORL1 and AD. The influence of SORL1 variants on production of inflammatory cytokines warrants further investigation. PMID:23463934

  6. Mindfulness-Based Stress Reduction Training Reduces Loneliness and Pro-Inflammatory Gene Expression in Older Adults: A Small Randomized Controlled Trial

    PubMed Central

    Creswell, J. David; Irwin, Michael R.; Burklund, Lisa J.; Lieberman, Matthew D.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W.

    2013-01-01

    Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N=40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35)=7.86, p=.008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33)=3.39, p=.075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults. PMID:22820409

  7. Variation in Human Genes Encoding Adhesion and Pro-inflammatory Molecules are Associated with Severe Malaria in the Vietnamese

    PubMed Central

    Dunstan, Sarah J; Rockett, Kirk A; Ngoc Quyen, Nguyen Thi; Teo, Yik Y; Thai, Cao Quang; Hang, Nguyen Thuy; Jeffreys, Anna; Clark, Taane G; Small, Kerrin S; Simmons, Cameron P; Day, Nicholas; O’Riordan, Sean E; Kwiatkowski, Dominic P; Farrar, Jeremy; Phu, Nguyen Hoan; Hien, Tran Tinh

    2013-01-01

    The genetic basis for susceptibility to malaria has been studied widely in African populations but less is known of the contribution of specific genetic variants in Asian populations. We genotyped 67 SNPs in 1030 severe malaria cases and 2840 controls from Vietnam. After data quality control, genotyping data of 956 cases and 2350 controls were analysed for 65 SNPs (3 gender confirmation, 62 positioned in/near 42 malarial candidate genes). 14 SNPs were monomorphic and 2 (rs8078340 and rs33950507) were not in HWE in controls (P<0.01). 7/46 SNPs in 6 genes (ICAM1, IL1A, IL17RC, IL13, LTA and TNF) were associated with severe malaria, with 3/7 SNPs in the TNFA/LTA region . Genotype phenotype correlations between SNPs and clinical parameters revealed that genotypes of rs708567 (IL17RC) correlate with parasitemia (P=0.028, r2=0.0086), with GG homozygotes having the lowest parasite burden. Additionally, rs708567 GG homozygotes had a decreased risk of severe malaria [P=0.007, OR=0.78 (95% CI; 0.65-0.93)] and death [P=0.028, OR=0.58 (95% CI; 0.37-0.93)] than those with AA and AG genotypes. In summary, variants in 6 genes encoding adhesion and pro-inflammatory molecules are associated with severe malaria in the Vietnamese. Further replicative studies in independent populations will be necessary to confirm these findings. PMID:22673309

  8. Cranberries (Oxycoccus quadripetalus) inhibit pro-inflammatory cytokine and chemokine expression in 3T3-L1 adipocytes.

    PubMed

    Kowalska, Katarzyna; Olejnik, Anna

    2016-04-01

    Oxidative stress and inflammation are involved in the development of obesity, type 2 diabetes and vascular complications. Systemic inflammation, as seen in obesity, is associated with high plasmatic levels of pro-inflammatory, pro-atherogenic and pro-thrombotic adipokines. Here we studied the effects of lyophilized cranberries (LCB) on the secretion and expression of PAI-1, IL-6, MCP-1 and leptin in mature 3T3-L1 adipocytes under baseline conditions and excessive inflammatory response elicitation by stimulation with H2O2. Our data demonstrated that LCB significantly reduced the expression and secretion of IL-6, MCP-1 and leptin, as well as suppressed the overexpression of PAI-1 induced by H2O2. Our findings suggested that LCB counteracted the stimulatory effect of H2O2 on secretion and expression of pro-inflammatory adipokines, implying a potential anti-inflammatory effect during the inflammatory process induced via oxidative stress in adipose tissue. PMID:26593599

  9. Chronic Inhibition of PDE5 Limits Pro-Inflammatory Monocyte-Macrophage Polarization in Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Venneri, Mary Anna; Giannetta, Elisa; Panio, Giuseppe; De Gaetano, Rita; Gianfrilli, Daniele; Pofi, Riccardo; Masciarelli, Silvia; Fazi, Francesco; Pellegrini, Manuela; Lenzi, Andrea; Naro, Fabio; Isidori, Andrea M.

    2015-01-01

    Diabetes mellitus is characterized by changes in endothelial cells that alter monocyte recruitment, increase classic (M1-type) tissue macrophage infiltration and lead to self-sustained inflammation. Our and other groups recently showed that chronic inhibition of phosphodiesterase-5 (PDE5i) affects circulating cytokine levels in patients with diabetes; whether PDE5i also affects circulating monocytes and tissue inflammatory cell infiltration remains to be established. Using murine streptozotocin (STZ)-induced diabetes and in human vitro cell-cell adhesion models we show that chronic hyperglycemia induces changes in myeloid and endothelial cells that alter monocyte recruitment and lead to self-sustained inflammation. Continuous PDE5i with sildenafil (SILD) expanded tissue anti-inflammatory TIE2-expressing monocytes (TEMs), which are known to limit inflammation and promote tissue repair. Specifically, SILD: 1) normalizes the frequency of circulating pro-inflammatory monocytes triggered by hyperglycemia (53.7 ± 7.9% of CD11b+Gr-1+ cells in STZ vs. 30.4 ± 8.3% in STZ+SILD and 27.1 ± 1.6% in CTRL, P<0.01); 2) prevents STZ-induced tissue inflammatory infiltration (4-fold increase in F4/80+ macrophages in diabetic vs. control mice) by increasing renal and heart anti-inflammatory TEMs (30.9 ± 3.6% in STZ+SILD vs. 6.9 ± 2.7% in STZ, P <0.01, and 11.6 ± 2.9% in CTRL mice); 3) reduces vascular inflammatory proteins (iNOS, COX2, VCAM-1) promoting tissue protection; 4) lowers monocyte adhesion to human endothelial cells in vitro through the TIE2 receptor. All these changes occurred independently from changes of glycemic status. In summary, we demonstrate that circulating renal and cardiac TEMs are defective in chronic hyperglycemia and that SILD normalizes their levels by facilitating the shift from classic (M1-like) to alternative (M2-like)/TEM macrophage polarization. Restoration of tissue TEMs with PDE5i could represent an additional pharmacological tool to prevent end

  10. Gene deleted live attenuated Leishmania vaccine candidates against visceral leishmaniasis elicit pro-inflammatory cytokines response in human PBMCs.

    PubMed

    Avishek, Kumar; Kaushal, Himanshu; Gannavaram, Sreenivas; Dey, Ranadhir; Selvapandiyan, Angamuthu; Ramesh, V; Negi, Narender Singh; Dubey, Uma S; Nakhasi, Hira L; Salotra, Poonam

    2016-01-01

    Currently no effective vaccine is available for human visceral leishmaniasis(VL) caused by Leishmania donovani. Previously, we showed that centrin1 and p27gene deleted live attenuated Leishmania parasites (LdCen1(-/-) and Ldp27(-/-)) are safe, immunogenic and protective in animal models. Here, to assess the correlates of protection, we evaluated immune responses induced by LdCen1(-/-) and Ldp27(-/-) in human blood samples obtained from healthy, healed VL (HVL), post kala-azar dermal leishmaniasis(PKDL) and VL subjects. Both parasites infected human macrophages, as effectively as the wild type parasites. Further, LdCen1(-/-) and Ldp27(-/-) strongly stimulated production of pro-inflammatory cytokines including, IL-12, IFN-γ, TNF-α, IL-2, IL-6 and IL-17 in the PBMCs obtained from individuals with a prior exposure to Leishmania (HVL and PKDL). There was no significant stimulation of anti-inflammatory cytokines (IL-4 and IL-10). Induction of Th1 biased immune responses was supported by a remarkable increase in IFN-γ secreting CD4(+) and CD8(+) T cells and IL-17 secreting CD4(+) cells in PBMCs from HVL cases with no increase in IL-10 secreting T cells. Hence, LdCen1(-/-) and Ldp27(-/-) are promising as live vaccine candidates against VL since they elicit strong protective immune response in human PBMCs from HVL, similar to the wild type parasite infection, mimicking a naturally acquired protection following cure. PMID:27624408

  11. Colchicine modulates expression of pro-inflammatory genes in neutrophils from patients with familial Mediterranean fever and healthy subjects.

    PubMed

    Manukyan, G; Petrek, M; Tomankova, T; Martirosyan, A; Tatyan, M; Navratilova, Z; Paulu, D; Kriegova, E

    2013-01-01

    Colchicine (Col) is a microtubule depolymerizing drug, widely used for treatment of familial Mediterranean fever (FMF). Mechanisms by which Col exerts its beneficial effects are not yet completely understood, especially with respect to gene expression in polymorphonuclear neutrophils (PMNs), the main effector cells in acute inflammatory attacks of FMF. This study was, therefore, designed to elucidate possible modulatory effect of Col on expression of inflammation-related genes in circulating PMNs from 16 FMF patients in the remission period and 11 healthy subjects. In vitro effect of Col exposure (1 microg/ml) on expression of 8 selected genes was examined using quantitative real-time RT-PCR. Col up-regulated expression of IL-8 and IL-1beta genes in FMF (13-fold and 2.7-fold, p less than 0.05, respectively) and healthy (3-fold and 6.5-fold, p less than 0.05, respectively) PMNs, and down-regulated caspase-1 in FMF neutrophils (3-fold, p less than 0.05). In FMF PMNs treated with Col mRNAs of IL-8 (51-fold, p less than 0.01) and c-FOS (7-fold, p less than 0.05) transcripts were elevated compared to those from healthy subjects. By contrast, caspase-1 mRNA was decreased in FMF neutrophils compared to healthy cells (1.6-fold, p less than 0.05). Hereby, we provide evidence that, at least in vitro, Col displays pro-inflammatory potential in respect to IL-1beta and IL-8 genes. At the same time, our findings implicate suppression of caspase-1 expression by Col as a potential mechanism for its effects in FMF treatment. PMID:23830384

  12. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures

    PubMed Central

    Sakamoto, Yuri; Kanatsu, Junko; Toh, Mariko; Naka, Ayano; Kondo, Kazuo; Iida, Kaoruko

    2016-01-01

    Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs) regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist), and GW9662 (a PPARγ antagonist). Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif) ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1)) and interleukin 6 (Il6) mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM) from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue. PMID:26901838

  13. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures.

    PubMed

    Sakamoto, Yuri; Kanatsu, Junko; Toh, Mariko; Naka, Ayano; Kondo, Kazuo; Iida, Kaoruko

    2016-01-01

    Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs) regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist), and GW9662 (a PPARγ antagonist). Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif) ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1)) and interleukin 6 (Il6) mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM) from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue. PMID:26901838

  14. Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation

    PubMed Central

    McGuire, Victoria A.; Ruiz-Zorrilla Diez, Tamara; Emmerich, Christoph H.; Strickson, Sam; Ritorto, Maria Stella; Sutavani, Ruhcha V.; Weiβ, Anne; Houslay, Kirsty F.; Knebel, Axel; Meakin, Paul J.; Phair, Iain R.; Ashford, Michael L. J.; Trost, Matthias; Arthur, J. Simon C.

    2016-01-01

    Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity. PMID:27498693

  15. Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation.

    PubMed

    McGuire, Victoria A; Ruiz-Zorrilla Diez, Tamara; Emmerich, Christoph H; Strickson, Sam; Ritorto, Maria Stella; Sutavani, Ruhcha V; Weiβ, Anne; Houslay, Kirsty F; Knebel, Axel; Meakin, Paul J; Phair, Iain R; Ashford, Michael L J; Trost, Matthias; Arthur, J Simon C

    2016-01-01

    Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity. PMID:27498693

  16. St. John's wort attenuates irinotecan-induced diarrhea via down-regulation of intestinal pro-inflammatory cytokines and inhibition of intestinal epithelial apoptosis

    SciTech Connect

    Hu Zeping; Yang Xiaoxia; Chan Suiyung; Xu Anlong; Duan Wei; Zhu Yizhun; Sheu, F.-S.; Boelsterli, Urs Alex; Chan, Eli; Zhang Qiang; Wang, J.-C.; Ee, Pui Lai Rachel; Koh, H.L.; Huang Min; Zhou Shufeng . E-mail: phazsf@nus.edu.sg

    2006-10-15

    Diarrhea is a common dose-limiting toxicity associated with cancer chemotherapy, in particular for drugs such as irinotecan (CPT-11), 5-fluouracil, oxaliplatin, capecitabine and raltitrexed. St. John's wort (Hypericum perforatum, SJW) has anti-inflammatory activity, and our preliminary study in the rat and a pilot study in cancer patients found that treatment of SJW alleviated irinotecan-induced diarrhea. In the present study, we investigated whether SJW modulated various pro-inflammatory cytokines including interleukins (IL-1{beta}, IL-2, IL-6), interferon (IFN-{gamma}) and tumor necrosis factor-{alpha} (TNF-{alpha}) and intestinal epithelium apoptosis in rats. The rats were treated with irinotecan at 60 mg/kg for 4 days in combination with oral SJW or SJW-free control vehicle at 400 mg/kg for 8 days. Diarrhea, tissue damage, body weight loss, various cytokines including IL-1{beta}, IL-2, IL-6, IFN-{gamma} and TNF-{alpha} and intestinal epithelial apoptosis were monitored over 11 days. Our studies demonstrated that combined SJW markedly reduced CPT-11-induced diarrhea and intestinal lesions. The production of pro-inflammatory cytokines such as IL-1{beta}, IFN-{gamma} and TNF-{alpha} was significantly up-regulated in intestine. In the mean time, combined SJW significantly suppressed the intestinal epithelial apoptosis induced by CPT-11 over days 5-11. In particular, combination of SJW significantly inhibited the expression of TNF-{alpha} mRNA in the intestine over days 5-11. In conclusion, inhibition of pro-inflammatory cytokines and intestinal epithelium apoptosis partly explained the protective effect of SJW against the intestinal toxicities induced by irinotecan. Further studies are warranted to explore the potential for STW as an agent in combination with chemotherapeutic drugs to lower their dose-limiting toxicities.

  17. Therapeutic Inhibition of Pro-Inflammatory Signaling and Toxicity to Staphylococcal Enterotoxin B by a Synthetic Dimeric BB-Loop Mimetic of MyD88

    PubMed Central

    Kissner, Teri L.; Ruthel, Gordon; Alam, Shahabuddin; Mann, Enrique; Ajami, Dariush; Rebek, Mitra; Larkin, Eileen; Fernandez, Stefan; Ulrich, Robert G.; Ping, Sun; Waugh, David S.; Rebek, Julius; Saikh, Kamal U.

    2012-01-01

    Staphylococcal enterotoxin B (SEB) exposure triggers an exaggerated pro-inflammatory cytokine response that often leads to toxic shock syndrome (TSS) associated with organ failure and death. MyD88 mediates pro-inflammatory cytokine signaling induced by SEB exposure and MyD88−/− mice are resistant to SEB intoxication, suggesting that MyD88 may be a potential target for therapeutic intervention. We targeted the BB loop region of the Toll/IL-1 receptor (TIR) domain of MyD88 to develop small-molecule therapeutics. Here, we report that a synthetic compound (EM-163), mimic to dimeric form of BB-loop of MyD88 attenuated tumor necrosis factor (TNF)- α, interferon (IFN)-γ, interleukin (IL)-1β, IL-2 and IL-6 production in human primary cells, whether administered pre- or post-SEB exposure. Results from a direct binding assay, and from MyD88 co-transfection/co-immunoprecipitation experiments, suggest that EM-163 inhibits TIR-TIR domain interaction. Additional results indicate that EM-163 prevents MyD88 from mediating downstream signaling. In an NF-kB-driven reporter assay of lipopolysaccharide-stimulated MyD88 signaling, EM-163 demonstrated a dose-dependent inhibition of reporter activity as well as TNF-α and IL-1β production. Importantly, administration of EM-163 pre- or post exposure to a lethal dose of SEB abrogated pro-inflammatory cytokine responses and protected mice from toxic shock-induced death. Taken together, our results suggest that EM-163 exhibits a potential for therapeutic use against SEB intoxication. PMID:22848400

  18. Artesunate ameliorates severe acute pancreatitis (SAP) in rats by inhibiting expression of pro-inflammatory cytokines and Toll-like receptor 4.

    PubMed

    Cen, Yanyan; Liu, Chao; Li, Xiaoli; Yan, Zifei; Kuang, Mei; Su, Yujie; Pan, Xichun; Qin, Rongxin; Liu, Xin; Zheng, Jiang; Zhou, Hong

    2016-09-01

    Severe acute pancreatitis (SAP) is a severe clinical condition with significant morbidity and mortality. Multiple organs dysfunction (MOD) is the leading cause of SAP-related death. The over-release of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α is the underlying mechanism of MOD; however, there is no effective agent against the inflammation. Herein, artesunate (AS) was found to increase the survival of SAP rats significantly when injected with 3.5% sodium taurocholate into the biliopancreatic duct in a retrograde direction, improving their pancreatic pathology and decreasing serum amylase and pancreatic lipase activities along with substantially reduced pancreatic IL-1β and IL-6 release. In vitro, AS-pretreatment strongly inhibited IL-1β and IL-6 release and their mRNA expressions in the pancreatic acinar cells treated with lipopolysaccharide (LPS) but exerted little effect on TNF-α release. Additionally, AS reduced the mRNA expressions of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) p65 as well as their protein expressions in the pancreatic acinar cells. In conclusion, our results demonstrated that AS could significantly protect SAP rats, and this protection was related to the reduction of digestive enzyme activities and pro-inflammatory cytokine expressions via inhibition of TLR4/NF-κB signaling pathway. Therefore, AS may be considered as a potential therapeutic agent against SAP. PMID:27318790

  19. Mycobacterium bovis-infected macrophages from resistant and susceptible cattle exhibited a differential pro-inflammatory gene expression profile depending on strain virulence.

    PubMed

    Alfonseca-Silva, Edgar; Hernández-Pando, Rogelio; Gutiérrez-Pabello, José A

    2016-08-01

    Mycobacterium bovis, the causative agent of bovine tuberculosis, is an intracellular bacterium that normally persists inside host macrophages. However, the influence of bacterial virulence and host resistance on the final outcome in this interaction is not well known. In this study, we infected macrophages isolated from natural disease resistant (R) and susceptible (S) cattle donors with M. bovis strains characterized as attenuated and virulent to assess pro-inflammatory cytokine (TNFα, IL-12, IL-18, IL-1β, IL-6), chemokine (MCP-1, MCP-2, MIP-1), macrophage receptor (MSR1, TLR2, TLR4, MMR) and iNOS mRNA expression levels. Our findings identified a pro-inflammatory gene expression profile as a common feature after M. bovis infection regardless of bacterial virulence, however in S macrophages a superior expression was induced by the attenuated strain, whereas in R macrophages it was accomplished by the virulent M. bovis. A macrophage pro-inflammatory profile is intended to control M. bovis intracellular growth; however the host resistant phenotype plays a determinant role in it, since R macrophages had better intracellular bacterial control than S cells. PMID:26970816

  20. Chokeberry (Aronia melanocarpa (Michx.) Elliot) concentrate inhibits NF-κB and synergizes with selenium to inhibit the release of pro-inflammatory mediators in macrophages.

    PubMed

    Appel, Kurt; Meiser, Peter; Millán, Estrella; Collado, Juan Antonio; Rose, Thorsten; Gras, Claudia C; Carle, Reinhold; Muñoz, Eduardo

    2015-09-01

    Black chokeberry has been known to play a protective role in human health due to its high polyphenolic content including anthocyanins and caffeic acid derivatives. In the present study, we first characterized the polyphenolic content of a commercial chokeberry concentrate and investigated its effect on LPS-induced NF-κB activation and release of pro-inflammatory mediators in macrophages in the presence or the absence of sodium selenite. Examination of the phytochemical profile of the juice concentrate revealed high content of polyphenols (3.3%), including anthocyanins, proanthocyanidins, phenolic acids, and flavonoids. Among them, cyanidin-3-O-galactoside and caffeoylquinic acids were identified as the major compounds. Data indicated that chokeberry concentrate inhibited both the release of TNFα, IL-6 and IL-8 in human peripheral monocytes and the activation of the NF-κB pathway in RAW 264.7 macrophage cells. Furthermore, chokeberry synergizes with sodium selenite to inhibit NF-κB activation, cytokine release and PGE2 synthesis. These findings suggest that selenium added to chokeberry juice enhances significantly its anti-inflammatory activity, thus revealing a sound approach in order to tune the use of traditional herbals by combining them with micronutrients. PMID:26079445

  1. Heme oxygenase-1 signals are involved in preferential inhibition of pro-inflammatory cytokine release by surfactin in cells activated with Porphyromonas gingivalis lipopolysaccharide.

    PubMed

    Park, Sun Young; Kim, Young Hun; Kim, Eun-Kyoung; Ryu, Eun Yeon; Lee, Sang-Joon

    2010-12-01

    Porphyromonas gingivalis is considered the major pathogen of periodontal disease, which leads to chronic inflammation in oral tissues. P. gingivalis-produced lipopolysaccharide (LPS) is a key factor in the development of periodontitis. It is established that surfactin produced by Bacillus subtilis confers anti-inflammatory properties. However, the underlying mechanisms responsible for surfactin-induced anti-inflammatory actions in the context of periodontitis are poorly understood. In this study, we investigated whether surfactin affected P. gingivalis LPS-induced pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-12, and determined that it significantly inhibited their production. Surfactin-mediated inhibition was mainly due to blocked activation of P. gingivalis LPS-triggered nuclear factor-κB. We also examined whether the regulatory effect of surfactin on P. gingivalis LPS-stimulated human THP-1 macrophages was mediated by the induction of heme oxygenase-1 (HO-1) signals, and determined that surfactin also induced HO-1 mRNA and protein expression via activation of Nrf-2. Additionally, we found that small interfering RNA-mediated knock-down of Nrf-2 significantly inhibited surfactin-induced HO-1 expression. Furthermore, inhibition of phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) significantly decreased surfactin-induced HO-1 expression, which is consistent with the suggestion that surfactin-induced HO-1 expression occurs via PI3K/Akt, ERK, and Nrf-2. Treatment with a selective inhibitor of HO-1 reversed the surfactin-mediated inhibition of pro-inflammatory cytokines, suggesting that surfactin induces anti-inflammatory effects by activating Nrf-2-mediated HO-1 induction via PI3K/Akt and ERK signaling. Collectively, these observations support the potential of surfactin as a candidate in strategies to prevent caries, periodontitis, or other inflammatory diseases. PMID:20833156

  2. The Pro-inflammatory Effects of Glucocorticoids in the Brain

    PubMed Central

    Duque, Erica de Almeida; Munhoz, Carolina Demarchi

    2016-01-01

    Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein–protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain. PMID:27445981

  3. The Pro-inflammatory Effects of Glucocorticoids in the Brain.

    PubMed

    Duque, Erica de Almeida; Munhoz, Carolina Demarchi

    2016-01-01

    Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein-protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain. PMID:27445981

  4. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines

    PubMed Central

    Sun, Yang; Li, Qi; Gui, Huan; Xu, Dong-Ping; Yang, Yi-Li; Su, Ding-Feng; Liu, Xia

    2013-01-01

    The vagus nerve can control inflammatory response through a 'cholinergic anti-inflammatory pathway', which is mediated by the α7-nicotinic acetylcholine receptor (α7nAChR) on macrophages. However, the intracellular mechanisms that link α7nAChR activation and pro-inflammatory cytokine production remain not well understood. In this study, we found that miR-124 is upregulated by cholinergic agonists in LPS-exposed cells and mice. Utilizing miR-124 mimic and siRNA knockdown, we demonstrated that miR-124 is a critical mediator for the cholinergic anti-inflammatory action. Furthermore, our data indicated that miR-124 modulates LPS-induced cytokine production by targeting signal transducer and activator of transcription 3 (STAT3) to decrease IL-6 production and TNF-α converting enzyme (TACE) to reduce TNF-α release. These results also indicate that miR-124 is a potential therapeutic target for the treatment of inflammatory diseases. PMID:23979021

  5. Serrulatane Diterpenoid from Eremophila neglecta Exhibits Bacterial Biofilm Dispersion and Inhibits Release of Pro-inflammatory Cytokines from Activated Macrophages.

    PubMed

    Mon, Htwe H; Christo, Susan N; Ndi, Chi P; Jasieniak, Marek; Rickard, Heather; Hayball, John D; Griesser, Hans J; Semple, Susan J

    2015-12-24

    The purpose of this study was to assess the biofilm-removing efficacy and inflammatory activity of a serrulatane diterpenoid, 8-hydroxyserrulat-14-en-19-oic acid (1), isolated from the Australian medicinal plant Eremophila neglecta. Biofilm breakup activity of compound 1 on established Staphylococcus epidermidis and Staphylococcus aureus biofilms was compared to the antiseptic chlorhexidine and antibiotic levofloxacin. In a time-course study, 1 was deposited onto polypropylene mesh to mimic a wound dressing and tested for biofilm removal. The ex-vivo cytotoxicity and effect on lipopolysaccharide-induced pro-inflammatory cytokine release were studied in mouse primary bone-marrow-derived macrophage (BMDM) cells. Compound 1 was effective in dispersing 12 h pre-established biofilms with a 7 log10 reduction of viable bacterial cell counts, but was less active against 24 h biofilms (approximately 2 log10 reduction). Compound-loaded mesh showed dosage-dependent biofilm-removing capability. In addition, compound 1 displayed a significant inhibitory effect on tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) secretion from BMDM cells, but interleukin-1 beta (IL-1β) secretion was not significant. The compound was not cytotoxic to BMDM cells at concentrations effective in removing biofilm and lowering cytokine release. These findings highlight the potential of this serrulatane diterpenoid to be further developed for applications in wound management. PMID:26636180

  6. CRISPR-Cas9 mediated gene knockout in primary human airway epithelial cells reveals a pro-inflammatory role for MUC18

    PubMed Central

    Chu, Hong Wei; Rios, Cydney; Huang, Chunjian; Wesolowska-Andersen, Agata; Burchard, Esteban G.; O'Connor, Brian P.; Fingerlin, Tasha E.; Nichols, David; Reynolds, Susan D.; Seibold, Max A.

    2015-01-01

    Targeted knockout of genes in primary human cells using CRISPR-Cas9 mediated genome-editing represents a powerful approach to study gene function and to discern molecular mechanisms underlying complex human diseases. We used lentiviral delivery of CRISPR-Cas9 machinery and conditional reprogramming culture methods to knockout the MUC18 gene in human primary nasal airway epithelial cells (AECs). Massively parallel sequencing technology was used to confirm that the genome of essentially all cells in the edited AEC populations contained coding region insertions and deletions (indels). Correspondingly, we found mRNA expression of MUC18 was greatly reduced and protein expression was absent. Characterization of MUC18 knockout cell populations stimulated with TLR2, 3 and 4 agonists revealed that IL-8 (a pro-inflammatory chemokine) responses of AECs were greatly reduced in the absence of functional MUC18 protein. Our results show the feasibility of CRISPR-Cas9 mediated gene knockouts in AEC culture (both submerged and polarized), and suggest a pro-inflammatory role for MUC18 in airway epithelial response to bacterial and viral stimuli. PMID:26043872

  7. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells.

    PubMed

    Li, Li; Zhang, Xiao-Hui; Liu, Guang-Rong; Liu, Chang; Dong, Yin-Mao

    2016-06-01

    Mast cells and basophils are multifunctional effector cells that contain abundant secretory granules in their cytoplasm. Both cell types are involved in a variety of inflammatory and immune events, producing an array of inflammatory mediators, such as cytokines. The aim of the study was to examine whether isoquercitrin modulates allergic and inflammatory reactions in the human basophilic KU812 cells and to elucidate its influence on the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation. The KU812 cells were stimulated with phorbol-12-myristate 13-acetate plus the calcium ionophore A23187 (PMACI). The inhibitory effects of isoquercitrin on the productions of histamine and pro-inflammatory cytokines in the stimulated KU812 cells were measured using cytokine-specific enzyme-linked immunosorbent (ELISA) assays. Western blotting analysis was used to assess the effects of isoquercitrin on the MAPKs and NF-κB protein levels. Our results indicated that the isoquercitrin treatment of PMACI-stimulated KU812 cells significantly reduced the production of histamine and the pro-inflammatory cytokines, such as interleukin (IL)-6, IL-8, IL-1β, and tumor necrosis factor (TNF)-α. The treated cells exhibited decreased phosphorylation of extracellular signal-regulated kinase (ERK), revealing the role of ERK MAPK in isoquercitrin-mediated allergy inhibition. Furthermore, isoquercitrin suppressed the PMACI-mediated activation of NF-κB in the human basophil cells. In conclusion, the results from the present study provide insights into the potential therapeutic use of isoquercitrin for the treatment of inflammatory and allergic reactions. PMID:27473957

  8. Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and NF-κB signaling.

    PubMed

    Medicherla, Kanakaraju; Sahu, Bidya Dhar; Kuncha, Madhusudana; Kumar, Jerald Mahesh; Sudhakar, Godi; Sistla, Ramakrishna

    2015-09-01

    Ulcerative colitis is associated with a considerable reduction in the quality of life of patients. The use of phyto-ingredients is becoming an increasingly attractive approach for the management of colitis. Geraniol is a monoterpene with anti-inflammatory and antioxidative properties. In this study, we investigated the therapeutic potential of geraniol as a complementary and alternative medicine against dextran sulphate sodium (DSS)-induced ulcerative colitis in mice. Disease activity indices (DAI) comprising body weight loss, presence of occult blood and stool consistency were assessed for evaluation of colitis symptoms. Intestinal damage was assessed by evaluating colon length and its histology. Pre-treatment with geraniol significantly reduced the DAI score, improved stool consistency (without occult blood) and increased the colon length. The amount of pro-inflammatory cytokines, specifically TNF-α, IL-1β and IL-6 and the activity of myeloperoxidase in colon tissue were significantly decreased in geraniol pre-treated mice. Western blot analyses revealed that geraniol interfered with NF-κB signaling by inhibiting NF-κB (p65)-DNA binding, and IκBα phosphorylation, degradation and subsequent increase in nuclear translocation. Moreover, the expressions of downstream target pro-inflammatory enzymes such as iNOS and COX-2 were significantly reduced by geraniol. Pre-treatment with geraniol also restored the DSS-induced decline in antioxidant parameters such as reduced glutathione and superoxide dismutase activity and attenuated the increase in lipid peroxidation marker, thiobarbituric acid reactive substances and nitrative stress marker, nitrites in colon tissue. Thus, our results suggest that geraniol is a potential therapeutic agent for inflammatory bowel disease. PMID:26190278

  9. Downregulation of PCAF by miR-181a/b provides feedback regulation to TNF-α-induced transcription of pro-inflammatory genes in liver epithelial cells1,2

    PubMed Central

    Zhao, Jian; Gong, Ai-Yu; Zhou, Rui; Liu, Jun; Eischeid, Alex N.; Chen, Xian-Ming

    2011-01-01

    Aberrant cellular responses to pro-inflammatory cytokines, such as TNF-α, are pathogenic features in most chronic inflammatory diseases. A variety of extracellular and intracellular feedback pathways have evolved to prevent an inappropriate cellular reaction to these pro-inflammatory cytokines. Here, we report that TNF-α treatment of human and mouse cholangiocytes and hepatocytes downregulated expression of p300/CBP-associated factor (PCAF), a co-activator and an acetyltransferase that promotes histone acetylation and gene transcription. Of these upregulated microRNAs (miRNAs) in TNF-α-treated cells, miR-181a/b (miR-181a and miR-181b) suppressed translation of PCAF mRNA. Functional manipulation of miR-181a/b caused reciprocal alterations in PCAF protein expression in cultured cholangiocytes and hepatocytes. Inhibition of miR-181a/b function with anti-miRs blocked TNF-α-induced suppression of PCAF expression. Promoter recruitment of PCAF was shown to be associated with TNF-α-induced transcription of inflammatory genes. Intriguingly, pretreatment of cells with TNF-α inhibited transcription of inflammatory genes in response to subsequent TNF-α stimulation. Overexpression of PCAF or inhibition of miR-181a/b function with anti-miRs attenuated the inhibitory effects of TNF-α pretreatment on epithelial inflammatory response to subsequent TNF-α stimulation. Downregulation of PCAF and the inhibitory effects of TNF-α pretreatment on liver epithelial inflammatory response were further confirmed in a mouse model of TNF-α intraperitoneal injection. These data suggest that PCAF is a target for miR-181a/b, and downregulation of PCAF by TNF-α provides negative feedback regulation to inflammatory reactions in liver epithelial cells, a process that may be relevant to the epigenetic fine-tuning of epithelial inflammatory processes in general. PMID:22219331

  10. The anti-malarial artemisinin inhibits pro-inflammatory cytokines via the NF-κB canonical signaling pathway in PMA-induced THP-1 monocytes.

    PubMed

    Wang, Yue; Huang, Zhouqing; Wang, Liansheng; Meng, Shu; Fan, Yuqi; Chen, Ting; Cao, Jiatian; Jiang, Rujia; Wang, Changqian

    2011-02-01

    Several kinds of sesquiterpene lactones have been proven to inhibit NF-κB and to retard atherosclerosis by reducing lesion size and changing plaque composition. The anti-malarial artemisinin (Art) is a pure sesquiterpene lactone extracted from the Chinese herb Artemisia annua (qinghao, sweet wormwood). In the present study, we demonstrate that artemisinin inhibits the secretion and the mRNA levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in a dose-dependent manner in phorbol 12-myristate 13-acetate (PMA)-induced THP-1 human monocytes. We also found that the NF-κB specific inhibitor, Bay 11-7082, inhibited the expression of these pro-inflammatory cytokines, suggesting that the NF-κB pathway may be involved in the decreased cytokine release. At all time-points (1-6 h), artemisinin impeded the phosphorylation of IKKα/ß, the phosphorylation and degradation of IκBα and the nuclear translocation of the NF-κB p65 subunit. Additionally, artemisinin inhibited the translocation of the NF-κB p65 subunit as demonstrated by confocal laser scanning microscopic analysis and by NF-κB binding assays. Our data indicate that artemisinin exerts an anti-inflammatory effect on PMA-induced THP-1 monocytes, suggesting the potential role of artemisinin in preventing the inflammatory progression of atherosclerosis. PMID:21165548

  11. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation.

    PubMed

    Gessner, Denise K; Gröne, Birthe; Couturier, Aline; Rosenbaum, Susann; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal's health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver. PMID:26351857

  12. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation

    PubMed Central

    Gessner, Denise K.; Gröne, Birthe; Couturier, Aline; Rosenbaum, Susann; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR), both of which impair animal´s health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver. PMID:26351857

  13. IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production

    PubMed Central

    Jamal Uddin, Md; Joe, Yeonsoo; Kim, Seul-Ki; Oh Jeong, Sun; Ryter, Stefan W; Pae, Hyun-Ock; Chung, Hun Taeg

    2016-01-01

    The immunoresponsive gene 1 (IRG1) protein has crucial functions in embryonic implantation and neurodegeneration. IRG1 promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species (ROS). The cytoprotective protein heme oxygenase-1 (HO-1), which generates endogenous carbon monoxide (CO), is expressed in the lung during Lipopolysaccharide (LPS) tolerance and cross tolerance. However, the detailed molecular mechanisms and functional links between IRG1 and HO-1 in the innate immune system remain unknown. In the present study, we found that the CO releasing molecule-2 (CORM-2) and chemical inducers of HO-1 increased IRG1 expression in a time- and dose-dependent fashion in RAW264.7 cells. Furthermore, inhibition of HO-1 activity by zinc protoporphyrin IX (ZnPP) and HO-1 siRNA significantly reduced expression of IRG1 under these conditions. In addition, treatment with CO and HO-1 induction significantly increased A20 expression, which was reversed by ZnPP and HO-1 siRNA. LPS-stimulated TNF-α was significantly decreased, whereas IRG1 and A20 were increased by CORM-2 application and HO-1 induction, which in turn were abrogated by ZnPP. Interestingly, siRNA against IRG1 and A20 reversed the effects of CO and HO-1 on LPS-stimulated TNF-α production. Additionally, CO and HO-1 inducers significantly increased IRG1 and A20 expression and downregulated TNF-α production in a LPS-stimulated sepsis mice model. Furthermore, the effects of CO and HO-1 on TNF-α production were significantly reversed when ZnPP was administered. In conclusion, CO and HO-1 induction regulates IRG1 and A20 expression, leading to inhibition of inflammation in vitro and in an in vivo mice model. PMID:25640654

  14. NF-κBp65 and Expression of Its Pro-Inflammatory Target Genes Are Upregulated in the Subcutaneous Adipose Tissue of Cachectic Cancer Patients

    PubMed Central

    Gonzalez Camargo, Rodolfo; Mendes dos Reis Riccardi, Daniela; Quintas Teixeira Ribeiro, Henrique; Carlos Carnevali, Luiz; Marques de Matos-Neto, Emidio; Enjiu, Lucas; Xavier Neves, Rodrigo; Darck Carola Correia Lima, Joanna; Galvão Figuerêdo, Raquel; Sérgio Martins de Alcântara, Paulo; Maximiano, Linda; Otoch, José; Batista, Miguel Luiz; Püschel, Gerhard; Seelaender, Marilia

    2015-01-01

    Cancer cachexia, of which the most notable symptom is severe and rapid weight loss, is present in the majority of patients with advanced cancer. Inflammatory mediators play an important role in the development of cachexia, envisaged as a chronic inflammatory syndrome. The white adipose tissue (WAT) is one of the first compartments affected in cancer cachexia and suffers a high rate of lipolysis. It secretes several cytokines capable of directly regulating intermediate metabolism. A common pathway in the regulation of the expression of pro-inflammatory cytokines in WAT is the activation of the nuclear transcription factor kappa-B (NF-κB). We have examined the gene expression of the subunits NF-κBp65 and NF-κBp50, as well as NF-κBp65 and NF-κBp50 binding, the gene expression of pro-inflammatory mediators under NF-κB control (IL-1β, IL-6, INF-γ, TNF-α, MCP-1), and its inhibitory protein, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α). The observational study involved 35 patients (control group, n = 12 and cancer group, n = 23, further divided into cachectic and non-cachectic). NF-κBp65 and its target genes expression (TNF-α, IL-1β, MCP-1 and IκB-α) were significantly higher in cachectic cancer patients. Moreover, NF-κBp65 gene expression correlated positively with the expression of its target genes. The results strongly suggest that the NF-κB pathway plays a role in the promotion of WAT inflammation during cachexia. PMID:26053616

  15. Anaplasma phagocytophilum up-regulates some anti-apoptotic genes in neutrophils and pro-inflammatory genes in mononuclear cells of sheep.

    PubMed

    Woldehiwet, Z; Yavari, C

    2014-05-01

    Anaplasma phagocytophilum, the causative agent of tick-borne fever (TBF) in sheep and cattle and human granulocytic anaplasmosis, has the unique ability to selectively infect and multiply within the hostile environment of the neutrophil. Previous studies have shown that sheep with TBF are more susceptible to other infections and that infected neutrophils have reduced phagocytic ability and delayed apoptosis. This suggests that survival of A. phagocytophilum in these short-lived cells involves the ability to subvert or resist their bacterial killing, but also to modify the host cells such that the host cells survive long after infection. The present study shows that infection of sheep by A. phagocytophilum is characterized by up-regulation of some anti-apoptotic genes (BCL2, BIRC3 and CFLAR) in neutrophils and up-regulation of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL)-1β and IL-6 in mononuclear cells during the period of bacteraemia. Infection with A. phagocytophilum was also characterized by significant up-regulation of CYBB, which is associated with the respiratory burst of neutrophils. PMID:24602324

  16. Investigations on Leucas cephalotes (Roth.) Spreng. for inhibition of LPS-induced pro-inflammatory mediators in murine macrophages and in rat model

    PubMed Central

    Patel, Neeraj K.; Khan, Mohd. Shahid; Bhutani, Kamlesh K.

    2015-01-01

    Silica gel column chromatography fractionation of the dichloromethane extract (LCD) of Leucas cephalotes (Roth.) Spreng. led to the isolation of five compounds namely β-sitosterol (1) + stigmasterol (2), lupeol (3), oleanolic acid (4) and laballenic acid (5). Also, gas chromatography-mass spectrometry (GC-MS) analysis of sub-fraction (LCD-F1) of this extract showed the presence of eleven (6-16) compounds. In addition to this, 3-5 and LCD-F1 were evaluated for lipopolysachharide (LPS)-induced nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in RAW 264.7 and J774A.1 cells. Results directed that 4 and 5 were found to inhibit these mediators at half maximal inhibitory concentration of 17.12 to 57.20 μM while IC50 for LCD-F1 was found to be 15.56 to 31.71 μg/mL. Furthermore, LCD at a dose of 50, 100 and 400 mg/Kg was found to reduce significantly LPS induced tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in female Sprague Dawley (SD) rats. All the results findings evoked that the anti-inflammatory effects of Leucas cephalotes is partially mediated through the suppression of pro-inflammatory mediators and hence can be utilized for the development of anti-inflammatory candidates. PMID:26535039

  17. Ceftiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-{kappa}B and MAPK

    SciTech Connect

    Ci Xinxin; Song Yu; Zeng Fanqin; Zhang Xuemei; Li Hongyu; Wang Xinrui; Cui Junqing Deng Xuming

    2008-07-18

    Ceftiofur is a new broad-spectrum, third-generation cephalosporin antibiotic for veterinary use. Immunopharmacological studies can provide new information on the immunomodulatory activities of some drugs, including their effect on cytokine productions. For this reason, we investigated the effect of ceftiofur on cytokine productions in vitro. We found that ceftiofur can downregulate tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin-1{beta} (IL-1{beta}), and interleukin-6 (IL-6), but did not affect interleukin-10 (IL-10) production. We further investigated signal transduction mechanisms to determine how ceftiofur affects. RAW 264.7 cells were pretreated with 1, 5, or 10 mg/L of ceftiofur 1 h prior to treatment with 1 mg/L of LPS. Thirty minutes later, cells were harvested and mitogen activated protein kinases (MAPKs) activation was measured by Western blot. Alternatively, cells were fixed and nuclear factor-{kappa}B (NF-{kappa}B) activation was measured using immunocytochemical analysis. Signal transduction studies showed that ceftiofur significantly inhibited extracellular signal-regulated kinase (ERK), p38, and c-jun NH{sub 2}-terminal kinase (JNK) phosphorylation protein expression. Ceftiofur also inhibited p65-NF-{kappa}B translocation into the nucleus. Therefore, ceftiofur may inhibit LPS-induced production of inflammatory cytokines by blocking NF-{kappa}B and MAPKs signaling in RAW264.7 cells.

  18. Vitamin E metabolite 13'-carboxychromanols inhibit pro-inflammatory enzymes, induce apoptosis and autophagy in human cancer cells by modulating sphingolipids and suppress colon tumor development in mice.

    PubMed

    Jang, Yumi; Park, Na-Young; Rostgaard-Hansen, Agnetha Linn; Huang, Jianjie; Jiang, Qing

    2016-06-01

    Vitamin E forms are substantially metabolized to various carboxychromanols including 13'-carboxychromanols (13'-COOHs) that are found at high levels in feces. However, there is limited knowledge about functions of these metabolites. Here we studied δT-13'-COOH and δTE-13'-COOH, which are metabolites of δ-tocopherol and δ-tocotrienol, respectively. δTE-13'-COOH is also a natural constituent of a traditional medicine Garcinia Kola. Both 13'-COOHs are much stronger than tocopherols in inhibition of pro-inflammatory and cancer promoting cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX), and in induction of apoptosis and autophagy in colon cancer cells. The anticancer effects by 13'-COOHs appeared to be partially independent of inhibition of COX-2/5-LOX. Using liquid chromatography tandem mass spectrometry, we found that 13'-COOHs increased intracellular dihydrosphingosine and dihydroceramides after short-time incubation in HCT-116 cells, and enhanced ceramides while decreased sphingomyelins during prolonged treatment. Modulation of sphingolipids by 13'-COOHs was observed prior to or coinciding with biochemical manifestation of cell death. Pharmaceutically blocking the increase of these sphingolipids partially counteracted 13'-COOH-induced cell death. Further, 13'-COOH inhibited dihydroceramide desaturase without affecting the protein expression. In agreement with these mechanistic findings, δTE-13'-COOH significantly suppressed the growth and multiplicity of colon tumor in mice. Our study demonstrates that 13'-COOHs have anti-inflammatory and anticancer activities, may contribute to in vivo anticancer effect of vitamin E forms and are promising novel cancer prevention agents. PMID:27016075

  19. The Human Pancreatic Islet Transcriptome: Expression of Candidate Genes for Type 1 Diabetes and the Impact of Pro-Inflammatory Cytokines

    PubMed Central

    Eizirik, Décio L.; Sammeth, Michael; Bouckenooghe, Thomas; Bottu, Guy; Sisino, Giorgia; Igoillo-Esteve, Mariana; Ortis, Fernanda; Santin, Izortze; Colli, Maikel L.; Barthson, Jenny; Bouwens, Luc; Hughes, Linda; Gregory, Lorna; Lunter, Gerton; Marselli, Lorella; Marchetti, Piero; McCarthy, Mark I.; Cnop, Miriam

    2012-01-01

    Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic beta cells are killed by infiltrating immune cells and by cytokines released by these cells. Signaling events occurring in the pancreatic beta cells are decisive for their survival or death in diabetes. We have used RNA sequencing (RNA–seq) to identify transcripts, including splice variants, expressed in human islets of Langerhans under control conditions or following exposure to the pro-inflammatory cytokines interleukin-1β (IL-1β) and interferon-γ (IFN-γ). Based on this unique dataset, we examined whether putative candidate genes for T1D, previously identified by GWAS, are expressed in human islets. A total of 29,776 transcripts were identified as expressed in human islets. Expression of around 20% of these transcripts was modified by pro-inflammatory cytokines, including apoptosis- and inflammation-related genes. Chemokines were among the transcripts most modified by cytokines, a finding confirmed at the protein level by ELISA. Interestingly, 35% of the genes expressed in human islets undergo alternative splicing as annotated in RefSeq, and cytokines caused substantial changes in spliced transcripts. Nova1, previously considered a brain-specific regulator of mRNA splicing, is expressed in islets and its knockdown modified splicing. 25/41 of the candidate genes for T1D are expressed in islets, and cytokines modified expression of several of these transcripts. The present study doubles the number of known genes expressed in human islets and shows that cytokines modify alternative splicing in human islet cells. Importantly, it indicates that more than half of the known T1D candidate genes are expressed in human islets. This, and the production of a large number of chemokines and cytokines by cytokine-exposed islets, reinforces the concept of a dialog between pancreatic islets and the immune system in T1D. This dialog is modulated by candidate genes for the disease at both the immune system and

  20. Polyphenol-rich pomegranate fruit extract (POMx) suppresses PMACI-induced expression of pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells

    PubMed Central

    Rasheed, Zafar; Akhtar, Nahid; Anbazhagan, Arivarasu N; Ramamurthy, Sangeetha; Shukla, Meenakshi; Haqqi, Tariq M

    2009-01-01

    Background Mast cells and basophils are multifunctional effector cells and contain plentiful secretary granules in their cytoplasm. These cell types are involved in several inflammatory and immune events and are known to produce an array of mediators including a broad spectrum of cytokines. Pomegranate fruit is rich in anthocyanins and hydrolysable tannins; a group of polyphenolic compounds shown to be potent antioxidant with anti-inflammatory activity. However, no studies have been undertaken to investigate whether a polyphenol-rich pomegranate fruit extract (POMx) inhibits the inflammatory activity of activated human mast cells and basophils. The aim of this study was to examine whether POMx modulates inflammatory reactions using human basophilic cell line KU812. Methods KU812 cells were stimulated with phorbol-12-myristate 13-acetate plus calcium inophore A23187 (PMACI). The inhibitory effect of POMx on pro-inflammatory cytokine gene expression and production by stimulated KU812 cells was measured by quantitative RT-PCR, and cytokine-specific ELISA assays, respectively. Western blotting was used to analyze the effect of POMx on the activation of mitogen-activated protein kinases (MAPKs), and the nuclear factor (NF)-κB in PMACI stimulated KU812 cells. Effect on the activity of NF-κB was determined using Luciferase reporter assay. Significance of differences from control values were analyzed by means of standard statistical methods. Results POMx significantly decreased PMACI stimulated inflammatory gene expression and production of interleukin (IL)-6 and IL-8 in KU812 cells. The inhibitory effect of POMx on the pro-inflammatory cytokines was MAPK subgroups c-jun N-terminal kinase (JNK)- and extracellular-regulated kinase (ERK) dependent. In addition, POMx suppressed the NF-κB activation induced by PMACI by inhibiting IκB-degradation in human basophil cells. POMx also suppressed the powerful induction of NF-κB promoter-mediated luciferase activity in

  1. Induction of pro-inflammatory gene expression by Escherichia coli and mycotoxin zearalenone contamination and protection by a Lactobacillus mixture in porcine IPEC-1 cells.

    PubMed

    Taranu, Ionelia; Marin, Daniela Eliza; Pistol, Gina Cecilia; Motiu, Monica; Pelinescu, Diana

    2015-04-01

    This work investigated the effect of Escherichia coli K88 and zearalenone contamination on pro-inflammatory gene expression (Toll like receptors, cytokines) and signalling molecules and the protective activity of a mixture of Lactobacilli sp. (Lactobacillus plantarum, Lactobacillus acidofilus and Lactobacillus paracasei) in porcine intestinal epithelial cells as part of the local immune system. IPEC-1 cell monolayer was exposed for 1 h to the individual or combined action of E. coli, zearalenone and lactobacilli mixture. Our results showed that TLRs (1-10) and cytokine (IL-1,-6,-8,-10, TNF-α, IFN-γ) genes expressed early (after 1 h of culture) in IPEC-1 cells. E. coli alone increased the TLRs mRNA expression, especially TLR4 and the inflammatory cytokines while ZEA alone showed either no effect or a marginally effect on TLRs, cytokines, and signalling genes when compared to untreated cells. The combined actions of the two contaminants lead to a synergistically up-regulation of key cytokines (IFN-γ, IL-10 and TNF-α) and TLRs (-2,-3,-4,-6, and -10). The live lactobacilli mixture was able to attenuate the pathogen and mycotoxin-induced response by downregulated the majority of inflammatory related genes suggesting that this mixture has an immunomodulatory potential and may be used to lower the inflammatory response. PMID:25640651

  2. Ursolic Acid Inhibits the Initiation, Progression of Prostate Cancer and Prolongs the Survival of TRAMP Mice by Modulating Pro-Inflammatory Pathways

    PubMed Central

    Shanmugam, Muthu K.; Ong, Tina H.; Kumar, Alan Prem; Lun, Chang K.; Ho, Paul C.; Wong, Peter T. H.; Hui, Kam M.; Sethi, Gautam

    2012-01-01

    Prostate cancer is one of the leading causes of cancer death among men worldwide. In this study, using transgenic adenocarcinoma of mouse prostate (TRAMP) mice, the effect of diet enriched with 1% w/w ursolic acid (UA) was investigated to evaluate the stage specific chemopreventive activity against prostate cancer. We found that TRAMP mice fed with UA diet for 8 weeks (weeks 4 to 12) delayed formation of prostate intraepithelial neoplasia (PIN). Similarly, mice fed with UA diet for 6 weeks (weeks 12 to 18) inhibited progression of PIN to adenocarcinoma as determined by hematoxylin and eosin staining. Finally, TRAMP mice fed with UA diet for 12 weeks (weeks 24 to 36) demonstrated markedly reduced tumor growth without any significant effects on total body weight and prolonged overall survival. With respect to the molecular mechanism, we found that UA down-regulated activation of various pro-inflammatory mediators including, NF-κB, STAT3, AKT and IKKα/β phosphorylation in the dorsolateral prostate (DLP) tissues that correlated with the reduction in serum levels of TNF-α and IL-6. In addition, UA significantly down-regulated the expression levels of cyclin D1 and COX-2 but up-regulated the levels of caspase-3 as revealed by immunohistochemical analysis of tumor tissue sections. Finally, UA was detected in serum samples obtained from various mice groups fed with enriched diet in nanogram quantity indicating that it is well absorbed in the GI tract. Overall, our findings provide strong evidence that UA can be an excellent agent for both the prevention and treatment of prostate cancer. PMID:22427843

  3. Blueberries reduce pro-inflammatory cytokine TNF-alpha and IL-6 production in mouse macrophages by inhibiting NF Kappa B activation and the MAPK pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. The aim of this study was to evaluate the effects of BB in reducing pro-inflammatory cytokine production in mouse macrophages. ApoE-/- mice were fed AIN-93G diet (CD) or CD formulated to contain 1% fre...

  4. Modulation of the pro-inflammatory molecules E-selectin and TNF-α gene transcription in Eimeria ninakohlyakimovae-infected primary caprine host endothelial cells.

    PubMed

    Pérez, D; Ruiz, A; Muñoz, M C; Molina, J M; Hermosilla, C; López, A M; Matos, L; Ortega, L; Martín, S; Taubert, A

    2015-10-01

    Eimeria ninakohlyakimovae is an important coccidian parasite of goats which causes severe hemorrhagic typhlocolitis in young animals, thereby leading to high economic losses in goat industry worldwide. The first merogony of E. ninakohlyakimovae occurs within host endothelial cells (ECs) of the lacteal capillaries of the villi of the distal ileum resulting in the formation of macromeronts (up to 170 μm) within 10-12 days post-infection (p.i.) and releasing >120,000 merozoites I. The E. ninakohlyakimovae-macromeront formation within highly immunoreactive host endothelial cells (ECs) should rely on several regulatory processes to fulfill this massive replication. Here host EC-parasite interactions were investigated to determine the extent of modulation carried out by E. ninakohlyakimovae in primary caprine umbilical vein endothelial cells (CUVEC) during the first merogony. Gene transcription of the adhesion molecule E-selectin and the cytokine TNF-α were significantly enhanced in the first hours and days p.i. in E. ninakohlyakimovae-infected CUVEC. The activation of CUVEC was also demonstrated by enhanced chemokine CCL2 and cytokine GM-CSF gene transcription, whereas no differences of the eNOS gene transcription were observed in E. ninakohlyakimovae-infected CUVEC when compared to un-infected controls. The data presented here suggest that infection of caprine host ECs by E. ninakohlyakimovae results in EC activation associated with enhanced gene transcription encoding for pro-inflammatory as well as immunomodulatory molecules, which might be important for the defense against this intracellular parasite. PMID:25988828

  5. MicroRNA-146a-5p Negatively Regulates Pro-Inflammatory Cytokine Secretion and Cell Activation in Lipopolysaccharide Stimulated Human Hepatic Stellate Cells through Inhibition of Toll-Like Receptor 4 Signaling Pathways.

    PubMed

    Chen, Yuhan; Zeng, Zhaochong; Shen, Xiaoyun; Wu, Zhifeng; Dong, Yinying; Cheng, Jason Chia-Hsien

    2016-01-01

    Lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway is demonstrated to be involved in the hepatic fibrosis. MicroRNA (miR)-146a-5p is a key regulator of the innate immune response. The functional significance of miR-146a-5p during the LPS/TLR4 mediated hepatic fibrosis process remains unclear. In this study, we found that TLR4 and α-smooth muscle actin (α-SMA) were up-regulated and miR-146a-5p was down-regulated in human hepatic stellate cell (HSC) line LX2 after LPS stimulation. Overexpression of miR-146a-5p inhibited LPS induced pro-inflammatory cytokines secretion through down-regulating the expression levels of TLR-4, IL-1 receptor-associated kinase 1 (IRAK1), TNF receptor associated factor-6 (TRAF6) and phosphorylation of nuclear factor-kappa B (NF-κB). Knockdown of IRAK1 and TRAF6 also suppressed pro-inflammatory cytokine production by inhibiting NF-κB phosphorylation. In addition, miR-146a-5p mimic blocked LPS induced TRAF6 dependent c-Jun N-terminal kinase (JNK) and Smad2 activation as well as α-SMA production. Taken together, these results suggest that miR-146a-5p suppresses pro-inflammatory cytokine secretion and cell activation of HSC through inhibition of TLR4/NF-κB and TLR4/TRAF6/JNK pathway. PMID:27399683

  6. MicroRNA-146a-5p Negatively Regulates Pro-Inflammatory Cytokine Secretion and Cell Activation in Lipopolysaccharide Stimulated Human Hepatic Stellate Cells through Inhibition of Toll-Like Receptor 4 Signaling Pathways

    PubMed Central

    Chen, Yuhan; Zeng, Zhaochong; Shen, Xiaoyun; Wu, Zhifeng; Dong, Yinying; Cheng, Jason Chia-Hsien

    2016-01-01

    Lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway is demonstrated to be involved in the hepatic fibrosis. MicroRNA (miR)-146a-5p is a key regulator of the innate immune response. The functional significance of miR-146a-5p during the LPS/TLR4 mediated hepatic fibrosis process remains unclear. In this study, we found that TLR4 and α-smooth muscle actin (α-SMA) were up-regulated and miR-146a-5p was down-regulated in human hepatic stellate cell (HSC) line LX2 after LPS stimulation. Overexpression of miR-146a-5p inhibited LPS induced pro-inflammatory cytokines secretion through down-regulating the expression levels of TLR-4, IL-1 receptor-associated kinase 1 (IRAK1), TNF receptor associated factor-6 (TRAF6) and phosphorylation of nuclear factor-kappa B (NF-κB). Knockdown of IRAK1 and TRAF6 also suppressed pro-inflammatory cytokine production by inhibiting NF-κB phosphorylation. In addition, miR-146a-5p mimic blocked LPS induced TRAF6 dependent c-Jun N-terminal kinase (JNK) and Smad2 activation as well as α-SMA production. Taken together, these results suggest that miR-146a-5p suppresses pro-inflammatory cytokine secretion and cell activation of HSC through inhibition of TLR4/NF-κB and TLR4/TRAF6/JNK pathway. PMID:27399683

  7. Interactive roles of NPR1 gene-dosage and salt diets on cardiac angiotensin II, aldosterone and pro-inflammatory cytokines levels inmutantmice

    PubMed Central

    Zhao, Di; Das, Subhankar; Pandey, Kailash N.

    2015-01-01

    Objective The objective of the present study was to elucidate the interactive roles of guanylyl cyclase/natriuretic peptide receptor-A (NPRA) gene (Npr1) and salt diets on cardiac angiotensin II (ANG II), aldosterone and proinflammatory cytokines levels in Npr1 gene-targeted (1-copy, 2-copy, 3-copy, 4-copy) mice. Methods Npr1 genotypes included 1-copy gene-disrupted heterozygous (+/−), 2-copy wild-type (+/+), 3-copy gene-duplicated heterozygous (++/+) and 4-copy gene-duplicated homozygous (++/++) mice. Animals were fed low, normal and high-salt diets. Plasma and cardiac levels of ANG II, aldosterone and pro-inflammatory cytokines were determined. Results With a high-salt diet, cardiac ANG II levels were increased (+) in 1-copy mice (13.7 ± 2.8 fmol/mg protein, 111%) compared with 2-copy mice (6.5 ± 0.6), but decreased (−) in 4-copy (4.0 ± 0.5, 38%) mice. Cardiac aldosterone levels were increased (+) in 1-copy mice (80 ± 4 fmol/mg protein, 79%) compared with 2-copy mice (38 ± 3). Plasma tumour necrosis factor alpha was increased (+) in 1-copy mice (30.27 ± 2.32 pg/ml, 38%), compared with 2-copy mice (19.36 ± 2.49, 24%), but decreased (−) in 3-copy (11.59 ± 1.51, 12%) and 4-copy (7.13 ± 0.52, 22%) mice. Plasma interleukin (IL)-6 and IL-1α levels were also significantly increased (+) in 1-copy compared with 2-copy mice but decreased (−) in 3-copy and 4-copy mice. Conclusion These results demonstrate that a high-salt diet aggravates cardiac ANG II, aldosterone and proinflammatory cytokine levels in Npr1 gene-disrupted 1-copy mice, whereas, in Npr1 gene-duplicated (3-copy and 4-copy) mice, high salt did not render such elevation, suggesting the potential roles of Npr1 against salt loading. PMID:23188418

  8. IL-10 Inhibits the NF-κB and ERK/MAPK-Mediated Production of Pro-Inflammatory Mediators by Up-Regulation of SOCS-3 in Trypanosoma cruzi-Infected Cardiomyocytes

    PubMed Central

    Siffo, Sofía; Mirkin, Gerardo A.; Goren, Nora B.

    2013-01-01

    Trypanosoma cruzi (T. cruzi) infection produces an intense inflammatory response which is critical for the control of the evolution of Chagas’ disease. Interleukin (IL)-10 is one of the most important anti-inflammatory cytokines identified as modulator of the inflammatory reaction. This work shows that exogenous addition of IL-10 inhibited ERK1/2 and NF-κB activation and reduced inducible nitric oxide synthase (NOS2), metalloprotease (MMP) -9 and MMP-2 expression and activities, as well as tumour necrosis factor (TNF)-α and interleukin (IL)-6 expression, in T. cruzi-infected cardiomyocytes. We found that T. cruzi and IL-10 promote STAT3 phosphorylation and up-regulate the expression of suppressor of cytokine signalling (SOCS)-3 thereby preventing NF-κB nuclear translocation and ERK1/2 phosphorylation. Specific knockdown of SOCS-3 by small interfering RNA (siRNA) impeded the IL-10-mediated inhibition of NF-κB and ERK1/2 activation. As a result, the levels of studied pro-inflammatory mediators were restored in infected cardiomyocytes. Our study reports the first evidence that T. cruzi up- regulates SOCS-3 expression and highlights the relevance of IL-10 in the modulation of pro-inflammatory response of cardiomyocytes in Chagas’ disease. PMID:24260222

  9. Hypoxia Potentiates Palmitate-induced Pro-inflammatory Activation of Primary Human Macrophages.

    PubMed

    Snodgrass, Ryan G; Boß, Marcel; Zezina, Ekaterina; Weigert, Andreas; Dehne, Nathalie; Fleming, Ingrid; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Pro-inflammatory cytokines secreted by adipose tissue macrophages (ATMs) contribute to chronic low-grade inflammation and obesity-induced insulin resistance. Recent studies have shown that adipose tissue hypoxia promotes an inflammatory phenotype in ATMs. However, our understanding of how hypoxia modulates the response of ATMs to free fatty acids within obese adipose tissue is limited. We examined the effects of hypoxia (1% O2) on the pro-inflammatory responses of human monocyte-derived macrophages to the saturated fatty acid palmitate. Compared with normoxia, hypoxia significantly increased palmitate-induced mRNA expression and protein secretion of IL-6 and IL-1β. Although palmitate-induced endoplasmic reticulum stress and nuclear factor κB pathway activation were not enhanced by hypoxia, hypoxia increased the activation of JNK and p38 mitogen-activated protein kinase signaling in palmitate-treated cells. Inhibition of JNK blocked the hypoxic induction of pro-inflammatory cytokine expression, whereas knockdown of hypoxia-induced transcription factors HIF-1α and HIF-2α alone or in combination failed to reduce IL-6 and only modestly reduced IL-1β gene expression in palmitate-treated hypoxic macrophages. Enhanced pro-inflammatory cytokine production and JNK activity under hypoxia were prevented by inhibiting reactive oxygen species generation. In addition, silencing of dual-specificity phosphatase 16 increased normoxic levels of IL-6 and IL-1β and reduced the hypoxic potentiation in palmitate-treated macrophages. The secretome of hypoxic palmitate-treated macrophages promoted IL-6 and macrophage chemoattractant protein 1 expression in primary human adipocytes, which was sensitive to macrophage JNK inhibition. Our results reveal that the coexistence of hypoxia along with free fatty acids exacerbates macrophage-mediated inflammation. PMID:26578520

  10. Plasma infusions into porcine cerebral white matter induce early edema, oxidative stress, pro-inflammatory cytokine gene expression and DNA fragmentation: implications for white matter injury with increased blood-brain-barrier permeability.

    PubMed

    Wagner, Kenneth R; Dean, Christopher; Beiler, Shauna; Bryan, David W; Packard, Benjamin A; Smulian, A George; Linke, Michael J; de Courten-Myers, Gabrielle M

    2005-04-01

    Plasma infused into porcine cerebral white matter induces both acute interstitial and delayed vasogenic edema. Edematous white matter contains extracellular plasma proteins and rapidly induces oxidative stress as evidenced by increased protein carbonyl formation and heme oxygenase-1 induction. We tested the hypothesis that edematous white matter would also upregulate pro-inflammatory cytokine gene expression and develop DNA damage. We infused autologous plasma into the frontal hemispheric white matter of pentobarbital-anesthetized pigs. We monitored and controlled physiological variables and froze brains in situ at 1, 4 or 24 hrs. We determined edema volumes by computer-assisted morphometry. We measured white matter protein carbonyl formation by immunoblotting, cytokine gene expression by standard RT-PCR methods and DNA fragmentation by agarose gel electrophoresis. White matter edema developed acutely (1 hr) after plasma infusion and increased significantly in volume between 4 and 24 hrs. Protein carbonyl formation also occurred rapidly in edematous white matter with significant elevations (3 to 4-fold) already present at 1 hr. This increase remained through 24 hrs. Pro-inflammatory cytokine gene expression was also rapidly increased at 1 hr post-infusion. Evidence for DNA fragmentation began at 2 to 4 hrs, and a pattern indicative of both ongoing necrosis and apoptosis was robust by 24 hrs. Plasma protein accumulation in white matter induces acute edema development and a cascade of patho-chemical events including oxidative stress, pro-inflammatory cytokine gene expression and DNA damage. These results suggest that in diseases with increased blood-brain barrier (BBB) permeability or following intracerebral hemorrhage or traumatic brain injury, interstitial plasma can rapidly damage white matter. PMID:16181107

  11. A Methanol Extract of Adansonia digitata L. Leaves Inhibits Pro-Inflammatory iNOS Possibly via the Inhibition of NF-κB Activation

    PubMed Central

    Ayele, Yihunie; Kim, Jung-Ah; Park, Eunhee; Kim, Ye-Jung; Retta, Negussie; Dessie, Gulelat; Rhee, Sang-Ki; Koh, Kwangoh; Nam, Kung-Woo; Kim, Hee Seon

    2013-01-01

    This study examined the total polyphenol content of eight wild edible plants from Ethiopia and their effect on NO production in Raw264.7 cells. Owing to its relatively high polyphenol concentration and inhibition of NO production, the methanol extract of Adansonia digitata L. leaf (MEAD) was subjected to detailed evaluation of its antioxidant and anti-inflammatory effects. Antioxidant effects were assessed by measuring free-radical-scavenging activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and oxygen-radical-absorbance capacity (ORAC) assays, while anti-inflammatory effects were assessed by measuring inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In the ORAC assay, MEAD was 10.2 times more potent than vitamin C at eliminating peroxyl radicals. In DPPH assay, MEAD also showed a strong ROS scavenging effect. MEAD significantly inhibited iNOS activity (IC50=28.6 μg/ml) of LPS-stimulated Raw264.7 cells. We also investigated the relationship between iNOS expression and nuclear factor kappa B (NF-κB) activation. MEAD inhibited IκBα degradation and NF-κB translocation from the cytosol to the nucleus in LPS-induced RAW264.7 cells without significant cytotoxic effects, as confirmed by MTT assay. These results suggest that MEAD inhibits anti-inflammatory iNOS expression, which might be related to the elimination of peroxyl radicals and thus the inhibition of IκBα-mediated NF-κB signal transduction. PMID:24009873

  12. Prostamide F2α receptor antagonism combined with inhibition of FAAH may block the pro-inflammatory mediators formed following selective FAAH inhibition

    PubMed Central

    Ligresti, Alessia; Martos, Jose; Wang, Jenny; Guida, Francesca; Allarà, Marco; Palmieri, Vittoria; Luongo, Livio; Woodward, David; Di Marzo, Vincenzo

    2014-01-01

    Background and PurposeProstamides are lipid mediators formed by COX-2-catalysed oxidation of the endocannabinoid anandamide and eliciting effects often opposed to those caused by anandamide. Prostamides may be formed when hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) is physiologically, pathologically or pharmacologically decreased. Thus, therapeutic benefits of FAAH inhibitors might be attenuated by concomitant production of prostamide F2α. This loss of benefit might be minimized by compounds designed to selectively antagonize prostamide receptors and also inhibiting FAAH. Experimental ApproachInhibition of FAAH by a series of selective antagonists of prostamide receptors, including AGN 204396, AGN 211335 and AGN 211336, was assessed using rat, mouse and human FAAH in vitro, together with affinity for human recombinant CB1 and CB2 receptors. Effects in vivo were measured in a model of formalin-induced inflammatory pain in mice. Key ResultsThe prostamide F2α receptor antagonists were active against mouse and rat FAAH in the low μM range and behaved as non-competitive and plasma membrane-permeant inhibitors. AGN 211335, the most potent inhibitor of rat FAAH (IC50 = 1.2 μM), raised exogenous anandamide levels in intact cells and also bound to cannabinoid CB1 receptors. Both AGN 211335 and AGN 211336 (0.25–1 mg·kg−1, i.p.) inhibited the formalin-induced nociceptive response in mice. Conclusions and ImplicationsSynthetic compounds with indirect agonist activity at cannabinoid receptors and antagonist activity at prostamide receptors can be developed. Such compounds could be used as alternatives to selective FAAH inhibitors to prevent the possibility of prostamide F2α-induced inflammation and pain. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:24102214

  13. WIN-34B May Have Analgesic and Anti-Inflammatory Effects by Reducing the Production of Pro-Inflammatory Mediators in Cells via Inhibition of IκB Signaling Pathways

    PubMed Central

    Kim, Kyoung Soo; Choi, Hyun Mi; Yang, Hyung-In; Yoo, Myung Chul

    2012-01-01

    WIN-34B showed analgesic and anti-inflammatory effects in various animal models of pain and osteoarthritis. However, the molecular mechanism by which WIN-34B inhibits pain and inflammation in vivo remains to be elucidated. We investigated the molecular mechanisms of the actions of WIN-34B using various in vitro models using fibroblast-like synoviocytes from patients with rheumatoid arthritis (RA FLSs), RAW264.7 cells and peritoneal macrophages. WIN-34B inhibited the level of IL-6, PGE2, and MMP-13 in IL-1β-stimulated RA FLSs in a dose-dependent manner. The mRNA levels were also inhibited by WIN-34B. The level of PGE2, NO, IL-1β, and TNF-α were inhibited by WIN-34B at different concentrations in LPS-stimulated RAW264.7 cells. The production of NO and PGE2 was inhibited by WIN-34B in a dose-dependent manner in LPS-stimulated peritoneal macrophages. All of these effects were comparable to the positive control, celecoxib or indomethacin. IκB signaling pathways were inhibited by WIN-34B, and the migration of NF-κB into the nucleus was inhibited, which is consistent with the degradation of IκB-α. Taken together, the results suggest that WIN-34B has potential as a therapeutic drug to reduce pain and inflammation by inhibiting the production of pro-inflammatory mediators. PMID:24116274

  14. Houttuynia cordata Thunb inhibits the production of pro-inflammatory cytokines through inhibition of the NFκB signaling pathway in HMC-1 human mast cells.

    PubMed

    Lee, Hee Joe; Seo, Hye-Sook; Kim, Gyung-Jun; Jeon, Chan Yong; Park, Jong Hyeong; Jang, Bo-Hyoung; Park, Sun-Ju; Shin, Yong-Cheol; Ko, Seong-Gyu

    2013-09-01

    Houttuynia cordata Thunb (HCT) is widely used in oriental medicine as a remedy for inflammation. However, at present there is no explanation for the mechanism by which HCT affects the production of inflammatory cytokines. The current study aimed to determine the effect of an essence extracted from HCT on mast cell-mediated inflammatory responses. Inflammatory cytokine production induced by phorbol myristate acetate (PMA) plus a calcium ionophore, A23187, was measured in the human mast cell line, HMC-1, incubated with various concentrations of HCT. TNF-α, IL-6 and IL-8 secreted protein levels were measured using an ELISA assay. TNF-α, IL-6 and IL-8 mRNA levels were measured using RT-PCR analysis. Nuclear and cytoplasmic proteins were examined by western blot analysis. The NF-κB promoter activity was examined by luciferase assay. It was observed that HCT inhibited PMA plus A23187-induced TNF-α and IL-6 secretion and reduced the mRNA levels of TNF-α, IL-6 and IL-8. It was also noted that HCT suppressed the induction of NF-κB activity, inhibited nuclear translocation of NF-κB and blocked the phosphorylation of IκBα in stimulated HMC-1 cells. It was concluded that HCT is an inhibitor of NF-κB and cytokines blocking mast cell-mediated inflammatory responses. These results indicate that HCT may be used for the treatment of mast cell-derived allergic inflammatory diseases. PMID:23846481

  15. Neuroprotective effects of activated protein C on intrauterine inflammation-induced neonatal white matter injury are associated with the downregulation of fibrinogen-like protein 2/fibroleukin prothrombinase and the inhibition of pro-inflammatory cytokine expression

    PubMed Central

    JIN, SHENG-JUAN; LIU, YAN; DENG, SHI-HUA; LIAO, LI-HONG; LIN, TU-LIAN; NING, QIN; LUO, XIAO-PING

    2015-01-01

    neuroinflammation and the associated secondary WMI in the developing brain by inhibiting the expression of fgl2 and pro-inflammatory mediators, suggesting that APC may be a potential therapeutic approach for intrauterine inflammation-induced neonatal brain injury. PMID:25777531

  16. Effects of Acanthopanax senticosus Polysaccharide Supplementation on Growth Performance, Immunity, Blood Parameters and Expression of Pro-inflammatory Cytokines Genes in Challenged Weaned Piglets

    PubMed Central

    Han, Jie; Bian, Lianquan; Liu, Xianjun; Zhang, Fei; Zhang, Yiran; Yu, Ning

    2014-01-01

    To investigate the effect of dietary Acanthopanax senticosus polysaccharide (ASPS) on growth performance, immunity, blood parameters and mRNA expression of pro-inflammatory cytokines in immunologically challenged piglets, an experiment employing 2×2 factorial arrangement concerning dietary ASPS treatment (0 or 800 mg/kg) and immunological challenge (lipopolysaccharide [LPS] or saline injection) was conducted with 64 crossbred piglets (weaned at 28 d of age, average initial body weight of 7.25±0.21 kg) assigned to two dietary ASPS treatments with 8 replicates of 4 pigs each. Half of the piglets of per dietary treatment were injected with LPS or saline on d 14. Blood samples were obtained at 3 h after immunological injection on d 14 and piglets were slaughtered to obtain spleen samples on d 21. Dietary ASPS did not affect average daily gain (ADG) (p = 0.634), average daily feed intake (ADFI) (p = 0.655), and gain:feed (p = 0.814) prior to LPS challenge. After LPS challenge, for LPS-challenged pigs those fed ASPS had higher ADG and ADFI than the non-supplemented group (p<0.05), and an interaction between LPS×ASPS was observed on the two indices (p<0.05). Dietary ASPS improved lymphocyte proliferation among saline-injected and LPS-injected pigs (p<0.05). Interaction between LPS×ASPS was also revealed on lymphocyte proliferation (p<0.05). Circulatory concentration of IgG was influenced neither by ASPS (p = 0.803) or LPS (p = 0.692), nor their interaction (p = 0.289). Plasma concentration and spleen mRNA expression of interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-α were induced to increase (p<0.05) by LPS challenge, in contrast, these indices were decreased by dietary ASPS (p<0.05), and interactions were found on these cytokines (p<0.05). For LPS-challenged pigs, dietary ASPS also reduced the circulating concentration and spleen mRNA expression of IL-1β, IL-6 as well as TNF-α (p<0.05). The interaction between LPS×ASPS was also

  17. Phlorofucofuroeckol A suppresses expression of inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines via inhibition of nuclear factor-κB, c-Jun NH2-terminal kinases, and Akt in microglial cells.

