Science.gov

Sample records for initially p-type silicon

  1. Application of neutron transmutation doping method to initially p-type silicon material.

    PubMed

    Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun

    2009-01-01

    The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established. PMID:19318259

  2. Transport through a single donor in p-type silicon

    NASA Astrophysics Data System (ADS)

    Miwa, J. A.; Mol, J. A.; Salfi, J.; Rogge, S.; Simmons, M. Y.

    2013-07-01

    Single phosphorus donors in silicon are promising candidates as qubits in the solid state. Here, we present low temperature scanning probe microscopy and spectroscopy measurements of individual phosphorus dopants deliberately placed in p-type silicon ˜1 nm below the surface. The ability to image individual dopants combined with scanning tunnelling spectroscopy allows us to directly study the transport mechanism through the donor. We show that for a single P donor, transport is dominated by a minority carrier recombination process with the surrounding p-type matrix. The understanding gained will underpin future studies of atomically precise mapping of donor-donor interactions in silicon.

  3. Irradiation and annealing of p-type silicon carbide

    SciTech Connect

    Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor'eva, Maria V.; Lebedev, Sergey P.; Kozlovski, Vitaly V.

    2014-02-21

    The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ≈ 1.5 × 10{sup 18} cm{sup −3} occurs at an irradiation dose of ∼1.1 × 10{sup 16} cm{sup −2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ≤1000°C. The conductivity is almost completely restored at T ≥ 1200°C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

  4. Anodic etching of p-type cubic silicon carbide

    NASA Technical Reports Server (NTRS)

    Harris, G. L.; Fekade, K.; Wongchotigul, K.

    1992-01-01

    p-Type cubic silicon carbide was anodically etched using an electrolyte of HF:HCl:H2O. The etching depth was determined versus time with a fixed current density of 96.4 mA/sq cm. It was found that the etching was very smooth and very uniform. An etch rate of 22.7 nm/s was obtained in a 1:1:50 HF:HCl:H2O electrolyte.

  5. Laser induced lifetime degradation in p-type crystalline silicon

    SciTech Connect

    Ametowobla, M.; Bilger, G.; Koehler, J. R.; Werner, J. H.

    2012-06-01

    Pulsed, green laser irradiation of uncoated p-type silicon leads to a significant reduction of the effective minority carrier lifetime. The reason for the lifetime drop lies in the introduction of recombination centres into the laser melted and recrystallized surface layer, leading to a low local minority carrier lifetime {tau} Almost-Equal-To 10 ns inside this surface layer. The laser treatment introduces the impurities oxygen, carbon and nitrogen into the silicon and further leads to an n-type doping of the surface layer. There are strong indications that these impurities are responsible for the observed n-type doping, as well as the lifetime reduction after irradiation. Both effects are removed by thermal annealing. An estimate shows that the low local lifetime does nevertheless not affect the performance of industrial or contacted selective solar cell emitter structures.

  6. Laser induced lifetime degradation in p-type crystalline silicon

    NASA Astrophysics Data System (ADS)

    Ametowobla, M.; Bilger, G.; Köhler, J. R.; Werner, J. H.

    2012-06-01

    Pulsed, green laser irradiation of uncoated p-type silicon leads to a significant reduction of the effective minority carrier lifetime. The reason for the lifetime drop lies in the introduction of recombination centres into the laser melted and recrystallized surface layer, leading to a low local minority carrier lifetime τ ≈ 10 ns inside this surface layer. The laser treatment introduces the impurities oxygen, carbon and nitrogen into the silicon and further leads to an n-type doping of the surface layer. There are strong indications that these impurities are responsible for the observed n-type doping, as well as the lifetime reduction after irradiation. Both effects are removed by thermal annealing. An estimate shows that the low local lifetime does nevertheless not affect the performance of industrial or contacted selective solar cell emitter structures.

  7. Ferromagnetic states of p-type silicon doped with Mn

    NASA Astrophysics Data System (ADS)

    Yunusov, Z. A.; Yuldashev, Sh. U.; Igamberdiev, Kh. T.; Kwon, Y. H.; Kang, T. W.; Bakhadyrkhanov, M. K.; Isamov, S. B.; Zikrillaev, N. F.

    2014-05-01

    In this work, the ferromagnetic states of Mn-doped p-type silicon samples were investigated. Two different types of ferromagnetic states have been observed in Si (Mn, B). The samples with a relatively high concentration of Mn revealed a ferromagnetic state with a Curie temperature above room temperature, and that ferromagnetism was due to the Mn x B y ferromagnetic clusters. The samples with a moderate concentration of Mn at low temperatures revealed a ferromagnetic state that was mediated by carriers (holes). The samples demonstrated the anomalous Hall effect at temperatures below 100 K and had a negative magneto-resistivity peak at a temperature close to the Curie temperature. The thermal diffusivity measurements demonstrated the existence of a second-order phase transition in the samples with a moderate Mn concentration. The specific heat's critical exponent α = 0.5, determined from the thermal diffusivity measurements, confirmed the long-range nature of the magnetic exchange interaction in these samples.

  8. P type porous silicon resistivity and carrier transport

    SciTech Connect

    Ménard, S.; Fèvre, A.; Billoué, J.; Gautier, G.

    2015-09-14

    The resistivity of p type porous silicon (PS) is reported on a wide range of PS physical properties. Al/PS/Si/Al structures were used and a rigorous experimental protocol was followed. The PS porosity (P{sub %}) was found to be the major contributor to the PS resistivity (ρ{sub PS}). ρ{sub PS} increases exponentially with P{sub %}. Values of ρ{sub PS} as high as 1 × 10{sup 9} Ω cm at room temperature were obtained once P{sub %} exceeds 60%. ρ{sub PS} was found to be thermally activated, in particular, when the temperature increases from 30 to 200 °C, a decrease of three decades is observed on ρ{sub PS}. Based on these results, it was also possible to deduce the carrier transport mechanisms in PS. For P{sub %} lower than 45%, the conduction occurs through band tails and deep levels in the tissue surrounding the crystallites. When P{sub %} overpasses 45%, electrons at energy levels close to the Fermi level allow a hopping conduction from crystallite to crystallite to appear. This study confirms the potential of PS as an insulating material for applications such as power electronic devices.

  9. Development of improved p-type silicon-germanium alloys

    NASA Technical Reports Server (NTRS)

    Mclane, George; Wood, Charles; Vandersande, Jan; Raag, Valvo; Heshmatpour, Ben

    1987-01-01

    Annealing experiments in the temperature range 1100-1275 C have been performed on p-type Si(0.8)Ge(0.2) samples with BP, B(6.5)P, and GaSb material additives. Both electrical resistivity and Seebeck coefficient generally decrease for these samples as annealing temperature is increased, with thermoelectric power factor sometimes being improved by annealing.

  10. Reassessment of the recombination parameters of chromium in n- and p-type crystalline silicon and chromium-boron pairs in p-type crystalline silicon

    SciTech Connect

    Sun, Chang Rougieux, Fiacre E.; Macdonald, Daniel

    2014-06-07

    Injection-dependent lifetime spectroscopy of both n- and p-type, Cr-doped silicon wafers with different doping levels is used to determine the defect parameters of Cr{sub i} and CrB pairs, by simultaneously fitting the measured lifetimes with the Shockley-Read-Hall model. A combined analysis of the two defects with the lifetime data measured on both n- and p-type samples enables a significant tightening of the uncertainty ranges of the parameters. The capture cross section ratios k = σ{sub n}/σ{sub p} of Cr{sub i} and CrB are determined as 3.2 (−0.6, +0) and 5.8 (−3.4, +0.6), respectively. Courtesy of a direct experimental comparison of the recombination activity of chromium in n- and p-type silicon, and as also suggested by modelling results, we conclude that chromium has a greater negative impact on carrier lifetimes in p-type silicon than n-type silicon with similar doping levels.

  11. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors.

    PubMed

    Yang, Chen; Barrelet, Carl J; Capasso, Federico; Lieber, Charles M

    2006-12-01

    We report the controlled synthesis of axial modulation-doped p-type/intrinsic/n-type (p-i-n) silicon nanowires with uniform diameters and single-crystal structures. The p-i-n nanowires were grown in three sequential steps: in the presence of diborane for the p-type region, in the absence of chemical dopant sources for the middle segment, and in the presence of phosphine for the n-type region. The p-i-n nanowires were structurally characterized by transmission electron microscopy, and the spatially resolved electrical properties of individual nanowires were determined by electrostatic force and scanning gate microscopies. Temperature-dependent current-voltage measurements recorded from individual p-i-n devices show an increase in the breakdown voltage with temperature, characteristic of band-to-band impact ionization, or avalanche breakdown. Spatially resolved photocurrent measurements show that the largest photocurrent is generated at the intrinsic region located between the electrode contacts, with multiplication factors in excess of ca. 30, and demonstrate that single p-i-n nanowires function as avalanche photodiodes. Electron- and hole-initiated avalanche gain measurements performed by localized photoexcitation of the p-type and n-type regions yield multiplication factors of ca. 100 and 20, respectively. These results demonstrate the significant potential of single p-i-n nanowires as nanoscale avalanche photodetectors and open possible opportunities for studying impact ionization of electrons and holes within quasi-one-dimensional semiconductor systems. PMID:17163733

  12. Method of mitigating titanium impurities effects in p-type silicon material for solar cells

    NASA Technical Reports Server (NTRS)

    Salama, A. M. (Inventor)

    1980-01-01

    Microstructural evaluation tests performed on Cu-doped, Ti-doped and Cu/Ti doped p-type silicon single crystal wafers, before and after the solar cell fabrication, and evaluation of both dark forward and reverse I-V characteristic records for the solar cells produced from the corresponding silicon wafers, show that Cu mitigates the unfavorable effects of Ti, and thus provides for higher conversion efficiency, thereby providing an economical way to reduce the deleterious effects of titanium, one of the impurities present in metallurgical grade silicon material.

  13. Use of hexamethyldisiloxane for p-type microcrystalline silicon oxycarbide layers

    NASA Astrophysics Data System (ADS)

    Goyal, Prabal; Hong, Junegie; Haddad, Farah; Maurice, Jean-Luc; Cabarrocas, Pere Roca i.; Johnson, Erik

    2016-01-01

    The use of hexamethyldisiloxane (HMDSO) as an oxygen source for the growth of p-type silicon-based layers deposited by Plasma Enhanced Chemical Vapor Deposition is evaluated. The use of this source led to the incorporation of almost equivalent amounts of oxygen and carbon, resulting in microcrystalline silicon oxycarbide thin films. The layers were examined with characterisation techniques including Spectroscopic Ellipsometry, Dark Conductivity, Fourier Transform Infrared Spectroscopy, Secondary Ion Mass Spectrometry and Transmission Electron Microscopy to check material composition and structure. Materials studies show that the refractive indices of the layers can be tuned over the range from 2.5 to 3.85 (measured at 600 nm) and in-plane dark conductivities over the range from 10-8 S/cm to 1 S/cm, suggesting that these doped layers are suitable for solar cell applications. The p-type layers were tested in single junction amorphous silicon p-i-n type solar cells.

  14. Dual ohmic contact to N- and P-type silicon carbide

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  15. Novel method of separating macroporous arrays from p-type silicon substrate

    NASA Astrophysics Data System (ADS)

    Bobo, Peng; Fei, Wang; Tao, Liu; Zhenya, Yang; Lianwei, Wang; Fu, Ricky K. Y.; Chu, Paul K.

    2012-04-01

    This paper presents a novel method to fabricate separated macroporous silicon using a single step of photo-assisted electrochemical etching. The method is applied to fabricate silicon microchannel plates in 100 mm p-type silicon wafers, which can be used as electron multipliers and three-dimensional Li-ion microbatteries. Increasing the backside illumination intensity and decreasing the bias simultaneously can generate additional holes during the electrochemical etching which will create lateral etching at the pore tips. In this way the silicon microchannel can be separated from the substrate when the desired depth is reached, then it can be cut into the desired shape by using a laser cutting machine. Also, the mechanism of lateral etching is proposed.

  16. Suppression of hydrogen diffusion at the hydrogen-induced platelets in p-type Czochralski silicon

    SciTech Connect

    Huang, Y.L.; Ma, Y.; Job, R.; Fahrner, W.R.

    2005-03-28

    Hydrogen diffusion in p-type Czochralski silicon is investigated by combined Raman spectroscope, scanning electron microscope, and spreading resistance probe measurements. Exposure of silicon wafers to rf hydrogen plasma results in the formation of platelets. The increase of hydrogenation duration leads to the growth of the platelets and the reduction of the hydrogen diffusivity. The large platelets grow faster than the small ones. The growth of the platelets is based on the capture of hydrogen. The dependence of the hydrogen diffusivity upon the average size of the platelets suggests that the indiffusion of hydrogen is suppressed by the platelets.

  17. Microhardness studies on thin carbon films grown on P-type, (100) silicon

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.

    1982-01-01

    A program to grow thin carbon films and investigate their physical and electrical properties is described. Characteristics of films grown by rf sputtering and vacuum arc deposition on p type, (100) silicon wafers are presented. Microhardness data were obtained from both the films and the silicon via the Vickers diamond indentation technique. These data show that the films are always harder than the silicon, even when the films are thin (of the order of 1000 A). Vacuum arc films were found to contain black carbon inclusions of the order of a few microns in size, and clusters of inclusions of the order of tens of microns. Transmission electron diffraction showed that the films being studied were amorphous in structure.

  18. Absence of positronium formation in clean buried nanocavities in p-type silicon

    SciTech Connect

    Brusa, R.S.; Macchi, C.; Mariazzi, S.; Karwasz, G.P.; Egger, W.; Sperr, P.; Koegel, G.

    2005-06-15

    Buried nanocavities at about 350 nm depth in Si were produced by thermal treatment of He implanted p-type (100) Si. The internal surfaces of the nanocavities were found free of impurity decorations by examining the high-momentum part of the Doppler-broadened positron annihilation spectra. Positron lifetime measurements with a pulsed slow positron beam show neither a short lifetime (125-150 ps) ascribable to parapositronium nor a longer lifetime (2-4 ns) ascribable to pick-off annihilation of orthopositronium. The lifetime of positrons trapped into nanocavities was found to be about 500 ps. The absence of positronium formation could be explained by an insufficient electron density and a lack of electron states in the band gap at the nanocavities internal surfaces produced in the p-type silicon.

  19. High-temperature elastic moduli of bulk nanostructured n - and p -type silicon germanium

    NASA Astrophysics Data System (ADS)

    Gladden, J. R.; Li, G.; Adebisi, R.; Firdosy, S.; Caillat, T.; Ravi, V.

    2010-07-01

    Resonant ultrasound spectroscopy (RUS) has been used to measure the elastic moduli of n - and p -type doped polycrystalline bulk nanostructured silicon germanium alloys at elevated temperatures. A direct contact RUS transducer system with a working temperature range up to 900 K was successfully constructed for these measurements. For higher temperatures (up to 1300 K), we employed a traditional buffer rod RUS system. Experimental results show the Young’s and shear moduli of p -type SiGe alloys monotonically decrease with increasing temperatures in the 300-1200 K range. The n -type samples show a marked stiffening beginning at 675 K which does not repeat upon cooling or subsequent reheating. We attribute the stiffening of the n -type samples to the thermally activated precipitation of the phosphorous dopant. Electrical resistivity and Seebeck coefficient data are also presented for both types of SiGe which support this conclusion.

  20. Direct Measurement of Electron Beam Induced Currents in p-type Silicon

    SciTech Connect

    Han, M.G.; Zhu, Y.; Sasaki, K.; Kato, T.; Fisher, C.A.J.; Hirayama, T.

    2010-08-01

    A new method for measuring electron beam induced currents (EBICs) in p-type silicon using a transmission electron microscope (TEM) with a high-precision tungsten probe is presented. Current-voltage (I-V) curves obtained under various electron-beam illumination conditions are found to depend strongly on the current density of the incoming electron beam and the relative distance of the beam from the point of probe contact, consistent with a buildup of excess electrons around the contact. This setup provides a new experimental approach for studying minority carrier transport in semiconductors on the nanometer scale.

  1. Accelerated light-induced degradation for detecting copper contamination in p-type silicon

    SciTech Connect

    Inglese, Alessandro Savin, Hele; Lindroos, Jeanette

    2015-08-03

    Copper is a harmful metal impurity that significantly impacts the performance of silicon-based devices if present in active regions. In this contribution, we propose a fast method consisting of simultaneous illumination and annealing for the detection of copper contamination in p-type silicon. Our results show that, within minutes, such method is capable of producing a significant reduction of the minority carrier lifetime. A spatial distribution map of copper contamination can then be obtained through the lifetime values measured before and after degradation. In order to separate the effect of the light-activated copper defects from the other metastable complexes in low resistivity Cz-silicon, we carried out a dark anneal at 200 °C, which is known to fully recover the boron-oxygen defect. Similar to the boron-oxygen behavior, we show that the dark anneal also recovers the copper defects. However, the recovery is only partial and it can be used to identify the possible presence of copper contamination.

  2. Effective surface passivation of p-type crystalline silicon with silicon oxides formed by light-induced anodisation

    NASA Astrophysics Data System (ADS)

    Cui, Jie; Grant, Nicholas; Lennon, Alison

    2014-12-01

    Electronic surface passivation of p-type crystalline silicon by anodic silicon dioxide (SiO2) was investigated. The anodic SiO2 was grown by light-induced anodisation (LIA) in diluted sulphuric acid at room temperature, a process that is significantly less-expensive than thermal oxidation which is widely-used in silicon solar cell fabrication. After annealing in oxygen and then forming gas at 400 °C for 30 min, the effective minority carrier lifetime of 3-5 Ω cm, boron-doped Czochralski silicon wafers with a phosphorus-doped 80 Ω/□ emitter and a LIA anodic SiO2 formed on the p-type surface was increased by two orders of magnitude to 150 μs. Capacitance-voltage measurements demonstrated a very low positive charge density of 3.4 × 1011 cm-2 and a moderate density of interface states of 6 × 1011 eV-1 cm-2. This corresponded to a silicon surface recombination velocity of 62 cm s-1, which is comparable with values reported for other anodic SiO2 films, which required higher temperatures and longer growth times, and significantly lower than oxides grown by chemical vapour deposition techniques. Additionally, a very low leakage current density of 3.5 × 10-10 and 1.6 × 10-9 A cm-2 at 1 and -1 V, respectively, was measured for LIA SiO2 suggesting its potential application as insulation layer in IBC solar cells and a barrier for potential induced degradation.

  3. Scanning electrochemical microscopy investigations of monolayers bound to p-type silicon substrates.

    PubMed

    Ghilane, Jalal; Hauquier, Fanny; Fabre, Bruno; Hapiot, Philippe

    2006-09-01

    p-Si type electrodes modified with different organic monolayers were investigated by reaction with radical anion and cation electrogenerated at a microelectrode operating in the configuration of a scanning electrochemical microscope. The method proves to be a convenient tool for investigating both the quality and the redox properties of the layer as previously demonstrated on metallic electrodes especially when the sample cannot be electrically connected. Approach curves recorded with the different mediators were used to investigate the electron-transfer rates across alkyl monolayers bound to p-type silicon substrates. Preliminary results indicate that the interfacial electron transfer occurs via electron tunneling through the organic layer as generally described for SAMs grafted on gold electrodes. PMID:16944879

  4. Characterization of irradiated detectors fabricated on p-type silicon substrates for super-LHC

    NASA Astrophysics Data System (ADS)

    Miñano, M.; Campabadal, F.; Escobar, C.; García, C.; González, S.; Lacasta, C.; Lozano, M.; Martí i García, S.; Pellegrini, G.; Rafí, J. M.; Ullán, M.

    2007-12-01

    An upgrade of the large hadron collider (LHC), the Super-LHC (SLHC), towards higher luminosities is currently being discussed as an extension of the LHC physics program. The goal of the SLHC is to operate at a luminosity of 10 35 cm -2 s -1 (10 times larger than that of the LHC one). Thus, the operation of the SLHC implies a need to upgrade the detectors of the LHC experiments. The current tracking system of ATLAS will not cope with that luminosity. New solutions must be investigated to improve the radiation tolerance of the semiconductor detector. p-Type bulk sensors are being considered for the ATLAS tracking system for the SLHC. Microstrip detectors fabricated by CNM-IMB on p-type high-resistivity float zone silicon have been irradiated with neutrons at the TRIGA Mark II reactor in Ljubljana up to a fluence of 10 16 cm -2 (as expected in the innermost region of the ATLAS upgrade) and have been characterized at IFIC Laboratory. The collected charge, after irradiation, has been measured by infrared laser illumination. The leakage current of those sensors is also reported.

  5. Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE

    SciTech Connect

    Li, Shaoyuan; Ma, Wenhui; Zhou, Yang; Chen, Xiuhua; Xiao, Yongyin; Ma, Mingyu; Wei, Feng; Yang, Xi

    2014-05-01

    In this paper, the simple pre-oxidization process is firstly used to treat the starting silicon wafer, and then MPSiNWs are successfully fabricated from the moderately doped wafer by one-step MACE technology in HF/AgNO{sub 3} system. The PL spectrum of MPSiNWs obtained from the oxidized silicon wafers show a large blue-shift, which can be attributed to the deep Q. C. effect induced by numerous mesoporous structures. The effects of HF and AgNO{sub 3} concentration on formation of SiNWs were carefully investigated. The results indicate that the higher HF concentration is favorable to the growth of SiNWs, and the density of SiNWs is significantly reduced when Ag{sup +} ions concentrations are too high. The deposition behaviors of Ag{sup +} ions on oxidized and unoxidized silicon surface were studied. According to the experimental results, a model was proposed to explain the formation mechanism of porous SiNWs by etching the oxidized starting silicon. - Graphical abstract: Schematic cross-sectional views of PSiNWs array formation by etching oxidized silicon wafer in HF/AgNO{sub 3} solution. (A) At the starting point; (B) during the etching process; and (C) after Ag dendrites remove. - Highlights: • Prior to etching, a simple pre-oxidation is firstly used to treat silicon substrate. • The medially doped p-type MPSiNWs are prepared by one-step MACE. • Deposition behaviors of Ag{sup +} ions on oxidized and unoxidized silicon are studied. • A model is finally proposed to explain the formation mechanism of PSiNWs.

  6. Percolation network in resistive switching devices with the structure of silver/amorphous silicon/p-type silicon

    SciTech Connect

    Liu, Yanhong; Gao, Ping; Bi, Kaifeng; Peng, Wei; Jiang, Xuening; Xu, Hongxia

    2014-01-27

    Conducting pathway of percolation network was identified in resistive switching devices (RSDs) with the structure of silver/amorphous silicon/p-type silicon (Ag/a-Si/p-Si) based on its gradual RESET-process and the stochastic complex impedance spectroscopy characteristics (CIS). The formation of the percolation network is attributed to amounts of nanocrystalline Si particles as well as defect sites embedded in a-Si layer, in which the defect sites supply positions for Ag ions to nucleate and grow. The similar percolation network has been only observed in Ag-Ge-Se based RSD before. This report provides a better understanding for electric properties of RSD based on the percolation network.

  7. Evidence for an iron-hydrogen complex in p-type silicon

    SciTech Connect

    Leonard, S. Markevich, V. P.; Peaker, A. R.; Hamilton, B.; Murphy, J. D.

    2015-07-20

    Interactions of hydrogen with iron have been studied in Fe contaminated p-type Czochralski silicon using capacitance-voltage profiling and deep level transient spectroscopy (DLTS). Hydrogen has been introduced into the samples from a silicon nitride layer grown by plasma enhanced chemical vapor deposition. After annealing of the Schottky diodes on Si:Fe + H samples under reverse bias in the temperature range of 90–120 °C, a trap has been observed in the DLTS spectra which we have assigned to a Fe-H complex. The trap is only observed when a high concentration of hydrogen is present in the near surface region. The trap concentration is higher in samples with a higher concentration of single interstitial Fe atoms. The defect has a deep donor level at E{sub v} + 0.31 eV. Direct measurements of capture cross section of holes have shown that the capture cross section is not temperature dependent and its value is 5.2 × 10{sup −17} cm{sup 2}. It is found from an isochronal annealing study that the Fe-H complex is not very stable and can be eliminated completely by annealing for 30 min at 125 °C.

  8. Evidence for an iron-hydrogen complex in p-type silicon

    NASA Astrophysics Data System (ADS)

    Leonard, S.; Markevich, V. P.; Peaker, A. R.; Hamilton, B.; Murphy, J. D.

    2015-07-01

    Interactions of hydrogen with iron have been studied in Fe contaminated p-type Czochralski silicon using capacitance-voltage profiling and deep level transient spectroscopy (DLTS). Hydrogen has been introduced into the samples from a silicon nitride layer grown by plasma enhanced chemical vapor deposition. After annealing of the Schottky diodes on Si:Fe + H samples under reverse bias in the temperature range of 90-120 °C, a trap has been observed in the DLTS spectra which we have assigned to a Fe-H complex. The trap is only observed when a high concentration of hydrogen is present in the near surface region. The trap concentration is higher in samples with a higher concentration of single interstitial Fe atoms. The defect has a deep donor level at Ev + 0.31 eV. Direct measurements of capture cross section of holes have shown that the capture cross section is not temperature dependent and its value is 5.2 × 10-17 cm2. It is found from an isochronal annealing study that the Fe-H complex is not very stable and can be eliminated completely by annealing for 30 min at 125 °C.

  9. Aluminum-natural oxide-P type silicon /MIS/ solar cells

    NASA Astrophysics Data System (ADS)

    Badura, E.; Zdanowicz, W.

    1980-12-01

    MIS (metal-interfacial region-semiconductor) solar cells are attractive because of their relatively high conversion efficiency. Their performance, however, is strongly affected by device preparation. Two methods are described for preparing Al - natural SiO - p-type Si cells which exhibit high photovoltaic values. The first, involving a 'nonsintered oxide' process, entails etching the active silicon surfaces in HF acid and exposing them to air at room temperature for 48 hours. The second method differs from the first only in that it requires the additional step of sintering the oxidized surfaces in a vacuum at about 500 C. In both cases, a semitransparent Al film is then applied to the oxide, after which an Al grid electrode and 70-nm SiOx antireflection coatings are deposited on the device. Measured against both the nonsintered cell and the Schottky barrier cell, the sintered assembly shows the highest open-circuit voltage (0.46-0.492), the highest fill factor (0.66-0.73), and the most efficient dark parameters.

  10. Comparison of boron precipitation in p-type bulk nanostructured and polycrystalline silicon germanium alloy

    NASA Astrophysics Data System (ADS)

    Zamanipour, Zahra; Krasinski, Jerzy S.; Vashaee, Daryoosh

    2013-04-01

    Boron precipitation process and its effect on electronic properties of p-type bulk nanostructured silicon germanium (Si0.8Ge0.2) compared with large grain polycrystalline Si0.8Ge0.2 have been studied. The structures were synthesized and their thermoelectric properties were measured versus temperature during heating and cooling cycles. The experimental data showed stronger temperature variation of Seebeck coefficient, carrier concentration, and conductivity in the nanostructured Si0.8Ge0.2 compared with the polycrystalline form indicating stronger boron precipitation in this structure. The electrical properties of both samples were calculated using a multi-band semi-classical model. The theoretical calculations confirm that the increase of boron precipitation in the nanostructured Si0.8Ge0.2 is responsible for its higher thermal instability. Since the thermoelectric properties of the nanostructured sample degrade as a result of thermal cycling, the material is appropriate only for continuous operation at high temperature without cooling.

  11. RF performances of inductors integrated on localized p+-type porous silicon regions

    NASA Astrophysics Data System (ADS)

    Capelle, Marie; Billoué, Jérôme; Poveda, Patrick; Gautier, Gaël

    2012-09-01

    To study the influence of localized porous silicon regions on radiofrequency performances of passive devices, inductors were integrated on localized porous silicon regions, full porous silicon sheet, bulk silicon and glass substrates. In this work, a novel strong, resistant fluoropolymer mask is introduced to localize the porous silicon on the silicon wafer. Then, the quality factors and resonant frequencies obtained with the different substrates are presented. A first comparison is done between the performances of inductors integrated on same-thickness localized and full porous silicon sheet layers. The effect of the silicon regions in the decrease of performances of localized porous silicon is discussed. Then, the study shows that the localized porous silicon substrate significantly reduces losses in comparison with high-resistivity silicon or highly doped silicon bulks. These results are promising for the integration of both passive and active devices on the same silicon/porous silicon hybrid substrate.

  12. Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint

    SciTech Connect

    Goodrich, A.; Woodhouse, M.; Hacke, P.

    2012-06-01

    Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

  13. Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Cuony, P.; Marending, M.; Alexander, D. T. L.; Boccard, M.; Bugnon, G.; Despeisse, M.; Ballif, C.

    2010-11-01

    Lower absorption, lower refractive index, and tunable resistance are three advantages of amorphous silicon oxide containing nanocrystalline silicon grains (nc-SiOx) compared to microcrystalline silicon (μc-Si), when used as a p-type layer in μc-Si thin-film solar cells. We show that p-nc-SiOx with its particular nanostructure increases μc-Si cell efficiency by reducing reflection and parasitic absorption losses depending on the roughness of the front electrode. Furthermore, we demonstrate that the p-nc-SiOx reduces the detrimental effects of the roughness on the electrical characteristics, and significantly increases μc-Si and Micromorph cell efficiency on substrates until now considered too rough for thin-film silicon solar cells.

  14. Surface States and Effective Surface Area on Photoluminescent P-Type Porous Silicon

    NASA Technical Reports Server (NTRS)

    Weisz, S. Z.; Porras, A. Ramirez; Resto, O.; Goldstein, Y.; Many, A.; Savir, E.

    1997-01-01

    The present study is motivated by the possibility of utilizing porous silicon for spectral sensors. Pulse measurements on the porous-Si/electrolyte system are employed to determine the surface effective area and the surface-state density at various stages of the anodization process used to produce the porous material. Such measurements were combined with studies of the photoluminescence spectra. These spectra were found to shift progressively to the blue as a function of anodization time. The luminescence intensity increases initially with anodization time, reaches a maximum and then decreases with further anodization. The surface state density, on the other hand, increases with anodization time from an initial value of about 2 x 10(exp 12)/sq cm surface to about 1013 sq cm for the anodized surface. This value is attained already after -2 min anodization and upon further anodization remains fairly constant. In parallel, the effective surface area increases by a factor of 10-30. This behavior is markedly different from the one observed previously for n-type porous Si.

  15. Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes

    SciTech Connect

    Dominey, R.N.; Lewis, N.S.; Bruce, J.A.; Bookbinder, D.C.; Wrighton, M.S.

    1982-01-27

    The improvement of H/sub 2/ evolution from two different types of catalytic p-type photocathode surfaces has been examined. p-Type Si has been platinized by phtotelectrochemically plating Pt(0) onto the Si surface. Such a photocathode shows significant improvement (compared to naked p-type Si) for photochemical H/sub 2/ evolution with respect to output photovoltage, fill factor, and overall efficiency. Such photocathodes having an optimun amount of Pt(0) give a pH-dependent output voltage with respect to the H/sub 2/O/H/sub 2/ couple, but the dependence is not a simple 59-mV/pH dependence. No pH dependence would be expected if Pt(0) formed a Schottky barrier when plated onto p-type Si. A second kind of H/sub 2/ evolution catalyst has been confined to the surface of p-type Si. Polymeric quantities of an electroactive N,N'-dialkyl-4,4'-bipridinium reagent, (PQ/sup 2 +/.)/sub n/, have been confined to the surface. The Br/sup -/ counterions of the polymer are then exchanged by PtCl/sub 6//sup 2 -/. Photoreduction then yields Pt(0) dispersed in the polymer. Such a surface is again significantly improved compared to naked p-type Si with respect to H/sub 2/ evolution. A comparison of the naked p-Si, the simply platinized, and the (PQ/sup 2 +//sup ///sup +//sub n/.nPt(0))/sub surf./ system is made and contrasted to the expected behavior of an external Schottky barrier photocell driving an electrolysis cell with a Pt cathode. Experiments with n-type MoS/sub 2/, n-type Si, Pt, Au, and W cathodes functionalized with the (PQ/sup 2 +//sup ///sup +/.)sub n/.nPt(0))/sub surf./ system compared to the same surface directly platinized confirm an important difference in the mechanism of H/sub 2/ evolution catalysis for the two surface catalyst systems. p-Type Si modified with optimum amounts of Pt(0) by direct platinization appears to give improved H/sub 2/ evolution efficiency by a mechanism where the Pt(0) serves as a catalyst that does not alter the interface energetics of the

  16. Grown-in defects limiting the bulk lifetime of p-type float-zone silicon wafers

    NASA Astrophysics Data System (ADS)

    Grant, N. E.; Rougieux, F. E.; Macdonald, D.; Bullock, J.; Wan, Y.

    2015-02-01

    We investigate a recombination active grown-in defect limiting the bulk lifetime (τbulk) of high quality float-zone (FZ) p-type silicon wafers. After annealing the samples at temperatures between 80 °C and 400 °C, τbulk was found to increase from ˜500 μs to ˜1.5 ms. By isochronal annealing the p-type samples between 80 °C and 400 °C for 30 min, the annihilation energy (Eann) of the defect was determined to be 0.3 < Eann < 0.7 eV. When the annihilated samples were phosphorus gettered at 880 °C or subject to 0.2 sun illumination for 24 h, τbulk was found to degrade. However, when the samples were subsequently annealed at temperatures between 250 and 400 °C, the defect could be re-annihilated. The experimental results suggest that the defect limiting the lifetime in the p-type FZ silicon is not related to fast diffusing metallic impurities but rather to a lattice-impurity or an impurity-impurity metastable defect.

  17. Photoreduction at illuminated p-type semiconducting silicon photoelectrodes. Evidence for Fermi level pinning

    SciTech Connect

    Bocarsly, A.B.; Bookbinder, D.C.; Dominey, R.N.; Lewis, N.S.; Wrighton, M.S.

    1980-05-21

    Studies of p- and n-type Si electrodes are reported which show that semiconducting Si electrode surfaces do not allow efficient H/sub 2/ evolution in the dark (n type) or upon illumination with band gap or greater energy light (p type). The key experiment is that N,N'-dimethyl-4,4'-bipyridinium (PQ/sup 2 +/) is reversibly reduced at n-type Si in aqueous media at a pH where H/sub 2/ should be evolved at nearly the same potential, but no H/sub 2/ evolution current is observable. The PQ/sup 2+/+/.system may be useful as an electron-transfer mediator, since PQ/sup +/.can be used to effect generation of H/sub 2/ from H/sub 2/O using a heterogeneous catalyst. The PQ/sup +/.can be produced in an uphill sense by illumination of p-type Si in aqueous solutions. Studies of p-type Si in nonaqueous solvents show that PQ/sup 2 +/, PQ/sup +/., Ru(bpy)/sub 3//sup 2 +/, Ru(bpy)/sub 3//sup +/, and Ru(bpy)/sub 3//sup 0/ are all reducible upon illumination of the p-type Si. Interestingly, each species can be photoreduced at a potential approx. 500 mV more positive than at a reversible electrode in the dark. This result reveals that a p-type Si-based photoelectrochemical cell based on PQ/sup 2+/+/., PQ/sup +/l/sup 0//, Ru(bpy)/sub 3//sup 2+/+/, Ru(bpy)/sub 3//sup +/0/, or Ru(bpy)/sub 3//sup 0/-/ would all yield a common output photovoltage, despite the fact that the formal potentials for these couples vary by more than the band gap (1.1 V) of the photocathode. These data support the notion that p-type Si exhibits Fermi level pinning under the conditions employed.Surface chemistry is shown to be able to effect changes in interface kinetics for electrodes exhibiting Fermi level pinning.

  18. Macropore formation in p-type silicon: toward the modeling of morphology

    PubMed Central

    2014-01-01

    The formation of macropores in silicon during electrochemical etching processes has attracted much interest. Experimental evidences indicate that charge transport in silicon and in the electrolyte should realistically be taken into account in order to be able to describe the macropore morphology. However, up to now, none of the existing models has the requested degree of sophistication to reach such a goal. Therefore, we have undertaken the development of a mathematical model (phase-field model) to describe the motion and shape of the silicon/electrolyte interface during anodic dissolution. It is formulated in terms of the fundamental expression for the electrochemical potential and contains terms which describe the process of silicon dissolution during electrochemical attack in a hydrofluoric acid (HF) solution. It should allow us to explore the influence of the physical parameters on the etching process and to obtain the spatial profiles across the interface of various quantities of interest, such as the hole concentration, the current density, or the electrostatic potential. As a first step, we find that this model correctly describes the space charge region formed at the silicon side of the interface. PMID:25386103

  19. Macropore formation in p-type silicon: toward the modeling of morphology.

    PubMed

    Slimani, Amel; Iratni, Aicha; Henry, Hervé; Plapp, Mathis; Chazalviel, Jean-Noël; Ozanam, François; Gabouze, Noureddine

    2014-01-01

    The formation of macropores in silicon during electrochemical etching processes has attracted much interest. Experimental evidences indicate that charge transport in silicon and in the electrolyte should realistically be taken into account in order to be able to describe the macropore morphology. However, up to now, none of the existing models has the requested degree of sophistication to reach such a goal. Therefore, we have undertaken the development of a mathematical model (phase-field model) to describe the motion and shape of the silicon/electrolyte interface during anodic dissolution. It is formulated in terms of the fundamental expression for the electrochemical potential and contains terms which describe the process of silicon dissolution during electrochemical attack in a hydrofluoric acid (HF) solution. It should allow us to explore the influence of the physical parameters on the etching process and to obtain the spatial profiles across the interface of various quantities of interest, such as the hole concentration, the current density, or the electrostatic potential. As a first step, we find that this model correctly describes the space charge region formed at the silicon side of the interface. PMID:25386103

  20. Low resistance Ohmic contact to p-type crystalline silicon via nitrogen-doped copper oxide films

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; Wan, Yimao; Bullock, James; Allen, Thomas; Cuevas, Andres

    2016-08-01

    This work explores the application of transparent nitrogen doped copper oxide (CuOx:N) films deposited by reactive sputtering to create hole-selective contacts for p-type crystalline silicon (c-Si) solar cells. It is found that CuOx:N sputtered directly onto crystalline silicon is able to form an Ohmic contact. X-ray photoelectron spectroscopy and Raman spectroscopy measurements are used to characterise the structural and physical properties of the CuOx:N films. Both the oxygen flow rate and the substrate temperature during deposition have a significant impact on the film composition, as well as on the resulting contact resistivity. After optimization, a low contact resistivity of ˜10 mΩ cm2 has been established. This result offers significant advantages over conventional contact structures in terms of carrier transport and device fabrication.

  1. High frequency characteristics and modelling of p-type 6H-silicon carbide MOS structures

    NASA Astrophysics Data System (ADS)

    Fernández, J.; Godignon, P.; Berberich, S.; Rebollo, J.; Brezeanu, G.; Millán, J.

    1996-09-01

    This paper presents the high frequency electrical characteristics and modelling of Al/SiO 2/ p-type 6HSiC structures. The oxide was thermally grown under dry conditions. Capacitance and conductance vs bias and frequency measurements have been performed in daylight and exposing the capacitors to u.v. light. The experimental Cm- Vg and Gm- Vg characteristics show hysteresis effects, which are more important when the samples are exposed to 254 nm u.v. light. This behaviour can be explained in terms of interface traps. The MOS structure modelling is based on an interface trap model in which the interface trap levels are considered to be continuously distributed in the SiC bandgap and only charge exchange between interface trap levels and the SiC bands is allowed. From this formulation and from the Gm- f characteristics, the interface state density and the interface trap time constant have been determined.

  2. Development of radiation hard edgeless detectors with current terminating structure on p-type silicon

    NASA Astrophysics Data System (ADS)

    Verbitskaya, E.; Eremin, V.; Ruggiero, G.

    2011-12-01

    The development of edgeless Si detectors was stimulated by the tasks of the total pp cross-section study in the TOTEM experiment at the Large Hadron Collider at CERN. For this, the dead region at the detector diced side should be reduced below 50 μm. This requirement is successfully realized in edgeless Si detectors with current terminating structure (CTS), which are now operating at LHC. The development of the experiment and future LHC upgrade need the elaboration of radiation hard version of edgeless Si detectors. The current investigation represents an extension in understanding on edgeless detectors operation and development of a new issue - edgeless detectors with CTS on p-type Si.

  3. Transformation of divacancies to divacancy-oxygen pairs in p-type Czochralski-silicon; mechanism of divacancy diffusion

    SciTech Connect

    Ganagona, N. Vines, L.; Monakhov, E. V.; Svensson, B. G.

    2014-01-21

    In this work, a comprehensive study on the transition of divacancy (V{sub 2}) to divacancy-oxygen (V{sub 2}O) pairs in p-type silicon has been performed with deep level transient spectroscopy (DLTS). Czochralski grown, boron doped p-type, silicon samples, with a doping concentration of 2 × 10{sup 15} cm{sup −3} and oxygen content of 7.0 ± 1.5 × 10{sup 17} cm{sup −3}, have been irradiated with 1.8 MeV protons. Isothermal annealing at temperatures in the range of 200 °C–300 °C shows a close to one-to-one correlation between the loss in the donor state of V{sub 2} and the formation of the donor state of V{sub 2}O, located at 0.23 eV above the valence band edge. A concurrent transition takes place between the single acceptor states of V{sub 2} and V{sub 2}O, as unveiled by injection of electrons through optical excitation during the trap filling sequence of the DLTS measurements. Applying the theory for diffusion limited reactions, the diffusivity of V{sub 2} in the studied p-type samples is determined to be (1.5 ± 0.7) × 10{sup −3}exp[−(1.31 ± 0.03) eV/kT] cm{sup 2}/s, and this represents the neutral charge state of V{sub 2}. Further, the data seem to favor a two-stage diffusion mechanism involving partial dissociation of V{sub 2}, although a one-stage process cannot be fully excluded.

  4. On the recombination behaviour of iron in moderately boron-doped p-type silicon

    NASA Astrophysics Data System (ADS)

    Walz, D.; Joly, J.-P.; Kamarinos, G.

    1996-04-01

    The recombination lifetime and diffusion length of intentionally iron-contaminated samples were measured by the Surface Photo Voltage (SPV) and the Elymat technique. The lifetime results from these techniques for intentionally iron-contaminated samples were analysed, in particular for the aspect of the injection-level dependency of recombination lifetime. Based on theoretical considerations, a method for the analysis of deep-level parameters combining constant photon flux SPV and Elymat measurements has been developed. This method is based on a detailed numerical analysis of the Elymat technique, including the Dember electric field, the characteristics of the laser beam, the transport parameters of the semiconductor and multilevel Shockley-Read-Hall (SRH) recombination kinetics. The results of the numerical simulation are applied to the analysis of recombination lifetime measurements on intentionally iron-contaminated samples. We compared numerical simulations and experimental results from SPV and Elymat for p-type samples using the classical acceptor level at E v +0.1 eV and the donor level of FeB pairs at E c -0.3 eV as recombination centre. Better consistency in the interpretation of the results has been found in the doping range 1014 1016 cm-3 supposing the E c -0.3 eV level as predominant recombination centre. An attempt to extract the electron and hole capture cross-sections for this defect is made.

  5. An in situ x-ray photoelectron spectroscopy study of the initial stages of rf magnetron sputter deposition of indium tin oxide on p-type Si substrate

    SciTech Connect

    Rein, M. H.; Holt, A. O.; Hohmann, M. V.; Klein, A.; Thogersen, A.; Mayandi, J.; Monakhov, E. V.

    2013-01-14

    The interface between indium tin oxide and p-type silicon is studied by in situ X-ray photoelectron spectroscopy (XPS). This is done by performing XPS without breaking vacuum after deposition of ultrathin layers in sequences. Elemental tin and indium are shown to be present at the interface, both after 2 and 10 s of deposition. In addition, the silicon oxide layer at the interface is shown to be composed of mainly silicon suboxides rather than silicon dioxide.

  6. Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE

    NASA Astrophysics Data System (ADS)

    Li, Shaoyuan; Ma, Wenhui; Zhou, Yang; Chen, Xiuhua; Xiao, Yongyin; Ma, Mingyu; Wei, Feng; Yang, Xi

    2014-05-01

    In this paper, the simple pre-oxidization process is firstly used to treat the starting silicon wafer, and then MPSiNWs are successfully fabricated from the moderately doped wafer by one-step MACE technology in HF/AgNO3 system. The PL spectrum of MPSiNWs obtained from the oxidized silicon wafers show a large blue-shift, which can be attributed to the deep Q. C. effect induced by numerous mesoporous structures. The effects of HF and AgNO3 concentration on formation of SiNWs were carefully investigated. The results indicate that the higher HF concentration is favorable to the growth of SiNWs, and the density of SiNWs is significantly reduced when Ag+ ions concentrations are too high. The deposition behaviors of Ag+ ions on oxidized and unoxidized silicon surface were studied. According to the experimental results, a model was proposed to explain the formation mechanism of porous SiNWs by etching the oxidized starting silicon.

  7. Electron microscopy analysis of crystalline silicon islands formed on screen-printed aluminum-doped p-type silicon surfaces

    SciTech Connect

    Bock, Robert; Schmidt, Jan; Brendel, Rolf

    2008-08-15

    The origin of a not yet understood concentration peak, which is generally measured at the surface of aluminum-doped p{sup +} regions produced in a conventional screen-printing process is investigated. Our findings provide clear experimental evidence that the concentration peak is due to the microscopic structures formed at the silicon surface during the firing process. To characterize the microscopic nature of the islands (lateral dimensions of 1-3 {mu}m) and line networks of self-assembled nanostructures (lateral dimension of {<=}50 nm), transmission electron microscopy, scanning electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis are combined. Aluminum inclusions are detected 50 nm below the surface of the islands and crystalline aluminum precipitates of {<=}7 nm in diameter are found within the bulk of the islands. In addition, aluminum inclusions (lateral dimension of {approx}30 nm) are found within the bulk of the self-assembled line networks.

  8. Study of nanoparticles TiO2 thin films on p-type silicon substrate using different alcoholic solvents

    NASA Astrophysics Data System (ADS)

    Muaz, A. K. M.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.

    2016-07-01

    In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO2) thin films. The prepared TiO2 sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO2) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO2 thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO2 films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO2 thin films were measured using two-point-probe technique.

  9. Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement.

    PubMed

    Yang, Yongliang; Li, Xinxin

    2011-01-01

    The p-type silicon giant piezoresistive coefficient is measured in top-down fabricated nano-thickness single-crystalline-silicon strain-gauge resistors with a macro-cantilever bending experiment. For relatively thicker samples, the variation of piezoresistive coefficient in terms of silicon thickness obeys the reported 2D quantum confinement effect. For ultra-thin samples, however, the variation deviates from the quantum-effect prediction but increases the value by at least one order of magnitude (compared to the conventional piezoresistance of bulk silicon) and the value can change its sign (e.g. from positive to negative). A stress-enhanced Si/SiO(2) interface electron-trapping effect model is proposed to explain the 'abnormal' giant piezoresistance that should be originated from the carrier-concentration change effect instead of the conventional equivalent mobility change effect for bulk silicon piezoresistors. An interface state modification experiment gives preliminary proof of our analysis. PMID:21135460

  10. XANES and IR spectroscopy study of the electronic structure and chemical composition of porous silicon on n- and p-type substrates

    SciTech Connect

    Lenshin, A. S. Kashkarov, V. M.; Seredin, P. V.; Spivak, Yu. M.; Moshnikov, V. A.

    2011-09-15

    The differences in the electronic structure and composition of porous silicon samples obtained under identical conditions of electrochemical etching on the most commonly used n- and p-type substrates with different conductivities are demonstrated by X-ray absorption near-edge spectroscopy (XANES) and Fourier transform IR spectroscopy (FTIR) methods. It is shown that significantly higher oxidation and saturation with hydrogen is observed for the porous layer on n-type substrates.

  11. Iron-boron pairing kinetics in illuminated p-type and in boron/phosphorus co-doped n-type silicon

    SciTech Connect

    Möller, Christian; Bartel, Til; Gibaja, Fabien; Lauer, Kevin

    2014-07-14

    Iron-boron (FeB) pairing is observed in the n-type region of a boron and phosphorus co-doped silicon sample which is unexpected from the FeB pair model of Kimerling and Benton. To explain the experimental data, the existing FeB pair model is extended by taking into account the electronic capture and emission rates at the interstitial iron (Fe{sub i}) trap level as a function of the charge carrier densities. According to this model, the charge state of the Fe{sub i} may be charged in n-type making FeB association possible. Further, FeB pair formation during illumination in p-type silicon is investigated. This permits the determination of the charge carrier density dependent FeB dissociation rate and in consequence allows to determine the acceptor concentration in the co-doped n-type silicon by lifetime measurement.

  12. Determination of phonon decay rate in p-type silicon under Fano resonance by measurement of coherent phonons

    NASA Astrophysics Data System (ADS)

    Kato, Keiko; Oguri, Katsuya; Sanada, Haruki; Tawara, Takehiko; Sogawa, Tetsuomi; Gotoh, Hideki

    2015-09-01

    We determine phonon decay rate by measuring the temperature dependence of coherent phonons in p-type Si under Fano resonance, where there is interference between the continuum and discrete states. As the temperature decreases, the decay rate of coherent phonons decreases, whereas that evaluated from the Raman linewidth increases. The former follows the anharmonic decay model, whereas the latter does not. The different temperature dependences of the phonon decay rate of the two methods originate from the way that the continuum state, which originates from the Fano resonance, modifies the time- and frequency-domain spectra. The observation of coherent phonons is useful for evaluating the phonon decay rate free from the interaction with the continuum state and clarifies that the anharmonic decay is dominant in p-type Si even under Fano resonance.

  13. Interface modification effect between p-type a-SiC:H and ZnO:Al in p-i-n amorphous silicon solar cells

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide (ZnO:Al) [AZO] is a good candidate to be used as a transparent conducting oxide [TCO]. For solar cells having a hydrogenated amorphous silicon carbide [a-SiC:H] or hydrogenated amorphous silicon [a-Si:H] window layer, the use of the AZO as TCO results in a deterioration of fill factor [FF], so fluorine-doped tin oxide (Sn02:F) [FTO] is usually preferred as a TCO. In this study, interface engineering is carried out at the AZO and p-type a-SiC:H interface to obtain a better solar cell performance without loss in the FF. The abrupt potential barrier at the interface of AZO and p-type a-SiC:H is made gradual by inserting a buffer layer. A few-nanometer-thick nanocrystalline silicon buffer layer between the AZO and a-SiC:H enhances the FF from 67% to 73% and the efficiency from 7.30% to 8.18%. Further improvements in the solar cell performance are expected through optimization of cell structures and doping levels. PMID:22257671

  14. Interface modification effect between p-type a-SiC:H and ZnO:Al in p-i-n amorphous silicon solar cells.

    PubMed

    Baek, Seungsin; Lee, Jeong Chul; Lee, Youn-Jung; Iftiquar, Sk Md; Kim, Youngkuk; Park, Jinjoo; Yi, Junsin

    2012-01-01

    Aluminum-doped zinc oxide (ZnO:Al) [AZO] is a good candidate to be used as a transparent conducting oxide [TCO]. For solar cells having a hydrogenated amorphous silicon carbide [a-SiC:H] or hydrogenated amorphous silicon [a-Si:H] window layer, the use of the AZO as TCO results in a deterioration of fill factor [FF], so fluorine-doped tin oxide (Sn02:F) [FTO] is usually preferred as a TCO. In this study, interface engineering is carried out at the AZO and p-type a-SiC:H interface to obtain a better solar cell performance without loss in the FF. The abrupt potential barrier at the interface of AZO and p-type a-SiC:H is made gradual by inserting a buffer layer. A few-nanometer-thick nanocrystalline silicon buffer layer between the AZO and a-SiC:H enhances the FF from 67% to 73% and the efficiency from 7.30% to 8.18%. Further improvements in the solar cell performance are expected through optimization of cell structures and doping levels. PMID:22257671

  15. Inorganic Nano Light-Emitting Transistor: p-Type Porous Silicon Nanowire/n-Type ZnO Nanofilm.

    PubMed

    Lee, Sang Hoon; Kim, Jong Woo; Lee, Tae Il; Myoung, Jae Min

    2016-08-01

    An inorganic nano light-emitting transistor (INLET) consisting of p-type porous Si nanowires (PoSiNWs) and an n-type ZnO nanofilm was integrated on a heavily doped p-type Si substrate with a thermally grown SiO2 layer. To verify that modulation of the Fermi level of the PoSiNWs is key for switchable light emitting, I-V and electroluminescent characteristics of the INLET are investigated as a function of gate bias (V g ). As the V g is changed from 0 V to -20 V, the current level and light-emission intensity in the orange-red range increase by three and two times, respectively, with a forward bias of 20 V in the p-n junction, compared to those at a V g of 0 V. On the other hand, as the V g approaches 10 V, the current level decreases and the emission intensity is reduced and then finally switched off. This result arises from the modulation of the Fermi level of the PoSiNWs and the built-in potential at the p-n junction by the applied gate electric field. PMID:27378257

  16. Role of the buffer at the interface of intrinsic a-Si:H and p-type a-Si:H on amorphous/crystalline silicon heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Meng, Fanying; Shen, Leilei; Shi, Jianhua; Zhang, Liping; Liu, Jinning; Liu, Yucheng; Liu, Zhengxin

    2015-11-01

    We investigate the influence of the different buffer at the interface between the intrinsic a-Si:H and p-type a-Si:H layers on amorphous/crystalline silicon heterojunction (SHJ) solar cells performance. It is demonstrated that the ultrathin buffer at interface of intrinsic a-Si:H and p-type a-Si:H, obtained by H-rich plasma treatment on the initial intrinsic a-Si:H passivation layer, can significantly enhance the minority carrier lifetime and decrease the emitter saturation current density. Spectroscopic ellipsometry and Fourier transform infrared spectroscopy analyses indicate that the initial intrinsic a-Si:H films become dense and less defected as a result of the relaxation and reconstruction when they are treated during the H-rich plasma environment. Based on this finding combined with the optimization of surface texturization of the silicon wafer, this work allows us to reach very high Voc values over 730 mV without losses on fill factor, the 100 μm, 125 × 125 mm2 SHJ solar cells were fabricated with industry-compatible process, yielding the efficiency up to 22.5%.

  17. Charge states of the reactants in the hydrogen passivation of interstitial iron in P-type crystalline silicon

    NASA Astrophysics Data System (ADS)

    Sun, Chang; Liu, AnYao; Phang, Sieu Pheng; Rougieux, Fiacre E.; Macdonald, Daniel

    2015-08-01

    Significant reductions in interstitial iron (Fei) concentrations occur during annealing Fe-containing silicon wafers with silicon nitride films in the temperature range of 250 °C-700 °C. The silicon nitride films are known to release hydrogen during the annealing step. However, in co-annealed samples with silicon oxide films, which are hydrogen-lean, changes in the Fei concentrations were much less significant. The precipitation of Fei is ruled out as a possible explanation for the significant reductions. The hydrogen passivation of Fei, which is the complexing of monatomic H and isolated Fei forming a recombination-inactive hydride, is proposed as the most probable model to explain the reductions. Under the assumption that the reduction is caused by the hydrogenation of Fei, the reactants' charge states in the hydrogenation reaction are determined by two independent approaches. In the first approach, illumination is found to have a small but detectible impact on the reaction kinetics in the lower temperature range. The dominating reactants' charge states are concluded to be Fe0 + H+ as revealed by modelling the injection-dependent charge states of isolated Fei and monatomic H. In the second approach, the reaction kinetics are fitted with the Arrhenius equation over a large temperature range of 250 °C-700 °C. A reasonable fit is only obtained when assuming the reacting charge states are Fe0 + H+. This supports the conclusion on the reacting charge states and also gives a value of the activation energy of hydrogenation in the 0.7-0.8 eV range.

  18. Rectification properties of n-type nanocrystalline diamond heterojunctions to p-type silicon carbide at high temperatures

    SciTech Connect

    Goto, Masaki; Amano, Ryo; Shimoda, Naotaka; Kato, Yoshimine; Teii, Kungen

    2014-04-14

    Highly rectifying heterojunctions of n-type nanocrystalline diamond (NCD) films to p-type 4H-SiC substrates are fabricated to develop p-n junction diodes operable at high temperatures. In reverse bias condition, a potential barrier for holes at the interface prevents the injection of reverse leakage current from the NCD into the SiC and achieves the high rectification ratios of the order of 10{sup 7} at room temperature and 10{sup 4} even at 570 K. The mechanism of the forward current injection is described with the upward shift of the defect energy levels in the NCD to the conduction band of the SiC by forward biasing. The forward current shows different behavior from typical SiC Schottky diodes at high temperatures.

  19. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays

    NASA Astrophysics Data System (ADS)

    Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2014-10-01

    Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly

  20. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    SciTech Connect

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  1. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    NASA Astrophysics Data System (ADS)

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-01

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×1016 atoms/cm3) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  2. Metal-insulator-semiconductor barriers with a nanometer-thick aluminum nitride insulator on p-type silicon

    SciTech Connect

    Ivanov, A. M.; Kotina, I. M.; Lasakov, M. S.; Strokan, N. B.; Tuhkonen, L. M.

    2010-08-15

    The state of the interface between p-silicon and a nanometer-thick insulator is analyzed. DLTS spectra, obtained with deep centers in the bulk of the structure and its surface states recharged, are examined. The nature of the noise as a function of the reverse bias is determined for evaluating the possibility of using the structure as a nuclear radiation detector. A conclusion is drawn that the barrier used in the structure has a higher quality when nanometer-thick aluminum nitride films are deposited by dc, rather than ac, magnetron sputtering.

  3. Development of edgeless silicon pixel sensors on p-type substrate for the ATLAS high-luminosity upgrade

    NASA Astrophysics Data System (ADS)

    Calderini, G.; Bagolini, A.; Bomben, M.; Boscardin, M.; Bosisio, L.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2014-11-01

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R&D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  4. Sub-band transport mechanism and switching properties for resistive switching nonvolatile memories with structure of silver/aluminum oxide/p-type silicon

    SciTech Connect

    Liu, Yanhong; Li, La; Wang, Song; Gao, Ping; Pan, Lujun; Zhang, Jialiang; Zhou, Peng; Li, Jinhua; Weng, Zhankun

    2015-02-09

    In this paper, we discuss a model of sub-band in resistive switching nonvolatile memories with a structure of silver/aluminum oxide/p-type silicon (Ag/Al{sub x}O{sub y}/p-Si), in which the sub-band is formed by overlapping of wave functions of electron-occupied oxygen vacancies in Al{sub x}O{sub y} layer deposited by atomic layer deposition technology. The switching processes exhibit the characteristics of the bipolarity, discreteness, and no need of forming process, all of which are discussed deeply based on the model of sub-band. The relationships between the SET voltages and distribution of trap levels are analyzed qualitatively. The semiconductor-like behaviors of ON-state resistance affirm the sub-band transport mechanism instead of the metal filament mechanism.

  5. Wide band-gap, fairly conductive p-type hydrogenated amorphous silicon carbide films prepared by direct photolysis; solar cell application

    SciTech Connect

    Yamada, A.; Kenne, J.; Konagai, M.; Takahashi, K.

    1985-02-01

    Wide optical band-gap (2.0--2.3 eV) undoped and boron-doped hydrogenated amorphous silicon carbide (a-SiC:H) films have been prepared by both direct photo and rf glow discharge (GD plasma) decomposition of pure methylsilanes or acetylene and disilane gas mixtures. The photochemically prepared p-type films showed higher dark conductivities and lower activation energies. For an optical band gap of 2.0 eV a high conductivity of 7.0 x 10/sup -5/ (S cm/sup -1/) and a low activation energy of 0.33 eV have been measured. The first trial of these wide band-gap, fairly conductive films as a window layer in a p-i-n solar cell showed the high conversion efficiency of 9.46% under AM1 insolation.

