Science.gov

Sample records for initial bunch noise

  1. Studies of RF Noise Induced Bunch Lengthening at the LHC

    SciTech Connect

    Mastorides, T.; Rivetta, C.; Fox, J.D.; Baudrenghien, P.; Butterworth, A.; Molendijk, J.; /SLAC /CERN

    2011-08-17

    Radio Frequency (RF) noise induced bunch lengthening can strongly affect the Large Hadron Collider (LHC) performance through luminosity reduction, particle loss, and other effects. This work presents measurements from the LHC that better quantify the relationship between the RF noise and longitudinal emittance blowup and identify the performance limiting RF components. The experiments presented in this paper confirmed the predicted effects on the LHC bunch length growth. Dedicated measurements were conducted in the LHC to gain insight in the effect of RF noise to the longitudinal beam diffusion. It was evident that the growth rate of the bunch length is strongly related to the accelerating voltage phase noise power spectral density around f{sub s} + kf{sub rev}, as predicted in [4]. The noise threshold for 2.5 ps/hr growth was estimated to -101 dBc/Hz (SSB flat noise spectral density from f{sub s} to the edge of the closed loop bandwidth). A 9 dB margin is achieved with the current RF configuration and the BPL on. With this formalism it is now possible to estimate the effect of different operational and technical RF configurations on the LHC beam diffusion. This formalism could also be useful for the design of future RF systems and the budgeting of the allowed noise.

  2. Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser.

    PubMed

    Wang, Zhenhong; Wang, Zhi; Liu, Yan-Ge; Zhao, Wenjing; Zhang, Hao; Wang, Shangcheng; Yang, Guang; He, Ruijing

    2016-06-27

    We report an intermediate regime between c.w. emission and noise-like pulses (NLPs) regime in an Er-doped partially mode-locked fiber laser with nonlinear polarization rotation. In this regime, the soliton bunches stochastically turn up from a quasi-cw background in the Q-switched-like envelope. The soliton bunches normally last for tens or hundreds of intracavity round-trips. When the soliton bunches vanish, typical NLPs chains are generated sporadically at location where the soliton bunches collapses. These results would be helpful to understand the generation and property of the NLPs regime. PMID:27410624

  3. Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser

    NASA Astrophysics Data System (ADS)

    Tang, D. Y.; Zhao, L. M.; Zhao, B.

    2005-04-01

    A passively mode-locked soliton fiber ring laser with dispersion managed cavity is reported. The laser emits intense bunched noise-like pulses including the transform limited pulses. The optical spectrum of the laser emission has a bandwidth as broad as 32.10 nm. It was found that purely depending on the linear cavity phase delay the laser could be switched between the soliton operation and the noise-like pulse emission. Numerical simulations showed that the laser emission was caused by the combined effect of soliton collapse and positive cavity feedback in the laser.

  4. Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser.

    PubMed

    Tang, D; Zhao, L; Zhao, B

    2005-04-01

    A passively mode-locked soliton fiber ring laser with dispersion managed cavity is reported. The laser emits intense bunched noise-like pulses including the transform limited pulses. The optical spectrum of the laser emission has a bandwidth as broad as 32.10 nm. It was found that purely depending on the linear cavity phase delay the laser could be switched between the soliton operation and the noise-like pulse emission. Numerical simulations showed that the laser emission was caused by the combined effect of soliton collapse and positive cavity feedback in the laser. PMID:19495118

  5. Initializing a flicker-noise generator

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1986-01-01

    The behavior of the stationary process, y(s), resulting from a particular Barnes-Jarvis (1971) flicker-noise generator filter initialization is analyzed along with that of the usual output, y(p), and the results are compared to those derived from the theory of true nonstationary flicker noise. A computer simulation and theoretical analysis indicates that though y(s) and y(p) two-sample variances are almost the same, they have significantly different time-interval errors (TIE). As time increases, up to the useful life of the generator output, more and more of the y(s) TIE is found to be due to the transient part.

  6. Photon bunching and the photon-noise-limited performance of infrared detectors

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.

    1982-01-01

    The photon-noise-limited performance of a radiation detector exposed to a thermal background of temperature T is analyzed by calculating the resulting specific detectivity. Both ideal photon detectors of arbitrary quantum efficiency eta and ideal thermal detectors of arbitrary emissivity eta are considered; and the effects of both shot noise and excess noise are taken into account. The relative contributions of these two sources depend on the quantum efficiency or emissivity of the system. For frequencies nu such that hnu/kT is much less than eta, excess noise can make an appreciable contribution to the total system noise. For the case of the detection of the narrow-band radiation, the specific detectivity is independent of eta in the limit hnu/kT is much less than eta.

  7. Initial noise predictions for rudimentary landing gear

    NASA Astrophysics Data System (ADS)

    Spalart, Philippe R.; Shur, Mikhail L.; Strelets, Mikhail Kh.; Travin, Andrey K.

    2011-08-01

    A four-wheel "rudimentary" landing gear (RLG) truck was designed for public-domain research, with a level of complexity which is manageable in current numerical simulations, and a weak Reynolds-number sensitivity. Experimental measurements of wall-pressure fluctuations are allowing a meaningful test of unsteady simulations with emphasis on noise generation. We present three Detached-Eddy Simulations (DES) using up to 18 million points in the high-order NTS code. The first is incompressible with the model placed in the wind tunnel, as requested for the 2010 workshop on Benchmark problems for Airframe Noise Computations (BANC-I), intended for force and surface-pressure studies. The second and third are at Mach 0.115 and Mach 0.23, with only one wall, a "ceiling" analogous to a wing (but infinite and inviscid), and are used to exercise far-field noise prediction by coupling the Detached-Eddy Simulations and a Ffowcs-Williams/Hawkings calculation. The results include wall-pressure, and far-field-noise intensities and spectra. The wall pressure signals in the three simulations are very similar and, in a comparison published separately, agree well with experiment and other simulations. In the absence of experimental noise data, the attention is focused on internal quality checks, by varying the permeable Ffowcs-Williams/Hawkings calculation surface and then by using only the solid surface. An unexpected finding at these Mach numbers is an apparent strong role for quadrupoles, revealed by a typical deficit of 3 dB in the solid-surface results, relative to the permeable-surface results. The solid-surface approach has variants, related to the presence of the ceiling (a plane of symmetry), which can increase this error further; there is little consensus on the exact configuration of the solid surfaces in the Ffowcs-Williams/Hawkings calculation procedure. Tentative theoretical arguments suggest that a balance somewhat in favor of quadrupoles over dipoles is plausible at Mach

  8. Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser

    NASA Astrophysics Data System (ADS)

    Zhao, L. M.; Tang, D. Y.

    2006-06-01

    We report on the generation of high power superbroad spectrum bunched noise-like pulses from a passively mode-locked erbium-doped fiber ring laser without using the stretched-pulse technique. The maximum 3-dB spectral bandwidth of the noise-like pulses is about 93 nm with an energy of about 15 nJ. We further show numerically that the superbroad spectrum of the pulses is caused by the transform-limited feature of the pulses together with the Raman self-frequency shift effect.

  9. Initial Integration of Noise Prediction Tools for Acoustic Scattering Effects

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Burley, Casey L.; Tinetti, Ana; Rawls, John W.

    2008-01-01

    This effort provides an initial glimpse at NASA capabilities available in predicting the scattering of fan noise from a non-conventional aircraft configuration. The Aircraft NOise Prediction Program, Fast Scattering Code, and the Rotorcraft Noise Model were coupled to provide increased fidelity models of scattering effects on engine fan noise sources. The integration of these codes led to the identification of several keys issues entailed in applying such multi-fidelity approaches. In particular, for prediction at noise certification points, the inclusion of distributed sources leads to complications with the source semi-sphere approach. Computational resource requirements limit the use of the higher fidelity scattering code to predict radiated sound pressure levels for full scale configurations at relevant frequencies. And, the ability to more accurately represent complex shielding surfaces in current lower fidelity models is necessary for general application to scattering predictions. This initial step in determining the potential benefits/costs of these new methods over the existing capabilities illustrates a number of the issues that must be addressed in the development of next generation aircraft system noise prediction tools.

  10. Generation of Q-switched mode locking controlled rectangular noise-like soliton bunching in a Tm-doped fiber laser.

    PubMed

    Qiao, Tian; Chen, Weicheng; Lin, Wei; Yang, Zhongmin

    2016-08-01

    We report on an interesting phenomenon of the combination of Q-switched mode locked pulses (QSMLP) and rectangular noise-like pulses (RNLP) as a unit in a Tm-doped ring fiber laser which contains a Fabry-Perot (F-P) subcavity based on the nonlinear polarization evolution (NPE) technique. The RNLP and QSMLP are independently generated in the ring cavity and F-P subcavity, respectively. A notable characteristic is that the physical parameters of RNLP, e.g. repetition rate and pulse duration, are controlled by QSMLP. Thus, they form as a composite bunching, which is termed as "Q-switched mode locking controlled rectangular noise-like soliton bunching (QRNSB)". Further investigation shows that the existence of QRNSB only occurs in high pumping conditions, while both fundamental mode-locking pulses and the coexistence of QSMLP and solitons are achieved in low pumping ones. Our work can enrich the understanding of the nonlinear dynamics in fiber lasers. PMID:27505838

  11. Structure of Shocks in Burgers Turbulencewith Stable Noise Initial Data

    NASA Astrophysics Data System (ADS)

    Bertoin, Jean

    Burgers equation can be used as a simplified model for hydrodynamic turbulence. The purpose of this paper is to study the structure of the shocks for the inviscid equation in dimension 1 when the initial velocity is given by a stable Lévy noise with index α∈ (1/2,2]. We prove that Lagrangian regular points exist (i.e. there are fluid particles that have not participated in shocks at any time between 0 and t) if and only if α<= 1 and the noise is not completely asymmetric, and that otherwise the shock structure is discrete. Moreover, in the Cauchy case α= 1, we show that there are no rarefaction intervals, i.e. at time t >0$, there are fluid particles in any non-empty open interval.

  12. Rayleigh Wave Tomography of Noise-Removed Cascadia Initiative Data

    NASA Astrophysics Data System (ADS)

    Bell, S. W.; Ruan, Y.; Forsyth, D. W.

    2014-12-01

    A deployment of ocean bottom seismometers (OBSs) in the area of the Juan de Fuca and Gorda plates, the Cascadia Initiative (CI) provides a useful laboratory to probe the tectonics of ocean plates. With intermediate spreading rates, the Juan de Fuca and Gorda ridges provide a contrast with the rapidly spreading East Pacific Rise, where the MELT experiment, the only other detailed OBS study of a spreading ridge, was conducted. One key question we explore is whether migration in the hotspot reference frame drives an asymmetry in ridge structure. On the westward-migrating East Pacific Rise, more abundant seamounts and lower seismic velocities are observed on the west side. On the Juan de Fuca ridge, which is also migrating westward, a similar seamount asymmetry has been observed, and preliminary results from Rayleigh wave tomography using the first year of data suggested a corresponding low velocity anomaly. The second and third year of data from the CI will allow us to test the asymmetry of the Gorda ridge and improve the resolution of the Juan de Fuca ridge. Another key question we explore is the validity of the conductive cooling model of oceanic plates. In the MELT experiment at the East Pacific Rise, significant deviations from the conductive cooling model were found, attributed to the combined effects of melt and dehydration of the uppermost mantle. At the Juan de Fuca and Gorda ridges, we assess whether the conductive cooling model is more applicable at intermediate spreading rates. Finally, we explore whether there are any structural differences between the Juan de Fuca and Gorda plates. Unlike the Juan de Fuca ridge, there is a pronounced median valley at the Gorda axis and there is much intraplate seismicity within the deforming Gorda plate. To explore these questions, we present Rayleigh wave tomography of the Cascadia region. Because OBS data have high noise at long periods, and long periods are necessary for probing greater depths, noise complicates

  13. Muon Bunch Coalescing

    SciTech Connect

    Johnson, Rolland P; Ankenbrandt, Charles; Bhat, Chandra; Popovic, Milorad; Bogacz, Alex; Derbenev, Yaroslav

    2007-06-25

    The idea of coalescing multiple muon bunches at high energy to enhance the luminosity of a muon collider provides many advantages. It circumvents space-charge, beam loading, and wakefield problems of intense low energy bunches while restoring the synergy between muon colliders and neutrino factories based on muon storage rings. A sampling of initial conceptual design work for a coalescing ring is presented here.

  14. Improved bunch spreader modules

    SciTech Connect

    Ieiri, Takao

    1989-07-20

    In order to raise the threshold beam current of instabilities in the fixed target run, it is required to increase the longitudinal emittance, and hence the bunch length. The bunch spreader used a noise generator through a sharp-cut ban pass filter (BPF) instead of a coherent signal. In that filter, the pass band frequency was near twice the synchrotron frequency 2f/sub s/. The bandwidth of the filter was fixed between 350Hz and 600Hz, though twice the synchrotron frequency changed from 500Hz to 300Hz after transition in Main Ring. The noise through the filter is applied to an RF amplitude modulator. In the Tevatron, where the synchrotron frequency f/sub s/ varies from 120Hz to 40Hz during acceleration, the noise is applied to a phase shifter at the frequency of f/sub s/. So, we need a tunable filter which tracks 2f/sub s/ in the Main Ring and f/sub s/ in the Tevatron. This note describes details of improved bunch spreader modules using a tunable filter used in both the Main Ring and the Tevatron. A brief description about this module along with a beam test done in the Main Ring is shown. 3 refs., 6 figs.

  15. Coupled bunch motion in large size rings

    SciTech Connect

    Morton, P.L.; Ruth, R.D.; Thompson, K.A.

    1991-05-01

    The growth of the quasi-steady-state motion of the coupled bunch oscillations in storage rings has been studied by means of a normal mode analysis to determine the beam stability. In this type of analysis, the initial amplitude displacements of the bunches are first written as a sum of the normal modes of the multiple bunch system, and then the stability of each mode is determined. If the amplitude of all modes decay then the amplitude of all of the individual bunches must eventually decay, and the motion is considered stable. However, if the beat frequency between the different modes is sufficiently high, compared to the decay rate of the modes, it is possible for the amplitude of some of the bunches to grow temporarily before eventually decaying. Thus, even if all normal modes are eventually damped it is possible during the transient phase for the amplitude of several individual bunch oscillations to grow and become lost. Mathematical complications also arise from a modal analysis when there is a gap in the bunch train and the wake fields from the last bunch in the train decays before arrival of the first bunch; for this case the coupled bunch motion more nearly represents that of beam breakup phenomena observed in linacs. 2 figs.

  16. Initial Development of a Spatially Separated Speech-in-Noise and Localization Training Program

    PubMed Central

    Tyler, Richard S.; Witt, Shelley A.; Dunn, Camille C.; Wang, Wenjun

    2010-01-01

    Objective This article describes the initial development of a novel approach for training hearing-impaired listeners to improve their ability to understand speech in the presence of background noise and to also improve their ability to localize sounds. Design Most people with hearing loss, even those well fit with hearing devices, still experience significant problems understanding speech in noise. Prior research suggests that at least some subjects can experience improved speech understanding with training. However, all training systems that we are aware of have one basic, critical limitation. They do not provide spatial separation of the speech and noise, therefore ignoring the potential benefits of training binaural hearing. In this paper we describe our initial experience with a home-based training system that includes spatially separated speech-in-noise and localization training. Results Throughout the development of this system patient input, training and preliminary pilot data from individuals with bilateral cochlear implants were utilized. Positive feedback from subjective reports indicated that some individuals were engaged in the treatment, and formal testing showed benefit. Feedback and practical issues resulted from the reduction of an eight-loudspeaker to a two-loudspeaker system. Conclusions These preliminary findings suggest we have successfully developed a viable spatial hearing training system that can improve binaural hearing in noise and localization. Applications include, but are not limited to, hearing with hearing aids and cochlear implants. PMID:20701836

  17. Microbunching Instability in Velocity Bunching

    SciTech Connect

    Xiang, D; Wu, J.; /SLAC

    2009-05-26

    Microbunching instability is one of the most challenging threats to FEL performances. The most effective ways to cure the microbunching instability include suppression of the density modulation sources and suppression of the amplification process. In this paper we study the microbunching instability in velocity bunching. Our simulations show that the initial current and energy modulations are suppressed in velocity bunching process, which may be attributed to the strong plasma oscillation and Landau damping from the relatively low beam energy and large relative slice energy spread. A heating effect that may be present in a long solenoid is also preliminarily analyzed.

  18. The Tevatron bunch by bunch longitudinal dampers

    SciTech Connect

    Cheng-Yang Tan and James Steimel

    2002-09-25

    We describe in this paper the Tevatron bunch by bunch dampers. The goal of the dampers is to stop the spontaneous longitudinal beam size blowup of the protons during a store. We will go through the theory and also show the measured results during the commissioning of this system. The system is currently operational and have stopped the beam blowups during a store.

  19. Noise

    MedlinePlus

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  20. Computer modelling of bunch-by-bunch feedback for the SLAC B-factory design

    SciTech Connect

    Briggs, D.; Fox, J.D.; Hosseini, W.; Klaisner, L.; Morton, P.; Pellegrin, J.L.; Thompson, K.A. ); Lambertson, G. )

    1991-05-01

    The SLAC B-factory design, with over 1600 high current bunches circulating in each ring, will require a feedback system to avoid coupled-bunch instabilities. A computer model of the storage ring, including the RF system, wave fields, synchrotron radiation loss, and the bunch-by-bunch feedback system is presented. The feedback system model represents the performance of a fast phase detector front end (including system noise and imperfections), a digital filter used to generate a correction voltage, and a power amplifier and beam kicker system. The combined ring-feedback system model is used to study the feedback system performance required to suppress instabilities and to quantify the dynamics of the system. Results are presented which show the time development of coupled bunch instabilities and the damping action of the feedback system. 3 refs., 5 figs., 2 tabs.

  1. The Statistics of Burgers Turbulence Initialized with Fractional Brownian Noise Data

    NASA Astrophysics Data System (ADS)

    Ryan, Reade

    The statistics of the solution to the inviscid Burgers equation are investigated when the initial velocity potential is fractional Brownian motion. Using the theory of large deviations for Gaussian processes, we characterize the tails of the probability distribution functions (PDFs) of the velocity, the distance between shocks, and the shock strength. These PDFs are shown to decay like ``stretched'' exponentials of the form . Our method of proof can also be used to extend these results to a much larger class of Gaussian potentials. This work generalizes the results of Avellaneda and E [2, 3] on the inviscid Burgers equation with white-noise initial data.

  2. Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends

    SciTech Connect

    Li, Rui

    2008-02-01

    Within the realm of classical electrodynamics, the curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. As an application of this canonical formulation, in this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of the particles in the distribution is derived from the Hamiltonian of the particles in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase-space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping- induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions. Our study demonstrates clearly the time delay (or retardation) of the behavior of the effective longitudinal CSR force on a bunch in responding to the change of the bunch length in a magnetic bend. Our result also shows that the effective longitudinal CSR force for a bunch under full compression can have sensitive dependence on the transverse position of the test particle in the bunch for certain parameter regimes.

  3. ANALYSIS OF SPACE CHARGE DRIVEN MODULATION IN ELECTRON BUNCH ENERGY SPECTRA.

    SciTech Connect

    SHAFTAN,T.YU,L.H.

    2003-08-22

    As was discussed earlier [1,2] longitudinal space charge force in initially nonuniform bunch transforms density fluctuations into energy modulation along the bunch. For characterization of the resulted energy modulation one can chirp the bunch using accelerator section, located upstream of beam spectrometer, and record energy spectrum of such chirped bunch. Measured spectrum shows structure with parameters, depending on the bunch properties. In this paper we present analysis of the structure in the bunch energy spectrum and its connection with energy modulation along the bunch.

  4. Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends

    SciTech Connect

    Rui Li

    2006-01-04

    The curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. In this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of a particle in the electron distribution is derived from the Hamiltonian of the particle in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions.

  5. Bunch identification module

    SciTech Connect

    Fox, J.D.

    1981-01-01

    This module provides bunch identification and timing signals for the PEP Interaction areas. Timing information is referenced to the PEP master oscillator, and adjusted in phase as a function of region. Identification signals are generated in a manner that allows observers in all interaction regions to agree on an unambiguous bunch identity. The module provides bunch identification signals via NIM level logic, upon CAMAC command, and through LED indicators. A front panel ''region select'' switch allows the same module to be used in all regions. The module has two modes of operation: a bunch identification mode and a calibration mode. In the identification mode, signals indicate which of the three bunches of electrons and positrons are interacting, and timing information about beam crossing is provided. The calibration mode is provided to assist experimenters making time of flight measurements. In the calibration mode, three distinct gating signals are referenced to a selected bunch, allowing three timing systems to be calibrated against a common standard. Physically, the bunch identifier is constructed as a single width CAMAC module. 2 figs., 1 tab.

  6. Bunch cleaning strategies and experiments at the Advanced Photon Source.

    SciTech Connect

    Sereno, N. S.

    1999-04-15

    The Advanced Photon Source (APS) design incorporated a positron accumulator ring (PAR) as part of the injector chain. In order to increase reliability and accommodate other uses of the injector, APS will run with electrons, eliminating the need for the PAR, provided another method of eliminating rf bucket pollution in the APS is found. Satellite bunches captured from an up to 30-ns-long beam from the linac need to be removed in the injector synchrotron and storage ring. The bunch cleaning method considered here relies on driving a stripline kicker with an amplitude modulated (AM) carrier signal where the carrier is at a revolution harmonic sideband corresponding to the vertical tune. The envelope waveform is phased so that all bunches except a single target bunch (eventually to be injected into the storage ring) are resonated vertically into a scraper. The kicker is designed with a large enough shunt impedance to remove satellite bunches from the injection energy of 0.4 GeV up to 1 GeV. Satellite bunch removal in the storage ring relies on the single bunch current tune shift resulting from the machine impedance. Small bunches remaining after initial preparation in the synchrotron may be removed by driving the beam vertically into a scraper using a stripline kicker operating at a sideband corresponding to the vertical tune for small current bunches. In this paper both design specifications and bunch purity measurements are reported for both the injector synchrotron and storage ring.

  7. Micro-bunching diagnostics for the IFEL by coherent transition radiation

    SciTech Connect

    Liu, Y.; Cline, D.B.; Wang, X.J.; Babzien, M.; Fang, J.M.; Yakimenko, V.

    1996-10-01

    Here, we propose an effective method for detecting micro-bunching effects (10 fs bunch length) produced by the IFEL interaction, by measuring the CTR spectrum. The pre-bunching of an initially energy- modulated c- beam passing through a wiggler (IFEL interaction) is studied. Simulation shows that more than 40% of electrons are pre- bunched in the micro-bunches. The longitudinal distribution of an optically pre-bunched beam is Fourier analyzed to find the dominant harmonics contributing to the CTR. The CTR spectrum is calculated analytically for the IFEL situation. A detection system has been built to demonstrate this technique.

  8. Coherent synchrotron radiation and bunch stability in a compact storage ring

    NASA Astrophysics Data System (ADS)

    Venturini, Marco; Warnock, Robert; Ruth, Ronald; Ellison, James A.

    2005-01-01

    We examine the effect of the collective force due to coherent synchrotron radiation (CSR) in an electron storage ring with small bending radius. In a computation based on time-domain integration of the nonlinear Vlasov equation, we find the threshold current for a longitudinal microwave instability induced by CSR alone. The model accounts for suppression of radiation at long wavelengths due to shielding by the vacuum chamber. In a calculation just above threshold, small ripples in the charge distribution build up over a fraction of a synchrotron period, but then die out to yield a relatively smooth but altered distribution with eventual oscillations in bunch length. The instability evolves from small noise on an initial smooth bunch of rms length much greater than the shielding cutoff.

  9. A fast coherent synchrotron radiation monitor for the bunch length of the short CEBAF bunches

    NASA Astrophysics Data System (ADS)

    Wang, D. X.; Krafft, G. A.; Price, E.; Wood, P.; Porterfield, D.; Crowe, T.

    1996-04-01

    A novel bunch length monitor for short (down to subpicosecond) electron bunches has been developed in a collaboration between CEBAF and the University of Virginia (UVA), using coherent synchrotron radiation (CSR) detection techniques. The monitor employs a state of the art ``narrowband'' GaAs Schottky whisker diode developed by the UVA group, and has the following features: it is non-invasive, compact, and low cost, it has fast rise time, low noise, high sensitivity, and it operates at room temperature. In this paper, the design parameters and performance of the monitor and selected measurement results will be presented.

  10. Cooperative parametric (quasi-Cherenkov) radiation produced by electron bunches in natural or photonic crystals

    NASA Astrophysics Data System (ADS)

    Anishchenko, S. V.; Baryshevsky, V. G.

    2015-07-01

    We study the features of cooperative parametric (quasi-Cherenkov) radiation arising when initially unmodulated electron (positron) bunches pass through a crystal (natural or artificial) under the conditions of dynamical diffraction of electromagnetic waves in the presence of shot noise. A detailed numerical analysis is given for cooperative THz radiation in artificial crystals. The radiation intensity above 200 MW/cm2 is obtained in simulations. The peak intensity of cooperative radiation emitted at small and large angles to particle velocity is investigated as a function of the current density of an electron bunch. The peak radiation intensity appeared to increase monotonically until saturation is achieved. At saturation, the shot noise causes strong fluctuations in the intensity of cooperative parametric radiation. It is shown that the duration of radiation pulses can be much longer than the particle flight time through the crystal. This enables a thorough experimental investigation of the time structure of cooperative parametric radiation generated by electron bunches available with modern accelerators. The complicated time structure of cooperative parametric (quasi-Cherenkov) radiation can be observed in crystals (natural or artificial) in all spectral ranges (X-ray, optical, terahertz, and microwave).