    PubMed

    Kim, A-Reum; Lee, Min-Sup; Choi, Ji-Woong; Utsuki, Tadanobu; Kim, Jae-Il; Jang, Byeong-Churl; Kim, Hyeung-Rak

    2013-04-01

    Microglial activation has been implicated in many neurological disorders for its inflammatory and neurotrophic effects. In this study, we investigated the effects of phlorofucofuroeckol A isolated from Ecklonia stolonifera Okamura on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated microglia. Pre-treatment of phlorofucofuroeckol A attenuated the productions of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in LPS-stimulated microglia. Profoundly, phlorofucofuroeckol A treatment showed inactivation of nuclear factor-κB (NF-κB) by preventing the degradation of inhibitor κB-α and the nuclear translocation of p65 NF-κB subunit. Moreover, phlorofucofuroeckol A inhibited the activation of c-Jun NH2-terminal kinases (JNKs), p38 mitogen-activated protein kinase (MAPK), and Akt, but not that of extracellular signal-regulated kinase. These results indicate that phlorofucofuroeckol A inhibits the LPS-induced expression of inflammatory mediators through inactivation of NF-κB, JNKs, p38 MAPK, and Akt pathways. These findings suggest that phlorofucofuroeckol A can be considered as a nutraceutical candidate for the treatment of neuroinflammation in neurodegenerative diseases. PMID:22993079

  18. High glucose driven expression of pro-inflammatory cytokine and chemokine genes in lymphocytes: molecular mechanisms of IL-17 family gene expression.

    PubMed

    Kumar, Prabhakaran; Natarajan, Kartiga; Shanmugam, Narkunaraja

    2014-03-01

    High glucose is an independent risk factor that alters the expression pattern of cytokines/chemokine leading to leukocyte activation in diabetes. Fluctuation of cytokine milieu in lymphocytes may lead to differentiation into a particular subset. Our objectives were to profile high glucose induced inflammatory gene expression in lymphocytes, to examine in vivo relevance in diabetes and to identify the key transcription factors and signaling pathways involved. Cytokine gene arrays and T-helper (Th1/Th2/Th17) cytokine profiler RT(2)-PCR arrays used for cytokine expression profiling followed by validation using Real Time-qPCR and relative RT-PCR in Jurkat T-lymphocytes, peripheral blood lymphocytes (PBLCs) from normal and diabetes subjects. Luciferase reporter plasmid, pharmacological inhibitors and mutant plasmids were used for promoter activation and signaling pathway studies. High glucose induced gene profiling in Jurkat T-lymphocytes showed significantly increased expression of 64 proinflammatory genes including IL-6 and IL-17A and most of these genes were Nuclear Factor (NF)-κB and AP-1 regulated. RT(2)-PCR array results suggested the transcriptional activation of IL-17 and its downstream signaling in Jurkat T-lymphocytes upon high glucose treatment. Candidate genes like Interleukin (IL)-17A, IL-17E IL-17F and IL-6 were up-regulated in both Jurkat T-lymphocytes and PBLCs from normal and diabetes subjects. This high glucose induced cytokine expression was due to promoter activation. Pharmacology inhibitor studies showed the involvement of NF-κB, protein kinase-C, p38 Mitogen activated protein kinase; Janus activated kinase-signal transducer and activator of transcription and extracellular regulated kinase signaling pathways. Further, high glucose treatment increased the adhesion of lymphocytes to human umbilical vein endothelial cells. These results show that IL-17 cytokines are induced by high glucose via key signaling pathways leading to lymphocyte activation

  19. Resveratrol inhibits enterovirus 71 replication and pro-inflammatory cytokine secretion in rhabdosarcoma cells through blocking IKKs/NF-κB signaling pathway.

    PubMed

    Zhang, Li; Li, Yuanyuan; Gu, Zhiwen; Wang, Yuyue; Shi, Mei; Ji, Yun; Sun, Jing; Xu, Xiaopeng; Zhang, Lirong; Jiang, Jingtin; Shi, Weifeng

    2015-01-01

    Polydatin and resveratrol, as major active components in Polygonum cuspidatum, have anti-inflammatory, antioxidant and antitumor functions. However, the effect and mechanism of polydatin and resveratrol on enterovirus 71 (EV71) have not been reported. In this study, resveratrol revealed strong antiviral activity on EV71, while polydatin had weak effect. Neither polydatin nor resveratrol exhibited influence on viral attachment. Resveratrol could effectively inhibit the synthesis of EV71/VP1 and the phosphorylation of IKKα, IKKβ, IKKγ, IKBα, NF-κB p50 and NF-κB p65, respectively. Meanwhile, the remarkably increased secretion of IL-6 and TNF-α in EV71-infected rhabdosarcoma (RD) cells could be blocked by resveratrol. These results demonstrated that resveratrol inhibited EV71 replication and cytokine secretion in EV71-infected RD cells through blocking IKKs/NF-κB signaling pathway. Thus, resveratrol may have potent antiviral effect on EV71 infection. PMID:25692777

  20. Resveratrol Inhibits Enterovirus 71 Replication and Pro-Inflammatory Cytokine Secretion in Rhabdosarcoma Cells through Blocking IKKs/NF-κB Signaling Pathway

    PubMed Central

    Zhang, Li; Li, Yuanyuan; Gu, Zhiwen; Wang, Yuyue; Shi, Mei; Ji, Yun; Sun, Jing; Xu, Xiaopeng; Zhang, Lirong; Jiang, Jingtin; Shi, Weifeng

    2015-01-01

    Polydatin and resveratrol, as major active components in Polygonum cuspidatum, have anti-inflammatory, antioxidant and antitumor functions. However, the effect and mechanism of polydatin and resveratrol on enterovirus 71 (EV71) have not been reported. In this study, resveratrol revealed strong antiviral activity on EV71, while polydatin had weak effect. Neither polydatin nor resveratrol exhibited influence on viral attachment. Resveratrol could effectively inhibit the synthesis of EV71/VP1 and the phosphorylation of IKKα, IKKβ, IKKγ, IKBα, NF-κB p50 and NF-κB p65, respectively. Meanwhile, the remarkably increased secretion of IL-6 and TNF-α in EV71-infected rhabdosarcoma (RD) cells could be blocked by resveratrol. These results demonstrated that resveratrol inhibited EV71 replication and cytokine secretion in EV71-infected RD cells through blocking IKKs/NF-κB signaling pathway. Thus, resveratrol may have potent antiviral effect on EV71 infection. PMID:25692777

  1. IL-17A signaling in colonic epithelial cells inhibits pro-inflammatory cytokine production by enhancing the activity of ERK and PI3K.

    PubMed

    Guo, Xiaoqin; Jiang, Xingwei; Xiao, Yan; Zhou, Tingting; Guo, Yueling; Wang, Renxi; Zhao, Zhi; Xiao, He; Hou, Chunmei; Ma, Lingyun; Lin, Yanhua; Lang, Xiaoling; Feng, Jiannan; Chen, Guojiang; Shen, Beifen; Han, Gencheng; Li, Yan

    2014-01-01

    Our previous data suggested that IL-17A contributes to the inhibition of Th1 cell function in the gut. However, the underlying mechanisms remain unclear. Here we demonstrate that IL-17A signaling in colonic epithelial cells (CECs) increases TNF-α-induced PI3K-AKT and ERK phosphorylation and inhibits TNF-α induced expression of IL-12P35 and of a Th1 cell chemokine, CXCL11 at mRNA level. In a co-culture system using HT-29 cells and PBMCs, IL-17A inhibited TNF-α-induced IL-12P35 expression by HT-29 cells and led to decreased expression of IFN-γ and T-bet by PBMCs. Finally, adoptive transfer of CECs from mice with Crohn's Disease (CD) led to an enhanced Th1 cell response and exacerbated colitis in CD mouse recipients. The pathogenic effect of CECs derived from CD mice was reversed by co-administration of recombinant IL-17A. Our data demonstrate a new IL-17A-mediated regulatory mechanism in CD. A better understanding of this pathway might shed new light on the pathogenesis of CD. PMID:24586980

  2. Mycophenolic acid inhibits inosine 5'-monophosphate dehydrogenase and suppresses production of pro-inflammatory cytokines, nitric oxide, and LDH in macrophages.

    PubMed

    Jonsson, Charlotte A; Carlsten, Hans

    2002-01-01

    Mycophenolic acid (MPA) inhibits reversibly inosine 5(')-monophosphate dehydrogenase, an enzyme involved in the de novo synthesis of guanine nucleotides. Previously, mycophenolate mofetil (MMF), the pro-drug of MPA, was shown to exert beneficial effects on the systemic lupus erythematosus (SLE)-like disease in MRLlpr/lpr mice. In this study MPA's immunomodulating effects in vitro on the murine macrophage cell line IC-21 were investigated. The cells were exposed to MPA together with lipopolysaccharide and IFN-gamma. Cytokine, NO(2)(-), and lactate dehydrogenase levels in supernatants and cell lysates were analysed as well as the proliferation of IC-21 cells. MPA exposure reduced the total levels of all molecules investigated and suppressed the proliferation. All MPA-induced effects were reversed by the addition of guanosine to the cultures. Since macrophages play a role in lupus nephritis, our results indicate that modulation of macrophages may be involved in the ameliorating effects of MMF in SLE. PMID:12381354

  3. Cetuximab Reconstitutes Pro-Inflammatory Cytokine Secretions and Tumor-Infiltrating Capabilities of sMICA-Inhibited NK Cells in HNSCC Tumor Spheroids.

    PubMed

    Klöss, Stephan; Chambron, Nicole; Gardlowski, Tanja; Weil, Sandra; Koch, Joachim; Esser, Ruth; Pogge von Strandmann, Elke; Morgan, Michael A; Arseniev, Lubomir; Seitz, Oliver; Köhl, Ulrike

    2015-01-01

    Immunosuppressive factors, such as soluble major histocompatibility complex class I chain-related peptide A (sMICA) and transforming growth factor beta 1 (TGF-β1), are involved in tumor immune escape mechanisms (TIEMs) exhibited by head and neck squamous cell carcinomas (HNSCCs) and may represent opportunities for therapeutic intervention. In order to overcome TIEMs, we investigated the antibody-dependent cellular cytotoxicity (ADCC), cytokine release and retargeted tumor infiltration of sMICA-inhibited patient NK cells expressing Fcγ receptor IIIa (FcγRIIIa, CD16a) in the presence of cetuximab, an anti-epidermal growth factor receptor (HER1) monoclonal antibody (mAb). Compared to healthy controls, relapsed HNSCC patients (n = 5), not currently in treatment revealed decreased levels of circulating regulatory NK cell subsets in relation to increased cytotoxic NK cell subpopulations. Elevated sMICA and TGF-β1 plasma levels correlated with diminished TNFα and IFN-γ release and decreased NKG2D (natural killer group 2 member D)-dependent killing of HNSCC cells by NK cells. Incubation of IL-2-activated patient NK cells with patient plasma containing elevated sMICA or sMICA analogs (shed MICA and recombinant MICA) significantly impaired NKG2D-mediated killing by down-regulation of NKG2D surface expression. Of note, CD16 surface expression levels, pro-apoptotic and activation markers, and viability of patient and healthy donor NK cell subpopulations were not affected by this treatment. Accordingly, cetuximab restored killing activity of sMICA-inhibited patient NK cells against cetuximab-coated primary HNSCC cells via ADCC in a dose-dependent manner. Rapid reconstitution of anti-tumor recognition and enhanced tumor infiltration of treated NK cells was monitored by 24 h co-incubation of HNSCC tumor spheroids with cetuximab (1 μg/ml) and was characterized by increased IFN-γ and TNFα secretion. This data show that the impaired NK cell-dependent tumor

  4. Cetuximab Reconstitutes Pro-Inflammatory Cytokine Secretions and Tumor-Infiltrating Capabilities of sMICA-Inhibited NK Cells in HNSCC Tumor Spheroids

    PubMed Central

    Klöss, Stephan; Chambron, Nicole; Gardlowski, Tanja; Weil, Sandra; Koch, Joachim; Esser, Ruth; Pogge von Strandmann, Elke; Morgan, Michael A.; Arseniev, Lubomir; Seitz, Oliver; Köhl, Ulrike

    2015-01-01

    Immunosuppressive factors, such as soluble major histocompatibility complex class I chain-related peptide A (sMICA) and transforming growth factor beta 1 (TGF-β1), are involved in tumor immune escape mechanisms (TIEMs) exhibited by head and neck squamous cell carcinomas (HNSCCs) and may represent opportunities for therapeutic intervention. In order to overcome TIEMs, we investigated the antibody-dependent cellular cytotoxicity (ADCC), cytokine release and retargeted tumor infiltration of sMICA-inhibited patient NK cells expressing Fcγ receptor IIIa (FcγRIIIa, CD16a) in the presence of cetuximab, an anti-epidermal growth factor receptor (HER1) monoclonal antibody (mAb). Compared to healthy controls, relapsed HNSCC patients (n = 5), not currently in treatment revealed decreased levels of circulating regulatory NK cell subsets in relation to increased cytotoxic NK cell subpopulations. Elevated sMICA and TGF-β1 plasma levels correlated with diminished TNFα and IFN-γ release and decreased NKG2D (natural killer group 2 member D)-dependent killing of HNSCC cells by NK cells. Incubation of IL-2-activated patient NK cells with patient plasma containing elevated sMICA or sMICA analogs (shed MICA and recombinant MICA) significantly impaired NKG2D-mediated killing by down-regulation of NKG2D surface expression. Of note, CD16 surface expression levels, pro-apoptotic and activation markers, and viability of patient and healthy donor NK cell subpopulations were not affected by this treatment. Accordingly, cetuximab restored killing activity of sMICA-inhibited patient NK cells against cetuximab-coated primary HNSCC cells via ADCC in a dose-dependent manner. Rapid reconstitution of anti-tumor recognition and enhanced tumor infiltration of treated NK cells was monitored by 24 h co-incubation of HNSCC tumor spheroids with cetuximab (1 μg/ml) and was characterized by increased IFN-γ and TNFα secretion. This data show that the impaired NK cell-dependent tumor

  5. 8-Oxoguanine DNA glycosylase-1 augments pro-inflammatory gene expression by facilitating the recruitment of site-specific transcription factors

    PubMed Central

    Ba, Xueqing; Bacsi, Attila; Luo, Jixian; Aguilera-Aguirre, Leopoldo; Zeng, Xianlu; Radak, Zsolt; Brasier, Allan R; Boldogh, Istvan

    2014-01-01

    Among the insidious DNA base lesions, 8-oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant, a lesion that arises through the attack by reactive oxygen species on guanine, especially when located in cis-regulatory elements. 8-oxoG is repaired by the 8-oxoguanine glycosylase 1 (OGG1)-initiated DNA base excision repair (BER) pathway. Here we investigated whether 8-oxoG repair by OGG1 in promoter regions is compatible with a prompt gene expression and a host innate immune response. For this purpose, we utilized a mouse model of airway inflammation, supplemented with cell cultures, chromatin immunoprecipitation, siRNA knockdown, real-time PCR, Comet and reporter transcription assays. Our data show that exposure of cells to tumor necrosis factor alpha (TNF-α) altered cellular redox, increased the 8-oxoG level in DNA, recruited OGG1 to promoter sequences and transiently inhibited BER of 8-oxoG. Promoter-associated OGG1 then enhanced NF-êB/RelA binding to cis-elements and facilitated recruitment of Specificity Protein 1 (SP1), transcription initiation factor II-D (TFIID), and phospho-RNA polymerase II, resulting in the rapid expression of chemokines/cytokines and inflammatory cell accumulation in mouse airways. siRNA depletion of OGG1 or prevention of guanine oxidation significantly decreased TNF-α-induced inflammatory responses. Together, these results show that non-productive binding of OGG1 to 8-oxoG in promoter sequences could be an epigenetic mechanism to modulate gene expression for a prompt innate immune response. PMID:24489103

  6. Differential effect of immune cells on non-pathogenic Gram-negative bacteria-induced nuclear factor-κB activation and pro-inflammatory gene expression in intestinal epithelial cells

    PubMed Central

    Haller, D; Holt, L; Parlesak, A; Zanga, J; Bäuerlein, A; Sartor, R B; Jobin, C

    2004-01-01

    We have previously shown that non-pathogenic Gram negative bacteria induce RelA phosphorylation, nuclear factor (NF)-κB transcriptional activity and pro-inflammatory gene expression in intestinal epithelial cells (IEC) in vivo and in vitro. In this study, we investigated the molecular mechanism of immune-epithelial cell cross-talk on Gram-negative enteric bacteria-induced NF-κB signalling and pro-inflammatory gene expression in IEC using HT-29/MTX as well as CaCO-2 transwell cultures Interestingly, while differentiated HT-29/MTX cells are unresponsive to non-pathogenic Gram negative bacterial stimulation, interleukin-8 (IL-8) mRNA accumulation is strongly induced in Escherichia coli- but not Bacteroides vulgatus-stimulated IEC cocultured with peripheral blood (PBMC) and lamina propria mononuclear cells (LPMC). The presence of PBMC triggered both E. coli- and B. vulgatus-induced mRNA expression of the Toll-like receptor-4 accessory protein MD-2 as well as endogenous IκBα phosphorylation, demonstrating similar capabilities of these bacteria to induce proximal NF-κB signalling. However, B. vulgatus failed to trigger IκBα degradation and NF-κB transcriptional activity in the presence of PBMC. Interestingly, B. vulgatus- and E. coli-derived lipopolysaccharide-induced similar IL-8 mRNA expression in epithelial cells after basolateral stimulation of HT-29/PBMC cocultures. Although luminal enteric bacteria have adjuvant and antigenic properties in chronic intestinal inflammation, PBMC from patients with active ulcerative colitis and Crohn's disease differentially trigger epithelial cell activation in response to E. coli and E. coli-derived LPS. In conclusion, this study provides evidence for a differential regulation of non-pathogenic Gram-negative bacteria-induced NF-κB signalling and IL-8 gene expression in IEC cocultured with immune cells and suggests the presence of mechanisms that assure hyporesponsiveness of the intestinal epithelium to certain commensally

  7. Dexmedetomidine Modulates Histamine-induced Ca2+ Signaling and Pro-inflammatory Cytokine Expression

    PubMed Central

    Yang, Dongki

    2015-01-01

    Dexmedetomidine is a sedative and analgesic agent that exerts its effects by selectively agonizing α2 adrenoceptor. Histamine is a pathophysiological amine that activates G protein-coupled receptors, to induce Ca2+ release and subsequent mediate or progress inflammation. Dexmedetomidine has been reported to exert inhibitory effect on inflammation both in vitro and in vivo studies. However, it is unclear that dexmedetomidine modulates histamine-induced signaling and pro-inflammatory cytokine expression. This study was carried out to assess how dexmedetomidine modulates histamine-induced Ca2+ signaling and regulates the expression of pro-inflammatory cytokine genes encoding interleukin (IL)-6 and -8. To elucidate the regulatory role of dexmedetomidine on histamine signaling, HeLa cells and human salivary gland cells which are endogenously expressed histamine 1 receptor were used. Dexmedetomidine itself did not trigger Ca2+ peak or increase in the presence or absence of external Ca2+. When cells were stimulated with histamine after pretreatment with various concentrations of dexmedetomidine, we observed inhibited histamine-induced [Ca2+]i signal in both cell types. Histamine stimulated IL-6 mRNA expression not IL-8 mRNA within 2 hrs, however this effect was attenuated by dexmedetomidine. Collectively, these findings suggest that dexmedetomidine modulates histamine-induced Ca2+ signaling and IL-6 expression and will be useful for understanding the antagonistic properties of dexmedetomidine on histamine-induced signaling beyond its sedative effect. PMID:26330753

  8. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    SciTech Connect

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  9. Gene Expression Profiling of Human Vaginal Cells In Vitro Discriminates Compounds with Pro-Inflammatory and Mucosa-Altering Properties: Novel Biomarkers for Preclinical Testing of HIV Microbicide Candidates

    PubMed Central

    Zalenskaya, Irina A.; Joseph, Theresa; Bavarva, Jasmin; Yousefieh, Nazita; Jackson, Suzanne S.; Fashemi, Titilayo; Yamamoto, Hidemi S.; Settlage, Robert; Fichorova, Raina N.; Doncel, Gustavo F.

    2015-01-01

    Background Inflammation and immune activation of the cervicovaginal mucosa are considered factors that increase susceptibility to HIV infection. Therefore, it is essential to screen candidate anti-HIV microbicides for potential mucosal immunomodulatory/inflammatory effects prior to further clinical development. The goal of this study was to develop an in vitro method for preclinical evaluation of the inflammatory potential of new candidate microbicides using a microarray gene expression profiling strategy. Methods To this end, we compared transcriptomes of human vaginal cells (Vk2/E6E7) treated with well-characterized pro-inflammatory (PIC) and non-inflammatory (NIC) compounds. PICs included compounds with different mechanisms of action. Gene expression was analyzed using Affymetrix U133 Plus 2 arrays. Data processing was performed using GeneSpring 11.5 (Agilent Technologies, Santa Clara, CA). Results Microarraray comparative analysis allowed us to generate a panel of 20 genes that were consistently deregulated by PICs compared to NICs, thus distinguishing between these two groups. Functional analysis mapped 14 of these genes to immune and inflammatory responses. This was confirmed by the fact that PICs induced NFkB pathway activation in Vk2 cells. By testing microbicide candidates previously characterized in clinical trials we demonstrated that the selected PIC-associated genes properly identified compounds with mucosa-altering effects. The discriminatory power of these genes was further demonstrated after culturing vaginal cells with vaginal bacteria. Prevotella bivia, prevalent bacteria in the disturbed microbiota of bacterial vaginosis, induced strong upregulation of seven selected PIC-associated genes, while a commensal Lactobacillus gasseri associated to vaginal health did not cause any changes. Conclusions In vitro evaluation of the immunoinflammatory potential of microbicides using the PIC-associated genes defined in this study could help in the initial

  10. Rice Bran Protein Hydrolysates Improve Insulin Resistance and Decrease Pro-inflammatory Cytokine Gene Expression in Rats Fed a High Carbohydrate-High Fat Diet

    PubMed Central

    Boonloh, Kampeebhorn; Kukongviriyapan, Veerapol; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Thawornchinsombut, Supawan; Pannangpetch, Patchareewan

    2015-01-01

    A high carbohydrate-high fat (HCHF) diet causes insulin resistance (IR) and metabolic syndrome (MS). Rice bran has been demonstrated to have anti-dyslipidemic and anti-atherogenic properties in an obese mouse model. In the present study, we investigated the beneficial effects of rice bran protein hydrolysates (RBP) in HCHF-induced MS rats. After 12 weeks on this diet, the HCHF-fed group was divided into four subgroups, which were orally administered RBP 100 or 500 mg/kg, pioglitazone 10 mg/kg, or tap water for a further 6 weeks. Compared with normal diet control group, the MS rats had elevated levels of blood glucose, lipid, insulin, and HOMA-IR. Treatment with RBP significantly alleviated all those changes and restored insulin sensitivity. Additionally, RBP treatment increased adiponectin and suppressed leptin levels. Expression of Ppar-γ mRNA in adipose tissues was significantly increased whereas expression of lipogenic genes Srebf1 and Fasn was significantly decreased. Levels of mRNA of proinflammatory cytokines, Il-6, Tnf-α, Nos-2 and Mcp-1 were significantly decreased. In conclusion, the present findings support the consumption of RBP as a functional food to improve insulin resistance and to prevent the development of metabolic syndrome. PMID:26247962

  11. Rice Bran Protein Hydrolysates Improve Insulin Resistance and Decrease Pro-inflammatory Cytokine Gene Expression in Rats Fed a High Carbohydrate-High Fat Diet.

    PubMed

    Boonloh, Kampeebhorn; Kukongviriyapan, Veerapol; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Thawornchinsombut, Supawan; Pannangpetch, Patchareewan

    2015-08-01

    A high carbohydrate-high fat (HCHF) diet causes insulin resistance (IR) and metabolic syndrome (MS). Rice bran has been demonstrated to have anti-dyslipidemic and anti-atherogenic properties in an obese mouse model. In the present study, we investigated the beneficial effects of rice bran protein hydrolysates (RBP) in HCHF-induced MS rats. After 12 weeks on this diet, the HCHF-fed group was divided into four subgroups, which were orally administered RBP 100 or 500 mg/kg, pioglitazone 10 mg/kg, or tap water for a further 6 weeks. Compared with normal diet control group, the MS rats had elevated levels of blood glucose, lipid, insulin, and HOMA-IR. Treatment with RBP significantly alleviated all those changes and restored insulin sensitivity. Additionally, RBP treatment increased adiponectin and suppressed leptin levels. Expression of Ppar-γ mRNA in adipose tissues was significantly increased whereas expression of lipogenic genes Srebf1 and Fasn was significantly decreased. Levels of mRNA of proinflammatory cytokines, Il-6, Tnf-α, Nos-2 and Mcp-1 were significantly decreased. In conclusion, the present findings support the consumption of RBP as a functional food to improve insulin resistance and to prevent the development of metabolic syndrome. PMID:26247962

  12. TNF-α-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells

    PubMed Central

    2009-01-01

    Background Phosphatidylcholine (PC) is a major lipid of the gastrointestinal mucus layer. We recently showed that mucus from patients suffering from ulcerative colitis has low levels of PC. Clinical studies reveal that the therapeutic addition of PC to the colonic mucus using slow release preparations is beneficial. The positive role of PC in this disease is still unclear; however, we have recently shown that PC has an intrinsic anti-inflammatory property. It could be demonstrated that the exogenous application of PC inhibits membrane-dependent actin assembly and TNF-α-induced nuclear NF-κB activation. We investigate here in more detail the hypothesis that the exogenous application of PC has anti-inflammatory properties. Methods PC species with different fatty acid side chains were applied to differentiated and non-differentiated Caco-2 cells treated with TNF-α to induce a pro-inflammatory response. We analysed TNF-α-induced NF-κB-activation via the transient expression of a NF-κB-luciferase reporter system. Pro-inflammatory gene transcription was detected with the help of a quantitative real time (RT)-PCR analysis. We assessed the binding of TNF-α to its receptor by FACS and analysed lipid rafts by isolating detergent resistant membranes (DRMs). Results The exogenous addition of all PC species tested significantly inhibited TNF-α-induced pro-inflammatory signalling. The expression levels of IL-8, ICAM-1, IP-10, MCP-1, TNF-α and MMP-1 were significantly reduced after PC pre-treatment for at least two hours. The effect was comparable to the inhibition of NF-kB by the NF-kB inhibitor SN 50 and was not due to a reduced binding of TNF-α to its receptor or a decreased surface expression of TNF-α receptors. PC was also effective when applied to the apical side of polarised Caco-2 cultures if cells were stimulated from the basolateral side. PC treatment changed the compartmentation of the TNF-α-receptors 1 and 2 to DRMs. Conclusion PC induces a prolonged

  13. Early growth response protein 1 (EGR1) regulates pro-inflammatory gene expression in response to palmitate and TNF alpha in human placenta cells and is induced in obese placenta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal obesity has been hypothesized to induce a pro-inflammatory response in the placenta. However, the specific factors contributing to this pro-infalmmatory response are yet to be determined. Our objective was to examine the effects of palmitic acid (PA), tumor necrosis factor alpha (TNF alph...

  14. Recombinant bovine respiratory syncytial virus with deletion of the SH gene induces increased apoptosis and pro-inflammatory cytokines in vitro, and is attenuated and induces protective immunity in calves

    PubMed Central

    Wyld, Sara; Valarcher, Jean-Francois; Guzman, Efrain; Thom, Michelle; Widdison, Stephanie; Buchholz, Ursula J.

    2014-01-01

    Bovine respiratory syncytial virus (BRSV) causes inflammation and obstruction of the small airways, leading to severe respiratory disease in young calves. The virus is closely related to human (H)RSV, a major cause of bronchiolitis and pneumonia in young children. The ability to manipulate the genome of RSV has provided opportunities for the development of stable, live attenuated RSV vaccines. The role of the SH protein in the pathogenesis of BRSV was evaluated in vitro and in vivo using a recombinant (r)BRSV in which the SH gene had been deleted. Infection of bovine epithelial cells and monocytes with rBRSVΔSH, in vitro, resulted in an increase in apoptosis, and higher levels of TNF-α and IL-1β compared with cells infected with parental, wild-type (WT) rBRSV. Although replication of rBRSVΔSH and WT rBRSV, in vitro, were similar, the replication of rBRSVΔSH was moderately reduced in the lower, but not the upper, respiratory tract of experimentally infected calves. Despite the greater ability of rBRSVΔSH to induce pro-inflammatory cytokines, in vitro, the pulmonary inflammatory response in rBRSVΔSH-infected calves was significantly reduced compared with that in calves inoculated with WT rBRSV, 6 days previously. Virus lacking SH appeared to be as immunogenic and effective in inducing resistance to virulent virus challenge, 6 months later, as the parental rBRSV. These findings suggest that rBRSVΔSH may be an ideal live attenuated virus vaccine candidate, combining safety with a high level of immunogenicity. PMID:24700100

  15. Nicotinic Acetylcholine Receptors Modulate Bone Marrow-Derived Pro-Inflammatory Monocyte Production and Survival

    PubMed Central

    St-Pierre, Stéphanie; Jiang, Wei; Roy, Patrick; Champigny, Camille; LeBlanc, Éric; Morley, Barbara J.; Hao, Junwei; Simard, Alain R.

    2016-01-01

    It is increasingly clear that nicotinic acetylcholine receptors (nAChRs) are involved in immune regulation, and that their activation can protect against inflammatory diseases. Previous data have shown that nicotine diminishes the numbers of peripheral monocytes and macrophages, especially those of the pro-inflammatory phenotype. The goal of the present study was to determine if nicotine modulates the production of bone marrow -derived monocytes/macrophages. In this study, we first found that murine bone marrow cells express multiple nAChR subunits, and that the α7 and α9 nAChRs most predominant subtypes found in immune cells and their precursors. Using primary cultures of murine bone marrow cells, we then determined the effect of nicotine on monocyte colony-stimulating factor and interferon gamma (IFNγ)-induced monocyte production. We found that nicotine lowered the overall number of monocytes, and more specifically, inhibited the IFNγ-induced increase in pro-inflammatory monocytes by reducing cell proliferation and viability. These data suggested that nicotine diminishes the ratio of pro-inflammatory versus anti-inflammatory monocyte produced in the bone marrow. We thus confirmed this hypothesis by measuring cytokine expression, where we found that nicotine inhibited the production of the pro-inflammatory cytokines TNFα, IL-1β and IL-12, while stimulating the secretion of IL-10, an anti-inflammatory cytokine. Finally, nicotine also reduced the number of pro-inflammatory monocytes in the bone marrow of LPS-challenged mice. Overall, our data demonstrate that both α7 and α9 nAChRs are involved in the regulation of pro-inflammatory M1 monocyte numbers. PMID:26925951

  16. Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression.

    PubMed

    Meiser, Johannes; Krämer, Lisa; Sapcariu, Sean C; Battello, Nadia; Ghelfi, Jenny; D'Herouel, Aymeric Fouquier; Skupin, Alexander; Hiller, Karsten

    2016-02-19

    Upon stimulation with Th1 cytokines or bacterial lipopolysaccharides, resting macrophages shift their phenotype toward a pro-inflammatory state as part of the innate immune response. LPS-activated macrophages undergo profound metabolic changes to adapt to these new physiological requirements. One key step to mediate this metabolic adaptation is the stabilization of HIF1α, which leads to increased glycolysis and lactate release, as well as decreased oxygen consumption. HIF1 abundance can result in the induction of the gene encoding pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase (PDH) via phosphorylation. Therefore, it has been speculated that pyruvate oxidation through PDH is decreased in pro-inflammatory macrophages. However, to answer this open question, an in-depth analysis of this metabolic branching point was so far lacking. In this work, we applied stable isotope-assisted metabolomics techniques and demonstrate that pyruvate oxidation is maintained in mature pro-inflammatory macrophages. Glucose-derived pyruvate is oxidized via PDH to generate citrate in the mitochondria. Citrate is used for the synthesis of the antimicrobial metabolite itaconate and for lipogenesis. An increased demand for these metabolites decreases citrate oxidation through the tricarboxylic acid cycle, whereas increased glutamine uptake serves to replenish the TCA cycle. Furthermore, we found that the PDH flux is maintained by unchanged PDK1 abundance, despite the presence of HIF1. By pharmacological intervention, we demonstrate that the PDH flux is an important node for M(LPS) macrophage activation. Therefore, PDH represents a metabolic intervention point that might become a research target for translational medicine to treat chronic inflammatory diseases. PMID:26679997

  17. Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression*

    PubMed Central

    Meiser, Johannes; Krämer, Lisa; Sapcariu, Sean C.; Battello, Nadia; Ghelfi, Jenny; D'Herouel, Aymeric Fouquier; Skupin, Alexander; Hiller, Karsten

    2016-01-01

    Upon stimulation with Th1 cytokines or bacterial lipopolysaccharides, resting macrophages shift their phenotype toward a pro-inflammatory state as part of the innate immune response. LPS-activated macrophages undergo profound metabolic changes to adapt to these new physiological requirements. One key step to mediate this metabolic adaptation is the stabilization of HIF1α, which leads to increased glycolysis and lactate release, as well as decreased oxygen consumption. HIF1 abundance can result in the induction of the gene encoding pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase (PDH) via phosphorylation. Therefore, it has been speculated that pyruvate oxidation through PDH is decreased in pro-inflammatory macrophages. However, to answer this open question, an in-depth analysis of this metabolic branching point was so far lacking. In this work, we applied stable isotope-assisted metabolomics techniques and demonstrate that pyruvate oxidation is maintained in mature pro-inflammatory macrophages. Glucose-derived pyruvate is oxidized via PDH to generate citrate in the mitochondria. Citrate is used for the synthesis of the antimicrobial metabolite itaconate and for lipogenesis. An increased demand for these metabolites decreases citrate oxidation through the tricarboxylic acid cycle, whereas increased glutamine uptake serves to replenish the TCA cycle. Furthermore, we found that the PDH flux is maintained by unchanged PDK1 abundance, despite the presence of HIF1. By pharmacological intervention, we demonstrate that the PDH flux is an important node for M(LPS) macrophage activation. Therefore, PDH represents a metabolic intervention point that might become a research target for translational medicine to treat chronic inflammatory diseases. PMID:26679997

  18. A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway

    PubMed Central

    Zhang, Qiang; Yang, Yujie; Yan, Shuxian; Liu, Jiantao; Xu, Zhongmin; Yu, Junping; Song, Yajing; Zhang, Anding; Jin, Meilin

    2015-01-01

    Streptococcus suis 2 is an important swine pathogen and an emergent zoonotic pathogen. Excessive inflammation caused by S. suis is responsible for the high levels of early mortality observed in septic shock-like syndrome cases. However, the mechanisms through which S. suis 2 (SS2) causes excessive inflammation remain unclear. Thus, this study aimed to identify novel pro-inflammatory mediators that play important roles in the development of therapies against SS2 infection. In this study, the novel pro-inflammatory protein HP0459, which was encoded by the SSUSC84_0459 gene, was discovered. The stimulation of RAW 264.7 macrophages with recombinant HP0459 protein induced the expression of pro-inflammatory cytokines (IL-1β, MCP-1 and TNF-α). Compared with the wild-type (WT) strain, the isogenic knockout of HP0459 in SS2 led to reduced production of pro-inflammatory cytokines in RAW264.7 macrophages and in vivo. The pro-inflammatory activity of HP0459 was significantly reduced by an antibody against Toll-like receptor 2 (TLR2) in RAW264.7 macrophages and was lower in TLR2-deficient (TLR2-/-) macrophages than in WT macrophages. Furthermore, specific inhibitors of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathways significantly decreased the HP0459-induced pro-inflammatory cytokine production, and a western blot assay showed that HP0459 stimulation induced the activation of the ERK1/2 pathway. Taken together, our data indicate that HP0459 is a novel pro-inflammatory mediator of SS2 and induces TLR2-dependent pro-inflammatory activity in RAW264.7 macrophages through the ERK1/2 pathway. PMID:25806027

  19. Inhibition of pro-inflammatory cytokine generation by CTLA4-Ig in the skin and colon of mice adoptively transplanted with CD45RBhi CD4+ T cells correlates with suppression of psoriasis and colitis.

    PubMed

    Davenport, Colleen M; McAdams, Holly Ann; Kou, Jen; Mascioli, Kirsten; Eichman, Christopher; Healy, Laura; Peterson, John; Murphy, Sreekant; Coppola, Domenico; Truneh, Alemseged

    2002-04-01

    Transfer of CD45RBhi CD4 + naïve T cells into severe combined immunodeficient (SCID) mice induces colitis and skin lesions. Recipients treated with cyclosporin A (CsA), CTLA4-Ig, or vehicle were evaluated for weight loss, skin lesions, and cutaneous blood flow. Necropsy, histological, hematological and cytokine analyses were performed at the conclusion of the experiment to confirm the clinical findings. Vehicle-treated mice lost weight and had 100% incidence of skin lesions by 46-days. CsA-treated mice also lost weight, but only 3/8 mice developed mild, clinically evident skin lesions. In contrast, all CTLA4-Ig-treated mice gained weight and did not develop skin lesions. Increase in cutaneous blood flow correlated with the development of skin lesions. Granulocyte numbers, which were high or moderately high in the vehicle- or CsA-treated mice, respectively, remained as low in the CTLA4-Ig-treated group as in untreated mice. IFN-gamma, IL-1beta, and TNF-alpha levels in the gut and skin correlated with the extent of inflammation in both organs. Histology revealed that CTLA4-Ig but not CsA effectively prevented both autoimmune disorders. The ability of CTLA4-Ig to prevent both colitis and skin lesions suggests that CD28-dependent co-stimulation of T cells is critical for generation of pro-inflammatory cytokines and induction of clinical disease in such autoimmune disorders. PMID:12013505

  20. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression.

    PubMed

    Kim, Yong-Ku; Na, Kyoung-Sae; Myint, Aye-Mu; Leonard, Brian E

    2016-01-01

    Cytokines are pleiotropic molecules with important roles in inflammatory responses. Pro-inflammatory cytokines and neuroinflammation are important not only in inflammatory responses but also in neurogenesis and neuroprotection. Sustained stress and the subsequent release of pro-inflammatory cytokines lead to chronic neuroinflammation, which contributes to depression. Hippocampal glucocorticoid receptors (GRs) and the associated hypothalamus-pituitary-adrenal (HPA) axis have close interactions with pro-inflammatory cytokines and neuroinflammation. Elevated pro-inflammatory cytokine levels and GR functional resistance are among the most widely investigated factors in the pathophysiology of depression. These two major components create a vicious cycle. In brief, chronic neuroinflammation inhibits GR function, which in turn exacerbates pro-inflammatory cytokine activity and aggravates chronic neuroinflammation. On the other hand, neuroinflammation causes an imbalance between oxidative stress and the anti-oxidant system, which is also associated with depression. Although current evidence strongly suggests that cytokines and GRs have important roles in depression, they are essential components of a whole system of inflammatory and endocrine interactions, rather than playing independent parts. Despite the evidence that a dysfunctional immune and endocrine system contributes to the pathophysiology of depression, much research remains to be undertaken to clarify the cause and effect relationship between depression and neuroinflammation. PMID:26111720

  1. Regulation of autoimmune inflammation by pro-inflammatory cytokines

    PubMed Central

    Kim, Eugene Y.; Moudgil, Kamal D.

    2008-01-01

    The pro-inflammatory cytokines play a critical role in the initiation and propagation of autoimmune arthritis and many other disorders resulting from a dysregulated self-directed immune response. These cytokines influence the interplay among the cellular, immunological and biochemical mediators of inflammation at multiple levels. Regulation of the pro-inflammatory activity of these cytokines is generally perceived to be mediated by the anti-inflammatory and immunosuppressive cytokines such as IL-4, IL-10, or TGF-β. However, increasing evidence is accumulating in support of the regulatory attributes of the pro-inflammatory cytokines themselves, in studies conducted in animal models of diabetes, multiple sclerosis, uveitis, and lupus. The results of our recent studies have shown that the pro-inflammatory cytokines, TNF-α and IFN-γ, can suppress arthritic inflammation in rats, and also contribute to resistance against arthritis. These results are of paramount significance not only in fully understanding the pathogenesis of autoimmune arthritis, but also in anticipating the full ramifications of the in vivo neutralization of the pro-inflammatory cytokines, including that for therapeutic purposes. PMID:18694783

  2. A pro-inflammatory role for Th22 cells in Helicobacter pylori-associated gastritis

    PubMed Central

    Zhuang, Yuan; Cheng, Ping; Liu, Xiao-fei; Peng, Liu-sheng; Li, Bo-sheng; Wang, Ting-ting; Chen, Na; Li, Wen-hua; Shi, Yun; Chen, Weisan; Pang, Ken C; Zeng, Ming; Mao, Xu-hu; Yang, Shi-ming; Guo, Hong; Guo, Gang; Liu, Tao; Zuo, Qian-fei; Yang, Hui-jie; Yang, Liu-yang; Mao, Fang-yuan; Lv, Yi-pin; Zou, Quan-ming

    2015-01-01

    Objective Helper T (Th) cell responses are critical for the pathogenesis of Helicobacter pylori-induced gastritis. Th22 cells represent a newly discovered Th cell subset, but their relevance to H. pylori-induced gastritis is unknown. Design Flow cytometry, real-time PCR and ELISA analyses were performed to examine cell, protein and transcript levels in gastric samples from patients and mice infected with H. pylori. Gastric tissues from interleukin (IL)-22-deficient and wild-type (control) mice were also examined. Tissue inflammation was determined for pro-inflammatory cell infiltration and pro-inflammatory protein production. Gastric epithelial cells and myeloid-derived suppressor cells (MDSC) were isolated, stimulated and/or cultured for Th22 cell function assays. Results Th22 cells accumulated in gastric mucosa of both patients and mice infected with H. pylori. Th22 cell polarisation was promoted via the production of IL-23 by dendritic cells (DC) during H. pylori infection, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterised by the CXCR2-dependent influx of MDSCs, whose migration was induced via the IL-22-dependent production of CXCL2 by gastric epithelial cells. Under the influence of IL-22, MDSCs, in turn, produced pro-inflammatory proteins, such as S100A8 and S100A9, and suppressed Th1 cell responses, thereby contributing to the development of H. pylori-associated gastritis. Conclusions This study, therefore, identifies a novel regulatory network involving H. pylori, DCs, Th22 cells, gastric epithelial cells and MDSCs, which collectively exert a pro-inflammatory effect within the gastric microenvironment. Efforts to inhibit this Th22-dependent pathway may therefore prove a valuable strategy in the therapy of H. pylori-associated gastritis. PMID:25134787

  3. CD200 expression in human cultured bone marrow mesenchymal stem cells is induced by pro-osteogenic and pro-inflammatory cues.

    PubMed

    Pontikoglou, Charalampos; Langonné, Alain; Ba, Mamadou Aliou; Varin, Audrey; Rosset, Philippe; Charbord, Pierre; Sensébé, Luc; Deschaseaux, Frédéric

    2016-04-01

    Similar to other adult tissue stem/progenitor cells, bone marrow mesenchymal stem/stromal cells (BM MSCs) exhibit heterogeneity at the phenotypic level and in terms of proliferation and differentiation potential. In this study such a heterogeneity was reflected by the CD200 protein. We thus characterized CD200(pos) cells sorted from whole BM MSC cultures and we investigated the molecular mechanisms regulating CD200 expression. After sorting, measurement of lineage markers showed that the osteoblastic genes RUNX2 and DLX5 were up-regulated in CD200(pos) cells compared to CD200(neg) fraction. At the functional level, CD200(pos) cells were prone to mineralize the extra-cellular matrix in vitro after sole addition of phosphates. In addition, osteogenic cues generated by bone morphogenetic protein 4 (BMP4) or BMP7 strongly induced CD200 expression. These data suggest that CD200 expression is related to commitment/differentiation towards the osteoblastic lineage. Immunohistochemistry of trephine bone marrow biopsies further corroborates the osteoblastic fate of CD200(pos) cells. However, when dexamethasone was used to direct osteogenic differentiation in vitro, CD200 was consistently down-regulated. As dexamethasone has anti-inflammatory properties, we assessed the effects of different immunological stimuli on CD200 expression. The pro-inflammatory cytokines interleukin-1β and tumour necrosis factor-α increased CD200 membrane expression but down-regulated osteoblastic gene expression suggesting an additional regulatory pathway of CD200 expression. Surprisingly, whatever the context, i.e. pro-inflammatory or pro-osteogenic, CD200 expression was down-regulated when nuclear-factor (NF)-κB was inhibited by chemical or adenoviral agents. In conclusion, CD200 expression by cultured BM MSCs can be induced by both osteogenic and pro-inflammatory cytokines through the same pathway: NF-κB. PMID:26773707

  4. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    SciTech Connect

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P.

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  5. The Role of Interleukin-1 and Interleukin-18 in Pro-Inflammatory and Anti-Viral Responses to Rhinovirus in Primary Bronchial Epithelial Cells

    PubMed Central

    Kay, Linda; Parker, Lisa C.; Sabroe, Ian; Sleeman, Matthew A.; Briend, Emmanuel; Finch, Donna K.

    2013-01-01

    Human Rhinovirus (HRV) is associated with acute exacerbations of chronic respiratory disease. In healthy individuals, innate viral recognition pathways trigger release of molecules with direct anti-viral activities and pro-inflammatory mediators which recruit immune cells to support viral clearance. Interleukin-1alpha (IL-1α), interleukin-1beta (IL-1β) and interleukin-18 (IL-18) have critical roles in the establishment of neutrophilic inflammation, which is commonly seen in airways viral infection and thought to be detrimental in respiratory disease. We therefore investigated the roles of these molecules in HRV infection of primary human epithelial cells. We found that all three cytokines were released from infected epithelia. Release of these cytokines was not dependent on cell death, and only IL-1β and IL-18 release was dependent on caspase-1 catalytic activity. Blockade of IL-1 but not IL-18 signaling inhibited up-regulation of pro-inflammatory mediators and neutrophil chemoattractants but had no effect on virus induced production of interferons and interferon-inducible genes, measured at both mRNA and protein level. Similar level of virus mRNA was detected with and without IL-1RI blockade. Hence IL-1 signaling, potentially involving both IL-1β and IL-1α, downstream of viral recognition plays a key role in induction of pro-inflammatory signals and potentially in recruitment and activation of immune cells in response to viral infection instigated by the epithelial cells, whilst not participating in direct anti-viral responses. PMID:23723976

  6. IGF-1 attenuates LPS induced pro-inflammatory cytokines expression in buffalo (Bubalus bubalis) granulosa cells.

    PubMed

    Onnureddy, K; Ravinder; Onteru, Suneel Kumar; Singh, Dheer

    2015-03-01

    Interaction between immune and endocrine system is a diverse process influencing cellular function and homeostasis in animals. Negative energy balance (NEB) during postpartum period in dairy animals usually suppresses these systems resulting in reproductive tract infection and infertility. These negative effects could be due to competition among endocrine and immune signaling pathways for common signaling molecules. The present work studied the effect of IGF-1 (50 ng/ml) on LPS (1 μg/ml) mediated pro-inflammatory cytokine expression (IL-1β, TNF-α, IL-6) and aromatase (CYP19A1) genes' expressions as well as proliferation of buffalo granulosa cells. The crosstalk between LPS and IGF-1 was also demonstrated through studying the activities of downstream signaling molecules (ERK1/2, Akt, NF-κB) by western blot and immunostaining. Gene expression analysis showed that IGF-1 significantly reduced the LPS induced expression of IL-1β, TNF-α and IL-6. LPS alone inhibited the CYP19A1 expression. However, co-treatment with IGF-1 reversed the inhibitory effect of LPS on CYP19A1 expression. LPS alone did not affect granulosa cell proliferation, but co-treatment with IGF-1, and IGF-1 alone enhanced the proliferation. Western blot results demonstrated that LPS caused the nuclear translocation of the NF-κB and increased the phosphorylation of ERK1/2 and Akt maximum at 15 min and 60 min, respectively. Nonetheless, co-treatment with IGF-1 delayed LPS induced phosphorylation of ERK1/2 (peak at 120 min), while promoting early Akt phosphorylation (peak at 5 min) with no effect on NF-κB translocation. Overall, IGF-1 delayed and reversed the effects of LPS, suggesting that high IGF-1 levels may combat infection during critical periods like NEB in postpartum dairy animals. PMID:25433435

  7. The anti-inflammatory compound curcumin inhibits Neisseria gonorrhoeae-induced NF-kappaB signaling, release of pro-inflammatory cytokines/chemokines and attenuates adhesion in late infection.

    PubMed

    Wessler, Silja; Muenzner, Petra; Meyer, Thomas F; Naumann, Michael

    2005-05-01

    Neisseria gonorrhoeae (Ngo) is a Gram-negative pathogenic bacterium responsible for an array of diseases ranging from urethritis to disseminated gonococcal infections. Early events in the establishment of infection involve interactions between Ngo and the mucosal epithelium, which induce a local inflammatory response. Here we analyzed the molecular mechanism involved in the Ngo-induced induction of the proinflammatory cytokines tumor necrosis factor alpha (TNFalpha), interleukin-6 (IL-6), and IL-8. We identified the immediate early response transcription factor nuclear factor kappaB (NF-kappaB) as a key molecule for the induction of cytokine release. Ngo-induced activation of direct upstream signaling molecules was demonstrated for IkappaB kinase alpha and beta (IKKalpha and IKKbeta) by phosphorylation of IkappaBalpha as a substrate and IKK autophosphorylation. Using dominant negative cDNAs encoding kinase-dead IKKalpha, IKKbeta, and NF-kappaB-inducing kinase (NIK), Ngo-induced NF-kappaB activity was significantly inhibited. Curcumin, the yellow pigment derived from Curcuma longa, inhibited IKKalpha, IKKbeta and NIK, indicating its strong potential to block NF-kappaB-mediated cytokine release and the innate immune response. In addition to the inhibition of Ngo-induced signaling, curcumin treatment of cells completely abolished the adherence of bacteria to cells in late infection, underlining the high potential of curcumin as an anti-microbial compound without cytotoxic side effects. PMID:15927892

  8. Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells

    PubMed Central

    Nahomi, Rooban B.; Palmer, Allison; Roth, Katelyn E.; Fort, Patrice E.; Nagaraj, Ram H.

    2013-01-01

    The formation of acellular capillaries in the retina, a hallmark feature of diabetic retinopathy, is caused by apoptosis of endothelial cells and pericytes. The biochemical mechanism of such apoptosis remains unclear. Small heat shock proteins play an important role in the regulation of apoptosis. In the diabetic retina, pro-inflammatory cytokines are upregulated. In this study, we investigated the effects of pro-inflammatory cytokines on small heat shock protein 27 (Hsp27) in human retinal endothelial cells (HREC). In HREC cultured in the presence of cytokine mixtures (CM), a significant downregulation of Hsp27 at the protein and mRNA level occurred, with no effect on HSF-1, the transcription factor for Hsp27. The presence of high glucose (25 mM) amplified the effects of cytokines on Hsp27. CM activated indoleamine 2,3-dioxygenase (IDO) and enhanced the production of kynurenine and ROS. An inhibitor of IDO, 1-methyl tryptophan (MT), inhibited the effects of CM on Hsp27. CM also upregulated NOS2 and, consequently, nitric oxide (NO). A NOS inhibitor, L-NAME, and a ROS scavenger blocked the CM-mediated Hsp27 downregulation. While a NO donor in the culture medium did not decrease the Hsp27 content, a peroxynitrite donor and exogenous peroxynitrite did. The cytokines and high glucose-induced apoptosis of HREC were inhibited by MT and L-NAME. Downregulation of Hsp27 by a siRNA treatment promoted apoptosis in HREC. Together, these data suggest that pro-inflammatory cytokines induce the formation of ROS and NO, which, through the formation of peroxynitrite, reduce the Hsp27 content and bring about apoptosis of retinal capillary endothelial cells. PMID:24252613

  9. The effect of 17β-estradiol on gene expression of calcitonin gene-related peptide and some pro-inflammatory mediators in peripheral blood mononuclear cells from patients with pure menstrual migraine

    PubMed Central

    Karkhaneh, Azam; Ansari, Mohammad; Emamgholipour, Solaleh; Rafiee, Mohammad Hessam

    2015-01-01

    Objective(s): The neuropeptide calcitonin gene-related peptide (CGRP) has long been postulated to play an integral role in the pathophysiology of migraine. Earlier studies showed that CGRP can stimulate the synthesis and release of nitric oxide (NO) and cytokines from trigeminal ganglion glial cells. The purpose of this study was to determine the effect of 17β-estradiol in regulation of CGRP expression, inducible nitric oxide synthase (iNOS) activity, and NO and interleukin-1beta (IL-1β) release in cultured peripheral blood mononuclear cells (PBMCs) from patients with pure menstrual migraine and healthy individuals. Materials and Methods: This study was performed on twelve patients with pure menstrual migraine and twelve age-and sex-matched healthy individuals. PBMCs treated with 17β-estradiol for 24 hr at physiological and pharmacological doses. Gene expression was evaluated by real time-PCR. CGRP and IL-1β proteins in culture supernatant were determined by ELISA method. Activity of iNOS in PBMCs and total nitrite in the culture supernatant were measured by colorimetric assays. Results: Treatment with 17β-estradiol had a biphasic effect on expression of CGRP. We found that 17β-estradiol treatment at pharmacological dose significantly increases mRNA expression of CGRP in both groups (P<0.001), whereas at physiological dose it could significantly decrease CGRP mRNA expression (P<0.001), CGRP protein levels, IL-1β release, NO production and iNOS activity only in patient groups (P<0.05). Conclusion: Collectively, it appears that 17β-estradiol can exert protective effect on decrease of inflammation in migraine via decrease in levels of CGRP, IL-1β and iNOS activity; however, more studies are necessary in this regard. PMID:26526225

  10. Pro-inflammatory endothelial cell dysfunction is associated with intersectin-1s down-regulation

    PubMed Central

    2011-01-01

    Background The response of lung microvascular endothelial cells (ECs) to lipopolysaccharide (LPS) is central to the pathogenesis of lung injury. It is dual in nature, with one facet that is pro-inflammatory and another that is cyto-protective. In previous work, overexpression of the anti-apoptotic Bcl-XL rescued ECs from apoptosis triggered by siRNA knockdown of intersectin-1s (ITSN-1s), a pro-survival protein crucial for ECs function. Here we further characterized the cyto-protective EC response to LPS and pro-inflammatory dysfunction. Methods and Results Electron microscopy (EM) analyses of LPS-exposed ECs revealed an activated/dysfunctional phenotype, while a biotin assay for caveolae internalization followed by biochemical quantification indicated that LPS causes a 40% inhibition in biotin uptake compared to controls. Quantitative PCR and Western blotting were used to evaluate the mRNA and protein expression, respectively, for several regulatory proteins of intrinsic apoptosis, including ITSN-1s. The decrease in ITSN-1s mRNA and protein expression were countered by Bcl-XL and survivin upregulation, as well as Bim downregulation, events thought to protect ECs from impending apoptosis. Absence of apoptosis was confirmed by TUNEL and lack of cytochrome c (cyt c) efflux from mitochondria. Moreover, LPS exposure caused induction and activation of inducible nitric oxide synthase (iNOS) and a mitochondrial variant (mtNOS), as well as augmented mitochondrial NO production as measured by an oxidation oxyhemoglobin (oxyHb) assay applied on mitochondrial-enriched fractions prepared from LPS-exposed ECs. Interestingly, expression of myc-ITSN-1s rescued caveolae endocytosis and reversed induction of iNOS expression. Conclusion Our results suggest that ITSN-1s deficiency is relevant for the pro-inflammatory ECs dysfunction induced by LPS. PMID:21486462

  11. Rationale and Means to Target Pro-Inflammatory Interleukin-8 (CXCL8) Signaling in Cancer

    PubMed Central

    Campbell, Laura M.; Maxwell, Pamela J.; Waugh, David J.J.

    2013-01-01

    It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations. PMID:24276377

  12. Changes in DNA Methylation and Chromatin Structure of Pro-inflammatory Cytokines Stimulated by LPS in Broiler Peripheral Blood Mononuclear Cells.

    PubMed

    Shen, Jing; Liu, Yanli; Ren, Xiaochun; Gao, Kang; Li, Yulong; Li, Shizhao; Yao, Junhu; Yang, Xiaojun

    2016-07-01

    The pro-inflammatory cytokines IL-1β, IL-6, and tumor necrosis factor (TNF)-α mediate inflammation, which is a protective response by body to ensure removal of detrimental stimuli, as well as a healing process for repairing damaged tissue. The overproduction of pro-inflammatory cytokines can induce autoimmune diseases and can be fatal. The aim of this study was to investigate epigenetic mechanisms in the regulation of pro-inflammatory cytokines expression after lipopolysaccharide (LPS) stimulation of broiler peripheral blood mononuclear cells (PBMC). Gene expression, promoter DNA methylation, and chromatin accessibility of pro-inflammatory cytokines in untreated and LPS-treated PBMC were compared. The expression of epigenetic enzymes DNA methyltransferase (DNMT) 1, histone deacetylase (HDAC), and histone acetylase (HAT) were measured after LPS stimulation. The results showed the activated gene expression of pro-inflammatory cytokines in broiler PBMC stimulated 3 h by LPS. The demethylation of IL-6 gene - 302 and -264 cytosine-guanine (CpG) sites, as well as TNF-α gene -371 CpG site, occurred after LPS treatment (P < 0.05), whereas the methylaiton pattern in the IL-1β gene promoter region was not affected. Otherwise, LPS stimulation relaxed the chromatin structure at IL-1β and IL-6 promoter (P < 0.05). The lower expression of DNMT1 and HDAC2, and higher expression of p300-CBP-associated factor and tat-interaction protein-60, were detected in response to LPS (P < 0.05). Our data indicated that after LPS stimulation for 3 h, IL-1β and IL-6 promoter are remodeled into an accessible structure, and the IL-6 and TNF-α promoter are demethylated at special sites, which possible impact the mRNA expression of pro-inflammatory cytokines. PMID:26994192

  13. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    SciTech Connect

    Liu, Shuai; Lv, Jiaju; Han, Liping; Ichikawa, Tomonaga; Wang, Wenjuan; Li, Siying; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated protein

  14. Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone hyperacetylation.

    PubMed

    Huang, N; Katz, J P; Martin, D R; Wu, G D

    1997-01-01

    Ulcerative colitis, an idiopathic inflammatory disease of the colonic mucosa, can be effectively treated by enemas containing short chain fatty acids (SCFA) such as butyrate, propionate, and acetate. The molecular mechanisms that lead to this response have not been well characterized. It is well known that intestinal inflammation leads to an alteration in patterns of epithelial differentiation with an increase in epithelial proliferation and an expansion of cell populations in an undifferentiated state. SCFAs such as butyrate are capable of inhibiting cell proliferation and inducing a differentiated phenotype in vitro. The Caco-2 colon cancer cell line was used to study the effect of SCFAs and the process of cellular differentiation on the expression of the pro-inflammatory cytokine, interleukin 8 (IL-8). SCFAs and trichostatin A, structurally unrelated compounds which both induce histone hyperacetylation, both led to a dose-dependent inhibition of IL-8 gene expression. Furthermore, spontaneous differentiation of Caco-2 cells by growth to a post-confluent state also inhibited the expression of IL-8. A possible mechanism by which SCFAs may be effective in the treatment of ulcerative colitis may be through their ability to increase histone acetylation states and inhibit the production of pro-inflammatory substances by the intestinal epithelium. PMID:9067093

  15. Colonic Pro-inflammatory Macrophages Cause Insulin Resistance in an Intestinal Ccl2/Ccr2-Dependent Manner.

    PubMed

    Kawano, Yoshinaga; Nakae, Jun; Watanabe, Nobuyuki; Kikuchi, Tetsuhiro; Tateya, Sanshiro; Tamori, Yoshikazu; Kaneko, Mari; Abe, Takaya; Onodera, Masafumi; Itoh, Hiroshi

    2016-08-01

    High-fat diet (HFD) induces low-grade chronic inflammation and insulin resistance. However, little is known about the mechanism underlying HFD-induced chronic inflammation in peripheral insulin-responsive tissues. Here, we show that colonic pro-inflammatory macrophages regulate insulin sensitivity under HFD conditions. To investigate the pathophysiological role of colonic macrophages, we generated macrophage-specific chemokine (C-C Motif) receptor 2 (Ccr2) knockout (M-Ccr2KO) and intestinal epithelial cell-specific tamoxifen-inducible Ccl2 knockout (Vil-Ccl2KO) mice. Both strains exhibited similar body weight to control under HFD. However, they exhibited decreased infiltration of colonic pro-inflammatory macrophages, decreased intestinal permeability, and inactivation of the colonic inflammasome. Interestingly, they showed significantly improved glucose tolerance and insulin sensitivity with decreased chronic inflammation of adipose tissue. Therefore, inhibition of pro-inflammatory macrophage infiltration prevents HFD-induced insulin resistance and could be a novel therapeutic approach for type 2 diabetes. PMID:27508875

  16. Galectin-8 elicits pro-inflammatory activities in the endothelium.

    PubMed

    Cattaneo, Valentina; Tribulatti, María Virginia; Carabelli, Julieta; Carestia, Agostina; Schattner, Mirta; Campetella, Oscar

    2014-10-01

    Galectins (Gals), a family of mammalian lectins, play diverse roles under physiological and pathological conditions. Here, we analyzed the tandem-repeat Gal-8 synthesis, secretion and effects on the endothelium physiology. Gal-8M and Gal-8L isoforms were secreted under basal conditions by human microvascular endothelial cells (HMEC-1). However, expression and secretion of the Gal-8M isoform, but not Gal-8L, were increased in response to bacterial lipopolysaccharide (LPS) stimulus and returned to control values after LPS removal. Similarly, cell surface Gal-8 exposure was increased after stimulation with LPS. To evaluate Gal-8 effects on the endothelium physiology, HMEC-1 cells were incubated in the presence of recombinant Gal-8M. Pretreated HMEC-1 cells became proadhesive to human normal platelets, indicating that Gal-8 actually activates endothelial cells. This effect was specific for lectin activity as it was prevented by the simultaneous addition of lactose, but not by sucrose. Endothelial cells also increased their exposition of von Willebrand factor after Gal-8 treatment, which constitutes another feature of cell activation that could be, in turn, responsible for the observed platelet adhesion. Several pro-inflammatory molecules were abundantly produced by Gal-8 stimulated endothelial cells: CXCL1 (GRO-α), GM-CSF, IL-6 and CCL5 (RANTES), and in a lower degree CCL2 (MCP-1), CXCL3 (GRO-γ) and CXCL8 (IL-8). In agreement, Gal-8M induced nuclear factor kappa B phosphorylation. Altogether, these results not only confirm the pro-inflammatory role we have already proposed for Gal-8 in other cellular systems but also suggest that this lectin is orchestrating the interaction between leukocytes, platelets and endothelial cells. PMID:24957054

  17. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  18. Human oral isolate Lactobacillus fermentum AGR1487 induces a pro-inflammatory response in germ-free rat colons

    PubMed Central

    Anderson, Rachel C.; Ulluwishewa, Dulantha; Young, Wayne; Ryan, Leigh J.; Henderson, Gemma; Meijerink, Marjolein; Maier, Eva; Wells, Jerry M.; Roy, Nicole C.

    2016-01-01

    Lactobacilli are thought to be beneficial for human health, with lactobacilli-associated infections being confined to immune-compromised individuals. However, Lactobacillus fermentum AGR1487 negatively affects barrier integrity in vitro so we hypothesized that it caused a pro-inflammatory response in the host. We compared germ-free rats inoculated with AGR1487 to those inoculated with another L. fermentum strain, AGR1485, which does not affect in vitro barrier integrity. We showed that rats inoculated with AGR1487 had more inflammatory cells in their colon, higher levels of inflammatory biomarkers, and increased colonic gene expression of pro-inflammatory pathways. In addition, our in vitro studies showed that AGR1487 had a greater capacity to activate TLR signaling and induce pro-inflammatory cytokines in immune cells. This study indicates the potential of strains of the same species to differentially elicit inflammatory responses in the host and highlights the importance of strain characterization in probiotic approaches to treat inflammatory disorders. PMID:26843130

  19. Antimicrobial peptides and pro-inflammatory cytokines are differentially regulated across epidermal layers following bacterial stimuli.

    PubMed

    Percoco, Giuseppe; Merle, Chloé; Jaouen, Thomas; Ramdani, Yasmina; Bénard, Magalie; Hillion, Mélanie; Mijouin, Lily; Lati, Elian; Feuilloley, Marc; Lefeuvre, Luc; Driouich, Azeddine; Follet-Gueye, Marie-Laure

    2013-12-01

    The skin is a natural barrier between the body and the environment and is colonised by a large number of microorganisms. Here, we report a complete analysis of the response of human skin explants to microbial stimuli. Using this ex vivo model, we analysed at both the gene and protein level the response of epidermal cells to Staphylococcus epidermidis (S. epidermidis) and Pseudomonas fluorescens (P. fluorescens), which are present in the cutaneous microbiota. We showed that both bacterial species affect the structure of skin explants without penetrating the living epidermis. We showed by real-time quantitative polymerase chain reaction (qPCR) that S. epidermidis and P. fluorescens increased the levels of transcripts that encode antimicrobial peptides (AMPs), including human β defensin (hBD)2 and hBD3, and the pro-inflammatory cytokines interleukin (IL)-1α and (IL)-1-β, as well as IL-6. In addition, we analysed the effects of bacterial stimuli on the expression profiles of genes related to innate immunity and the inflammatory response across the epidermal layers, using laser capture microdissection (LCM) coupled to qPCR. We showed that AMP transcripts were principally upregulated in suprabasal keratinocytes. Conversely, the expression of pro-inflammatory cytokines was upregulated in the lower epidermis. These findings were confirmed by protein localisation using specific antibodies coupled to optical or electron microscopy. This work underscores the potential value of further studies that use LCM on human skin explants model to study the roles and effects of the epidermal microbiota on human skin physiology. PMID:24118337

  20. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells

    PubMed Central

    Jones, Jane T.; Qian, Xi; van der Velden, Jos L.J.; Chia, Shi Biao; McMillan, David H.; Flemer, Stevenson; Hoffman, Sidra M.; Lahue, Karolyn G.; Schneider, Robert W.; Nolin, James D.; Anathy, Vikas; van der Vliet, Albert; Townsend, Danyelle M.; Tew, Kenneth D.; Janssen-Heininger, Yvonne M.W.

    2016-01-01

    Nuclear Factor kappa B (NF-κB) is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKβ), among other NF-κB proteins. Glutathione S-transferase Pi (GSTP) is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG) under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKβ and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKβ. SiRNA-mediated knockdown of GSTP decreased IKKβ-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS). TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKβ-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor. PMID:27058114

  1. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells.

    PubMed

    Jones, Jane T; Qian, Xi; van der Velden, Jos L J; Chia, Shi Biao; McMillan, David H; Flemer, Stevenson; Hoffman, Sidra M; Lahue, Karolyn G; Schneider, Robert W; Nolin, James D; Anathy, Vikas; van der Vliet, Albert; Townsend, Danyelle M; Tew, Kenneth D; Janssen-Heininger, Yvonne M W

    2016-08-01

    Nuclear Factor kappa B (NF-κB) is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKβ), among other NF-κB proteins. Glutathione S-transferase Pi (GSTP) is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG) under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKβ and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKβ. SiRNA-mediated knockdown of GSTP decreased IKKβ-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS). TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKβ-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor. PMID:27058114

  2. Do mechanical strain and TNF-α interact to amplify pro-inflammatory cytokine production in human annulus fibrosus cells?

    PubMed

    Likhitpanichkul, Morakot; Torre, Olivia M; Gruen, Jadry; Walter, Benjamin A; Hecht, Andrew C; Iatridis, James C

    2016-05-01

    During intervertebral disc (IVD) injury and degeneration, annulus fibrosus (AF) cells experience large mechanical strains in a pro-inflammatory milieu. We hypothesized that TNF-α, an initiator of IVD inflammation, modifies AF cell mechanobiology via cytoskeletal changes, and interacts with mechanical strain to enhance pro-inflammatory cytokine production. Human AF cells (N=5, Thompson grades 2-4) were stretched uniaxially on collagen-I coated chambers to 0%, 5% (physiological) or 15% (pathologic) strains at 0.5Hz for 24h under hypoxic conditions with or without TNF-α (10ng/mL). AF cells were treated with anti-TNF-α and anti-IL-6. ELISA assessed IL-1β, IL-6, and IL-8 production and immunocytochemistry measured F-actin, vinculin and α-tubulin in AF cells. TNF-α significantly increased AF cell pro-inflammatory cytokine production compared to basal conditions (IL-1β:2.0±1.4-84.0±77.3, IL-6:10.6±9.9-280.9±214.1, IL-8:23.9±26.0-5125.1±4170.8pg/ml for basal and TNF-α treatment, respectively) as expected, but mechanical strain did not. Pathologic strain in combination with TNF-α increased IL-1β, and IL-8 but not IL-6 production of AF cells. TNF-α treatment altered F-actin and α-tubulin in AF cells, suggestive of altered cytoskeletal stiffness. Anti-TNF-α (infliximab) significantly inhibited pro-inflammatory cytokine production while anti-IL-6 (atlizumab) did not. In conclusion, TNF-α altered AF cell mechanobiology with cytoskeletal remodeling that potentially sensitized AF cells to mechanical strain and increased TNF-α-induced pro-inflammatory cytokine production. Results suggest an interaction between TNF-α and mechanical strain and future mechanistic studies are required to validate these observations. PMID:26924657

  3. Nicotinic receptor activation negatively modulates pro-inflammatory cytokine production in multiple sclerosis patients.

    PubMed

    Reale, Marcella; Di Bari, Maria; Di Nicola, Marta; D'Angelo, Chiara; De Angelis, Federica; Velluto, Lucia; Tata, Ada Maria

    2015-11-01

    Acetylcholine (ACh) and its receptors of muscarinic and nicotinic types are involved in the modulation of immune and inflammatory responses. In present work we have characterized the nicotinic receptors expression in PBMC of RR-MS patients and healthy donors (HD) and their ability to modulate pro-inflammatory cytokines. Here we report that the IL-1β e IL-17 levels are significantly increased in serum of RR-MS patients in respect to HD and that the PBMC stimulation with PHA caused a significant increase in pro-inflammatory cytokine levels both in RR-MS and HD subjects, with higher increase of protein release in RR-MS patients than in HD. The PBMC treatment with PHA plus nicotine produced a significant decrease of IL-1β e IL-17 both as transcript and as protein, confirming that the PBMC of the patients respond to the cholinergic stimulation more than PBMC of HD. By real time PCR and western blot analysis we have also demonstrated that in particular α7 receptor subtype appeared expressed at comparable levels both in RR-MS patients and HD. The PHA stimulation results to inhibit the α7 subunit expression while the nicotine causes a significant increase in α7 transcripts but only in MS patients. The data obtained highlight the role of α7 receptor subtype in the modulation of anti-inflammatory cytokines also in MS. Moreover the ability of nicotine to up-regulate the expression of α7 receptor subtype in RR-MS patients, indicates that nicotinic receptor stimulation may contribute to down-modulate the inflammation occurred in MS by a positive feedback control of its expression. PMID:26209886

  4. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells.

    PubMed

    Walter, B A; Purmessur, D; Moon, A; Occhiogrosso, J; Laudier, D M; Hecht, A C; Iatridis, J C

    2016-01-01

    The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs) and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4) ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα) regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β) and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease. PMID:27434269

  5. Mineralocorticoid Receptor Blockade Reverses Obesity-Related Changes in Expression of Adiponectin, PPARγ and Pro-inflammatory Adipokines

    PubMed Central

    Guo, Christine; Ricchiuti, Vincent; Lian, Bill Q.; Yao, Tham M.; Coutinho, Patricia; Romero, José R.; Li, Jianmin; Williams, Gordon H.; Adler, Gail K.

    2009-01-01

    Background In obesity, decreases in adiponectin and increases in pro-inflammatory adipokines are associated with heart disease. Since adipocytes express mineralocorticoid receptor (MR) and MR blockade reduces cardiovascular inflammation and injury, we tested the hypothesis that MR blockade reduces inflammation and expression of pro-inflammatory cytokines in adipose tissue and increases adiponectin expression in adipose tissue and hearts of obese mice. Methods and Results We determined the effect of MR blockade (eplerenone, 100 mg/kg/day for 16 weeks) on gene expression in retroperitoneal adipose and heart tissue from obese, diabetic db/db mice (n=8) as compared with untreated obese, diabetic db/db mice (n=10) and lean, non-diabetic db/+ littermates (n=11). There was increased expression of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor type-1 (PAI-1) and macrophage protein CD68 and decreased expression of adiponectin and peroxisome proliferator-activated receptor-γ (PPARγ) in retroperitoneal adipose tissue from obese versus lean mice. Also, adiponectin expression in heart was reduced in obese versus lean mice. MR blockade prevented these obesity-related changes in gene expression. Further, treatment of undifferentiated preadipocytes with aldosterone (10−8 M for 24 h) increased mRNA levels of TNF-α and MCP-1, and reduced mRNA and protein levels of PPARγ and adiponectin, supporting a direct aldosterone effect on gene expression. Conclusions MR blockade reduced expression of pro-inflammatory and pro-thrombotic factors in adipose tissue and increased expression of adiponectin in heart and adipose tissue of obese, diabetic mice. These effects on adiponectin and adipokine gene expression may represent a novel mechanism for the cardioprotective effects of MR blockade. PMID:18427128

  6. Effects of pro-inflammatory cytokines, lipopolysaccharide and COX-2 mediators on human colonic neuromuscular function and epithelial permeability.

    PubMed

    Safdari, B K; Sia, T C; Wattchow, D A; Smid, S D

    2016-07-01

    Chronic colitis is associated with decreased colonic muscle contraction and loss of mucosal barrier function. Pro-inflammatory cytokines and bacterial lipopolysaccharide (LPS) are important in the generation and maintenance of inflammation. While colitis is associated with upregulated COX-2 -derived prostanoids and nitric oxide (NO), the direct activity of pro-inflammatory cytokines on human colonic neuromuscular function is less clear. This study investigated the effects of IBD-associated pro-inflammatory cytokines IL-17, TNF-α, IL-1β and LPS on human colonic muscle strip contractility, alone and following inhibition of COX-2 or nitric oxide production. In addition, human colonic epithelial Caco-2 cell monolayers were treated with LPS or COX-2 mediators including prostaglandins (PGE2, PGF2α) or their corresponding ethanolamides (PGE2-EA or PGF2α-EA) over 48h and trans-epithelial electrical resistance used to record permeability changes. Longitudinal muscle strips were obtained from healthy colonic resection margins and mounted in organ baths following IL-17, TNF-α, IL-1β and bacterial LPS incubations in an explant setting over 20h. Contraction in response to acetylcholine (ACh) was then measured, before and after either COX-2 inhibition (nimesulide; 10(-5)M) or nitric oxide synthase (NOS) inhibition (l-NNA; 10(-4)M). None of the cytokine or LPS explant incubations affected the potency or maximum cholinergic contraction in vitro, and subsequent COX-2 blockade with nimesulide revealed a significant but similar decrease in potency of ACh-evoked contraction in control, LPS and cytokine-incubated muscle strips. Pre-treatment with l-NNA provided no functional differences in the potency or maximum contractile responses to ACh in cytokine or LPS-incubated colonic longitudinal smooth muscle. Only PGE2 transiently increased Caco-2 monolayer permeability at 24h, while LPS (10μg/ml) increased permeability over 24-48h. These findings indicate that cholinergic

  7. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    PubMed Central

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  8. Butein, a tetrahydroxychalcone, suppresses pro-inflammatory responses in HaCaT keratinocytes

    PubMed Central

    Seo, Won Yong; Youn, Gi Soo; Choi, Soo Young; Park, Jinseu

    2015-01-01

    Up-regulation of cell adhesion molecules and proinflammatory cytokines contributes to enhanced monocyte adhesiveness and infiltration into the skin, during the pathogenesis of various inflammatory skin diseases, including atopic dermatitis. In this study, we examined the anti-inflammatory effects of butein, a tetrahydroxychalcone, and its action mechanisms using TNF-α-stimulated keratinocytes. Butein significantly inhibited TNF-α-induced ICAM-I expression and monocyte adhesion in human keratinocyte cell line HaCaT. Butein also decreased TNF-α-induced pro-inflammatory mediators, such as IL-6, IP-10 and MCP-1, in HaCaT cells. Butein decreased TNF-α-induced ROS generation in a dose-dependent manner in HaCaT cells. In addition, treatment of HaCaT cells with butein suppressed TNF-α-induced MAPK activation. Furthermore, butein suppressed TNF-α-induced NF-kappaB activation. Overall, our results indicate that butein has immunomodulatory activities by inhibiting expression of proinflammatory mediators in keratinocytes. Therefore, butein may be used as a therapeutic agent for the treatment of inflammatory skin diseases. [BMB Reports 2015; 48(9): 495-500] PMID:25541056

  9. α-(-)-bisabolol reduces pro-inflammatory cytokine production and ameliorates skin inflammation.

