Science.gov

Sample records for initio structure determination

  1. Ab initio structure determination of n-diamond.

    PubMed

    Li, Da; Tian, Fubo; Chu, Binhua; Duan, Defang; Sha, Xiaojing; Lv, Yunzhou; Zhang, Huadi; Lu, Nan; Liu, Bingbing; Cui, Tian

    2015-01-01

    A systematic computational study on the crystal structure of n-diamond has been performed using first-principle methods. A novel carbon allotrope with hexagonal symmetry R32 space group has been predicted. We name it as HR-carbon. HR-carbon composed of lonsdaleite layers and unique C3 isosceles triangle rings, is stable over graphite phase above 14.2 GPa. The simulated x-ray diffraction pattern, Raman, and energy-loss near-edge spectrum can match the experimental results very well, indicating that HR-carbon is a likely candidate structure for n-diamond. HR-carbon has an incompressible atomic arrangement because of unique C3 isosceles triangle rings. The hardness and bulk modulus of HR-carbon are calculated to be 80 GPa and 427 GPa, respectively, which are comparable to those of diamond. C3 isosceles triangle rings are very important for the stability and hardness of HR-carbon. PMID:26299905

  2. Ab initio structure determination of n-diamond

    PubMed Central

    Li, Da; Tian, Fubo; Chu, Binhua; Duan, Defang; Sha, Xiaojing; Lv, Yunzhou; Zhang, Huadi; Lu, Nan; Liu, Bingbing; Cui, Tian

    2015-01-01

    A systematic computational study on the crystal structure of n-diamond has been performed using first-principle methods. A novel carbon allotrope with hexagonal symmetry R32 space group has been predicted. We name it as HR-carbon. HR-carbon composed of lonsdaleite layers and unique C3 isosceles triangle rings, is stable over graphite phase above 14.2 GPa. The simulated x-ray diffraction pattern, Raman, and energy-loss near-edge spectrum can match the experimental results very well, indicating that HR-carbon is a likely candidate structure for n-diamond. HR-carbon has an incompressible atomic arrangement because of unique C3 isosceles triangle rings. The hardness and bulk modulus of HR-carbon are calculated to be 80 GPa and 427 GPa, respectively, which are comparable to those of diamond. C3 isosceles triangle rings are very important for the stability and hardness of HR-carbon. PMID:26299905

  3. Ab initio Structure Determination of Mg10Ir19B16

    SciTech Connect

    Xu, Qiang; Klimczuk, T.; Gortenmulder, T.; Jansen, J.; McGuire, Michael A; Cava, R. J.; Zandbergen, H

    2009-01-01

    The ab initio structure determination of a novel unconventional noncentro-symmetric superconductor Mg{sub 10}Ir{sub 19}B{sub 16} (T{sub c} = 5 K) has been performed using a method that involves a combination of experimental data and calculations. Electron diffraction, X-ray powder diffraction, phase estimation routines, quantum mechanical calculations, high-resolution electron microscopy, and structural chemistry arguments are used. With the strengths of different methods used to eliminate the ambiguities encountered in others, the complete structure, including a very light B atom, has been determined with a high accuracy from impure polycrystalline powder samples, which suggests that the type of analysis described may be used to successfully address other similar intractable problems. The solved structure of Mg{sub 10}Ir{sub 19}B{sub 16} shows a complex nature that irregular coordination environments preclude a conversional description of compact packing of coordination polyhedra; however, it can be easier understood as ordered in an onion-skin-like series of nested polyhedra.

  4. Electronic structure of ScN determined using optical spectroscopy, photoemission, and ab initio calculations

    SciTech Connect

    Gall, D.; Sta''dele, M.; Ja''rrendahl, K.; Petrov, I.; Desjardins, P.; Haasch, R. T.; Lee, T.-Y.; Greene, J. E.

    2001-03-15

    Experimental and ab initio computational methods are employed to conclusively show that ScN is a semiconductor rather than a semimetal; i.e., there is a gap between the N 2p and the Sc 3d bands. Previous experimental investigators reported, in agreement with band structure calculations showing a band overlap of 0.2 eV, that ScN is a semimetal while others concluded that it is a semiconductor with a band gap larger than 2 eV. We have grown high quality, single crystalline ScN layers on MgO(001) and on TiN(001) buffer layers on MgO(001) by ultrahigh vacuum reactive magnetron sputter deposition. ScN optical properties were determined by transmission, reflection, and spectroscopic ellipsometry while in-situ x-ray and ultraviolet valence band photoelectron spectroscopy were used to determine the density of states (DOS) below the Fermi level. The measured DOS exhibits peaks at 3.8 and 5.2 eV stemming from the N 2p bands and at 15.3 eV due to the N 2s bands. The imaginary part of the measured dielectric function {epsilon}{sub 2} consists of two primary features due to direct X- and {Gamma}-point transitions at photon energies of 2.7 and 3.8 eV, respectively. For comparison, the ScN band structure was calculated using an ab initio Kohn--Sham approach which treats the exchange interactions exactly within density-functional theory. Calculated DOS and the complex dielectric function are in good agreement with our ScN valence-band photoelectron spectra and measured optical properties, respectively. We conclude, combining experimental and computational results, that ScN is a semiconductor with an indirect {Gamma}--X bandgap of 1.3{+-}0.3eV and a direct X-point gap of 2.4{+-}0.3eV.

  5. Ab initio phasing by molecular averaging in real space with new criteria: application to structure determination of a betanodavirus

    PubMed Central

    Yoshimura, Masato; Chen, Nai-Chi; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Lin, Chien-Chih; Nakagawa, Atsushi; Chen, Chun-Jung

    2016-01-01

    Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures. PMID:27377380

  6. Ab initio phasing by molecular averaging in real space with new criteria: application to structure determination of a betanodavirus.

    PubMed

    Yoshimura, Masato; Chen, Nai Chi; Guan, Hong Hsiang; Chuankhayan, Phimonphan; Lin, Chien Chih; Nakagawa, Atsushi; Chen, Chun Jung

    2016-07-01

    Molecular averaging, including noncrystallographic symmetry (NCS) averaging, is a powerful method for ab initio phase determination and phase improvement. Applications of the cross-crystal averaging (CCA) method have been shown to be effective for phase improvement after initial phasing by molecular replacement, isomorphous replacement, anomalous dispersion or combinations of these methods. Here, a two-step process for phase determination in the X-ray structural analysis of a new coat protein from a betanodavirus, Grouper nervous necrosis virus, is described in detail. The first step is ab initio structure determination of the T = 3 icosahedral virus-like particle using NCS averaging (NCSA). The second step involves structure determination of the protrusion domain of the viral molecule using cross-crystal averaging. In this method, molecular averaging and solvent flattening constrain the electron density in real space. To quantify these constraints, a new, simple and general indicator, free fraction (ff), is introduced, where ff is defined as the ratio of the volume of the electron density that is freely changed to the total volume of the crystal unit cell. This indicator is useful and effective to evaluate the strengths of both NCSA and CCA. Under the condition that a mask (envelope) covers the target molecule well, an ff value of less than 0.1, as a new rule of thumb, gives sufficient phasing power for the successful construction of new structures. PMID:27377380

  7. One-Electron Reduction of Substituted Chlorinated Methanes as Determined from Ab Initio Electronic Structure Theory

    SciTech Connect

    Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.; Tratnyek, Paul G.

    2002-12-17

    Substituted chloromethyl radicals and anions are potential intermediates in the reduction of substituted chlorinated methanes (CHxCl3-xL, with L- ) F-, OH-, SH-, NO3 -, HCO3 - and (x 0-3). Thermochemical properties, Hf (298.15 K), S(298.15 K,1 bar), and GS(298.15 K, 1 bar), were calculated by using ab initio electronic structure methods for the substituted chloromethyl radicals and anions: CHyCl2-yL and CHyCl2-yL-, for y 0-2. In addition, thermochemical properties were calculated for the aldehyde, ClHCO, and the gemchlorohydrin anions, CCl3O-, CHCl2O-, and CH2ClO-. The thermochemical properties of these additional compounds were calculated because the nitrate-substituted compounds, CHyCl2-y(NO3) and CHyCl2-y(NO3)-,

  8. Ab initio structure determination of novel borate NaSrBO{sub 3}

    SciTech Connect

    Wu, L. . E-mail: lwu@nankai.edu.cn; Chen, X.L. . E-mail: xlchen@aphy.iphy.ac.cn; Zhang, Y.; Kong, Y.F.; Xu, J.J.; Xu, Y.P.

    2006-04-15

    A novel orthoborate, NaSrBO{sub 3}, has been successfully synthesized by standard solid-state reaction, and the crystal structure has been determined from powder X-ray diffraction data. It crystallizes in the monoclinic space group P2{sub 1}/c with lattice parameters: a=5.32446(7)A, b=9.2684(1)A, c=6.06683(8)A, {beta}=100.589(1){sup o}. The fundamental building units are isolated BO{sub 3} groups, which are parallelly distributed along two different directions. Because of the anisotropic polarizations of planar BO{sub 3} groups, a considerable birefringence can be expected in it. The Na atoms are six-coordinated with O atoms to form octahedra, and the Sr atoms are nine-coordinated, forming tri-capped trigonal prisms. Those polyhedra connect with each other by bridging-oxygen atoms, forming infinite three-dimensional network, which indicates that the cleaving problem is expected to be overcome during the course of single-crystal growth. The infrared spectrum has been measured, and the result is consistent with the crystallographic study. Moreover, a comparison of the new structure type with the other known orthoborates is presented here.

  9. Structural determination of the Bi(110) semimetal surface by LEED analysis and ab initio calculations

    SciTech Connect

    Sun, J.; Pohl, K.; Mikkelsen, A.; Fuglsang Jensen, M.; Hofmann, Ph.; Koroteev, Y. M.; Bihlmayer, G.; Chulkov, E. V.

    2006-12-15

    The surface structure of Bi(110) has been investigated by low-energy electron diffraction intensity analysis and by first-principles calculations. Diffraction patterns at a sample temperature of 110 K and normal incidence reveal a bulk truncated (1x1) surface without indication of any structural reconstruction despite the presence of dangling bonds on the surface layer. Good agreement is obtained between the calculated and measured diffraction intensities for this surface containing only one mirror-plane symmetry element and a buckled bilayer structure. No significant interlayer spacing relaxations are found. The Debye temperature for the surface layer is found to be lower than in the bulk, which is indicative of larger atomic vibrational amplitudes at the surface. Meanwhile, the second layer shows a Debye temperature close to the bulk value. The experimental results for the relaxations agree well with those of our first-principles calculation.