  11. Cosmic noise absorption and ionospheric currents at the South Pole and Frobisher Bay: Initial results

    SciTech Connect

    Rosenberg, T.J. ); Wolfe, A. AT T Bell Laboratories, Murray Hill, NJ ); Lanzerotti, L.J. )

    1987-01-01

    Studies of the conjugacy of auroral and ionospheric phenomena at very high latitudes are an important aspect of magnetospheric physics research. The extent to which auroral phenomena in opposite hemispheres are similar in occurrence and in the details of their temporal, spatial, and spectral characteristics can be used to infer the commonality of the source(s) of the disturbances. At one extreme in this consideration is the questions of whether sources lie on open or closed magnetic field lines. The University of Maryland and AT T Bell Laboratories have operated riometers and fluxgate magnetometers, respectively, at South Pole since 1982. Corresponding measurements at Frobisher Bay were begun in mid-1985. Riometers record the absorption of cosmic radio noise in the ionosphere produced by the enhances precipitation of energetic charged particles. The studies of the riometer data relate mainly to the effects of the influx of magnetospheric electrons, which give rise to auroral absorption of the cosmic signals. Intense currents (electrojets) that often flow in the ionosphere in association with auroral absorption events produce magnetic field changes that can be recorded on the ground by appropriately sited magnetometers. This report presents some initial results of the comparison of the two data sets.

  12. Bunch-by-bunch feedback for PEP II

    SciTech Connect

    Oxoby, G.; Claus, R.; Eisen, N.; Fox, J.; Hindi, H.; Hoeflich, J.; Olsen, J.; Sapozhnikov, L.; Linscott, I.

    1993-01-01

    The proposed PEP II B factory at SLAC requires a feedback to damp out longitudinal synchrotron oscillations. A time domain, downsampled, bunch-by-bunch feedback system in which each bunch is treated as an oscillator being driven by disturbances from other bunches is presented as we review the evolution of the system design. Results from a synchrotron oscillation damping experiment conducted at the SLAC/SSRL/SPEAR ring are also presented in this paper.

  13. Coherent synchrotron radiation and bunch stability in a compactstorage ring

    SciTech Connect

    Venturini, Marco; Warnock, Robert; Ruth, Ronald; Ellison, James A.

    2004-04-09

    We examine the effect of the collective force due to coherent synchrotron radiation (CSR) in an electron storage ring with small bending radius. In a computation based on time-domain integration of the nonlinear Vlasov equation, we find the threshold current for a longitudinal microwave instability induced by CSR alone. The model accounts for suppression of radiation at long wave lengths due to shielding by the vacuum chamber. In a calculation just above threshold, small ripples in the charge distribution build up over a fraction of a synchrotron period, but then die out to yield a relatively smooth but altered distribution with eventual oscillations in bunch length. The instability evolves from small noise on an initial smooth bunch of r.m.s.length much greater than the shielding cutoff. The paper includes a derivation and extensive analysis of the complete impedance function Z for synchrotron radiation with parallel plate shielding. We find corrections to the lowest approximation to the coherent force which involve ''off-diagonal'' values of Z, that is, fields with phase velocity not equal to the particle velocity.

  14. Avalanche electron bunching in a Corbino disk in the quantum Hall effect breakdown regime

    NASA Astrophysics Data System (ADS)

    Chida, Kensaku; Hata, Tokuro; Arakawa, Tomonori; Matsuo, Sadashige; Nishihara, Yoshitaka; Tanaka, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2014-06-01

    We have measured the current noise in a device with Corbino geometry to investigate the dynamics of electrons in the breakdown regime of the integer quantum Hall effect (QHE). In the breakdown regime, the Fano factor of the current noise exceeds 103, which indicates the presence of electron bunching. As super-Poissonian current noise is observed only in the breakdown regime, the bunching effect is related to the QHE breakdown. These observations support a QHE breakdown mechanism that involves an electron avalanche.

  15. Tunable subpicosecond electron bunch train generation using a transverse-to-longitudinal phase space exchange technique

    SciTech Connect

    Sun, Y.-E; Piot, P.; Johnson, A.; Lumpkin, A.H.; Maxwell, T.J.; Ruan, J.; Thurman-Keup, R.; /Fermilab

    2010-11-01

    We report on the experimental generation of a train of subpicosecond electron bunches. The bunch train generation is accomplished using a beamline capable of exchanging the coordinates between the horizontal and longitudinal degrees of freedom. An initial beam consisting of a set of horizontally-separated beamlets is converted into a train of bunches temporally separated with tunable bunch duration and separation. The experiment reported in this Letter unambiguously demonstrates the conversion process and its versatility.

  16. Qubit quantum-dot sensors: Noise cancellation by coherent backaction, initial slips, and elliptical precession

    NASA Astrophysics Data System (ADS)

    Hell, M.; Wegewijs, M. R.; DiVincenzo, D. P.

    2016-01-01

    We theoretically investigate the backaction of a sensor quantum dot with strong local Coulomb repulsion on the transient dynamics of a qubit that is probed capacitively. We show that the measurement backaction induced by the noise of electron cotunneling through the sensor is surprisingly mitigated by the recently identified coherent backaction [M. Hell, M. R. Wegewijs, and D. P. DiVincenzo, Phys. Rev. B 89, 195405 (2014), 10.1103/PhysRevB.89.195405] arising from quantum fluctuations. This indicates that a sensor with quantized states may be switched off better than naively expected. This renormalization effect is missing in semiclassical stochastic fluctuator models and typically also in Born-Markov approaches, which try to avoid the calculation of the nonstationary, nonequilibrium state of the qubit plus sensor. Technically, we integrate out the current-carrying electrodes to obtain kinetic equations for the joint, nonequilibrium detector-qubit dynamics. We show that the sensor current response, level renormalization, cotunneling broadening, and leading non-Markovian corrections always appear together and cannot be turned off individually in an experiment or ignored theoretically. We analyze the backaction on the reduced qubit state—capturing the full non-Markovian effects imposed by the sensor quantum dot on the qubit—by applying a Liouville-space decomposition into quasistationary and rapidly decaying modes. Importantly, the sensor cannot be eliminated completely even in the simplest high-temperature, weak-measurement limit since the qubit state experiences an initial slip depending on the initial preparation of qubit plus sensor quantum dot. The slip persists over many qubit cycles, i.e., also on the time scale of the qubit decoherence induced by the backaction. A quantum-dot sensor can thus not be modeled as usual as a "black box" without accounting for its dynamical variables; it is part of the quantum circuit. We furthermore find that the Bloch vector

  17. Multi-bunch energy compensation in the NLC bunch compressor

    SciTech Connect

    Zimmermann, F.; Raubenheimer, T.O.; Thomson, K.A.

    1996-06-01

    The task of the NLC bunch compressor is to reduce the length of each bunch in a train of 90 bunches from 4 mm, at extraction from the damping ring, to about 100 {mu}m, suitable for injection into the X-band main linac. This task is complicated by longitudinal long-range wake fields and the multi-bunch beam loading in the various accelerating sections of the compressor. One possible approach to compensate the multi-bunch beam loading is to add two RF systems with slightly different frequencies ({prime} {Delta}f{prime} scheme) to each accelerating section, as first proposed by Kikuchi. This paper summarizes the choice of parameters for three such compensating sections, and presents simulation results of combined single- and multi-bunch dynamics for four different NLC versions. The multi-bunch energy compensation is shown to be straightforward and its performance to be satisfactory.

  18. MINI-BUNCHED AND MICRO-BUNCHED SLOW EXTRACTED BEAMS FROM THE AGS.

    SciTech Connect

    BROWN,K.A.AHRENS,L.BRENNAN,J.M.GLENN,J.W.SIVERTZ,M.KOSCIELNIAK,S.R.

    2004-07-05

    Brookhaven National Laboratory's (BNLs) Alternating Gradient Synchrotron (AGS) has a long history of providing slow extracted proton beams to fixed target experiments. This program of providing high quality high intensity beams continues with two new experiments currently being designed for operation at the AGS. Both experiments require slow extracted beam, but with an added requirement that those beams be bunched. Bunched beam slow extraction techniques have been developed for both experiments and initial tests have been performed. In this report we describe the beam requirements for the two experiments, and present results of detailed simulations and initial beam tests.

  19. Experimental Study of Airfoil Trailing Edge Noise: Instrumentation, Methodology and Initial Results. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Manley, M. B.

    1980-01-01

    The mechanisms of aerodynamic noise generation at the trailing edge of an airfoil is investigated. Instrumentation was designed, a miniature semiconductor strain-gauge pressure transducer and associated electronic amplifier circuitry were designed and tested and digital signal analysis techniques applied to gain insight into the relationship between the dynamic pressure close to the trailing edge and the sound in the acoustic far-field. Attempts are made to verify some trailing-edge noise generation characteristics as theoretically predicted by several contemporary acousticians. It is found that the noise detected in the far-field is comprised of the sum of many uncorrelated emissions radiating from the vicinity of the trailing edge. These emissions appear to be the result of acoustic energy radiation which has been converted by the trailing-edge noise mechanism from the dynamic fluid energy of independent streamwise 'strips' of the turbulent boundary layer flow.

  20. Simulation of synchrotron motion with rf noise

    SciTech Connect

    Leemann, B.T.; Forest, E.; Chattopadhyay, S.

    1986-08-01

    The theoretical formulation is described that is behind an algorithm for synchrotron phase-space tracking with rf noise and some preliminary simulation results of bunch diffusion under rf noise obtained by actual tracking.

  1. Initial Noise Assessment of an Embedded-wing-propulsion Concept Vehicle

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.

    2008-01-01

    Vehicle acoustic requirements are considered for a Cruise-Efficient Short Take-Off and Landing (CESTOL) vehicle concept using an Embedded-Wing-Propulsion (EWP) system based on a review of the literature. Successful development of such vehicles would enable more efficient use of existing airports in accommodating the anticipated growth in air traffic while at the same time reducing the noise impact on the community around the airport. A noise prediction capability for CESTOL-EWP aircraft is developed, based largely on NASA's FOOTPR code and other published methods, with new relations for high aspect ratio slot nozzles and wing shielding. The predictive model is applied to a preliminary concept developed by Boeing for NASA GRC. Significant noise reduction for such an aircraft relative to the current state-of-the-art is predicted, and technology issues are identified which should be addressed to assure that the potential of this design concept is fully achieved with minimum technical risk.

  2. Cooperative accumulation of coherent undulator radiation emitted from periodic electron bunches

    SciTech Connect

    Seo, Y. H.

    2013-01-15

    Cavity build-up of coherent undulator synchrotron radiation emitted by periodic electron bunches is investigated. At the optimal off-grazing resonance, the bunch slippage relative to the radiation pulse introduces an initial transient period during which radiation accumulates cooperatively as if it is emitted by a single bunch. The power growth during the period is quadratic to the number of bunches. The number of cooperative bunches is {approx}2 Script-Small-L {sub s}{sup 2}, where Script-Small-L {sub s} denotes the slippage length in units of the resonant wavelength.

  3. High charge short electron bunches for wakefield accelerator structures development.

    SciTech Connect

    Conde, M. E.

    1998-09-25

    The Argonne Wakefield Accelerator group develops accelerating structures based on dielectric loaded waveguides. We use high charge short electron bunches to excite wakefields in dielectric loaded structures, and a second (low charge) beam to probe the wakefields left behind by the drive beam. We report measurements of beam parameters and also initial results of the dielectric loaded accelerating structures. We have studied acceleration of the probe beam in these structures and we have also made measurements on the RF pulses that are generated by the drive beam. Single drive bunches, as well as multiple bunches separated by an integer number of RF periods have been used to generate the accelerating wakefields.

  4. Measurement of femtosecond electron bunches

    SciTech Connect

    Wang, D. X.; Krafft, G. A.; Sinclair, C. K.

    1997-06-17

    Bunch lengths as short as 84 fs (rms) have been measured at Jefferson Lab using a zero-phasing RF technique. To the best of our knowledge, this is the first accurate bunch length measurement in this regime. In this letter, an analytical approach for computing the longitudinal distribution function and bunch length is described for arbitrary longitudinal and transverse distributions. The measurement results are presented, which are in excellent agreement with numerical simulations.

  5. Determination of longitudinal bunch profile using spectral fluctuations of incoherent radiation

    SciTech Connect

    Sajaev, V.

    2000-07-05

    Single-shot spectrum measurements of the radiation emitted by an electron bunch provide a novel way to characterize the bunch shape. Shot noise fluctuations in the longitudinal beam density result in radiation with a spectrum that consists of spikes with width inversely proportional to the bunch length. The variance of the Fourier transform of the spectrum is proportional to the convolution function of the beam current averaged over many bunches. After the convolution function is found, the phase retrieval technique can be applied to recover the bunch shape. This technique has been used to analyze the shape of the 4-ps-long bunches at the Low-Energy Undulator Test Line at the Advanced Photon Source.

  6. Effect of Initial Condition on Subsonic Jet Noise from Two Rectangular Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2012-01-01

    Differences in jet noise data from two small 8:1 aspect ratio nozzles are investigated experimentally. The interiors of the two nozzles are identical but one has a thin-lip at the exit while the has a perpendicular face at the exit (thick-lip). It is found that the thin-lip nozzle is substantially noisier throughout the subsonic Mach number range. As much as 5dB difference in OASPL is noticed around Mj =0.96. Hot-wire measurements are carried out for the characteristics of the exit boundary layer and, overall, the noise difference can be ascribed to differences in the boundary layer state. The boundary layer of the quieter (thick-lip) nozzle goes through transition around M(sub j) =0.25 and at higher M(sub j) it remains "nominally turbulent". In comparison, the boundary layer of the thin-lip nozzle is found to remain "nominally laminar". at high subsonic conditions. The nominally laminar state involves significantly larger turbulence intensities commensurate with the higher radiated noise.

  7. CSR Interaction for a 2D Energy-Chirped Bunch on a General Orbit

    SciTech Connect

    Rui Li

    2009-05-01

    When an electron bunch with initial linear energy chirp traverses a bunch compression chicane, the bunch interacts with itself via coherent synchrotron radiation (CSR) and space charge force. The effective longitudinal CSR force for such kind of 2D bunch on a circular orbit has been analyzed earlier [1]. In this paper, we present the analytical results of the effective longitudinal CSR force for a 2D energy-chirped bunch going through a general orbit, which includes the entrance and exit of a circular orbit. In particular, we will show the behavior of the force in the last bend of a chicane when the bunch is under extreme compression. This is the condition when bifurcation of bunch phase space occurs in many CSR measurements. [1] R. Li, Phys. Rev. ST Accel. Beams 11, 024401 (2008)

  8. Simulation of laser wakefield acceleration of an ultrashort electron bunch.

    PubMed

    Reitsma, A J; Goloviznin, V V; Kamp, L P; Schep, T J

    2001-04-01

    The dynamics of the acceleration of a short electron bunch in a strong plasma wave excited by a laser pulse in a plasma channel is studied both analytically and numerically in slab geometry. In our simulations, a fully nonlinear, relativistic hydrodynamic description for the plasma wave is combined with particle-in-cell methods for the description of the bunch. Collective self-interactions within the bunch are fully taken into account. The existence of adiabatic invariants of motion is shown to have important implications for the final beam quality. Similar to the one-dimensional case, the natural evolution of the bunch is shown to lead, under proper initial conditions, to a minimum in the relative energy spread. PMID:11308961

  9. Initial clinical experience of an ultrasonic strain imaging system with novel noise-masking capability.

    PubMed

    Chen, L; Freeman, S J; Gee, A H; Housden, R J; Prager, R W; Sinnatamby, R; Treece, G M

    2010-08-01

    Quasistatic strain imaging is a form of elastography that can produce qualitative images of tissue stiffness with only software modifications to conventional ultrasound hardware. Unlike current commercial offerings, the novel strain-imaging system that is the subject of this paper displays regions of signal decorrelation using an overlaid colour mask and can also produce three-dimensional (3D) strain images. In illustrative studies of the breast, testis and thyroid, the colour mask is seen to reduce the potential to misinterpret noise as meaningful stiffness information, and also helps to differentiate cystic and solid lesions. High-quality imaging of the testis in vivo demonstrates that 3D strain imaging is feasible. PMID:20335426

  10. Muon Bunching and Phase-Energy Rotation for a Neutrino Factory and Muon Collider

    NASA Astrophysics Data System (ADS)

    Neuffer, David; Yoshikawa, Cary

    2008-04-01

    We have developed scenarios for capture, bunching and phase-energy rotation of muons from a proton source, using high-frequency rf systems. The method captures a maximal number of muons into a string of rf bunches with initial application in the neutrino factory design studies. For a muon collider, these bunches must be recombined for maximal luminosity, and our initial design produced a relatively long bunch train. In this paper we present more compact scenarios that obtain a smaller number of bunches, and, after some optimization, obtain cases that are better for both neutrino-factory and collider scenarios. We also consider further modification by incorporating hydrogen gas-filled rf cavities for bunching and cooling. We describe these examples and consider variations toward an optimal factory + collider scenario.

  11. Simulation of longitudinal coupled-bunch instabilities

    SciTech Connect

    Thompson, K.A.

    1991-02-07

    The purpose of this note is to document some work done as part of the effort directed at designing and simulating a bunch-by-bunch feedback system to control longitudinal coupled bunch instabilities in the B-factory. In particular, I discuss the ring model used in the simulation program developed to study this feedback system. Basically the simulation is a simple tracking program in which the rf drive voltage, the wakefields due to all the bunches, the synchrotron radiation losses, and the kicks applied to the bunches by the bunch-by-bunch feedback are all modelled as voltages applied at a single, discrete point in the ring. The computation of the bunch-by-bunch feedback voltages may of course be done by any desired algorithms. An example and discussion of the general behavior without bunch-by-bunch feedback is given at the end of this report.

  12. Dechirper wakefields for short bunches

    NASA Astrophysics Data System (ADS)

    Bane, Karl; Stupakov, Gennady

    2016-06-01

    In previous work (Bane and Stupakov, 2015 [1]) general expressions, valid for arbitrary bunch lengths, were derived for the wakefields of corrugated structures with flat geometry, such as is used in the RadiaBeam/LCLS dechirper. However, the bunch at the end of linac-based X-ray FELs-like the LCLS-is extremely short, and for short bunches the wakes can be considerably simplified. In this work, we first derive analytical approximations to the short-range wakes. These are generalized wakes, in the sense that their validity is not limited to a small neighborhood of the symmetry axis, but rather extends to arbitrary transverse offsets of driving and test particles. The validity of these short-bunch wakes holds not only for the corrugated structure, but rather for any flat structure whose beam-cavity interaction can be described by a surface impedance. We use these wakes to obtain, for a short bunch passing through a dechirper: estimates of the energy loss as function of gap, the transverse kick as a function of beam offset, the slice energy spread increase, and the emittance growth. In the Appendix, a more accurate derivation-than that is found in Bane and Stupakov (2015) [1]-of the arbitrary bunch length wakes is performed; we find full agreement with the earlier results, provided the bunches are short compared to the dechirper gap, which is normally the regime of interest.

  13. Overview of bunch length measurements.

    SciTech Connect

    Lumpkin, A. H.

    1999-02-19

    An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed.

  14. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    SciTech Connect

    BLASKIEWICZ, M.

    2005-05-16

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  15. Longitudinal Bunch Dynamics in the Tevatron

    SciTech Connect

    R. Moore et al.

    2003-06-02

    The authors present their observations of the longitudinal bunch dynamics in Tevatron for uncoalesced proton bunches at 150 GeV and coalesced proton bunches at 150 GeV and 980 GeV. They have observed long-term (> 15 minutes) coherent oscillations of uncoalesced protons that preserve already existing oscillations from upstream accelerators. A single-bunch instability in large intensity protons bunches at 980 GeV has also been observed.

  16. LHC Beam Diffusion Dependence on RF Noise: Models And Measurements

    SciTech Connect

    Mastorides, T.; Rivetta, C.; Fox, J.D.; Van Winkle, D.; Baudrenghien, P.; Butterworth, A.; Molendijk, J.; /CERN

    2010-09-14

    Radio Frequency (RF) accelerating system noise and non-idealities can have detrimental impact on the LHC performance through longitudinal motion and longitudinal emittance growth. A theoretical formalism has been developed to relate the beam and RF loop dynamics with the bunch length growth [1]. Measurements were conducted at LHC to validate the formalism, determine the performance limiting RF components, and provide the foundation for beam diffusion estimates for higher energies and intensities. A brief summary of these results is presented in this work. During a long store, the relation between the energy lost to synchrotron radiation and the noise injected to the beam by the RF accelerating voltage determines the growth of the bunch energy spread and longitudinal emittance. Since the proton synchrotron radiation in the LHC is very low, the beam diffusion is extremely sensitive to RF perturbations. The theoretical formalism presented in [1], suggests that the noise experienced by the beam depends on the cavity phase noise power spectrum, filtered by the beam transfer function, and aliased due to the periodic sampling of the accelerating voltage signal V{sub c}. Additionally, the dependence of the RF accelerating cavity noise spectrum on the Low Level RF (LLRF) configurations has been predicted using time-domain simulations and models [2]. In this work, initial measurements at the LHC supporting the above theoretical formalism and simulation predictions are presented.

  17. A Value-Engaged Approach for Evaluating the Bunche-Da Vinci Learning Academy

    ERIC Educational Resources Information Center

    Greene, Jennifer C.

    2005-01-01

    In 2001, the Bunche Academy was chosen by its district to join in partnership with the Da Vinci Learning Corporation to embark on an ambitious whole-school reform initiative, especially designed by the corporation for low-performing schools. In this chapter, the author describes how, as illustrated in the Bunche-Da Vinci Learning Academy context,…

  18. Step Bunching: Influence of Impurities and Solution Flow

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.; Vekilov, P. G.; Coriell, S. R.; Murray, B. T.; McFadden, G. B.

    1999-01-01

    Step bunching results in striations even at relatively early stages of its development and in inclusions of mother liquor at the later stages. Therefore, eliminating step bunching is crucial for high crystal perfection. At least 5 major effects causing and influencing step bunching are known: (1) Basic morphological instability of stepped interfaces. It is caused by concentration gradient in the solution normal to the face and by the redistribution of solute tangentially to the interface which redistribution enhances occasional perturbations in step density due to various types of noise; (2) Aggravation of the above basic instability by solution flowing tangentially to the face in the same directions as the steps or stabilization of equidistant step train if these flows are antiparallel; (3) Enhanced bunching at supersaturation where step velocity v increases with relative supersaturation s much faster than linear. This v(s) dependence is believed to be associated with impurities. The impurities of which adsorption time is comparable with the time needed to deposit one lattice layer may also be responsible for bunching; (4) Very intensive solution flow stabilizes growing interface even at parallel solution and step flows; (5) Macrosteps were observed to nucleate at crystal corners and edges. Numerical simulation, assuming step-step interactions via surface diffusion also show that step bunching may be induced by random step nucleation at the facet edge and by discontinuity in the step density (a ridge) somewhere in the middle of a face. The corresponding bunching patterns produce the ones observed in experiment. The nature of step bunching generated at the corners and edges and by dislocation step sources, as well as the also relative importance and interrelations between mechanisms 1-5 is not clear, both from experimental and theoretical standpoints. Furthermore, several laws controlling the evolution of existing step bunches have been suggested, though

  19. Use beam steering dipoles to minimize aberrations associated with off-centered transit through the induction bunching module. Design an improved NDCX-I drift compression section to make best use of the new bunching module to optimize planned initial NDCX-I target experiments

    SciTech Connect

    HIFS-VNL; Seidl, Peter; Seidl, P.; Barnard, J.; Bieniosek, F.; Coleman, J.; Grote, D.; Leitner, M.; Gilson, E.; Logan, B.G.; Lund, S.; Lidia, S.; Ni, P.; Ogata, D.; Roy, P.; Waldron, W.; Welch, D.; Wooton, C.

    2008-03-28

    This milestone has been met by: (1) calculating steering solutions and implementing them in the experiment using the three pairs of crossed magnetic dipoles installed in between the matching solenoids, S1-S4. We have demonstrated the ability to center the beam position and angle to<1 mm and<1 mrad upstream of the induction bunching module (IBM) gap, compared to uncorrected beam offsets of several millimeters and milli-radians. (2) Based on LSP and analytic study, the new IBM, which has twice the volt-seconds of our first IBM, should be accompanied by a longer drift compression section in order to achieve a predicted doubling of the energy deposition on future warm-dense matter targets. This will be accomplished by constructing a longer ferro-electric plasma source. (3) Because the bunched current is a function of the longitudinal phase space and emittance of the beam entering the IBM we have characterized the longitudinal phase space with a high-resolution energy analyzer.

  20. Bunch Pattern With More Bunches in PEP-II

    SciTech Connect

    Colocho, W.S.; Decker, F.-J.; Novokhatski, A.; Sullivan, M.K.; Wienands, U.; /SLAC

    2005-05-09

    The number of bunches in the PEP-II B-Factory has increased over the years. The luminosity has followed roughly linearly that increase or even faster since we have also lowered the spot size at the interaction point. The recent steps from 939 bunches in June of 2003 to about 1320 in February 2004 (and 1585 in May) should have been followed by a similar rise in luminosity from 6.5 {center_dot} 10{sup 33} l/cm{sup 2} {center_dot} 1/s to 9.1 {center_dot} 10{sup 33} 1/cm{sup 2} {center_dot} 1/s (or even 11 {center_dot} 10{sup 33} 1/cm{sup 2} {center_dot} 1/s in May). This didn't happen so far and a peak luminosity of ''only'' 7.3 {center_dot} 10{sup 33} 1/cm{sup 2} {center_dot} 1/s (or 9.2 {center_dot} 10{sup 33} 1/cm{sup 2} {center_dot} 1/s in May) was achieved with less bunch currents. By filling the then partially filled by-3 pattern to a completely filled by-3 pattern (1133 bunches) we should get 7.9 {center_dot} 10{sup 33} 1/cm{sup 2} {center_dot} 1/s with scaled currents of 1400 mA (HER) on 1900 mA (LER). We were typically running about 1300 mA on 1900 mA with 15% more bunches in February (and 1550 mA on 2450 mA with 40% more bunches in May). The bunch pattern is typically by-2 with trains of 14 bunches out of 18 (or 67 out of 72). The parasitic beam crossings or electron cloud effects might play a role at about a 5-10% luminosity loss. Also the LER x-tune could be pushed further down to the 1/2 integer in the by-3 pattern. On the other hand, we might not push the beam-beam tune shift as hard as in June of 2003 since we have started trickle injection and therefore might avoid the highest peak luminosity which probably has a higher background.

  1. End-to-end simulation of bunch merging for a muon collider

    SciTech Connect

    Bao, Yu; Stratakis, Diktys; Hanson, Gail G.; Palmer, Robert B.