    PubMed

    Maurya, Anil K; Singh, Monika; Dubey, Vijaya; Srivastava, Suchita; Luqman, Suaib; Bawankule, Dnyaneshwar U

    2014-01-01

    α-(-)-bisabolol is a natural monocyclic sesquiterpene present in the essential oil has generated considerable interest in the chemical and pharmaceutical industries and currently in use in various formulations, mainly in cosmetics. This study was undertaken to evaluate its therapeutic profile against skin inflammation using in-vitro, in-vivo and in-silico assays. Lipopolysachharide (LPS) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced production of proinflammatory cytokines (TNF-α and IL-6) in macrophage cells as well as in TPA-induced skin inflammation in mice was significantly inhibited by α-(-)-bisabolol. TPA-induced ear thickness, ear weight and lipid peroxidation and histopathological damage in the ear tissue were also significantly inhibited by topical application of α-(-)-bisabolol in a dose dependent manner. In-vitro and in-vivo toxicity profiles indicate that it is safe for topical application on skin. Molecular docking study also revealed its strong binding affinity to the active site of the pro-inflammatory proteins. These findings suggested that α-(-)-bisabolol may be a useful therapeutic candidate for the treatment of skin inflammation. PMID:24894548

  10. Potent Inhibitors of Pro-Inflammatory Cytokine Production Produced by a Marine-Derived Bacterium

    PubMed Central

    Strangman, Wendy K.; Kwon, Hak Cheol; Broide, David; Jensen, Paul R.; Fenical, William

    2009-01-01

    Cytokines produced through the Antigen Presenting Cell (APC)–T-cell interaction play a key role in the activation of the allergic asthmatic response. Evaluating small molecules that inhibit the production of these pro-inflammatory proteins is therefore important for the discovery of novel chemical structures with potential anti-asthma activity. We adapted a mouse splenocyte cytokine assay to screen a library of 2,500 marine microbial extracts for their ability to inhibit TH2 cytokine release and identified potent activity in a marine-derived strain CNQ431, identified as a Streptomyces species. Bioactivity guided fractionation of the organic extract of this strain led to the isolation of ten new 9-membered bis-lactones, splenocins A-J (1–10). The new compounds display potent biological activities, comparable to that of the corticosteroid dexamethasone, with IC50 values from 2–50 nanomolar in the splenocyte cytokine assay. This study provides the foundation for the optimization of these potent anti-inflammatory compounds for development in the treatment of asthma. PMID:19323483

  11. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase

    PubMed Central

    Kim, Ji Min; Lee, Eun Kyeong; Kim, Dae Hyun; Yu, Byung Pal

    2010-01-01

    Advanced glycation endproducts (AGE) are oxidative products formed from the reaction between carbohydrates and a free amino group of proteins that are provoked by reactive species (RS). It is also known that AGE enhance the generation of RS and that the binding of AGE to a specific AGE receptor (RAGE) induces the activation of the redox-sensitive, pro-inflammatory transcription factor, nuclear factor-kappa B (NF-ĸB). In this current study, we investigated the anti-oxidative effects of short-term kaempferol supplementation on the age-related formation of AGE and the binding activity of RAGE in aged rat kidney. We further investigated the suppressive action of kaempferol against AGE's ability to stimulate activation of pro-inflammatory NF-ĸB and its molecular mechanisms. For this study, we utilized young (6 months old), old (24 months old), and kaempferol-fed (2 and 4 mg/kg/day for 10 days) old rats. In addition, for the molecular work, the rat endothelial cell line, YPEN-1 was used. The results show that AGE and RAGE were increased during aging and that these increases were blunted by kaempferol. In addition, dietary kaempferol reduced age-related increases in NF-κB activity and NF-ĸB-dependant pro-inflammatory gene activity. The most significant new finding from this study is that kaempferol supplementation prevented age-related NF-κB activation by suppressing AGE-induced nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Taken together, our results demonstrated that dietary kaempferol exerts its anti-oxidative and anti-inflammatory actions by modulating the age-related NF-κB signaling cascade and its pro-inflammatory genes by suppressing AGE-induced NADPH oxidase activation. Based on these data, dietary kaempferol is proposed as a possible anti-AGE agent that may have the potential for use in anti-inflammation therapies. PMID:20431987

  12. Expression of pathogen recognition receptors and pro-inflammatory cytokine transcripts in clinical and sub-clinical endometritis cows.

    PubMed

    Loyi, Tumnyak; Kumar, Harendra; Nandi, Sukdeb; Patra, Manas Kumar

    2015-01-01

    The present study was carried out to examine the expression profile of pathogen recognition receptors (CD14 and toll-like receptor 4) and pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNFα) in endometrial tissue of cows with endometritis at different stages of estrous cycle. Genital tracts were collected from 60 cows at slaughter from the killing village. The genitalia were examined for clinical endometritis (CE) and subclinical endometritis (SCE) through physical examination, white side test of cervico-vaginal mucus, endometrial cytology and histopathology. The stage of estrous cycle for each genitalia was determined by visual examination of both the ovaries and classified as either follicular (F) or luteal (L). Depending on the degree of inflammation and stage of estrous cycle, the genitalia were categorized in four groups i.e., FCE, FSCE, LCE, and LSCE with six genitalia in each group. Furthermore, 12 healthy genitalia comprise of six each of follicular (FN) and luteal (LN) were included as control. Endometrial tissue scrapings were collected ex vivo from all the genitalia. Total RNA was extracted and cDNA was transcribed for each sample and relative quantification of mRNA of target genes was done by real-time PCR. The results revealed a significant up-regulation of CD14 (11 fold) and IL-8 (13 fold) in follicular stage and IL-6 (8 fold) and TNFα (29 fold) in luteal stages in SCE cows. However, the majority of pro-inflammatory cytokine and pathogen recognition receptors expressed at significant higher level in both follicular and luteal stages in cows with CE. Thus, it is concluded that the endometrial transcripts of pathogen recognition receptors and pro-inflammatory cytokines expressed differentially in cows with endometritis, whereas the fold change is dependent on the severity of inflammation and the stage of cyclicity. Therefore, endometrial transcript profile with a defined threshold level could be used as a possible diagnostic marker in cows with

  13. Pro-inflammatory potential of Escherichia coli strains K12 and Nissle 1917 in a murine model of acute ileitis.

    PubMed

    Bereswill, S; Fischer, A; Dunay, I R; Kühl, A A; Göbel, U B; Liesenfeld, O; Heimesaat, M M

    2013-06-01

    Non-pathogenic Escherichia coli (Ec) strains K12 (EcK12) and Nissle 1917 (EcN) are used for gene technology and probiotic treatment of intestinal inflammation, respectively. We investigated intestinal colonization and potential pro-inflammatory properties of EcK12, EcN, and commensal E. coli (EcCo) strains in Toxoplasma (T.) gondii-induced acute ileitis. Whereas gnotobiotic animals generated by quintuple antibiotic treatment were protected from ileitis, mice replenished with conventional microbiota suffered from small intestinal necrosis 7 days post-T. gondii infection (p.i.). Irrespective of the Ec strain, recolonized mice revealed mild to moderate histopathological changes in their ileal mucosa. Upon stable recolonization with EcK12, EcN, or EcCo, development of inflammation was accompanied by pro-inflammatory responses at day 7 p.i., including increased ileal T lymphocyte and apoptotic cell numbers compared to T. gondii-infected gnotobiotic controls. Strikingly, either Ec strain was capable to translocate to extra-intestinal locations, such as MLN, spleen, and liver. Taken together, Ec strains used in gene technology and probiotic treatment are able to exert inflammatory responses in a murine model of small intestinal inflammation. In conclusion, the therapeutic use of Ec strains in patients with broad-spectrum antibiotic treatment and/or intestinal inflammation should be considered with caution. PMID:24265929

  14. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages

    PubMed Central

    Limagne, Emeric; Lançon, Allan; Delmas, Dominique; Cherkaoui-Malki, Mustapha; Latruffe, Norbert

    2016-01-01

    State of the art. Osteoarthritis (OA) is a chronic articular disease characterized by cartilage degradation and osteophyte formation. OA physiopathology is multifactorial and involves mechanical and hereditary factors. So far, there is neither preventive medicine to delay cartilage breakdown nor curative treatment. Objectives. To investigate pro-inflammatory paracrine interactions between human primary chondrocytes and macrophages following interleukin-1-β (IL-1β) treatment; to evaluate the molecular mechanism responsible for the inhibitory effect of resveratrol. Results. The activation of NF-κB in chondrocytes by IL-1β induced IL-6 secretion. The latter will then activate STAT3 protein in macrophages. Moreover, STAT3 was able to positively regulate IL-6 secretion, as confirmed by the doubling level of IL-6 in the coculture compared to macrophage monoculture. These experiments confirm the usefulness of the coculture model in the inflammatory arthritis-linked process as a closer biological situation to the synovial joint than separated chondrocytes and macrophages. Il also demonstrated the presence of an inflammatory amplification loop induced by IL-1β. Resveratrol showed a strong inhibitory effect on the pro-inflammatory marker secretion. The decrease of IL-6 secretion is dependent on the NFκB inhibition in the chondrocytes. Such reduction of the IL-6 level can limit STAT3 activation in the macrophages, leading to the interruption of the inflammatory amplification loop. Conclusion. These results increase our understanding of the anti-inflammatory actions of resveratrol and open new potential approaches to prevent and treat osteoarthritis. PMID:27187448

  15. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages.

    PubMed

    Limagne, Emeric; Lançon, Allan; Delmas, Dominique; Cherkaoui-Malki, Mustapha; Latruffe, Norbert

    2016-01-01

    State of the art. Osteoarthritis (OA) is a chronic articular disease characterized by cartilage degradation and osteophyte formation. OA physiopathology is multifactorial and involves mechanical and hereditary factors. So far, there is neither preventive medicine to delay cartilage breakdown nor curative treatment. Objectives. To investigate pro-inflammatory paracrine interactions between human primary chondrocytes and macrophages following interleukin-1-β (IL-1β) treatment; to evaluate the molecular mechanism responsible for the inhibitory effect of resveratrol. Results. The activation of NF-κB in chondrocytes by IL-1β induced IL-6 secretion. The latter will then activate STAT3 protein in macrophages. Moreover, STAT3 was able to positively regulate IL-6 secretion, as confirmed by the doubling level of IL-6 in the coculture compared to macrophage monoculture. These experiments confirm the usefulness of the coculture model in the inflammatory arthritis-linked process as a closer biological situation to the synovial joint than separated chondrocytes and macrophages. Il also demonstrated the presence of an inflammatory amplification loop induced by IL-1β. Resveratrol showed a strong inhibitory effect on the pro-inflammatory marker secretion. The decrease of IL-6 secretion is dependent on the NFκB inhibition in the chondrocytes. Such reduction of the IL-6 level can limit STAT3 activation in the macrophages, leading to the interruption of the inflammatory amplification loop. Conclusion. These results increase our understanding of the anti-inflammatory actions of resveratrol and open new potential approaches to prevent and treat osteoarthritis. PMID:27187448

  16. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells

    PubMed Central

    Gudjonsson, Thorarinn; Karason, Sigurbergur

    2015-01-01

    Mechanical ventilation (MV) of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP) gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37). Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR) 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses. PMID:26664810

  17. Pattern of pro-inflammatory cytokine induction in RAW264.7 mouse macrophages is identical for virulent and attenuated Borrelia burgdorferi1

    PubMed Central

    Wang, Guiqing; Petzke, Mary M.; Iyer, Radha; Wu, Hongyan; Schwartz, Ira

    2008-01-01

    Lyme disease pathogenesis results from a complex interaction between Borrelia burgdorferi and the host immune system. The intensity and nature of the inflammatory response of host immune cells to B. burgdorferi may be a determining factor in disease progression. Gene array analysis was used to examine the expression of genes encoding cytokines, chemokines, and related factors in the joint tissue of infected C3H/HeJ mice and in a murine macrophage-like cell line in response to a disseminating or attenuated clinical isolate of B. burgdorferi. Both isolates elicited a robust pro-inflammatory response in RAW264.7 cells characterized by an increase in transcript levels of genes encoding CC and CXC chemokines, pro-inflammatory cytokines, and TNF superfamily members. Transcription of genes encoding IL-1β, IL-6, MCP-1, MIP-1α, CXCR4 and TLR2 induced in RAW264.7 cells by either live or heat-killed spirochetes did not differ significantly at any time point over a 24-hour period, nor was there a difference in the protein levels of IL-10, TNF-α, IL-6 and IL-12p70 in culture supernatants. Thus, induction of host macrophage expression of pro-inflammatory mediators by host macrophages does not contribute to the differential pathogenicity of different B. burgdorferi strains. PMID:18523297

  18. Flavocoxid, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, blunts pro-inflammatory phenotype activation in endotoxin-stimulated macrophages

    PubMed Central

    Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, BP; Di Stefano, V; Minutoli, L

    2009-01-01

    Background and purpose: The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. Experimental approach: LPS-stimulated (1 µg·mL−1) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32–128 µg·mL−1) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein κB-α (IκB-α) levels were evaluated by Western blot analysis. Nuclear factor κB (NF-κB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-α (TNF-α) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. Key results: LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 µg·mL−1) significantly inhibited COX-2 (LPS = 18 ± 2.1; flavocoxid = 3.8 ± 0.9 integrated intensity), 5-LOX (LPS = 20 ± 3.8; flavocoxid = 3.1 ± 0.8 integrated intensity) and iNOS expression (LPS = 15 ± 1.1; flavocoxid = 4.1 ± 0.4 integrated intensity), but did not modify COX-1 expression. PGE2 and LTB4 levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IκB-α protein (LPS = 1.9 ± 0.2; flavocoxid = 7.2 ± 1.6 integrated intensity), blunted increased NF-κB binding activity (LPS = 9.2 ± 2; flavocoxid = 2.4 ± 0.7 integrated intensity) and the

  19. Pro-inflammatory effects of a litchi protein extract in murine RAW264.7 macrophages

    PubMed Central

    Wang, Xiaoli; Hu, Xiaorong; Yan, Huiqing; Ma, Zhaocheng; Deng, Xiuxin

    2016-01-01

    It has been observed that the consumption of litchi often causes symptoms characterized by itching or sore throat, gum swelling, oral cavity ulcers and even fever and inflammation, which significantly impair the quality of life of a large population. Using the RAW264.7 cell line, a step-by-step strategy was used to screen for the components in litchi fruits that elicited adverse reactions. The adverse reaction fractions were identified by mass spectrometry and analyzed using the SMART program, and a sequence alignment of the homologous proteins was performed. MTT tests were used to determine the cytotoxicity of a litchi protein extract in RAW264.7 macrophages, and real-time PCR was applied to analyze the expression of inflammatory genes in the RAW264.7 cells treated with lipopolysaccharide or the litchi protein extract. The results showed that the litchi water-soluble protein extract could increase the production of the pro-inflammatory mediators IL-1β, iNOS and COX-2, and the anti-inflammatory mediator HO-1 in the RAW264.7 cell line. The 14-3-3-like proteins GF14 lambda, GF14 omega and GF14 upsilon were likely the candidate proteins that caused the adverse effects. PMID:27195125

  20. Altered Expression of Pro-inflammatory Cytokines in Ovarian Follicles of Cows with Cystic Ovarian Disease.

    PubMed

    Baravalle, M E; Stassi, A F; Velázquez, M M L; Belotti, E M; Rodríguez, F M; Ortega, H H; Salvetti, N R

    2015-01-01

    A growing body of evidence suggests that ovulation shares many of the features of an inflammatory reaction and that cytokines play many diverse and important roles in reproductive biology. The aim of this study was to examine the expression of the pro-inflammatory cytokines interleukin (IL)-1α, IL-6 and tumour necrosis factor (TNF)-α in ovarian cells from cows with cystic ovarian disease (COD) as compared with that in ovarian structures from regularly cycling cows. Expression of genes encoding IL-1α, IL-6 and TNF-α was detected by real-time polymerase chain reaction in follicular cells from ovaries from healthy cows and cows with COD with no significant differences. However, immunohistochemistry showed increased expression of IL-1α, IL-6 and TNF-α in cystic follicles, suggesting that this expression may be related to the persistence of follicular cysts. The effect of COD was evident for IL-1α and TNF-α, and a follicular structure-disease interaction was observed in the expression of all the cytokines evaluated. Thus, altered expression of these proinflammatory cytokines may be related to ovulation failure and development of follicular cysts. PMID:26065705

  1. Intensity modulated radiotherapy induces pro-inflammatory and pro-survival responses in prostate cancer patients

    PubMed Central

    EL-SAGHIRE, HOUSSEIN; VANDEVOORDE, CHARLOT; OST, PIET; MONSIEURS, PIETER; MICHAUX, ARLETTE; DE MEERLEER, GERT; BAATOUT, SARAH; THIERENS, HUBERT

    2014-01-01

    Intensity modulated radiotherapy (IMRT) is one of the modern conformal radiotherapies that is widely used within the context of cancer patient treatment. It uses multiple radiation beams targeted to the tumor, however, large volumes of the body receive low doses of irradiation. Using γ-H2AX and global genome expression analysis, we studied the biological responses induced by low doses of ionizing radiation in prostate cancer patients following IMRT. By means of different bioinformatics analyses, we report that IMRT induced an inflammatory response via the induction of viral, adaptive, and innate immune signaling. In response to growth factors and immune-stimulatory signaling, positive regulation in the progression of cell cycle and DNA replication were induced. This denotes pro-inflammatory and pro-survival responses. Furthermore, double strand DNA breaks were induced in every patient 30 min after the treatment and remaining DNA repair and damage signaling continued after 18–24 h. Nine genes belonging to inflammatory responses (TLR3, SH2D1A and IL18), cell cycle progression (ORC4, SMC2 and CCDC99) and DNA damage and repair (RAD17, SMC6 and MRE11A) were confirmed by quantitative RT-PCR. This study emphasizes that the risk assessment of health effects from the out-of-field low doses during IMRT should be of concern, as these may increase the risk of secondary cancers and/or systemic inflammation. PMID:24435511

  2. Evidence for Status Epilepticus and Pro-Inflammatory Changes after Intranasal Kainic Acid Administration in Mice.

    PubMed

    Sabilallah, Mounira; Fontanaud, Pierre; Linck, Nathalie; Boussadia, Badreddine; Peyroutou, Ronan; Lasgouzes, Thibault; Rassendren, François A; Marchi, Nicola; Hirbec, Helene E

    2016-01-01

    Kainic acid (KA) is routinely used to elicit status epilepticus (SE) and epileptogenesis. Among the available KA administration protocols, intranasal instillation (IN) remains understudied. Dosages of KA were instilled IN in mice. Racine Scale and Video-EEG were used to assess and quantify SE onset. Time spent in SE and spike activity was quantified for each animal and confirmed by power spectrum analysis. Immunohistochemistry and qPCR were performed to define brain inflammation occurring after SE, including activated microglial phenotypes. Long term video-EEG recording was also performed. Titration of IN KA showed that a dose of 30 mg/kg was associated with low mortality while eliciting SE. IN KA provoked at least one behavioral and electrographic SE in the majority of the mice (>90%). Behavioral and EEG SE were accompanied by a rapid and persistent microglial-astrocytic cell activation and hippocampal neurodegeneration. Specifically, microglial modifications involved both pro- (M1) and anti-inflammatory (M2) genes. Our initial long-term video-EEG exploration conducted using a small cohort of mice indicated the appearance of spike activity or SE. Our study demonstrated that induction of SE is attainable using IN KA in mice. Typical pro-inflammatory brain changes were observed in this model after SE, supporting disease pathophysiology. Our results are in favor of the further development of IN KA as a means to study seizure disorders. A possibility for tailoring this model to drug testing or to study mechanisms of disease is offered. PMID:26963100

  3. Evidence for Status Epilepticus and Pro-Inflammatory Changes after Intranasal Kainic Acid Administration in Mice

    PubMed Central

    Sabilallah, Mounira; Fontanaud, Pierre; Linck, Nathalie; Boussadia, Badreddine; Peyroutou, Ronan; Lasgouzes, Thibault; Rassendren, François A.

    2016-01-01

    Kainic acid (KA) is routinely used to elicit status epilepticus (SE) and epileptogenesis. Among the available KA administration protocols, intranasal instillation (IN) remains understudied. Dosages of KA were instilled IN in mice. Racine Scale and Video-EEG were used to assess and quantify SE onset. Time spent in SE and spike activity was quantified for each animal and confirmed by power spectrum analysis. Immunohistochemistry and qPCR were performed to define brain inflammation occurring after SE, including activated microglial phenotypes. Long term video-EEG recording was also performed. Titration of IN KA showed that a dose of 30 mg/kg was associated with low mortality while eliciting SE. IN KA provoked at least one behavioral and electrographic SE in the majority of the mice (>90%). Behavioral and EEG SE were accompanied by a rapid and persistent microglial-astrocytic cell activation and hippocampal neurodegeneration. Specifically, microglial modifications involved both pro- (M1) and anti-inflammatory (M2) genes. Our initial long-term video-EEG exploration conducted using a small cohort of mice indicated the appearance of spike activity or SE. Our study demonstrated that induction of SE is attainable using IN KA in mice. Typical pro-inflammatory brain changes were observed in this model after SE, supporting disease pathophysiology. Our results are in favor of the further development of IN KA as a means to study seizure disorders. A possibility for tailoring this model to drug testing or to study mechanisms of disease is offered. PMID:26963100

  4. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases. PMID:26276128

  5. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles.

    PubMed

    Giovanni, Marcella; Yue, Junqi; Zhang, Lifeng; Xie, Jianping; Ong, Choon Nam; Leong, David Tai

    2015-10-30

    To cellular systems, nanoparticles are considered as foreign particles. Upon particles and cells contact, innate immune system responds by activating the inflammatory pathway. However, excessive inflammation had been linked to various diseases ranging from allergic responses to cancer. Common nanoparticles, namely silver, titanium dioxide, and zinc oxide exist in the environment as well as in consumer products at ultralow level of 10(-6)-10(-3) μg mL(-1). However, so far the risks of such low NPs concentrations remain unexplored. Therefore, we attempted to screen the pro-inflammatory responses after ultralow concentration treatments of the three nanoparticles on RAW264.7 macrophages, which are a part of the immune system, at both cellular and gene levels. Even though cytotoxicity was only observed at nanoparticles concentrations as high as 10 μg mL(-1), through the level of NF-κB and upregulation of pro-inflammatory genes, we observed activation of the induction of genes encoding pro-inflammatory cytokines starting already at 10(-7) μg mL(-1). This calls for more thorough characterization of nanoparticles in the environment as well as in consumer products to ascertain the health and safety of the consumers and living systems in general. PMID:25956645

  6. Increased Peripheral Blood Pro-Inflammatory/Cytotoxic Lymphocytes in Children with Bronchiectasis

    PubMed Central

    Hodge, G.; Upham, J. W.; Chang, A. B.; Baines, K. J.; Yerkovich, S. T.; Pizzutto, S. J.; Hodge, S.

    2015-01-01

    Objective Bronchiectasis (BE) in children is common in some communities including Indigenous children in Australia. Relatively little is known about the nature of systemic inflammation in these children, especially the contribution of specific pro-inflammatory and cytotoxic lymphocyte subsets: T-cells, natural killer (NK) cells and NKT-like cells. We have shown that these cells produce increased cytotoxic (granzyme b and perforin) and inflammatory (IFNγ and TNFα) mediators in several adult chronic lung diseases and hypothesised that similar changes would be evident in children with BE. Methods Intracellular cytotoxic mediators perforin and granzyme b and pro-inflammatory cytokines were measured in T cell subsets, NKT-like and NK cells from blood and bronchoalveolar samples from 12 children with BE and 10 aged-matched control children using flow cytometry. Results There was a significant increase in the percentage of CD8+ T cells and T and NKT-like subsets expressing perforin/granzyme and IFNγ and TNFα in blood in BE compared with controls. There was a further increase in the percentage of pro-inflammatory cytotoxic T cells in Indigenous compared with non-Indigenous children. There was no change in any of these mediators in BAL. Conclusions Childhood bronchiectasis is associated with increased systemic pro-inflammatory/cytotoxic lymphocytes in the peripheral blood. Future studies need to examine the extent to which elevated levels of pro-inflammatory cytotoxic cells predict future co-morbidities. PMID:26258716

  7. Pro-inflammatory flagellin proteins of prevalent motile commensal bacteria are variably abundant in the intestinal microbiome of elderly humans.

    PubMed

    Neville, B Anne; Sheridan, Paul O; Harris, Hugh M B; Coughlan, Simone; Flint, Harry J; Duncan, Sylvia H; Jeffery, Ian B; Claesson, Marcus J; Ross, R Paul; Scott, Karen P; O'Toole, Paul W

    2013-01-01

    Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute "cell motility" category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the β- and γ- proteobacteria. Many fliC genes were deduced to be under the control of σ(28). The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13-4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (≤1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved

  8. Pro-Inflammatory Flagellin Proteins of Prevalent Motile Commensal Bacteria Are Variably Abundant in the Intestinal Microbiome of Elderly Humans

    PubMed Central

    Neville, B. Anne; Sheridan, Paul O.; Harris, Hugh M. B.; Coughlan, Simone; Flint, Harry J.; Duncan, Sylvia H.; Jeffery, Ian B.; Claesson, Marcus J.; Ross, R. Paul; Scott, Karen P.; O'Toole, Paul W.

    2013-01-01

    Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute “cell motility” category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the β- and γ- proteobacteria. Many fliC genes were deduced to be under the control of σ28. The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13–4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (≤1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved

  9. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    PubMed

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway. PMID:27066978

  10. Fibroblasts profiling in scarring trachoma identifies IL-6 as a functional component of a fibroblast-macrophage pro-fibrotic and pro-inflammatory feedback loop.

    PubMed

    Kechagia, Jenny Z; Ezra, Daniel G; Burton, Matthew J; Bailly, Maryse

    2016-01-01

    Trachoma is a conjunctiva scarring disease, which is the leading infectious cause of blindness worldwide. Yet, the molecular mechanisms underlying progressive fibrosis in trachoma are unknown. To investigate the contribution of local resident fibroblasts to disease progression, we isolated conjunctival fibroblasts from patients with scarring trachoma and matching control individuals, and compared their gene expression profiles and functional properties in vitro. We show that scarring trachoma fibroblasts substantially differ from control counterparts, displaying pro-fibrotic and pro-inflammatory features matched by an altered gene expression profile. This pro-inflammatory signature was exemplified by increased IL-6 expression and secretion, and a stronger response to macrophage-mediated stimulation of contraction. We further demonstrate that scarring trachoma fibroblasts can promote Akt phosphorylation in macrophages in an IL-6 -dependent manner. Overall this work has uncovered a distinctive molecular fingerprint for scarring trachoma fibroblasts, and identified IL-6- as a potential contributor to the chronic conjunctival fibrosis, mediating reciprocal pro-fibrotic/pro-inflammatory interactions between macrophages and fibroblasts. PMID:27321784

  11. Fibroblasts profiling in scarring trachoma identifies IL-6 as a functional component of a fibroblast-macrophage pro-fibrotic and pro-inflammatory feedback loop

    PubMed Central

    Kechagia, Jenny Z.; Ezra, Daniel G.; Burton, Matthew J.; Bailly, Maryse

    2016-01-01

    Trachoma is a conjunctiva scarring disease, which is the leading infectious cause of blindness worldwide. Yet, the molecular mechanisms underlying progressive fibrosis in trachoma are unknown. To investigate the contribution of local resident fibroblasts to disease progression, we isolated conjunctival fibroblasts from patients with scarring trachoma and matching control individuals, and compared their gene expression profiles and functional properties in vitro. We show that scarring trachoma fibroblasts substantially differ from control counterparts, displaying pro-fibrotic and pro-inflammatory features matched by an altered gene expression profile. This pro-inflammatory signature was exemplified by increased IL-6 expression and secretion, and a stronger response to macrophage-mediated stimulation of contraction. We further demonstrate that scarring trachoma fibroblasts can promote Akt phosphorylation in macrophages in an IL-6 –dependent manner. Overall this work has uncovered a distinctive molecular fingerprint for scarring trachoma fibroblasts, and identified IL-6- as a potential contributor to the chronic conjunctival fibrosis, mediating reciprocal pro-fibrotic/pro-inflammatory interactions between macrophages and fibroblasts. PMID:27321784

  12. The importance of balanced pro-inflammatory and anti-inflammatory mechanisms in diffuse lung disease

    PubMed Central

    Keane, Michael P; Strieter, Robert M

    2002-01-01

    The lung responds to a variety of insults in a remarkably consistent fashion but with inconsistent outcomes that vary from complete resolution and return to normal to the destruction of normal architecture and progressive fibrosis. Increasing evidence indicates that diffuse lung disease results from an imbalance between the pro-inflammatory and anti-inflammatory mechanisms, with a persistent imbalance that favors pro-inflammatory mediators dictating the development of chronic diffuse lung disease. This review focuses on the mediators that influence this imbalance. PMID:11806840

  13. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats

    PubMed Central

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    Objectives HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. Methods The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. Results HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. Conclusion HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders. PMID:26125554

  14. Ultrafine particles from diesel vehicle emissions at different driving cycles induce differential vascular pro-inflammatory responses: Implication of chemical components and NF-κB signaling

    PubMed Central

    2010-01-01

    Background Epidemiological evidence supports the association between exposure to ambient particulate matter (PM) and cardiovascular diseases. Chronic exposure to ultrafine particles (UFP; Dp <100 nm) is reported to promote atherosclerosis in ApoE knockout mice. Atherogenesis-prone factors induce endothelial dysfunction that contributes to the initiation and progression of atherosclerosis. We previously demonstrated that UFP induced oxidative stress via c-Jun N-terminal Kinases (JNK) activation in endothelial cells. In this study, we investigated pro-inflammatory responses of human aortic endothelial cells (HAEC) exposed to UFP emitted from a diesel truck under an idling mode (UFP1) and an urban dynamometer driving schedule (UFP2), respectively. We hypothesize that UFP1 and UFP2 with distinct chemical compositions induce differential pro-inflammatory responses in endothelial cells. Results UFP2 contained a higher level of redox active organic compounds and metals on a per PM mass basis than UFP1. While both UFP1 and UFP2 induced superoxide production and up-regulated stress response genes such as heme oxygenease-1 (HO-1), OKL38, and tissue factor (TF), only UFP2 induced the expression of pro-inflammatory genes such as IL-8 (2.8 ± 0.3-fold), MCP-1 (3.9 ± 0.4-fold), and VCAM (6.5 ± 1.1-fold) (n = 3, P < 0.05). UFP2-exposed HAEC also bound to a higher number of monocytes than UFP1-exposed HAEC (Control = 70 ± 7.5, UFP1 = 106.7 ± 12.5, UFP2 = 137.0 ± 8.0, n = 3, P < 0.05). Adenovirus NF-κB Luciferase reporter assays revealed that UFP2, but not UFP1, significantly induced NF-κB activities. NF-κB inhibitor, CAY10512, significantly abrogated UFP2-induced pro-inflammatory gene expression and monocyte binding. Conclusion While UFP1 induced higher level of oxidative stress and stress response gene expression, only UFP2, with higher levels of redox active organic compounds and metals, induced pro-inflammatory responses via NF-κB signaling. Thus, UFP with distinct

  15. The effect of the pro-inflammatory cytokine tumor necrosis factor-alpha on human joint capsule myofibroblasts

    PubMed Central

    2010-01-01

    Introduction Previous studies have shown that the number of myoblastically differentiated fibroblasts known as myofibroblasts (MFs) is significantly increased in stiff joint capsules, indicating their crucial role in the pathogenesis of post-traumatic joint stiffness. Although the mode of MFs' function has been well defined for different diseases associated with tissue fibrosis, the underlying mechanisms of their regulation in the pathogenesis of post-traumatic joint capsule contracture are largely unknown. Methods In this study, we examined the impact of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) on cellular functions of human joint capsule MFs. MFs were challenged with different concentrations of TNF-α with or without both its specifically inactivating antibody infliximab (IFX) and cyclooxygenase-2 (COX2) inhibitor diclofenac. Cell proliferation, gene expression of both alpha-smooth muscle actin (α-SMA) and collagen type I, the synthesis of prostaglandin derivates E2, F1A, and F2A, as well as the ability to contract the extracellular matrix were assayed in monolayers and in a three-dimensional collagen gel contraction model. The α-SMA and COX2 protein expressions were evaluated by immunofluorescence staining and Western blot analysis. Results The results indicate that TNF-α promotes cell viability and proliferation of MFs, but significantly inhibits the contraction of the extracellular matrix in a dose-dependent manner. This effect was associated with downregulation of α-SMA and collagen type I by TNF-α application. Furthermore, we found a significant time-dependent upregulation of prostaglandin E2 synthesis upon TNF-α treatment. The effect of TNF-α on COX2-positive MFs could be specifically prevented by IFX and partially reduced by the COX2 inhibitor diclofenac. Conclusions Our results provide evidence that TNF-α specifically modulates the function of MFs through regulation of prostaglandin E2 synthesis and therefore may play a

  16. Susceptibility of brown adipocytes to pro-inflammatory cytokine toxicity and reactive oxygen species

    PubMed Central

    Rebiger, Lars; Lenzen, Sigurd; Mehmeti, Ilir

    2016-01-01

    Brown adipose tissue (BAT) cells have a very high oxidative capacity. On the other hand, in obesity and obesity-related diabetes, levels of pro-inflammatory cytokines are elevated, which might promote BAT dysfunction and consequently impair carbohydrate metabolism and thereby exacerbate cellular dysfunction and promote diabetes progression. Therefore, the antioxidative enzyme status of a brown adipocyte cell line and its susceptibility towards pro-inflammatory cytokines, which participate in the pathogenesis of diabetes, and reactive oxygen species (ROS) were analysed. Mature brown adipocytes exhibited significantly higher levels of expression of mitochondrially and peroxisomally located antioxidative enzymes compared with non-differentiated brown adipocytes. Pro-inflammatory cytokines induced a significant decrease in the viability of differentiated brown adipocytes, which was accompanied by a massive ROS production and down-regulation of BAT-specific markers, such as uncoupling protein 1 (UCP-1) and β-Klotho. Taken together, the results strongly indicate that pro-inflammatory cytokines cause brown adipocyte dysfunction and death through suppression of BAT-specific proteins, especially of UCP-1 and β-Klotho, and consequently increased oxidative stress. PMID:26795216

  17. Pro-inflammatory effects of metals in persons and animals exposed to tobacco smoke.

    PubMed

    Milnerowicz, Halina; Ściskalska, Milena; Dul, Magdalena

    2015-01-01

    Metals present in tobacco smoke have the ability to cause a pro-oxidant/antioxidant imbalance through the direct generation of free radicals in accordance with the Fenton or Haber-Weiss reaction and redox properties. Metals can also interact with antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and small molecular antioxidants (glutathione) through binding to SH groups or by replacement of metals ions in the catalytic center of enzymes. Excessive free radicals production can induce an inflammatory response. The aim of this study was to review the information on the induction of inflammation by metals present in tobacco smoke such as lead (Pb), cadmium (Cd), arsenic (As), aluminum (Al), nickel (Ni) and mercury (Hg). In cellular immune response, it was demonstrated that radicals induced by metals can disrupt the transcription signaling pathway mediated by the mitogen-activated protein kinase (induced by Pb), NLRP3-ASC-caspase 1 (induced by Ni), tyrosine kinase Src (induced by As) and the nuclear factor κB (induced by Pb, Ni, Hg). The result of this is a gene transcription for early inflammatory cytokines, such as Interleukine 1β, Interleukine 6, and Tumor necrosis factor α). These cytokines can cause leukocytes recruitment and secretions of other pro-inflammatory cytokines and chemokines, which intensifies the inflammatory response. Some metals, such as cadmium (Cd), can activate an inflammatory response through tissue damage induction mediated by free radicals, which also results in leukocytes recruitment and cytokines secretions. Inflammation generated by metals can be reduced by metallothionein, which has the ability to scavenge free radicals and bind toxic metals through the release of Zn and oxidation of SH groups. PMID:24916792

  18. Allograft Inflammatory Factor 1 Functions as a Pro-Inflammatory Cytokine in the Oyster, Crassostrea ariakensis

    PubMed Central

    Xu, Ting; Liu, Xiao; Wu, Xinzhong

    2014-01-01

    The oyster Crassostrea ariakensis is an economically important bivalve species in China, unfortunately it has suffered severe mortalities in recent years caused by rickettsia-like organism (RLO) infection. Prevention and control of this disease is a priority for the development of oyster aquaculture. Allograft inflammatory factor-1 (AIF-1) was identified as a modulator of the immune response during macrophage activation and a key gene in host immune defense reaction and inflammatory response. Therefore we investigated the functions of C. ariakensis AIF-1 (Ca-AIF1) and its antibody (anti-CaAIF1) in oyster RLO/LPS-induced disease and inflammation. Ca-AIF1 encodes a 149 amino acid protein containing two typical Ca2+ binding EF-hand motifs and shares a 48–95% amino acid sequence identity with other animal AIF-1s. Tissue-specific expression analysis indicates that Ca-AIF1 is highly expressed in hemocytes. Significant and continuous up-regulation of Ca-AIF1 is detected when hemocytes are stimulated with RLO/LPS (RLO or LPS). Treatment with recombinant Ca-AIF1 protein significantly up-regulates the expression levels of LITAF, MyD88 and TGFβ. When anti-CaAIF1 antibody is added to RLO/LPS-challenged hemocyte monolayers, a significant reduction of RLO/LPS-induced LITAF is observed at 1.5–12 h after treatment, suggesting that interference with Ca-AIF1 can suppress the inflammatory response. Furthermore, flow cytometric analysis indicated that anti-CaAIF1 administration reduces RLO/LPS-induced apoptosis and necrosis rates of hemocytes. Collectively these findings suggest that Ca-AIF1 functions as a pro-inflammatory cytokine in the oyster immune response and is a potential target for controlling RLO infection and LPS-induced inflammation. PMID:24759987

  19. Blockade of the MEK/ERK pathway with a raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model.

    PubMed

    Maddahi, Aida; Ansar, Saema; Chen, Qingwen; Edvinsson, Lars

    2011-01-01

    Cerebral ischemia that develops after subarachnoid hemorrhage (SAH) carries high morbidity and mortality. Inflammatory mediators are involved in the development of cerebral ischemia through activation of the mitogen-activated protein kinase pathway. We hypothesized that blockade of the MAPkinase/ERK (MEK)/extracellular signal-regulated kinase (ERK) pathway upstream with a specific raf inhibitor would prevent SAH-induced activation of the cerebrovascular inflammatory response. The raf inhibitor SB-386023-b was injected intracisternally in our rat model at 0, 6, or 12 hours after the SAH. After 48 hours, cerebral arteries were harvested, and iNOS, interleukin (IL)-6, IL-1β, matrix metalloproteinase (MMP)-9, tissue inhibitors of metalloproteinase (TIMP)-1, and phosphorylated ERK1/2 were investigated by immunofluorescence, real-time polymerase chain reaction (PCR), and Western blot analysis. Cerebral blood flow (CBF) was measured using autoradiography. Protein levels of MMP-9, TIMP-1, iNOS, IL-6, and IL-1β were increased after SAH, as were mRNA levels of IL-6, MMP-9, and TIMP-1. After SAH, pERK1/2 was increased, but CBF was reduced. Treatment with SB-386023-b at 0 or 6 hours after SAH normalized CBF and prevented SAH-induced upregulation of MMPs, pro-inflammatory cytokines, and pERK1/2 proteins. These results suggested that inhibition of MEK/ERK signal transduction by a specific raf inhibitor administered up to 6 hours after SAH normalized the expression of pro-inflammatory mediators and extracellular matrix-related genes. PMID:20424636

  20. Blockade of the MEK/ERK pathway with a raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model

    PubMed Central

    Maddahi, Aida; Ansar, Saema; Chen, Qingwen; Edvinsson, Lars

    2011-01-01

    Cerebral ischemia that develops after subarachnoid hemorrhage (SAH) carries high morbidity and mortality. Inflammatory mediators are involved in the development of cerebral ischemia through activation of the mitogen-activated protein kinase pathway. We hypothesized that blockade of the MAPkinase/ERK (MEK)/extracellular signal-regulated kinase (ERK) pathway upstream with a specific raf inhibitor would prevent SAH-induced activation of the cerebrovascular inflammatory response. The raf inhibitor SB-386023-b was injected intracisternally in our rat model at 0, 6, or 12 hours after the SAH. After 48 hours, cerebral arteries were harvested, and iNOS, interleukin (IL)-6, IL-1β, matrix metalloproteinase (MMP)-9, tissue inhibitors of metalloproteinase (TIMP)-1, and phosphorylated ERK1/2 were investigated by immunofluorescence, real-time polymerase chain reaction (PCR), and Western blot analysis. Cerebral blood flow (CBF) was measured using autoradiography. Protein levels of MMP-9, TIMP-1, iNOS, IL-6, and IL-1β were increased after SAH, as were mRNA levels of IL-6, MMP-9, and TIMP-1. After SAH, pERK1/2 was increased, but CBF was reduced. Treatment with SB-386023-b at 0 or 6 hours after SAH normalized CBF and prevented SAH-induced upregulation of MMPs, pro-inflammatory cytokines, and pERK1/2 proteins. These results suggested that inhibition of MEK/ERK signal transduction by a specific raf inhibitor administered up to 6 hours after SAH normalized the expression of pro-inflammatory mediators and extracellular matrix-related genes. PMID:20424636

  1. Puerperal influence of bovine uterine health status on the mRNA expression of pro-inflammatory factors.

    PubMed

    Peter, S; Michel, G; Hahn, A; Ibrahim, M; Lubke-Becker, A; Jung, M; Einspanier, R; Gabler, C

    2015-06-01

    After parturition, uterine bacterial infections lead to inflammatory processes such as subclinical/clinical endometritis with high prevalence in dairy cows. Endometrial epithelial cells participate in this immune response with the production of pro-inflammatory factors. The objective of the present study was to evaluate the endometrial mRNA expression pattern of pro-inflammatory factors during a selected postpartum (pp) period. Dairy cows with three different uterine health conditions on days 24-30 pp (healthy: n = 11, subclinical endometritis: n = 10, clinical endometritis: n = 10) were sampled using the cytobrush technique. Subsequently, each cow was sampled 3 more times in weekly intervals (days 31-37 pp; days 38-44 pp; days 45-51 pp). Samples were subjected to mRNA analysis performed by RT-qPCR. Additionally, an analysis of cultivable bacteria was performed at the early/late stage of the selected puerperal period. mRNA expression of 16 candidate genes was analyzed by using two different approaches. The first approach referred to the initial grouping on days 24-30 pp to reveal long-term effects of the uterine health on the subsequent puerperal period. The second approach considered the current uterine health status at each sampling to elucidate the impact of different points in time. Long-term effects seem to appear for chemokines, prostacyclin synthase and prostaglandin D2 synthase. If related to the current uterine health, the majority of candidate genes were significantly higher expressed in endometritic cows on days 45-51 pp in contrast to earlier stages of the puerperium. Microbiological analysis revealed the significantly higher prevalence of Trueperella pyogenes findings in cows with clinical endometritis on days 24-30 pp, but no correlations were found on days 45-51 pp. In conclusion, a strong immune response to subclinical/clinical endometritis in the late puerperium may be related to the negative impact of these conditions on reproductive performance

  2. Preferential expansion of pro-inflammatory Tregs in human non-small cell lung cancer

    PubMed Central

    Phillips, Joseph D.; Blatner, Nichole R.; Haghi, Leila; DeCamp, Malcolm M.; Meyerson, Shari L.; Heiferman, Michael J.; Heiferman, Jeffrey R.; Gounari, Fotini; Bentrem, David J.; Khazaie, Khashayarsha

    2016-01-01

    Objectives Lung cancer is the leading cause of cancer-related death in the USA. Regulatory T cells (Tregs) normally function to temper immune responses and decrease inflammation. Previous research has demonstrated different subsets of Tregs with contrasting anti- or pro-inflammatory properties. This study aimed to determine Treg subset distributions and characteristics present in non-small cell lung cancer (NSCLC) patients. Methods Peripheral blood was collected from healthy controls (HC) and NSCLC patients preceding surgical resection, and mononuclear cells were isolated, stained, and analyzed by flow cytometry. Tregs were defined by expression of CD4 and CD25 and classified into CD45RA+Foxp3int (naïve, Fr. I) or CD45RA−Foxp3hi (activated Fr. II). Activated conventional T cells were CD4+CD45RA−Foxp3int (Fr. III). Results Samples from 23 HC and 26 NSCLC patients were collected. Tregs isolated from patients with NSCLC were found to have enhanced suppressive function on naive T cells. Cancer patients had significantly increased frequencies of activated Tregs (fraction II: FrII), 17.5 versus 3.2 % (P < 0.001). FrII Tregs demonstrated increased RORγt and IL17 expression and decreased IL10 expression compared to Tregs from HC, indicating pro-inflammatory characteristics. Conclusions This study demonstrates that a novel subset of Tregs with pro-inflammatory characteristics preferentially expand in NSCLC patients. This Treg subset appears identical to previously reported pro-inflammatory Tregs in human colon cancer patients and in mouse models of polyposis. We expect the pro-inflammatory Tregs in lung cancer to contribute to the immune pathogenesis of disease and propose that targeting this Treg subset may have protective benefits in NSCLC. PMID:26047578

  3. Inhibitory effect of selected medicinal plants on the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated human peripheral blood mononuclear cells.

    PubMed

    Salim, Emil; Kumolosasi, Endang; Jantan, Ibrahim

    2014-07-01

    The inhibitory activities of the methanol extracts from 20 selected medicinal plants on the release of pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) were evaluated. The major compound from the most active plant extract was also investigated. The inhibitory effect of the methanol extracts on the release of pro-inflammatory cytokines was tested by incubating PBMCs with the sample and then stimulating by lipopolysaccharide at 0.1 μg/ml. The level of cytokines was determined using enzyme-linked immunosorbent assay. Among the extracts tested, Andrographis paniculata extract demonstrated the strongest inhibition of interleukin (IL)-1β, IL-1α, and IL-6 release, with IC50 values of 1.54, 1.06, and 0.74 μg/ml, respectively. The IC50 value of A. paniculata extract was significantly higher than that of andrographolide on IL-1α, IL-1β, and IL-6 (p < 0.001) release. The IC50 values of andrographolide for IL-1α, IL-1β, and IL-6 were significantly higher (p < 0.001) than that of dexamethasone. Cymbopogon citratus and Zingiber officinale strongly inhibited the release of IL-1β, with IC50 values of 3.22 and 3.17 μg/ml, respectively. To our knowledge, this is the first report that A. paniculata extract and its major compound andrographolide strongly inhibited the release of IL-1α, whereas previous studies only showed their inhibitory effect on the release of another IL-1 family member, IL-1β. The results show that these extracts and this compound have potential effects as anti-inflammatory agents by inhibiting the release of pro-inflammatory cytokines. PMID:24799081

  4. Pro-inflammatory signaling by 24,25-dihydroxyvitamin D3 in HepG2 cells.

    PubMed

    Wehmeier, Kent; Onstead-Haas, Luisa M; Wong, Norman C W; Mooradian, Arshag D; Haas, Michael J

    2016-08-01

    The vitamin D metabolite 24,25-dihydroxyvitamin D3 (24, 25[OH]2D3) was shown to induce nongenomic signaling pathways in resting zone chondrocytes and other cells involved in bone remodeling. Recently, our laboratory demonstrated that 24,25-[OH]2D3 but not 25-hydroxyvitamin D3, suppresses apolipoprotein A-I (apo A-I) gene expression and high-density lipoprotein (HDL) secretion in hepatocytes. Since 24,25-[OH]2D3 has low affinity for the vitamin D receptor (VDR) and little is known with regard to how 24,25-[OH]2D3 modulates nongenomic signaling in hepatocytes, we investigated the capacity of 24,25-[OH]2D3 to activate various signaling pathways relevant to apo A-I synthesis in HepG2 cells. Treatment with 24,25-[OH]2D3 resulted in decreased peroxisome proliferator-activated receptor alpha (PPARα) expression and retinoid-X-receptor alpha (RXRα) expression. Similarly, treatment of hepatocytes with 50 nM 24,25-[OH]2D3 for 1-3 h induced PKCα activation as well as c-jun-N-terminal kinase 1 (JNK1) activity and extracellular-regulated kinase 1/2 (ERK1/2) activity. These changes in kinase activity correlated with changes in c-jun phosphorylation, an increase in AP-1-dependent transcriptional activity, as well as repression of apo A-I promoter activity. Furthermore, treatment with 24,25-[OH]2D3 increased IL-1β, IL-6, and IL-8 expression by HepG2 cells. These observations suggest that 24,25-[OH]2D3 elicits several novel rapid nongenomic-mediated pro-inflammatory protein kinases targeting AP1 activity, increasing pro-inflammatory cytokine expression, potentially impacting lipid metabolism and hepatic function. PMID:27234962

  5. Involvement of de novo ceramide synthesis in pro-inflammatory adipokine secretion and adipocyte-macrophage interaction.

    PubMed

    Hamada, Yoji; Nagasaki, Hiroshi; Fujiya, Atsushi; Seino, Yusuke; Shang, Qing-Long; Suzuki, Takeshi; Hashimoto, Hiroyuki; Oiso, Yutaka

    2014-12-01

    Interaction between adipocytes and macrophages has been suggested to play a central role in the pathogenesis of obesity. Ceramide, a sphingolipid de novo synthesized from palmitate, is known to stimulate pro-inflammatory cytokine secretion from multiple types of cells. To clarify whether de novo synthesized ceramide contributes to cytokine dysregulation in adipocytes and macrophages, we observed cytokine secretion in mature 3T3-L1 adipocytes (L1) and RAW264.7 macrophages (RAW) cultured alone or co-cultured under the suppression of de novo ceramide synthesis. Palmitate enhanced ceramide accumulation and stimulated the expression and secretion of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) in L1. The suppression of serine-palmitoyl transferase, a rate-limiting enzyme of de novo ceramide synthesis, by myriocin or siRNA attenuated those palmitate-induced alterations, and a ceramide synthase inhibitor fumonisin B1 showed similar results. In contrast, the inhibitor of sphingosine kinase or a membrane-permeable ceramide analogue augmented the cytokine secretion. Myriocin effects on the palmitate-induced changes were not abrogated by toll-like receptor-4 blockade. Although palmitate stimulated RAW to secrete tumor necrosis factor-α (TNF-α), it did not significantly increase ceramide content, and neither myriocin nor fumonisin B1 attenuated the TNF-α hypersecretion. The co-culture of L1 with RAW markedly augmented IL-6 and MCP-1 levels in media. Myriocin or fumonisin B1 significantly lowered these cytokine levels and suppressed the gene expression of TNF-α and MCP-1 in RAW and of IL-6 and MCP-1 in L1. In conclusion, de novo synthesized ceramide partially mediates the palmitate effects on pro-inflammatory adipokines and is possibly involved in the interaction with macrophages. PMID:25283329

  6. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    PubMed

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-01

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases. PMID:18930730

  7. Endocytosis of pro-inflammatory cytokine receptors and its relevance for signal transduction.

    PubMed

    Hermanns, Heike M; Wohlfahrt, Julia; Mais, Christine; Hergovits, Sabine; Jahn, Daniel; Geier, Andreas

    2016-08-01

    The pro-inflammatory cytokines tumor necrosis factor (TNF), interleukin-1 (IL-1) and interleukin-6 (IL-6) are key players of the innate and adaptive immunity. Their activity needs to be tightly controlled to allow the initiation of an appropriate immune response as defense mechanism against pathogens or tissue injury. Excessive or sustained signaling of either of these cytokines leads to severe diseases, including rheumatoid arthritis, inflammatory bowel diseases (Crohn's disease, ulcerative colitis), steatohepatitis, periodic fevers and even cancer. Studies carried out in the last 30 years have emphasized that an elaborate control system for each of these cytokines exists. Here, we summarize what is currently known about the involvement of receptor endocytosis in the regulation of these pro-inflammatory cytokines' signaling cascades. Particularly in the last few years it was shown that this cellular process is far more than a mere feedback mechanism to clear cytokines from the circulation and to shut off their signal transduction. PMID:27071147

  8. Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis

    PubMed Central

    Mirantes, Cristina; Passegué, Emmanuelle; Pietras, Eric M.

    2014-01-01

    Hematopoiesis is the hierarchical process in which all lineages of blood cells are produced by self-renewing hematopoietic stem cells (HSCs) in the bone marrow (BM). While the regulatory factors that maintain proper HSC function and lineage output under normal conditions are well understood, significantly less is known about how HSC fate is regulated in response to inflammation or disease. As many blood disorders are associated with overproduction of pro-inflammatory cytokines, significant interest has emerged in understanding the impact of these factors on HSC function. In this review we highlight key advances demonstrating the impact of pro-inflammatory cytokines on the biology of HSCs and the BM niche, and address ongoing questions regarding their role in normal and pathogenic hematopoiesis. PMID:25149680

  9. α-enolase Causes Pro-Inflammatory Activation of Pulmonary Microvascular Endothelial Cells and Primes Neutrophils through Plasmin Activation of Protease-Activated Receptor-2

    PubMed Central

    Bock, Ashley; Tucker, Nicole; Kelher, Marguerite R.; Khan, Samina Y.; Gonzalez, Eduardo; Wohlauer, Max; Hansen, Kirk; Dzieciatkowska, Monika; Sauaia, Angels; Banerjee, Anirban; Moore, Ernest E.; Silliman, Christopher C.

    2015-01-01

    Pro-inflammatory activation of vascular endothelium leading to increased surface expression of adhesion molecules and neutrophil (PMN) sequestration and subsequent activation is paramount in the development of acute lung (ALI) and organ injury in injured patients. We hypothesize that α-enolase, which accumulates in injured patients primes PMNs and causes pro-inflammatory activation of endothelial cells leading to PMN-mediated cytotoxicity. Methods Proteomic analyses of field plasma samples from injured vs. healthy patients was used for protein identification. Human pulmonary microvascular endothelial cells (HMVECs) were incubated with α-enolase or thrombin, and ICAM-1 surface expression was measured by flow cytometry. A two-event in vitro model of PMN cytotoxicity HMVECs activated with α-enolase, thrombin, or buffer was used as targets for lysophosphatidylcholine-primed or buffer-treated PMNs. The PMN priming activity of α-enolase was completed, and lysates from both PMNs and HMVECs were immunoblotted for protease activated receptor-1 (PAR-1) and PAR-2 and co-precipitation of α-enolase with PAR-2 and plasminogen/plasmin. Results α-enolase increased 10.8-fold in injured patients (p<0.05). Thrombin and α-enolase significantly increased ICAM-1 surface expression on HMVECs, which was inhibited by anti-proteases, induced PMN adherence, and served as the first event in the two-event model of PMN cytotoxicity. α-enolase co-precipitated with PAR-2 and plasminogen/plasmin on HMVECs and PMNs and induced PMN priming, which was inhibited by tranexamic acid, and enzymatic activity was not required. We conclude that α-enolase increases post-injury and may activate pulmonary endothelial cells and prime PMNs through plasmin activity and PAR-2 activation. Such pro-inflammatory endothelial activation may predispose to PMN-mediated organ injury. PMID:25944790

  10. Selection for pro-inflammatory mediators yields chickens with increased resistance against Salmonella enterica serovar Enteritidis.

    PubMed

    Swaggerty, Christina L; Pevzner, Igal Y; Kogut, Michael H

    2014-03-01

    Salmonella is a leading cause of foodborne illness and can be transmitted through consumption of contaminated poultry; therefore, increasing a flock's natural resistance to Salmonella could improve food safety. Previously, we characterized the heterophil-mediated innate immune response of 2 parental broiler lines and F1 reciprocal crosses and showed that increased heterophil function and expression of pro-inflammatory mediators corresponds with increased resistance against diverse pathogens. A preliminary selection trial showed that individual sires had varying inherent levels of pro-inflammatory mediators and selection based on a high or low phenotype was passed onto progeny. Based on these results, we hypothesized selection of broilers for higher levels of the pro-inflammatory mediators IL-6, CXCLi2, and CCLi2 would produce progeny with increased resistance against Salmonella Enteritidis. Peripheral blood leukocytes were isolated from 75 commercial broiler sires, screened, and 10 naturally high and low expressing sires were selected and mated to randomly selected dams to produce the first generation of "high" and "low" progeny. The mRNA expression of CXCLi2 and CCLi2 were significantly (P ≤ 0.02) higher in the high progeny and were more resistant to liver and spleen organ invasion by Salmonella Enteritidis compared with low progeny. Production of the second generation yielded progeny that had differences (P ≤ 0.03) in all 3 mediators and further improved resistance against Salmonella Enteritidis. Feed conversion ratio and percent breast meat yield were calculated and were equal, whereas the high birds weighed slightly, but significantly, less than the low birds. These data clearly demonstrate that selection based on a higher phenotype of key pro-inflammatory mediators is a novel means to produce broilers that are naturally more resistant to Salmonella, one of the most important foodborne pathogens affecting the poultry industry. PMID:24604845

  11. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation.

    PubMed

    Oliveira, Marta I; Santos, Susana G; Oliveira, Maria J; Torres, Ana L; Barbosa, Mário A

    2012-01-01

    Macrophages and dendritic cells (DC) share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch), with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration. PMID:22828991

  12. Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells

    PubMed Central

    Pandiyan, Pushpa; Zhu, Jinfang

    2016-01-01

    CD4+CD25+Foxp3+ regulatory cells (Tregs) are a special lineage of cells central in the maintenance of immune homeostasis, and are targeted for human immunotherapy. They are conventionally associated with the production of classical anti-inflammatory cytokines such as IL-10, TGF-β and IL-35, consistent to their anti-inflammatory functions. However, emerging evidence show that they also express effector cytokines such as IFN-γ and IL-17A under inflammatory conditions. While some studies reveal that these pro-inflammatory cytokine producing Foxp3+ regulatory cells retain their suppressive ability, others believe that these cells are dys-regulated and are associated with perpetuation of immunopathology. Therefore the development of these cells may challenge the efficacy of human Treg therapy. Mechanistically, toll-like receptor (TLR) ligands and the pro-inflammatory cytokine milieu have been shown to play important roles in the induction of effector cytokines in Tregs. Here we review the mechanisms of development and the possible functions of pro-inflammatory cytokine producing Foxp3+ Tregs. PMID:26165923

  13. Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells.

    PubMed

    Pandiyan, Pushpa; Zhu, Jinfang

    2015-11-01

    CD4(+)CD25(+)Foxp3(+) regulatory cells (Tregs) are a special lineage of cells central in the maintenance of immune homeostasis, and are targeted for human immunotherapy. They are conventionally associated with the production of classical anti-inflammatory cytokines such as IL-10, TGF-β and IL-35, consistent to their anti-inflammatory functions. However, emerging evidence show that they also express effector cytokines such as IFN-γ and IL-17A under inflammatory conditions. While some studies reveal that these pro-inflammatory cytokine producing Foxp3(+) regulatory cells retain their suppressive ability, others believe that these cells are dys-regulated and are associated with perpetuation of immunopathology. Therefore the development of these cells may challenge the efficacy of human Treg therapy. Mechanistically, toll-like receptor (TLR) ligands and the pro-inflammatory cytokine milieu have been shown to play important roles in the induction of effector cytokines in Tregs. Here we review the mechanisms of development and the possible functions of pro-inflammatory cytokine producing Foxp3+ Tregs. PMID:26165923

  14. Host Intracellular Signaling Events and Pro-inflammatory Cytokine Production in African Trypanosomiasis

    PubMed Central

    Kuriakose, Shiby M.; Singh, Rani; Uzonna, Jude E.

    2016-01-01

    Pathogens, such as bacteria, viruses, and parasites, possess specific molecules or proteins that are recognized by several host innate immune receptors, leading to the activation of several intracellular signaling molecules and pathways. The magnitude and quality of these events significantly affect the outcome of infection. African trypanosomes, including Trypanosoma congolense, are capable of manipulating the host immune response, including the activity of macrophages, which are the key immune cells that contribute to the immunopathogenesis of African trypanosomiasis. Although it is known that immune hyperactivation and excessive pro-inflammatory cytokine production are the hallmarks of African trypanosomiasis, the mechanisms through which these events are triggered are poorly defined. However, it is known that macrophages may play a significant role in these processes, because phagocytosis of trypanosomes by macrophages initiates intracellular signal transduction cascades that lead to the release of pro-inflammatory cytokines and alteration in cell function. This review highlights recent progress in our understanding of the innate immune receptors, signaling pathways, and transcription factors involved in T. congolense-induced pro-inflammatory cytokine production in macrophages. It will reveal the existence of complex signaling events through which the parasite modulates the host immune response, thus identifying novel targets that could aid in designing strategies to effectively control the disease. PMID:27242788

  15. Host Intracellular Signaling Events and Pro-inflammatory Cytokine Production in African Trypanosomiasis.

    PubMed

    Kuriakose, Shiby M; Singh, Rani; Uzonna, Jude E

    2016-01-01

    Pathogens, such as bacteria, viruses, and parasites, possess specific molecules or proteins that are recognized by several host innate immune receptors, leading to the activation of several intracellular signaling molecules and pathways. The magnitude and quality of these events significantly affect the outcome of infection. African trypanosomes, including Trypanosoma congolense, are capable of manipulating the host immune response, including the activity of macrophages, which are the key immune cells that contribute to the immunopathogenesis of African trypanosomiasis. Although it is known that immune hyperactivation and excessive pro-inflammatory cytokine production are the hallmarks of African trypanosomiasis, the mechanisms through which these events are triggered are poorly defined. However, it is known that macrophages may play a significant role in these processes, because phagocytosis of trypanosomes by macrophages initiates intracellular signal transduction cascades that lead to the release of pro-inflammatory cytokines and alteration in cell function. This review highlights recent progress in our understanding of the innate immune receptors, signaling pathways, and transcription factors involved in T. congolense-induced pro-inflammatory cytokine production in macrophages. It will reveal the existence of complex signaling events through which the parasite modulates the host immune response, thus identifying novel targets that could aid in designing strategies to effectively control the disease. PMID:27242788

  16. Studies of synthetic chalcone derivatives as potential inhibitors of secretory phospholipase A2, cyclooxygenases, lipoxygenase and pro-inflammatory cytokines

    PubMed Central

    Jantan, Ibrahim; Bukhari, Syed Nasir Abbas; Adekoya, Olayiwola A; Sylte, Ingebrigt

    2014-01-01

    Arachidonic acid metabolism leads to the generation of key lipid mediators which play a fundamental role during inflammation. The inhibition of enzymes involved in arachidonic acid metabolism has been considered as a synergistic anti-inflammatory effect with enhanced spectrum of activity. A series of 1,3-diphenyl-2-propen-1-one derivatives were investigated for anti-inflammatory related activities involving inhibition of secretory phospholipase A2, cyclooxygenases, soybean lipoxygenase, and lipopolysaccharides-induced secretion of interleukin-6 and tumor necrosis factor-alpha in mouse RAW264.7 macrophages. The results from the above mentioned assays exhibited that the synthesized compounds were effective inhibitors of pro-inflammatory enzymes and cytokines. The results also revealed that the chalcone derivatives with 4-methlyamino ethanol substitution seem to be significant for inhibition of enzymes and cytokines. Molecular docking experiments were carried out to elucidate the molecular aspects of the observed inhibitory activities of the investigated compounds. Present findings increase the possibility that these chalcone derivatives might serve as a beneficial starting point for the design and development of improved anti-inflammatory agents. PMID:25258510

  17. Polyandric acid A, a clerodane diterpenoid from the Australian medicinal plant Dodonaea polyandra, attenuates pro-inflammatory cytokine secretion in vitro and in vivo.

    PubMed

    Simpson, Bradley S; Luo, Xianling; Costabile, Maurizio; Caughey, Gillian E; Wang, Jiping; Claudie, David J; McKinnon, Ross A; Semple, Susan J

    2014-01-24

    Dodonaea polyandra is a medicinal plant used traditionally by the Kuuku I'yu (Northern Kaanju) indigenous people of Cape York Peninsula, Australia. The most potent of the diterpenoids previously identified from this plant, polyandric acid A (1), has been examined for inhibition of pro-inflammatory cytokine production and other inflammatory mediators using well-established acute and chronic mouse ear edema models and in vitro cellular models. Topical application of 1 significantly inhibited interleukin-1β production in mouse ear tissue in an acute model. In a chronic skin inflammation model, a marked reduction in ear thickness, associated with significant reduction in myeloperoxidase accumulation, was observed. Treatment of primary neonatal human keratinocytes with 1 followed by activation with phorbol ester/ionomycin showed a significant reduction in IL-6 secretion. The present study provides evidence that the anti-inflammatory properties of 1 are due to inhibition of pro-inflammatory cytokines associated with skin inflammation and may be useful in applications for skin inflammatory conditions including psoriasis and dermatitis. PMID:24400858

  18. Activation of inflammatory responses in human U937 macrophages by particulate matter collected from dairy farms: an in vitro expression analysis of pro-inflammatory markers

    PubMed Central

    2012-01-01

    Background The purpose of the present study was to investigate activation of inflammatory markers in human macrophages derived from the U937 cell line after exposure to particulate matter (PM) collected on dairy farms in California and to identify the most potent components of the PM. Methods PM from different dairies were collected and tested to induce an inflammatory response determined by the expression of various pro-inflammatory genes, such as Interleukin (IL)-8, in U937 derived macrophages. Gel shift and luciferase reporter assays were performed to examine the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Toll-like-receptor 4 (TLR4). Results Macrophage exposure to PM derived from dairy farms significantly activated expression of pro-inflammatory genes, including IL-8, cyclooxygenase 2 and Tumor necrosis factor-alpha, which are hallmarks of inflammation. Acute phase proteins, such as serum amyloid A and IL-6, were also significantly upregulated in macrophages treated with PM from dairies. Coarse PM fractions demonstrated more pro-inflammatory activity on an equal-dose basis than fine PM. Urban PM collected from the same region as the dairy farms was associated with a lower concentration of endotoxin and produced significantly less IL-8 expression compared to PM collected on the dairy farms. Conclusion The present study provides evidence that the endotoxin components of the particles collected on dairies play a major role in mediating an inflammatory response through activation of TLR4 and NF-κB signaling. PMID:22452745

  19. Protective effect of Codium fragile against UVB-induced pro-inflammatory and oxidative damages in HaCaT cells and BALB/c mice.

    PubMed

    Lee, Chan; Park, Gyu Hwan; Ahn, Eun Mi; Kim, Bo-Ae; Park, Chan-Ik; Jang, Jung-Hee

    2013-04-01

    Acute exposure to ultraviolet (UV) radiation causes pro-inflammatory responses via diverse mechanisms including oxidative stress. Codium fragile is a green alga of Codiales family and has been reported to exhibit anti-edema, anti-allergic, anti-protozoal and anti-mycobacterial activities. In this study, we have investigated a novel anti-inflammatory potential of C. fragile using in vitro cell culture as well as in vivo animal models. In HaCaT cells, buthanol and ethylacetate fractions of 80% methanol C. fragile extract (CFB or CFE) and a single compound, clerosterol (CLS) isolated from CFE attenuated UVB (60 mJ/cm(2))-induced cytotoxicity and reduced expression of pro-inflammatory proteins including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF- α). Moreover, CFB, CFE and CLS effectively suppressed UVB-induced production of pro-inflammatory mediators such as prostaglandin E2 (PGE2) and nitric oxide (NO). In another experiment, topical application of CFB, CFE or CLS prior to UVB irradiation (200 mJ/cm(2)) on BALB/c mice, inhibited the UVB-elevated protein levels of COX-2, iNOS, and TNF-α. Furthermore, CFB, CFE and CLS suppressed oxidative damages caused by UVB irradiation for example lipid peroxidation and/or protein carbonylation, which seemed to be mediated by up-regulation of antioxidant defense enzymes. These results suggest that C. fragile could be an effective therapeutic agent providing protection against UVB-induced inflammatory and oxidative skin damages. PMID:23396144

  20. Aronia melanocarpa Concentrate Ameliorates Pro-Inflammatory Responses in HaCaT Keratinocytes and 12-O-Tetradecanoylphorbol-13-Acetate-Induced Ear Edema in Mice.

    PubMed

    Goh, Ah Ra; Youn, Gi Soo; Yoo, Ki-Yeon; Won, Moo Ho; Han, Sang-Zin; Lim, Soon Sung; Lee, Keun Wook; Choi, Soo Young; Park, Jinseu

    2016-07-01

    Abnormal expression of pro-inflammatory mediators such as cell adhesion molecules and cytokines has been implicated in various inflammatory skin diseases, including atopic dermatitis. In this study, we investigated the anti-inflammatory activity of Aronia melanocarpa concentrate (AC) and its action mechanisms using in vivo and in vitro skin inflammation models. Topical application of AC on mouse ears significantly suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema formation, as judged by measuring ear thickness and weight, and histological analysis. Topical administration of AC also reduced the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in TPA-stimulated mouse ears. Pretreatment with AC suppressed TNF-α-induced ICAM-I expression and subsequent monocyte adhesiveness in human keratinocyte cell line HaCaT. In addition, AC significantly decreased intracellular reactive oxygen species (ROS) generation as well as mitogen-activated protein kinase (MAPK) activation in TNF-α-stimulated HaCaT cells. AC and its constituent cyanidin 3-glucoside also attenuated TNF-α-induced IKK activation, IκB degradation, p65 phosphorylation/nuclear translocation, and p65 DNA binding activity in HaCaT cells. Overall, our results indicate that AC exerts anti-inflammatory activities by inhibiting expression of pro-inflammatory mediators in vitro and in vivo possibly through suppression of ROS-MAPK-NF-κB signaling pathways. Therefore, AC may be developed as a therapeutic agent to treat various inflammatory skin diseases. PMID:27331630

  1. The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells

    PubMed Central

    2012-01-01

    Carbon nanotubes (CNT) are high aspect ratio nanoparticles with diameters in the nanometre range but lengths extending up to hundreds of microns. The structural similarities between CNT and asbestos have raised concern that they may pose a similar inhalation hazard. Recently CNT have been shown to elicit a length-dependent, asbestos-like inflammatory response in the pleural cavity of mice, where long fibres caused inflammation but short fibres did not. However the cellular mechanisms governing this response have yet to be elucidated. This study examined the in vitro effects of a range of CNT for their ability to stimulate the release of the acute phase cytokines; IL-1β, TNFα, IL-6 and the chemokine, IL-8 from both Met5a mesothelial cells and THP-1 macrophages. Results showed that direct exposure to CNT resulted in significant cytokine release from the macrophages but not mesothelial cells. This pro-inflammatory response was length dependent but modest and was shown to be a result of frustrated phagocytosis. Furthermore the indirect actions of the CNT were examined by treating the mesothelial cells with conditioned media from CNT-treated macrophages. This resulted in a dramatic amplification of the cytokine release from the mesothelial cells, a response which could be attenuated by inhibition of phagocytosis during the initial macrophage CNT treatments. We therefore hypothesise that long fibres elicit an inflammatory response in the pleural cavity via frustrated phagocytosis in pleural macrophages. The activated macrophages then stimulate an amplified pro-inflammatory cytokine response from the adjacent pleural mesothelial cells. This mechanism for producing a pro-inflammatory environment in the pleural space exposed to long CNT has implications for the general understanding of fibre-related pleural disease and design of safe nanofibres. PMID:22472194

  2. Advanced glycation end products promote differentiation of CD4(+) T helper cells toward pro-inflammatory response.

    PubMed

    Han, Xiao-qun; Gong, Zuo-jiong; Xu, San-qing; Li, Xun; Wang, Li-kun; Wu, Shi-min; Wu, Jian-hong; Yang, Hua-fen

    2014-02-01

    This study investigated the effect of advanced glycation end products (AGEs) on differentiation of naïve CD4(+) T cells and the role of the receptor of AGEs (RAGE) and peroxisome proliferator-activated receptors (PPARs) activity in the process in order to gain insight into the mechanism of immunological disorders in diabetes. AGEs were prepared by the reaction of bovine serum albumin (BSA) with glucose. Human naïve CD4(+) T cells, enriched from blood of healthy adult volunteers with negative selection assay, were cultured in vitro and treated with various agents including AGEs, BSA, high glucose, PGJ2 and PD68235 for indicated time. In short hairpin (sh) RNA knock-down experiment, naïve CD4(+) T cells were transduced with media containing shRNA-lentivirus generated from lentiviral packaging cell line, Lent-X(TM) 293 T cells. Surface and intracellular cytokine stainings were used for examination of CD4(+) T cell phenotypes, and real-time PCR and Western blotting for detection of transcription factor mRNA and protein expression, respectively. The suppressive function of regulatory T (Treg) cells was determined by a [(3)H]-thymidine incorporation assay. The results showed that AGEs induced higher pro-inflammatory Th1/Th17 cells differentiated from naïve CD4(+) T cells than the controls, whereas did not affect anti-inflammatory Treg cells. However, AGEs eliminated suppressive function of Treg cells. In addition, AGEs increased RAGE mRNA expression in naïve CD4(+) T cells, and RAGE knock-down by shRNA eliminated the effect of AGEs on the differentiation of CD4(+) T cells and the reduction of suppressive function of Treg cells. Furthermore, AGEs inhibited the mRNA expression of PPARγ, not PPARα PPARγ agonist, PGJ2, inhibited the effect of AGEs on naïve CD4(+) T cell differentiation and reversed the AGE-reduced suppressive function of Treg cells; on the other hand, PPARγ antagonist, PD68235, attenuated the blocking effect of RAGE shRNA on the role of AGEs. It

  3. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts.