  10. Ab initio nuclear structure theory

    NASA Astrophysics Data System (ADS)

    Negoita, Gianina Alina

    Ab initio no core methods have become major tools for understanding the properties of light nuclei based on realistic nucleon-nucleon (NN) and three-nucleon (NNN) interactions. A brief description is provided for the inter-nucleon interactions that fit two-body scattering and bound state data, as well as NNN interactions. Major new progress, including the goal of applying these interactions to solve for properties of nuclei, is limited by convergence issues. That is, with the goal of obtaining high precision solutions of the nuclear many-body Hamiltonian with no core methods (all nucleons treated on the same footing), one needs to proceed to very large basis spaces to achieve a convergence pattern suitable for extrapolation to the exact result. This thesis investigates (1) the similarity renormalization group (SRG) approach to soften the interaction, while preserving its phase shift properties, and (2) adoption of a realistic basis space using Woods-Saxon (WS) single-particle wavefunctions. Both have their advantages and limitations, discussed here. For (1), SRG was demonstrated by applying it to a realistic NN interaction, JISP16, in a harmonic oscillator (HO) representation. The degree of interaction softening achieved through a regulator parameter is examined. For (2), new results are obtained with the realistic JISP16 NN interaction in ab initio calculations of light nuclei 4He, 6He and 12C, using a WS basis optimized to minimize the ground-state energy within the truncated no core shell model. These are numerically-intensive many-body calculations. Finally, to gain insight into the potential for no core investigations of heavier nuclei, an initial investigation was obtained for the odd mass A = 47 - 49 region nuclei straddling 48Ca. The motivation for selecting these nuclei stems from the aim of preparing for nuclear double beta-decay studies of 48Ca. In these heavier systems, phenomenological additions to the realistic NN interaction determined by previous

  11. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector

    PubMed Central

    van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.

    2016-01-01

    Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375

  12. Development of Novel Analytical Method for Ab Initio Powder Structural Analysis

    NASA Astrophysics Data System (ADS)

    Sakata, Makoto; Nishibori, Eiji; Sawa, Hiroshi

    Genetic Algorithm (GA) applied to ab initio structure determination from synchrotron powder diffraction is described. It seems to have an advantage over other real space methods for ab initio structure determination because of the existence of schema theorem. As an example, the case of Prednisolone Succinate is shown in some detail. Future development of GA in crystallography is briefly described.

  13. Structural and electronic properties of AlN(0001) surface under partial N coverage as determined by ab initio approach

    NASA Astrophysics Data System (ADS)

    Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel; Krukowski, Stanislaw

    2015-09-01

    Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi level is not pinned at the critical value of nitrogen coverage θN(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Npz state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N2 molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.

  14. Structural and electronic properties of AlN(0001) surface under partial N coverage as determined by ab initio approach

    SciTech Connect

    Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel

    2015-09-07

    Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi level is not pinned at the critical value of nitrogen coverage θ{sub N}(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Np{sub z} state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N{sub 2} molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.

  15. Ab initio determination of light hadron masses.

    PubMed

    Dürr, S; Fodor, Z; Frison, J; Hoelbling, C; Hoffmann, R; Katz, S D; Krieg, S; Kurth, T; Lellouch, L; Lippert, T; Szabo, K K; Vulvert, G

    2008-11-21

    More than 99% of the mass of the visible universe is made up of protons and neutrons. Both particles are much heavier than their quark and gluon constituents, and the Standard Model of particle physics should explain this difference. We present a full ab initio calculation of the masses of protons, neutrons, and other light hadrons, using lattice quantum chromodynamics. Pion masses down to 190 mega-electron volts are used to extrapolate to the physical point, with lattice sizes of approximately four times the inverse pion mass. Three lattice spacings are used for a continuum extrapolation. Our results completely agree with experimental observations and represent a quantitative confirmation of this aspect of the Standard Model with fully controlled uncertainties. PMID:19023076

  16. Characterization and ab initio XRPD structure determination of a novel silicate with Vierer single chains: the crystal structure of NaYSi2O6.

    PubMed

    Többens, Daniel M; Kahlenberg, Volker; Kaindl, Reinhard

    2005-12-12

    The crystal structure of a sodium yttrium silicate with composition NaYSi2O6 has been determined from laboratory X-ray powder diffraction data by simulated annealing, and has been subsequently refined with the Rietveld technique. The compound is monoclinic with space group P2(1)/c and unit cell parameters of a=5.40787(2) A, b=13.69784(5) A, c=7.58431(3) A, and beta=109.9140(3) degrees at 23.5 degrees C (Z=4). The structure was found to be a single-chain silicate with a chain periodicity of four. The two symmetry dependent [Si4O12] chains in the unit cell are parallel to c. A prominent feature is the strong folding of the crankshaft-like chains within the b,c-plane resulting in intrachain Si-Si-Si angles close to 90 degrees. The coordination of the Y3+ ions by O2- is 7-fold in the form of slightly irregular pentagonal bipyramids, with oxygen atoms from four different chains contributing to the coordination polyhedron. Na+ ions are irregularly coordinated by 10 oxygens from two neighboring chains. No disorder of Na+ and Y3+ between the two nontetrahedral cation sites could be observed. Furthermore, micro-Raman spectra have been obtained from the polycrystalline material. PMID:16323944

  17. Ab Initio Structure Analysis Using Laboratory Powder Diffraction Data

    NASA Astrophysics Data System (ADS)

    Sasaki, Akito

    Today, laboratory X-ray diffractometers are seeing increasingly wide use in the ab initio crystal structure analysis of organic powder samples. This is because optics and optical devices have been improved, making it possible to obtain precise integrated intensities of reflections in high 2-theta ranges. Another reason is that one can use direct-space methods, which do not require “high-resolution diffraction data”, much more easily than before. Described here are some key points to remember when performig ab initio crystal structure analysis using powder diffraction data from organic compounds.

  18. Theoretical determination of molecular structure and conformation. Part X. Geometry and puckering potential of azetidine, (CH 2) 3NH, combination of electron diffraction and ab initio studies

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Dorofeeva, Olga V.; Mastryukov, Vladimir S.

    1981-09-01

    Restricted Hartree—Fock calculations on 21 planar and puckered conformers of azetidine have been done employing a split valence basis augmented by d functions. Complete geometry optimizations have been performed for eight conformers. In this way the puckering potential of azetidine is explored over the range -40° < ø (puckering angle) < 40°, for both sp3 and sp2 hybridization of the nitrogen atom. In its equatorial form, azetidine is slightly more puckered than cyclobutane. This is because of a decrease of van der Waals' repulsion between H atoms. Charge effects lead to destabilization of the axial forms. There is only moderate coupling between puckering and methylene group rocking. Previously published electron diffraction (ED) data are reinvestigated using vibrational corrections and information from the ab initio calculations. On the basis of this MO constrained ED (MOCED) analysis a puckering angle φ = 35.1(1.8)° is found. Observed rg and re bond distances are compared with ab initio values.

  19. New Light on Disordered Ensembles: Ab Initio Structure Determination of One Particle from Scattering Fluctuations of One Particular from Scattering Fluctuatins of Many Copies

    SciTech Connect

    D Saldin; H Poon; M Bogan; S Marchesini; D Sahpiro; R Kirian; U Weierstall; J Spence

    2011-12-31

    We report on the first experimental ab initio reconstruction of an image of a single particle from fluctuations in the scattering from an ensemble of copies, randomly oriented about an axis. The method is applicable to identical particles frozen in space or time (as by snapshot diffraction from an x-ray free electron laser). These fluctuations enhance information obtainable from an experiment such as conventional small angle x-ray scattering.

  20. Account of helical and rotational symmetries in the linear augmented cylindrical wave method for calculating the electronic structure of nanotubes: Towards the ab initio determination of the band structure of a (100, 99) tubule

    NASA Astrophysics Data System (ADS)

    D'Yachkov, P. N.; Makaev, D. V.

    2007-11-01

    Every carbon single-walled nanotube (SWNT) can be generated by first mapping only two nearest-neighbor C atoms onto a surface of a cylinder and then using the rotational and helical symmetry operators to determine the remainder of the tubule [C. T. White , Phys. Rev. B 47, 5485 (1993)]. With account of these symmetries, we developed a symmetry-adapted version of a linear augmented cylindrical wave method. In this case, the cells contain only two carbon atoms, and the ab initio theory becomes applicable to any SWNT independent of the number of atoms in a translational unit cell. The approximations are made in the sense of muffin-tin (MT) potentials and local-density-functional theory only. An electronic potential is suggested to be spherically symmetrical in the regions of atoms and constant in an interspherical region up to the two essentially impenetrable cylinder-shaped potential barriers. To construct the basis wave functions, the solutions of the Schrödinger equation for the interspherical and MT regions of the tubule were sewn together using a theorem of addition for cylindrical functions, the resulting basis functions being continuous and differentiable anywhere in the system. With account of analytical equations for these functions, the overlap and Hamiltonian integrals are calculated, which permits determination of electronic structure of nanotube. We have calculated the total band structures and densities of states of the chiral and achiral, semiconducting, semimetallic, and metallic carbon SWNTs (13, 0), (12, 2), (11, 3), (10, 5), (9, 6), (8, 7), (7, 7), (12, 4), and (100, 99) containing up to the 118 804 atoms per translational unit cell. Even for the (100, 99) system with huge unit cell, the band structure can be easily calculated and the results can be presented in the standard form of four curves for the valence band plus one curve for the low-energy states of conduction band. About 150 functions produce convergence of the band structures better then

  1. Ab initio molecular crystal structures, spectra, and phase diagrams.

    PubMed

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  2. Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination

    SciTech Connect

    Chen, Chung-De; Huang, Yen-Chieh; Chiang, Hsin-Lin; Hsieh, Yin-Cheng; Guan, Hong-Hsiang; Chuankhayan, Phimonphan; Chen, Chun-Jung

    2014-09-01

    A novel direct phase-selection method to select optimized phases from the ambiguous phases of a subset of reflections to replace the corresponding initial SAD phases has been developed. With the improved phases, the completeness of built residues of protein molecules is enhanced for efficient structure determination. Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (ϕ{sub 1} and ϕ{sub 2}) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θ{sub DS} list as a criterion to select optimized phases ϕ{sub am} from ϕ{sub 1} or ϕ{sub 2} of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases ϕ{sub SAD} has been developed. Based on this work, reflections with an angle θ{sub DS} in the range 35–145° are selected for an optimized improvement, where θ{sub DS} is the angle between the initial phase ϕ{sub SAD} and a preliminary density-modification (DM) phase ϕ{sub DM}{sup NHL}. The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.

  3. Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano

    2015-03-01

    Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.

  4. Ab initio modelling: Genesis of crystal structures

    NASA Astrophysics Data System (ADS)

    van de Walle, Axel

    2005-05-01

    Genetic algorithms prove useful to distil a complex quantum mechanical calculation of interatomic interactions down to its simplest mathematical expression. This makes it possible to predict the structure of new compounds from first principles.

  5. Rotation spectrum and high resolution infrared spectra of the fundamental bands of 121SbD 3. Determination of the ground state and equilibrium structures. Ab initio calculations of the spectroscopic parameters

    NASA Astrophysics Data System (ADS)

    Canè, E.; Di Lonardo, G.; Fusina, L.; Jerzembeck, W.; Bürger, H.; Breidung, J.; Thiel, W.