  6. Effects of trap-assisted tunneling on gate-induced drain leakage in silicon-germanium channel p-type FET for scaled supply voltages

    NASA Astrophysics Data System (ADS)

    Tiwari, Vishal A.; Divakaruni, Rama; Hook, Terence B.; Nair, Deleep R.

    2016-04-01

    Silicon-germanium is considered as an alternative channel material to silicon p-type FET (pFET) for the development of energy efficient high performance transistors for 28 nm and beyond in a high-k metal gate technology because of its lower threshold voltage and higher mobility. However, gate-induced drain leakage (GIDL) is a concern for high threshold voltage device design because of tunneling at reduced bandgap. In this work, the trap-assisted tunneling and band-to-band tunneling (BTBT) effects on GIDL is analyzed and modeled for SiGe pFETs. Experimental results and Monte Carlo simulation results reveal that the pre-halo germanium pre-amorphization implant used to contain the short channel effects contribute to GIDL at the drain sidewall in addition to GIDL due to BTBT in SiGe devices. The results are validated by comparing the experimental observations with the numerical simulation and a set of calibrated models are used to describe the GIDL mechanisms for various drain and gate bias.

  7. Fabrication and characterization of silicon nanowire p-i-n MOS gated diode for use as p-type tunnel FET

    NASA Astrophysics Data System (ADS)

    Brouzet, V.; Salem, B.; Periwal, P.; Rosaz, G.; Baron, T.; Bassani, F.; Gentile, P.; Ghibaudo, G.

    2015-11-01

    In this paper, we present the fabrication and electrical characterization of a MOS gated diode based on axially doped silicon nanowire (NW) p-i-n junctions. These nanowires are grown by chemical vapour deposition (CVD) using the vapour-liquid-solid (VLS) mechanism. NWs have a length of about 7 \\upmu {m} with 3 \\upmu {m} of doped regions (p-type and n-type) and 1 \\upmu {m} of intrinsic region. The gate stack is composed of 15 nm of hafnium dioxide ({HfO}2), 80 nm of nickel and 120 nm of aluminium. At room temperature, I_{{on}} =-52 {nA}/\\upmu {m} (V_{{DS}}=-0.5 {V}, V_{{GS}}=-4 {V}), and an I_{{on}}/I_{{off}} ratio of about 104 with a very low I_{{off}} current has been obtained. Electrical measurements are carried out between 90 and 390 K, and we show that the I on current is less temperature dependent below 250 K. We also observe that the ON current is increasing between 250 and 390 K. These transfer characteristics at low and high temperature confirm the tunnelling transport mechanisms in our devices.

  8. Reliability in Short-Channel p-Type Polycrystalline Silicon Thin-Film Transistor under High Gate and Drain Bias Stress

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Hwan; Kim, Sun-Jae; Mo, Yeon-Gon; Kim, Hye-Dong; Han, Min-Koo

    2010-03-01

    We have investigated the electrical characteristics of short-channel p-type excimer laser annealed (ELA) polycrystalline silicon (poly-Si) thin-film transistors (TFTs) under high gate and drain bias stress. We found that the threshold voltage of short-channel TFTs was significantly shifted in the negative direction owing to high gate and drain bias stress (ΔVTH = -2.08 V), whereas that of long-channel TFTs was rarely shifted in the negative direction (ΔVTH = -0.10 V). This negative shift of threshold voltage in the short-channel TFT may be attributed to interface state generation near the source junction and deep trap state creation near the drain junction between the poly-Si film and the gate insulator layer. It was also found that the gate-to-drain capacitance (CGD) characteristic of the stressed TFT severely stretched for the gate voltage below the flat band voltage VFB. The effects of high gate and drain bias stress are related to hot-hole-induced donor like interface state generation. The transfer characteristics of the forward and reverse modes after the high gate and drain bias stress also indicate that the interface state generation at the gate insulator/channel interface occurred near the source junction region.

  9. Reliability in Short-Channel p-Type Polycrystalline Silicon Thin-Film Transistor under High Gate and Drain Bias Stress

    NASA Astrophysics Data System (ADS)

    Sung-Hwan Choi,; Sun-Jae Kim,; Yeon-Gon Mo,; Hye-Dong Kim,; Min-Koo Han,

    2010-03-01

    We have investigated the electrical characteristics of short-channel p-type excimer laser annealed (ELA) polycrystalline silicon (poly-Si) thin-film transistors (TFTs) under high gate and drain bias stress. We found that the threshold voltage of short-channel TFTs was significantly shifted in the negative direction owing to high gate and drain bias stress (Δ VTH = -2.08 V), whereas that of long-channel TFTs was rarely shifted in the negative direction (Δ VTH = -0.10 V). This negative shift of threshold voltage in the short-channel TFT may be attributed to interface state generation near the source junction and deep trap state creation near the drain junction between the poly-Si film and the gate insulator layer. It was also found that the gate-to-drain capacitance (CGD) characteristic of the stressed TFT severely stretched for the gate voltage below the flat band voltage VFB. The effects of high gate and drain bias stress are related to hot-hole-induced donor like interface state generation. The transfer characteristics of the forward and reverse modes after the high gate and drain bias stress also indicate that the interface state generation at the gate insulator/channel interface occurred near the source junction region.

  10. Effect of Rapid Thermal Processing on Light-Induced Degradation of Carrier Lifetime in Czochralski p-Type Silicon Bare Wafers

    NASA Astrophysics Data System (ADS)

    Kouhlane, Y.; Bouhafs, D.; Khelifati, N.; Belhousse, S.; Menari, H.; Guenda, A.; Khelfane, A.

    2016-07-01

    The electrical properties of Czochralski silicon (Cz-Si) p-type boron-doped bare wafers have been investigated after rapid thermal processing (RTP) with different peak temperatures. Treated wafers were exposed to light for various illumination times, and the effective carrier lifetime (τ eff) measured using the quasi-steady-state photoconductance (QSSPC) technique. τ eff values dropped after prolonged illumination exposure due to light-induced degradation (LID) related to electrical activation of boron-oxygen (BO) complexes, except in the sample treated with peak temperature of 785°C, for which the τ eff degradation was less pronounced. Also, a reduction was observed when using the 830°C peak temperature, an effect that was enhanced by alteration of the wafer morphology (roughness). Furthermore, the electrical resistivity presented good stability under light exposure as a function of temperature compared with reference wafers. Additionally, the optical absorption edge shifted to higher wavelength, leading to increased free-carrier absorption by treated wafers. Moreover, a theoretical model is used to understand the lifetime degradation and regeneration behavior as a function of illumination time. We conclude that RTP plays an important role in carrier lifetime regeneration for Cz-Si wafers via modification of optoelectronic and structural properties. The balance between an optimized RTP cycle and the rest of the solar cell elaboration process can overcome the negative effect of LID and contribute to achievement of higher solar cell efficiency and module performance.

  11. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones

    PubMed Central

    2014-01-01

    Background Silicon (Si) application has been known to enhance the tolerance of plants against abiotic stresses. However, the protective mechanism of Si under heavy metals contamination is poorly understood. The aim of this study was to assess the role of Si in counteracting toxicity due to cadmium (Cd) and copper (Cu) in rice plants (Oryza sativa). Results Si significantly improved the growth and biomass of rice plants and reduced the toxic effects of Cd/Cu after different stress periods. Si treatment ameliorated root function and structure compared with non-treated rice plants, which suffered severe root damage. In the presence of Si, the Cd/Cu concentration was significantly lower in rice plants, and there was also a reduction in lipid peroxidation and fatty acid desaturation in plant tissues. The reduced uptake of metals in the roots modulated the signaling of phytohormones involved in responses to stress and host defense, such as abscisic acid, jasmonic acid, and salicylic acid. Furthermore, the low concentration of metals significantly down regulated the mRNA expression of enzymes encoding heavy metal transporters (OsHMA2 and OsHMA3) in Si-metal-treated rice plants. Genes responsible for Si transport (OsLSi1 and OsLSi2), showed a significant up-regulation of mRNA expression with Si treatment in rice plants. Conclusion The present study supports the active role of Si in the regulation of stresses from heavy metal exposure through changes in root morphology. PMID:24405887

  12. Fabrication and characterization of n-type aluminum-boron co-doped ZnO on p-type silicon (n-AZB/p-Si) heterojunction diodes

    SciTech Connect

    Kumar, Vinod; Singh, Neetu; Kapoor, Avinashi; Ntwaeaborwa, Odireleng M.; Swart, Hendrik C.

    2013-11-15

    Graphical abstract: - Highlights: • n-AZB/p-Si heterojunction diodes were formed. • n-AZB/p-Si diode annealed at 700 °C showed best rectifying behavior. • Zn{sub 2}SiO{sub 4} was formed at 800 °C. • n and ϕ{sub b} were estimated to be 1.63 and 0.4 eV, respectively, at 700 °C. • Tailoring of BG was attributed to annealing induced stresses in the films. - Abstract: In this paper, the growth of n-type aluminum boron co-doped ZnO (n-AZB) on a p-type silicon (p-Si) substrate by sol–gel method using spin coating technique is reported. The n-AZB/p-Si heterojunctions were annealed at different temperatures ranging from 400 to 800 °C. The crystallite size of the AZB nanostructures was found to vary from 28 to 38 nm with the variation in annealing temperature. The band gap of the AZB decreased from 3.29 to 3.27 eV, with increasing annealing temperature from 400 to 700 °C and increased to 3.30 eV at 800 °C probably due to the formation of Zn{sub 2}SiO{sub 4} at the interface. The band gap variation is explained in terms of annealing induced stress in the AZB. The n-AZB/p-Si heterojunction exhibited diode behavior. The best rectifying behavior was exhibited at 700 °C.

  13. P-type ATPases.

    PubMed

    Palmgren, Michael G; Nissen, Poul

    2011-01-01

    P-type ATPases form a large superfamily of cation and lipid pumps. They are remarkably simple with only a single catalytic subunit and carry out large domain motions during transport. The atomic structure of P-type ATPases in different conformations, together with ample mutagenesis evidence, has provided detailed insights into the pumping mechanism by these biological nanomachines. Phylogenetically, P-type ATPases are divided into five subfamilies, P1-P5. These subfamilies differ with respect to transported ligands and the way they are regulated. PMID:21351879

  14. Thermodynamically uphill reduction of a surface-confined N,N'-dialkyl-4,4'-bipyridinium derivative on illuminated p-type silicon surfaces

    SciTech Connect

    Bookbinder, D.C.; Wrighton, M.S.

    1980-07-16

    Results pertaining to a chemically derivatized p-type semiconductor photocathode surface are reported. The reduced form of N,N'-dimethyl-4,4'-bipyridinium comes into rapid redox equilibrium with aqueous (pH < 6) solutions containing suspensions of Pt to evolve Hg; the H/sub 2/ evolution can also be catalyzed by hydrogenase. Included are results for derivatized Pt to establish the thermodynamics for the surface-confined reagents. Possible applications in bioelectrochemistry and in electrochronic displays with reversible electrodes functionalized with the bipyridinium reagent were noted. 2 figures. (DP)

  15. Temperature Dependent Capacitance-Voltage And Deep Level Transient Spectroscopy Study Of Self-Assembled Ge Quantum Dots Embedded In P-type Silicon

    SciTech Connect

    Rangel-Kuoppa, Victor-Tapio; Chen Gang; Jantsch, Wolfgang

    2011-12-23

    Temperature dependent Capacitance-Voltage (TCV) and Deep Level Transient Spectroscopy (DLTS) techniques were used to study how Ge Quantum Dots (QDs) embedded in Silicon trap charge. Atomic Force Microscopy (AFM) is used to obtain the density of QDs, which is in the order of 3x10{sup 11} cm{sup -2}. Three shallow levels, with activation energies of 40, 65 and 90 meV, and densities around 10{sup 16} cm{sup -3}, are found and are related to Boron. Four deep levels, with activation energies of 110, 150, 330 and 380 meV, and densities between 2x10{sup 15} cm{sup -3} and 5x10{sup 15} cm{sup -3}, are also found. TCV results suggest they are related to the Ge QDs.

  16. Ultralow Contact Resistivity for a Metal/p-Type Silicon Interface by High-Concentration Germanium and Boron Doping Combined with Low-Temperature Annealing

    NASA Astrophysics Data System (ADS)

    Murakoshi, Atsushi; Iwase, Masao; Niiyama, Hiromi; Koike, Mitsuo; Suguro, Kyoichi

    2013-07-01

    A contact resistivity of 6.9×10-9 Ω.cm2 has been obtained in an AlSi (1 wt %)-Cu (0.5 wt %) alloy/silicon system by using heavy-dose ion implantations of germanium and boron combined with low-temperature annealing. The analysis of the combined state showed that B12 cluster was incorporated and the supersaturation activation layer was formed into the region where germanium separated. Separated germanium is expected to have high interface state density. It is considered that this interface state density also has a Fermi level, and in order to reduce the difference from the Fermi level of the substrate, the charge moves to interface state density from the substrate. As a result, it is not based on a metallic material but a work function becomes small because pinning by which a Fermi level is fixed to interface state density occurs owing to the substrate/metal interface. It is considered to be attributable to the existence of a Ge-rich layer formed by low-temperature annealing, and a supersaturation activation layer that lowers contact resistance was formed.

  17. Application of Black Silicon for Nanostructure-Initiator Mass Spectrometry.

    PubMed

    Gao, Jian; de Raad, Markus; Bowen, Benjamin P; Zuckermann, Ronald N; Northen, Trent R

    2016-02-01

    Nanostructure-initiator mass spectrometry (NIMS) is a matrix-free desorption/ionization technique with high sensitivity for small molecules. Surface preparation has relied on hydrofluoric acid (HF) electrochemical etching which is undesirable given the significant safety controls required in this specialized process. In this study, we examine a conventional and widely used process for producing black silicon based on sulfur hexafluoride/oxygen (SF6/O2) inductively coupled plasma (ICP) etching at cryogenic temperatures and we find it to be suitable for NIMS. A systematic study varying parameters in the plasma etching process was performed to understand the relationship of black silicon morphology and its sensitivity as a NIMS substrate. The results suggest that a combination of higher silicon temperature and oxygen flow rate gives rise to the formation of black silicon with fine pillar structures, whose aspect ratio are ∼ 8.7 and depth are <1 μm resulting in higher NIMS sensitivity which is attributed to surface restructuring caused by their low melting point upon laser irradiation. Interestingly, we find selectivity of these black silicon substrates to different analytes depending on the etching parameters. Though, the sensitivity of the dry etching process is lower than the traditional "wet" electrochemical etching process, it is suitable for many applications and is prepared using conventional equipment without the use of HF. PMID:26741735

  18. Boron-doped amorphous diamondlike carbon as a new p-type window material in amorphous silicon p-i-n solar cells

    SciTech Connect

    Lee, C.H.; Lim, K.S.

    1998-01-01

    A boron-doped hydrogenated amorphous diamondlike carbon (a-DLC:H) was prepared using a mercury-sensitized photochemical vapor deposition (photo-CVD) method. The source gases were B{sub 2}H{sub 6} and C{sub 2}H{sub 4}. By increasing the boron doping ratio (B{sub 2}H{sub 6}/C{sub 2}H{sub 4}) from 0 to 12000 ppm, the dark conductivity increased from {approximately}10{sup {minus}9} to {approximately}10{sup {minus}7} S/cm. A boron-doped a-DLC:H with an energy band gap of 3.8 eV and a dark conductivity of 1.3{times}10{sup {minus}8} S/cm was obtained at a doping ratio of 3600 ppm. By using this film, amorphous silicon (a-Si) solar cells with a novel p-a-DLC:H/p-a-SiC double p-layer structure were fabricated using the photo-CVD method and the cell photovoltaic characteristics were investigated as a function of a-DLC:H layer thickness. The open circuit voltage increased from 0.766 V for the conventional cell with a 40-{Angstrom}-thick p-a-SiC to 0.865 V for the cell with a p-a-DLC:H (15 {Angstrom})/p-a-SiC (40 {Angstrom}) double p-layer structure. The thin ({lt}15 {Angstrom}) p-a-DLC:H layer proved to be an excellent hole emitter as a wide band gap window layer. {copyright} {ital 1998 American Institute of Physics.}

  19. Simulation and study of the influence of the buffer intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell

    SciTech Connect

    Dao, Vinh Ai; Heo, Jongkyu; Choi, Hyungwook; Kim, Yongkuk; Park, Seungman; Jung, Sungwook; Lakshminarayan, Nariangadu; Yi, Junsin

    2010-05-15

    The influence of various parameters such as buffer intrinsic layers, back-surface fields, densities of interface defects (D{sub it}), the resistivity of p-type silicon substrates ({rho}) and then work function of transparent conductive oxide ({phi}{sub TCO}) on heterojunction with intrinsic thin-layer (HIT) solar cell performance was investigated using software simulation. Automat for the simulation of heterostructures (AFORS-HET) software was used for that purpose. Our results indicate that band bending, which is determined by the band offsets at the buffer intrinsic/c-Si and/or the c-Si/back-surface field heterointerface, could be critical to solar cell performance. The effect of band bending on solar cell performance and the dependence of cell performance on {rho} and {phi}{sub TCO} were investigated in detail. Eventually, suggestive design parameters for HIT solar cell fabrication are proposed. (author)

  20. Optical Sensing Circuit Using Low-Temperature Polycrystalline Silicon p-Type Thin-Film Transistors and p-Intrinsic-Metal Diode for Active Matrix Displays with Optical Input Functions

    NASA Astrophysics Data System (ADS)

    Lim, Han-Sin; Kwon, Oh-Kyong

    2009-03-01

    An optical sensing circuit composed of low-temperature polycrystalline silicon (LTPS) p-type thin-film transistors (TFTs) and a p-intrinsic-metal (p-i-m) diode is proposed for image scanning and touch sensing functions. Because it is a very difficult challenge to integrate both display pixels and optical sensing circuits into the restricted pixel area, the number of additional devices and control signal lines must be minimized. Therefore, two p-type TFTs, one p-i-m diode, one capacitor, and one signal line are added to display pixel for the proposed optical sensing circuit. Active matrix liquid crystal display (AMLCD) and active matrix organic light-emitting diode (AMOLED) pixels with the proposed optical sensing circuit have image scanning and touch sensing functions, respectively. Through the measurement of the proposed circuit under the condition of incident light varying from 0 to 10,000 lx, we verified that the dynamic and output ranges of the proposed circuit are 30 dB and 1.5 V, respectively.

  1. Low temperature deposition and characterization of n- and p-type silicon carbide thin films and associated ohmic and Schottky contacts. Annual report, 1 January-31 December 1992

    SciTech Connect

    Davis, R.F.; Nemanich, R.J.; Kern, R.S.; Patterson, R.; Rowland, L.B.

    1992-01-01

    Single-crystal epitaxial films of cubic Beta(3C)-SiC(111) and AlN(0001) have been deposited on alpha(6H)-SiC(OOO1) substrates oriented 3-4 deg towards 1120 at 1050 deg C via gas-source molecular beam epitaxy using disilane (Si2H6), ethylene (C2H4), thermal evaporation of Al and activated N species derived from an ECR plasma. High resolution transmission electron microscopy revealed that the nucleation and growth of the Beta(3C)-SiC regions occurred primarily on terraces between closely spaced steps. Pseudomorphic bilayer structures containing Beta(3C)-SiC and 2H-AlN have been grown under the same conditions for the first time. HREED and cross-sectional HRTEM showed all layers to be monocrystalline. Initial high temperature chemical interdiffusion studies between SiC and AIN show that all components diffuse very slowly across the interface. AHRTEM and SAS are being used to determine the concentration profiles. Thin film solid solutions of AIN and SiC have been deposited using similar techniques and conditions as the individual compounds. Metal contacts of Ti, Pt and Hf deposited at RT on n-type alpha(6H)-SiC(OOO1) exhibit rectifying behavior with ideality factors between 1.01 and 1.09. The Pt and Hf contacts had leakage currents of 5xl0-8 A/cm2 at -10V. Values of barrier heights for all contacts were within a few tenths of 1.0eV which is indicative that the Fermi level is pinned at the SiC surface.... Films, SiC, AlN, Gas source molecular beam epitaxy, Transmission electron microscopy, Chemical interdiffusion, Metal contacts, Ti, Pt, Hf, Ideality factors, Fermi level pinning.

  2. Initial stages of silicon growth on the (100) surface of silicon by localized laser CVD

    NASA Astrophysics Data System (ADS)

    Kotecki, D. E.; Herman, I. P.

    1987-12-01

    This paper reports initial results of an experimental study of the early stages of silicon thin film growth on well prepared (100) c-Si surfaces by pyrolytic deposition from silane (SiH4) during localized laser chemical vapor deposition (LLCVD). The rate of silicon thin film growth during low pressure (less than 10 Torr) deposition using tightly focussed laser beams (514.5 nm, approximately 2.5 micron FWHM) is characterized and is shown to be much slower than expected based on the previously measured silane decomposition rate. Hybrid-heating experiments, in which laser heating induces a slight temperature increase on a uniformly heated substrate in the presence of silane gas, shows that growth is inhibited within the laser irradiation region. This result suggests that a nonpyrolytic mechanism contributes to silicon growth in laser CVD. Possible explanations for this nonpyrolytic growth mechanism are discussed.

  3. Initial experience with the CDF layer 00 silicon detector

    SciTech Connect

    C. Hill

    2003-03-17

    We report on initial experience with the CDF Layer 00 Detector. Layer 00 is an innovative, low-mass, silicon detector installed in CDF during the upgrade for Run 2A of the Tevatron. Noise pickup present during operation at CDF is discussed. An event-by-event pedestal correction implemented by CDF is presented. This off-line solution prevents L00 from being used in the current incarnation of the on-line displaced track trigger. Preliminary performance of Layer 00 is described.

  4. Crystalline Silicon Short-Circuit Current Degradation Study: Initial Results

    SciTech Connect

    Osterwald, C. R.; Pruett, J.; Moriarty, T.

    2005-02-01

    Following our observation of slow degradation of short-circuit current (Isc) in crystalline silicon (x-Si) modules that was correlated with ultraviolet (UV) exposure dose, we initiated a new study of individual x-Si cells designed to determine the degradation cause. In this paper, we report the initial results of this study, which has accumulated 1056 MJ/m2 of UV dose from 1-sun metal-halide irradiance, equivalent to 3.8 years at our test site. At this time, the control samples are unchanged, the unencapsulated samples have lost about 2% of Isc, and the samples encapsulated in module-style packages have declined from 1% to 3%, depending on the cell technology.

  5. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  6. P-type gallium nitride

    DOEpatents

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  7. Initial Steps of Rubicene Film Growth on Silicon Dioxide

    PubMed Central

    2013-01-01

    The film growth of the conjugated organic molecule rubicene on silicon dioxide was studied in detail. Since no structural data of the condensed material were available, we first produced high quality single crystals from solution and determined the crystal structure. This high purity material was used to prepare ultrathin films under ultrahigh vacuum conditions, by physical vapor deposition. Thermal desorption spectroscopy (TDS) was applied to delineate the adsorption and desorption kinetics. It could be shown that the initial sticking coefficient is only 0.2 ± 0.05, but the sticking coefficient increases with increasing coverage. TDS further revealed that first a closed, weakly bound bilayer develops (wetting layer), which dewets after further deposition of rubicene, leading to an island-like layer. These islands are crystalline and exhibit the same structure as the solution grown crystals. The orientation of the crystallites is with the (001) plane parallel to the substrate. A dewetting of the closed bilayer was also observed when the film was exposed to air. Furthermore, Ostwald ripening of the island-like film takes place under ambient conditions, leading to films composed of few, large crystallites. From TDS, we determined the heat of evaporation from the multilayer islands to be 1.47 eV, whereas the desorption energy from the first layer is only 1.25 eV. PMID:23476720

  8. Comparative study of initial stages of copper immersion deposition on bulk and porous silicon

    PubMed Central

    2013-01-01

    Initial stages of Cu immersion deposition in the presence of hydrofluoric acid on bulk and porous silicon were studied. Cu was found to deposit both on bulk and porous silicon as a layer of nanoparticles which grew according to the Volmer-Weber mechanism. It was revealed that at the initial stages of immersion deposition, Cu nanoparticles consisted of crystals with a maximum size of 10 nm and inherited the orientation of the original silicon substrate. Deposited Cu nanoparticles were found to be partially oxidized to Cu2O while CuO was not detected for all samples. In contrast to porous silicon, the crystal orientation of the original silicon substrate significantly affected the sizes, density, and oxidation level of Cu nanoparticles deposited on bulk silicon. PMID:23414073

  9. Comparative study of initial stages of copper immersion deposition on bulk and porous silicon

    NASA Astrophysics Data System (ADS)

    Bandarenka, Hanna; Prischepa, Sergey L.; Fittipaldi, Rosalba; Vecchione, Antonio; Nenzi, Paolo; Balucani, Marco; Bondarenko, Vitaly

    2013-02-01

    Initial stages of Cu immersion deposition in the presence of hydrofluoric acid on bulk and porous silicon were studied. Cu was found to deposit both on bulk and porous silicon as a layer of nanoparticles which grew according to the Volmer-Weber mechanism. It was revealed that at the initial stages of immersion deposition, Cu nanoparticles consisted of crystals with a maximum size of 10 nm and inherited the orientation of the original silicon substrate. Deposited Cu nanoparticles were found to be partially oxidized to Cu2O while CuO was not detected for all samples. In contrast to porous silicon, the crystal orientation of the original silicon substrate significantly affected the sizes, density, and oxidation level of Cu nanoparticles deposited on bulk silicon.

  10. Plasma-initiated rehydrogenation of amorphous silicon to increase the temperature processing window of silicon heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Shi, Jianwei; Boccard, Mathieu; Holman, Zachary

    2016-07-01

    The dehydrogenation of intrinsic hydrogenated amorphous silicon (a-Si:H) at temperatures above approximately 300 °C degrades its ability to passivate silicon wafer surfaces. This limits the temperature of post-passivation processing steps during the fabrication of advanced silicon heterojunction or silicon-based tandem solar cells. We demonstrate that a hydrogen plasma can rehydrogenate intrinsic a-Si:H passivation layers that have been dehydrogenated by annealing. The hydrogen plasma treatment fully restores the effective carrier lifetime to several milliseconds in textured crystalline silicon wafers coated with 8-nm-thick intrinsic a-Si:H layers after annealing at temperatures of up to 450 °C. Plasma-initiated rehydrogenation also translates to complete solar cells: A silicon heterojunction solar cell subjected to annealing at 450 °C (following intrinsic a-Si:H deposition) had an open-circuit voltage of less than 600 mV, but an identical cell that received hydrogen plasma treatment reached a voltage of over 710 mV and an efficiency of over 19%.

  11. Initiation time of near-infrared laser-induced slip on the surface of silicon wafers

    SciTech Connect

    Choi, Sungho; Jhang, Kyung-Young

    2014-06-23

    We have determined the initiation time of laser-induced slip on a silicon wafer surface subjected to a near-infrared continuous-wave laser by numerical simulations and experiments. First, numerical analysis was performed based on the heat transfer and thermoelasticity model to calculate the resolved shear stress and the temperature-dependent yield stress. Slip initiation time was predicted by finding the time at which the resolved shear stress reached the yield stress. Experimentally, the slip initiation time was measured by using a laser scattering technique that collects scattered light from the silicon wafer surface and detects strong scattering when the surface slip is initiated. The surface morphology of the silicon wafer surface after laser irradiation was also observed using an optical microscope to confirm the occurrence of slip. The measured slip initiation times agreed well with the numerical predictions.

  12. Initiation time of near-infrared laser-induced slip on the surface of silicon wafers

    NASA Astrophysics Data System (ADS)

    Choi, Sungho; Jhang, Kyung-Young

    2014-06-01

    We have determined the initiation time of laser-induced slip on a silicon wafer surface subjected to a near-infrared continuous-wave laser by numerical simulations and experiments. First, numerical analysis was performed based on the heat transfer and thermoelasticity model to calculate the resolved shear stress and the temperature-dependent yield stress. Slip initiation time was predicted by finding the time at which the resolved shear stress reached the yield stress. Experimentally, the slip initiation time was measured by using a laser scattering technique that collects scattered light from the silicon wafer surface and detects strong scattering when the surface slip is initiated. The surface morphology of the silicon wafer surface after laser irradiation was also observed using an optical microscope to confirm the occurrence of slip. The measured slip initiation times agreed well with the numerical predictions.

  13. Initial results for the silicon monolithically interconnected solar cell product

    NASA Astrophysics Data System (ADS)

    Dinetta, L. C.; Shreve, K. P.; Cotter, J. E.; Barnett, A. M.

    1995-10-01

    This proprietary technology is based on AstroPower's electrostatic bonding and innovative silicon solar cell processing techniques. Electrostatic bonding allows silicon wafers to be permanently attached to a thermally matched glass superstrate and then thinned to final thicknesses less than 25 micron. These devices are based on the features of a thin, light-trapping silicon solar cell: high voltage, high current, light weight (high specific power) and high radiation resistance. Monolithic interconnection allows the fabrication costs on a per watt basis to be roughly independent of the array size, power or voltage, therefore, the cost effectiveness to manufacture solar cell arrays with output powers ranging from milliwatts up to four watts and output voltages ranging from 5 to 500 volts will be similar. This compares favorably to conventionally manufactured, commercial solar cell arrays, where handling of small parts is very labor intensive and costly. In this way, a wide variety of product specifications can be met using the same fabrication techniques. Prototype solar cells have demonstrated efficiencies greater than 11%. An open-circuit voltage of 5.4 volts, fill factor of 65%, and short-circuit current density of 28 mA/sq cm at AM1.5 illumination are typical. Future efforts are being directed to optimization of the solar cell operating characteristics as well as production processing. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. These features make this proprietary technology an excellent candidate for a large number of consumer products.

  14. Initial results for the silicon monolithically interconnected solar cell product

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Shreve, K. P.; Cotter, J. E.; Barnett, A. M.

    1995-01-01

    This proprietary technology is based on AstroPower's electrostatic bonding and innovative silicon solar cell processing techniques. Electrostatic bonding allows silicon wafers to be permanently attached to a thermally matched glass superstrate and then thinned to final thicknesses less than 25 micron. These devices are based on the features of a thin, light-trapping silicon solar cell: high voltage, high current, light weight (high specific power) and high radiation resistance. Monolithic interconnection allows the fabrication costs on a per watt basis to be roughly independent of the array size, power or voltage, therefore, the cost effectiveness to manufacture solar cell arrays with output powers ranging from milliwatts up to four watts and output voltages ranging from 5 to 500 volts will be similar. This compares favorably to conventionally manufactured, commercial solar cell arrays, where handling of small parts is very labor intensive and costly. In this way, a wide variety of product specifications can be met using the same fabrication techniques. Prototype solar cells have demonstrated efficiencies greater than 11%. An open-circuit voltage of 5.4 volts, fill factor of 65%, and short-circuit current density of 28 mA/sq cm at AM1.5 illumination are typical. Future efforts are being directed to optimization of the solar cell operating characteristics as well as production processing. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. These features make this proprietary technology an excellent candidate for a large number of consumer products.

  15. Determination of Initial Crack Strength of Silicon Die Using Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Chi; Su, Yen-Fu; Yang, Shin-Yueh; Liang, Steven Y.; Chiang, Kuo-Ning

    2015-07-01

    The current market demand for high-efficiency, high-performance, small-sized electronic products has focused attention on the use of three-dimensional (3D) integrated circuits (IC) in the design of electronic packaging. Silicon wafers can be ground and polished to reduce their thickness and increase the chip stacking density. However, microcracks can result from the thinning and stacking process or during use of an electronic device over time; therefore, estimation of the cracking strength is an important issue in 3D IC packaging. This research combined the ball breaker test (BBT) with an acoustic emission (AE) system to measure the allowable force on a silicon die. To estimate the initial crack strength of a silicon die, the BBT was combined with finite-element (FE) analysis. The AE system can detect the initial crack and the subsequent bulk failure of the silicon die individually, thus avoiding overestimation of the die strength. In addition, the results of the modified ball breaker test showed that edge chipping did not affect the silicon die strength. However, the failure force and silicon die strength were reduced as the surface roughness of the test specimen increased. Thus, surface roughness must be controlled in the BBT to prevent underestimation of the silicon die strength.

  16. Optical initiation of nanoporous energetic silicon for safing and arming technologies

    NASA Astrophysics Data System (ADS)

    Churaman, Wayne A.; Becker, Collin R.; Metcalfe, Grace D.; Hanrahan, Brendan M.; Currano, Luke J.; Stoldt, Conrad R.

    2010-08-01

    Nanoporous silicon, commonly recognized for its photoluminescent properties, has gained attention as a new energetic material capable of energy density more than twice that of TNT. The addition of an oxidizer solution to inert nanoporous silicon results in an exothermic reaction when heat, friction, or focused light is supplied to the system. The energetic material can be integrated alongside microelectronics and micro-electro-mechanical systems (MEMS) for on-chip applications. This integration capability, along with the potential for large energetic yield, makes nanoporous energetic silicon a viable material for developing novel MEMS Safing and Arming (S&A) technologies. While ignition of nanoporous energetic silicon has been demonstrated for the purpose of propagation velocity measurements using a YAG laser, in this paper we show optical ignition for potential integration of the energetic with a miniaturized S&A device. Ignition is demonstrated using a 514nm laser at 37.7mW and a power density of 2.7kW/cm2 at a stand-off distance of 23cm. Raman spectroscopy verifies that significant stress in porous silicon is produced by a laser operating near the power density observed to ignite porous silicon. Lastly, we integrate the nanoporous energetic silicon with a MEMS S&A, and demonstrate transfer to a firetrain consisting of one primary and one secondary explosive using a thermal initiator to ignite the nanoporous energetic silicon.

  17. Silicon microchannel plates: initial results for photon counting detectors

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald H.; Tremsin, Anton S.; Vallerga, John V.; Beetz, Charles P.; Boerstler, Robert W.; Winn, D. R.

    2000-12-01

    The emergence of Silicon based microchannel plates (MCP's) has been awaited for a number of years, with many proposed advantages over standard glass MCPs for space-based detectors. Si should have a very low inherent background (< 0.01 events sec-1 cm-2), as well as being a low Z element with low stopping power for x, gamma and cosmic rays. The surface is oxidized and can be baked to very high temperatures (> 800 degrees Celsius), and will not react with photocathodes deposited on the surface. This could potentially allow opaque photocathodes, with their higher resolution and efficiency, to be used in the near UV/optical bands. Since the microchannel positions are determined photolithographically, the pattern will be uniform and coherent, resulting in more uniform flat fields and less differential non-linearity in the spatial response. Microchannel spacing could decrease to the micron regime, while size formats could increase. The potential advantages of Si MCPs encompass increased gain, stability, longevity, event rate, and QE. However, glass MCPs have a strong and successful heritage in space-based detector systems and the advantages of Si MCP's must be demonstrated in the laboratory before being considered for flight applications. We have tested some newly developed silicon (Si) MCP's provided by Nanosciences Corp. Although these are still in the developmental stage we have achieved a number of significant results. The gain, pulse height, response and gain uniformity, and quantum detection efficiency are very similar to glass MCP's. However the Si MCP background is approximately 0.02 events sec-1 cm-2 without shielding, a significant improvement over even low noise MCP's. The small samples we have tested are 25 mm format with 8 micrometer pore spacing, but they are taken from a 75 mm substrate, which offers the possibility of large MCP's in the near future. More testing and process development are underway to probe other operational parameters and optimize the

  18. Surface-initiated hyperbranched polyglycerol as an ultralow-fouling coating on glass, silicon, and porous silicon substrates.

    PubMed

    Moore, Eli; Delalat, Bahman; Vasani, Roshan; McPhee, Gordon; Thissen, Helmut; Voelcker, Nicolas H

    2014-09-10

    Anionic ring-opening polymerization of glycidol was initiated from activated glass, silicon, and porous silicon substrates to yield thin, ultralow-fouling hyperbranched polyglycerol (HPG) graft polymer coatings. Substrates were activated by deprotonation of surface-bound silanol functionalities. HPG polymerization was initiated upon the addition of freshly distilled glycidol to yield films in the nanometer thickness range. X-ray photoelectron spectroscopy, contact angle measurements, and ellipsometry were used to characterize the resulting coatings. The antifouling properties of HPG-coated surfaces were evaluated in terms of protein adsorption and the attachment of mammalian cells. The adsorption of bovine serum albumin and collagen type I was found to be reduced by as much as 97 and 91%, respectively, in comparison to untreated surfaces. Human glioblastoma and mouse fibroblast attachment was reduced by 99 and 98%, respectively. HPG-grafted substrates outperformed polyethylene glycol (PEG) grafted substrates of comparable thickness under the same incubation conditions. Our results demonstrate the effectiveness of antifouling HPG graft polymer coatings on a selected range of substrate materials and open the door for their use in biomedical applications. PMID:25137525

  19. Effect of Indenter Elastic Modulus on Hertzian Ring Crack Initiation in Silicon Carbide

    SciTech Connect

    Wereszczak, Andrew A; Daloz, William L; Strong, Kevin T; Jadaan, Osama M.

    2011-01-01

    The effect of spherical indenter stiffness on Hertzian-contact-induced fracture initiation was examined in hot-pressed silicon carbides (SiCs). Hertzian ring crack initiation forces were measured using zirconia, steel, silicon nitride, alumina, or tungsten carbide spherical indenters (elastic moduli ranging between 213 and 630 GPa). The two (flat target) SiCs were fully dense, and had equivalent elastic moduli (~450 GPa) and fracture toughnesses; however, about 20% of the grains in one SiC were larger than the largest grains in the other. Decreasing the indenter elastic modulus consistently resulted in lower ring crack initiation forces and those differences were statistically significant. Such a decrease in Hertzian ring crack initiation force with decreased indenter elastic modulus indicates the presence of a non-zero friction coefficient. Additionally, independent of the indenter material, ring crack initiation occurred at lower Hertzian indentation forces in the SiC containing larger grains suggesting that the grains in that tail of the grain-size-distribution acted as Griffith-type flaws. Lastly, selecting a spherical indenter material that has the same or similar elastic modulus as the target material provides simpler interpretation, and estimates of ring crack initiation stresses with greater usefulness and fidelity. Such a "matched" condition serves to circumvent the complexities that a ubiquitously unknown coefficient of friction introduces in the estimation of Hertzian ring crack initiation stress.

  20. composite and p-type Si

    NASA Astrophysics Data System (ADS)

    Lin, Yow-Jon; Yang, Shih-Hung

    2014-07-01

    The present work reports the fabrication and detailed electrical properties of heterojunction diodes based on p-type Si and the reduced graphene oxide-based TiO2 (TiO2:RGO) composite. The enhanced dark conductivity was observed for TiO2:RGO composite films. The improved electrical conductivity is considered to mainly come from the mobility enhancement. The TiO2/p-type Si diode shows a poor rectifying behavior and low photoresponse. This is because of the dominance of electron traps in TiO2. However, the TiO2:RGO/p-type Si diode shows a good rectifying behavior and high photoresponse, which is attributed to high-mobility electron transport combined with the reduced number of electron traps.

  1. p-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Sheng, Su; Fang, Guojia; Li, Chun; Xu, Sheng; Zhao, Xingzhong

    2006-06-01

    The recent advance of p-type transparent conductive oxide thin films is reviewed. The focus is on p-type transparent oxide semiconductors CuAlO2, CuGaO2, CuInO2, SrCu2O2, and LaCuOCh (Ch = chalcogen). These materials and related device applications are then shown as examples. Room temperature operation of current injection emission from ultraviolet light-emitting diodes based on p-SCO/n-ZnO p-n junctions has been demonstrated. This changed with the discovery of p-type transparent conducting oxides, thereby opening up the possibility for all-oxide transparent electronics.

  2. Single electron transistor with P-type sidewall spacer gates.

    PubMed

    Lee, Jung Han; Li, Dong Hua; Lee, Joung-Eob; Kang, Kwon-Chil; Kim, Kyungwan; Park, Byung-Gook

    2011-07-01

    A single-electron transistor (SET) is one of the promising solutions to overcome the scaling limit of the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET). Up to now, various kinds of SETs are being proposed and SETs with a dual gate (DG) structure using an electrical potential barrier have been demonstrated for room temperature operation. To operate DG-SETs, however, extra bias of side gates is necessary. It causes new problems that the electrode for side gates and the extra bias for electrical barrier increase the complexity in circuit design and operation power consumption, respectively. For the reason, a new mechanism using work function (WF) difference is applied to operate a SET at room temperature by three electrodes. Its structure consists of an undoped active region, a control gate, n-doped source/drain electrodes, and metal/silicide or p-type silicon side gates, and a SET with metal/silicide gates or p-type silicon gates forms tunnel barriers induced by work function between an undoped channel and grounded side gates. Via simulation, the effectiveness of the new mechanism is confirmed through various silicide materials that have different WF values. Furthermore, by considering the realistic conditions of the fabrication process, SET with p-type sidewall spacer gates was designed, and its brief fabrication process was introduced. The characteristics of its electrical barrier and the controllability of its control gate were also confirmed via simulation. Finally, a single-hole transistor with n-type sidewall spacer gates was designed. PMID:22121580

  3. Synthesis and photo-initiated polymerization of silicon-containing hybrid monomers

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Zou, Yingquan

    2011-04-01

    A series of silicon-containing hybrid monomers which contained both vinyl ether group and allyl ether group had been synthesized. The monomers' photo-polymerization kinetics was investigated with RTIR. Results showed that the hybrid monomers could photo-polymerize effectively and both free radical and cationic polymerization processes were improved. When PAG201 (a kind of cationic photo-initiator) was introduced into the monomers, the conversion of vinyl ether double bond increased sharply. The final conversion was close to 100%, and at the 6 sec, the polymerization achieved maximum. At the same time, the allyl ether double bond left. When 2-Isopropylthioxanthone (ITX, a kind of free radical photo-initiator) was introduced into hybrid system containing PAG201, the final conversion of allyl ether double bond and polymerization rate (Rp) increased obviously. It was demonstrated that the hybrid silicon-containing monomers polymerized rapidly and completely with both of the free radical and cationic photo-initiators. The property showed that the five monomers can be used in nanoimprint resist system or UV imaging materials.

  4. 3-D patterning of silicon by laser-initiated, liquid-assisted colloidal (LILAC) lithography.

    PubMed

    Ulmeanu, M; Grubb, M P; Jipa, F; Quignon, B; Ashfold, M N R

    2015-06-01

    We report a comprehensive study of laser-initiated, liquid-assisted colloidal (LILAC) lithography, and illustrate its utility in patterning silicon substrates. The method combines single shot laser irradiation (frequency doubled Ti-sapphire laser, 50fs pulse duration, 400nm wavelength) and medium-tuned optical near-field effects around arrays of silica colloidal particles to achieve 3-D surface patterning of silicon. A monolayer (or multilayers) of hexagonal close packed silica colloidal particles act as a mask and offer a route to liquid-tuned optical near field enhancement effects. The resulting patterns are shown to depend on the difference in refractive index of the colloidal particles (ncolloid) and the liquid (nliquid) in which they are immersed. Two different topographies are demonstrated experimentally: (a) arrays of bumps, centred beneath the original colloidal particles, when using liquids with nliquidncolloid - and explained with the aid of complementary Mie scattering simulations. The LILAC lithography technique has potential for rapid, large area, organized 3-D patterning of silicon (and related) substrates. PMID:25465198

  5. Characterisation of porous silicon/poly(L-lactide) composites prepared using surface initiated ring opening polymerisation

    NASA Astrophysics Data System (ADS)

    McInnes, Steven; Thissen, Helmut; Choudhury, Namita R.; Voelcker, Nicolas H.

    2006-01-01

    Inorganic/organic hybrid or composite materials have in the past shown novel and interesting properties, which are not observed for the individual components. In this context, the preparation of inorganic/polymeric composites from biodegradable and biocompatible constituents is a new concept, which may be of interest particularly for tissue engineering and drug delivery applications. We describe here the synthesis of nanostructured porous silicon (pSi) and poly(L-lactide) (PLLA) composites. The composites were produced using tin(II) 2-ethylhexanoate catalysed surface initiated ring opening polymerisation of L-lactide onto silanised porous silicon films and microparticles. The subsequent chemical, physiochemical and morphological characterisation was performed using Diffuse Reflectance Infrared Spectroscopy (DRIFTS), X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), Differential Scanning Calorimetery (DSC), Thermogravimetric Analysis (TGA) and Contact Angle measurements. DRIFT spectra of the composites showed the presence of bands corresponding to ester carbonyl stretching vibrations as well as hydrocarbon stretching vibrations. XPS analysis confirmed that a layer of PLLA had been grafted onto pSi judging by the low Si content (ca. 3%) and O/C ratio close to that found for PLLA homopolymers. Comparison of the sessile drop contact angle produced by silanised pSi and PLLA grafted onto pSi showed an increase of ca. 40°. This is comparable to the increase in contact angle seen between blank silicon and spin-coated PLLA of ca. 44°. The AFM surface roughness after surface initiated polymerisation increased significantly and AFM images showed the formation of PLLA nanobrushes.

  6. Initial growth on microcrystalline silicon on atomically flat hetero-substrate

    SciTech Connect

    Saitoh, K.; Kondo, M.; Matsuda, A.

    1997-07-01

    Initial growth of microcrystalline silicon ({micro}c-Si:H) deposited on an atomically flat GaAs (001) wafer using a RF glow-discharge decomposition of hydrogen diluted monosilane gas mixture has been studied by means of atomic force microscope (AFM), Auger electron spectroscopy (AES), and cross-sectional transmission electron microscopy (XTEM). It is shown that the initial growth of {micro}c-Si:H deposited at a substrate temperature of 50--250 C consists of four successive stages, i.e., (1) a layer-by-layer growth of a-Si:H up to d {approximately}5 {angstrom}, (2) island formation of a-Si:H, (3) the coalescence of the islands and the nucleation of microcrystalline at d{approximately}10{approximately}40 {angstrom} depending on the growth temperature, and (4) a rapid roughening with microcrystalline growth.

  7. Computational Classification of P-Type ATPases.

    PubMed

    Søndergaard, Dan; Knudsen, Michael; Pedersen, Christian Nørgaard Storm

    2016-01-01

    Analysis of sequence data is inevitable in modern molecular biology, and important information about for example proteins can be inferred efficiently using computational methods. Here, we explain how to use the information in freely available databases together with computational methods for classification and motif detection to assess whether a protein sequence corresponds to a P-type ATPase (and if so, which subtype) or not. PMID:26695056

  8. Evolution of Plant P-Type ATPases

    PubMed Central

    Pedersen, Christian N. S.; Axelsen, Kristian B.; Harper, Jeffrey F.; Palmgren, Michael G.

    2012-01-01

    Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae) were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauri and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a non-vascular moss), Selaginella moellendorffii (a primitive vascular plant), and Arabidopsis thaliana (a model flowering plant). Each organism contained sequences for all five subfamilies of P-type ATPases. Whereas Na+ and H+ pumps seem to mutually exclude each other in flowering plants and animals, they co-exist in chlorophytes, which show representatives for two kinds of Na+ pumps (P2C and P2D ATPases) as well as a primitive H+-ATPase. Both Na+ and H+ pumps also co-exist in the moss P. patens, which has a P2D Na+-ATPase. In contrast to the primitive H+-ATPases in chlorophytes and P. patens, the H+-ATPases from vascular plants all have a large C-terminal regulatory domain as well as a conserved Arg in transmembrane segment 5 that is predicted to function as part of a backflow protection mechanism. Together these features are predicted to enable H+ pumps in vascular plants to create large electrochemical gradients that can be modulated in response to diverse physiological cues. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps. PMID:22629273

  9. Synthesis of Poly-Silicon Thin Films on Glass Substrate Using Laser Initiated Metal Induced Crystallization of Amorphous Silicon for Space Power Application

    NASA Technical Reports Server (NTRS)

    Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.

    2007-01-01

    Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.

  10. Gradient Poly(styrene-co-polyglycidol) Grafts via Silicon Surface-Initiated AGET ATRP.

    PubMed

    Gosecka, Monika; Pietrasik, Joanna; Decorse, Philippe; Glebocki, Bartosz; Chehimi, Mohamed M; Slomkowski, Stanislaw; Basinska, Teresa

    2015-05-01

    Gradient copolymer grafts of styrene and α-tert-butoxy-ω-vinylbenzyl-poly(glycidol ethoxyethyl ether) (PGLet), a precursor of α-tert-butoxy-ω-vinylbenzyl-polyglycidol macromonomer (PGL), were prepared on silicon wafers via a surface-initiated activator generated by electron transfer radical polymerization (AGET ATRP). Silicon plates with previously attached 2-bromoisobutyrate served as a macroinitiator for the AGET ATRP (activator generated by electron transfer) of styrene and PGLet. The copolymers' gradient P(S-co-PPGL) of composition and thickness was obtained by a simple method where the plates were slowly removed from reaction mixture using a step motor. PGLet was added continuously (dropwise) into the reactor during withdrawal of the plates from solution in order to increase the relative concentration of PGLet in polymerization mixture. A range of strategies of making grafts was tested. The plates with copolymers grafts were analyzed by various techniques, like XPS, ellipsometry, and FTIR spectroscopy. The results indicate that the AGET ATRP process is dependent on the styrene/PGLet macromonomer ratio in the polymerization mixture. Under optimal conditions, the addition of PGLet during polymerization and subsequent deprotection of hydroxyl groups of PGLet permit to obtain plates with a novel copolymer layer with composition, thickness, and wettability gradient. Plates with chemical composition of copolymer grafts gradient served as versatile supports with controlled hydrophilic/hydrophobic area and were suitable for tailored deposition of particles. PMID:25871942

  11. All-Optical Initialization, Readout, and Coherent Preparation of Single Silicon-Vacancy Spins in Diamond

    NASA Astrophysics Data System (ADS)

    Rogers, Lachlan J.; Jahnke, Kay D.; Metsch, Mathias H.; Sipahigil, Alp; Binder, Jan M.; Teraji, Tokuyuki; Sumiya, Hitoshi; Isoya, Junichi; Lukin, Mikhail D.; Hemmer, Philip; Jelezko, Fedor

    2014-12-01

    The silicon-vacancy (SiV- ) color center in diamond has attracted attention because of its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show optical initialization and readout of electronic spin in a single SiV- center with a spin relaxation time of T1=2.4 ±0.2 ms . Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of T2⋆=35 ±3 ns . This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherence by engineering interactions with phonons. Hyperfine structure is observed in CPT measurements with the Si 29 isotope which allows access to nuclear spin. These results establish the SiV- center as a solid-state spin-photon interface.

  12. Neutron-irradiation creep of silicon carbide materials beyond the initial transient

    NASA Astrophysics Data System (ADS)

    Koyanagi, Takaaki; Katoh, Yutai; Ozawa, Kazumi; Shimoda, Kazuya; Hinoki, Tatsuya; Snead, Lance L.

    2016-09-01

    Irradiation creep beyond the transient regime was investigated for various silicon carbide (SiC) materials. The materials examined included polycrystalline or monocrystalline high-purity SiC, nanopowder sintered SiC, highly crystalline and near-stoichiometric SiC fibers (including Hi-Nicalon Type S, Tyranno SA3, isotopically-controlled Sylramic and Sylramic-iBN fibers), and a Tyranno SA3 fiber-reinforced SiC matrix composite fabricated through a nano-infiltration transient eutectic phase process. Neutron irradiation experiments for bend stress relaxation tests were conducted at irradiation temperatures ranging from 430 to 1180 °C up to 30 dpa with initial bend stresses of up to ∼1 GPa for the fibers and ∼300 MPa for the other materials. Initial bend stress in the specimens continued to decrease from 1 to 30 dpa. Analysis revealed that (1) the stress exponent of irradiation creep above 1 dpa is approximately unity, (2) the stress normalized creep rate is ∼1 × 10-7 [dpa-1 MPa-1] at 430-750 °C for the range of 1-30 dpa for most polycrystalline SiC materials, and (3) the effects on irradiation creep of initial microstructures-such as grain boundary, crystal orientation, and secondary phases-increase with increasing irradiation temperature.

  13. Neutron-irradiation creep of silicon carbide materials beyond the initial transient

    DOE PAGESBeta

    Katoh, Yutai; Ozawa, Kazumi; Shimoda, Kazuya; Hinoki, Tatsuya; Snead, Lance Lewis; Koyanagi, Takaaki

    2016-06-04

    Irradiation creep beyond the transient regime was investigated for various silicon carbide (SiC) materials. Here, the materials examined included polycrystalline or monocrystalline high-purity SiC, nanopowder sintered SiC, highly crystalline and near-stoichiometric SiC fibers (including Hi-Nicalon Type S, Tyranno SA3, isotopically-controlled Sylramic and Sylramic-iBN fibers), and a Tyranno SA3 fiber–reinforced SiC matrix composite fabricated through a nano-infiltration transient eutectic phase process. Neutron irradiation experiments for bend stress relaxation tests were conducted at irradiation temperatures ranging from 430 to 1180 °C up to 30 dpa with initial bend stresses of up to ~1 GPa for the fibers and ~300 MPa for themore » other materials. Initial bend stress in the specimens continued to decrease from 1 to 30 dpa. Analysis revealed that (1) the stress exponent of irradiation creep above 1 dpa is approximately unity, (2) the stress normalized creep rate is ~1 × 10–7 [dpa–1 MPa–1] at 430–750 °C for the range of 1–30 dpa for most polycrystalline SiC materials, and (3) the effects on irradiation creep of initial microstructures—such as grain boundary, crystal orientation, and secondary phases—increase with increasing irradiation temperature.« less

  14. Development of n+-in-p large-area silicon microstrip sensors for very high radiation environments - ATLAS12 design and initial results

    NASA Astrophysics Data System (ADS)

    Unno, Y.; Edwards, S. O.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Lynn, D.; Carter, J. R.; Hommels, L. B. A.; Robinson, D.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Betancourt, C.; Jakobs, K.; Kuehn, S.; Mori, R.; Parzefall, U.; Wiik-Fucks, L.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; Eklund, L.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Nishimura, R.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Allport, P. P.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandic, I.; Mikuz, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Arai, Y.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Ely, S.; Fadeyev, V.; Galloway, Z.; Grillo, A. A.; Martinez-McKinney, F.; Ngo, J.; Parker, C.; Sadrozinski, H. F.-W.; Schumacher, D.; Seiden, A.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Paganis, S.; Jinnouchi, O.; Motohashi, K.; Todome, K.; Yamaguchi, D.; Hara, K.; Hagihara, M.; Garcia, C.; Jimenez, J.; Lacasta, C.; Marti i Garcia, S.; Soldevila, U.

    2014-11-01

    We have been developing a novel radiation-tolerant n+-in-p silicon microstrip sensor for very high radiation environments, aiming for application in the high luminosity large hadron collider. The sensors are fabricated in 6 in., p-type, float-zone wafers, where large-area strip sensor designs are laid out together with a number of miniature sensors. Radiation tolerance has been studied with ATLAS07 sensors and with independent structures. The ATLAS07 design was developed into new ATLAS12 designs. The ATLAS12A large-area sensor is made towards an axial strip sensor and the ATLAS12M towards a stereo strip sensor. New features to the ATLAS12 sensors are two dicing lines: standard edge space of 910 μm and slim edge space of 450 μm, a gated punch-through protection structure, and connection of orphan strips in a triangular corner of stereo strips. We report the design of the ATLAS12 layouts and initial measurements of the leakage current after dicing and the resistivity of the wafers.

  15. P-type transparent conducting oxides.

    PubMed

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-09-28

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of 'chemical modulation of the valence band' to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d (10) orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu(+)-based delafossites, layered oxychalcogenides, nd (6) spinel oxides, Cr(3+)-based oxides (3d (3)) and post-transition metal oxides with lone pair state (ns (2)). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed. PMID:27459942

  16. P-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Zhang, Kelvin H. L.; Xi, Kai; Blamire, Mark G.; Egdell, Russell G.

    2016-09-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d 10 orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu+-based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr3+-based oxides (3d 3) and post-transition metal oxides with lone pair state (ns 2). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p–n junctions will also be briefly discussed.

  17. Molecular dynamics simulation on the initial stage of 1 eV carbon deposition on silicon

    NASA Astrophysics Data System (ADS)

    Philipp, Patrick; Jana, Arindam; Briquet, Ludovic G. V.; Wirtz, Tom; Henrion, Gérard

    2015-07-01

    The deposition process of 1 eV carbon on silicon has been investigated by molecular dynamics (MD) simulations up to a fluence of 5.3   ×   1014 atoms cm-2 which corresponds more or less to monolayer coverage. At such low impact energies, atoms are expected to stay on the sample surface, which is also observed up to a fluence of 2   ×   1014 atoms cm-2. For higher fluence, carbon atoms start mixing into the silicon substrate. This process seems to get initiated by the increasing strain caused by the carbon atoms deposited on the silicon surface, and which leads to some gradual distortions. The latter are important for the migration of carbon atoms into the silicon lattice. During the whole process the top part of the silicon sample gets amorphized and the coordination of the carbon atoms increases from 1 or 2 to mostly 4-fold coordinated carbon atoms. The process can be considered as the starting point of silicon carbide formation and allows to explain how nm thick films can be formed from 1 eV deposition energies. The low carbon concentration of about 7% in the modified layer is, however, too low to observe a transition towards the latter.

  18. All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond.

    PubMed

    Rogers, Lachlan J; Jahnke, Kay D; Metsch, Mathias H; Sipahigil, Alp; Binder, Jan M; Teraji, Tokuyuki; Sumiya, Hitoshi; Isoya, Junichi; Lukin, Mikhail D; Hemmer, Philip; Jelezko, Fedor

    2014-12-31

    The silicon-vacancy (SiV-) color center in diamond has attracted attention because of its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show optical initialization and readout of electronic spin in a single SiV- center with a spin relaxation time of T1=2.4±0.2  ms. Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of T2⋆=35±3  ns. This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherence by engineering interactions with phonons. Hyperfine structure is observed in CPT measurements with the 29Si isotope which allows access to nuclear spin. These results establish the SiV- center as a solid-state spin-photon interface. PMID:25615330

  19. Three-point bending analysis of doubly clamped silicon nanowire beams; Young's modulus, initial stress, and crystal orientation

    SciTech Connect

    Yaish, Y. E. Calahorra, Y.; Shtempluck, O.; Kotchetkov, V.

    2015-04-28

    A non-linear model is introduced describing the force-deflection relation of doubly clamped beams, including initial stress. Several approximations for the exact model are developed and compared, revealing the importance of considering the initial stress during 3-point bending measurements analysis. A novel approximation is found to be better than others, and both the exact model and this approximation are in perfect agreement with finite element simulations. A brief experimental example of silicon nanowires is presented in which the Young's modulus, the initial stress, and the crystallographic growth orientation are extracted by 3-point bending analysis.

  20. Towards High Performance p-Type Transparent Conducting Oxides

    SciTech Connect

    Roy, B.; Ode, A.; Readey, D.; Perkins, J.; Parilla, P.; Teplin, C.; Kaydanova, T.; Miedaner, A.; Curtis, C.; Martinson, A.; Coutts, T.; Ginley, D.; Hosono, H.