    PubMed

    Li, Xue; Wang, Xiaoxuan; Zheng, Ming; Luan, Qing Xian

    2016-09-10

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. PMID:27515000

  4. Differential pro-inflammatory responses of TNF-α receptors (TNFR1 and TNFR2) on LOX-1 signalling.

    PubMed

    Arjuman, Albina; Chandra, Nimai C

    2015-06-01

    TNF-α potently induces LOX-1 expression in THP-1 macrophages at concentrations between 1.25-50 ng/mL. The interplay between the two TNF receptors (TNFR1 and TNFR2) was apparent in the expression pattern of LOX-1 in response to TNF-α. Interestingly, R1 signal abrogation depleted both TNFR2 as well as LOX-1 transcript expression, suggesting that TNFR1 holds priority in the relative signaling mechanism between TNFR1 and TNFR2. TNF-α was also found to abrogate the oxidized-LDL (ox-LDL) mediated increase in intracellular pool of NO, a known downstream intermediate of LOX-1 pro-inflammatory signaling cascade. At the level of ox-LDL clearance, TNF-α inhibited the uptake (scavenging) of ox-LDL via LOX-1. Our study demonstrates the ability of TNF-α to enhance the signaling propensity of LOX-1 by increasing its expression and inhibiting its scavenging property. PMID:25416967

  5. HMGB1/RAGE Signaling and Pro-Inflammatory Cytokine Responses in Non-HIV Adults with Active Pulmonary Tuberculosis

    PubMed Central

    Ip, Margaret; Chu, Yi Jun; Yung, Irene M. H.; Cheung, Catherine S. K.; Zheng, Lin; Lam, Judy S. Y.; Wong, Ka Tak; Sin, Winnie W. Y.; Choi, Kin Wing; Lee, Nelson

    2016-01-01

    Background We aimed to study the pathogenic roles of High-Mobility Group Box 1 (HMGB1) / Receptor-for-Advanced-Glycation-End-products (RAGE) signaling and pro-inflammatory cytokines in patients with active pulmonary tuberculosis (PTB). Methods A prospective study was conducted among non-HIV adults newly-diagnosed with active PTB at two acute-care hospitals (n = 80); age-and-sex matched asymptomatic individuals (tested for latent TB) were used for comparison (n = 45). Plasma concentrations of 8 cytokines/chemokines, HMGB1, soluble-RAGE, and transmembrane-RAGE expressed on monocytes/dendritic cells, were measured. Gene expression (mRNA) of HMGB1, RAGE, and inflammasome-NALP3 was quantified. Patients’ PBMCs were stimulated with recombinant-HMGB1 and MTB-antigen (lipoarabinomannan) for cytokine induction ex vivo. Results In active PTB, plasma IL-8/CXCL8 [median(IQR), 6.0(3.6–15.1) vs 3.6(3.6–3.6) pg/ml, P<0.001] and IL-6 were elevated, which significantly correlated with mycobacterial load, extent of lung consolidation (rs +0.509, P<0.001), severity-score (rs +0.317, P = 0.004), and fever and hospitalization durations (rs +0.407, P<0.001). IL-18 and sTNFR1 also increased. Plasma IL-8/CXCL8 (adjusted OR 1.12, 95%CI 1.02–1.23 per unit increase, P = 0.021) and HMGB1 (adjusted OR 1.42 per unit increase, 95%CI 1.08–1.87, P = 0.012) concentrations were independent predictors for respiratory failure, as well as for ICU admission/death. Gene expression of HMGB1, RAGE, and inflammasome-NALP3 were upregulated (1.2−2.8 fold). Transmembrane-RAGE was increased, whereas the decoy soluble-RAGE was significantly depleted. RAGE and HMGB1 gene expressions positively correlated with cytokine levels (IL-8/CXCL8, IL-6, sTNFR1) and clinico-/radiographical severity (e.g. extent of consolidation rs +0.240, P = 0.034). Ex vivo, recombinant-HMGB1 potentiated cytokine release (e.g. TNF-α) when combined with lipoarabinomannan. Conclusion In patients with active PTB, HMGB1/RAGE

  6. The inhibitory activity of cocoa phenolic extract against pro-inflammatory mediators secretion induced by lipopolysaccharide in RAW 264.7 cells.

    PubMed

    Ranneh, Yazan; Ali, Faisal; Al-Qubaisi, Mothanna; Esa, Norhaizan Mohd; Ismail, Amin

    2016-01-01

    Cocoa is a rich source of polyphenols that has been traditionally used as the treatment of several types of inflammation related disease. The response to inflammation comprises the consecutive release of mediators and the enlistment of circulating leukocytes, such as macrophages. Currently, Cocoa-derived polyphenolics have shown anti-inflammatory effects in vivo, but the therapeutic benefits in vitro remain unclear. Therefore, in this study, the effect of cocoa polyphenolic extract (CPE) on RAW 264.7 macrophage cells sensitized by lipopolysaccharide as in vitro inflammatory model was investigated. The anti-inflammatory activity of CPE was assessed by measuring its ability to inhibit the pro-inflammatory enzyme 5-lipoxygenase (5-LOX) and the pro-inflammatory mediators prostaglandin E2 (PGE2), reactive oxygen species (ROS), nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α). The results show that CPE significantly inhibits 5-LOX activity (p < 0.01). In addition, CPE dose-dependently suppressed the production of PGE2, ROS, NO and TNF-α in RAW 264.7 cells. These data suggest that CPE may be used for the treatment of inflammation and it's related-diseases. PMID:27190746

  7. MiR-155 Induction by F. novicida but Not the Virulent F. tularensis Results in SHIP Down-Regulation and Enhanced Pro-Inflammatory Cytokine Response

    PubMed Central

    Cremer, Thomas J.; Ravneberg, David H.; Clay, Corey D.; Piper-Hunter, Melissa G.; Marsh, Clay B.; Elton, Terry S.; Gunn, John S.; Amer, Amal; Kanneganti, Thirumala-Devi; Schlesinger, Larry S.; Butchar, Jonathan P.; Tridandapani, Susheela

    2009-01-01

    The intracellular Gram-negative bacterium Francisella tularensis causes the disease tularemia and is known for its ability to subvert host immune responses. Previous work from our laboratory identified the PI3K/Akt pathway and SHIP as critical modulators of host resistance to Francisella. Here, we show that SHIP expression is strongly down-regulated in monocytes and macrophages following infection with F. tularensis novicida (F.n.). To account for this negative regulation we explored the possibility that microRNAs (miRs) that target SHIP may be induced during infection. There is one miR that is predicted to target SHIP, miR-155. We tested for induction and found that F.n. induced miR-155 both in primary monocytes/macrophages and in vivo. Using luciferase reporter assays we confirmed that miR-155 led to down-regulation of SHIP, showing that it specifically targets the SHIP 3′UTR. Further experiments showed that miR-155 and BIC, the gene that encodes miR-155, were induced as early as four hours post-infection in primary human monocytes. This expression was dependent on TLR2/MyD88 and did not require inflammasome activation. Importantly, miR-155 positively regulated pro-inflammatory cytokine release in human monocytes infected with Francisella. In sharp contrast, we found that the highly virulent type A SCHU S4 strain of Francisella tularensis (F.t.) led to a significantly lower miR-155 response than the less virulent F.n. Hence, F.n. induces miR-155 expression and leads to down-regulation of SHIP, resulting in enhanced pro-inflammatory responses. However, impaired miR-155 induction by SCHU S4 may help explain the lack of both SHIP down-regulation and pro-inflammatory response and may account for the virulence of Type A Francisella. PMID:20041145

  8. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells

    PubMed Central

    2010-01-01

    Background In several neuropathological conditions, microglia can become overactivated and cause neurotoxicity by initiating neuronal damage in response to pro-inflammatory stimuli. Our previous studies have shown that exposure to electromagnetic fields (EMF) activates cultured microglia to produce tumor necrosis factor (TNF)-α and nitric oxide (NO) through signal transduction involving the activator of transcription STAT3. Here, we investigated the role of STAT3 signaling in EMF-induced microglial activation and pro-inflammatory responses in more detail than the previous study. Methods N9 microglial cells were treated with EMF exposure or a sham treatment, with or without pretreatment with an inhibitor (Pyridone 6, P6) of the Janus family of tyrosine kinases (JAK). The activation state of microglia was assessed via immunoreaction using the microglial marker CD11b. Levels of inducible nitric oxide synthase (iNOS), TNF-α and NO were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and the nitrate reductase method. Activation of JAKs and STAT3 proteins was evaluated by western blotting for specific tyrosine phosphorylation. The ability of STAT3 to bind to DNA was detected with an electrophoresis mobility shift assay (EMSA). Results EMF was found to significantly induce phosphorylation of JAK2 and STAT3, and DNA-binding ability of STAT3 in N9 microglia. In addition, EMF dramatically increased the expression of CD11b, TNF-α and iNOS, and the production of NO. P6 strongly suppressed the phosphorylation of JAK2 and STAT3 and diminished STAT3 activity in EMF-stimulated microglia. Interestingly, expression of CD11b as well as gene expression and production of TNF-α and iNOS were suppressed by P6 at 12 h, but not at 3 h, after EMF exposure. Conclusions EMF exposure directly triggers initial activation of microglia and produces a significant pro-inflammatory response. Our findings confirm that

  9. A novel macromolecular extract screened from satsuma with pro-inflammatory effect.

    PubMed

    Yan, Huiqing; Ji, Qun; Chen, Doudou; Wu, Jinlong; Peng, Shu'ang; Ma, Zhaocheng; Deng, Xiuxin

    2014-02-01

    Excessive consumption of horticultural fruit is a double-edged sword with both positive and negative effects. In Eastern countries, a large number of people have suffered from shang huo as a result of excessive consumption of "heating" foods, such as lychee, longan, mandarin orange, mango and civet durian. The present study adopted a step by step strategy screened the compositions with pro-inflammatory effect in satsuma fruits. The pro-inflammatory effects of all fractions were evaluated in RAW 264.7 cell lines by enzyme-linked immunosorbent assay (ELISA) and RT-PCR tests. The soluble water extract (SWE) from satsuma increased the production of prostaglandin E2 (PGE2) and promoted the expression level of cyclooxygenase-2 (COX-2) mRNA. SWE and high molecular weight molecules extracted from soluble water extract (HSWE) were respectively fractionated by dialysis bags and gel filtration chromatography. The macromolecular fraction named F1 was further obtained from HSWE, and could increase the production of inflammatory mediators. Finally F1 was resolved by SDS-PAGE and six proteins were identified by mass spectrometry. Compared with other detected proteins, polygalacturonase inhibitor (PGIP) and chitinase were the most likely candidate pro-inflammatory proteins according to molecular mass, and both of them were Citrus unshiu species. cDNA sequences of PGIP and chitinase were cloned and their functions were predicted as defensive proteins by SMART analysis. Excessive intake of these defensive proteins may result in adverse food reactions in human beings, such as shang huo and other immune responses. PMID:24336758

  10. Host Transcription Factors in the Immediate Pro-Inflammatory Response to the Parasitic Mite Psoroptes ovis

    PubMed Central

    Burgess, Stewart T. G.; McNeilly, Tom N.; Watkins, Craig A.; Nisbet, Alasdair J.; Huntley, John F.

    2011-01-01

    Background Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. Results Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. Conclusions Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen. PMID:21915322

  11. Progesterone modulates pro-inflammatory cytokine expression profile after spinal cord injury: Implications for neuropathic pain.

    PubMed

    Coronel, María F; Raggio, María C; Adler, Natalia S; De Nicola, Alejandro F; Labombarda, Florencia; González, Susana L

    2016-03-15

    Neuropathic pain is a frequent complication of spinal cord injury (SCI), still refractory to conventional treatment. Glial cell activation and cytokine production contribute to the pathology of central neuropathic syndromes. In this study we evaluated the effects of progesterone, a neuroactive steroid, on pain development and the spinal expression of IL-1β, its receptors (IL-1RI and IL-1RII) and antagonist (IL-1ra), IL-6 and TNFα, and NR1 subunit of NMDAR. Our results show that progesterone, by modulating the expression of pro-inflammatory cytokines and neuronal IL-1RI/NR1 colocalization, emerges as a promising agent to prevent chronic pain after SCI. PMID:26943964

  12. Novel angiogenin mutants with increased cytotoxicity enhance the depletion of pro-inflammatory macrophages and leukemia cells ex vivo.

    PubMed

    Cremer, Christian; Braun, Hanna; Mladenov, Radoslav; Schenke, Lea; Cong, Xiaojing; Jost, Edgar; Brümmendorf, Tim H; Fischer, Rainer; Carloni, Paolo; Barth, Stefan; Nachreiner, Thomas

    2015-12-01

    Immunotoxins are fusion proteins that combine a targeting component such as an antibody fragment or ligand with a cytotoxic effector component that induces apoptosis in specific cell populations displaying the corresponding antigen or receptor. Human cytolytic fusion proteins (hCFPs) are less immunogenic than conventional immunotoxins because they contain human pro-apoptotic enzymes as effectors. However, one drawback of hCFPs is that target cells can protect themselves by expressing endogenous inhibitor proteins. Inhibitor-resistant enzyme mutants that maintain their cytotoxic activity are therefore promising effector domain candidates. We recently developed potent variants of the human ribonuclease angiogenin (Ang) that were either more active than the wild-type enzyme or less susceptible to inhibition because of their lower affinity for the ribonuclease inhibitor RNH1. However, combining the mutations was unsuccessful because although the enzyme retained its higher activity, its susceptibility to RNH1 reverted to wild-type levels. We therefore used molecular dynamic simulations to determine, at the atomic level, why the affinity for RNH1 reverted, and we developed strategies based on the introduction of further mutations to once again reduce the affinity of Ang for RNH1 while retaining its enhanced activity. We were able to generate a novel Ang variant with remarkable in vitro cytotoxicity against HL-60 cells and pro-inflammatory macrophages. We also demonstrated the pro-apoptotic potential of Ang-based hCFPs on cells freshly isolated from leukemia patients. PMID:26472728

  13. [PARTICIPATION OF NO-ERGIC MECHANISMS IN REALIZATION OF RESPIRATORY EFFECTS OF PRO-INFLAMMATORY CYTOKINE INTERLEUKIN-1-BETA].

    PubMed

    Aleksandrov, V G; Aleksandrova, N P; Tumanova, T S; Evseeva, A D; Merkuriev, V A

    2015-12-01

    The role of NO-ergic mechanisms in the realization of the respiratory effects of pro-inflammatory cytokine IL-1beta was investigated in acute experiments on anesthetized rats. To achieve this, we studied the effect of intravenous administration of IL-1beta during inhibition of NO-synthase by N-nitro-L-arginine methyl ester (L-NAME, a non-specific blocker of NO-synthase) on the parameters of breathing and the Hering-Breuer inspiratory-inhibitory reflex. It was shown that the effect of L-NAME eliminates the IL-1beta-dependent increase of the Hering-Breuer reflex, whereas effects on breathing pattern does not change: the increase in IL-1beta system-level evokes an increase in respiratory rate, tidal volume and lung ventilation. It is assumed that one of the mechanisms of enhance in the strength inspiratory-inhibitory reflex by increasing circulatory IL-1beta level is the increased glutamate-ergic transmission on pump-neurons induced by increase in nitric oxide synthesis in cerebrovascular endothelial cells. In conclusion, NO-ergic mechanisms participate in the modulation of the vagal respiratory reflexes during the development of the acute phase of systemic inflammation. PMID:26987229

  14. Modeling the Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia Predicts a Breakdown of Hematopoietic-Mesenchymal Communication Networks

    PubMed Central

    Enciso, Jennifer; Mayani, Hector; Mendoza, Luis; Pelayo, Rosana

    2016-01-01

    Lineage fate decisions of hematopoietic cells depend on intrinsic factors and extrinsic signals provided by the bone marrow microenvironment, where they reside. Abnormalities in composition and function of hematopoietic niches have been proposed as key contributors of acute lymphoblastic leukemia (ALL) progression. Our previous experimental findings strongly suggest that pro-inflammatory cues contribute to mesenchymal niche abnormalities that result in maintenance of ALL precursor cells at the expense of normal hematopoiesis. Here, we propose a molecular regulatory network interconnecting the major communication pathways between hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) within the BM. Dynamical analysis of the network as a Boolean model reveals two stationary states that can be interpreted as the intercellular contact status. Furthermore, simulations describe the molecular patterns observed during experimental proliferation and activation. Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1 interactions following microenvironmental perturbation due by temporal signaling from Toll like receptors (TLRs) ligation. Therefore, aberrant expression of NF-κB induced by intrinsic or extrinsic factors may contribute to create a tumor microenvironment where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular communication axes allows for the maintenance of malignant cells. PMID:27594840

  15. Modeling the Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia Predicts a Breakdown of Hematopoietic-Mesenchymal Communication Networks.

    PubMed

    Enciso, Jennifer; Mayani, Hector; Mendoza, Luis; Pelayo, Rosana

    2016-01-01

    Lineage fate decisions of hematopoietic cells depend on intrinsic factors and extrinsic signals provided by the bone marrow microenvironment, where they reside. Abnormalities in composition and function of hematopoietic niches have been proposed as key contributors of acute lymphoblastic leukemia (ALL) progression. Our previous experimental findings strongly suggest that pro-inflammatory cues contribute to mesenchymal niche abnormalities that result in maintenance of ALL precursor cells at the expense of normal hematopoiesis. Here, we propose a molecular regulatory network interconnecting the major communication pathways between hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) within the BM. Dynamical analysis of the network as a Boolean model reveals two stationary states that can be interpreted as the intercellular contact status. Furthermore, simulations describe the molecular patterns observed during experimental proliferation and activation. Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1 interactions following microenvironmental perturbation due by temporal signaling from Toll like receptors (TLRs) ligation. Therefore, aberrant expression of NF-κB induced by intrinsic or extrinsic factors may contribute to create a tumor microenvironment where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular communication axes allows for the maintenance of malignant cells. PMID:27594840

  16. Purification and partial characterization of a new pro-inflammatory lectin from Bauhinia bauhinioides Mart (Caesalpinoideae) seeds.

    PubMed

    Silva, Helton C; Bari, Alfa U; Pereira-Jénior, Francisco N; Simões, Rafael C; Barroso-Neto, Ito L; Nobre, Camila B; Pereira, Maria G; Nascimento, Kyria S; Rocha, Bruno Anderson M; Delatorre, Plínio; Nagano, Celso S; Assreuy, Ana Maria S; Cavada, Benildo S

    2011-04-01

    A new galactose-specific lectin, named BBL, was purified from seeds of Bauhinia bauhinioides by precipitation with ammonium sulfate, followed by two steps of ion exchange chromatography. BBL haemagglutinated rabbit erythrocytes (native and treated with proteolytic enzymes) showing stability even after exposure to 60 °C for an hour. The lectin haemagglutinating activity was optimum between pH 8.0 and 9.0 and inhibited after incubation with D-galactose and its derivatives, especially α-methyl-D-galactopyranoside. The pure protein possessed a molecular mass of 31 kDa by SDS-PAGE and 28.310 Da by mass spectrometry. The lectin pro-inflammatory activity was also evaluated. The s.c. injection of BBL into rats induced a dose-dependent paw edema, an effect that occurred via carbohydrate site interaction and was significantly reduced by L-NAME, suggesting an important participation of nitric oxide in the late phase of the edema. These findings indicate that BBL can be used as a tool to better understand the mechanisms involved in inflammatory responses. PMID:21121890

  17. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response.

    PubMed

    Xian, Wenjing; Wu, Yan; Xiong, Wei; Li, Longyan; Li, Tong; Pan, Shangwen; Song, Limin; Hu, Lisha; Pei, Lei; Yao, Shanglong; Shang, You

    2016-03-25

    Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brain tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions. PMID:26915798

  18. Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages.

    PubMed

    Banerjee, Somenath; Bose, Dipayan; Chatterjee, Nabanita; Das, Subhadip; Chakraborty, Sreeparna; Das, Tanya; Saha, Krishna Das

    2016-01-01

    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain pre-exposed macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in future. PMID:26928472

  19. Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages

    PubMed Central

    Banerjee, Somenath; Bose, Dipayan; Chatterjee, Nabanita; Das, Subhadip; Chakraborty, Sreeparna; Das, Tanya; Saha, Krishna Das

    2016-01-01

    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain pre-exposed macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in future. PMID:26928472

  20. MK615 attenuates Porphyromonas gingivalis lipopolysaccharide-induced pro-inflammatory cytokine release via MAPK inactivation in murine macrophage-like RAW264.7 cells.

    PubMed

    Morimoto, Yoko; Kikuchi, Kiyoshi; Ito, Takashi; Tokuda, Masayuki; Matsuyama, Takashi; Noma, Satoshi; Hashiguchi, Teruto; Torii, Mitsuo; Maruyama, Ikuro; Kawahara, Ko-Ichi

    2009-11-01

    The Japanese apricot, known as Ume in Japanese, has been a traditional Japanese medicine for centuries, and is a familiar and commonly consumed food. The health benefits of Ume are now being widely recognized and have been strengthened by recent studies showing that MK615, an extract of compounds from Ume, has strong anticancer and anti-inflammatory effects. However, the potential role of MK615 in the periodontal field remains unknown. Here, we found that MK615 significantly reduced the production of pro-inflammatory mediators (tumor necrosis factor-alpha and interleukin-6) induced by Porphyromonas gingivalis lipopolysaccharide (LPS), a major etiological agent in localized chronic periodontitis, in murine macrophage-like RAW264.7 cells. MK615 markedly inhibited the phosphorylation of ERK1/2, p38MAPK, and JNK, which is associated with pro-inflammatory mediator release pathways. Moreover, MK615 completely blocked LPS-triggered NF-kappaB activation. The present results suggest that MK615 has potential as a therapeutic agent for treating inflammatory diseases such as periodontitis. PMID:19706286

  1. Pro-inflammatory cytokines for evaluation of inflammatory status in endometriosis

    PubMed Central

    Malutan, Andrei M.; Costin, Nicolae; Ciortea, Razvan; Bucuri, Carmen; Rada, Maria P.; Mihu, Dan

    2015-01-01

    The aim of the study The aim of the study was to investigate the serum pro-inflammatory cytokine profile in patients with diagnosed endometriosis. Material and methods The study included 160 women, who were divided in two study groups (Group I – endometriosis; Group 2 – healthy). We evaluated the serum levels of interleukin (IL)-1β, IL-5, IL-6, IL-7, and IL-12, and of tumour necrosis factor α (TNF-α) with the use of Human Multiplex Cytokine Panels. Results The serum level of IL-1β, IL-6, and TNF-α is significantly higher in women with endometriosis compared to women free of disease, from the control group (mean 10.777, 183.027, and 131.326, respectively, compared to 3.039, 70.043, and 75.285, respectively; p = 0.002, p < 0.001, and p = 0.015, respectively). No significant differences in the serum levels of IL-5 and IL-12 were observed between the studied groups, and IL-7 had a very low detection rate. Conclusions Women with endometriosis have elevated levels of key pro-inflammatory cytokines, i.e. IL-1β, IL-6, and TNF-α. At the same time, IL-1β and IL-6 could be used as predictors for endometriosis. PMID:26155190

  2. Selection for pro-inflammatory mediators produces chickens more resistant to Eimeria tenella.

    PubMed

    Swaggerty, C L; Pevzner, I Y; Kogut, M H

    2015-01-01

    We recently developed a novel selection method based on identification and selection of chickens with an inherently high and low phenotype of pro-inflammatory mediators, including interleukin (IL)-6, CXCLi2, and CCLi2. The resultant high line of chickens is more resistant to Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) compared to the low line. In the current study, we sought to determine if the high line birds were also more resistant to the protozoan parasite Eimeria tenella. In three separate experiments, 14-day-old chickens from the high and low lines were challenged orally with 10×10(3) to 45×10(3) E. tenella oocysts. Birds were sacrificed 6 d postchallenge and the caeca was removed and scored for lesions and body weight gain compared to mock-infected controls. The high line birds were more resistant to intestinal pathology as demonstrated by lower lesion scores (P≤0.04) compared to the low line. There were no differences in body weight gain between the lines. The results from this study showed that in addition to enhanced resistance against Salmonella Enteritidis, high line chickens are also more resistant to the pathology associated with coccidial infections compared to the low line birds. Taken together with our initial study utilizing the high and low lines, selection based on increased pro-inflammatory mediator expression produces chickens that are more resistant to both foodborne and poultry pathogens, including cecal pathology associated with costly coccidial infections. PMID:25577794

  3. Role of antigen presentation in the production of pro-inflammatory cytokines in obese adipose tissue.

    PubMed

    Majdoubi, Abdelilah; Kishta, Osama A; Thibodeau, Jacques

    2016-06-01

    Type II diabetes regroups different physiological anomalies that ultimately lead to low-grade chronic inflammation, insulin resistance and loss of pancreatic β-cells. Obesity is one of the best examples of such a condition that can develop into Metabolic Syndrome, causing serious health problems of great socio-economic consequences. The pathological outcome of obesity has a genetic basis and depends on the delicate balance between pro- and anti-inflammatory effectors of the immune system. The causal link between obesity and inflammation is well established. While innate immunity plays a key role in the development of a pro-inflammatory state in obese adipose tissues, it has now become clear that adaptive immune cells are also involved and participate in the cascade of events that lead to metabolic perturbations. The efficacy of some immunotherapeutic protocols in reducing the symptoms of obesity-driven metabolic syndrome in mice implicated all arms of the immune response. Recently, the production of pathogenic immunoglobulins and pro-inflammatory cytokines by B and T lymphocytes suggested an auto-immune basis for the establishment of a non-healthy obese state. Understanding the cellular landscape of obese adipose tissues and how immune cells sustain chronic inflammation holds the key to the development of targeted therapies. In this review, we emphasize the role of antigen-presenting cells and MHC molecules in obese adipose tissue and the general contribution of the adaptive arm of the immune system in inflammation-induced insulin resistance. PMID:26854212

  4. Polyphosphate Is a Novel Pro-inflammatory Regulator of Mast Cells and Is Located in Acidocalcisomes*

    PubMed Central

    Moreno-Sanchez, David; Hernandez-Ruiz, Laura; Ruiz, Felix A.; Docampo, Roberto

    2012-01-01

    Polyphosphate (polyP) is a pro-inflammatory agent and a potent modulator of the human blood-clotting system. The presence of polyP of 60 phosphate units was identified in rat basophilic leukemia (RBL-2H3) mast cells using specific enzymatic assays, urea-polyacrylamide gel electrophoresis of cell extracts, and staining of cells with 4,6-diamidino-2-phenylindole (DAPI), and the polyP-binding domain of Escherichia coli exopolyphosphatase. PolyP co-localizes with serotonin- but not with histamine-containing granules. PolyP levels greatly decreased in mast cells stimulated to degranulate by IgE. Mast cell granules were isolated and found to be acidic and decrease their polyP content upon alkalinization. In agreement with these results, when RBL-2H3 mast cells were loaded with the fluorescent calcium indicator fura-2 acetoxymethyl ester to measure their intracellular Ca2+ concentration ([Ca2+]i), they were shown to possess a significant amount of Ca2+ stored in an acidic compartment different from lysosomes. PolyP derived from RBL-2H3 mast cells stimulated bradykinin formation, and it was also detected in human basophils. All of these characteristics of mast cell granules, together with their known elemental composition, and high density, are similar to those of acidocalcisomes. The results suggest that mast cells polyP could be an important mediator of their pro-inflammatory and pro-coagulant activities. PMID:22761438

  5. Genetic architecture of the pro-inflammatory state in an extended twin-family design.

    PubMed

    Neijts, Melanie; van Dongen, Jenny; Kluft, Cornelis; Boomsma, Dorret I; Willemsen, Gonneke; de Geus, Eco J C

    2013-10-01

    In this study we examined the genetic architecture of variation in the pro-inflammatory state, using an extended twin-family design. Within the Netherlands Twin Register Biobank, fasting Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), C-Reactive Protein (CRP), and fibrinogen levels were available for 3,534 twins, 1,568 of their non-twin siblings, and 2,227 parents from 3,095 families. Heritability analyses took into account the effects of current and recent illness, anti-inflammatory medication, female sex hormone status, age, sex, body mass index, smoking status, month of data collection, and batch processing. Moderate broad-sense heritability was found for all inflammatory parameters (39%, 21%, 45%, and 46% for TNF-α, IL-6, CRP and fibrinogen, respectively). For all parameters, the remaining variance was explained by unique environmental influences and not by environment shared by family members. There was no resemblance between spouses for any of the inflammatory parameters, except for fibrinogen. Also, there was no evidence for twin-specific effects. A considerable part of genetic variation was explained by non-additive genetic effects for TNF-α, CRP, and fibrinogen. For IL-6, all genetic variance was additive. This study may have implications for future genome-wide association studies by setting a clear numerical target for genome-wide screens that aim to find genetic variants regulating the levels of these pro-inflammatory markers. PMID:23953347

  6. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone

    PubMed Central

    Rajagopal, S.P.; Hutchinson, J.L.; Dorward, D.A.; Rossi, A.G.; Norman, J.E.

    2015-01-01

    Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell–cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone. PMID:26002969

  7. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone.

    PubMed

    Rajagopal, S P; Hutchinson, J L; Dorward, D A; Rossi, A G; Norman, J E

    2015-08-01

    Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell-cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone. PMID:26002969

  8. Control of pro-inflammatory cytokine release from human monocytes with the use of an interleukin-10 monoclonal antibody.

    PubMed

    Patel, Hardik; Davidson, Dennis

    2014-01-01

    The monocytes (MONOs) can be considered as "double-edge swords"; they have both important pro-inflammatory and anti-inflammatory functions manifested in part by cytokine production and release. Although MONOs are circulating cells, they are the major precursors of a variety of tissue-specific immune cells such as the alveolar macrophage, dendritic cells, microglial cells, and Kupffer cells. Unlike the polymorphonuclear leukocyte, which produces no or very little interleukin-10 (IL-10), the monocyte can produce this potent anti-inflammatory cytokine to control inflammation. IL-10, on an equimolar basis, is a more potent inhibitor of pro-inflammatory cytokines produced by monocytes than many anti-inflammatory glucocorticoids which are used clinically. This chapter describes how to isolate monocytes from human blood and the use of IL-10 monoclonal antibody to determine the effect and timing of endogenous IL-10 release on the production and release of pro-inflammatory cytokines. PMID:24908297

  9. CD200R signaling inhibits pro-angiogenic gene expression by macrophages and suppresses choroidal neovascularization

    PubMed Central

    Horie, Shintaro; Robbie, Scott J.; Liu, Jian; Wu, Wei-Kang; Ali, Robin R.; Bainbridge, James W.; Nicholson, Lindsay B.; Mochizuki, Manabu; Dick, Andrew D.; Copland, David A.

    2013-01-01

    Macrophages are rapidly conditioned by cognate and soluble signals to acquire phenotypes that deliver specific functions during inflammation, wound healing and angiogenesis. Whether inhibitory CD200R signaling regulates pro-angiogenic macrophage phenotypes with the potential to suppress ocular neovascularization is unknown. CD200R-deficient bone marrow derived macrophages (BMMΦ) were used to demonstrate that macrophages lacking this inhibitory receptor exhibit enhanced levels of Vegfa, Arg-1 and Il-1β when stimulated with PGE2 or RPE-conditioned (PGE2-enriched) media. Endothelial tube formation in HUVECs was increased when co-cultured with PGE2-conditioned CD200R−/− BMMΦ, and laser-induced choroidal neovascularization was enhanced in CD200R-deficient mice. In corroboration, signaling through CD200R results in the down-regulation of BMMΦ angiogenic and pro-inflammatory phenotypes. Translational potential of this pathway was investigated in the laser-induced model of choroidal neovascularization. Local delivery of a CD200R agonist mAb to target myeloid infiltrate alters macrophage phenotype and inhibits pro-angiogenic gene expression, which suppresses pathological angiogenesis and CNV development. PMID:24170042

  10. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    SciTech Connect

    Itoi, Saori; Terao, Mika Murota, Hiroyuki; Katayama, Ichiro

    2013-10-18

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10{sup −13} M cortisol, whereas 1 × 10{sup −5} M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol

  11. Nanoceria inhibit expression of genes associated with inflammation and angiogenesis in the retina of Vldlr null mice

    PubMed Central

    Kyosseva, Svetlana V.; Chen, Lijuan; Seal, Sudipta; McGinnis, James J.

    2013-01-01

    Oxidative stress and inflammation are important pathological mechanisms in many neurodegenerative diseases, including age-related macular degeneration (AMD). The Very Low-Density Lipoprotein Receptor knockout mouse (Vldlr−/−) has been identified as a model for AMD and in particular for Retinal Angiomatous Proliferation (RAP). In this study we examined the effect of cerium oxide nanoparticles (nanoceria) that have been shown to have catalytic antioxidant activity, on expression of 88 major cytokines in the retinas of Vldlr−/− mice using a PCR array. A single intravitrial injection of nanoceria at P28 caused inhibition of pro-inflammatory cytokines and pro-angiogenic growth factors including Tslp, Lif, Il-3, Il-7, Vegfa, Fgf1, Fgf2, Fgf7, Egf, Efna 3, Lep, and up-regulation of several cytokines and anti-angiogenic genes in the Vldlr−/−retina within one week. We used the Ingenuity Pathway Analysis software to search for biological functions, pathways, and interrelationships between gene networks. Many of the genes whose activities were affected are involved in cell signaling, cellular development, growth and proliferation, and tissue development. Western blot analysis revealed that nanoceria inhibit the activation of ERK 1/2, JNK, p38 MAP kinase, and Akt. These data suggest that nanoceria may represent a novel therapeutic strategy to treat AMD, RAP, and other neurodegenerative diseases. PMID:23978600

  12. 2-phenylethynesulfonamide Prevents Induction of Pro-inflammatory Factors and Attenuates LPS-induced Liver Injury by Targeting NHE1-Hsp70 Complex in Mice

    PubMed Central

    Huang, Chao; Wang, Jia; Chen, Zhuo; Wang, Yuzhe; Zhang, Wei

    2013-01-01

    The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70) overexpression has established functions in lipopolysaccharide (LPS)-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES), an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS) protein expression as well as serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α) as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB) in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca2+]i and intracellular pH value (pHi) in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na+/H+ exchanger 1 (NHE1) association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the induction of

  13. Nanoelectronic detection of triggered secretion of pro-inflammatory cytokines using CMOS compatible silicon nanowires.

    PubMed

    Pui, Tze-Sian; Agarwal, Ajay; Ye, Feng; Huang, Yinxi; Chen, Peng

    2011-01-15

    Nanotechnology, such as nanoelectronic biosensors, is bringing new opportunities and tools to the studies of cell biology, clinical applications, and drug discovery. In this study, crystalline silicon nanowire based field-effect transistors fabricated using top-down approach were employed to parallelly detect pro-inflammatory cytokines in the complex biological fluids (cell culture medium and blood samples) with high specificity and femtomolar sensitivity. Using this technique, the dynamic secretion of TNF-alpha and IL6 was revealed during the immune response of macrophages and rats to the stimulation of bacteria endotoxin. This technique could provide a unique platform to examine the profile of complex immune responses for fundamental studies and diagnosis. PMID:20977978

  14. Bortezomib-induced pro-inflammatory macrophages as a potential factor limiting anti-tumour efficacy.

    PubMed

    Beyar-Katz, Ofrat; Magidey, Ksenia; Ben-Tsedek, Neta; Alishekevitz, Dror; Timaner, Michael; Miller, Valeria; Lindzen, Moshit; Yarden, Yosef; Avivi, Irit; Shaked, Yuval

    2016-07-01

    Multiple myeloma (MM) is a chronic progressive malignancy of plasma cells. Although treatment with the novel proteasome inhibitor, bortezomib, significantly improves patient survival, some patients fail to respond due to the development of de novo resistance. We have previously shown that cytotoxic drugs can induce pro-tumorigenic host-mediated effects which contribute to tumour re-growth and metastasis, and thus limit anti-tumour efficacy. However, such effects and their impact on tumour cell aggressiveness have not been investigated using cytostatic agents such as bortezomib. Here we show that plasma from bortezomib-treated mice significantly increases migration, viability and proliferation of MM cells in vitro, compared to plasma from vehicle treated mice. In vivo, bortezomib induces the mobilization of pro-angiogenic bone marrow cells. Furthermore, mice treated with bortezomib and subsequently were used as recipients for an injection of MM cells succumb to MM earlier than mice treated with the vehicle. We show that bortezomib promotes pro-inflammatory macrophages which account for MM cell aggressiveness, an effect which is partially mediated by interleukin-16. Accordingly, co-inoculation of MM cells with pro-inflammatory macrophages from bortezomib-treated mice accelerates MM disease progression. Taken together, our results suggest that, in addition to the known effective anti-tumour activity of bortezomib, host-driven pro-tumorigenic effects generated in response to treatment can promote MM aggressiveness, and thus may contribute to the overall limited efficacy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27037906

  15. Regional Brain Shrinkage over Two Years: Individual Differences and Effects of Pro-Inflammatory Genetic Polymorphisms

    PubMed Central

    Persson, N.; Ghisletta, P.; Dahle, C.L.; Bender, A.R.; Yang, Y.; Yuan, P.; Daugherty, A.M.; Raz, N.

    2014-01-01

    We examined regional changes in brain volume in healthy adults (N = 167, age 19-79 years at baseline; N = 90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (HC), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the HC, CbH, In, OF, and the PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants mediated shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1βC-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFRC677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan. PMID:25264227

  16. The effect of local anesthetic on pro-inflammatory macrophage modulation by mesenchymal stromal cells.

    PubMed

    Gray, Andrea; Marrero-Berrios, Ileana; Weinberg, Jonathan; Manchikalapati, Devasena; SchianodiCola, Joseph; Schloss, Rene S; Yarmush, Joel

    2016-04-01

    Administering local anesthetics (LAs) peri- and post-operatively aims to prevent or mitigate pain in surgical procedures and after tissue injury in cases of osteoarthritis (OA) and other degenerative diseases. Innovative tissue protective and reparative therapeutic interventions such as mesenchymal stromal cells (MSCs) are likely to be exposed to co-administered drugs such as LAs. Therefore, it is important to determine how this exposure affects the therapeutic functions of MSCs and other cells in their target microenvironment. In these studies, we measured the effect of LAs, lidocaine and bupivacaine, on macrophage viability and pro-inflammatory secretion. We also examined their effect on modulation of the macrophage pro-inflammatory phenotype in an in vitro co-culture system with MSCs, by quantifying macrophage tumor necrosis factor (TNF)-α secretion and MSC prostaglandin E2 (PGE2) production. Our studies indicate that both LAs directly attenuated macrophage TNF-α secretion, without significantly affecting viability, in a concentration- and potency-dependent manner. LA-mediated attenuation of macrophage TNF-α was sustained in co-culture with MSCs, but MSCs did not further enhance this anti-inflammatory effect. Concentration- and potency-dependent reductions in macrophage TNF-α were concurrent with decreased PGE2 levels in the co-cultures further indicating MSC-independent macrophage attenuation. MSC functional recovery from LA exposure was assessed by pre-treating MSCs with LAs prior to co-culture with macrophages. Both MSC attenuation of TNF-α and PGE2 secretion were impaired by pre-exposure to the more potent bupivacaine and high dose of lidocaine in a concentration-dependent manner. Therefore, LAs can affect anti-inflammatory function by both directly attenuating macrophage inflammation and MSC secretion and possibly by altering the local microenvironment which can secondarily reduce MSC function. Furthermore, the LA effect on MSC function may persist

  17. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes.

    PubMed

    Itoi, Saori; Terao, Mika; Murota, Hiroyuki; Katayama, Ichiro

    2013-10-18

    The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10(-13) M cortisol, whereas 1 × 10(-5) M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol concentrations by 11β-HSD1 appears to modulate expression of inflammatory cytokines in NHEKs. PMID:24055708

  18. Pro-Inflammatory Effects of Cook Stove Emissions on Human Bronchial Epithelial Cells

    PubMed Central

    Hawley, Brie; Volckens, John

    2012-01-01

    Approximately half the world’s population uses biomass fuel for indoor cooking and heating. This form of combustion typically occurs in open fires or primitive stoves. Human exposure to emissions from indoor biomass combustion is a global health concern, causing an estimated 1.5 million premature deaths each year. Many ‘improved’ stoves have been developed to address this concern; however, studies that examine exposure-response with cleaner-burning, more efficient stoves are few. The objective of this research was to evaluate the effects of traditional and cleaner burning stove emissions on an established model of the bronchial epithelium. We exposed well-differentiated, normal human bronchial epithelial (NHBE) cells to emissions from a single biomass combustion event using either a traditional three-stone fire or one of two energy-efficient stoves. Air-liquid interface cultures were exposed using a novel, aerosol-to-cell deposition system. Cellular expression of a panel of three pro-inflammatory markers was evaluated at 1 and 24 hours following exposure. Cells exposed to emissions from the cleaner burning stoves generated significantly fewer amounts of pro-inflammatory markers than cells exposed to emissions from a traditional, three stone fire. Particulate matter emissions from each cookstove were substantially different, with the three-stone fire producing the largest concentrations of particles (by both number and mass). This study supports emerging evidence that more efficient cookstoves have the potential to reduce respiratory inflammation in settings where solid fuel combustion is used to meet basic domestic needs. PMID:22672519

  19. Intrathecal Injection of JWH-015 Attenuates Bone Cancer Pain Via Time-Dependent Modification of Pro-inflammatory Cytokines Expression and Astrocytes Activity in Spinal Cord.

    PubMed

    Lu, Cui'e; Liu, Yue; Sun, Bei; Sun, Yu'e; Hou, Bailing; Zhang, Yu; Ma, Zhengliang; Gu, Xiaoping

    2015-10-01

    Cannabinoid receptor type 2 (CB2) agonists display potential analgesic effects in acute and neuropathic pain. However, its complex cellular and molecular mechanisms in bone cancer pain remain unclear. And less relevant reports concerned its time-dependent effects on the long-lasting modifications of behavior, spinal inflammatory cytokines levels, astrocytes activity induced by bone cancer pain. A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells was utilized. Pain behaviors at different time points were assessed by ambulatory pain scores and paw withdrawal mechanical threshold (PWMT). Pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-18, and tumor necrosis factor alpha (TNF-α), were quantitated by Western blots. Glial activity was assessed by immunohistochemistry. Intra-tibia inoculation of Walker 256 mammary gland carcinoma cells induced progressive bone cancer pain; a long-term up-regulation of IL-1β, IL-6, IL-18, and TNF-α; and the activation of glia in spinal cord. Activation of microglia was first evident on day 4 after surgery and reached to a peak on day 7 while activation of astrocytes was on day 10. A single intrathecal injection of JWH-015 attenuated bone cancer induced spontaneous pain and mechanical allodynia, reduced the expression of pro-inflammatory cytokines, and inhibited the activity of astrocytes. All the modifications were transient and peaked at 24 h after JWH-015 administration. Furthermore, the protective effects of JWH-015 were reversed in the presence of CB2-selective antagonist AM630. Overall, our results provided evidences for the persistent participation of inflammation reaction in the progression of bone cancer pain, and demonstrated that JWH-015 reduced the expression of IL-1β, IL-6, IL-18, and TNF-α and inhibited astrocytes activation in a time-dependent manner, thereby displaying an analgesic effect. PMID:25896633

  20. Isolation rearing impaired sensorimotor gating but increased pro-inflammatory cytokines and disrupted metabolic parameters in both sexes of rats.

    PubMed

    Ko, Chih-Yuan; Liu, Yia-Ping

    2015-05-01

    Social isolation rearing (SIR) is an early stress paradigm of deprivation of the social contact since weaning. SIR has been used to investigate the mechanisms behind certain mental illnesses with neurodevelopmental origins, including schizophrenia. In schizophrenia, metabolic dysfunction has become a critical issue with increasing evidence for a possible connection between metabolism and immune systems in which metabolic changes are associated with pro-inflammatory cytokine (pro-CK) levels. The present study employed a rat model of SIR with both sexes to examine behaviors [locomotor activity and prepulse inhibition (PPI)], inflammatory markers [C-reactive protein, interleukin (IL)-1 beta, IL-6, IL-10, tumor necrosis factor (TNF)-alpha and interferon-gamma], and metabolism-related variables (body weight, blood pressure, and the profiles of glycemia and lipid). Our results revealed that around puberty, SIR rats of both sexes exhibited behaviorally a higher locomotor activity and a lower PPI performance. Biochemically, SIR rats had an elevated level of pro-CKs (IL-1 beta, IL-6, TNF-alpha, and interferon-gamma), and metabolic abnormalities (increased insulin resistance, decreased insulin sensitivity, and high blood pressure) in a time-dependent manner. The relationships between pro-CKs and metabolism were sex specific as IL-1 beta and interferon-gamma were correlated to glycemia metabolic indexes in males. The present study demonstrated SIR-induced longitudinal concomitant changes of pro-CKs and metabolic abnormalities, implying a more direct role of these two things in mental dysfunctions with a developmental origin. PMID:25770703

  1. Differential Pro-Inflammatory Responses of Astrocytes and Microglia Involve STAT3 Activation in Response to 1800 MHz Radiofrequency Fields

    PubMed Central

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure. PMID:25275372

  2. Baclofen, a GABABR Agonist, Ameliorates Immune-Complex Mediated Acute Lung Injury by Modulating Pro-Inflammatory Mediators

    PubMed Central

    Jin, Shunying; Merchant, Michael L.; Ritzenthaler, Jeffrey D.; McLeish, Kenneth R.; Lederer, Eleanor D.; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T.; Lentsch, Alex B.; Roman, Jesse; Klein, Jon B.; Rane, Madhavi J.

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a

  3. Corticosteroid-Induced MKP-1 Represses Pro-Inflammatory Cytokine Secretion by Enhancing Activity of Tristetraprolin (TTP) in ASM Cells.

    PubMed

    Prabhala, Pavan; Bunge, Kristin; Ge, Qi; Ammit, Alaina J

    2016-10-01

    Exaggerated cytokine secretion drives pathogenesis of a number of chronic inflammatory diseases, including asthma. Anti-inflammatory pharmacotherapies, including corticosteroids, are front-line therapies and although they have proven clinical utility, the molecular mechanisms responsible for their actions are not fully understood. The corticosteroid-inducible gene, mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1, DUSP1) has emerged as a key molecule responsible for the repressive effects of steroids. MKP-1 is known to deactivate p38 MAPK phosphorylation and can control the expression and activity of the mRNA destabilizing protein-tristetraprolin (TTP). But whether corticosteroid-induced MKP-1 acts via p38 MAPK-mediated modulation of TTP function in a pivotal airway cell type, airway smooth muscle (ASM), was unknown. While pretreatment of ASM cells with the corticosteroid dexamethasone (preventative protocol) is known to reduce ASM synthetic function in vitro, the impact of adding dexamethasone after stimulation (therapeutic protocol) had not been explored. Whether dexamethasone modulates TTP in a p38 MAPK-dependent manner in this cell type was also unknown. We address this herein and utilize an in vitro model of asthmatic inflammation where ASM cells were stimulated with the pro-asthmatic cytokine tumor necrosis factor (TNF) and the impact of adding dexamethasone 1 h after stimulation assessed. IL-6 mRNA expression and protein secretion was significantly repressed by dexamethasone acting in a temporally distinct manner to increase MKP-1, deactivate p38 MAPK, and modulate TTP phosphorylation status. In this way, dexamethasone-induced MKP-1 acts via p38 MAPK to switch on the mRNA destabilizing function of TTP to repress pro-inflammatory cytokine secretion from ASM cells. J. Cell. Physiol. 231: 2153-2158, 2016. © 2016 Wiley Periodicals, Inc. PMID:26825339

  4. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells.

    PubMed

    Pourgholaminejad, Arash; Aghdami, Nasser; Baharvand, Hossein; Moazzeni, Seyed Mohammad

    2016-09-01

    Mesenchymal stem cells (MSCs), as cells with potential clinical utilities, have demonstrated preferential incorporation into inflammation sites. Immunophenotype and immunomodulatory functions of MSCs could alter by inflamed-microenvironments due to the local pro-inflammatory cytokine milieu. A major cellular mediator with specific function in promoting inflammation and pathogenicity of autoimmunity are IL-17-producing T helper 17 (Th17) cells that polarize in inflamed sites in the presence of pro-inflammatory cytokines such as Interleukin-1β (IL-1β), IL-6 and IL-23. Since MSCs are promising candidate for cell-based therapeutic strategies in inflammatory and autoimmune diseases, Th17 cell polarizing factors may alter MSCs phenotype and function. In this study, human bone-marrow-derived MSCs (BM-MSC) and adipose tissue-derived MSCs (AD-MSC) were cultured with or without IL-1β, IL-6 and IL-23 as pro-inflammatory cytokines. The surface markers and their differentiation capacity were measured in cytokine-untreated and cytokine-treated MSCs. MSCs-mediated immunomodulation was analyzed by their regulatory effects on mixed lymphocyte reaction (MLR) and the level of IL-10, TGF-β, IL-4, IFN-γ and TNF-α production as immunomodulatory cytokines. Pro-inflammatory cytokines showed no effect on MSCs morphology, immunophenotype and co-stimulatory molecules except up-regulation of CD45. Adipogenic and osteogenic differentiation capacity increased in CD45+ MSCs. Moreover, cytokine-treated MSCs preserved the suppressive ability of allogeneic T cell proliferation and produced higher level of TGF-β and lower level of IL-4. We concluded pro-inflammatory cytokines up-regulate the efficacy of MSCs in cell-based therapy of degenerative, inflammatory and autoimmune disorders. PMID:27288632

  5. Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures.

    PubMed Central

    Van Lenten, B J; Hama, S Y; de Beer, F C; Stafforini, D M; McIntyre, T M; Prescott, S M; La Du, B N; Fogelman, A M; Navab, M

    1995-01-01

    We previously reported that high density lipoprotein (HDL) protects against the oxidative modification of low density lipoprotein (LDL) induced by artery wall cells causing these cells to produce pro-inflammatory molecules. We also reported that enzyme systems associated with HDL were responsible for this anti-inflammatory property of HDL. We now report studies comparing HDL before and during an acute phase response (APR) in both humans and a croton oil rabbit model. In rabbits, from the onset of APR the protective effect of HDL progressively decreased and was completely lost by day three. As serum amyloid A (SAA) levels in acute phase HDL (AP-HDL) increased, apo A-I levels decreased 73%. Concomitantly, paraoxonase (PON) and platelet activating factor acetylhydrolase (PAF-AH) levels in HDL declined 71 and 90%, respectively, from days one to three. After day three, there was some recovery of the protective effect of HDL. AP-HDL from human patients and rabbits but not normal or control HDL (C-HDL) exhibited increases in ceruloplasmin (CP). This increase in CP was not seen in acute phase VLDL or LDL. C-HDL incubated with purified CP and re-isolated (CP-HDL), lost its ability to inhibit LDL oxidation. Northern blot analyses demonstrated enhanced expression of MCP-1 in coculture cells treated with AP-HDL and CP-HDL compared to C-HDL. Enrichment of human AP-HDL with purified PON or PAF-AH rendered AP-HDL protective against LDL modification. We conclude that under basal conditions HDL serves an anti-inflammatory role but during APR displacement and/or exchange of proteins associated with HDL results in a pro-inflammatory molecule. Images PMID:8675645

  6. Diosmin downregulates the expression of T cell receptors, pro-inflammatory cytokines and NF-κB activation against LPS-induced acute lung injury in mice.

    PubMed

    Imam, Faisal; Al-Harbi, Naif O; Al-Harbi, Mohammed M; Ansari, Mushtaq Ahmad; Zoheir, Khairy M A; Iqbal, Muzaffar; Anwer, Md Khalid; Al Hoshani, Ali R; Attia, Sabry M; Ahmad, Sheikh Fayaz

    2015-12-01

    Diosmin, a natural flavonoid glycoside present abundantly in the pericarp of various citrus fruits. Because of its anti-inflammatory and antioxidant properties, it can be used in many diseases. In this study, we investigated the possible protective mechanisms of the diosmin on LPS-induced lung injury through inhibition of T cell receptors, pro-inflammatory cytokines and NF-κB activation. Animals were pretreated with diosmin (50 and 100mg/kg, p.o.) for seven days prior to lipopolysaccharides (LPS) treatment. LPS administration increased neutrophils, monocytes, lymphocytes, total leukocyte count (TLC) and platelets which were decreased by diosmin. We observed that mice exposed to LPS showed increased malondialdehyde level and MPO activity whereas marked decrease in glutathione content. These changes were significantly reversed by treatment with diosmin in a dose dependent manner. Diosmin treatment showed a substantial reduction in T cell (CD4(+) and CD8(+)) receptors and pro-inflammatory (IL-2(+) and IL-17(+)) cytokines in whole blood. In addition, RT-PCR analysis revealed increased mRNA expression of IL-6, IL-17, TNF-α, and NF-κB in the LPS group, while reduced by treatment with diosmin. Western blot analysis confirmed the increased protein expression of IL-1β, TNF-α and NF-κB p65 in the LPS group and treatment of animals with diosmin reversed these effects. The levels of cytoplasmic p-IκB-α and p-NF-κB p65 expression also were mitigated by diosmin. The histological examinations revealed protective effect of diosmin while LPS group aggravated lung injury. These results support the potential for diosmin to be investigated as a potential agent for the treatment of lung injury and inflammatory diseases. PMID:26361726

  7. Pro-inflammatory cytokines and bone fractures in CKD patients. An exploratory single centre study

    PubMed Central

    2012-01-01

    Background Pro-inflammatory cytokines play a key role in bone remodeling. Inflammation is highly prevalent in CKD-5D patients, but the relationship between pro-inflammatory cytokines and fractures in CKD-5D patients is unclear. We studied the relationship between inflammatory cytokines and incident bone fractures in a cohort of CKD-5D patients. Methods In 100 CKD-5D patients (66 on HD, 34 on CAPD; males:63, females:37; mean age: 61 ± 15; median dialysis vintage: 43 months) belonging to a single renal Unit, we measured at enrolment bone metabolic parameters (intact PTH, bone and total alkaline phosphatase, calcium, phosphate) and inflammatory cytokines (TNF-α, IL-6, CRP). Patients were followed-up until the first non traumatic fracture. Results During follow-up (median: 74 months; range 0.5 -84.0) 18 patients experienced fractures. On categorical analysis these patients compared to those without fractures had significantly higher intact PTH (median: 319 pg/ml IQ range: 95–741 vs 135 pg/ml IQ: 53–346; p = 0.04) and TNF-α levels (median: 12 pg/ml IQ: 6.4-13.4 vs 7.8 pg/ml IQ: 4.6-11; p = 0.02). Both TNF-α (HR for 5 pg/ml increase in TNF-α: 1.62 95% CI: 1.05-2.50; p = 0.03) and intact PTH (HR for 100 pg/ml increase in PTH: 1.15 95% CI: 1.04-1.27; p = 0.005) predicted bone fractures on univariate Cox’s regression analysis. In restricted (bivariate) models adjusting for previous fractures, age, sex and other risk factors both PTH and TNF-α maintained an independent association with incident fractures. Conclusions In our bivariate analyses TNF-α was significantly associated with incident fractures. Analyses in larger cohorts and with adequate number of events are needed to firmly establish the TNF α -fracture link emerged in the present study. PMID:23043229

  8. Long-lasting pro-inflammatory suppression of microglia by LPS-preconditioning is mediated by RelB-dependent epigenetic silencing.

    PubMed

    Schaafsma, W; Zhang, X; van Zomeren, K C; Jacobs, S; Georgieva, P B; Wolf, S A; Kettenmann, H; Janova, H; Saiepour, N; Hanisch, U-K; Meerlo, P; van den Elsen, P J; Brouwer, N; Boddeke, H W G M; Eggen, B J L

    2015-08-01

    Microglia, the innate immune cells of the central nervous system (CNS), react to endotoxins like bacterial lipopolysaccharides (LPS) with a pronounced inflammatory response. To avoid excess damage to the CNS, the microglia inflammatory response needs to be tightly regulated. Here we report that a single LPS challenge results in a prolonged blunted pro-inflammatory response to a subsequent LPS stimulation, both in primary microglia cultures (100 ng/ml) and in vivo after intraperitoneal (0.25 and 1mg/kg) or intracerebroventricular (5 μg) LPS administration. Chromatin immunoprecipitation (ChIP) experiments with primary microglia and microglia acutely isolated from mice showed that LPS preconditioning was accompanied by a reduction in active histone modifications AcH3 and H3K4me3 in the promoters of the IL-1β and TNF-α genes. Furthermore, LPS preconditioning resulted in an increase in the amount of repressive histone modification H3K9me2 in the IL-1β promoter. ChIP and knock-down experiments showed that NF-κB subunit RelB was bound to the IL-1β promoter in preconditioned microglia and that RelB is required for the attenuated LPS response. In addition to a suppressed pro-inflammatory response, preconditioned primary microglia displayed enhanced phagocytic activity, increased outward potassium currents and nitric oxide production in response to a second LPS challenge. In vivo, a single i.p. LPS injection resulted in reduced performance in a spatial learning task 4 weeks later, indicating that a single inflammatory episode affected memory formation in these mice. Summarizing, we show that LPS-preconditioned microglia acquire an epigenetically regulated, immune-suppressed phenotype, possibly to prevent excessive damage to the central nervous system in case of recurrent (peripheral) inflammation. PMID:25843371

  9. Maternal Supplementation with Oligofructose (10%) during Pregnancy and Lactation Leads to Increased Pro-Inflammatory Status of the 21-D-Old Offspring

    PubMed Central

    Mennitti, Laís Vales; Oyama, Lila Missae; de Oliveira, Juliana Lopez; Hachul, Ana Claudia Losinskas; Santamarina, Aline Boveto; de Santana, Aline Alves; Okuda, Marcos Hiromu; Ribeiro, Eliane Beraldi; Oller do Nascimento, Claudia Maria da Penha; Pisani, Luciana Pellegrini

    2015-01-01

    Previously, we showed that oligofructose (10%) supplementation during pregnancy and lactation increased endotoxemia in 21-d-old pups. The present study evaluated the effect of 10% oligofructose diet supplementation during pregnancy and lactation in the presence or absence of hydrogenated vegetable fat on the pro-inflammatory status of 21-d-old offspring. On the first day of pregnancy, female Wistar rats were divided into the following groups: control diet (C), control diet supplemented with 10% oligofructose (CF), diet enriched with hydrogenated vegetable fat (T) or diet enriched with hydrogenated vegetable fat supplemented with 10% oligofructose (TF). Diets were maintained during pregnancy and lactation. Serum TNF-α (tumor necrosis factor alpha) was assessed using a specific kit. Protein expression was determined by Western Blotting, and the relative mRNA levels were analyzed by RT-PCR (real-time polymerase chain reaction). We observed that 10% oligofructose supplementation during pregnancy and lactation increased offspring’s IL-6R (interleukin-6 receptor) mRNA levels in the liver and RET (retroperitoneal white adipose tissue) and decreased ADIPOR2 (adiponectin receptor 2) and ADIPOR1 (adiponectin receptor 1) gene expression in liver and EDL (extensor digital longus)/ SOL (soleus) muscles of CF group. Additionally, TF group presented with increased serum TNF-α, protein expression of p-NFκBp65 (phosphorylated form of nuclear factor kappa B p65 subunit) in liver and IL-6R mRNA levels in RET. These findings were accompanied by decreased levels of ADIPOR1 mRNA in the EDL and SOL muscles of the TF group. In conclusion, supplementing the dam’s diet with 10% of oligofructose during pregnancy and lactation, independent of hydrogenated vegetable fat addition, contributes to the increased pro-inflammatory status of 21-d-old offspring, possibly through the activation of the TLR4 (toll like receptor 4) pathway. PMID:26147005

  10. Multi-analyte profiling in human carotid atherosclerosis uncovers pro-inflammatory macrophage programming in plaques.

    PubMed

    Shalhoub, Joseph; Viiri, Leena E; Cross, Amanda J; Gregan, Scott M; Allin, David M; Astola, Nagore; Franklin, Ian J; Davies, Alun H; Monaco, Claudia

    2016-05-01

    Molecular characterisation of vulnerable atherosclerosis is necessary for targeting functional imaging and plaque-stabilising therapeutics. Inflammation has been linked to atherogenesis and the development of high-risk plaques. We set to quantify cytokine, chemokine and matrix metalloproteinase (MMP) protein production in cells derived from carotid plaques to map the inflammatory milieu responsible for instability. Carotid endarterectomies from carefully characterised symptomatic (n=35) and asymptomatic (n=32) patients were enzymatically dissociated producing mixed cell type atheroma cell suspensions which were cultured for 24 hours. Supernatants were interrogated for 45 analytes using the Luminex 100 platform. Twenty-nine of the 45 analytes were reproducibly detectable in the majority of donors. The in vitro production of a specific network of mediators was found to be significantly higher in symptomatic than asymptomatic plaques, including: tumour necrosis factor α, interleukin (IL) 1β, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), CCL5, CCL20, CXCL9, matrix metalloproteinase (MMP)-3 and MMP-9. Ingenuity pathway analysis of differentially expressed analytes between symptomatic and asymptomatic patients identified a number of key biological pathways (p< 10(-25)). In conclusion, the carotid artery plaque culprit of ischaemic neurological symptoms is characterised by an inflammatory milieu favouring inflammatory cell recruitment and pro-inflammatory macrophage polarisation. PMID:26763091

  11. Breastmilk from obese mothers has pro-inflammatory properties and decreased neuroprotective factors

    PubMed Central

    Panagos, PG; Vishwanathan, R; Penfield-Cyr, A; Matthan, NR; Shivappa, N; Wirth, MD; Hebert, JR; Sen, S

    2016-01-01

    OBJECTIVE To determine the impact of maternal obesity on breastmilk composition. STUDY DESIGN Breastmilk and food records from 21 lean and 21 obese women who delivered full-term infants were analyzed at 2 months post-partum. Infant growth and adiposity were measured at birth and 2 months of age. RESULT Breastmilk from obese mothers had higher omega-6 to omega-3 fatty acid ratio and lower concentrations of docosahexaenoic acid, eicosapentaenoic acid, docasapentaenoic acid and lutein compared with lean mothers (P < 0.05), which were strongly associated with maternal body mass index. Breastmilk saturated fatty acid and monounsaturated fatty acid concentrations were positively associated with maternal dietary inflammation, as measured by dietary inflammatory index. There were no differences in infant growth measurements. CONCLUSION Breastmilk from obese mothers has a pro-inflammatory fatty acid profile and decreased concentrations of fatty acids and carotenoids that have been shown to have a critical role in early visual and neurodevelopment. Studies are needed to determine the link between these early-life influences and subsequent cardiometabolic and neurodevelopmental outcomes. PMID:26741571

  12. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response

    PubMed Central

    Santiago, Felix W.; Halsey, Eric S.; Siles, Crystyan; Vilcarromero, Stalin; Guevara, Carolina; Silvas, Jesus A.; Ramal, Cesar; Ampuero, Julia S.; Aguilar, Patricia V.

    2015-01-01

    Mayaro virus (MAYV), an alphavirus similar to chikungunya virus (CHIKV), causes an acute debilitating disease which results in the development of long-term arthralgia in more than 50% of infected individuals. Currently, the immune response and its role in the development of MAYV-induced persistent arthralgia remain unknown. In this study, we evaluated the immune response of individuals with confirmed MAYV infection in a one-year longitudinal study carried out in Loreto, Peru. We report that MAYV infection elicits robust immune responses that result in the development of a strong neutralizing antibody response and the secretion of pro-inflammatory immune mediators. The composition of these inflammatory mediators, in some cases, differed to those previously observed for CHIKV. Key mediators such as IL-13, IL-7 and VEGF were strongly induced following MAYV infection and were significantly increased in subjects that eventually developed persistent arthralgia. Although a strong neutralizing antibody response was observed in all subjects, it was not sufficient to prevent the long-term outcomes of MAYV infection. This study provides initial immunologic insight that may eventually contribute to prognostic tools and therapeutic treatments against this emerging pathogen. PMID:26496497

  13. Metabolic dysfunction drives a mechanistically distinct pro-inflammatory phenotype in adipose tissue macrophages

    PubMed Central

    Kratz, Mario; Coats, Brittney R.; Hisert, Katherine B.; Hagman, Derek; Mutskov, Vesco; Peris, Eduard; Schoenfelt, Kelly Q.; Kuzma, Jessica N.; Larson, Ilona; Billing, Peter S.; Landerholm, Robert W.; Crouthamel, Matthew; Gozal, David; Hwang, Seungmin; Singh, Pradeep; Becker, Lev

    2014-01-01

    Adipose tissue macrophage (ATM)-driven inflammation plays a key role in insulin resistance; however, factors activating ATMs are poorly understood. Using a proteomics approach, we show that markers of classical activation are absent on ATMs from obese humans, but readily detectable on airway macrophages of patients with cystic fibrosis, a disease of chronic bacterial infection. Moreover, treating macrophages with glucose, insulin, and palmitate – conditions characteristic of the metabolic syndrome – produces a ‘metabolically-activated’ phenotype distinct from classical activation. Markers of metabolic activation are expressed by pro-inflammatory ATMs in obese humans/mice and are positively correlated with adiposity. Metabolic activation is driven by independent pro- and anti-inflammatory pathways, which regulate balance between cytokine production and lipid metabolism. We identify PPARγ and p62/SQSTM1 as two key proteins that promote lipid metabolism and limit inflammation in metabolically-activated macrophages. Collectively, our data provide important mechanistic insights into pathways that drive the metabolic disease-specific phenotype of macrophages. PMID:25242226

  14. Regulation of autoimmune arthritis by the pro-inflammatory cytokine interferon-γ

    PubMed Central

    Kim, Eugene Y.; Chi, Howard H.; Bouziane, Mohammed; Gaur, Amitabh; Moudgil, Kamal D.

    2008-01-01

    The pathogenesis of T cell-mediated diseases like rheumatoid arthritis (RA) has typically been explained in the context of the Th1-Th2 paradigm: the initiation/propagation by pro-inflammatory cytokines, and downregulation by Th2 cytokines. However, in our study based on the adjuvant-induced arthritis (AA) model of RA, we observed that Lewis (LEW) (RT.1l) rats at the recovery phase of AA showed the highest level of IFN-γ in recall response to mycobacterial heat-shock protein 65 (Bhsp65), whereas AA-resistant Wistar-Kyoto (WKY) (RT.1l) rats secreted high levels of IFN-γ much earlier following disease induction. However, no significant secretion of IL-10 or TGF-β was observed in either strain. Furthermore, pre-treatment of LEW rats with a peptide of self (rat) hsp65 (R465), which induced T cells secreting predominantly IFN-γ, afforded protection against AA and decreased IL-17 expression by the arthritogenic epitope-restimulated T cells. These results provide a novel perspective on the pathogenesis of autoimmune arthritis. PMID:18276192

  15. Comparative evaluation of pro-inflammatory cytokine levels in pulpotomized primary molars.

    PubMed

    Ozdemir, Yasemin; Kutukculer, Necil; Topaloglu-Ak, Asli; Kose, Timur; Eronat, Cemal

    2015-06-01

    The present in vivo study was performed to investigate the levels of the pro-inflammatory cytokines, interleukin (IL)-1α, IL-6, and IL-8, in primary molars for which pulpotomy was clinically indicated, and to evaluate the success rates of three different pulpotomy agents employed for cariously (CExp) or mechanically exposed (MExp) primary molars. Forty-seven primary molars were classified as MExp or CExp according to the type of pulpal exposure. Pulp tissue was harvested and analyzed using enzyme-linked immunosorbent assay (ELISA). Subsequently, three pulpotomy agents-calcium hydroxide (CH), mineral trioxide aggregate (MTA), and formocresol (FC)-were applied randomly, and the outcome was observed radiographically for 18 months. Levels of IL-6 and IL-8 were significantly higher in CExp pulp than in MExp pulp (P < 0.05). In the CH pulpotomy group, MExp teeth showed a higher success rate than CExp teeth. There was no significant difference in success rate between MExp and CExp teeth in both the FC and MTA groups. The levels of IL-6 and IL-8 have the potential to become indicators of pulp status and can be monitored by researchers to make the prognosis of vital pulp therapies less uncertain. As MTA and FC yielded higher rates of success than CH in CExp teeth, the choice of pulpotomy agent appears to be important in this context. PMID:26062864

  16. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response.

    PubMed

    Santiago, Felix W; Halsey, Eric S; Siles, Crystyan; Vilcarromero, Stalin; Guevara, Carolina; Silvas, Jesus A; Ramal, Cesar; Ampuero, Julia S; Aguilar, Patricia V

    2015-01-01

    Mayaro virus (MAYV), an alphavirus similar to chikungunya virus (CHIKV), causes an acute debilitating disease which results in the development of long-term arthralgia in more than 50% of infected individuals. Currently, the immune response and its role in the development of MAYV-induced persistent arthralgia remain unknown. In this study, we evaluated the immune response of individuals with confirmed MAYV infection in a one-year longitudinal study carried out in Loreto, Peru. We report that MAYV infection elicits robust immune responses that result in the development of a strong neutralizing antibody response and the secretion of pro-inflammatory immune mediators. The composition of these inflammatory mediators, in some cases, differed to those previously observed for CHIKV. Key mediators such as IL-13, IL-7 and VEGF were strongly induced following MAYV infection and were significantly increased in subjects that eventually developed persistent arthralgia. Although a strong neutralizing antibody response was observed in all subjects, it was not sufficient to prevent the long-term outcomes of MAYV infection. This study provides initial immunologic insight that may eventually contribute to prognostic tools and therapeutic treatments against this emerging pathogen. PMID:26496497

  17. Lipopolysaccharide derived from the digestive tract activates inflammatory gene expression and inhibits casein synthesis in the mammary glands of lactating dairy cows.

    PubMed

    Zhang, Kai; Chang, Guangjun; Xu, Tianle; Xu, Lei; Guo, Junfei; Jin, Di; Shen, Xiangzhen

    2016-03-01

    To meet the nutrition requirements of lactation, dairy cows are usually fed a high concentrate diet (HC). However, high-grain feeding causes subacute ruminal acidosis (SARA), a metabolic disorder that causes milk protein depression. This study aimed to investigate the effect of lipopolysaccharide (LPS) released in the rumen on inflammatory gene expression and casein synthesis in mammary glands of lactating dairy cows fed a HC diet. We found that milk protein was significantly decreased in the HC group after 15 weeks of feeding. Overall, LPS concentrations in the rumen fluid, lacteal artery and vein were increased in the HC group. Transcriptome microarray was used to evaluate alterations in the signaling pathway in mammary glands. Signaling pathways involved in inflammatory responses were activated, whereas those involved in protein synthesis were inhibited in the HC group. mRNA expression involved in inflammatory responses, including that of TLR4, NF-кB and pro-inflammatory genes, was increased in the HC group, while αs1-casein (CSN1S1), β-casein (CSN2), mTOR and S6K gene expression were decreased. Moreover, protein expression was consistent with the corresponding gene expression. After feeding with an HC diet, LPS derived from the rumen increased inflammatory gene expression and inhibited casein synthesis in the mammary glands of lactating dairy cows fed a HC diet. PMID:26893357

  18. Lipopolysaccharide derived from the digestive tract activates inflammatory gene expression and inhibits casein synthesis in the mammary glands of lactating dairy cows

    PubMed Central

    Zhang, Kai; Chang, Guangjun; Xu, Tianle; Xu, Lei; Guo, Junfei; Jin, Di; Shen, Xiangzhen

    2016-01-01

    To meet the nutrition requirements of lactation, dairy cows are usually fed a high concentrate diet (HC). However, high-grain feeding causes subacute ruminal acidosis (SARA), a metabolic disorder that causes milk protein depression. This study aimed to investigate the effect of lipopolysaccharide (LPS) released in the rumen on inflammatory gene expression and casein synthesis in mammary glands of lactating dairy cows fed a HC diet. We found that milk protein was significantly decreased in the HC group after 15 weeks of feeding. Overall, LPS concentrations in the rumen fluid, lacteal artery and vein were increased in the HC group. Transcriptome microarray was used to evaluate alterations in the signaling pathway in mammary glands. Signaling pathways involved in inflammatory responses were activated, whereas those involved in protein synthesis were inhibited in the HC group. mRNA expression involved in inflammatory responses, including that of TLR4, NF-кB and pro-inflammatory genes, was increased in the HC group, while αs1-casein (CSN1S1), β-casein (CSN2), mTOR and S6K gene expression were decreased. Moreover, protein expression was consistent with the corresponding gene expression. After feeding with an HC diet, LPS derived from the rumen increased inflammatory gene expression and inhibited casein synthesis in the mammary glands of lactating dairy cows fed a HC diet. PMID:26893357

  19. Dark chocolate attenuates intracellular pro-inflammatory reactivity to acute psychosocial stress in men: A randomized controlled trial.

    PubMed

    Kuebler, Ulrike; Arpagaus, Angela; Meister, Rebecca E; von Känel, Roland; Huber, Susanne; Ehlert, Ulrike; Wirtz, Petra H

    2016-10-01

    Flavanol-rich dark chocolate consumption relates to lower risk of cardiovascular mortality, but underlying mechanisms are elusive. We investigated the effect of acute dark chocolate consumption on inflammatory measures before and after stress. Healthy men, aged 20-50years, were randomly assigned to a single intake of either 50g of flavanol-rich dark chocolate (n=31) or 50g of optically identical flavanol-free placebo-chocolate (n=34). Two hours after chocolate intake, both groups underwent the 15-min Trier Social Stress Test. We measured DNA-binding-activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, as well as plasma and whole blood mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6, and the anti-inflammatory cytokine IL-10, prior to chocolate intake as well as before and several times after stress. We also repeatedly measured the flavanol epicatechin and the stress hormones epinephrine and cortisol in plasma and saliva, respectively. Compared to the placebo-chocolate-group, the dark-chocolate-group revealed a marginal increase in IL-10 mRNA prior to stress (p=0.065), and a significantly blunted stress reactivity of NF-κB-BA, IL-1β mRNA, and IL-6 mRNA (p's⩽0.036) with higher epicatechin levels relating to lower pro-inflammatory stress reactivity (p's⩽0.033). Stress hormone changes to stress were controlled. None of the other measures showed a significant chocolate effect (p's⩾0.19). Our findings indicate that acute flavanol-rich dark chocolate exerts anti-inflammatory effects both by increasing mRNA expression of the anti-inflammatory cytokine IL-10 and by attenuating the intracellular pro-inflammatory stress response. This mechanism may add to beneficial effects of dark chocolate on cardiovascular health. PMID:27091601

  20. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures

    SciTech Connect

    Kocbach, Anette Herseth, Jan Inge; Lag, Marit; Refsnes, Magne; Schwarze, Per E.

    2008-10-15

    The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 {mu}g/cm{sup 2} of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-{alpha}, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-{alpha}, IL-1). The cytotoxicity was low after exposure to particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-{alpha} and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent.

  1. Suppressive effects of Mimosa pudica (L.) constituents on the production of LPS-induced pro-inflammatory mediators

    PubMed Central

    Patel, Neeraj K.; Bhutani, Kamlesh K.