    2006-01-01

    The high resolution infrared spectrum of 121SbD 3, recorded between 20 and 350 cm -1 and in the regions of bending and stretching fundamental bands, centred at 600 and 1350 cm -1, has been analysed. Splittings of the K″=3, 6 lines have been observed both in the rotation and ro-vibration spectra. A large number of 'perturbation allowed' transitions with selection rules Δ(k-ℓ)=±3, ±6 and ±9 have been identified in all fundamental bands. Accurate ground state molecular parameters have been determined fitting simultaneously the rotational transitions and about 9000 ground state combination differences obtained from lines assigned in the ro-vibrational spectra. The A and B reductions of the rotational Hamiltonian have been applied in the analysis of the ground state. They provided almost equivalent results. The molecular parameters of the 1 1, 2 1, 3 1 and 4 1 states have been obtained from the simultaneous analysis of the ν1 ( A1)/ ν3 ( E) stretching and of the ν2 ( A1)/ ν4 ( E) bending dyads. In fact, the corresponding excited states are affected by strong perturbations due to Coriolis and k-type rovibrational interactions that have been treated explicitly in the model adopted for the analysis. Improved effective ground state and equilibrium geometries have been determined and compared to those of 121SbH 3 and of 123SbD 3. Ab initio calculations at the coupled cluster CCSD(T) level with an energy-consistent large-core pseudopotential and large basis sets have been carried out to determine the equilibrium structure, the anharmonic force field, and the associated spectroscopic constants of 121-stibine. The theoretical constants and structural parameters are in good agreement with the experimental data.

  6. Ab initio Hadron structure from lattice QCD

    SciTech Connect

    J.D. Bratt; R.G. Edwards; M. Engelhardt; G.T. Fleming; Ph. Hägler; B. Musch; J.W. Negele; K. Orginos; A.V. Pochinsky; D.B. Renner; D.G. Richards; W. Schroers

    2007-06-01

    Early scattering experiments revealed that the proton was not a point particle but a bound state of many quarks and gluons. Deep inelastic scattering (DIS) experiments have accurately determined the probability of struck quarks carrying a fraction of the proton's momentum. The current generation of experiments and Lattice QCD calculations will provide detailed multi-dimensional pictures of the distributions of quarks and gluons inside the proton.

  7. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    SciTech Connect

    Draayer, Jerry P.

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  8. Macromolecular ab initio phasing enforcing secondary and tertiary structure

    PubMed Central

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors’ approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a ‘still-life’, but some are correct enough for density modification and main-chain tracing to reveal the protein’s true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631

  9. Unified ab initio approaches to nuclear structure and reactions

    NASA Astrophysics Data System (ADS)

    Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo

    2016-05-01

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.

  10. Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones

    NASA Astrophysics Data System (ADS)

    Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng

    2004-04-01

    A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.

  11. Structure and lattice dynamics of PrFe3(BO3)4: Ab initio calculation

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.

    2016-06-01

    The crystal structure and phonon spectrum of PrFe3(BO3)4 are ab initio calculated in the context of the density functional theory. The ion coordinates in the unit cell of a crystal and the lattice parameters are evaluated from the calculations. The types and frequencies of the fundamental vibrations, as well as the line intensities of the IR spectrum, are determined. The elastic constants of the crystal are calculated. A "seed" frequency of the vibration strongly interacting with the electron excitation on the praseodymium ion is obtained for low-frequency A 2 mode. The calculated results are in agreement with the known experimental data.

  12. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    NASA Astrophysics Data System (ADS)

    Zheng, Haoping

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with precise calculations. Thus the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule has become a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), will be presented in this paper. The reactive sites of the inhibitors are determined and explained. The accuracy of structure determination of the inhibitors are tested theoretically.

  13. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    NASA Astrophysics Data System (ADS)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  14. Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects

    NASA Astrophysics Data System (ADS)

    Zarhri, Z.; Houmad, M.; Ziat, Y.; El Rhazouani, O.; Slassi, A.; Benyoussef, A.; El Kenz, A.

    2016-05-01

    Magnetic, electronic and structural properties of titanium dioxide material with different structural defects are studied using the first-principles ab-initio calculations and the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA) method in connection with the local density approximation (LDA). We investigated all structural defects in rutile TiO2 such as Titanium interstitial (Tii), Titanium anti-sites (Tio), Titanium vacancies (VTi), Oxygen interstitial (Oi), Oxygen anti-sites (OTi) and oxygen vacancies (Vo). Mechanisms of hybridization and interaction between magnetic atoms are investigated. The transition temperature is computed using the Mean Field Approximation (MFA).Magnetic stability energy of ferromagnetic and disordered local moment states is calculated to determine the most stable state. Titanium anti-sites have a half-metallic aspect. We also studied the change type caused by structural defects in this material.

  15. Ab initio simulations for the ion-ion structure factor of warm dense aluminum.

    PubMed

    Rüter, Hannes R; Redmer, Ronald

    2014-04-11

    We perform ab initio simulations based on finite-temperature density functional theory in order to determine the static and dynamic ion-ion structure factor in aluminum. We calculate the dynamic structure factor via the intermediate scattering function and extract the dispersion relation for the collective excitations. The results are compared with available experimental x-ray scattering data. Very good agreement is obtained for the liquid metal domain. In addition we perform simulations for warm dense aluminum in order to obtain the ion dynamics in this strongly correlated quantum regime. We determine the sound velocity for both liquid and warm dense aluminum which can be checked experimentally using narrow-bandwidth free electron laser radiation. PMID:24765982

  16. Structure and vibrational modes of AgI-doped AsSe glasses: Raman scattering and ab initio calculations

    SciTech Connect

    Kostadinova, O.; Chrissanthopoulos, A.; Petkova, T.; Petkov, P.; Yannopoulos, S.N.

    2011-02-15

    We report an investigation of the structure and vibrational modes of (AgI){sub x} (AsSe){sub 100-x}, bulk glasses using Raman spectroscopy and first principles calculations. The short- and medium-range structural order of the glasses was elucidated by analyzing the reduced Raman spectra, recorded at off-resonance conditions. Three distinct local environments were revealed for the AsSe glass including stoichiometric-like and As-rich network sub-structures, and cage-like molecules (As{sub 4}Se{sub n}, n=3, 4) decoupled from the network. To facilitate the interpretation of the Raman spectra ab initio calculations are employed to study the geometric and vibrational properties of As{sub 4}Se{sub n} molecular units that are parts of the glass structure. The incorporation of AgI causes appreciable structural changes into the glass structure. AgI is responsible for the population reduction of molecular units and for the degradation of the As-rich network-like sub-structure via the introduction of As-I terminal bonds. Ab initio calculations of mixed chalcohalide pyramids AsSe{sub m}I{sub 3-m} provided useful information augmenting the interpretation of the Raman spectra. -- Graphical abstract: Raman scattering and ab initio calculations are employed to study the structure of AgI-AsSe superionic glasses. The role of mixed chalcohalide pyramidal units as illustrated in the figure is elucidated. Display Omitted Research highlights: {yields} Doping binary As-Se glasses with AgI cause dramatic changes in glass structure. {yields} Raman scattering and ab initio calculations determine changes in short- and medium-range order. {yields} Three local environments exist in AsSe glass including a network sub-structure and cage-like molecules. {yields} Mixed chalcohalide pyramids AsSe{sub m}I{sub 3-m} dominate the AgI-doped glass structure.

  17. Ab initio approaches for the determination of heavy element energetics: Ionization energies of trivalent lanthanides (Ln = La-Eu)

    SciTech Connect

    Peterson, Charles; Penchoff, Deborah A.; Wilson, Angela K.

    2015-11-21

    An effective approach for the determination of lanthanide energetics, as demonstrated by application to the third ionization energy (in the gas phase) for the first half of the lanthanide series, has been developed. This approach uses a combination of highly correlated and fully relativistic ab initio methods to accurately describe the electronic structure of heavy elements. Both scalar and fully relativistic methods are used to achieve an approach that is both computationally feasible and accurate. The impact of basis set choice and the number of electrons included in the correlation space has also been examined.

  18. Ab initio electronic structure study for TTF-TCNQ under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Ishibashi, Shoji; Hashimoto, Tamotsu; Kohyama, Masanori; Terakura, Kiyoyuki

    2004-04-01

    We have investigated the electronic structure of TTF-TCNQ under uniaxial compression with ab initio plane-wave pseudopotential calculations within the local-density approximation and generalized gradient approximation. Depending on the compression direction, the constituent molecules are deformed in different ways. Along with these structural deformations, quasi-one-dimensional Fermi surfaces show dramatic changes in their shapes and sizes.

  19. An improved ab initio structure for fluorine peroxide (FOOF)

    NASA Astrophysics Data System (ADS)

    Mack, Hans-Georg; Oberhammer, Heinz

    1988-03-01

    Ab initio calculations with the 6-31G* and Dunning (9s5p/4s2p) basis sets augmented with p and d functions at various levels of theory (RHF, MP2, MP3, and MP4) were carried out on F 2O 2. The best result was obtained at the MP2 level with the Dunning basis plus one set of d functions on fluorine and two sets of d functions on oxygen. These calculations reproduce the experimental bond lengths to within 0.01 Å and the angles to within the experimental uncertainties.

  20. Ab Initio Protein Structure Assembly Using Continuous Structure Fragments and Optimized Knowledge-based Force Field

    PubMed Central

    Xu, Dong; Zhang, Yang

    2012-01-01

    Ab initio protein folding is one of the major unsolved problems in computational biology due to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 non-homologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score (TM-score) >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in 1/3 cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction (CASP9) experiment, QUARK server outperformed the second and third best servers by 18% and 47% based on the cumulative Z-score of global distance test-total (GDT-TS) scores in the free modeling (FM) category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress towards the solution of the most important problem in the field. PMID:22411565

  1. Far infrared spectra, conformational equilibria, vibrational assignments, ab initio calculations and structural parameters for 2-bromoethanol

    NASA Astrophysics Data System (ADS)

    Durig, J. R.; Shen, S.; Guirgis, G. A.

    2001-01-01

    The far infrared spectrum from 370 to 50 cm -1 of gaseous 2-bromoethanol, BrCH 2CH 2OH, was recorded at a resolution of 0.10 cm -1. The fundamental O-H torsion of the more stable gauche ( Gg') conformer, where the capital G refers to internal rotation around the C-C bond and the lower case g to the internal rotation around the C-O bond, was observed as a series of Q-branch transitions beginning at 340 cm -1. The corresponding O-H torsional modes were observed for two of the other high energy conformers, Tg (285 cm -1) and Tt (234 cm -1). The heavy atom asymmetric torsion (rotation around C-C bond) for the Gg' conformer has been observed at 140 cm -1. Variable temperature (-63 to -100°C) studies of the infrared spectra (4000-400 cm -1) of the sample dissolved in liquid xenon have been recorded. From these data the enthalpy differences have been determined to be 411±40 cm -1 (4.92±0.48 kJ/mol) for the Gg'/ Tt and 315±40 cm -1 (3.76±0.48 kJ/mol) for the Gg'/ Tg, with the Gg' conformer the most stable form. Additionally, the infrared spectrum of the gas, and Raman spectrum of the liquid phase are reported. The structural parameters, conformational stabilities, barriers to internal rotation and fundamental frequencies have been obtained from ab initio calculations utilizing different basis sets at the restricted Hartree-Fock or with full electron correlation by the perturbation method to second order. The theoretical results are compared to the experimental results when appropriate. Combining the ab initio calculations with the microwave rotational constants, r0 adjusted parameters have been obtained for the three 2-haloethanols (F, Cl and Br) for the Gg' conformers.