    2003-05-01

    P-type transparent conductive oxides would have potential applications in photovoltaics, transparent electronics and organic opto-electronics. In this paper we present results on the synthesis of Cu2SrO2, a p-type transparent conducting oxide, by a chemical solution route as well as the conventional pulse laser deposition (PLD) method. For Cu2SrO2 by the chemical solution route, samples were made by spraying deposition on quartz substrates using an aqueous solution of Copper formate and Strontium acetate. Phase pure materials were obtained by an optimum two stage annealing sequence. This initial work led to the development of good quality homogeneous films by a related sol-gel approach. We have also used pulsed laser depostion (PLD) to deposit Cu2SrO2 and CuInO2 thin films on quartz substrates. We have obtained improved conductivities in the CuInO2 thin films over previously published work. We present details on the nature of the relationship of process parameters to the opto-electronic properties of the films.

  1. Preparation of High Silicon Electrical Steel Sheets with Strong {100} Recrystallization Texture by the Texture Inheritance of Initial Columnar Grains

    NASA Astrophysics Data System (ADS)

    Pan, Hongjiang; Zhang, Zhihao; Xie, Jianxin

    2016-05-01

    Texture evolutions and recrystallization texture features in warm- and cold-rolled sheets of high silicon electrical steel with two different initial microstructures (columnar-grained and equiaxed-grained microstructures) were investigated. The relationships between the recrystallization textures and the initial textures (the textures before rolling) of the samples were analyzed. The results showed that after annealing at 1073 K (800 °C) for 1 hour, strong {100} recrystallization textures with volume fractions of more than 47 pct were obtained in the columnar-grained samples fabricated by warm and cold rolling along the growing direction of the columnar grains. While after rolling and annealing in the same processes, only 12.8 pct volume fractions of {100} recrystallization texture were revealed in the equiaxed-grained samples. The formation of strong {100} recrystallization texture in the annealed sheets of high silicon electrical steel with initial columnar grains was attributed to the favorable texture inheritance of the initial texture during rolling and annealing. The columnar grains of strong near {100}<001> ({100}<001> {310}<001>) orientation in the samples before rolling were transferred into deformed grains with orientations such as {100}<011> and {100}<012>. after rolling. Afterwards, these deformed grains were further transferred into {100} oriented recrystallized grains, which formed strong {100} recrystallization texture in the annealed sheets and exhibited preferable soft magnetic properties.

  2. Initial steps toward the realization of large area arrays of single photon counting pixels based on polycrystalline silicon TFTs

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao; Street, Robert A.; Lu, Jeng Ping

    2014-03-01

    The thin-film semiconductor processing methods that enabled creation of inexpensive liquid crystal displays based on amorphous silicon transistors for cell phones and televisions, as well as desktop, laptop and mobile computers, also facilitated the development of devices that have become ubiquitous in medical x-ray imaging environments. These devices, called active matrix flat-panel imagers (AMFPIs), measure the integrated signal generated by incident X rays and offer detection areas as large as ~43×43 cm2. In recent years, there has been growing interest in medical x-ray imagers that record information from X ray photons on an individual basis. However, such photon counting devices have generally been based on crystalline silicon, a material not inherently suited to the cost-effective manufacture of monolithic devices of a size comparable to that of AMFPIs. Motivated by these considerations, we have developed an initial set of small area prototype arrays using thin-film processing methods and polycrystalline silicon transistors. These prototypes were developed in the spirit of exploring the possibility of creating large area arrays offering single photon counting capabilities and, to our knowledge, are the first photon counting arrays fabricated using thin film techniques. In this paper, the architecture of the prototype pixels is presented and considerations that influenced the design of the pixel circuits, including amplifier noise, TFT performance variations, and minimum feature size, are discussed.

  3. Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth

    NASA Astrophysics Data System (ADS)

    Collart-Dutilleul, Pierre-Yves; Panayotov, Ivan; Secret, Emilie; Cunin, Frédérique; Gergely, Csilla; Cuisinier, Frédéric; Martin, Marta

    2014-10-01

    The way cells explore their surrounding extracellular matrix (ECM) during development and migration is mediated by lamellipodia at their leading edge, acting as an actual motor pulling the cell forward. Lamellipodia are the primary area within the cell of actin microfilaments (filopodia) formation. In this work, we report on the use of porous silicon (pSi) scaffolds to mimic the ECM of mesenchymal stem cells from the dental pulp (DPSC) and breast cancer (MCF-7) cells. Our atomic force microscopy (AFM), fluorescence microscopy, and scanning electron microscopy (SEM) results show that pSi promoted the appearance of lateral filopodia protruding from the DPSC cell body and not only in the lamellipodia area. The formation of elongated lateral actin filaments suggests that pores provided the necessary anchorage points for protrusion growth. Although MCF-7 cells displayed a lower presence of organized actin network on both pSi and nonporous silicon, pSi stimulated the formation of extended cell protrusions.

  4. Cell adhesion response on femtosecond laser initiated liquid assisted silicon surface.

    PubMed

    Ulmeanu, M; Sima, L E; Ursescu, D; Enculescu, M; Bazan, X; Quintana, I

    2014-03-01

    Silicon substrates were irradiated at normal incidence with a femtosecond Ti:sapphire laser (Quatronix, 90 fs pulse duration, 1 kHz repetition rate, M(2) ~ 1.2, maximum energy peak 350 mJ ) operating at a wavelength of 400 nm and focused via a microscope objective (Newport; UV Objective Model, 37x 0.11 N.A.). The laser scanning was assisted by liquids precursors media such as methanol and 1,1,2-trichlorotrifluoroethane. By altering the processing parameters, such as incident laser energy, scanning speed, and different irradiation media, various surface structures were produced on areas with 1 mm(2) dimensions. We analyzed the dependence of the surface morphology on laser pulse energy, scanning speed and irradiation media. Well ordered areas are developed without imposing any boundary conditions for the capillary waves that coarsens the ripple pattern. To assess biomaterial-driven cell adhesion response we investigated actin filaments organization and cell morphological changes following growth onto processed silicon substrates. Our study of bone cell progenitor interaction with laser nanoprocessed silicon lines has shown that cells anchor mainly to contact points along the nanostructured surface. Consequently, actin filaments are stretched towards the 15 µm wide parallel lines increasing lateral cell spreading and changing the bipolar shape of mesenchymal stem cells. PMID:24444164

  5. Photoinduced p-Type Conductivity in n-Type ZnO

    NASA Astrophysics Data System (ADS)

    Zhao, W. X.; Sun, B.; Shen, Z.; Liu, Y. H.; Chen, P.

    2015-03-01

    Ag/[BaTiO3/γ-Fe2O3]/ZnO composite films were grown on an n-type silicon (100) single-crystal substrate by magnetron sputtering, and annealed at various temperatures. Capacitance-voltage ( C- V) curves show that the capacitance gradually increases with increasing annealed temperature. In addition, ZnO exhibits n-type conductivity in the dark but p-type conductivity under incandescent lamp illumination. The photoinduced p-type conductivity in n-type ZnO should be related to a special n-type ZnO layer originating from high-temperature annealing. The current-voltage ( I- V) curves of the [BaTiO3/γ-Fe2O3]/ZnO thin films display a strong photoconductivity effect.

  6. Computational Study of Field Initiated Surface Reactions for Synthesis of Diamond and Silicon

    NASA Technical Reports Server (NTRS)

    Musgrave, Charles Bruce

    1999-01-01

    This project involves using quantum chemistry to simulate surface chemical reactions in the presence of an electric field for nanofabrication of diamond and silicon. A field delivered by a scanning tunneling microscope (STM) to a nanometer scale region of a surface affects chemical reaction potential energy surfaces (PES) to direct atomic scale surface modification to fabricate sub-nanometer structures. Our original hypothesis is that the applied voltage polarizes the charge distribution of the valence electrons and that these distorted molecular orbitals can be manipulated with the STM so as to change the relative stabilities of the electronic configurations over the reaction coordinates and thus the topology of the PES and reaction kinetics. Our objective is to investigate the effect of applied bias on surface reactions and the extent to which STM delivered fields can be used to direct surface chemical reactions on an atomic scale on diamond and silicon. To analyze the fundamentals of field induced chemistry and to investigate the application of this technique for the fabrication of nanostructures, we have employed methods capable of accurately describing molecular electronic structure. The methods we employ are density functional theory (DFT) quantum chemical (QC) methods. To determine the effect of applied bias on surface reactions we have calculated the QC PESs in various applied external fields for various reaction steps for depositing or etching diamond and silicon. We have chosen reactions which are thought to play a role in etching and the chemical vapor deposition growth of Si and diamond. The PESs of the elementary reaction steps involved are then calculated under the applied fields, which we vary in magnitude and configuration. We pay special attention to the change in the reaction barriers, and transition state locations, and search for low energy reaction channels which were inaccessible without the applied bias.

  7. Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth

    PubMed Central

    2014-01-01

    The way cells explore their surrounding extracellular matrix (ECM) during development and migration is mediated by lamellipodia at their leading edge, acting as an actual motor pulling the cell forward. Lamellipodia are the primary area within the cell of actin microfilaments (filopodia) formation. In this work, we report on the use of porous silicon (pSi) scaffolds to mimic the ECM of mesenchymal stem cells from the dental pulp (DPSC) and breast cancer (MCF-7) cells. Our atomic force microscopy (AFM), fluorescence microscopy, and scanning electron microscopy (SEM) results show that pSi promoted the appearance of lateral filopodia protruding from the DPSC cell body and not only in the lamellipodia area. The formation of elongated lateral actin filaments suggests that pores provided the necessary anchorage points for protrusion growth. Although MCF-7 cells displayed a lower presence of organized actin network on both pSi and nonporous silicon, pSi stimulated the formation of extended cell protrusions. PMID:25386101

  8. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures.

    PubMed

    Pietruszka, Rafal; Witkowski, Bartlomiej Slawomir; Luka, Grzegorz; Wachnicki, Lukasz; Gieraltowska, Sylwia; Kopalko, Krzysztof; Zielony, Eunika; Bieganski, Piotr; Placzek-Popko, Ewa; Godlewski, Marek

    2014-01-01

    Selected properties of photovoltaic (PV) structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100) are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%. PMID:24605282

  9. Fabrication and morphology of porous p-type SiC

    NASA Astrophysics Data System (ADS)

    Shishkin, Y.; Ke, Y.; Devaty, R. P.; Choyke, W. J.

    2005-02-01

    Porous silicon carbide fabricated from p-type 4H and 6H SiC wafers by electrochemical etching in hydrofluoric electrolyte is studied. An investigation of the dependence on wafer polarity reveals that pore formation is favored on the C face while complete dissolution occurs on the Si face. When the etching is done on the C face, the pore wall thickness decreases with increasing current density. The morphology of the front surface of the sample depends on the prior treatment of the workpiece surface. The porosity is estimated based on the analysis of scanning electron microscope images, charge-transfer calculations, and gravimetric analysis.

  10. Ensemble Monte Carlo calculation of the hole initiated impact ionization rate in bulk GaAs and silicon using a k-dependent, numerical transition rate formulation

    NASA Technical Reports Server (NTRS)

    Oguzman, Ismail H.; Wang, Yang; Kolnik, Jan; Brennan, Kevin F.

    1995-01-01

    The hole initiated impact ionization rate in bulk silicon and GaAs is calculated using a numerical formulation of the impact ionization transition rate incorporated into an ensemble Monte Carlo simulation. The transition rate is calculated from Fermi's golden rule using a two-body screened Coulomb interaction including a wavevector dependent dielectric function. It is found that the effective threshold for hole initiated ionization is relatively soft in both materials, that the split-off band dominates the ionization process in GaAs. and that no clear dominance by any one band is observed in silicon, though the rate out of the light hole band is greatest.

  11. Development of improved p-type Si-20 at. % Ge by addition of fullerite

    NASA Astrophysics Data System (ADS)

    Cook, B. A.; Harringa, J. L.

    1994-08-01

    In a series of experiments designed to evaluate the possibility of lowering the lattice thermal conductivity of silicon-germanium alloys through the formation of an inert, intragranular nanophase, a number of p-type Si-20 at. % Ge alloys, with a nominal doping level of 0.5 at. % boron, were prepared with varying amounts of fullerite, a mixture of 90% C60+10% C70 with a particle size of 0.7 nm. The alloys were synthesized by mechanical alloying (MA) and the fullerite was added at various stages of the preparation sequence. Compacts consolidated by hot pressing at temperatures of 1200 °C to 1265 °C were found to be fully dense and homogeneous. Each compact was characterized by Hall effect at room temperature and also by electrical resistivity, Seebeck coefficient, and thermal diffusivity measurements to 1000 °C. A reduction in thermal conductivity of up to 22% compared to standard p-type alloys was observed in samples containing 0.8 weight percent additions. In this study, a maximum integrated average figure of merit, Z, between 300 and 1000 °C of 0.65×10-3 °C-1 was obtained, corresponding to 0.4 weight percent addition of fullerite. Observation of selected samples by transmission electron microscopy revealed that the fullerite reacted with silicon to form nanophase SiC inclusions.

  12. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    NASA Astrophysics Data System (ADS)

    Plimley, Brian; Coffer, Amy; Zhang, Yigong; Vetter, Kai

    2016-08-01

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  13. Soft error rate simulation and initial design considerations of neutron intercepting silicon chip (NISC)

    NASA Astrophysics Data System (ADS)

    Celik, Cihangir

    -scale technologies. Prevention of SEEs has been studied and applied in the semiconductor industry by including radiation protection precautions in the system architecture or by using corrective algorithms in the system operation. Decreasing 10B content (20%of natural boron) in the natural boron of Borophosphosilicate glass (BPSG) layers that are conventionally used in the fabrication of semiconductor devices was one of the major radiation protection approaches for the system architecture. Neutron interaction in the BPSG layer was the origin of the SEEs because of the 10B (n,alpha) 7Li reaction products. Both of the particles produced have the capability of ionization in the silicon substrate region, whose thickness is comparable to the ranges of these particles. Using the soft error phenomenon in exactly the opposite manner of the semiconductor industry can provide a new neutron detection system based on the SERs in the semiconductor memories. By investigating the soft error mechanisms in the available semiconductor memories and enhancing the soft error occurrences in these devices, one can convert all memory using intelligent systems into portable, power efficient, directiondependent neutron detectors. The Neutron Intercepting Silicon Chip (NISC) project aims to achieve this goal by introducing 10B-enriched BPSG layers to the semiconductor memory architectures. This research addresses the development of a simulation tool, the NISC Soft Error Analysis Tool (NISCSAT), for soft error modeling and analysis in the semiconductor memories to provide basic design considerations for the NISC. NISCSAT performs particle transport and calculates the soft error probabilities, or SER, depending on energy depositions of the particles in a given memory node model of the NISC. Soft error measurements were performed with commercially available, off-the-shelf semiconductor memories and microprocessors to observe soft error variations with the neutron flux and memory supply voltage. Measurement

  14. p-type conduction in sputtered indium oxide films

    SciTech Connect

    Stankiewicz, Jolanta; Alcala, Rafael; Villuendas, Francisco

    2010-05-10

    We report p-type conductivity in intrinsic indium oxide (IO) films deposited by magnetron sputtering on fused quartz substrates under oxygen-rich ambient. Highly oriented (111) films were studied by x-ray diffraction, optical absorption, and Hall effect measurements. We fabricated p-n homojunctions on these films.

  15. High carrier concentration p-type transparent conducting oxide films

    DOEpatents

    Yan, Yanfa; Zhang, Shengbai

    2005-06-21

    A p-type transparent conducting oxide film is provided which is consisting essentially of, the transparent conducting oxide and a molecular doping source, the oxide and doping source grown under conditions sufficient to deliver the doping source intact onto the oxide.

  16. Synthesis of p-type GaN nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-08-01

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo

  17. Investigating photoluminescence quantum yield of silicon nanocrystals formed in SiOx with different initial Si excess

    NASA Astrophysics Data System (ADS)

    Chung, Nguyen Xuan; Limpens, Rens; Gregorkiewicz, Tom

    2015-09-01

    Optical properties of silicon nanocrystals dispersed in SiO2 matrix were investigated in terms of photoluminescence quantum yield at room temperature. Two multilayer samples, prepared from substoichiometric silicon oxide layers by annealing at 1150°C were used to investigate the influence of Si concentration. Significant reduction of photoluminescence quantum yield and a very specific change of its excitation energy dependence upon variation of silicon excess are concluded from the experimental data. Possible mechanisms leading to these changes are discussed.

  18. Triple-junction amorphous silicon alloy solar cell with 14.6{percent} initial and 13.0{percent} stable conversion efficiencies

    SciTech Connect

    Yang, J.; Banerjee, A.; Guha, S.

    1997-06-01

    We have achieved 14.6{percent} initial and 13.0{percent} stable conversion efficiencies using an amorphous silicon-based alloy in a spectrum-splitting, triple-junction structure. These efficiencies have been confirmed independently by the National Renewable Energy Laboratory. Key factors leading to this major advance include improvements made in the low band-gap amorphous silicon{endash}germanium alloy cell, the pn tunnel junction between the component cells, and the top conducting oxide. {copyright} {ital 1997 American Institute of Physics.}

  19. P-type Oxides and the Growth of Heterostructure Oxide Devices

    NASA Astrophysics Data System (ADS)

    Hosono, Hideo

    2002-03-01

    Transparent conductive oxides (TCOs) are widely used as transparent metallic electrodes for various displays and solar cells. However, even though TCO is an n-type semiconductor, there is almost no application based on the active function as a compound semiconductor. The primary reason is because most active functions in semiconductors come from the characteristic properties of p-n junction but TCOs do not have a p-type. We anticipate that new frontier of transparent oxide semiconductors (TOSs) utilizing both optical transparency and electron activity in semiconductors will be opened if a p-type TCO is realized. In 1997, we reported on CuAlO2 (thin films) as the first p-type TCO along with a chemical design concept to explore the candidate materials. After that, a series of p-type TCOs based on a Cu+ -based system have been reported following the design concept, i.e., CuGaO2, CuInO2, and SrCu2O2. In 1999, a transparent p-n heterojunction diode exhibiting a rectifying I-V characteristic was fabricated using a combination of p-SrCu2O2 (SCO) and n-ZnO. Ultraviolet-emitting diode (UV-LED) is a typical active device, which can use the features of TOSs. Thus, since the initiation of our project (October, 1999), we concentrated our effort on the fabrication of UV-LED based on transparent p-n junction composed of TOSs. The fabrication was realized(APL,77,475,2000) by the formation of p-n heterojunction composed of heteroepitaxially grown p-SCO and n-ZnO. In this talk I will review our approach to P-type TCOs and UV-LED based on PN heterojuction utilizing TCOs along with recent advances.

  20. Effect of Particle Morphology on Critical Conditions for Shock-Initiated Reactions in Titanium-Silicon Powder Mixtures

    NASA Astrophysics Data System (ADS)

    Frost, David; Jette, Francois; Goroshin, Samuel; Higgins, Andrew; Lee, Julian

    2009-06-01

    The effect of titanium particle morphology on the shock sensitivity of titanium-silicon powder mixtures has been investigated experimentally. The powder mixtures were tested in a planar recovery capsule, with the shock loading produced by a high explosive Tetryl booster charge placed on top of the capsule and a PMMA attenuator. Reactions were not observed for stoichiometric mixtures of large (75 -- 106 μm), spherical Ti particles with fine (< 44 μm) Si particles for incident peak shock pressures of up to 23 GPa, estimated with LS-DYNA. In contrast, mixtures with fine (< 45 μm) spherical Ti particles or irregularly-shaped fine (< 20 μm) Ti particles had critical shock pressures for reaction initiation of 7±3 GPa and 5±2 GPa, respectively. Microscopy and spectroscopy were used to identify the degree of intermixing between the particles for shock loading just below the reaction threshold. For the largest spherical Ti particles, little particle intermixing was evident. However, differential thermal analysis carried out demonstrated that even for the large Ti particles, shock loading of the samples generated microstructural effects which lowered the temperature for the onset of exothermic reaction of the shocked sample by about 80^oC.

  1. Simultaneous Formation of Ni/Al Ohmic Contacts to Both n- and p-Type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Ito, Kazuhiro; Onishi, Toshitake; Takeda, Hidehisa; Kohama, Kazuyuki; Tsukimoto, Susumu; Konno, Mitsuru; Suzuki, Yuya; Murakami, Masanori

    2008-11-01

    The fabrication procedure for silicon carbide power metal oxide semiconductor field-effect transistors can be improved through simultaneous formation (i.e., using the same contact materials and a one-step annealing process) of ohmic contacts on both the n-source and p-well regions. We have succeeded in the simultaneous formation of Ni/Al ohmic contacts to n- and p-type SiC after annealing at 1000°C for 5 min in an ultrahigh vacuum. Ohmic contacts to n-type SiC were found when the Al-layer thickness was less than about 6 nm, while ohmic contacts to p-type SiC were observed for an Al-layer thickness greater than about 5 nm. Only the contacts with an Al-layer thickness in the range of 5 nm to 6 nm exhibited ohmic behavior to both n- and p-type SiC, with a specific contact resistance of 1.8 × 10-4 Ω cm2 and 1.2 × 10-2 Ω cm2 for n- and p-type SiC, respectively. An about 100-nm-thick contact layer was uniformly formed on the SiC substrate, and polycrystalline δ-Ni2Si(Al) grains were formed at the contact/SiC interface. In the samples that exhibited ohmic behavior to both n- and p-type SiC, the distribution of the Al/Ni ratios in the δ-Ni2Si(Al) grains was larger than that observed for any of the samples that showed ohmic behavior to either n- or p-type SiC. Furthermore, the grain size of the δ-Ni2Si(Al) grains in the samples showing ohmic behavior to both n- and p-type SiC was smaller than the grains in any of the samples that showed ohmic behavior to either n- or p-type SiC. Thus, the large distribution in the Al/Ni ratios and a fine microstructure were found to be characteristic of the ohmic contacts to both n- and p-type SiC. Grains with a low Al concentration correspond to ohmic contacts to n-type SiC, while grains with a high Al concentration correspond to ohmic contacts to p-type SiC.

  2. Thermoelectric properties of gallium-doped p-type germanium

    NASA Astrophysics Data System (ADS)

    Ohishi, Yuji; Takarada, Sho; Aikebaier, Yusufu; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke; Miyazaki, Yoshinobu; Uchida, Noriyuki; Tada, Tetsuya

    2016-05-01

    In this study, the temperature-dependent thermoelectric properties of p-type single-crystal Ge, which is a useful material for thermoelectric applications owing to its significantly high carrier mobility, were investigated. The thermoelectric properties of Ga-doped (5.7 × 1016, 3.4 × 1018, and 1.0 × 1019 cm-3) p-type single-crystal Ge were measured from room temperature to 770 K. The sample with a carrier concentration of 1.0 × 1019 cm-3 showed the highest thermoelectric figure of merit, ZT, over the entire measured temperature range. The maximum ZT value was 0.06 at 650 K. A theoretical model based on the Boltzmann transport equation with relaxation-time approximation was developed and quantitatively reproduced the experimentally observed data. The optimal impurity concentration predicted by this model was 3 × 1019 cm-3 at 300 K and increased with temperature.

  3. p type doping of zinc oxide by arsenic ion implantation

    SciTech Connect

    Braunstein, G.; Muraviev, A.; Saxena, H.; Dhere, N.; Richter, V.; Kalish, R.

    2005-11-07

    p type doping of polycrystalline ZnO thin films, by implantation of arsenic ions, is demonstrated. The approach consisted of carrying out the implantations at liquid-nitrogen temperature ({approx}-196 deg. C), followed by a rapid in situ heating of the sample, at 560 deg. C for 10 min, and ex situ annealing at 900 deg. C for 45 min in flowing oxygen. p type conductivity with a hole concentration of 2.5x10{sup 13} cm{sup -2} was obtained using this approach, following implantation of 150 keV 5x10{sup 14} As/cm{sup 2}. A conventional room-temperature implantation of 1x10{sup 15} As/cm{sup 2}, followed by the same ex situ annealing, resulted in n type conductivity with a carrier concentration of 1.7x10{sup 12} cm{sup -2}.

  4. P-type conductivity in annealed strontium titanate

    DOE PAGESBeta

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-12-17

    In this study, Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO3, or STO) samples that were annealed at 1200°C. Room temperature mobilities above 100 cm2/Vs were measured, an order of magnitude higher than those for electrons (5-10 cm2/Vs). Average hole densities were in the 109-1010 cm-3 range, consistent with a deep acceptor.

  5. Anomalous Oxide Charge Variation Identified by Alternating Current Surface Photovoltage Method in Cr-Aqueous-Solution-Rinsed p-Type Si(001) Wafers Exposed to Air

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirofumi; Sanada, Yuji

    2011-11-01

    Chromium (Cr)-aqueous-solution-rinsed and/or hydrofluoric acid (HF)-solution-dipped p-type silicon (Si) (001) wafer surfaces are investigated by the frequency-dependent alternating current (AC) surface photovoltage (SPV) method. At the Cr(OH)3/p-type Si interface, in principle, a Schottky barrier could not possibly be generated. The Cr ion (Cr3+) is considered to forcibly deprive a p-type Si substrate of electrons during metallization (Cr3++3e-→Cr). Thus, at an early stage of air exposure, a positive fixed oxide charge may be compensated for by electrons, indicating the disappearance of AC SPV. With air exposure time, AC SPV emerges again and increases gradually in a Cr-deposited p-type Si(001) surface. This is because the native oxide between the Cr atom layer and the p-type Si substrate grows with time. As a result, a positive fixed oxide charge exceeds the overall charge state of the Cr-deposited p-type Si surface. Thus, AC SPV appears again and gradually increases with the fixed oxide charge in p-type Si. The saturated value is in a good agreement with that of the HF aqueous-solution-dipped p-type Si surface.

  6. X, E, M, and P-Type Asteroid Spectral Observations

    NASA Astrophysics Data System (ADS)

    Clark, B. E.; Rivkin, A. S.; Bus, S. J.; Sanders, J.

    2003-05-01

    What are the X-types made of? How would knowledge of their composition change our picture of the geological structure of the asteroid regions? X-types are important in the main belt, yet we do not understand their composition or meteorite linkage. This is an outstanding problem in asteroid-meteorite studies, because X-types comprise approximately 20% of the inner main belt (Tholen and Barucci 1989; Bus 1999). We have conducted a program of infrared (0.8-2.5microns) observations aimed at determining mineralogy without albedo information. Because X-types are spectrally like E, M, and P-type asteroids, we observed 18 X-types, 5 E-types, 8 M-types, and 4 P-types. This is the first focused study of XEMP asteroids. In this paper, we present a compositional analysis of the new spectral data. What we call XEMPs are asteroids identified as ambiguous on the basis of their visible spectral properties only (Zellner et al. 1985; Tholen 1984; Bus and Binzel 2002). By convention (Bowell et al. 1978; Tholen and Barucci 1989), X-types with measured geometric albedos are classified into E, M, or P-types, where E-types (designated ``E" based on their possible link with enstatite meteorites) are high-albedo objects, P-types are low-albedo objects (there are no meteorite analogs for these objects), and M-types (designated ``M" based on their possible link with metallic meteorites) are intermediate. Bus and Binzel (2002) found subtle features in X-class spectra in a high resolution survey. We have regrouped XEMP spectra for a reanalysis of the extended wavelength coverage now available (0.3-2.5 microns). When continuum slope is removed, we find distinct 0.9 micron bands at the level of 2-5% in many of our XEMP objects. We also find consistent wavelength maxima near 1.5 microns, and hints of 2.0 micron bands in some objects. Our preliminary findings suggest that new mineralogy-based groupings may be called for, breaking down the old albedo-based E, M, and P-type designations. We

  7. Piezoresistivity of polycrystalline p-type diamond films of various doping levels at different temperatures

    SciTech Connect

    Wang, W.L.; Jiang, X.; Taube, K.; Klages, C.

    1997-07-01

    The piezoresistivity of polycrystalline p-type diamond films has been studied. The films were grown by microwave plasma assisted chemical vapor deposition and {ital in situ} doped with different concentrations of boron. A four-point electrical measurement was performed to evaluate the film resistivity change upon straining in a four-point bending beam setup. Films were glued directly onto a stainless steel beam and the silicon substrates were selectively removed. A gauge factor (relative change of the resistivity divided by the elastic strain) of about 690 under 100 microstrains was obtained at room temperature for a film doped with 32 ppm boron. With increasing temperature and dopant concentration the gauge factor increases. The experimental results obtained are discussed. {copyright} {ital 1997 American Institute of Physics.}

  8. Quasi-perpetual discharge behaviour in p-type Ge-air batteries.

    PubMed

    Ocon, Joey D; Kim, Jin Won; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung

    2014-11-01

    Metal-air batteries continue to become attractive energy storage and conversion systems due to their high energy and power densities, safer chemistries, and economic viability. Semiconductor-air batteries - a term we first define here as metal-air batteries that use semiconductor anodes such as silicon (Si) and germanium (Ge) - have been introduced in recent years as new high-energy battery chemistries. In this paper, we describe the excellent doping-dependent discharge kinetics of p-type Ge anodes in a semiconductor-air cell employing a gelled KOH electrolyte. Owing to its Fermi level, n-type Ge is expected to have lower redox potential and better electronic conductivity, which could potentially lead to a higher operating voltage and better discharge kinetics. Nonetheless, discharge measurements demonstrated that this prediction is only valid at the low current regime and breaks down at the high current density region. The p-type Ge behaves extremely better at elevated currents, evident from the higher voltage, more power available, and larger practical energy density from a very long discharge time, possibly arising from the high overpotential for surface passivation. A primary semiconductor-air battery, powered by a flat p-type Ge as a multi-electron anode, exhibited an unprecedented full discharge capacity of 1302.5 mA h gGe(-1) (88% anode utilization efficiency), the highest among semiconductor-air cells, notably better than new metal-air cells with three-dimensional and nanostructured anodes, and at least two folds higher than commercial Zn-air and Al-air cells. We therefore suggest that this study be extended to doped-Si anodes, in order to pave the way for a deeper understanding on the discharge phenomena in alkaline metal-air conversion cells with semiconductor anodes for specific niche applications in the future. PMID:24975009

  9. Reduced thermal conductivity due to scattering centers in p-type SiGe alloys

    NASA Technical Reports Server (NTRS)

    Beaty, John S.; Rolfe, Jonathon L.; Vandersande, Jan; Fleurial, Jean-Pierre

    1992-01-01

    Spark erosion was used to produce ultra-fine particles of SiGe thermoelectric material and boron nitride, an inert phonon-scattering material. A homogeneous powder was made by mixing the two powders. The mixture was hot pressed to produce a thermoelectric material with uniformity dispersed, ultra-fine, inert, phonon-scattering centers. It is shown that, in samples with inert boron nitride or silicon nitride, thermal conductivity of a SiGe alloy can be reduced by about 25 percent while maintaining the electrical properties of the samples. Annealing of all the samples at 1525 K caused grain growth to over a micron, eliminating the detrimental effect attributable to small grains. Only in the sample with boron nitride the thermal conductivity did remain well below that for standard p-type SiGe (about 25 percent), while the electrical resistivity and Seebeck coefficient were very close to the values for standard p-type 80/20 SiGe.

  10. Quantum mechanical simulation of hole transport in p-type Si Schottky barrier MOSFETs.

    PubMed

    Choi, Wonchul; Shin, Mincheol

    2011-07-01

    A full quantum-mechanical simulation of p-type nanowire Schottky barrier metal oxide silicon field effect transistors (SB-MOSFETs) is performed by solving the three-dimensional Schrödinger and Poisson's equations self-consistently. The non-equilibrium Green's function (NEGF) approach is adopted to treat hole transport, especially quantum tunneling through SB. In this work, p-type nanowire SB-MOSFETs are simulated based on the 3-band k.p method, using the k.p parameters that were tuned by benchmarking against the tight-binding method with sp3s* orbitals. The device shows a strong dependence on the transport direction, due to the orientation-sensitive tunneling effective mass and the confinement energy. With regard to the subthreshold slope, the [110] and [111] oriented devices with long channel show better performance, but they are more vulnerable to the short channel effects than the [100] oriented device. The threshold voltage also shows a greater variation in the [110] and [111] oriented devices with the decrease of the channel length. PMID:22121621

  11. Initial and long-term frequency degradation of ring oscillators caused by plasma-induced damage in 65 nm bulk and fully depleted silicon-on-insulator processes

    NASA Astrophysics Data System (ADS)

    Kishida, Ryo; Oshima, Azusa; Yabuuchi, Michitarou; Kobayashi, Kazutoshi

    2015-04-01

    The degradation of reliability caused by plasma-induced damage (PID) has become a significant concern with the miniaturization of device size. In particular, it is difficult to relieve PID in silicon-on-insulator (SOI) because it contains buried oxide (BOX) layers. In this work, we compare PID between a bulk and a silicon on thin BOX (SOTB), which has BOX layers of less than 10 nm. We measure frequencies of ring oscillators with an antenna structure on a single stage. In the bulk, PID is relieved by first connecting an antenna to a drain because electric charge flows to a substrate. The difference in initial frequency is 0.79% between structures, which cause and relieve PID. SOTB also relieves the same amount of PID. Initial frequencies are affected by PID, but there is no effect of PID on the long-term degradation mainly caused by bias temperature instability (BTI).

  12. Bi-Se doped with Cu, p-type semiconductor

    SciTech Connect

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  13. P-type conductivity in annealed strontium titanate

    SciTech Connect

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-12-17

    In this study, Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO3, or STO) samples that were annealed at 1200°C. Room temperature mobilities above 100 cm2/Vs were measured, an order of magnitude higher than those for electrons (5-10 cm2/Vs). Average hole densities were in the 109-1010 cm-3 range, consistent with a deep acceptor.

  14. P-type conductivity in annealed strontium titanate

    SciTech Connect

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-12-15

    Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO{sub 3}, or STO) samples that were annealed at 1200°C. Room-temperature mobilities above 100 cm{sup 2}/V s were measured, an order of magnitude higher than those for electrons (5-10 cm{sup 2}/V s). Average hole densities were in the 10{sup 9}-10{sup 10} cm{sup −3} range, consistent with a deep acceptor.

  15. Surface photovoltage studies of n-type and p-type InP

    NASA Astrophysics Data System (ADS)

    Thurgate, S. M.; Blight, K.; Laceusta, T. D.

    1994-05-01

    Surface photovoltage spectroscopy (SPV) was used to study the initial stages of oxidation of single crystal InP(110) in an attempt to understand the nature and origin of the surface states that develop. Distinct surface states were seen to develop on n-type as the surface was exposed to oxygen. A surface state, associated with cleavage damage, was also observed on p-type. A detailed fit to the experimental data was made by using a model of the dependence of surface charge on photon energy. This was used to unfold the position and intensity of the states. States trailing into the band gap from the bulk bands were seen on both n- and p-types. The analysis also indicated that pairs of isolated states, a donor and an acceptor state, were produced. On p-type, these were present on the clean, cleaved surface while they developed with oxygen exposure on n-type. These states are consistent with the point defect states proposed by the unified defect model. The time response of the SPV signal was also recorded for these surfaces. They were analysed by careful fitting to a model describing the charging and discharging characteristics. This revealed that the midgap state on n-type had a fast and a slow component.

  16. STRENGTH OF N- AND P-TYPE SKUTTERUDITES

    SciTech Connect

    Wereszczak, Andrew A; Ragan, Meredith E; Strong, Kevin T; Ritt, Patrick J; Wang, Hsin; Salvador, James R.; Yang, Jihui

    2010-01-01

    The failure stress distributions of developmental Yb0.27Co4Sb12.08 (n-type) and Ce0.86Co1.02Fe2.98Sb11.97 (p type) skutterudites were measured as a function of temperature. These thermoelectric materials are attractive candidates for use in devices under consideration for power generation sourced from intermediate to high-temperature waste heat recovery. A self-aligning, high-temperature-capable, three-point-bend fixture was developed and used to test specimens whose cross-sectional dimensions were equivalent to those typically used in thermoelectric device legs. The strength of the n-type skutterudite was approximately 115 MPa and independent of temperature to 500 C. The strength of the p-type skutterudite was equivalent to that of the n type material and independent of temperature to at least 200 C, but its strength dropped by ~20% at 400 C. Compared to other skutterudites, the herein tested compositions have equivalent or even superior strength.

  17. Light-induced anodisation of silicon for solar cell passivation

    NASA Astrophysics Data System (ADS)

    Cui, J.; Wang, X.; Opila, R.; Lennon, A.

    2013-11-01

    This paper reports a new method for forming anodic oxides on silicon surfaces using the light-induced current of pn-junction solar cells to make p-type silicon surfaces anodic. The light-induced anodisation process enables anodic oxide layers as thick as 79 nm to be formed at room temperature in a faster, more uniform, and controllable manner compared to previously reported clip-based anodisation methods. Although the effective minority carrier lifetime decreased immediately after light-induced anodisation from initial values measured with an 17 nm thermally grown oxide on both wafer surfaces, the 1-sun implied open circuit voltage of wafers on which the thermally grown oxide on the p-type surface was replaced by an anodic oxide of the same thickness could be returned to its initial value of ˜635 mV (for 3-5 Ω-cm Cz silicon wafers) after a 400 °C anneal in oxygen and then forming gas. The passivation of the formed anodic oxide layers was stable for a period of 50 days providing the oxide was protected by a 75 nm thick silicon nitride capping layer.

  18. p-Type NiO Hybrid Visible Photodetector.

    PubMed

    Mallows, John; Planells, Miquel; Thakare, Vishal; Bhosale, Reshma; Ogale, Satishchandra; Robertson, Neil

    2015-12-23

    A novel hybrid visible-light photodetector was created using a planar p-type inorganic NiO layer in a junction with an organic electron acceptor layer. The effect of different oxygen pressures on formation of the NiO layer by pulsed laser deposition shows that higher pressure increases the charge carrier density of the film and lowers the dark current in the device. The addition of a monolayer of small molecules containing conjugated π systems and carboxyl groups at the device interface was also investigated and with correct alignment of the energy levels improves the device performance with respect to the quantum efficiency, responsivity, and photogeneration. The thickness of the organic layer was also optimized for the device, giving a responsivity of 1.54 × 10(-2) A W(-1) in 460 nm light. PMID:26654105

  19. Contributions to the initial development of a microelectromechanical loop heat pipe, which is based on coherent porous silicon

    NASA Astrophysics Data System (ADS)

    Cytrynowicz, Debra G.

    The research project itself was the initiation of the development of a planar miniature loop heat pipe based on a capillary wick structure made of coherent porous silicon. Work on this project fell into four main categories, which were component fabrication, test system construction, characterization testing and test data collection, performance analysis and thermal modeling. Component fabrication involved the production of various components for the evaporator. When applicable, these components were to be produced by microelectronic and MEMS or microelectromechanical fabrication techniques. Required work involved analyses and, where necessary, modifications to the wafer processing sequence, the photo-electrochemical etching process, system and controlling computer program to make it more reliable, flexible and efficient. The development of more than one wick production process was also extremely necessary in the event of equipment failure. Work on developing this alternative also involved investigations into various details of the photo-electrochemical etching process itself. Test system construction involved the actual assembly of open and closed loop test systems. Characterization involved developing and administering a series of tests to evaluate the performance of the wicks and test systems. Although there were some indications that the devices were operating according to loop heat pipe theory, they were transient and unstable. Performance analysis involved the construction of a transparent evaporator, which enabled the visual observation of the phenomena, which occurred in the evaporator during operation. It also involved investigating the effect of the quartz wool secondary wick on the operation of the device. Observations made during the visualization study indicated that the capillary and boiling limits were being reached at extremely low values of input power. The work was performed in a collaborative effort between the Biomedical Nanotechnology Research

  20. Fabrication and Characterization of a Porous Silicon Drug Delivery System with an Initiated Chemical Vapor Deposition Temperature-Responsive Coating.

    PubMed

    McInnes, Steven J P; Szili, Endre J; Al-Bataineh, Sameer A; Vasani, Roshan B; Xu, Jingjing; Alf, Mahriah E; Gleason, Karen K; Short, Robert D; Voelcker, Nicolas H

    2016-01-12

    This paper reports on the fabrication of a pSi-based drug delivery system, functionalized with an initiated chemical vapor deposition (iCVD) polymer film, for the sustainable and temperature-dependent delivery of drugs. The devices were prepared by loading biodegradable porous silicon (pSi) with a fluorescent anticancer drug camptothecin (CPT) and coating the surface with temperature-responsive poly(N-isopropylacrylamide-co-diethylene glycol divinyl ether) (pNIPAM-co-DEGDVE) or non-stimulus-responsive poly(aminostyrene) (pAS) via iCVD. CPT released from the uncoated oxidized pSi control with a burst release fashion (∼21 nmol/(cm(2) h)), and this was almost identical at temperatures both above (37 °C) and below (25 °C) the lower critical solution temperature (LCST) of the switchable polymer used, pNIPAM-co-DEGDVE (28.5 °C). In comparison, the burst release rate from the pSi-pNIPAM-co-DEGDVE sample was substantially slower at 6.12 and 9.19 nmol/(cm(2) h) at 25 and 37 °C, respectively. The final amount of CPT released over 16 h was 10% higher at 37 °C compared to 25 °C for pSi coated with pNIPAM-co-DEGDVE (46.29% vs 35.67%), indicating that this material can be used to deliver drugs on-demand at elevated temperatures. pSi coated with pAS also displayed sustainable drug delivery profiles, but these were independent of the release temperature. These data show that sustainable and temperature-responsive delivery systems can be produced by functionalization of pSi with iCVD polymer films. Benefits of the iCVD approach include the application of the iCVD coating after drug loading without causing degradation of the drug commonly caused by exposure to factors such as solvents or high temperatures. Importantly, the iCVD process is applicable to a wide array of surfaces as the process is independent of the surface chemistry and pore size of the nanoporous matrix being coated. PMID:26654169

  1. Thermal and electromechanical characterization of top-down fabricated p-type silicon nanowires

    NASA Astrophysics Data System (ADS)

    Bosseboeuf, Alain; Allain, Pierre Etienne; Parrain, Fabien; Le Roux, Xavier; Isac, Nathalie; Jacob, Serge; Poizat, Alexis; Coste, Philippe; Maaroufi, Seiffedine; Walther, Arnaud

    2015-01-01

    In this paper we report thermal conductivity and piezoresistivity measurements of top-down fabricated highly boron doped (NA = 1.5 × 1019 cm-3) suspended Si nanowires. These measurements were performed in a cryogenic probe station respectively by using the 3 omega method and by in situ application of a longitudinal tensile stress to the nanowire under test with a direct four point bending of the Si nanowire die. Nanowires investigated have a thickness of 160 nm, a width in the 80-260 nm range and a length in the 2.5-5.2 μm range. We found that for these geometries, thermal conduction still obeys Fourier’s law and that, as expected, the thermal conductivity is largely reduced when the nanowires width is shrunk, but, to a lower extent than published values for nanowires grown by vapor-liquid-solid (VLS) processes. While a large giant piezoresistance effect was evidenced by various authors when a static stress is applied, we only observed a limited nanowire size dependence of the piezoresistivity in our experiments where a dynamical mechanical loading is applied. This confirms that the giant piezoresistance effect in unbiased Si nanowires is not an intrinsic bulk effect but is dominated by surface related effects in agreement with the piezopinch effect model. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam

  2. Process for forming retrograde profiles in silicon

    DOEpatents

    Weiner, Kurt H.; Sigmon, Thomas W.

    1996-01-01

    A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  3. Process for forming retrograde profiles in silicon

    DOEpatents

    Weiner, K.H.; Sigmon, T.W.

    1996-10-15

    A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  4. Microstructure and initial growth characteristics of nanocrystalline silicon films fabricated by very high frequency plasma enhanced chemical vapor deposition with highly H{sub 2} dilution of SiH{sub 4}

    SciTech Connect

    Wang Xiang; Huang Rui; Song Jie; Guo Yanqing; Ding Honglin

    2010-06-15

    Nanocrystalline silicon (nc-Si:H) film deposited on silicon oxide in a very high frequency plasma enhanced chemical vapor deposition with highly H{sub 2} dilution of SiH{sub 4} has been investigated by Raman spectroscopy and high resolution transmission electron microscopy. It is found that at early growth stage the initial amorphous incubation layer in nc-Si:H growth on silicon oxide can be almost eliminated and crystallites with diameter of about 6 to 10 nm are directly formed on the silicon oxide. Nearly parallel columnar structures with complex microstructure are found from cross-sectional transmission electron microscopy images of the film. It is considered that highly H{sub 2} dilution and higher excitation frequency are the main reason for eliminating the initial amorphous incubation layer in nc-Si:H growth on silicon oxide.

  5. Microwave Induced Direct Bonding of Single Crystal Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Budraa, N. K.; Jackson, H. W.; Barmatz, M.

    1999-01-01

    We have heated polished doped single-crystal silicon wafers in a single mode microwave cavity to temperatures where surface to surface bonding occurred. The absorption of microwaves and heating of the wafers is attributed to the inclusion of n-type or p-type impurities into these substrates. A cylindrical cavity TM (sub 010) standing wave mode was used to irradiate samples of various geometry's at positions of high magnetic field. This process was conducted in vacuum to exclude plasma effects. This initial study suggests that the inclusion of impurities in single crystal silicon significantly improved its microwave absorption (loss factor) to a point where heating silicon wafers directly can be accomplished in minimal time. Bonding of these substrates, however, occurs only at points of intimate surface to surface contact. The inclusion of a thin metallic layer on the surfaces enhances the bonding process.

  6. Electronic processes in uniaxially stressed p-type germanium

    SciTech Connect

    Dubon, O.D. Jr.

    1996-02-01

    Effect of uniaxial stress on acceptor-related electronic processes in Ge single crystals doped with Ga, Be, and Cu were studied by Hall and photo-Hall effect measurements in conjunction with infrared spectroscopy. Stress dependence of hole lifetime in p-type Ge single crystals is used as a test for competing models of non-radiative capture of holes by acceptors. Photo-Hall effect shows that hole lifetime in Ga- and Be-doped Ge increases by over one order of magnitude with uniaxial stress at liq. He temps. Photo-Hall of Ge:Be shows a stress-induced change in the temperature dependence of hole lifetime. This is consistent with observed increase of responsivity of Ge:Ga detectors with uniaxial stress. Electronic properties of Ge:Cu are shown to change dramatically with uniaxial stress; the results provide a first explanation for the performance of uniaxially stressed, Cu-diffused Ge:Ga detectors which display a high conductivity in absence of photon signal and therefore have poor sensitivity.

  7. Greyscale proton beam writing in p-type Gallium Arsenide

    NASA Astrophysics Data System (ADS)

    Diering, D.; Spemann, D.; Lenzner, J.; Müller, St.; Böntgen, T.; von Wenckstern, H.

    2013-07-01

    Proton beam writing (PBW) is a well known method for micromachining, e.g. of semiconductors. Up to now, only few indication is given on how the resulting structure height in micromachined semiconductors can be controlled by means of fluence variation. This approach for 3D-microstructuring, called Greyscale PBW, was already successfully demonstrated for negative photoresists. In this study (1 0 0) p-type Gallium Arsenide (GaAs) was irradiated with 2.28 MeV protons and fluences in the range from 1.2×1014 H+ cm-2 to 1.0×1018 H+ cm-2 at the ion beam laboratory LIPSION and subsequently electrochemically etched with 10%-KOH. A linear dependency of structure height on ion fluence was established. In this way, pyramid-like structures as well as concave-shaped structures could be created. GaAs showed a lateral anisotropic etch behaviour during the development step with preferential etching along the [0 1 1] directions. On some structures the surface roughness and the change of conductivity were investigated by atomic force and scanning capacitance microscopy, respectively. The rms roughness of the surface of the structures was 5.4 nm and 10.6 nm for a fluence of 7.8×1015 H+ cm-2 and 1.2×1017 H+ cm-2, respectively. We observed an increasing etching rate for fluences larger than 1016 H+ cm-2.

  8. (Ga,Fe)Sb: A p-type ferromagnetic semiconductor

    SciTech Connect

    Tu, Nguyen Thanh; Anh, Le Duc; Tanaka, Masaaki; Hai, Pham Nam

    2014-09-29

    A p-type ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 3.9%–13.7%) has been grown by low-temperature molecular beam epitaxy (MBE) on GaAs(001) substrates. Reflection high energy electron diffraction patterns during the MBE growth and X-ray diffraction spectra indicate that (Ga,Fe)Sb layers have the zinc-blende crystal structure without any other crystallographic phase of precipitates. Magnetic circular dichroism (MCD) spectroscopy characterizations indicate that (Ga,Fe)Sb has the zinc-blende band structure with spin-splitting induced by s,p-d exchange interactions. The magnetic field dependence of the MCD intensity and anomalous Hall resistance of (Ga,Fe)Sb show clear hysteresis, demonstrating the presence of ferromagnetic order. The Curie temperature (T{sub C}) increases with increasing x and reaches 140 K at x = 13.7%. The crystal structure analyses, magneto-transport, and magneto-optical properties indicate that (Ga,Fe)Sb is an intrinsic ferromagnetic semiconductor.

  9. Challenges in p-type Doping of CdTe

    NASA Astrophysics Data System (ADS)

    McCoy, Jedidiah; Swain, Santosh; Lynn, Kelvin

    We have made progress in defect identification of arsenic and phosphorous doped CdTe to understand the self-compensation mechanism which will help improve minority bulk carrier lifetime and net acceptor density. Combining previous measurements of un-doped CdTe, we performed a systematic comparison of defects between different types of crystals and confirmed the defects impacting the doping efficiency. CdTe bulk crystals have been grown via vertical Bridgman based melt growth technique with varying arsenic and phosphorous dopant schemes to attain p-type material. Furnace temperature profiles were varied to influence dopant solubility. Large carrier densities have been reproducibly obtained from these boules indicating successful incorporation of dopants into the lattice. However, these values are orders of magnitude lower than theoretical solubility values. Infrared Microscopy has revealed a plethora of geometrically abnormal second phase defects and X-ray Fluorescence has been used to identify the elemental composition of these defects. We believe that dopants become incorporated into these second phase defects as Cd compounds which act to inhibit dopant solubility in the lattice.

  10. Membrane Targeting of P-type ATPases in Plant Cells

    SciTech Connect

    Jeffrey F. Harper, Ph.D.

    2004-06-30

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems.

  11. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

    PubMed Central

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-01-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors. PMID:27349378

  12. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

    NASA Astrophysics Data System (ADS)

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-06-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors.

  13. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating.

    PubMed

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-01-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors. PMID:27349378

  14. A record setting amorphous silicon alloy triple-junction solar cell with 14.6{percent} initial and 12.8{percent} stable efficiencies

    SciTech Connect

    Yang, J.; Banerjee, A.; Guha, S.

    1997-02-01

    World record 14.6{percent} initial and 12.8{percent} stable conversion efficiencies have been achieved using amorphous silicon based alloy in a spectrum-splitting, triple-junction structure. This performance exceeds our previous record of 13.2{percent} initial and 11.8{percent} stable efficiencies and establishes a new milestone toward reaching the 15{percent} stable module goal. Key factors leading to this major advance include: (a) Improvement in the low bandgap amorphous silicon-germanium component cell that resulted in enhanced red response and provided desired current mismatching, (b) improvement in the pn tunnel junction between component cells by incorporating microcrystalline p and n layers in a multilayered structure that resulted in reduced optical and electrical losses, and (c) improvement in the top conducting oxide that resulted in reduced absorption and enhanced blue response without increasing the top cell thickness. Details of these advances along with light-soaking data for high efficiency cells will be discussed. {copyright} {ital 1997 American Institute of Physics.}

  15. Ti/Al/W Ohmic contacts to p-type implanted 4H-SiC

    NASA Astrophysics Data System (ADS)

    Vivona, M.; Greco, G.; Lo Nigro, R.; Bongiorno, C.; Roccaforte, F.

    2015-07-01

    In this work, the morphological, structural, and electrical properties of Ti/Al/W contacts to p-type implanted silicon carbide (4H-SiC) have been monitored as a function of the annealing temperature (800-1100 °C). The increase of the annealing temperature induces a transition from a rectifying to an Ohmic behavior, with a specific contact resistance of 5.8 × 10-4 Ωcm2. The electrical behavior has been correlated with the morphological and structural analyses. In particular, the transition to an Ohmic behavior was accompanied by a gradual increase of the surface roughness and by the occurrence of a reaction leading to the formation of new phases in the stack and at the interface (TiAl3, W(SiAl)2, and TiC). The presence of Al-rich protrusions penetrating in the SiC substrate was also observed. From the temperature dependence of the electrical parameters, a barrier height of 0.69 eV for this system was determined. The thermal stability of the contacts has been demonstrated for long-term (up to 100 h) thermal cycling at 400 °C.

  16. Picosecond intersubband hole relaxation in p-type quantum wells

    SciTech Connect

    Xu, Z.; Fauchet, P.M.; Rella, C.W.; Schwettman, H.A.

    1995-12-31

    We report the first direct measurement of the relaxation time of holes in p-type quantum wells using tunable, subpicosecond mid-infrared laser pulses in a pump-probe arrangement. The QW layers consisted of 50 In{sub 0.5}Ga{sub 0.5}As/Al{sub 0.5}Ga{sub 0.5}As periods. The In{sub 0.5}Ga{sub 0.5}As well was 4 nm wide and the Al{sub 0.5}Ga{sub 0.5}As barrier was 8 nm wide. The dopant concentration was 10{sup 19} CM{sup -3} which corresponds to a sheet density of 1.2 x 10{sup 13} CM{sup -2}. The room temperature IR spectrum showed a 50 meV wide absorption peak at 5.25 {mu}m (220 meV). This energy agrees with the calculated n=1 heavy hole to n=1 light hole transition energy of 240 meV (150 meV for strain and 90 meV for confinement). The large absorption width results from hole-hole scattering and the difference in dispersion relations between the two subbands. The equal-wavelength pump-probe transmission measurements were performed using the Stanford free electron laser (FEL). The FEL pulses were tuned between 4 and 6 {mu} m and their duration was less than 1 ps. The measurements were performed as a function of temperature, pump wavelength and intensity (from 0.3 to 10 GW/cm{sup 2}). In all our experiments, we find an increase of transmission (decrease of absorption or bleaching) following photopumping, which recovers as a single exponential with a time constant (relaxation time) of the order of 1 picosecond. The maximum change in transmission is linear with pump 2 intensity below 1 GW/cm{sup 2} and saturates to {approximately}3% with a saturation intensity I{sub sat} of 3 GW/cm{sup 2}. As the saturation regime is entered, the relaxation time increases from 0.8 ps to 1.8 ps. This relaxation time depends on the temperature T: it increases from 0.8 ps to 1.3 ps as T decreases from 300 K to 77 K. Finally, when we tune the laser through the absorption band, the magnitude of the signal changes but its temporal behavior does not change, within the accuracy of the measurements.

  17. Modeling of thin, back-wall silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1979-01-01

    The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.

  18. Ultraviolet light-emitting diodes with polarization-doped p-type layer

    NASA Astrophysics Data System (ADS)

    Hu, Wenxiao; Qin, Ping; Song, Weidong; Zhang, Chongzhen; Wang, Rupeng; Zhao, Liangliang; Xia, Chao; Yuan, Songyang; Yin, Yian; Li, Shuti

    2016-09-01

    We report ultraviolet light emitting diode (LEDs) with polarization doped p-type layer. Fabricated LEDs with polarization doped p-type layer exhibited reduced forward voltage and enhanced light output power, compared to those with traditional p-type AlGaN layer. The improvement is attributed to improved hole concentration and the smooth valence band by the polarization enhanced p-type doping. Our simulated results reveal that this p-type layer can further enhance the performance of ultraviolet LEDs by removing the electron blocking layer (EBL).

  19. Ultrafast hole carrier relaxation dynamics in p-type CuO nanowires

    PubMed Central

    2011-01-01

    Ultrafast hole carrier relaxation dynamics in CuO nanowires have been investigated using transient absorption spectroscopy. Following femtosecond pulse excitation in a non-collinear pump-probe configuration, a combination of non-degenerate transmission and reflection measurements reveal initial ultrafast state filling dynamics independent of the probing photon energy. This behavior is attributed to the occupation of states by photo-generated carriers in the intrinsic hole region of the p-type CuO nanowires located near the top of the valence band. Intensity measurements indicate an upper fluence threshold of 40 μJ/cm2 where carrier relaxation is mainly governed by the hole dynamics. The fast relaxation of the photo-generated carriers was determined to follow a double exponential decay with time constants of 0.4 ps and 2.1 ps. Furthermore, time-correlated single photon counting measurements provide evidence of three exponential relaxation channels on the nanosecond timescale. PMID:22151927

  20. Purified silicon production system

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  1. Synthesis of poly(silanes) and poly(silane)-modified silicones for use as novel initiator systems

    NASA Astrophysics Data System (ADS)

    Goldslager, Barry Andrew

    The development of new methods for the synthesis of polymeric silanes represents an exciting new field in organosilicon chemistry. The synthetic methods developed in this research were used to produce reactive polymeric silanes which in turn were used in applications as photoinitiators/modifiers or as self curing resins. This thesis describes investigations of the synthesis of a variety of reactive polymeric silanes, modification of the polymeric silanes and their use as photoinitiators and self curing resins. The silanes were synthesized by either Wurtz type coupling, which uses a sodium dispersion to couple halogenated silanes together, or by metallocene catalysis, which uses transition metal catalysts to couple silicon hydrides together through dehydrogenative coupling. The resulting materials were demonstrated to be useful as photoinitiators for acrylic/methacrylic systems and that they can be modified for use in other systems. The modification of the polymeric silanes where carried out using a either a hydrosilylation reaction which involves the coupling of an active silicon hydride with an active vinyl group, or a condensation reaction between an active chlorosilane with an active hydroxyl group. Several unique materials were synthesized using these two methods and consist of the following: (1) Linear poly(phenylsdane)-graft-vinyl terminated poly(dimethylsiloxane); (2) Networked poly(phenylisdane)-graft-vinyl terminated poly(dimethylsiloxane); (3) Oligo(methylphenyisilane)-alt-vinyl terminated poly(dimethylsiloxane); (4) Various polymeric silanes. These materials where successfully used as photoinitators for acrylate and methacrylate systems such as isobornyl acrylate, 2-hydroxypropyl acrylate, vinyl terminated polydimethylsiloxane, and self curing resins which showed excellent properties such as nontacky surfaces, high glass transition temperatures, Tgs, and crosslinked materials for use as potting agents. The modified silanes showed good solubility in many

  2. Method and apparatus for stable silicon dioxide layers on silicon grown in silicon nitride ambient

    NASA Technical Reports Server (NTRS)

    Cohen, R. A.; Wheeler, R. K. (Inventor)

    1974-01-01

    A method and apparatus for thermally growing stable silicon dioxide layers on silicon is disclosed. A previously etched and baked silicon nitride tube placed in a furnace is used to grow the silicon dioxide. First, pure oxygen is allowed to flow through the tube to initially coat the inside surface of the tube with a thin layer of silicon dioxide. After the tube is coated with the thin layer of silicon dioxide, the silicon is oxidized thermally in a normal fashion. If the tube becomes contaminated, the silicon dioxide is etched off thereby exposing clean silicon nitride and then the inside of the tube is recoated with silicon dioxide. As is disclosed, the silicon nitride tube can also be used as the ambient for the pyrolytic decomposition of silane and ammonia to form thin layers of clean silicon nitride.

  3. Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-03-26

    A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

  4. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.