    2014-01-01

    The present study deals with the isolation of fourteen compounds from the active ethyl acetate (MPE) extract of M. pudica (L.) whole plant and their subsequent evaluation for the nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) inhibitory activities in lipopolysaccharide (LPS) stimulated RAW 264.7 and J774A.1 cells. Among the tested compounds, L-mimosine (12; IC50 = 19.23 to 21.15 µM), crocetin (4; IC50 = 23.45 to 25.57 µM), crocin (14; IC50 = 27.16 to 31.53 µM) and jasmonic acid (11; IC50 = 21.32 to 29.42 µM) were identified as potent NO inhibitor when tested on the macrophages. Similarly, towards TNF-α and IL-1ß inhibition, including these four compounds, and ethyl gallate (3), gallic acid (10) and caffeic acid (7) were found to be more active with half maximal concentration, 17.32 to 62.32 µM whereas the other compounds depicted moderate and mild effects (IC50 = 59.32 to 95.01 µM). Also, at a dose of 40 mg/Kg, L-mimosine (12), jasmonic acid (11), crocin (14) and its de-esterified form, crocetin (4) were found to significantly (p < 0.05 and 0.001) reduce 60.7 %, 48.9 %, 48.4 % and 43.6 % respectively of TNF-de-esterified production in female Sprague Dawley rats. However, in case of IL-1ß, with the same dose (40 mg/Kg), jasmonic acid (11) exhibited significant reduction with 54.2 % followed by crocin (14) (50.2 %) and crocetin (4) (39.8 %) while L-mimosine (12) was found to reduce only 16.3 %. Based on the results, it can be estimated that these compounds imparting greatly to anti-inflammatory effects of M. pudica in vitro as well as in vivo through reduction of LPS-induced pro-inflammatory mediators which affirm the ethno-pharmacological use of this plant for prevention of inflammatory-related disorders. PMID:26417317

  2. Niacin Modulates Pro-inflammatory Cytokine Secretion. A Potential Mechanism Involved in its Anti-atherosclerotic Effect

    PubMed Central

    Lipszyc, Pedro Saul; Cremaschi, Graciela Alicia; Zubilete, María Zorrilla; Bertolino, Maria Laura Aón; Capani, Francisco; Genaro, Ana Maria; Wald, Miriam Ruth

    2013-01-01

    The pathogenesis of atherosclerosis includes the assignment of a critical role to cells of the monocyte/macrophage lineage and to pro-inflammatory cytokines. Niacin is known to improve lipid metabolism and to produce beneficial modification of cardiovascular risk factors. The aim of this work was to investigate if Niacin is able to modulate pro-inflammatory cytokine production in macrophages in a murine model of atherosclerosis. For this purpose C57Bl/6J mice fed with atherogenic diet (AGD) or with conventional chow diet were used. The AGD group showed an increase in body weight and in total plasma cholesterol, with no differences in triglyceride or HDL levels. Lesions in arterial walls were observed. The characterization of Niacin receptor showed an increase in the receptor number of macrophages from the AGD group. Macrophages from control and AGD animals treated in vitro with an inflammatory stimulus showed elevated levels of IL-6, IL-1 and TNF-α, that were even higher in macrophages from AGD mice. Niacin was able to decrease the production of pro-inflammatory cytokines in stimulated macrophages. Similar effect of Niacin was observed in an in vivo model of inflammation. These results show an attenuating inflammatory mechanism for this therapeutic agent and would point out its potential action in plaque stabilization and in the prevention of atherosclerosis progression. Furthermore, the present results provide the basis for future studies on the potential contribution of Niacin to anti-inflammatory therapies. PMID:24155799

  3. Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury.

    PubMed

    Papa, Simonetta; Caron, Ilaria; Erba, Eugenio; Panini, Nicolò; De Paola, Massimiliano; Mariani, Alessandro; Colombo, Claudio; Ferrari, Raffaele; Pozzer, Diego; Zanier, Elisa R; Pischiutta, Francesca; Lucchetti, Jacopo; Bassi, Andrea; Valentini, Gianluca; Simonutti, Giulio; Rossi, Filippo; Moscatelli, Davide; Forloni, Gianluigi; Veglianese, Pietro

    2016-01-01

    Many efforts have been performed in order to understand the role of recruited macrophages in the progression of spinal cord injury (SCI). Different studies revealed a pleiotropic effect played by these cells associated to distinct phenotypes (M1 and M2), showing a predictable spatial and temporal distribution in the injured site after SCI. Differently, the role of activated microglia in injury progression has been poorly investigated, mainly because of the challenges to target and selectively modulate them in situ. A delivery nanovector tool (poly-ε-caprolactone-based nanoparticles) able to selectively treat/target microglia has been developed and used here to clarify the temporal and spatial involvement of the pro-inflammatory response associated to microglial cells in SCI. We show that a treatment with nanoparticles loaded with minocycline, the latter a well-known anti-inflammatory drug, when administered acutely in a SCI mouse model is able to efficiently modulate the resident microglial cells reducing the pro-inflammatory response, maintaining a pro-regenerative milieu and ameliorating the behavioral outcome up to 63 days post injury. Furthermore, by using this selective delivery tool we demonstrate a mechanistic link between early microglia activation and M1 macrophages recruitment to the injured site via CCL2 chemokine, revealing a detrimental contribution of pro-inflammatory macrophages to injury progression after SCI. PMID:26474039

  4. Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production.

    PubMed

    Brégnard, Christelle; Guerra, Jessica; Déjardin, Stéphanie; Passalacqua, Frank; Benkirane, Monsef; Laguette, Nadine

    2016-06-01

    Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis. PMID:27428429

  5. α-Chaconine isolated from a Solanum tuberosum L. cv Jayoung suppresses lipopolysaccharide-induced pro-inflammatory mediators via AP-1 inactivation in RAW 264.7 macrophages and protects mice from endotoxin shock.

    PubMed

    Lee, Kyoung-Goo; Lee, Suel-Gie; Lee, Hwi-Ho; Lee, Hae Jun; Shin, Ji-Sun; Kim, Nan-Jung; An, Hyo-Jin; Nam, Jung-Hwan; Jang, Dae Sik; Lee, Kyung-Tae

    2015-06-25

    In this study, we investigated the molecular mechanisms underlying the anti-inflammatory effects of α-chaconine in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in LPS-induced septic mice. α-Chaconine inhibited the expressions of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) at the transcriptional level, and attenuated the transcriptional activity of activator protein-1 (AP-1) by reducing the translocation and phosphorylation of c-Jun. α-Chaconine also suppressed the phosphorylation of TGF-β-activated kinase-1 (TAK1), which lies upstream of mitogen-activated protein kinase kinase 7 (MKK7)/Jun N-terminal kinase (JNK) signaling. JNK knockdown using siRNA prevented the α-chaconine-mediated inhibition of pro-inflammatory mediators. In a sepsis model, pretreatment with α-chaconine reduced the LPS-induced lethality and the mRNA and production levels of pro-inflammatory mediators by inhibiting c-Jun activation. These results suggest that the anti-inflammatory effects of α-chaconine are associated with the suppression of AP-1, and support its possible therapeutic role for the treatment of sepsis. PMID:25913072

  6. Excessive Pro-Inflammatory Serum Cytokine Concentrations in Virulent Canine Babesiosis

    PubMed Central

    Goddard, Amelia; Leisewitz, Andrew L.; Kjelgaard-Hansen, Mads; Kristensen, Annemarie T.; Schoeman, Johan P.

    2016-01-01

    Babesia rossi infection causes a severe inflammatory response in the dog, which is the result of the balance between pro- and anti-inflammatory cytokine secretion. The aim of this study was to determine whether changes in cytokine concentrations were present in dogs with babesiosis and whether it was associated with disease outcome. Ninety-seven dogs naturally infected with B. rossi were studied and fifteen healthy dogs were included as controls. Diagnosis of babesiosis was confirmed by polymerase chain reaction and reverse line blot. Blood samples were collected from the jugular vein at admission, prior to any treatment. Cytokine concentrations were assessed using a canine-specific multiplex assay on an automated analyser. Serum concentrations of interleukin (IL)-2, IL-6, IL-8, IL-10, IL-18, granulocyte-macrophage colony stimulating factor (GM-CSF) and monocyte chemotactic protein-1 (MCP-1) were measured. Twelve of the Babesia-infected dogs died (12%) and 85 survived (88%). Babesia-infected dogs were also divided into those that presented within 48 hours from displaying clinical signs, and those that presented more than 48 hours after displaying clinical signs. Cytokine concentrations were compared between the different groups using the Mann-Whitney U test. IL-10 and MCP-1 concentrations were significantly elevated for the Babesia-infected dogs compared to the healthy controls. In contrast, the IL-8 concentration was significantly decreased in the Babesia-infected dogs compared to the controls. Concentrations of IL-6 and MCP-1 were significantly increased in the non-survivors compared to the survivors. Concentrations for IL-2, IL-6, IL-18 and GM-CSF were significantly higher in those cases that presented during the more acute stage of the disease. These findings suggest that a mixed cytokine response is present in dogs with babesiosis caused by B. rossi, and that an excessive pro-inflammatory response may result in a poor outcome. PMID:26953797

  7. Extracted Cookstove Emissions Differentially Alter Pro-inflammatory and Adaptive Gene Expression in Lung Epithelial Cells

    EPA Science Inventory

    Current estimates attribute exposure to cookstove emissions (CE) to over 4 million deaths annually. While the development of several new cookstove (CS) designs has led efforts to reduce CE with relative success, the data supporting potential health benefits from the use of new CS...

  8. Temporal expression of pro-inflammatory cytokines and inducible nitric oxide synthase in experimental acute Chagasic cardiomyopathy.

    PubMed Central

    Chandrasekar, B.; Melby, P. C.; Troyer, D. A.; Colston, J. T.; Freeman, G. L.

    1998-01-01

    To characterize the kinetics of myocardial cytokine and inducible nitric oxide synthase (iNOS) expression in acute Chagasic cardiomyopathy, we studied a rat model of acute Trypanosoma cruzi infection. Rats were euthanized 36 hours and 5, 10, and 15 days after infection, and hearts were collected for histology, mRNA, and protein analyses. Histological analysis of myocardium showed a progressive increase in the number of amastigotes and mononuclear inflammatory cells. Organisms were first detected 5 days after intraperitoneal inoculation as isolated nests and became numerous by day 15. Northern blot analysis of total RNA revealed no signal for interleukin (IL)-1beta or tumor necrosis factor (TNF)-alpha and a weak signal for IL-6 in control hearts. High levels of expression for the three genes were detected in the infected animals at 36 hours after infection. Although IL-1beta and IL-6 levels increased steadily up to 10 days, TNF-alpha levels were the highest at 5 days, remained high at 10 days, and declined thereafter. Western blot analysis showed similar results to that of mRNA expression. No signal was detected for iNOS in the controls, but both its mRNA and protein were found in the infected animals, with levels being highest at 15 days after infection. Immunohistochemistry revealed no iNOS immunoreactivity in uninfected animals, but intense iNOS staining was detected in blood vessels of infected animals, which decreased progressively with period of infection. Positive staining for iNOS in cardiomyocytes was first detected at 36 hours after infection (at a time when there was no histological inflammatory reaction), which steadily increased, being the highest at 15 days after infection. These results indicate that, in addition to mechanical damage by T. cruzi, substantial pro-inflammatory cytokine production within the myocardium is likely to participate in the pathophysiology of acute Chagasic cardiomyopathy. Images Figure 1 Figure 3 Figure 5 Figure 6 Figure 7

  9. Induction of L-arginine transport and nitric oxide synthase in vascular smooth muscle cells: synergistic actions of pro-inflammatory cytokines and bacterial lipopolysaccharide.

    PubMed Central

    Wileman, S. M.; Mann, G. E.; Baydoun, A. R.

    1995-01-01

    1. The interactions between pro-inflammatory cytokines and bacterial lipopolysaccharide (LPS) on L-arginine transporter and inducible nitric oxide synthase (iNOS) activities were examined in rat cultured aortic smooth muscle cells. 2. LPS induced a concentration (0.01-100 micrograms ml-1) and time (8-24 h)-dependent stimulation of nitrite production which was accompanied by a parallel increase in L-arginine transport. 3. Unlike LPS, activation of smooth muscle cells with either interferon-gamma (IFN-gamma, 100 u ml-1), tumour necrosis factor-alpha (TNF-alpha, 300 u ml-1) or interleukin-1 alpha (IL-1 alpha, 100 u ml-1) failed to stimulate L-arginine transport or increase nitrite accumulation. 4. When applied in combination with LPS (100 micrograms ml-1) both IFN-gamma and TNF-alpha, but not IL-1 alpha, enhanced the effects observed with LPS alone. Furthermore, activation of cells with LPS and IFN-gamma had no effect on uptake of the neutral amino acid L-citrulline but selectively increased the Vmax for L-arginine transport 2.8 fold and nitrite levels from 24 +/- 7 to 188 +/- 14 pmol micrograms-1 protein 24 h-1. 5. The substrate specificity, Na- and pH-independence of saturable L-arginine transport in both unactivated (K(m) = 44 microM, Vmax = 3 pmol micrograms-1 protein min-1) and activated (K(m) = 75 microM, Vmax = 8.3 pmol micrograms-1 protein min-1) smooth muscle cells were characteristic of the cationic amino acid transport system y+. 6. Cycloheximide (1 microM) abolished induction of L-arginine transport and nitrite accumulation in response to LPS and IFN-gamma. In contrast, the glucocorticoid dexamethasone (10 microM, 24 h) selectively inhibited nitrite production. 7. Our results demonstrate that pro-inflammatory mediators selectively enhance transport of L-arginine under conditions of sustained NO synthesis by vascular smooth muscle cells. In addition, the differential inhibition of iNOS and L-arginine transporter activity by dexamethasone suggests that

  10. Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages.

    PubMed

    Pucca, Manuela B; Peigneur, Steve; Cologna, Camila T; Cerni, Felipe A; Zoccal, Karina F; Bordon, Karla de C F; Faccioli, Lucia H; Tytgat, Jan; Arantes, Eliane C

    2015-08-01

    Tityus serrulatus (Ts) venom is composed of mainly neurotoxins specific for voltage-gated K(+) and Na(+) channels, which are expressed in many cells such as macrophages. Macrophages are the first line of defense invasion and they participate in the inflammatory response of Ts envenoming. However, little is known about the effect of Ts toxins on macrophage activation. This study investigated the effect of Ts5 toxin on different sodium channels as well as its role on the macrophage immunomodulation. The electrophysiological assays showed that Ts5 inhibits the rapid inactivation of the mammalian sodium channels Nav1.2, Nav1.3, Nav1.4, Nav1.5, Nav1.6 and Nav1.7. Interestingly, Ts5 also inhibits the inactivation of the insect Drosophila melanogaster sodium channel (DmNav1), and it is therefore classified as the first Ts α-like toxin. The immunological experiments on macrophages reveal that Ts5 is a pro-inflammatory toxin inducing the cytokine production of tumor necrosis factor (TNF)-α and interleukin (IL)-6. On the basis of recent literature, our study also stresses a possible mechanism responsible for venom-associated molecular patterns (VAMPs) internalization and macrophage activation and moreover we suggest two main pathways of VAMPs signaling: direct and indirect. This work provides useful insights for a better understanding of the involvement of VAMPs in macrophage modulation. PMID:25906692

  11. Ethyl pyruvate and ethyl lactate down-regulate the production of pro-inflammatory cytokines and modulate expression of immune receptors.

    PubMed

    Hollenbach, Marcus; Hintersdorf, Anja; Huse, Klaus; Sack, Ulrich; Bigl, Marina; Groth, Marco; Santel, Thore; Buchold, Martin; Lindner, Inge; Otto, Andreas; Sicker, Dieter; Schellenberger, Wolfgang; Almendinger, Johannes; Pustowoit, Barbara; Birkemeyer, Claudia; Platzer, Mathias; Oerlecke, Ilka; Hemdan, Nasr; Birkenmeier, Gerd

    2008-09-01

    Esters of alpha-oxo-carbonic acids such as ethyl pyruvate (EP) have been demonstrated to exert inhibitory effects on the production of anti-inflammatory cytokines. So far, there is no information about effects, if any, of ethyl lactate (EL), an obviously inactive analogue of EP, on inflammatory immune responses. In the present study, we provide evidence that the anti-inflammatory action of alpha-oxo-carbonic acid esters is mediated by inhibition of glyoxalases (Glo), cytosolic enzymes that catalyse the conversion of alpha-oxo-aldehydes such as methylglyoxal (MGO) into the corresponding alpha-hydroxy acids using glutathione as a cofactor. In vitro enzyme activity measurements revealed the inhibition of human Glo1 by alpha-oxo-carbonic acid esters, whilst alpha-hydroxy-carbonic acid esters such as EL were not inhibitory. In contrast, both EP and EL were shown to suppress the Lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6 and IL-8 from human immunocompetent cells, and modulated the expression of the immune receptors HLA-DR, CD14 and CD91 on human monocytes. Here, we show a crossing link between glyoxalases and the immune system. The results described herein introduce glyoxalases as a possible target for therapeutic approaches of immune suppression. PMID:18625205

  12. Ganglioside GD1a suppresses LPS-induced pro-inflammatory cytokines in RAW264.7 macrophages by reducing MAPKs and NF-κB signaling pathways through TLR4.

    PubMed

    Wang, Yiren; Cui, Yuting; Cao, Fayang; Qin, Yiyang; Li, Wenjing; Zhang, Jinghai

    2015-09-01

    Gangliosides, sialic acid-containing glycosphingolipids, have been considered to be involved in the development, differentiation, and function of nervous systems in vertebrates. However, the mechanisms for anti-inflammation caused by gangliosides are not clear. In this paper, we investigated the anti-inflammation effects of ganglioside GD1a by using RAW264.7 macrophages. Our data demonstrated that treatment of macrophages with lipopolysaccharide significantly increased the production of NO and pro-inflammatory cytokines. GD1a suppressed the induction of iNOS and COX-2 mRNA and protein expression and secretory pro-inflammatory cytokines in culture medium, such as TNFα, IL-1α and IL-1β. In addition, LPS-induced phosphorylation of mitogen-activating protein kinases and IκBα degradation followed by translocation of the NF-κB from the cytoplasm to the nucleus were attenuated after GD1a treatment. Furthermore, GD1a probably inhibited LPS binding to macrophages and LPS-induced accumulation between TLR4 and MyD88. Taken together, the results demonstrated that ganglioside GD1a inhibited LPS-induced inflammation in RAW 264.7 macrophages by suppressing phosphorylation of mitogen-activating protein kinases and activation of NF-κB through repressing the Toll-like receptor 4 signaling pathway. PMID:26054879

  13. Reduction in (pro-)inflammatory responses of lung cells exposed in vitro to diesel exhaust treated with a non-catalyzed diesel particle filter

    NASA Astrophysics Data System (ADS)

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Müller, Loretta L.; Heeb, Norbert V.; Mayer, Andreas; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2013-12-01

    Increasingly stringent regulation of particulate matter emissions from diesel vehicles has led to the widespread use of diesel particle filters (DPFs), the effect of which on exhaust toxicity is so far poorly understood. We exposed a cellular model of the human respiratory epithelium at the air-liquid interface to non-catalyzed wall-flow DPF-filtered diesel exhaust and compared the resulting biological responses to the ones observed upon exposure to unfiltered exhaust. Filtered diesel exhaust acted highly oxidative, even though to a lesser extent than unfiltered exhaust (quantification of total reduced glutathione), and both exhaust types triggered comparable responses to oxidative stress (measurement of heme-oxygenase 1 (HMOX1) and superoxide-dismutase (SOD1) gene expression). Further, diesel exhaust filtration significantly reduced pro-inflammatory responses (measurement of tumor necrosis factor (TNF) and interleukin-8 (IL-8) gene expression and quantification of the secretion of their gene products TNF-α and IL-8). Because inflammatory processes are central to the onset of adverse respiratory health effects caused by diesel exhaust inhalation, our results imply that DPFs may make a valuable contribution to the detoxification of diesel vehicle emissions. The induction of significant oxidative stress by filtered diesel exhaust however, also implies that the non-particulate exhaust components also need to be considered for lung cell risk assessment.

  14. IκBζ Regulates Human Monocyte Pro-Inflammatory Responses Induced by Streptococcus pneumoniae.

    PubMed

    Sundaram, Kruthika; Rahman, Mohd Akhlakur; Mitra, Srabani; Knoell, Daren L; Woodiga, Shireen A; King, Samantha J; Wewers, Mark D

    2016-01-01

    Pneumococcal lung infections represent a major cause of death worldwide. Single nucleotide polymorphisms (SNPs) in the NFKBIZ gene, encoding the transcription factor IκBζ, are associated with increased susceptibility to invasive pneumococcal disease. We hence analyzed how IκBζ might regulate inflammatory responses to pneumococcal infection. We first demonstrate that IκBζ is expressed in human blood monocytes but not in bronchial epithelial cells, in response to wild type pneumococcal strain D39. D39 transiently induced IκBζ in a dose dependent manner, with subsequent induction of downstream molecules involved in host defense. Of these molecules, IκBζ knockdown reduced the expression of IL-6 and GMCSF. Furthermore, IκBζ overexpression increased the activity of IL-6 and GMCSF promoters, supporting the knockdown findings. Pneumococci lacking either pneumolysin or capsule still induced IκBζ. While inhibition of TLR1/TLR2 blocked D39 induced IκBζ expression, TLR4 inhibition did not. Blockade of p38 MAP kinase and NFκB suppressed D39 induced IκBζ. Overall, our data demonstrates that IκBζ regulates monocyte inflammatory responses to Streptococcus pneumoniae by promoting the production of IL-6 and GMCSF. PMID:27597997

  15. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    SciTech Connect

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru; Yoneda, Yukio

    2014-10-03

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promoting brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism

  16. Carnitine Deficiency in OCTN2−/− Newborn Mice Leads to a Severe Gut and Immune Phenotype with Widespread Atrophy, Apoptosis and a Pro-Inflammatory Response

    PubMed Central

    Sonne, Srinivas; Shekhawat, Prem S.; Matern, Dietrich; Ganapathy, Vadivel; Ignatowicz, Leszek

    2012-01-01

    We have investigated the gross, microscopic and molecular effects of carnitine deficiency in the neonatal gut using a mouse model with a loss-of-function mutation in the OCTN2 (SLC22A5) carnitine transporter. The tissue carnitine content of neonatal homozygous (OCTN2−/−) mouse small intestine was markedly reduced; the intestine displayed signs of stunted villous growth, early signs of inflammation, lymphocytic and macrophage infiltration and villous structure breakdown. Mitochondrial β-oxidation was active throughout the GI tract in wild type newborn mice as seen by expression of 6 key enzymes involved in β-oxidation of fatty acids and genes for these 6 enzymes were up-regulated in OCTN2−/− mice. There was increased apoptosis in gut samples from OCTN2−/− mice. OCTN2−/− mice developed a severe immune phenotype, where the thymus, spleen and lymph nodes became atrophied secondary to increased apoptosis. Carnitine deficiency led to increased expression of CD45-B220+ lymphocytes with increased production of basal and anti-CD3-stimulated pro-inflammatory cytokines in immune cells. Real-time PCR array analysis in OCTN2−/− mouse gut epithelium demonstrated down-regulation of TGF-β/BMP pathway genes. We conclude that carnitine plays a major role in neonatal OCTN2−/− mouse gut development and differentiation, and that severe carnitine deficiency leads to increased apoptosis of enterocytes, villous atrophy, inflammation and gut injury. PMID:23112839

  17. Carnitine deficiency in OCTN2-/- newborn mice leads to a severe gut and immune phenotype with widespread atrophy, apoptosis and a pro-inflammatory response.

    PubMed

    Sonne, Srinivas; Shekhawat, Prem S; Matern, Dietrich; Ganapathy, Vadivel; Ignatowicz, Leszek

    2012-01-01

    We have investigated the gross, microscopic and molecular effects of carnitine deficiency in the neonatal gut using a mouse model with a loss-of-function mutation in the OCTN2 (SLC22A5) carnitine transporter. The tissue carnitine content of neonatal homozygous (OCTN2(-/-)) mouse small intestine was markedly reduced; the intestine displayed signs of stunted villous growth, early signs of inflammation, lymphocytic and macrophage infiltration and villous structure breakdown. Mitochondrial β-oxidation was active throughout the GI tract in wild type newborn mice as seen by expression of 6 key enzymes involved in β-oxidation of fatty acids and genes for these 6 enzymes were up-regulated in OCTN2(-/-) mice. There was increased apoptosis in gut samples from OCTN2(-/-) mice. OCTN2(-/-) mice developed a severe immune phenotype, where the thymus, spleen and lymph nodes became atrophied secondary to increased apoptosis. Carnitine deficiency led to increased expression of CD45-B220(+) lymphocytes with increased production of basal and anti-CD3-stimulated pro-inflammatory cytokines in immune cells. Real-time PCR array analysis in OCTN2(-/-) mouse gut epithelium demonstrated down-regulation of TGF-β/BMP pathway genes. We conclude that carnitine plays a major role in neonatal OCTN2(-/-) mouse gut development and differentiation, and that severe carnitine deficiency leads to increased apoptosis of enterocytes, villous atrophy, inflammation and gut injury. PMID:23112839

  18. DAP12 Stabilizes the C-terminal Fragment of the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) and Protects against LPS-induced Pro-inflammatory Response.

    PubMed

    Zhong, Li; Chen, Xiao-Fen; Zhang, Zhen-Lian; Wang, Zhe; Shi, Xin-Zhen; Xu, Kai; Zhang, Yun-Wu; Xu, Huaxi; Bu, Guojun

    2015-06-19

    Triggering receptor expressed on myeloid cells 2 (TREM2) is a DAP12-associated receptor expressed in microglia, macrophages, and other myeloid-derived cells. Previous studies have suggested that TREM2/DAP12 signaling pathway reduces inflammatory responses and promotes phagocytosis of apoptotic neurons. Recently, TREM2 has been identified as a risk gene for Alzheimer disease (AD). Here, we show that DAP12 stabilizes the C-terminal fragment of TREM2 (TREM2-CTF), a substrate for γ-secretase. Co-expression of DAP12 with TREM2 selectively increased the level of TREM2-CTF with little effects on that of full-length TREM2. The interaction between DAP12 and TREM2 is essential for TREM2-CTF stabilization as a mutant form of DAP12 with disrupted interaction with TREM2 failed to exhibit such an effect. Silencing of either Trem2 or Dap12 gene significantly exacerbated pro-inflammatory responses induced by lipopolysaccharides (LPS). Importantly, overexpression of either full-length TREM2 or TREM2-CTF reduced LPS-induced inflammatory responses. Taken together, our results support a role of DAP12 in stabilizing TREM2-CTF, thereby protecting against excessive pro-inflammatory responses. PMID:25957402

  19. Lipidomics of Mesenchymal Stromal Cells: Understanding the Adaptation of Phospholipid Profile in Response to Pro-Inflammatory Cytokines.

    PubMed

    Campos, Ana Margarida; Maciel, Elisabete; Moreira, Ana S P; Sousa, Bebiana; Melo, Tânia; Domingues, Pedro; Curado, Liliana; Antunes, Brígida; Domingues, M Rosário M; Santos, Francisco

    2016-05-01

    Mesenchymal stromal cells (MSCs) present anti-inflammatory properties and are being used with great success as treatment for inflammatory and autoimmune diseases. In clinical applications MSCs are subjected to a strong pro-inflammatory environment, essential to their immunosuppressive action. Despite the wide clinical use of these cells, how MSCs exert their effect remains unclear. Several lipids are known to be involved in cell's signaling and modulation of cellular functions. The aim of this paper is to examine the variation in lipid profile of MSCs under pro-inflammatory environment, induced by the presence of tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ), using the most modern lipidomic approach. Major changes in lipid molecular profile of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), lysoPC (LPC), and sphingomyelin (SM) classes were found. No changes were observed in the phosphatidylinositol (PI) profile. The levels of PC species with shorter fatty acids (FAs), mainly C16:0, decreased under pro-inflammatory stimuli. The level of PC(40:6) also decreased, which may be correlated with enhanced levels of LPC(18:0), which is known to be an anti-inflammatory LPC, observed in MSCs subjected to TNF-α and IFN-γ. Simultaneously, the relative amounts of PC(36:1) and PC(38:4) increased. TNF-α and IFN-γ also enhanced the levels of PE(40:6) and decreased the levels of PE(O-38:6). Higher expression of PS(36:1) and SM(34:0) along with a decrease in PS(38:6) levels were observed. These results indicate that lipid metabolism and signaling are modulated during MSCs activation, which suggests that lipids may be involved in MSCs functional and anti-inflammatory activities. PMID:26363509

  20. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy

    PubMed Central

    Navitskaya, Svetlana; O’Reilly, Sandra; Wang, Qi; Kady, Nermin; Huang, Chao; Grant, Maria B.; Busik, Julia V.

    2016-01-01

    Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy. PMID:26760976

  1. Identification of (poly)phenol treatments that modulate the release of pro-inflammatory cytokines by human lymphocytes.

    PubMed

    Ford, Christopher T; Richardson, Siân; McArdle, Francis; Lotito, Silvina B; Crozier, Alan; McArdle, Anne; Jackson, Malcolm J

    2016-05-28

    Diets rich in fruits and vegetables (FV), which contain (poly)phenols, protect against age-related inflammation and chronic diseases. T-lymphocytes contribute to systemic cytokine production and are modulated by FV intake. Little is known about the relative potency of different (poly)phenols in modulating cytokine release by lymphocytes. We compared thirty-one (poly)phenols and six (poly)phenol mixtures for effects on pro-inflammatory cytokine release by Jurkat T-lymphocytes. Test compounds were incubated with Jurkat cells for 48 h at 1 and 30 µm, with or without phorbol ester treatment at 24 h to induce cytokine release. Three test compounds that reduced cytokine release were further incubated with primary lymphocytes at 0·2 and 1 µm for 24 h, with lipopolysaccharide added at 5 h. Cytokine release was measured, and generation of H2O2 by test compounds was determined to assess any potential correlations with cytokine release. A number of (poly)phenols significantly altered cytokine release from Jurkat cells (P<0·05), but H2O2 generation did not correlate with cytokine release. Resveratrol, isorhamnetin, curcumin, vanillic acid and specific (poly)phenol mixtures reduced pro-inflammatory cytokine release from T-lymphocytes, and there was evidence for interaction between (poly)phenols to further modulate cytokine release. The release of interferon-γ induced protein 10 by primary lymphocytes was significantly reduced following treatment with 1 µm isorhamnetin (P<0·05). These results suggest that (poly)phenols derived from onions, turmeric, red grapes, green tea and açai berries may help reduce the release of pro-inflammatory mediators in people at risk of chronic inflammation. PMID:26984113

  2. The Relationship of Plasma Volume, Sympathetic Tone and Pro-Inflammatory Cytokines in Young Healthy Nonpregnant Women

    PubMed Central

    Berntein, Ira M; Damron, Dana; Schonberg, Adrienne L.; Shapiro, Robert

    2010-01-01

    Objective Preeclampsia has been associated with elevated pro-inflammatory markers, increased sympathetic activity and decreased plasma volume. We hypothesized that these associations would be identified in women prior to a first pregnancy. Methods We studied 76 healthy nulligravid subjects measuring the pro-inflammatory markers C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha. Plasma volume (PV) was measured in supine position and corrected for body mass index (BMI). We examined supine plasma levels of epinephrine and norepinephrine and blood pressure response to Valsalva’s maneuver to quantify sympathetic activation. We then examined the association of plasma volume and sympathetic activity with pro-inflammatory cytokines with P < 0.05 accepted for significance. Results CRP was significantly increased in subjects with lowest PV/BMI quartile when compared to middle two quartiles and highest quartile (ANOVA, p = 0.037). We found no significant association of PV/BMI with either interleukin 6 or tumor necrosis factor alpha. Both plasma epinephrine concentration (r = 0.29, P = 0.02) and the phase II_L blood pressure response to Valsalva’s maneuver (r = 0.44, P < 0.0001) were associated with serum IL-6 concentrations. Conclusions Low plasma volume is associated with increased CRP levels and increased sympathetic tone is linked to elevated IL-6 concentration in young non-pregnant women. These findings represent elements of a non-pregnancy phenotype that parallels the findings observed in preeclampsia and in women at risk for ischemic cardiovascular disease. This suggests that the relationships observed during preeclampsia, which have been associated with placental pathology, may predate pregnancy and be independent of placental activity. PMID:19531800

  3. Oxidative products from alcohol metabolism differentially modulate pro-inflammatory cytokine expression in Kupffer cells and hepatocytes.

    PubMed

    Dong, Daoyin; Zhong, Wei; Sun, Qian; Zhang, Wenliang; Sun, Xinguo; Zhou, Zhanxiang

    2016-09-01

    Pro-inflammatory cytokines play a vital role in the pathogenesis of alcoholic steatohepatitis. The present study was to determine the role of alcohol-induced oxidative stress in modulating cytokine production. A rat model of alcohol consumption was used to determine alcohol-induced hepatic cytokine expression. Chronic alcohol exposure caused lipid accumulation, oxidative stress, and inflammation in the livers of Wistar rats. The role of oxidative stress in regulating cell type-specific cytokine production was further dissected in vitro. Lipopolysaccharide (LPS) dose-dependently upregulated TNF-α, MIP-1α, MCP-1, and CINC-1 in Kupffer cells-SV40, whereas TNF-α dose-dependently induced CINC-1, IP-10, and MIP-2 expression in H4IIEC3 hepatoma cells. An additive effect on cytokine production was observed in both Kupffer cells-SV40 and hepatocytes when combined hydrogen peroxide with LPS or TNF-α, respectively, which was associated with NF-κB activation and histone H3 hyper-acetylation. Unexpectedly, an inhibitory effect of 4-hydroxynonenal on cytokine production was revealed in LPS-treated Kupffer cells-SV40. Mechanistic study showed that 4-hydroxynonenal significantly enhanced mRNA degradation of TNF-α, MCP-1, and MIP-1α, and decreased the protein levels of MCP-1 in LPS-stimulated Kupffer cells-SV40 through reducing the phosphorylation of mRNA binding proteins. This study suggests that Kupffer cells and hepatocytes express distinct pro-inflammatory cytokines/chemokines in response to alcohol intoxication, and oxidative products (4-hydroxynonenal) differentially modulate pro-inflammatory cytokine/chemokine production via NF-κB signaling, histone acetylation, and mRNA stability. PMID:27314544

  4. Up-regulation of the pro-inflammatory chemokine CXCL16 is a common response of tumor cells to ionizing radiation.

    PubMed

    Matsumura, Satoko; Demaria, Sandra

    2010-04-01

    We recently showed that mouse and human breast carcinoma cells respond to ionizing radiation therapy by up-regulating the expression and release of the pro-inflammatory chemokine CXCL16, which binds to the CXCR6 receptor expressed by activated T cells. Enhanced recruitment of activated T cells to irradiated mouse 4T1 breast tumors was mediated largely by CXCL16 and was correlated with tumor inhibition in mice treated with the combination of local radiation and immunotherapy. In this study, the expression of CXCL16 and its modulation by radiation were analyzed in mouse melanoma B16/F10, fibrosarcoma MC57, colon carcinoma MCA38, and prostate carcinoma TRAMP-C1 cells. Only TRAMP-C1 cells showed detectable expression of CXCL16, although the level was lower than in 4T1 and 67NR breast carcinoma cells. Ionizing radiation up-regulated CXCL16 expression in all cells except B16/F10, but only TRAMP-C1, 67NR and 4T1 cells released the soluble chemokine in significant quantities. The metalloproteinases ADAM10 and ADAM17, which are responsible for cleaving the chemokine domain from the CXCL16 transmembrane form, were expressed in all cells. Overall, our data indicate that up-regulation of CXCL16 is a common response of tumor cells to radiation, and they have important implications for the use of local radiotherapy in combination with immunotherapy. PMID:20334513

  5. Observing Anti-inflammatory and Anti-nociceptive Activities of Glycyrrhizin Through Regulating COX-2 and Pro-inflammatory Cytokines Expressions in Mice.

    PubMed

    Wang, Hong-Ling; Li, Yu-Xiang; Niu, Ya-Ting; Zheng, Jie; Wu, Jing; Shi, Guang-Jiang; Ma, Lin; Niu, Yang; Sun, Tao; Yu, Jian-Qiang

    2015-12-01

    The present study aimed to investigate the potential anti-inflammatory and anti-nociceptive activities of glycyrrhizin (GL) in mice and to explore the possible related mechanisms. Xylene-induced ear edema, carrageenan-induced paw edema and acetic acid-induced vascular permeability test were used to investigate the anti-inflammatory activities of GL in mice. Anti-nociceptive effects of GL were assessed by using acetic acid-induced writhing, hot plate test and formalin test, as well as evaluation of spontaneous locomotor activity and motor performance. The mRNA expression of pro-inflammatory cytokines (such as TNF-α, IL-6 and iNOS) and the protein expression of cyclooxygenase-2 (COX-2) were explored by using real-time fluorogenic PCR and Western blot, respectively. The results showed that GL significantly reduced xylene-induced ear edema, carrageenan-induced paw edema, and acetic acid-induced vascular permeation. Additionally, GL significantly inhibited the nociceptions induced by acetic acid and formalin. However, the nociceptions could not be decreased by GL in the hot plate test, and GL did not affect spontaneous locomotor activity and motor performance. The expression levels of TNF-α, IL-6, iNOS and COX-2 were significantly downregulated by GL. In conclusion, GL exerts significant anti-inflammatory and analgesic activities by attenuating the expression levels of TNF-α, IL-6, iNOS and COX-2. PMID:26178479

  6. Verbascoside down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in the U937 cell line

    PubMed Central

    Pesce, Mirko; Franceschelli, Sara; Ferrone, Alessio; De Lutiis, Maria Anna; Patruno, Antonia; Grilli, Alfredo; Felaco, Mario; Speranza, Lorenza

    2015-01-01

    Polyphenols are the major components of many traditional herbal remedies, which exhibit several beneficial effects including anti-inflammation and antioxidant properties. Src homology region 2 domain-containing phosphatase-1 (SHP-1) is a redox sensitive protein tyrosine phosphatase that negatively influences downstream signalling molecules, such as mitogen-activated protein kinases, thereby inhibiting inflammatory signalling induced by lipopolysaccharide (LPS). Because a role of transforming growth factor β-activated kinase-1 (TAK1) in the upstream regulation of JNK molecule has been well demonstrated, we conjectured that SHP-1 could mediate the anti-inflammatory effect of verbascoside through the regulation of TAK-1/JNK/AP-1 signalling in the U937 cell line. Our results demonstrate that verbascoside increased the phosphorylation of SHP-1, by attenuating the activation of TAK-1/JNK/AP-1 signalling. This leads to a reduction in the expression and activity of both COX and NOS. Moreover, SHP-1 depletion deletes verbascoside inhibitory effects on pro-inflammatory molecules induced by LPS. Our data confirm that SHP-1 plays a critical role in restoring the physiological mechanisms of inducible proteins such as COX2 and iNOS, and that the down-regulation of TAK-1/JNK/AP-1 signalling by targeting SHP-1 should be considered as a new therapeutic strategy for the treatment of inflammatory diseases. PMID:25807993

  7. Inhibitory effects of harpagoside on TNF-α-induced pro-inflammatory adipokine expression through PPAR-γ activation in 3T3-L1 adipocytes.

    PubMed

    Kim, Tae Kon; Park, Kyoung Sik

    2015-12-01

    Obesity is closely associated with increased production of pro-inflammatory adipokines, including interleukin (IL)-6, plasminogen activator inhibitor (PAI)-1, and adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, which contribute to chronic and low-grade inflammation in adipose tissue. Harpagoside, a major iridoid glycoside present in devil's claw, has been reported to show anti-inflammatory activities by suppression of lipopolysaccharide (LPS)-induced production of inflammatory cytokines in murine macrophages. The present study is aimed to investigate the effects of harpagoside on both tumor necrosis factor (TNF)-α-induced inflammatory adipokine expression and its underlying signaling pathways in differentiated 3T3-L1 cells. Harpagoside significantly inhibited TNF-α-induced mRNA synthesis and protein production of the atherogenic adipokines including IL-6, PAI-1, and MCP-1. Further investigation of the molecular mechanism revealed that pretreatment with harpagoside activated peroxisome proliferator-activated receptor (PPAR)-γ. These findings suggest that the clinical application of medicinal plants which contain harpagoside may lead to a partial prevention of obesity-induced atherosclerosis by attenuating inflammatory responses. PMID:26049170

  8. Lipopolysaccharide-induced expression of FAS ligand in cultured immature boar sertoli cells through the regulation of pro-inflammatory cytokines and miR-187.

    PubMed

    Wang, Yi; Zhang, Jiao-Jiao; Yang, Wei-Rong; Luo, Hong-Yan; Zhang, Jia-Hua; Wang, Xian-Zhong

    2015-11-01

    Lipopolysaccharide (LPS) induces germ cell apoptosis, but its mechanism of action is not clear. One possibility is that LPS regulates the expression of FAS ligand (FASLG) in Sertoli cells, which will then influence germ cell apoptosis. In this study, LPS reduced the viability of cultured, immature boar Sertoli cells in a time- and dose-dependent manner; enhanced the production of pro-inflammatory cytokines including tumor necrosis factor α (TNFA), interleukin-1β (IL1B), nitric oxide (NO), and transforming growth factor-β (TGFB); and increased the expression of FASLG in a dose-dependent manner. While 10 μg/ml LPS enhanced the expression of FASLG, reduced cell cycle progression, and impaired the ultrastructure of Sertoli cells, this dose did not induce apoptosis. LPS also had no effect on the activity or expression of matrix metalloproteinases 2 or 9 (MMP2 or MMP9). In contrast, the expression of ssc-miR-187 increased following LPS challenge, and inhibition of ssc-miR-187 blocked LPS-induced expression of FASLG. Our results therefore suggest that LPS reduces the viability of and enhances FASLG expression in cultured, immature boar Sertoli cells through elevated secretion of TNFA, IL1B, NO, and TGFB as well as through the regulation of ssc-miR-187 potency. PMID:26256020

  9. Small molecule mediated inhibition of RORγ-dependent gene expression and autoimmune disease pathology in vivo.

    PubMed

    Banerjee, Daliya; Zhao, Linlin; Wu, Lan; Palanichamy, Arumugam; Ergun, Ayla; Peng, Liaomin; Quigley, Catherine; Hamann, Stefan; Dunstan, Robert; Cullen, Patrick; Allaire, Norm; Guertin, Kevin; Wang, Tao; Chao, Jianhua; Loh, Christine; Fontenot, Jason D

    2016-04-01

    Retinoic acid receptor-related orphan nuclear receptor γ (RORγ) orchestrates a pro-inflammatory gene expression programme in multiple lymphocyte lineages including T helper type 17 (Th17) cells, γδ T cells, innate lymphoid cells and lymphoid tissue inducer cells. There is compelling evidence that RORγ-expressing cells are relevant targets for therapeutic intervention in the treatment of autoimmune and inflammatory diseases. Unlike Th17 cells, where RORγ expression is induced under specific pro-inflammatory conditions, γδ T cells and other innate-like immune cells express RORγ in the steady state. Small molecule mediated disruption of RORγ function in cells with pre-existing RORγ transcriptional complexes represents a significant and challenging pharmacological hurdle. We present data demonstrating that a novel, selective and potent small molecule RORγ inhibitor can block the RORγ-dependent gene expression programme in both Th17 cells and RORγ-expressing γδ T cells as well as a disease-relevant subset of human RORγ-expressing memory T cells. Importantly, systemic administration of this inhibitor in vivo limits pathology in an innate lymphocyte-driven mouse model of psoriasis. PMID:26694902

  10. 4-Hydroxy-2,3-Dimethyl-2-Nonen-4-Olide Has an Inhibitory Effect on Pro-Inflammatory Cytokine Production in CpG-Stimulated Bone Marrow-Derived Dendritic Cells.

    PubMed

    Manzoor, Zahid; Koo, Jung-Eun; Ali, Irshad; Kim, Jung-Eun; Byeon, Sang-Hee; Yoo, Eun-Sook; Kang, Hee-Kyoung; Hyun, Jin-Won; Lee, Nam-Ho; Koh, Young-Sang

    2016-01-01

    This study was intended to assess the anti-inflammatory properties of 4-hydroxy-2,3-dimethyl-2-nonen-4-olide (Comp) isolated from Ulva pertusa Kjellman on production of pro-inflammatory cytokines. Comp revealed remarkable inhibitory effects on production of pro-inflammatory cytokines in bone marrow-derived dendritic cells (BMDCs). Comp pre-treatment in the CpG DNA-stimulated BMDCs exhibited strong inhibition of interleukin (IL)-12 p40 and IL-6 production with IC50 values ranging from 7.57 ± 0.2 to 10.83 ± 0.3, respectively. It revealed an inhibitory effect on the phosphorylation of ERK1/2, JNK1/2, and p38, and on activator protein (AP)-1 reporter activity. Comp displayed noteworthy inhibitory effects on phosphorylation and degradation of IκBα, and on NF-κB reporter activity. In summary, these data propose that Comp has substantial anti-inflammatory properties and warrants further study concerning its potential use as a therapeutic agent for inflammation-associated maladies. PMID:27153074

  11. 4-Hydroxy-2,3-Dimethyl-2-Nonen-4-Olide Has an Inhibitory Effect on Pro-Inflammatory Cytokine Production in CpG-Stimulated Bone Marrow-Derived Dendritic Cells

    PubMed Central

    Manzoor, Zahid; Koo, Jung-Eun; Ali, Irshad; Kim, Jung-Eun; Byeon, Sang-Hee; Yoo, Eun-Sook; Kang, Hee-Kyoung; Hyun, Jin-Won; Lee, Nam-Ho; Koh, Young-Sang

    2016-01-01

    This study was intended to assess the anti-inflammatory properties of 4-hydroxy-2,3-dimethyl-2-nonen-4-olide (Comp) isolated from Ulva pertusa Kjellman on production of pro-inflammatory cytokines. Comp revealed remarkable inhibitory effects on production of pro-inflammatory cytokines in bone marrow-derived dendritic cells (BMDCs). Comp pre-treatment in the CpG DNA-stimulated BMDCs exhibited strong inhibition of interleukin (IL)-12 p40 and IL-6 production with IC50 values ranging from 7.57 ± 0.2 to 10.83 ± 0.3, respectively. It revealed an inhibitory effect on the phosphorylation of ERK1/2, JNK1/2, and p38, and on activator protein (AP)-1 reporter activity. Comp displayed noteworthy inhibitory effects on phosphorylation and degradation of IκBα, and on NF-κB reporter activity. In summary, these data propose that Comp has substantial anti-inflammatory properties and warrants further study concerning its potential use as a therapeutic agent for inflammation-associated maladies. PMID:27153074

  12. Molecular characterization and comparative expression analysis of two teleostean pro-inflammatory cytokines, IL-1β and IL-8, from Sebastes schlegeli.

    PubMed

    Herath, H M L P B; Elvitigala, Don Anushka Sandaruwan; Godahewa, G I; Umasuthan, Navaneethaiyer; Whang, Ilson; Noh, Jae Koo; Lee, Jehee

    2016-01-10

    Interleukin 1β (IL-1β) and interleukin 8 (IL-8) are two major pro-inflammatory cytokines which play a central role in initiation of inflammatory responses against bacterial- and viral-infections. IL-1β is a member of the interleukin 1 family proteins and IL-8 is classified as a CXC-chemokine. In the current study, putative IL-1β and IL-8 counterparts were identified from a black rockfish transcriptomic database and designated as RfIL-1β and RfIL-8. The RfIL-1β cDNA sequence consists of 1140 nucleotides with a 759bp open reading frame (ORF) which encodes a 252 amino acid (aa) protein, whereas the RfIL-8 cDNA sequence (898bp) harbors a 300bp ORF encoding a 99 aa protein. Furthermore, the RfIL-1β aa sequence contains an IL-1 super family-like domain and an N-terminal IL-1 super family propeptide, while the amino acid sequence of RfIL-8 consists of a typical chemokine-CXC domain. Analysis of sequenced BAC clones containing RfIL-1β and RfIL-8 showed each gene to contain 4 exons interrupted by 3 introns. Pairwise comparison and phylogeny analysis of these cytokine sequences clearly revealed their closer relationship with other corresponding members of teleosts compared to birds and mammals. Constitutive differences in RfIL-1β and RfIL-8 mRNA expression were detected in a tissue-specific manner with the highest expression of each mRNA in spleen tissue. Two immune challenge experiments were conducted with Streptococcus iniae and polyinosinic:polycytidylic acid (poly I:C; a viral double stranded RNA mimic), and transcripts were quantified in spleen and peripheral blood cells. Significantly increased RfIL-1β and RfIL8 transcript levels were detected with almost similar profile patterns, further suggesting a putative involvement of these pro-inflammatory cytokines in the rockfish immunity. PMID:26449313

  13. Elevated level of pro inflammatory cytokine and chemokine expression in chicken bone marrow and monocyte derived dendritic cells following LPS induced maturation.

    PubMed

    Kalaiyarasu, Semmannan; Bhatia, Sandeep; Mishra, Niranjan; Sood, Richa; Kumar, Manoj; SenthilKumar, D; Bhat, Sushant; Dass Prakash, M

    2016-09-01

    The study was designed to characterize and compare chicken bone marrow and peripheral blood monocyte derived dendritic cells (chBM-DC and chMoDC) and to evaluate inflammatory cytokine and chemokine alterations in response upon LPS stimulation. Typical morphology was observed in DCs from 48h of culture using recombinant chicken GM-CSF and IL-4. Maturation of DCs with LPS (1μg/ml) showed significant up regulation of mRNA of surface markers (CD40, CD80, CD83, CD86, MHC-II and DC-LAMP (CD208)), pro-inflammatory cytokines (IL-1β, IL-6, TNF-α (LITAF)), iNOS, chemokine CXCli2 and TLRs4 and 15. Basal level of TLR1 mRNA expression was higher followed by TLR15 in both DCs irrespective of their origin. Expression of iNOS and CXCLi2 mRNA in mature DCs of both origins were higher than other surface molecules and cytokines studied. Hence, its level of expression can also be used as an additional maturation marker for LPS induced chicken dendritic cell maturation along with CD83 and CD40. LPS matured DCs of both origins upregulated IL-12 and IFN-γ. Based on CD40 and CD83 mRNA expression, it was observed that LPS induced the maturation in both DCs, but chMoDCs responded better in expression of surface markers and inflammatory mediator genes. PMID:27344111

  14. Development of a sensitive in vitro assay to quantify the biological activity of pro-inflammatory phorbol esters in Jatropha oil.

    PubMed

    Pelletier, Guillaume; Padhi, Bhaja K; Hawari, Jalal; Sunahara, Geoffrey I; Poon, Raymond

    2015-06-01

    New health safety concerns may arise from the increasing production and use of Jatropha oil, a biodiesel feedstock that also contains toxic, pro-inflammatory, and co-carcinogenic phorbol esters. Based on the exceptional sensitivity of Madin-Darby canine kidney (MDCK) cells to the model phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a robust bioassay was developed to quantify the biological activity of Jatropha phorbol esters directly in oil, without sample extraction. We first verified that the characteristic response of MDCK cells to TPA was also observed following direct exposure to phorbol esters in Jatropha oil. We further confirmed that similarly to TPA, Jatropha oil's phorbol esters can activate protein kinase C (PKC). We then assessed the transcriptional response of MDCK cells to Jatropha oil exposure by measuring the expression of cyclooxygenase-2 (COX-2), a gene involved in inflammatory processes which is strongly upregulated following PKC activation. Based on the parameterization of a TPA dose-response curve, the transcriptional response of MDCK cells to Jatropha oil exposure was expressed in term of TPA toxic equivalent (TEQ), a convenient metric to report the inflammatory potential of complex mixtures. The sensitive bioassay described in this manuscript may prove useful for risk assessment, as it provides a quantitative method and a convenient metric to report the inflammatory potential of phorbol esters in Jatropha oil. This bioassay may also be adapted for the detection of bioactive phorbol esters in other matrices. PMID:25588777

  15. A putative nitroreductase from the DosR regulon of Mycobacterium tuberculosis induces pro-inflammatory cytokine expression via TLR2 signaling pathway.

    PubMed

    Peddireddy, Vidyullatha; Doddam, Sankara Narayana; Qureshi, Insaf A; Yerra, Priyadarshini; Ahmed, Niyaz

    2016-01-01

    Tuberculosis caused by Mycobacterium tuberculosis is a global encumbrance and it is estimated that nearly one third population of the world acts as a reservoir for this pathogen without any symptoms. In this study, we attempted to characterise one of the genes of DosR regulon, Rv3131, a FMN binding nitroreductase domain containing protein, for its ability to alter cytokine profile, an essential feature of M. tuberculosis latency. Recombinant Rv3131 stimulated pro-inflammatory cytokines in THP-1 cells and human peripheral blood mononuclear cells in a time and dose dependent manner. In silico analyses using docking and simulations indicated that Rv3131 could strongly interact with TLR2 via a non-covalent bonding which was further confirmed using cell based colorimetric assay. In THP-1 cells treated with Rv3131 protein, a significant upsurge in the surface expression, overall induction and expression of mRNA of TLR2 was observed when analysed by flow cytometry, western blotting and real time PCR, respectively. Activation of TLR2 by Rv3131 resulted in the phosphorylation of NF- κβ. Results of this study indicate a strong immunogenic capability of Rv3131 elicited via the activation of TLR2 signalling pathway. Therefore, it can be surmised that cytokine secretion induced by Rv3131 might contribute to establishment of M. tuberculosis in the granulomas. PMID:27094446

  16. A putative nitroreductase from the DosR regulon of Mycobacterium tuberculosis induces pro-inflammatory cytokine expression via TLR2 signaling pathway

    PubMed Central

    Peddireddy, Vidyullatha; Doddam, Sankara Narayana; Qureshi, Insaf A.; Yerra, Priyadarshini; Ahmed, Niyaz

    2016-01-01

    Tuberculosis caused by Mycobacterium tuberculosis is a global encumbrance and it is estimated that nearly one third population of the world acts as a reservoir for this pathogen without any symptoms. In this study, we attempted to characterise one of the genes of DosR regulon, Rv3131, a FMN binding nitroreductase domain containing protein, for its ability to alter cytokine profile, an essential feature of M. tuberculosis latency. Recombinant Rv3131 stimulated pro-inflammatory cytokines in THP-1 cells and human peripheral blood mononuclear cells in a time and dose dependent manner. In silico analyses using docking and simulations indicated that Rv3131 could strongly interact with TLR2 via a non-covalent bonding which was further confirmed using cell based colorimetric assay. In THP-1 cells treated with Rv3131 protein, a significant upsurge in the surface expression, overall induction and expression of mRNA of TLR2 was observed when analysed by flow cytometry, western blotting and real time PCR, respectively. Activation of TLR2 by Rv3131 resulted in the phosphorylation of NF- κβ. Results of this study indicate a strong immunogenic capability of Rv3131 elicited via the activation of TLR2 signalling pathway. Therefore, it can be surmised that cytokine secretion induced by Rv3131 might contribute to establishment of M. tuberculosis in the granulomas. PMID:27094446

  17. Genetic variation in the promoter region of pro-inflammatory cytokine TNF-α in perinatal HIV transmission from Mumbai, India.

    PubMed

    Ahir, Swati; Mania-Pramanik, Jayanti; Chavan, Vijay; Kerkar, Shilpa; Samant-Mavani, Padmaja; Nanavati, Ruchi; Mehta, Preeti

    2015-03-01

    Various host factors such as cytokines and HLA, regulate the immune system and influence HIV transmission to infants exposed to HIV-1 through their mothers. Tumor Necrosis Factor Alpha (TNF-α) is a strong pro-inflammatory mediator and thought to influence vulnerability to HIV infection (and/or) transmission. Polymorphisms in regulatory regions are known to govern the production of this cytokine. However, the association of these variations in perinatal HIV transmission is yet to be established. Present study aimed to evaluate if polymorphisms in promoter region of TNF-α gene is associated with perinatal HIV transmission. With informed consent from parents, infants' blood was collected for HIV screening and SNPs analysis at 2 loci: TNF (rs1800629) and TNF (rs361525) using PCR-SSP method. HIV positive (n = 27) and negative (n = 54) children at the end of 18th month follow up were considered for this study. GG genotype, responsible for low expression of TNF (rs1800629) was significantly (p = 0.005) higher in uninfected children, while higher GA genotype frequency was observed in infected children. The 'G' allele frequency was significantly higher in negative children (p = 0.016). We conclude that genotypic variants of TNF (rs1800629) are a likely contributor to perinatal HIV transmission. This provides new insights in markers of differential susceptibility to perinatal HIV transmission. PMID:25544182

  18. Apigenin modulates the expression levels of pro-inflammatory mediators to reduce the human insulin amyloid-induced oxidant damages in SK-N-MC cells.

    PubMed

    Amini, R; Yazdanparast, R; Ghaffari, S H

    2015-06-01

    Amyloid depositions of proteins play crucial roles in a wide variety of degenerative disorders called amyloidosis. Although the exact mechanisms involved in amyloid-mediated cytotoxicity remain unknown, increased formation of reactive oxygen species (ROS) and nitrogen species and overproduction of pro-inflammatory cytokines are believed to play key roles in the process. In that regard, we investigated the effect of apigenin, a common dietary flavonoid with high antioxidant and anti-inflammatory properties on potential factors involved in cytotoxicity of human insulin amyloids. Pretreatment of SK-N-MC neuroblastoma cells with apigenin increased cell viability and reduced the apoptosis induced by insulin fibrils. In addition, apigenin attenuated insulin fibril-induced ROS production and lipid peroxidation. Our result also demonstrated that pretreatment of the fibril-affected cells with apigenin caused an increase in catalase activity and the intracellular glutathione content along with reduction in nitric oxide production and nuclear factor κB, tumor necrosis factor α, and interleukin 6 gene expression based on real-time polymerase chain reaction evaluation. In accordance with these results, apigenin could be a promising candidate in the design of natural-based drugs for treatment or prevention of amyloid-related disorders. PMID:25304968

  19. Dengue virus NS1 enhances viral replication and pro-inflammatory cytokine production in human dendritic cells.

    PubMed

    Alayli, Farah; Scholle, Frank

    2016-09-01

    Dengue virus (DV) has become the most prevalent arthropod borne virus due to globalization and climate change. It targets dendritic cells during infection and leads to production of pro-inflammatory cytokines and chemokines. Several DV non-structural proteins (NS) modulate activation of human dendritic cells. We investigated the effect of DV NS1 on human monocyte-derived dendritic cells (mo-DCs) during dengue infection. NS1 is secreted into the serum of infected individuals where it interacts with various immune mediators and cell types. We purified secreted DV1 NS1 from supernatants of 293T cells that over-express the protein. Upon incubation with mo-DCs, we observed NS1 uptake and enhancement of early DV1 replication. As a consequence, mo-DCs that were pre-exposed to NS1 produced more pro-inflammatory cytokines in response to subsequent DV infection compared to DCs exposed to heat-inactivated NS1 (HNS1). Therefore the presence of exogenous NS1 is able to modulate dengue infection in mo-DCs. PMID:27348054

  20. Pro-inflammatory cytokines and soluble receptors in response to acute psychosocial stress: differential reactivity in bipolar disorder.

    PubMed

    Wieck, Andrea; Grassi-Oliveira, Rodrigo; do Prado, Carine Hartmann; Rizzo, Lucas Bortolotto; de Oliveira, Agatha Schommer; Kommers-Molina, Júlia; Viola, Thiago Wendt; Marciano Vieira, Erica Leandro; Teixeira, Antônio Lúcio; Bauer, Moisés Evandro

    2014-09-19

    Mounting evidence suggests a chronic pro-inflammatory state in individuals with bipolar disorder (BD). Stress exposure is known to exacerbate several inflammatory conditions as well as psychiatric disorders. Here, we analyzed plasma levels of pro-inflammatory cytokines and their soluble receptors to realistic acute psychosocial stress challenge in BD. Thirteen euthymic type 1 BD patients and 15 matched controls underwent the Trier Social Stress Test protocol (TSST). Blood samples were collected before and after TSST and plasma cytokines interleukin IL-2, IL-6, IL-33, and tumor necrosis factor alpha (TNF-α) were measured. In addition TNF-α soluble receptors TNFR1 and TNFR2, and IL-33 soluble receptor sST2 were assessed. Increased IL-33 and reduced sST2 levels were observed in BD subjects as compared to controls, independently of stress exposure. Following TSST, there were higher levels of IL-2 and reduced levels of sTNFR1 in both groups. However, the magnitude change for both cytokines was found higher in controls than BD subjects. Our data suggest that BD patients have differential stress reactivity as compared to controls, possibly related to an immunologic imbalance and failure of regulatory mechanisms. PMID:25092610

  1. Overexpression of Annexin A1 Suppresses Pro-Inflammatory Factors in PC12 Cells Induced by 1-Methyl-4-Phenylpyridinium

    PubMed Central

    Kiani-Esfahani, Abbas; Kazemi Sheykhshabani, Sedigheh; Peymani, Maryam; Hashemi, Motahare-Sadat; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein

    2016-01-01

    Objective Annexin A1 (ANXA1) is suggested to have anti-inflammatory function. However, the precise function of ANXA1 has remained unclear. In this study, we therefore examined the potency of ANXA1 in regulating reactive oxygen species (ROS) production and suppressing pro-inflammatory responses in PC12 cells induced by 1-methyl-4-phenylpyridinium (MPP+). Materials and Methods In this experimental study, cDNA of ANXA1 was cloned and inserted to the PGL268 pEpi-FGM18F vector to produce a recombinant PGL/ANXA1 vector for transfection into the PC12 cells. ANXA1 transfected cells were then treated with MPP+. Apoptosis and the content of pro-inflammatory factors including ROS, Interlukin-6 (IL-6), inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) were assessed by flow-cytometry, real-time quantitative polymerase chain reaction (RT-qPCR) and western blot in ANXA1-transfected cells and the data were compared with those obtained from mock and control cells. Results Data revealed that overexpression of ANXA1 is associated with decreased levels of ROS and expression level of IL-6 and iNOS transcripts, and NF-κB protein in MPP+ treated PC12 cells. Conclusion ANXA1 may be considered as an agent for prevention of neurodegenerative or inflammatory conditions. PMID:27540524

  2. Red wine extract decreases pro-inflammatory markers, nuclear factor-κB and inducible NOS, in experimental metabolic syndrome.

    PubMed

    Janega, Pavol; Klimentová, Jana; Barta, Andrej; Kovácsová, Mária; Vranková, Stanislava; Cebová, Martina; Čierna, Zuzana; Matúsková, Zuzana; Jakovljevic, Vladimir; Pechánová, Olga

    2014-09-01

    We aimed to analyse the effects of alcohol-free Alibernet red wine extract (AWE) on nitric oxide synthase (NOS) activity and pro-inflammatory markers such as nuclear factor-κB (NFκB) and inducible NOS (iNOS) protein expression in experimental metabolic syndrome. Young 6 week-old male Wistar Kyoto (WKY) and obese, spontaneously hypertensive rats (SHR/N-cp) were divided into control groups and groups treated with AWE (24.2 mg per kg per day) for 3 weeks (n = 6 in each group). Total NOS activity and endothelial NOS (eNOS), iNOS and NFκB (p65) protein expressions were determined in the heart left ventricle and aorta by Western blot and immunohistochemical analysis. All parameters investigated significantly increased in the aorta of SHR/N-cp rats. Pro-inflammatory markers such as NFκB and iNOS were increased in the left ventricle as well. AWE treatment did not affect total NOS activity and eNOS expression in the aorta; however, it was able to decrease NFκB and iNOS protein expression in both the left ventricle and aorta. In conclusion, in the cardiovascular system, Alibernet red wine extract decreased NFκB and iNOS protein expressions elevated as a consequence of developed metabolic syndrome. This effect may represent one of the protective, anti-inflammatory properties of Alibernet red wine polyphenols on cardiovascular risk factors related to metabolic syndrome. PMID:25051230

  3. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment

    PubMed Central

    Riesenberg, Stefanie; Groetchen, Angela; Siddaway, Robert; Bald, Tobias; Reinhardt, Julia; Smorra, Denise; Kohlmeyer, Judith; Renn, Marcel; Phung, Bengt; Aymans, Pia; Schmidt, Tobias; Hornung, Veit; Davidson, Irwin; Goding, Colin R.; Jönsson, Göran; Landsberg, Jennifer; Tüting, Thomas; Hölzel, Michael

    2015-01-01

    Inflammation promotes phenotypic plasticity in melanoma, a source of non-genetic heterogeneity, but the molecular framework is poorly understood. Here we use functional genomic approaches and identify a reciprocal antagonism between the melanocyte lineage transcription factor MITF and c-Jun, which interconnects inflammation-induced dedifferentiation with pro-inflammatory cytokine responsiveness of melanoma cells favouring myeloid cell recruitment. We show that pro-inflammatory cytokines such as TNF-α instigate gradual suppression of MITF expression through c-Jun. MITF itself binds to the c-Jun regulatory genomic region and its reduction increases c-Jun expression that in turn amplifies TNF-stimulated cytokine expression with further MITF suppression. This feed-forward mechanism turns poor peak-like transcriptional responses to TNF-α into progressive and persistent cytokine and chemokine induction. Consistently, inflammatory MITFlow/c-Junhigh syngeneic mouse melanomas recruit myeloid immune cells into the tumour microenvironment as recapitulated by their human counterparts. Our study suggests myeloid cell-directed therapies may be useful for MITFlow/c-Junhigh melanomas to counteract their growth-promoting and immunosuppressive functions. PMID:26530832

  4. Fasciola hepatica infection reduces Mycobacterium bovis burden and mycobacterial uptake and suppresses the pro-inflammatory response.

    PubMed

    Garza-Cuartero, L; O'Sullivan, J; Blanco, A; McNair, J; Welsh, M; Flynn, R J; Williams, D; Diggle, P; Cassidy, J; Mulcahy, G

    2016-07-01

    Bovine tuberculosis (BTB), caused by Mycobacterium bovis, has an annual incidence in cattle of 0.5% in the Republic of Ireland and 4.7% in the UK, despite long-standing eradication programmes being in place. Failure to achieve complete eradication is multifactorial, but the limitations of diagnostic tests are significant complicating factors. Previously, we have demonstrated that Fasciola hepatica infection, highly prevalent in these areas, induced reduced sensitivity of the standard diagnostic tests for BTB in animals co-infected with F. hepatica and M. bovis. This was accompanied by a reduced M. bovis-specific Th1 immune response. We hypothesized that these changes in co-infected animals would be accompanied by enhanced growth of M. bovis. However, we show here that mycobacterial burden in cattle is reduced in animals co-infected with F. hepatica. Furthermore, we demonstrate a lower mycobacterial recovery and uptake in blood monocyte-derived macrophages (MDM) from F. hepatica-infected cattle which is associated with suppression of pro-inflammatory cytokines and a switch to alternative activation of macrophages. However, the cell surface expression of TLR2 and CD14 in MDM from F. hepatica-infected cattle is increased. These findings reflecting the bystander effect of helminth-induced downregulation of pro-inflammatory responses provide insights to understand host-pathogen interactions in co-infection. PMID:27108767

  5. Decoy oligodeoxyribonucleotides and peptide nucleic acids-DNA chimeras targeting nuclear factor kappa-B: inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa.

    PubMed

    Gambari, Roberto; Borgatti, Monica; Bezzerri, Valentino; Nicolis, Elena; Lampronti, Ilaria; Dechecchi, Maria Cristina; Mancini, Irene; Tamanini, Anna; Cabrini, Giulio

    2010-12-15

    Cystic fibrosis (CF) is characterized by a deep inflammatory process, with production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against IL-8, with the aim of reducing the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. TFD is based on biomolecules mimicking the target sites of transcription factors (TFs) and able to interfere with TF activity when delivered to target cells. Here, we review the inhibitory effects of decoy oligodeoxyribonucleotides (ODNs) on expression of IL-8 gene and secretion of IL-8 by cystic fibrosis cells infected by Pseudomonas aeruginosa. In addition, the effects of decoy molecules based on peptide nucleic acids (PNAs) are discussed. In this respect PNA-DNA-PNA (PDP) chimeras are interesting: (a) unlike PNAs, they can be complexed with liposomes and microspheres; (b) unlike oligodeoxyribonucleotides (ODNs), they are resistant to DNAses, serum and cytoplasmic extracts; (c) unlike PNA/PNA and PNA/DNA hybrids, they are potent decoy molecules. Interestingly, PDP/PDP NF-kappaB decoy chimeras inhibit accumulation of pro-inflammatory mRNAs (including IL-8 mRNA) in P. aeruginosa infected IB3-1, cells reproducing the effects of decoy oligonucleotides. The effects of PDP/PDP chimeras, unlike ODN-based decoys, are observed even in absence of protection with lipofectamine. Since IL-8 is pivotal in pro-inflammatory processes affecting cystic fibrosis, inhibition of its functions might have a clinical relevance. PMID:20615393

  6. Muscle cell-derived factors inhibit inflammatory stimuli-induced damage in hMSC-derived chondrocytes

    PubMed Central

    Rainbow, R.S.; Kwon, H.; Foote, A.T.; Preda, R.C.; Kaplan, D.L.; Zeng, L.

    2013-01-01

    SUMMARY Objective Pro-inflammatory cytokines play an important role in inducing cartilage degradation during osteoarthritis pathogenesis. Muscle is a tissue that lies near cartilage in situ. However, muscle’s non-loading biochemical effect on cartilage has been largely unexplored. Here, we tested the hypothesis that muscle cells can regulate the response to pro-inflammatory cytokine-mediated damage in chondrocytes derived from human bone marrow-derived mesenchymal stem cells (hMSCs). Method hMSCs were allowed to undergo chondrogenic differentiation in porous silk scaffolds in the typical chondrogenic medium for 12 days. For the next 9 days, the cells were cultured in chondrogenic medium containing 50% conditioned medium derived from C2C12 muscle cells or fibroblast control cells, and were subject to treatments of pro-inflammatory cytokines IL-1β or TNFα. Results Both IL-1β and TNFα-induced strong expression of multiple MMPs and hypertrophic markers Runx2 and type X collagen. Strikingly, culturing hMSC-derived chondrocytes in C2C12 muscle cell conditioned medium strongly inhibited the expression of all these genes, a result further confirmed by GAG content and histological evaluation of matrix protein. To determine whether these effects were due to altered chondrocyte growth and survival, we assayed the expression of cell proliferation marker Ki67, cell cycle arrest markers p21 and p53, and apoptosis marker caspase 3. Muscle cell-conditioned medium promoted proliferation and inhibited apoptosis, thereby suggesting a possible decrease in the cellular aging and death that typically accompanies cartilage inflammation. Conclusion Our findings suggest the role of muscle in cartilage homeostasis and provide insight into designing strategies for promoting resistance to pro-inflammatory cytokines in hMSC-derived chondrocytes. PMID:23611899

  7. Activation of α-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress.

    PubMed

    Han, Zhenying; Shen, Fanxia; He, Yue; Degos, Vincent; Camus, Marine; Maze, Mervyn; Young, William L; Su, Hua

    2014-01-01

    Activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR) has a neuro-protective effect on ischemic and hemorrhagic stroke. However, the underlying mechanism is not completely understood. We hypothesized that α-7 nAchR agonist protects brain injury after ischemic stroke through reduction of pro-inflammatory macrophages (M1) and oxidative stress. C57BL/6 mice were treated with PHA568487 (PHA, α-7 nAchR agonist), methyllycaconitine (MLA, nAchR antagonist), or saline immediately and 24 hours after permanent occlusion of the distal middle cerebral artery (pMCAO). Behavior test, lesion volume, CD68(+), M1 (CD11b(+)/Iba1(+)) and M2 (CD206/Iba1+) microglia/macrophages, and phosphorylated p65 component of NF-kB in microglia/macrophages were quantified using histological stained sections. The expression of M1 and M2 marker genes, anti-oxidant genes and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were quantified using real-time RT-PCR. Compared to the saline-treated mice, PHA mice had fewer behavior deficits 3 and 7 days after pMCAO, and smaller lesion volume, fewer CD68(+) and M1 macrophages, and more M2 macrophages 3 and 14 days after pMCAO, whereas MLA's effects were mostly the opposite in several analyses. PHA increased anti-oxidant genes and NADPH oxidase expression associated with decreased phosphorylation of NF-kB p65 in microglia/macrophages. Thus, reduction of inflammatory response and oxidative stress play roles in α-7 nAchR neuro-protective effect. PMID:25157794

  8. Lipopolysaccharide- and Lipoteichoic Acid-mediated Pro-inflammatory Cytokine Production and Modulation of TLR2, TLR4 and MyD88 Expression in Human Endometrial Cells

    PubMed Central

    Rashidi, Nesa; Mirahmadian, Mahroo; Jeddi-Tehrani, Mahmood; Rezania, Simin; Ghasemi, Jamileh; Kazemnejad, Somaieh; Mirzadegan, Ebrahim; Vafaei, Sedigheh; Kashanian, Maryam; Rasoulzadeh, Zahra; Zarnani, Amir-Hassan

    2015-01-01

    Background Toll-like receptor (TLR)-mediated inflammatory processes are supposed to be involved in pathophysiology of spontaneous abortion and preterm labor. Here, we investigated functional responses of human endometrial stromal cells (ESCs) and whole endometrial cells (WECs) to lipopolysaccharide (LPS) and lipoteichoic acid (LTA). Methods Endometrial tissues were obtained from 15 cycling women who underwent laparoscopic tubal ligation. Modulation of TLR2, TLR4 and MyD88 expression and production of pro-inflammatory cytokines by WECs and ESCs in response to LPS and LTA were assessed. Results WECs and ESCs expressed significant levels of TLR4 and MyD88 transcripts but, unlike WECs, ESCs failed to express TLR2 gene. Regardless of positive results of Western blotting, ESCs did not express TLR4 at their surface as judged by flow cytometry. Immunofluorescent staining revealed intracellular localization of TLR4 with predominant perinuclear pattern. LPS stimulation marginally increased TLR4 gene expression in both cell types, whereas such treatment significantly upregulated MyD88 gene expression after 8 hr (p < 0.05). At the protein level, however, LPS activation significantly increased TLR4 expression by ESCs (p < 0.05). LTA stimulation of WECs was accompanied with non-significant increase of TLR2 and MyD88 transcripts. LPS and LTA stimulation of WECs caused significant production of IL-6 and IL-8 in a dose-dependent manner (p < 0.05). Similarly, ESCs produced significant amounts of IL-6, IL-8 and also TNF-α in response to LPS activation (p < 0.05). Conclusion Our results provided further evidence of initiation of inflammatory processes following endometrial TLR activation by bacterial components which could potentially be harmful to developing fetus. PMID:25927023

  9. Majoon ushba, a polyherbal compound, suppresses pro-inflammatory mediators and RANKL expression via modulating NFкB and MAPKs signaling pathways in fibroblast-like synoviocytes from adjuvant-induced arthritic rats.

    PubMed

    Ganesan, Ramamoorthi; Doss, Hari Madhuri; Rasool, Mahaboobkhan

    2016-08-01

    Fibroblast-like synoviocytes (FLS) are inhabitant mesenchymal cells of synovial joints and have been recognized to play an imperative role in the immunopathogenesis of rheumatoid arthritis (RA). Blocking these pathological roles of FLS provides a potentially important therapeutic strategy for the treatment for RA. A recent study had confirmed that majoon ushba (MU), a polyherbal unani compound, possesses anti-arthritic effects in in vivo. Toward this direction, an effort has been made to understand the effect of MU on FLS derived from adjuvant-induced arthritis (AIA) rats. Here, we observed that MU administration (100-300 µg/ml) significantly inhibited the expression and phosphorylation of NFкB-p65 protein similar to that of the Bay 11-7082 (NFкB inhibitor) in NFкB signaling pathway and suppressed the protein expression of ERK1/2 and JNK1/2 in MAPKs signaling pathway in AIA-FLS. In addition, the protein expression of TNF-α, IL-17, RANKL, and iNOS was also found reduced. MU treatment significantly inhibited the mRNA expression of pro-inflammatory mediators (TNF-α, IL-1β, IL-6, MCP-1, IL-17, iNOS, and COX-2), transcription factors (NFкB-p65 and AP-1), and RANKL and attenuated the overproduction of TNF-α, IL-1β, IL-6, and MCP-1 (ELISA) in AIA-FLS. Furthermore, MU treatment significantly inhibited the level of lipid peroxidation, lysosomal enzymes release, and glycoproteins and increased antioxidant status (superoxide dismutase and catalase) in AIA-FLS. In conclusion, the results of this study provide evidence that MU possesses anti-inflammatory effect against AIA-FLS through the decrease in pro-inflammatory mediators expression by suppressing NFкB and MAPKs signaling pathways. PMID:27067226

  10. Inhibition of co-colonizing cystic fibrosis-associated pathogens by Pseudomonas aeruginosa and Burkholderia multivorans.