  2. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction

    PubMed Central

    Spencer, Matt; Eickholt, Jesse; Cheng, Jianlin

    2014-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80% and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test data set of 198 proteins, achieving a Q3 accuracy of 80.7% and a Sov accuracy of 74.2%. PMID:25750595

  3. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.

    PubMed

    Spencer, Matt; Eickholt, Jesse; Jianlin Cheng

    2015-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent. PMID:25750595

  4. Bhageerath-H: A homology/ab initio hybrid server for predicting tertiary structures of monomeric soluble proteins

    PubMed Central

    2014-01-01

    Background The advent of human genome sequencing project has led to a spurt in the number of protein sequences in the databanks. Success of structure based drug discovery severely hinges on the availability of structures. Despite significant progresses in the area of experimental protein structure determination, the sequence-structure gap is continually widening. Data driven homology based computational methods have proved successful in predicting tertiary structures for sequences sharing medium to high sequence similarities. With dwindling similarities of query sequences, advanced homology/ ab initio hybrid approaches are being explored to solve structure prediction problem. Here we describe Bhageerath-H, a homology/ ab initio hybrid software/server for predicting protein tertiary structures with advancing drug design attempts as one of the goals. Results Bhageerath-H web-server was validated on 75 CASP10 targets which showed TM-scores ≥0.5 in 91% of the cases and Cα RMSDs ≤5Å from the native in 58% of the targets, which is well above the CASP10 water mark. Comparison with some leading servers demonstrated the uniqueness of the hybrid methodology in effectively sampling conformational space, scoring best decoys and refining low resolution models to high and medium resolution. Conclusion Bhageerath-H methodology is web enabled for the scientific community as a freely accessible web server. The methodology is fielded in the on-going CASP11 experiment. PMID:25521245

  5. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering

    PubMed Central

    Franke, Daniel; Svergun, Dmitri I.

    2009-01-01

    DAMMIF, a revised implementation of the ab-initio shape-determination program DAMMIN for small-angle scattering data, is presented. The program was fully rewritten, and its algorithm was optimized for speed of execution and modified to avoid limitations due to the finite search volume. Symmetry and anisometry constraints can be imposed on the particle shape, similar to DAMMIN. In equivalent conditions, DAMMIF is 25–40 times faster than DAMMIN on a single CPU. The possibility to utilize multiple CPUs is added to DAMMIF. The application is available in binary form for major platforms.

  6. Structural and electronic properties of organo-halide hybrid perovskites from ab initio molecular dynamics.

    PubMed

    Quarti, Claudio; Mosconi, Edoardo; De Angelis, Filippo

    2015-04-14

    The last two years have seen the unprecedentedly rapid emergence of a new class of solar cells, based on hybrid organic-inorganic halide perovskites. The success of this class of materials is due to their outstanding photoelectrochemical properties coupled to their low cost, mainly solution-based, fabrication techniques. Solution processed materials are however often characterized by an inherent flexible structure, which is hardly mapped into a single local minimum energy structure. In this perspective, we report on the interplay between structural and electronic properties of hybrid lead iodide perovskites investigated using ab initio molecular dynamics (AIMD) simulations, which allow the dynamical simulation of disordered systems at finite temperature. We compare the prototypical MAPbI3 (MA = methylammonium) perovskite in its cubic and tetragonal structure with the trigonal phase of FAPbI3 (FA = formamidinium), investigating different starting arrangements of the organic cations. Despite the relatively short time scale amenable to AIMD, typically a few tens of ps, this analysis demonstrates the sizable structural flexibility of this class of materials, showing that the instantaneous structure could significantly differ from the time and thermal averaged structure. We also highlight the importance of the organic-inorganic interactions in determining the fluxional properties of this class of materials. A peculiar spatial localization of the valence and conduction band edges is also found, with a dynamics in the range of 0.1 ps, which is associated with the positional dynamics of the organic cations within the cubo-octahedral perovskite cage. This asymmetry in the spatial localization of the band edges is expected to ease exciton dissociation and assist the initial stages of charge separation, possibly constituting one of the key factors for the impressive photovoltaic performances of hybrid lead-iodide perovskites. PMID:25766785

  7. Ab initio studies of equations of state and chemical reactions of reactive structural materials

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava

    subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated

  8. Electronic structure of silicon nitride according to ab initio quantum-chemical calculations and experimental data

    SciTech Connect

    Nekrashevich, S. S. Gritsenko, V. A.; Klauser, R.; Gwo, S.

    2010-10-15

    Charge transfer {Delta}Q = 0.35e at the Si-N bond in silicon nitride is determined experimentally using photoelectron spectroscopy, and the ionic formula of silicon nitride Si{sub 3}{sup +1.4}N{sub 4}{sup -1.05} is derived. The electronic structure of {alpha}-Si{sub 3}N{sub 4} is studied ab initio using the density functional method. The results of calculations (partial density of states) are compared with experimental data on X-ray emission spectroscopy of amorphous Si{sub 3}N{sub 4}. The electronic structure of the valence band of amorphous Si{sub 3}N{sub 4} is studied using synchrotron radiation at different excitation energies. The electron and hole effective masses m{sub e}{sup *} {approx} m{sub h}{sup *} {approx} 0.5m{sub e} are estimated theoretically. The calculated values correspond to experimental results on injection of electrons and holes into silicon nitride.

  9. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    SciTech Connect

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  10. Structural stability of nitrogen-doped ultrathin single-walled boron nanotubes: an ab initio study

    NASA Astrophysics Data System (ADS)

    Jain, Sandeep Kumar; Srivastava, Pankaj

    2012-09-01

    Ab initio calculations have been performed for determining structural stabilities of nitrogen-doped ultrathin single-walled boron nanotube. We have considered ultrathin boron nanotubes of diameters <0.5 nm, which include mainly three conformations of BNTs viz. zigzag (5,0), armchair (3,3) and chiral (4,2) with diameters 4.60, 4.78 and 4.87 Å, respectively. It has been investigated that α-BNTs are highly stable, while hexagonal BNTs are found to be least stable. In view of increasing structural stability of hexagonal BNTs, substitutional doping of foreign atoms, i.e. nitrogen is chosen. The nitrogen atoms substitute the host atoms at the middle of the tubes. The substitution doping is made with all the three conformations. The structural stabilities of BNTs have been investigated by using density functional theory (DFT). Subsequently, the cohesive energy is calculated, which directly measures the structural stability. The cohesive energy of BNTs has been calculated for different nitrogen concentrations. We found that the structures get energetically more stable with increasing nitrogen concentration. Moreover, it is also revealed that all the three BNTs are almost equally stable for single-atom doping, while the armchair BNT (3,3) is highly stable followed by zigzag (5,0) and chiral (4,2) BNTs for two- and three-atom doping. The structural stability is an important factor for realization of any physical device. Thus, these BNTs can be used for field emission, semiconducting and highly conducting devices at nanoscale.

  11. Polysiloxanes: ab initio force field and structural, conformational and thermophysical properties

    NASA Astrophysics Data System (ADS)

    Sun, Huai; Rigby, David

    1997-07-01

    Various levels of ab initio calculation have been performed to determine the optimum strategy for parameterization of the valence parameters of a CFF-type force field for siloxanes and polysiloxanes. Electrostatic nonbond parameters have been determined using scaled electrostatic potential (ESP) charges adjusted for known systematic differences between ab initio and experimental data, while van der Waals nonbond parameters have been determined using a classical approach involving fitting to experimental liquid density and cohesive energy density data measured at atmospheric pressure and a single temperature for a set of four small molecules. Simulations have been performed on molecular crystals, liquids and isolated molecules, yielding results which agree favorably with available experimental data. Properties calculated include unit cell parameters and crystal densities, liquid densities from 303-473 K and 0-1800 bar, dependence of oligomer density and solubility parameters on chain length and temperature, gas-phase geometries and vibrational frequencies, and gas and liquid-phase conformational behavior.

  12. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain–domain interaction prediction

    PubMed Central

    Xu, Dong; Jaroszewski, Lukasz; Li, Zhanwen; Godzik, Adam

    2015-01-01

    Motivation: Most proteins consist of multiple domains, independent structural and evolutionary units that are often reshuffled in genomic rearrangements to form new protein architectures. Template-based modeling methods can often detect homologous templates for individual domains, but templates that could be used to model the entire query protein are often not available. Results: We have developed a fast docking algorithm ab initio domain assembly (AIDA) for assembling multi-domain protein structures, guided by the ab initio folding potential. This approach can be extended to discontinuous domains (i.e. domains with ‘inserted’ domains). When tested on experimentally solved structures of multi-domain proteins, the relative domain positions were accurately found among top 5000 models in 86% of cases. AIDA server can use domain assignments provided by the user or predict them from the provided sequence. The latter approach is particularly useful for automated protein structure prediction servers. The blind test consisting of 95 CASP10 targets shows that domain boundaries could be successfully determined for 97% of targets. Availability and implementation: The AIDA package as well as the benchmark sets used here are available for download at http://ffas.burnham.org/AIDA/. Contact: adam@sanfordburnham.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25701568

  13. Predicting crystal structures ab initio: group 14 nitrides and phosphides.

    PubMed

    Hart, Judy N; Allan, Neil L; Claeyssens, Frederik

    2010-08-14

    Crystal structures are predicted for a range of group 14 nitrides and phosphides with 1 : 1 stoichiometry, following our method of starting from the known structures for a range of binary compounds and looking for trends in the preferred local bonding environments in the optimised structures. We have previously applied this method to predict the structures of carbon nitride and phosphorus carbide. Here, we use a similar approach to predict the structures of silicon and germanium nitrides and phosphides with 1 : 1 stoichiometry. We find that the local bonding environments in the preferred structures for the nitrides are the same as those for the 3 : 4 stoichiometry. For the phosphides, we have found several possible structures with similar energies. Structures containing hypervalent phosphorus must be considered as these are often low in energy, particularly for GeP; these have not been included in previous work. The greater tendency to form hypervalent phosphorus in GeP than SiP can be rationalised by considering the bond enthalpies for the two compositions. PMID:20603659

  14. Ab Initio determination of Cu 3d orbital energies in layered copper oxides

    PubMed Central

    Hozoi, Liviu; Siurakshina, Liudmila; Fulde, Peter; van den Brink, Jeroen

    2011-01-01

    It has long been argued that the minimal model to describe the low-energy physics of the high Tc superconducting cuprates must include copper states of other symmetries besides the canonical one, in particular the orbital. Experimental and theoretical estimates of the energy splitting of these states vary widely. With a novel ab initio quantum chemical computational scheme we determine these energies for a range of copper-oxides and -oxychlorides, determine trends with the apical Cu–ligand distances and find excellent agreement with recent Resonant Inelastic X-ray Scattering measurements, available for La2CuO4, Sr2CuO2Cl2, and CaCuO2. PMID:22355584

  15. Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation

    NASA Astrophysics Data System (ADS)

    Correa, J. D.; Cisternas, E.

    2016-09-01

    By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.