    PubMed

    Ostadhossein, Alireza; Cubuk, Ekin D; Tritsaris, Georgios A; Kaxiras, Efthimios; Zhang, Sulin; van Duin, Adri C T

    2015-02-01

    Silicon (Si) has been recognized as a promising anode material for the next-generation high-capacity lithium (Li)-ion batteries because of its high theoretical energy density. Recent in situ transmission electron microscopy (TEM) revealed that the electrochemical lithiation of crystalline Si nanowires (c-SiNWs) proceeds by the migration of the interface between the lithiated Si (LixSi) shell and the pristine unlithiated core, accompanied by solid-state amorphization. The underlying atomic mechanisms of Li insertion into c-Si remain poorly understood. Herein, we perform molecular dynamics (MD) simulations using the reactive force field (ReaxFF) to characterize the lithiation process of c-SiNWs. Our calculations show that ReaxFF can accurately reproduce the energy barriers of Li migration from DFT calculations in both crystalline (c-Si) and amorphous Si (a-Si). The ReaxFF-based MD simulations reveal that Li insertion into interlayer spacing between two adjacent (111) planes results in the peeling-off of the (111) facets and subsequent amorphization, in agreement with experimental observations. We find that breaking of the Si-Si bonds between (111)-bilayers requires a rather high local Li concentration, which explains the atomically sharp amorphous-crystalline interface (ACI). Our stress analysis shows that lithiation induces compressive stress at the ACI layer, causing retardation or even the stagnation of the reaction front, also in good agreement with TEM observations. Lithiation at high temperatures (e.g. 1200 K) shows that Li insertion into c-SiNW results in an amorphous to crystalline phase transformation at Li : Si composition of ∼4.2 : 1. Our modeling results provide a comprehensive picture of the effects of reaction and diffusion-induced stress on the interfacial dynamics and mechanical degradation of SiNW anodes under chemo-mechanical lithiation. PMID:25559797

  5. Stress effects on the initial lithiation of crystalline silicon nanowires: Reactive molecular dynamics simulations using ReaxFF

    DOE PAGESBeta

    Ostadhossein, Alireza; Cubuk, Ekin D.; Tritsaris, Georgios A.; Kaxiras, Efthimios; Zhang, Sulin; Adri C. T. van Duin

    2014-12-18

    Silicon (Si) has been recognized as a promising anode material for the next-generation high-capacity lithium (Li)-ion batteries because of its high theoretical energy density. Recent in situ transmission electron microscopy (TEM) revealed that the electrochemical lithiation of crystalline Si nanowires (c-SiNWs) proceeds by the migration of the interface between the lithiated Si (LixSi) shell and the pristine unlithiated core, accompanied by solid-state amorphization. The underlying atomic mechanisms of Li insertion into c-Si remain poorly understood. In this research, we perform molecular dynamics (MD) simulations using the reactive force field (ReaxFF) to characterize the lithiation process of c-SiNWs. Our calculations showmore » that ReaxFF can accurately reproduce the energy barriers of Li migration from DFT calculations in both crystalline (c-Si) and amorphous Si (a-Si). The ReaxFF-based MD simulations reveal that Li insertion into interlayer spacing between two adjacent (111) planes results in the peeling-off of the (111) facets and subsequent amorphization, in agreement with experimental observations. We find that breaking of the Si–Si bonds between (111)-bilayers requires a rather high local Li concentration, which explains the atomically sharp amorphous–crystalline interface (ACI). Our stress analysis shows that lithiation induces compressive stress at the ACI layer, causing retardation or even the stagnation of the reaction front, also in good agreement with TEM observations. Lithiation at high temperatures (e.g. 1200 K) shows that Li insertion into c-SiNW results in an amorphous to crystalline phase transformation at Li : Si composition of ~4.2:1. In conclusion, our modeling results provide a comprehensive picture of the effects of reaction and diffusion-induced stress on the interfacial dynamics and mechanical degradation of SiNW anodes under chemo-mechanical lithiation.« less

  6. Stress effects on the initial lithiation of crystalline silicon nanowires: Reactive molecular dynamics simulations using ReaxFF

    SciTech Connect

    Ostadhossein, Alireza; Cubuk, Ekin D.; Tritsaris, Georgios A.; Kaxiras, Efthimios; Zhang, Sulin; Adri C. T. van Duin

    2014-12-18

    Silicon (Si) has been recognized as a promising anode material for the next-generation high-capacity lithium (Li)-ion batteries because of its high theoretical energy density. Recent in situ transmission electron microscopy (TEM) revealed that the electrochemical lithiation of crystalline Si nanowires (c-SiNWs) proceeds by the migration of the interface between the lithiated Si (LixSi) shell and the pristine unlithiated core, accompanied by solid-state amorphization. The underlying atomic mechanisms of Li insertion into c-Si remain poorly understood. In this research, we perform molecular dynamics (MD) simulations using the reactive force field (ReaxFF) to characterize the lithiation process of c-SiNWs. Our calculations show that ReaxFF can accurately reproduce the energy barriers of Li migration from DFT calculations in both crystalline (c-Si) and amorphous Si (a-Si). The ReaxFF-based MD simulations reveal that Li insertion into interlayer spacing between two adjacent (111) planes results in the peeling-off of the (111) facets and subsequent amorphization, in agreement with experimental observations. We find that breaking of the Si–Si bonds between (111)-bilayers requires a rather high local Li concentration, which explains the atomically sharp amorphous–crystalline interface (ACI). Our stress analysis shows that lithiation induces compressive stress at the ACI layer, causing retardation or even the stagnation of the reaction front, also in good agreement with TEM observations. Lithiation at high temperatures (e.g. 1200 K) shows that Li insertion into c-SiNW results in an amorphous to crystalline phase transformation at Li : Si composition of ~4.2:1. In conclusion, our modeling results provide a comprehensive picture of the effects of reaction and diffusion-induced stress on the interfacial dynamics and mechanical degradation of SiNW anodes under chemo-mechanical lithiation.

  7. Diffusion of hydrogen in perfect, p -type doped, and radiation-damaged 4H-SiC

    NASA Astrophysics Data System (ADS)

    Aradi, B.; Deák, P.; Gali, A.; Son, N. T.; Janzén, E.

    2004-06-01

    The diffusion of interstitial atomic hydrogen in 4H-SiC was investigated theoretically, using the local density approximation of density functional theory. We have found that the diffusion barrier in the perfect crystal is ⩽0.6 eV . Comparing this value with the calculated zero point vibration energy of interstitial hydrogen indicates that hydrogen diffuses very rapidly in perfect portions of the SiC lattice, until it gets trapped. In p -doped (B, Al) material the dissociation of the hydrogen-acceptor complexes is the limiting step in diffusion, with a calculated dissociation energy of 2.5 and 1.6 eV for B+H and Al+H , respectively. In irradiated material the trapping and detrapping of hydrogen by silicon vacancies determines the effective diffusion barrier, which lies between 4.0 and 5.3 eV depending on the Fermi level in p -type and weakly n -type material.

  8. Capacitance transients in p-type GaAs MOS structures and application to lifetime mapping during solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Vitale, G.; Loferski, J. J.; Ercil, Y.

    1979-01-01

    Fabrication on p-type GaAs of MOS structures in which the quality of the oxide is such that the surface can be driven into deep inversion by a voltage pulse is reported. The capacitance transients in such MOS capacitors as a function of step amplitude and temperature were measured and the transients were analyzed by an extension of a method for silicon. The oxides were produced by plasma oxidation on an LPE-grown p-type GaAs specimen with N sub A of 3x10 to the 17th power/cu cm. The capacitors were produced by depositing 50 microns-diameter gold dots over the native oxide and, therefore, the lifetime is localized to the area under the dot. The method permits extraction of both the bulk lifetime and the interface recombination velocity. These parameters on samples with different N sub A were measured and a correlation between tau sub g and N sub A was found.

  9. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  10. Aluminum-silicon eutectic alloy improves electrical and mechanical contact to silicon carbide

    NASA Technical Reports Server (NTRS)

    Shier, J. S.

    1970-01-01

    Alloy contact layer is made at relatively low temperature and has good wetting characteristics. Contacts adhere well to silicon carbide surface, penetrating about 300 to 500 angstroms into it. Contacts are ohmic on p-type silicon carbide and blocking on n-type.

  11. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOEpatents

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2012-01-03

    A semiconductor based Light Emitting Device (LED) can include a p-type nitride layer and a metal ohmic contact, on the p-type nitride layer. The metal ohmic contact can have an average thickness of less than about 25 .ANG. and a specific contact resistivity less than about 10.sup.-3 ohm-cm.sup.2.

  12. Piezoresistance behaviors of p-type 6H-SiC nanowires.

    PubMed

    Gao, Fengmei; Zheng, Jinju; Wang, Mingfang; Wei, Guodong; Yang, Weiyou

    2011-11-21

    We reported, for the first time, the piezoresistance behaviors of single p-type 6H-SiC nanowires. The results suggest that present p-type 6H-SiC nanowires could be an excellent candidate for the fabrication of robust and reliable stress sensors. PMID:21959148

  13. Luminance behavior of lithium-doped ZnO nanowires with p-type conduction characteristics.

    PubMed

    Ko, Won Bae; Lee, Jun Seok; Lee, Sang Hyo; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Park, Young Jun; Kim, Hyun Jung; Hong, Jin Pyo

    2013-09-01

    The present study describes the room-temperature cathodeluminescence (CL) and temperature-dependent photoluminescence (PL) properties of p-type lithium (Li)-doped zinc oxide (ZnO) nanowires (NWs) grown by hydrothermal doping and post-annealing processes. A ZnO thin film was used as a seed layer in NW growth. The emission wavelengths and intensities of undoped ZnO NWs and p-type Li-doped ZnO NWs were analyzed for comparison. CL and PL observations of post-annealed p-type Li-doped ZnO NWs clearly exhibited a dominant sharp band-edge emission. Finally, a n-type ZnO thin film/p-type annealed Li-doped ZnO NW homojunction diode was prepared to confirm the p-type conduction of annealed Li-doped ZnO NWs as well as the structural properties measured by transmission electron microscopy. PMID:24205635

  14. Piezoresistance and hole transport in beryllium-doped silicon.

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Robertson, J. B.

    1972-01-01

    The resistivity and piezoresistance of p-type silicon doped with beryllium have been studied as a function of temperature, crystal orientation, and beryllium doping concentration. It is shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gauge factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, while the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  15. Palladium contamination in silicon

    NASA Astrophysics Data System (ADS)

    Polignano, M. L.; Mica, I.; Ceresoli, M.; Codegoni, D.; Somaini, F.; Bianchi, I.; Volonghi, D.

    2015-04-01

    In this work palladium is characterized as a silicon contaminant by recombination lifetime, DLTS, C-V and C-t measurements of palladium-implanted wafers. Palladium introduced by ion implantation is found to remain in the solid solution in silicon after rapid thermal treatments, and to be a very effective recombination center. For this reason recombination lifetime measurements are the most sensitive method to detect palladium in silicon. Two palladium-related levels were found by DLTS in p-type material. One of these levels corresponds to a level reported in the literature as the single donor level of substitutional palladium. For what concerns MOS capacitors, palladium is responsible for negative oxide charge and for degradation of the generation lifetime. In addition, palladium is confirmed to be a very fast diffuser, which segregates at the wafer surface even with low temperature treatments (250 °C). Microscopy inspections showed that palladium precipitates and surface defects were formed upon segregation.

  16. Unipolar p-type single-walled carbon nanotube field-effect transistors using TTF-TCNQ as the contact material.

    PubMed

    Xian, Xiaojun; Yan, Kai; Zhou, Wei; Jiao, Liying; Wu, Zhongyun; Liu, Zhongfan

    2009-12-16

    We demonstrate herein that organic metal tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) can serve as an ideal material for source and drain electrodes to build unipolar p-type single-walled carbon nanotube (SWNTs) field-effect transistors (FETs). SWNTs were synthesized by the chemical vapor deposition (CVD) method on silicon wafer and then TTF-TCNQ was deposited by thermal evaporation through a shadow mask to form the source and drain contacts. An SiO2 layer served as the gate dielectric and Si was used as the backgate. Transfer characteristics show that these TTF-TCNQ contacted devices are Schottky barrier transistors just like conventional metal contacted SWNT-FETs. The most interesting characteristic of these SWNT transistors is that all devices demonstrate the unipolar p-type transport behavior. This behavior originates from the unique crystal structure and physical properties of TTF-TCNQ and this device may have potential applications in carbon nanotube electronics. PMID:19923654

  17. Unipolar p-type single-walled carbon nanotube field-effect transistors using TTF-TCNQ as the contact material

    NASA Astrophysics Data System (ADS)

    Xian, Xiaojun; Yan, Kai; Zhou, Wei; Jiao, Liying; Wu, Zhongyun; Liu, Zhongfan

    2009-12-01

    We demonstrate herein that organic metal tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) can serve as an ideal material for source and drain electrodes to build unipolar p-type single-walled carbon nanotube (SWNTs) field-effect transistors (FETs). SWNTs were synthesized by the chemical vapor deposition (CVD) method on silicon wafer and then TTF-TCNQ was deposited by thermal evaporation through a shadow mask to form the source and drain contacts. An SiO2 layer served as the gate dielectric and Si was used as the backgate. Transfer characteristics show that these TTF-TCNQ contacted devices are Schottky barrier transistors just like conventional metal contacted SWNT-FETs. The most interesting characteristic of these SWNT transistors is that all devices demonstrate the unipolar p-type transport behavior. This behavior originates from the unique crystal structure and physical properties of TTF-TCNQ and this device may have potential applications in carbon nanotube electronics.

  18. PRECISE THROUGHPUT DETERMINATION OF THE PanSTARRS TELESCOPE AND THE GIGAPIXEL IMAGER USING A CALIBRATED SILICON PHOTODIODE AND A TUNABLE LASER: INITIAL RESULTS

    SciTech Connect

    Stubbs, Christopher W.; Doherty, Peter; Cramer, Claire; Narayan, Gautham; Brown, Yorke J.; Lykke, Keith R.; Woodward, John T.; Tonry, John L.

    2010-12-15

    We have used a precision-calibrated photodiode as the fundamental metrology reference in order to determine the relative throughput of the PanSTARRS telescope and the Gigapixel imager, from 400 nm to 1050 nm. Our technique uses a tunable laser as a source of illumination on a transmissive flat-field screen. We determine the full-aperture system throughput as a function of wavelength, including (in a single integral measurement) the mirror reflectivity, the transmission functions of the filters and the corrector optics, and the detector quantum efficiency, by comparing the light seen by each pixel in the CCD array to that measured by a precision-calibrated silicon photodiode. This method allows us to determine the relative throughput of the entire system as a function of wavelength, for each pixel in the instrument, without observations of celestial standards. We present promising initial results from this characterization of the PanSTARRS system, and we use synthetic photometry to assess the photometric perturbations due to throughput variation across the field of view.

  19. Design of Shallow p-type Dopants in ZnO (Presentation)

    SciTech Connect

    Wei, S.H.; Li, J.; Yan. Y.

    2008-05-01

    ZnO is a promising material for short wave-length opto-electronic devices such as UV lasers and LEDs due to its large exciton binding energy and low material cost. ZnO can be doped easily n-type, but the realization of stable p-type ZnO is rather difficult. Using first-principles band structure methods the authors address what causes the p-type doping difficulty in ZnO and how to overcome the p-type doping difficulty in ZnO.

  20. High performance p-type thermoelectric materials and methods of preparation

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry (Inventor); Borshchevsky, Alexander (Inventor); Fleurial, Jean-Pierre (Inventor)

    2005-01-01

    The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn4-xAxSb3-yBy wherein 0?x?4, A is a transition metal, B is a pnicogen, and 0?y?3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn4Sb3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method.

  1. Gamma Radiation Damage in Silicon

    NASA Astrophysics Data System (ADS)

    Chang, Chensen

    A theory for interpreting carrier removal in terms of trap production has been derived from the carrier distribution function, which provides a relationship between the carrier removal rate and trap production rates due to the radiation damage. The carrier removal rate is a function of trap production as well as Fermi level position. Also, the carrier removal rate depends on many parameters, which are the density of states of the valance band as well as the conduction band, density of doping impurities, temperature, location of donor and acceptor energy levels and location of trap energy levels. P-type and n-type silicon Schottky diodes are irradiated by cobalt 60 gamma rays. The experimental results show that the carrier removal rate is dependent on the initial carrier concentration. Carrier concentrations are determined by room temperature C-V measurements while the trap production rates are determined by DLTS from measurements from 50 K to room temperature. A model presented by Williams, et al. for the carrier concentration vs. fluence, has been rederived from simple semiconductor carrier statistical mechanics. This model has then been extended to yield an expression for the initial carrier removal rate which depends on the production rate of each defect trap level in the band gap. We have tested these models thoroughly for the first time by measuring the trap production rates by DLTS, and then, using this information to calculate carrier removal rate and carrier concentration vs. fluence, we have verified that the results of the model can explain these same relationships obtained experimentally by C-V measurements. We believe that this is the first time that DLTS results have been linked directly to such simple and useful measurements as carrier removal rate and carrier concentration vs. fluence in a convincing manner. The success of this procedure also suggests that there are no "hidden" levels or traps which contribute to carrier removal rate but which do not

  2. Sol-gel method of p-type zinc oxide films preparation

    NASA Astrophysics Data System (ADS)

    Poghosyan, Armen R.; Li, XiaoNan; Manukyan, Alexandr L.; Grigoryan, Stepan G.; Vardanyan, Eduard S.

    2007-09-01

    Both n-type and p-type ZnO will be required for development of homojunction light-emitting diodes and laser diodes. It is easy to obtain strong n-type ZnO, but very difficult to create consistent, reliable, high-conductivity p-type material. Here we present our investigations of p-type ZnO thin film preparation by sol-gel method using single Li doping and Ga(Al)+N codoping technique. ZnO thin films with c-axis orientation have been prepared on glass substrates. Zn acetate dihydrate, gallium nitrate and acetamide were used as zinc, gallium and nitrogen precursors respectively. SEM, X-ray diffraction, electric conductivity and Hall effect measurements were carried out. The results show that p-type conducting ZnO films with hole concentrations as high as 5x10 17 cm -3 were obtained by this method.

  3. Opto-electrical properties of Sb-doped p-type ZnO nanowires

    SciTech Connect

    Kao, Tzu-Hsuan; Chen, Jui-Yuan; Chiu, Chung-Hua; Huang, Chun-Wei; Wu, Wen-Wei

    2014-03-17

    P-type ZnO nanowires (NWs) have attracted much attention in the past years due to the potential applications for optoelectronics and piezotronics. In this study, we have synthesized Sb-doped p-type ZnO NWs on Si (100) substrates by chemical vapor deposition with Aucatalyst. The Sb-doped ZnO NWs are single crystalline with high density, grown along [1-1-2] direction. The doping percentage of Sb is about 2.49%, which has been confirmed by X-ray photoelectron spectroscopy. The ZnO NW field effect transistor demonstrated its p-type characteristics. A high responsivity to ultraviolet photodetection was also observed. In addition, compared to intrinsic ZnO NWs, the conductivity of the Sb-doped ZnO NWs exhibited ∼2 orders of magnitude higher. These properties make the p-type ZnO NWs a promising candidate for electronic and optoelectronic devices.

  4. Comparison of junctionless and inversion-mode p-type metal-oxide-semiconductor field-effect transistors in presence of hole-phonon interactions

    NASA Astrophysics Data System (ADS)

    Dib, E.; Carrillo-Nuñez, H.; Cavassilas, N.; Bescond, M.

    2016-01-01

    Junctionless transistors are being considered as one of the alternatives to conventional metal-oxide field-effect transistors. In this work, it is then presented a simulation study of silicon double-gated p-type junctionless transistors compared with its inversion-mode counterpart. The quantum transport problem is solved within the non-equilibrium Green's function formalism, whereas hole-phonon interactions are tackled by means of the self-consistent Born approximation. Our findings show that junctionless transistors should perform as good as a conventional transistor only for ultra-thin channels, with the disadvantage of requiring higher supply voltages in thicker channel configurations.

  5. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1983-01-01

    A resistance heated zoner, suitable for early zoning experiments with silicon, was designed and put into operation. The initial power usage and size was designed for an shown to be compatible with payload carriers contemplated for the Shuttle. This equipment will be used in the definition and development of flight experiments and apparatus for float zoning silicon and other materials in microgravity.

  6. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors

    SciTech Connect

    Lee, Seul-Yi; Yop Rhee, Kyong; Nahm, Seung-Hoon; Park, Soo-Jin

    2014-02-15

    In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H{sub 2}SO{sub 4}) and hydrogen peroxide (H{sub 2}O{sub 2}) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted.

  7. Convergence of valence bands for high thermoelectric performance for p-type InN

    NASA Astrophysics Data System (ADS)

    Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju

    2015-12-01

    Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of ZeT is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.

  8. Atomic scale investigation of silicon nanowires and nanoclusters

    PubMed Central

    2011-01-01

    In this study, we have performed nanoscale characterization of Si-clusters and Si-nanowires with a laser-assisted tomographic atom probe. Intrinsic and p-type silicon nanowires (SiNWs) are elaborated by chemical vapor deposition method using gold as catalyst, silane as silicon precursor, and diborane as dopant reactant. The concentration and distribution of impurity (gold) and dopant (boron) in SiNW are investigated and discussed. Silicon nanoclusters are produced by thermal annealing of silicon-rich silicon oxide and silica multilayers. In this process, atom probe tomography (APT) provides accurate information on the silicon nanoparticles and the chemistry of the nanolayers. PMID:21711788

  9. Electronic transport properties of silicon clusters

    NASA Astrophysics Data System (ADS)

    Matsuura, Yukihito

    2016-02-01

    The electronic transport properties of silicon clusters were examined via theoretical calculations using the first-principles method. Additionally, p-type doping and n-type doping were analyzed by calculating conductance and current of boron- and phosphorus-doped silicon clusters. The p-type doping and n-type doping provided a new transmission peak at an energy level around the Fermi level to increase conductance. Furthermore, simultaneous boron and phosphorus doping resulted in noticeable rectifying characteristics, with the current drive in forward bias being three times higher than that in the reverse bias. A p-n junction was achieved even on a molecular scale.

  10. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon

    PubMed Central

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  11. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon.

    PubMed

    Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  12. Electrical property comparison and charge transmission in p-type double gate and single gate junctionless accumulation transistor fabricated by AFM nanolithography.

    PubMed

    Dehzangi, Arash; Abdullah, A Makarimi; Larki, Farhad; Hutagalung, Sabar D; Saion, Elias B; Hamidon, Mohd N; Hassan, Jumiah; Gharayebi, Yadollah

    2012-01-01

    The junctionless nanowire transistor is a promising alternative for a new generation of nanotransistors. In this letter the atomic force microscopy nanolithography with two wet etching processes was implemented to fabricate simple structures as double gate and single gate junctionless silicon nanowire transistor on low doped p-type silicon-on-insulator wafer. The etching process was developed and optimized in the present work compared to our previous works. The output, transfer characteristics and drain conductance of both structures were compared. The trend for both devices found to be the same but differences in subthreshold swing, 'on/off' ratio, and threshold voltage were observed. The devices are 'on' state when performing as the pinch off devices. The positive gate voltage shows pinch off effect, while the negative gate voltage was unable to make a significant effect on drain current. The charge transmission in devices is also investigated in simple model according to a junctionless transistor principal. PMID:22781031

  13. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane.

    PubMed

    Kang, Dong-Ho; Shim, Jaewoo; Jang, Sung Kyu; Jeon, Jeaho; Jeon, Min Hwan; Yeom, Geun Young; Jung, Woo-Shik; Jang, Yun Hee; Lee, Sungjoo; Park, Jin-Hong

    2015-02-24

    Despite heightened interest in 2D transition-metal dichalcogenide (TMD) doping methods for future layered semiconductor devices, most doping research is currently limited to molybdenum disulfide (MoS2), which is generally used for n-channel 2D transistors. In addition, previously reported TMD doping techniques result in only high-level doping concentrations (degenerate) in which TMD materials behave as near-metallic layers. Here, we demonstrate a controllable nondegenerate p-type doping (p-doping) technique on tungsten diselenide (WSe2) for p-channel 2D transistors by adjusting the concentration of octadecyltrichlorosilane (OTS). This p-doping phenomenon originates from the methyl (-CH3) functional groups in OTS, which exhibit a positive pole and consequently reduce the electron carrier density in WSe2. The controlled p-doping levels are between 2.1 × 10(11) and 5.2 × 10(11) cm(-2) in the nondegenerate regime, where the performance parameters of WSe2-based electronic and optoelectronic devices can be properly designed or optimized (threshold voltage↑, on-/off-currents↑, field-effect mobility↑, photoresponsivity↓, and detectivity↓ as the doping level increases). The p-doping effect provided by OTS is sustained in ambient air for a long time showing small changes in the device performance (18-34% loss of ΔVTH initially achieved by OTS doping for 60 h). Furthermore, performance degradation is almost completely recovered by additional thermal annealing at 120 °C. Through Raman spectroscopy and electrical/optical measurements, we have also confirmed that the OTS doping phenomenon is independent of the thickness of the WSe2 films. We expect that our controllable p-doping method will make it possible to successfully integrate future layered semiconductor devices. PMID:25629805

  14. Segmentation of the Outer Contact on P-Type Coaxial Germanium Detectors

    SciTech Connect

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.

    2006-09-21

    Germanium detector arrays are needed for low-level counting facilities. The practical applications of such user facilities include characterization of low-level radioactive samples. In addition, the same detector arrays can also perform important fundamental physics measurements including the search for rare events like neutrino-less double-beta decay. Coaxial germanium detectors having segmented outer contacts will provide the next level of sensitivity improvement in low background measurements. The segmented outer detector contact allows performance of advanced pulse shape analysis measurements that provide additional background reduction. Currently, n-type (reverse electrode) germanium coaxial detectors are used whenever a segmented coaxial detector is needed because the outer boron (electron barrier) contact is thin and can be segmented. Coaxial detectors fabricated from p-type germanium cost less, have better resolution, and are larger than n-type coaxial detectors. However, it is difficult to reliably segment p-type coaxial detectors because thick (~1 mm) lithium-diffused (hole barrier) contacts are the standard outside contact for p-type coaxial detectors. During this Phase 1 Small Business Innovation Research (SBIR) we have researched the possibility of using amorphous germanium contacts as a thin outer contact of p-type coaxial detectors that can be segmented. We have developed amorphous germanium contacts that provide a very high hole barrier on small planar detectors. These easily segmented amorphous germanium contacts have been demonstrated to withstand several thousand volts/cm electric fields with no measurable leakage current (<1 pA) from charge injection over the hole barrier. We have also demonstrated that the contact can be sputter deposited around and over the curved outside surface of a small p-type coaxial detector. The amorphous contact has shown good rectification properties on the outside of a small p-type coaxial detector. These encouraging

  15. Silicone metalization

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  16. Silicone metalization

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  17. Chemical-free n-type and p-type multilayer-graphene transistors

    NASA Astrophysics Data System (ADS)

    Dissanayake, D. M. N. M.; Eisaman, M. D.

    2016-08-01

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping. When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.

  18. PATBox: A Toolbox for Classification and Analysis of P-Type ATPases

    PubMed Central

    Søndergaard, Dan; Pedersen, Christian Nørgaard Storm

    2015-01-01

    P-Type ATPases are part of the regulatory system of the cell where they are responsible for transporting ions and lipids through the cell membrane. These pumps are found in all eukaryotes and their malfunction has been found to cause several severe diseases. Knowing which substrate is pumped by a certain P-Type ATPase is therefore vital. The P-Type ATPases can be divided into 11 subtypes based on their specificity, that is, the substrate that they pump. Determining the subtype experimentally is time-consuming. Thus it is of great interest to be able to accurately predict the subtype based on the amino acid sequence only. We present an approach to P-Type ATPase sequence classification based on the k-nearest neighbors, similar to a homology search, and show that this method provides performs very well and, to the best of our knowledge, better than any existing method despite its simplicity. The classifier is made available as a web service at http://services.birc.au.dk/patbox/ which also provides access to a database of potential P-Type ATPases and their predicted subtypes. PMID:26422234

  19. p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells

    PubMed Central

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-01-01

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics. PMID:24755642

  20. Recent Developments in p-Type Oxide Semiconductor Materials and Devices.

    PubMed

    Wang, Zhenwei; Nayak, Pradipta K; Caraveo-Frescas, Jesus A; Alshareef, Husam N

    2016-05-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented. PMID:26879813

  1. Piezotronic effect in solution-grown p-type ZnO nanowires and films.

    PubMed

    Pradel, Ken C; Wu, Wenzhuo; Zhou, Yusheng; Wen, Xiaonan; Ding, Yong; Wang, Zhong Lin

    2013-06-12

    Investigating the piezotronic effect in p-type piezoelectric semiconductor is critical for developing a complete piezotronic theory and designing/fabricating novel piezotronic applications with more complex functionality. Using a low temperature solution method, we were able to produce ultralong (up to 60 μm in length) Sb doped p-type ZnO nanowires on both rigid and flexible substrates. For the p-type nanowire field effect transistor, the on/off ratio, threshold voltage, mobility, and carrier concentration of 0.2% Sb-doped sample are found to be 10(5), 2.1 V, 0.82 cm(2)·V(-1)·s(-1), and 2.6 × 10(17) cm(-3), respectively, and the corresponding values for 1% Sb doped samples are 10(4), 2.0 V, 1.24 cm(2)·V(-1)·s(-1), and 3.8 × 10(17) cm(-3). We further investigated the universality of piezotronic effect in the as-synthesized Sb-doped p-type ZnO NWs and reported for the first time strain-gated piezotronic transistors as well as piezopotential-driven mechanical energy harvesting based on solution-grown p-type ZnO NWs. The results presented here broaden the scope of piezotronics and extend the framework for its potential applications in electronics, optoelectronics, smart MEMS/NEMS, and human-machine interfacing. PMID:23635319

  2. Fabrication and Characterization of Rapidly Oxidized p-Type Cu2O Films from Cu Films and their Application to Heterojunction Thin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Soo; Lim, Jung Wook; Yun, Sun Jin; Park, Min A.; Park, Se Yong; Lee, Seong Eui; Lee, Hee Chul

    2013-10-01

    In this study, we report that the metal Cu deposited on a glass substrate is formed into a stable p-type Cu2O film with excellent properties through rapid thermal oxidation (RTO). The pre-deposited Cu film layer went through thermal oxidation in the temperature range of 200-500 °C in O2 and air ambient, and the electrical and optical properties were intensively investigated. The optimized p-type Cu2O film heat-treated at a temperature of 200 °C in an air ambient has a carrier concentration of 1.25×1017 cm-3, mobility of 0.51 cm2 V-1 s-1, and resistivity of 9.86 Ω cm; its optical band gap reaches about 2.4 eV. Using the p-type Cu2O film with i- and n-type amorphous silicon layers, heterojunction thin-film solar cells were fabricated on glass substrates. These transparent solar cells employed Ga-doped ZnO films as top and bottom electrodes. Solar cells with Cu2O film oxidized at 200 °C in an air ambient have an open circuit voltage of 0.36 V, short-circuit current of 15.2 mA/cm2, and photoelectric conversion efficiency of 1.98%.

  3. Growth of p-type GaAs/AlGaAs(111) quantum well infrared photodetector using solid source molecular-beam epitaxy

    SciTech Connect

    Li, H.; Mei, T.; Karunasiri, G.; Fan, W.J.; Zhang, D.H.; Yoon, S.F.; Yuan, K.H.

    2005-09-01

    A p-type GaAs/AlGaAs multi-quantum-well infrared photodetector (QWIP) was fabricated on a GaAs (111)A substrate by molecular-beam epitaxy using silicon as dopant. The same structure was also grown on a GaAs (100) wafer simultaneously to compare the material and structural properties. It was found that Si acts as a p-type dopant in the GaAs (111)A sample while it is n-type in the GaAs (100) counterpart. The growth rate was found to be appreciably enhanced for GaAs (111)A compared with that of GaAs (100) orientation, while the Al composition in the barriers was found to be 20% smaller for a (111) orientation which results in a smaller barrier height. A peak responsivity of 1 mA/W with a relatively wide wavelength response ({delta}{lambda}/{lambda}{sub p}{approx}53%) was observed for the GaAs (111)A QWIP, mainly due to the location of the excited state far above the barrier. The photoresponse also showed a relatively strong normal incident absorption probably originating from the mixing of the conduction and valence Bloch states. The optimization of the quantum well parameters should further enhance the responsivity of this p-type QWIP with Si as dopant species.

  4. Improvement in thermoelectric power factor of mechanically alloyed p-type SiGe by incorporation of TiB2

    NASA Astrophysics Data System (ADS)

    Ahmad, Sajid; Dubey, K.; Bhattacharya, Shovit; Basu, Ranita; Bhatt, Ranu; Bohra, A. K.; Singh, Ajay; Aswal, D. K.; Gupta, S. K.

    2016-05-01

    Nearly 60% of the world's useful energy is wasted as heat and recovering a fraction of this waste heat by converting it as useful electrical power is an important area of research[1]. Thermoelectric power generators (TEG) are solid state devices which converts heat into electricity. TEG consists of n and p-type thermoelements connected electrically in series and thermally in parallel[2]. Silicon germanium (SiGe) alloy is one of the conventional high temperature thermoelectric materials and is being used in radio-isotopes based thermoelectric power generators for deep space exploration programs.Temperature (T) dependence of thermoelectric (TE) properties of p-type SiGe and p-type SiGe-x wt.%TiB2 (x=6,8,10%) nanocomposite materials has been studied with in the temperature range of 300 K to 1100 K. It is observed that there is an improvement in the power factor (α2/ρ) of SiGe alloy on addition of TiB2 upto 8 wt.% that is mainly due to increase in the Seebeck coefficient (α) and electrical conductivity (σ) of the alloy.

  5. Modeling of the Thermoelectric Properties of p-Type IrSb(sub 3)

    NASA Technical Reports Server (NTRS)

    Fleurial, J.

    1994-01-01

    IrSb(sub 3) is a compound of the skutterudite family of materials now being investigated at JPL. A combination of experimental and theoretical approaches has been recently applied at JPL to evaluate the potential of several thermoelectric materials such as n-type and p-type Si(sub 80) Ge(sub 20) alloys, n-type and p-type Bi(sub 2) Te(sub 3)-based alloys and p-type Ru(sub 2) Ge(sub 3) compound. The use of a comprehensive model for the thermal and electrical transport properties of a given material over its full temperature range of usefulness is a powerful tool for guiding experimental optimization of the composition, temperature and doping level as well as for predicting the maximum ZT value likely to be achieved.

  6. Identification and design principles of low hole effective mass p-type transparent conducting oxides

    PubMed Central

    Hautier, Geoffroy; Miglio, Anna; Ceder, Gerbrand; Rignanese, Gian-Marco; Gonze, Xavier

    2013-01-01

    The development of high-performance transparent conducting oxides is critical to many technologies from transparent electronics to solar cells. Whereas n-type transparent conducting oxides are present in many devices, their p-type counterparts are not largely commercialized, as they exhibit much lower carrier mobilities due to the large hole effective masses of most oxides. Here we conduct a high-throughput computational search on thousands of binary and ternary oxides and identify several highly promising compounds displaying exceptionally low hole effective masses (up to an order of magnitude lower than state-of-the-art p-type transparent conducting oxides), as well as wide band gaps. In addition to the discovery of specific compounds, the chemical rationalization of our findings opens new directions, beyond current Cu-based chemistries, for the design and development of future p-type transparent conducting oxides. PMID:23939205

  7. Dopant source choice for formation of p-type ZnO: Li acceptor

    NASA Astrophysics Data System (ADS)

    Zeng, Y. J.; Ye, Z. Z.; Xu, W. Z.; Li, D. Y.; Lu, J. G.; Zhu, L. P.; Zhao, B. H.

    2006-02-01

    Li-doped, p-type ZnO thin films have been realized via dc reactive magnetron sputtering. An optimized result with a resistivity of 16.4Ωcm, Hall mobility of 2.65cm2/Vs, and hole concentration of 1.44×1017cm-3 was achieved, and electrically stable over a month. Hall-effect measurements supported by secondary ion mass spectroscopy indicated that the substrate temperature played a key role in optimizing the p-type conduction of Li-doped ZnO thin films. Furthermore, ZnO-based p-n homojunction was fabricated by deposition of a Li-doped p-type ZnO layer on an Al-doped n-type ZnO layer.

  8. Realization of p-type ZnO films via monodoping of Li acceptor

    NASA Astrophysics Data System (ADS)

    Zeng, Yu-Jia; Ye, Zhi-Zhen; Xu, Wei-Zhong; Chen, Lan-Lan; Li, Dan-Ying; Zhu, Li-Ping; Zhao, Bing-Hui; Hu, Ying-Lin

    2005-09-01

    p-Type ZnO thin films have been realized via monodoping of Li acceptor by adopting DC reactive magnetron sputtering. The lowest room-temperature resistivity was found to be 17.6 Ω cm with a Hall mobility of 3.47 cm2 V-1 s-1 and carrier concentration of 1.01×1017 cm-3 for Li-doped p-type ZnO film deposited on glass substrate. The Li-doped ZnO film possessed a good crystallinity with c-axis orientation and a high transmittance (90%) in the visible region. Moreover, the effects of Li content on the crystallinity, electrical and optical properties of p-type ZnO films were discussed.

  9. High performance P-type thermoelectric materials and methods of preparation

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry (Inventor); Borshchevsky, Alexander (Inventor); Fleurial, Jean-Pierre (Inventor)

    2002-01-01

    The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn.sub.4-x A.sub.x Sb.sub.3-y B.sub.y wherein 0.ltoreq.x.ltoreq.4, A is a transition metal, B is a pnicogen, and 0.ltoreq.y.ltoreq.3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn.sub.4 Sb.sub.3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method.

  10. Electrical and optical properties of p-type InN

    SciTech Connect

    Mayer, Marie A.; Choi, Soojeong; Bierwagen, Oliver; Smith, Holland M.; Haller, Eugene E.; Speck, James S.; Walukiewicz, Wladek

    2011-01-01

    We have performed comprehensive studies of optical, thermoelectric and electrical properties of Mg doped InN with varying Mg doping levels and sample thicknesses. Room temperature photoluminescence spectra show a Mg acceptor related emission and the thermopower provides clear evidence for the presence of mobile holes. Although the effects of the hole transport are clearly observed in the temperature dependent electrical properties, the sign of the apparent Hall coefficient remains negative in all samples. We show that the standard model of two electrically well connected layers (n-type surface electron accumulation and p-type bulk) does not properly describe Hall effect in p-type InN.

  11. Tunable electronic structures of p-type Mg doping in AlN nanosheet

    SciTech Connect

    Peng, Yuting; Xia, Congxin Zhang, Heng; Wang, Tianxing; Wei, Shuyi; Jia, Yu

    2014-07-28

    The p-type impurity properties are investigated in the Mg-doped AlN nanosheet by means of first-principles calculations. Numerical results show that the transition energy levels reduce monotonously with the increase in Mg doping concentration in the Mg-doped AlN nanosheet systems, and are lower than that of the Mg-doped bulk AlN case for the cases with larger doping concentration. Moreover, Mg substituting Al atom is energy favorably under N-rich growth experimental conditions. These results are new and interesting to further improve p-type doping efficiency in the AlN nanostructures.

  12. Silicon radiation detectors with oxide charge state compensation

    NASA Technical Reports Server (NTRS)

    Walton, J. T.; Goulding, F. S.

    1987-01-01

    This paper discusses the use of boron implantation on high resistivity P type silicon before oxide growth to compensate for the presence of charge states in the oxide and oxide/silicon interface. The presence of these charge states on high resistivity P type silicon produces an inversion layer which causes high leakage currents on N(+)P junctions and high surface conductance. Compensating the surface region by boron implantation is shown to result in oxide passivated N(+)P junctions with very low leakage currents and with low surface conductance.

  13. Spectral sensitivity of graphene/silicon heterojunction photodetectors

    NASA Astrophysics Data System (ADS)

    Riazimehr, Sarah; Bablich, Andreas; Schneider, Daniel; Kataria, Satender; Passi, Vikram; Yim, Chanyoung; Duesberg, Georg S.; Lemme, Max C.

    2016-01-01

    We have studied the optical properties of two-dimensional (2D) Schottky photodiode heterojunctions made of chemical vapor deposited (CVD) graphene on n- and p-type silicon (Si) substrates. Much better rectification behavior is observed from the diodes fabricated on n-Si substrates in comparison with the devices on p-Si substrates in dark condition. Also, graphene - n-Si photodiodes show a considerable responsivity of 270 mA W-1 within the silicon spectral range in DC reverse bias condition. The present results are furthermore compared with that of a molybdenum disulfide (MoS2) - p-type silicon photodiode.

  14. Synthesis and characterization of a photosensitive interface for hydrogen generation: Chemically modified p-type semiconducting silicon photocathodes

    PubMed Central

    Bookbinder, Dana C.; Bruce, James A.; Dominey, Raymond N.; Lewis, Nathan S.; Wrighton, Mark S.

    1980-01-01

    p-Si photocathodes functionalized first with an N,N′-dialkyl-4,4′-bipyridinium redox reagent, (PQ2+/+-)surf, and then with a Pt precursor, PtCl62-, give significant efficiency (up to 5%) for photoelectrochemical H2 generation with 632.8-nm light. Naked p-Si photocathodes give nearly zero efficiency, owing to poor H2 evolution kinetics that are improved by the (PQ2+/+-)surf/Pt modification. The mechanism of H2 evolution from p-Si/(PQ2+/+-)surf/Pt is first photoexcitation of electrons to the conduction band of Si followed by (PQ2+)surf → (PQ+-)surf reduction. The dispersion of Pt then catalyzes H2O reduction to give H2 and regeneration of (PQ2+)surf. The overall energy conversion efficiency rivals the best direct optical to chemical conversion systems reported to date. PMID:16592907

  15. Synthesis and characterization of a photosensitive interface for hydrogen generation: chemically modified p-type semiconducting silicon photocathodes

    SciTech Connect

    Bookbinder, D.C.; Bruce, J.A.; Dominey, R.N.; Lewis, N.S.; Wrighton, M.S.

    1980-11-01

    p-Si photocathodes functionalized first with an N,N'-dialkyl-4,4'-bipyridinium redox reagent, (PQ/sup 2+/+./)/sub surf/, and then with a Pt precursor, PtCl/sub 6//sup 2 -/, give significant efficiency (up to 5%) for photoelectrochemical H/sub 2/ generation with 632.8-nm light. Naked p-Si photocathodes give nearly zero efficiency, owing to poor H/sub 2/ evolution kinetics that are improved by the (PQ/sup 2+/+.//sub surf)/Pt modification. The mechanism of H/sub 2/ evolution from p-Si/(PQ/sup 2+/+./)/sub surf/Pt is first photoexcitation of electrons to the conduction band of Si followed by (PQ/sup 2 +/)/sub surf/ ..-->.. (PQ/sup +.//sub surf/ reduction. The dispersion of Pt then catalyzes H/sub 2/O reduction to give H/sub 2/ and regeneration of (PQ/sup 2/)/sub surf/. The overall energy conversion efficiency rivals the best direct optical to chemical conversion systems reported to date.

  16. P-type doping of hydrogenated amorphous silicon films with boron by reactive radio-frequency co-sputtering

    NASA Astrophysics Data System (ADS)

    Ohmura, Y.; Takahashi, M.; Suzuki, M.; Sakamoto, N.; Meguro, T.

    2001-12-01

    B has been successfully doped into the hydrogenated amorphous Si films without using explosive and/or toxic gases SiH 4 or B 2H 6 by reactive radio-frequency co-sputtering. The target used for co-sputtering was a composite target composed of a B-doped Si wafer and B chips attached on the Si wafer with silver powder bond. The maximum area fraction of B chips used was 0.11. Argon and hydrogen pressures were 5×10 -3 and 5×10 -4 Torr, respectively. Substrates were kept at 200°C or 250°C during sputtering. The maximum B concentration in the film obtained was 2×10 19 cm -3 from secondary ion mass spectroscopy measurement. Films with resistivity of 10 4-10 5 Ω cm were obtained, which was low for the above acceptor concentration, compared with other group III impurities doping, indicating the high doping efficiency of B. A heterostructure, which was prepared by co-sputtering these B-doped films on an n-type crystalline Si, shows a good rectification characteristic. A small photovoltaic effect is also observed.

  17. Diffusion, Uptake and Release of Hydrogen in p-type Gallium Nitride: Theory and Experiment

    SciTech Connect

    MYERS JR.,SAMUEL M.; WRIGHT,ALAN F.; PETERSEN,GARY A.; WAMPLER,WILLIAM R.; SEAGER,CARLETON H.; CRAWFORD,MARY H.; HAN,JUNG

    2000-06-27

    The diffusion, uptake, and release of H in p-type GaN are modeled employing state energies from density-function theory and compared with measurements of deuterium uptake and release using nuclear-reaction analysis. Good semiquantitative agreement is found when account is taken of a surface permeation barrier.

  18. p -type Bi2Se3 for topological insulator and low-temperature thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Hor, Y. S.; Richardella, A.; Roushan, P.; Xia, Y.; Checkelsky, J. G.; Yazdani, A.; Hasan, M. Z.; Ong, N. P.; Cava, R. J.

    2009-05-01

    The growth and elementary properties of p -type Bi2Se3 single crystals are reported. Based on a hypothesis about the defect chemistry of Bi2Se3 , the p -type behavior has been induced through low-level substitutions (1% or less) of Ca for Bi. Scanning tunneling microscopy is employed to image the defects and establish their charge. Tunneling and angle-resolved photoemission spectra show that the Fermi level has been lowered into the valence band by about 400 meV in Bi1.98Ca0.02Se3 relative to the n -type material. p -type single crystals with ab -plane Seebeck coefficients of +180μV/K at room temperature are reported. These crystals show an anomalous peak in the Seebeck coefficient at low temperatures, reaching +120μVK-1 at 7 K, giving them a high thermoelectric power factor at low temperatures. In addition to its interesting thermoelectric properties, p -type Bi2Se3 is of substantial interest for studies of technologies and phenomena proposed for topological insulators.

  19. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOEpatents

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  20. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOEpatents

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  1. Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida)

    PubMed Central

    Hanikenne, Marc; Baurain, Denis

    2013-01-01

    Metal ATPases are a subfamily of P-type ATPases involved in the transport of metal cations across biological membranes. They all share an architecture featuring eight transmembrane domains in pairs of two and are found in prokaryotes as well as in a variety of Eukaryotes. In Arabidopsis thaliana, eight metal P-type ATPases have been described, four being specific to copper transport and four displaying a broader metal specificity, including zinc, cadmium, and possibly copper and calcium. So far, few efforts have been devoted to elucidating the origin and evolution of these proteins in Eukaryotes. In this work, we use large-scale phylogenetics to show that metal P-type ATPases form a homogenous group among P-type ATPases and that their specialization into either monovalent (Cu) or divalent (Zn, Cd…) metal transport stems from a gene duplication that took place early in the evolution of Life. Then, we demonstrate that the four subgroups of plant metal ATPases all have a different evolutionary origin and a specific taxonomic distribution, only one tracing back to the cyanobacterial progenitor of the chloroplast. Finally, we examine the subsequent evolution of these proteins in green plants and conclude that the genes thoroughly characterized in model organisms are often the result of lineage-specific gene duplications, which calls for caution when attempting to infer function from sequence similarity alone in non-model organisms. PMID:24575101

  2. A structural and functional perspective of DyP-type peroxidase family.

    PubMed

    Yoshida, Toru; Sugano, Yasushi

    2015-05-15

    Dye-decolorizing peroxidase from the basidiomycete Bjerkandera adusta Dec 1 (DyP) is a heme peroxidase. This name reflects its ability to degrade several anthraquinone dyes. The substrate specificity, the amino acid sequence, and the tertiary structure of DyP are different from those of the other heme peroxidase (super)families. Therefore, many proteins showing the similar amino acid sequences to that of DyP are called DyP-type peroxidase which is a new family of heme peroxidase identified in 2007. In fact, all structures of this family show a similar structure fold. However, this family includes many proteins whose amino acid sequence identity to DyP is lower than 15% and/or whose catalytic efficiency (kcat/Km) is a few orders of magnitude less than that of DyP. A protein showing an activity different from peroxidase activity (dechelatase activity) has been also reported. In addition, the precise physiological roles of DyP-type peroxidases are unknown. These facts raise a question of whether calling this family DyP-type peroxidase is suitable. Here, we review the differences and similarities of structure and function among this family and propose the reasonable new classification of DyP-type peroxidase family, that is, class P, I and V. In this contribution, we discuss the adequacy of this family name. PMID:25655348

  3. Amorphous silicon/polycrystalline thin film solar cells

    SciTech Connect

    Ullal, H.S.

    1991-03-13

    An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

  4. Theoretical study of hole initiated impact ionization in bulk silicon and GaAs using a wave-vector-dependent numerical transition rate formulation within an ensemble Monte Carlo calculation

    NASA Technical Reports Server (NTRS)

    Oguzman, Ismail H.; Wang, Yang; Kolnik, Jan; Brennan, Kevin F.

    1995-01-01

    In this paper, calculations of the hole initiated interband impact ionization rate in bulk silicon and GaAs are presented based on an ensemble Monte Carlo simulation with the inclusion of a wave-vector-dependent numerical transition rate formulation. The ionization transition rate is determined for each of the three valence bands, heavy, light, and split-off, using Fermi's golden rule with a two-body, screened Coulomb interaction. The dielectric function used within the calculation is assumed to be wave-vector-dependent. Calculations of the field-dependent impact ionization rate as well as the quantum yield are presented. It is found from both the quantum yield results and examination of the hole distribution function that the effective threshold energy for hole initiated impact ionization is relatively soft, similar to that predicted for the corresponding electron initiated ionization events occur more frequently than either heavy or split-offf initiated ionization events in bulk silicon over the applied electric field strengths examined here, 250-500 kV/cm. Conversely,in GaAs, the vast majority of hole initated ionization events originate from holes within the split-off band.

  5. [Biological function of some elements and their compounds. IV. Silicon, silicon acids, silicones].

    PubMed

    Puzanowska-Tarasiewicz, Helena; Kuźmicka, Ludmiła; Tarasiewicz, Mirosław

    2009-11-01

    The review is devoted for the occurance, meaning of silicon and their compounds, especially silicon acids and silicones. Silicon participates in biosynthesis of collagen, the basic component of connective tissue. It strengthens and makes the walls of blood vessels more flexible, diminishes capillaries permeability, accelerates healing processes, has a sebostatic activity, strengthens hair and nails. This element has a beneficial effect on phosphorylation of proteins saccharides, and nucleotides. It is also essential for the formation of cytoskeleton and other cellular structures of mechanical or supportive function. Silicon is an initial substrate for obtaining silicones. These are synthetic polymers, in which silicon atoms are bound by oxygen bridges. They are used in almost all kinds of products due to their most convenient physical and chemical properties: moistening and film-forming, giving liquid form increasing solubility. Silicon acids form colloid gel, silica gel, with absorptive abilities, like active carbon. PMID:19999810

  6. The p-type conduction mechanism in Cu2O: a first principles study.

    PubMed

    Nolan, Michael; Elliott, Simon D

    2006-12-01

    Materials based on Cu2O are potential p-type transparent semiconducting oxides. Developing an understanding of the mechanism leading to p-type behaviour is important. An accepted origin is the formation of Cu vacancies. However, the way in which this mechanism leads to p-type properties needs to be investigated. This paper presents a first principles analysis of the origin of p-type semiconducting behaviour in Cu2O with 1.5 and 3% Cu vacancy concentrations. Plane wave density functional theory (DFT) with the Perdew-Burke Ernzerhof (PBE) exchange-correlation functional is applied. In order to investigate the applicability of DFT, we firstly show that CuO, with 50% Cu vacancies cannot be described with DFT and in order to obtain a consistent description of CuO, the DFT + U approach is applied. The resulting electronic structure is consistent with experiment, with a spin moment of 0.64 mu(B) and an indirect band gap of 1.48 eV for U = 7 eV. However, for a 3% Cu vacancy concentration in Cu2O, the DFT and DFT + U descriptions of Cu vacancies are similar, indicating that DFT is suitable for a small concentration of Cu vacancies; the formation energy of a Cu vacancy is no larger than 1.7 eV. Formation of Cu vacancies produces delocalised hole states with hole effective masses consistent with the semiconducting nature of Cu2O. These results demonstrate that the p-type semiconducting properties observed for Cu2O are explained by a small concentration of Cu vacancies. PMID:19810413

  7. Ternary chalcogenides Cs2Zn3Se4 and Cs2Zn3Te4 : Potential p -type transparent conducting materials

    DOE PAGESBeta

    Shi, Hongliang; Saparov, Bayrammurad; Singh, David J.; Sefat, Athena S.; Du, Mao-Hua

    2014-11-11

    Here we report prediction of two new ternary chalcogenides that can potentially be used as p-type transparent conductors along with experimental synthesis and initial characterization of these previously unknown compounds, Cs2Zn3Ch4 (Ch = Se, Te). In particular, the structures are predicted based on density functional calculations and confirmed by experiments. Phase diagrams, electronic structure, optical properties, and defect properties of Cs2Zn3Se4 and Cs2Zn3Te4 are calculated to assess the viability of these materials as p-type TCMs. Cs2Zn3Se4 and Cs2Zn3Te4, which are stable under ambient air, display large optical band gaps (calculated to be 3.61 and 2.83 eV, respectively) and have smallmore » hole effective masses (0.5-0.77 me) that compare favorably with other proposed p-type TCMs. Defect calculations show that undoped Cs2Zn3Se4 and Cs2Zn3Te4 are p-type materials. However, the free hole concentration may be limited by low-energy native donor defects, e.g., Zn interstitials. Lastly, non-equilibrium growth techniques should be useful for suppressing the formation of native donor defects, thereby increasing the hole concentration.« less

  8. Enhancing the far-ultraviolet sensitivity of silicon complementary metal oxide semiconductor imaging arrays

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Bai, Yibin; Ryu, Kevin K.; Gregory, James A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winters, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.

    2015-10-01

    We report our progress toward optimizing backside-illuminated silicon P-type intrinsic N-type complementary metal oxide semiconductor devices developed by Teledyne Imaging Sensors (TIS) for far-ultraviolet (UV) planetary science applications. This project was motivated by initial measurements at Southwest Research Institute of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures, which revealed a promising QE in the 100 to 200 nm range. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include the following: (1) representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory; (2) preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; (3) detector fabrication was completed through the pre-MBE step; and (4) initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments.

  9. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.

  10. Indentation plasticity and fracture in silicon

    NASA Technical Reports Server (NTRS)

    Rybicki, George C.; Pirouz, P.

    1988-01-01

    Measurements of the ductile-brittle transition temperature of heavily doped silicon were carried out using indentation techniques. Diamond pyramid hardness tests were performed on the (100) face of heavily doped N-type and P-type and intrinsic silicon single crystals. Tests were performed over the range 200 C to 850 C and loads of 100 to 500 g were used. Samples were subsequently etched to reveal dislocation rosettes produced by indentation. Intrinsic silicon underwent a ductile-brittle transition at 660 C, P-type at 645 C and N-type at 625 C. Hardness values varied from 1.1 GPa at 700 C to 11.7 GPa at 200 C. Significant effects of hardness on doping were present only at the highest temperatures. Lower loads generally produced higher hardness but load did not affect the Ductile-Brittle Transition Temperature (DBTT). Fracture toughness values ranged from 0.9 MPa m(1/2) at 200 C to 2.75 MPa m(1/2) near the DBTT. Doping did not affect the fracture toughness of silicon. P-type doping increased the size of dislocation rosettes observed after indentation, but N-type did not, in contradiction of the expected results. Results are discussed in terms of the effect of doping on the dislocation mobility in silicon.

  11. Direct observation of proton pumping by a eukaryotic P-type ATPase.

    PubMed

    Veshaguri, Salome; Christensen, Sune M; Kemmer, Gerdi C; Ghale, Garima; Møller, Mads P; Lohr, Christina; Christensen, Andreas L; Justesen, Bo H; Jørgensen, Ida L; Schiller, Jürgen; Hatzakis, Nikos S; Grabe, Michael; Pomorski, Thomas Günther; Stamou, Dimitrios

    2016-03-25

    In eukaryotes, P-type adenosine triphosphatases (ATPases) generate the plasma membrane potential and drive secondary transport systems; however, despite their importance, their regulation remains poorly understood. We monitored at the single-molecule level the activity of the prototypic proton-pumping P-type ATPase Arabidopsis thaliana isoform 2 (AHA2). Our measurements, combined with a physical nonequilibrium model of vesicle acidification, revealed that pumping is stochastically interrupted by long-lived (~100 seconds) inactive or leaky states. Allosteric regulation by pH gradients modulated the switch between these states but not the pumping or leakage rates. The autoinhibitory regulatory domain of AHA2 reduced the intrinsic pumping rates but increased the dwell time in the active pumping state. We anticipate that similar functional dynamics underlie the operation and regulation of many other active transporters. PMID:27013734

  12. Temperature driven p-n-p type conduction switching materials: current trends and future directions.

    PubMed

    Guin, Satya N; Biswas, Kanishka

    2015-04-28

    Modern technological inventions have been going through a "renaissance" period. Development of new materials and understanding of fundamental structure-property correlations are the important steps to move further for advanced technologies. In modern technologies, inorganic semiconductors are the leading materials which are extensively used for different applications. In the current perspective, we present discussion on an important class of materials that show fascinating p-n-p type conduction switching, which can have potential applications in diodes or transistor devices that operate reversibly upon temperature or voltage change. We highlight the key concepts, present the current fundamental understanding and show the latest developments in the field of p-n-p type conduction switching. Finally, we point out the major challenges and opportunities in this field. PMID:25812630

  13. Effects of hole localization on limiting p-type conductivity in oxide and nitride semiconductors

    SciTech Connect

    Lyons, J. L.; Janotti, A.; Van de Walle, C. G.

    2014-01-07

    We examine how hole localization limits the effectiveness of substitutional acceptors in oxide and nitride semiconductors and explain why p-type doping of these materials has proven so difficult. Using hybrid density functional calculations, we find that anion-site substitutional impurities in AlN, GaN, InN, and ZnO lead to atomic-like states that localize on the impurity atom itself. Substitution with cation-site impurities, on the other hand, triggers the formation of polarons that become trapped on nearest-neighbor anions, generally leading to large ionization energies for these acceptors. Unlike shallow effective-mass acceptors, these two types of deep acceptors couple strongly with the lattice, significantly affecting the optical properties and severely limiting prospects for achieving p-type conductivity in these wide-band-gap materials.

  14. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOEpatents

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2014-06-24

    A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 .ANG.. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.

  15. Mycobacterium tuberculosis P-Type ATPases: Possible Targets for Drug or Vaccine Development

    PubMed Central

    2014-01-01

    Tuberculosis (TB) has been the biggest killer in the human history; currently, Mycobacterium tuberculosis (Mtb) kills nearly 2 million people each year worldwide. The high prevalence of TB obligates the identification of new therapeutic targets and the development of anti-TB vaccines that can control multidrug resistance and latent TB infections. Membrane proteins have recently been suggested as key targets for bacterial viability. Current studies have shown that mycobacteria P-type ATPases may play critical roles in ion homeostasis and in the response of mycobacteria to toxic substances in the intraphagosomal environment. In this review, we bring together the genomic, transcriptomic, and structural aspects of the P-type ATPases that are relevant during active and latent Mtb infections, which can be useful in determining the potential of these ATPases as drug targets and in uncovering their possible roles in the development of new anti-TB attenuated vaccines. PMID:25110669

  16. High temperature terahertz response in a p-type quantum dot-in-well photodetector

    SciTech Connect

    Wolde, Seyoum; Lao, Yan-Feng; Unil Perera, A. G.; Zhang, Y. H.; Wang, T. M.; Kim, J. O.; Schuler-Sandy, Ted; Tian, Zhao-Bing; Krishna, S.