    PubMed

    Costello, Anne; Reen, F Jerry; O'Gara, Fergal; Callaghan, Máire; McClean, Siobhán

    2014-07-01

    Cystic fibrosis (CF) is a recessive genetic disease characterized by chronic respiratory infections and inflammation causing permanent lung damage. Recurrent infections are caused by Gram-negative antibiotic-resistant bacterial pathogens such as Pseudomonas aeruginosa, Burkholderia cepacia complex (Bcc) and the emerging pathogen genus Pandoraea. In this study, the interactions between co-colonizing CF pathogens were investigated. Both Pandoraea and Bcc elicited potent pro-inflammatory responses that were significantly greater than Ps. aeruginosa. The original aim was to examine whether combinations of pro-inflammatory pathogens would further exacerbate inflammation. In contrast, when these pathogens were colonized in the presence of Ps. aeruginosa the pro-inflammatory response was significantly decreased. Real-time PCR quantification of bacterial DNA from mixed cultures indicated that Ps. aeruginosa significantly inhibited the growth of Burkholderia multivorans, Burkholderia cenocepacia, Pandoraea pulmonicola and Pandoraea apista, which may be a factor in its dominance as a colonizer of CF patients. Ps. aeruginosa cell-free supernatant also suppressed growth of these pathogens, indicating that inhibition was innate rather than a response to the presence of a competitor. Screening of a Ps. aeruginosa mutant library highlighted a role for quorum sensing and pyoverdine biosynthesis genes in the inhibition of B. cenocepacia. Pyoverdine was confirmed to contribute to the inhibition of B. cenocepacia strain J2315. B. multivorans was the only species that could significantly inhibit Ps. aeruginosa growth. B. multivorans also inhibited B. cenocepacia and Pa. apista. In conclusion, both Ps. aeruginosa and B. multivorans are capable of suppressing growth and virulence of co-colonizing CF pathogens. PMID:24790091

  11. Sirtuin 1 suppresses nuclear factor κB induced transactivation and pro-inflammatory cytokine expression in cat fibroblast cells

    PubMed Central

    ISHIKAWA, Shingo; TAKEMITSU, Hiroshi; HABARA, Makoto; MORI, Nobuko; YAMAMOTO, Ichiro; ARAI, Toshiro

    2015-01-01

    Nuclear factor κB (NF-κB) is a key factor in the development of chronic inflammation and is deeply involved in age-related and metabolic diseases development. These diseases have become a serious problem in cats. Sirtuin 1 (SIRT1) is associated with aging and metabolism through maintaining inflammation via NF-κB. In addition, fibroblasts are considered an important factor in the development of chronic inflammation. Therefore, we aimed to examine the effect of cat SIRT1 (cSIRT1) on NF-κB in cat fibroblast cells. The up-regulation of NF-κB transcriptional activity and pro-inflammatory cytokine mRNA expression by p65 subunit of NF-κB and lipopolysaccharide was suppressed by cSIRT1 in cat fibroblast cells. Our findings show that cSIRT1 is involved in the suppression of inflammation in cat fibroblast cells. PMID:26165138

  12. Glibenclamide reduces pro-inflammatory cytokine production by neutrophils of diabetes patients in response to bacterial infection

    NASA Astrophysics Data System (ADS)

    Kewcharoenwong, Chidchamai; Rinchai, Darawan; Utispan, Kusumawadee; Suwannasaen, Duangchan; Bancroft, Gregory J.; Ato, Manabu; Lertmemongkolchai, Ganjana

    2013-11-01

    Type 2 diabetes mellitus is a major risk factor for melioidosis, which is caused by Burkholderia pseudomallei. Our previous study has shown that polymorphonuclear neutrophils (PMNs) from diabetic subjects exhibited decreased functions in response to B. pseudomallei. Here we investigated the mechanisms regulating cytokine secretion of PMNs from diabetic patients which might contribute to patient susceptibility to bacterial infections. Purified PMNs from diabetic patients who had been treated with glibenclamide (an ATP-sensitive potassium channel blocker for anti-diabetes therapy), showed reduction of interleukin (IL)-1β and IL-8 secretion when exposed to B. pseudomallei. Additionally, reduction of these pro-inflammatory cytokines occurred when PMNs from diabetic patients were treated in vitro with glibenclamide. These findings suggest that glibenclamide might be responsible for the increased susceptibility of diabetic patients, with poor glycemic control, to bacterial infections as a result of its effect on reducing IL-1β production by PMNs.

  13. Effects of Differences in Lipid A Structure on TLR4 Pro-Inflammatory Signaling and Inflammasome Activation

    PubMed Central

    Chilton, Paula M.; Embry, Chelsea A.; Mitchell, Thomas C.

    2012-01-01

    The vertebrate immune system exists in equilibrium with the microbial world. The innate immune system recognizes pathogen-associated molecular patterns via a family of Toll-like receptors (TLR) that activate cells upon detection of potential pathogens. Because some microbes benefit their hosts, mobilizing the appropriate response, and then controlling that response is critical in the maintenance of health. TLR4 recognizes the various forms of lipid A produced by Gram-negative bacteria. Depending on the structural form of the eliciting lipid A molecule, TLR4 responses range from a highly inflammatory endotoxic response involving inflammasome and other pro-inflammatory mediators, to an inhibitory, protective response. Mounting the correct response against an offending microbe is key to maintaining health when exposed to various bacterial species. Further study of lipid A variants may pave the way to understanding how TLR4 responses are generally able to avoid chronic inflammatory damage. PMID:22707952

  14. Potential Effects of Pomegranate on Lipid Peroxidation and Pro-inflammatory Changes in Daunorubicin-induced Cardiotoxicity in Rats

    PubMed Central

    Al-Kuraishy, Hayder M.; Al-Gareeb, Ali I.

    2016-01-01

    Background: Daunorubicin-induced acute cardiotoxicity caused by oxidative stress and free radical formation. Pomegranate possessed a significant in vitro free radical scavenging activity. Therefore, the aim of this study was estimations of the role of pomegranate effects in daunorubicin-induced cardiotoxicity. Methods: A total of 21 Sprague male rats were allocated into three groups, seven animals in each group. Group A: Control group received distilled water. Group B: Treated group with daunorubicin 20 mg/kg via intraperitoneal injection daily for the 12th day for total cumulative dose of 240 mg/kg. Group C: Pretreatment group with pomegranate 25 mg/kg for 6 days orally, then daunorubicin 20 mg/kg administrated concomitantly for the next 6 days with a cumulative dose of 120 mg/kg. Cardiac troponin I([cTn I] pg/ml), malondialdehyde (MDA) (ng/ml), interleukin 17 (IL-17 pg/ml), and cardiac lactate dehydrogenase (LDH) (pm/ml), all these biomarkers were used to measure the severity of cardiotoxicity. Results: Daunorubicin at a dose of 20 mg/kg lead to pronounced cardiac damage that reflected on through elevations of serum cTn and serum LDH levels significantly P < 0.01, it induced lipid peroxidation during cardiotoxicity that reflected through an elevation in the serum MDA significantly P < 0.01, moreover, daunorubicin induces pro-inflammatory changes in cardiotoxicity; it raises the IL-17 serum level significantly P < 0.01 as compared with control. Pomegranate pretreatment demonstrated a significant cardioprotection from daunorubicin-induced cardiotoxicity; it attenuated the cardiac damage through reduction of cTn, LDH, MDA, and serum IL-17 level significantly P < 0.01 as compared with daunorubicin-treated group. Conclusions: Pomegranate demonstrated significant cardioprotection in daunorubicin-induced cardiotoxicity through reduction of oxidative stress, lipid peroxidation, pro-inflammatory, and cardiac injury biomarkers. PMID:27413516

  15. P2Y6 Receptor Potentiates Pro-Inflammatory Responses in Macrophages and Exhibits Differential Roles in Atherosclerotic Lesion Development

    PubMed Central

    Garcia, Ricardo A.; Yan, Mujing; Search, Debra; Zhang, Rongan; Carson, Nancy L.; Ryan, Carol S.; Smith-Monroy, Constance; Zheng, Joanna; Chen, Jian; Kong, Yan; Tang, Huaping; Hellings, Samuel E.; Wardwell-Swanson, Judith; Dinchuk, Joseph E.; Psaltis, George C.; Gordon, David A.; Glunz, Peter W.; Gargalovic, Peter S.

    2014-01-01

    Background P2Y6, a purinergic receptor for UDP, is enriched in atherosclerotic lesions and is implicated in pro-inflammatory responses of key vascular cell types and macrophages. Evidence for its involvement in atherogenesis, however, has been lacking. Here we use cell-based studies and three murine models of atherogenesis to evaluate the impact of P2Y6 deficiency on atherosclerosis. Methodology/Principal Findings Cell-based studies in 1321N1 astrocytoma cells, which lack functional P2Y6 receptors, showed that exogenous expression of P2Y6 induces a robust, receptor- and agonist-dependent secretion of inflammatory mediators IL-8, IL-6, MCP-1 and GRO1. P2Y6-mediated inflammatory responses were also observed, albeit to a lesser extent, in macrophages endogenously expressing P2Y6 and in acute peritonitis models of inflammation. To evaluate the role of P2Y6 in atherosclerotic lesion development, we used P2Y6-deficient mice in three mouse models of atherosclerosis. A 43% reduction in aortic arch plaque was observed in high fat-fed LDLR knockout mice lacking P2Y6 receptors in bone marrow-derived cells. In contrast, no effect on lesion development was observed in fat-fed whole body P2Y6xLDLR double knockout mice. Interestingly, in a model of enhanced vascular inflammation using angiotensin II, P2Y6 deficiency enhanced formation of aneurysms and exhibited a trend towards increased atherosclerosis in the aorta of LDLR knockout mice. Conclusions P2Y6 receptor augments pro-inflammatory responses in macrophages and exhibits a pro-atherogenic role in hematopoietic cells. However, the overall impact of whole body P2Y6 deficiency on atherosclerosis appears to be modest and could reflect additional roles of P2Y6 in vascular disease pathophysiologies, such as aneurysm formation. PMID:25360548

  16. Sintered indium-tin oxide particles induce pro-inflammatory responses in vitro, in part through inflammasome activation.

    PubMed

    Badding, Melissa A; Schwegler-Berry, Diane; Park, Ju-Hyeong; Fix, Natalie R; Cummings, Kristin J; Leonard, Stephen S

    2015-01-01

    Indium-tin oxide (ITO) is used to make transparent conductive coatings for touch-screen and liquid crystal display electronics. As the demand for consumer electronics continues to increase, so does the concern for occupational exposures to particles containing these potentially toxic metal oxides. Indium-containing particles have been shown to be cytotoxic in cultured cells and pro-inflammatory in pulmonary animal models. In humans, pulmonary alveolar proteinosis and fibrotic interstitial lung disease have been observed in ITO facility workers. However, which ITO production materials may be the most toxic to workers and how they initiate pulmonary inflammation remain poorly understood. Here we examined four different particle samples collected from an ITO production facility for their ability to induce pro-inflammatory responses in vitro. Tin oxide, sintered ITO (SITO), and ventilation dust particles activated nuclear factor kappa B (NFκB) within 3 h of treatment. However, only SITO induced robust cytokine production (IL-1β, IL-6, TNFα, and IL-8) within 24 h in both RAW 264.7 mouse macrophages and BEAS-2B human bronchial epithelial cells. Our lab and others have previously demonstrated SITO-induced cytotoxicity as well. These findings suggest that SITO particles activate the NLRP3 inflammasome, which has been implicated in several immune-mediated diseases via its ability to induce IL-1β release and cause subsequent cell death. Inflammasome activation by SITO was confirmed, but it required the presence of endotoxin. Further, a phagocytosis assay revealed that pre-uptake of SITO or ventilation dust impaired proper macrophage phagocytosis of E. coli. Our results suggest that adverse inflammatory responses to SITO particles by both macrophage and epithelial cells may initiate and propagate indium lung disease. These findings will provide a better understanding of the molecular mechanisms behind an emerging occupational health issue. PMID:25874458

  17. Temporal profile of serum anti-inflammatory and pro-inflammatory interleukins in acute ischemic stroke patients.

    PubMed

    Perini, F; Morra, M; Alecci, M; Galloni, E; Marchi, M; Toso, V

    2001-08-01

    The presence of an inflammatory response in the pathophysiology of acute brain ischemia is relatively well established, but less is known about the anti-inflammatory mechanisms. The aim of the present study was to evaluate part of the immune response in acute stroke patients and to analyze a possible correlation with other hematological parameters, clinical outcome, size of infarct and subtypes of strokes. We prospectively studied 42 stroke patients, without signs of infections or inflammatory diseases, at days 0, 1, 3, 7 and 14, and 39 healthy control subjects. We measured serum levels of the anti-inflammatory cytokine interleukin-10 (IL-10) and the pro-inflammatory cytokine interleukin-6 (IL-6) by ELISA method. We observed a highly inverse correlation between these two molecules in control subjects (r=-0.78, p=0.0000001), and this correlation was lost in stroke patients. Patients had significantly lowered IL-10 serum levels soon after the acute event (p=0.00005), with a slight increase at the seventh day. On the other hand, patients had increased IL-6 serum levels compared with controls after day one until day 14 (p<0.04), with a maximum increase at day 3. Interleukin-6 correlated with clinical outcome whereas interleukin-10 did not. Low levels of interleukin-10 indicate that the antiinflammatory response is down-regulated in acute stroke patients. The pro-inflammatory response begins 24 hours after the onset of acute cerebral ischemia, as indicated by the increased serum levels of interleukin-6. The physiological balance between these two molecules is altered in acute stroke patients. PMID:11808851

  18. Mechanism of the pro-inflammatory activity of sympathomimetic amines in thermic oedema of the rat paw.

    PubMed

    Green, K L

    1974-02-01

    1 Thermic oedema induced by heating rat paws at 46.5 degrees C was potentiated by local injection of adrenaline, noradrenaline or high doses of isoprenaline. The pro-inflammatory effect of sympathomimetic amines was antagonized by phenoxybenzamine or phentolamine but not by propranolol.2 The subcutaneous space of heated rat paws was perfused with Tyrode solution and the perfusate collected and assayed for bradykinin, bradykininogen, kinin-forming activity and kininase activity. When adrenaline (0.5 mug/ml) was included in the perfusion fluid, kininase activity of the perfusate was increased by 76% and free bradykinin reduced by 46%.3 Increased vascular permeability induced by injection of bradykinin or kallikrein was reduced by adrenaline or noradrenaline, but isoprenaline had no significant effect.4 Pretreatment with soya bean trypsin inhibitor (SBTI) or heparin did not antagonize the pro-inflammatory effect of adrenaline or thermic oedema per se.5 Potentiation of thermic oedema similar to that induced by sympathomimetic amines was obtained by injecting paws with vasopressin prior to heating, or by applying a ligature to stop blood flow to the paw for the first 15 min of heating.6 Thermistor probes inserted beneath the paw skin showed that sympathomimetic amines increased the internal temperature of heated paws. This was significant, as small changes in temperature had a marked effect on the development of thermic oedema.7 It is suggested that sympathomimetic amines potentiate thermic oedema of rat paws heated at 46.5 degrees C by reducing blood flow to the paw, thereby causing a greater rise in paw temperature and consequently greater injury. PMID:4371900

  19. Microglia are less pro-inflammatory than myeloid infiltrates in the hippocampus of mice exposed to status epilepticus.

    PubMed

    Vinet, Jonathan; Vainchtein, Ilia D; Spano, Carlotta; Giordano, Carmela; Bordini, Domenico; Curia, Giulia; Dominici, Massimo; Boddeke, Hendrikus W G M; Eggen, Bart J L; Biagini, Giuseppe

    2016-08-01

    Activated microglia, astrogliosis, expression of pro-inflammatory cytokines, blood brain barrier (BBB) leakage and peripheral immune cell infiltration are features of mesial temporal lobe epilepsy. Numerous studies correlated the expression of pro-inflammatory cytokines with the activated morphology of microglia, attributing them a pro-epileptogenic role. However, microglia and myeloid cells such as macrophages have always been difficult to distinguish due to an overlap in expressed cell surface molecules. Thus, the detrimental role in epilepsy that is attributed to microglia might be shared with myeloid infiltrates. Here, we used a FACS-based approach to discriminate between microglia and myeloid infiltrates isolated from the hippocampus 24 h and 96 h after status epilepticus (SE) in pilocarpine-treated CD1 mice. We observed that microglia do not express MHCII whereas myeloid infiltrates express high levels of MHCII and CD40 96 h after SE. This antigen-presenting cell phenotype correlated with the presence of CD4(pos) T cells. Moreover, microglia only expressed TNFα 24 h after SE while myeloid infiltrates expressed high levels of IL-1β and TNFα. Immunofluorescence showed that astrocytes but not microglia expressed IL-1β. Myeloid infiltrates also expressed matrix metalloproteinase (MMP)-9 and 12 while microglia only expressed MMP-12, suggesting the involvement of both cell types in the BBB leakage that follows SE. Finally, both cell types expressed the phagocytosis receptor Axl, pointing to phagocytosis of apoptotic cells as one of the main functions of microglia. Our data suggests that, during early epileptogenesis, microglia from the hippocampus remain rather immune supressed whereas myeloid infiltrates display a strong inflammatory profile. GLIA 2016 GLIA 2016;64:1350-1362. PMID:27246930

  20. Sintered Indium-Tin Oxide Particles Induce Pro-Inflammatory Responses In Vitro, in Part through Inflammasome Activation

    PubMed Central

    Badding, Melissa A.; Schwegler-Berry, Diane; Park, Ju-Hyeong; Fix, Natalie R.; Cummings, Kristin J.; Leonard, Stephen S.

    2015-01-01

    Indium-tin oxide (ITO) is used to make transparent conductive coatings for touch-screen and liquid crystal display electronics. As the demand for consumer electronics continues to increase, so does the concern for occupational exposures to particles containing these potentially toxic metal oxides. Indium-containing particles have been shown to be cytotoxic in cultured cells and pro-inflammatory in pulmonary animal models. In humans, pulmonary alveolar proteinosis and fibrotic interstitial lung disease have been observed in ITO facility workers. However, which ITO production materials may be the most toxic to workers and how they initiate pulmonary inflammation remain poorly understood. Here we examined four different particle samples collected from an ITO production facility for their ability to induce pro-inflammatory responses in vitro. Tin oxide, sintered ITO (SITO), and ventilation dust particles activated nuclear factor kappa B (NFκB) within 3 h of treatment. However, only SITO induced robust cytokine production (IL-1β, IL-6, TNFα, and IL-8) within 24 h in both RAW 264.7 mouse macrophages and BEAS-2B human bronchial epithelial cells. Our lab and others have previously demonstrated SITO-induced cytotoxicity as well. These findings suggest that SITO particles activate the NLRP3 inflammasome, which has been implicated in several immune-mediated diseases via its ability to induce IL-1β release and cause subsequent cell death. Inflammasome activation by SITO was confirmed, but it required the presence of endotoxin. Further, a phagocytosis assay revealed that pre-uptake of SITO or ventilation dust impaired proper macrophage phagocytosis of E. coli. Our results suggest that adverse inflammatory responses to SITO particles by both macrophage and epithelial cells may initiate and propagate indium lung disease. These findings will provide a better understanding of the molecular mechanisms behind an emerging occupational health issue. PMID:25874458

  1. Widespread activation of immunity and pro-inflammatory programs in peripheral blood leukocytes of HIV-infected patients with impaired lung gas exchange.

    PubMed

    Crothers, Kristina; Petrache, Irina; Wongtrakool, Cherry; Lee, Patty J; Schnapp, Lynn M; Gharib, Sina A

    2016-04-01

    HIV infection is associated with impaired lung gas transfer as indicated by a low diffusing capacity (DLCO), but the mechanisms are not well understood. We hypothesized that HIV-associated gas exchange impairment is indicative of system-wide perturbations that could be reflected by alterations in peripheral blood leukocyte (PBL) gene expression. Forty HIV-infected (HIV(+)) and uninfected (HIV(-)) men with preserved versus low DLCO were enrolled. All subjects were current smokers and those with acute illness, lung diseases other than COPD or asthma were excluded. Total RNA was extracted from PBLs and hybridized to whole-genome microarrays. Gene set enrichment analysis (GSEA) was performed between HIV(+) versus HIV(-) subjects with preserved DLCO and those with low DLCO to identify differentially activated pathways. Using pathway-based analyses, we found that in subjects with preserved DLCO, HIV infection is associated with activation of processes involved in immunity, cell cycle, and apoptosis. Applying a similar analysis to subjects with low DLCO, we identified a much broader repertoire of pro-inflammatory and immune-related pathways in HIV(+) patients relative to HIV(-) subjects, with up-regulation of multiple interleukin pathways, interferon signaling, and toll-like receptor signaling. We confirmed elevated circulating levels of IL-6 in HIV(+) patients with low DLCO relative to the other groups. Our findings reveal that PBLs of subjects with HIV infection and low DLCO are distinguished by widespread enrichment of immuno-inflammatory programs. Activation of these pathways may alter the biology of circulating leukocytes and play a role in the pathogenesis of HIV-associated gas exchange impairment. PMID:27117807

  2. Role for pro-inflammatory cytokines in regulating expression of GABA transporter type 1 and 3 in specific brain regions of kainic acid-induced status epilepticus.

    PubMed

    Su, Jing; Yin, Jian; Qin, Wei; Sha, Suxu; Xu, Jun; Jiang, Changbin

    2015-03-01

    In general, pro-inflammatory cytokines (PICs) contribute to regulation of epilepsy-associated pathophysiological processes in the central nerve system. In this report, we examined the specific activation of PICs, namely IL-1β, IL-6 and TNF-α in rat brain after kainic acid (KA)-induced status epilepticus (SE). Also, we examined the role played by PICs in regulating expression of GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively), which are the two important subtypes of GATs responsible for the regulation of extracellular GABA levels in the brain. Our results show that IL-1β, IL-6 and TNF-α were significantly increased in the parietal cortex, hippocampus and amygdala of KA-rats as compared with sham control animals (P < 0.05, KA rats vs. control rats). KA-induced SE also significantly increased (P < 0.05 vs. controls) the protein expression of GAT-1 and GAT-3 in those brain regions. In addition, central administration of antagonists to IL-1β and TNF-α receptors significantly attenuated amplified GAT-1 and GAT-3 (P < 0.05 vs. vehicle control for each antagonist group). However, antagonist to IL-6 receptor failed to attenuate enhancement in expression of GAT-1 and GAT-3 induced by KA-induced SE. Overall, our data demonstrate that PIC pathways are activated in the specific brain regions during SE which thereby selectively leads to upregulation of GABA transporters. As a result, it is likely that de-inhibition of GABA system is increased in the brain. This support a role for PICs in engagement of the adaptive mechanisms associated with epileptic activity, and has pharmacological implications to target specific PICs for neuronal dysfunction and vulnerability related to epilepsy. PMID:25708016

  3. Helicobacter pylori-infected MSCs acquire a pro-inflammatory phenotype and induce human gastric cancer migration by promoting EMT in gastric cancer cells

    PubMed Central

    ZHANG, QIANG; DING, JUAN; LIU, JINJUN; WANG, WEI; ZHANG, FENG; WANG, JUNHE; LI, YUYUN

    2016-01-01

    Accumulating clinical and experimental evidence has suggested that Helicobacter pylori (H. pylori) infection-associated gastric cancer (GC) is associated with high rates of mortality and serious health effects. The majority of patients succumb to H. pylori infection-associated GC due to metastasis. Mesenchymal stem cells (MSCs), which have multipotent differentiation potential, may be recruited into the tumor-associated stroma. MSCs are crucial components of the H. pylori infection-associated GC microenvironment, and may be critical for GC cell migration. In this study, an MSCs/H. pylori co-culture model was designed, and the effect of H. pylori-infected MSCs on the migration of GC cells was evaluated using a Transwell migration assay. H. pylori-infected MSC cytokine expression was evaluated using Luminex/ELISA. The expression of epithelial-mesenchymal transition (EMT) markers in the GC cells treated with supernatants from H. pylori-infected MSCs were detected by western blot analysis. The results demonstrated that the interaction between MSCs and H. pylori may induce GC cell migration, through secretion of a combination of cytokines that promote EMT in GC cells. The expression of phosphorylated forms of nuclear factor-κB (NF-κB) was observed to be increased in MSCs by H. pylori. Inhibition of NF-κB activation by pyrrolidine dithiocarbamate blocked the effects of H. pylori-infected MSCs on SGC-7901 human stomach adenocarcinoma cell migration. Overall, the results of the present study suggest that H. pylori-infected MSCs acquire a pro-inflammatory phenotype through secretion of a combination of multiple cytokines, a number of which are NF-κB-dependent. These cytokines enhance H. pylori infection-associated GC cell migration by promoting EMT in GC cells. The results of the present study provide novel evidence for the modulatory effect of MSCs in the tumor microenvironment and provide insight into the significance of stromal cell involvement in GC progression

  4. CD14 Is a Co-Receptor for TLR4 in the S100A9-Induced Pro-Inflammatory Response in Monocytes

    PubMed Central

    He, Zhifei; Riva, Matteo; Björk, Per; Swärd, Karl; Mörgelin, Matthias; Leanderson, Tomas; Ivars, Fredrik

    2016-01-01

    The cytosolic Ca2+-binding S100A9 and S100A8 proteins form heterodimers that are primarily expressed in human neutrophils and monocytes. We have recently shown that S100A9 binds to TLR4 in vitro and induces TLR4-dependent NF-κB activation and a pro-inflammatory cytokine response in monocytes. In the present report we have further investigated the S100A9-mediated stimulation of TLR4 in monocytes. Using transmission immunoelectron microscopy, we detected focal binding of S100A9 to monocyte membrane subdomains containing the caveolin-1 protein and TLR4. Furthermore, the S100A9 protein was detected in early endosomes of the stimulated cells, indicating that the protein could be internalized by endocytosis. Although stimulation of monocytes with S100A9 was strictly TLR4-dependent, binding of S100A9 to the plasma membrane and endocytosis of S100A9 was still detectable and coincided with CD14 expression in TLR4-deficient cells. We therefore investigated whether CD14 would be involved in the TLR4-dependent stimulation and could show that the S100A9-induced cytokine response was inhibited both in CD14-deficient cells and in cells exposed to CD14 blocking antibodies. Further, S100A9 was not internalized into CD14-deficient cells suggesting a direct role of CD14 in endocytosis of S100A9. Finally, we could detect satiable binding of S100A9 to CD14 in surface plasmon resonance experiments. Taken together, these results indicate that CD14 is a co-receptor of TLR4 in the S100A9-induced cytokine response. PMID:27228163

  5. Regulation of the pro-inflammatory cytokine osteopontin by GIP in adipocytes - A role for the transcription factor NFAT and phosphodiesterase 3B

    SciTech Connect

    Omar, Bilal; Banke, Elin; Guirguis, Emilia; Aakesson, Lina; Manganiello, Vincent; Lyssenko, Valeriya; Groop, Leif; Gomez, Maria F.; Degerman, Eva

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. Black-Right-Pointing-Pointer GIP-induced osteopontin expression is NFAT-dependent. Black-Right-Pointing-Pointer Osteopontin expression is PDE3-dependent. Black-Right-Pointing-Pointer Osteopontin expression is increased in PDE3B KO mice. -- Abstract: The incretin - glucose-dependent insulinotropic polypeptide (GIP) - and the pro-inflammatory cytokine osteopontin are known to have important roles in the regulation of adipose tissue functions. In this work we show that GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. The GIP-induced increase in osteopontin expression was inhibited by the NFAT (the transcription factor nuclear factor of activated T-cells) inhibitor A-285222. Also, the NFAT kinase glycogen synthase kinase (GSK) 3 was upregulated by GIP. To test whether cAMP might be involved in GIP-mediated effects on osteopontin a number of strategies were used. Thus, the {beta}3-adrenergic receptor agonist CL316,243 stimulated osteopontin expression, an effects which was mimicked by OPC3911, a specific inhibitor of phosphodiesterase 3. Furthermore, treatment of phosphodiesterase 3B knock-out mice with CL316,243 resulted in a dramatic upregulation of osteopontin in adipose tissue which was not the case in wild-type mice. In summary, we delineate mechanisms by which GIP stimulates osteopontin in adipocytes. Given the established link between osteopontin and insulin resistance, our data suggest that GIP by stimulating osteopontin expression, also could promote insulin resistance in adipocytes.

  6. The Anti-inflammatory Effect of GV1001 Mediated by the Downregulation of ENO1-induced Pro-inflammatory Cytokine Production

    PubMed Central

    Choi, Jiyea; Kim, Hyemin; Kim, Yejin; Jang, Mirim; Jeon, Jane; Hwang, Young-il; Shon, Won Jun; Song, Yeong Wook; Lee, Wang Jae

    2015-01-01

    GV1001 is a peptide derived from the human telomerase reverse transcriptase (hTERT) sequence that is reported to have anti-cancer and anti-inflammatory effects. Enolase1 (ENO1) is a glycolytic enzyme, and stimulation of this enzyme induces high levels of pro-inflammatory cytokines from concanavalin A (Con A)-activated peripheral blood mononuclear cells (PBMCs) and ENO1-expressing monocytes in healthy subjects, as well as from macrophages in rheumatoid arthritis (RA) patients. Therefore, this study investigated whether GV1001 downregulates ENO1-induced pro-inflammatory cytokines as an anti-inflammatory peptide. The results showed that GV1001 does not affect the expression of ENO1 in either Con A-activated PBMCs or RA PBMCs. However, ENO1 stimulation increased the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, and these cytokines were downregulated by pretreatment with GV1001. Moreover, p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB were activated when ENO1, on the surface of Con A-activated PBMCs and RA PBMCs, was stimulated, and they were successfully suppressed by pre-treatment with GV1001. These results suggest that GV1001 may be an effective anti-inflammatory peptide that downregulates the production of pro-inflammatory cytokines through the suppression of p38 MAPK and NF-κB activation following ENO1 stimulation. PMID:26770183

  7. The Anti-inflammatory Effect of GV1001 Mediated by the Downregulation of ENO1-induced Pro-inflammatory Cytokine Production.

    PubMed

    Choi, Jiyea; Kim, Hyemin; Kim, Yejin; Jang, Mirim; Jeon, Jane; Hwang, Young-Il; Shon, Won Jun; Song, Yeong Wook; Kang, Jae Seung; Lee, Wang Jae

    2015-12-01

    GV1001 is a peptide derived from the human telomerase reverse transcriptase (hTERT) sequence that is reported to have anti-cancer and anti-inflammatory effects. Enolase1 (ENO1) is a glycolytic enzyme, and stimulation of this enzyme induces high levels of pro-inflammatory cytokines from concanavalin A (Con A)-activated peripheral blood mononuclear cells (PBMCs) and ENO1-expressing monocytes in healthy subjects, as well as from macrophages in rheumatoid arthritis (RA) patients. Therefore, this study investigated whether GV1001 downregulates ENO1-induced pro-inflammatory cytokines as an anti-inflammatory peptide. The results showed that GV1001 does not affect the expression of ENO1 in either Con A-activated PBMCs or RA PBMCs. However, ENO1 stimulation increased the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, and these cytokines were downregulated by pretreatment with GV1001. Moreover, p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB were activated when ENO1, on the surface of Con A-activated PBMCs and RA PBMCs, was stimulated, and they were successfully suppressed by pre-treatment with GV1001. These results suggest that GV1001 may be an effective anti-inflammatory peptide that downregulates the production of pro-inflammatory cytokines through the suppression of p38 MAPK and NF-κB activation following ENO1 stimulation. PMID:26770183

  8. THE EFFECTS OF ANTI-INFLAMMATORY IFNγ AND PRO-INFLAMMATORY TNFα, IL-1β ON CHEMOKINE RELEASE IN MOUSE EPITHELIAL CELLS

    EPA Science Inventory

    RATIONALE: Asthma is a chronic inflammatory disorder of the airways that affects nearly 20 million individuals in the US. Airway inflammation is a hallmark characteristic of asthma and is the result of numerous pro-inflammatory cytokines such as IL-1β and TNFα . Interestingly...

  9. Human resistin stimulates the pro-inflammatory cytokines TNF-{alpha} and IL-12 in macrophages by NF-{kappa}B-dependent pathway

    SciTech Connect

    Silswal, Nirupama; Singh, Anil K.; Aruna, Battu; Mukhopadhyay, Sangita; Ghosh, Sudip; Ehtesham, Nasreen Z. . E-mail: nas_ehtesham@yahoo.com

    2005-09-09

    Resistin, a recently discovered 92 amino acid protein involved in the development of insulin resistance, has been associated with obesity and type 2 diabetes. The elevated serum resistin in human diabetes is often associated with a pro-inflammatory milieu. However, the role of resistin in the development of inflammation is not well understood. Addition of recombinant human resistin protein (hResistin) to macrophages (both murine and human) resulted in enhanced secretion of pro-inflammatory cytokines, TNF-{alpha} and IL-12, similar to that obtained using 5 {mu}g/ml lipopolysaccharide. Both oligomeric and dimeric forms of hResistin were able to activate these cytokines suggesting that the inflammatory action of resistin is independent of its conformation. Heat denatured hResistin abrogated cytokine induction while treatment of recombinant resistin with polymyxin B agarose beads had no effect thereby ruling out the role of endotoxin in the recombinant hResistin mediated cytokine induction. The pro-inflammatory nature of hResistin was further evident from the ability of this protein to induce the nuclear translocation of NF-{kappa}B transcription factor as seen from electrophoretic mobility shift assays. Induction of TNF-{alpha} in U937 cells by hResistin was markedly reduced in the presence of either dominant negative I{kappa}B{alpha} plasmid or PDTC, a pharmacological inhibitor of NF-{kappa}B. A protein involved in conferring insulin resistance is also a pro-inflammatory molecule that has important implications.

  10. Saturated fatty acids activate TLR-mediated pro-inflammatory signaling pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptor 4 (TLR4) and TLR2 were shown to be activated by saturated fatty acids (SFAs) but inhibited by docosahexaenoic acid (DHA). However, one report (ATVB 11:1944, 2009) suggested that SFA-induced TLR activation in cell culture systems is due to contaminants in BSA used for conjugating f...

  11. Gadd45b is an epigenetic regulator of juvenile social behavior and alters local pro-inflammatory cytokine production in the rodent amygdala

    PubMed Central

    Kigar, Stacey L.; Chang, Liza; Auger, Anthony P.

    2015-01-01

    Precise regulation of the epigenome during perinatal development is critical to the formation of species-typical behavior later in life. Recent data suggests that Gadd45b facilitates active DNA demethylation by recruiting proteins involved in base excision repair (BER), which will catalyze substitution of 5-methyl-cytosine (5mC) for an unmodified cytosine. While a role for Gadd45b has been implicated in both hippocampal and amygdalar learning tasks, to the best of our knowledge, no study has been done investigating the involvement of Gadd45b in neurodevelopmental programming of social behavior. To address this, we used a targeted siRNA delivery approach to transiently knock down Gadd45b expression in the neonatal rat amygdala. We chose to examine social behavior in the juvenile period, as social deficits associated with neurodevelopmental disorders tend to emerge in humans at an equivalent age. We find that neonatal Gadd45b knock-down results in altered juvenile social behavior and reduced expression of several genes implicated in psychiatric disorders, including methyl-CpG-binding protein 2 (MeCP2), Reelin, and brain derived neurotrophic factor (BDNF). We furthermore report a novel role for Gadd45b in the programmed expression of α2-adrenoceptor (Adra2a). Consistent with Gadd45b’s role in the periphery, we also observed changes in the expression of pro-inflammatory cytokines interleukin-6 (Il-6) and interleukin- 1beta (Il-1beta) in the amygdala, which could potentially mediate or exacerbate effects of Gadd45b knockdown on the organization of social behavior. These data suggest a prominent role for Gadd45b in the epigenetic programming of complex juvenile social interactions, and may provide insight into the etiology of juvenile behavioral disorders such as ADHD, autism, and/or schizophrenia. PMID:25728234

  12. Peroxisome proliferator-activated receptors (PPAR) downregulate the expression of pro-inflammatory molecules in an experimental model of myocardial infarction.

    PubMed

    Ibarra-Lara, María de la Luz; Sánchez-Aguilar, María; Soria, Elizabeth; Torres-Narváez, Juan Carlos; Del Valle-Mondragón, Leonardo; Cervantes-Pérez, Luz Graciela; Pérez-Severiano, Francisca; Ramírez-Ortega, Margarita Del Carmen; Pastelín-Hernández, Gustavo; Oidor-Chan, Víctor Hugo; Sánchez-Mendoza, Alicia

    2016-06-01

    Myocardial infarction (MI) has been associated with an inflammatory response and a rise in TNF-α, interleukin (IL)-1β, and IL-6. Peroxisome proliferator-activated receptors (PPARs) promote a decreased expression of inflammatory molecules. We aimed to study whether PPAR stimulation by clofibrate decreases inflammation and reduces infarct size in rats with MI. Male Wistar rats were randomized into 3 groups: control, MI + vehicle, and MI + clofibrate (100 mg/kg). Treatment was administered for 3 consecutive days, previous to 2 h of MI. MI induced an increase in protein expression, mRNA content, and enzymatic activity of inducible nitric oxide synthase (iNOS). Additionally, MI incited an increased expression of matrix metalloproteinase (MMP)-2 and MMP-9, intercellular adhesion molecule (ICAM)-1, and IL-6. MI also elevated the nuclear content of nuclear factor-κB (NF-κB) and decreased IκB, both in myocyte nuclei and cytosol. Clofibrate treatment prevented MI-induced changes in iNOS, MMP-2 and MMP-9, ICAM-1, IL-6, NF-κB, and IκB. Infarct size was smaller in clofibrate-treated rats compared to MI-vehicle animals. In silico analysis exhibited 3 motifs shared by genes from renin-angiotensin system, PPARα, iNOS, MMP-2 and MMP-9, ICAM-1, and VCAM-1, suggesting a cross regulation. In conclusion, PPARα-stimulation prevents overexpression of pro-inflammatory molecules and preserves viability in an experimental model of acute MI. PMID:27050838

  13. Turmeric (Curcuma longa) inhibits inflammatory nuclear factor (NF)-κB and NF-κB-regulated gene products and induces death receptors leading to suppressed proliferation, induced chemosensitization, and suppressed osteoclastogenesis

    PubMed Central

    Kim, Ji H.; Gupta, Subash C.; Park, Byoungduck; Yadav, Vivek R.; Aggarwal, Bharat B.

    2012-01-01

    Scope The incidence of cancer is significantly lower in regions where turmeric is heavily consumed. Whether lower cancer incidence is due to turmeric was investigated by examining its effects on tumor cell proliferation, on pro-inflammatory transcription factors NF-κB and STAT3, and on associated gene products. Methods and results Cell proliferation and cell cytotoxicity were measured by the MTT method, NF-κB activity by EMSA, protein expression by Western blot analysis, ROS generation by FACS analysis, and osteoclastogenesis by TRAP assay. Turmeric inhibited NF-κB activation and down-regulated NF-κB-regulated gene products linked to survival (Bcl-2, cFLIP, XIAP, and cIAP1), proliferation (cyclin D1 and c-Myc), and metastasis (CXCR4) of cancer cells. The spice suppressed the activation of STAT3, and induced the death receptors (DR)4 and DR5. Turmeric enhanced the production of ROS, and suppressed the growth of tumor cell lines. Furthermore, turmeric sensitized the tumor cells to chemotherapeutic agents capecitabine and taxol. Turmeric was found to be more potent than pure curcumin for cell growth inhibition. Turmeric also inhibited NF-κB activation induced by RANKL that correlated with the suppression of osteoclastogenesis. Conclusion Our results indicate that turmeric can effectively block the proliferation of tumor cells through the suppression of NF-κB and STAT3 pathways. PMID:22147524

  14. Thioredoxin Ameliorates Cutaneous Inflammation by Regulating the Epithelial Production and Release of Pro-Inflammatory Cytokines

    PubMed Central

    Tian, Hai; Matsuo, Yoshiyuki; Fukunaga, Atsushi; Ono, Ryusuke; Nishigori, Chikako; Yodoi, Junji

    2013-01-01

    Human thioredoxin-1 (TRX) is a 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys-. It has been demonstrated that systemic administration and transgenic overexpression of TRX ameliorate inflammation in various animal models, but its anti-inflammatory mechanism is not well characterized. We investigated the anti-inflammatory effects of topically applied recombinant human TRX (rhTRX) in a murine irritant contact dermatitis (ICD) induced by croton oil. Topically applied rhTRX was distributed only in the skin tissues under both non-inflammatory and inflammatory conditions, and significantly suppressed the inflammatory response by inhibiting the production of cytokines and chemokines, such as TNF-α, Il-1β, IL-6, CXCL-1, and MCP-1. In an in vitro study, rhTRX also significantly inhibited the formation of cytokines and chemokines produced by keratinocytes after exposure to croton oil and phorbol 12-myristate 13-acetate. These results indicate that TRX prevents skin inflammation via the inhibition of local formation of inflammatory cytokines and chemokines. As a promising new approach, local application of TRX may be useful for the treatment of various skin and mucosal inflammatory disorders. PMID:24058364

  15. Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    PubMed Central

    Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Darby, Trevor; Coghlan, Avril; Nally, Kenneth; Ross, R. Paul; O’Toole, Paul W.

    2012-01-01

    Lactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli. PMID:22808200

  16. Selection for pro-inflammatory mediators produces chickens more resistant to Clostridium perfringens-induced necrotic enteritis.

    PubMed

    Swaggerty, C L; McReynolds, J L; Byrd, J A; Pevzner, I Y; Duke, S E; Genovese, K J; He, H; Kogut, M H

    2016-02-01

    We developed a novel selection method based on an inherently high and low phenotype of pro-inflammatory mediators and produced "high" and "low" line chickens. We have shown high line birds are more resistant to Salmonella enterica serovar Enteritidis and Eimeria tenella compared to the low line. Clostridium perfringens is the fourth leading cause of bacterial-induced foodborne illness, and is also an economically important poultry pathogen and known etiologic agent of necrotic enteritis (NE). The objective of this study was to determine if high line birds were also more resistant to NE than low line birds using an established model. Birds were reared in floor pens and challenges were conducted twice (high line = 25/trial, 50 birds total; low line = 26/trial, 52 birds total). Day-old chicks were provided a 55% wheat-corn-based un-medicated starter diet. A bursal disease vaccine was administered at 10× the recommended dose via the ocular route at 14-d-of-age. Birds were challenged daily for 3 d beginning at 16-d-of-age by oral gavage (3 mL) with 10(7) colony forming units (cfu) of C. perfringens/mL then necropsied at 21-d-of-age. All birds had sections of the intestine examined and scored for lesions while the first 10 necropsied also had gut content collected for C. perfringens enumeration. Chickens from the high line were more resistant to C. perfringens-induced NE pathology compared to the low line, as indicated by reduced lesion scores. Ninety percent of the high line birds had lesions of zero or one compared to 67% of the low line birds. Wilcoxon rank sum test showed significantly higher lesion scores in the low line birds compared to the high line (P < 0.0001). There were no differences in the C. perfringens recovered (P = 0.83). These data provide additional validation and support selection based on elevated levels of pro-inflammatory mediators produces chickens with increased resistance against foodborne and poultry pathogens. PMID:26706357

  17. Toll-like receptor and pro-inflammatory cytokine expression during prolonged hyperinsulinaemia in horses: implications for laminitis.

    PubMed

    de Laat, M A; Clement, C K; McGowan, C M; Sillence, M N; Pollitt, C C; Lacombe, V A

    2014-01-15

    Equine laminitis, a disease of the lamellar structure of the horse's hoof, can be incited by numerous factors that include inflammatory and metabolic aetiologies. However, the role of inflammation in hyperinsulinaemic laminitis has not been adequately defined. Toll-like receptor (TLR) activation results in up-regulation of inflammatory pathways and the release of pro-inflammatory cytokines, including interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α), and may be a pathogenic factor in laminitis. The aim of this study was to determine whether TLR4 expression and subsequent pro-inflammatory cytokine production is increased in lamellae and skeletal muscle during equine hyperinsulinaemia. Standardbred horses were treated with either a prolonged, euglycaemic hyperinsulinaemic clamp (p-EHC) or a prolonged, glucose infusion (p-GI), which induced marked and moderate hyperinsulinaemia, respectively. Age-matched control horses were treated simultaneously with a balanced electrolyte solution. Treated horses developed clinical (p-EHC) or subclinical (p-GI) laminitis, whereas controls did not. Skeletal muscle and lamellar protein extracts were analysed by Western blotting for TLR4, IL-6, TNF-α and suppressor of cytokine signalling 3 (SOCS3) expression. Lamellar protein expression of TLR4 and TNF-α, but not IL-6, was increased by the p-EHC, compared to control horses. A significant positive correlation was found between lamellar TLR4 and SOCS3. Skeletal muscle protein expression of TLR4 signalling parameters did not differ between control and p-EHC-treated horses. Similarly, the p-GI did not result in up-regulation of lamellar protein expression of any parameter. The results suggest that insulin-sensitive tissues may not accurately reflect lamellar pathology during hyperinsulinaemia. While TLR4 is present in the lamellae, its activation appears unlikely to contribute significantly to the developmental pathogenesis of hyperinsulinaemic laminitis. However

  18. Role of Pro-inflammatory Cytokines in Radiation-Induced Genomic Instability in Human Bronchial Epithelial Cells.

    PubMed

    Werner, Erica; Wang, Huichen; Doetsch, Paul W

    2015-12-01

    Inflammatory cytokines have been implicated in the regulation of radiation-induced genomic instability in the hematopoietic system and have also been shown to induce chronic DNA damage responses in radiation-induced senescence. We have previously shown that human bronchial epithelial cells (HBEC3-KT) have increased genomic instability and IL-8 production persisting at day 7 after exposure to high-LET (600 MeV/nucleon (56)Fe ions) compared to low-LET (320 keV X rays) radiation. Thus, we investigated whether IL-8 induction is part of a broader pro-inflammatory response produced by the epithelial cells in response to damage, which influences genomic instability measured by increased micronuclei and DNA repair foci frequencies. We found that exposure to radiation induced the release of multiple inflammatory cytokines into the media, including GM-CSF, GROα, IL-1α, IL-8 and the inflammation modulator, IL-1 receptor antagonist (IL-1RA). Our results suggest that this is an IL-1α-driven response, because an identical signature was induced by the addition of recombinant IL-1α to nonirradiated cells and functional interference with recombinant IL-1RA (Anakinra) or anti-IL-1α function-blocking antibody, decreased IL-8 production induced by radiation exposure. However, genomic instability was not influenced by this pathway as addition of recombinant IL-1α to naive or irradiated cells or the presence of IL-1 RA under the same conditions as those that interfered with the function of IL-8, did not affect micronuclei or DNA repair foci frequencies measured at day 7 after exposure. While dose-response studies revealed that genomic instability and IL-8 production are the consequences of targeted effects, experiments employing a co-culture transwell system revealed the propagation of pro-inflammatory responses but not genomic instability from irradiated to nonirradiated cells. Collectively, these results point to a cell-autonomous mechanism sustaining radiation-induced genomic

  19. Co-stimulation-induced release of pro-inflammatory cytokine interleukin-8 by allergen-specific T cells.

    PubMed

    Spinozzi, F; Agea, E; Piattoni, S; Bistoni, O; Grignani, F; Bertotto, A

    1996-07-01

    Chemokines, which include interleukin (IL)-8, are a family of pro-inflammatory molecules with potent chemoattractant activity on neutrophils, as well as other cell types. IL-8 can be recovered from many inflammatory sites. To test the hypothesis that Th2-type allergen-specific T cells, known to be the main cell type governing the allergic inflammation, are a source of IL-8 and to investigate whether IL-8 release is influenced by the nature of the in vitro mitogenic or co-mitogenic stimulation, cypress-specific T-cell clones (TCC) were generated from five allergic subjects during in vitro seasonal exposure to the allergen. Purified cypress extract was produced directly from freshly collected pollen and used for in vitro stimulation of PBMC bulk cultures. After 5 days priming and a further 7 day period of IL-2-driven cell expansion, monoclonal antibodies to CD3, CD2 and CD28 were adopted for in vitro restimulation of allergen-specific cell lines or, subsequently, secondary established TCC. The induction of apoptosis was detected by propidium iodide (PI) cytofluorimetric assay. Basal and co-stimulation-induced IL-8 production was measured by an ELISA method. Both cypress-specific T-cell lines and TCC secreted appreciable amounts of IL-8. By cross-linking T-cell lines or Th2 CD4+ TCC with CD3, CD2 or CD28 MoAbs, the authors observed a great stimulation-induced IL-8 secretion, preferentially after CD2 or combined CD2/CD28 stimulation. In addition, CD4+ clones released large amounts of IL-8 into culture supernatants after CD2 stimulation while undergoing programmed cell death (30-40% hypodiploid DNA profile of PI-stained cells). In contrast, CD3 crosslinking was unable to determine the release of IL-8 or the induction of apoptosis. Taken together, these results suggest that incomplete TcR engagement by allergen may lead to the secretion of pro-inflammatory cytokines with a contemporary induction of apoptosis in a significant number of target cells. This phenomenon may

  20. Tetrandrine suppresses pro-inflammatory mediators in PMA plus A23187-induced HMC-1 cells.

    PubMed

    Kang, Ok-Hwa; An, Hyeon-Jin; Kim, Sung-Bae; Mun, Su-Hyun; Seo, Yun-Soo; Joung, Dae-Ki; Choi, Jang-Gi; Shin, Dong-Won; Kwon, Dong-Yeul

    2014-05-01

    Tetrandrine (TET), a bis-benzylisoquinoline alkaloid from the root of Stephania tetrandra, is known to possess antitumor activity in various malignant neoplasms. However, the precise mechanism of TET-mediated immune modulation remains to be clarified. One of the possible mechanisms for its protective properties is by downregulation of the inflammatory responses. In the present study, the human mast cell line (HMC-1) was used to investigate this effect. TET significantly inhibited the induction of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8 by phorbol 12-myristate 13-acetate (PMA) plus A23187. Moreover, TET attenuated expression of cyclooxygenase (COX)-2. In activated HMC-1 cells, the phosphorylation of extra-signal response kinase (ERK1/2) and c-jun N-terminal Kinase (JNK1/2), but not p38 mitogen-activated protein kinase, was decreased by treatment of the cells with TET. TET inhibited PMA plus A23187-induced nuclear factor (NF)-κB activation, IκB degradation and phosphorylation. Furthermore, TET suppressed the expression of TNF-α, IL-8, IL-6 and COX-2 through suppression of the ERK1/2, JNK1/2, IκBα degradation and phosphorylation, and NF-κB activation. These results indicated that TET exerted a regulatory effect on inflammatory reactions mediated by mast cells. PMID:24589569

  1. Phloridzin derivatives inhibiting pro-inflammatory cytokine expression in human cystic fibrosis IB3-1 cells.

    PubMed

    Milani, R; Marcellini, A; Montagner, G; Baldisserotto, A; Manfredini, S; Gambari, R; Lampronti, I

    2015-10-12

    Cystic Fibrosis (CF) is the most diffuse autosomal recessive genetic disease affecting Caucasians. A persistent recruitment of neutrophils in the bronchi of CF patients contributes to exacerbate the airway tissue damage, suggesting that modulation of chemokine expression may be an important target for the patient's well being thus the identification of innovative anti-inflammatory drugs is considered a longterm goal to prevent progressive tissue deterioration. Phloridzin, isolated from Malus domestica by a selective molecular imprinting extraction, and its structural analogues, Phloridzin heptapropionate (F1) and Phloridzin tetrapropionate (F2), were initially investigated because of their ability to reduce IL-6 and IL-8 expression in human CF bronchial epithelial cells (IB3-1) stimulated with TNF-α. Release of these cytokines by CF cells was shown to be controlled by the Transcription Factor (TF) NF-kB. The results of the present investigation show that of all the derivatives tested, Phloridzin tetrapropionate (F2) is the most interesting and has greatest potential as it demonstrates inhibitory effects on the expression and production of different cytokines involved in CF inflammation processes, including RANTES, VEGF, GM-CSF, IL-12, G-CSF, MIP-1b, IL-17, IL-10 and IP-10, without any correlated anti-proliferative and pro-apoptotic effects. PMID:26209880

  2. TAK-1/p38/nNFκB signaling inhibits myoblast differentiation by increasing levels of Activin A

    PubMed Central

    2012-01-01

    Background Skeletal-muscle differentiation is required for the regeneration of myofibers after injury. The differentiation capacity of satellite cells is impaired in settings of old age, which is at least one factor in the onset of sarcopenia, the age-related loss of skeletal-muscle mass and major cause of frailty. One important cause of impaired regeneration is increased levels of transforming growth factor (TGF)-β accompanied by reduced Notch signaling. Pro-inflammatory cytokines are also upregulated in aging, which led us hypothesize that they might potentially contribute to impaired regeneration in sarcopenia. Thus, in this study, we further analyzed the muscle differentiation-inhibition pathway mediated by pro-inflammatory cytokines in human skeletal muscle cells (HuSKMCs). Methods We studied the modulation of HuSKMC differentiation by the pro-inflammatory cytokines interleukin (IL)-1α and tumor necrosis factor (TNF)-α The grade of differentiation was determined by either imaging (fusion index) or creatine kinase (CK) activity, a marker of muscle differentiation. Secretion of TGF-β proteins during differentiation was assessed by using a TGF-β-responsive reporter-gene assay and further identified by means of pharmacological and genetic inhibitors. In addition, signaling events were monitored by western blotting and reverse transcription PCR, both in HuSKMC cultures and in samples from a rat sarcopenia study. Results The pro-inflammatory cytokines IL-1α and TNF-α block differentiation of human myoblasts into myotubes. This anti-differentiation effect requires activation of TGF-β-activated kinase (TAK)-1. Using pharmacological and genetic inhibitors, the TAK-1 pathway could be traced to p38 and NFκB. Surprisingly, the anti-differentiation effect of the cytokines required the transcriptional upregulation of Activin A, which in turn acted through its established signaling pathway: ActRII/ALK/SMAD. Inhibition of Activin A signaling was able to rescue human

  3. Glutathione-S-transferase M1 regulation of diesel exhaust particle-induced pro-inflammatory mediator expression in normal human bronchial epithelial cells

    PubMed Central

    2012-01-01

    Background Diesel exhaust particles (DEP) contribute substantially to ambient particulate matter (PM) air pollution in urban areas. Inhalation of PM has been associated with increased incidence of lung disease in susceptible populations. We have demonstrated that the glutathione S-transferase M1 (GSTM1) null genotype could aggravate DEP-induced airway inflammation in human subjects. Given the critical role airway epithelial cells play in the pathogenesis of airway inflammation, we established the GSTM1 deficiency condition in primary bronchial epithelial cells from human volunteers with GSTM1 sufficient genotype (GSTM1+) using GSTM1 shRNA to determine whether GSTM1 deficiency could exaggerate DEP-induced expression of interleukin-8 (IL-8) and IL-1β proteins. Furthermore, the mechanisms underlying GSTM1 regulation of DEP-induced IL-8 and IL-1β expression were also investigated. Methods IL-8 and IL-1β protein levels were measured using enzyme-linked immunosorbent assay. GSTM1 deficiency in primary human bronchial epithelial cells was achieved using lentiviral GSTM1 shRNA particles and verified using real-time polymerase chain reaction and immunoblotting. Intracellular reactive oxygen species (ROS) production was evaluated using flow cytometry. Phosphorylation of protein kinases was detected using immunoblotting. Results Exposure of primary human bronchial epithelial cells (GSTM1+) to 25-100 μg/ml DEP for 24 h significantly increased IL-8 and IL-1β protein expression. Knockdown of GSTM1 in these cells further elevated DEP-induced IL-8 and IL-1β expression, implying that GSTM1 deficiency aggravated DEP-induced pro-inflammatory response. DEP stimulation induced the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, the downstream kinase of phosphoinositide 3-kinase (PI3K), in GSTM1+ bronchial epithelial cells. Pharmacological inhibition of ERK kinase and PI3K activity blocked DEP-induced IL-8 and IL-1β expression. DEP-induced ERK and Akt

  4. Pro-inflammatory cytokines derived from West Nile virus (WNV)-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death

    PubMed Central

    2010-01-01

    Background WNV-associated encephalitis (WNVE) is characterized by increased production of pro-inflammatory mediators, glial cells activation and eventual loss of neurons. WNV infection of neurons is rapidly progressive and destructive whereas infection of non-neuronal brain cells is limited. However, the role of neurons and pathological consequences of pro-inflammatory cytokines released as a result of WNV infection is unclear. Therefore, the objective of this study was to examine the role of key cytokines secreted by WNV-infected neurons in mediating neuroinflammatory markers and neuronal death. Methods A transformed human neuroblastoma cell line, SK-N-SH, was infected with WNV at multiplicity of infection (MOI)-1 and -5, and WNV replication kinetics and expression profile of key pro-inflammatory cytokines were analyzed by plaque assay, qRT-PCR, and ELISA. Cell death was measured in SK-N-SH cell line in the presence and absence of neutralizing antibodies against key pro-inflammatory cytokines using cell viability assay, TUNEL and flow cytometry. Further, naïve primary astrocytes were treated with UV-inactivated supernatant from mock- and WNV-infected SK-N-SH cell line and the activation of astrocytes was measured using flow cytometry and ELISA. Results WNV-infected SK-N-SH cells induced the expression of IL-1β, -6, -8, and TNF-α in a dose- and time-dependent manner, which coincided with increase in virus-induced cell death. Treatment of cells with anti-IL-1β or -TNF-α resulted in significant reduction of the neurotoxic effects of WNV. Furthermore treatment of naïve astrocytes with UV-inactivated supernatant from WNV-infected SK-N-SH cell line increased expression of glial fibrillary acidic protein and key inflammatory cytokines. Conclusion Our results for the first time suggest that neurons are one of the potential sources of pro-inflammatory cytokines in WNV-infected brain and these neuron-derived cytokines contribute to WNV-induced neurotoxicity. Moreover

  5. Increased circulating pro-inflammatory cytokines and imbalanced regulatory T-cell cytokines production in chronic idiopathic urticaria.

    PubMed

    Dos Santos, Juliana Cristina; Azor, Mayce Helena; Nojima, Viviane Yoshimi; Lourenço, Francinelson Duarte; Prearo, Erica; Maruta, Celina Wakisaka; Rivitti, Evandro Ararigbóia; da Silva Duarte, Alberto José; Sato, Maria Notomi

    2008-10-01

    The immunologic characterization of chronic idiopathic urticaria (CIU), mainly regarding cytokine profile needs more investigation. We examined circulating inflammatory cytokine levels, T-cell induced secretion, and cytokine mRNA expression in patients with CIU subjected to the intradermal autologous serum skin test (ASST). Increased levels of circulating pro-inflammatory cytokines, such as TNF-alpha, IL-1beta, IL-12p70, and IL-6 have been observed in most of patients with CIU, together with an enhancement of IL-2 secretion following T-cell stimulation. Highlighting the inflammatory profile in CIU found in ASST positive, is the enhanced B-cell proliferative responsiveness and increased IL-17 secretion levels. ASST-positive patients also exhibited impaired IL-4 secretion associated with increased IL-10 production. Altered cytokine expression in patients with ASST-negative, was the down-modulation of spontaneous IL-10 mRNA expression levels in peripheral blood mononuclear cells. Our findings support the concept of immunologic dysregulation in CIU, revealing a systemic inflammatory profile associated with disturbed cytokine production by T cells, mainly related to IL-17 and IL-10 production. PMID:18586117

  6. Effect of Lactobacillus casei on the Production of Pro-Inflammatory Markers in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Zarfeshani, A; Khaza'ai, H; Mohd Ali, R; Hambali, Z; Wahle, K W J; Mutalib, M S A

    2011-12-01

    It has been demonstrated that probiotic supplementation has positive effects in several murine models of disease through influences on host immune responses. This study examined the effect of Lactobacillus casei strain Shirota (L. casei Shirota) on the blood glucose, C-reactive protein (CRP), Interleukin-6 (IL-6), Interleukin-4 (IL-4), and body weight among STZ-induced diabetic rats. Diabetes mellitus was induced by streptozotocin (STZ, 50 mg/kg BW) in male Sprague-Dawley rats. Streptozotocin caused a significant increase in the blood glucose levels, CRP, and IL-6. L. casei Shirota supplementation lowered the CRP and IL-6 levels but had no significant effect on the blood glucose levels, body weight, or IL-4. Inflammation was determined histologically. The presence of the innate immune cells was not detectable in the liver of L. casei Shirota-treated hyperglycemic rats. The probiotic L. casei Shirota significantly lowered blood levels of pro-inflammatory cytokines (IL-6, CRP) and neutrophils in diabetic rats, showing a lower risk of diabetes mellitus and its complications. PMID:26781677

  7. Particles internalization, oxidative stress, apoptosis and pro-inflammatory cytokines in alveolar macrophages exposed to cement dust.

    PubMed

    Ogunbileje, J O; Nawgiri, R S; Anetor, J I; Akinosun, O M; Farombi, E O; Okorodudu, A O

    2014-05-01

    Exposure to cement dust is one of the most common occupational dust exposures worldwide, but the mechanism of toxicity has not been fully elucidated. Cement dust (N) and clinker (C) samples collected from Nigeria and another sample of cement dust (U) collected from USA were evaluated using alveolar macrophage (NR8383) cell culture to determine the contribution of different sources of cement dust in the severity of cement dust toxicity. Cement dust particles internalization and morphologic alterations using transmission electron microscopy (TEM), cytotoxicity, apoptotic cells induction, intracellular reactive oxygen species generation, glutathione reduction, TNF-α, IL-1β, and CINC-3 secretion in alveolar macrophages (NR8383) exposed to cement dust and clinker samples were determined. Particles were internalized into the cytoplasmic vacuoles, with cells exposed to U showing increased cell membrane blebbing. Also, NR8383 exposed to U show more significant ROS generation, apoptotic cells induction and decreased glutathione. Interleukin-1β and TNF-α secretion were significantly more in cells exposed to both cement dust samples compared with clinker, while CINC-3 secretion was significantly more in cells exposed to clinker (p < 0.05). Endocytosis, oxidative stress induced-apoptosis and induction of pro-inflammatory cytokines may be key mechanisms of cement dust immunotoxicity in the lung and toxicity may be factory dependent. PMID:24769344

  8. Effects of Omega-3-Rich Harp Seal Oil on the Production of Pro-Inflammatory Cytokines in Mouse Peritoneal Macrophages.

    PubMed

    Choi, Myungwon; Ju, Jaehyun; Suh, Jae Soo; Park, Kun-Young; Kim, Kwang Hyuk

    2015-06-01

    Omega-3, a polyunsaturated fatty acid, is an essential fatty acid necessary for human health, and it protects against cardiovascular disease, inflammation, autoimmune diseases, and cancer. In the present study, we investigated the effects of omega-3-rich harp seal oil (HSO) on the production of nitric oxide (NO) and cytokines, such as tumor necrosis factor (TNF)-α, interleukin-(IL)-1β, IL-6, and IL-12/IL-23 (p40) in peritoneal macrophages of mice. The culture supernatants of murine macrophages exposed to lipopolysaccharide (LPS), HSO, or HSO+LPS were harvested to assay IL-1β, TNF-α, IL-6, and IL-12/IL-23 (p40) cytokines and NO. TNF-α, IL-1 β, and IL-12/IL-23 (p40) levels, except IL-6, were lower in the culture supernatants of mouse peritoneal macrophages exposed to LPS plus HSO than those of the groups exposed to LPS alone. These observations demonstrate that omega-3-rich harp seal oil downregulates the production of the pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-12/IL-23 (p40). These results suggest that HSO could be potentially used as a preventive agent or as an adjunct in anti-inflammatory therapy, if more research results were accumulated. PMID:26175994

  9. Borrelia burgdorferi lipoprotein BmpA activates pro-inflammatory responses in human synovial cells through a protein moiety

    PubMed Central

    Yang, Xiuli; Izadi, Hooman; Coleman, Adam S.; Wang, Penghua; Ma, Yongsheng; Fikrig, Erol; Anguita, Juan; Pal, Utpal

    2008-01-01

    Borrelia burgdorferi invasion of mammalian joints results in genesis of Lyme arthritis. Other than spirochete lipids, existence of protein antigens, which are abundant in joints and participate in B. burgdorferi-induced host inflammatory response, is unknown. Here, we report that major products of the B. burgdorferi basic membrane protein (bmp) A/B operon that are induced in murine and human joints, possess inflammatory properties. Compared to the wild type B. burgdorferi, an isogenic bmpA/B mutant induced significantly lower levels of pro-inflammatory cytokines TNF-α and IL-1β in cultured human synovial cells, which could be restored using bmpA/B-complemented mutants, and more directly, upon addition of recombinant BmpA, but not BmpB or control spirochete proteins. Non-lipidated and lipidated versions of BmpA induced similar levels of cytokines, and remained unaffected by treatment with lipopolysaccharide inhibitor, polymyxin B. The bmpA/B mutant was also impaired in the induction of NF-κB and p38 MAP kinase signaling pathways in synovial cells, which were activated by non-lipidated BmpA. These results show that a protein moiety of BmpA can induce cytokine responses in synovial cells via activation of the NF-κB and p38 MAP kinase pathways and thus, could potentially contribute to the genesis of Lyme arthritis. PMID:18725314

  10. Pacific island ‘Awa (Kava) extracts, but not isolated kavalactones, promote pro-inflammatory responses in model mast cells

    PubMed Central

    Shimoda, Lori M.N.; Park, Christy; Stokes, Alexander J.; Gomes, Henry Halenani; Turner, Helen

    2013-01-01

    Kava (‘Awa) is a traditional water-based beverage in Pacific island communities, prepared from the ground root and stems of Piper methysticum. Kava use is associated with an ichthyotic dermatitis and delayed type hypersensitivity reactions. In the current study we collated preparative methodologies from cultural practitioners and recreational kava users in various Pacific communities. We standardized culturally-informed aqueous extraction methods and prepared extracts that were subjected to basic physicochemical analysis. Mast cells exposed to these extracts displayed robust intracellular free calcium responses, and concomitant release of pro-inflammatory mediators. In contrast, mast cells were refractory to single or combinatorial stimulation with kavalactones including methysticin, dihydromethysticin and kavain. Moreover, we reproduced a traditional modification of the kava preparation methodology, pre-mixing with the mucilage of Hibiscus taliaceus, and observed its potentiating effect on the activity of aqueous extracts in mast cells. Taken together, these data indicate that water extractable active ingredients may play a role in the physiological and pathophysiological effects of kava, and suggests that mast cell activation may be a mechanistic component of kava-related skin inflammations. PMID:22473598

  11. Limited value of pro-inflammatory oxylipins and cytokines as circulating biomarkers in endometriosis - a targeted 'omics study.

    PubMed

    Lee, Yie Hou; Cui, Liang; Fang, Jinling; Chern, Bernard Su Min; Tan, Heng Hao; Chan, Jerry K Y

    2016-01-01

    Endometriosis is a common, complex gynecologic disorder characterized by the presence of endometrial-like tissues at extrauterine sites. Elevation in protein and lipid mediators of inflammation including oxylipins and cytokines within the peritoneum characterize the inflamed pelvic region and may contribute to the survival and growth of displaced endometrial tissues. The presence of a clinically silent but molecularly detectable systemic inflammation in endometriosis has been proposed. Thus, we examined serum oxylipin and immunomodulatory protein levels in 103 women undergoing laparoscopy to evaluate systematically any involvement in systemic pathophysiological inflammation in endometriosis. Oxylipin levels were similar between women with and without endometriosis. Stratification by menstrual phase or severity did not offer any difference. Women with ovarian endometriosis had significantly lower 12-HETE relative to peritoneal endometriosis (-50.7%). Serum oxylipin levels were not associated with pre-operative pain symptoms. Changes to immunomodulatory proteins were minimal, with IL-12(p70), IL-13 and VEGF significantly lower in mild endometriotic women compared to non-endometriotic women (-39%, -54% and -76% respectively). Verification using C-reactive protein as a non-specific marker of inflammation further showed similar levels between groups. The implications of our work suggest pro-inflammatory mediators in the classes studied may have potentially limited value as circulating biomarkers for endometriosis, suggesting of potentially tenuous systemic inflammation in endometriosis. PMID:27193963

  12. Effects of Omega-3-Rich Harp Seal Oil on the Production of Pro-Inflammatory Cytokines in Mouse Peritoneal Macrophages

    PubMed Central

    Choi, Myungwon; Ju, Jaehyun; Suh, Jae Soo; Park, Kun-Young; Kim, Kwang Hyuk

    2015-01-01

    Omega-3, a polyunsaturated fatty acid, is an essential fatty acid necessary for human health, and it protects against cardiovascular disease, inflammation, autoimmune diseases, and cancer. In the present study, we investigated the effects of omega-3-rich harp seal oil (HSO) on the production of nitric oxide (NO) and cytokines, such as tumor necrosis factor (TNF)-α, interleukin-(IL)-1β, IL-6, and IL-12/IL-23 (p40) in peritoneal macrophages of mice. The culture supernatants of murine macrophages exposed to lipopolysaccharide (LPS), HSO, or HSO+LPS were harvested to assay IL-1β, TNF-α, IL-6, and IL-12/IL-23 (p40) cytokines and NO. TNF-α, IL-1 β, and IL-12/IL-23 (p40) levels, except IL-6, were lower in the culture supernatants of mouse peritoneal macrophages exposed to LPS plus HSO than those of the groups exposed to LPS alone. These observations demonstrate that omega-3-rich harp seal oil downregulates the production of the pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-12/IL-23 (p40). These results suggest that HSO could be potentially used as a preventive agent or as an adjunct in anti-inflammatory therapy, if more research results were accumulated. PMID:26175994

  13. Etiological treatment of Chagas disease patients with benznidazole lead to a sustained pro-inflammatory profile counterbalanced by modulatory events.

    PubMed

    Campi-Azevedo, A C; Gomes, J A S; Teixeira-Carvalho, A; Silveira-Lemos, D; Vitelli-Avelar, D M; Sathler-Avelar, R; Peruhype-Magalhães, V; Béla, S R; Silvestre, K F; Batista, M A; Schachnik, N C C; Correa-Oliveira, R; Eloi-Santos, S M; Martins-Filho, O A

    2015-05-01

    In the present study, we characterized the phagocytic capacity, cytokine profile along with the FCγ-R and TLR expression in leukocytes from Chagas disease patients (indeterminate-IND and cardiac-CARD) before and one-year after Bz-treatment (INDT and CARDT). A down-regulation of IL-17, IFN-γ and IL-10 synthesis by neutrophils was observed in CARDT. The Bz-treatment did not impact on the expression of phagocytosis-related surface molecules or monocyte-derived cytokine profile in INDT. Although CARDT showed unaltered monocyte-phagocytic capacity, up-regulated expression of Fcγ-RI/III and TLR-4 may be related to their ability to produce IL-10 and TGF-β. Down-regulation of lymphocyte-derived cytokine was observed in INDT whereas up-regulated cytokine profile was observed for lymphocytes in CARDT. Analysis of cytokine network revealed that IND displayed a multifaceted cytokine response characterized by strong connecting axes involving pro-inflammatory/regulatory phagocytes and lymphocytes. On the other hand, CARD presented a modest cytokine network. The Bz-treatment leads to distinct cytokine network: decreasing the links in INDT, with a pivotal role of IL-10(+) monocytes and expanding the connections in CARDT. Our findings highlighted that the Bz-treatment contributes to an overall immunomodulation in INDT and induces a broad change of immunological response in CARDT, eliciting an intricate phenotypic/functional network compatible with beneficial and protective immunological events. PMID:25648688

  14. Flagella from Five Cronobacter Species Induce Pro-Inflammatory Cytokines in Macrophage Derivatives from Human Monocytes

    PubMed Central

    Cruz-Córdova, Ariadnna; Rocha-Ramírez, Luz M.; Ochoa, Sara A.; Gónzalez-Pedrajo, Bertha; Espinosa, Norma; Eslava, Carlos; Hernández-Chiñas, Ulises; Mendoza-Hernández, Guillermo; Rodríguez-Leviz, Alejandra; Valencia-Mayoral, Pedro; Sadowinski-Pine, Stanislaw; Hernández-Castro, Rigoberto; Estrada-García, Iris; Muñoz-Hernández, Onofre; Rosas, Irma; Xicohtencatl-Cortes, Juan

    2012-01-01

    Cronobacter spp. are opportunistic pathogens linked to lie-threatening infections in neonates and contaminated powdered infant formula that has been epidemiologically associated with these cases. Clinical symptoms of Cronobacter include necrotizing enterocolitis, bacteremia, and meningitis. Flagella from C. sakazakii are involved in biofilm formation and its adhesion to epithelial cells. We investigated the role of flagella from C. sakazakii ST1 and ST4, C. malonaticus, C. muytjensii, C. turicensis and C. dublinensis during the activation of cytokines (IL-8, TNF-α, and IL-10) in macrophage derivatives from human monocytes, which has not been extensively studied. The production and identity of flagella from the five Cronobacter species were visualized and recognized with anti-flagella antibodies by immunogold labeling through transmission electron microscopy. Purified flagella were dissociated into monomers in 12% SDS-PAGE Coomassie blue-stained gels showing a band of ∼28 kDa and, in addition, mass spectrometry revealed the presence of several peptides that correspond to flagellin. Flagella (100 ng) induced the release of IL-8 (3314–6025 pg/ml), TNF-α (39–359 pg/ml), and IL-10 (2–96 pg/ml), in macrophage isolates from human monocytes and similar results were obtained when flagella were dissociated into monomers. Inhibition assays using three dilutions of anti-flagella antibodies (1∶10, 1∶100, and 1∶200) suppressed the secretion of IL-8, TNF-α, and IL-10 between 95–100% using 100 ng of protein. A transfection assay using 293-hTLR5 cells showed IL-8 release of 197 pg/ml and suppression in the secretion of IL-8 when anti-hTLR5-IgA antibodies were used at different concentrations. These observations suggest that flagella and flagellin are involved in an inflammatory response dependent on TLR5 recognition, which could contribute to the pathogenesis of the bacteria. PMID:23284883

  15. AUTOTAXIN DOWNREGULATES LPS – INDUCED MICROGLIA ACTIVATION AND PRO-INFLAMMATORY CYTOKINES PRODUCTION

    PubMed Central

    Awada, Rana; Saulnier-Blache, Jean Sébastien; Grès, Sandra; Bourdon, Emmanuel; Rondeau, Philippe; Parimisetty, Avinash; Orihuela, Ruben; Harry, G. Jean; d’Hellencourt, Christian Lefebvre

    2014-01-01

    Inflammation is essential in defense against infection or injury. It is tightly regulated, as over-response can be detrimental, especially in immune-privileged organs such as the central nervous system (CNS). Microglia constitutes the major source of inflammatory factors, but are also involved in the regulation of the inflammation and in the reparation. Autotaxin (ATX), a phospholipase D, converts lysophosphatidylcholine into lysophosphatidic acid (LPA) and is upregulated in several CNS injuries. LPA, a pleiotropic immunomodulatory factor, can induce multiple cellular processes including morphological changes, proliferation, death and survival. We investigated ATX effects on microglia inflammatory response to lipopolysaccharide (LPS), mimicking gram-negative infection. Murine BV-2 microglia and stable transfected, overexpressing ATX-BV-2 (A+) microglia were treated with LPS. Tumor necrosis factor α (TNFα), interleukin (IL)-6 and IL-10 mRNA and proteins levels were examined by qRT-PCR and ELISA, respectively. Secreted LPA was quantified by a radioenzymatic assay and microglial activation markers (CD11b, CD14, B7.1 and B7.2) were determined by flow cytometry. ATX expression and LPA production were significantly enhanced in LPS treated BV-2 cells. LPS induction of mRNA and protein level for TNFα and IL-6 were inhibited in A+ cells, while IL-10 was increased. CD11b, CD14, and B7.1 and B7.2 expressions were reduced in A+ cells. Our results strongly suggest deactivation of microglia and an IL-10 inhibitory of ATX with LPS induced microglia activation. PMID:25053164

  16. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers

    PubMed Central

    Aggarwal, Bharat B; Gupta, Subash C; Sung, Bokyung

    2013-01-01

    TNFs are major mediators of inflammation and inflammation-related diseases, hence, the United States Food and Drug Administration (FDA) has approved the use of blockers of the cytokine, TNF-α, for the treatment of osteoarthritis, inflammatory bowel disease, psoriasis and ankylosis. These drugs include the chimeric TNF antibody (infliximab), humanized TNF-α antibody (Humira) and soluble TNF receptor-II (Enbrel) and are associated with a total cumulative market value of more than $20 billion a year. As well as being expensive ($15 000–20 000 per person per year), these drugs have to be injected and have enough adverse effects to be given a black label warning by the FDA. In the current report, we describe an alternative, curcumin (diferuloylmethane), a component of turmeric (Curcuma longa) that is very inexpensive, orally bioavailable and highly safe in humans, yet can block TNF-α action and production in in vitro models, in animal models and in humans. In addition, we provide evidence for curcumin's activities against all of the diseases for which TNF blockers are currently being used. Mechanisms by which curcumin inhibits the production and the cell signalling pathways activated by this cytokine are also discussed. With health-care costs and safety being major issues today, this golden spice may help provide the solution. Linked Articles This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8 PMID:23425071

  17. Proteome Dynamics Reveals Pro-Inflammatory Remodeling of Plasma Proteome in a Mouse Model of NAFLD.

    PubMed

    Li, Ling; Bebek, Gurkan; Previs, Stephen F; Smith, Jonathan D; Sadygov, Rovshan G; McCullough, Arthur J; Willard, Belinda; Kasumov, Takhar

    2016-09-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with an increased risk of cardiovascular disease. Because the liver is the major source of circulatory proteins, it is not surprising that hepatic disease could lead to alterations in the plasma proteome, which are therein implicated in atherosclerosis. The current study used low-density lipoprotein receptor-deficient (LDLR(-/-)) mice to examine the impact of Western diet (WD)-induced NAFLD on plasma proteome homeostasis. Using a (2)H2O-metabolic labeling method, we found that a WD led to a proinflammatory distribution of circulatory proteins analyzed in apoB-depleted plasma, which was attributed to an increased production. The fractional turnover rates of short-lived proteins that are implicated in stress-response, lipid metabolism, and transport functions were significantly increased with WD (P < 0.05). Pathway analyses revealed that alterations in plasma proteome dynamics were related to the suppression of hepatic PPARα, which was confirmed based on reduced gene and protein expression of PPARα in mice fed a WD. These changes were associated with ∼4-fold increase (P < 0.0001) in the proinflammatory property of apoB-depleted plasma. In conclusion, the proteome dynamics method reveals proinflammatory remodeling of the plasma proteome relevant to liver disease. The approach used herein may provide a useful metric of in vivo liver function and better enable studies of novel therapies surrounding NAFLD and other diseases. PMID:27439437

  18. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β

    PubMed Central

    Kim, Jung-Eun; Phan, Thuy Xuan; Nguyen, Vu Hong; Dinh-Vu, Hong-Van; Zheng, Jin Hai; Yun, Misun; Park, Sung-Gyoo; Hong, Yeongjin; Choy, Hyon E.; Szardenings, Michael; Hwang, Won; Park, Jin-A; Park, SunHee; Im, Sin-Hyeog; Min, Jung-Joon

    2015-01-01

    Although strains of attenuated Salmonella typhimurium and wild-type Escherichia coli show similar tumor-targeting capacities, only S. typhimurium significantly suppresses tumor growth in mice. The aim of the present study was to examine bacteria-mediated immune responses by conducting comparative analyses of the cytokine profiles and immune cell populations within tumor tissues colonized by E. coli or attenuated Salmonellae. CT26 tumor-bearing mice were treated with two different bacterial strains: S. typhimurium defective in ppGpp synthesis (ΔppGpp Salmonellae) or wild-type E. coli MG1655. Cytokine profiles and immune cell populations in tumor tissue colonized by these two bacterial strains were examined at two time points based on the pattern of tumor growth after ΔppGpp Salmonellae treatment: 1) when tumor growth was suppressed ('suppression stage') and 2) when they began to re-grow ('re-growing stage'). The levels of IL-1β and TNF-α were markedly increased in tumors colonized by ΔppGpp Salmonellae. This increase was associated with tumor regression; the levels of both IL-1β and TNF-α returned to normal level when the tumors started to re-grow. To identify the immune cells primarily responsible for Salmonellae-mediated tumor suppression, we examined the major cell types that produce IL-1β and TNF-α. We found that macrophages and dendritic cells were the main producers of TNF-α and IL-1β. Inhibiting IL-1β production in Salmonellae-treated mice restored tumor growth, whereas tumor growth was suppressed for longer by local administration of recombinant IL-1β or TNF-α in conjunction with Salmonella therapy. These findings suggested that IL-1β and TNF-α play important roles in Salmonella-mediated cancer therapy. A better understanding of host immune responses in Salmonella therapy may increase the success of a given drug, particularly when various strategies are combined with bacteriotherapy. PMID:26516371

  19. Emerging concepts of how β-amyloid proteins and pro-inflammatory cytokines might collaborate to produce an 'Alzheimer brain' (Review).