    2015-05-03

    Muon accelerator beams are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. Efficient muon capture requires the muons to be first phase-rotated by rf cavities into a train of 21 bunches with much reduced energy spread. Since luminosity is proportional to the square of the number of muons per bunch, it is crucial for a Muon Collider to use relatively few bunches with many muons per bunch. In this paper we will describe a bunch merging scheme that should achieve this goal. We present for the first time a complete end-to-end simulation of a 6D bunch merger for a Muon Collider. The 21 bunches arising from the phase-rotator, after some initial cooling, are merged in longitudinal phase space into seven bunches, which then go through seven paths with different lengths and reach the final collecting "funnel" at the same time. The final single bunch has a transverse and a longitudinal emittance that matches well with the subsequent 6D rectilinear cooling scheme.

  2. Single-bunch kicker pulser

    SciTech Connect

    Frey, W.W.

    1983-01-01

    The single-bunch kicker magnet is powered by a capacitor discharge pulser. The ferrite-core magnet is used to kick out one of twelve proton bunches circulating in the AGS (Alternating Gradient Synchrotron) into the experimental area. The magnet current pulse has a half-sinusoid shape, with a peak current of 2800 A. The pulse current rises and falls to zero, with minimum undershoot, in 410 nsec to minimize effects on adjacent bunches. The magnet inductance is 1.0 ..mu..Hy. The pulser is mounted on the kicker magnet in the AGS ring, and is exposed to ionizing radiation. The HVDC power supply, controls, monitoring, and auxiliary circuits are housed approximately 300 feet away external to the ring. A two-gap thyratron is used to discharge the energy storage capacitor. Two hydrogen diodes are series connected to function as an inverse diode.

  3. Bunch coalescing and bunch rotation in the Fermilab Main Ring: Operational experience and comparison with simulations

    SciTech Connect

    Martin, P.S.; Wildman, D.W.

    1988-07-01

    The Fermilab Tevatron I proton-antiproton collider project requires that the Fermilab Main Ring produce intense bunches of protons and antiprotons for injection into the Tevatron. The process of coalescing a small number of harmonic number h=1113 bunches into a single bunch by bunch-rotating in a lower harmonic rf system is described.The Main Ring is also required to extract onto the antiproton production target bunches with as narrow a time spread as possible. This operation is also discussed. The operation of the bunch coalescing and bunch rotation are compared with simulations using the computer program ESME. 2 refs., 8 figs.

  4. Design and Testing of Gproto Bunch-by-bunch Signal Processor

    SciTech Connect

    Teytelman, D.; Rivetta, C.; Van Winkle, D.; Akre, R.; Fox, J.; Krasnykh, A.; Drago, A.; /Frascati

    2006-07-18

    A prototype programmable bunch-by-bunch signal acquisition and processing channel with multiple applications in storage rings has been developed at SLAC. The processing channel supports up to 5120 bunches with bunch spacings as close as 1.9 ns. The prototype has been tested and operated in five storage rings: SPEAR-3, DAINE, PEP-II, KEKB, and ATF damping ring. The testing included such applications as transverse and longitudinal coupled-bunch instability control, bunch-by-bunch luminosity monitoring, and injection diagnostic. In this contribution the prototype design will be described and its operation will be illustrated with the data measured at the above-mentioned accelerators.

  5. A bunch killer for the NSLS x-ray electron storage ring

    SciTech Connect

    Nawrocky, R.J.; Bergmann, U.; Siddons, D.P.

    1993-07-01

    In the NSLS x-ray electron storage ring, which operates at a harmonic number of 30, the beam may be stored in many different bunch patterns. The minimum spacing between bunches is approximately 19 nsec. While most of the experimenters are primarily interested in photon flux, some experiments are sensitive to bunch spacing. Time resolved nuclear resonance scattering experiments, for example, need pulses of x-rays spaced of the order of 100 nsec apart and a very low noise floor (10{sup {minus}6}) between pulses. Perhaps even more important than the level of the background is that it be reproducible and homogeneous in time. It has been found in practice that a small number of electrons always get trapped in the ``empty`` rf buckets during injection into the storage ring and remain as low level stray bunches. These extra bunches produce an unacceptable temporally localized, non-reproducible background which is difficult if not impossible to correct for. A ``bunch killer`` system based on the rf knockout technique has been developed and installed on the ring to remove the unwanted bunches. The authors describe the operation of this system and present experimental results to illustrate its effectiveness.

  6. Turn-by-Turn and Bunch-by-Bunch Transverse Profiles of a Single Bunch in a Full Ring

    SciTech Connect

    Kraus, R.; Fisher, A.S.; /SLAC

    2005-12-15

    The apparatus described in this paper can image the evolution of the transverse profile of a single bunch, isolated from a full PEP-II ring of 1500 bunches. Using this apparatus there are two methods of single bunch imaging; bunch-by-bunch beam profiling can image every bunch in the ring a single bunch at a time with the images of sequential bunches being in order, allowing one to see variations in beam size along a train. Turn-by-turn beam profiling images a single bunch on each successive turn it makes around the ring. This method will be useful in determining the effect that an injected bunch has on a stable bunch as the oscillations of the injected bunch damp out. Turn-by-turn imaging of the synchrotron light uses a system of lenses and mirrors to image many turns of both the major and minor axis of a single bunch across the photocathode of a gateable camera. The bunch-by-bunch method is simpler: because of a focusing mirror used in porting the light from the ring, the synchrotron light from the orbiting electrons becomes an image at a certain distance from the mirror; and since the camera does not use a lens, the photocathode is set exactly at this image distance. Bunch-by-bunch profiling has shown that in the Low Energy Ring (LER) horizontal bunch size decreases along a train. Turn-by-turn profiling has been able to image 100 turns of a single bunch on one exposure of the camera. The turn-by-turn setup has also been able to image 50 turns of the minor axis showing part of the damping process of an oscillating injected charge during a LER fill. The goal is to image the damping of oscillations of injected charge for 100 turns of both the major and minor axis throughout the damping process during trickle injection. With some changes to the apparatus this goal is within reach and will make turn-by-turn imaging a very useful tool in beam diagnostics.

  7. CSR instability in a Bunch Compressor

    NASA Astrophysics Data System (ADS)

    Stupakov, G. V.

    2002-03-01

    The coherent synchrotron radiation of a bunch in a bunch compressor may lead to the microwave instability producing longitudinal modulation of the bunch with wavelengths small compared to the bunch length. It can also be a source of an undesirable emittance growth in the compressor. We derive and analyze the equation that describes linear evolution of the microwave modulation taking into account incoherent energy spread and nite emittance of the beam. Numerical solution of this equatierenton for the LCLS (Linac Coherent Light Source) bunch compressor gives the amplication factor for different wavelengths of the beam microbunching.

  8. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    SciTech Connect

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  9. Effect of higher harmonic control on helicopter rotor blade-vortex interaction noise: Prediction and initial validation

    NASA Technical Reports Server (NTRS)

    Beaumier, P.; Prieur, J.; Rahier, G.; Spiegel, P.; Demargne, A.; Tung, C.; Gallman, J. M.; Yu, Y. H.; Kube, R.; Vanderwall, B. G.

    1995-01-01

    The paper presents a status of theoretical tools of AFDD, DLR, NASA and ONERA for prediction of the effect of HHC on helicopter main rotor BVI noise. Aeroacoustic predictions from the four research centers, concerning a wind tunnel simulation of a typical descent flight case without and with HHC are presented and compared. The results include blade deformation, geometry of interacting vortices, sectional loads and noise. Acoustic predictions are compared to experimental data. An analysis of the results provides a first insight of the mechanisms by which HHC may affect BVI noise.

  10. A compact source for bunches of singly charged atomic ions

    NASA Astrophysics Data System (ADS)

    Murböck, T.; Schmidt, S.; Andelkovic, Z.; Birkl, G.; Nörtershäuser, W.; Vogel, M.

    2016-04-01

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 106 Mg+ ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg+ ions for sympathetic cooling of highly charged ions by laser-cooled 24Mg+.

  11. Bunch lengthening in the SLC damping ring

    SciTech Connect

    Rivkin, L.; Bane, K.; Chen, P.; Gabella, W.; Higo, T.; Hofmann, A.; Linebarger, W.; Kheifets, S.; Knight, T.; Morton, P.

    1988-05-01

    In this paper we present the results of measurements of bunch length and bunch shape as a function of current in the SLC e/sup /minus//damping ring. After extraction, the SLC bunch is compressed by means of an RF compressor and a subsequent high dispersion section. By inserting a video screen at a point of large dispersion and by using the correlation between bunch length and energy spread induced by the compressor, we have measured not only the bunch length but also the longitudinal charge distribution of the bunch in the damping ring as a function of beam intensity. At 3 /times/ 10/sup 10/ particles per bunch with a peak ring RF voltage of 800 KV, the FWHM of the bunch length in the ring doubles over the nominal value. To measure the energy spread of the bunch in the damping ring, the optics of the extraction lines was modified to produce a large dispersion but small horizontal ..beta.. function at the video screen. At 3 /times/ 10/sup 10/ particles per bunch, the relative energy spread in the rings is increased by about 30%. Finally, these data are compared with calculations of bunch lengthening in the SLC damping rings. 8 refs., 6 figs.,

  12. RHIC experiments: Effect of bunch size and bunch spacing

    SciTech Connect

    Willis, W.; Ludlam, T.

    1988-01-01

    In designing experiments for a colliding beams facility the size of the interaction diamond is an important practical matter. The place where the beam particles collide--the source from which detected secondary particles radiate--is not a point but a line of some length. The bunch length grows due to intrabeam scattering, with sigma/sub D/ approaching 1 meter after 10 hours of storage time. The proposed scenario allowed smaller diamond lengths to be achieved with non-zero crossing angle, with a corresponding decrease in luminosity. Since that time the RHIC detector workshops have provided a more specific and quantitative assessment of the need for small interaction diamond. Among the highest priority experiments in the RHIC program are those which measure lepton pairs, and here each of two complementary experiments finds the bunch length to be critical. These experiments are discussed briefly. 3 refs., 2 figs.

  13. Operational experience with nanocoulomb bunch charges in the Cornell photoinjector

    NASA Astrophysics Data System (ADS)

    Bartnik, Adam; Gulliford, Colwyn; Bazarov, Ivan; Cultera, Luca; Dunham, Bruce

    2015-08-01

    Characterization of 9-9.5 MeV electron beams produced in the dc-gun based Cornell photoinjector is given for bunch charges ranging from 20 pC to 2 nC. Comparison of the measured emittances and longitudinal current profiles to optimized 3D space charge simulations yields excellent agreement for bunch charges up to 1 nC when the measured laser distribution is used to generate initial particle distributions in simulation. Analysis of the scaling of the measured emittance with bunch charge shows that the emittance scales roughly as the square root of the bunch charge up to 300 pC, above which the trend becomes linear. These measurements demonstrate that the Cornell photoinjector can produce cathode emittance dominated beams meeting the emittance and peak current specifications for next generation free electron lasers operating at high repetition rate. In addition, the 1 and 2 nC results are relevant to the electron ion collider community.

  14. Characterization of pseudosingle bunch kick-and-cancel operational mode

    NASA Astrophysics Data System (ADS)

    Sun, C.; Robin, D. S.; Steier, C.; Portmann, G.

    2015-12-01

    Pseudosingle-bunch kick-and-cancel (PSB-KAC) is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments and drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.

  15. Generation of quasimonoenergetic electron bunches with 80-fs laser pulses.

    PubMed

    Hidding, B; Amthor, K-U; Liesfeld, B; Schwoerer, H; Karsch, S; Geissler, M; Veisz, L; Schmid, K; Gallacher, J G; Jamison, S P; Jaroszynski, D; Pretzler, G; Sauerbrey, R

    2006-03-17

    Highly collimated, quasimonoenergetic multi-MeV electron bunches were generated by the interaction of tightly focused, 80-fs laser pulses in a high-pressure gas jet. These monoenergetic bunches are characteristic of wakefield acceleration in the highly nonlinear wave breaking regime, which was previously thought to be accessible only by much shorter laser pulses in thinner plasmas. In our experiment, the initially long laser pulse was modified in underdense plasma to match the necessary conditions. This picture is confirmed by semianalytical scaling laws and 3D particle-in-cell simulations. Our results show that laser-plasma interaction can drive itself towards this type of laser wakefield acceleration even if the initial laser and plasma parameters are outside the required regime. PMID:16605744

  16. Electron cloud wakefields in bunch trains

    NASA Astrophysics Data System (ADS)

    Petrov, F. B.; Boine-Frankenheim, Oliver

    2016-02-01

    Electron cloud is a concern for many modern and future accelerator facilities. There are a number of undesired effects attributed to the presence of electron clouds. Among them are coherent instabilities, emittance growth, cryogenic heat load, synchronous phase shift and pressure rise. In long bunch trains one can observe the emittance growth getting faster along the bunch train. The interaction between the beam and the electron cloud is a two-stream interaction. The prameters of the electron cloud wakefields depend on the beam intensity, beam centroid perturbations, and on the electron density and perturbations. If the electron cloud forgets the bunch centroid perturbation very fast, the buildup itself, via growing density, becomes a way of coupling between the bunches. In the present paper we address how the bunch perturbation shape affects the multi-bunch wakefields under the conditions similar to the CERN LHC and SPS. We study the interplay between the single-bunch and multi-bunch electron cloud wakefields. The effect of the dipole magnetic field on the multi-bunch wakefields is studied.

  17. Analysis on Achieving a Minimum Bunch Length in LCLS Bunch Compressor One

    SciTech Connect

    Sun, Yipeng; Huang, Zhirong; Ding, Yuantao; Wu, Juhao; ,

    2011-08-19

    An ultra-short bunch is required by different applications in many aspects. In this paper, the condition to achieve a minimum bunch length at the Linac Coherent Light Source (LCLS) [1] bunch compressor one (BC1) is analyzed analytically and evaluated by simulation. The space charge, wake field and coherent synchrotron radiation (CSR) effects are not discussed here.

  18. Klystron beam-bunching lecture

    SciTech Connect

    Carlsten, B.

    1996-10-01

    Electron beam current modulation in a klystron is the key phenomenon that accounts for klystron gain and rf power generation. Current modulation results from the beams` interaction with the rf fields in a cavity, and in turn is responsible for driving modulation in the next rf cavity. To understand the impact of the current modulation in a klystron, we have to understand both the mechanism leading to the generation of the current modulation and the interaction of a current-modulated electron beam with an rf cavity. The cavity interaction is subtle, because the fields in the cavity modify the bunching of the beam within the cavity itself (usually very dramatically). We will establish the necessary formalism to understand klystron bunching phenomena which can be used to describe rf accelerator cavity/beam interactions. This formalism is strictly steady-state; no transient behavior will be considered. In particular, we will discuss the following: general description of klystron operation; beam harmonic current; how beam velocity modulation induced by an rf cavity leads to current modulation in both the ballistic and space-charge dominated regimes; use of Ramo`s theorem to define the power transfer between a bunched electron beam and the cavity; general cavity model with external coupling (including an external generator if needed), used to describe the input cavity, idler cavities, and the output cavity, including the definition of beam loaded-cavity impedance. Although all these are conceptually straight-forward, they represent a fair amount of physics, and to derive some elements of the formalism from first principles requires excessive steps. Our approach will be to present a self-consistent set of equations to provide a mechanism that leads to a quantifiable description of klystron behavior; derivations for moderately complex formulas will be outlined, and a relatively complex derivation of the self-consistent set of equations can be found in the Appendix. 6 figs.

  19. A hybrid approach for generating ultra-short bunches for advanced accelerator applications

    SciTech Connect

    Stratakis, Diktys

    2015-09-01

    Generation of electron beams with high phase-space density, short bunch length and high peak current is an essential requirement for future linear colliders and bright electron beam sources. Unfortunately, such bunches cannot be produced directly from the source since forces from the mutual repulsion of electrons would destroy the brilliance of the beam within a short distance. Here, we detail a beam dynamics study of an innovative two-stage compression scheme that can generate ultra-short bunches without degrading the beam quality. In the first stage, the beam is compressed with an advanced velocity bunching technique in which the longitudinal phase space is rotated so that electrons on the bunch tail become faster than electrons in the bunch head. In the second stage, the beam is further compressed with a conventional magnetic chicane. With the aid of numerical simulations we show that our two-staged scheme is capable to increase the current of a 50 pC bunch to a notable factor of 100 while the emittance growth can be suppressed to 1% with appropriate tailoring of the initial beam distribution.

  20. A hybrid approach for generating ultra-short bunches for advanced accelerator applications

    NASA Astrophysics Data System (ADS)

    Stratakis, Diktys

    2016-06-01

    Generation of electron beams with high phase-space density, short bunch length and high peak current is an essential requirement for future linear colliders and bright electron beam sources. Unfortunately, such bunches cannot be produced directly from the source since forces from the mutual repulsion of electrons would destroy the brilliance of the beam within a short distance. Here, we detail a beam dynamics study of a two-stage compression scheme that can generate ultra-short bunches without degrading the beam quality. In the first stage, a magnetized beam is compressed with a velocity bunching technique in which the longitudinal phase space is rotated so that electrons on the bunch tail become faster than electrons in the bunch head. In the second stage, the beam is further compressed with a magnetic chicane. With the aid of numerical simulations we show that our two-staged scheme is capable to increase the current of a 50 pC bunch by a notable factor of 100 (from 15 A to 1.5 kA) while the emittance growth can be suppressed to 1% with appropriate tailoring of the initial beam distribution.

  1. Growth of Quantum Wires on Step-Bunched Substrate

    SciTech Connect

    Liu, Feng

    2005-02-01

    This proposal initiates a combined theoretical and experimental multidisciplinary research effort to explore a novel approach for growing metallic and magnetic nanowires on step-bunched semiconductor and dielectric substrates, and to lay the groundwork for understanding the growth mechanisms and the electronic, electrical, and magnetic properties of metallic and magnetic nanowires. The research will focus on four topics: (1) fundamental studies of step bunching and self-organization in a strained thin film for creating step-bunched substrates. (2) Interaction between metal adatoms (Al,Cu, and Ni) and semiconductor (Si and SiGe) and dielectric (CaF2) surface steps. (3) growth and characterization of metallic and magnetic nanowires on step-bunched templates. (4) fabrication of superlattices of nanowires by growing multilayer films. We propose to attack these problems at both a microscopic and macroscopic level, using state-of-the-art theoretical and experimental techniques. Multiscale (electronic-atomic-continuum) theories will be applied to investigate growth mechanisms of nanowires: mesoscopic modeling and simulation of step flow growth of strained thin films, in particular, step bunching and self-organization will be carried out within the framework of continuum linear elastic theory; atomistic calculation of interaction between metal adatoms and semiconductor and dielectric surface steps will be done by large-scale computations using first-principles total-energy methods. In parallel, thin films and nanowires will be grown by molecular beam epitaxy (MBE), and the resultant structure and morphology will be characterized at the atomic level up to micrometer range, using a combination of different surface/interface probes, including scanning tunneling microscopy (STM, atomic resolution), atomic force microscopy (AFM, nanometer resolution), low-energy electron microscopy (LEEM, micrometer resolution), reflectance high-energy electron diffraction (RHEED), and x

  2. Step Bunch Evolution on Vicinal Faces of KDP

    NASA Technical Reports Server (NTRS)

    Booth, N. A.; Chernov, A. A.; Vekilov, P. G.

    2003-01-01

    For in-situ studies of the formation and evolution of step patterns in solution growth, we have assembled an experimental setup based on Michelson interferometry with the growing crystal surface as one of the reflective surfaces. The device allows data collection over a relatively large area (approximately 4 sq. mm) in situ and in real time during growth. The depth resolution is improved over traditional interferometry using phase-shifted images combining by a suitable algorithm. We achieve a depth resolution of approximately 50 Angstroms. Lateral resolution, dependent on the degree of magnification, is around 0.3 to 5 microns. The crystal chosen as a model in this work is potassium dihydrogen phosphate (KDP), the optically non-linear material widely used in frequency doubling applications. Kinetics of KDP crystallization is well studied so that KDP can serve as a benchmark for our investigations. We present quantitative results on the onset, initial stages and development of instabilities in moving step trains on vicinal crystal surfaces at varying supersaturation, flow rate, and flow direction. The kinetics data suggest that at low supersaturations, step bunching is caused by impurity retardation of the steps, while at higher supersaturations, we link the non-linearity during growth to interdependence of the velocity and density of the steps evidenced in independent experiments. The behavior on the surface is very dynamic, small bunches both merge and split from larger bunches as they travel across the facet. We present evidence that despite these dynamics, under steady conditions there exists a limiting value to step bunch height. This height is reached at distances between 600 and 1000 microns from the step source. In our experiments, we observed the retention of this step bunch height limit up to the path of 1500 microns.

  3. Booster's coupled bunch damper upgrade

    SciTech Connect

    William A. Pellico and D. W. Wildman

    2003-08-14

    A new narrowband active damping system for longitudinal coupled bunch (CB) modes in the Fermilab Booster has recently been installed and tested. In the past, the Booster active damper system consisted of four independent front-ends. The summed output was distributed to the 18, h=84 RF accelerating cavities via the RF fan-out system. There were several problems using the normal fan-out system to deliver the longitudinal feedback RF. The high power RF amplifiers normally operate from 37 MHz to 53 MHz whereas the dampers operate around 83MHz. Daily variations in the tuning of the RF stations created tuning problems for the longitudinal damper system. The solution was to build a dedicated narrowband, Q {approx} 10, 83MHz cavity powered with a new 3.5kW solid-state amplifier. The cavity was installed in June 2002 and testing of the amplifier and damper front-end began in August 2002. A significant improvement has been made in both operational stability and high intensity beam damping. At present there are five CB modes being damped and a sixth mode module is being built. The new damper hardware is described and data showing the suppression of the coupled-bunch motion at high intensity is presented.

  4. Studies of space-charge effects in ultrashort electron bunches

    SciTech Connect

    Fubiani, Gwenael; Leemans, Wim; Esarey, Eric

    2000-06-01

    Laser-driven plasma-based accelerators are capable of producing ultrashort electron bunches in which the longitudinal size is much smaller than the transverse size. We present theoretical studies of the transport of such electron bunches in vacuum. Space charge forces acting on the bunch are calculated using an ellipsoidal bunch shape model. The effects of space charge forces and energy spread on longitudinal and transverse bunch properties are evaluated for various bunch lengths energies and amount of charge.

  5. Bunch Coalescing in a Helical Channel

    SciTech Connect

    Neuffer, D.V.; Yonehara, K.; Ankenbrandt, C.M.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01

    A high-luminosity Muon Collider requires bunch recombination for optimal luminosity. In this paper, we take advantage of the large slip factor attainable in a helical transport channel (HTC) to coalesce bunches of muons into a single one over a shorter distance than can be achieved over a straight channel.

  6. Tolerances of TTF-2 First Bunch Compressor

    SciTech Connect

    Emma, Paul J

    2003-08-08

    In bunch compressors for SASE-FEL facilities, the projected transverse emittance can be diluted by magnetic multipole component errors in dipoles and dipole misalignments as well as by coherent synchrotron radiation (CSR). In this paper, we describe the multipole field tolerances and the misalignment tolerances of the first bunch compressor (BC2) for the TESLA Test Facility Phase-2 (TTF-2).

  7. Bunch length measurements using synchrotron ligth monitor

    SciTech Connect

    Ahmad, Mahmoud; Tiefenback, Michael G.

    2015-09-01

    The bunch length is measured at CEBAF using an invasive technique. The technique depends on applying an energy chirp for the electron bunch and imaging it through a dispersive region. The measurements are taken through Arc1 and Arc2 at CEBAF. The fundamental equations, procedure and the latest results are given.

  8. THz radiation as a bunch diagnostic forlaser-wakefield-accelerated electron bunches

    SciTech Connect

    van Tilborg, J.; Schroeder, C.B.; Filip, C.V.; Toth, Cs.; Geddes,C.G.R.; Fubiani, G.; Esarey, E.; Leemans, W.P.

    2006-02-15

    Experimental results are reported from two measurementtechniques (semiconductor switching and electro-optic sampling) thatallow temporal characterization of electron bunches produced by alaser-driven plasma-based accelerator. As femtosecond electron bunchesexit the plasma-vacuum interface, coherent transition radiation (at THzfrequencies) is emitted. Measuring the properties of this radiationallows characterization of the electron bunches. Theoretical work on theemission mechanism is represented, including a model that calculates theTHz waveform from a given bunch profile. It is found that the spectrum ofthe THz pulse is coherent up to the 200 mu m thick crystal (ZnTe)detection limit of 4 THz, which corresponds to the production of sub-50fs (root-mean-square) electron bunch structure. The measurementsdemonstrate both the shot-to-shot stability of bunch parameters that arecritical to THz emission (such as total charge and bunch length), as wellas femtosecond synchrotron between bunch, THz pulse, and laserbeam.

  9. Generation of attosecond electron bunches in a laser-plasma accelerator using a plasma density upramp

    NASA Astrophysics Data System (ADS)

    Weikum, M. K.; Li, F. Y.; Assmann, R. W.; Sheng, Z. M.; Jaroszynski, D.

    2016-09-01

    Attosecond electron bunches and attosecond radiation pulses enable the study of ultrafast dynamics of matter in an unprecedented regime. In this paper, the suitability for the experimental realization of a novel scheme producing sub-femtosecond duration electron bunches from laser-wakefield acceleration in plasma with self-injection in a plasma upramp profile has been investigated. While it has previously been predicted that this requires laser power above a few hundred terawatts typically, here we show that the scheme can be extended with reduced driving laser powers down to tens of terawatts, generating accelerated electron pulses with minimum length of around 166 attoseconds and picocoulombs charge. Using particle-in-cell simulations and theoretical models, the evolution of the accelerated electron bunch within the plasma as well as simple scalings of the bunch properties with initial laser and plasma parameters are presented.

  10. Bunching of temporal cavity solitons via forward Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Erkintalo, Miro; Luo, Kathy; Jang, Jae K.; Coen, Stéphane; Murdoch, Stuart G.