    2014-10-13

    Terahertz (THz) response observed in a p-type InAs/In{sub 0.15}Ga{sub 0.85}As/GaAs quantum dots-in-a-well (DWELL) photodetector is reported. This detector displays expected mid-infrared response (from ∼3 to ∼10 μm) at temperatures below ∼100 K, while strong THz responses up to ∼4.28 THz is observed at higher temperatures (∼100–130 K). Responsivity and specific detectivity at 9.2 THz (32.6 μm) under applied bias of −0.4 V at 130 K are ∼0.3 mA/W and ∼1.4 × 10{sup 6} Jones, respectively. Our results demonstrate the potential use of p-type DWELL in developing high operating temperature THz devices.

  17. Detection of minority carrier traps in p-type 4H-SiC

    SciTech Connect

    Alfieri, G.; Kimoto, T.

    2014-03-03

    Contrarily to the case of n-type 4H-SiC, very little is known about the presence of minority carrier traps in p-type epilayers. In this study, we performed the electrical characterization of as-grown, electron irradiated, and thermally oxidized p-type 4H-SiC, by using minority carrier transient spectroscopy. Four minority carrier traps are reported in 1.6–2.3 eV energy range above the valence band edge (E{sub V}). Particular emphasis is given to the mid-gap minority carrier trap (EH{sub 6∕7}) and to its correlation to an energetically close mid-gap majority carrier trap (HK4)

  18. p-type conduction in Zn-ion implanted InN films

    NASA Astrophysics Data System (ADS)

    Xie, W. M.; Y Xie, Q.; Zhu, H. P.; Wang, W.; Cai, H. L.; Zhang, F. M.; Wu, X. S.

    2015-06-01

    We report p-type conductivity in wurtzite indium nitride (InN) experimentally and theoretically. The as-deposited InN films are implanted with various doses of Zn ions. The Hall coefficient is positive for samples with doses of 2.5 ~ 10   ×   1014 ions cm-2 at low temperature and turns negative as the temperature increases. This notable sign change of the Hall coefficient confirms the existence of mobile holes in Zn-implanted InN. Moreover, first principle calculations indicate that Zn may be a more stable p-type dopant in InN than that of Mg and Ba because of its low ionization energy.

  19. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    SciTech Connect

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  20. P-Type Polar Transition of Chemically Doped Multilayer MoS2 Transistor.

    PubMed

    Liu, Xiaochi; Qu, Deshun; Ryu, Jungjin; Ahmed, Faisal; Yang, Zheng; Lee, Daeyeong; Yoo, Won Jong

    2016-03-01

    A high-performance multilayer MoS2 p-type field-effect transistor is realized via controllable chemical doping, which shows an excellent on/off ratio of 10(9) and a maximum hole mobility of 132 cm(2) V(-1) s(-1) at 133 K. The developed technique will enable 2D materials to be used for future high-efficiency and low-power semiconductor device applications. PMID:26808483

  1. Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobao; Zhang, Bingyan; Cui, Jin; Xiong, Dehua; Shen, Yan; Chen, Wei; Sun, Licheng; Cheng, Yibing; Wang, Mingkui

    2013-08-01

    Herein, an organic redox couple 1-methy-1H-tetrazole-5-thiolate (T-) and its disulfide dimer (T2) redox shuttle, as an electrolyte, is introduced in a p-type dye-sensitized solar cell (DSC) on the basis of an organic dye (P1) sensitizer and nanocrystal CuCrO2 electrode. Using this iodide-free transparent redox electrolyte in conjunction with the sensitized heterojunction, we achieve a high open-circuit voltage of over 300 mV. An optimal efficiency of 0.23% is obtained using a CoS counter electrode and an optimized electrolyte composition under AM 1.5 G 100 mW cm-2 light illumination which, to the best of our knowledge, represents the highest efficiency that has so far been reported for p-type DSCs using organic redox couples.Herein, an organic redox couple 1-methy-1H-tetrazole-5-thiolate (T-) and its disulfide dimer (T2) redox shuttle, as an electrolyte, is introduced in a p-type dye-sensitized solar cell (DSC) on the basis of an organic dye (P1) sensitizer and nanocrystal CuCrO2 electrode. Using this iodide-free transparent redox electrolyte in conjunction with the sensitized heterojunction, we achieve a high open-circuit voltage of over 300 mV. An optimal efficiency of 0.23% is obtained using a CoS counter electrode and an optimized electrolyte composition under AM 1.5 G 100 mW cm-2 light illumination which, to the best of our knowledge, represents the highest efficiency that has so far been reported for p-type DSCs using organic redox couples. Electronic supplementary information (ESI) available: Optimization of electrolyte concentration and the solvent used in the experiment, and the effects of different redox couples and the counter electrode on the dark current. See DOI: 10.1039/c3nr02169f

  2. Interfacial energy level bending in a crystalline p/p-type organic heterostructure

    SciTech Connect

    Zhu Feng; Grobosch, Mandy; Treske, Uwe; Knupfer, Martin; Huang Lizhen; Ji Shiliang; Yan Donghang

    2011-05-16

    A conduction channel was observed at the heterointerface of the crystalline p-type organic films copper phthalocyanine (CuPc) and 2,5-bis(4-biphenylyl) bithiophene (BP2T). Energy level bending at the interface is confirmed by photoemission spectroscopy, which verifies a charge transfer between CuPc and BP2T. This provides a further route to utilize interfacial electronic properties in functional devices and also documents the importance of reconsidering the interfacial electronic structure of organic heterostructures.

  3. Low-temperature solution-processed p-type vanadium oxide for perovskite solar cells.

    PubMed

    Sun, Haocheng; Hou, Xiaomeng; Wei, Qiulong; Liu, Huawei; Yang, Kecheng; Wang, Wei; An, Qinyou; Rong, Yaoguang

    2016-06-21

    A low-temperature solution-processed inorganic p-type contact material of vanadium oxide (VOx) was developed to fabricate planar-heterojunction perovskite solar cells. Using a solvent-assisted process, high-quality uniform and compact perovskite (CH3NH3PbI3) films were deposited on VOx coated substrates. Due to the high transmittance and quenching efficiency of VOx layers, a power conversion efficiency of over 14% was achieved. PMID:27263631

  4. Tunable p-type conductivity and transport properties of AlN nanowires via Mg doping.

    PubMed

    Tang, Yong-Bing; Bo, Xiang-Hui; Xu, Jun; Cao, Yu-Lin; Chen, Zhen-Hua; Song, Hai-Sheng; Liu, Chao-Ping; Hung, Tak-Fu; Zhang, Wen-Jun; Cheng, Hui-Ming; Bello, Igor; Lee, Shuit-Tong; Lee, Chun-Sing

    2011-05-24

    Arrays of well-aligned AlN nanowires (NWs) with tunable p-type conductivity were synthesized on Si(111) substrates using bis(cyclopentadienyl)magnesium (Cp(2)Mg) vapor as a doping source by chemical vapor deposition. The Mg-doped AlN NWs are single-crystalline and grow along the [001] direction. Gate-voltage-dependent transport measurements on field-effect transistors constructed from individual NWs revealed the transition from n-type conductivity in the undoped AlN NWs to p-type conductivity in the Mg-doped NWs. By adjusting the doping gas flow rate (0-10 sccm), the conductivity of AlN NWs can be tuned over 7 orders of magnitude from (3.8-8.5) × 10(-6) Ω(-1) cm(-1) for the undoped sample to 15.6-24.4 Ω(-1) cm(-1) for the Mg-doped AlN NWs. Hole concentration as high as 4.7 × 10(19) cm(-3) was achieved for the heaviest doping. In addition, the maximum hole mobility (∼6.4 cm(2)/V s) in p-type AlN NWs is much higher than that of Mg-doped AlN films (∼1.0 cm(2)/V s). (2) The realization of p-type AlN NWs with tunable electrical transport properties may open great potential in developing practical nanodevices such as deep-UV light-emitting diodes and photodetectors. PMID:21480640

  5. Method for producing high carrier concentration p-Type transparent conducting oxides

    DOEpatents

    Li, Xiaonan; Yan, Yanfa; Coutts, Timothy J.; Gessert, Timothy A.; Dehart, Clay M.

    2009-04-14

    A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

  6. P-type Semiconducting Behavior of BaSn1-xRuxO3 system

    NASA Astrophysics Data System (ADS)

    Kwon, Hyukwoo; Shin, Juyeon; Char, Kookrin

    2015-03-01

    BaSnO3 is a promising transparent perovskite oxide semiconductor due to its high mobility and chemical stability. Exploiting such properties, we have applied BaSnO3 to the field effect, the 2-dimensional electron gas, and the pn-junction devices. In spite of the success of the K-doped BaSnO3 as a p-type doped, its carrier density at room temperature is rather small due to its high activation energy of about 0.5 eV. In continuation of our previous study on SrSn1-xRuxO3 system, we studied the p-type semiconducting behavior of BaSn1-xRuxO3 system. We have epitaxially grown the BaSn1-xRuxO3 (0 <=x <=0.12) thin films by pulsed laser deposition. X-ray diffraction measurements show that the films maintain a single phase over the entire doping range and the lattice constants of the system decrease monotonously as the doping increases. Transport measurements show that the films are semiconducting and their resistivities dramatically decrease as the Ru doping increases. Hall measurement data show that the charge carriers are p-type and its corresponding mobility values vary from 0.3 ~ 0.04 cm2/V .s, depending on the doping rate. The hole carrier densities, measured to be 1017 ~ 1019 /cm3, are larger than those of K-doped BaSnO3. Using BaSn1-xRuxO3 and Ba1-xLaxSnO3 as p-type and n-type semiconductors, we will fabricate pn-junctions and report its performance.

  7. Systematic Study Related to the Role of Initial Impurities and Irradiation Rates in the Formation and Evolution of Complex Defects in Silicon for Detectors in HEP Experiments

    NASA Astrophysics Data System (ADS)

    Lazanu, S.; Lazanu, I.

    The influence of oxygen and carbon impurities on the concentrations of defects in silicon for detector uses, in complex fields of radiation, characteristic to high energy physics experiments, is investigated in the frame of the quantitative phenomenological model developed previously by the authors and extended in the present paper. Continuous irradiation conditions are considered, simulating realistically the environments for these experiments. The generation rate of primary defects is calculated starting from the projectile-silicon interaction and from the recoil energy redistribution in the lattice. The mechanisms of formation of complex defects are explicitly analysed. Vacancy-interstitial annihilation, interstitial and vacancy migration to sinks, divacancy, vacancy- and interstitial-impurity complex formation and decomposition are considered. Oxygen and carbon impurities present in silicon could monitor the concentration of all stable defects, due to their interaction with vacancies and interstitials. Their role in the mechanisms of formation and decomposition of the following stable defects: V2, VO, V2O, Ci, CiOi, CiCs and VP, is studied. The model predictions cover a generation rate of primary defects between 102 pairs/cm3/s and 1011 pairs/cm3/s, and could be a useful clue in obtaining harder materials for detectors for space missions, at the new generation of accelerators, as, e.g. LHC, Super-LHC and Eloisatron, or for industrial applications.

  8. Lithium-ion drifting: Application to the study of point defects in floating-zone silicon

    NASA Technical Reports Server (NTRS)

    Walton, J. T.; Wong, Y. K.; Zulehner, W.

    1997-01-01

    The use of lithium-ion (Li(+)) drifting to study the properties of point defects in p-type Floating-Zone (FZ) silicon crystals is reported. The Li(+) drift technique is used to detect the presence of vacancy-related defects (D defects) in certain p-type FZ silicon crystals. SUPREM-IV modeling suggests that the silicon point defect diffusivities are considerably higher than those commonly accepted, but are in reasonable agreement with values recently proposed. These results demonstrate the utility of Li(+) drifting in the study of silicon point defect properties in p-type FZ crystals. Finally, a straightforward measurement of the Li(+) compensation depth is shown to yield estimates of the vacancy-related defect concentration in p-type FZ crystals.

  9. p-type semiconducting Cu2O-CoO thin films prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Suzuki, Shingo; Miyata, Toshihiro; Minami, Tadatsugu

    2003-07-01

    The preparation by magnetron sputtering of p-type semiconducting thin films consisting of a multicomponent oxide composed of Cu oxide and Co oxide is described. The electrical, optical, and crystallographical properties of films deposited by rf magnetron sputtering using (Cu2O)1-x-(CoO)x powder targets were strongly dependent on not only the deposition condition but also the calcination condition as well as the CoO content of the targets. These properties drastically changed in films prepared with a CoO content around 90 mol %. All prepared films, i.e., CoO content in the range from 0 to 100 mol %, were found to be p type, or positive hole conductors, as evidenced from the Seebeck effect: Resistivities in the range from 103 to 10-3 Ω cm. A hole concentration on the order of 1016 cm-3 and a mobility on the order of 10-1 cm2/V s were obtained in an amorphous multicomponent oxide film prepared with a CoO content of 50 mol %. Fabricated thin-film pin heterojunction diodes consisting of a p-type high-resistance multicomponent oxide combined with undoped ZnO and n-type Al-doped ZnO exhibited a rectifying current-voltage characteristic.

  10. Nucleotide recognition by CopA, a Cu+-transporting P-type ATPase

    PubMed Central

    Tsuda, Takeo; Toyoshima, Chikashi

    2009-01-01

    Heavy metal pumps constitute a large subgroup in P-type ion-transporting ATPases. One of the outstanding features is that the nucleotide binding N-domain lacks residues critical for ATP binding in other well-studied P-type ATPases. Instead, they possess an HP-motif and a Gly-rich sequence in the N-domain, and their mutations impair ATP binding. Here, we describe 1.85 Å resolution crystal structures of the P- and N-domains of CopA, an archaeal Cu+-transporting ATPase, with bound nucleotides. These crystal structures show that CopA recognises the adenine ring completely differently from other P-type ATPases. The crystal structure of the His462Gln mutant, in the HP-motif, a disease-causing mutation in human Cu+-ATPases, shows that the Gln side chain mimics the imidazole ring, but only partially, explaining the reduction in ATPase activity. These crystal structures lead us to propose a role of the His and a mechanism for removing Mg2+ from ATP before phosphoryl transfer. PMID:19478797

  11. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    PubMed Central

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4′-(2,2-dicyanovinyl)-[1,1′-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  12. MD Simulations of P-Type ATPases in a Lipid Bilayer System.

    PubMed

    Autzen, Henriette Elisabeth; Musgaard, Maria

    2016-01-01

    Molecular dynamics (MD) simulation is a computational method which provides insight on protein dynamics with high resolution in both space and time, in contrast to many experimental techniques. MD simulations can be used as a stand-alone method to study P-type ATPases as well as a complementary method aiding experimental studies. In particular, MD simulations have proved valuable in generating and confirming hypotheses relating to the structure and function of P-type ATPases. In the following, we describe a detailed practical procedure on how to set up and run a MD simulation of a P-type ATPase embedded in a lipid bilayer using software free of use for academics. We emphasize general considerations and problems typically encountered when setting up simulations. While full coverage of all possible procedures is beyond the scope of this chapter, we have chosen to illustrate the MD procedure with the Nanoscale Molecular Dynamics (NAMD) and the Visual Molecular Dynamics (VMD) software suites. PMID:26695055

  13. Towards p-type doping of ZnO by ion implantation

    SciTech Connect

    Coleman, V; Tan, H H; Jagadish, C; Kucheyev, S; Phillips, M; Zou, J

    2005-01-18

    Zinc oxide is a very attractive material for a range of optoelectronic devices including blue light-emitting diodes and laser diodes. Though n-type doping has been successfully achieved, p-type doing of ZnO is still a challenge that must be overcome before p-n junction devices can be realized. Ion implantation is widely used in the microelectronics industry for selective area doping and device isolation. Understanding damage accumulation and recrystallization processes is important for achieving selective area doping. In this study, As (potential p-type dopant) ion implantation and annealing studies were carried out. ZnO samples were implanted with high dose (1.4 x 10{sup 17} ions/cm{sup 2}) 300 keV As ions at room temperature. Furnace annealing of samples in the range of 900 C to 1200 C was employed to achieve recrystallization of amorphous layers and electrical activation of the dopant. Rutherford backscattering/channeling spectrometry, transmission electron microscopy and cathodolumiescence spectroscopy were used to monitor damage accumulation and annihilation behavior in ZnO. Results of this study have significant implications for p-type doing of ZnO by ion implantation.

  14. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells.

    PubMed

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4'-(2,2-dicyanovinyl)-[1,1'-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  15. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-05-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4‧-(2,2-dicyanovinyl)-[1,1‧-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up.

  16. Computational design of p-type contacts for MoS2-based electronic devices

    NASA Astrophysics Data System (ADS)

    Kumar, Priyank; Musso, Tiziana; Foster, Adam; Grossman, Jeffrey

    2015-03-01

    The excellent physical and semiconducting properties of transition metal dichalcogenide (TMDC) monolayers make them promising materials for many applications. A well-known example is MoS2, which has gained significant attention as a channel material for next-generation transistors. While n-type MoS2 field-effect transistors (n-FETs) can be fabricated with relative ease, fabrication of p-FETs remains a challenge as the Fermi-level of elemental metals used as contacts are pinned close to the conduction band, leading to large p-type Schottky barrier heights (SBHs). Using ab initio computations, we design and propose efficient hole contacts utilizing high work function oxide-based hole injection materials, with the aim of advancing p-type MoS2 device technology. Our calculations will highlight the possibility to tune and lower the p-type SBH at the metal/semiconductor interface by controlling the structural properties of oxide materials. Taken together, our results provide an interesting platform for experimental design of next-generation MoS2-based electronic and optoelectronic devices.

  17. Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases.

    PubMed

    Collet, J F; Stroobant, V; Van Schaftingen, E

    1999-11-26

    Phosphoserine phosphatase belongs to a new class of phosphotransferases forming an acylphosphate during catalysis and sharing three motifs with P-type ATPases and haloacid dehalogenases. The phosphorylated residue was identified as the first aspartate in the first motif (DXDXT) by mass spectrometry analysis of peptides derived from the phosphorylated enzyme treated with NaBH(4) or alkaline [(18)O]H(2)O. Incubation of native phosphoserine phosphatase with phosphoserine in [(18)O]H(2)O did not result in (18)O incorporation in residue Asp-20, indicating that the phosphoaspartate is hydrolyzed, as in P-type ATPases, by attack of the phosphorus atom. Mutagenesis studies bearing on conserved residues indicated that four conservative changes either did not affect (S109T) or caused a moderate decrease in activity (G178A, D179E, and D183E). Other mutations inactivated the enzyme by >80% (S109A and G180A) or even by >/=99% (D179N, D183N, K158A, and K158R). Mutations G178A and D179N decreased the affinity for phosphoserine, suggesting that these residues participate in the binding of the substrate. Mutations of Asp-179 decreased the affinity for Mg(2+), indicating that this residue interacts with the cation. Thus, investigated residues appear to play an important role in the reaction mechanism of phosphoserine phosphatase, as is known for equivalent residues in P-type ATPases and haloacid dehalogenases. PMID:10567362

  18. Low temperature coefficient of resistance and high gage factor in beryllium-doped silicon

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Littlejohn, M. A.

    1974-01-01

    The gage factor and resistivity of p-type silicon doped with beryllium was studied as a function of temperature, crystal orientation, and beryllium doping concentration. It was shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gage factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, whereas the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  19. Investigation of Intrinsic Electrical Characteristics and Contact Effects in p-Type Tin Monoxide Thin-Film Transistors Using Gated-Four-Probe Measurements.

    PubMed

    Han, Young-Joon; Choi, Yong-Jin; Jeong, Hoon; Kwon, Hyuck-In

    2015-10-01

    We investigate the intrinsic electrical characteristics and source/drain parasitic resistance in p-type SnO TFTs fabricated using Ni electrodes based on the gated-four-probe method. Because of the relatively high work function and inexpensive price, Ni has been most frequently used as the source/drain electrode materials in p-type SnO TFTs. However, our experimental data shows that the width normalized parasitic resistances of SnO TFT with Ni electrodes are around one to three orders of magnitude higher than those in the representative n-type oxide TFT, amorphous indium- gallium-zinc oxide TFT, and are comparable with those in amorphous silicon TFTs with Mo electrodes. This result implies that the electrical performance of the short channel SnO TFT can be dominated by the source/drain parasitic resistances. The intrinsic field-effect mobility extracted without being influenced by source/drain parasitic resistance was ~2.0 cm2/Vs, which is around twice the extrinsic field-effect mobility obtained from the conventional transconductance method. The large contact resistance is believed to be mainly caused from the heterogeneous electronic energy-level mismatch between the SnO and Ni electrodes. PMID:26726376

  20. XPS characterization and photoelectrochemical behaviour of p-type 3C-SiC films on p-Si substrates for solar water splitting

    NASA Astrophysics Data System (ADS)

    Ma, Quan-Bao; Kaiser, Bernhard; Ziegler, Jürgen; Fertig, Dominic; Jaegermann, Wolfram

    2012-08-01

    The electrochemical (EC) properties of single-crystalline p-type 3C-SiC films on p-Si substrates were investigated as electrodes in H2SO4 aqueous solutions in dark and under white light illumination. Before EC tests, the SiC films were etched by HF solution and aqua-regia-HF solution, respectively, and then investigated by x-ray photoelectron spectroscopy (XPS) including one untreated SiC sample. After EC tests, XPS was also applied to investigate the surface chemical state changes. The EC measurements indicate that the p-type 3C-SiC films on p-Si substrates can generate a cathodic photocurrent as the photocathode, which corresponds to hydrogen production, and generate an anodic photocurrent as the photoanode, which corresponds to oxygen evolution. XPS shows the surface of all the SiC films was oxidized due to anodic oxidation applied by a positive bias during the EC test, which indicates the formation of silicon oxides, CO2 or CO and carbonates.

  1. Process for making silicon

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  2. Temperature Dependent Tensile Fracture Stress of n- and p-Type Filled-Skutterudite Materials

    SciTech Connect

    Salvador, James R.; Yang, Jihui; Wereszczak, Andrew A; Wang, Hsin; Cho, Jung Y

    2011-01-01

    While materials with excellent thermoelectric performance are most desirable for higher heat to electrical energy conversion efficiency, thermoelectric materials must also be sufficiently mechanically robust to withstand the large number of thermal cycles and vibrational stresses likely to be encountered while in service, particularly in automotive applications. Further these TE materials should be composed of non-toxic and naturally abundant constituent elements and be available as both n- and p-type varieties. Skutterudite based thermoelectric materials seemingly fit this list of criteria. In this contribution we report on the synthesis, tensile fracture strengths, low temperature electrical and thermal transport properties, and coefficients of thermal expansion (CTE), of the n-type skutterudite La{sub 0.05({+-}0.01)}Ba{sub 0.07({+-}0.04)}Yb{sub 0.08({+-}0.02)}Co{sub 4.00({+-}0.01)}Sb{sub 12.02({+-}0.03)} and the p-type Ce{sub 0.30({+-}0.02)}Co{sub 2.57({+-}0.02)}Fe{sub 1.43({+-}0.02)}Sb{sub 11.98({+-}0.03)}. Both materials have tensile fracture strengths that are temperature independent up to 500 C, and are in the range of {approx}140 MPa as measured by a three point bend flexure test fixture described herein. The CTE's were measured by dual rod dilatometry and were determined to be 10.3 ppm/C for the n-type material and 11.5 ppm/C for p-type up to 450 C.

  3. Does p-type ohmic contact exist in WSe2-metal interfaces?

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Yang, Ruo Xi; Quhe, Ruge; Zhong, Hongxia; Cong, Linxiao; Ye, Meng; Ni, Zeyuan; Song, Zhigang; Yang, Jinbo; Shi, Junjie; Li, Ju; Lu, Jing

    2015-12-01

    Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for the selection of favorable metal electrodes in ML/BL WSe2 devices.Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for

  4. Fabrication and performance tests of a segmented p-type HPGe detector

    NASA Astrophysics Data System (ADS)

    King, George S.; Avignone, Frank T.; Cox, Christopher E.; Hossbach, Todd W.; Jennings, Wayne; Reeves, James H.

    2008-10-01

    A p-type semi-coaxial HPGe detector has been segmented by cutting, with a diamond saw, and etching four circumferential grooves through the Li-diffused dead layer. The degree of segmentation was tested using a well-collimated low-energy gamma-ray source. An analysis cut that rejected events depositing energy in more than one segment was applied to an energy interval of 2038±5 keV, the region of interest ( Q ββ) for 76Ge 0 νββ decay experiments. This segmentation cut resulted in a reduction of the Compton continuum of 59%.

  5. Bipolar resistive switching in p-type Co3O4 nanosheets prepared by electrochemical deposition

    PubMed Central

    2013-01-01

    Metal oxide nanosheets have potential applications in novel nanoelectronics as nanocrystal building blocks. In this work, the devices with a structure of Au/p-type Co3O4 nanosheets/indium tin oxide/glass having bipolar resistive switching characteristics were successfully fabricated. The experimental results demonstrate that the device have stable high/low resistance ratio that is greater than 25, endurance performance more than 200 cycles, and data retention more than 10,000 s. Such a superior performance of the as-fabricated device could be explained by the bulk film and Co3O4/indium tin oxide glass substrate interface effect. PMID:23331856

  6. Elastic constants determined by nanoindentation for p-type thermoelectric half-Heusler

    SciTech Connect

    Gahlawat, S.; Wheeler, L.; White, K. W. E-mail: kwwhite@uh.edu; He, R.; Chen, S.; Ren, Z. F. E-mail: kwwhite@uh.edu

    2014-08-28

    This paper presents a study of the elastic properties of the p-type thermoelectric half-Heusler material, Hf{sub 0.44}Zr{sub 0.44}Ti{sub 0.12}CoSb{sub 0.8}Sn{sub 0.2}, using nanoindentation. Large grain-sized polycrystalline specimens were fabricated for these measurements, providing sufficient indentation targets within single grains. Electron Backscatter Diffraction methods indexed the target grains for the correlation needed for our elastic analysis of individual single crystals for this cubic thermoelectric material. Elastic properties, including the Zener ratio and the Poisson ratio, obtained from the elasticity tensor are also reported.

  7. Dislocation scatterings in p-type Si(1-x)Ge(x) under weak electric field.

    PubMed

    Hur, Ji-Hyun; Jeon, Sanghun

    2015-12-11

    We present a theoretical model which describes hole mobility degradation by charged dislocations in p-type Si(1-x)Ge(x). The complete analytical expression of the dislocation mobility is calculated from the momentum relaxation time of hole carriers under weak electric field. The obtained dislocation mobility shows a T(3/2)/λ relation and is proportional to the germanium density x. We also suggest a criterion for negating scatterings by dislocations in terms of the controllable parameters such as acceptor dopant density, dislocation density, temperature, and Ge density x, etc. PMID:26567870

  8. Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection

    SciTech Connect

    Mandalapu, L.J.; Yang, Z.; Xiu, F.X.; Zhao, D.T.; Liu, J.L.

    2006-02-27

    ZnO-based p-n homojunctions were grown using molecular-beam epitaxy. Sb and Ga were used as dopants to achieve the p-type and n-type ZnO, respectively. The mesa devices were fabricated by employing wet etching and standard photolithography techniques. Al/Ti metal was deposited by electron-beam evaporation and annealed to form Ohmic contacts. Current-voltage measurements of the device showed good rectifying behavior, from which a turn-on voltage of about 2 V was obtained. Very good response to ultraviolet light illumination was observed from photocurrent measurements.

  9. Dynamic electrical conduction in p-type CuIn3Se5

    NASA Astrophysics Data System (ADS)

    Essaleh, L.; Marín, G.; Wasim, S. M.; Alimoussa, A.; Bourial, A.

    2016-04-01

    In this work, ac electrical conductivity measurements were studied for the first time in p type bulk ternary semiconductor compound CuIn3Se5. The dynamic electrical conductivity is analyzed in the frequency range 20 Hz to 1 MHz and temperature from 308 K to 500 K. The relaxation times for the grain and grain boundaries were studied from the second derivative of electric modulus versus frequency at various temperatures. The relaxation time is found to decrease with increasing temperature and to obey the Arrhenius relationship. The values of activation energies for conduction and relaxation times are obtained.

  10. Peculiarities of high electric field conduction in p-type diamond

    NASA Astrophysics Data System (ADS)

    Mortet, V.; Trémouilles, D.; Bulíř, J.; Hubík, P.; Heller, L.; Bedel-Pereira, E.; Soltani, A.

    2016-04-01

    The electrical properties of chemical vapour deposited p-type epitaxial diamond layers are studied in high electric field conditions. The quasi-static current-voltage characteristics have been measured using transmission-line pulse method with 100 ns pulses. Reproducible impurity impact ionization avalanche breakdown occurs at a critical electrical field in the range of 100-200 kV cm-1 depending on the acceptor concentration and temperature, leading to complete ionisation of neutral impurities. The current-voltage characteristics exhibit an S-shape with the bi-stable conduction characteristic of impurity impact ionisation.

  11. Experimental identification of p-type conduction in fluoridized boron nitride nanotube

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Li, Wuxia; Tang, Chengchun; Li, Lin; Lin, Jing; Gu, Changzhi

    2013-04-01

    The transport properties of F-doped boron nitride nanotube (BNNT) top-gate field effect devices were investigated to demonstrate the realization of p-type BNNTs by F-doping. The drain current was found to increase substantially with the applied negative gate voltage, suggesting these devices persist significant field effect with holes predominated; it also suggests that F-doping remarkably modified the band gap with F atoms preferred to be absorbed on B sites. Parameters, including the resistivity, charge concentration, and mobility, were further retrieved from the I-V curves. Our results indicate that device characterization is an effective method to reveal the specific properties of BNNTs.

  12. Solvent-dependent dual-mode photochromism between T- and P-types in a dipyrrinone derivative.

    PubMed

    Sakata, Yoko; Fukushima, Satomi; Akine, Shigehisa; Setsune, Jun-ichiro

    2016-01-21

    A newly synthesized dipyrrinone derivative bearing an ethoxycarbonyl group at the pyrrolic-α position exhibited solvent-dependent dual-mode photochromism between T- and P-types. While this molecule underwent thermally reversible (T-type) photoresponsive reaction in chloroform, it became a thermally irreversible (P-type) system in methanol. PMID:26615770

  13. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    SciTech Connect

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  14. Solid-Source Doping of Float-Zoned Silicon with B, N, O, and C: Preprint

    SciTech Connect

    Ciszek, T. F.

    2003-08-01

    We report on a solid-source method to introduce dopants or controlled impurities directly into the melt zone during float-zone growth of single- or multicrystalline ingots. Unlike the Czochralski (CZ) growth situation, float-zoning allows control over the levels of some impurities (O, C) that cannot be avoided in CZ growth or ingot casting. But aside from impurity studies, the method turns out to be very practical for routine p-type doping in semicontinuous growth processes such as float-zoning, electromagnetic casting, or melt-replenished ribbon growth. Equations governing dopant incorporation, dopant withdrawal, and N co-doping are presented and experimentally verified. Doping uniformity and doping initiation and withdrawal time constants are also reported. The method uses nontoxic source materials and is flexible with quick turnaround times for changing doping levels. Boron p-type doping with nitrogen co-doping is particularly attractive for silicon lattice strengthening against process-induced dislocation motion and also allows greater freedom from incorporation of Si self-interstitial cluster or A and B swirl-type defects and"D"-type microdefects than nitrogen-free p-type material.

  15. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution.

    PubMed

    Kye, Joohong; Shin, Muncheol; Lim, Bora; Jang, Jae-Won; Oh, Ilwhan; Hwang, Seongpil

    2013-07-23

    Pt monolayer decorated gold nanostructured film on planar p-type silicon is utilized for photoelectrochemical H2 generation in this work. First, gold nanostructured film on silicon was spontaneously produced by galvanic displacement of the reduction of gold ion and the oxidation of silicon in the presence of fluoride anion. Second, underpotential deposition (UPD) of copper under illumination produced Cu monolayer on gold nanostructured film followed by galvanic exchange of less-noble Cu monolayer with more-noble PtCl6(2-). Pt(shell)/Au(core) on p-type silicon showed the similar activity with platinum nanoparticle on silicon for photoelectrochemical hydrogen evolution reaction in spite of low platinum loading. From Tafel analysis, Pt(shell)/Au(core) electrocatalyst shows the higher area-specific activity than platinum nanoparticle on silicon demonstrating the significant role of underlying gold for charge transfer reaction from silicon to H(+) through platinum catalyst. PMID:23750804

  16. Metal electrode integration on macroporous silicon: pore distribution and morphology

    PubMed Central

    2012-01-01

    In this work, a new approach for the one-step integration of interdigitated electrodes on macroporous silicon substrates is presented. Titanium/gold interdigitated electrodes are used to pattern p-type silicon substrates prior the anodization in an organic electrolyte. The electrolyte characteristics, conductivity, and pH have been found to affect the adherence of the metal layer on the silicon surface during the electrochemical etching. The impact of the metal pattern on size distribution and morphology of the resulting macroporous silicon layer is analyzed. A formation mechanism supported by finite element simulation is proposed. PMID:22799456

  17. Metal electrode integration on macroporous silicon: pore distribution and morphology

    NASA Astrophysics Data System (ADS)

    Scheen, Gilles; Bassu, Margherita; Francis, Laurent A.

    2012-07-01

    In this work, a new approach for the one-step integration of interdigitated electrodes on macroporous silicon substrates is presented. Titanium/gold interdigitated electrodes are used to pattern p-type silicon substrates prior the anodization in an organic electrolyte. The electrolyte characteristics, conductivity, and pH have been found to affect the adherence of the metal layer on the silicon surface during the electrochemical etching. The impact of the metal pattern on size distribution and morphology of the resulting macroporous silicon layer is analyzed. A formation mechanism supported by finite element simulation is proposed.

  18. p-type conduction induced by N-doping in {alpha}-Fe{sub 2}O{sub 3}

    SciTech Connect

    Morikawa, Takeshi; Kitazumi, Kousuke; Takahashi, Naoko; Arai, Takeo; Kajino, Tsutomu

    2011-06-13

    A p-type N-doped {alpha}-Fe{sub 2}O{sub 3} was developed by magnetron sputtering of a Fe{sub 2}O{sub 3} target in a plasma containing N{sub 2} and Ar followed by postannealing. Photoelectrochemical measurement under visible light irradiation (>410 nm) showed that N-Fe{sub 2}O{sub 3} exhibits a typical cathodic photocurrent originated from the p-type conduction. X-ray photoemission spectroscopy indicated that the atomic N incorporated substitutionally at O sites was responsible for the p-type conduction. The concentration of acceptors was very close to that for Zn-doped Fe{sub 2}O{sub 3}, a typical p-type {alpha}-Fe{sub 2}O{sub 3}. This finding would stimulate further research on p-type Fe{sub 2}O{sub 3} for solar fuel generation, etc.

  19. Thermal stability of boron nitride/silicon p-n heterojunction diodes

    SciTech Connect

    Teii, Kungen Mizusako, Yusei; Hori, Takuro; Matsumoto, Seiichiro

    2015-10-21

    Heterojunctions of p-type cubic boron nitride (cBN) and n-type silicon with sp{sup 2}-bonded BN (sp{sup 2}BN) interlayers are fabricated under low-energy ion impact by plasma-enhanced chemical vapor deposition, and their rectification properties are studied at temperatures up to 573 K. The rectification ratio is increased up to the order of 10{sup 5} at room temperature by optimizing the thickness of the sp{sup 2}BN interlayer and the cBN fraction for suppressing the reverse leakage current. A highly rectifying p-type cBN/thick sp{sup 2}BN/n-type silicon junction diode shows irreversible rectification properties mainly characterized by a marked decrease in reverse current by an order of magnitude in an initial temperature ramp/down cycle. This irreversible behavior is much more reduced by conducting the cycle twice or more. The temperature-dependent properties confirm an overall increase in effective barrier heights for carrier injection and conduction by biasing at high temperatures, which consequently increases the thermal stability of the diode performance.

  20. Thermal stability of boron nitride/silicon p-n heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Teii, Kungen; Mizusako, Yusei; Hori, Takuro; Matsumoto, Seiichiro

    2015-10-01

    Heterojunctions of p-type cubic boron nitride (cBN) and n-type silicon with sp2-bonded BN (sp2BN) interlayers are fabricated under low-energy ion impact by plasma-enhanced chemical vapor deposition, and their rectification properties are studied at temperatures up to 573 K. The rectification ratio is increased up to the order of 105 at room temperature by optimizing the thickness of the sp2BN interlayer and the cBN fraction for suppressing the reverse leakage current. A highly rectifying p-type cBN/thick sp2BN/n-type silicon junction diode shows irreversible rectification properties mainly characterized by a marked decrease in reverse current by an order of magnitude in an initial temperature ramp/down cycle. This irreversible behavior is much more reduced by conducting the cycle twice or more. The temperature-dependent properties confirm an overall increase in effective barrier heights for carrier injection and conduction by biasing at high temperatures, which consequently increases the thermal stability of the diode performance.

  1. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides.

    PubMed

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa(1-x)N/GaN superlattice structure, by modulation doping of Mg in the AlxGa(1-x)N barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 10(18) cm(-3) has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports. PMID:26777294

  2. Characteristics of p-type transparent conductive CuCrO2 thin films

    NASA Astrophysics Data System (ADS)

    Yu, Ruei-Sung; Wu, Chung-Ming

    2013-10-01

    Cu-Cr-O films were prepared using reactive magnetron sputtering deposition followed by annealing at temperatures ranging from 550 to 625 °C in 25 °C increments. Correlations between the optoelectronic and microstructural properties of the p-type CuCrO2 films are discussed. The as-deposited film was amorphous; after annealing at 550 and 575 °C, films adopted mixed CuO and CuCr2O4 phases. Annealing at 600 °C led to the formation of a dominant phase of delafossite CuCrO2. The 625 °C-annealed film was single-phase CuCrO2 which had a bar- and polygonal-like mixed surface appearance, with a root mean square roughness of 17.7 nm. CuCrO2 is an intrinsic p-type semiconductor which exhibits electrical conductivity and transparency over the visible wavelength range. Two higher-energy subband transitions at 3.69 and 4.82 eV were observed in the band structure of CuCrO2. Point defects were the main reason source of hole carrier scattering in the material. The single-phase CuCrO2 film had the lowest resistivity of the films, 4.31 Ω cm, and had a direct band gap of 3.14 eV and light transmittance of 62% at 600 nm.

  3. Easily doped p-type, low hole effective mass, transparent oxides

    PubMed Central

    Sarmadian, Nasrin; Saniz, Rolando; Partoens, Bart; Lamoen, Dirk

    2016-01-01

    Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications – i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe. PMID:26854336

  4. Does p-type ohmic contact exist in WSe2-metal interfaces?

    PubMed

    Wang, Yangyang; Yang, Ruo Xi; Quhe, Ruge; Zhong, Hongxia; Cong, Linxiao; Ye, Meng; Ni, Zeyuan; Song, Zhigang; Yang, Jinbo; Shi, Junjie; Li, Ju; Lu, Jing

    2016-01-14

    Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for the selection of favorable metal electrodes in ML/BL WSe2 devices. PMID:26666570

  5. Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.

    PubMed

    Cao, Xuan; Cao, Yu; Zhou, Chongwu

    2016-01-26

    Flexible thin-film transistors based on semiconducting single-wall carbon nanotubes are promising for flexible digital circuits, artificial skins, radio frequency devices, active-matrix-based displays, and sensors due to the outstanding electrical properties and intrinsic mechanical strength of carbon nanotubes. Nevertheless, previous research effort only led to nanotube thin-film transistors with the smallest bending radius down to 1 mm. In this paper, we have realized the full potential of carbon nanotubes by making ultraflexible and imperceptible p-type transistors and circuits with a bending radius down to 40 μm. In addition, the resulted transistors show mobility up to 12.04 cm(2) V(-1) S(-1), high on-off ratio (∼10(6)), ultralight weight (<3 g/m(2)), and good mechanical robustness (accommodating severe crumpling and 67% compressive strain). Furthermore, the nanotube circuits can operate properly with 33% compressive strain. On the basis of the aforementioned features, our ultraflexible p-type nanotube transistors and circuits have great potential to work as indispensable components for ultraflexible complementary electronics. PMID:26624921

  6. Easily doped p-type, low hole effective mass, transparent oxides

    NASA Astrophysics Data System (ADS)

    Sarmadian, Nasrin; Saniz, Rolando; Partoens, Bart; Lamoen, Dirk

    2016-02-01

    Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications - i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe.

  7. Structural and Thermoelectric Properties of Polycrystalline p-Type Mg2- x Li x Si

    NASA Astrophysics Data System (ADS)

    Nieroda, P.; Kolezynski, A.; Oszajca, M.; Milczarek, J.; Wojciechowski, K. T.

    2016-07-01

    The aim of this study was to determine the location of Li atoms in Mg2Si structure, and verify the influence of Li dopant on the transport properties of obtained thermoelectric materials. The results of theoretical studies of the electronic band structure (full potential linearized augmented plane wave method) in Li-doped Mg2Si are presented. Theoretical calculations indicate that only in the case when Li is located in the Mg position, the samples will have p-type conduction. To confirm the theoretical predictions, a series of samples with nominal composition Mg2- x Li x Si ( x = 0-0.5) were prepared using the spark plasma sintering (SPS) method. Structural and phase composition analyses were carried out by x-ray and neutron powder diffraction, as well as scanning electron microscopy. Neutron diffraction studies confirmed that the lithium atoms substitute magnesium in the Mg2Si structure. The investigations of the influence of Li dopant on the transport properties, i.e. electrical conductivity, the Seebeck coefficient and the thermal conductivity, were carried out in a temperature range from 340 K to 720 K. Carrier concentration was measured with Hall method. The positive values of the Seebeck coefficient and Hall coefficient indicate that all examined samples show p-type conductivity. On the basis of the experimental data, the temperature dependencies of the thermoelectric figure of merit ZT were calculated.

  8. Conducting mechanism in the epitaxial p -type transparent conducting oxide C r2O3:Mg

    NASA Astrophysics Data System (ADS)

    Farrell, L.; Fleischer, K.; Caffrey, D.; Mullarkey, D.; Norton, E.; Shvets, I. V.

    2015-03-01

    Epitaxial p -type transparent conducting oxide (TCO) C r2O3:Mg was grown by electron-beam evaporation in a molecular beam epitaxy system on c -plane sapphire. The influence of Mg dopants and the oxygen partial pressure were investigated by thermoelectric and electrical measurements. The conduction mechanism is analyzed using the small-polaron hopping model, and hopping activation energies have been determined, which vary with doping concentration in the range of 210-300 ± 5 meV. Films with better conductivity were obtained by postannealing. The effect of postannealing is discussed in terms of a crystallographic reordering of the Mg dopant. The highest Seebeck mobilities obtained from thermoelectric measurements are of the order of 10-4cm2V-1s-1 . We investigate the fundamental properties of a Mg dopant in a high crystalline quality epitaxial film of a binary oxide, helping us understand the role of short range crystallographic order in a p -type TCO in detail.

  9. Tailoring of the Metal-N/P-Type GaSb Interface Properties for Device Production

    SciTech Connect

    Varblianska, K.; Tzeneva, S.; Comninou, Ph.; Nihtianova, D.

    2007-04-23

    There are some difficulties in producing Schottky barriers (SB) to p-type GaSb and ohmic contacts (OC) to n-type GaSb connected with the physical nature of the GaSb itself. By applying low energy Ar ion sputtering at 200-700V and (NH4)2S solution treatment of the p-type substrates we achieved a rectifying behavior of the p-GaSb/Pd contacts. The same procedure combined with a proper annealing led to the production of good n-GaSb/Pd/Ge/Au ohmic contacts. The electrical behavior of the SB and OC is inferred from their current-voltage characteristics on specially prepared diode structures. SEM and TEM investigations are conducted to specify the surface and interface reactions during the processing. We interpret these results in terms of the generation of such a Ga to Sb vacancy concentration ratio during the ion sputtering that enhances the incorporation of Ge and S as donor impurities in the GaSb surface.

  10. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides

    PubMed Central

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa1−xN/GaN superlattice structure, by modulation doping of Mg in the AlxGa1−xN barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 1018 cm−3 has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports. PMID:26777294

  11. Proposed explanation of the p-type doping proclivity of ZnTe

    NASA Astrophysics Data System (ADS)

    Dow, John D.; Hong, Run-Di; Klemm, Stefan; Ren, Shang Yuan; Tsai, M.-H.; Sankey, Otto F.; Kasowski, R. V.

    1991-02-01

    An explanation is proposed for the fact that ZnTe is unique among the II-VI compound semiconductors in that it can be doped p type rather easily: a p-like deep-level resonance lies within the valence band of ZnTe and emerges into the fundamental band gap with increasing Se content x in ZnTe1-xSex random alloys. This level generates free holes when it lies below the Fermi energy in the valence band, making its parent defect a shallow acceptor. When the level moves into the gap, the impurity becomes a deep hole trap. The native and foreign antisite defects ZnTe and LiTe are suggested as possible parent defects of the relevant deep level; they are predicted to be shallow acceptors in ZnTe, while the corresponding defects are deep traps in other II-VI compound semiconductors. Tests of this proposal are suggested and the substitutional s- and p-bonded deep levels of ZnSe and ZnTe are predicted, extending the theory of Hjalmarson et al. [Phys. Rev. Lett. 44, 810 (1980)]. The possibility of doping ZnSe p type with (antisite) Be is also proposed and discussed.

  12. p-Type polymer-hybridized high-performance piezoelectric nanogenerators.

    PubMed

    Lee, Keun Young; Kumar, Brijesh; Seo, Ju-Seok; Kim, Kwon-Ho; Sohn, Jung Inn; Cha, Seung Nam; Choi, Dukhyun; Wang, Zhong Lin; Kim, Sang-Woo

    2012-04-11

    Enhancing the output power of a nanogenerator is essential in applications as a sustainable power source for wireless sensors and microelectronics. We report here a novel approach that greatly enhances piezoelectric power generation by introducing a p-type polymer layer on a piezoelectric semiconducting thin film. Holes at the film surface greatly reduce the piezoelectric potential screening effect caused by free electrons in a piezoelectric semiconducting material. Furthermore, additional carriers from a conducting polymer and a shift in the Fermi level help in increasing the power output. Poly(3-hexylthiophene) (P3HT) was used as a p-type polymer on piezoelectric semiconducting zinc oxide (ZnO) thin film, and phenyl-C(61)-butyric acid methyl ester (PCBM) was added to P3HT to improve carrier transport. The ZnO/P3HT:PCBM-assembled piezoelectric power generator demonstrated 18-fold enhancement in the output voltage and tripled the current, relative to a power generator with ZnO only at a strain of 0.068%. The overall output power density exceeded 0.88 W/cm(3), and the average power conversion efficiency was up to 18%. This high power generation enabled red, green, and blue light-emitting diodes to turn on after only tens of times bending the generator. This approach offers a breakthrough in realizing a high-performance flexible piezoelectric energy harvester for self-powered electronics. PMID:22409420

  13. Valence Band Structure of Highly Efficient p-type Thermoelectric PbTe-PbS Alloys

    SciTech Connect

    Jaworski, C. M.; Nielsen, Mechele; Wang, Hsin; Girard, Steven N.; Cai, Wei; Porter, Wallace D; Kanatzidis, Mercouri G.; Heremans, J. P.

    2013-01-01

    New experimental evidence is given relevant to the temperature-dependence of valence band structure of PbTe and PbTe1-xSx alloys (0.04 x 0.12), and its effect on the thermoelectric figure of merit zT. The x = 0.08 sample has zT ~ 1.55 at 773K. The magnetic field dependence of the high-temperature Hall resistivity of heavily p-type (> 1019 cm-3) Na-doped PbTe1-xSx reveals the presence of high-mobility electrons. This put in question prior analyses of the Hall coefficient and the conclusion that PbTe would be an indirect gap semiconductor at temperatures where its zT is optimal. Possible origins for these electrons are discussed: they can be induced by photoconductivity, or by the topology of the Fermi surface when the L and -bands merge. Negative values for the low-temperature thermopower are also observed. Our data show that PbTe continues to be a direct gap semiconductor at temperatures where the zT and S2 of p-type PbTe are optimal e.g. 700-900K. The previously suggested temperature induced rapid rise in energy of the heavy hole LVB relative to the light hole UVB is not supported by the experimental data.

  14. Structure-function relationship in P-type ATPases--a biophysical approach.

    PubMed

    Apell, H-J

    2003-01-01

    P-type ATPases are a large family of membrane proteins that perform active ion transport across biological membranes. In these proteins the energy-providing ATP hydrolysis is coupled to ion-transport that builds up or maintains the electrochemical potential gradients of one or two ion species across the membrane. P-type ATPases are found in virtually all eukaryotic cells and also in bacteria, and they are transporters of a broad variety of ions. So far, a crystal structure with atomic resolution is available only for one species, the SR Ca-ATPase. However, biochemical and biophysical studies provide an abundance of details on the function of this class of ion pumps. The aim of this review is to summarize the results of preferentially biophysical investigations of the three best-studied ion pumps, the Na,K-ATPase, the gastric H,K-ATPase, and the SR Ca-ATPase, and to compare functional properties to recent structural insights with the aim of contributing to the understanding of their structure-function relationship. PMID:12811587

  15. Fullerene C{sub 70} as a p-type donor in organic photovoltaic cells

    SciTech Connect

    Zhuang, Taojun; Wang, Xiao-Feng E-mail: zrhong@ucla.edu Sano, Takeshi; Kido, Junji E-mail: zrhong@ucla.edu; Hong, Ziruo E-mail: zrhong@ucla.edu; Li, Gang; Yang, Yang

    2014-09-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C{sub 70}, known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C{sub 70} layer even up to 100 nm thick in PHJ cells, suggesting the superior potential of fullerene C{sub 70} as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm{sup 2}, an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  16. Transporters, chaperones, and P-type ATPases controlling grapevine copper homeostasis.

    PubMed

    Leng, Xiangpeng; Mu, Qian; Wang, Xiaomin; Li, Xiaopeng; Zhu, Xudong; Shangguan, Lingfei; Fang, Jinggui

    2015-11-01

    With more copper and copper-containing compounds used as bactericides and fungicides in viticulture, copper homeostasis in grapevine (Vitis) has become one of the serious environmental crises with great risk. To better understand the regulation of Cu homeostasis in grapevine, grapevine seedlings cultured in vitro with different levels of Cu were utilized to investigate the tolerance mechanisms of grapevine responding to copper availability at physiological and molecular levels. The results indicated that Cu contents in roots and leaves arose with increasing levels of Cu application. With copper concentration increasing, malondialdehyde (MDA) content increased in roots and leaves and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased to protect the plant itself from damage. The expression patterns of 19 genes, encoding transporters, chaperones, and P-type ATPases involved in copper homeostasis in root and leaf of grapevine seedling under various levels of Cu(2+) were further analyzed. The expression patterns indicated that CTr1, CTr2, and CTr8 transporters were significantly upregulated in response both to Cu excess and deficiency. ZIP2 was downregulated in response to Cu excess and upregulated under Cu-deficient conditions, while ZIP4 had an opposite expression pattern under similar conditions. The expression of chaperones and P-type ATPases in response to Cu availability in grapevine were also briefly studied. PMID:26054906

  17. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results for Task 3 of the Low Cost Solar Array Project are presented. Task 3 is directed toward the development of a cost effective encapsulating system for photovoltaic modules using silicon based materials. The technical approach of the contract effort is divided into four special tasks: (1) technology review; (2) generation of concepts for screening and processing silicon encapsulation systems; (3) assessment of encapsulation concepts; and (4) evaluation of encapsulation concepts. The candidate silicon materials are reviewed. The silicon and modified silicon resins were chosen on the basis of similarity to materials with known weatherability, cost, initial tangential modulus, accelerated dirt pick-up test results and the ratio of the content of organic phenyl substitution of methyl substitution on the backbone of the silicon resin.

  18. Investigation of band bending in n- and p-type gallium nitride

    NASA Astrophysics Data System (ADS)

    Foussekis, Michael Alexander

    This dissertation details the study of band bending in n- and p-type GaN samples with a Kelvin probe utilizing different illumination geometries, ambients (air, oxygen, vacuum 10-6 mbar), and sample temperatures (77 -- 650 K). The Kelvin probe, which is mounted inside an optical cryostat, is used to measure the surface potential. Illumination of the GaN surface with band-to-band light generates electron-hole pairs, which quickly separate in the depletion region due to a strong electric field caused by the near-surface band bending. The charge that is swept to the surface reduces the band bending and generates a surface photovoltage (SPV). Information about the band bending can be obtained by fitting the SPV measurements with a thermionic model based on the emission of charge carriers from bulk to surface and vice versa. The band bending in freestanding n-type GaN templates has been evaluated. The Ga-polar and N-polar surfaces exhibit upward band bending of about 0.74 and 0.57 eV, respectively. The surface treatment also plays a major role in the SPV behavior, where the SPV for mechanical polished surfaces restores faster than predicted by a thermionic model in dark. When measuring the photoluminescence (PL) signal, the PL from mechanically polished surfaces was about 4 orders of magnitude smaller than the PL from chemically mechanically polished surfaces. The PL and SPV behaviors were explained by the presence of a large density of defects near the surface, which quench PL and aid in the restoration of the SPV via electron hopping between defects. Temperature-dependent SPV studies have also been performed on doped n- and p-type GaN samples. In Si-doped n-type GaN, the estimated upward band bending was about 1 eV at temperatures between 295 and 500 K. However, in p-type GaN, the downward band bending appeared to increase with increasing temperature, where the magnitude of band bending increased from 0.8 eV to 2.1 eV as the temperature increased from 295 to 650 K. It

  19. Amorphous silicon carbide films prepared using vaporized silicon ink

    NASA Astrophysics Data System (ADS)

    Masuda, Takashi; Shen, Zhongrong; Takagishi, Hideyuki; Ohdaira, Keisuke; Shimoda, Tatsuya

    2014-03-01

    The deposition of wide-band-gap silicon films using nonvacuum processes rather than conventional vacuum processes is of substantial interest because it may reduce cost. Herein, we present the optical and electrical properties of p-type hydrogenated amorphous silicon carbide (a-SiC:H) films prepared using a nonvacuum process in a simple chamber with a vaporized silicon ink consisting of cyclopentasilane, cyclohexene, and decaborane. The incorporation of carbon into the silicon network induced by the addition of cyclohexene to the silicon ink resulted in an increase in the optical band gap (Eg) of films from 1.56 to 2.11 eV. The conductivity of films with Eg < 1.9 eV is comparable to that of conventional a-SiC:H films prepared using a vacuum process, while the films with Eg > 1.9 eV show lower conductivity than expected because of the incorporation of excess carbon without the formation of Si-C bonds.

  20. Impact of the firing step on Al2O3 passivation on p-type Czochralski Si wafers: Electrical and chemical approaches

    NASA Astrophysics Data System (ADS)

    Pawlik, Matthieu; Vilcot, Jean-Pierre; Halbwax, Mathieu; Gauthier, Michel; Le Quang, Nam

    2015-08-01

    The development of an efficient surface passivation is a key feature of silicon solar cells towards the improvement of €/W ratio. An Al2O3 layer coated by plasma-enhanced atomic layer deposition has proven its efficiency to increase the minority carrier lifetime on p-type silicon. However, the firing step, which is a common part of the manufacturing process that includes metallic pastes for screen-printed contacts, ruins this passivation effect. On the basis of photoelectric, electric, and chemical experimental studies, a correlation is provided in this paper between the different microscopic and macroscopic behaviors that govern the passivation process. To show this correlation, photoconductance decay measurements have been carried out to determine minority carrier lifetime. Following which, the capacitance-voltage measurement results are used to extract electrical parameters, namely, the densities of interface defects and effective charges. In addition, complementing secondary ion mass spectrometry (SIMS) experiments revealed the different chemical species that can be relevant for the explanation of passivation quality and macroscopic electrical measurements.

  1. Monolithic integration of common mode filters with electrostatic discharge protection on silicon/porous silicon hybrid substrate

    NASA Astrophysics Data System (ADS)

    Capelle, M.; Billoué, J.; Concord, J.; Poveda, P.; Gautier, G.

    2014-02-01

    This work presents the integration of a common mode filter with ElectroStatic Discharge protection on a silicon/porous silicon hybrid substrate. The porous silicon fabrication was performed after the integration of active components. Thus, a fluoropolymer hard mask was used to protect the active devices during anodization and can be easily removed without damaging the porous silicon. Electrical characterization results have shown fully operational components and an increase of performance with the hybrid substrate regarding to p+-type silicon. Indeed, the cutoff frequency was increased by 8.8 GHz when porous silicon was fabricated below the bump pads and the inductors. This improvement is a promising result to extend the application of RF components for future communication standards with silicon technology.

  2. Field-effect transistors based on wafer-scale, highly uniform few-layer p-type WSe2

    NASA Astrophysics Data System (ADS)

    Campbell, Philip M.; Tarasov, Alexey; Joiner, Corey A.; Tsai, Meng-Yen; Pavlidis, Georges; Graham, Samuel; Ready, W. Jud; Vogel, Eric M.

    2016-01-01

    The synthesis of few-layer tungsten diselenide (WSe2) via chemical vapor deposition typically results in highly non-uniform thickness due to nucleation initiated growth of triangular domains. In this work, few-layer p-type WSe2 with wafer-scale thickness and electrical uniformity is synthesized through direct selenization of thin films of e-beam evaporated W on SiO2 substrates. Raman maps over a large area of the substrate show small variations in the main peak position, indicating excellent thickness uniformity across several square centimeters. Additionally, field-effect transistors fabricated from the wafer-scale WSe2 films demonstrate uniform electrical performance across the substrate. The intrinsic field-effect mobility of the films at a carrier concentration of 3 × 1012 cm-2 is 10 cm2 V-1 s-1. The unprecedented uniformity of the WSe2 on wafer-scale substrates provides a substantial step towards producing manufacturable materials that are compatible with conventional semiconductor fabrication processes.

  3. Field-effect transistors based on wafer-scale, highly uniform few-layer p-type WSe2.

    PubMed

    Campbell, Philip M; Tarasov, Alexey; Joiner, Corey A; Tsai, Meng-Yen; Pavlidis, Georges; Graham, Samuel; Ready, W Jud; Vogel, Eric M

    2016-01-28

    The synthesis of few-layer tungsten diselenide (WSe2) via chemical vapor deposition typically results in highly non-uniform thickness due to nucleation initiated growth of triangular domains. In this work, few-layer p-type WSe2 with wafer-scale thickness and electrical uniformity is synthesized through direct selenization of thin films of e-beam evaporated W on SiO2 substrates. Raman maps over a large area of the substrate show small variations in the main peak position, indicating excellent thickness uniformity across several square centimeters. Additionally, field-effect transistors fabricated from the wafer-scale WSe2 films demonstrate uniform electrical performance across the substrate. The intrinsic field-effect mobility of the films at a carrier concentration of 3 × 10(12) cm(-2) is 10 cm(2) V(-1) s(-1). The unprecedented uniformity of the WSe2 on wafer-scale substrates provides a substantial step towards producing manufacturable materials that are compatible with conventional semiconductor fabrication processes. PMID:26743173

  4. Sol-gel production of p-type ZnO thin film by using sodium doping

    NASA Astrophysics Data System (ADS)

    Bu, Ian Y. Y.