    PubMed

    Dal Pra, Ilaria; Chiarini, Anna; Pacchiana, Raffaella; Chakravarthy, Balu; Whitfield, James F; Armato, Ubaldo

    2008-01-01

    Three steps lead to the development of full-blown sporadic or late-onset Alzheimer's disease or dementia (AD). In the young brain, amyloid β-(1-42) (Aβ 42) is a normal aggregation-prone protein product of neuronal activity that is kept at a safe low level by proteolysis in neurons and glial cells, and by expulsion across the blood-brain barrier. But clearance declines with advancing age. Step 1: Because of the normal decline with age of the Aβ 42-clearing mechanisms, toxic amyloid-derived diffusible ligands (ADDLs) made of dodecamers of the aggregation-prone Aβ 42 start accumulating. These Aβ 42 dodecamers selectively target the initially huge numbers of excitatory synapses of neurons and cause them to start slowly dropping, which increasingly impairs plasticity and sooner or later starts noticeably affecting memory formation. At a certain point, this increasing loss of synapses induces the neurons to redirect their still-expressed cell cycle proteins from post-mitotic jobs, such as maintaining synapses, to starting a cell cycle and partially or completely replicating DNA without entering mitosis. The resulting aneuploid or tetraploid neurons survive for as long as 6-12 months as quasi-functional 'undead zombies', with developing tangles of hyperphosphorylated τ protein disrupting the vital anterograde axonal transport of mitochondria and other synapse-vital components. Step 2: The hallmark AD plaques appear as Aβ 42 clearance continues to decline and the formation of Aβ 42 non-diffusible fibrils begins in the aging brain. Step 3: A terminal cytokine-driven maëlstrom begins in the aging brain when microglia, the brain's professional macrophages, are activated in and around the plaques. They produce pro-inflammatory cytokines, such as IFN-γ, IL-1β and TNF-α. One of these, IFN-γ, causes the astrocytes enwrapping the neuronal synapses to express their β-secretase (BACE1) genes and produce and release Aβ 42, which can kill the closely apposed neurons by

  20. Effect of oral administration involving a probiotic strain of Lactobacillus reuteri on pro-inflammatory cytokine response in patients with chronic periodontitis.

    PubMed

    Szkaradkiewicz, Anna K; Stopa, Janina; Karpiński, Tomasz M

    2014-12-01

    This study aimed at evaluation of pro-inflammatory cytokine response (TNF-α, IL-1β and IL-17) in patients with chronic periodontitis administered per os with a probiotic strain of Lactobacillus reuteri. In the 38 adult patients with moderate chronic periodontitis, professional cleaning of teeth was performed. Two weeks after performing the oral hygienization procedures, clinical examination permitted to distinguish a group of 24 patients (Group 1) in whom treatment with probiotic tablets containing L. reuteri strain, producing hydrogen peroxide (Prodentis), was conducted. In the remaining 14 patients, no probiotic tablet treatment was applied (the control group; Group 2). From all patients in two terms, gingival crevicular fluid (GCF) was sampled from all periodontal pockets. Estimation of TNF-α, IL-lβ and IL-17 in GCF was performed using the ELISA method. After completion of the therapy with probiotic tablets, 18 (75%) of the patients of Group 1 have manifested a significant decrease in levels of studied pro-inflammatory cytokines (TNF-α, IL-1β and IL-17). In parallel, we have detected an improvement of clinical indices [sulcus bleeding index (SBI), periodontal probing depth (PPD), clinical attachment level (CAL)]. At individuals of Group 2 levels of studies, pro-inflammatory cytokines and clinical indices (SBI, PPD, CAL) were significantly higher than in Group 1. Results obtained in this study indicate that application of oral treatment with tablets containing probiotic strain of L. reuteri induces in most patients with chronic periodontitis a significant reduction of pro-inflammatory cytokine response and improvement of clinical parameters (SBI, PPD, CAL). Therefore, such an effect may result in a reduced activity of the morbid process. PMID:24509697

  1. Comparison of pro-inflammatory cytokines and bone metabolism mediators around titanium and zirconia dental implant abutments following a minimum of six months of clinical function

    PubMed Central

    Barwacz, Christopher A.; Brogden, Kim A.; Stanford, Clark M.; Dawson, Deborah V.; Recker, Erica N.; Blanchette, Derek

    2014-01-01

    Objectives Dental implant abutments are fundamental prosthetic components within dentistry that require optimal biocompatibility. The primary aim of this cross-sectional study was to preliminarily assess differences in the pro-inflammatory cytokine and bone metabolism mediator protein expression in the peri-implant crevicular fluid adjacent to transmucosal abutments. Material and Methods Abutments were fabricated from either titanium or zirconia in patients previously receiving single-tooth implant therapy. All subjects sampled in this study had an identical implant system and implant-abutment connection. Participants (n=46) had an average time of clinical function for 22 months (6.2–72.8 months, ±SD 17.0 months) and received a clinical and radiographic exam of the implant site at the time of peri-implant crevicular fluid (PICF) sampling using a paper strip-based sampling technique. Cytokine, chemokine, and bone metabolism mediator quantities (picograms/30 s) were determined using a commercial 22-multiplexed fluorescent bead-based immunoassay instrument. A total of 19 pro-inflammatory cytokines and 7 bone metabolism mediators were evaluated. Results Multivariable analyses provided no evidence of a group (titanium or zirconia), gender, or age effect with regard to the expression of pro-inflammatory mediators evaluated. Significant (p=0.022) differences were observed for the bone-mediator leptin, with titanium abutments demonstrating significantly elevated levels in comparison to zirconia. Osteopontin demonstrated a significant (p=0.0044) correlation with age of the subjects. Conclusions No significant differences in pro-inflammatory cytokine or bone metabolism mediator profiles were observed biochemically, with the exception of leptin, for the abutment biomaterials of titanium or zirconia The molecular PICF findings support the observed clinical biocompatibility of both titanium and zirconia abutments. PMID:24417614

  2. CHI3L1 plays a role in cancer through enhanced production of pro-inflammatory/pro-tumorigenic and angiogenic factors.

    PubMed

    Libreros, Stephania; Garcia-Areas, Ramon; Iragavarapu-Charyulu, Vijaya

    2013-12-01

    Elevated serum levels of a glycoprotein known as chitinase-3-like protein 1 (CHI3L1) have been correlated with poor prognosis and shorter survival of patients with cancer and inflammatory diseases. The biological and physiological functions of CHI3L1 in cancer have not yet been completely elucidated. In this review, we describe the role of CHI3L1 in inducing pro-inflammatory/pro-tumorigenic and angiogenic factors that could promote tumor growth and metastasis. PMID:24222276

  3. TAM receptor-dependent regulation of SOCS3 and MAPKs contributes to pro-inflammatory cytokine downregulation following chronic NOD2 stimulation of human macrophages1

    PubMed Central

    Zheng, Shasha; Hedl, Matija; Abraham, Clara

    2014-01-01

    Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of NOD2, the Crohn’s disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor (PRR) stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl and Mer (TAM) receptors in regulating chronic PRR stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and pro-inflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGFβ-dependent TAM upregulation in human macrophages, which in turn, upregulated SOCS3 expression. Restoring SOCS3 expression under TAM knockdown conditions restored chronic NOD2-mediated pro-inflammatory cytokine downregulation. In contrast to the upregulated pro-inflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, MAFK and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for downregulating pro-inflammatory cytokines under the chronic NOD2 stimulation conditions observed in the intestinal environment. PMID:25567680

  4. Effect of Yoga Module on Pro-Inflammatory and Anti-Inflammatory Cytokines in Industrial Workers of Lonavla: A Randomized Controlled Trial

    PubMed Central

    Rajbhoj, Pratibha Hemant; Verma, Anita; Bhogal, Ranjit Singh

    2015-01-01

    Introduction: Inflammatory markers play a very important role in body’s defense mechanism. Pro-inflammatory markers and anti-inflammatory markers counterbalance each other. It is extremely essential for the body to maintain their balance for a good immune response. Objectives: To study the effect of yoga practices on selected pro-inflammatory and anti-inflammatory cytokine among industrial workers. Materials and Methods: Forty eight male study participants, aged 30-58 years, were randomly divided into experimental (n=24) & control (n=24) groups. Pro-inflammatory cytokine IL-1β and anti-inflammatory cytokine IL-10 were evaluated at the baseline and at the end of 12 wk of yoga training in both the groups. During the experimental study, all the study participants continued with their daily lifestyle and diet. Data were analysed using paired t-test and independent t-test. Results: The result of within group comparison revealed that the yoga group showed a significant decrease in IL-1 β while significant increase in IL-10 (p < 0.05), whereas the control group revealed no change in IL-1 β (p > 0.05) and IL-10 (p > 0.05). Further, the results between the groups confirmed that the yoga group had significantly lower level of IL-1 β and increase in IL-10 as compared to control group (p < 0.05). Conclusion: The present study has demonstrated that yoga practices could reduce pro-inflammatory cytokine and increase anti-inflammatory cytokine in industrial workers. PMID:25859450

  5. Role of Pro-Inflammatory Cytokines and Biochemical Markers in the Pathogenesis of Type 1 Diabetes: Correlation with Age and Glycemic Condition in Diabetic Human Subjects

    PubMed Central

    Zubair, Swaleha; Ajmal, Mohd; Siddiqui, Sheelu Shafiq; Moin, Shagufta; Owais, Mohammad

    2016-01-01

    Background Type 1 diabetes mellitus is a chronic inflammatory disease involving insulin producing β-cells destroyed by the conjoined action of auto reactive T-cells, inflammatory cytokines and monocytic cells. The aim of this study was to elucidate the status of pro-inflammatory cytokines and biochemical markers and possible correlation of these factors towards outcome of the disease. Methods The study was carried out on 29 T1D subjects and 20 healthy subjects. Plasma levels of oxidative stress markers, enzymatic and non-enzymatic antioxidants were estimated employing biochemical assays. The levels of pro-inflammatory cytokines such as by IL-1β & IL-17 in the serum were determined by ELISA, while the expression of TNF-α, IL-23 & IFN-γ was ascertained by qRT-PCR. Results The onset of T1D disease was accompanied with elevation in levels of Plasma malondialdehyde, protein carbonyl content and nitric oxide while plasma vitamin C, reduced glutathione and erythrocyte sulfhydryl groups were found to be significantly decreased in T1D patients as compared to healthy control subjects. Activity of antioxidant enzymes, superoxide dismutase, catalase, glutathione reductase and glutathione-s-transferase showed a significant suppression in the erythrocytes of T1D patients as compared to healthy subjects. Nevertheless, the levels of pro-inflammatory cytokines IL-1β and IL-17A were significantly augmented (***p≤.001) on one hand, while expression of T cell based cytokines IFN-γ, TNF-α and IL-23 was also up-regulated (*p≤.05) as compared to healthy human subjects. Conclusion The level of pro-inflammatory cytokines and specific biochemical markers in the serum of the patient can be exploited as potential markers for type 1 diabetes pathogenesis. The study suggests that level of inflammatory markers is up-regulated in T1D patients in an age dependent manner. PMID:27575603

  6. Ozone oxidative postconditioning ameliorates joint damage and decreases pro-inflammatory cytokine levels and oxidative stress in PG/PS-induced arthritis in rats.

    PubMed

    Vaillant, Jaqueline Dranguet; Fraga, Angela; Díaz, María Teresa; Mallok, A; Viebahn-Hänsler, Renate; Fahmy, Ziad; Barberá, Ariana; Delgado, Liván; Menéndez, Silvia; Fernández, Olga Sonia León

    2013-08-15

    Rheumatoid Arthritis (RA) is the most prevalent chronic condition present in ~1% of the adult population. Many pro-inflammatory mediators are increased in RA, including Reactive Oxygen Species such as nitric oxide NO, pro-inflammatory cytokines as tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β) and other molecules. Ozone oxidative postconditioning has regulatory effects on some pathological targets associated with RA. Thus, the aim of this study was to investigate the efficacy of ozone therapy in PG/PS-induced arthritis in rats in point of joints inflammation and morphology. Moreover, cytokines, nitric oxide and oxidative stress levels in spleen homogenates were evaluated. Ozone treatment ameliorated joint damage, reduced TNF-α concentrations as well as TNF-α and IL-1β mRNA levels. Besides, cellular redox balance, nitric oxide and fructolysine levels were reestablished after ozone oxidative postconditioning. It was concluded that pleiotropic ozone's effects clarify its therapeutic efficacy in RA. Decreasing inflammation and joint injury, reduction of pro-inflammatory cytokines, TNF-α and IL-1β transcripts and re-establishment of cellular redox balance after ozone treatment were demonstrated. PMID:23911887

  7. Suppression of wear-particle-induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: a preliminary report.

    PubMed

    Lin, Tzu-Hua; Yao, Zhenyu; Sato, Taishi; Keeney, Michael; Li, Chenguang; Pajarinen, Jukka; Yang, Fan; Egashira, Kensuke; Goodman, Stuart B

    2014-08-01

    Total joint replacement (TJR) is very cost-effective surgery for end-stage arthritis. One important goal is to decrease the revision rate, mainly because TJR has been extended to younger patients. Continuous production of ultra-high molecular weight polyethylene (UHMWPE) wear particles induces macrophage infiltration and chronic inflammation, which can lead to periprosthetic osteolysis. Targeting individual pro-inflammatory cytokines directly has not reversed the osteolytic process in clinical trials, owing to compensatory up-regulation of other pro-inflammatory factors. It is hypothesized that targeting the important transcription factor NF-κB could mitigate the inflammatory response to wear particles, potentially diminishing osteolysis. In the current study, NF-κB activity in mouse RAW 264.7 and human THP1 macrophage cell lines, as well as primary mouse and human macrophages, was suppressed via competitive binding with double strand decoy oligodeoxynucleotide (ODN) containing an NF-κB binding element. It was found that macrophage exposure to UHMWPE particles induced multiple pro-inflammatory cytokine and chemokine expression, including TNF-α, MCP1, MIP1α and others. Importantly, the decoy ODN significantly suppressed the induced cytokine and chemokine expression in both murine and human macrophages, and resulted in suppression of macrophage recruitment. The strategic use of decoy NF-κB ODN, delivered locally, could potentially diminish particle-induced periprosthetic osteolysis. PMID:24814879

  8. Pro-inflammatory T-Lymphocytes rapidly infiltrate into the brain and contribute to neuronal injury following cardiac arrest and cardiopulmonary resuscitation

    PubMed Central

    Deng, Guiying; Carter, Jessica; Traystman, Richard J.; Wagner, David H.; Herson, Paco S.

    2014-01-01

    Although inflammatory mechanisms have been linked to neuronal injury following global cerebral ischemia, the presence of infiltrating peripheral immune cells remains understudied. We performed flow cytometry of single cell suspensions obtained from the brains of mice at varying time points after global cerebral ischemia induced by cardiac arrest and cardiopulmonary resuscitation (CA/CPR) to characterize the influx in lymphocytes into the injured brain. We observed that CA/CPR caused a large influx of lymphocytes within 3 hours of resuscitation that was maintained for the 3 day duration of our experiments. Using cell staining flow cytometry we observed that the large majority of infiltrating lymphocytes were CD4+ T cells. Intracellular stains revealed a large proportion of pro-inflammatory T cells expressing either TNFα or INFγ. Importantly, the lack of functional T cells in TCRα knockout mice reduced neuronal injury following CA/CPR, implicating pro-inflammatory T cells in the progression of ischemic neuronal injury. Finally, we made the remarkable observation that the novel CD4+CD40+ (Th40) population of pro-inflammatory T cells that are strongly associated with autoimmunity are present in large numbers in the injured brain. These data indicate that studies investigating the neuro-immune response after global cerebral ischemia should consider the role of infiltrating T cells in orchestrating the acute and sustained immune response. PMID:25084739

  9. High-fat diet feeding induces a depot-dependent response on the pro-inflammatory state and mitochondrial function of gonadal white adipose tissue.

    PubMed

    Amengual-Cladera, E; Lladó, I; Proenza, A M; Gianotti, M

    2013-02-14

    Obesity has been related to a chronic pro-inflammatory state affecting white adipose tissue (WAT), which has a great impact on carbohydrate, lipid and energy metabolism. In turn, the dysregulation of adipokine secretion derived from the accumulation of excess lipids in adipocytes further contributes to the development of insulin resistance and can be associated with mitochondrial dysfunction. The aim of the present study was to determine whether sexual dimorphism found in the systemic insulin sensitivity profile is related to sex differences in a high-fat diet (HFD) response of gonadal WAT at mitochondrial function and inflammatory profile levels. Wistar rats (10 weeks old) of both sexes were fed a control pelleted diet (3 % (w/w) fat; n 8 for each sex) or a HFD (24 % (w/w) fat; n 8 for each sex). Serum insulin sensitivity markers, mRNA expression levels of inflammatory factors and the protein content of insulin and adiponectin signalling pathways were analysed, as well as the levels of the main markers of mitochondrial biogenesis, antioxidant defence and oxidative damage. In the present study, the periovarian depot exhibits a greater expandability capacity, along with a lower hypoxic and pro-inflammatory state, without signs of mitochondrial dysfunction or changes in its dynamics. In contrast, epididymal fat has a much more pronounced pro-inflammatory, hypoxic and insulin-resistant profile accompanied by changes in mitochondrial dynamics, probably associated with HFD-induced mitochondrial dysfunction. Thus, this explains the worse serum insulin sensitivity profile of male rats. PMID:22717037

  10. Differential regulation of nitric oxide synthase mRNA expression by lipopolysaccharide and pro-inflammatory cytokines in fetal hepatocytes treated with cycloheximide.

    PubMed Central

    Casado, M; Díaz-Guerra, M J; Boscá, L; Martín-Sanz, P

    1997-01-01

    The effect of cycloheximide (CHX) on the mRNA expression of the cytokine-inducible, calcium-independent nitric oxide synthase (iNOS) was investigated in fetal hepatocytes stimulated with lipopolysaccharide (LPS) or pro-inflammatory cytokines. In the presence of CHX the LPS-dependent iNOS mRNA levels were reduced, whereas the response to pro-inflammatory cytokines was enhanced. Because iNOS transcription is highly dependent on the activation of nuclear factor kappaB (NF-kappaB), this factor was evaluated by electrophoretic mobility shift assays, and a close correlation between NF-kappaB activity and iNOS mRNA levels was observed. CHX itself potentiated the degradation of the IkappaB alpha and IkappaB beta inhibitory subunits (IkappaB is inhibitory kappaB) of the NF-kappaB complex, and therefore the loss of LPS-dependent iNOS mRNA expression cannot be attributed to a blockage in the activation of NF-kappaB. These results suggest the existence of a CHX-sensitive pathway in the expression of iNOS mediated by LPS, a mechanism that is not involved in the response to pro-inflammatory cytokines. PMID:9581561

  11. Pro-inflammatory cytokine dysregulation is associated with novel avian influenza A (H7N9) virus in primary human macrophages.

    PubMed

    Zhao, Chihao; Qi, Xian; Ding, Meng; Sun, Xinlei; Zhou, Zhen; Zhang, Shuo; Zen, Ke; Li, Xihan

    2016-02-01

    Since March 2013, more than 500 laboratory-confirmed human H7N9 influenza A virus infection cases have been recorded, with a case fatality rate of more than 30%. Clinical research has shown that cytokine and chemokine dysregulation contributes to the pathogenicity of the H7N9 virus. Here, we investigated cytokine profiles in primary human macrophages infected with the novel H7N9 virus, using cytokine antibody arrays. The levels of several pro-inflammatory cytokines, particularly TNF-α, were increased in H7N9-infected macrophages. Induction of the transcriptional and translational levels of the pro-inflammatory cytokines by H7N9 virus seemed to be intermediate between those induced by highly pathogenic avian H5N1 and pandemic human H1N1 viruses, which were detected by ELISA and real-time quantitative PCR, respectively. Additionally, compared with H5N1, the upregulation of pro-inflammatory cytokines caused by H7N9 infection occurred rapidly but mildly. Our results identified the overall profiles of cytokine and chemokine induction by the H7N9 influenza virus in an in vitro cell-culture model, and could provide potential therapeutic targets for the control of severe human H7N9 disease. PMID:26644088

  12. LIGHT is involved in the pathogenesis of rheumatoid arthritis by inducing the expression of pro-inflammatory cytokines and MMP-9 in macrophages

    PubMed Central

    Kim, Won-Jung; Kang, Yoon-Joong; Koh, Eun-Mi; Ahn, Kwang-Sung; Cha, Hoon-Suk; Lee, Won-Ha

    2005-01-01

    Macrophages play a crucial role in the perpetuation of inflammation and irreversible cartilage damage during the development of rheumatoid arthritis (RA). LIGHT (TNFSF14) and its receptor TR2 (TNFRSF14) are known to have pro-inflammatory activities in foam cells of atherosclerotic plaques. We tested a hypothesis that LIGHT and TR2 are involved in activation of monocyte/macrophages in RA synovium. Immunohistochemical analysis of RA synovial tissue samples revealed that both LIGHT and TR2 are expressed in CD68 positive macrophages. In contrast, synovial tissue samples from osteoarthritis (OA) patients failed to reveal the expression of LIGHT. Expression of TR2 in RA synovial macrophages was also detected using flow cytometry analysis. To identify the role of LIGHT in the functioning of macrophages in RA, we isolated macrophage enriched cells from RA synovial fluid and stimulated them with LIGHT. LIGHT induced expression of matrix metalloproteinase-9 and pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8. These data indicate that LIGHT and TR2 expressed in macrophages are involved in the pathogenesis of RA by inducing the expression pro-inflammatory cytokines and matrix degrading enzymes. PMID:15667572

  13. Effects of an intravitreal injection of interleukin-35-expressing plasmid on pro-inflammatory and anti-inflammatory cytokines

    PubMed Central

    Hou, Chao; Wu, Qianni; Ouyang, Chen; Huang, Ting

    2016-01-01

    In order to explore the potential effects of interleukin (IL)-35 on IL-10, transforming growth factor-β (TGF-β), interferon-γ (INF)-γ, IL-12 and IL-17, a pcDNA3.1-IL-35 plasmid was injected into the vitreous cavity of BALB/c mice. Enzyme-linked immunosorbent assay, western blot analysis and quantitative PCR analysis were performed to confirm the successful expression of IL-35. Slit-lamp biomicroscopy, hematoxylin and eosin staining and immunofluorescence were employed to detect the status of eyes, and western blot analysis was performed to examine the expression of corneal graft rejection-related cytokines. There were no abnormalities in the eyes pre-mydriasis or post-mydriasis and no injuries to the cornea or retina following the injection of IL-35-expressing plasmid. An immunofluorescence assay detected the positive expression of IL-35 in corneal epithelial cells from IL-35-injected mice and negative staining in the control group. Further study revealed that IL-35 enhanced the expression of IL-10 and TGF-β which reached their highest levels at 1 and 2 weeks after injection, respectively (p<0.01). Moreover, the expression of INF-γ and IL-12 was decreased significantly at 2 weeks after the injection of IL-35-expressing plasmid (p<0.05), and the expression of IL-17 was suppressed notably at 4 weeks after the injection (p<0.05). The intravitreal injection of IL-35-expressing plasmid in mice downregulates the expression of pro-inflammatory cytokines and upregulates the expression of anti-inflammatory cytokines. Thus, IL-35 may further be assessed as a potential target for the treatment of corneal graft rejection. PMID:27460435

  14. Effects of an intravitreal injection of interleukin-35-expressing plasmid on pro-inflammatory and anti-inflammatory cytokines.

    PubMed

    Hou, Chao; Wu, Qianni; Ouyang, Chen; Huang, Ting

    2016-09-01

    In order to explore the potential effects of interleukin (IL)-35 on IL-10, transforming growth factor-β (TGF-β), interferon-γ (INF)-γ, IL-12 and IL-17, a pcDNA3.1‑IL-35 plasmid was injected into the vitreous cavity of BALB/c mice. Enzyme-linked immunosorbent assay, western blot analysis and quantitative PCR analysis were performed to confirm the successful expression of IL-35. Slit-lamp biomicroscopy, hematoxylin and eosin staining and immunofluorescence were employed to detect the status of eyes, and western blot analysis was performed to examine the expression of corneal graft rejection-related cytokines. There were no abnormalities in the eyes pre-mydriasis or post-mydriasis and no injuries to the cornea or retina following the injection of IL-35-expressing plasmid. An immunofluorescence assay detected the positive expression of IL-35 in corneal epithelial cells from IL-35‑injected mice and negative staining in the control group. Further study revealed that IL-35 enhanced the expression of IL-10 and TGF-β which reached their highest levels at 1 and 2 weeks after injection, respectively (p<0.01). Moreover, the expression of INF-γ and IL-12 was decreased significantly at 2 weeks after the injection of IL-35-expressing plasmid (p<0.05), and the expression of IL-17 was suppressed notably at 4 weeks after the injection (p<0.05). The intravitreal injection of IL-35-expressing plasmid in mice downregulates the expression of pro-inflammatory cytokines and upregulates the expression of anti-inflammatory cytokines. Thus, IL-35 may further be assessed as a potential target for the treatment of corneal graft rejection. PMID:27460435

  15. Methamphetamine decreases CD4 T cell frequency and alters pro-inflammatory cytokine production in a model of drug abuse.

    PubMed

    Mata, Mariana M; Napier, T Celeste; Graves, Steven M; Mahmood, Fareeha; Raeisi, Shohreh; Baum, Linda L

    2015-04-01

    The reason co-morbid methamphetamine use and HIV infection lead to more rapid progression to AIDS is unclear. We used a model of methamphetamine self-administration to measure the effect of methamphetamine on the systemic immune system to better understand the co-morbidity of methamphetamine and HIV. Catheters were implanted into the jugular veins of male, Sprague Dawley rats so they could self-administer methamphetamine (n=18) or be given saline (control; n=16) for 14 days. One day after the last operant session, blood and spleens were collected. We measured serum levels of pro-inflammatory cytokines, intracellular IFN-γ and TNF-α, and frequencies of CD4(+), CD8(+), CD200(+) and CD11b/c(+) lymphocytes in the spleen. Rats that self-administered methamphetamine had a lower frequency of CD4(+) T cells, but more of these cells produced IFN-γ. Methamphetamine did not alter the frequency of TNF-α-producing CD4(+) T cells. Methamphetamine using rats had a higher frequency of CD8(+) T cells, but fewer of them produced TNF-α. CD11b/c and CD200 expression were unchanged. Serum cytokine levels of IFN-γ, TNF-α and IL-6 in methamphetamine rats were unchanged. Methamphetamine lifetime dose inversely correlated with serum TNF-α levels. Our data suggest that methamphetamine abuse may exacerbate HIV disease progression by activating CD4 T cells, making them more susceptible to HIV infection, and contributing to their premature demise. Methamphetamine may also increase susceptibility to HIV infection, explaining why men who have sex with men (MSM) and frequently use methamphetamine are at the highest risk of HIV infection. PMID:25678251

  16. Protein corona formation in bronchoalveolar fluid enhances diesel exhaust nanoparticle uptake and pro-inflammatory responses in macrophages.

    PubMed

    Shaw, Catherine A; Mortimer, Gysell M; Deng, Zhou J; Carter, Edwin S; Connell, Shea P; Miller, Mark R; Duffin, Rodger; Newby, David E; Hadoke, Patrick W F; Minchin, Rodney F

    2016-09-01

    In biological fluids nanoparticles bind a range of molecules, particularly proteins, on their surface. The resulting protein corona influences biological activity and fate of nanoparticle in vivo. Corona composition is often determined by the biological milieu encountered at the entry portal into the body, and, can therefore, depend on the route of exposure to the nanoparticle. For environmental nanoparticles where exposure is by inhalation, this will be lung lining fluid. This study examined plasma and bronchoalveolar fluid (BALF) protein binding to engineered and environmental nanoparticles. We hypothesized that protein corona on nanoparticles would influence nanoparticle uptake and subsequent pro-inflammatory biological response in macrophages. All nanoparticles bound plasma and BALF proteins, but the profile of bound proteins varied between nanoparticles. Focusing on diesel exhaust nanoparticles (DENP), we identified proteins bound from plasma to include fibrinogen, and those bound from BALF to include albumin and surfactant proteins A and D. The presence on DENP of a plasma-derived corona or one of purified fibrinogen failed to evoke an inflammatory response in macrophages. However, coronae formed in BALF increased DENP uptake into macrophages two fold, and increased nanoparticulate carbon black (NanoCB) uptake fivefold. Furthermore, a BALF-derived corona increased IL-8 release from macrophages in response to DENP from 1720 ± 850 pg/mL to 5560 ± 1380 pg/mL (p = 0.014). These results demonstrate that the unique protein corona formed on nanoparticles plays an important role in determining biological reactivity and fate of nanoparticle in vivo. Importantly, these findings have implications for the mechanism of detrimental properties of environmental nanoparticles since the principle route of exposure to such particles is via the lung. PMID:27027807

  17. Physiological regulation of pro-inflammatory cytokines expression in rat cardiovascular tissues by sympathetic nervous system and angiotensin II.

    PubMed

    Dab, Houcine; Hachani, Rafik; Sakly, Mohsen; Bricca, Giampiero; Kacem, Kamel

    2013-12-01

    Pro-inflammatory cytokines regulation by sympathetic nervous system (SNS) and angiotensin II (ANG II) was widely described in cardiovascular system, but the role of such neuro-humoral interaction needs further investigation in this context. We tested SNS-ANG II interaction on IL-6 and TNF-α mRNA expression in left ventricle and aorta from normotensive rats by sympathectomy with guanethidine and blockade of the ANG II AT1 receptors (AT1R) antagonist with losartan. mRNA synthesis of IL-6 and TNF-α were performed by Q-RT-PCR. In the left ventricle, IL-6 mRNA increased by 63% (p < 0.01) after sympathectomy, still unchanged after losartan treatment and decreased by 38% (p < 0.05) after combined treatment. TNF-α mRNA decreased by 44% (p < 0.01), only after combined treatment. In the aorta, IL-6 mRNA increased equally by 65% (p < 0.05) after sympathectomy or losartan treatment. TNF-α mRNA decreased by 28, 41, and 42% (p < 0.05) after sympathectomy, losartan and combined treatments, respectively. Our data suggest that ANG II stimulates directly (via AT1R) and indirectly (via SNS) IL-6 mRNA synthesis in left ventricle and aorta and TNF-α mRNA in left ventricle. ANG II seems unable to influence directly TNF-α mRNA synthesis in the aorta but can stimulate this cytokine via SNS. The results are relevant to prevent or reduce proinflammatory cytokines overexpression seen in cardiovascular diseases. PMID:23846262

  18. Immunomodulatory impression of anti and pro-inflammatory cytokines in relation to humoral immunity in human scabies.

    PubMed

    Abd El-Aal, Amany Ahmed; Hassan, Marwa Adel; Gawdat, Heba Ismail; Ali, Meran Ahmed; Barakat, Manal

    2016-06-01

    The chief manifestations of scabies are mediated through hypersensitivity-like reactions and immune responses which are so far not well understood and remain poorly characterized. The aim of this study is to investigate the role of inflammatory cytokines in relation to humoral immunity in patients with scabies. Serum levels of total IgE, specific IgG, IL-10, IL-6, INF-γ, and TNF-α were investigated in a cross-sectional study including 37 patients with manifestations suggestive of scabies and serologically positive for anti-Sarcoptes IgG, in addition to 20 healthy controls. The median value of total IgE was 209 (range, 17-1219 IU/mL), reflecting its wide range within cases. IL-10 showed significant higher levels (287 ±: 139) in cases than in controls (17.4 ± 11.32). A positive correlation was reported between total IgE and severity of manifestations (r = 0.429, P <0.005). A significant positive correlation was observed between total IgE and both IgG and IL-6. On the contrary, a negative correlation was recorded between IL-6 and TNF-α which makes us suggested anti-inflammatory rather than pro-inflammatory effect of IL-6. Moreover, a negative correlation was noticed between the anti-inflammatory cytokine IL-10 and severity of manifestations, specific IgG, total IgE, and INF-γ. Therefore, the current study theorized a regulatory role of IL-10 in inflammatory responses of scabietic patients suggesting further future analysis of its therapeutic potential. PMID:26813861

  19. Investigation of selected biochemical indicators of Equine Rhabdomyolysis in Arabian horses: pro-inflammatory cytokines and oxidative stress markers.

    PubMed

    El-Deeb, Wael Mohamed; El-Bahr, Sabry M

    2010-12-01

    A total of 30 horses were divided into two groups, one served as a control whereas other was rhabdomyolysis diseased horses. After blood collection, the resulted sera were used for estimation of the activities of creatin kinase (CK), aspartate transaminase (AST), lactate dehydrogenase (LDH), lactic acid, triacylglycerol (TAG), glucose, total protein, albumin, globulin, urea, creatinine, Triiodothyronine (T(3)), calcium, sodium, potassium, phosphorus, chloride, vitamin E, interleukin-6 (IL-6) and tumor necrosis-α (TNF-α). In addition, whole blood was used for determination of selenium, reduced glutathione (G-SH) and prostaglandin F2-α (PGF2α). The erythrocyte hemolysates were used for the determination of the activities of super oxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), nitric oxide (NO) and malondialdehyde (MDA). The present findings revealed a significant (p ≤ 0.05) increase in the values of CK, AST, LDH, glucose, lactate, TAG, urea, creatinine, phosphorus, MDA, TNF- α, IL6 and PGF2- α in diseased horses when compared with the control. Furthermore, the values of calcium, SOD, CAT, TAC, NO and GSH in diseased horses were significantly (p ≤ 0.05) lower than the control. The other examined parameters were not statistically significant. In conclusion, the examined pro-inflammatory cytokines were useful biomarkers for the diagnosis of Equine rhabdomyolysis (ER) in Arabian horses beside the old examined biomarkers. In the future, efforts should be made to confirm this in other breed. If this could be achieved, it would open up new perspectives in research fields dealing with ER. PMID:20830520

  20. Induction of pro-inflammatory response of the placental trophoblast by Plasmodium falciparum infected erythrocytes and TNF

    PubMed Central

    2013-01-01

    Background Plasmodium falciparum placental malaria is characterized by the sequestration of infected erythrocytes (IEs) in the placental intervillous space via adherence to chondroitin sulphate A (CSA), production of inflammatory molecules, and leukocytes infiltration. Previous reports suggest that the syncytiotrophoblast (ST) immunologically responds to IEs contact. This study explores the inflammatory response induced in BeWo cells by adherence of IEs and TNFstimulation. Methods A non-syncitialized BeWo cells (trophoblast model) were used to evaluate its response to CSA-adherents IEs (FCB1csa, FCB2csa, FCR3csa, 3D7csa) and TNF stimulation. Expression of membrane ICAM-1 (mICAM-1) receptor in BeWo cells was quantified by flow cytometry and the IL-8, IL-6 and soluble ICAM-1 (sICAM-1) concentrations were quantified by enzyme-linked immunosorbentassay (ELISA) in BeWo stimulated supernatants. Results BeWo cells stimulated with TNF and CSA-adherents IEs of FCB1csa and 3D7csa (strains with higher adhesion) increase the expression of ICAM-1 on the surface of cells and the secretion of immune factors IL-8, IL-6 and sICAM-1. This inflammatory response appears to be related to the level of adherence of IEs because less adherent strains do not induce significant changes. Conclusions It was found that BeWo cells responds to CSA-IEs and to TNF favouring a placental pro-inflammatory environment, evidenced by increases in the expression of membrane mICAM-1 and release of soluble ICAM-1, as well as the IL-8 and IL-6 secretion. The expression of ICAM-1 in BeWo cells might be associated to an increase in leukocyte adhesion to the trophoblast barrier, promoting greater inflammation, while the sICAM-1 release could be a protection mechanism activated by trophoblastic cells, in order to regulate the local inflammatory response. PMID:24237643

  1. Molecular Characterization of Pro-Inflammatory Cytokines Interleukin-1β and Interleukin-8 in Asian Elephant (Elephas maximus).

    PubMed

    Swami, Shelesh Kumar; Vijay, Anushri; Nagarajan, Govindasamy; Kaur, Ramneek; Srivastava, Meera

    2016-01-01

    Interleukin (IL)-1β and IL-8 are pro-inflammatory cytokines produced primarily by monocytes and macrophages in response to a variety of microbial and nonmicrobial agents. As yet, no molecular data have been reported for IL-1β and IL-8 of the Asian elephant. In the present study, we have cloned and sequenced the cDNA encoding IL-1β and IL-8 of the Asian elephant. The open reading frame (ORF) of Asian elephant IL-1β is 789 bp in length, encoded a propeptide of 263 amino acid polypeptide. The predicted protein revealed the presence of IL-1 family signature motif and an ICE cut site. Whereas, IL-8 contained 321 bp of open reading frame. Interestingly, the predicted protein sequence of 106 aa, contains an ELR motif immediately upstream of the CQC residues, common in all vertebrate IL-8 molecules. Identity levels of the nucleic acid and deduced amino acid sequences of Asian elephant IL-1β ranged from 68.48 (Squirrel monkey) to 98.57% (African elephant), and 57.78 (Sheep) to 98.47% (African elephant), respectively, whereas that of IL-8 ranged from 72.9% (Human) to 87.8% (African elephant), and 63.2 (human, gorilla, chimpanzee) to 74.5% (African elephant, buffalo), respectively. The phylogenetic analysis based on deduced amino acid sequenced showed that the Asian elephant IL-1β and IL-8 were most closely related to African elephant. Molecular characterization of these two cytokines, IL-1β and IL-8, in Asian elephant provides fundamental information necessary to progress the study of functional immune responses in this animal and gives the potential to use them to manipulate the immune response as recombinant proteins. PMID:26849252

  2. Helicobacter pylori DNA decreases pro-inflammatory cytokine production by dendritic cells and attenuates DSS-induced colitis

    PubMed Central

    Luther, Jay; Owyang, Stephanie Y.; Takeuchi, Tomomi; Cole, Tyler; Zhang, Min; Liu, Maochang; Erb-Downward, John; Rubenstein, Joel H.; Kao, John Y.

    2012-01-01

    Background & Aims Recently there has been emerging epidemiological data to suggest Helicobacter pylori (H. pylori) may protect against certain chronic inflammatory diseases such as inflammatory bowel disease (IBD). However, the mechanism for the observed inverse association between H. pylori and IBD has not been described. Methods The frequency of immunoregulatory (IRS) to immunostimulatory (ISS) sequences within the genome of various bacteria was calculated using MacVector software. The induction of type I IFN and IL-12 responses by DNA-pulsed murine bone marrow–derived dendritic cells (BMDC) and human plasmacytoid dendritic cells (pDC) was analyzed by cytokine production. The effect of H. pylori DNA on E. coli DNA production of type I IFN and IL-12 was assessed. The in vivo significance of H. pylori DNA suppression was assessed in a DSS-model of colitis. The systemic levels of type I IFN were assessed in H. pylori-colonized and non-colonized patients. Results We showed that H. pylori DNA has a significantly elevated IRS:ISS ratio. In vitro experiments revealed the inability of H. pylori DNA to stimulate type I IFN or IL-12 production from mouse BMDCs or human pDCs. Additionally, H. pylori DNA was able to suppress E. coli-DNA production of type I IFN and IL-12. Administration of H. pylori DNA prior to the induction of DSS colitis significantly ameliorated the severity of colitis as compared to E. coli DNA or vehicle control in both an acute and chronic model. Finally, the systemic levels of type I IFN were found to be lower in H. pylori-colonized patients versus non-colonized controls. Conclusions Overall, our study indicates that H pylori DNA has the ability to down-regulate pro-inflammatory responses from DCs and this may in part explain the inverse association between H. pylori and IBD. PMID:21471567

  3. Syndecan-3 is selectively pro-inflammatory in the joint and contributes to antigen-induced arthritis in mice

    PubMed Central

    2014-01-01

    Introduction Syndecans are heparan sulphate proteoglycans expressed by endothelial cells. Syndecan-3 is expressed by synovial endothelial cells of rheumatoid arthritis (RA) patients where it binds chemokines, suggesting a role in leukocyte trafficking. The objective of the current study was to examine the function of syndecan-3 in joint inflammation by genetic deletion in mice and compare with other tissues. Methods Chemokine C-X-C ligand 1 (CXCL1) was injected in the joints of syndecan-3−/−and wild-type mice and antigen-induced arthritis performed. For comparison chemokine was administered in the skin and cremaster muscle. Intravital microscopy was performed in the cremaster muscle. Results Administration of CXCL1 in knee joints of syndecan-3−/−mice resulted in reduced neutrophil accumulation compared to wild type. This was associated with diminished presence of CXCL1 at the luminal surface of synovial endothelial cells where this chemokine clustered and bound to heparan sulphate. Furthermore, in the arthritis model syndecan-3 deletion led to reduced joint swelling, leukocyte accumulation, cartilage degradation and overall disease severity. Conversely, CXCL1 administration in the skin of syndecan-3 null mice provoked increased neutrophil recruitment and was associated with elevated luminal expression of E-selectin by dermal endothelial cells. Similarly in the cremaster, intravital microscopy showed increased numbers of leukocytes adhering and rolling in venules in syndecan-3−/−mice in response to CXCL1 or tumour necrosis factor alpha. Conclusions This study shows a novel role for syndecan-3 in inflammation. In the joint it is selectively pro-inflammatory, functioning in endothelial chemokine presentation and leukocyte recruitment and cartilage damage in an RA model. Conversely, in skin and cremaster it is anti-inflammatory. PMID:25015005

  4. Mesenchymal stromal (stem) cells suppress pro-inflammatory cytokine production but fail to improve survival in experimental staphylococcal toxic shock syndrome

    PubMed Central

    2014-01-01

    Background Toxic shock syndrome (TSS) is caused by an overwhelming host-mediated response to bacterial superantigens produced mainly by Staphylococcus aureus and Streptococcus pyogenes. TSS is characterized by aberrant activation of T cells and excessive release of pro-inflammatory cytokines ultimately resulting in capillary leak, septic shock, multiple organ dysfunction and high mortality rates. No therapeutic or vaccine has been approved by the U.S. Food and Drug Administration for TSS, and novel therapeutic strategies to improve clinical outcome are needed. Mesenchymal stromal (stem) cells (MSCs) are stromal cells capable of self-renewal and differentiation. Moreover, MSCs have immunomodulatory properties, including profound effects on activities of T cells and macrophages in specific contexts. Based on the critical role of host-derived immune mediators in TSS, we hypothesized that MSCs could modulate the host-derived proinflammatory response triggered by Staphylococcal enterotoxin B (SEB) and improve survival in experimental TSS. Methods Effects of MSCs on proinflammatory cytokines in peripheral blood were measured in wild-type C57BL/6 mice injected with 50 μg of SEB. Effects of MSCs on survival were monitored in fatal experimental TSS induced by consecutive doses of D-galactosamine (10 mg) and SEB (10 μg) in HLA-DR4 transgenic mice. Results Despite significantly decreasing serum levels of IL-2, IL-6 and TNF induced by SEB in wild-type mice, human MSCs failed to improve survival in experimental TSS in HLA-DR4 transgenic mice. Similarly, a previously described downstream mediator of human MSCs, TNF-stimulated gene 6 (TSG-6), did not significantly improve survival in experimental TSS. Furthermore, murine MSCs, whether unstimulated or pre-treated with IFNγ, failed to improve survival in experimental TSS. Conclusions Our results suggest that the immunomodulatory effects of MSCs are insufficient to rescue mice from experimental TSS, and that mediators other than

  5. Flavonoid Fraction of Bergamot Juice Reduces LPS-Induced Inflammatory Response through SIRT1-Mediated NF-κB Inhibition in THP-1 Monocytes

    PubMed Central

    Risitano, Roberto; Currò, Monica; Cirmi, Santa; Ferlazzo, Nadia; Campiglia, Pietro; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2014-01-01

    Plant polyphenols exert anti-inflammatory activity through both anti-oxidant effects and modulation of pivotal pro-inflammatory genes. Recently, Citrus bergamia has been studied as a natural source of bioactive molecules with antioxidant activity, but few studies have focused on molecular mechanisms underlying their potential beneficial effects. Several findings have suggested that polyphenols could influence cellular function by acting as activators of SIRT1, a nuclear histone deacetylase, involved in the inhibition of NF-κB signaling. On the basis of these observations we studied the anti-inflammatory effects produced by the flavonoid fraction of the bergamot juice (BJe) in a model of LPS-stimulated THP-1 cell line, focusing on SIRT1-mediated NF-κB inhibition. We demonstrated that BJe inhibited both gene expression and secretion of LPS-induced pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) by a mechanism involving the inhibition of NF-κB activation. In addition, we showed that BJe treatment reversed the LPS-enhanced acetylation of p65 in THP-1 cells. Interestingly, increasing concentrations of Sirtinol were able to suppress the inhibitory effect of BJe via p65 acetylation, underscoring that NF-κB–mediated inflammatory cytokine production may be directly linked to SIRT1 activity. These results suggest that BJe may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process. PMID:25260046

  6. Flavonoid fraction of Bergamot juice reduces LPS-induced inflammatory response through SIRT1-mediated NF-κB inhibition in THP-1 monocytes.

    PubMed

    Risitano, Roberto; Currò, Monica; Cirmi, Santa; Ferlazzo, Nadia; Campiglia, Pietro; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2014-01-01

    Plant polyphenols exert anti-inflammatory activity through both anti-oxidant effects and modulation of pivotal pro-inflammatory genes. Recently, Citrus bergamia has been studied as a natural source of bioactive molecules with antioxidant activity, but few studies have focused on molecular mechanisms underlying their potential beneficial effects. Several findings have suggested that polyphenols could influence cellular function by acting as activators of SIRT1, a nuclear histone deacetylase, involved in the inhibition of NF-κB signaling. On the basis of these observations we studied the anti-inflammatory effects produced by the flavonoid fraction of the bergamot juice (BJe) in a model of LPS-stimulated THP-1 cell line, focusing on SIRT1-mediated NF-κB inhibition. We demonstrated that BJe inhibited both gene expression and secretion of LPS-induced pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) by a mechanism involving the inhibition of NF-κB activation. In addition, we showed that BJe treatment reversed the LPS-enhanced acetylation of p65 in THP-1 cells. Interestingly, increasing concentrations of Sirtinol were able to suppress the inhibitory effect of BJe via p65 acetylation, underscoring that NF-κB-mediated inflammatory cytokine production may be directly linked to SIRT1 activity. These results suggest that BJe may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process. PMID:25260046

  7. Association of single nucleotide polymorphisms in pro-inflammatory cytokine and toll-like receptor genes with pediatric hematogenous osteomyelitis.

    PubMed

    Osman, A E; Mubasher, M; ElSheikh, N E; AlHarthi, H; AlZahrani, M S; Ahmed, N; ElGhazali, G; Bradley, B A; Fadil, A-S A

    2016-01-01

    Hematogenous osteomyelitis (HO) is a bone infection wherein bacteria penetrate to the bone through the blood stream. Several single nucleotide polymorphisms (SNPs) have been associated with susceptibility to infectious diseases. In this study, we investigated the contribution of SNPs in interleukin (IL)-1B1 (rs16944), IL1A (rs1800587), IL1B (rs1143634), toll-like receptor (TLR)-2 (rs3804099), TLR4 (rs4986790), TLR4 (rs4986791), IL1R (rs2234650), tumor necrosis factor (TNF)-α (rs1800629), TNF (rs361525), and IL1RN (rs315952) towards the development of HO in Saudi patients and compared to healthy controls. Fifty-two patients diagnosed with HO and 103 healthy individuals were genotyped. The frequencies of genotypes GG (rs16944) and AA (rs16944) were lower and higher in patients [odds ratio (OR) = 0.34, Pc = 0.05] and controls (OR = 1.33, Pc = 0.05), respectively, suggesting that SNPs at this locus could alter HO susceptibility. In addition, the patients and controls exhibited lower and higher frequencies of the alleles G (rs16944) (OR = 0.43, Pc = 0.007) and A (rs16944) (OR = 2.32, Pc = 0.007), respectively. The expression of alleles C (rs3804099) and T (rs3804099) were higher in patients (OR = 2.05, Pc = 0.04) and controls (OR = 0.49, Pc = 0.04), respectively. In conclusion, SNPs at rs16944 and rs3804099 were found to be associated with HO in the Saudi population. PMID:27323068

  8. Clinical Findings and Pro-Inflammatory Cytokines in Dengue Patients in Western India: A Facility-Based Study

    PubMed Central

    Priyadarshini, D.; Gadia, Rajesh R.; Tripathy, Anuradha; Gurukumar, K. R.; Bhagat, Asha; Patwardhan, Sampada; Mokashi, Nitin; Vaidya, Dhananjay; Shah, Paresh S.; Cecilia, D.

    2010-01-01

    Background Descriptions of dengue immunopathogenesis have largely relied on data from South-east Asia and America, while India is poorly represented. This study characterizes dengue cases from Pune, Western India, with respect to clinical profile and pro-inflammatory cytokines. Methodology/Principal Findings In 2005, 372 clinically suspected dengue cases were tested by MAC-ELISA and RT-PCR for dengue virus (DENV) aetiology. The clinical profile was recorded at the hospital. Circulating levels of IFN-γ, TNF-α, IL-6, and IL-8 were assessed by ELISA and secondary infections were defined by IgM to IgG ratio. Statistical analysis was carried out using the SPSS 11.0 version. Of the 372 individuals, 221 were confirmed to be dengue cases. Three serotypes, DENV-1, 2 and 3 were co-circulating and one case of dual infection was identified. Of 221 cases, 159 presented with Dengue fever (DF) and 62 with Dengue hemorrhagic fever (DHF) of which six had severe DHF and one died of shock. There was a strong association of rash, abdominal pain and conjunctival congestion with DHF. Levels of IFN-γ were higher in DF whereas IL-6 and IL-8 were higher in DHF cases (p<0.05). The mean levels of the three cytokines were higher in secondary compared to primary infections. Levels of IFN-γ and IL-8 were higher in early samples collected 2–5 days after onset than late samples collected 6–15 days after onset. IFN-γ showed significant decreasing time trend (p = 0.005) and IL-8 levels showed increasing trend towards significance in DHF cases (interaction p = 0.059). There was a significant association of IL-8 levels with thrombocytopenia and both IFN-γ and IL-8 were positively associated with alanine transaminase levels. Conclusions/Significance Rash, abdominal pain and conjunctival congestion could be prognostic symptoms for DHF. High levels of IL-6 and IL-8 were shown to associate with DHF. The time trend of IFN-γ and IL-8 levels had greater significance than absolute values

  9. Evaluation of the Pro-inflammatory Cytokine Tumor Necrosis Factor-α in Adolescents with Polycystic Ovary Syndrome

    PubMed Central

    Pawelczak, Melissa; Rosenthal, Jamie; Milla, Sarah; Liu, Ying-Hua; Shah, Bina

    2015-01-01

    Background Patients with Polycystic Ovarian Syndrome (PCOS) often suffer from co-morbidities associated with chronic inflammation characterized by elevations in pro-inflammatory cytokines. There is limited data on markers of chronic inflammation, in particular Tumor Necrosis Factor-alpha (TNF-α), in adolescents with PCOS. Objectives To compare serum levels of TNF-α in overweight or obese adolescents with PCOS and obese controls. In the PCOS group, to correlate serum TNF-α levels with body mass index (BMI) z-score, severity of hyperandrogenism, degree of insulin resistance, and ovarian ultrasound (US) characteristics. Methods We performed a cross-sectional retrospective analysis of clinical and biochemical findings in 23 overweight or obese adolescent females with PCOS (mean BMI z-score 2, mean age 15.2 yrs) and 12 obese age- and sex-matched controls (mean BMI z-score 2, mean age 14.1 years). All subjects were post-menarcheal. Serum TNF-α levels were compared between groups. In the PCOS group, cytokine levels were correlated with BMI z-score, androgen levels, fasting insulin and glucose levels as well as ovarian US features. Results Both groups were comparable in age, BMI z-score, fasting glucose, and fasting insulin. Mean free testosterone was 9.76 ±5.13 pg/mL in the PCOS group versus 5 ±2.02 pg/mL in the control group (p=0.0092). Serum TNF-α was 7.4± 4 pg/mL in the PCOS group versus 4.8± 3.16 pg/mL in the control group (p = 0.0468). There was no significant correlation between serum TNF-α and BMI z-score, free testosterone, fasting insulin, or fasting glucose. No correlation existed between serum TNF-α and ovarian follicle number, distribution, or volume. Conclusions Serum TNF-α is elevated in overweight/obese adolescents with PCOS. Chronic inflammation in adolescents with PCOS render them at a potential increased risk for the development of atherosclerosis, type 2 diabetes, cancer, infertility, and other co-morbidities. Every effort should be made to

  10. Pro-inflammatory cytokine regulation of cyclic AMP-phosphodiesterase 4 signaling in microglia in vitro and following CNS injury

    PubMed Central

    Ghosh, Mousumi; Garcia-Castillo, Daniela; Aguirre, Vladimir; Golshani, Roozbeh; Atkins, Coleen M.; Bramlett, Helen M.; Dietrich, W. Dalton; Pearse, Damien D.

    2015-01-01

    Cyclic AMP suppresses immune cell activation and inflammation. The positive feedback loop of pro-inflammatory cytokine production and immune activation implies that cytokines may not only be regulated by cyclic AMP but conversely regulate cyclic AMP. This study examined the effects of TNF-α and IL-1β on cyclic AMP-phosphodiesterase (PDE) signaling in microglia in vitro and after spinal cord or traumatic brain injury (SCI, TBI). TNF-α or IL-1β stimulation produced a profound reduction (>90%) of cyclic AMP within EOC2 microglia from 30min that then recovered after IL-1β but remained suppressed with TNF-α through 24h. Cyclic AMP was also reduced in TNF-α-stimulated primary microglia, albeit to a lesser extent. Accompanying TNF-α-induced cyclic AMP reductions, but not IL-1β, was increased cyclic AMP-PDE activity. The role of PDE4 activity in cyclic AMP reductions was confirmed by using Rolipram. Examination of pde4 mRNA revealed an immediate, persistent increase in pde4b with TNF-α; IL-1β increased all pde4 mRNAs. Immunoblotting for PDE4 showed that both cytokines increased PDE4A1, but only TNF-α increased PDE4B2. Immunocytochemistry revealed PDE4B nuclear translocation with TNF-α but not IL-1β. Acutely after SCI/TBI, where cyclic AMP levels are reduced, PDE4B was localized to activated OX-42+ microglia; PDE4B was absent in OX-42+ cells in uninjured spinal cord/cortex or inactive microglia. Immunoblotting showed PDE4B2 up-regulation from 24h to 1wk post-SCI, the peak of microglia activation. These studies show that TNF-α and IL-1β differentially affect cyclic AMP-PDE signaling in microglia. Targeting PDE4B2 may be a putative therapeutic direction for reducing microglia activation in CNS injury and neurodegenerative diseases. PMID:22865690

  11. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype

    PubMed Central

    Rohnalter, Verena; Roth, Katrin; Finkernagel, Florian; Adhikary, Till; Obert, Julia; Dorzweiler, Kristina; Bensberg, Maike; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-01-01

    DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance. PMID:26503466

  12. Effective suppression of pro-inflammatory molecules by DHCA via IKK-NF-κB pathway, in vitro and in vivo

    PubMed Central

    Lee, Junghun; Choi, Jinyong; Kim, Sunyoung

    2015-01-01

    Background and Purpose Dehydrodiconiferyl alcohol (DHCA), a lignan compound isolated from Cucurbita moschata, has previously been shown to contain anti-adipogenic and antilipogenic effects on 3T3-L1 cells and mouse embryonic fibroblasts. As some of phytochemicals derived from natural plants show anti-inflammatory or antioxidative activities, we determined whether DHCA affects the production of pro-inflammatory mediators and also investigated its underlying mechanisms. Experimental Approach Raw264.7, a murine macrophage cell line, and primary murine macrophages derived from bone marrow cells were treated with LPS in the presence of DHCA. Furthermore, cells were treated with LPS and palmitate in the presence of DHCA to examine its effect on inflammasomes. The production of various pro-inflammatory mediators was examined and the underlying mechanisms investigated using a variety of molecular biological techniques. To test whether DHCA exhibits anti-inflammatory effects in vivo, mouse dextran sodium sulfate (DSS)-induced colitis model was used. Key Results DHCA reduced the production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β and CCL2) and mediators (iNOS, COX-2 and ROS) by down-regulating the activity of I-κB kinase and, subsequently, the DNA binding activity of NF-κB. Moreover, DHCA effectively suppressed the palmitate-mediated activation of inflammasomes, which resulted in decreased production of IL-1β. DHCA also showed therapeutic effects in the mouse DSS-induced colitis model by suppressing the production of TNF-α and IL-1β and thus preventing weight loss and colon shrinkage. Conclusions and Implications Our data suggest that DHCA is a novel phytochemical that by regulating key molecules involved in inflammation and oxidative stress might exert a broad range of anti-inflammatory activities. PMID:25802070

  13. Cortical grey matter demyelination can be induced by elevated pro-inflammatory cytokines in the subarachnoid space of MOG-immunized rats.

    PubMed

    Gardner, Christopher; Magliozzi, Roberta; Durrenberger, Pascal F; Howell, Owain W; Rundle, Jon; Reynolds, Richard

    2013-12-01

    A substantial proportion of cases with secondary progressive multiple sclerosis have extensive inflammation in the leptomeninges that is associated with increased subpial demyelination, neuronal loss and an exacerbated disease course. However, the mechanisms underlying this extensive subpial pathology are poorly understood. We hypothesize that pro-inflammatory cytokine production within the meninges may be a key to this process. Post-mortem cerebrospinal fluid and dissected cerebral leptomeningeal tissue from patients with multiple sclerosis were used to study the presence of tumour necrosis factor and interferon gamma protein and messenger RNA levels. A novel model of subpial cortical grey matter demyelination was set up in Dark Agouti rats and analysed using quantitative immunohistochemistry. Increased expression of the pro-inflammatory cytokines tumour necrosis factor and interferon gamma was found in the meninges of cases with secondary progressive multiple sclerosis exhibiting tertiary lymphoid-like structures. Injection of tumour necrosis factor and interferon gamma into the subarachnoid space of female Dark Agouti rats pre-immunized with a subclinical dose of myelin oligodendrocyte glycoprotein mimicked the pathology seen in multiple sclerosis, including infiltration of lymphocytes (CD4+ and CD8+ T cells and CD79+ B cells) into the meninges and extensive subpial demyelination. Extensive microglial/macrophage activation was present in a gradient from the pial surface to deeper cortical layers. Demyelination did not occur in control animals immunized with incomplete Freund's adjuvant and injected with cytokines. These results support the hypothesis that pro-inflammatory molecules produced in the meninges play a major role in cortical demyelination in multiple sclerosis, but also emphasize the involvement of an anti-myelin immune response. PMID:24176976

  14. Lower Methylation of the ANGPTL2 Gene in Leukocytes from Post-Acute Coronary Syndrome Patients

    PubMed Central

    Nguyen, Albert; Mamarbachi, Maya; Turcot, Valérie; Lessard, Samuel; Yu, Carol; Luo, Xiaoyan; Lalongé, Julie; Hayami, Doug; Gayda, Mathieu; Juneau, Martin; Thorin-Trescases, Nathalie; Lettre, Guillaume; Nigam, Anil; Thorin, Eric

    2016-01-01

    DNA methylation is believed to regulate gene expression during adulthood in response to the constant changes in environment. The methylome is therefore proposed to be a biomarker of health through age. ANGPTL2 is a circulating pro-inflammatory protein that increases with age and prematurely in patients with coronary artery diseases; integrating the methylation pattern of the promoter may help differentiate age- vs. disease-related change in its expression. We believe that in a pro-inflammatory environment, ANGPTL2 is differentially methylated, regulating ANGPTL2 expression. To test this hypothesis we investigated the changes in promoter methylation of ANGPTL2 gene in leukocytes from patients suffering from post-acute coronary syndrome (ACS). DNA was extracted from circulating leukocytes of post-ACS patients with cardiovascular risk factors and from healthy young and age-matched controls. Methylation sites (CpGs) found in the ANGPTL2 gene were targeted for specific DNA methylation quantification. The functionality of ANGPTL2 methylation was assessed by an in vitro luciferase assay. In post-ACS patients, C-reactive protein and ANGPTL2 circulating levels increased significantly when compared to healthy controls. Decreased methylation of specific CpGs were found in the promoter of ANGPTL2 and allowed to discriminate age vs. disease associated methylation. In vitro DNA methylation of specific CpG lead to inhibition of ANGPTL2 promoter activity. Reduced leukocyte DNA methylation in the promoter region of ANGPTL2 is associated with the pro-inflammatory environment that characterizes patients with post-ACS differently from age-matched healthy controls. Methylation of different CpGs in ANGPTL2 gene may prove to be a reliable biomarker of coronary disease. PMID:27101308

  15. Blood levels of pro-inflammatory and anti-inflammatory cytokines during an oral glucose tolerance test in patients with symptoms suggesting reactive hypoglycemia

    PubMed Central

    Eik, W.; Marcon, S.S.; Krupek, T.; Previdelli, I.T.S.; Pereira, O.C.N.; Silva, M.A.R.C.P.; Bazotte, R.B.

    2016-01-01

    We evaluated the impact of postprandial glycemia on blood levels of pro-inflammatory and anti-inflammatory cytokines during an oral glucose tolerance test in non-diabetic patients with symptoms suggesting reactive hypoglycemia. Eleven patients with clinical symptoms suggesting reactive hypoglycemia received an oral glucose solution (75 g) Blood was collected at 0 (baseline), 30, 60, 120 and 180 min after glucose ingestion and the plasma concentrations of interferon-α (IFN-α), interferon-γ (IFN-γ), interleukin-1 receptor antagonist (IL-1RA), interleukin 2 (IL-2), interleukin-2 receptor (IL-2R), interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10), interleukin-12 (IL-12), interleukin 13 (IL-13), interleukin 15 (IL-15), interleukin 17 (IL-17), IFN-γ inducible protein 10 (IP-10), monocyte chemotactic protein 1 (MCP1), monokine induced by IFN-γ (MIG), macrophage inflammatory protein-1α (MIP-1α), interleukin-1β (IL-1β), colony stimulating factor (G-CSF), granulocyte-macrophage CSF (GM-CSF), basic fibroblast growth factor (FGF-basic), eotaxin, tumor necrosis factor α (TNFα), epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), macrophage inflammatory protein-1α (MIP-1α), and 1β (MIP-1β) were evaluated. Overall, glycemic levels increased, reached its maximum at 30 min (phase 1), returned to baseline levels at 120 min (phase 2), followed by a mild hypoglycemia at 180 min (phase 3). During phase 1, cytokine blood levels were maintained. However, we observed a synchronous fall (P<0.05) in the concentrations of pro-inflammatory (IL-15, IL-17, MCP-1) and anti-inflammatory cytokines (FGF-basic, IL-13, IL-1RA) during phase 2. Furthermore, a simultaneous rise (P<0.05) of pro-inflammatory (IL-2, IL-5, IL-17) and anti-inflammatory cytokines (IL-4, IL-1RA, IL-2R, IL-13, FGF-basic) occurred during phase 3. Thus, mild acute hypoglycemia but not a physiological increase of glycemia

  16. Data on pro-inflammatory cytokines IL-1β, IL-17, and IL-6 in the peripheral blood of HIV-infected individuals.

    PubMed

    Saing, Tommy; Valdivia, Anddre; Hussain, Parveen; Ly, Judy; Gonzalez, Leslie; Guilford, Frederick T; Pearce, Daniel; Venketaraman, Vishwanath

    2016-09-01

    Our most recent data indicate differences in the levels of pro-inflammatory cytokines (IL-1β, IL-17, and IL-6) and malondialdehyde (MDA), a stable end-product of lipid peroxidation in the plasma samples between HIV positive individuals with low CD4 T cell counts <200 mm(3) and HIV positive individuals with CD4 T cell counts between 200 and 300 mm(3) (ee). The data lend support and provide valuable correlation between CD4 T cell counts and the levels of inflammatory cytokines in HIV positive individuals. PMID:27508262

  17. Development of post-pericardiotomy syndrome is preceded by an increase in pro-inflammatory and a decrease in anti-inflammatory serological markers

    PubMed Central

    2012-01-01

    The post-pericardiotomy syndrome (PPS) is a common complication after cardiac surgery, occuring in 10-40% of patients. PPS may prolong hospitalization, and even serious complications like tamponade and constrictive pericarditis may occur. Early diagnosis and treatment may reduce morbidity. In 50 patients transferred to our hospital after cardiac surgery we found an increase in pro-inflammatory and a decrease in anti-inflammatory cytokines at admission in the patients later developing PPS compared to the patients who did not develop PPS. If confirmed in larger studies, these findings may prove useful in early identification of and targeted treatment in patients developing PPS. PMID:22824227

  18. Development of post-pericardiotomy syndrome is preceded by an increase in pro-inflammatory and a decrease in anti-inflammatory serological markers.

    PubMed

    Snefjellå, Nora; Lappegård, Knut Tore

    2012-01-01

    The post-pericardiotomy syndrome (PPS) is a common complication after cardiac surgery, occuring in 10-40% of patients. PPS may prolong hospitalization, and even serious complications like tamponade and constrictive pericarditis may occur. Early diagnosis and treatment may reduce morbidity. In 50 patients transferred to our hospital after cardiac surgery we found an increase in pro-inflammatory and a decrease in anti-inflammatory cytokines at admission in the patients later developing PPS compared to the patients who did not develop PPS. If confirmed in larger studies, these findings may prove useful in early identification of and targeted treatment in patients developing PPS. PMID:22824227

  19. Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines

    PubMed Central

    2012-01-01

    Background Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles’ physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. Results WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. Conclusion The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs. PMID:23176191

  20. Annexin A1 translocates to nucleus and promotes the expression of pro-inflammatory cytokines in a PKC-dependent manner after OGD/R.

    PubMed

    Zhao, Baoming; Wang, Jing; Liu, Lu; Li, Xing; Liu, Shuangxi; Xia, Qian; Shi, Jing

    2016-01-01

    Annexin A1 (ANXA1) is a protein known to have multiple roles in the regulation of inflammatory responses. In this study, we find that after oxygen glucose deprivation/reoxygenation (ODG/R) injury, activated PKC phosphorylated ANXA1 at the serine 27 residue (p27S-ANXA1), and promoted the translocation of p27S-ANXA1 to the nucleus of BV-2 microglial cells. This in turn induced BV-2 microglial cells to produce large amounts of pro-inflammatory cytokines. The phenomenon could be mimicked by either transfecting a mutant form of ANXA1 with its serine 27 residue converted to aspartic acid, S27D, or by using the PKC agonist, phorbol 12-myristate 13-acetate (PMA) in these microglial cells. In contrast, transfecting cells with an ANXA1 S27A mutant (serine 27 converted to alanine) or treating the cells with the PKC antagonist, GF103209X (GF) reversed this effet. Our study demonstrates that ANXA1 can be phosphorylated by PKC and is subsequently translocated to the nucleus of BV-2 microglial cells after OGD/R, resulting in the induction of pro-inflammatory cytokines. PMID:27426034

  1. In vitro cellular responses to silicon carbide particles manufactured through the Acheson process: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects.

    PubMed

    Boudard, Delphine; Forest, Valérie; Pourchez, Jérémie; Boumahdi, Najih; Tomatis, Maura; Fubini, Bice; Guilhot, Bernard; Cottier, Michèle; Grosseau, Philippe

    2014-08-01

    Silicon carbide (SiC) an industrial-scale product manufactured through the Acheson process, is largely employed in various applications. Its toxicity has been poorly investigated. Our study aims at characterizing the physico-chemical features and the in vitro impact on biological activity of five manufactured SiC powders: two coarse powders (SiC C1/C2), two fine powders (SiC F1/F2) and a powder rich in iron impurities (SiC I). RAW 264.7 macrophages were exposed to the different SiC particles and the cellular responses were evaluated. Contrary to what happens with silica, no SiC cytotoxicity was observed but pro-oxidative and pro-inflammatory responses of variable intensity were evidenced. Oxidative stress (H₂O₂ production) appeared related to SiC particle size, while iron level regulated pro-inflammatory response (TNFα production). To investigate the impact of surface reactivity on the biological responses, coarse SiC C1 and fine SiC F1 powders were submitted to different thermal treatments (650-1400 °C) in order to alter the oxidation state of the particle surface. At 1400 °C a decrease in TNFα production and an increase in HO·, COO(·-) radicals production were observed in correlation with the formation of a surface layer of crystalline silica. Finally, a strong correlation was observed between surface oxidation state and in vitro toxicity. PMID:24603312

  2. Anethole, a Medicinal Plant Compound, Decreases the Production of Pro-Inflammatory TNF-α and IL-1β in a Rat Model of LPS-Induced Periodontitis

    PubMed Central

    Moradi, Janet; Abbasipour, Fatemeh; Zaringhalam, Jalal; Maleki, Bita; Ziaee, Narges; Khodadoustan, Amin; Janahmadi, Mahyar

    2014-01-01

    Periodontitis (PD) is known to be one of most prevalent worldwide chronic inflammatory diseases. There are several treatments including antibiotics for PD; however, since drug resistance is an increasing problem, new drugs particularly derived from plants with fewer side effects are required. The effects of trans-anethole on IL-1 β and TNF-α level in a rat model of PD were investigated and compared to ketoprofen. Eschericia coli lipopolysaccharide (LPS, 30 µg) was injected bilaterally into the palatal gingiva (3 µL/site) between the upper first and second molars every two days for 10 days in anesthetized rats. Administration of either trans-anethole (10 or 50 mg/Kg, i.p.) or ketoprofen (10 mg/Kg, i.p.) was started 20 minute before LPS injection and continued for 10 days. Then, IL-1β and TNF-α levels were measured in blood samples by ELISA at day 0 (control) and at day 10. Anethole at both concentrations significantly suppressed IL-1β and TNF-α production when compared to LPS-treated rats. The suppressive effects of anethole on LPS-induced pro-inflammatory cytokines were almost similar as seen with ketoprofen. In conclusion, the present results suggest that anethole may have a potent inhibitory effect on PD through suppression of pro-inflammatory molecules; therefore it could be a novel therapeutic strategy for PD. PMID:25587321

  3. Difference in Pro-Inflammatory Cytokine Responses Induced in THP1 Cells by Particulate Matter Collected on Days with and without ASIAN Dust Storms.