  16. Ab initio calculations of the electronic structure of silicon nanocrystals doped with shallow donors (Li, P)

    SciTech Connect

    Kurova, N. V. Burdov, V. A.

    2013-12-15

    The results of ab initio calculations of the electronic structure of Si nanocrystals doped with shallow donors (Li, P) are reported. It is shown that phosphorus introduces much more significant distortions into the electronic structure of the nanocrystal than lithium, which is due to the stronger central cell potential of the phosphorus ion. It is found that the Li-induced splitting of the ground state in the conduction band of the nanocrystal into the singlet, doublet, and triplet retains its inverse structure typical for bulk silicon.

  17. Atomic structure evolution during solidification of liquid niobium from ab initio molecular dynamics simulations

    SciTech Connect

    Debela, T. T.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Wang, S. Y.; Wang, Cai-Zhuang; Jiang, J. Z.

    2013-12-12

    Atomic structure transitions of liquid niobium during solidification, at different temperatures from 3200 to 1500 K, were studied by using ab initio molecular dynamics simulations. The local atomic structure variations with temperature are investigated by using the pair-correlation function, the structure factor, the bond-angle distribution function, the Honeycutt–Anderson index, Voronoi tessellation and the cluster alignment methods. Our results clearly show that, upon quenching, the icosahedral short-range order dominates in the stable liquid and supercooled liquid states before the system transforms to crystalline body-center cubic phase at a temperature of about 1830 K.

  18. Synthesis, crystal structure and ab initio/DFT calculations of a derivative of dithiophosphonates

    NASA Astrophysics Data System (ADS)

    Karakus, M.; Solak, S.; Hökelek, T.; Dal, H.; Bayrakdar, A.; Özdemir Kart, S.; Karabacak, M.; Kart, H. H.

    2014-03-01

    The compound 2 has been synthesized from the reaction of 2,4-Bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide and (R)-1-[3,5-Bis(trifloromethyl)phenyl]ethanol in toluene. The obtained crude dithiophosphonic acid 1 has been treated with the excess of N(C2H5)3 to give rise to 2, [(+HN(C2H5)3][(O-CH3CH-C6H3(CF3)2)(CH3OC6H4)PS2-]. The compound 2 has been characterized by using the spectroscopic methods such as IR, 1H, 13C, 31P NMR and structural analysing method such as X-ray crystallography. It crystallizes in the orthorhombic system, whose space group is P212121. It consists of a dithiophosphonate bridged methoxyphenyl and bis(triflorophenylethyl) groups and a triethylammonium moiety linked by Nsbnd H⋯S and Csbnd H⋯F hydrogen bonds. In the crystal structure, the C17H14F6O2PS2 molecule is elongated along the b-axis and stacked along the a-axis. The triethylammonium, N(CH2CH3)3, molecule fill in the cavities between the C17H14F6O2PS2 molecule. Moreover, ab initio methods based on Hartree-Fock (HF) and Density Functional Theory (DFT) calculations with the basis set of 6-31G(d) are also carried out to determine the molecular structural properties and to calculate FT-IR and NMR spectrum of the compound 2. The experimental results and theoretical calculations have been compared, and they are found to be in good agreement.

  19. Knockout reactions from p-shell nuclei : tests of ab initio structure models.

    SciTech Connect

    Grinyer, G. F.; Bazin, D.; Gade, A.; Tostevin, J. A.; Adrich, P.; Bowen, M. D.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Glasmacher, T.; McDaniel, S.; Navratil, P.; Obertelli, A.; Quaglioni, S.; Siwek, K.; Terry, J. R.; Weisshaar, D.; Wiringa, R. B.

    2011-04-22

    Absolute cross sections have been determined following single neutron knockout reactions from {sup 10}Be and {sup 10}C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description of knockout reactions. Comparison to experimental cross sections demonstrates that the VMC approach, with the inclusion of 3-body forces, provides the best overall agreement while the NCSM and conventional shell-model calculations both overpredict the cross sections by 20% to 30% for {sup 10}Be and by 40% to 50% for {sup 10}C, respectively. This study gains new insight into the importance of 3-body forces and continuum effects in light nuclei and provides a sensitive technique to assess the accuracy of ab initio calculations for describing these effects.

  20. Knockout Reactions from p-Shell Nuclei: Tests of Ab Initio Structure Models

    SciTech Connect

    Grinyer, G. F.; Bazin, D.; Adrich, P.; Obertelli, A.; Weisshaar, D.; Gade, A.; Bowen, M. D.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Glasmacher, T.; McDaniel, S.; Siwek, K.; Terry, J. R.; Tostevin, J. A.; Navratil, P.; Quaglioni, S.; Wiringa, R. B.

    2011-04-22

    Absolute cross sections have been determined following single neutron knockout reactions from {sup 10}Be and {sup 10}C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description of knockout reactions. Comparison to experimental cross sections demonstrates that the VMC approach, with the inclusion of 3-body forces, provides the best overall agreement while the NCSM and conventional shell-model calculations both overpredict the cross sections by 20% to 30% for {sup 10}Be and by 40% to 50% for {sup 10}C, respectively. This study gains new insight into the importance of 3-body forces and continuum effects in light nuclei and provides a sensitive technique to assess the accuracy of ab initio calculations for describing these effects.

  1. Ab Initio Prediction of Transcription Factor Targets Using Structural Knowledge

    PubMed Central

    Kaplan, Tommy; Friedman, Nir; Margalit, Hanah

    2005-01-01

    Current approaches for identification and detection of transcription factor binding sites rely on an extensive set of known target genes. Here we describe a novel structure-based approach applicable to transcription factors with no prior binding data. Our approach combines sequence data and structural information to infer context-specific amino acid–nucleotide recognition preferences. These are used to predict binding sites for novel transcription factors from the same structural family. We demonstrate our approach on the Cys2His2 Zinc Finger protein family, and show that the learned DNA-recognition preferences are compatible with experimental results. We use these preferences to perform a genome-wide scan for direct targets of Drosophila melanogaster Cys2His2 transcription factors. By analyzing the predicted targets along with gene annotation and expression data we infer the function and activity of these proteins. PMID:16103898

  2. Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations.

    PubMed

    Monastyrskii, Liubomyr S; Boyko, Yaroslav V; Sokolovskii, Bogdan S; Potashnyk, Vasylyna Ya

    2016-12-01

    An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method-the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range. PMID:26768147

  3. Ab initio determination of the instability growth rate of warm dense beryllium-deuterium interface

    SciTech Connect

    Wang, Cong; Zhang, Ping; Li, Zi; Li, DaFang

    2015-10-15

    Accurate knowledge about the interfacial unstable growth is of great importance in inertial confinement fusion. During implosions, the deuterium-tritium capsule is driven by laser beams or X-rays to access the strongly coupled and partially degenerated warm dense matter regime. At this stage, the effects of dissipative processes, such as diffusion and viscosity, have significant impact on the instability growth rates. Here, we present ab initio molecular dynamics simulations to determine the equations of state and the transport coefficients. Several models are used to estimate the reduction in the growth rate dispersion curves of Rayleigh-Taylor and Richtmyer-Meshkov instabilities with considering the presence of these dissipative effects. We show that these instability growth rates are effectively reduced when considering diffusion. The findings provide significant insights into the microscopic mechanism of the instability growth at the ablator-fuel interface and will refine the models used in the laser-driven hydrodynamic instability experiments.

  4. Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.

  5. Determination of absolute configuration using ab initio calculation of optical rotation.

    PubMed

    Stephens, P J; Devlin, F J; Cheeseman, J R; Frisch, M J; Bortolini, O; Besse, P

    2003-01-01

    Ab initio Density Functional Theory (DFT) calculations of transparent spectral region, discrete frequency specific rotations were used to assign the absolute configurations (ACs) of: 1, 2H-naphtho[1,8-bc]thiophene 1-oxide; 2, m-F-phenyl glycidic acid methyl ester; 3, o-Br-phenyl glycidic acid methyl ester; 4, p-CH(3)-phenyl glycidic acid methyl ester; 5, 2-(1-hydroxyethyl)-chromen-4-one; and 6, 6-Br-2-(1-hydroxyethyl)-chromen-4-one. The ACs of 5 and 6 were previously determined via X-ray crystallography to be: 5, R(-)/S(+); 6, R(+)/S(-). The ACs obtained using [alpha](D) are the same for both 5 and 6: R(+)/S(-). We conclude that the previously reported AC of 5 is incorrect. PMID:12884375

  6. Ab initio determination of the instability growth rate of warm dense beryllium-deuterium interface

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Li, Zi; Li, DaFang; Zhang, Ping

    2015-10-01

    Accurate knowledge about the interfacial unstable growth is of great importance in inertial confinement fusion. During implosions, the deuterium-tritium capsule is driven by laser beams or X-rays to access the strongly coupled and partially degenerated warm dense matter regime. At this stage, the effects of dissipative processes, such as diffusion and viscosity, have significant impact on the instability growth rates. Here, we present ab initio molecular dynamics simulations to determine the equations of state and the transport coefficients. Several models are used to estimate the reduction in the growth rate dispersion curves of Rayleigh-Taylor and Richtmyer-Meshkov instabilities with considering the presence of these dissipative effects. We show that these instability growth rates are effectively reduced when considering diffusion. The findings provide significant insights into the microscopic mechanism of the instability growth at the ablator-fuel interface and will refine the models used in the laser-driven hydrodynamic instability experiments.

  7. Ab initio nuclear structure from lattice effective field theory

    SciTech Connect

    Lee, Dean

    2014-11-11

    This proceedings article reviews recent results by the Nuclear Lattice EFT Collaboration on an excited state of the {sup 12}C nucleus known as the Hoyle state. The Hoyle state plays a key role in the production of carbon via the triple-alpha reaction in red giant stars. We discuss the structure of low-lying states of {sup 12}C as well as the dependence of the triple-alpha reaction on the masses of the light quarks.

  8. Hydration structure of salt solutions from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-01

    The solvation structures of Na^+, K^+, and Cl^- ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na^+, K^+, and Cl^-, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  9. Hydration structure of salt solutions from ab initio molecular dynamics

    SciTech Connect

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-07

    The solvation structures of Na{sup +}, K{sup +}, and Cl{sup -} ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  10. Hydration structure of salt solutions from ab initio molecular dynamics.