    2015-11-01

    We report on the experimental observation of bunching dynamics with temporal cavity solitons (CSs) in a continuously-driven passive fibre resonator. Specifically, we excite a large number of ultrashort CSs with random temporal separations, and observe in real time how the initially random sequence self-organizes into regularly-spaced aggregates. To explain our experimental observations, we develop a simple theoretical model that allows long-range acoustically-induced interactions between a large number of temporal CSs to be simulated. Significantly, results from our simulations are in excellent agreement with our experimental observations, strongly suggesting that the soliton bunching dynamics arise from forward Brillouin scattering. In addition to confirming prior theoretical analyses and unveiling a new CS self-organization phenomenon, our findings elucidate the manner in which sound interacts with large ensembles of ultrashort pulses of light.

  11. BICEP2, non-Bunch-Davies and entanglement

    NASA Astrophysics Data System (ADS)

    Mahajan, Namit

    2015-04-01

    BICEP2 result on the tensor to scalar ratio r indicates a blue tilt in the primordial gravitational wave spectrum. This blue tilt and the observed large value r = 0.2 are difficult to accommodate within the single field inflationary scenarios under standard conditions. Non-Bunch-Davies vacuum states have been proposed as a possibility. Such vacua are known to lead to pathologies. In this note we point out that it is known that these states ought to be interpreted as excited/squeezed states built over the standard Bunch-Davies vacuum in order to avoid pathological issues. We discuss the associated entanglement properties due to de Sitter horizon, and how such an approach may be more natural in the context of inflation. In particular, we suggest to employ entanglement considerations in de Sitter background to study the nature and intrinsic properties of modified initial states.

  12. Theory and simulation of CSR microbunching in bunch compressors

    NASA Astrophysics Data System (ADS)

    Huang, Zhirong; Borland, Michael; Emma, Paul; Kim, Kwang-Je

    2003-07-01

    CSR microbunching instability in bunch compressors is studied both analytically and numerically. The iterative solutions of the integral equation for the instability provide approximate expressions of CSR microbunching due to initial density and energy modulation, and can be applied to a series of bending systems consisting of multiple compressor chicanes and transport lines. Two similar but independent simulation methods are developed and are compared to each other as well as with theory. We determine the total gain in density modulation for all bend systems of the Linac Coherent Light Source and discuss initial conditions that start the unstable process.

  13. Excitation of Intra-bunch Vertical Motion in the SPS - Implications for Feedback Control of Ecloud and TMCI Instabilities

    SciTech Connect

    Cesaratto, J.M.; Fox, J.D.; Pivi, M.T.; Rivetta, C.H.; Turgut, O.; Uemura, S.; Hofle, W.; Wehrle, U.; /CERN

    2012-06-01

    Electron cloud (ecloud) and transverse mode coupled-bunch instabilities (TMCI) limit the bunch intensity in the CERN SPS. This paper presents experimental measurements in the SPS of single-bunch motion driven by a GHz bandwidth vertical excitation system. The final goal is to quantify the change in internal bunch dynamics as instability thresholds are approached, and quantify the frequencies of internal modes as ecloud effects become significant. Initially, we have been able to drive the beam and view its motion. We show the excitation of barycentric, head-tail and higher vertical modes at different bunch intensities. The beam motion is analyzed in the time domain, via animated presentations of the sampled vertical signals, and in the frequency domain, via spectrograms showing the modal frequencies vs. time. The demonstration of the excitation of selected internal modes is a significant step in the development of the feedback control techniques.

  14. Van Kampen modes for bunch longitudinal motion

    SciTech Connect

    Burov, A.; /Fermilab

    2010-09-01

    Conditions for existence, uniqueness and stability of bunch steady states are considered. For the existence uniqueness problem, simple algebraic equations are derived, showing the result both for the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. Emerging of discrete van Kampen modes show either loss of Landau damping, or instability. This method can be applied for an arbitrary impedance, RF shape and beam distribution function Available areas on intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Language of van Kampen modes is a powerful tool for studying beam stability. Its unique efficiency reveals itself in those complicated cases, when the dielectric function cannot be obtained, as it is for the longitudinal bunch motion. Emergence of a discrete mode means either loss of Landau damping or instability. By definition, the discrete modes lie outside the continuous incoherent spectrum, but they still may stay within the bucket. In the last case, the discrete mode would disappear after a tiny portion of resonant particles would be added. However, if the discrete mode lie outside the bucket, the Landau damping cannot be restored by tiny perturbation of the particle distribution; LLD is called radical in that case. For a given bunch emittance and RF voltage, the intensity is limited either by reduction of the bucket acceptance or by (radical) LLD. In this paper, results are presented for longitudinal bunch stability in weak head-tail approximation and resistive wall impedance; three RF configurations are studied: single harmonic, bunch shortening and bunch lengthening. It is shown that every RF configuration may be preferable, depending on the bunch emittance and intensity.

  15. Diagnostic technique applied for FEL electron bunches

    NASA Astrophysics Data System (ADS)

    Brovko, O.; Grebentsov, A.; Morozov, N.; Syresin, E.; Yurkov, M.

    2016-05-01

    Diagnostic technique applied for FEL ultrashort electron bunches is developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics are based on calorimetric measurements and detection of undulator radiation. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The pump probe experiments with VUV and FIR undulators provide the bunch profile measurements with resolution of several femtosecond. The new three microchannel plates (MCP) detectors operated in X-ray range are under development now in JINR for SASE1-SASE 3 European XFEL.

  16. Plasma-driven ultrashort bunch diagnostics

    NASA Astrophysics Data System (ADS)

    Dornmair, I.; Schroeder, C. B.; Floettmann, K.; Marchetti, B.; Maier, A. R.

    2016-06-01

    Ultrashort electron bunches are crucial for an increasing number of applications, however, diagnosing their longitudinal phase space remains a challenge. We propose a new method that harnesses the strong electric fields present in a laser driven plasma wakefield. By transversely displacing driver laser and witness bunch, a streaking field is applied to the bunch. This field maps the time information to a transverse momentum change and, consequently, to a change of transverse position. We illustrate our method with simulations where we achieve a time resolution in the attosecond range.

  17. Contrast of Subpicosecond Microelectron Bunch Trains

    SciTech Connect

    Muggli, Patric; Kallos, Efthymios; Yakimenko, Vitaly; Kusche, Karl; Babzien, Marcus; Park, Jangho

    2009-01-22

    We recently demonstrated that electron bunch trains with a controllable number of bunches and adjustable subpicosecond spacing can be produced using a mask technique. In this paper we calculate the bunch train contrast as a function of the beam betatron size at the mask {sigma}{sub {beta}} and of the diameter d of the mask wires separated by a period D. As expected, when {sigma}{sub {beta}}/(d/2) the contrast is high and decreases with increasing {sigma}{sub {beta}}/(d/2)

  18. Down sampled signal processing for a B Factory bunch-by-bunch feedback system

    SciTech Connect

    Hindi, H.; Hosseini, W.; Briggs, D.; Fox, J.; Hutton, A.

    1992-03-01

    A bunch-by-bunch feedback scheme is studied for damping coupled bunch synchrotron oscillations in the proposed PEP II B Factory. The quasi-linear feedback systems design incorporates a phase detector to provide a quantized measure of bunch phase, digital signal processing to compute an error correction signal and a kicker system to correct the energy of the bunches. A farm of digital processors, operating in parallel, is proposed to compute correction signals for the 1658 bunches of the B Factory. This paper studies the use of down sampled processing to reduce the computational complexity of the feedback system. We present simulation results showing the effect of down sampling on beam dynamics. Results show that down sampled processing can reduce the scale of the processing task by a factor of 10.

  19. Limiting Step Bunch Height During Crystal Growth from Flowing Solutions

    NASA Technical Reports Server (NTRS)

    Booth, N. A.; Chernov, A. A.; Vekilov, P. G.

    2003-01-01

    High precision interferometric studies of step bunching on KDP crystal surface growing from solution moving at rates up to 1 d s . It is shown that the bunch height is limited as the bunch propagates over the surface. An hypothesis is put forward describing why the bunch height decreases as the solution flow rate increases.

  20. Generating Ultrarelativistic Attosecond Electron Bunches with Laser Wakefield Accelerators

    SciTech Connect

    Luttikhof, M. J. H.; Khachatryan, A. G.; Goor, F. A. van; Boller, K.-J.

    2010-09-17

    Femtosecond electron bunches with ultrarelativistic energies were recently generated by laser wakefield accelerators. Here we predict that laser wakefield acceleration can generate even attosecond bunches, due to a strong chirp of the betatron frequency. We show how the bunch duration scales with the acceleration parameters and that, after acceleration, the bunches can propagate over many tens of centimeters without a significant increase in duration.

  1. Stability of Flat Bunches in the Recycler Barrier Bucket

    SciTech Connect

    Sen, T.; Bhat, C.; Ostiguy, J.-F.; /Fermilab

    2009-05-01

    We examine the stability of intense flat bunches in barrier buckets used in the Fermilab Recycler. We consider some common stationary distributions and show that they would be unstable against rigid dipole oscillations. We discuss the measurements which identify stable distributions. We also report on experimental studies on the impact of creating a local extremum of the incoherent frequency within the rf bucket. We considered two typical stationary distributions and found they were not adequate descriptions of the Recycler bunches. From the measured line density distribution we find (a) the tanh function is a good fit to the line density, and (b) the coherent frequency of the rigid dipole mode for this distribution is within the incoherent spread at nominal intensities. Stability diagrams when the beam couples to space charge and external impedances will be discussed elsewhere. Our initial experimental investigations indicate that longitudinal stability in the Recycler is, consistent with expectations, influenced by the ratio T{sub 2}/(4T{sub 1}) which determines the location of the extremum of the incoherent tune. The coherent tune depends strongly on the distribution in the bunch tails which is difficult to measure. Numerical studies using both a conventional tracking code and a Vlasov solver are in progress and should provide more insight into conditions that may lead to unstable behavior.

  2. Peculiarities of step bunching on Si(001) surface induced by DC heating

    NASA Astrophysics Data System (ADS)

    Latyshev, A. V.; Litvin, L. V.; Aseev, A. L.

    1998-06-01

    An evolution of the stepped Si(001) surface, induced by the electric current heating the crystal, has been observed directly by an in situ ultra-high vacuum reflection electron microscopy (UHV REM). Two scenarios of the initial stages of step bunching, depending on the average step-step distance, were detected: monatomic step coupling and polycentric nucleation of large terraces. From the successive REM images of step bunching, the step number in the bunch was accounted to depend on the annealing time as a power-law function with a scaling exponent equal to 0.53±0.05. Also, the average distance between coupled steps in the bunch was measured as a root-square dependence on the number of the coupled steps in this bunch. In spite of essential difference in the structural properties of Si(001) and Si(111) surfaces, the monatomic step behavior seems to be described by the same kinetic mechanism of step bunching induced by DC heating.

  3. Ultra-short electron bunches by Velocity Bunching as required for plasma wave accelerations

    NASA Astrophysics Data System (ADS)

    Bacci, A.; Rossi, A. R.

    2014-03-01

    The generation of ultra-short bunches is nowadays a critical requirement for plasma wave accelerators, on which many laboratories world-wide are investigating or are close to starting with experimental activities. This requirement is true for both: external injection into "laser wake field accelerators", where injected beams need lengths around or shorter than 10 fs; and the "plasma wake field accelerators", where the wake field intensity scales like the driver bunch charge over the square of the rms bunch length (Qb / σz2). This work presents beam dynamic simulations, which show how to use the Velocity Bunching (VB) technique to obtain ultra-short bunches. The VB technique is applied to small bunch charges (0.5-15 pc) and it is driven with a proper control of the bunch density versus the bunch energy gain, which permits one to control the transverse beam emittance, the bunch length and the correlated longitudinal energy spread, in a peculiar manner. The compression optimizations by VB, shown in this work, are obtained using a layout very similar to SPARC's Linac one, which is a Linac designed to maximize VB performances.

  4. Generation and measurement of velocity bunched ultrashort bunch of pC charge

    NASA Astrophysics Data System (ADS)

    Lu, X. H.; Tang, C. X.; Li, R. K.; To, H.; Andonian, G.; Musumeci, P.

    2015-03-01

    In this paper, we discuss the velocity compression in a short rf linac of an electron bunch from a rf photoinjector operated in the blowout regime. Particle tracking simulations shows that with a beam charge of 2 pC an ultrashort bunch duration of 16 fs can be obtained at a tight longitudinal focus downstream of the linac. A simplified coherent transition radiation (CTR) spectrum method is developed to enable the measurement of ultrashort (sub-50 fs) bunches at low bunch energy (5 MeV) and low bunch charges (<10 pC ). In this method, the ratio of the radiation energy selected by two narrow bandwidth filters is used to estimate the bunch length. The contribution to the coherent form factor of the large transverse size of the bunch suppresses the radiation signal significantly and is included in the analysis. The experiment was performed at the UCLA Pegasus photoinjector laboratory. The measurement results show bunches of sub-40 fs with 2 pC of charge well consistent with the simulation using actual experimental conditions. These results open the way to the generation of ultrashort bunches with time-duration below 10 fs once some of the limitations of the setup (rf phase jitter, amplitude instability and low field in the gun limited by breakdown) are corrected.

  5. Longitudinal bunch profile measurements with striplines

    SciTech Connect

    Kramer, S.L.

    1992-01-01

    Striplines beam position monitors are normally considered low frequency devices with at best an octave bandwidth. Some attempts to make them very high frequency and broadband have led to long and complicated tapered construction. However, conventional uniform coupling striplines can provide very high frequency and broadband response, if the downstream induced signal is gated out electronically. In this case, the leading edge beam signal can provide bunch length and even current profile information for bunch lengths shorter than the length of the stripline. Recent improvement in transient digitizers have made these measurements possible for accelerator operations. Measurements of bunch lengths down to 50 psec are results are presented. Improvements to striplines and measurement systems are discussed, that could lead to bunch length resolutions {approx} 10 psec.

  6. Longitudinal bunch profile measurements with striplines

    SciTech Connect

    Kramer, S.L.

    1992-05-01

    Striplines beam position monitors are normally considered low frequency devices with at best an octave bandwidth. Some attempts to make them very high frequency and broadband have led to long and complicated tapered construction. However, conventional uniform coupling striplines can provide very high frequency and broadband response, if the downstream induced signal is gated out electronically. In this case, the leading edge beam signal can provide bunch length and even current profile information for bunch lengths shorter than the length of the stripline. Recent improvement in transient digitizers have made these measurements possible for accelerator operations. Measurements of bunch lengths down to 50 psec are results are presented. Improvements to striplines and measurement systems are discussed, that could lead to bunch length resolutions {approx} 10 psec.

  7. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  8. Bunch compression for the TLC: Preliminary design

    SciTech Connect

    Kheifets, S.A.; Ruth, R.D.; Murray, J.J.; Fieguth, T.H.

    1988-12-01

    A preliminary design of a TLC bunch compressor as a two-stage device is described. The main parameters of the compressor, as well as results of some simulations, are presented. They show that the ideal system (no imperfections) does the job of transmitting transverse emittances without distortions (at least up to the second-order terms) producing at the same time the desired bunch length of 50 m. 9 refs., 6 figs., 4 tabs.

  9. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  10. Bucket shaking stops bunch dancing in Tevatron

    SciTech Connect

    Burov, A.; Tan, C.Y.; /Fermilab

    2011-03-01

    Bunches in Tevatron are known to be longitudinally unstable: their collective oscillations, also called dancing bunches, persist without any signs of decay. Typically, a damper is used to stop these oscillations, but recently, it was theoretically predicted that the oscillations can be stabilized by means of small bucket shaking. Dedicated measurements in Tevatron have shown that this method does stop the dancing. According to predictions of Refs. [2,3], the flattening of the bunch distribution at low amplitudes should make the bunch more stable against LLD. An experiment has been devised to flatten the distribution by modulating the RF phase at the low-amplitude synchrotron frequency for a few degrees of amplitude. These beam studies show that stabilisation really happens. After several consecutive shakings, the dancing disappears and the resulting bunch profile becomes smoother at the top. Although not shown in this report, sometimes a little divot forms at the centre of the distribution. These experiments confirm that resonant RF shaking flattens the bunch distribution at low amplitudes, and the dancing stops.

  11. Compact noninvasive electron bunch-length monitor

    SciTech Connect

    Roberts, Brock; Poelker, Matt; Mammei, Russell R.; McCarter, James L.

    2012-12-01

    A compact RF cavity was constructed that simultaneously resonates at many harmonic modes when excited by a bunched electron beam passing through its bore. The excitation of these modes provides a Fourier description of the temporal characteristics of the bunchtrain. The cavity was used to non-invasively characterize electron bunches produced from thin and thick GaAs photocathodes inside a DC high voltage photogun illuminated with 37 ps (FWHM) laser pulses at repetition rates near 500 and 1500 MHz, at average beam current from 5 uA to 500 uA and at beam energy from 75 keV to 195 keV. The cavity bunchlength monitor could detect electron bunches as short as 57 ps (FWHM) when connected directly to a sampling oscilloscope, and could clearly distinguish bunches with varying degrees of space-charge induced growth and with different tail signatures. Efforts are underway to detect shorter bunches, by designing cavities with increased bandwidth and improved coupling uniformity. This demonstration lends credibility to the idea that these cavities could also be used for other applications, including bunching and shaping, when driven with external RF.

  12. The internal bunch coordinate monitor (IBCM)

    SciTech Connect

    Yamin, S.P.

    1988-11-04

    An instrument has been developed and installed at the AGS for recording the transverse motion of each rf bunch. It can be operated from any node of the Apollo control system. A preliminary version of this report has appeared elsewhere. Appendix A is an instruction manual. Two digitizers, running off the same 100 MHz clock, sampled the output of either a horizontal or vertical pick-up electrode (PUE) pair. The coordinate of each rf bunch was calculated each time it passed the PUEs during a 320 microsecond interval. Thus, the motion of each bunch could be followed during this interval. Subsequent analysis computed the Fourier transform of this motion. Bunch motion has been studied at several times during the AGS cycle: the betatron oscillations induced by the tune meter's vertical kick have been seen, and their Fourier analysis gives results consistent with the tune meter; at transition, the effect of the radial kick on each bunch has been observed; coupled-bunch oscillations have been studied; and instabilities produced by high intensities have been observed. 6 figs., 1 tab.

  13. Longitudinal Diagnostics for Short Electron Beam Bunches

    SciTech Connect

    Loos, H.; /SLAC

    2010-06-11

    Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection, and other techniques are presented. The use of linear accelerators as drivers for free electron lasers (FEL) and the advent of single-pass (SASE) FELs has driven the development of a wide range of diagnostic techniques for measuring the length and longitudinal distribution of short and ultra-short electron bunches. For SASE FELs the radiation power and the length of the undulator needed to achieve saturation depend strongly on the charge density of the electron beam. In the case of X-ray FELs, this requires the accelerator to produce ultra-high brightness beams with micron size transverse normalized emittances and peak currents of several kA through several stages of magnetic bunch compression. Different longitudinal diagnostics are employed to measure the peak current and bunch profile along these stages. The measurement techniques can be distinguished into different classes. Coherent methods detect the light emitted from the beam by some coherent radiation process (spectroscopic measurement), or directly measure the Coulomb field traveling with the beam (electro-optic). Phase space manipulation techniques map the time coordinate onto a transverse dimension and then use conventional transverse beam diagnostics (transverse deflector, rf zero-phasing). Further methods measure the profile or duration of an incoherent light pulse emitted by the bunch at wavelengths much shorted than the bunch length (streak camera, fluctuation technique) or modulate the electron beam at an optical wavelength and then generate a narrow bandwidth radiation pulse with the longitudinal profile of

  14. Cerenkov radiation from periodic bunches for a finite path in air

    NASA Astrophysics Data System (ADS)

    Bruce, R. G.

    1985-06-01

    The equation as derived by F.R. Buskirk and J.R. Neighbours for the power in the diffraction pattern of Cerenkov radiation from periodic bunches in air is experimentally tested at the Naval Postgraduate School Accelerator Laboratory (NPSAL). Previous experiments done at NPSAL are briefly reviewed. The experiment focuses on reducing RF noise and introduces a method for recording experimental data. RF noise is divided into two categories: (1) Noise received directly at the antenna; and (2) noise picked up by the cabling. Category 1 is divided into two subcategories: (a) Cerenkov radiation received by the antenna after being reflected off secondary objects; and (b) residual klystron radiation. Experimental data curves from the third harmonic are compared to theoretical patterns for various finite emission lengths and angle shifts. The data demonstrates tha noise-generated fine structure which appeared in a previous experiment at NPSAL can be eliminated with increased shielding.

  15. Terahertz radiation as a bunch diagnostic for laser-wakefield-accelerated electron bunches

    SciTech Connect

    van Tilborg, Jeroen; Schroeder, Carl; Filip, Catalin; Toth, Csaba; Geddes, Cameron; Fubiani, Gwenael; Esarey, Eric; Leemans, Wim

    2011-06-17

    Experimental results are reported from two measurement techniques (semiconductor switching and electro-optic sampling) that allow temporal characterization of electron bunches produced by a laser-driven plasma-based accelerator. As femtosecond electron bunches exit the plasma-vacuum interface, coherent transition radiation (at THz frequencies) is emitted. Measuring the properties of this radiation allows characterization of the electron bunches. Theoretical work on the emission mechanism is presented, including a model that calculates the THz wave form from a given bunch profile. It is found that the spectrum of the THz pulse is coherent up to the 200 {micro}m thick crystal (ZnTe) detection limit of 4 THz, which corresponds to the production of sub-50 fs (rms) electron bunch structure. The measurements demonstrate both the shot-to-shot stability of bunch parameters that are critical to THz emission (such as total charge and bunch length), as well as femtosecond synchronization among bunch, THz pulse, and laser beam.

  16. Difference between BPM reading one bunch and the average of multi-bunch in Booster

    SciTech Connect

    Xi Yang

    2004-08-18

    Differences caused by BPM reading one bunch and multi-bunch average need to be well understood before the beam parameters, such as the synchrotron tune, betatron tune, and chromaticity, are extracted from those BPM data. It is easy to perform such a study using numerical simulation other than modifying the BPM electronics.

  17. COMMISSIONING OF THE DIGITAL TRANSVERSE BUNCH-BY-BUNCH FEEDBACK SYSTEM FOR THE TLS.

    SciTech Connect

    HU, K.H.; KUO, C.H.; CHOU, P.J.; LEE, D.; HSU, S.Y.; CHEN, J.; WANG, C.J.; HSU, K.T.; KOBAYASHI, K.; NAKAMURA, T.; CHAO, A.W.; WENG, W.T.

    2006-06-26

    Multi-bunch instabilities degrade beam quality through increased beam emittance, energy spread and even beam loss. Feedback systems are used to suppress multi-bunch instabilities associated with the resistive wall of the beam ducts, cavity-like structures, and trapped ions. A new digital transverse bunch-by-bunch feedback system has recently been commissioned at the Taiwan Light Source, and has replaced the previous analog system. The new system has the advantages that it enlarges the tune acceptance and improves damping for transverse instability at high currents, such that top-up operation is achieved. After a coupled-bunch transverse instability was suppressed, more than 350 mA was successfully stored during preliminary commissioning. In this new system, a single feedback loop simultaneously suppresses both horizontal and vertical multi-bunch instabilities. Investigating the characteristics of the feedback loop and further improving the system performances are the next short-term goals. The feedback system employs the latest generation of field-programmable gate array (FPGA) processor to process bunch signals. Memory has been installed to capture up to 250 msec of bunch oscillation signal, considering system diagnostics suitable to support various beam physics studies.

  18. Double rf system for bunch shortening

    SciTech Connect

    Chin, Yong Ho.

    1990-11-01

    It was suggested by Zisman that the combination of the two systems (double rf system) may be more effective to shorten a bunch, compromising between the desirable and the undesirable effects mentioned above. In this paper, we demonstrate that a double rf system is, in fact, quite effective in optimizing the rf performance. The parameters used are explained, and some handy formulae for bunch parameters are derived. We consider an example of bunch shortening by adding a higher-harmonic rf system to the main rf system. The parameters of the main rf system are unchanged. The double rf system, however, can be used for another purpose. Namely, the original bunch length can be obtained with a main rf voltage substantially lower than for a single rf system without necessitating a high-power source for the higher-harmonic cavities. Using a double rf system, the momentum acceptance remains large enough for ample beam lifetime. Moreover, the increase in nonlinearity of the rf waveform increases the synchrotron tune spread, which potentially helps a beam to be stabilized against longitudinal coupled-bunch instabilities. We will show some examples of this application. We discuss the choice of the higher-harmonic frequency.

  19. Loss of Landau Damping for Bunch Oscillations

    SciTech Connect

    Burov, A.; /Fermilab

    2011-04-11

    Conditions for the existence, uniqueness and stability of self-consistent bunch steady states are considered. For the existence and uniqueness problems, simple algebraic criteria are derived for both the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. The onset of a discrete van Kampen mode means the emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch or multi-turn wake is sufficient to drive the instability. The method presented here assumes an arbitrary impedance, RF shape, and beam distribution function. Available areas on the intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Thresholds calculated for the Tevatron parameters and impedance model are in agreement with the observations. These thresholds are found to be extremely sensitive to the small-argument behaviour of the bunch distribution function. Accordingly, a method to increase the LLD threshold is suggested. This article summarizes and extends recent author's publications.

  20. Fast Bunch Integrators at Fermilab During Run II

    SciTech Connect

    Meyer, Thomas; Briegel, Charles; Fellenz, Brian; Vogel, Greg; /Fermilab

    2011-07-13

    The Fast Bunch Integrator is a bunch intensity monitor designed around the measurements made from Resistive Wall Current Monitors. During the Run II period these were used in both Tevatron and Main Injector for single and multiple bunch intensity measurements. This paper presents an overview of the design and use of these systems during this period. During the Run II era the Fast Bunch integrators have found a multitude of uses. From antiproton transfers to muti-bunch beam coalescing, Main Injector transfers to halo scraping and lifetime measurements, the Fast Bunch Integrators have proved invaluable in the creation and maintenance of Colliding Beams stores at Fermilab.