    PubMed

    Watanabe, Masanari; Kurai, Jun; Sano, Hiroyuki; Yamasaki, Akira; Shimizu, Eiji

    2015-07-01

    The associations between particulate matter from Asian dust storms (ADS) and health disorders differ among studies, and the underlying mechanisms remain unclear. In this study, ADS and non-ADS particles were tested for their potential to induce pro-inflammatory cytokines associated with adverse respiratory effects. Particulate matter was collected in Japan during four periods in 2013 (2 × ADS periods; 2 × non-ADS). THP1 cells were exposed to this particulate matter, and the levels of various interleukins (ILs), and tumor necrosis factor (TNF)-α were measured. Levels of IL-2 increased significantly following exposure to all particulate matter samples (compared to levels in a solvent control). Increased levels of IL-10 and TNF-α were also observed following exposure to particles collected during three (one ADS and two non-ADS) and two (one ADS and one non-ADS) collection periods, respectively. Thus, the effects of particulate matter on cytokine responses differed according to collection period, and the effects of ADS particles differed for each ADS event. Additionally, the levels of pro-inflammatory cytokines induced by ADS particles were not always higher than those induced by non-ADS particles. PMID:26184251

  4. Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities

    PubMed Central

    Teresa Pinto, Ana; Laranjeiro Pinto, Marta; Patrícia Cardoso, Ana; Monteiro, Cátia; Teixeira Pinto, Marta; Filipe Maia, André; Castro, Patrícia; Figueira, Rita; Monteiro, Armanda; Marques, Margarida; Mareel, Marc; dos Santos, Susana Gomes; Seruca, Raquel; Adolfo Barbosa, Mário; Rocha, Sónia; José Oliveira, Maria

    2016-01-01

    In order to improve the efficacy of conventional radiotherapy, attention has been paid to immune cells, which not only modulate cancer cell response to therapy but are also highly recruited to tumours after irradiation. Particularly, the effect of ionizing radiation on macrophages, using therapeutically relevant doses, is not well understood. To evaluate how radiotherapy affects macrophage behaviour and macrophage-mediated cancer cell activity, human monocyte derived-macrophages were subjected, for a week, to cumulative ionizing radiation doses, as used during cancer treatment (2 Gy/fraction/day). Irradiated macrophages remained viable and metabolically active, despite DNA damage. NF-kappaB transcription activation and increased Bcl-xL expression evidenced the promotion of pro-survival activity. A significant increase of pro-inflammatory macrophage markers CD80, CD86 and HLA-DR, but not CCR7, TNF and IL1B was observed after 10 Gy cumulative doses, while anti-inflammatory markers CD163, MRC1, VCAN and IL-10 expression decreased, suggesting the modulation towards a more pro-inflammatory phenotype. Moreover, ionizing radiation induced macrophage morphological alterations and increased their phagocytic rate, without affecting matrix metalloproteases (MMP)2 and MMP9 activity. Importantly, irradiated macrophages promoted cancer cell-invasion and cancer cell-induced angiogenesis. Our work highlights macrophage ability to sustain cancer cell activities as a major concern that needs to be addressed to improve radiotherapy efficacy. PMID:26735768

  5. In ovo delivery of Toll-like receptor 2 ligand, lipoteichoic acid induces pro-inflammatory mediators reducing post-hatch infectious laryngotracheitis virus infection.

    PubMed

    Thapa, S; Nagy, E; Abdul-Careem, M F

    2015-04-15

    Toll-like receptor (TLR) ligands are pathogen associated molecular patterns (PAMPs) recognized by the TLRs resulting in induction of host innate immune responses. One of the PAMPs that binds to TLR2 and cluster of differentiation (CD) 14 is lipotechoic acid (LTA), which activates downstream signals culminating in the release of pro-inflammatory cytokines. In this study, we investigated whether in ovo LTA delivery leads to the induction of antiviral responses against post-hatch infectious laryngotracheitis virus (ILTV) infection. We first delivered the LTA into embryo day (ED)18 eggs via in ovo route so that the compound is available at the respiratory mucosa. Then the LTA treated and control ED18 eggs were allowed to hatch and the hatched chicken was infected with ILTV intratracheally on the day of hatch. We found that in ovo delivered LTA reduces ILTV infection post-hatch. We also found that in ovo delivery of LTA significantly increases mRNA expression of pro-inflammatory mediators in pre-hatch embryo lungs as well as mononuclear cell infiltration, predominantly macrophages, in lung of post-hatch chickens. Altogether, the data suggest that in ovo delivered LTA could be used to reduce ILTV infection in newly hatched chickens. PMID:25764942

  6. Higher levels of protective parenting are associated with better young adult health: exploration of mediation through epigenetic influences on pro-inflammatory processes

    PubMed Central

    Beach, Steven R. H.; Lei, Man Kit; Brody, Gene H.; Dogan, Meeshanthini V.; Philibert, Robert A.

    2015-01-01

    The current investigation was designed to examine the association of parenting during late childhood and early adolescence, a time of rapid physical development, with biological propensity for inflammation. Based on life course theory, it was hypothesized that parenting during this period of rapid growth and development would be associated with biological outcomes and self-reported health assessed in young adulthood. It was expected that association of parenting with health would be mediated either by effects on methylation of a key inflammatory factor, Tumor necrosis factor (TNF), or else by association with a pro-inflammatory shift in the distribution of mononuclear blood cells. Supporting expectations, in a sample of 398 African American youth residing in rural Georgia, followed from age 11 to age 19, parenting at ages 11–13 was associated with youth reports of better health at age 19. We found that parenting was associated with changes in TNF methylation as well as with changes in cell-type composition. However, whereas methylation of TNF was a significant mediator of the association of parenting with young adult health, variation in mononuclear white blood cell types was not a significant mediator of the association of parenting with young adult health. The current research suggests the potential value of examining the health-related effects of parenting in late childhood and early adolescence. Further examination of protection against pro-inflammatory tendencies conferred by parenting appears warranted. PMID:26074840

  7. Annexin A1 translocates to nucleus and promotes the expression of pro-inflammatory cytokines in a PKC-dependent manner after OGD/R

    PubMed Central

    Zhao, Baoming; Wang, Jing; Liu, Lu; Li, Xing; Liu, Shuangxi; Xia, Qian; Shi, Jing

    2016-01-01

    Annexin A1 (ANXA1) is a protein known to have multiple roles in the regulation of inflammatory responses. In this study, we find that after oxygen glucose deprivation/reoxygenation (ODG/R) injury, activated PKC phosphorylated ANXA1 at the serine 27 residue (p27S-ANXA1), and promoted the translocation of p27S-ANXA1 to the nucleus of BV-2 microglial cells. This in turn induced BV-2 microglial cells to produce large amounts of pro-inflammatory cytokines. The phenomenon could be mimicked by either transfecting a mutant form of ANXA1 with its serine 27 residue converted to aspartic acid, S27D, or by using the PKC agonist, phorbol 12-myristate 13-acetate (PMA) in these microglial cells. In contrast, transfecting cells with an ANXA1 S27A mutant (serine 27 converted to alanine) or treating the cells with the PKC antagonist, GF103209X (GF) reversed this effet. Our study demonstrates that ANXA1 can be phosphorylated by PKC and is subsequently translocated to the nucleus of BV-2 microglial cells after OGD/R, resulting in the induction of pro-inflammatory cytokines. PMID:27426034

  8. Difference in Pro-Inflammatory Cytokine Responses Induced in THP1 Cells by Particulate Matter Collected on Days with and without ASIAN Dust Storms

    PubMed Central

    Watanabe, Masanari; Kurai, Jun; Sano, Hiroyuki; Yamasaki, Akira; Shimizu, Eiji

    2015-01-01

    The associations between particulate matter from Asian dust storms (ADS) and health disorders differ among studies, and the underlying mechanisms remain unclear. In this study, ADS and non-ADS particles were tested for their potential to induce pro-inflammatory cytokines associated with adverse respiratory effects. Particulate matter was collected in Japan during four periods in 2013 (2 × ADS periods; 2 × non-ADS). THP1 cells were exposed to this particulate matter, and the levels of various interleukins (ILs), and tumor necrosis factor (TNF)-α were measured. Levels of IL-2 increased significantly following exposure to all particulate matter samples (compared to levels in a solvent control). Increased levels of IL-10 and TNF-α were also observed following exposure to particles collected during three (one ADS and two non-ADS) and two (one ADS and one non-ADS) collection periods, respectively. Thus, the effects of particulate matter on cytokine responses differed according to collection period, and the effects of ADS particles differed for each ADS event. Additionally, the levels of pro-inflammatory cytokines induced by ADS particles were not always higher than those induced by non-ADS particles. PMID:26184251

  9. Elevated Linoleic Acid (A Pro-Inflammatory PUFA) and Liver Injury in a Treatment Naive HIV-HCV Co-Infected Alcohol Dependent Patient

    PubMed Central

    Vatsalya, Vatsalya; Barve, Shirish S.; McClain, Craig J.; Ramchandani, Vijay A.

    2016-01-01

    HIV and HCV co-infection is a unique disease condition, and medical management of such condition is difficult due to severity and systemic complications. Added with heavy alcohol drinking, risk of liver injury increases due to several pro-inflammatory responses that subsequently get involved with alcohol metabolism. Elevated levels of fatty acids have been reported both in viral infections as well as alcoholic liver disease though such investigations have not addressed the adverse events with dual viral infection of HIV and HCV along with heavy drinking. This case report is of a patient with excessive alcohol drinking and first time diagnosis of HIV and HCV dual infection, elaborating concurrent alteration in Linoleic Acid (LA) levels and pro-inflammatory shift in ω-6/ω-3 ratio along with the elevations in liver injury markers. Elevated LA has been recently studied extensively for its role in alcoholic liver disease; and in the present case, we also found it to be clinically relevant to liver injury. PMID:27489857

  10. Mast Cells and Th17 Cells Contribute to the Lymphoma-Associated Pro-Inflammatory Microenvironment of Angioimmunoblastic T-Cell Lymphoma

    PubMed Central

    Tripodo, Claudio; Gri, Giorgia; Piccaluga, Pier Paolo; Frossi, Barbara; Guarnotta, Carla; Piconese, Silvia; Franco, Giovanni; Vetri, Valeria; Pucillo, Carlo Ennio; Florena, Ada Maria; Colombo, Mario Paolo; Pileri, Stefano Aldo

    2010-01-01

    Reports focusing on the immunological microenvironment of peripheral T-cell lymphomas (PTCL) are rare. Here we studied the reciprocal contribution of regulatory (Treg) and interleukin-17-producing (Th17) T-cells to the composition of the lymphoma-associated microenvironment of angioimmunoblastic T-cell lymphoma (AITL) and PTCL not otherwise specified on tissue microarrays from 30 PTCLs not otherwise specified and 37 AITLs. We found that Th17 but not Treg cells were differently represented in the two lymphomas and correlated with the amount of mast cells (MCs) and granulocytes, which preferentially occurred in the cellular milieu of AITL cases. We observed that MCs directly synthesized interleukin-6 and thus contribute to the establishment of a pro-inflammatory, Th17 permissive environment in AITL. We further hypothesized that the AITL clone itself could be responsible for the preferential accumulation of MCs at sites of infiltration through the synthesis of CXCL-13 and its interaction with the CXCR3 and CXCR5 receptors expressed on MCs. Consistent with this hypothesis, we observed MCs efficiently migrating in response to CXCL-13. On these bases, we conclude that MCs have a role in molding the immunological microenvironment of AITL toward the maintenance of pro-inflammatory conditions prone to Th17 generation and autoimmunity. PMID:20595635

  11. Propolis immunomodulatory action in vivo on Toll-like receptors 2 and 4 expression and on pro-inflammatory cytokines production in mice.

    PubMed

    Orsatti, C L; Missima, F; Pagliarone, A C; Bachiega, T F; Búfalo, M C; Araújo, J P; Sforcin, J M

    2010-08-01

    Propolis is a bee product and its immunomodulatory action has been the subject of intense investigation lately. The recent discovery and characterization of the family of Toll-like receptors (TLR) have triggered a great deal of interest in the field of innate immunity due to their crucial role in microbial recognition and development of the adaptive immune response. This work aimed to evaluate propolis's effect on TLR-2 and TLR-4 expression and on the production of pro-inflammatory cytokines (IL-1beta and IL-6). Male BALB/c mice were treated with propolis (200 mg/kg) for three consecutive days, and TLR-2 and TLR-4 expression as well as IL-1beta and IL-6 production were assessed in peritoneal macrophages and spleen cells. Basal IL-1beta production and TLR-2 and TLR-4 expression were increased in peritoneal macrophages of propolis-treated mice. TLR-2 and TLR-4 expression and IL-1beta and IL-6 production were also upregulated in the spleen cells of propolis-treated mice. One may conclude that propolis activated the initial steps of the immune response by upregulating TLRs expression and the production of pro-inflammatory cytokines in mice, modulating the mechanisms of the innate immunity. PMID:20041423

  12. The rapid antidepressant effect of ketamine in rats is associated with down-regulation of pro-inflammatory cytokines in the hippocampus

    PubMed Central

    Wang, Nan; Yu, Hai-Ying; Shen, Xiao-Feng; Gao, Zhi-Qin; Yang, Chun; Yang, Jian-Jun

    2015-01-01

    Objectives. Active inflammatory responses play an important role in the pathogenesis of depression. We hypothesized that the rapid antidepressant effect of ketamine is associated with the down-regulation of pro-inflammatory mediators. Methods. Forty-eight rats were equally randomized into six groups (a control and five chronic unpredictable mild stress (CUMS) groups) and given either saline or 10 mg/kg ketamine, respectively. The forced swimming test was performed, and the hippocampus was subsequently harvested for the determination of levels of interleukin (IL)-1β, IL-6, tumour necrosis factor-α (TNF-α), indoleamine 2,3-dioxygenase (IDO), kynurenine (KYN), and tryptophan (TRP). Results. CUMS induced depression-like behaviours and up-regulated the hippocampal levels of IL-1β, IL-6, TNF-α, IDO, and the KYN/TRP ratio, which were attenuated by a sub-anaesthetic dose of ketamine. Conclusion. CUMS-induced depression-like behaviours are associated with a reduction in hippocampal inflammatory mediators, whereas ketamine’s antidepressant effect is associated with a down-regulation of pro-inflammatory cytokines in the rat hippocampus. PMID:26220286

  13. Mast cells and Th17 cells contribute to the lymphoma-associated pro-inflammatory microenvironment of angioimmunoblastic T-cell lymphoma.

    PubMed

    Tripodo, Claudio; Gri, Giorgia; Piccaluga, Pier Paolo; Frossi, Barbara; Guarnotta, Carla; Piconese, Silvia; Franco, Giovanni; Vetri, Valeria; Pucillo, Carlo Ennio; Florena, Ada Maria; Colombo, Mario Paolo; Pileri, Stefano Aldo

    2010-08-01

    Reports focusing on the immunological microenvironment of peripheral T-cell lymphomas (PTCL) are rare. Here we studied the reciprocal contribution of regulatory (Treg) and interleukin-17-producing (Th17) T-cells to the composition of the lymphoma-associated microenvironment of angioimmunoblastic T-cell lymphoma (AITL) and PTCL not otherwise specified on tissue microarrays from 30 PTCLs not otherwise specified and 37 AITLs. We found that Th17 but not Treg cells were differently represented in the two lymphomas and correlated with the amount of mast cells (MCs) and granulocytes, which preferentially occurred in the cellular milieu of AITL cases. We observed that MCs directly synthesized interleukin-6 and thus contribute to the establishment of a pro-inflammatory, Th17 permissive environment in AITL. We further hypothesized that the AITL clone itself could be responsible for the preferential accumulation of MCs at sites of infiltration through the synthesis of CXCL-13 and its interaction with the CXCR3 and CXCR5 receptors expressed on MCs. Consistent with this hypothesis, we observed MCs efficiently migrating in response to CXCL-13. On these bases, we conclude that MCs have a role in molding the immunological microenvironment of AITL toward the maintenance of pro-inflammatory conditions prone to Th17 generation and autoimmunity. PMID:20595635

  14. Anethole, a Medicinal Plant Compound, Decreases the Production of Pro-Inflammatory TNF-α and IL-1β in a Rat Model of LPS-Induced Periodontitis.

    PubMed

    Moradi, Janet; Abbasipour, Fatemeh; Zaringhalam, Jalal; Maleki, Bita; Ziaee, Narges; Khodadoustan, Amin; Janahmadi, Mahyar

    2014-01-01

    Periodontitis (PD) is known to be one of most prevalent worldwide chronic inflammatory diseases. There are several treatments including antibiotics for PD; however, since drug resistance is an increasing problem, new drugs particularly derived from plants with fewer side effects are required. The effects of trans-anethole on IL-1 β and TNF-α level in a rat model of PD were investigated and compared to ketoprofen. Eschericia coli lipopolysaccharide (LPS, 30 µg) was injected bilaterally into the palatal gingiva (3 µL/site) between the upper first and second molars every two days for 10 days in anesthetized rats. Administration of either trans-anethole (10 or 50 mg/Kg, i.p.) or ketoprofen (10 mg/Kg, i.p.) was started 20 minute before LPS injection and continued for 10 days. Then, IL-1β and TNF-α levels were measured in blood samples by ELISA at day 0 (control) and at day 10. Anethole at both concentrations significantly suppressed IL-1β and TNF-α production when compared to LPS-treated rats. The suppressive effects of anethole on LPS-induced pro-inflammatory cytokines were almost similar as seen with ketoprofen. In conclusion, the present results suggest that anethole may have a potent inhibitory effect on PD through suppression of pro-inflammatory molecules; therefore it could be a novel therapeutic strategy for PD. PMID:25587321

  15. TARM1 is a novel LRC-encoded ITAM receptor that co-stimulates pro-inflammatory cytokine secretion by macrophages and neutrophils

    PubMed Central

    Radjabova, Valeria; Mastroeni, Piero; Skjødt, Karsten; Zaccone, Paola; de Bono, Bernard; Goodall, Jane C; Chilvers, Edwin R; Juss, Jatinder K; Jones, Des C; Trowsdale, John; Barrow, Alexander David

    2015-01-01

    We identified a novel, evolutionarily conserved receptor encoded within the human Leukocyte Receptor Complex (LRC) and syntenic region of mouse chromosome 7, named T cell-interacting, activating receptor on myeloid cells-1 (TARM1). The transmembrane region of TARM1 contained a conserved arginine residue, consistent with association with a signaling adaptor. TARM1 associated with the ITAM adaptor Fc receptor common γ chain but not with DAP10 or DAP12. In healthy mice, TARM1 is constitutively expressed on the cell-surface of mature and immature CD11b+ Gr-1+ neutrophils within the bone marrow. Following intraperitoneal lipopolysaccharide (LPS) treatment or systemic bacterial challenge TARM1 expression was upregulated by neutrophils and inflammatory monocytes and TARM1+ cells were rapidly recruited to sites of inflammation. TARM1 expression was also upregulated by bone marrow-derived macrophages and dendritic cells following stimulation with TLR agonists in vitro. Ligation of TARM1 receptor in the presence of TLR ligands, such as LPS, enhanced the secretion of pro-inflammatory cytokines by macrophages and primary mouse neutrophils, whereas TARM1 stimulation alone had no effect. Finally, an immobilized TARM1-Fc fusion protein suppressed CD4+ T cell activation and proliferation in vitro. These results suggest that a putative T cell ligand can interact with TARM1 receptor resulting in bi-directional signaling, raising the T cell activation threshold whilst co-stimulating the release of pro-inflammatory cytokines by macrophages and neutrophils. PMID:26311901

  16. Leukocyte-Rich Platelet-Rich Plasma Injections Do Not Up-Modulate Intra-Articular Pro-Inflammatory Cytokines in the Osteoarthritic Knee

    PubMed Central

    Mariani, Erminia; Canella, Valentina; Cattini, Luca; Kon, Elizaveta; Marcacci, Maurilio; Di Matteo, Berardo; Pulsatelli, Lia; Filardo, Giuseppe

    2016-01-01

    Introduction The presence of leukocytes in platelet concentrates is deemed to cause deleterious effects when injected intra articularly. The aim of this study is to analyse both local and systemic effects induced by leukocyte-rich Platelet-rich Plasma (PRP) injections through a proteomic characterization of serial synovial fluid and blood samples obtained from subjects treated for knee OA. Secondary aim was to compare the effects on knee homeostasis and systemic response with those obtained with visco-supplementation. Methods Thirty-six OA patients treated either by autologous L-PRP or HA intra-articular knee injections, administered in series of three at one-week intervals, were analyzed. Just before the injection, 1 ml of synovial fluid was collected through the same needle way. In the same time, a peripheral blood sample was obtained and plasma separated. A further peripheral blood sample was collected at 2, 6, and 12 months. L-PRP, plasma and synovial fluid were tested by multiplex bead-based sandwich immunoassay by means of the Bio-Plex suspension array system (Bio-Rad Laboratories) for the presence of pro- and anti-inflammatory cytokines (IL-1beta, IL-6, IL-8, IL-17 and IL-4, IL-10, IL-13) and growth factors (FGF-b, HGF, PDGF-AB/BB). Results In general, pro-inflammatory cytokine levels were similar at basal condition and after treatment whereas anti-inflammatory ones were nearly undetectable. L-PRP administration did not modulate significant changes of cytokine concentrations either in synovial fluid or plasma, whatever the time points analyzed. No different trend was observed between L-PRP and HA administration in terms of pro- and anti-inflammatory cytokines, as well as growth factors. Conclusions In contrast with the evidence reported by “in vitro” studies, where a cellular pro-inflammatory response appears to be induced by the presence of leukocytes, these results suggest that the presence leukocyte-rich PRP doesn’t induce a relevant in vivo up

  17. The Effect of Solar Irradiated Vibrio cholerae on the Secretion of Pro-Inflammatory Cytokines and Chemokines by the JAWS II Dendritic Cell Line In Vitro

    PubMed Central

    Ssemakalu, Cornelius Cano; Ubomba-Jaswa, Eunice; Motaung, Keolebogile Shirley; Pillay, Michael

    2015-01-01

    The use of solar irradiation to sterilize water prior to its consumption has resulted in the reduction of water related illnesses in waterborne disease endemic communities worldwide. Currently, research on solar water disinfection (SODIS) has been directed towards understanding the underlying mechanisms through which solar irradiation inactivates the culturability of microorganisms in water, enhancement of the disinfection process, and the health impact of SODIS water consumption. However, the immunological consequences of SODIS water consumption have not been explored. In this study, we investigated the effect that solar irradiated V. cholerae may have had on the secretion of cytokines and chemokines by the JAWS II dendritic cell line in vitro. The JAWS II dendritic cell line was stimulated with the different strains of V. cholerae that had been: (i) prepared in PBS, (ii) inactivated through a combination of heat and chemical, (iii) solar irradiated, and (iv) non-solar irradiated, in bottled water. As controls, LPS (1 μg/ml) and CTB (1 μg/ml) were used as stimulants. After 48 hours of stimulation the tissue culture media from each treatment was qualitatively and quantitatively analysed for the presence of IL-1α, IL-1β, IL-6, IL-7, IL-10, IL-12p40, IL-12p70, IL-15, MIP-1α, MIP-1β, MIP-2, RANTES, TNF-α, IL-23 and IL-27. Results showed that solar irradiated cultures of V. cholerae induced dendritic cells to secrete significant (p<0.05) levels of pro-inflammatory cytokines in comparison to the unstimulated dendritic cells. Furthermore, the amount of pro-inflammatory cytokines secreted by the dendritic cells in response to solar irradiated cultures of V. cholerae was not as high as observed in treatments involving non-solar irradiated cultures of V. cholerae or LPS. Our results suggest that solar irradiated microorganisms are capable of inducing the secretion of pro-inflammatory cytokines and chemokines. This novel finding is key towards understanding the

  18. MyD88-dependent pro-inflammatory activity in Vi polysaccharide vaccine against typhoid promotes Ab switching to IgG.

    PubMed

    Garg, Rohini; Akhade, Ajay Suresh; Yadav, Jitender; Qadri, Ayub

    2015-10-01

    Vi capsular polysaccharide is currently in use as a vaccine against human typhoid caused by Salmonella Typhi. The vaccine efficacy correlates with IgG anti-Vi Abs. We have recently reported that Vi can generate inflammatory responses through activation of the TLR2/TLR1 complex. In the present study, we show that immunization with Vi produces IgM as well as IgG Abs in wild type mice. This ability is not compromised in mice deficient in T cells. However, immunization of mice lacking the TLR adaptor protein, MyD88, with Vi elicits only IgM Abs. These results suggest that MyD88-dependent pro-inflammatory ability of the Vi vaccine might be vital in generating IgG Abs with this T-independent Ag. PMID:26303218

  19. Enhanced transcytosis of R5-tropic human immunodeficiency virus across tight monolayer of polarized human endometrial cells under pro-inflammatory conditions.

    PubMed

    Carreno, Marie-Paule; Krieff, Corrine; Irinopoulou, Theano; Kazatchkine, Michel D; Belec, Laurent

    2002-12-21

    Most cases of human immunodeficiency virus (HIV) infection worldwide occur following sexual contact, implying that the virus may breach the protective epithelial barrier lining the genital tract. HIV infection is known to preferentially occur when the genital epithelial integrity is altered, particularly when epithelial micro-ulcerations occur during heterosexual intercourse or ulcerations appear, due to sexually transmitted infections or else in the context of ectopy of the endocervical mucosa, which may leave the genital tissue. We report that R5-tropic infectious HIV-1 isolates are capable of in vitro transcytosis through a tight and polarized monolayer of human endometrial HEC-1 cells. Transcytosis of HIV particles was increased 2-fold within a pro-inflammatory micro-environment. Our findings suggest that transcytosis may be a relevant mechanism for the passage of virus through the genital mucosa in vivo, particularly when inflammatory cells and mediators are present in the vicinity of the mucosal surface. PMID:12633571

  20. Modulation of tumorigenesis by the pro-inflammatory microRNA miR-301a in mouse models of lung cancer and colorectal cancer

    PubMed Central

    Ma, Xiaodong; Yan, Fang; Deng, Qipan; Li, Fenge; Lu, Zhongxin; Liu, Mofang; Wang, Lisheng; Conklin, Daniel J; McCracken, James; Srivastava, Sanjay; Bhatnagar, Aruni; Li, Yong

    2015-01-01

    Lung cancer and colorectal cancer account for over one-third of all cancer deaths in the United States. MicroRNA-301a (miR-301a) is an activator of both nuclear factor-κB (NF-κB) and Stat3, and is overexpressed in both deadly malignancies. In this work, we show that genetic ablation of miR-301a reduces Kras-driven lung tumorigenesis in mice. And miR-301a deficiency protects animals from dextran sodium sulfate-induced colon inflammation and colitis-associated colon carcinogenesis. We also demonstrate that miR-301a deletion in bone marrow-derived cells attenuates tumor growth in the colon carcinogenesis model. Our findings ascertain that one microRNA—miR-301a—activates two major inflammatory pathways (NF-κB and Stat3) in vivo, generating a pro-inflammatory microenvironment that facilitates tumorigenesis. PMID:27462406

  1. The misfolded pro-inflammatory protein S100A9 disrupts memory via neurochemical remodelling instigating an Alzheimer's disease-like cognitive deficit.

    PubMed

    Gruden, Marina A; Davydova, Tatiana V; Wang, Chao; Narkevich, Victor B; Fomina, Valentina G; Kudrin, Vladimir S; Morozova-Roche, Ludmilla A; Sewell, Robert D E

    2016-06-01

    Memory deficits may develop from a variety of neuropathologies including Alzheimer's disease dementia. During neurodegenerative conditions there are contributory factors such as neuroinflammation and amyloidogenesis involved in memory impairment. In the present study, dual properties of S100A9 protein as a pro-inflammatory and amyloidogenic agent were explored in the passive avoidance memory task along with neurochemical assays in the prefrontal cortex and hippocampus of aged mice. S100A9 oligomers and fibrils were generated in vitro and verified by AFM, Thioflavin T and A11 antibody binding. Native S100A9 as well as S100A9 oligomers and fibrils or their combination were administered intranasally over 14 days followed by behavioral and neurochemical analysis. Both oligomers and fibrils evoked amnestic activity which correlated with disrupted prefrontal cortical and hippocampal dopaminergic neurochemistry. The oligomer-fibril combination produced similar but weaker neurochemistry to the fibrils administered alone but without passive avoidance amnesia. Native S100A9 did not modify memory task performance even though it generated a general and consistent decrease in monoamine levels (DA, 5-HT and NA) and increased metabolic marker ratios of DA and 5-HT turnover (DOPAC/DA, HVA/DA and 5-HIAA) in the prefrontal cortex. These results provide insight into a novel pathogenetic mechanism underlying amnesia in a fear-aggravated memory task based on amyloidogenesis of a pro-inflammatory factor leading to disrupted brain neurochemistry in the aged brain. The data further suggests that amyloid species of S100A9 create deleterious effects principally on the dopaminergic system and this novel finding might be potentially exploited during dementia management through a neuroprotective strategy. PMID:26965570

  2. Low Level Pro-inflammatory Cytokines Decrease Connexin36 Gap Junction Coupling in Mouse and Human Islets through Nitric Oxide-mediated Protein Kinase Cδ.

    PubMed

    Farnsworth, Nikki L; Walter, Rachelle L; Hemmati, Alireza; Westacott, Matthew J; Benninger, Richard K P

    2016-02-12

    Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. PMID:26668311

  3. Carbon Tetrachloride Increases the Pro-inflammatory Cytokines Levels in Different Brain Areas of Wistar Rats: The Protective Effect of Acai Frozen Pulp.

    PubMed

    de Souza Machado, Fernanda; Marinho, Jéssica Pereira; Abujamra, Ana Lúcia; Dani, Caroline; Quincozes-Santos, André; Funchal, Cláudia

    2015-09-01

    Acai offers health benefits associated with its high antioxidante capacity, phytochemical composition, nutritional and sensory value. Therefore, the objective of this study was to evaluate the protective effect of acai frozen pulp on carbon tetrachloride (CCl4)-induced damage via modulation of anti- and pro-inflammatory cytokines in rat brain tissue. The rats were treated via oral (gavage) daily with water or acai frozen pulp for 14 days at a dose of 7 μL/g. On the 15th day, the animals in each group received a single intraperitoneal injection of CCl4 in a dose of 3.0 mL/kg or the same volume of mineral oil. After 4 h, the animals were euthanized by decapitation and the cerebral cortex, hippocampus and cerebellum were dissected and homogenated to evaluate the levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), interleukin 18 (IL-18), interleukin 6 (IL-6) and interleukin 10 (IL-10). Data were statistically analyzed by analysis of variance followed by the Tukey post hoc test. It was observed that CCl4 increased TNF-α, IL-1β and IL-18 levels in all brain tissues, and that acai frozen pulp was able to prevent this increase. IL-6 and IL-10 brain tissue levels remained unchanged during all treatments. CCl4 experimental model was suitable to investigate brain tissue anti and pro-inflammatory cytokines. Acai frozen pulp prevented an increase in IL-1β, IL-18 and TNF-α, while IL-6 and IL-10 levels remained unchanged. The precise pathway by which inflammation contribute to hepatic encephalopathy, as well as to how this pathway can be modulated, is still under investigation. PMID:26283513

  4. Regulation of caspase-3 processing by cIAP2 controls the switch between pro-inflammatory activation and cell death in microglia

    PubMed Central

    Kavanagh, E; Rodhe, J; Burguillos, M A; Venero, J L; Joseph, B

    2014-01-01

    The activation of microglia, resident immune cells of the central nervous system, and inflammation-mediated neurotoxicity are typical features of neurodegenerative diseases, for example, Alzheimer's and Parkinson's diseases. An unexpected role of caspase-3, commonly known to have executioner role for apoptosis, was uncovered in the microglia activation process. A central question emerging from this finding is what prevents caspase-3 during the microglia activation from killing those cells? Caspase-3 activation occurs as a two-step process, where the zymogen is first cleaved by upstream caspases, such as caspase-8, to form intermediate, yet still active, p19/p12 complex; thereafter, autocatalytic processing generates the fully mature p17/p12 form of the enzyme. Here, we show that the induction of cellular inhibitor of apoptosis protein 2 (cIAP2) expression upon microglia activation prevents the conversion of caspase-3 p19 subunit to p17 subunit and is responsible for restraining caspase-3 in terms of activity and subcellular localization. We demonstrate that counteracting the repressive effect of cIAP2 on caspase-3 activation, using small interfering RNA targeting cIAP2 or a SMAC mimetic such as the BV6 compound, reduced the pro-inflammatory activation of microglia cells and promoted their death. We propose that the different caspase-3 functions in microglia, and potentially other cell types, reside in the active caspase-3 complexes formed. These results also could indicate cIAP2 as a possible therapeutic target to modulate microglia pro-inflammatory activation and associated neurotoxicity observed in neurodegenerative disorders. PMID:25501826

  5. Amphiphilic Polymer-coated CdSe/ZnS Quantum Dots Induce Pro-inflammatory Cytokine Expression in Mouse Lung Epithelial Cells and Macrophages

    PubMed Central

    Lee, Vivian; McMahan, Ryan S.; Hu, Xiaoge; Gao, Xiaohu; Faustman, Elaine M.; Griffith, William C.; Kavanagh, Terrance J.; Eaton, David L.; McGuire, John K.; Parks, William C.

    2015-01-01

    Quantum dots (Qdots) are semiconductor nanoparticles with size-tunable fluorescence capabilities with diverse applications. Qdots typically contain cadmium or other heavy metals, hence raising concerns of their potential toxicity, especially in occupational settings where inhalation of nanomaterials may increase the risk of lung disease. Accordingly, we assessed the effects of tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coated CdSe/ZnS Qdots on mouse lung epithelial cells and macrophages. Mouse tracheal epithelial cells (MTEC), grown as organotypic cultures, bone marrow-derived macrophages (BMDM), and primary alveolar macrophages (AM) were derived from C57BL/6J or A/J mice and treated with TOPO-PMAT CdSe/ZnS Qdots (10–160 nM) for up to 24 h. Cadmium analysis showed that Qdots remained in the apical compartment of MTEC cultures, whereas they were avidly internalized by AM and BMDM, which did not differ between strains. In MTEC, Qdots selectively induced expression (mRNA and protein) of neutrophil chemokines CXCL1 and CXCL2 but only low to no detectable levels of other factors assessed. In contrast, 4 h exposure to Qdots markedly increased expression of CXCL1, IL6, IL12, and other pro-inflammatory factors in BMDM. Higher inflammatory response was seen in C57BL/6J than in A/J BMDM. Similar expression responses were observed in AM, although overall levels were less robust than in BMDM. MTEC from A/J mice were more sensitive to Qdot pro-inflammatory effects while macrophages from C57BL/6J mice were more sensitive. These findings suggest that patterns of Qdot-induced pulmonary inflammation are likely to be cell type specific and genetic background dependent. PMID:24983898

  6. Chronic Gamma-Irradiation Induces a Dose-Rate-Dependent Pro-inflammatory Response and Associated Loss of Function in Human Umbilical Vein Endothelial Cells.

    PubMed

    Ebrahimian, T; Le Gallic, C; Stefani, J; Dublineau, I; Yentrapalli, R; Harms-Ringdahl, M; Haghdoost, S

    2015-04-01

    A central question in radiation protection research is dose and dose-rate relationship for radiation-induced cardiovascular diseases. The response of endothelial cells to different low dose rates may contribute to help estimate risks for cardiovascular diseases by providing mechanistic understanding. In this study we investigated whether chronic low-dose-rate radiation exposure had an effect on the inflammatory response of endothelial cells and their function. Human umbilical vein endothelial cells (HUVECs) were chronically exposed to radiation at a dose of 1.4 mGy/h or 4.1 mGy/h for 1, 3, 6 or 10 weeks. We determined the pro-inflammatory profile of HUVECs before and during radiation exposure, and investigated the functional consequences of this radiation exposure by measuring their capacity to form vascular networks in matrigel. Expression levels of adhesion molecules such as E-selectin, ICAM-1 and VCAM-1, and the release of pro-inflammatory cytokines such as MCP-1, IL-6 and TNF-α were analyzed. When a total dose of 2 Gy was given at a rate of 4.1 mGy/h, we observed an increase in IL-6 and MCP-1 release into the cell culture media, but this was not observed at 1.4 mGy/h. The increase in the inflammatory profile induced at the dose rate of 4.1 mGy/h was also correlated with a decrease in the capacity of the HUVECs to form a vascular network in matrigel. Our results suggest that dose rate is an important parameter in the alteration of HUVEC inflammatory profile and function. PMID:25807321

  7. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease

    PubMed Central

    Mina, Marco; Gnani, Daniela; De Stefanis, Cristiano; Crudele, Annalisa; Rychlicki, Chiara; Petrini, Stefania; Bruscalupi, Giovannella; Agostinelli, Laura; Stronati, Laura; Cucchiara, Salvatore; Musso, Giovanni; Furlanello, Cesare; Svegliati-Baroni, Gianluca; Nobili, Valerio; Alisi, Anna

    2015-01-01

    Lipopolysaccharide (LPS) is currently considered one of the major players in non-alcoholic fatty liver disease (NAFLD) pathogenesis and progression. Here, we aim to investigate the possible role of LPS-induced TNF-α factor (LITAF) in inducing a pro-inflammatory and pro-fibrogenic phenotype of non-alcoholic steatohepatitis (NASH). We found that children with NAFLD displayed, in different liver-resident cells, an increased expression of LITAF which correlated with histological traits of hepatic inflammation and fibrosis. Total and nuclear LITAF expression increased in mouse and human hepatic stellate cells (HSCs). Moreover, LPS induced LITAF-dependent transcription of IL-1β, IL-6 and TNF-α in the clonal myofibroblastic HSC LX-2 cell line, and this effect was hampered by LITAF silencing. We showed, for the first time in HSCs, that LITAF recruitment to these cytokine promoters is LPS dependent. However, preventing LITAF nuclear translocation by p38MAPK inhibitor, the expression of IL-6 and TNF-α was significantly reduced with the aid of p65NF-ĸB, while IL-1β transcription exclusively required LITAF expression/activity. Finally, IL-1β levels in plasma mirrored those in the liver and correlated with LPS levels and LITAF-positive HSCs in children with NASH. In conclusion, a more severe histological profile in paediatric NAFLD is associated with LITAF over-expression in HSCs, which in turn correlates with hepatic and circulating IL-1β levels outlining a panel of potential biomarkers of NASH-related liver damage. The in vitro study highlights the role of LITAF as a key regulator of the LPS-induced pro-inflammatory pattern in HSCs and suggests p38MAPK inhibitors as a possible therapeutic approach against hepatic inflammation in NASH. PMID:26573228

  8. Neuroprotection of Ischemic Preconditioning is Mediated by Anti-inflammatory, Not Pro-inflammatory, Cytokines in the Gerbil Hippocampus Induced by a Subsequent Lethal Transient Cerebral Ischemia.

    PubMed

    Kim, Dong Won; Lee, Jae-Chul; Cho, Jeong-Hwi; Park, Joon Ha; Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Seo, Jeong Yeol; Cho, Jun Hwi; Kang, Il Jun; Hong, Seongkweon; Kim, Young-Myeong; Won, Moo-Ho; Kim, In Hye

    2015-09-01

    Ischemic preconditioning (IPC) induced by sublethal transient cerebral ischemia could reduce neuronal damage/death following a subsequent lethal transient cerebral ischemia. We, in this study, compared expressions of interleukin (IL)-2 and tumor necrosis factor (TNF)-α as pro-inflammatory cytokines, and IL-4 and IL-13 as anti-inflammatory cytokines in the gerbil hippocampal CA1 region between animals with lethal ischemia and ones with IPC followed by lethal ischemia. In the animals with lethal ischemia, pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region were dead at 5 days post-ischemia; however, IPC protected the CA1 pyramidal neurons from lethal ischemic injury. Expressions of all cytokines were significantly decreased in the SP after lethal ischemia and hardly detected in the SP at 5 days post-ischemia because the CA1 pyramidal neurons were dead. IPC increased expressions of anti-inflammatory cytokines (IL-4 and IL-13) in the stratum pyramidale of the CA1 region following no lethal ischemia (sham-operation), and the increased expressions of IL-4 and IL-13 by IPC were continuously maintained is the SP of the CA1 region after lethal ischemia. However, pro-inflammatory cytokines (IL-2 and TNF-α) in the SP of the CA1 region were similar those in the sham-operated animals with IPC, and the IL-4 and IL-13 expressions in the SP were maintained after lethal ischemia. In conclusion, this study shows that anti-inflammatory cytokines significantly increased and longer maintained by IPC and this might be closely associated with neuroprotection after lethal transient cerebral ischemia. PMID:26290267

  9. Pro-inflammatory interleukins in middle ear effusions from atopic and non-atopic children with chronic otitis media with effusion.

    PubMed

    Zielnik-Jurkiewicz, Beata; Stankiewicz-Szymczak, Wanda

    2016-06-01

    Chronic otitis media with effusion (OME) is associated with irreversible changes in the middle ear, sometimes leading to hearing loss and abnormal language development in children. While the pathogenesis of OME is not fully understood, inflammatory and allergic factors are thought to be involved. The study aimed to investigate the role of cytokines in the local development of chronic OME, and assess differences in the cytokine profiles between atopic and non-atopic children. 84 atopic and non-atopic children with chronic OME (mean age of 6 years 7 months) were studied. Age-matched children with hypertrophy of the adenoids and Eustachian tube dysfunction served as the control group. The number of past acute otitis media (AOM) episodes, their age, and the type of effusion were recorded for all children. Pro-inflammatory cytokine concentrations (TNF-α, IL-1β, IL-6 and IL-8) were determined and the presence of pathogenic bacteria in the patients' effusions was examined. High concentrations of TNF-α, IL-1β, IL-6 and IL-8 were found in the effusions in all children with chronic OME, with the highest levels observed in the non-atopic group. The atopic group showed persistently high IL-1β levels, while in the non-atopic children, IL-1β and TNF-α levels positively correlated with the patient's age and the number of past AOM episodes. Pathogenic bacteria were more frequently isolated from effusions in non-atopic children. In both atopic and non-atopic children, pro-inflammatory cytokines are found at high concentrations. This argues in favor of instituting anti-inflammatory management for treating OME, regardless of atopy. PMID:26078091

  10. Oxidative and nitrative stress and pro-inflammatory cytokines in Mucopolysaccharidosis type II patients: effect of long-term enzyme replacement therapy and relation with glycosaminoglycan accumulation.

    PubMed

    Jacques, Carlos Eduardo Diaz; Donida, Bruna; Mescka, Caroline P; Rodrigues, Daiane G B; Marchetti, Desirèe P; Bitencourt, Fernanda H; Burin, Maira G; de Souza, Carolina F M; Giugliani, Roberto; Vargas, Carmen Regla

    2016-09-01

    Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a deficient activity of iduronate-2-sulfatase, leading to abnormal accumulation of glycosaminoglycans (GAG). The main treatment for MPS II is enzyme replacement therapy (ERT). Previous studies described potential benefits of six months of ERT against oxidative stress in patients. Thus, the aim of this study was to investigate oxidative, nitrative and inflammatory biomarkers in MPS II patients submitted to long term ERT. It were analyzed urine and blood samples from patients on ERT (mean time: 5.2years) and healthy controls. Patients presented increased levels of lipid peroxidation, assessed by urinary 15-F2t-isoprostane and plasmatic thiobarbituric acid-reactive substances. Concerning to protein damage, urinary di-tyrosine (di-Tyr) was increased in patients; however, sulfhydryl and carbonyl groups in plasma were not altered. It were also verified increased levels of urinary nitrate+nitrite and plasmatic nitric oxide (NO) in MPS II patients. Pro-inflammatory cytokines IL-1β and TNF-α were increased in treated patients. GAG levels were correlated to di-Tyr and nitrate+nitrite. Furthermore, IL-1β was positively correlated with TNF-α and NO. Contrastingly, we did not observed alterations in erythrocyte superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities, in reduced glutathione content and in the plasmatic antioxidant capacity. Although some parameters were still altered in MPS II patients, these results may suggest a protective role of long-term ERT against oxidative stress, especially upon oxidative damage to protein and enzymatic and non-enzymatic defenses. Moreover, the redox imbalance observed in treated patients seems to be GAG- and pro-inflammatory cytokine-related. PMID:27251652

  11. The pro-inflammatory cytokine interferon-gamma is an important driver of neuropathology and behavioural sequelae in experimental pneumococcal meningitis.

    PubMed

    Too, L K; Ball, Helen J; McGregor, Iain S; Hunt, Nicholas H

    2014-08-01

    Interferon-gamma is known to play a complex modulatory role in immune defence during microbial infections. Its actions in pneumococcal meningitis, however, remain ill-defined. Here, a pathological role for IFN-γ was demonstrated using a murine model of pneumococcal meningitis, in that C57BL/6J mice deficient in this pro-inflammatory cytokine (IFN-γ(-/-)) showed less severe acute and long-term neuropathology following intracerebral challenge with Streptococcus pneumoniae. The absence of IFN-γ significantly lengthened the survival of mice that otherwise would have developed fatal clinical signs within two days of CNS infection. Compared to their wild-type counterparts, IFN-γ(-/-) mice showed a diminished inflammatory response (attenuated levels of pro-inflammatory cytokines in the cerebrospinal fluid) and milder brain pathologies (less BBB permeability to protein and brain haemorrhage) during the acute phase of disease. Following a full regime of antibiotic treatment, we found substantial brain injuries in the wild-type mice 10days after infection. IFN-γ(-/-) mice, however, showed decreased neuronal damage in both hippocampus and cortex. In the longer term (≈10weeks p.i.), the wild-type mice that had survived meningitis due to antibiotic treatment had neurobehavioural abnormalities including diurnal hypoactivity, nocturnal hyperactivity and impaired performance in a discrimination reversal task. IFN-γ(-/-) mice, concomitantly tested in the automated IntelliCage platform, had reduced behavioural and cognitive disorders compared to wild-type mice. Both IFN-γ(-/-) and wild-type survivors of pneumococcal meningitis showed impaired working memory in the IntelliCage-based complex patrolling task. These observations indicate an association between IFN-γ-driven acute brain pathology and the long-term neurological sequelae resulting from pneumococcal meningitis. PMID:24607660

  12. Involvement of pro-inflammatory cytokines and growth factors in the pathogenesis of Dupuytren's contracture: a novel target for a possible future therapeutic strategy?

    PubMed

    Bianchi, Enrica; Taurone, Samanta; Bardella, Lia; Signore, Alberto; Pompili, Elena; Sessa, Vincenzo; Chiappetta, Caterina; Fumagalli, Lorenzo; Di Gioia, Cira; Pastore, Francesco S; Scarpa, Susanna; Artico, Marco

    2015-10-01

    Dupuytren's contracture (DC) is a benign fibro-proliferative disease of the hand causing fibrotic nodules and fascial cords which determine debilitating contracture and deformities of fingers and hands. The present study was designed to characterize pro-inflammatory cytokines and growth factors involved in the pathogenesis, progression and recurrence of this disease, in order to find novel targets for alternative therapies and strategies in controlling DC. The expression of pro-inflammatory cytokines and of growth factors was detected by immunohistochemistry in fibrotic nodules and normal palmar fascia resected respectively from patients affected by DC and carpal tunnel syndrome (CTS; as negative controls). Reverse transcription (RT)-PCR analysis and immunofluorescence were performed to quantify the expression of transforming growth factor (TGF)-β1, interleukin (IL)-1β and vascular endothelial growth factor (VEGF) by primary cultures of myofibroblasts and fibroblasts isolated from Dupuytren's nodules. Histological analysis showed high cellularity and high proliferation rate in Dupuytren's tissue, together with the presence of myofibroblastic isotypes; immunohistochemical staining for macrophages was completely negative. In addition, a strong expression of TGF-β1, IL-1β and VEGF was evident in the extracellular matrix and in the cytoplasm of fibroblasts and myofibroblasts in Dupuytren's nodular tissues, as compared with control tissues. These results were confirmed by RT-PCR and by immunofluorescence in pathological and normal primary cell cultures. These preliminary observations suggest that TGF-β1, IL-1β and VEGF may be considered potential therapeutic targets in the treatment of Dupuytren's disease (DD). PMID:26201022

  13. Amphiphilic polymer-coated CdSe/ZnS quantum dots induce pro-inflammatory cytokine expression in mouse lung epithelial cells and macrophages.

    PubMed

    Lee, Vivian; McMahan, Ryan S; Hu, Xiaoge; Gao, Xiaohu; Faustman, Elaine M; Griffith, William C; Kavanagh, Terrance J; Eaton, David L; McGuire, John K; Parks, William C

    2015-05-01

    Quantum dots (Qdots) are semiconductor nanoparticles with size-tunable fluorescence capabilities with diverse applications. Qdots typically contain cadmium or other heavy metals, hence raising concerns of their potential toxicity, especially in occupational settings where inhalation of nanomaterials may increase the risk of lung disease. Accordingly, we assessed the effects of tri-n-octylphosphine oxide, poly(maleic anhydride-alt-1-tetradecene) (TOPO-PMAT) coated CdSe/ZnS Qdots on mouse lung epithelial cells and macrophages. Mouse tracheal epithelial cells (MTEC), grown as organotypic cultures, bone marrow-derived macrophages (BMDM), and primary alveolar macrophages (AM) were derived from C57BL/6J or A/J mice and treated with TOPO-PMAT CdSe/ZnS Qdots (10-160 nM) for up to 24 h. Cadmium analysis showed that Qdots remained in the apical compartment of MTEC cultures, whereas they were avidly internalized by AM and BMDM, which did not differ between strains. In MTEC, Qdots selectively induced expression (mRNA and protein) of neutrophil chemokines CXCL1 and CXCL2 but only low to no detectable levels of other factors assessed. In contrast, 4 h exposure to Qdots markedly increased expression of CXCL1, IL6, IL12, and other pro-inflammatory factors in BMDM. Higher inflammatory response was seen in C57BL/6J than in A/J BMDM. Similar expression responses were observed in AM, although overall levels were less robust than in BMDM. MTEC from A/J mice were more sensitive to Qdot pro-inflammatory effects while macrophages from C57BL/6J mice were more sensitive. These findings suggest that patterns of Qdot-induced pulmonary inflammation are likely to be cell-type specific and genetic background dependent. PMID:24983898

  14. Regulation of caspase-3 processing by cIAP2 controls the switch between pro-inflammatory activation and cell death in microglia.

    PubMed

    Kavanagh, E; Rodhe, J; Burguillos, M A; Venero, J L; Joseph, B

    2014-01-01

    The activation of microglia, resident immune cells of the central nervous system, and inflammation-mediated neurotoxicity are typical features of neurodegenerative diseases, for example, Alzheimer's and Parkinson's diseases. An unexpected role of caspase-3, commonly known to have executioner role for apoptosis, was uncovered in the microglia activation process. A central question emerging from this finding is what prevents caspase-3 during the microglia activation from killing those cells? Caspase-3 activation occurs as a two-step process, where the zymogen is first cleaved by upstream caspases, such as caspase-8, to form intermediate, yet still active, p19/p12 complex; thereafter, autocatalytic processing generates the fully mature p17/p12 form of the enzyme. Here, we show that the induction of cellular inhibitor of apoptosis protein 2 (cIAP2) expression upon microglia activation prevents the conversion of caspase-3 p19 subunit to p17 subunit and is responsible for restraining caspase-3 in terms of activity and subcellular localization. We demonstrate that counteracting the repressive effect of cIAP2 on caspase-3 activation, using small interfering RNA targeting cIAP2 or a SMAC mimetic such as the BV6 compound, reduced the pro-inflammatory activation of microglia cells and promoted their death. We propose that the different caspase-3 functions in microglia, and potentially other cell types, reside in the active caspase-3 complexes formed. These results also could indicate cIAP2 as a possible therapeutic target to modulate microglia pro-inflammatory activation and associated neurotoxicity observed in neurodegenerative disorders. PMID:25501826

  15. Elevated IL-17 and TGF-β Serum Levels: A Positive Correlation between T-helper 17 Cell-Related Pro-Inflammatory Responses with Major Depressive Disorder

    PubMed Central

    Davami, Mohammad Hasan; Baharlou, Rasoul; Ahmadi Vasmehjani, Abbas; Ghanizadeh, Ahmad; Keshtkar, Mitra; Dezhkam, Iman; Atashzar, Mohammad Reza

    2016-01-01

    Introduction: Depression is a mental disorder that highly associated with immune system. Therefore, this study compares the serum concentrations of IL-21, IL-17, and transforming growth factor β (TGF-β) between patients with major depressive disorder and healthy controls. Methods: Blood samples were collected from 41 patients with major depressive disorder and 40 healthy age-matched controls with no history of malignancies or autoimmune disorders. The subjects were interviewed face to face according to DSM-IV diagnostic criteria. Depression score was measured using completed Beck Depression Inventory in both groups. The serum concentrations of IL-21, IL-17, and TGF-β were assessed using ELISA. Results: The mean score of Beck Depression score in the patient and control groups was 35.4±5.5 and 11.1±2.3. IL-17 serum concentrations in the patients and the control group were 10.03±0.6 and 7.6±0.6 pg/mL, respectively (P=0.0002). TGF-β level in the patients group was significantly higher than compare to the control group; 336.7±20.19 vs. 174.8±27.20 pg/mL, (P<0.0001). However, the level of IL-21 was not statistically different between the two groups 84.30±4.57 vs. 84.12±4.15 pg/mL (P>0.05). Conclusion: Considering pro-inflammatory cytokines, current results support the association of inflammatory response and depressive disorder. So, it seems that pro-inflammatory factors profile can be used as indicator in following of depression progress and its treatment impacts. PMID:27303608

  16. The pro-inflammatory cytokine tumor necrosis factor α stimulates expression of the carnitine transporter OCTN2 (novel organic cation transporter 2) and carnitine uptake via nuclear factor-κB in Madin-Darby bovine kidney cells.

    PubMed

    Zhou, X; Ringseis, R; Wen, G; Eder, K

    2015-06-01

    Carnitine uptake into tissues is mediated mainly by the novel organic cation transporter 2 (OCTN2), whose expression is upregulated in the liver of early-lactating dairy cows. It has been shown recently that pro-inflammatory cytokines, including tumor necrosis factor α (TNFα), stimulate OCTN2 expression and carnitine uptake in intestinal cells and inflamed intestinal mucosa. Given that many early-lactating dairy cows show typical signs of hepatic and systemic inflammation, such as elevated concentrations of circulating TNFα and activation of the key regulator of inflammation, nuclear factor κB (NF-κB), in tissues, it is possible that upregulation of OCTN2 and increase of carnitine uptake by TNFα is mediated by NF-κB, a mechanism that might contribute to the upregulation of OCNT2 in the liver of early-lactating dairy cows. Thus, in the present study, we tested the hypothesis that TNFα stimulates OCTN2 gene expression and carnitine uptake via NF-κB in the bovine Madin-Darby bovine kidney (MDBK) cell line. Treatment with TNFα caused activation of NF-κB, increased the mRNA and protein concentration of OCTN2, and stimulated the uptake of carnitine in MDBK cells. In contrast, combined treatment of MDBK cells with TNFα and the NF-κB inhibitor BAY 11-7085 completely blocked the effect of TNFα on OCTN2 mRNA and protein concentration and uptake of carnitine. These findings suggest that the bovine OCTN2 gene and carnitine uptake are regulated by NF-κB. Future studies are required to show the in vivo relevance of this regulatory mechanism in cattle. PMID:25892691

  17. The Mycoplasma hyorhinis p37 Protein Rapidly Induces Genes in Fibroblasts Associated with Inflammation and Cancer

    PubMed Central

    Gomersall, Amber Cathie; Li, Song Feng; Parish, Roger W.

    2015-01-01

    The p37 protein at the surface of Mycoplasma hyorhinis cells forms part of a high-affinity transport system and has been found associated with animal and human cancers. Here we show in NIH3T3 fibroblasts, p37 rapidly induces the expression of genes implicated in inflammation and cancer progression. This gene activation was principally via the Tlr4 receptor. Activity was lost from p37 when the C-terminal 20 amino acids were removed or the four amino acids specific for the hydrogen bonding of thiamine pyrophosphate had been replaced by valine. Blocking the IL6 receptor or inhibiting STAT3 signalling resulted in increased p37-induced gene expression. Since cancer associated fibroblasts support growth, invasion and metastasis via their ability to regulate tumour-related inflammation, the rapid induction in fibroblasts of pro-inflammatory genes by p37 might be expected to influence cancer development. PMID:26512722

  18. Proteasome dysfunction inhibits surfactant protein gene expression in lung epithelial cells: mechanism of inhibition of SP-B gene expression.

    PubMed

    Das, Aparajita; Boggaram, Vijayakumar

    2007-01-01

    Surfactant proteins maintain lung function through their actions to reduce alveolar surface tension and control of innate immune responses in the lung. The ubiquitin proteasome pathway is responsible for the degradation of majority of intracellular proteins in eukaryotic cells, and proteasome dysfunction has been linked to the development of neurodegenerative, cardiac, and other diseases. Proteasome function is impaired in interstitial lung diseases associated with surfactant protein C (SP-C) mutation mapping to the BRICHOS domain located in the proSP-C protein. In this study we determined the effects of proteasome inhibition on surfactant protein expression in H441 and MLE-12 lung epithelial cells to understand the relationship between proteasome dysfunction and surfactant protein gene expression. Proteasome inhibitors lactacystin and MG132 reduced the levels of SP-A, SP-B, and SP-C mRNAs in a concentration-dependent manner in H441 and MLE-12 cells. In H441 cells, lactacystin and MG132 inhibition of SP-B mRNA was associated with similar decreases in SP-B protein, and the inhibition was due to inhibition of gene transcription. Proteasome inhibitors decreased thyroid transcription factor-1 (TTF-1)/Nkx2.1 DNA binding activity, and the reduced TTF-1 DNA binding activity was due to reduced expression levels of TTF-1 protein. These data indicated that the ubiquitin proteasome pathway is essential for the maintenance of surfactant protein gene expression and that disruption of this pathway inhibits surfactant protein gene expression via reduced expression of TTF-1 protein. PMID:16905641

  19. Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain

    PubMed Central

    Wang, Xiao-Min; Wu, Tian-Xia; Hamza, May; Ramsay, Edward S.; Wahl, Sharon M.; Dionne, Raymond A.

    2007-01-01

    New insights into the biological properties of cyclooxygenase-2 (COX-2) and its response pathway challenge the hypothesis that COX-2 is simply pro-inflammatory and inhibition of COX-2 solely prevents the development of inflammation and ameliorates inflammatory pain. The present study performed a comprehensive analysis of gene/protein expression induced by a selective inhibitor of COX-2, rofecoxib, compared with a non-selective COX inhibitor, ibuprofen, and placebo in a clinical model of acute inflammatory pain (the surgical extraction of impacted third molars) using microarray analysis followed by quantitative RT-PCR verification and Western blotting. Inhibition of COX-2 modulated gene expression related to inflammation and pain, the arachidonic acid pathway, apoptosis/angiogenesis, cell adhesion and signal transduction. Compared to placebo, rofecoxib treatment increased the gene expression of ANXA3 (annexin 3), SOD2 (superoxide dismutase 2), SOCS3 (suppressor of cytokine signaling 3) and IL1RN (IL1 receptor antagonist) which are associated with inhibition of phospholipase A2 and suppression of cytokine signaling cascades, respectively. Both rofecoxib and ibuprofen treatment increased the gene expression of the pro-inflammatory mediators, IL6 and CCL2 (chemokine C-C motif ligand 2), following tissue injury compared to the placebo treatment. These results indicate a complex role for COX-2 in the inflammatory cascade in addition to the well-characterized COX-dependent pathway, as multiple pathways are also involved in rofecoxib-induced anti-inflammatory and analgesic effects at the gene expression level. These findings may also suggest an alternative hypothesis for the adverse effects attributed to selective inhibition of COX-2. PMID:17070997

  20. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes

    PubMed Central

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  1. p58IPK suppresses NLRP3 inflammasome activation and IL-1β production via inhibition of PKR in macrophages

    PubMed Central

    Boriushkin, Evgenii; Wang, Joshua J.; Li, Junhua; Bhatta, Maulasri; Zhang, Sarah X.

    2016-01-01

    The NLRP3 inflammasome activation is a key signaling event for activation and secretion of pro-inflammatory cytokines such as IL-1β from macrophages. p58IPK is a molecular chaperone that regulates protein homeostasis through inhibiting eIF-2α kinases including double-stranded RNA–dependent protein kinase (PKR), which has been recently implicated in inflammasome activation. Herein we investigate the role of p58IPK in TLR4 signaling and inflammasome activation in macrophages. Primary bone marrow-derived macrophages (BMDM) was isolated from p58IPK knockout (KO) and wildtype (WT) mice and treated with lipopolysaccharide (LPS) and ATP to activate TLR4 signaling and stimulate inflammasome activation. Compared to WT macrophages, p58IPK deficient cells demonstrated significantly stronger activation of PKR, NF-κB, and JNK and higher expression of pro-inflammatory genes TNF-α and IL-1β. Coincidently, p58IPK deletion intensified NLRP3-inflammasome activation indicated by enhanced caspase 1 cleavage and increased IL-1β maturation and secretion. Pretreatment with specific PKR inhibitor or overexpression of p58IPK largely abolished the changes in inflammasome activation and IL-1β secretion in p58IPK null macrophages. Furthermore, immunoprecipitation assay confirmed the binding of p58IPK with PKR, but not other TLR4 downstream signaling molecules. Collectively, these results suggest a novel and crucial role of p58IPK in regulation of inflammasome activation and IL-1β secretion in macrophages. PMID:27113095

  2. Combined impact of hepatitis C virus genotype 1 and interleukin-6 and tumor necrosis factor-α polymorphisms on serum levels of pro-inflammatory cytokines in Brazilian HCV-infected patients.

    PubMed

    Tarragô, Andréa Monteiro; da Costa, Allyson Guimarães; Pimentel, João Paulo Diniz; Gomes, Samara Tatielle Monteiro; Freitas, Felipe Bonfim; Lalwani, Pritesh; de Araújo, Ana Ruth S; Victória, Flamir da Silva; Victória, Marilú Barbieri; Vallinoto, Antônio Carlos Rosário; Sadahiro, Aya; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Malheiro, Adriana

    2014-11-01

    We investigated the association between hepatitis C virus (HCV) genotypes and host cytokine gene polymorphisms and serum cytokine levels in patients with chronic hepatitis C. Serum IL-6, TNF-α, IL-2, IFN-γ, IL-4, IL-10, and IL-17A levels were measured in 67 HCV patients (68.2% genotype 1 [G1]) and 47 healthy controls. The HCV patients had higher IL-6, IL-2, IFN-γ, IL-10, and IL-17A levels than the controls. HCV G1 patients had higher IL-2 and IFN-γ levels than G2 patients. The -174IL6G>C, -308TNFαG>A, and -1082IL10A>G variants were similarly distributed in both groups. However, HCV patients with the -174IL6GC variant had higher IL-2 and IFN-γ levels than patients with the GG and CC variants. Additionally, HCV patients with the -308TNFαGG genotype had higher IL-17A levels than patients with the AG genotype, whereas patients with the -1082IL10GG variant had higher IL-6 levels than patients with the AA and AG variants. A significant proportion of HCV patients had high levels of both IL-2 and IFN-γ. The subgroup of HCV patients with the G1/IL6CG/TNFαGG association displayed the highest proportions of high producers of IL-2 and IFN-γ whereas the subgroup with the G1/TNFαGG profile showed high proportions of high producers of IL-6 and IL-17A. HCV patients with other HCV/cytokine genotype associations showed no particular cytokine profile. Our results suggest that HCV genotype G1 and IL-6 and TNF-α polymorphisms have a clinically relevant influence on serum pro-inflammatory cytokine profile (IL-2 and IFN-γ) in HCV patients. PMID:25193024

  3. Matrix-degrading and pro-inflammatory changes in human vascular endothelial cells exposed to cigarette smoke condensate.

    PubMed

    Nordskog, Brian K; Blixt, Allison D; Morgan, Walter T; Fields, Wanda R; Hellmann, Gary M

    2003-01-01

    Cigarette smoking has been associated with an increase in the severity and prevalence of atherosclerosis in the abdominal aorta. To begin our investigation of this finding, we used an integrated approach combining gene expression profiling, protein analysis, cytokine measurements, and cytotoxicity determinations to examine molecular responses of cultured human aortic and coronary endothelial cells exposed to cigarette smoke condensate (CSC) and nicotine. Exposure of endothelial cells to CSC (30 and 60 microg/mL TPM) for 24 h resulted in minimal cytotoxicity, and the upregulation of genes involved in matrix degradation (MMP-1, MMP-8, and MMP-9), xenobiotic metabolism (HO-1 and CYP1A2), and downregulation of genes involved in cell cycle regulation (including TOP2A, CCNB1, CCNA, CDKN3). Exposure of cells to a high physiological concentration of nicotine resulted in few differentially expressed genes. Immunoblot analysis of proteins selected from genes shown to be differentially regulated by microarray analysis revealed similar responses. Finally, a number of inflammatory cytokines measured in culture media were elevated in response to CSC. Together, these results describe a complex proinflammatory response, possibly mediating the recruitment of leukocytes through cytokine signaling. Additionally, fibrous cap destabilization may be facilitated by matrix metalloproteinase upregulation. PMID:14501029

  4. New Coumarin Derivatives and Other Constituents from the Stem Bark of Zanthoxylum avicennae: Effects on Neutrophil Pro-Inflammatory Responses

    PubMed Central

    Chen, Jih-Jung; Yang, Chieh-Kai; Kuo, Yueh-Hsiung; Hwang, Tsong-Long; Kuo, Wen-Lung; Lim, Yun-Ping; Sung, Ping-Jyun; Chang, Tsung-Hsien; Cheng, Ming-Jen

    2015-01-01

    Three new coumarin derivatives, 8-formylalloxanthoxyletin (1), avicennone (2), and (Z)-avicennone (3), have been isolated from the stem bark of Zanthoxylum avicennae (Z. avicennae), together with 15 known compounds (4–18). The structures of these new compounds were determined through spectroscopic and MS analyses. Compounds 1, 4, 9, 12, and 15 exhibited inhibition (half maximal inhibitory concentration (IC50) values ≤7.65 µg/mL) of superoxide anion generation by human neutrophils in response to formyl-l-methionyl-l-leucyl-l-phenylalanine/cytochalasin B (fMLP/CB). Compounds 1, 2, 4, 8 and 9 inhibited fMLP/CB-induced elastase release with IC50 values ≤8.17 µg/mL. This investigation reveals bioactive isolates (especially 1, 2, 4, 8, 9, 12 and 15) could be further developed as potential candidates for the treatment or prevention of various inflammatory diseases. PMID:25938967

  5. Ezrin Inhibition Up-regulates Stress Response Gene Expression.

    PubMed

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T; Minas, Tsion Z; Conn, Erin J; Hong, Sung-Hyeok; Pauly, Gary T; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A; Toretsky, Jeffrey A; Üren, Aykut

    2016-06-17

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. PMID:27137931

  6. Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the Neuroendocrine and Immune Systems.

    PubMed

    Shakola, Felitsiya; Suri, Parul; Ruggiu, Matteo

    2015-01-01

    Alternative splicing plays a key role in posttranscriptional regulation of gene expression, allowing a single gene to encode multiple protein isoforms. As such, alternative splicing amplifies the coding capacity of the genome enormously, generates protein diversity, and alters protein function. More than 90% of human genes undergo alternative splicing, and alternative splicing is especially prevalent in the nervous and immune systems, tissues where cells need to react swiftly and adapt to changes in the environment through carefully regulated mechanisms of cell differentiation, migration, targeting, and activation. Given its prevalence and complexity, this highly regulated mode of gene expression is prone to be affected by disease. In the following review, we look at how alternative splicing of signaling molecules—cytokines and their receptors—changes in different pathological conditions, from chronic inflammation to neurologic disorders, providing means of functional interaction between the immune and neuroendocrine systems. Switches in alternative splicing patterns can be very dynamic and can produce signaling molecules with distinct or antagonistic functions and localization to different subcellular compartments. This newly discovered link expands our understanding of the biology of immune and neuroendocrine cells, and has the potential to open new windows of opportunity for treatment of neurodegenerative disorders. PMID:26371053

  7. Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the Neuroendocrine and Immune Systems

    PubMed Central

    Shakola, Felitsiya; Suri, Parul; Ruggiu, Matteo

    2015-01-01

    Alternative splicing plays a key role in posttranscriptional regulation of gene expression, allowing a single gene to encode multiple protein isoforms. As such, alternative splicing amplifies the coding capacity of the genome enormously, generates protein diversity, and alters protein function. More than 90% of human genes undergo alternative splicing, and alternative splicing is especially prevalent in the nervous and immune systems, tissues where cells need to react swiftly and adapt to changes in the environment through carefully regulated mechanisms of cell differentiation, migration, targeting, and activation. Given its prevalence and complexity, this highly regulated mode of gene expression is prone to be affected by disease. In the following review, we look at how alternative splicing of signaling molecules—cytokines and their receptors—changes in different pathological conditions, from chronic inflammation to neurologic disorders, providing means of functional interaction between the immune and neuroendocrine systems. Switches in alternative splicing patterns can be very dynamic and can produce signaling molecules with distinct or antagonistic functions and localization to different subcellular compartments. This newly discovered link expands our understanding of the biology of immune and neuroendocrine cells, and has the potential to open new windows of opportunity for treatment of neurodegenerative disorders. PMID:26371053

  8. Recombinant adenoviral expression of IL-10 protects beta cell from impairment induced by pro-inflammatory cytokine.

    PubMed

    Xu, Ai-Jing; Zhu, Wei; Tian, Fei; Yan, Li-Hua; Li, Tang

    2010-11-01

    Interleukin-10 (IL-10) is a pleiotropic immunosuppressive and immunostimulatory cytokine. In autoimmune diabetes of the nonobese diabetic (NOD) mouse, IL-10 has exhibited paradoxical effects. Systemic IL-10 expression prevented or delayed diabetes onset in NOD mice while local expression of IL-10 did not. As antigen-presenting cells (APCs) play a central role in the generation of primary T cell responses, the direct role of this gene in pancreatic beta (β) cell is not clear. The effects of IL-10 on the protection of β cells in vitro were examined. In the present study, we examined the effects of adenovirus vector-mediated murine IL-10 (mIL-10) gene transfer to islet cell line RINm5F cells in vitro and to explore if IL-10 overexpression may prevent cytokine-mediated cytotoxicity. We had established the recombinant adenovirus vector containing mIL-10 genes (Ad-mIL-10) successfully. After infection of Ad-mIL-10, both mRNA and protein were expressed in RINm5F cells. Moreover, RINm5F cells secreted IL-10 protein into culture medium. Ad-mIL-10 prevented IL-1β-mediated nitric oxide production from β cells in vitro as well as the suppression of β cells function as determined by glucose-stimulated insulin production. Furthermore, Ad-mIL-10 gene transfer led to a profound reduction of Fas-expressing β cells and caspase-3 activity which were induced by IL-1β and the apoptotic rates of Ad-mIL-10 group were decreased. These findings show that IL-10 gene transfer to β cells may be beneficial in maintaining cells function, protecting islet cells from apoptosis-mediated by factors, which showed the potential therapy for type 1 diabetes mellitus. PMID:20658311

  9. Infection of human monocyte-derived dendritic cells by ANDES Hantavirus enhances pro-inflammatory state, the secretion of active MMP-9 and indirectly enhances endothelial permeability

    PubMed Central

    2011-01-01

    Background Andes virus (ANDV), a rodent-borne Hantavirus, is the major etiological agent of Hantavirus cardiopulmonary syndrome (HCPS) in South America, which is mainly characterized by a vascular leakage with high rate of fatal outcomes for infected patients. Currently, neither specific therapy nor vaccines are available against this pathogen. ANDV infects both dendritic and epithelial cells, but in despite that the severity of the disease directly correlates with the viral RNA load, considerable evidence suggests that immune mechanisms rather than direct viral cytopathology are responsible for plasma leakage in HCPS. Here, we assessed the possible effect of soluble factors, induced in viral-activated DCs, on endothelial permeability. Activated immune cells, including DC, secrete gelatinolytic matrix metalloproteases (gMMP-2 and -9) that modulate the vascular permeability for their trafficking. Methods A clinical ANDES isolate was used to infect DC derived from primary PBMC. Maturation and pro-inflammatory phenotypes of ANDES-infected DC were assessed by studying the expression of receptors, cytokines and active gMMP-9, as well as some of their functional status. The ANDES-infected DC supernatants were assessed for their capacity to enhance a monolayer endothelial permeability using primary human vascular endothelial cells (HUVEC). Results Here, we show that in vitro primary DCs infected by a clinical isolate of ANDV shed virus RNA and proteins, suggesting a competent viral replication in these cells. Moreover, this infection induces an enhanced expression of soluble pro-inflammatory factors, including TNF-α and the active gMMP-9, as well as a decreased expression of anti-inflammatory cytokines, such as IL-10 and TGF-β. These viral activated cells are less sensitive to apoptosis. Moreover, supernatants from ANDV-infected DCs were able to indirectly enhance the permeability of a monolayer of primary HUVEC. Conclusions Primary human DCs, that are primarily

  10. Anti-platelet drugs attenuate the expansion of circulating CD14highCD16+ monocytes under pro-inflammatory conditions

    PubMed Central

    Layne, Kerry; Di Giosia, Paolo; Ferro, Albert; Passacquale, Gabriella

    2016-01-01

    Aims Levels of circulating CD14highCD16+ monocytes increase in atherosclerotic patients and are predictive of future cardiovascular events. Platelet activation has been identified as a crucial determinant in the acquisition of a CD16+ phenotype by classical CD14highCD16− cells. We tested the hypothesis that anti-platelet drugs modulate the phenotype of circulating monocytes. Methods and results Sixty healthy subjects undergoing influenza immunization were randomly assigned to either no treatment or anti-platelet therapy, namely aspirin 300 mg or 75 mg daily, or clopidogrel (300 mg loading dose followed by 75 mg), for 48 h post-immunization (n = 15/group). Monocyte subsets, high-sensitivity C-reactive protein, pro-inflammatory cytokines, and P-selectin were measured at baseline and post-immunization. The CD14highCD16+ monocyte cell count rose by 67.3% [interquartile range (IQR): 35.7/169.2; P = 0.0002 vs. baseline] in untreated participants. All anti-platelet regimes counteracted expansion of this monocytic subpopulation. Although no statistical differences were noted among the three treatments, aspirin 300 mg was the most efficacious compared with the untreated group (−12.5% change from baseline; IQR: −28.7/18.31; P = 0.001 vs. untreated). Similarly, the rise in P-selectin (17%; IQR: −5.0/39.7; P = 0.03 vs. baseline) observed in untreated participants was abolished by all treatments, with aspirin 300 mg exerting the strongest effect (−30.7%; IQR: −58.4/−0.03; P = 0.007 vs. untreated). Changes in P-selectin levels directly correlated with changes in CD14highCD16+ cell count (r = 0.5; P = 0.0002). There was a similar increase among groups in high-sensitivity C-reactive protein (P < 0.03 vs. baseline levels). Conclusions Anti-platelet drugs exert an immunomodulatory action by counteracting CD14highCD16+ monocyte increase under pro-inflammatory conditions, with this effect being dependent on the amplitude of P-selectin reduction. PMID:27118470

  11. HMGB in Mollusk Crassostrea ariakensis Gould: Structure, Pro-Inflammatory Cytokine Function Characterization and Anti-Infection Role of Its Antibody

    PubMed Central

    Xu, Ting; Ye, Shigen; Luo, Ming; Zhu, Zewen; Wu, Xinzhong

    2012-01-01

    Background Crassostrea ariakensis Gould is a representative bivalve species and an economically important oyster in China, but suffers severe mortalities in recent years that are caused by rickettsia-like organism (RLO). Prevention and control of this disease is a priority for the development