    PubMed

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L

    2013-01-01

    The solvation structures of Na(+), K(+), and Cl(-) ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na(+), K(+), and Cl(-), respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed. PMID:23298049

  11. Ab initio quantum mechanical studies in electronic and structural properties of carbon nanotubes and silicon nanowires

    NASA Astrophysics Data System (ADS)

    Matsuda, Yuki

    This dissertation focuses on ab-initio quantum mechanical calculations of nanoelectronics in three research topics: contact resistance properties of carbon nanotubes and graphenes (Chapters 1 through 3), electrical properties of carbon nanotubes (Chapter 4) and silicon nanowires (Chapter 5). Through all the chapters, the aim of the research is to provide useful guidelines for experimentalists. Chapter 1 presents the contact resistance of metal electrode-carbon nanotube and metal electrode-graphene interfaces for various deposited metals, based on first-principles quantum mechanical density functional and matrix Green's function methods. Chapters 2 and 3 describe inventive ways to enhance contact resistance properties as well as mechanical stabilities using "molecular anchors" (Chapter 2) or using "end-contacted" (or end-on) electrodes (Chapter 3). Chapters 1 through 3 also provide useful guidelines for nanotube assembly process which is one of the main obstacles in nanoelectronics. Chapter 4 shows accurate and detailed band structure properties of single-walled carbon nanotubes using B3LYP hybrid functional, which are critical parameters in determining the electronic properties such as small band gaps (˜0.1 eV) and effective masses. Chapter 5 details both structural and electronic properties of silicon nanowires. These results lead to the findings controlling the diameter and surface coverage by adsorbates (e.g., hydrogen) of silicon nanowires can be effectively used to optimize their properties for various applications. All the theoretical results are compared with other theoretical studies and experimental data. Notably, electronic studies using B3LYP show excellent agreement with experimental studies quantitatively, which previous quantum mechanical calculations had failed. These studies show how quantum mechanical predictions of complex phenomena can be effectively investigated computationally in nanomaterials and nanodevices. Given the difficulty, expense

  12. Ab initio prediction of protein structure with both all-atom and simplified force fields

    NASA Astrophysics Data System (ADS)

    Scheraga, Harold

    2004-03-01

    Using only a physics-based ab initio method, and both all-atom (ECEPP/3) and simplified united-residue (UNRES) force fields, global optimization of both potential functions with Monte Carlo-plus-Minimization (MCM) and Conformational Space Annealing (CSA), respectively, provides predicted structures of proteins without use of knowledge-based information. The all-atom approach has been applied to the 46-residue protein A, and the UNRES approach has been applied to larger CASP targets. The predicted structures will be described.

  13. Ramsdellite-structured LiTiO 2: A new phase predicted from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Koudriachova, M. V.

    2008-06-01

    A new phase of highly lithiated titania with potential application as an anode in Li-rechargeable batteries is predicted on the basis of ab initio calculations. This phase has a composition LiTiO2 and may be accessed through electrochemical lithiation of ramsdellite-structured TiO2 at the lowest potential reported for titanium dioxide based materials. The potential remains constant over a wide range of Li-concentrations. The new phase is metastable with respect to a tetragonally distorted rock salt structure, which hitherto has been the only known polymorph of LiTiO2.

  14. Ab initio analysis of the defect structure of ceria

    NASA Astrophysics Data System (ADS)

    Zacherle, T.; Schriever, A.; De Souza, R. A.; Martin, M.

    2013-04-01

    We calculated the formation energies of all simple point defects in cubic fluorite structured CeO2 using density functional theory within the GGA+U approximation. All possible defect charge states were considered, and also polarons CeCe' and associates of polarons with oxygen vacancies: (VO··-CeCe')· and (CeCe'-VO··-CeCe')×. From the individual defect energies, we extracted Schottky, Frenkel, and anti-Frenkel energies: we find that anti-Frenkel disorder has the lowest energy in ceria. Energies for the reduction and the hydration of ceria are also computed, and the results are in good agreement with experiment. Finally, point-defect concentrations and conductivities are predicted for undoped and donor-doped systems as a function of oxygen partial pressure and temperature. The characteristic slopes found in experiment are reproduced.

  15. Ab-initio study on crystal structure of α-RuCl3

    NASA Astrophysics Data System (ADS)

    Kee, Hae-Young; Kim, Heung-Sik

    α -RuCl3 was recently proposed as a candidate system for materialization of Kitaev model, but precise structural information of the compound has remained elusive. For the clarification of the full three-dimensional crystal structure of α-RuCl3, we performed ab-initio electronic structure calculations including effects of spin-orbit coupling (SOC) and electron correlations. We found that SOC prevents dimerization between Ru atoms, and keeps the system close to honeycomb lattice. The ground state crystal structure has monoclinic C 2 / m -type layer stacking, but trigonal P31 12 -and orthorhombic Cmc21 -type stacking orders are comparable to the C 2 / m structure in energy, so that stacking faults can be easily introduced. The electronic structure and the jeff=1/2 pseudospin exchange interactions and possible magnetic states in α-RuCl3 will be presented.

  16. Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure

    DOE PAGESBeta

    Timoshenko, J.; Shivhare, A.; Scott, R. W.; Lu, D.; Frenkel, A. I.

    2016-06-30

    We adopted ab-initio X-ray Absorption Near Edge Structure (XANES) modelling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modelling, where the candidate structures are known, and the inverse modelling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by following the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.

  17. Structural stability and thermodynamics of CrN magnetic phases from ab initio calculations and experiment

    NASA Astrophysics Data System (ADS)

    Zhou, Liangcai; Körmann, Fritz; Holec, David; Bartosik, Matthias; Grabowski, Blazej; Neugebauer, Jörg; Mayrhofer, Paul H.

    2014-11-01

    The dynamical and thermodynamic phase stabilities of the stoichiometric compound CrN including different structural and magnetic configurations are comprehensively investigated using a first-principles density functional theory (DFT) plus U (DFT +U ) approach in conjunction with experimental measurements of the thermal expansion. Comparing DFT and DFT +U results with experimental data reveals that the treatment of electron correlations using methods beyond standard DFT is crucial. The nonmagnetic face-centered cubic B1-CrN phase is both elastically and dynamically unstable, even under high pressure, while CrN phases with nonzero local magnetic moments are predicted to be dynamically stable within the framework of the DFT +U scheme. Furthermore, the impact of different treatments for the exchange-correlation (xc)-functional is investigated by carrying out all computations employing the local density approximation and generalized gradient approximation. To address finite-temperature properties, both magnetic and vibrational contributions to the free energy have been computed employing our recently developed spin-space averaging method. The calculated phase transition temperature between low-temperature antiferromagnetic and high-temperature paramagnetic (PM) CrN variants is in excellent agreement with experimental values and reveals the strong impact of the choice of the xc-functional. The temperature-dependent linear thermal expansion coefficient of CrN is experimentally determined by the wafer curvature method from a reactive magnetron sputter deposited single-phase B1-CrN thin film with dense film morphology. A good agreement is found between experimental and ab initio calculated linear thermal expansion coefficients of PM B1-CrN. Other thermodynamic properties, such as the specific heat capacity, have been computed as well and compared to previous experimental data.

  18. Ab initio study of the structure and dynamics of bulk liquid Fe

    NASA Astrophysics Data System (ADS)

    Marqués, M.; González, L. E.; González, D. J.

    2015-10-01

    Several static and dynamic properties of bulk liquid Fe at a thermodynamic state near its triple point have been evaluated by ab initio molecular dynamics simulations. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak in the structure factor which underlines a substantial local icosahedral short-range order in the liquid. The dynamical structure reveals propagating density fluctuations, with an associated dispersion relation which closely follows the experimental data. The dynamic structure factors S (q ,ω ) show a good agreement with their experimental counterparts which have been recently measured by an inelastic x-ray scattering experiment. The dynamical processes behind the S (q ,ω ) have been analyzed by using a model with two decay channels (a fast and a slow) associated with the relaxations of the collective excitations. The recent finding of transverselike excitation modes in the IXS data is analyzed by using the present ab initio simulation results. Several transport coefficients have been evaluated and the results are compared with the available experimental data.

  19. [Ru(py)4Cl(NO)](PF6)2.0.5H2O: a model system for structural determination and ab initio calculations of photo-induced linkage NO isomers.

    PubMed

    Cormary, Benoît; Malfant, Isabelle; Valade, Lydie; Buron-Le Cointe, Marylise; Buron-Le Cointe, Marylize; Toupet, Loïc; Todorova, Teodora; Delley, Bernard; Schaniel, Dominik; Mockus, Nicholas; Woike, Theo; Fejfarová, Karla; Petrícek, Václav; Dusek, Michal

    2009-10-01

    Structure analysis of ground state (GS) and two light-induced (SI and SII) metastable linkage NO isomers of [Ru(py)4Cl(NO)](PF6)2.0.5H2O is presented. Illumination of the crystal by a laser with lambda = 473 nm at T = 80 K transfers around 92% of the NO ligands from Ru-N-O into the isomeric configuration Ru-O-N (SI). A subsequent irradiation with lambda = 980 nm generates about 48% of the side-on configuration Ru<(N)(O) (SII). Heating to temperatures above 200 K or irradiation with light in the red spectral range transfers both metastable isomers reversibly back to the GS. Photodifference maps clearly show the N-O configurations for both isomers and they could be used to find a proper starting model for subsequent refinements. Both metastable isomers have slightly but significantly different cell parameters with respect to GS. The main structural changes besides the Ru-O-N and RU<(N)(O) linkage are shortenings of the trans Ru-Cl bonds and the equatorial Ru-N bonds. The experimental results are compared with solid-state calculations based on density functional theory (DFT), which reproduce the observed structures with high accuracy concerning bond lengths and angles. The problem of how the different occupancies of SI and GS could affect refinement results was solved by a simulation procedure using the DFT data as starting values. PMID:19767684

  20. An ab initio investigation of the structure, vibrational frequencies, and intensities of HO2 and HOCl

    NASA Technical Reports Server (NTRS)

    Komornicki, A.; Jaffe, R. L.

    1979-01-01

    The infrared spectral intensities for HOCl and HO2 have been calculated using a new ab initio technique. Theoretical results for the geometries, vibrational frequencies, and the dipole moments of these species are also reported. All of the calculations were performed at the SCF level using near Hartree-Fock quality basis sets. The results for the molecular geometries and the vibrational frequencies are in good agreement with available experimental data. It is believed that the computed intensities are accurate to at least 50%. The results should be helpful in attempts to determine the stratospheric abundance of HOCl and HO2 by in situ infrared spectroscopic measurements.

  1. Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.

    PubMed

    Zhang, Dawei; Liu, Chungen

    2016-04-12

    The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems. PMID:26963572

  2. Symmetry-Adapted Ab Initio Shell Model for Nuclear Structure Calculations

    NASA Astrophysics Data System (ADS)

    Draayer, J. P.; Dytrych, T.; Launey, K. D.; Langr, D.

    2012-05-01

    An innovative concept, the symmetry-adapted ab initio shell model, that capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. This framework is expected to inform the leading features of nuclear structure and reaction data for light and medium mass nuclei, which are currently inaccessible by theory and experiment and for which predictions of modern phenomenological models often diverge. We use powerful computational and group-theoretical algorithms to perform ab initio CI (configuration-interaction) calculations in a model space spanned by SU(3) symmetry-adapted many-body configurations with the JISP16 nucleon-nucleon interaction. We demonstrate that the results for the ground states of light nuclei up through A = 16 exhibit a strong dominance of low-spin and high-deformation configurations together with an evident symplectic structure. This, in turn, points to the importance of using a symmetry-adapted framework, one based on an LS coupling scheme with the associated spatial configurations organized according to deformation.