  1. Method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam

    DOEpatents

    Hannon, Fay

    2016-08-02

    A method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam. The method includes 1) determining the bunch charge and the initial kinetic energy of the highly space-charge dominated input beam; 2) applying the bunch charge and initial kinetic energy properties of the highly space-charge dominated input beam to determine the number of accelerator cavities required to accelerate the bunches to relativistic speed; 3) providing the required number of accelerator cavities; and 4) setting the gradient of the radio frequency (RF) cavities; and 5) operating the phase of the accelerator cavities between -90 and zero degrees of the sinusoid of phase to simultaneously accelerate and bunch the charged particles to maximize brightness, and until the beam is relativistic and emittance-dominated.

  2. Adaptive method for electron bunch profile prediction

    NASA Astrophysics Data System (ADS)

    Scheinker, Alexander; Gessner, Spencer

    2015-10-01

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET.

  3. Bunched beam longitudinal instability: Coherent dipole motion

    SciTech Connect

    Zhang, S.Y.; Weng, W.T.

    1993-04-23

    In this paper, the authors present a new formulation for the longitudinal coherent dipole motion, where a quadrature response of the environmental impedance is shown to be the effective longitudinal impedance for the beam instability. The Robinson-Pedersen formulation for the longitudinal dipole motion is also presented, the difference of the two approaches is discussed in the comparison. The results by using the Sacherer integral equation for the coherent dipole motion can generate the same results as by using the other two approaches, except for a scaling difference. The formulation is further generalized to the rigid bunch motion using signal analysis method, where a form factor shows up naturally. Finally, the formulation is applied to solve the coupled bunch instabilities. Examples of the AGS Booster and the AGS coupled bunch instabilities are used to illustrate the applications of the formulation.

  4. Note on polarized RHIC bunch arrangement

    SciTech Connect

    Underwood, D.

    1996-08-30

    We discuss what combinations of bunch polarization in the two RHIC rings are necessary to do the physics measurements at various interaction regions. We also consider the bunches for both the pion inclusive and p-p elastic polarization measurements. Important factors to consider are the direction of the polarization with respect to the momentum in each bunch, the beam gas backgrounds, and the simulation of zero - polarization in one beam by averaging + and - helicity, and luminosity monitoring for normalization. These considerations can be addressed by setting the relative number of each of the 9 combinations possible at each of the 6 interaction regions. The combinations are (+ empty -) yellow X (+ empty -)blue, where yellow and blue are the counter-rotating rings.

  5. Adaptive method for electron bunch profile prediction

    SciTech Connect

    Scheinker, Alexander; Gessner, Spencer

    2015-10-01

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.

  6. Simulation of the short pulse effects in the start-up from noise in high-gain FELS

    SciTech Connect

    Hahn, S.J.; Kim, K.J.

    1995-12-31

    The spatio-temporal evolution of high-gain free electron lasers from noise is investigated by 1-D simulation calculation. To understand the discrepancy between the experimental result and theoretical prediction of the self-amplified spontaneous emission (SASE), the strong slippage effect in the short pulse electron beam and the coherent bunched beam effect are considered. When the length over which the electron density varies significantly is comparable or smaller than the FEL wavelength, the initial noise level would be increased due to the enhanced coherence between electrons. With a proper computer modeling of the start-up from noise including the energy spread, the overall performance and characteristics of SASE are studied. This work will be helpful to increase the credibility of the simulation calculation to predict the SASE performance in all wave-length regions.

  7. Cerenkov radiation generated by periodic electron bunches in a finite air path

    NASA Astrophysics Data System (ADS)

    Newton, L. A.

    1983-12-01

    Microwave Cerenkov radiation is measured for the case of bunched electron beams which exceed the velocity of light in a finite air path. The theoretical equation for prediction of the form of the power for Cerenkov radiation is tested experimentally for this case. Initial verification of the theory is observed.

  8. Bunch coalescing in the Fermilab Main Ring

    SciTech Connect

    Wildman, D.; Martin, P.; Meisner, K.; Miller, H.W.

    1987-03-01

    A new rf system has been installed in the Fermilab Main Ring to coalesce up to 13 individual bunches of protons or antiprotons into a single high-intensity bunch. The coalescing process consists of adiabatically reducing the h = 1113 Main Ring rf voltage from 1 MV to less than 1 kV, capturing the debunched beam in a linearized h = 53 and h = 106 bucket, rotating for a quarter of a synchrotron oscillation period, and then recapturing the beam in a single h = 1113 bucket. The new system will be described and the results of recent coalescing experiments will be compared with computer-generated particle tracking simulations.

  9. Wakefields of Sub-Picosecond Electron Bunches

    SciTech Connect

    Bane, Karl L.F.; /SLAC

    2006-04-19

    We discuss wakefields excited by short bunches in accelerators. In particular, we review some of what has been learned in recent years concerning diffraction wakes, roughness impedance, coherent synchrotron radiation wakes, and the resistive wall wake, focusing on analytical solutions where possible. As examples, we apply formulas for these wakes to various parts of the Linac Coherent Light Source (LCLS) project. The longitudinal accelerator structure wake of the SLAC linac is an important ingredient in the LCLS bunch compression process. Of the wakes in the undulator region, the dominant one is the resistive wall wake of the beam pipe.

  10. Longitudinal Diagnostics of Short Bunches at FLASH

    SciTech Connect

    Khan, Shaukat

    2009-01-22

    Novel acceleration concepts such as laser- or beam-driven plasma acceleration require advanced diagnostic techniques to characterize and monitor the beam. A particular challenge is to measure bunch lengths of the order of 10 femtoseconds. Several methods are currently explored at the free-electron laser FLASH at DESY/Hamburg and will be discussed it this paper, such as electro-optical sampling, streaking bunches with a transversely deflecting cavity, and -most recently implemented at FLASH--the optical-replica synthesizer, a laser-based technique promising a time resolution of a few femtoseconds.

  11. Misalignment study of NLC bunch compressor

    SciTech Connect

    Rogers, R.P.; Kheifets, S.A.

    1991-05-01

    Results of computer simulations of the misalignments in the 180{degree}-bend angle second-stage bunch compressor for the NLC are described. The aim of this study was to evaluate alignment and production error tolerances. Three versions of the second stage, differing in their minimum obtainable bunch length (44 {mu}, 60 {mu}, and 86 {mu}) were studied. Simulations included orbit correction produced by errors and misalignments of the compressor elements. The orbit correction itself was done within some error margins. The effects of misalignments on transverse emittance growth were found. Recommendations for alleviating alignment tolerances are discussed. 5 refs., 6 figs., 1 tab.

  12. BUNCHED BEAM STOCHASTIC COOLING PROJECT FOR RHIC.

    SciTech Connect

    BRENNAN, J.M.; BASKIEWICZ, M.M.

    2005-09-18

    The main performance limitation for RHIC is emittance growth caused by IntraBeam Scattering during the store. We have developed a longitudinal bunched-beam stochastic cooling system in the 5-8 GHz band which will be used to counteract IBS longitudinal emittance growth and prevent de-bunching during the store. Solutions to the technical problems of achieving sufficient kicker voltage and overcoming the electronic saturation effects caused by coherent components within the Schottky spectrum are described. Results from tests with copper ions in RHIC during the FY05 physics run, including the observation of signal suppression, are presented.

  13. Bunched Beam Stochastic Cooling Project for RHIC

    SciTech Connect

    Brennan, J. M.; Blaskiewicz, M.

    2006-03-20

    The main performance limitation for RHIC is emittance growth caused by IntraBeam Scattering during the store. We have developed a longitudinal bunched-beam stochastic cooling system in the 5-8 GHz band which will be used to counteract IBS longitudinal emittance growth and prevent de-bunching during the store. Solutions to the technical problems of achieving sufficient kicker voltage and overcoming the electronic saturation effects caused by coherent components within the Schottky spectrum are described. Results from tests with copper ions in RHIC during the FY05 physics run, including the observation of signal suppression, are presented.

  14. Sub-fs electron bunch generation with sub-10-fs bunch arrival-time jitter via bunch slicing in a magnetic chicane

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Assmann, R. W.; Dohlus, M.; Dorda, U.; Marchetti, B.

    2016-05-01

    The generation of ultrashort electron bunches with ultrasmall bunch arrival-time jitter is of vital importance for laser-plasma wakefield acceleration with external injection. We study the production of 100-MeV electron bunches with bunch durations of subfemtosecond (fs) and bunch arrival-time jitters of less than 10 fs, in an S-band photoinjector by using a weak magnetic chicane with a slit collimator. The beam dynamics inside the chicane is simulated by using two codes with different self-force models. The first code separates the self-force into a three-dimensional (3D) quasistatic space-charge model and a one-dimensional coherent synchrotron radiation (CSR) model, while the other one starts from the first principle with a so-called 3D sub-bunch method. The simulations indicate that the CSR effect dominates the horizontal emittance growth and the 1D CSR model underestimates the final bunch duration and emittance because of the very large transverse-to-longitudinal aspect ratio of the sub-fs bunch. Particularly, the CSR effect is also strongly affected by the vertical bunch size. Due to the coupling between the horizontal and longitudinal phase spaces, the bunch duration at the entrance of the last dipole magnet of the chicane is still significantly longer than that at the exit of the chicane, which considerably mitigates the impact of space charge and CSR effects on the beam quality. Exploiting this effect, a bunch charge of up to 4.8 pC in a sub-fs bunch could be simulated. In addition, we analytically and numerically investigate the impact of different jitter sources on the bunch arrival-time jitter downstream of the chicane, and define the tolerance budgets assuming realistic values of the stability of the linac for different bunch charges and compression schemes.

  15. Operational performance of a bunch by bunch digital damper in the Fermilab Main Injector

    SciTech Connect

    Adamson, P.; Ashmanskas, W.J.; Foster, G.W.; Hansen, S.; Marchionni, A.; Nicklaus, D.; Semenov, A.; Wildman, D.; Kang, H.; /Stanford U., Phys. Dept.

    2005-05-01

    We have implemented a transverse and longitudinal bunch by bunch digital damper system in the Fermilab Main Injector, using a single digital board for all 3 coordinates. The system has been commissioned over the last year, and is now operational in all MI cycles, damping beam bunched at both 53MHz and 2.5MHz. We describe the performance of this system both for collider operations and high-intensity running for the NuMI project, operating with a full ring and sometimes with only a few buckets populated.

  16. Generation and Measurement of Relativistic Electron Bunches Characterized by a Linearly Ramped Current Profile

    SciTech Connect

    England, R. J.; Rosenzweig, J. B.; Travish, G.

    2008-05-30

    We report the first successful attempt to generate ultrashort (1-10 ps) relativistic electron bunches characterized by a ramped longitudinal current profile that rises linearly from head to tail and then falls sharply to zero. Bunches with this type of longitudinal shape may be applied to plasma-based accelerator schemes as an optimized drive beam, and to free-electron lasers as a means of reducing asymmetry in microbunching due to slippage. The scheme used to generate the ramped bunches employs an anisochronous dogleg beam line with nonlinear correction elements to compress a beam having an initial positive time-energy chirp. The beam current profile is measured using a deflecting mode cavity, and a pseudoreconstruction of the beam's longitudinal phase space distribution is obtained by using this diagnostic with a residual horizontal dispersion after the dogleg.

  17. Method and apparatus for control of coherent synchrotron radiation effects during recirculation with bunch compression

    SciTech Connect

    Douglas, David R; Tennant, Christopher

    2015-11-10

    A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.

  18. Trapping, compression, and acceleration of an electron bunch in the nonlinear laser wakefield.

    PubMed

    Khachatryan, Arsen G

    2002-04-01

    A scheme of laser wakefield acceleration, when a relatively rare and long bunch of nonrelativistic or weakly relativistic electrons is initially in front of the laser pulse, is suggested and considered. The motion of test electrons is studied both in the one-dimensional (1D) case (1D wakefield) and in the case of three-dimensional laser wakefield excited in a plasma channel. It is shown that for definite parameters of the problem the bunch can be trapped, effectively compressed both in longitudinal and transverse directions, and accelerated to ultra-relativistic energies in the region of first accelerating maximum of the wakefield. The accelerated bunch has sizes much less than the plasma wavelength and relatively small energy spread. PMID:12006039

  19. Generating ultrarelativistic attosecond electron bunches with laser wakefield accelerators.

    PubMed

    Luttikhof, M J H; Khachatryan, A G; van Goor, F A; Boller, K-J

    2010-09-17

    Femtosecond electron bunches with ultrarelativistic energies were recently generated by laser wakefield accelerators. Here we predict that laser wakefield acceleration can generate even attosecond bunches, due to a strong chirp of the betatron frequency. We show how the bunch duration scales with the acceleration parameters and that, after acceleration, the bunches can propagate over many tens of centimeters without a significant increase in duration. PMID:20867647

  20. Anisotropic inflation with the nonvacuum initial state

    NASA Astrophysics Data System (ADS)

    Emami, Razieh; Firouzjahi, Hassan; Zarei, Moslem

    2014-07-01

    In this work we study models of anisotropic inflation with the generalized nonvacuum initial states for the inflaton field and the gauge field. The effects of the non-Bunch-Davies initial condition on the anisotropic power spectrum and bispectrum are calculated. We show that the non-Bunch-Davies initial state can help to reduce the fine-tuning on the anisotropic power spectrum while reducing the level of anisotropic bispectrum.

  1. 33 CFR 163.20 - Bunching of tows.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Bunching of tows. 163.20 Section... AND WATERWAYS SAFETY TOWING OF BARGES § 163.20 Bunching of tows. (a) In all cases where tows can be bunched, it should be done. (b) Tows navigating in the North and East Rivers of New York must be...

  2. Using ions to probe the transverse size of a bunch

    SciTech Connect

    Rees, J.

    1984-05-01

    The electric field carried along by a SLC bunch is very intense at the surface of the bunch because of the bunch's tiny transverse dimensions and its high charge density. For a given bunch population, the maximum electric field - which occurs at the surface - is inversely proportional to the bunch radius for a round bunch. The smaller the radius, the higher the peak field. A charged particle such as an ion or an electron which is placed at rest in the path of the oncoming bunch will be accelerated by the field as the bunch has passed having sampled the field of the bunch. Thus by placing a swarm of stationary charged particles in the path of the bunch and measuring their momentum distribution when they emerge, we can hope to infer the bunch's transverse size. We are using the terms size and surface in a qualitative way, of course, expecting that their meaning will be reasonably clear to the reader. In our calculations we use a cylindrical model for the bunch in which their meanings are precise.

  3. The Case: Bunche-Da Vinci Learning Partnership Academy

    ERIC Educational Resources Information Center

    Eisenberg, Nicole; Winters, Lynn; Alkin, Marvin C.

    2005-01-01

    The Bunche-Da Vinci case described in this article presents a situation at Bunche Elementary School that four theorists were asked to address in their evaluation designs (see EJ791771, EJ719772, EJ791773, and EJ792694). The Bunche-Da Vinci Learning Partnership Academy, an elementary school located between an urban port city and a historically…

  4. Diagnostics of Interaction Point Properties and Bunch-by-Bunch Tune Measurements at CESR

    SciTech Connect

    Codner, G. W.; Palmer, M. A.; Tanke, E. P.; Temnykh, A. B.

    2006-11-20

    The Cornell Electron Storage Ring (CESR) undergoes significant changes in running conditions as operation for CLEO-c high energy physics is interleaved with synchrotron light operation for CHESS (Cornell High Energy Synchrotron Source). Two examples of CESR beam instrumentation applications that are being used to understand storage ring conditions are described: 1) measurement of coupling at the interaction point using the single bunch, multiple turn, type I CESR Beam Position Monitor (CBPM) electronics with continuous beam excitation and 2) measurement of individual bunch tunes to explore possible electron cloud effects using the multiple bunch, multiple turn, type II CBPM electronics with a shock-excited beam. Both applications use the same acquired data for a given bunch, which is turn-by-turn beam position data, and both applications extract the relevant information using the discrete Fourier transform of the time sequences.

  5. Single bunch instabilities of the RHIC booster

    SciTech Connect

    Ng, K.Y.

    1986-02-01

    In this paper, we try to estimate the stability limits and impedances of the Brookhaven RHIC booster. Some important data on the booster are shown. From the stability limits and impedances, it is clear that the booster is safe against either fast microwave instabilities or slow mode-colliding single bunch instabilities. 4 figs., 5 tabs.

  6. Microbunching Instability due to Bunch Compression

    SciTech Connect

    Huang, Zhirong; Wu, Juhao; Shaftan, Timur; /Brookhaven

    2005-12-13

    Magnetic bunch compressors are designed to increase the peak current while maintaining the transverse and longitudinal emittances in order to drive a short-wavelength free electron laser (FEL). Recently, several linac-based FEL experiments observe self-developing micro-structures in the longitudinal phase space of electron bunches undergoing strong compression [1-3]. In the mean time, computer simulations of coherent synchrotron radiation (CSR) effects in bunch compressors illustrate that a CSR-driven microbunching instability may significantly amplify small longitudinal density and energy modulations and hence degrade the beam quality [4]. Various theoretical models have since been developed to describe this instability [5-8]. It is also pointed out that the microbunching instability may be driven strongly by the longitudinal space charge (LSC) field [9,10] and by the linac wakefield [11] in the accelerator, leading to a very large overall gain of a two-stage compression system such as found in the Linac Coherent Light Source (LCLS) [12]. This paper reviews theory and simulations of microbunching instability due to bunch compression, the proposed method to suppress its effects for short-wavelength FELs, and experimental characterizations of beam modulations in linear accelerators. A related topic of interests is microbunching instability in storage rings, which has been reported in the previous ICFA beam dynamics newsletter No. 35 (http://wwwbd. fnal.gov/icfabd/Newsletter35.pdf).

  7. Bunched Beam Stochastic Cooling and Coherent Lines

    SciTech Connect

    Blaskiewicz, M.; Brennan, J. M.

    2006-03-20

    Strong coherent signals complicate bunched beam stochastic cooling, and development of the longitudinal stochastic cooling system for RHIC required dealing with coherence in heavy ion beams. Studies with proton beams revealed additional forms of coherence. This paper presents data and analysis for both sorts of beams.

  8. Dancing bunches as Van Kampen modes

    SciTech Connect

    Burov, A.; /Fermilab

    2011-03-01

    Van Kampen modes are eigen-modes of Jeans-Vlasov equation [1-3]. Their spectrum consists of continuous and, possibly, discrete parts. Onset of a discrete van Kampen mode means emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch wake is sufficient to drive instability. Longitudinal instabilities observed at Tevatron [4], RHIC [5] and SPS [6] can be explained as loss of Landau damping (LLD), which is shown here to happen at fairly low impedances. For repulsive wakes and single-harmonic RF, LLD is found to be extremely sensitive to steepness of the bunch distribution function at small amplitudes. Based on that, a method of beam stabilization is suggested. Emergence of a discrete van Kampen mode means either loss of Landau damping or instability. Longitudinal bunch stability is analysed in weak head-tail approximation for inductive impedance and single-harmonic RF. The LLD threshold intensities are found to be rather low: for cases under study all of them do not exceed a few percent of the zero-amplitude incoherent synchrotron frequency shift, strongly decreasing for shorter bunches. Because of that, LLD can explain longitudinal instabilities happened at fairly low impedances at Tevatron [4], and possibly for RHIC [5] and SPS [6], being in that sense an alternative to the soliton explanation [5, 20]. Although LLD itself results in many cases in emergence of a mode with zero growth rate, any couple-bunch (and sometimes multi-turn) wake would drive instability for that mode, however small this wake is. LLD is similar to a loss of immune system of a living cell, when any microbe becomes fatal for it. The emerging discrete mode is normally very different from the rigid-bunch motion; thus the rigid-mode model significantly overestimates the LLD threshold. The power low of LLD predicted in Ref. [17] agrees with results of this paper. However, the numerical factor in that scaling low strongly depends on the bunch distribution function

  9. ``Electron Lens`` to Compensate Bunch-to-Bunch Tune Spread in TEV33

    SciTech Connect

    Shiltsev, V.

    1997-10-01

    In this article we discuss an electron beam lens for compensation of bunch-to-bunch tune spread in the Tevatron antiproton beam. Time-modulated current of an electron beam can produce defocusing forces necessary to compensate effects caused by parasitic beam-beam interactions with proton beam. We estimate maim parameters of the electron beam and consider resulting beam footprint. Emittance growth rate due to the electron current fluctuations is discussed.

  10. A transverse bunch by bunch feedback system for Pohang Light Source upgrade

    SciTech Connect

    Lee, E.-H.; Kim, D.-T.; Huang, J.-Y.; Shin, S.; Nakamura, T.; Kobayashi, K.

    2014-12-15

    The Pohang Light Source upgrade (PLS-II) project has successfully upgraded the Pohang Light Source (PLS). The main goals of the PLS-II project are to increase the beam energy to 3 GeV, increase the number of insertion devices by a factor of two (20 IDs), increase the beam current to 400 mA, and at the same time reduce the beam emittance to below 10 nm by using the existing PLS tunnel and injection system. Among 20 insertion devices, 10 narrow gap in-vacuum undulators are in operation now and two more in-vacuum undulators are to be installed later. Since these narrow gap in-vacuum undulators are most likely to produce coupled bunch instability by the resistive wall impedance and limit the stored beam current, a bunch by bunch feedback system is implemented to suppress coupled bunch instability in the PLS-II. This paper describes the scheme and performance of the PLS-II bunch by bunch feedback system.

  11. Proceedings of the impedance and bunch instability workshop

    SciTech Connect

    Not Available

    1990-04-01

    This report discusses the following topics: impedance and bunch lengthening; single bunch stability in the ESRF; a longitudinal mode-coupling instability model for bunch lengthening; high-frequency behavior of longitudinal coupling impedance; beam-induced energy spreads at beam-pipe transitions; on the calculation of wake functions using MAFIA-T3 code; preliminary measurements of the bunch length and the impedance of LEP; measurements and simulations of collective effects in the CERN SPS; bunch lengthening in the SLC damping rings; and status of impedance measurements for the spring-8 storage ring.

  12. Plasma wakefield acceleration with a modulated proton bunch

    SciTech Connect

    Caldwell, A.; Lotov, K. V.

    2011-10-15

    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.

  13. Subpicosecond electron bunch train production using a phase-space exchange technique

    SciTech Connect

    Sun, Y.-E.; Piot, P.; Johnson, A.S.; Lumpkin, A.H.; Maxwell, T.J.; Ruan, J.; Thurman-Keup, R.M.; /Fermilab

    2011-03-01

    Our recent experimental demonstration of a photoinjector electron bunch train with sub-picosecond structures is reported in this paper. The experiment is accomplished by converting an initially horizontal beam intensity modulation into a longitudinal phase space modulation, via a beamline capable of exchanging phase-space coordinates between the horizontal and longitudinal degrees of freedom. The initial transverse modulation is produced by intercepting the beam with a multislit mask prior to the exchange. We also compare our experimental results with numerical simulations.

  14. A LOW NOISE RF SOURCE FOR RHIC.

    SciTech Connect

    HAYES,T.

    2004-07-05

    The Relativistic Heavy Ion Collider (RHIC) requires a low noise rf source to ensure that beam lifetime during a store is not limited by the rf system. The beam is particularly sensitive to noise from power line harmonics. Additionally, the rf source must be flexible enough to handle the frequency jump required for rebucketing (transferring bunches from the acceleration to the storage rf systems). This paper will describe the design of a Direct Digital Synthesizer (DDS) based system that provides both the noise performance and the flexibility required.

  15. Mode-switching induced super-thermal bunching in quantum-dot microlasers

    NASA Astrophysics Data System (ADS)

    Redlich, Christoph; Lingnau, Benjamin; Holzinger, Steffen; Schlottmann, Elisabeth; Kreinberg, Sören; Schneider, Christian; Kamp, Martin; Höfling, Sven; Wolters, Janik; Reitzenstein, Stephan; Lüdge, Kathy

    2016-06-01

    The super-thermal photon bunching in quantum-dot (QD) micropillar lasers is investigated both experimentally and theoretically via simulations driven by dynamic considerations. Using stochastic multi-mode rate equations we obtain very good agreement between experiment and theory in terms of intensity profiles and intensity-correlation properties of the examined QD micro-laser’s emission. Further investigations of the time-dependent emission show that super-thermal photon bunching occurs due to irregular mode-switching events in the bimodal lasers. Our bifurcation analysis reveals that these switchings find their origin in an underlying bistability, such that spontaneous emission noise is able to effectively perturb the two competing modes in a small parameter region. We thus ascribe the observed high photon correlation to dynamical multistabilities rather than quantum mechanical correlations.

  16. An emittance measurement system for a wide range of bunch charges

    SciTech Connect

    Dunham, B.; Engwall, D.; Hofler, A.; Keesee, M.; Legg, R.

    1997-06-01

    As a part of the emittance measurements planned for the FEL injector at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), the authors have developed an emittance measurement system that covers the wide dynamic range of bunch charges necessary to fully characterize the high-DC-voltage photocathode gun. The measurements are carried out with a variant of the classical two-slit method using a slit to sample the beam in conjunction with a wire scanner to measure the transmitted beam profile. The use of commercial, ultra-low noise picoammeters makes it possible to cover the wide range of desired bunch charges, with the actual measurements made over the range of 0.25 pC to 125 pC. The entire system, including its integration into the EPICS control system, is discussed.

  17. Controlling multi-bunches by a fast phase switching

    SciTech Connect

    Decker, F.J.; Jobe, R.K.; Merminga, N.; Thompson, K.A.

    1990-09-01

    In linear accelerators with two or more bunches the beam loading of one bunch will influence the energy and energy spread the following bunches. This can be corrected by quickly changing the phase of a traveling wave-structure, so that each bunch receives a slightly different net phase. At the SLAC Linear Collider (SLC) three bunches, two (e{sup +},e{sup {minus}}) for the high energy collisions and one (e{sup {minus}}-scavenger) for producing positrons should sit at different phases, due to their different tasks. The two e{sup {minus}}-bunches are extracted from the damping ring at the same cycle time about 60 ns apart. Fast phase switching of the RF to the bunch length compressor in the Ring-To-Linac (RTL) section can produce the necessary advance of the scavenger bunch (about 6{degree} in phase). This allows a low energy spread of this third bunch at the e{sup +}-production region at 2/3 of the linac length, while the other bunches are not influenced. The principles and possible other applications of this fast phase switching as using it for multi-bunches, as well as the experimental layout for the actual RTL compressor are presented.