    2016-08-01

    In this study, ZnO:Na thin films doped with 1-5 at.% of Na were synthesized on glass substrates by the sol-gel deposition technique. The morphology and optoelectronic properties of the thin films were characterized by using the environmental scanning electron microscope (SEM), X-ray diffraction (XRD), UV-Vis spectroscopy and Hall effect measurements. The SEM images and XRD pattern both indicated a substantial change in the film structure as the Na content increases due to the oversupply of the OH- ions in the initial precursor solution. UV-Vis spectroscopy measurements revealed that the increase in Na doping resulted in the decreases of the optical transmittance and the optical band gap due to the formation recombination centers. Hall effect measurements confirmed that the ZnO:Na films doped with >2 at.% of Na are stable with p-type conduction behaviour. As a demonstration, a ZnO-based junction was fabricated using the synthesized ZnO:Na/ZnO thin films on indium tin oxide glass substrates.

  5. EXAFS Study of N- And P-Type Ba(8)Ga(16)Ge(30)

    SciTech Connect

    Jiang, Y.; Bridges, F.; Avila, M.A.; Takabatake, T.; Guzman, J.; Kurczveil, G.

    2009-05-18

    We report extended x-ray absorption fine-structure (EXAFS) studies of n- and p-type Ba{sub 8}Ga{sub 16}Ge{sub 30} samples (type-I clathrate) at the Ga, Ge, and Ba K edges, to probe the local structure, particularly around the Ba atoms located inside 20- and 24-atom cages (Ba1 and Ba2 sites, respectively) composed of Ga/Ge atoms. In agreement with diffraction analysis, we find Ba2 is off center, with a component in the bc plane (0.15 {angstrom}) comparable to that found in diffraction. However, under the assumption of a stiff cage, we also require a significant a component. This suggests a coupling or attraction between the Ba2 atoms and the hexagonal rings at the top or bottom of the cage that encloses the Ba2 site. Further, changing the a component can change the number of shortest Ba2-Ga/Ge neighbors and hence the coupling of Ba2 to the surrounding cage. Within the cage structures which enclose both Ba sites, the Ga-Ga/Ge distances are slightly longer, while the Ge-Ga/Ge distances are slightly shorter than the average distance reported from diffraction. The longer Ga-Ga/Ge distances indicate that the Ba1 and Ba2 cages may be dimpled or distorted. At the second Ga/Ge distance, the local distortions in the Ba clathrate are smaller than those observed in the Eu clathrate, which likely plays a role in understanding the higher thermal conductivity of Ba clathrates compared to that of Eu clathrates. However, there is no clear difference in the EXAFS between the n- and p-type materials for either the Ba, Ga, or Ge K-edge data, which would explain the difference in thermal conductivity between n- and p-type materials. Finally, an average Einstein temperature for the shortest Ba2-Ga/Ge bonds is comparable to that for Ba1-Ga/Ge. This indicates a large effective spring constant for the closest Ga/Ge atoms to Ba2. We also develop a simple vibrational model to show explicitly the three types of vibration for Ba2 within the type-2 cage.

  6. NbFeSb based p-type half-Heusler for power generation applications

    NASA Astrophysics Data System (ADS)

    Joshi, Giri; He, Ran; Engber, Michael; Samsonidze, Georgy; Pantha, Tej; Dahal, Ekraj; Dahal, Keshab; Yang, Jian; Lan, Yucheng; Kozinsky, Boris; Ren, Zhifeng

    2015-03-01

    We report a peak dimensionless figure-of-merit (ZT) of ~1 at 700 oC in nanostructured p-type Nb0.6Ti0.4FeSb0.95Sn0.05composition. Even though the power factor of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition is improved by 25% in comparison to the previously reported p-type Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2, the ZT value is not increased due to a higher thermal conductivity. However, the higher power factor of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition led to a 15% increase in power output of a thermoelectric device in comparison to a device made from the previous best material Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. The n-type material used to make the unicouple device is the best reported nanostructured Hf0.25Zr0.75NiSn0.99Sb0.01 composition with the lowest hafnium (Hf) content. Both the p- and n-type nanostructured samples are prepared by ball milling the arc melted ingot and hot pressing the finely ground powders. Moreover, the raw material cost of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition is more than six times lower compared to the cost of the previous best p-type Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. This cost reduction is crucial for these materials to be used in large-scale quantities for vehicle and industrial waste heat recovery applications. DOE:DE-EE0004840.

  7. Origin of resistivity anomaly in p-type leads chalcogenide multiphase compounds

    SciTech Connect

    Aminorroaya Yamini, Sima E-mail: jsnyder@caltech.edu; Dou, Shi Xue; Mitchell, David R. G.; Wang, Heng; Gibbs, Zachary M.; Pei, Yanzhong; Snyder, G. Jeffrey E-mail: jsnyder@caltech.edu

    2015-05-15

    The electrical resistivity curves for binary phase compounds of p-type lead chalcogenide (PbTe){sub (0.9−x)}(PbSe){sub 0.1}(PbS){sub x,} (x = 0.15, 0.2, 0.25), which contain PbS-rich secondary phases, show different behaviour on heating and cooling between 500-700 K. This is contrast to single phase compounds which exhibit similar behaviour on heating and cooling. We correlate these anomalies in the electrical resistivities of multiphase compounds to the variation in phase composition at high temperatures. The inhomogeneous distribution of dopants between the matrix and secondary phase is found to be crucial in the electronic transport properties of the multiphase compounds. These results can lead to further advances in designing composite Pb-chalcogenides with high thermoelectric performance.

  8. OMVPE growth of P-type GaN using solution Cp2Mg

    NASA Astrophysics Data System (ADS)

    Qi, Yundong; Musante, Charles; Lau, Kei May; Smith, Lesley; Odedra, Rajesh; Kanjolia, Ravi

    2001-11-01

    Bis(cyclopentadienyl)magnesium (Cp2Mg) is a common source for p-type doping in GaN and AlInGaP materials. It is a white crystalline solid with very low vapor pressure, leading to transport problems similar to solid trimethyindium (TMI). Some of these problems can be alleviated by a newly developed source-solution magnesocene, Cp2Mg, dissolved in a solvent that is essentially nonvolatile. In this paper, we report the growth and comparative results of Mg-doped GaN grown by OMVPE using solid and solution Cp2Mg. Using both sources, we optimized parameters to obtain high-quality GaN growth with hole concentrations up to 1 1018/cm3.

  9. Transient Expression of P-type ATPases in Tobacco Epidermal Cells.

    PubMed

    Poulsen, Lisbeth R; Palmgren, Michael G; López-Marqués, Rosa L

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellular space between leaf epidermal cells, which results in DNA transfer from the bacteria to the plant and expression of the corresponding proteins. By injecting mixes of Agrobacterium strains, this system offers the possibility to co-express a number of target proteins simultaneously, thus allowing for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits. PMID:26695049

  10. p-type conduction in beryllium-implanted hexagonal boron nitride films

    NASA Astrophysics Data System (ADS)

    He, B.; Zhang, W. J.; Yao, Z. Q.; Chong, Y. M.; Yang, Y.; Ye, Q.; Pan, X. J.; Zapien, J. A.; Bello, I.; Lee, S. T.; Gerhards, I.; Zutz, H.; Hofsäss, H.

    2009-12-01

    p-type conduction in hexagonal boron nitride (hBN) films was achieved by beryllium implantation and subsequent rapid thermal annealing treatment. The dependence of phase composition and electrical properties of hBN films on the implantation fluence and annealing was studied. A maximum resistivity reduction by six orders of magnitude was demonstrated. Hall measurements revealed a corresponding hole concentration of 3×1019 cm-3 and mobility of 27 cm2/V s. The activation energy of Be ions was estimated to be 0.21 eV. It is suggested that hBN is a promising wide bandgap semiconductor for applications in high-temperature electronic devices and transparent conductive coatings.

  11. InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency

    SciTech Connect

    Lao, Yan-Feng; Wolde, Seyoum; Unil Perera, A. G.; Zhang, Y. H.; Wang, T. M.; Liu, H. C.; Kim, J. O.; Schuler-Sandy, Ted; Tian, Zhao-Bing; Krishna, S. S.

    2013-12-09

    An InAs/GaAs quantum dot infrared photodetector (QDIP) based on p-type valence-band intersublevel hole transitions as opposed to conventional electron transitions is reported. Two response bands observed at 1.5–3 and 3–10 μm are due to transitions from the heavy-hole to spin-orbit split-off QD level and from the heavy-hole to heavy-hole level, respectively. Without employing optimized structures (e.g., the dark current blocking layer), the demonstrated QDIP displays promising characteristics, including a specific detectivity of 1.8×10{sup 9} cm·Hz{sup 1/2}/W and a quantum efficiency of 17%, which is about 5% higher than that of present n-type QDIPs. This study shows the promise of utilizing hole transitions for developing QDIPs.

  12. Polymer photovoltaic cell embedded with p-type single walled carbon nanotubes fabricated by spray process

    NASA Astrophysics Data System (ADS)

    Kim, Dal-Ho; Park, Jea-Gun

    2012-08-01

    In the current study, we fabricated polymer (poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61 butyric-acid methyl-ester (PCBM) blend) photovoltaic (PV) cells embedded with p-type single walled carbon nanotubes (SWCNTs) with tangled hair morphology. The power conversion efficiency (PCE) rapidly increased with SWCNT concentration of up to 6.83% coverage, and then decreased and saturated with increasing SWCNT concentration; i.e., the PCE peaks at 5.379%. This tendency is mainly associated with hole transport efficiency toward the transparent electrode (indium-tin-oxide (ITO)) via SWCNTs, directly determining the series resistance and shunt resistance of the polymer PV cells embedded with SWCNTs: the PV cell is increasing shunt resistance and decreasing series resistance.

  13. Study of PbTe p-Type Doping With BaF{sub 2}

    SciTech Connect

    Mengui, U. A.; Rappl, P. H. O.; Diaz, B.; Closs, H.; Ueta, A. Y.; Abramof, E.

    2010-01-04

    We investigate here the electrical and structural properties of PbTe layers doped with BaF{sub 2}. The layers were grown on (111)BaF{sub 2} substrates by molecular beam epitaxy. The nominal doping level, defined as the beam flux ratio between BaF{sub 2} and PbTe, was varied from 0.02 to 1%. The hole concentration increases monotonously from 5x10{sup 17} to 1x10{sup 19} cm{sup -3} as the doping level is raised from 0.02 to 0.4%, and saturates at p approx10{sup 19} cm{sup -3} for higher doping levels. This result demonstrates that PbTe can be effectively p-type doped with BaF{sub 2}. Even for the highest doping levels, the PbTe layers remained with a good structural quality, as evidenced by the (222) x-ray rocking curves.

  14. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Ambade, Swapnil B.; Mane, R. S.; Kale, S. S.; Sonawane, S. H.; Shaikh, Arif V.; Han, Sung-Hwan

    2006-12-01

    Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 °C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu 2- xSe phase was confirmed by XRD pattern and spherical grains of 30 ± 4 - 40 ± 4 nm in size aggregated over about 130 ± 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm 2 light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells.

  15. Hall scattering factors in p-type 4H-SiC with various doping concentrations

    NASA Astrophysics Data System (ADS)

    Asada, Satoshi; Okuda, Takafumi; Kimoto, Tsunenobu; Suda, Jun

    2016-04-01

    The Hall scattering factor (γH) in p-type 4H-SiC with various aluminum doping concentrations of 5.8 × 1014-7.1 × 1018 cm-3 was investigated from 300 to 900 K. γH was determined by comparing the Hall coefficient with the theoretical carrier concentration derived from acceptor and donor concentrations obtained from secondary ion mass spectrometry and capacitance-voltage measurements. γH decreased with increasing temperature or doping concentration; γH = 1-0.4 for the doping concentration of 5.8 × 1014 cm-3 and γH = 0.5-0.2 for the doping concentration of 7.1 × 1018 cm-3. The dependence might be caused by the anisotropic and nonparabolic valence band structure of 4H-SiC.

  16. Studies of minority carrier diffusion length increase in p-type ZnO:Sb

    SciTech Connect

    Lopatiuk-Tirpak, O.; Chernyak, L.; Xiu, F. X.; Liu, J. L.; Jang, S.; Ren, F.; Pearton, S. J.; Gartsman, K.; Feldman, Y.; Osinsky, A.; Chow, P.

    2006-10-15

    Minority electron diffusion length was measured in p-type, Sb-doped ZnO as a function of temperature using the electron beam induced current technique. A thermally induced increase of electron diffusion length was determined to have an activation energy of 184{+-}10 meV. Irradiation with a low energy (5 kV) electron beam also resulted in an increase of diffusion length with a similar activation energy (219{+-}8 meV). Both phenomena are suggested to involve a Sb{sub Zn}-2V{sub Zn} acceptor complex. Saturation and relaxation dynamics of minority carrier diffusion length are explored. Details of a possible mechanism for diffusion length increase are presented.

  17. Phonon bottleneck in p-type Ge/Si quantum dots

    SciTech Connect

    Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.

    2015-11-23

    We study the effect of quantum dot size on the mid-infrared photo- and dark current, photoconductive gain, and hole capture probability in ten-period p-type Ge/Si quantum dot heterostructures. The dot dimensions are varied by changing the Ge coverage and the growth temperature during molecular beam epitaxy of Ge/Si(001) system in the Stranski-Krastanov growth mode. In all samples, we observed the general tendency: with decreasing the size of the dots, the dark current and hole capture probability are reduced, while the photoconductive gain and photoresponse are enhanced. Suppression of the hole capture probability in small-sized quantum dots is attributed to a quenched electron-phonon scattering due to phonon bottleneck.

  18. Versatile p-Type Chemical Doping to Achieve Ideal Flexible Graphene Electrodes.

    PubMed

    Han, Tae-Hee; Kwon, Sung-Joo; Li, Nannan; Seo, Hong-Kyu; Xu, Wentao; Kim, Kwang S; Lee, Tae-Woo

    2016-05-17

    We report effective solution-processed chemical p-type doping of graphene using trifluoromethanesulfonic acid (CF3 SO3 H, TFMS), that can provide essential requirements to approach an ideal flexible graphene anode for practical applications: i) high optical transmittance, ii) low sheet resistance (70 % decrease), iii) high work function (0.83 eV increase), iv) smooth surface, and iv) air-stability at the same time. The TFMS-doped graphene formed nearly ohmic contact with a conventional organic hole transporting layer, and a green phosphorescent organic light-emitting diode with the TFMS-doped graphene anode showed lower operating voltage, and higher device efficiencies (104.1 cd A(-1) , 80.7 lm W(-1) ) than those with conventional ITO (84.8 cd A(-1) , 73.8 lm W(-1) ). PMID:27072071

  19. Can aliphatic anchoring groups be utilised with dyes for p-type dye sensitized solar cells?

    PubMed

    Hao, Yan; Wood, Christopher J; Clark, Charlotte A; Calladine, James A; Horvath, Raphael; Hanson-Heine, Magnus W D; Sun, Xue-Zhong; Clark, Ian P; Towrie, Michael; George, Michael W; Yang, Xichuan; Sun, Licheng; Gibson, Elizabeth A

    2016-05-01

    A series of novel laterally anchoring tetrahydroquinoline derivatives have been synthesized and investigated for their use in NiO-based p-type dye-sensitized solar cells. The kinetics of charge injection and recombination at the NiO-dye interface for these dyes have been thoroughly investigated using picosecond transient absorption and time-resolved infrared measurements. It was revealed that despite the anchoring unit being electronically decoupled from the dye structure, charge injection occurred on a sub picosecond timescale. However, rapid recombination was also observed due to the close proximity of the electron acceptor on the dyes to the NiO surface, ultimately limiting the performance of the p-DSCs. PMID:27055102

  20. Identification of acceptor states in Li-doped p-type ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zeng, Y. J.; Ye, Z. Z.; Lu, J. G.; Xu, W. Z.; Zhu, L. P.; Zhao, B. H.; Limpijumnong, Sukit

    2006-07-01

    We investigate photoluminescence from reproducible Li-doped p-type ZnO thin films prepared by dc reactive magnetron sputtering. The LiZn acceptor state, with an energy level located at 150meV above the valence band maximum, is identified from free-to-neutral-acceptor transitions. Another deeper acceptor state located at 250meV emerges with the increased Li concentration. A broad emission centered at 2.96eV is attributed to a donor-acceptor pair recombination involving zinc vacancy. In addition, two chemical bonding states of Li, evident in x-ray photoelectron spectroscopy, are probably associated with the two acceptor states observed.

  1. Room-temperature ferromagnetism in Li-doped p -type luminescent ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Chawla, Santa; Jayanthi, K.; Kotnala, R. K.

    2009-03-01

    We have observed ferromagnetism in Li-doped ZnO nanorods with Curie temperature up to 554 K. Li forms shallow acceptor states in substitutional zinc sites giving rise to p -type conductivity. An explicit correlation emerges between increase in hole concentration with decrease in magnetization and Curie temperature in ZnO:Li. Occurrence of ferromagnetism at room temperature has been established with observed magnetic domain formation in ZnO:Li pellets in magnetic force microscopy and prominent ferromagnetic resonance signal in electron paramagnetic resonance spectrum. Magnetic ZnO:Li nanorods are luminescent, showing strong near UV emission. Substitutional Li atoms can induce local moments on neighboring oxygen atoms, which when considered in a correlated model for oxygen orbitals with random potentials introduced by dopant atom could explain the observed ferromagnetism and high Curie temperature in ZnO:Li nanorods.

  2. Fabrication of p-type Li-doped ZnO films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Xiao, Bin; Ye, Zhizhen; Zhang, Yinzhu; Zeng, Yujia; Zhu, Liping; Zhao, Binghui

    2006-11-01

    p-Type ZnO thin films have been realized via doping Li as acceptor by using pulsed laser deposition. In our experiment, Li 2CO 3 was used as Li precursor, and the growth temperature was varied from 400 to 600 °C in pure O 2 ambient. The Li-doped ZnO film prepared at 450 °C possessed the lowest resistivity of 34 Ω cm with a Hall mobility of 0.134 cm 2 V -1 s -1 and hole concentration of 1.37 × 10 18 cm -3. X-ray diffraction (XRD) measurements showed that the Li-doped ZnO films grown at different substrate temperatures were of completely (0 0 2)-preferred orientation.

  3. P-type InGaN across the entire alloy composition range

    SciTech Connect

    Wang, K.; Araki, T.; Katsuki, T.; Yu, K. M.; Mayer, M. A.; Ager, J. W. III; Walukiewicz, W.; Alarcon-Llado, E.; Nanishi, Y.

    2013-03-11

    A systematic investigation on Mg doped and undoped InGaN epilayers grown by plasma-assisted molecular beam epitaxy has been conducted. Single phase InGaN alloys across the entire composition range were synthesized and Mg was doped into In{sub x}Ga{sub 1-x}N (0.1 {<=} x {<=} 0.88) epilayers up to {approx}10{sup 20}/cm{sup 3}. Hall effect, thermopower, and electrochemical capacitance voltage experimental results demonstrate the realization of p-type InGaN across the entire alloy composition range for properly Mg doped InGaN. Hole densities have been measured or estimated to be in the lower {approx}10{sup 18}/cm{sup 3} range when the net acceptor concentrations are in the lower {approx}10{sup 19}/cm{sup 3} range across the composition range.

  4. Improved performance of P-type DSCs with a compact blocking layer coated by different thicknesses

    NASA Astrophysics Data System (ADS)

    Ho, Phuong; Bao, Le Quoc; Cheruku, Rajesh; Kim, Jae Hong

    2016-07-01

    The introduction of different thicknesses of a compact NiO blocking layer coating with different spin speeds on FTO and followed by a coating of photoactive NiO electrode for p-type dye-sensitized solar cells (p-DSCs). This study examined the fabrication of a compact NiO blocking layer by decomposing an ethanolic precursor solution of nickel acetate tetrahydrate. The DCBZ dye used as the photosensitizer for the NiO electrode in the p-DSCs device and their performances have been analyzed. The enhancement of photovoltaic performance and resulted from an increase in the power conversion efficiency (η). The electrochemical impedance spectroscopy (EIS) measurement demonstrated that charge recombination was suppressed when a compact NiO blocking layer was applied. The results showed that the best p-DSC was achieved by employing 3000 rpm spin-coated process for different times of blocking layer.

  5. Electron Traps Detected in p-type GaAsN Using Deep Level Transient Spectroscopy

    SciTech Connect

    Johnston, S.; Kurtz, S.; Friedman, D.; Ptak, A.; Ahrenkiel, R.; Crandall, R.

    2005-01-01

    The GaAsN alloy can have a band gap as small as 1.0 eV when the nitrogen composition is about 2%. Indium can also be added to the alloy to increase lattice matching to GaAs and Ge. These properties are advantageous for developing a highly-efficient, multi-junction solar cell. However, poor GaAsN cell properties, such as low open-circuit voltage, have led to inadequate performance. Deep-level transient spectroscopy of p-type GaAsN has identified an electron trap having an activation energy near 0.2 eV and a trap density of at least 1016 cm-3. This trap level appears with the addition of small amounts of nitrogen to GaAs, which also corresponds to an increased drop in open-circuit voltage.

  6. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Look, D. C.; Reynolds, D. C.; Litton, C. W.; Jones, R. L.; Eason, D. B.; Cantwell, G.

    2002-09-01

    An N-doped, p-type ZnO layer has been grown by molecular beam epitaxy on an Li-diffused, bulk, semi-insulating ZnO substrate. Hall-effect and conductivity measurements on the layer give: resistivity=4 x101 Omega cm; hole mobility=2 cm2/V s; and hole concentration=9 x1016 cm-3. Photoluminescence measurements in this N-doped layer show a much stronger peak near 3.32 eV (probably due to neutral acceptor bound excitons), than at 3.36 eV (neutral donor bound excitons), whereas the opposite is true in undoped ZnO. Calibrated, secondary-ion mass spectroscopy measurements show an N surface concentration of about 1019 cm-3 in the N-doped sample, but only about 1017 cm-3 in the undoped sample.

  7. Reaction sequence and molecular mass of a Cl(-)-translocating P-type ATPase.

    PubMed Central

    Gerencser, G A; Zelezna, B

    1993-01-01

    The basolateral membranes of Aplysia californica foregut absorptive cells contain both Cl(-)-stimulated ATPase and ATP-dependent Cl- transport activities, and each was inhibited by orthovanadate. Both of these orthovanadate-sensitive activities were reconstituted into proteoliposomes. The reaction sequence kinetics were determined by [gamma-32P]ATP-induced phosphorylation of the reconstituted Cl- pump. Rapid phosphorylation and dephosphorylation kinetics of acyl phosphate bonding were confirmed by destabilization of the phosphoprotein by either hydroxylamine or high pH. Mg2+ caused phosphorylation of the enzyme; Cl- caused dephosphorylation. Orthovanadate almost completely inhibited the Mg(2+)-driven phosphorylation reaction. The molecular mass of the catalytic unit (subunit) of the enzyme appeared to be 110 kDa, which is in agreement with molecular masses of all other catalytic units (subunits) of P-type ATPases. Images Fig. 4 Fig. 7 Fig. 8 PMID:8367450

  8. Effect of Geometric Parameters on the Performance of P-Type Junctionless Lateral Gate Transistors

    PubMed Central

    Larki, Farhad; Dehzangi, Arash; Md Ali, Sawal Hamid; Jalar, Azman; Islam, Md. Shabiul; Hamidon, Mohd Nizar; Majlis, Burhanuddin Yeop

    2014-01-01

    This paper examines the impact of two important geometrical parameters, namely the thickness and source/drain extensions on the performance of low doped p-type double lateral gate junctionless transistors (DGJLTs). The three dimensional Technology Computer-Aided Design simulation is implemented to calculate the characteristics of the devices with different thickness and source/drain extension and based on that, the parameters such as threshold voltage, transconductance and resistance in saturation region are analyzed. In addition, simulation results provide a physical explanation for the variation of device characteristics given by the variation of geometric parameters, mainly based on investigation of the electric field components and the carries density variation. It is shown that, the variation of the carrier density is the main factor which affects the characteristics of the device when the device's thickness is varied. However, the electric field is mainly responsible for variation of the characteristics when the source/drain extension is changed. PMID:24743692

  9. Investigations of p-type point contact detectors for the MAJORANA Experiment

    NASA Astrophysics Data System (ADS)

    Bowes, Alyssa

    2014-09-01

    The importance of studying neutrinoless double-beta decays and techniques used to do so are described. The use of germanium detectors to search for such decays is of particular interest because of their high intrinsic energy resolution. Germanium detectors also represent a mature technology, as they have been used extensively in many applications for several decades. The MAJORANA DEMONSTRATOR project uses novel p-type, point-contact (PPC) germanium detectors, enriched to 87% Ge-76, to search for those rare decays. This poster will present the results of a characterization study on the temporal stability of PPC germanium detectors. Any instability could potentially influence the sensitivity to the search for neutrinoless double-beta decays. The importance of studying neutrinoless double-beta decays and techniques used to do so are described. The use of germanium detectors to search for such decays is of particular interest because of their high intrinsic energy resolution. Germanium detectors also represent a mature technology, as they have been used extensively in many applications for several decades. The MAJORANA DEMONSTRATOR project uses novel p-type, point-contact (PPC) germanium detectors, enriched to 87% Ge-76, to search for those rare decays. This poster will present the results of a characterization study on the temporal stability of PPC germanium detectors. Any instability could potentially influence the sensitivity to the search for neutrinoless double-beta decays. We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science, the Particle and Nuclear Astrophysics Program of the National Science Foundation and the Russian Foundation for Basic Research.

  10. Computational approaches for classification and prediction of P-type ATPase substrate specificity in Arabidopsis.

    PubMed

    Zinati, Zahra; Alemzadeh, Abbas; KayvanJoo, Amir Hossein

    2016-01-01

    As an extended gamut of integral membrane (extrinsic) proteins, and based on their transporting specificities, P-type ATPases include five subfamilies in Arabidopsis, inter alia, P4ATPases (phospholipid-transporting ATPase), P3AATPases (plasma membrane H(+) pumps), P2A and P2BATPases (Ca(2+) pumps) and P1B ATPases (heavy metal pumps). Although, many different computational methods have been developed to predict substrate specificity of unknown proteins, further investigation needs to improve the efficiency and performance of the predicators. In this study, various attribute weighting and supervised clustering algorithms were employed to identify the main amino acid composition attributes, which can influence the substrate specificity of ATPase pumps, classify protein pumps and predict the substrate specificity of uncharacterized ATPase pumps. The results of this study indicate that both non-reduced coefficients pertaining to absorption and Cys extinction within 280 nm, the frequencies of hydrogen, Ala, Val, carbon, hydrophilic residues, the counts of Val, Asn, Ser, Arg, Phe, Tyr, hydrophilic residues, Phe-Phe, Ala-Ile, Phe-Leu, Val-Ala and length are specified as the most important amino acid attributes through applying the whole attribute weighting models. Here, learning algorithms engineered in a predictive machine (Naive Bays) is proposed to foresee the Q9LVV1 and O22180 substrate specificities (P-type ATPase like proteins) with 100 % prediction confidence. For the first time, our analysis demonstrated promising application of bioinformatics algorithms in classifying ATPases pumps. Moreover, we suggest the predictive systems that can assist towards the prediction of the substrate specificity of any new ATPase pumps with the maximum possible prediction confidence. PMID:27186030

  11. Charge carrier transport and lifetimes in n-type and p-type phosphorene as 2D device active materials: an ab initio study.

    PubMed

    Tea, E; Hin, C

    2016-08-10

    In this work, we provide a detailed analysis of phosphorene's performance as an n-type and p-type active material. This study is based on first principles calculations of the phosphorene electronic structure, and the resulting electron and hole scattering rates and lifetimes. Emphasis is put on extreme regimes commonly found in semiconductor devices, i.e. high electric fields and heavy doping, where impact ionization and Auger recombination can occur. We found that electron-initiated impact ionization is weaker than the hole-initiated process, when compared to carrier-phonon interaction rates, suggesting resilience to impact ionization initiated breakdown. Moreover, calculated minority electron lifetimes are limited by radiative recombination only, not by Auger processes, suggesting that phosphorene could achieve good quantum efficiencies in optoelectronic devices. The provided scattering rates and lifetimes are critical input data for the modeling and understanding of phosphorene-based device physics. PMID:27479904

  12. Heterogeneity of indium antimonide doped with tellurium, germanium, cadmium, and silicon

    SciTech Connect

    Gromova T.I.; Fridshtand, E.S.; Kevorkov, M.N.; Popkov, A.N.; Yorova, E.S.

    1986-05-01

    This paper investigates the heterogeneity of crystals of n- and p-type conductivity with a carrier concentration above 1014 cm-/sup 3/ at 77 K, that are doped with tellurium, germanium, cadmium, and silicon. Cadmium is the weak acceptor, whereas germanium and silicon show amphoteric properties, being located mainly at the sublattice points of the Group V element.

  13. Initial results and long-term clinical follow-up of an amorphous hydrogenated silicon-carbide-coated stent in daily practice.

    PubMed

    Hanekamp, Clara EE; Bonnier, Hans JRM; Michels, Rolf H; Peels, Kathinka H; Heijmen, Eric PCM; Hagen Ev, Eduard van; Koolen, Jacques J

    1998-01-01

    The hemocompatibility and biocompatibility of a stent are determined by the physical and electrochemical properties of the stent surface. The aim of this study was to determine the feasibility, safety and efficacy of implantation of a stent coated with silicon carbide. Baseline characteristics were collected prospectively. The occurrence of cardiac adverse events and the angina score were assessed at clinical follow-up. A total of 193 Tensum stents were implanted in 174 patients. In hospital, one patient experienced stent thrombosis and in 6% of the patients a creatinine kinase elevation to 240 U/l or more occurred. Long-term follow-up was performed in 172 patients, with a mean follow-up of 454 +/- 181 days. Ninety-seven per cent were still alive, 15% had undergone target-vessel revascularization, and 2% had angiographic restenosis and were treated with medication only. Seventy-one per cent of the patients were free of anginal complaints, and 20% had anginal complaints in Canadian Cardiac Society class I or II. The Tensum coronary stent showed to be a safe and efficacious device in this study, with a high primary success rate and favorable long-term clinical followup. PMID:12623396

  14. Characterization of silicon heterojunctions for solar cells

    PubMed Central

    2011-01-01

    Conductive-probe atomic force microscopy (CP-AFM) measurements reveal the existence of a conductive channel at the interface between p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) as well as at the interface between n-type a-Si:H and p-type c-Si. This is in good agreement with planar conductance measurements that show a large interface conductance. It is demonstrated that these features are related to the existence of a strong inversion layer of holes at the c-Si surface of (p) a-Si:H/(n) c-Si structures, and to a strong inversion layer of electrons at the c-Si surface of (n) a-Si:H/(p) c-Si heterojunctions. These are intimately related to the band offsets, which allows us to determine these parameters with good precision. PMID:21711658

  15. Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement

    PubMed Central

    Guo, L.; Wang, X. Q.; Zheng, X. T.; Yang, X. L.; Xu, F. J.; Tang, N.; Lu, L. W.; Ge, W. K.; Shen, B.; Dmowski, L. H.; Suski, T.

    2014-01-01

    We report evidence of the transition from n- to p-type conduction of InN with increasing Mg dopant concentration by using photoconductivity (PC) measurement at room temperature. This transition is depicted as a conversion from negative to positive PC under above-bandgap optical excitation. The n- to p-type transition in InN:Mg is further confirmed by thermopower measurements. PC detection method is a bulk effect since the optical absorption of the surface electron accumulation is negligibly low due to its rather small thickness, and thus shows advantage to detect p-type conduction. This technique is certainly helpful to study p-type doping of InN, which is still a subject of discussions. PMID:24621830

  16. A P-type ATPase from the aquatic fungus Blastocladiella emersonii similar to animal Na,K-ATPases.

    PubMed

    de Souza, F S; Gomes, S L

    1998-04-01

    We have cloned a P-type ATPase gene from the aquatic fungus Blastocladiella emersonii (BePAT1) using a probe obtained with degenerate oligonucleotides, corresponding to two amino acid sequences highly conserved among all P-type ATPase isoforms, and the polymerase chain reaction technique. Nucleotide sequence analysis revealed a 3.4 kb open reading frame encoding a putative peptide of 1080 amino acid residues with a calculated molecular mass of 119 kDa, which presents all diagnostic features of P-type transporting ATPases. Comparison to other members of the family and phylogenetic analyses have shown that the BePAT1 protein belongs to the subfamily of Na,K- and H,K-ATPases, indicating that the divergence between the alpha-subunit of the Na,K-ATPase and other members of the P-type ATPase family has occurred before the divergence between the animal and fungal lineages in evolution. PMID:9602120

  17. High-Resolution p-Type Metal Oxide Semiconductor Nanowire Array as an Ultrasensitive Sensor for Volatile Organic Compounds.

    PubMed

    Cho, Soo-Yeon; Yoo, Hae-Wook; Kim, Ju Ye; Jung, Woo-Bin; Jin, Ming Liang; Kim, Jong-Seon; Jeon, Hwan-Jin; Jung, Hee-Tae

    2016-07-13

    The development of high-performance volatile organic compound (VOC) sensor based on a p-type metal oxide semiconductor (MOS) is one of the important topics in gas sensor research because of its unique sensing characteristics, namely, rapid recovery kinetics, low temperature dependence, high humidity or thermal stability, and high potential for p-n junction applications. Despite intensive efforts made in this area, the applications of such sensors are hindered because of drawbacks related to the low sensitivity and slow response or long recovery time of p-type MOSs. In this study, the VOC sensing performance of a p-type MOS was significantly enhanced by forming a patterned p-type polycrystalline MOS with an ultrathin, high-aspect-ratio (∼25) structure (∼14 nm thickness) composed of ultrasmall grains (∼5 nm size). A high-resolution polycrystalline p-type MOS nanowire array with a grain size of ∼5 nm was fabricated by secondary sputtering via Ar(+) bombardment. Various p-type nanowire arrays of CuO, NiO, and Cr2O3 were easily fabricated by simply changing the sputtering material. The VOC sensor thus fabricated exhibited higher sensitivity (ΔR/Ra = 30 at 1 ppm hexane using NiO channels), as well as faster response or shorter recovery time (∼30 s) than that of previously reported p-type MOS sensors. This result is attributed to the high resolution and small grain size of p-type MOSs, which lead to overlap of fully charged zones; as a result, electrical properties are predominantly determined by surface states. Our new approach may be used as a route for producing high-resolution MOSs with particle sizes of ∼5 nm within a highly ordered, tall nanowire array structure. PMID:27304752

  18. Few-Layer MoS₂ p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation.

    PubMed

    Nipane, Ankur; Karmakar, Debjani; Kaushik, Naveen; Karande, Shruti; Lodha, Saurabh

    2016-02-23

    P-type doping of MoS2 has proved to be a significant bottleneck in the realization of fundamental devices such as p-n junction diodes and p-type transistors due to its intrinsic n-type behavior. We report a CMOS compatible, controllable and area selective phosphorus plasma immersion ion implantation (PIII) process for p-type doping of MoS2. Physical characterization using SIMS, AFM, XRD and Raman techniques was used to identify process conditions with reduced lattice defects as well as low surface damage and etching, 4X lower than previous plasma based doping reports for MoS2. A wide range of nondegenerate to degenerate p-type doping is demonstrated in MoS2 field effect transistors exhibiting dominant hole transport. Nearly ideal and air stable, lateral homogeneous p-n junction diodes with a gate-tunable rectification ratio as high as 2 × 10(4) are demonstrated using area selective doping. Comparison of XPS data from unimplanted and implanted MoS2 layers shows a shift of 0.67 eV toward lower binding energies for Mo and S peaks indicating p-type doping. First-principles calculations using density functional theory techniques confirm p-type doping due to charge transfer originating from substitutional as well as physisorbed phosphorus in top few layers of MoS2. Pre-existing sulfur vacancies are shown to enhance the doping level significantly. PMID:26789206

  19. Multimode silicon nanowire transistors.

    PubMed

    Glassner, Sebastian; Zeiner, Clemens; Periwal, Priyanka; Baron, Thierry; Bertagnolli, Emmerich; Lugstein, Alois

    2014-11-12

    The combined capabilities of both a nonplanar design and nonconventional carrier injection mechanisms are subject to recent scientific investigations to overcome the limitations of silicon metal oxide semiconductor field effect transistors. In this Letter, we present a multimode field effect transistors device using silicon nanowires that feature an axial n-type/intrinsic doping junction. A heterostructural device design is achieved by employing a self-aligned nickel-silicide source contact. The polymorph operation of the dual-gate device enabling the configuration of one p- and two n-type transistor modes is demonstrated. Not only the type but also the carrier injection mode can be altered by appropriate biasing of the two gate terminals or by inverting the drain bias. With a combined band-to-band and Schottky tunneling mechanism, in p-type mode a subthreshold swing as low as 143 mV/dec and an ON/OFF ratio of up to 10(4) is found. As the device operates in forward bias, a nonconventional tunneling transistor is realized, enabling an effective suppression of ambipolarity. Depending on the drain bias, two different n-type modes are distinguishable. The carrier injection is dominated by thermionic emission in forward bias with a maximum ON/OFF ratio of up to 10(7) whereas in reverse bias a Schottky tunneling mechanism dominates the carrier transport. PMID:25303290

  20. Metallurgical Route to Produce Upgraded Silicon and Monosilane

    SciTech Connect

    Mukashev, B. N.; Abdullin, Kh A.; Tamendarov, M. F.; Turmagambetov, T. S.; Beketov, B. A.; Page, M. R.; Kline, D. M.

    2009-01-01

    We studied alumothermic reduction of silica from silicate slag to obtain silicon-containing Alloy-I and Alloy-II. Phosphorous industry waste and synthetic slag are used as a silicate slag that consists of more than 90% silicon and calcium oxides and less than l0% other elemental oxides. Silicon-containing Alloy-I was upgraded by acid leaching to silicon of a fine powder structure. Using this powder, we grew poly- and mono-crystalline p-type silicon, with resistivity of 0.24 {Omega} cm, by the Czochralski method. Silicon-containing Alloy-II was used for obtaining monosilane by aqueous treatment with hydrochloric acid under atmospheric conditions and without any catalyst. There was no trace of diborane, which is a common source for boron contamination in crude silane.

  1. Photoconductivity of organic polymer films doped with porous silicon nanoparticles and ionic polymethine dyes

    SciTech Connect

    Davidenko, N. A. Skrichevsky, V. A.; Ishchenko, A. A.; Karlash, A. Yu.; Mokrinskaya, E. V.

    2009-05-15

    Features of electrical conductivity and photoconductivity of polyvinylbutyral films containing porous silicon nanoparticles and similar films doped with cationic and anionic polymethine dyes are studied. Sensitization of the photoelectric effect by dyes with different ionicities in films is explained by the possible photogeneration of holes and electrons from dye molecules and the intrinsic bipolar conductivity of porous silicon nanoparticles. It is assumed that the electronic conductivity in porous silicon nanoparticles is higher in comparison with p-type conductivity.

  2. Photoluminescence and SIMS studies of hydrogen passivation of Mg-doped p-type gallium nitride

    SciTech Connect

    Li, Y.; Lu, Y.; Hwang, C.Y.; Schurman, M.; Mayo, W.; Shen, H.; Wraback, M.; Salagaj, T.; Stall, R.A.

    1996-11-01

    The effects of hydrogen passivation in MOCVD grown Mg doped p-type GaN were studied using low temperature (5K) photoluminescence (PL) and secondary-ion-mass spectroscopy (SIMS). GaN films with different Mg doping level were annealed at 700 C in N{sub 2} ambient with different annealing times. The SIMS results indicate that the hydrogen concentration increases with increasing Mg doping level in the as-grown Mg:GaN film. After 20 minutes of annealing, most of the hydrogen escapes form the film. The 3.455 eV PL peak before annealing and the 3.446 eV peak after annealing found in the mg doped samples were attributed to the exciton bound to the Mg-H complex and to the Mg acceptor, respectively. The shift of the bound exciton peak to higher energy (3.465 eV) in the lightly doped sample is due to an effective n-type compensation associated with an annealing-induced increase in the nitrogen vacancies. In heavily doped Mg:GaN, the decreases in the integrated PL intensity after 700 C annealing may be associated with the hydrogen depassivation of nonradiative recombination centers in the film. The increase of PL intensity in the lightly doped sample after annealing is attributed to the reduction of defects by the annealing process.

  3. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe

    SciTech Connect

    Shi, Guangsha; Kioupakis, Emmanouil

    2015-02-14

    We used density functional and many-body perturbation theory to calculate the quasiparticle band structures and electronic transport parameters of p-type SnSe both for the low-temperature Pnma and high-temperature Cmcm phases. The Pnma phase has an indirect band gap of 0.829 eV, while the Cmcm has a direct band gap of 0.464 eV. Both phases exhibit multiple local band extrema within an energy range comparable to the thermal energy of carriers from the global extrema. We calculated the electronic transport coefficients as a function of doping concentration and temperature for single-crystal and polycrystalline materials to understand the previous experimental measurements. The electronic transport coefficients are highly anisotropic and are strongly affected by bipolar transport effects at high temperature. Our results indicate that SnSe exhibits optimal thermoelectric performance at high temperature when doped in the 10{sup 19}–10{sup 20 }cm{sup −3} range.

  4. High-Performance p-Type Black Phosphorus Transistor with Scandium Contact.

    PubMed

    Li, Ling; Engel, Michael; Farmer, Damon B; Han, Shu-Jen; Wong, H-S Philip

    2016-04-26

    A record high current density of 580 μA/μm is achieved for long-channel, few-layer black phosphorus transistors with scandium contacts after 400 K vacuum annealing. The annealing effectively improves the on-state current and Ion/Ioff ratio by 1 order of magnitude and the subthreshold swing by ∼2.5×, whereas Al2O3 capping significantly degrades transistor performances, resulting in 5× lower on-state current and 3× lower Ion/Ioff ratio. The influences of moisture on black phosphorus metal contacts are elucidated by analyzing the hysteresis of 3-20 nm thick black phosphorus transistors with scandium and gold contacts under different conditions: as-fabricated, after vacuum annealing, and after Al2O3 capping. The optimal black phosphorus film thickness for transistors with scandium contacts is found to be ∼10 nm. Moreover, p-type performance is shown in all transistors with scandium contacts, suggesting that the Fermi level is pinned closer to the valence band regardless of the flake thickness. PMID:27023751

  5. Observations of exciton and carrier spin relaxation in Be doped p-type GaAs

    SciTech Connect

    Asaka, Naohiro; Harasawa, Ryo; Tackeuchi, Atsushi; Lu, Shulong; Dai, Pan

    2014-03-17

    We have investigated the exciton and carrier spin relaxation in Be-doped p-type GaAs. Time-resolved spin-dependent photoluminescence (PL) measurements revealed spin relaxation behaviors between 10 and 100 K. Two PL peaks were observed at 1.511 eV (peak 1) and 1.497 eV (peak 2) at 10 K, and are attributed to the recombination of excitons bound to neutral Be acceptors (peak 1) and the band-to-acceptor transition (peak 2). The spin relaxation times of both PL peaks were measured to be 1.3–3.1 ns at 10–100 K, and found to originate from common electron spin relaxation. The observed existence of a carrier density dependence of the spin relaxation time at 10–77 K indicates that the Bir-Aronov-Pikus process is the dominant spin relaxation mechanism.

  6. A tetrahedral coordination of Zinc during transmembrane transport by P-type Zn2+-ATPases

    PubMed Central

    Raimunda, Daniel; Subramanian, Poorna; Stemmler, Timothy; Argüello, José M.

    2012-01-01

    Zn2+ is an essential transition metal required in trace amounts by all living organisms. However, metal excess is cytotoxic and leads to cell damage. Cells rely on transmembrane transporters, with the assistance of other proteins, to establish and maintain Zn2+ homeostasis. Metal coordination during transport is key to specific transport and unidirectional translocation without the backward release of free metal. The coordination details of Zn2+ at the transmembrane metal binding site responsible for transport have now been established. Escherichia coli ZntA is a well-characterized Zn2+-ATPase responsible for intracellular Zn2+ efflux. A truncated form of the protein lacking regulatory metal sites and retaining the transport site was constructed. Metrical parameters of the metal-ligand coordination geometry for the zinc bound isolated form were characterized using x-ray absorption spectroscopy (XAS). Our data support a nearest neighbor ligand environment of (O/N)2S2 that is compatible with the proposed invariant metal coordinating residues present in the transmembrane region. This ligand identification and the calculated bond lengths support a tetrahedral coordination geometry for Zn2+ bound to the TM-MBS of P-type ATPase transporters. PMID:22387457

  7. Shubnikov-de Haas oscillations in n and p type Bi2Se3 flakes

    NASA Astrophysics Data System (ADS)

    Liu, Hongchao; Liu, Shiguang; Yi, Ya; He, Hongtao; Wang, Jiannong

    2015-12-01

    Shubnikov-de Haas (SdH) oscillation, describing the magnetic quantum oscillation in material resistivity at low temperatures, is recently observed in topological insulators and plays an important role in clarifying the existence of topological surface states. Here, we report the SdH oscillations observed in both n and p type Bi2Se3 flake samples. The angle dependent magneto-resistance results reveal the 2D nature of SdH oscillations and the Landau level fan diagrams exhibit π Berry phase. These indicate that the observed SdH oscillations originate from the topological surface states. Moreover, the cyclotron mass, Dingle temperature, Fermi velocity, and other parameters of the systems are deduced from the analysis of temperature dependent SdH oscillations. The obtained Fermi velocities of surface electrons and holes in Bi2Se3 show a good agreement with those found in the typical angle-resolved photoemission spectroscopy experiments. This further confirms that the topological surface electrons/holes are responsible for observed SdH oscillations.

  8. p-type doping of GaAs nanowires using carbon

    NASA Astrophysics Data System (ADS)

    Salehzadeh, O.; Zhang, X.; Gates, B. D.; Kavanagh, K. L.; Watkins, S. P.

    2012-11-01

    We report on the electrical properties of Au-catalyzed C-doped GaAs nanowires (NWs) grown by metal organic vapor phase epitaxy. Transport measurements were carried out using a tungsten nanoprobe inside a scanning electron microscope by contacting to the Au catalyst particle of individual nanowires. The doping level could be varied from approximately (4 ± 1) × 1016 cm-3 to (1.0 ± 0.3) × 1019 cm-3 by varying the molar flow of the gas phase carbon precursor, as well as the group V to group III precursor ratio. It was found that the current transport mechanism switches from generation-recombination to tunnelling field emission by increasing the doping level to 1 × 1019 cm-3. Based on a diameter-dependent analysis of the apparent resistivity of the C-doped NWs, we propose that C incorporates into GaAs NWs through the triple boundary at the Au/NW interface. The p-type conductivity of the C-doped NWs was inferred by observing a rectification at negative bias (applied to the Au electrode) and confirmed by back-gating measurements performed on field effect transistor devices.

  9. p-type doping of MoS{sub 2} thin films using Nb

    SciTech Connect

    Laskar, Masihhur R.; Nath, Digbijoy N.; Lee, Edwin W.; Lee, Choong Hee; Yang, Zihao; Ma, Lu; Wu, Yiying; Kent, Thomas; Mishra, Rohan; Roldan, Manuel A.; Idrobo, Juan-Carlos; Pantelides, Sokrates T.; Pennycook, Stephen J.; Myers, Roberto C.; Rajan, Siddharth

    2014-03-03

    We report on the first demonstration of p-type doping in large area few-layer films of (0001)-oriented chemical vapor deposited MoS{sub 2}. Niobium was found to act as an efficient acceptor up to relatively high density in MoS{sub 2} films. For a hole density of 3.1 × 10{sup 20} cm{sup −3}, Hall mobility of 8.5 cm{sup 2} V{sup −1} s{sup −1} was determined, which matches well with the theoretically expected values. X-ray diffraction scans and Raman characterization indicated that the film had good out-of-plane crystalline quality. Absorption measurements showed that the doped sample had similar characteristics to high-quality undoped samples, with a clear absorption edge at 1.8 eV. Scanning transmission electron microscope imaging showed ordered crystalline nature of the Nb-doped MoS{sub 2} layers stacked in the [0001] direction. This demonstration of substitutional p-doping in large area epitaxial MoS{sub 2} could help in realizing a wide variety of electrical and opto-electronic devices based on layered metal dichalcogenides.

  10. Nonpolar a-plane p-type GaN and p-n Junction Diodes

    SciTech Connect

    Chakraborty, Arpan; Xing, H.; Craven, M.D.; Keller, S.; Mates, T.; Speck, J.S.; Baars, S.P. den; Mishra, U.K.

    2004-10-15

    Growth and electrical characteristics of Mg-doped p-type nonpolar (1120) a-plane GaN films, grown on (1102) r-plane sapphire substrates via metalorganic chemical vapor deposition, were investigated as a function of growth rate, the ammonia to trimethylgallium flow ratio (V/III ratio), and the growth temperature. The electrical conductivity of the films exhibited a strong dependence on the growth parameters. Secondary-ion-mass-spectroscopy measurements indicated that more Mg was incorporated at higher growth rate and at lower growth temperatures. The Mg concentration in the films increased linearly with the Mg flow. A maximum hole concentration of 6.8x10{sup 17}cm{sup -3} was achieved at room temperature for a Mg concentration of 7.6x10{sup 19}cm{sup -3}, corresponding to 0.9% ionization. Further increase in the Mg concentration resulted in increased surface roughness as well as a significant decrease in the hole concentration. p-n junction diodes were fabricated using nonpolar a-plane GaN, and the current-voltage characteristics of these diodes showed a sharp turn-on at {approx}3 V.

  11. Improved source design for p-type tunnel field-effect transistors: Towards truly complementary logic

    SciTech Connect

    Verreck, Devin Groeseneken, Guido; Verhulst, Anne S.; Collaert, Nadine; Mocuta, Anda; Thean, Aaron; Sorée, Bart

    2014-12-15

    Complementary logic based on tunnel field-effect transistors (TFETs) would drastically reduce power consumption thanks to the TFET's potential to obtain a sub-60 mV/dec subthreshold swing (SS). However, p-type TFETs typically do not meet the performance of n-TFETs for direct bandgap III-V configurations. The p-TFET SS stays well above 60 mV/dec, due to the low density of states in the conduction band. We therefore propose a source configuration in which a highly doped region is maintained only near the tunnel junction. In the remaining part of the source, the hot carriers in the exponential tail of the Fermi-Dirac distribution are blocked by reducing the doping degeneracy, either with a source section with a lower doping concentration or with a heterostructure. We apply this concept to n-p-i-p configurations consisting of In{sub 0.53}Ga{sub 0.47}As and an InP-InAs heterostructure. 15-band quantum mechanical simulations predict that the configurations with our source design can obtain sub-60 mV/dec SS, with an on-current comparable to the conventional source design.

  12. Ferromagnetic ordering of Cr and Fe doped p-type diamond: An ab initio study

    SciTech Connect

    Benecha, E. M.; Lombardi, E. B.

    2014-02-21

    Ferromagnetic ordering of transition metal dopants in semiconductors holds the prospect of combining the capabilities of semiconductors and magnetic systems in single hybrid devices for spintronic applications. Various semiconductors have so far been considered for spintronic applications, but low Curie temperatures have hindered room temperature applications. We report ab initio DFT calculations on the stability and magnetic properties of Fe and Cr impurities in diamond, and show that their ground state magnetic ordering and stabilization energies depend strongly on the charge state and type of co-doping. We predict that divacancy Cr{sup +2} and substitutional Fe{sup +1} order ferromagnetically in p-type diamond, with magnetic stabilization energies (and magnetic moment per impurity ion) of 16.9 meV (2.5 μ{sub B}) and 33.3 meV (1.0 μ{sub B}), respectively. These magnetic stabilization energies are much larger than what has been achieved in other semiconductors at comparable impurity concentrations, including the archetypal dilute magnetic semiconductor GaAs:Mn. In addition, substitutional Fe{sup +1} exhibits a strong half-metallic character, with the Fermi level crossing bands in only the spin down channel. These results, combined with diamond’s extreme properties, demonstrate that Cr or Fe dopedp-type diamond may successfully be considered in the search for room temperature spintronic materials.

  13. SIM Lite Detection of Habitable Planets in P-Type Binary-Planetary Systems

    NASA Technical Reports Server (NTRS)

    Pan, Xiaopei; Shao, Michael; Shaklan, Stuart; Goullioud, Renaud

    2010-01-01

    Close binary stars like spectroscopic binaries create a completely different environment than single stars for the evolution of a protoplanetary disk. Dynamical interactions between one star and protoplanets in such systems provide more challenges for theorists to model giant planet migration and formation of multiple planets. For habitable planets the majority of host stars are in binary star systems. So far only a small amount of Jupiter-size planets have been discovered in binary stars, whose minimum separations are 20 AU and the median value is about 1000 AU (because of difficulties in radial velocity measurements). The SIM Lite mission, a space-based astrometric observatory, has a unique capability to detect habitable planets in binary star systems. This work analyzed responses of the optical system to the field stop for companion stars and demonstrated that SIM Lite can observe exoplanets in visual binaries with small angular separations. In particular we investigated the issues for the search for terrestrial planets in P-type binary-planetary systems, where the planets move around both stars in a relatively distant orbit.

  14. SIM-Lite detection of habitable planets in P-type binary-planetary systems

    NASA Astrophysics Data System (ADS)

    Pan, Xiaopei; Shao, Michael; Shaklan, Stuart; Goullioud, Renaud

    2010-07-01

    Close binary stars like spectroscopic binaries create a completely different environment than single stars for the evolution of a protoplanetary disk. Dynamical interactions between one star and protoplanets in such systems provide more challenges for theorists to model giant planet migration and formation of multiple planets. For habitable planets the majority of host stars are in binary star systems. So far only a small amount of Jupiter-size planets have been discovered in binary stars, whose minimum separations are 20 AU and the median value is about 1000 AU (because of difficulties in radial velocity measurements). The SIM Lite mission, a space-based astrometric observatory, has a unique capability to detect habitable planets in binary star systems. This work analyzed responses of the optical system to the field stop for companion stars and demonstrated that SIM Lite can observe exoplanets in visual binaries with small angular separations. In particular we investigated the issues for the search for terrestrial planets in P-type binary-planetary systems, where the planets move around both stars in a relatively distant orbit.

  15. Towards P-Type Conductivity in SnO2 Nanocrystals through Li Doping

    SciTech Connect

    Chaparadza, Allen; Rananavare, Shankar B

    2010-01-22

    This paper examines electrical transport properties and Li doping in SnO2 synthesized by the sol–gel method. Solid-state 7Li-NMR lineshapes reveal that Li ions occupy two distinct sites with differing dynamic mobilities. The chemical exchange rate between the two sites is, however, too slow for detection on the NMR timescale. Compressed nanoparticulate films of this doped semiconductor exhibit a positive Seebeck coefficient implying a p-type conductivity. A variable-temperature direct current conductivity, over a 25–350 °C temperature range, follows an Efros–Shklovskii variable range hopping (ES-VRH) conduction mechanism (ln(ρ) versus T -1/2) at temperatures below 100 °C with a crossover to 2D Mott variable range hopping (M-VRH) (ln(ρ) versus T -1/3) conduction at temperatures above 250 °C. In a transition region between these two limiting behaviors, the dc resistivity exhibits an anomalous temperature-independent plateau. We suggest that its origin may lie in a carrier inversion phenomenon wherein the majority carriers switch from holes to electrons due to Li ion expulsion from the crystalline core and creation of oxygen vacancies generated by loss of oxygen at elevated temperatures.

  16. Near Field Enhanced Photocurrent Generation in P-type Dye-Sensitized Solar Cells

    PubMed Central

    Xu, Xiaobao; Cui, Jin; Han, Junbo; Zhang, Junpei; Zhang, Yibo; Luan, Lin; Alemu, Getachew; Wang, Zhong; Shen, Yan; Xiong, Dehua; Chen, Wei; Wei, Zhanhua; Yang, Shihe; Hu, Bin; Cheng, Yibing; Wang, Mingkui

    2014-01-01

    Over the past few decades, the field of p-type dye-sensitized solar cell (p-DSSC) devices has undergone tremendous advances, in which Cu-based delafossite nanocrystal is of prime interest. This paper presents an augment of about 87% improvement in photocurrent observed in a particular configuration of organic dye P1 sensitized CuCrO2 delafossite nanocrystal electrode coupled with organic redox shuttle, 1-methy-1H- tetrazole-5-thiolate and its disulfide dimer when Au nanoparticles (NPs, with diameter of about 20 nm) is added into the photocathode, achieving a power convert efficiency of 0.31% (measured under standard AM 1.5 G test conditions). Detailed investigation shows that the local electrical-magnetic field effect, induced by Au NPs among the mesoporous CuCrO2 film, can improve the charge injection efficiency at dye/semiconductor interface, which is responsible for the bulk of the gain in photocurrent. PMID:24492539

  17. Investigation of the optical and electrical properties of p-type porous GaAs structure

    NASA Astrophysics Data System (ADS)

    Saghrouni, H.; Missaoui, A.; Hannachi, R.; Beji, L.

    2013-12-01

    Porous GaAs layers have been formed by electrochemical anodic etching of (1 0 0) heavily doped p-type GaAs substrate in a HF:C2H5OH solution. The surface morphology of porous GaAs has been studied using atomic force microscopy (AFM). Nano-structural nature of the porous layer has been demonstrated by X-ray diffraction analysis (XRD) and confirmed by AFM. An estimation of the main size of the GaAs crystallites obtained from effective mass theory and based on PL data was close to the lowest value obtained from the AFM results. The porous p-GaAs samples are characterised by spectroscopic ellipsometry and modulation spectroscopy techniques. The objective of this study is to determine the porosity, refractive index, and thickness. The porosity of GaAs determined by atomic force microscopy confirmed by the value obtained from the spectroscopic ellipsometry. In fact the current-voltage I(V) characteristics of metal-semiconductor Au/p-GaAs are investigated and compared with Au/p-porous GaAs structures. From the forward bias I(V) characteristics of these devices, the main electrical parameters such as ideality factor, barrier height, and series resistance have been determined.

  18. Optical and electrical properties of p-type Li-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Sáaedi, Abdolhossein; Yousefi, Ramin; Jamali-Sheini, Farid; Cheraghizade, Mohsen; Khorsand Zak, A.; Huang, Nay Ming

    2013-09-01

    Undoped and Li-doped ZnO nanowires were grown on Si(1 1 1) substrates using a thermal evaporation method. Undoped and Li-doped ZnO nanoparticles, which were prepared using a sol-gel method, were used as material sources to grow the undoped and Li-doped ZnO nanowires, respectively. X-ray diffraction patterns clearly indicated hexagonal structures for all of the products. The nanowires were completely straight, with non-aligned arrays, and were tapered. Field emission Auger spectrometer indicated lithium element in the nanowires structures. Photoluminescence (PL) studies showed lower optical properties for the Li-doped ZnO nanowires compared to the undoped ZnO nanowires. Furthermore, the UV peak of the Li-doped ZnO nanowires was red-shifted compared to the undoped ZnO nanowires. Two probe method results proved that the Li-doped ZnO nanowires exhibited p-type properties.

  19. Enhanced p-type conduction of B-doped nanocrystalline diamond films by high temperature annealing

    SciTech Connect

    Gu, S. S.; Hu, X. J.