  3. Structure and Raman spectra in cryolitic melts: simulations with an ab initio interaction potential.

    PubMed

    Cikit, Serpil; Akdeniz, Zehra; Madden, Paul A

    2014-01-30

    The Raman spectra of cryolitic melts have been calculated from molecular dynamics computer simulations using a polarizable ionic potential obtained by force-fitting to ab initio electronic structure calculations. Simulations which made use of this ab initio derived polarizable interaction potential reproduced the structure and dynamical properties of crystalline cryolite, Na3AlF6, rather well. The transferability of the potential model from solid state to the molten state is tested by comparing results for the Raman spectra of melts of various compositions with those previously obtained with empirically developed potentials and with experimental data. The shapes of the spectra and their evolution with composition in the mixtures conform quite well to those seen experimentally, and we discuss the relationship between the bands seen in the spectra and the vibrational modes of the AlFn((3–n)) coordination complexes which are found in the NaF/AlF3 mixtures. The simulations thus enable a link between the structure of the melt as derived through Raman spectroscopy and through diffraction experiments. We report results for quantities which relate to the degree of cross-linking between these coordination complexes and the diffusive properties of ions. PMID:24432905

  4. The Crystal Structure of Impurity Centers Tm^{2+} and Eu^{2+} in SrCl2 : Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Serdcev, A. V.; Petrov, V. P.; Nikiforov, A. E.

    2016-01-01

    Ab initio calculations of the impurity centers Tm^{2+} thulium and europium Eu^{2+} in SrCl2 and MeF2 (Me = Ca, Sr, Ba) were carried out at low (zero) temperature. The crystal structure of impurity centers was investigated. Charge density maps show that the bonds formed by the rare-earth ions have an ionic character. The crystal structures, lattice dynamics, and band structures of MeF2 and SrCl2 were calculated at low temperature. Ab initio calculations were performed in periodic CRYSTAL code within the framework of the MO LCAO approach by using hybrid DFT functionals.

  5. Ab initio study of electron-ion structure factors in binary liquids with different types of chemical bonding

    SciTech Connect

    Klevets, Ivan; Bryk, Taras

    2014-12-07

    Electron-ion structure factors, calculated in ab initio molecular dynamics simulations, are reported for several binary liquids with different kinds of chemical bonding: metallic liquid alloy Bi–Pb, molten salt RbF, and liquid water. We derive analytical expressions for the long-wavelength asymptotes of the partial electron-ion structure factors of binary systems and show that the analytical results are in good agreement with the ab initio simulation data. The long-wavelength behaviour of the total charge structure factors for the three binary liquids is discussed.

  6. Ab Initio Calculation of Structure and Thermodynamic Properties of Zintl Aluminide SrAl2

    NASA Astrophysics Data System (ADS)

    Fu, Zhi-Jian; Jia, Li-Jun; Xia, Ji-Hong; Tang, Ke; Li, Zhao-Hong; Sun, Xiao-Wei; Chen, Qi-Feng

    2015-12-01

    The structural and thermodynamic properties of the orthorhombic and cubic structure SrAl2 at pressure and temperature are investigated by using the ab initio plane-wave pseudopotential density functional theory methodwithin the generalised gradient approximation (GGA). The calculated lattice parameters are in agreement with the available experimental data and other theoretical results. The phase transition predicted takes place at 0.5 GPa from the orthorhombic to the cubic structure at zero temperature. The thermodynamic properties of the zinc-blende structure SrAl2 are calculated by the quasi-harmonic Debye model. The pressure-volume relationship and the variations inthe thermal expansion α are obtained systematically in the pressure and temperature ranges of 0-5 GPa and 0-500 K, respectively.

  7. Ab initio study of pressure induced structural and electronic properties in TmPo

    SciTech Connect

    Makode, Chandrabhan Pataiya, Jagdish; Sanyal, Sankar P.; Panwar, Y. S.; Aynyas, Mahendra

    2015-06-24

    We report an ab initio calculation of pressure induced structural phase transition and electronic properties of Thulium Polonide (TmPo).The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). It is found that TmPo is stable in NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-phase) structure of this compound in the pressure range of 7.0 GPa. We also calculate the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure and density of states. From energy diagram it is observed that TmPo exhibit metallic behavior. The calculated values of equilibrium lattice parameter and bulk modulus are in general good agreement.

  8. Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study

    SciTech Connect

    Xiong, L H; Lou, H B; Wang, X D; Debela, T T; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z

    2014-04-01

    The local atomic structure evolution in Al2Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt-Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al2Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of < 0,4,4,0 >, < 0,3, 6,0 > and < 0,4,4,2 > with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF2-type Al2Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al2Au alloy. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Structure and Radiationless Transition of Pahs : Ultrahigh-Resolution Spectroscopy and AB Initio Calculation

    NASA Astrophysics Data System (ADS)

    Baba, Masaak

    2009-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are fascinating objects of basic studies on molecular structure and excited-state dynamics. We have observed and analyzed rotationally resolved ultrahigh-resolution spectra of the S_1 ← S_0 transition of naphthalene, anthracene, pyrene and perylene (all D_{2h} symmetry) in collimated supersonic jets. We conclude that radiationless transitions are all slow in the S_1 zero-vibrational level of the isolated PAH molecule. Possible radiationless processes are intersystem crossing (ISC), internal conversion (IC), and predissociation. Predissociation does not take place because all of the bond energies are larger than the S_1 ← S_0 excitation energy. The observed radiationless process has been presumed to be ISC so far. However, it is inconsistent with El-Sayed's rule that spin-orbit interaction is very weak between the ^1ππ^* and ^3ππ^* states. We have observed Zeeman splitting of each rotational line and shown that the magnetic moment is very small in the S_1 state. Therefore, the main radiationless process is not ISC to the triplet state, but IC to the hot ground state. IC is caused by non-Born-Oppenheimer vibronic interaction, which is expected to be very weak if the molecular structure is identical for both electronic states. The experimentally determined rotational constants are almost identical for the S_0 and S_1 states. It is consistent with the observed long lifetime and high fluorescence quantum yield of PAHs. We carried out ab initio calculation, and the resultant values of rotational constants of the S_0 state are in extremely good coincidence with the experimental ones for naphthalene and anthracene. On the contrary, for the excited state, it is necessary to perform huge SAC-CI calculation to obtain satisfactory results. Fast IC has been found, for instance, in high vibrational levels of benzene (channel 3), which is due to unavoided potential crossing (conical intersection). However, it is not likely in large

  10. Ab initio study of the molecular structure and vibrational spectrum of nitric acid and its protonated forms

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1992-01-01

    The equilibrium structures, harmonic vibrational frequencies, IR intensities, and relative energetics of HNO3 and its protonated form H2NO3+ were investigated using double-zeta plus polarization and triple-zeta plus polarization basis sets in conjunction with high-level ab initio methods. The latter include second-order Moller-Plesset perturbation theory, the single and double excitation coupled cluster (CCSD) methods, a perturbational estimate of the effects of connected triple excitations (CCSD(T)), and the self-consistent field. To determine accurate energy differences CCSD(T) energies were computed using large atomic natural orbital basis sets. Four different isomers of H2NO3+ were considered. The lowest energy form of protonated nitric acid was found to correspond to a complex between H2O and NO2+, which is consistent with earlier theoretical and experimental studies.

  11. Molecular determinants for drug-receptor interactions. Part 2. An ab initio molecular orbital and dipole moment study of the novel nootropic agent piracetam (2-oxopyrrolidin-1-ylacetamide)

    NASA Astrophysics Data System (ADS)

    Lumbroso, H.; Liégeois, C.; Pappalardo, G. C.; Grassi, A.

    From the ab initio molecular energies of the possible conformers and from a classical dipole moment analysis of 2-oxopyrrolidin-l-ylacetamide (μ = 4.02 D in dioxan at 30.0°C), the preferred conformation in solution of this novel nootropic agent has been determined. The exocyclic N-CH 2 bond is rotated in one sense by 90° and the exocyclic CH 2-C bond rotated in the same sense by 120° from the "planar" ( OO)- cis conformation. The structures of the two enantiomers in solution differ from that of the crystalline molecule.

  12. Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure

    NASA Astrophysics Data System (ADS)

    Mueller, B. Y.; Haag, M.; Fähnle, M.

    2016-09-01

    Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.

  13. Evolution of atomic structure in Al75Cu25 liquid from experimental and ab initio molecular dynamics simulation studies.

    PubMed

    Xiong, L H; Yoo, H; Lou, H B; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z; Xie, H L; Xiao, T Q; Jeon, S; Lee, G W

    2015-01-28

    X-ray diffraction and electrostatic levitation measurements, together with the ab initio molecular dynamics simulation of liquid Al(75)Cu(25) alloy have been performed from 800 to 1600 K. Experimental and ab initio molecular dynamics simulation results match well with each other. No abnormal changes were experimentally detected in the specific heat capacity over total hemispheric emissivity and density curves in the studied temperature range for a bulk liquid Al(75)Cu(25) alloy measured by the electrostatic levitation technique. The structure factors gained by the ab initio molecular dynamics simulation precisely coincide with the experimental data. The atomic structure analyzed by the Honeycutt-Andersen index and Voronoi tessellation methods shows that icosahedral-like atomic clusters prevail in the liquid Al(75)Cu(25) alloy and the atomic clusters evolve continuously. All results obtained here suggest that no liquid-liquid transition appears in the bulk liquid Al(75)Cu(25) alloy in the studied temperature range. PMID:25524926

  14. Spectroscopic and Ab Initio Determination of the Ring-Twisting Potential Energy Function for 1,3-Cyclohexadiene

    NASA Astrophysics Data System (ADS)

    Autrey, Daniel; Choo, Jaebum; Laane, Jaan

    2000-10-01

    The ring-twisting vibration of 1,3-cyclohexadiene has been studied using Raman and infrared spectroscopy of the molecule in the vapor phase. The Raman spectrum shows five ring-twisting transitions in the 150 - 200 cm-1 region. The far-infrared spectrum shows only two transitions for this vibration, which is infrared forbidden in the C_2v (planar) approximation. Three ring-twisting combination bands were also observed off a fundamental vibration at 926.1 cm-1. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function. Ab initio calculations were performed using Moller-Plesset perturbation theory (MP2) using different basis sets. The barrier to planarity of 1150 cm-1 was determined from the spectroscopic data. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range.

  15. Ab-initio crystal structure prediction. A case study: NaBH{sub 4}

    SciTech Connect

    Caputo, Riccarda; Tekin, Adem

    2011-07-15

    Crystal structure prediction from first principles is still one of the most challenging and interesting issue in condensed matter science. we explored the potential energy surface of NaBH{sub 4} by a combined ab-initio approach, based on global structure optimizations and quantum chemistry. In particular, we used simulated annealing (SA) and density functional theory (DFT) calculations. The methodology enabled the identification of several local minima, of which the global minimum corresponded to the tetragonal ground-state structure (P4{sub 2}/nmc), and the prediction of higher energy stable structures, among them a monoclinic (Pm) one was identified to be 22.75 kJ/mol above the ground-state at T=298 K. In between, orthorhombic and cubic structures were recovered, in particular those with Pnma and F4-bar 3m symmetries. - Graphical abstract: The total electron energy difference of the calculated stable structures. Here, the tetragonal (IT 137) and the monoclinic (IT 6) symmetry groups corresponded to the lowest and the highest energy structures, respectively. Highlights: > Potential energy surface of NaBH{sub 4} is investigated. > This is done a combination of global structure optimizations based on simulated annealing and density functional calculations. > We successfully reproduced experimentally found tetragonal and orthorhombic structures of NaBH{sub 4}. > Furthermore, we found a new stable high energy structure.