  18. Rotorcraft noise

    NASA Technical Reports Server (NTRS)

    Huston, R. J. (Compiler)

    1982-01-01

    The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.

  19. A Two Bunch Beam Position Monitor

    SciTech Connect

    Medvedko, E.; Aiello, R.; Smith, S.; /SLAC

    2011-09-12

    A new beam position monitor digitizer module has been designed, tested and tuned at SLAC. This module, the electron-positron beam position monitor (epBPM), measures position of single electron and positron bunches for the SLC, LINAC, PEPII injections lines and final focus. The epBPM has been designed to improve resolution of beam position measurements with respect to existing module and to speed feedback correction. The required dynamic range is from 5 x 10{sup 8} to 10{sup 11} particles per bunch (46dB). The epBPM input signal range is from {+-}2.5 mV to {+-}500 mV. The pulse-to-pulse resolution is less than 2 {mu}m for 5 x 10{sup 10} particles per bunch for the 12 cm long striplines, covering 30{sup o} at 9 mm radius. The epBPM module has been made in CAMAC standard, single width slot, with SLAC type timing connector. 45 modules have been fabricated. The epBPM module has four input channels X{sup +}, X{sup -}, Y{sup +}, Y{sup -} (Fig. 1), named to correspond with coordinates of four striplines - two in horizontal and two in vertical planes, processing signals to the epBPM inputs. The epBPM inputs are split for eight signal processing channels to catch two bunches, first - the positron, then the electron bunch in one cycle of measurements. The epBPM has internal and external trigger modes of operations. The internal mode has two options - with or without external timing, catching only first bunch in the untimed mode. The epBPM has an on board calibration circuit for measuring gain of the signal processing channels and for timing scan of programmable digital delays to synchronize the trigger and the epBPM input signal's peak. There is a mode for pedestal measurements. The epBPM has 3.6 {mu}s conversion time.

  20. Design of low energy bunch compressors with space charge effects

    NASA Astrophysics Data System (ADS)

    He, A.; Willeke, F.; Yu, L. H.; Yang, L.; Shaftan, T.; Wang, G.; Li, Y.; Hidaka, Y.; Qiang, J.

    2015-01-01

    In this paper, we explore a method to manipulate low energy electron bunches in a space charge dominated regime, and we use this method to design low energy linac bunch compressors to compress electron bunches in a space charge dominated regime. In the method, we use the space charge effects instead of avoiding them; i.e., we use the space charge forces to generate the required energy chirp instead of the ordinary method which uses the rf accelerating system to generate the chirp. We redefine the concepts of the dispersion function and beta functions in a space charge dominated regime to guide the optimization. Using this method, we study the low energy (5-22 MeV) linac bunch compressor design to produce short (˜150 fs ) and small size (˜30 μ m ) bunches for the electron beam slicing project. The low energy linac bunch compressors work in a space charge dominated regime, and the bunches at the downstream of the gun have a negative energy chirp due to the space charge effects. To provide compression for the negative energy chirped bunch, we design a positive R56 dispersive section using a four-dipole chicane with several quadrupole magnets. We have designed low energy linac bunch compressors with different photocathode rf guns. For example, one linac bunch compressor with the BNL photocathode electron rf gun has achieved a low energy bunch with the 166 fs rms bunch length, 28 and 31 μ m rms beam size in the vertical and horizontal directions, respectively, at 5 MeV with 50 pC charge. Another example with LBNL's very-high frequency gun has achieved a low energy bunch with the 128 fs rms bunch length, 42 and 25 μ m rms beam size in the vertical and horizontal directions, respectively, at 22 MeV with 200 pC charge.

  1. CEBAF injector achieved world's best beam quality for three simultaneous beam with a wide range of bunch charges

    SciTech Connect

    Reza Kazimi; Kevin Beard; Jay Benesch; Arne Freyberger; Joseph Grames; Tommy Hiatt; a. hutton; Geoffrey Krafft; Nikolitsa Merminga; B. Poelker; M. Spata; Michael Tiefenback; Byung Yunn; Yuhong Zhang

    2004-07-01

    The CEBAF accelerator provides interleaved 499 MHz electron beams, spanning 5 decades in beam intensity (a few nA to 200 {micro}A), to three experimental halls simultaneously. The physics program became more challenging when the G{sup 0} experiment was approved, requiring more than six times higher bunch charge than is routine. This experiment requires up to 8 million electrons per bunch at a reduced repetition rate of 31 MHz, while the lowest current hall simultaneously receives 100 electrons per bunch. A bunch destined for one hall may experience significant space charge forces, while the next bunch may have negligible space charge. This disparity in beam intensity must be maintained while delivering ''best ever'' values in rms beam quality, including relative energy spread (< 2.5 x 10{sup -5}) and normalized transverse emittance (< 1 mm-mrad). Space charge difficulties emerge in the 10 m long, 100 keV section of the CEBAF injector during initial bunch formation and spin manipulation. A series of changes was introduced to meet the new requirements, including adding new magnets, replacing photoinjector lasers, modifying typical laser parameters, stabilizing RF systems, and changing standard operating procedures. In this paper, we discuss these modifications in detail, including the agreement between the experimental results and detailed simulations.

  2. A longitudinal bunch rotation and acceleration scheme for a short bunch and high energy spread muon beam

    NASA Astrophysics Data System (ADS)

    Scrivens, R.

    2000-08-01

    A neutrino factory for νμ would require a high-power proton beam bombarding a target to produce pions that decay to muons which can be accelerated. Such a proton driver could be realized with a high-power linac, which could produce short bunches in the interaction point. If the bunch structure could be maintained to the input of a linear accelerator, the re-bunching of muons would be avoided. A preliminary design of the longitidinal beam dynamics for the acceleration of short muon bunches with a large-energy spread will be presented. Muons bunches are assumed at the linac input to consist of a phase space occupying a region from 200-400 MeV with a bunch length of 24 ps. They are captured and accelerated to 1 GeV with a resulting bunch length of 100 ps. Seventy five percent of the muons are transported within these limits.

  3. Noise Pollution

    MedlinePlus

    ... here: EPA Home Air and Radiation Noise Pollution Noise Pollution This page has moved. You should be ... epa.gov/clean-air-act-overview/title-iv-noise-pollution Local Navigation Air & Radiation Home Basic Information ...

  4. Bunch Profiling Using a Rotating Mask

    SciTech Connect

    Miller, Mitchell; /SLAC /IIT, Chicago

    2012-08-24

    The current method for measuring profiles of proton bunches in accelerators is severely lacking. One must dedicate a great deal of time and expensive equipment to achieve meaningful results. A new method to complete this task uses a rotating mask with slots of three different orientations to collect this data. By scanning over the beam in three different directions, a complete profile for each bunch is built in just seconds, compared to the hours necessary for the previous method. This design was successfully tested using synchrotron radiation emitted by SPEAR3. The profile of the beam was measured in each of the three desired directions. Due to scheduled beam maintenance, only one set of data was completed and more are necessary to solve any remaining issues. The data collected was processed and all of the RMS sizes along the major and minor axes, as well as the tilt of the beam ellipse were measured.

  5. Production and Characterization of Attosecond Bunch Trains

    SciTech Connect

    Sears, Christopher M.S.; Colby, Eric; Ischebeck, Rasmus; McGuinness , Christopher; Nelson, Janice; Noble, Robert; Siemann, Robert H.; Spencer, James; Walz, Dieter; Plettner, Tomas; Byer, Robert L.; /Stanford U.

    2008-06-02

    We report the production of optically spaced attosecond microbunches produced by the inverse Free Electron Laser (IFEL) process. The IFEL is driven by a Ti:sapphire laser synchronized with the electron beam. The IFEL is followed by a magnetic chicane that converts the energy modulation into the longitudinal microbunch structure. The microbunch train is characterized by observing Coherent Optical Transition Radiation (COTR) at multiple harmonics of the bunching. The experimental results are compared with 1D analytic theory showing good agreement. Estimates of the bunching factors are given and correspond to a microbunch length of 350as fwhm. The formation of stable attosecond electron pulse trains marks an important step towards direct laser acceleration.

  6. Single-bunch beams for BC-75

    SciTech Connect

    Sodja, J.; Clendenin, J.E.; Erickson, R.A.; Miller, R.H.

    1983-06-01

    On June 8, 1983, a beam consisting of a single S-band bunch was transported through the linac into the beam switchyard (BSY) and analyzed in the C-line (Beamline 27) at 30 GeV. The C-line toroid 2712 measured an intensity of approximately 2 x 10/sup 9/e/sup -//pulse. The exact intensity was uncertain due to the limited response time of the toroid for fast, single-bunch beams. However, the linear Q intensity monitors (Lin Q) showed the transmission of the beam through the linac between Sectors 2 and 30 to be fairly flat with an intensity of 3 x 10/sup 9/e/sup -//pulse in the final 19 sectors. The CID Faraday cup, which is located adjacent to the Gun Lin Q, was used to check the calibration of the Lin Q.

  7. Study of electron bunching in gyroklystrons

    SciTech Connect

    Chauhan, M.S.; Jain, P.K. E-mail: pkjain.ece@itbhu.ac.in

    2011-07-01

    In this paper the study of electron bunching in the output cavity of gyroklystron has been carried out to optimize the output efficiency of gyroklystron by numerically solving the coupled equations obtained from nonlinear analysis, describing the strong interaction between the beam and RF fields in the output cavity of the gyroklystron. The generalized results obtained here can be applied to optimize the output efficiency of a gyroklystron of any frequency and power. (author)

  8. Observations of UHF oscillations in the IPNS RCS proton bunch. PROTON BUNCH

    SciTech Connect

    Dooling, J. C.; Brumwell, F. R.; McMichael, G. E.; Wang, S.; Intense Pulsed Neutron Source

    2005-01-01

    The Intense Pulsed Neutron Source (IPNS) Rapid Cycling Synchrotron (RCS) accelerates 3.2 x 10E{sup 12} protons from 50 MeV to 450 MeV in a single bunch (h=1) at 30 Hz. The rf frequency varies from 2.21 MHz to 5.14 MHz during the 14.2 ms acceleration interval. To maintain stability of the bunch, phase modulation is introduced to the rf at approximately twice the synchrotron frequency (synchrotron tune is 0.0014). This phase modulation causes a parametric quadrupole oscillation to develop in the bunch, and as this occurs, the bunch spectrum shows a significant increase in high frequency content. Without phase modulation, the beam experiences an instability which results in the loss of a large fraction of the charge 2-4 ms prior to extraction. It is unclear if the stability imparted to the beam by phase modulation comes from the quadrupole oscillation or from the high frequency excitation. A longitudinal tracking code has been modified to include amplitude and phase modulation of the bunch. The numerical analysis is used to compare growth rates with those observed in the machine. The results of this analysis will be important as we introduce second harmonic rf with a new third cavity in the RCS later in 2005.

  9. Mesoscopic quantum multiplex for channeling bunches

    NASA Astrophysics Data System (ADS)

    Shen, Jing

    1998-09-01

    (1) Bogacz-Cline channeling is an interesting idea that can transform a bunch of low particle intensity to a collider of high luminosity but it was maintained as impossible to carry out because of three technical problems. (2) The first of which is discussed in this paper, and it is how to get billions particles from each bunch to enter into and channel through a single crystal channel. (3) Two basic difficulties of entrance are discussed in this paper. The first is due to the Heisenberg's uncertainty, and the second is the dimension reduction of a beam bunch in crystal from 3D to 1D. (4) To overcome these difficulties, a hybrid device named Mesoscopic Quantum Multiplex (MQM) is designed to achieve entrance and channeling. It is a quantum generalization of classical multiplex in detector readout electronics for the classical-quantum interface. It is made by nano-crystalline technology. (5) The MQM can channel the Richter-Kimura-Takada flat e± beams of NLC-JLC, and low emittance p or heavy ion beams as well as the Bogacz-Cline μ± beams, and the Nagamine-Chu cool μ± beams.

  10. Laser-cooled bunched ion beam

    SciTech Connect

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S.

    1995-08-01

    In collaboration with the Arhus group, the laser cooling of a beam bunched by an rf electrode was investigated at the ASTRID storage ring. A single laser is used for unidirectional cooling, since the longitudinal velocity of the beam will undergo {open_quotes}synchrotron oscillations{close_quotes} and the ions are trapped in velocity space. As the cooling proceeds the velocity spread of the beam, as well as the bunch length is measured. The bunch length decreases to the point where it is limited only by the Coulomb repulsion between ions. The measured length is slightly (20-30%) smaller than the calculated limit for a cold beam. This may be the accuracy of the measurement, or may indicate that the beam still has a large transverse temperature so that the longitudinal repulsion is less than would be expected from an absolutely cold beam. Simulations suggest that the coupling between transverse and longitudinal degrees of freedom is strong -- but this issue will have to be resolved by further measurements.

  11. Direct determination of the chromosomal location of bunching onion and bulb onion markers using bunching onion-shallot monosomic additions and allotriploid-bunching onion single alien deletions.

    PubMed

    Tsukazaki, Hikaru; Yamashita, Ken-ichiro; Yaguchi, Shigenori; Yamashita, Koichiro; Hagihara, Takuya; Shigyo, Masayoshi; Kojima, Akio; Wako, Tadayuki

    2011-02-01

    To determine the chromosomal location of bunching onion (Allium fistulosum L.) simple sequence repeats (SSRs) and bulb onion (A. cepa L.) expressed sequence tags (ESTs), we used a complete set of bunching onion-shallot monosomic addition lines and allotriploid bunching onion single alien deletion lines as testers. Of a total of 2,159 markers (1,198 bunching onion SSRs, 324 bulb onion EST-SSRs and 637 bulb onion EST-derived non-SSRs), chromosomal locations were identified for 406 markers in A. fistulosum and/or A. cepa. Most of the bunching onion SSRs with identified chromosomal locations showed polymorphism in bunching onion (89.5%) as well as bulb onion lines (66.1%). Using these markers, we constructed a bunching onion linkage map (1,261 cM), which consisted of 16 linkage groups with 228 markers, 106 of which were newly located. All linkage groups of this map were assigned to the eight basal Allium chromosomes. In this study, we assigned 513 markers to the eight chromosomes of A. fistulosum and A. cepa. Together with 254 markers previously located on a separate bunching onion map, we have identified chromosomal locations for 766 markers in total. These chromosome-specific markers will be useful for the intensive mapping of desirable genes or QTLs for agricultural traits, and to obtain DNA markers linked to these. PMID:20938763

  12. Geometric analysis of phase bunching in the central region of cyclotron

    NASA Astrophysics Data System (ADS)

    Miyawaki, Nobumasa; Fukuda, Mitsuhiro; Kurashima, Satoshi; Kashiwagi, Hirotsugu; Okumura, Susumu; Arakawa, Kazuo; Kamiya, Tomihiro

    2013-07-01

    An optimum condition for realizing phase bunching in the central region of a cyclotron was quantitatively clarified by a simplified geometric trajectory analysis of charged particles from the first to the second acceleration gap. The phase bunching performance was evaluated for a general case of a cyclotron. The phase difference of incident particles at the second acceleration gap depends on the combination of four parameters: the acceleration harmonic number h, the span angle θD of the dee electrode, the span angle θF from the first to the second acceleration gap, the ratio RV of the peak acceleration voltage between the cyclotron and ion source. Optimum values of θF for phase bunching were limited by the relationship between h and θD, which is 90°/h+θD/2≤θF≤180°/h+θD/2, and sin θF>0. The phase difference with respect to the reference particle at the second acceleration gap is minimized for voltage-ratios between two and four for an initial phase difference within 40 RF degrees. Although the slope of the first acceleration gap contributes to the RF phase at which the particles reach the second acceleration gap, phase bunching was not affected. An orbit simulation of the AVF cyclotron at the Japan Atomic Energy Agency verifies the evaluation based on geometric analysis.

  13. PROPOSAL FOR A PRE-BUNCHED LASER WAKEFIELD ACCELERATION EXPERIMENT AT THE BNL DUV FEL FACILITY.

    SciTech Connect

    WANG,X.J.SHEEHY,B.WU,Z.GAI,W.TING,A.

    2003-05-12

    We propose a pre-bunched Laser Wakefield Acceleration (LWFA) experiment in a plasma channel at the BNL DUV-FEL Facility. BNL DUV-FEL facility is uniquely qualified to carry out the proposed experiment because of the high-brightness' electron beam and RF synchronized TW Ti:Sapphire laser system. The DUV-FEL is a 200 MeV linac facility equipped with a photocathode RF gun injector, a 100 fs Ti:Sapphire laser system and a magnetic bunch compressor. The proposed LWFA will inject a 150 MeV, 10 fs electron bunch into a centimeters long plasma channel. Simulation and preliminary experiment showed that, high-brightness 10 fs electron bunch with 20 pC charge could be produced using the technique of longitudinal emittance compensation. The initial experiment will be performed using the existing Ti:Sapphire laser system (50mJ, 100 fs) with 30 {micro}m spot and 4 cm channel, the maximum energy gain will be about 15 MeV. We propose to upgrade the existing SDL laser output to 500 mJ with a shorter pulse length (50 fs). For an electron beam spot size of 20 um, the expected energy gain is about 100 MeV for a 5 TW, 50 fs laser pulse.

  14. SuperB Bunch-By-Bunch Feedback R&D

    SciTech Connect

    Drago, A.; Beretta, M.; Bertsche, K.; Novokhatski, A.; Migliorati, M.; /Rome U.

    2011-08-12

    The SuperB project has the goal to build in Italy, in the Frascati or Tor Vergata area, an asymmetric e{sup +}/e{sup -} Super Flavor Factory to achieve a peak luminosity > 10**36 cm{sup -2} s{sup -1}. The SuperB design is based on collisions with extremely low vertical emittance beams and high beam currents. A source of emittance growth comes from the bunch by bunch feedback systems producing high power correction signals to damp the beams. To limit any undesirable effect, a large R&D program is in progress, partially funded by the INFN Fifth National Scientific Committee through the SFEED (SuperB Feedback) project approved within the 2010 budget. The SuperB project [1] has the goal to build in Italy, in the Frascati or Tor Vergata area, an asymmetric e{sup +}/e{sup -} Super Flavor Factory to achieve a peak luminosity > 10**36 cm{sup -2} s{sup -1}. In the last and current years, the machine layout has been deeply modified, in particular the main rings are now shorter and an option with high currents has been foreseen. In the fig.1 the new SuperB layout is shown. From bunch-by-bunch feedback point of view, the simultaneous presence in the machine parameters, of very low emittance, of the order of 5-10 pm in the vertical plane, and very high currents, at level of 4 Ampere for the Low Energy Ring, asks for designing very carefully the bunch-by-bunch feedback systems. The parameter list is presented in Fig. 2. The bunch-by-bunch feedback design must take care of the risky and exciting challenges proposed in the SuperB specifications, but it should consider also some other important aspects: flexibility in terms of being able to cope to unexpected beam behaviours [2], [3] legacy of previous version experience [4], [5] and internal powerful diagnostics [6] as in the systems previously used in PEP-II and DAFNE [7].

  15. Head-Tail Instability of a Super-bunch

    SciTech Connect

    Shimosaki, Yoshito; Toyama, Takeshi; Takayama, Ken

    2005-06-08

    Super-bunch acceleration is a key concept in an induction synchrotron. In the induction synchrotron, super-bunches confined in the longitudinal direction by a pair of barrier voltages are accelerated with long induction step voltage pulses. Synchrotron oscillation of the super-bunch is notable, which consists of long drifting between the barriers and quick reflection in the barrier regions. This is apparently distinguished from that of the conventional RF bunch, which is the pendulum oscillation. This property has been supposed to bring about qualitatively different features in the head-tail instability of the super-bunch. Recently the head-tail instability of the super-bunch has been systematically examined. In this paper, the preliminary results of macro-particle simulations is reported.

  16. Noise prevention

    NASA Astrophysics Data System (ADS)

    Methods for noise abatement are discussed. Noise nuisance, types of noise (continuous, fluctuating, intermittent, pulsed), and types of noise abatement (absorption, vibration damping, isolation) are defined. Rockwool panels, industrial ceiling panels, baffles, acoustic foam panels, vibration dampers, acoustic mats, sandwich panels, isolating cabins and walls, ear protectors, and curtains are presented.

  17. Laser pulse shaping for multi-bunches photoinjectors

    NASA Astrophysics Data System (ADS)

    Villa, F.; Cialdi, S.; Anania, M. P.; Gatti, G.; Giorgianni, F.; Pompili, R.

    2014-03-01

    Multi-bunch electron linac operation is required in many applications, like plasma wake field acceleration, narrow band THz generation and two color FEL. We present a short review of laser techniques employed in multi-bunch photoinjectors and propose a new scheme based on spectral phase manipulation of the laser pulse. In conclusion we show some application of multi-bunches electron beams done at SPARC_ LAB.

  18. INDEPENDENT COMPONENT ANALYSIS (ICA) APPLIED TO LONG BUNCH BEAMS IN THE LOS ALAMOS PROTON STORAGE RING

    SciTech Connect

    Kolski, Jeffrey S.; Macek, Robert J.; McCrady, Rodney C.; Pang, Xiaoying

    2012-05-14

    Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis (PCA), which is the BSS foundation of the well known model independent analysis (MIA), ICA is more robust to noise, coupling, and nonlinearity. ICA of turn-by-turn beam position data has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch and discuss the source signals identified as betatron motion and longitudinal beam structure.

  19. Airport noise

    NASA Technical Reports Server (NTRS)

    Pendley, R. E.

    1982-01-01

    The problem of airport noise at several airports and air bases is detailed. Community reactions to the noise, steps taken to reduce jet engine noise, and the effect of airport use restrictions and curfews on air transportation are discussed. The adverse effect of changes in allowable operational noise on airport safety and altenative means for reducing noise pollution are considered. Community-airport relations and public relations are discussed.

  20. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  1. a Train of Micro-Bunches for Pwfa Experiments Produced by RF Photoinjectors

    NASA Astrophysics Data System (ADS)

    Boscolo, M.; Ferrario, M.; Vaccarezza, C.; Boscolo, I.; Castelli, F.; Cialdi, S.

    An electron beam generated in a radio-frequency photo-injector illuminated by a laser "comb" pulse evolves towards a homogenous electron beam with an energy modulation. The density modulation in fact is transformed into an energy modulation, with a saw-tooth like shape, by the longitudinal space charge forces. Such an energy distribution can be exploited to restore the initial density profile by means of a RF accelerating structure operating in the velocity bunching mode. It results a train of short electron bunches suitable for advanced PWFA experiments. The initial laser comb can be obtained with a pulse shaping device inserted into the laser system. In this paper we discuss the beam dynamics features of such a beam.

  2. A Quest for Measuring Ion Bunch Longitudinal Profiles with One Picosecond Accuracy in the SNS Linac.

    SciTech Connect

    Aleksandrov, Alexander V; Dickson, Richard W

    2012-01-01

    The SNS linac utilizes several accelerating structures operating at different frequencies and with different transverse focusing structures. Low-loss beam transport requires a careful matching at the transition points in both the transverse and longitudinal axes. Longitudinal beam parameters are measured using four Bunch Shape Monitors (used at many ion accelerator facilities, aka Feschenko devices). These devices, as initially delivered to the SNS, provided an estimated accuracy of about 5 picoseconds, which was sufficient for the initial beam commissioning. New challenges of improving beam transport for higher power operation will require measuring bunch profiles with 1-2 picoseconds accuracy. We have successfully implemented a number of improvements to maximize the performance characteristics of the delivered devices. We will discuss the current status of this instrument, its ultimate theoretical limit of accuracy, and how we measure its accuracy and resolution with real beam conditions.

  3. Distortion of Crabbed Bunch Due to the Electron Cloud

    SciTech Connect

    Wang, L; Raubenheimer, T.; /SLAC

    2008-05-28

    In order to improve the luminosity, two crab cavities have been installed in KEKB HER and LER [1]. Since there is only one crab cavity in each ring, the crab cavity generates a horizontally titled bunch along the whole ring. The achieved specific luminosity with crabbed bunch is higher, but it is not as high as that from beam-beam simulation [2]. One of the suspicions is the electron cloud. The electron cloud in LER (positron beam) may distort the crabbed bunch and cause the luminosity drop. This note briefly estimates the bunch shape distortion due to the electron cloud in KEKB LER.

  4. Acceleration of nonmonoenergetic electron bunches injected into a wake wave

    SciTech Connect

    Kuznetsov, S. V.

    2012-07-15

    The trapping and acceleration of nonmonoenergetic electron bunches in a wake field wave excited by a laser pulse in a plasma channel is studied. Electrons are injected into the region of the wake wave potential maximum at a velocity lower than the phase velocity of the wave. The paper analyzes the grouping of bunch electrons in the energy space emerging in the course of acceleration under certain conditions of their injection into the wake wave and minimizing the energy spread for such electrons. The factors determining the minimal energy spread between bunch electrons are analyzed. The possibility of monoenergetic acceleration of electron bunches generated by modern injectors in a wake wave is analyzed.

  5. Stochastic cooling of bunched beams from fluctuation and kinetic theory

    SciTech Connect

    Chattopadhyay, S.

    1982-09-01

    A theoretical formalism for stochastic phase-space cooling of bunched beams in storage rings is developed on the dual basis of classical fluctuation theory and kinetic theory of many-body systems in phase-space. The physics is that of a collection of three-dimensional oscillators coupled via retarded nonconservative interactions determined by an electronic feedback loop. At the heart of the formulation is the existence of several disparate time-scales characterizing the cooling process. Both theoretical approaches describe the cooling process in the form of a Fokker-Planck transport equation in phase-space valid up to second order in the strength and first order in the auto-correlation of the cooling signal. With neglect of the collective correlations induced by the feedback loop, identical expressions are obtained in both cases for the coherent damping and Schottky noise diffusion coefficients. These are expressed in terms of Fourier coefficients in a harmonic decomposition in angle of the generalized nonconservative cooling force written in canonical action-angle variables of the particles in six-dimensional phase-space. Comparison of analytic results to a numerical simulation study with 90 pseudo-particles in a model cooling system is presented.