    2013-07-14

    We report the enhanced p-type conduction with Hall mobility of 53.3 cm{sup 2} V{sup -1} s{sup -1} in B-doped nanocrystalline diamond (NCD) films by 1000 Degree-Sign C annealing. High resolution transmission electronic microscopy, uv, and visible Raman spectroscopy measurements show that a part of amorphous carbon grain boundaries (GBs) transforms to diamond phase, which increases the opportunity of boron atoms located at the GBs to enter into the nano-diamond grains. This phase transition doping is confirmed by the secondary ion mass spectrum depth profile results that the concentration of B atoms in nano-diamond grains increases after 1000 Degree-Sign C annealing. It is also observed that 1000 Degree-Sign C annealing improves the lattice perfection, reduces the internal stress, decreases the amount of trans-polyacetylene, and increases the number or size of aromatic rings in the sp{sup 2}-bonded carbon cluster in B-doped NCD films. These give the contributions to improve the electrical properties of 1000 Degree-Sign C annealed B-doped NCD films.

  20. Neganov-Luke Phonon Amplification in P-type Point Contact Detectors

    NASA Astrophysics Data System (ADS)

    Mirabolfathi, N.; Amman, M.; Faiez, D.; Luke, P. N.; Martin, R. D.; Rolla, J. A.; Sadoulet, B.; Serfass, B.; Vetter, K.

    2014-08-01

    The Cryogenic Dark Matter Search (CDMS) detectors measure ionization and athermal phonons in high purity germanium crystals to discriminate between nuclear recoils from dark matter candidates and radioactive backgrounds. In order to reach lower energy detection thresholds, the CDMSlite experiment operates the CDMS detectors with a larger voltage bias to increase the signal-to-noise ratio using the Neganov-Luke effect. Breakdown in those detectors was observed at fields of order 30 V/cm, but the reason for the breakdown is unknown. It is unclear if the breakdowns are due to surface leakage current, impact ionization in the bulk of the crystals, or some other effect due to the very low operating temperatures of the detectors. Germanium detectors used in gamma spectroscopy at 77 K are regularly operated with fields in excess of 1,000 V/cm. In order to understand the origin of breakdown in the CDMS detectors, a P-type Point Contact detector was equipped with transition edge phonon thermistors and operated at a base temperature of 30 mK. The linearity of the Neganov-Luke phonon amplification was studied and no sign of breakdown for biases up to 400 V was observed. This excludes impact ionization on neutral impurity states as the primary cause of the breakdown observed in the CDMSLite detectors. This demonstrates that the Neganov-Luke phonon amplification is a viable method for lowering the energy threshold in germanium detectors of masses of order 1 kg.

  1. High performance p-type NiOx thin-film transistor by Sn doping

    NASA Astrophysics Data System (ADS)

    Lin, Tengda; Li, Xiuling; Jang, Jin

    2016-06-01

    Major obstacles towards power efficient complementary electronics employing oxide thin-film transistors (TFTs) lie in the lack of equivalent well performing p-channel devices. Here, we report a significant performance enhancement of solution-processed p-type nickel oxide (NiOx) TFTs by introducing Sn dopant. The Sn-doped NiOx (Sn-NiOx) TFTs annealed at 280 °C demonstrate substantially improved electrical performances with the increase in the on/off current ratio (Ion/Ioff) by ˜100 times, field-effect mobility (μlin) by ˜3 times, and the decrease in subthreshold swing by half, comparing with those of pristine NiOx TFTs. X-ray photoelectron spectroscopy and X-ray diffraction results confirm that Sn atoms tend to substitute Ni sites and induce more amorphous phase. A decrease in density of states in the gap of NiOx by Sn doping and the shift of Fermi level (EF) into the midgap lead to the improvements of TFT performances. As a result, Sn-NiOx can be a promising material for the next-generation, oxide-based electronics.

  2. p-Type hydrogen sensing with Al- and V-doped TiO2 nanostructures

    PubMed Central

    2013-01-01

    Doping with other elements is one of the efficient ways to modify the physical and chemical properties of TiO2 nanomaterials. In the present work, anatase TiO2 nanofilms doped with Al and V elements were fabricated through anodic oxidation of Ti6Al4V alloy and further annealing treatment. Hydrogen sensing behavior of the crystallized Ti-Al-V-O nanofilms at various working temperatures was investigated through exposure to 1,000 ppm H2. Different from n-type hydrogen sensing characteristics of undoped TiO2 nanotubes, the Al- and V-doped nanofilms presented a p-type hydrogen sensing behavior by showing increased resistance upon exposure to the hydrogen-containing atmosphere. The Ti-Al-V-O nanofilm annealed at 450°C was mainly composed of anatase phase, which was sensitive to hydrogen-containing atmosphere only at elevated temperatures. Annealing of the Ti-Al-V-O nanofilm at 550°C could increase the content of anatase phase in the oxide nanofilm and thus resulted in a good sensitivity and resistance recovery at both room temperature and elevated temperatures. The TiO2 nanofilms doped with Al and V elements shows great potential for use as a robust semiconducting hydrogen sensor. PMID:23311459

  3. Terahertz emission from silicon nanostructures heavily doped with boron

    NASA Astrophysics Data System (ADS)

    Bagraev, Nikolay T.; Danilovskii, Eduard Yu; Gets, Dmitrii S.; Kaveev, Andrey K.; Klyachkin, Leonid E.; Kropotov, Grigorii I.; Kudryavtsev, Andrey A.; Kuzmin, Roman V.; Malyarenko, Anna M.; Mashkov, Vladimir A.; Tsibizov, Ivan A.; Tsypishka, Dmitrii I.; Vinerov, Ilya A.

    2014-03-01

    We present the first findings of the terahertz emission from the ultra-narrow p-type silicon quantum well confined by the δ-barriers heavily doped with boron on the n-type Si (100) surface. The THz spectra revealed by the voltage applied along the Si-QW plane appear to result from the radiation of the dipole boron centers.

  4. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    PubMed

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO. PMID:25835032

  5. Surface property modification of silicon

    NASA Technical Reports Server (NTRS)

    Danyluk, S.

    1984-01-01

    The main emphasis of this work has been to determine the wear rate of silicon in fluid environments and the parameters that influence wear. Three tests were carried out on single crystal Czochralski silicon wafers: circular and linear multiple-scratch tests in fluids by a pyramidal diamond simulated fixed-particle abrasion; microhardness and three-point bend tests were used to determine the hardness and fracture toughness of abraded silicon and the extent of damage induced by abrasion. The wear rate of (100) and (111) n and p-type single crystal Cz silicon abraded by a pyramidal diamond in ethanol, methanol, acetone and de-ionized water was determined by measuring the cross-sectional areas of grooves of the circular and linear multiple-scratch tests. The wear rate depends on the loads on the diamond and is highest for ethanol and lowest for de-ionized water. The surface morphology of the grooves showed lateral and median cracks as well as a plastically deformed region. The hardness and fracture toughness are critical parameters that influence the wear rate. Microhardness tests were conducted to determine the hardness as influenced by fluids. Median cracks and the damage zone surrounding the indentations were also related to the fluid properties.

  6. Silicone breast implant materials.

    PubMed

    Daniels, A U

    2012-01-01

    This opinion article has been written on request because of the recent public controversy over silicone breast implants produced by a now-defunct company, Poly Implant Prosthese (PIP) in France. More than 300,000 PIP devices have been implanted. The purposes of my article are to (1.) provide a general overview of silicone breast implant materials, (2.) to describe the general safety of these materials as reported to date, and (3.) to summarise current publicly available information about these aspects of the PIP prostheses. The materials covered are the silicone rubber from which the implant shells are made and the silicone gel used to fill the shell. The materials safety issues are biocompatibility (especially of the gel) and biodurability of the shell. The literature reviewed indicates that biocompatibility is not an issue with other current generation implants. However, biodurability is. A rough estimate of implant shell rupture rate is ~10+% at 10 years. Information is still emerging about the PIP implants. Initial regulatory disclosures suggest the PIP implants may have both biocompatibility and biodurability problems. They also suggest that PIP implants may have been produced using silicone materials not certified as medical grade. Governmental health and regulatory agencies are just now in the process of deciding what actions should be taken to protect patients. PMID:22826101

  7. Evidence for the role of hydrogen in the stabilization of minority carrier lifetime in boron-doped Czochralski silicon

    SciTech Connect

    Nampalli, N. Hallam, B.; Chan, C.; Abbott, M.; Wenham, S.

    2015-04-27

    This study demonstrates that the presence of a hydrogen source during fast-firing is critical to the regeneration of B-O defects and that is it not a pure thermally based mechanism or due to plasma exposure. Boron-doped p-type wafers were fired with and without hydrogen-rich silicon nitride (SiN{sub x}:H) films present during the fast-firing process. After an initial light-induced degradation step, only wafers fired with the SiN{sub x}:H films present were found to undergo permanent and complete recovery of lifetime during subsequent illuminated annealing. In comparison, wafers fired bare, i.e., without SiN{sub x}:H films present during firing, were found to demonstrate no permanent recovery in lifetime. Further, prior exposure to hydrogen-rich plasma processing was found to have no impact on permanent lifetime recovery in bare-fired wafers. This lends weight to a hydrogen-based model for B-O defect passivation and casts doubt on the role of non-hydrogen species in the permanent passivation of B-O defects in commercial-grade p-type Czochralski silicon wafers.

  8. Photoluminescence study of p-type vs. n-type Ag-doped ZnO films

    SciTech Connect

    Myers, M. A.; Jian, J.; Khranovskyy, V.; Lee, J. H.; Wang, Han; Wang, Haiyan E-mail: hwang00@tamu.edu

    2015-08-14

    Silver doped ZnO films have been grown on sapphire (0001) substrates by pulsed laser deposition. Hall measurements indicate that p-type conductivity is realized for the films deposited at 500 °C and 750 °C. Transmission electron microscopy images show more obvious and higher density of stacking faults (SFs) present in the p-type ZnO films as compared to the n-type films. Top view and cross sectional photoluminescence of the n- and p-type samples revealed free excitonic emission from both films. A peak at 3.314 eV, attributed to SF emission, has been observed only for the n-type sample, while a weak neutral acceptor peak observed at 3.359 eV in the p-type film. The SF emission in the n-type sample suggests localization of acceptor impurities nearby the SFs, while lack of SF emission for the p-type sample indicates the activation of the Ag acceptors in ZnO.

  9. Growth and conduction mechanism of As-doped p-type ZnO thin films deposited by MOCVD

    SciTech Connect

    Ma, Y.; Gao, Q.; Wu, G.G.; Li, W.C.; Gao, F.B.; Yin, J.Z.; Zhang, B.L.; Du, G.T.

    2013-03-15

    Highlight: ► P-type As-doped ZnO thin films was fabricated by MOCVD after post-growth annealing. ► The formation mechanism of p-ZnO with high hole concentration above 10{sup 19} cm{sup −3} was elucidated. ► Besides As{sub Zn}–2V{sub Zn} complex, C impurities also played an important role in realizing p-ZnO. ► The formations of As{sub O} and O-C-O complex were partially contributed to the p-type ZnO: As films. - Abstract: As-doped p-type ZnO thin films were fabricated by metal organic chemical vapor deposition (MOCVD) after in situ annealing in a vacuum. The p-type conduction mechanism was suggested by the analysis of X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy. It was found that most of the As dopants in p-ZnO thin films formed As{sub Zn}–2V{sub Zn} shallow acceptor complex, simultaneously, carbon impurities also played an important role in realizing p-type conductivity in ZnO. Substitutional carbon on oxygen site created passivated defect bands by combining with Ga atoms due to the donor-acceptor pair Coulomb binding, which shifted the valence-band maximum upwards for ZnO and thus increased the hole concentration.

  10. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    PubMed Central

    Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. PMID:26565797

  11. P-type point contact germanium detectors and their application in rare-event searches

    NASA Astrophysics Data System (ADS)

    Giovanetti, Graham Kurt

    In the last two decades, experimental results from the direct detection of solar, reactor, and atmospheric neutrinos have provided convincing evidence that neutrinos have mass, the first definitive evidence of physics beyond the Standard Model. The existence of massive neutrinos opens many questions about the neutrino's intrinsic properties, including the absolute mass, the relative hierarchy of the neutrino mass states, and the Majorana or Dirac nature of the neutrino. The Majorana Demonstrator is an array of p-type point contact (PPC) high purity germanium detectors that will search for the neutrinoless double-beta decay (0nubetabeta) of 76Ge, a process that can only occur if the neutrino is a Majorana particle. PPC detectors have several characteristics that make them well suited for a 76Ge 0nubetabeta search, including sub-keV energy thresholds that allow for background rejection based on low-energy x-ray tagging. This feature makes the Majorana Demonstrator sensitive to signals that might be present from processes that are not in the current Standard Model of particle physics. The Majorana Low-background Broad Energy Germanium Detector at KURF (MALBEK) is a PPC detector operated at the Kimballton Underground Research Facility (KURF) in Ripplemead, VA. MALBEK was used to test the stability and performance of PPC detectors and study sources of background near the detector energy threshold. It was found that the dominant background below 1 keV in MALBEK data is due to slow surface events, a class of signals originating from interactions that occur near the detector surface. Techniques were developed for identifying surface events and simulating their formation and distribution. These techniques were then applied to 89.5 kg-d of data and searches were performed for signals from weakly interacting massive particles (WIMPs), solar axions, and Pauli exclusion principle violating electron transitions. No evidence of a signal was found. These results are presented in

  12. Structure and mechanism of Zn2+-transporting P-type ATPases

    PubMed Central

    Wang, Kaituo; Sitsel, Oleg; Meloni, Gabriele; Autzen, Henriette Elisabeth; Andersson, Magnus; Klymchuk, Tetyana; Nielsen, Anna Marie; Rees, Douglas C.; Nissen, Poul; Gourdon, Pontus

    2014-01-01

    Zinc is an essential micronutrient for all living organisms, required for signaling and proper function of a range of proteins involved in e.g. DNA-binding and enzymatic catalysis1. In prokaryotes and photosynthetic eukaryotes Zn2+-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn2+ and related elements2,3. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2.Pi) of ZntA from Shigella sonnei, determined at 3.2 and 2.7 Å resolution, respectively. The structures reveal a similar fold as the Cu+-ATPases with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn2+ ions. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including Cys392, Cys394 and Asp714. The pathway closes in the E2.Pi state where Asp714 interacts with the conserved Lys693, which possibly stimulates Zn2+ release as a built-in counter-ion, as also proposed for H+-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter-transport. These findings suggest a mechanistic link between PIB-type Zn2+-ATPases and PIII-type H+-ATPases, and show at the same time structural features of the extracellular release pathway that resemble the PII-type ATPases such as the sarco(endo)plasmic reticulum Ca2+-ATPase4,5 (SERCA) and Na+,K+-ATPase6. PMID:25132545

  13. Invariant Functional Forms for K(r,P) Type Equations of State for Hydrodynamically Driven Flow

    NASA Astrophysics Data System (ADS)

    Hrbek, George

    2001-06-01

    At the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter, Group Theoretic Methods, as defined by Lie were applied to the problem of temperature independent, hydrodynamic shock in a Birch-Murnaghan continuum. (1) Group parameter ratios were linked to the physical quantities (i.e., KT, K'T, and K''T) specified for the various order Birch-Murnaghan approximations. This technique has now been generalized to provide a mathematical formalism applicable to a wide class of forms (i.e., K(r,P)) for the equation of state. Variations in material expansion and resistance (i.e., counter pressure) are shown to be functions of compression and material variation ahead of the expanding front. Illustrative examples include the Birch-Murnaghan, Vinet, Brennan-Stacey, Shanker, Tait, Poirier, and Jones-Wilkins-Lee (JWL) forms. The results of this study will allow the various equations of state, and their respective fitting coefficients, to be compared with experiments. To do this, one must introduce the group ratios into a numerical simulation for the flow and generate the density, pressure, and particle velocity profiles as the shock moves through the material. (2) (1) Hrbek, G. M., Invariant Functional Forms For The Second, Third, And Fourth Order Birch-Murnaghan Equation of State For Materials Subject to Hydrodynamic Shock, Proceedings of the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 99), Snowbird, Utah (2) Hrbek, G. M., Physical Interpretation of Mathematically Invariant K(r,P) Type Equations Of State For Hydrodynamically Driven Flows, Submitted to the 12th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 01), Atlanta, Georgia

  14. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

    PubMed

    Roques, Magali; Wall, Richard J; Douglass, Alexander P; Ramaprasad, Abhinay; Ferguson, David J P; Kaindama, Mbinda L; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S; Wheatley, Sally P; Yamano, Hiroyuki; Holder, Anthony A; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-11-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. PMID:26565797

  15. Electrical characteristics of amorphous iron-tungsten contacts on silicon

    NASA Technical Reports Server (NTRS)

    Finetti, M.; Pan, E. T.-S.; Nicolet, M.-A.; Suni, I.

    1983-01-01

    The electrical characteristics of amorphous Fe-W contacts have been determined on both p-type and n-type silicon. The amorphous films were obtained by cosputtering from a composite target. Contact resistivities of 1 x 10 to the -7th and 2.8 x 10 to the -6th were measured on n(+) and p(+) silicon, respectively. These values remain constant after thermal treatment up to at least 500 C. A barrier height of 0.61 V was measured on n-type silicon.

  16. Investigation of Ohmic mechanism for chlorine-treated p-type GaN using x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Po-Sung; Lee, Ching-Ting

    2006-08-01

    To investigate the function and mechanism of oxidation, the surface of the chlorine-treated p-type GaN semiconductor was analyzed using x-ray photoelectron spectroscopy. The chlorinated surface treatment was performed by electrolyzing HCl chemical solution to generate HClO, which in turn could be used to oxidize the p-type GaN. The chlorinated surface treatment enhances the formation of GaOx on the GaN surface and removing GaOx layer from the surface thereafter leads to the creation of additional Ga vacancies. Consequently, more holes are generated as a result of the generated Ga vacancies. Therefore, a relatively higher Ohmic performance with a specific contact resistance of 6.1×10-6Ωcm2 can be obtained for Ni /Au metal contact subsequently patterned on the chlorine-treated p-type GaN via the enhanced formation of GaOx.

  17. Fabrication of p-type ZnO nanofibers by electrospinning for field-effect and rectifying devices

    SciTech Connect

    Liu, Shuai; Liu, Shu-Liang; Liu, Ling-Zhi; Liu, Yi-Chen; Long, Yun-Ze; Zhang, Hong-Di; Zhang, Jun-Cheng; Han, Wen-Peng

    2014-01-27

    Ce-doped p-type ZnO nanofibers were synthesized by electrospinning and followed calcinations. The surface morphology, elementary composition, and crystal structure of the nanofibers were investigated. The field effect curve confirms that the resultant Ce-doped ZnO nanofibers are p-type semiconductor. A p-n heterojunction device consisting of Ce-doped p-type ZnO nanofibers and n-type indium tin oxide (ITO) thin film was fabricated on a piece of quartz substrate. The current-voltage (I-V) characteristic of the p-n heterojunction device shows typical rectifying diode behavior. The turn-on voltage appears at about 7 V under the forward bias and the reverse current is impassable.

  18. P-type conductivity control of Si-doped GaAsSb layers grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yokoyama, Haruki; Hoshi, Takuya

    2015-01-01

    The electrical characteristics of Si-doped GaAsSb layers grown at various growth temperatures from 530 to 630 °C by metalorganic chemical vapor deposition (MOCVD), are investigated. When the substrate temperature is 530 °C, the conductivity of Si-doped GaAsSb layers is n-type. In contrast, Si-doped GaAsSb layers grown at higher temperature (580 °C) show p-type conductivity. Moreover, the p-type carrier concentration in these layers increases proportionally to the increase of the disilane (Si2H6) flow rate. This is the first time that p-type doping into GaAsSb layers has been achieved by MOCVD using Si as a dopant.

  19. In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex

    PubMed Central

    2012-01-01

    Background P-type ATPases hydrolyze ATP and release energy that is used in the transport of ions against electrochemical gradients across plasma membranes, making these proteins essential for cell viability. Currently, the distribution and function of these ion transporters in mycobacteria are poorly understood. Results In this study, probabilistic profiles were constructed based on hidden Markov models to identify and classify P-type ATPases in the Mycobacterium tuberculosis complex (MTBC) according to the type of ion transported across the plasma membrane. Topology, hydrophobicity profiles and conserved motifs were analyzed to correlate amino acid sequences of P-type ATPases and ion transport specificity. Twelve candidate P-type ATPases annotated in the M. tuberculosis H37Rv proteome were identified in all members of the MTBC, and probabilistic profiles classified them into one of the following three groups: heavy metal cation transporters, alkaline and alkaline earth metal cation transporters, and the beta subunit of a prokaryotic potassium pump. Interestingly, counterparts of the non-catalytic beta subunits of Hydrogen/Potassium and Sodium/Potassium P-type ATPases were not found. Conclusions The high content of heavy metal transporters found in the MTBC suggests that they could play an important role in the ability of M. tuberculosis to survive inside macrophages, where tubercle bacilli face high levels of toxic metals. Finally, the results obtained in this work provide a starting point for experimental studies that may elucidate the ion specificity of the MTBC P-type ATPases and their role in mycobacterial infections. PMID:23031689

  20. Electronic passivation of n- and p-type GaAs using chemical vapor deposited GaS

    NASA Technical Reports Server (NTRS)

    Tabib-Azar, Massood; Kang, Soon; Macinnes, Andrew N.; Power, Michael B.; Barron, Andrew R.; Jenkins, Phillip P.; Hepp, Aloysius F.

    1993-01-01

    We report on the electronic passivation of n- and p-type GaAs using CVD cubic GaS. Au/GaS/GaAs-fabricated metal-insulator-semiconductor (MIS) structures exhibit classical high-frequency capacitor vs voltage (C-V) behavior with well-defined accumulation and inversion regions. Using high- and low-frequency C-V, the interface trap densities of about 10 exp 11/eV per sq cm on both n- and p-type GaAs are determined. The electronic condition of GaS/GaAs interface did not show any deterioration after a six week time period.

  1. Perovskite Sr-Doped LaCrO3 as a New p-Type Transparent Conducting Oxide.

    PubMed

    Zhang, Kelvin H L; Du, Yingge; Papadogianni, Alexandra; Bierwagen, Oliver; Sallis, Shawn; Piper, Louis F J; Bowden, Mark E; Shutthanandan, Vaithiyalingam; Sushko, Peter V; Chambers, Scott A

    2015-09-16

    Epitaxial La1-x Srx CrO3 deposited on SrTiO3 (001) is shown to be a p-type transparent conducting oxide with competitive figures of merit and a cubic perovskite structure, facilitating integration into oxide electronics. Holes in the Cr 3d t2g bands play a critical role in enhancing p-type conductivity, while transparency to visible light is maintained because low-lying d-d transitions arising from hole doping are dipole forbidden. PMID:26248327

  2. Method for enhancing the solubility of dopants in silicon

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; De La Rubia, Tomas Diaz

    2003-09-30

    A method for enhancing the equilibrium solid solubility of dopants in silicon, germanium and silicon-germanium alloys. The method involves subjecting silicon-based substrate to biaxial or compression strain. It has been determined that boron solubility was largely enhanced (more than 100%) by a compressive bi-axial strain, based on a size-mismatch theory since the boron atoms are smaller than the silicon atoms. It has been found that the large enhancement or mixing properties of dopants in silicon and germanium substrates is primarily governed by their, and to second order by their size-mismatch with the substrate. Further, it has been determined that the dopant solubility enhancement with strain is most effective when the charge and the size-mismatch of the impurity favor the same type of strain. Thus, the solid solubility of small p-type (e.g., boron) as well as large n-type (e.g., arsenic) dopants can be raised most dramatically by appropriate bi-axial (compressive) strain, and that solubility of a large p-type dopant (e.g, indium) in silicon will be raised due to size-mismatch with silicon, which favors tensile strain, while its negative charge prefers compressive strain, and thus the two effects counteract each other.

  3. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  4. Positive bias temperature instability in p-type metal-oxide-semiconductor devices with HfSiON/SiO{sub 2} gate dielectrics

    SciTech Connect

    Samanta, Piyas; Huang, Heng-Sheng; Chen, Shuang-Yuan; Liu, Chuan-Hsi; Cheng, Li-Wei

    2014-02-21

    We present a detailed investigation on positive-bias temperature stress (PBTS) induced degradation of nitrided hafnium silicate (HfSiON)/SiO{sub 2} gate stack in n{sup +}-poly crystalline silicon (polySi) gate p-type metal-oxide-semiconductor (pMOS) devices. The measurement results indicate that gate dielectric degradation is a composite effect of electron trapping in as-fabricated as well as newly generated neutral traps, resulting a significant amount of stress-induced leakage current and generation of surface states at the Si/SiO{sub 2} interface. Although, a significant amount of interface states are created during PBTS, the threshold voltage (V{sub T}) instability of the HfSiON based pMOS devices is primarily caused by electron trapping and detrapping. It is also shown that PBTS creates both acceptor- and donor-like interface traps via different depassivation mechanisms of the Si{sub 3} ≡ SiH bonds at the Si/SiO{sub 2} interface in pMOS devices. However, the number of donor-like interface traps ΔN{sub it}{sup D} is significantly greater than that of acceptor-like interface traps ΔN{sup A}{sub it}, resulting the PBTS induced net interface traps as donor-like.

  5. Study of p-type ZnO and MgZnO Thin Films for Solid State Lighting

    SciTech Connect

    Liu, Jianlin

    2015-07-31

    This project on study of p-type ZnO and MgZnO thin films for solid state lighting was carried out by research group of Prof. Jianlin Liu of UCR during the four-year period between August 2011 and July 2015. Tremendous progress has been made on the proposed research. This final report summarizes the important findings.

  6. Mechanism for doping induced p type C60 using thermally evaporated molybdenum trioxide (MoO3) as a dopant

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Peng; Wang, Wen-Qing; Cheng, Li-Wen; Li, Yan-Qing; Tang, Jian-Xin; Kera, Satoshi; Ueno, Nobuo; Zeng, Xiang-hua

    2016-05-01

    Thermally evaporated molybdenum trioxide (MoO3) doped C60 films, which could change n type features of pristine C60 to form a p type mixed C60 layer, are investigated by x-ray and ultraviolet photoelectron spectroscopy. It is found that C60 HOMO progressively shifts closer to the Fermi level after increased MoO3 doping concentration, and final onset of C60 HOMO is pinned at binding energy of 0.20 eV, indicating the formation of p type C60 films. It is proposed that in charge transfer induced p type C60 formation, due to large electron affinity of MoO3 (6.37 eV), electrons from HOMO of C60 could easily transfer to MoO3 to form cations and therefore increase hole concentration, which could gradually push C60 HOMO to the Fermi level and finally form p type C60 films. Moreover, clear different types of C60 species have been confirmed from UPS spectra in highly doped films.

  7. Mechanism for doping induced p type C60 using thermally evaporated molybdenum trioxide (MoO3) as a dopant.

    PubMed

    Yang, Jin-Peng; Wang, Wen-Qing; Cheng, Li-Wen; Li, Yan-Qing; Tang, Jian-Xin; Kera, Satoshi; Ueno, Nobuo; Zeng, Xiang-Hua

    2016-05-11

    Thermally evaporated molybdenum trioxide (MoO3) doped C60 films, which could change n type features of pristine C60 to form a p type mixed C60 layer, are investigated by x-ray and ultraviolet photoelectron spectroscopy. It is found that C60 HOMO progressively shifts closer to the Fermi level after increased MoO3 doping concentration, and final onset of C60 HOMO is pinned at binding energy of 0.20 eV, indicating the formation of p type C60 films. It is proposed that in charge transfer induced p type C60 formation, due to large electron affinity of MoO3 (6.37 eV), electrons from HOMO of C60 could easily transfer to MoO3 to form cations and therefore increase hole concentration, which could gradually push C60 HOMO to the Fermi level and finally form p type C60 films. Moreover, clear different types of C60 species have been confirmed from UPS spectra in highly doped films. PMID:27058225

  8. Optical and electronic properties of delafossite CuBO{sub 2}p-type transparent conducting oxide

    SciTech Connect

    Ruttanapun, Chesta E-mail: krchesta@kmitl.ac.th

    2013-09-21

    CuBO{sub 2} delafossite was prepared by solid state reaction and calcined/sintered at 1005 °C. The optical properties of this p-type transparent conducting oxide were investigated. Its crystal structure, morphology, composition, oxygen decomposition, and optical and electronic properties were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, thermal gravimetric analysis (TGA), ultraviolet-visible-near-infrared (UV-VIS-NIR) and fluorescence spectroscopies, Seebeck coefficient, and electrical conductivity measurements. CuBO{sub 2} delafossite possesses a hexagonal space group R3{sup ¯}m. TGA indicated a weight loss of 10%, which was attributed to excess oxygen. The positive Seebeck coefficient confirmed p-type behavior. Emission at 355 nm indicated a direct band type transition, and the UV-VIS-NIR spectrum indicated an optical direct gap of 3.6 eV. Activation energies for carrier production and electrical conduction were 0.147 and 0.58 eV, respectively, indicating the thermal activation of carriers. CuBO{sub 2} delafossite is a p-type transparent conducting oxide with a wide band gap and may have potential in industrial p-type electrodes.

  9. Characterization of p-type wide band gap transparent oxide for heterojunction devices

    NASA Astrophysics Data System (ADS)

    Lim, Sang-Hyun

    Transparent p-type CuCr1-xMgxO2 wide band gap oxide semiconductor thin films were deposited over quartz substrates by chemical spray pyrolysis technique using metalloorganic precursors. A mechanism of synthesis of CuCrO2 films involving precursor decomposition, oxidation, and reaction between constituent oxides in the spray deposition process is presented. Crystalline single phase CuCrO2 delafossite structure was dominant in ≥700ºC argon ambient annealed films but the as-deposited films contained spinel CuCr2O4 mixed phases as shown by XRD and XPS studies. Spin-orbital energy ˜9.8eV in Cr 2p electron spectra consistent with Cr3+ valence state and Cr 2p3/2 resolved peaks show mixed valence state on Cr4+ /Cr6+ confirming CuCr1-xMgxO 2 compound phase in the films. Effect of substrate temperature, film thickness, and acceptor Mg2+ doping on crystallographic structure, optical, electrical conductivity and thermoelectric coefficient was investigated. The invariance of the alpha- and increase of the c-lattice parameter with Mg concentration suggests that Mg2+ ions are introduced at the Cr3+ site. Highly transparent ≥80% CuCr 0.93Mg0.07O2 films with direct and indirect optical band gaps 3.08 and 2.58eV for 155 nm and 3.14 and 2.79eV for 305nm thin films, respectively were obtained. Photoluminescence emission bands at 532 and 484nm interpreted to arise from 3d94s1 and 3d 10 Cu+ intra-band transitions. Electrical conductivity of CuCr0.93Mg0.07O 2 films ranged from 0.6-1.0 Scm-1 and exhibits activation energies ˜0.11eV in 300-420K and ˜0.23eV in ≥ 420K region ascribed to activated conduction and grain boundary trap assisted conduction, respectively. Restricted by the Mg solubility, the substituted Mg dopants limited to x≤0.05 are only able to contribute to the optimum hole carrier in the range ˜2-4x1019cm-3 and thus no substantial increase of electrical conductivity could be realized with increased Mg concentration. A major fraction of Mg atoms do not act as

  10. n-type to p-type crossover in quaternary Bi{sub x}Sb{sub y}Pb{sub z}Se{sub 3} single crystals

    SciTech Connect

    Kasparova, J.; Drasar, C; Krejcova, A.; Benes, L.; Lost'ak, P.; Chen Wei; Zhou Zhenhua; Uher, C.

    2005-05-15

    We report on the preparation and some physical properties of a quaternary system based on Bi{sub 2}Se{sub 3} codoped with Sb and Pb. Single-crystal samples were prepared using the Bridgman technique and were characterized by measurements of the lattice parameters, electrical resistivity, Hall coefficient, Seebeck coefficient, and thermal conductivity. Atomic emission spectroscopy was used to find the concentration profiles of Sb and Pb along the single-crystalline ingots. Progressive codoping of the Bi{sub 2}Se{sub 3} crystal lattice with Sb and Pb leads to a crossover of the initially n-type conduction to that of the p type. It is assumed that both Sb and Pb enter the Bi sublattice. Physical properties as well as the change in the dominant carrier type are discussed.

  11. Analysis of Radiation Effects in Silicon using Kinetic Monte Carlo Methods

    SciTech Connect

    Hehr, Brian Douglas

    2014-11-25

    The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. Neutron irradiation can instigate the formation of quasi-stable defect structures, thereby introducing new energy levels into the bandgap that alter carrier lifetimes and give rise to such phenomena as gain degradation in bipolar junction transistors. Normally, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. A kinetic Monte Carlo (KMC) code has been developed to model both thermal and carrier injection annealing of initial defect structures in semiconductor materials. The code is employed to investigate annealing in electron-irradiated, p-type silicon as well as the recovery of base current in silicon transistors bombarded with neutrons at the Los Alamos Neutron Science Center (LANSCE) “Blue Room” facility. Our results reveal that KMC calculations agree well with these experiments once adjustments are made, within the appropriate uncertainty bounds, to some of the sensitive defect parameters.

  12. Analysis of Radiation Effects in Silicon using Kinetic Monte Carlo Methods

    DOE PAGESBeta

    Hehr, Brian Douglas

    2014-11-25

    The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. Neutron irradiation can instigate the formation of quasi-stable defect structures, thereby introducing new energy levels into the bandgap that alter carrier lifetimes and give rise to such phenomena as gain degradation in bipolar junction transistors. Normally, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. A kinetic Monte Carlo (KMC) code has been developed to model both thermal and carrier injection annealing of initial defect structures in semiconductor materials.more » The code is employed to investigate annealing in electron-irradiated, p-type silicon as well as the recovery of base current in silicon transistors bombarded with neutrons at the Los Alamos Neutron Science Center (LANSCE) “Blue Room” facility. Our results reveal that KMC calculations agree well with these experiments once adjustments are made, within the appropriate uncertainty bounds, to some of the sensitive defect parameters.« less

  13. Perspective on photovoltaic amorphous silicon

    SciTech Connect

    Luft, W.; Stafford, B.; von Roedern, B.

    1992-05-01

    Amorphous silicon is a thin film option that has the potential for a cost-effective product for large-scale utility photovoltaics application. The initial efficiencies for single-junction and multijunction amorphous silicon cells and modules have increased significantly over the past 10 years. The emphasis of research and development has changed to stabilized efficiency, especially that of multijunction modules. NREL has measured 6.3%--7.2% stabilized amorphous silicon module efficiencies for US products, and 8.1% stable efficiencies have been reported by Fuji Electric. This represents a significant increase over the stabilized efficiencies of modules manufactured only a few years ago. An increasing portion of the amorphous silicon US government funding is now for manufacturing technology development to reduce cost. The funding for amorphous silicon for photovoltaics by Japan over the last 5 years has been about 50% greater than that in the United State, and by Germany in the last 2--3 years more than twice that of the US Amorphous silicon is the only thin-film technology that is selling large-area commercial modules. The cost for amorphous silicon modules is now in the $4.50 range; it is a strong function of plant production capacity and is expected to be reduced to $1.00--1.50/W{sub p} for plants with 10 MW/year capacities. 10 refs.

  14. Perspective on photovoltaic amorphous silicon

    SciTech Connect

    Luft, W.; Stafford, B.; von Roedern, B. )

    1992-12-01

    Amorphous silicon is a thin film option that has the potential for a cost-effective product for large-scale utility photovoltaics application. The initial efficiencies for single-junction and multijunction amorphous silicon cells and modules have increased significantly over the past 10 years. The emphasis of research and development has changed to stabilized efficiency, especially that of multijunction modules. NREL has measured 6.3%--7.2% stabilized amorphous silicon module efficiencies for U.S. products, and 8.1% stable efficiencies have been reported by Fuji Electric. This represents a significant increase over the stabilized efficiencies of modules manufactured only a few years ago. An increasing portion of the amorphous silicon U.S. government funding is now for manufacturing technology development to reduce cost. The funding for amorphous silicon for photovoltaics by Japan over the last 5 years has been about 50% greater than that in the United States, and by Germany in the last 2--3 years more than twice that of the U.S. Amorphous silicon is the only thin-film technology that is selling large-area commercial modules. The cost for amorphous silicon modules is now in the $4.50 range; it is a strong function of plant production capacity and is expected to be reduced to $1.00--1.50/W[sub [ital p

  15. Apparatus for making molten silicon

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  16. N-Type delta Doping of High-Purity Silicon Imaging Arrays

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh

    2005-01-01

    A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including

  17. Electronic structure and thermoelectric properties of n - and p -type SnSe from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kutorasinski, K.; Wiendlocha, B.; Kaprzyk, S.; Tobola, J.

    2015-05-01

    We present results of the electronic band structure, Fermi surface, and electron transport property calculations in the orthorhombic n - and p -type SnSe, applying the Korringa-Kohn-Rostoker method and the Boltzmann transport approach. The analysis accounted for the temperature effect on crystallographic parameters in P n m a structure as well as the phase transition to C m C m structure at Tc˜807 K. Remarkable modifications of the conduction and valence bands were noticed upon varying crystallographic parameters within the structure before Tc, while the phase transition mostly leads to the jump in the band-gap value. The diagonal components of the kinetic parameter tensors (velocity, effective mass) and resulting transport quantity tensors [electrical conductivity σ , thermopower S , and power factor (PF)] were computed for a wide range of temperature (15-900 K) and hole (p -type) and electron (n -type) concentrations (1017-1021cm-3 ). SnSe is shown to have a strong anisotropy of the electron transport properties for both types of charge conductivity, as expected for the layered structure, with the generally heavier p -type effective masses compared to n -type ones. Interestingly, p -type SnSe has strongly nonparabolic dispersion relations, with the "pudding-mold-like" shape of the highest valence band. The analysis of σ ,S , and PF tensors indicates that the interlayer electron transport is beneficial for thermoelectric performance in n -type SnSe, while this direction is blocked in p -type SnSe, where in-plane transport is preferred. Our results predict that n -type SnSe is potentially even better thermoelectric material than p -type SnSe. Theoretical results are compared with the single-crystal p -SnSe measurements, and good agreement is found below 600 K. The discrepancy between the computational and experimental data, appearing at higher temperatures, can be explained assuming an increase of the hole concentration versus T , which is correlated with the

  18. Optically initiated silicon carbide high voltage switch

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Sullivan, James S.; Sanders; David M.

    2011-02-22

    An improved photoconductive switch having a SiC or other wide band gap substrate material, such as GaAs and field-grading liners composed of preferably SiN formed on the substrate adjacent the electrode perimeters or adjacent the substrate perimeters for grading the electric fields.

  19. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    SciTech Connect

    Geissbühler, Jonas Werner, Jérémie; Martin de Nicolas, Silvia; Hessler-Wyser, Aïcha; Tomasi, Andrea; Niesen, Bjoern; De Wolf, Stefaan; Barraud, Loris; Despeisse, Matthieu; Nicolay, Sylvain; Ballif, Christophe

    2015-08-24

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

  20. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    NASA Astrophysics Data System (ADS)

    Geissbühler, Jonas; Werner, Jérémie; Martin de Nicolas, Silvia; Barraud, Loris; Hessler-Wyser, Aïcha; Despeisse, Matthieu; Nicolay, Sylvain; Tomasi, Andrea; Niesen, Bjoern; De Wolf, Stefaan; Ballif, Christophe

    2015-08-01

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

  1. Method for enhancing the solubility of boron and indium in silicon

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2002-01-01

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  2. Plasma-deposited fluoropolymer film mask for local porous silicon formation

    NASA Astrophysics Data System (ADS)

    Defforge, Thomas; Capelle, Marie; Tran-Van, François; Gautier, Gaël

    2012-06-01

    The study of an innovative fluoropolymer masking layer for silicon anodization is proposed. Due to its high chemical resistance to hydrofluoric acid even under anodic bias, this thin film deposited by plasma has allowed the formation of deep porous silicon regions patterned on the silicon wafer. Unlike most of other masks, fluoropolymer removal after electrochemical etching is rapid and does not alter the porous layer. Local porous regions were thus fabricated both in p+-type and low-doped n-type silicon substrates.

  3. Commissioning and operation of the CDF silicon detector

    SciTech Connect

    S. D'Auria

    2002-01-18

    The CDF-II silicon detector has been partially commissioned and used for taking preliminary physics data. This paper is a report on commissioning and initial operations of the 5.8m{sup 2} silicon detector. This experience can be useful to the large silicon systems that are presently under construction.

  4. Silicon microdosimetry.

    PubMed

    Agosteo, Stefano; Pola, Andrea

    2011-02-01

    Silicon detectors are being studied as microdosemeters since they can provide sensitive volumes of micrometric dimensions. They can be applied for assessing single-event effects in electronic instrumentation exposed to complex fields around high-energy accelerators or in space missions. When coupled to tissue-equivalent converters, they can be used for measuring the quality of radiation therapy beams or for dosimetry. The use of micrometric volumes avoids the contribution of wall effects to the measured spectra. Further advantages of such detectors are their compactness, cheapness, transportability and a low sensitivity to vibrations. The following problems need to be solved when silicon devices are used for microdosimetry: (i) the sensitive volume has to be confined in a region of well-known dimensions; (ii) the electric noise limits the minimum detectable energy; (iii) corrections for tissue-equivalency should be made; (iv) corrections for shape equivalency should be made when referring to a spherical simulated site of tissue; (v) the angular response should be evaluated carefully; (vi) the efficiency of a single detector of micrometric dimensions is very poor and detector arrays should be considered. Several devices have been proposed as silicon microdosemeters, based on different technologies (telescope detectors, silicon on insulator detectors and arrays of cylindrical p-n junctions with internal amplification), in order to satisfy the issues mentioned above. PMID:21112892

  5. Evaluation of transition metal oxide as carrier-selective contacts for silicon heterojunction solar cells

    SciTech Connect

    Ding, L.; Boccard, Matthieu; Holman, Zachary; Bertoni, M.

    2015-04-06

    "Reducing light absorption in the non-active solar cell layers, while enabling the extraction of the photogenerated minority carriers at quasi-Fermi levels are two key factors to improve current generation and voltage, and therefore efficiency of silicon heterojunction solar devices. To address these two critical aspects, transition metal oxide materials have been proposed as alternative to the n- and p-type amorphous silicon used as electron and hole selective contacts, respectively. Indeed, transition metal oxides such as molybdenum oxide, titanium oxide, nickel oxide or tungsten oxide combine a wide band gap typically over 3 eV with a band structure and theoretical band alignment with silicon that results in high transparency to the solar spectrum and in selectivity for the transport of only one carrier type. Improving carrier extraction or injection using transition metal oxide has been a topic of investigation in the field of organic solar cells and organic LEDs; from these pioneering works a lot of knowledge has been gained on materials properties, ways to control these during synthesis and deposition, and their impact on device performance. Recently, the transfer of some of this knowledge to silicon solar cells and the successful application of some metal oxide to contact heterojunction devices have gained much attention. In this contribution, we investigate the suitability of various transition metal oxide films (molybdenum oxide, titanium oxide, and tungsten oxide) deposited either by thermal evaporation or sputtering as transparent hole or electron selective transport layer for silicon solar cells. In addition to systematically characterize their optical and structural properties, we use photoemission spectroscopy to relate compound stoichiometry to band structure and characterize band alignment to silicon. The direct silicon/metal oxide interface is further analyzed by quasi-steady state photoconductance decay method to assess the quality of surface

  6. Silicon surface passivation by silicon nitride deposition

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.

    1984-01-01

    Silicon nitride deposition was studied as a method of passivation for silicon solar cell surfaces. The following three objectives were the thrust of the research: (1) the use of pecvd silicon nitride for passivation of silicon surfaces; (2) measurement techniques for surface recombination velocity; and (3) the importance of surface passivation to high efficiency solar cells.

  7. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.

    PubMed

    Boland, Jessica L; Casadei, Alberto; Tütüncüoglu, Gözde; Matteini, Federico; Davies, Christopher L; Jabeen, Fauzia; Joyce, Hannah J; Herz, Laura M; Fontcuberta I Morral, Anna; Johnston, Michael B

    2016-04-26

    Controlled doping of GaAs nanowires is crucial for the development of nanowire-based electronic and optoelectronic devices. Here, we present a noncontact method based on time-resolved terahertz photoconductivity for assessing n- and p-type doping efficiency in nanowires. Using this technique, we measure extrinsic electron and hole concentrations in excess of 10(18) cm(-3) for GaAs nanowires with n-type and p-type doped shells. Furthermore, we show that controlled doping can significantly increase the photoconductivity lifetime of GaAs nanowires by over an order of magnitude: from 0.13 ns in undoped nanowires to 3.8 and 2.5 ns in n-doped and p-doped nanowires, respectively. Thus, controlled doping can be used to reduce the effects of parasitic surface recombination in optoelectronic nanowire devices, which is promising for nanowire devices, such as solar cells and nanowire lasers. PMID:26959350

  8. Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films

    SciTech Connect

    Yang, Jing; Zhao, Degang Jiang, Desheng; Chen, Ping; Zhu, Jianjun; Liu, Zongshun; Le, Lingcong; He, Xiaoguang; Li, Xiaojing; Zhang, Y. T.; Du, G. T.

    2015-03-15

    The effects of hydrogen impurities on p-type resistivity in Mg-doped GaN films were investigated. It was found that hydrogen impurities may have the dual role of passivating Mg{sub Ga} acceptors and passivating donor defects. A decrease in p-type resistivity when O{sub 2} is introduced during the postannealing process is attributed to the fact that annealing in an O{sub 2}-containing environment can enhance the dissociation of Mg{sub Ga}-H complexes as well as the outdiffusion of H atoms from p-GaN films. However, low H concentrations are not necessarily beneficial in Mg-doped GaN films, as H atoms may also be bound at donor species and passivate them, leading to the positive effect of reduced compensation.

  9. Facile Surfactant-Free Synthesis of p-Type SnSe Nanoplates with Exceptional Thermoelectric Power Factors.

    PubMed

    Han, Guang; Popuri, Srinivas R; Greer, Heather F; Bos, Jan-Willem G; Zhou, Wuzong; Knox, Andrew R; Montecucco, Andrea; Siviter, Jonathan; Man, Elena A; Macauley, Martin; Paul, Douglas J; Li, Wen-Guang; Paul, Manosh C; Gao, Min; Sweet, Tracy; Freer, Robert; Azough, Feridoon; Baig, Hasan; Sellami, Nazmi; Mallick, Tapas K; Gregory, Duncan H

    2016-05-23

    A surfactant-free solution methodology, simply using water as a solvent, has been developed for the straightforward synthesis of single-phase orthorhombic SnSe nanoplates in gram quantities. Individual nanoplates are composed of {100} surfaces with {011} edge facets. Hot-pressed nanostructured compacts (Eg ≈0.85 eV) exhibit excellent electrical conductivity and thermoelectric power factors (S(2) σ) at 550 K. S(2) σ values are 8-fold higher than equivalent materials prepared using citric acid as a structure-directing agent, and electrical properties are comparable to the best-performing, extrinsically doped p-type polycrystalline tin selenides. The method offers an energy-efficient, rapid route to p-type SnSe nanostructures. PMID:27094703

  10. Perovskite Sr-doped LaCrO3 as a new p-type transparent conducting oxide

    SciTech Connect

    Zhang, Hongliang; Du, Yingge; Papadogianni, Alexandra; Bierwagen, Oliver; Sallis, Shawn; Piper, Louis F. J.; Bowden, Mark E.; Shutthanandan, V.; Sushko, Petr; Chambers, Scott A.

    2015-09-16

    Transparent conducting oxides (TCOs) constitute a unique class of materials which combine the seemingly mutually exclusive properties of electrical conductivity and optical transparency in a single material. TCOs are useful for a wide range of applications including solar cells, displays, light emitting diodes and transparent electronics. Simple post-transition metal oxides such as ZnO, In2O3 and SnO2 are wide gap insulators in which the ionic character generates an oxygen 2p-derived valence band (VB) and a metal s-derived conduction band (CB), resulting in large optical band gaps (>3.0 eV) and excellent n-type conductivity when donor doped. In contrast, the development of efficient p-type TCOs remains a global materials challenge. Converting n-type oxides to p-type analogs by acceptor doping is extremely difficult and these materials display poor conductivity.

  11. Formation of a self-consistent double quantum well in a wide p-type quantum well

    NASA Astrophysics Data System (ADS)

    Alshanskiǐ, G. A.; Yakunin, M. V.

    2004-11-01

    The process of formation of self-consistent double quantum wells (DQWs) in a wide p-type quantum well in the presence of uniaxial strain is investigated. A feature of p-type systems is the structure of the valence band, which consists of two branches of energy dispersion—light and heavy holes. It is shown that this feature leads to significant splitting of the subbands of symmetric and antisymmetric states, as a result of which it is difficult to form states of the DQW with a vanishingly small tunneling gap; a uniaxial strain, by lifting the degeneracy of the band, suppresses this property, so that the two ground subbands of the size quantization of the DQW remain degenerate to high energies.

  12. Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels

    NASA Astrophysics Data System (ADS)

    Huang, B.

    2016-07-01

    We propose a surface doping model of ZnO to elucidate the p-type doping and compensations in ZnO nanomaterials. With an N-dopant, the effects of N on the ZnO surface demonstrate a relatively shallow acceptor level in the band gap. As the dimension of the ZnO materials decreases, the quantum confinement effects will increase and render the charge transfer on surface to influence the shifting of Fermi level, by evidence of transition level changes of the N-dopant. We report that this can overwhelm the intrinsic p-type conductivity and transport of the ZnO bulk system. This may provide a possible route of using surface doping to modify the electronic transport and conductivity of ZnO nanomaterials.

  13. The Use of Metal Fluoride Compounds as Phosphate Analogs for Understanding the Structural Mechanism in P-type ATPases.

    PubMed

    Danko, Stefania J; Suzuki, Hiroshi

    2016-01-01

    The membrane-bound protein family, P-type ATPases, couples ATP hydrolysis with substrate transport across the membrane and forms an obligatory auto-phosphorylated intermediate in the transport cycle. The metal fluoride compounds, BeF x , AlF x , and MgF x , as phosphate analogs stabilize different enzyme structural states in the phosphoryl transfer/hydrolysis reactions, thereby fixing otherwise short-lived intermediate and transient structural states and enabling their biochemical and atomic-level crystallographic studies. The compounds thus make an essential contribution for understanding of the ATP-driven transport mechanism. Here, with a representative member of P-type ATPase, sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), we describe the method for their binding and for structural and functional characterization of the bound states, and their assignments to states occurring in the transport cycle. PMID:26695034

  14. Fabrication and reducing gas detection characterization of highly-crystalline p-type zinc chromite oxide thin film

    NASA Astrophysics Data System (ADS)

    Liang, Yuan-Chang; Cheng, Yu-Ru; Hsia, Hao-Yuan; Chung, Cheng-Chia

    2016-02-01

    A p-type ternary ZnCr2O4 (ZCO) thin film was fabricated using rf sputtering on a sapphire substrate. Microstructural analyses revealed that the ZCO thin film had a high crystalline quality. Surface morphology investigations showed that the ZCO film had a rugged surface because of a distinct columnar grain feature. A gas sensor composed of the ZCO thin film exhibited marked acetone and NH3 gas-sensing responses. These acetone and NH3 gas-sensing responses reached an optimal value at operating temperatures of 250 °C and 300 °C, respectively. The ZCO sensor showed satisfactory repeatability when operated under dynamic conditions. The stable gas-sensing behavior of the p-type ZCO thin film to acetone and NH3 gases broadens the design of oxide gas sensors incorporated with this ternary oxide.

  15. Analysis of Photoluminescence Thermal Quenching: Guidance for the Design of Highly Effective p-type Doping of Nitrides

    PubMed Central

    Liu, Zhiqiang; Huang, Yang; Yi, Xiaoyan; Fu, Binglei; Yuan, Guodong; Wang, Junxi; Li, Jinmin; Zhang, Yong

    2016-01-01

    A contact-free diagnostic technique for examining position of the impurity energy level of p-type dopants in nitride semiconductors was proposed based on photoluminescence thermal quenching. The Mg ionization energy was extracted by the phenomenological rate-equation model we developed. The diagnostic technique and analysis model reported here are priorities for the design of highly effective p-doping of nitrides and could also be used to explain the abnormal and seldom analyzed low characteristic temperature T0 (about 100 K) of thermal quenching in p-type nitrides systems. An In-Mg co-doped GaN system is given as an example to prove the validity of our methods. Furthermore, a hole concentration as high as 1.94 × 1018 cm−3 was achieved through In-Mg co-doping, which is nearly one order of magnitude higher than typically obtained in our lab. PMID:27550805

  16. Improved efficiency of near-ultraviolet LEDs using a novel p-type AlGaN hole injection layer

    NASA Astrophysics Data System (ADS)

    Xu, Mingsheng; Zhou, Quanbin; Zhang, Heng; Wang, Hong; Zhang, Xichun

    2016-06-01

    We investigate a novel near-ultraviolet light-emitting diode (NUV-LED) with a p-type AlGaN (pAlGaN) hole injection layer to replace the conventional p-type GaN layer. The optical properties are studied numerically with simulations. Our calculated results indicate that a pAlGaN layer can significantly improve both light output power and internal quantum efficiency of a NUV-LED. The light power of NUV-LED with constant and gradually increasing Al content of the pAlGaN layer increases by 215% and 266% compared to a conventional LED. We also find that the elimination of the interface barrier and suppression of the polarization field are the key factors that lead to the improved NUV-LED performance.

  17. Comparison of ferromagnetism in n- and p-type magnetic semiconductor thin films of ZnCoO

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Lee, J. C.; Min, J. F.; Su, C. W.

    2011-07-01

    Both n- and p-type diluted magnetic semiconductor ZnCoO are made by magnetron co-sputtering with, respectively, dopants of Al and dual dopants of Al and N. The two sputtering targets are compound ZnCoO with 5% weight of Co and pure metal Al. Sputtering gases for n- and p-type films are pure Ar and N 2, respectively. These films are magnetic at room temperature and possess free electron- and hole-concentration of 5.34×10 20 and 5.27×10 13 cm -3. Only the n-type film exhibits anomalous Hall-effect signals. Magnetic properties of these two types of films are compared and discussed based on measurements of microstructure and magneto-transport properties.

  18. Enhanced photoluminescence of nonpolar p-type ZnO film by surface plasmon resonance and electron transfer.

    PubMed

    Chen, Shanshan; Pan, Xinhua; He, Haiping; Chen, Wei; Chen, Cong; Dai, Wen; Zhang, Honghai; Ding, Ping; Huang, Jingyun; Lu, Bin; Ye, Zhizhen

    2015-02-15

    Nonpolar oriented Na-doped ZnO films were grown on m-plane sapphire substrates by plasma-assisted molecular beam epitaxy. The films show repeatable p-type conductivity with a hole concentration of about 3.0×10(16) cm(-3) as identified by the Hall-effect measurements. 10-fold enhancement in the near-band-edge (NBE) emission of the nonpolar p-type ZnO by employing Pt nanoparticle surface plasmons has been observed. In addition, the deep level emission has been entirely suppressed. The underlying mechanism behind the enhancement of NBE emission and the quenching of defect emission is a combination of the electron transfer and the resonant coupling between NBE emission and Pt nanoparticle surface plasmons. PMID:25680172

  19. G-protein-independent modulation of P-type calcium channels by μ-opioids in Purkinje neurons of rat

    PubMed Central

    Iegorova, Olena; Fisyunov, Alexander; Krishtal, Oleg

    2010-01-01

    P-type calcium channels play a key role in the synaptic transmission between mammalian central neurons since a major part of calcium entering pre-synaptic terminals is delivered via these channels. Using conventional whole-cell patch clamp techniques we have studied the effect of μ-opioids on P-type calcium channels in acutely isolated Purkinje neurons from rat cerebellum. The selective μ-opioid agonist DAMGO (10 nM) produced a small, but consistent facilitation of current through P-type calcium channels (10±1%, n=27, p<0.001). The effect of DAMGO was rapid (less than 10 sec) and fully reversible. This effect was both concentration and voltage-dependent. The EC50 for the effect of DAMGO was 1.3±0.4 nM and the saturating concentration was 100 nM. The endogenous selective agonist of μ-opioid receptors, endomorphin-1 demonstrated similar action. Intracellular perfusion of Purkinje neurons with GTPγS (0.5 mM) or GDPβS (0.5 mM), as well as strong depolarizing pre-pulses (+50 mV), did not eliminate facilitatory action of DAMGO on P-channels indicating that this effect is not mediated by G-proteins. Furthermore, the effect of DAMGO was preserved in the presence of a non-specific inhibitor of PKA and PKC, (H7, 10 μM) inside the cell. DAMGO–induced facilitation of P-current was almost completely abolished by the selective μ-opioid antagonist CTOP (100 nM). These observations indicate that μ-type opioid receptors modulate P-type calcium channels in Purkinje neurons via G-protein-independent mechanism. PMID:20541588

  20. Optical characteristics of p-type GaAs-based semiconductors towards applications in photoemission infrared detectors

    NASA Astrophysics Data System (ADS)

    Lao, Y. F.; Perera, A. G. U.; Wang, H. L.; Zhao, J. H.; Jin, Y. J.; Zhang, D. H.

    2016-03-01

    Free-carrier effects in a p-type semiconductor including the intra-valence-band and inter-valence-band optical transitions are primarily responsible for its optical characteristics in infrared. Attention has been paid to the inter-valence-band transitions for the development of internal photoemission (IPE) mid-wave infrared (MWIR) photodetectors. The hole transition from the heavy-hole (HH) band to the spin-orbit split-off (SO) band has demonstrated potential applications for 3-5 μm detection without the need of cooling. However, the forbidden SO-HH transition at the Γ point (corresponding to a transition energy Δ0, which is the split-off gap between the HH and SO bands) creates a sharp drop around 3.6 μm in the spectral response of p-type GaAs/AlGaAs detectors. Here, we report a study on the optical characteristics of p-type GaAs-based semiconductors, including compressively strained InGaAs and GaAsSb, and a dilute magnetic semiconductor, GaMnAs. A model-independent fitting algorithm was used to derive the dielectric function from experimental reflection and transmission spectra. Results show that distinct absorption dip at Δ0 is observable in p-type InGaAs and GaAsSb, while GaMnAs displays enhanced absorption without degradation around Δ0. This implies the promise of using GaMnAs to develop MWIR IPE detectors. Discussions on the optical characteristics correlating with the valence-band structure and free-hole effects are presented.

  1. The origin of p-type conductivity in ZnM2O4 (M = Co, Rh, Ir) spinels.

    PubMed

    Amini, M N; Dixit, H; Saniz, R; Lamoen, D; Partoens, B

    2014-02-14

    ZnM2O4 (M = Co, Rh, Ir) spinels are considered as a class of potential p-type transparent conducting oxides (TCOs). We report the formation energy of acceptor-like defects using first principles calculations with an advanced hybrid exchange-correlation functional (HSE06) within density functional theory (DFT). Due to the discrepancies between the theoretically obtained band gaps with this hybrid functional and the - scattered - experimental results, we also perform GW calculations to support the validity of the description of these spinels with the HSE06 functional. The considered defects are the cation vacancy and antisite defects, which are supposed to be the leading source of disorder in the spinel structures. We also discuss the band alignments in these spinels. The calculated formation energies indicate that the antisite defects ZnM (Zn replacing M, M = Co, Rh, Ir) and VZn act as shallow acceptors in ZnCo2O4, ZnRh2O4 and ZnIr2O4, which explains the experimentally observed p-type conductivity in those systems. Moreover, our systematic study indicates that the ZnIr antisite defect has the lowest formation energy in the group and it corroborates the highest p-type conductivity reported for ZnIr2O4 among the group of ZnM2O4 spinels. To gain further insight into factors affecting the p-type conductivity, we have also investigated the formation of localized small polarons by calculating the self-trapping energy of the holes. PMID:24382577

  2. S-TYPE AND P-TYPE HABITABILITY IN STELLAR BINARY SYSTEMS: A COMPREHENSIVE APPROACH. II. ELLIPTICAL ORBITS

    SciTech Connect

    Cuntz, M.