  6. Beam transport and bunch compression at TARLA

    NASA Astrophysics Data System (ADS)

    Aksoy, Avni; Lehnert, Ulf

    2014-10-01

    The Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) will operate two InfraRed Free Electron Lasers (IR-FEL) covering the range of 3-250 μm. The facility will consist of an injector fed by a thermionic triode gun with two-stage RF bunch compression, two superconducting accelerating ELBE modules operating at continuous wave (CW) mode and two independent optical resonator systems with different undulator period lengths. The electron beam will also be used to generate Bremsstrahlung radiation. In this study, we present the electron beam transport including beam matching to the undulators and the shaping of the longitudinal phase space using magnetic dispersive sections.

  7. Phase Noise Comparision of Short Pulse Laser Systems

    SciTech Connect

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn

    2006-12-01

    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  8. Improvements in bunch coalescing in the Fermilab Main Ring

    SciTech Connect

    Martin, P.S.; Meisner, K.G.; Wildman, D.W.

    1989-03-01

    This paper discusses the improvements in the performance of the bunch coalescing operation in the Fermilab Main Ring which have resulted in increased efficiency and the capability to produce bunches containing more than 10/sup 11/ protons. 3 refs., 3 figs.

  9. Electron bunch length measurement at the Vanderbilt FEL

    SciTech Connect

    Amirmadhi, F.; Brau, C.A.; Mendenhall, M.

    1995-12-31

    During the past few years, a number of experiments have been performed to demonstrate the possibility to extract the longitudinal charge distribution from spectroscopic measurements of the coherent far-infrared radiation emitted as transition radiation or synchrotron radiation. Coherent emission occurs in a spectral region where the wavelength is comparable to or longer than the bunch length, leading to an enhancement of the radiation intensity that is on the order of the number of particles per bunch, as compared to incoherent radiation. This technique is particularly useful in the region of mm and sub-mm bunch lengths, a range where streak-cameras cannot be used for beam diagnostics due to their limited time resolution. Here we report on experiments that go beyond the proof of principle of this technique by applying it to the study and optimization of FEL performance. We investigated the longitudinal bunch length of the Vanderbilt FEL by analyzing the spectrum of coherent transition radiation emitted by the electron bunches. By monitoring the bunch length while applying a bunch-compression technique, the amount of the compression could be easily observed. This enabled us to perform a systematic study of the FEL performance, especially gain and optical pulse width, as a function of the longitudinal electron distribution in the bunch. The results of this study will be presented and discussed.

  10. Generation of Picosecond Electron-Bunch Trains with Variable Spacing Using a Multi-Pulse Photocathode Laser

    SciTech Connect

    Conde, M.; Gai, W.; Jing, C.; Konecny, R.; Liu, W.; Mihalcea, D.; Piot, P.; Power, J.G.; Rihaoui, M.; Yusof, Z.; /Argonne

    2012-07-08

    We demonstrate the generation of a train of electron bunches with variable spacing at the Argonne Wakefield Accelerator. The photocathode ultraviolet laser pulse consists of a train of four pulses produced via polarization splitting using two alpha-BBO crystals. The photoemitted electron bunches are then manipulated in a horizontally-bending dogleg with variable longitudinal dispersion. A downstream vertically-deflecting cavity is then used to diagnose the temporal profile of the electron beam. The generation of a train composed of four bunches with tunable spacing is demonstrated. Such a train of bunch could have application to, e.g., the resonant excitation of wakefield in dielectric-lined structures. We have presented preliminary measurements on a simple technique to generate a train of electron bunches with variable separation. In the initial experiment appreciable density modulation down to wavelengths of {approx}1.8 mm (corresponding to a temporal separation of {approx}6 ps) were achieved for a total charge of 0.5 nC. Finding ways to reach smaller separations is being explored with the help of numerical simulations and will be presented elsewhere.

  11. Community noise

    NASA Technical Reports Server (NTRS)

    Bragdon, C. R.

    1982-01-01

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  12. Plasma Wakefield Acceleration Simulations with Multiple Electron Bunches

    NASA Astrophysics Data System (ADS)

    Kallos, Efthymios; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl; Park, Jangho; Babzien, Marcus; Lichtl, Adam

    2008-11-01

    In the multibunch plasma wakefield accelerator, a train of electron bunches is utilized to excite a high gradient wakefield in a plasma which can be sampled by a trailing short witness bunch. We show that for five drive bunches with 150 pC total charge which can be generated in the Accelerator Test Facility of the Brookhaven National Lab, a wakefield of 140 MV/m can be generated if the plasma density is matched to the bunch train period. In addition, the possibility of ramping the charge per bunch in order to achieve high transformer ratios (>5) is examined, a scenario that is of great interest for a future afterburner collider. The work was supported by the US Department of Energy.

  13. Compact electron acceleration and bunch compression in THz waveguides.

    PubMed

    Wong, Liang Jie; Fallahi, Arya; Kärtner, Franz X

    2013-04-22

    We numerically investigate the acceleration and bunch compression capabilities of 20 mJ, 0.6 THz-centered coherent terahertz pulses in optimized metallic dielectric-loaded cylindrical waveguides. In particular, we theoretically demonstrate the acceleration of 1.6 pC and 16 pC electron bunches from 1 MeV to 10 MeV over an interaction distance of 20mm, the compression of a 1.6 pC 1 MeV bunch from 100 fs to 2 fs (50 times compression) over an interaction distance of about 18mm, and the compression of a 1.6 pC 10 MeV bunch from 100 fs to 1.61 fs (62 times) over an interaction distance of 42 cm. The obtained results show the promise of coherent THz pulses in realizing compact electron acceleration and bunch compression schemes. PMID:23609686

  14. Longitudinal Bunch Position Control for the Super-B Accelerator

    SciTech Connect

    Bertsche, Kirk; Rivetta, Claudio; Sullivam, Michael K.; Drago, Alessandro; /Frascati

    2009-05-15

    The use of normal conducting cavities and an ion-clearing gap will cause a significant RF accelerating voltage gap transient and longitudinal phase shift of the individual bunches along the bunch train in both rings of the SuperB accelerator. Small relative centroid position shifts between bunches of the colliding beams will have a large adverse impact on the luminosity due to the small {beta}*{sub y} at the interaction point (IP). We investigate the possibility of minimizing the relative longitudinal position shift between bunches by reducing the gap transient in each ring and matching the longitudinal bunch positions of the two rings at the IP using feedback/feedforward techniques in the LLRF. The analysis is conducted assuming maximum use of the klystron power installed in the system.

  15. Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch

    NASA Astrophysics Data System (ADS)

    Kuschel, S.; Hollatz, D.; Heinemann, T.; Karger, O.; Schwab, M. B.; Ullmann, D.; Knetsch, A.; Seidel, A.; Rödel, C.; Yeung, M.; Leier, M.; Blinne, A.; Ding, H.; Kurz, T.; Corvan, D. J.; Sävert, A.; Karsch, S.; Kaluza, M. C.; Hidding, B.; Zepf, M.

    2016-07-01

    We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matched to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. Its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.

  16. Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation.

    PubMed

    Zhang, Zhen; Yan, Lixin; Du, Yingchao; Zhou, Zheng; Su, Xiaolu; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Shi, Jiaru; Chen, Huaibi; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang

    2016-05-01

    High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μJ-level energies and tunable central frequency of the spectrum in the range of ∼0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration. PMID:27203327

  17. Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch

    DOE PAGESBeta

    Kuschel, S.; Hollatz, D.; Heinemann, T.; Karger, O.; Schwab, M. B.; Ullmann, D.; Knetsch, A.; Seidel, A.; Rodel, C.; Yeung, M.; et al

    2016-07-20

    We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matchedmore » to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. As a result, its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.« less

  18. Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Yan, Lixin; Du, Yingchao; Zhou, Zheng; Su, Xiaolu; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Shi, Jiaru; Chen, Huaibi; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang

    2016-05-01

    High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μ J -level energies and tunable central frequency of the spectrum in the range of ˜0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.

  19. Luminosity Variations Along Bunch Trains in PEP-II

    SciTech Connect

    Decker, F.J.; Boyes, M.; Colocho, W.S.; Novokhatski, A.; Sullivan, M.K.; Turner, J.L.; Weathersby, S.P.; Wienands, U.; Yocky, G.; /SLAC

    2007-05-18

    In the spring of 2005 after a long shut-down, the luminosity of the B-Factory PEP-II decreased along the bunch trains by about 25-30%. There were many reasons studied which could have caused this performance degradation, like a bigger phase transient due to an additional RF station in the Low-Energy-Ring (LER), bad initial vacuum, electron cloud, chromaticity, steering, dispersion in cavities, beam optics, etc. The initial specific luminosity of 4.2 sloped down to 3.2 and even 2.8 for a long train (typical: 130 of 144), later in the run with higher currents and shorter trains (65 of 72) the numbers were more like 3.2 down to 2.6. Finally after steering the interaction region for an unrelated reason (overheated BPM buttons) and the consequential lower luminosity for two weeks, the luminosity slope problem was mysteriously gone. Several parameters got changed and there is still some discussion about which one finally fixed the problem. Among others, likely candidates are: the LER betatron function in x at the interaction point got reduced, making the LER x stronger, dispersion reduction in the cavities, and finding and fixing a partially shorted magnet.

  20. Rotor noise

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.

    1991-01-01

    The physical characteristics and sources of rotorcraft noise as they exist today are presented. Emphasis is on helicopter-like vehicles, that is, on rotorcraft in nonaxial flight. The mechanisms of rotor noise are reviewed in a simple physical manner for the most dominant sources of rotorcraft noise. With simple models, the characteristic time- and frequency-domain features of these noise sources are presented for idealized cases. Full-scale data on several rotorcraft are then reviewed to allow for the easy identification of the type and extent of the radiating noise. Methods and limitations of using scaled models to test for several noise sources are subsequently presented. Theoretical prediction methods are then discussed and compared with experimental data taken under very controlled conditions. Finally, some promising noise reduction technology is reviewed.

  1. Bunch coalescing in the main ring to form intense proton and antiproton bunches without RF counterphasing

    SciTech Connect

    Griffin, J.E.; MacLachlan, J.A.; Nicholls, G.N.; Qian, Z.B.

    1984-08-09

    Both the proton and antiproton bunches which will collide in the Tevatron have longitudinal emittance greater than can be accelerated by the main ring from 8 GeV without large loss and emittance growth. We have previously described the technique of combining several smaller bunches at the Tevatron injection energy with little increase in the total emittance and negligible loss. This technique requires adiabatic debunching of several adjacent 53 MHz bunches by smooth reduction of the RF voltage from approx. 1 MV to approx. 100 V. The very low voltage is extremely difficult to attain with a high-Q system designed for megavolt accelerating potential. The counterphasing technique of voltage reduction which we have used in main ring experiments and proposed for the TeV I project is to divide the accelerating cavities into two closely matched groups and to smoothly shift the relative phase of the drive to the two groups by 180 degrees. When the net voltage has been reduced by this means to the lowest practical level, about 10 kV, the final voltage reduction may be performed by turning off the high-Q system and using a low-Q cavity. The voltage induced on the undriven gaps of the high-Q system is low enough not to be a major problem because the total intensity is low. However, the effects are not negligible, and dynamic beam loading compensation is required. This memo proposes that the process described above be simplified somewhat by replacing the counterphasing voltage reduction with a zero-voltage spreading of the bunches for several milliseconds followed by a few hundred microseconds of rotation to minimum energy spread in buckets produced at high voltage.

  2. Rights, Bunche, Rose and the "pipeline".

    PubMed Central

    Marks, Steven R.; Wilkinson-Lee, Ada M.

    2006-01-01

    We address education "pipelines" and their social ecology, drawing on the 1930's writing of Ralph J. Bunche, a Nobel peace maker whose war against systematic second-class education for the poor, minority and nonminority alike is nearly forgotten; and of the epidemiologist Geoffrey Rose, whose 1985 paper spotlighted the difficulty of shifting health status and risks in a "sick society. From the perspective of human rights and human development, we offer suggestions toward the paired "ends" of the pipeline: equality of opportunity for individuals, and equality of health for populations. We offer a national "to do" list to improve pipeline flow and then reconsider the merits of the "pipeline" metaphor, which neither matches the reality of lived education pathways nor supports notions of human rights, freedoms and capabilities, but rather reflects a commoditizing stance to free persons. PMID:17019927

  3. Electron gun jitter effects on beam bunching

    SciTech Connect

    Liu, M. S.; Iqbal, M.

    2014-02-15

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps which eventually deteriorates both the beam performance and the injection rate to the storage ring.

  4. Bunch by Bunch Profiling with a Rotating X-ray Mask

    SciTech Connect

    Lee, Christopher J.; /UC, San Diego

    2007-11-07

    It is desirable to monitor the cross sections of each positron bunch in the Low Energy Ring (LER) storage rings of the Positron Electron Project II (PEP-II) located at the Stanford Linear Accelerator Center. One method is to pass the x-rays given off by each bunch through a scintillator, thereby studying a visible image. A rotating x-ray mask with three slots scans the beam image in three different orientations, allowing us to mechanically collect data to characterize and profile each image. Progress was made in designing the x-ray mask, researching and procuring parts, as well as advancing project plans. However, due to time constraints and difficulties in procuring special parts, the full system was not completed. A simpler setup was built to test the hardware as well as the feasibility of characterizing a circular image with a rotating mask. A blinking green light emitting diode (LED) simulated a single positron bunch stored in the LER ring. The selected hardware handled this simulation setup well and produced data that led to a reasonable estimation of the LED image diameter.

  5. Bunch mode specific rate corrections for PILATUS3 detectors

    PubMed Central

    Trueb, P.; Dejoie, C.; Kobas, M.; Pattison, P.; Peake, D. J.; Radicci, V.; Sobott, B. A.; Walko, D. A.; Broennimann, C.

    2015-01-01

    PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanism has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel. PMID:25931086

  6. Bunch mode specific rate corrections for PILATUS3 detectors.

    PubMed

    Trueb, P; Dejoie, C; Kobas, M; Pattison, P; Peake, D J; Radicci, V; Sobott, B A; Walko, D A; Broennimann, C

    2015-05-01

    PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanism has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel. PMID:25931086

  7. Bunch mode specific rate corrections for PILATUS3 detectors

    SciTech Connect

    Trueb, P.; Dejoie, C.; Kobas, M.; Pattison, P.; Peake, D. J.; Radicci, V.; Sobott, B. A.; Walko, D. A.; Broennimann, C.

    2015-04-09

    PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanism has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.

  8. Bunch mode specific rate corrections for PILATUS3 detectors

    DOE PAGESBeta

    Trueb, P.; Dejoie, C.; Kobas, M.; Pattison, P.; Peake, D. J.; Radicci, V.; Sobott, B. A.; Walko, D. A.; Broennimann, C.

    2015-04-09

    PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanismmore » has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.« less

  9. Mechanical Behavior of Electrospun Palmfruit Bunch Reinforced Polylactide Composite Fibers

    NASA Astrophysics Data System (ADS)

    Adeosun, S. O.; Akpan, E. I.; Gbenebor, O. P.; Peter, A. A.; Olaleye, Samuel Adebayo

    2016-01-01

    In this study, the mechanical characteristics of electrospun palm fruit bunch reinforced poly lactic acid (PLA) nanofiber composites using treated and untreated filler was examined. Poly lactic acid-palm fruit bunch-dichloromethane blends were electrospun by varying the concentration of the palm fruit bunch between 0 wt.% and 8 wt.%. A constant voltage of 26 kV was applied, the tip-to-collector distance was maintained at 27.5 cm and PLA-palm fruit bunch-dichloromethane (DCM) concentration of 12.5% (w/v) was used. The results revealed that the presence of untreated palm fruit bunch fillers in the electrospun PLA matrix significantly reduces the average diameters of the fibers, causing the formation of beads. As a result there are reductions in tensile strengths of the fibers. The presence of treated palm fruit bunch fillers in the electrospun PLA matrix increases the average diameters of the fibers with improvements in the mechanical properties. The optimal mechanical responses were obtained at 3 wt.% of the treated palm fruit bunch fillers in the PLA matrix. However, increase in the palm fruit fillers (treated and untreated) in the PLA matrix promoted the formation of beads in the nanofiber composites.

  10. Airframe noise

    NASA Astrophysics Data System (ADS)

    Crighton, David G.

    1991-08-01

    Current understanding of airframe noise was reviewed as represented by experiment at model and full scale, by theoretical modeling, and by empirical correlation models. The principal component sources are associated with the trailing edges of wing and tail, deflected trailing edge flaps, flap side edges, leading edge flaps or slats, undercarriage gear elements, gear wheel wells, fuselage and wing boundary layers, and panel vibration, together with many minor protrusions like radio antennas and air conditioning intakes which may contribute significantly to perceived noise. There are also possibilities for interactions between the various mechanisms. With current engine technology, the principal airframe noise mechanisms dominate only at low frequencies, typically less than 1 kHz and often much lower, but further reduction of turbomachinery noise in particular may make airframe noise the principal element of approach noise at frequencies in the sensitive range.

  11. Explanation of persistent high frequency density structure in coalesced bunches

    SciTech Connect

    Jackson, Gerald P.

    1988-07-01

    It has been observed that after the Main Ring rf manipulation of coalescing (where 5 to 13 primary bunches are transferred into a single rf bucket) the new secondary bunch displays evidence of high frequency density structure superimposed on the approximately Gaussian longitudinal bunch length distribution. This structure is persistent over a period of many seconds (hundreds of synchrotron oscillation periods). With the help of multiparticle simulation programs, an explanation of this phenomenon is given in terms of single particle longitudinal phase space dynamics. No coherent effects need be taken into account. 6 refs., 10 figs.

  12. Production of relativistic electron bunch with tunable current distribution

    SciTech Connect

    Piot, P.; Sun, Y.-E.; Rihaoui, M.; /Northern Illinois U. /NICADD, DeKalb

    2008-11-01

    We propose a novel method for tailoring the current distribution of relativistic electron bunches. The technique relies on a recently proposed transverse-to-longitudinal phase space exchange. The bunch is transversely shaped and the phase space exchange mechanism converts this transverse profile into a current profile. The technique provides a tool for generating arbitrary current profiles in a tunable fashion.We demonstrate, via computer simulations, the method and its application to tailor specific current profiles such as, e.g., linearly ramped profiles and train of femtosecond micro-bunches that have application in plasma and dielectric wakefield accelerators.

  13. Production of Relativistic Electron Bunch with Tunable Current Distribution

    SciTech Connect

    Piot, P.; Sun, Y.-E; Rihaoui, M.

    2009-01-22

    We proposed a novel method for tailoring the current distribution of relativistic electron bunches. The technique relies on a recently proposed transverse-to-longitudinal phase space exchange. The bunch is transversely shaped and the phase space exchange mechanism converts this transverse profile into a current profile. The technique provides a tool for generating arbitrary current profiles in a tunable fashion. We demonstrate, via computer simulations, the method and its application to tailor specific current profiles such as, e.g., linearly ramped profiles and train of femtosecond micro-bunches that have application in plasma and dielectric wakefield accelerators.

  14. Controllable photon bunching by atomic superpositions in a driven cavity

    NASA Astrophysics Data System (ADS)

    Guo, Weijie; Wang, Yao; Wei, L. F.

    2016-04-01

    We propose a feasible approach to generate the desired light with controllable photon bunchings by adjusting the atomic superpositions in a driven cavity. Under the large detuning limit, i.e., the cavity is far resonance with the inside atom(s), we show that the photons in the cavity are always bunchings. Typically, when the effective dispersive interaction equals the detuning between the driving and cavity fields, we find that the value of second-order correlation g(2 )(0 ) inverses to the probability of the superposed atomic state. This suggests that such a value could be arbitrarily large, and thus the bunchings of the photons could be significantly enhanced.

  15. Bunch-Kaufman factorization for real symmetric indefinite banded matrices

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.

    1989-01-01

    The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices was rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.

  16. Developing electron beam bunching technology for improving light sources

    SciTech Connect

    Carlsten, B.E.; Chan, K.C.D.; Feldman, D.W.

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new electron bunch compression technology, experimentally demonstrate subpicosecond compression of bunches with charges on the order of 1 nC, and to theoretically investigate fundamental limitations to electron bunch compression. All of these goals were achieved, and in addition, the compression system built for this project was used to generate 22 nm light in a plasma-radiator light source.

  17. Observing Atom Bunching by the Fourier Slice Theorem

    NASA Astrophysics Data System (ADS)

    Blumkin, A.; Rinott, S.; Schley, R.; Berkovitz, A.; Shammass, I.; Steinhauer, J.

    2013-06-01

    By a novel reciprocal space analysis of the measurement, we report a calibrated in situ observation of the bunching effect in a 3D ultracold gas. The calibrated measurement with no free parameters confirms the role of the exchange symmetry and the Hanbury Brown-Twiss effect in the bunching. Also, the enhanced fluctuations of the bunching effect give a quantitative measure of the increased isothermal compressibility. We use 2D images to probe the 3D gas, using the same principle by which computerized tomography reconstructs a 3D image of a body. The powerful reciprocal space technique presented is applicable to systems with one, two, or three dimensions.

  18. Bunch Length and Impedance Measurements at SPEAR3

    SciTech Connect

    Corbett, W.J.; Cheng, W.X.; Fisher, A.S.; Huang, X.; /SLAC

    2011-11-02

    Streak camera measurements were made at SPEAR3 to characterize longitudinal coupling impedance. For the nominal optics, data was taken at three rf voltages and a single-bunch current range of 0-20mA. Both bunchcentroid phase shift and bunch lengthening were recorded to extract values for resistive and reactive impedance. An (R+L) and a Q=1 model were then back-substituted into the Haissinski equation and compared with raw profile data. In the short bunch (low-{alpha}) mode, distribution 'bursting' was observed.

  19. Turbomachinery noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Sofrin, Thomas G.; Rice, Edward J.; Gliebe, Phillip R.

    1991-01-01

    Summarized here are key advances in experimental techniques and theoretical applications which point the way to a broad understanding and control of turbomachinery noise. On the experimental side, the development of effective inflow control techniques makes it possible to conduct, in ground based facilities, definitive experiments in internally controlled blade row interactions. Results can now be valid indicators of flight behavior and can provide a firm base for comparison with analytical results. Inflow control coupled with detailed diagnostic tools such as blade pressure measurements can be used to uncover the more subtle mechanisms such as rotor strut interaction, which can set tone levels for some engine configurations. Initial mappings of rotor wake-vortex flow fields have provided a data base for a first generation semiempirical flow disturbance model. Laser velocimetry offers a nonintrusive method for validating and improving the model. Digital data systems and signal processing algorithms are bringing mode measurement closer to a working tool that can be frequently applied to a real machine such as a turbofan engine. On the analytical side, models of most of the links in the chain from turbomachine blade source to far field observation point have been formulated. Three dimensional lifting surface theory for blade rows, including source noncompactness and cascade effects, blade row transmission models incorporating mode and frequency scattering, and modal radiation calculations, including hybrid numerical-analytical approaches, are tools which await further application.

  20. Interior Noise

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Wilby, John F.

    1991-01-01

    The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.

  1. Phase detector and phase feedback for a single bunch in a two-bunch damping ring for the SLAC Linear Collider

    SciTech Connect

    Schwarz, H.D.; Judkins, J.G.

    1987-03-01

    The synchronous phase of a bunch of positrons or electrons being damped in a SLAC Linear Collider (SLC) damping ring is dependent on beam intensity. Injection for alternate bunches into the SLC linac from the damping rings should occur at a constant phase. A phase detector was developed allowing the measurement of phase of a single-stored bunch in the presence of a second bunch in reference to the phase of the linac. The single-bunch phase is derived from beam position monitor signals using a switching scheme to separate the two bunches circulating in each damping ring. The hardware is described including feedback loops to stabilize the extraction phase.

  2. Direct Numerical Modeling of E-Cloud Driven Instability of a Bunch Train in the CERN SPS

    SciTech Connect

    Vay, J-L.; Furman, M.A.; Venturini, M.

    2011-03-01

    The simulation package WARP-POSINST was recently upgraded for handling multiple bunches and modeling concurrently the electron cloud buildup and its effect on the beam, allowing for direct self-consistent simulation of bunch trains generating, and interacting with, electron clouds. We have used the WARP-POSINST package on massively parallel supercomputers to study the buildup and interaction of electron clouds with a proton bunch train in the CERN SPS accelerator. Results suggest that a positive feedback mechanism exists between the electron buildup and the e-cloud driven transverse instability, leading to a net increase in predicted electron density. Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS and other accelerators. So far, simulations of electron cloud buildup and their effects on beam dynamics have been performed separately. This is a consequence of the large computational cost of the combined calculation due to large space and time scale disparities between the two processes. We have presented the latest improvements of the simulation package WARP-POSINST for the simulation of self-consistent ecloud effects, including mesh refinement, and generation of electrons from gas ionization and impact at the pipe walls. We also presented simulations of two consecutive bunches interacting with electrons clouds in the SPS, which included generation of secondary electrons. The distribution of electrons in front of the first beam was initialized from a dump taken from a preceding buildup calculation using the POSINST code. In this paper, we present an extension of this work where one full batch of 72 bunches is simulated in the SPS, including the entire buildup calculation and the self-consistent interaction between the bunches and the electrons.

  3. Self-Consistant Numerical Modeling of E-Cloud Driven Instability of a Bunch Train in the CERN SPS

    SciTech Connect

    Vay, J-L.; Furman, M.A.; Secondo, R.; Venturini, M.; Fox, J.D.; Rivetta, C.H,

    2010-09-01

    The simulation package WARP-POSINST was recently upgraded for handling multiple bunches and modeling concurrently the electron cloud buildup and its effect on the beam, allowing for direct self-consistent simulation of bunch trains generating, and interacting with, electron clouds. We have used the WARP-POSINST package on massively parallel supercomputers to study the growth rate and frequency patterns in space-time of the electron cloud driven transverse instability for a proton bunch train in the CERN SPS accelerator. Results suggest that a positive feedback mechanism exists between the electron buildup and the e-cloud driven transverse instability, leading to a net increase in predicted electron density. Comparisons to selected experimental data are also given. Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS and other accelerators. So far, simulations of electron cloud buildup and their effects on beam dynamics have been performed separately. This is a consequence of the large computational cost of the combined calculation due to large space and time scale disparities between the two processes. We have presented the latest improvements of the simulation package WARP-POSINST for the simulation of self-consistent ecloud effects, including mesh refinement, and generation of electrons from gas ionization and impact at the pipe walls. We also presented simulations of two consecutive bunches interacting with electrons clouds in the SPS, which included generation of secondary electrons. The distribution of electrons in front of the first beam was initialized from a dump taken from a preceding buildup calculation using the POSINST code. In this paper, we present an extension of this work where one full batch of 72 bunches is simulated in the SPS, including the entire buildup calculation and the self-consistent interaction between the bunches and the electrons. Comparisons to experimental data are also given.

  4. Noise Intensity-Intensity Correlations and the Fourth Cumulant of Photo-assisted Shot Noise

    PubMed Central

    Forgues, Jean-Charles; Sane, Fatou Bintou; Blanchard, Simon; Spietz, Lafe; Lupien, Christian; Reulet, Bertrand

    2013-01-01

    We report the measurement of the fourth cumulant of current fluctuations in a tunnel junction under both dc and ac (microwave) excitation. This probes the non-Gaussian character of photo-assisted shot noise. Our measurement reveals the existence of correlations between noise power measured at two different frequencies, which corresponds to two-mode intensity correlations in optics. We observe positive correlations, i.e. photon bunching, which exist only for certain relations between the excitation frequency and the two detection frequencies, depending on the dc bias of the sample. PMID:24100407

  5. Noise intensity-intensity correlations and the fourth cumulant of photo-assisted shot noise.

    PubMed

    Forgues, Jean-Charles; Sane, Fatou Bintou; Blanchard, Simon; Spietz, Lafe; Lupien, Christian; Reulet, Bertrand

    2013-01-01

    We report the measurement of the fourth cumulant of current fluctuations in a tunnel junction under both dc and ac (microwave) excitation. This probes the non-Gaussian character of photo-assisted shot noise. Our measurement reveals the existence of correlations between noise power measured at two different frequencies, which corresponds to two-mode intensity correlations in optics. We observe positive correlations, i.e. photon bunching, which exist only for certain relations between the excitation frequency and the two detection frequencies, depending on the dc bias of the sample. PMID:24100407

  6. Noise Protection

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.

  7. Monte Carlo Mean Field Treatment of Microbunching Instability in the FERMI@Elettra First Bunch Compressor

    SciTech Connect

    Bassi, G.; Ellison, J.A.; Heinemann, K.; Warnock, R.; /SLAC

    2009-05-07

    Bunch compressors, designed to increase the peak current, can lead to a microbunching instability with detrimental effects on the beam quality. This is a major concern for free electron lasers (FELs) where very bright electron beams are required, i.e. beams with low emittance and energy spread. In this paper, we apply our self-consistent, parallel solver to study the microbunching instability in the first bunch compressor system of FERMI{at}Elettra. Our basic model is a 2D Vlasov-Maxwell system. We treat the beam evolution through a bunch compressor using our Monte Carlo mean field approximation. We randomly generate N points from an initial phase space density. We then calculate the charge density using a smooth density estimation procedure, from statistics, based on Fourier series. The electric and magnetic fields are calculated from the smooth charge/current density using a novel field formula that avoids singularities by using the retarded time as a variable of integration. The points are then moved forward in small time steps using the beam frame equations of motion, with the fields frozen during a time step, and a new charge density is determined using our density estimation procedure. We try to choose N large enough so that the charge density is a good approximation to the density that would be obtained from solving the 2D Vlasov-Maxwell system exactly. We call this method the Monte Carlo Particle (MCP) method.

  8. Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study.

    PubMed

    Li, Yao; Liu, Xiaomin; Zhang, Suojiang; Yao, Yingying; Yao, Xiaoqian; Xu, Junli; Lu, Xingmei

    2015-07-21

    In recent years, a variety of ionic liquids (ILs) were found to be capable of dissolving cellulose and mechanistic studies were also reported. However, there is still a lack of detailed information at the molecular level. Here, long time molecular dynamics simulations of cellulose bunch in 1-ethyl-3-methylimidazolium acetate (EmimAc), 1-ethyl-3-methylimidazolium chloride (EmimCl), 1-butyl-3-methylimidazolium chloride (BmimCl) and water were performed to analyze the inherent interaction and dissolving mechanism. Complete dissolution of the cellulose bunch was observed in EmimAc, while little change took place in EmimCl and BmimCl, and nothing significant happened in water. The deconstruction of the hydrogen bond (H-bond) network in cellulose was found and analyzed quantitatively. The synergistic effect of cations and anions was revealed by analyzing the whole dissolving process. Initially, cations bind to the side face of the cellulose bunch and anions insert into the cellulose strands to form H-bonds with hydroxyl groups. Then cations start to intercalate into cellulose chains due to their strong electrostatic interaction with the entered anions. The H-bonds formed by Cl(-) cannot effectively separate the cellulose chain and that is the reason why EmimCl and BmimCl dissolve cellulose more slowly. These findings deepen people's understanding on how ILs dissolve cellulose and would be helpful for designing new efficient ILs to dissolve cellulose. PMID:26095890

  9. Phase modulation of the bucket stops bunch oscillations at the Fermilab Tevatron

    SciTech Connect

    Tan, C.Y.; Burov, A.; /Fermilab

    2012-04-02

    Bunches in the Tevatron are known to exhibit longitudinal oscillations which persist indefinitely. These oscillations are colloquially called 'dancing bunches.' Although the dancing proton bunches do not cause single bunch emittance growth or beam loss at injection, they lead to bunch lengthening at collisions. In Tevatron operations, a longitudinal damper has been built which stops this dance and damps out coupled bunch modes. Recent theoretical work predicts that the dance can also be stopped by an appropriate change in the bunch distribution. This paper describes the Tevatron experiments which support this theory.

  10. following an electron bunch for free electron laser

    SciTech Connect

    2012-01-01

    A video artist's ultra-slow-motion impression of an APEX-style electron gun firing a continuous train of electron bunches into a superconducting linear accelerator (in reality this would happen a million times a second). As they approach the speed of light the bunches contract, maintaining beam quality. After acceleration, the electron bunches are diverted into one or more undulators, the key components of free electron lasers. Oscillating back and forth in the changing magnetic field, they create beams of structured x-ray pulses. Before entering the experimental areas the electron bunches are diverted to a beam dump. (Animation created by Illumina Visual, http://www.illuminavisual.com/, for Lawrence Berkeley National Laboratory. Music for this excerpt, "Feeling Dark (Behind The Mask)" is by 7OOP3D http://ccmixter.org/files/7OOP3D/29126 and is licensed under a Creative Commons license: http://creativecommons.org/licenses/by-nc/3.0/)

  11. STOCHASTIC COOLING OF HIGH-ENERGY BUNCHED BEAMS

    SciTech Connect

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-06-25

    Stochastic cooling of 100 GeV/nucleon bunched beams has been achieved in the Relativistic Heavy Ion Collider (RHIC). The physics and technology of the longitudinal cooling system are discussed, and plans for a transverse cooling system are outlined.

  12. MULTIPLE SINGLE BUNCH EXTRACTION TO THE AGS SWITCHYARD.

    SciTech Connect

    BROWN,K.A.; AHRENS,L.; GASSNER,D.; GLENN,J.W.; ROSER,T.; SMITH,G.; TSOUPAS,N.; VAN ASSELT,W.; ZENO,K.

    2001-06-18

    In this report we will describe the multiple single bunch extraction system as utilized to deliver beams to the Brookhaven's Alternating Gradient Synchrotron (AGS) switchyard area. We will describe modifications of the AGS switchyard, necessary to allow it to accept bunched beam, and results of the first commissioning of this system. The AGS Switchyard has for many years been used to simultaneously deliver (unbunched) resonant extracted beam to a set of fixed target experiments. In order to accommodate new fixed target experiments which require bunched beams, a method of sending the bunched beams to the AGS Switchyard was required. In addition, by using the AGS switchyard instead of the upstream section of the Brookhaven's Relativistic Heavy Ion Collider (RHIC) injection line the accelerators can be reconfigured quickly and efficiently for filling RHIC. We will present results of the commissioning of this system, which was done in January 2001.

  13. Aircraft Noise

    NASA Astrophysics Data System (ADS)

    Michel, Ulf; Dobrzynski, Werner; Splettstoesser, Wolf; Delfs, Jan; Isermann, Ullrich; Obermeier, Frank

    Aircraft industry is exposed to increasing public pressure aiming at a continuing reduction of aircraft noise levels. This is necessary to both compensate for the detrimental effect on noise of the expected increase in air traffic and improve the quality of living in residential areas around airports.

  14. Environmental Noise

    NASA Astrophysics Data System (ADS)

    Rumberg, Martin

    Environmental noise may be defined as unwanted sound that is caused by emissions from traffic (roads, air traffic corridors, and railways), industrial sites and recreational infrastructures, which may cause both annoyance and damage to health. Noise in the environment or community seriously affects people, interfering with daily activities at school, work and home and during leisure time.

  15. Compensating the unequal bunch spacing in the NLC damping rings

    SciTech Connect

    Bane, K.L.F.; Wilson, P.B.; Kubo, K.

    1996-06-01

    The damping rings of the Next Linear Collider (NLC), at any given time, will contain four trains of 90 bunches each. Within each train the bunches populate adjacent buckets and between trains there is a gap that extends over 43 buckets. A consequence of an uneven filling scheme is that within each train the synchronous phase will vary from bunch to bunch. In the NLC after extraction the beam enters the bunch compressor and then the X-band linac. The phase variation in the ring, if uncompensated, will lead to a phase variation in the X-band linac which, in turn, will result in an unacceptable spread in the final energy of the individual bunches of a train. The synchronous phase variation, however, can be compensated, either in the damping ring itself or in the bunch compressor that follows. The subject of this paper is compensation in the damping ring. In this report we begin by finding the synchronous phase variation in damping rings with bunch trains and gaps of arbitrary length. These results are then applied to the parameters of the NLC damping rings. Finally, we study two methods of compensating this phase variation: in the first method two passive subharmonic cavities are employed, and in the second the klystron output is varied as a function of time. We find that, for the NLC, a nominal phase variation of 6 degrees within a train can be reduced by almost an order of magnitude by either method of compensation, with the cost of the second method being an extra 10% in output power capability of the klystron.

  16. A two-bunch beam position monitor performance evaluation

    SciTech Connect

    Traller, R.; Medvedko, E.; Smith, S.; Aiello, R.

    1998-12-01

    New beam position processing electronics for the Linear Accelerator allow faster feedback and processing of both positron and electron bunch positions in a single machine pulse. More than 30 electron-positron beam position monitors (epBPMs) have been installed at SLAC in various applications and have met all design requirements. The SLC production electron bunch follows the positron bunch down the linac separated by 58.8 nS. The epBPM measures the position of both bunches with an accuracy of better than 5 {mu}m at nominal operating intensities. For SLC, the epBPMs have measured the position of bunches consisting of from 1 to 8{times}10{sup 10} particles per bunch. For PEP-II ({ital B} Factory) injection, epBPMs have been used with larger electrodes and several BPMs have been combined on a single cable set. The signals are separated for measurement in the epBPM by timing. In PEP-II injection we have measured the position of bunches of as little as 2{times}10{sup 9} particles per bunch. To meet the demands of SLC and PEP-II injection, the epBPM has been designed with three triggering modes: 1. As a self-triggering detector, it can trigger off the beam and hold the peak signal until read out by the control program. 2. The gated mode uses external timing signals to gate the beam trigger. 3. The external trigger mode uses the external timing signals offset with internal vernier delays to precisely catch peak signals in noisy environments. Finally, the epBPM also has built-in timing verniers capable of nulling errors in cable set fabrication and differences in channel-to-channel signal delay. Software has made all this functionality available through the SLC control system. {copyright} {ital 1998 American Institute of Physics.}

  17. A two-bunch beam position monitor performance evaluation

    SciTech Connect

    Traller, Robert; Medvedko, Evgeny; Smith, Steve; Aiello, Roberto

    1998-12-10

    New beam position processing electronics for the Linear Accelerator allow faster feedback and processing of both positron and electron bunch positions in a single machine pulse. More than 30 electron-positron beam position monitors (epBPMs) have been installed at SLAC in various applications and have met all design requirements. The SLC production electron bunch follows the positron bunch down the linac separated by 58.8 nS. The epBPM measures the position of both bunches with an accuracy of better than 5 {mu}m at nominal operating intensities. For SLC, the epBPMs have measured the position of bunches consisting of from 1 to 8x10{sup 10} particles per bunch. For PEP-II (B Factory) injection, epBPMs have been used with larger electrodes and several BPMs have been combined on a single cable set. The signals are separated for measurement in the epBPM by timing. In PEP-II injection we have measured the position of bunches of as little as 2x10{sup 9} particles per bunch. To meet the demands of SLC and PEP-II injection, the epBPM has been designed with three triggering modes: 1. As a self-triggering detector, it can trigger off the beam and hold the peak signal until read out by the control program. 2. The gated mode uses external timing signals to gate the beam trigger. 3. The external trigger mode uses the external timing signals offset with internal vernier delays to precisely catch peak signals in noisy environments. Finally, the epBPM also has built-in timing verniers capable of nulling errors in cable set fabrication and differences in channel-to-channel signal delay. Software has made all this functionality available through the SLC control system.

  18. Longitudinal bunch dynamics study with coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2016-02-01

    An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch, certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series. The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the bunch. The modulations are superimposed on a much larger continuum from CSR emission in the continuous mode. A given eigenmode is classified by the integer m which is the ratio of the mode frequency to the synchrotron frequency. The present measurements extend up to m =8 and focus on the region near the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are observed to coexist at the boundaries between the modes. An energy-independent correlation is observed between the threshold current for an instability and the corresponding zero-current bunch length. Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source. The CSR was measured in the time domain using an unbiased Schottky diode spanning 50-75 GHz.

  19. On the Use of Shot Noise for Photon Counting

    NASA Astrophysics Data System (ADS)

    Zmuidzinas, Jonas

    2015-11-01

    Lieu et al. have recently claimed that it is possible to substantially improve the sensitivity of radio-astronomical observations. In essence, their proposal is to make use of the intensity of the photon shot noise as a measure of the photon arrival rate. Lieu et al. provide a detailed quantum-mechanical calculation of a proposed measurement scheme that uses two detectors and conclude that this scheme avoids the sensitivity degradation that is associated with photon bunching. If correct, this result could have a profound impact on radio astronomy. Here I present a detailed analysis of the sensitivity attainable using shot-noise measurement schemes that use either one or two detectors, and demonstrate that neither scheme can avoid the photon bunching penalty. I perform both semiclassical and fully quantum calculations of the sensitivity, obtaining consistent results, and provide a formal proof of the equivalence of these two approaches. These direct calculations are furthermore shown to be consistent with an indirect argument based on a correlation method that establishes an independent limit to the sensitivity of shot-noise measurement schemes. Furthermore, these calculations are directly applicable to the regime of interest identified by Lieu et al. Collectively, these results conclusively demonstrate that the photon-bunching sensitivity penalty applies to shot-noise measurement schemes just as it does to ordinary photon counting, in contradiction to the fundamental claim made by Lieu et al. The source of this contradiction is traced to a logical fallacy in their argument.

  20. Bunch-by-bunch profile diagnostics in storage rings by infrared array detection

    NASA Astrophysics Data System (ADS)

    Drago, A.; Bocci, A.; Cestelli Guidi, M.; De Sio, A.; Pace, E.; Marcelli, A.

    2015-09-01

    The latest generation of storage rings, both light sources and colliders, needs improved diagnostics systems to achieve the challenging design parameters. Although many commercially available diagnostics can be used to characterize performance in real time, modern high-luminosity and low-emittance accelerators need much more sophisticated and sensitive diagnostics devices. DAΦNE (Double Annular Φ-Factory for Nice Experiments), the LNF (Laboratori Nazionali di Frascati) e+/e- Φ-factory, is a collider working at an energy of 1.02 GeV in the centre of mass. The existing luminosity diagnostics at DAΦNE cannot explain the 30% discrepancy between the extrapolated 10-bunch peak luminosity and the standard fill pattern made by colliding 100 bunches. Ruling out the presence of nonlinear contributions and/or saturation of the existing KLOE (Kaon Long Experiment) detector when used as a precision luminosity monitor, new diagnostic approaches are needed. Here we describe the technique that we introduced at DAΦNE based on multi-pixel time-resolved infrared detectors. Preliminary results are presented and discussed.

  1. Advanced Study for Active Noise Control in Aircraft (ASANCA)

    NASA Technical Reports Server (NTRS)

    Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent

    1992-01-01

    Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.

  2. Different temporal patterns of vector soliton bunching induced by polarization-dependent saturable absorber

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Cheng; Chen, Guo-Jie; Han, Ding-An; Li, Bin

    2014-06-01

    A fiber laser with either a polarization-independent semiconductor saturable absorption mirror (PID-SESAM) or a polarization-dependent SESAM (PD-SESAM) as a passive mode-locker is constructed for obtaining the vector soliton bunching. The temporal patterns of the soliton bunching generated from the fiber laser with a PD-SESAM are much more abundant than that in fiber laser with a PID-SESAM. Only the vibrating soliton bunching is generated from the fiber laser with a PID-SESAM. However, there are another three interesting temporal patterns of the soliton bunching generated from the fiber laser with a PD-SESAM except for the vibrating soliton bunching. They are variable length soliton bunching, breathing soliton bunching and stable soliton bunching along the slow axis induced by polarization instability. It is found that the polarization property of the saturable absorber plays a pivotal role for achieving different temporal patterns of the soliton bunching.

  3. Space-charge calculation for bunched beams with 3-D ellipsoidal symmetry

    SciTech Connect

    Garnett, R.W.; Wangler, T.P.

    1991-01-01

    A method for calculating 3-D space-charge forces has been developed that is suitable for bunched beams of either ions or relativistic electrons. The method is based on the analytic relations between charge-density and electric fields for a distribution with 3-D ellipsoidal symmetry in real space. At each step we use a Fourier-series representation for the smooth particle-density function obtained from the distribution of the macroparticles being tracked through the elements of the system. The resulting smooth electric fields reduce the problem of noise from artificial collisions, associated with small numbers of interacting macroparticles. Example calculations will be shown for comparison with other methods. 4 refs., 2 figs., 1 tab.

  4. Coupled bunch instabilities in a p anti p collider

    SciTech Connect

    Bjorken, J.D.

    1984-02-01

    These notes summarize a small amount of work done during preparation of the Fermilab Dedicated Collider proposal last year. The basic problem is as follows: Consider a storage ring with k proton bunches and k antiproton bunches, where electrostatic deflection devices are used to separate the beams except at the collision points in the interaction regions. Then the normal betatron motions of the bunches become coupled not only by the usual beam-beam force at collision points, but also by the forces exerted in the close encounters as one bunch passes nearby another. The problem we pose is simply to determine necessary and sufficient conditions for stability, given a linear approximation to the forces and motions as well as an assumption of rigid (coherent) bunch motion. This problem-essentially one of coupled oscillators-has been studied before, and the main result here may be folklore. However, this author has had some trouble, as usual, in identifying it all from the literature. We hope that the formalism and results here may be of use in exploring this phenomenon in more generality.

  5. Electron Bunch Shape Measurements Using Electro-optical Spectral Decoding

    NASA Astrophysics Data System (ADS)

    Borysenko, A.; Hiller, N.; Müller, A.-S.; Steffen, B.; Peier, P.; Ivanisenko, Y.; Ischebeck, R.; Schlott, V.

    Longitudinal diagnostics of the electron bunch shapes play a crucial role in the operation of linac-based light sources. Electro-optical techniques allow us to measure the longitudinal electron bunch profiles non-destructively on a shot-by-shot basis. Here we present results from measurements of electron bunches with a length of 200-900 fs rms at the Swiss FEL Injector Test Facility. All the measurements were done using an Yb-doped fibre laser system (with a central wavelength of a 1050 nm) and a GaP crystal. The technique of electro-optical spectral decoding (EOSD) was applied and showed great capabilities to measure bunch shapes down to around 370 fs rms. Measurements were performed for different electron energies to study the expected distortions of the measured bunch profile due to the energy-dependent widening of the electric field, which plays a role for low beam energies below and around 40 MeV. The studies provide valuable input for the design of the EOSD monitors for the compact linear accelerator FLUTE that is currently under commissioning at the Karslruhe Institute of Technology (KIT).

  6. Dynamics of Flat Bunches with Second Harmonic RF

    SciTech Connect

    Sen, Tanaji; Bhat, Chandra; Kim, Hyung Jin; Ostiguy, Jean-Francois; /Fermilab

    2010-05-01

    We investigate the dynamics of longitudinally flat bunches created with a second harmonic cavity in a high energy collider. We study Landau damping in a second harmonic cavity with analytical and numerical methods. The latter include particle tracking and evolution of the phase space density. The results are interpreted in the context of possible application to the LHC. A possible path to a luminosity upgrade at the LHC is through the creation of longitudinally flat bunches. They can increase the luminosity roughly by 40% when the beam intensities are at the beam-beam limit. Lower momentum spread which can reduce backgrounds and make collimation easier as well lower peak fields which can mitigate electron cloud effects are other advantages. Use of a second harmonic rf system is a frequently studied method to create such flat bunches. Here we consider some aspects of longitudinal dynamics of these bunches in the LHC at top energy. First we consider intensity limits set by the loss of Landau damping against rigid dipole oscillations. Next we describe numerical simulations using both particle tracking and evolution of the phase space density. These simulations address the consequences of driving a bunch at a frequency that corresponds to the maximum of the synchrotron frequency.

  7. Preservation of low slice emittance in bunch compressors

    NASA Astrophysics Data System (ADS)

    Bettoni, S.; Aiba, M.; Beutner, B.; Pedrozzi, M.; Prat, E.; Reiche, S.; Schietinger, T.

    2016-03-01

    Minimizing the dilution of the electron beam emittance is crucial for the performance of accelerators, in particular for free electron laser facilities, where the length of the machine and the efficiency of the lasing process depend on it. Measurements performed at the SwissFEL Injector Test Facility revealed an increase in slice emittance after compressing the bunch even for moderate compression factors. The phenomenon was experimentally studied by characterizing the dependence of the effect on beam and machine parameters relevant for the bunch compression. The reproduction of these measurements in simulation required the use of a 3D beam dynamics model along the bunch compressor that includes coherent synchrotron radiation. Our investigations identified transverse effects, such as coherent synchrotron radiation and transverse space charge as the sources of the observed emittance dilution, excluding other effects, such as chromatic effects on single slices or spurious dispersion. We also present studies, both experimental and simulation based, on the effect of the optics mismatch of the slices on the variation of the slice emittance along the bunch. After a corresponding reoptimization of the beam optics in the test facility we reached slice emittances below 200 nm for the central slices along the longitudinal dimension with a moderate increase up to 300 nm in the head and tail for a compression factor of 7.5 and a bunch charge of 200 pC, equivalent to a final current of 150 A, at about 230 MeV energy.

  8. Harmonically resonant cavity as a bunch-length monitor

    NASA Astrophysics Data System (ADS)

    Roberts, B.; Hannon, F.; Ali, M. M.; Forman, E.; Grames, J.; Kazimi, R.; Moore, W.; Pablo, M.; Poelker, M.; Sanchez, A.; Speirs, D.

    2016-05-01

    A compact, harmonically resonant cavity with fundamental resonant frequency 1497 MHz was used to evaluate the temporal characteristics of electron bunches produced by a 130 kV dc high voltage spin-polarized photoelectron source at the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector, delivered at 249.5 and 499 MHz repetition rates and ranging in width from 45 to 150 picoseconds (FWHM). A cavity antenna attached directly to a sampling oscilloscope detected the electron bunches as they passed through the cavity bore with a sensitivity of ˜1 mV /μ A . The oscilloscope waveforms are a superposition of the harmonic modes excited by the beam, with each cavity mode representing a term of the Fourier series of the electron bunch train. Relatively straightforward post-processing of the waveforms provided a near-real time representation of the electron bunches revealing bunch-length and the relative phasing of interleaved beams. The noninvasive measurements from the harmonically resonant cavity were compared to measurements obtained using an invasive RF-deflector-cavity technique and to predictions from particle tracking simulations.

  9. Destructive interferences results in bosons anti bunching: refining Feynman's argument

    NASA Astrophysics Data System (ADS)

    Marchewka, Avi; Granot, Er'el

    2014-09-01

    The effect of boson bunching is frequently mentioned and discussed in the literature. This effect is the manifestation of bosons tendency to "travel" in clusters. One of the core arguments for boson bunching was formulated by Feynman in his well-known lecture series and has been frequently used ever since. By comparing the scattering probabilities of two bosons and of two distinguishable particles, he concluded: "We have the result that it is twice as likely to find two identical Bose particles scattered into the same state as you would calculate assuming the particles were different" [R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics: Quantum mechanics (Addison-Wesley, 1965)]. This argument was rooted in the scientific community (see for example [C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris, 1977); W. Pauli, Exclusion Principle and Quantum Mechanics, Nobel Lecture (1946)]), however, while this sentence is completely valid, as is proved in [C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris, 1977)], it is not a synonym of bunching. In fact, as it is shown in this paper, wherever one of the wavefunctions has a zero, bosons can anti-bunch and fermions can bunch. It should be stressed that zeros in the wavefunctions are ubiquitous in Quantum Mechanics and therefore the effect should be common. Several scenarios are suggested to witness the effect.

  10. Simulations of a High-Transformer-Ratio Plasma Wakefield Accelerator Using Multiple Electron Bunches

    SciTech Connect

    Kallos, Efthymios; Muggli, Patric; Katsouleas, Thomas; Yakimenko, Vitaly; Park, Jangho

    2009-01-22

    Particle-in-cell simulations of a plasma wakefield accelerator in the linear regime are presented, consisting of four electron bunches that are fed into a high-density plasma. It is found that a high transformer ratio can be maintained over 43 cm of plasma if the charge in each bunch is increased linearly, the bunches are placed 1.5 plasma wavelengths apart and the bunch emmitances are adjusted to compensate for the nonlinear focusing forces. The generated wakefield is sampled by a test witness bunch whose energy gain after the plasma is six times the energy loss of the drive bunches.