    2015-01-10

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes ({sup r}adiative habitable zone{sup ;} RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs are truncated by the additional constraint of orbital stability, the notation of ST-type and PT-type habitability applies. In comparison to the circular case, it is found that in systems of higher eccentricity, the range of the RHZs is significantly reduced. Moreover, for a considerable number of models, the orbital stability constraint also reduces the range of S-type and P-type habitability. Nonetheless, S-, P-, ST-, and PT-type habitability is identified for a considerable set of system parameters. The method as presented is utilized for BinHab, an online code available at The University of Texas at Arlington.

  3. Identification and molecular characterization of a novel DyP-type peroxidase from Pseudomonas aeruginosa PKE117.

    PubMed

    Li, Jing; Liu, Chen; Li, Baozhen; Yuan, Hongli; Yang, Jinshui; Zheng, Beiwen

    2012-02-01

    A new DyP-type peroxidase from Pseudomonas aeruginosa PKE117 was identified and characterized. The dypPa was first identified via sequence analysis and then cloned in Escherichia coli. Subsequently, the recombinant protein DyPPa was expressed and purified. Its DNA sequence analysis revealed an open reading frame of 897 bp, encoding a protein monomer of 299 amino acid residues with isoelectric point 4.62. According to SDS-PAGE analysis and FPLC result, DyPPa mainly existed as homodimer (64 kDa). DyPPa displayed typical heme absorbance of Soret band, with an Rz value of 1.18. Inductively coupled plasma-atomic absorption spectrum data also indicated DyPPa contained iron. Multiple amino acid sequence alignment of DyPPa with other members of the DyP-type peroxidases family showed the presence of conserved D139, H210, and R227 amino acids and GXXDG motifs, which were commonly shared by the DyP-type peroxidase family. Although the primary structure homology between DyPPa and other family members was very low, their secondary and tertiary structure displayed high homology, which explained the high decolorizing activity of DyPPa. Specifically, DyPPa displayed a good thermal stability and maximal activity on Reactive blue 5 under pH 3.5. Therefore, it was proposed that DyPPa, with a wide range of substrate specificity, was a novel member of the DyP-type peroxidases family. PMID:22161141

  4. Thermoelectric properties of p-type PbTe/Ag{sub 2}Te bulk composites by extrinsic phase mixing

    SciTech Connect

    Lee, Min Ho; Rhyee, Jong-Soo

    2015-12-15

    We investigated the thermoelectric properties of PbTe/Ag{sub 2}Te bulk composites, synthesized by hand milling, mixing, and hot press sintering. From x-ray diffraction and energy dispersive x-ray spectroscopy measurements, we observed Ag{sub 2}Te phase separation in the PbTe matrix without Ag atom diffusion. In comparison with previously reported pseudo-binary (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} composites, synthesized by high temperature phase separation, the PbTe/Ag{sub 2}Te bulk composites fabricated with a low temperature phase mixing process give rise to p-type conduction of carriers with significantly decreased electrical conductivity. This indicates that Ag atom diffusion in the PbTe matrix changes the sign of the Seebeck coefficient to n-type and also increases the carrier concentration. Effective p-type doping with low temperature phase separation by mixing and hot press sintering can enhance the thermoelectric performance of PbTe/Ag{sub 2}Te bulk composites, which can be used as a p-type counterpart of n-type (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} bulk composites.

  5. Fabrication and characterization of p+-i-p+ type organic thin film transistors with electrodes of highly doped polymer

    NASA Astrophysics Data System (ADS)

    Tadaki, Daisuke; Ma, Teng; Zhang, Jinyu; Iino, Shohei; Hirano-Iwata, Ayumi; Kimura, Yasuo; Rosenberg, Richard A.; Niwano, Michio

    2016-04-01

    Organic thin film transistors (OTFTs) have been explored because of their advantageous features such as light-weight, flexible, and large-area. For more practical application of organic electronic devices, it is very important to realize OTFTs that are composed only of organic materials. In this paper, we have fabricated p+-i-p+ type of OTFTs in which an intrinsic (i) regioregular poly (3-hexylthiophene) (P3HT) layer is used as the active layer and highly doped p-type (p+) P3HT is used as the source and drain electrodes. The 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) was used as the p-type dopant. A fabricating method of p+-i-p+ OTFTs has been developed by using SiO2 and aluminum films as capping layers for micro-scaled patterning of the p+-P3HT electrodes. The characteristics of the OTFTs were examined using the photoelectron spectroscopy and electrical measurements. We demonstrated that the fabricated p+-i-p+ OTFTs work with carrier injection through a built-in potential at p+/i interfaces. We found that the p+-i-p+ OTFTs exhibit better FET characteristics than the conventional P3HT-OTFT with metal (Au) electrodes, indicating that the influence of a carrier injection barrier at the interface between the electrode and the active layer was suppressed by replacing the metal electrodes with p+-P3HT layers.

  6. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor.

    PubMed

    Goldgof, Gregory M; Durrant, Jacob D; Ottilie, Sabine; Vigil, Edgar; Allen, Kenneth E; Gunawan, Felicia; Kostylev, Maxim; Henderson, Kiersten A; Yang, Jennifer; Schenken, Jake; LaMonte, Gregory M; Manary, Micah J; Murao, Ayako; Nachon, Marie; Stanhope, Rebecca; Prescott, Maximo; McNamara, Case W; Slayman, Carolyn W; Amaro, Rommie E; Suzuki, Yo; Winzeler, Elizabeth A

    2016-01-01

    The spiroindolones, a new class of antimalarial medicines discovered in a cellular screen, are rendered less active by mutations in a parasite P-type ATPase, PfATP4. We show here that S. cerevisiae also acquires mutations in a gene encoding a P-type ATPase (ScPMA1) after exposure to spiroindolones and that these mutations are sufficient for resistance. KAE609 resistance mutations in ScPMA1 do not confer resistance to unrelated antimicrobials, but do confer cross sensitivity to the alkyl-lysophospholipid edelfosine, which is known to displace ScPma1p from the plasma membrane. Using an in vitro cell-free assay, we demonstrate that KAE609 directly inhibits ScPma1p ATPase activity. KAE609 also increases cytoplasmic hydrogen ion concentrations in yeast cells. Computer docking into a ScPma1p homology model identifies a binding mode that supports genetic resistance determinants and in vitro experimental structure-activity relationships in both P. falciparum and S. cerevisiae. This model also suggests a shared binding site with the dihydroisoquinolones antimalarials. Our data support a model in which KAE609 exerts its antimalarial activity by directly interfering with P-type ATPase activity. PMID:27291296

  7. Influence of a new surface treatment method on ohmic contact resistivity of p-type GaN

    NASA Astrophysics Data System (ADS)

    Tang, Yingwen; Li, Xue; Kang, Yong; Li, Xiangyang; Gong, Haimei

    2005-01-01

    The contact resistivity of Ni/Au contact on p-type GaN was drastically decreased through the surface treatments in sequence using alcohol-based HCl and KOH solution. The surface oxide on p-type GaN formed during epitaxial growth was removed in the alcohol-based HCl and KOH solution, The O 1s and C 1s core-level peaks in the x-ray photoemission spectra showed that the alcohol-based HCl treatment was more effective in removing of the surface oxide layer. Compared to the KOH solution treated sample, the alcohol-based HCl-treated sample showed a Ga 2p core-level peak which was shifted toward the valence-band edge by 0.3 eV, indicating that the surface Fermi level was shifted toward the valence-band edge. These results suggest that the surface barrier height for hole injection from Ni/Au metal to p-type GaN be lowered by the surface treatment, which results in a drastic reduction in specific contact resistance.

  8. Characterization and modeling of P-type electrosensory afferent responses to amplitude modulations in a wave-type electric fish.

    PubMed

    Nelson, M E; Xu, Z; Payne, J R

    1997-11-01

    The first stage of information processing in the electrosensory system involves the encoding of local changes in transdermal potential into trains of action potentials in primary electrosensory afferent nerve fibers. To develop a quantitative model of this encoding process for P-type (probability-coding) afferent fibers in the weakly electric fish Apteronotus leptorhynchus, we recorded single unit activity from electrosensory afferent axons in the posterior branch of the anterior lateral line nerve and analyzed responses to electronically generated sinusoidal amplitude modulations of the local transdermal potential. Over a range of AM frequencies from 0.1 to 200 Hz, the modulation transfer function of P-type afferents is high-pass in character, with a gain that increases monotonically up to AM frequencies of 100 Hz where it begins to roll off, and a phase advance with a range of 15-60 degrees. Based on quantitative analysis of the observed gain and phase characteristics, we present a computationally efficient model of P-type afferent response dynamics which accurately characterizes changes in afferent firing rate in response to amplitude modulations of the fish's own electric organ discharge over a wide range of AM frequencies relevant to active electrolocation. PMID:9373958

  9. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor

    PubMed Central

    Goldgof, Gregory M.; Durrant, Jacob D.; Ottilie, Sabine; Vigil, Edgar; Allen, Kenneth E.; Gunawan, Felicia; Kostylev, Maxim; Henderson, Kiersten A.; Yang, Jennifer; Schenken, Jake; LaMonte, Gregory M.; Manary, Micah J.; Murao, Ayako; Nachon, Marie; Stanhope, Rebecca; Prescott, Maximo; McNamara, Case W.; Slayman, Carolyn W.; Amaro, Rommie E.; Suzuki, Yo; Winzeler, Elizabeth A.

    2016-01-01

    The spiroindolones, a new class of antimalarial medicines discovered in a cellular screen, are rendered less active by mutations in a parasite P-type ATPase, PfATP4. We show here that S. cerevisiae also acquires mutations in a gene encoding a P-type ATPase (ScPMA1) after exposure to spiroindolones and that these mutations are sufficient for resistance. KAE609 resistance mutations in ScPMA1 do not confer resistance to unrelated antimicrobials, but do confer cross sensitivity to the alkyl-lysophospholipid edelfosine, which is known to displace ScPma1p from the plasma membrane. Using an in vitro cell-free assay, we demonstrate that KAE609 directly inhibits ScPma1p ATPase activity. KAE609 also increases cytoplasmic hydrogen ion concentrations in yeast cells. Computer docking into a ScPma1p homology model identifies a binding mode that supports genetic resistance determinants and in vitro experimental structure-activity relationships in both P. falciparum and S. cerevisiae. This model also suggests a shared binding site with the dihydroisoquinolones antimalarials. Our data support a model in which KAE609 exerts its antimalarial activity by directly interfering with P-type ATPase activity. PMID:27291296

  10. Structural and Luminescence Features of Lithium-Doped p-Type Film-Like ZnO Nanorods.

    PubMed

    Ko, Wonbae; Lee, Sanghyo; Hong, Jin Pyo

    2015-11-01

    We report the structural and optical characteristics of p-type lithium (Li)-doped ZnO film-like nano-structures prepared by utilizing a simple hydro-thermal method in an aqueous solution at a low temperature (< 90 degrees C). The diameters and densities of the Li-doped ZnO nanostructures were controlled by adjusting the molar concentration. A relatively high molar concentration resulted in hexagonal and flat surface-shaped ZnO nanostructures. In addition, a post-annealing process in the range of 400 to 600 degrees C effectively leads to the incorporation of lithium dopant as an acceptor, resulting in optical p-type behavior. The p-type features of synthesized Li-doped ZnO nanostructures were analyzed using a photoluminescence measurement using a He-Cd laser as an excitation source at 10 K. Closer investigation of the fine donor- and acceptor-bound exciton emission peaks from the low temperature PL spectra revealed the occurrence of several peaks related to free excitons (FX), excitons bound to acceptor (A(0)X), free electron to the acceptor transition peak (FA), and its LO phonon replicas. PMID:26726574

  11. Self detachment of free-standing porous silicon membranes in moderately doped n-type silicon

    NASA Astrophysics Data System (ADS)

    Kumar, Neeraj; Gennaro, Salvatore; Sasikumar, Pradeep Vallachira Warriam; Sorarù, Gian Domenico; Bettotti, Paolo

    2014-07-01

    In this article we describe a reliable etching method to fabricate porous silicon free-standing membranes (FSMs) based on a self detachment of the porous layer in moderately doped n-type silicon substrates. We found that stable growth of smooth and straight pores is restricted to a narrow range of etching conditions and, unlike p-type substrates, the lift-off of the membrane is a self-limited process that does not require a large burst of current. The detachment of the porous membrane is independent of the structure of the already porosified layer, meaning that the average pore diameter can be tuned from nano to macro size within the same membrane. We also demonstrate that, despite their limited thickness, FSMs are quite robust and can sustained further processing. Thus, the etching receipt we are proposing here extends the range of sensors and filters that can be fabricated using porous silicon technology.

  12. Purification and deposition of silicon by an iodide disproportionation reaction

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2002-01-01

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  13. Amorphous-silicon cell reliability testing

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1985-01-01

    The work on reliability testing of solar cells is discussed. Results are given on initial temperature and humidity tests of amorphous silicon devices. Calibration and measurement procedures for amorphous and crystalline cells are given. Temperature stress levels are diagrammed.

  14. Silicon concentrator solar cell research

    SciTech Connect

    Green, M.A.; Zhao, J.; Wang, A.; Dai, X.; Milne, A.; Cai, S.; Aberle, A.; Wenham, S.R.

    1993-06-01

    This report describes work conducted between December 1990 and May 1992 continuing research on silicon concentrator solar cells. The objectives of the work were to improve the performance of high-efficiency cells upon p-type substrates, to investigate the ultraviolet stability of such cells, to develop concentrator cells based on n-type substrates, and to transfer technology to appropriate commercial environments. Key results include the identification of contact resistance between boron-defused areas and rear aluminum as the source of anomalously large series resistance in both p- and n-type cells. A major achievement of the present project was the successful transfer of cell technology to both Applied Solar Energy Corporation and Solarex Corporation.

  15. Oxidation and nitration of mononitrophenols by a DyP-type peroxidase.

    PubMed

    Büttner, Enrico; Ullrich, René; Strittmatter, Eric; Piontek, Klaus; Plattner, Dietmar A; Hofrichter, Martin; Liers, Christiane

    2015-05-15

    Substantial conversion of nitrophenols, typical high-redox potential phenolic substrates, by heme peroxidases has only been reported for lignin peroxidase (LiP) so far. But also a dye-decolorizing peroxidase of Auricularia auricula-judae (AauDyP) was found to be capable of acting on (i) ortho-nitrophenol (oNP), (ii) meta-nitrophenol (mNP) and (iii) para-nitrophenol (pNP). The pH dependency for pNP oxidation showed an optimum at pH 4.5, which is typical for phenol conversion by DyPs and other heme peroxidases. In the case of oNP and pNP conversion, dinitrophenols (2,4-DNP and 2,6-DNP) were identified as products and for pNP additionally p-benzoquinone. Moreover, indications were found for the formation of random polymerization products originating from initially formed phenoxy radical intermediates. Nitration was examined using (15)N-labeled pNP and Na(14)NO2 as an additional source of nitro-groups. Products were identified by HPLC-MS, and mass-to-charge ratios were evaluated to clarify the origin of nitro-groups. The additional nitrogen in DNPs formed during enzymatic conversion was found to originate both from (15)N-pNP and (14)NO2Na. Based on these results, a hypothetical reaction scheme and a catalytically responsible confine of the enzyme's active site are postulated. PMID:25796533

  16. Theoretical considerations for Reaction-Formed Silicon Carbide (RFSC) formation by molten silicon infiltration into slurry-derived preforms

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.; Singh, M.

    1993-01-01

    For reaction-formed silicon carbide (RFSC) ceramics produced by silicon melt infiltration of porous carbon preforms, equations are developed to relate the amount of residual silicon to the initial carbon density. Also, for a slurry derived preform containing both carbon and silicon powder, equations are derived which relate the amount of residual silicon in the RFSC to the relative density of the carbon in the preform and to the amount of silicon powder added to the slurry. For a porous carbon preform that does not have enough porosity to prevent choking-off of the silicon infiltration, these results show that complete silicon infiltration can occur by adding silicon powder to the slurry mixture used to produce these preforms.

  17. Deposited silicon photonics: Optical interconnect devices in polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Preston, Kyle Jonathan

    Silicon photonics has tremendous potential to provide high-bandwidth and low-power data communication for applications such as computing and telecommunication, over length scales ranging from 100 kilometers over fiber to centimeter-length on-chip waveguides. Many silicon photonic building blocks have been demonstrated to date, but critical work remains to determine the best approaches for integrating together silicon photonics with microelectronics. In this thesis, I explore a novel method for integration of silicon photonics on the CMOS platform by using a deposited material: polycrystalline silicon. I will show the first demonstrations of electrically-active optical filters, modulators, and photodetectors in this material. In principle, this material platform would allow for the integration of silicon photonic devices and systems on top of any substrate, including complex CMOS and memory chips or even glass and plastic substrates. In Chapter 1, I introduce the state-of-the-art in silicon photonics, describe several integration schemes under development, and introduce the idea of using deposited materials. In Chapter 2, I demonstrate the use of polysilicon to make integrated microring resonators, and show the integration of different silicon materials together. Chapter 3 discusses the use of polysilicon as both an optical waveguiding layer and an electrode material in slot waveguides for the application of light emitters. Chapter 4 demonstrates the use of a pump-probe experiment to measure the free carrier lifetime in the material and demonstrate all-optical modulation. In Chapter 5, I demonstrate the first high-speed integrated electro-optic modulator in polysilicon, a necessary device for optical transmitters. In Chapter 6, I show how defects inside the same material enable integrated photodetectors at near-infrared telecommunication wavelengths. Chapter 7 shows initial results in adapting the material processing for lower temperatures, necessary for integration

  18. Rapid Solid-State Metathesis Routes to Nanostructured Silicon-Germainum

    NASA Technical Reports Server (NTRS)

    Kaner, Richard B. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor); Rodriguez, Marc (Inventor)

    2014-01-01

    Methods for producing nanostructured silicon and silicon-germanium via solid state metathesis (SSM). The method of forming nanostructured silicon comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and an alkaline earth metal silicide into a homogeneous powder, and initating the reaction between the silicon tetraiodide (SiI4) with the alkaline earth metal silicide. The method of forming nanostructured silicon-germanium comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and a germanium based precursor into a homogeneous powder, and initiating the reaction between the silicon tetraiodide (SiI4) with the germanium based precursors.

  19. Epitaxial silicon devices for dosimetry applications

    SciTech Connect

    Bruzzi, M.; Bucciolini, M.; Casati, M.; Menichelli, D.; Talamonti, C.; Piemonte, C.; Svensson, B. G.

    2007-04-23

    A straightforward improvement of the efficiency and long term stability of silicon dosimeters has been obtained with a n{sup +}-p junction surrounded by a guard-ring structure implanted on an epitaxial p-type Si layer grown on a Czochralski substrate. The sensitivity of devices made on 50-{mu}m-thick epitaxial Si degrades by only 7% after an irradiation with 6 MeV electrons up to 1.5 kGy, and shows no significant further decay up to 10 kGy. These results prove the enhanced radiation tolerance and stability of epitaxial diodes as compared to present state-of-the-art Si devices.

  20. Ambipolar quantum dots in intrinsic silicon

    SciTech Connect

    Betz, A. C. Gonzalez-Zalba, M. F.; Podd, G.; Ferguson, A. J.

    2014-10-13

    We electrically measure intrinsic silicon quantum dots with electrostatically defined tunnel barriers. The presence of both p- and n-type ohmic contacts enables the accumulation of either electrons or holes. Thus, we are able to study both transport regimes within the same device. We investigate the effect of the tunnel barriers and the electrostatically defined quantum dots. There is greater localisation of charge states under the tunnel barriers in the case of hole conduction, leading to higher charge noise in the p-type regime.

  1. Preparation of tunable silicon q-dots through ultrasound.

    PubMed

    Troia, A; Giovannozzi, A; Amato, G

    2009-04-01

    Silicon quantum dots (QDs) have been prepared through ultrasound treatments of light-emitting porous silicon layers (PSL) electrochemically etched from a p(+) type crystalline silicon (c-Si). The sonication treatments allowed separating the porous fraction from the bulk of c-Si as well as to mechanically reduce their dimensions. The ultrasounds processes have been carried out in two different organic solvents (toluene and tetrahydrofuran), and allowed obtaining silicon QDs emitting light in the blue-green part of the visible spectrum (estimated QDs diameter around 5 nm). Moreover, by adding the proper chemicals in the solvents, such as alkenes, or simply paraffin oil, we have stabilized the QDs achieving surface modification and observed an effect on size reduction. Photoluminescence spectra of the QDs, TEM images and a preliminary micro-FTIR investigation of functionalised QDs will be presented in this paper. PMID:19201244

  2. Porous silicon carbide (SiC) semiconductor device

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    A semiconductor device employs at least one layer of semiconducting porous silicon carbide (SiC). The porous SiC layer has a monocrystalline structure wherein the pore sizes, shapes, and spacing are determined by the processing conditions. In one embodiment, the semiconductor device is a p-n junction diode in which a layer of n-type SiC is positioned on a p-type layer of SiC, with the p-type layer positioned on a layer of silicon dioxide. Because of the UV luminescent properties of the semiconducting porous SiC layer, it may also be utilized for other devices such as LEDs and optoelectronic devices.

  3. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys

    NASA Astrophysics Data System (ADS)

    Bathula, Sivaiah; Jayasimhadri, M.; Gahtori, Bhasker; Singh, Niraj Kumar; Tyagi, Kriti; Srivastava, A. K.; Dhar, Ajay

    2015-07-01

    Despite SiGe being one of the most widely studied thermoelectric materials owing to its application in radioisotope thermoelectric generators (RTG), the thermoelectric figure-of merit (ZT) of p-type SiGe is still quite low, resulting in poor device efficiencies. In the present study, we report a substantial enhancement in ZT ~ 1.2 at 900 °C for p-type nanostructured Si80Ge20 alloys by creating several types of defect features within the Si80Ge20 nanostructured matrix in a spectrum of nano to meso-scale dimensions during its nanostructuring, by employing mechanical alloying followed by spark plasma sintering. This enhancement in ZT, which is ~25% over the existing state-of-the-art value for a p-type nanostructured Si80Ge20 alloy, is primarily due to its ultralow thermal conductivity of ~2.04 W m-1 K-1 at 900 °C, resulting from the scattering of low-to-high wavelength heat-carrying phonons by different types of defect features in a range of nano to meso-scale dimensions in the Si80Ge20 nanostructured matrix. These include point defects, dislocations, isolated amorphous regions, nano-scale grain boundaries and more importantly, the nano to meso-scale residual porosity distributed throughout the Si80Ge20 matrix. These nanoscale multi-dimensional defect features have been characterized by employing scanning and transmission electron microscopy and correlated with the electrical and thermal transport properties, based on which the enhancement of ZT has been discussed.Despite SiGe being one of the most widely studied thermoelectric materials owing to its application in radioisotope thermoelectric generators (RTG), the thermoelectric figure-of merit (ZT) of p-type SiGe is still quite low, resulting in poor device efficiencies. In the present study, we report a substantial enhancement in ZT ~ 1.2 at 900 °C for p-type nanostructured Si80Ge20 alloys by creating several types of defect features within the Si80Ge20 nanostructured matrix in a spectrum of nano to meso

  4. Defect enhanced funneling of diffusion current in silicon

    NASA Astrophysics Data System (ADS)

    Azimi, S.; Dang, Z. Y.; Song, J.; Breese, M. B. H.; Vittone, E.; Forneris, J.

    2013-01-01

    We report a current transport mechanism observed during electrochemical anodization of ion irradiated p-type silicon, in which a hole diffusion current is highly funneled along the gradient of modified doping profile towards the maximum ion induced defect density, dominating the total current flowing and hence the anodization behaviour. This study is characterized within the context of electrochemical anodization but relevant to other fields where any residual defect density may result in similar effects, which may adversely affect performance, such as in wafer gettering or satellite-based microelectronics. Increased photoluminescence intensity from localized buried regions of porous silicon is also shown.

  5. Heavy doping effects in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.; Landsberg, P. T.; San, C. T.

    1984-01-01

    A model for bandgap shrinkage in semiconductors is developed and applied to silicon. A survey of earlier experiments, and of new ones, give an agreement between the model and experiments on n- and p-type silicon which is good as far as transport measurements in the 300 K range. The discrepancies between theory and experiment are no worse than the discrepancies between the experimental results of various authors. It also gives a good account of recent, optical determinations of band gap shrinkage at 5 K.

  6. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys.

    PubMed

    Bathula, Sivaiah; Jayasimhadri, M; Gahtori, Bhasker; Singh, Niraj Kumar; Tyagi, Kriti; Srivastava, A K; Dhar, Ajay

    2015-08-01

    Despite SiGe being one of the most widely studied thermoelectric materials owing to its application in radioisotope thermoelectric generators (RTG), the thermoelectric figure-of merit (ZT) of p-type SiGe is still quite low, resulting in poor device efficiencies. In the present study, we report a substantial enhancement in ZT∼ 1.2 at 900 °C for p-type nanostructured Si80Ge20 alloys by creating several types of defect features within the Si80Ge20 nanostructured matrix in a spectrum of nano to meso-scale dimensions during its nanostructuring, by employing mechanical alloying followed by spark plasma sintering. This enhancement in ZT, which is ∼25% over the existing state-of-the-art value for a p-type nanostructured Si80Ge20 alloy, is primarily due to its ultralow thermal conductivity of ∼2.04 W m(-1) K(-1) at 900 °C, resulting from the scattering of low-to-high wavelength heat-carrying phonons by different types of defect features in a range of nano to meso-scale dimensions in the Si80Ge20 nanostructured matrix. These include point defects, dislocations, isolated amorphous regions, nano-scale grain boundaries and more importantly, the nano to meso-scale residual porosity distributed throughout the Si80Ge20 matrix. These nanoscale multi-dimensional defect features have been characterized by employing scanning and transmission electron microscopy and correlated with the electrical and thermal transport properties, based on which the enhancement of ZT has been discussed. PMID:26138852

  7. Design of ternary alkaline-earth metal Sn(II) oxides with potential good p-type conductivity

    DOE PAGESBeta

    Du, Mao -Hua; Singh, David J.; Zhang, Lijun; Li, Yuwei; Xu, Qiaoling; Ma, Yanming; Zheng, Weitao

    2016-04-19

    Oxides with good p-type conductivity have been long sought after to achieve high performance all-oxide optoelectronic devices. Divalent Sn(II) based oxides are promising candidates because of their rather dispersive upper valence bands caused by the Sn-5s/O-2p anti-bonding hybridization. There are so far few known Sn(II) oxides being p-type conductive suitable for device applications. Here, we present via first-principles global optimization structure searches a material design study for a hitherto unexplored Sn(II)-based system, ternary alkaline-earth metal Sn(II) oxides in the stoichiometry of MSn2O3 (M = Mg, Ca, Sr, Ba). We identify two stable compounds of SrSn2O3 and BaSn2O3, which can bemore » stabilized by Sn-rich conditions in phase stability diagrams. Their structures follow the Zintl behaviour and consist of basic structural motifs of SnO3 tetrahedra. Unexpectedly they show distinct electronic properties with band gaps ranging from 1.90 (BaSn2O3) to 3.15 (SrSn2O3) eV, and hole effective masses ranging from 0.87 (BaSn2O3) to above 6.0 (SrSn2O3) m0. Further exploration of metastable phases indicates a wide tunability of electronic properties controlled by the details of the bonding between the basic structural motifs. Lastly, this suggests further exploration of alkaline-earth metal Sn(II) oxides for potential applications requiring good p-type conductivity such as transparent conductors and photovoltaic absorbers.« less

  8. Raman Spectroscopy of n-Type and p-Type GaSb with Multiple Excitation Wavelengths

    SciTech Connect

    Maslar JE, Hurst WS, Wang CA

    2007-04-05

    The interpretation of Raman spectra of GaSb can be complicated by the presence of a so-called surface space charge region (SSCR), resulting in an inhomogeneous near-surface Raman scattering environment. To fully interpret Raman spectra, it is important to have an understanding of the SSCR profile relative to the Raman probe depth. However, a priori determination of even the actual SSCR width is not always possible for GaSb under a wide range of doping levels. The primary objective of this report is to provide a convenient reference to aid in the determination of relative contributions to an observed GaSb Raman spectrum of SSCR scattering and bulk scattering for a range of excitation wavelengths, doping levels, and SSCR widths and types. Hence, Raman spectra of both n-type and p-type doped GaSb epilayers were obtained using 488 nm, 514.5 nm, 647.1 nm, and 752.55 nm excitation radiation. Both n-type and p-type doped GaSb epilayers were selected for investigation because these layers exhibit the two different SSCR types that are typically encountered with as-grown GaSb and related materials. A range of doping levels were examined for each doping type so as to examine the effects of a varying SSCR width on the observed spectra. A secondary objective of this report is to demonstrate the performance of a spectroscopic system based on 752.55 nm excitation that is sensitive to bulk carrier properties in n-type and p-type doped GaSb epilayers over a wide doping range, unlike visible wavelength-based optical systems.

  9. Photoconductivity in Magnetic Field of p-Type Cadmium - Mercury - Tellurium Films Grown by Liquid Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Kostyuchenko, V. Ya.; Protasov, D. Yu.; Andrusov, Yu. B.; Denisov, I. A.; Voitsekhovskii, A. V.

    2016-04-01

    Photoconductivity in a magnetic field is studied for Faraday geometry on the p-type cadmium - mercury -tellurium films grown by liquid-phase epitaxy on cadmium - zinc - tellurium substrates. From the magnetic-field dependence of the photoconductivity signal under the film illumination from the side of the substrate or from the side of free surface, different values of mobility of minority carriers (electrons) are obtained. It is shown that for the mathematical description of the photoconductivity signal in a magnetic field, two types of electrons - "fast" and "slow" electrons, as well as "heavy" holes can be used.

  10. How to Compare, Analyze, and Morph Between Crystal Structures of Different Conformations: The P-Type ATPase Example.

    PubMed

    Karlsen, Jesper L; Bublitz, Maike

    2016-01-01

    In the past 15 years, a large body of structural information on P-type ATPases has accumulated in the Protein Data Bank. The available crystal structures cover different enzymes in a variety of conformational states that are associated with the enzymatic activity of ATP-dependent ion translocation across membranes. This chapter provides an overview about the available structural information, along with some practical instructions on how to make meaningful comparisons of structures in different conformations, and how to generate morphs between series of structures, in order to analyze domain movements and structural flexibility. PMID:26695058

  11. p-type ZnO and ZnMnO by oxidation of Zn(Mn)Te films

    NASA Astrophysics Data System (ADS)

    Przedziecka, E.; Kamiska, E.; Dynowska, E.; Dobrowolski, W.; Jakiea, R.; Kopotowski, .; Sawicki, M.; Kiecana, M.; Kossut, J.

    2006-03-01

    ZnO and ZnMnO doped with N and/or As layers were fabricated by thermal oxidation of ZnTe and ZnMnTe grown by MBE on different substrates. The Hall measurements demonstrated p -type conductivity with the hole concentration of 5 . 1019 cm-3 for ZnO:As and ZnO:As:N on GaAs substrates and 6 . 1017 cm-3 for ZnTe:N on ZnTe substrates. Optical study showed meaningful differences between samples with different acceptor, grown on different substrates. Magnetoptical experiment demonstration Zeeman splitting in ZnMnO samples.

  12. Growth and characterization of Czochralski-grown n and p-type GaAs for space solar cell substrates

    NASA Technical Reports Server (NTRS)

    Chen, R. T.

    1983-01-01

    Progress in LEC (liquid encapsulated Czochralski) crystal growth techniques for producing high-quality, 3-inch-diameter, n- and p-type GaAs crystals suitable for solar cell applications is described. The LEC crystals with low dislocation densities and background impurities, high electrical mobilities, good dopant uniformity, and long diffusion lengths were reproducibly grown through control of the material synthesis, growth and doping conditions. The capability for producing these large-area, high-quality substrates should positively impact the manufacturability of highly efficiency, low cost, radiation-hard GaAs solar cells.

  13. Thin-film transistors based on p-type Cu{sub 2}O thin films produced at room temperature

    SciTech Connect

    Fortunato, Elvira; Figueiredo, Vitor; Barquinha, Pedro; Elamurugu, Elangovan; Goncalves, Goncalo; Martins, Rodrigo; Park, Sang-Hee Ko; Hwang, Chi-Sun

    2010-05-10

    Copper oxide (Cu{sub 2}O) thin films were used to produce bottom gate p-type transparent thin-film transistors (TFTs). Cu{sub 2}O was deposited by reactive rf magnetron sputtering at room temperature and the films exhibit a polycrystalline structure with a strongest orientation along (111) plane. The TFTs exhibit improved electrical performance such as a field-effect mobility of 3.9 cm{sup 2}/V s and an on/off ratio of 2x10{sup 2}.

  14. Tunable Luminescence of Silicon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Vladimirov, A.; Korovin, S.; Surkov, A.; Kelm, E.; Pustovoy, V.

    2010-10-01

    The luminescent properties of silicon nanoparticles were studied. The particles were prepared by laser pyrolysis of silane in a gas flow reactor. Initially non-luminescent particles were treated by the chemical etching in mixture of fluoric and nitric acids. The high and stable photoluminescence from etched particles was observed. With increasing etching time, the PL peak shifted to blue region. With decreasing of the excitation wavelength from 660 nm to 365 nm, the PL peak shifted from 820 nm to 660 nm. This allows us to use the silicon based particles for wavelength selected excitation in some practical application.

  15. Crystalline Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2015-10-01

    The following sections are included: * Overview * Silicon cell development * Substrate production * Cell processing * Cell costs * Opportunities for improvement * Silicon-supported thin films * Summary * Acknowledgement * References

  16. Subband Structure and Effective Mass in the Inversion Layer of a Strain Si-Based Alloy P-Type MOSFET.

    PubMed

    Chen, Kuan-Ting; Fan, Jun Wei; Chang, Shu-Tong; Lin, Chung-Yi

    2015-03-01

    In this paper, the subband structure and effective mass of an Si-based alloy inversion layer in a PMOSFET are studied theoretically. The strain condition considered in our calculations is the intrinsic strain resulting from growth of the silicon-carbon alloy on a (001) Si substrate and mechanical uniaxial stress. The quantum confinement effect resulting from the vertically effective electric field was incorporated into the k · p calculation. The distinct effective mass, such as the quantization effective mass and the density-of-states (DOS) effective mass, as well as the subband structure of the silicon-carbon alloy inversion layer for a PMOSFET under substrate strain and various effective electric field strengths, were all investigated. Ore results show that subband structure of relaxed silicon-carbon alloys with low carbon content are almost the same as silicon. We find that an external stress applied parallel to the channel direction can efficiently reduce the effective mass along the channel direction, thus producing hole mobility enhancement. PMID:26413635

  17. Perovskite LaRhO{sub 3} as a p-type active layer in oxide photovoltaics

    SciTech Connect

    Nakamura, Masao Krockenberger, Yoshiharu; Fujioka, Jun; Kawasaki, Masashi; Tokura, Yoshinori

    2015-02-16

    Perovskite-type transition-metal oxides have a wide variety of physical properties and triggered intensive research on functional devices in the form of heteroepitaxial junctions. However, there is a missing component that is a p-type conventional band semiconductor. LaRhO{sub 3} (LRO) is one of very few promising candidates having its bandgap between filled t{sub 2g} and empty e{sub g} of Rh in low-spin state, but there has been no report on the synthesis of large-size single crystals or thin films. Here, we report on the junction properties of single-crystalline thin films of LRO grown on (110) oriented Nb-doped SrTiO{sub 3} substrates. The external quantum efficiency of the photo-electron conversion exceeds 1% in the visible-light region due to the wide depletion layer and long diffusion length of minority carriers in LRO. Clear indication of p-type band semiconducting character in a perovskite oxide of LRO will pave a way to explore oxide electronics of perovskite heterostructures.

  18. Control of p-type conduction in Mg doped monophase CuCrO2 thin layers

    NASA Astrophysics Data System (ADS)

    Chikoidze, E.; Boshta, M.; Gomaa, M.; Tchelidze, T.; Daraselia, D.; Japaridze, D.; Shengelaya, A.; Dumont, Y.; Neumann-Spallart, M.

    2016-05-01

    This work aims to clarify the origin of hole conduction in undoped and Mg-doped CuCrO2 oxide in order to have the possibility of controlling it by corresponding growth parameters. A chemical spray pyrolysis procedure for the deposition of p-type semiconductor thin films is described. The as-deposited films were amorphous. The formation of highly crystalline CuCrO2 and Mg-doped CuCrO2 films with a single phase delafossite structure was realized by annealing between 600 °C and 960 °C in a nitrogen atmosphere. The carrier concentration and the point defects of the samples are calculated by using the developed Kroger method of quasi-chemical reactions. p-type conductivity was predicted and observed in the undoped and Mg doped CuCrO2 sample, and with n ~ 1018 cm‑3 carrier concentrations for 4%Mg doping. The electrical resistivity for a 4% Mg doped sample was 1.4 Ω·cm with a Seebeck coefficient of  +130 μV K‑1 at 40 °C. By electroparamagnetic resonance spectroscopy Cr3+ and Cu2+ related defects were studied.

  19. The synthesis and characterization of Ag-N dual-doped p-type ZnO: experiment and theory.

    PubMed

    Duan, Li; Wang, Pei; Yu, Xiaochen; Han, Xiao; Chen, Yongnan; Zhao, Peng; Li, Donglin; Yao, Ran

    2014-03-01

    Ag-N dual-doped ZnO films have been fabricated by a chemical bath deposition method. The p-type conductivity of the dual-doped ZnO:(Ag, N) is stable over a long period of time, and the hole concentration in the ZnO:(Ag, N) is much higher than that in mono-doped ZnO:Ag or ZnO:N. We found that this is because AgZn-NO complex acceptors can be formed in ZnO:(Ag, N). First-principles calculations show that the complex acceptors generate a fully occupied band above the valance band maximum, so the acceptor levels become shallower and the hole concentration is increased. Furthermore, the binding energy of the Ag-N complex in ZnO is negative, so ZnO:(Ag, N) can be stable. These results indicate that the Ag-N dual-doping may be expected to be a potential route to achieving high-quality p-type ZnO for use in a variety of devices. PMID:24448605

  20. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    SciTech Connect

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; Markvardsen, Anders J.; Gutmann, Matthias J.; Barends, Thomas R. M.; Mattle, Daniel; Shoeman, Robert L.; Doak, R. Bruce; Boutet, Sébastien; Messerschmidt, Marc; Seibert, Marvin M.; Williams, Garth J.; Foucar, Lutz; Reinhard, Linda; Sitsel, Oleg; Gregersen, Jonas L.; Clausen, Johannes D.; Boesen, Thomas; Gotfryd, Kamil; Wang, Kai -Tuo; Olesen, Claus; Møller, Jesper V.; Nissen, Poul; Schlichting, Ilme

    2015-06-11

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.

  1. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    DOE PAGESBeta

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; Markvardsen, Anders J.; Gutmann, Matthias J.; Barends, Thomas R. M.; Mattle, Daniel; Shoeman, Robert L.; Doak, R. Bruce; Boutet, Sébastien; et al

    2015-06-11

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data revealmore » the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.« less

  2. Field-Effect Modulation of Ambipolar Doping and Domain Wall Band Alignment in P-type Vanadium Dioxide Nanowires

    NASA Astrophysics Data System (ADS)

    Hou, Yasen; Peng, Xingyue; Yang, Yiming; Yu, Dong

    The sub-picosecond metal-insulator phase transition in vanadium dioxide (VO2) has attracted extensive attention with potential applications in ultrafast Mott transistors. However, the development of VO2-based transistors lags behind, owing to the lack of an efficient and hysteresis-free electrostatic doping control. Here we report the first synthesis of p-type single crystalline VO2nanowires via catalyst-free chemical vapor deposition. The p-type doping was unambiguously confirmed by both solid and electrochemical gating methods, and further evidenced by the scanning photocurrent microscopic measurements. Interestingly, we observed that the photocurrent spot polarity at the metal-insulator domain walls was reversibly switched by electrochemical gating, which indicates a band bending flipping. Furthermore, we eliminated the common hysteresis in gate sweep and greatly shortened the transistor response time via a hybrid gating method, which combines the merits of liquid ionic and solid gating. The capability of efficient field effect modulation of ambipolar conduction and band alignment offers new opportunities on understanding the phase transition mechanism and enables novel electronic applications based on VO2.

  3. Enhancement of p-Type Dye-Sensitized Solar Cell Performance by Supramolecular Assembly of Electron Donor and Acceptor

    PubMed Central

    Tian, Haining; Oscarsson, Johan; Gabrielsson, Erik; Eriksson, Susanna K.; Lindblad, Rebecka; Xu, Bo; Hao, Yan; Boschloo, Gerrit; Johansson, Erik M. J.; Gardner, James M.; Hagfeldt, Anders; Rensmo, Håkan; Sun, Licheng

    2014-01-01

    Supramolecular interactions based on porphyrin and fullerene derivatives were successfully adopted to improve the photovoltaic performance of p-type dye-sensitized solar cells (DSCs). Photoelectron spectroscopy (PES) measurements suggest a change in binding configuration of ZnTCPP after co-sensitization with C60PPy, which could be ascribed to supramolecular interaction between ZnTCPP and C60PPy. The performance of the ZnTCPP/C60PPy-based p-type DSC has been increased by a factor of 4 in comparison with the DSC with the ZnTCPP alone. At 560 nm, the IPCE value of DSCs based on ZnTCPP/C60PPy was a factor of 10 greater than that generated by ZnTCPP-based DSCs. The influence of different electrolytes on charge extraction and electron lifetime was investigated and showed that the enhanced Voc from the Co2+/3+(dtbp)3-based device is due to the positive EF shift of NiO. PMID:24603319

  4. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    PubMed

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement. PMID:26736028

  5. Growth of p-type and n-type m-plane GaN by molecular beam epitaxy

    SciTech Connect

    McLaurin, M.; Mates, T. E.; Wu, F.; Speck, J. S.

    2006-09-15

    Plasma-assisted molecular beam epitaxial growth of Mg-doped, p-type and Si-doped, n-type m-plane GaN on 6H m-plane SiC is demonstrated. Phase-pure, m-plane GaN films exhibiting a large anisotropy in film mosaic ({approx}0.2 deg. full width at half maximum, x-ray rocking curve scan taken parallel to [1120] versus {approx}2 deg. parallel to [0001]) were grown on m-plane SiC substrates. Maximum hole concentrations of {approx}7x10{sup 18} cm{sup -3} were achieved with p-type conductivities as high as {approx}5 {omega}{sup -1} cm{sup -1} without the presence of Mg-rich inclusions or inversion domains as viewed by cross-section transmission electron microscopy. Temperature dependent Hall effect measurements indicate that the Mg-related acceptor state in m-plane GaN is the same as that exhibited in c-plane GaN. Free electron concentrations as high as {approx}4x10{sup 18} cm{sup -3} were measured in the Si-doped m-plane GaN with corresponding mobilities of {approx}500 cm{sup 2}/V s measured parallel to the [1120] direction.

  6. Benefits of Carrier-Pocket Anisotropy to Thermoelectric Performance: The Case of p -Type AgBiSe2

    DOE PAGESBeta

    Parker, David S.; May, Andrew F.; Singh, David J.

    2015-06-05

    Here we study theoretically the effects of anisotropy on the thermoelectric performance of p-type AgBiSe2. We present an apparent realization of the thermoelectric benefits of one-dimensional plate-like carrier pocket anisotropy in the valence band of this material. Based on first principles calculations we find a substantial anisotropy in the electronic structure, likely favorable for thermoelectric performance, in the valence bands of the hexagonal phase of the silver chalcogenide thermoelectric AgBiSe2, while the conduction bands are more isotropic, and in our experiments do not attain high performance. AgBiSe2 has already exhibited a ZT value of 1.5 in a high-temperature disordered fccmore » phase, but room-temperature performance has not been demonstrated. We develop a theory for the ability of anisotropy to decouple the density-of-states and conductivity effective masses, pointing out the influence of this effect in the high performance thermoelectrics Bi2Te3 and PbTe. From our first principles and Boltzmann transport calculations we find that p-type AgBiSe2 has substantial promise as a room temperature thermoelectric, and estimate its performance.« less

  7. Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting.

    PubMed

    Lin, Yongjing; Xu, Yang; Mayer, Matthew T; Simpson, Zachary I; McMahon, Gregory; Zhou, Sa; Wang, Dunwei

    2012-03-28

    Mg-doped hematite (α-Fe(2)O(3)) was synthesized by atomic layer deposition (ALD). The resulting material was identified as p-type with a hole concentration of ca. 1.7 × 10(15) cm(-3). When grown on n-type hematite, the p-type layer was found to create a built-in field that could be used to assist photoelectrochemical water splitting reactions. A nominal 200 mV turn-on voltage shift toward the cathodic direction was measured, which is comparable to what has been measured using water oxidation catalysts. This result suggests that it is possible to achieve desired energetics for solar water splitting directly on metal oxides through advanced material preparations. Similar approaches may be used to mitigate problems caused by energy mismatch between water redox potentials and the band edges of hematite and many other low-cost metal oxides, enabling practical solar water splitting as a means for solar energy storage. PMID:22397372

  8. Familial resemblance for cognitive abilities in families with P-type dyslexic, L-type dyslexic, or normal reading boys.

    PubMed

    Van Strien, J W; Bakker, D J; Bouma, A; Koops, W

    1990-12-01

    P-type dyslexic, L-type dyslexic, and normal reading boys, and their parents were administered a number of cognitive tasks. The P- and L-type dyslexic boys showed impaired performances on tasks representing a verbal/memory dimension. In addition, L-type dyslexics performed worse on a figure-rotation task, a result that supported the notion of a visuospatial deficit in this type of reading disturbance. The parents of P- and L-type dyslexics exhibited lowered performances on verbal/memory tasks, but they showed no evidence of impaired visuospatial functioning. Indices of familial resemblance revealed differential familial resemblances in the three types of families. In the families of P-type dyslexics, a high father-son effect was found for the visuospatial dimension. In the families of L-type dyslexics, moderately high single-parent/child effects were found for both fathers and mothers and for both the verbal/memory dimension and the visuospatial dimension. In the families of normal readers, only small single-parent/child effects were found. PMID:2286650

  9. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices.

    PubMed

    Zheng, T C; Lin, W; Liu, R; Cai, D J; Li, J C; Li, S P; Kang, J Y

    2016-01-01

    A novel multidimensional Mg-doped superlattice (SL) is proposed to enhance vertical hole conductivity in conventional Mg-doped AlGaN SL which generally suffers from large potential barrier for holes. Electronic structure calculations within the first-principle theoretical framework indicate that the densities of states (DOS) of the valence band nearby the Fermi level are more delocalized along the c-axis than that in conventional SL, and the potential barrier significantly decreases. Hole concentration is greatly enhanced in the barrier of multidimensional SL. Detailed comparisons of partial charges and decomposed DOS reveal that the improvement of vertical conductance may be ascribed to the stronger pz hybridization between Mg and N. Based on the theoretical analysis, highly conductive p-type multidimensional Al0.63Ga0.37N/Al0.51Ga0.49N SLs are grown with identified steps via metalorganic vapor-phase epitaxy. The hole concentration reaches up to 3.5 × 10(18) cm(-3), while the corresponding resistivity reduces to 0.7 Ω cm at room temperature, which is tens times improvement in conductivity compared with that of conventional SLs. High hole concentration can be maintained even at 100 K. High p-type conductivity in Al-rich structural material is an important step for the future design of superior AlGaN-based deep ultraviolet devices. PMID:26906334

  10. Enhancement of p-type doping of ZnSe using a modified (N+Te){delta} -doping technique

    SciTech Connect

    Lin, W.; Guo, S. P.; Tamargo, M. C.; Kuskovsky, I.; Tian, C.; Neumark, G. F.

    2000-04-17

    Delta doping techniques have been investigated to enhance the p-type doping of ZnSe. Tellurium was used as a codopant for improving the nitrogen doping efficiency. The net acceptor concentration (N{sub A}-N{sub D}) increased to 1.5x10{sup 18} cm{sup -3} using single {delta} doping of N and Te (N+Te), while it was limited to 8x10{sup 17} cm{sup -3} by {delta} doping of N alone. A promising approach was developed in which three consecutive {delta}-doped layers of N+Te were deposited for each {delta}-doping cycle. An enhancement in the (N{sub A}-N{sub D}) level to 6x10{sup 18} cm{sup -3} has been achieved in ZnSe using this technique. The resultant layer has an average ZnTe content of only about 3%. This doping method shows potential for obtaining highly p-type doped ohmic contact layers without introducing significant lattice mismatch to ZnSe. Low-temperature photoluminescence spectra reveal some Te-related emissions. (c) 2000 American Institute of Physics.

  11. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices

    NASA Astrophysics Data System (ADS)

    Zheng, T. C.; Lin, W.; Liu, R.; Cai, D. J.; Li, J. C.; Li, S. P.; Kang, J. Y.

    2016-02-01

    A novel multidimensional Mg-doped superlattice (SL) is proposed to enhance vertical hole conductivity in conventional Mg-doped AlGaN SL which generally suffers from large potential barrier for holes. Electronic structure calculations within the first-principle theoretical framework indicate that the densities of states (DOS) of the valence band nearby the Fermi level are more delocalized along the c-axis than that in conventional SL, and the potential barrier significantly decreases. Hole concentration is greatly enhanced in the barrier of multidimensional SL. Detailed comparisons of partial charges and decomposed DOS reveal that the improvement of vertical conductance may be ascribed to the stronger pz hybridization between Mg and N. Based on the theoretical analysis, highly conductive p-type multidimensional Al0.63Ga0.37N/Al0.51Ga0.49N SLs are grown with identified steps via metalorganic vapor-phase epitaxy. The hole concentration reaches up to 3.5 × 1018 cm-3, while the corresponding resistivity reduces to 0.7 Ω cm at room temperature, which is tens times improvement in conductivity compared with that of conventional SLs. High hole concentration can be maintained even at 100 K. High p-type conductivity in Al-rich structural material is an important step for the future design of superior AlGaN-based deep ultraviolet devices.

  12. Analysis of Photoluminescence Thermal Quenching: Guidance for the Design of Highly Effective p-type Doping of Nitrides.

    PubMed

    Liu, Zhiqiang; Huang, Yang; Yi, Xiaoyan; Fu, Binglei; Yuan, Guodong; Wang, Junxi; Li, Jinmin; Zhang, Yong

    2016-01-01

    A contact-free diagnostic technique for examining position of the impurity energy level of p-type dopants in nitride semiconductors was proposed based on photoluminescence thermal quenching. The Mg ionization energy was extracted by the phenomenological rate-equation model we developed. The diagnostic technique and analysis model reported here are priorities for the design of highly effective p-doping of nitrides and could also be used to explain the abnormal and seldom analyzed low characteristic temperature T0 (about 100 K) of thermal quenching in p-type nitrides systems. An In-Mg co-doped GaN system is given as an example to prove the validity of our methods. Furthermore, a hole concentration as high as 1.94 × 10(18) cm(-3) was achieved through In-Mg co-doping, which is nearly one order of magnitude higher than typically obtained in our lab. PMID:27550805

  13. Structural studies of P-type ATPase-ligand complexes using an X-ray free-electron laser.

    PubMed

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D; Markvardsen, Anders J; Gutmann, Matthias J; Barends, Thomas R M; Mattle, Daniel; Shoeman, Robert L; Doak, R Bruce; Boutet, Sébastien; Messerschmidt, Marc; Seibert, Marvin M; Williams, Garth J; Foucar, Lutz; Reinhard, Linda; Sitsel, Oleg; Gregersen, Jonas L; Clausen, Johannes D; Boesen, Thomas; Gotfryd, Kamil; Wang, Kai-Tuo; Olesen, Claus; Møller, Jesper V; Nissen, Poul; Schlichting, Ilme

    2015-07-01

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport of e.g. ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein-ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins. PMID:26175901

  14. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy

    SciTech Connect

    Xiu, F.X.; Yang, Z.; Mandalapu, L.J.; Zhao, D.T.; Liu, J.L.; Beyermann, W.P.

    2005-10-10

    Reproducible Sb-doped p-type ZnO films were grown on n-Si (100) by electron-cyclotron-resonance-assisted molecular-beam epitaxy. The existence of Sb in ZnO:Sb films was confirmed by low-temperature photoluminescence measurements. An acceptor-bound exciton (A deg. X) emission was observed at 3.358 eV at 8 K. The acceptor energy level of the Sb dopant is estimated to be 0.2 eV above the valence band. Temperature-dependent Hall measurements were performed on Sb-doped ZnO films. At room temperature, one Sb-doped ZnO sample exhibited a low resistivity of 0.2 {omega} cm, high hole concentration of 1.7x10{sup 18} cm{sup -3} and high mobility of 20.0 cm{sup 2}/V s. This study suggests that Sb is an excellent dopant for reliable and reproducible p-type ZnO fabrication.

  15. Comparative studies on p-type CuI grown on glass and copper substrate by SILAR method

    NASA Astrophysics Data System (ADS)

    Dhere, Sunetra L.; Latthe, Sanjay S.; Kappenstein, Charles; Mukherjee, S. K.; Rao, A. Venkateswara

    2010-04-01

    Depending upon the method of synthesis and the nature of substrate surface, there is variation in the physico-chemical properties of the material. Cuprous iodide films are deposited at room temperature on the glass and copper substrates by a simple SILAR method and the obtained results are compared. The p-type material with optical band gap 2.88 eV is found to be possessing face-centered cubic crystal structure with lattice parameter 6.134 Å. We observed irregular particles for the CuI film on the glass substrate while patterned arrays of micro-rods with cabbage like tips on copper substrate, for the same preparative conditions. Also, the material deposited on copper is showing superhydrophobic nature (contact angle ˜156°) while that on glass it is hydrophilic (contact angle ˜88°). We have characterized the thin films by X-ray diffraction, scanning electron microscopy, surface roughness and contact angle measurement, thermoelectric power measurement and optical studies. This hydrophobic, p-type material with wide band gap will be helpful in the development of optoelectronic devices.

  16. Binary Oxide p-n Heterojunction Piezoelectric Nanogenerators with an Electrochemically Deposited High p-Type Cu2O Layer.

    PubMed

    Baek, Seung Ki; Kwak, Sung Soo; Kim, Joo Sung; Kim, Sang Woo; Cho, Hyung Koun

    2016-08-31

    The high performance of ZnO-based piezoelectric nanogenerators (NGs) has been limited due to the potential screening from intrinsic electron carriers in ZnO. We have demonstrated a novel approach to greatly improve piezoelectric power generation by electrodepositing a high-quality p-type Cu2O layer between the piezoelectric semiconducting film and the metal electrode. The p-n heterojunction using only oxides suppresses the screening effect by forming an intrinsic depletion region, and thus sufficiently enhances the piezoelectric potential, compared to the pristine ZnO piezoelectric NG. Interestingly, a Sb-doped Cu2O layer has high mobility and low surface trap states. Thus, this doped layer is an attractive p-type material to significantly improve piezoelectric performance. Our results revealed that p-n junction NGs consisting of Au/ZnO/Cu2O/indium tin oxide with a Cu2O:Sb (cuprous oxide with a small amount of antimony) layer of sufficient thickness (3 μm) exhibit an extraordinarily high piezoelectric potential of 0.9 V and a maximum output current density of 3.1 μA/cm(2). PMID:27547841

  17. Electronic Transport and Thermoelectric Properties of p-Type Nd z Fe4- x Co x Sb12 Skutterudites

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Kil; Kim, Il-Ho

    2016-03-01

    p-Type Nd z Fe4- x Co x Sb12 ( z = 0.8, 0.9, 1.0 and x = 0, 0.5, 1.0) skutterudites were synthesized by encapsulated melting and annealing, and consolidated with hot pressing. The effects of Nd filling and Co substitution for Fe (charge compensation) on the electronic transport and the thermoelectric properties of the skutterudites were examined. A few secondary phases such as Sb and FeSb2 were formed together with the skutterudite phase, but the formation was suppressed with increasing Nd and Co contents. It was confirmed that Nd was filled in the void and Co was substituted for Fe in all specimens, because the lattice constant increased with increasing Nd content and decreased with increasing Co content. The electrical conductivity of all specimens decreased slightly with increasing temperature, showing degenerate semiconductor characteristics. The Hall and the Seebeck coefficients showed positive signs, indicating that the major carriers were holes ( p-type conduction). The Seebeck coefficients were increased due to the decrease in the carrier concentration with increasing Nd and Co contents, while the electrical conductivity and the thermal conductivity were decreased. As a result, the dimensionless figure-of-merit, ZT, was improved by Nd filling and Co substitution, and a maximum ZT = 0.91 was obtained at 723 K for Nd0.9Fe3.5Co0.5Sb12.

  18. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    PubMed Central

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; Markvardsen, Anders J.; Gutmann, Matthias J.; Barends, Thomas R. M.; Mattle, Daniel; Shoeman, Robert L.; Doak, R. Bruce; Boutet, Sébastien; Messerschmidt, Marc; Seibert, Marvin M.; Williams, Garth J.; Foucar, Lutz; Reinhard, Linda; Sitsel, Oleg; Gregersen, Jonas L.; Clausen, Johannes D.; Boesen, Thomas; Gotfryd, Kamil; Wang, Kai-Tuo; Olesen, Claus; Møller, Jesper V.; Nissen, Poul; Schlichting, Ilme

    2015-01-01

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport of e.g. ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins. PMID:26175901

  19. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    SciTech Connect

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; Markvardsen, Anders J.; Gutmann, Matthias J.; Barends, Thomas R. M.; Mattle, Daniel; Shoeman, Robert L.; Doak, R. Bruce; Boutet, Sébastien; Messerschmidt, Marc; Seibert, Marvin M.; Williams, Garth J.; Foucar, Lutz; Reinhard, Linda; Sitsel, Oleg; Gregersen, Jonas L.; Clausen, Johannes D.; Boesen, Thomas; Gotfryd, Kamil; Wang, Kai-Tuo; Olesen, Claus; Møller, Jesper V.; Nissen, Poul; Schlichting, Ilme

    2015-06-11

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.

  20. Enhanced p-type dopability of P and As in CdTe using non-equilibrium thermal processing

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Burst, James; Metzger, Wyatt K.; Gessert, Tim; Barnes, Teresa; Wei, Su-Huai

    2015-07-01

    One of the main limiting factors in CdTe solar cells is its low p-type dopability and, consequently, low open-circuit voltage (VOC). We have systematically studied P and As doping in CdTe with first-principles calculations in order to understand how to increase the hole density. We find that both P and As p-type doping are self-compensated by the formation of AX centers. More importantly, we find that although high-temperature growth is beneficial to obtain high hole density, rapid cooling is necessary to sustain the hole density and to lower the Fermi level close to the valence band maximum (VBM) at room temperature. Thermodynamic simulations suggest that by cooling CdTe from a high growth temperature to room temperature under Te-poor conditions and choosing an optimal dopant concentration of about 1018/cm3 , P and As doping can reach a hole density above 1017/cm3 at room temperature and lower the Fermi level to within ˜0.1 eV above the VBM. These results suggest a promising pathway to improve the VOC and efficiency of CdTe solar cells.