  16. Atomic and Electronic Structures of C_60+BN Nanopeapods from ab initio Pseudopotential Calculations

    NASA Astrophysics Data System (ADS)

    Trave, Andrea; Ribeiro, Filipe; Louie, Steven G.; Cohen, Marvin L.

    2004-03-01

    Nanopeapods are structures of nanometric size consisting of an external carbon nanotube encapsulating a chain or complex array of fullerenes. Recent calculations and experiments have proven that nanopeapods can be obtained assembling fullerenes within boron nitride nanotubes, creating novel materials of possible interest for electronic transport applications. To improve the understanding of the properties of these composite systems, as compared to empty nanotubes and carbon nanopeapods, ab-initio total energy calculations have been performed within the pseudopotential Density Functional Theory in local density approximation. Results of these calculations on the energetics and geometrical deformations involved in the encapsulation will be presented, followed by a discussion of the consequences on the electronic structures of these systems, with particular focus on aspects relevant to electronic transport phenomena. This work is supported by NFS (Grant DMR00-87088) and DOE (Contract DE-AC03-76SF00098), using computational resources at NERSC and NPACI.

  17. Pressure-induced structural transitions in BN from ab initio metadynamics

    NASA Astrophysics Data System (ADS)

    Hromadová, Liliana; Martoňák, Roman

    2011-12-01

    We report here results of ab initio metadynamics simulations of structural transitions in boron nitride at high pressures. Transitions starting from sp2 bonded (graphite-like) structures are studied in a temperature range from 300 to 3000 K and pressures from 20 to 31 GPa. Rhombohedral boron nitride (r-BN) was found to directly transform at all temperatures into cubic boron nitride (c-BN). Hexagonal boron nitride (h-BN) transforms at T<700 K into wurtzite boron nitride (w-BN). At higher temperatures we found a possible transformation pathway resulting in the fully tetrahedrally (sp3) bonded metastable structure. This structure is tetragonal (P42/mnm) and is an analog of the “bct C4” (I4/mmm) structure recently discussed for carbon. The P42/mnm structure has been predicted theoretically for BN but so far not reported experimentally. We calculate structural, elastic, and electronic properties of this structure and discuss the transition mechanism. We also study the transitions at extreme pressures in the tera-pascal range starting from sp3 bonded c-BN and w-BN structures.

  18. Molecular structure and conformational composition of 1,1-dichlorobutane: a gas-phase electron diffraction and ab initio investigation

    NASA Astrophysics Data System (ADS)

    Aarset, Kirsten; Hagen, Kolbjørn; Stølevik, Reidar

    1997-09-01

    Gas-phase electron diffraction data obtained at 23°C, together with results from ab initio molecular orbital calculations ( {HF}/{6-31 G(d)}). were used to determine the structure and conformational composition of 1,1-dichlorobutane. Of the five distinguishable conformers (AA, G + A, AG +, G + G + and G + G -), the G + A conformer was found to be the low-energy form, and the investigation also indicated that certain amounts of the AA and G + G - conformers might be present. The symbols describing the conformers refer to torsion about the C 1C 2 and C 2C 3 bonds, anti (A) with H 5C 1C 2C 3 and C 1C 2C 3C 4 torsion angles of 180° and gauche (G + or G -) with torsion angles of + 60° or 300° (-60°) respectively. The results for the principal distances ( rg) and angles (∠ α) from the combined electron diffraction/ab initio study for the G + A conformer, with estimated 2σ uncertainties, were as follows: r( C1 C2) = 1.521(4) Å, r( C2 C3) = 1.539(4) Å, r( C3 C4) = 1.546(4) Å, r( C Cl6) = 1.782(3) Å, r( CCl7) = 1.782(3) Å, = 1.106(6) Å, ∠C 1C 2C 3 = 114.4(13)°, ∠C 2C 3C 4 = 112.5(13)°, ∠CCCl 6 = 110.4(7)°, ∠CCCl 7 = 111.9(7)°, <∠CCH> = 108.9(47)°. Only average values for r(CC), r(CCl), r(CH), ∠CCC, ∠CCX and ∠CCH were determined in the least-square refinements; the differences between the values for these parameters in the same conformer and between the different conformers were kept constant at the values obtained from the ab initio molecular orbital calculations.

  19. Ab initio study of the structural, elastic, thermodynamic, electronic and vibration properties of TbMg intermetallic compound

    NASA Astrophysics Data System (ADS)

    Mogulkoc, Y.; Ciftci, Y. O.; Kabak, M.; Colakoglu, K.

    2014-07-01

    The structural, elastic, thermodynamic, electronic and vibrational properties of CsCl-type TbMg have been studied by performing ab initio calculations based on density functional theory using the Vienna Ab initio Simulation Package (VASP). The exchange correlation potential within the generalized-gradient approximation (GGA) of projector augmented wave (PAW) method is used. The calculated structural parameters, such as the lattice constant, bulk modulus, its pressure derivative, formation energy and second-order elastic constants are presented in this paper. The obtained results are compared with related experimental and theoretical studies. The electronic band calculations, total density of states (DOS), partial DOS and charge density are also presented. Formation enthalpy and Cauchy pressure are determined. In order to obtain more information the elastic properties such as Zener anisotropy factor, Poisson’s ratio, Young modulus, isotropic shear modulus, Debye temperature and melting point have been carried out. The elastic constants are calculated in zero and different pressure ranges (0-50 GPa) with bulk modulus. We have performed the thermodynamic properties of TbMg by using quasi-harmonic Debye model. The temperature and pressure variation of the volume, bulk modulus, and thermal expansion coefficient have been predicted over a pressure range of 0-25 GPa for of TbMg. Pressure dependence of the anisotropy factors, Young’s modulus, Poisson’s ratios, bulk modulus and axis compressibility of TbMg are presented along different directions and planes. Finally, the phonon dispersion curves are presented for TbMg.

  20. Combined matrix isolation IR spectroscopic and ab initio quantum chemical study of the molecular structure of aminomethylphosphinic acid

    NASA Astrophysics Data System (ADS)

    Stepanian, S. G.; Reva, I. D.; Radchenko, E. D.; Latajka, Z.; Wierzejewska, M.; Ratajczak, H.

    1999-06-01

    The molecular structure of 1-methylaminophosphinic acid (AMPA) was investigated with the matrix isolation IR spectroscopy and ab initio calculations performed with RHF, MP2, MP3, MP4(DQ), MP4(SDQ) and MP4(SDTQ) methods. Three pseudopotential basis sets designed as CEP-31G were used in the calculations: Basis Set I-CEP-31G with the d-functions on phosphorus; Basis Set II-CEP-31G with the d-functions on all heavy atoms; Basis Set III-CEP-31G with the d-functions on all heavy atoms and p-functions on hydrogens. Four stable molecular and four stable zwitterion conformers of aminophosphinic acid were found via ab initio calculations. According to the calculations, molecular conformers are always more stable than the zwitterion conformers, irrespective of the basis set size and level of theory. This result is in good agreement with matrix IR spectrum of the AMPA. The presence of the bands of OH stretching and NH 2 bending vibrations and the absence of the bands of POO - and NH 3+ vibrations are the evidence of molecular structure of AMPA in the isolated state. An increased number of vibrational bands is found in the IR spectrum. It is explained by the high conformation lability of AMPA molecules which is related to very low barrier of rotation about C-P bond. The IR spectrum is actually determined by multiple sites of AMPA molecule packed in the Ar crystal, which considerably increases the number of bands in the IR spectrum.

  1. From Geometry Optimization to Time Dependent Molecular Structure Modeling: Method Developments, ab initio Theories and Applications

    NASA Astrophysics Data System (ADS)

    Liang, Wenkel

    This dissertation consists of two general parts: (I) developments of optimization algorithms (both nuclear and electronic degrees of freedom) for time-independent molecules and (II) novel methods, first-principle theories and applications in time dependent molecular structure modeling. In the first part, we discuss in specific two new algorithms for static geometry optimization, the eigenspace update (ESU) method in nonredundant internal coordinate that exhibits an enhanced performace with up to a factor of 3 savings in computational cost for large-sized molecular systems; the Car-Parrinello density matrix search (CP-DMS) method that enables direct minimization of the SCF energy as an effective alternative to conventional diagonalization approach. For the second part, we consider the time dependence and first presents two nonadiabatic dynamic studies that model laser controlled molecular photo-dissociation for qualitative understandings of intense laser-molecule interaction, using ab initio direct Ehrenfest dynamics scheme implemented with real-time time-dependent density functional theory (RT-TDDFT) approach developed in our group. Furthermore, we place our special interest on the nonadiabatic electronic dynamics in the ultrafast time scale, and presents (1) a novel technique that can not only obtain energies but also the electron densities of doubly excited states within a single determinant framework, by combining methods of CP-DMS with RT-TDDFT; (2) a solvated first-principles electronic dynamics method by incorporating the polarizable continuum solvation model (PCM) to RT-TDDFT, which is found to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. (3) applications of the PCM-RT-TDDFT method to study the intramolecular charge-transfer (CT) dynamics in a C60 derivative. Such work provides insights into the

  2. The evolution of the structural, vibrational and electronic properties of the cyclic ethers - on ring size. An ab initio study

    NASA Astrophysics Data System (ADS)

    Ford, Thomas A.

    2014-09-01

    The molecular structures, vibrational spectra and atomic charges of the alicyclic ethers containing from two to five carbon atoms have been determined by means of ab initio calculations, at the level of second order Møller-Plesset perturbation theory and using Dunning's augmented correlation-consistent polarized valence triple-zeta basis set. Two isomers of the oxetane, tetrahydrofuran and tetrahydropyran molecules have been identified and their relative energies determined. Structural properties, such as the COC bond angles and the CH bond lengths, are found to increase steadily with increasing ring size and with decreasing ionization energy. The mean CH2 stretching and bending wavenumbers exhibit the reverse behaviour, while the mean wavenumbers of the CH2 wagging and twisting modes follow the same trend as the structural features. The ring mode wavenumbers vary in a less regular way. The charges of the oxygen, α-carbon and axial and equatorial α- and β-hydrogen atoms also do not show systematic dependences on ring size or ionization energy. The trends in the values of these properties have been rationalized.

  3. 1-Phenyl-1,2-dicarba-closo-dodecaborane, 1-Ph-1,2-closo-C(2)B(10)H(11). Synthesis, Characterization, and Structure As Determined in the Gas Phase by Electron Diffraction, in the Crystalline Phase at 199 K by X-ray Diffraction, and by ab Initio Computations.

    PubMed

    Brain, Paul T.; Cowie, Jill; Donohoe, David J.; Hnyk, Drahomír; Rankin, David W. H.; Reed, David; Reid, Bruce D.; Robertson, Heather E.; Welch, Alan J.; Hofmann, Matthias; Schleyer, Paul von Ragué

    1996-03-13

    The compound 1-phenyl-1,2-dicarba-closo-dodecaborane(12), 1-C(6)H(5)-1,2-closo-C(2)B(10)H(11) (1), has been synthesized and characterized by a complete assignment of its (11)B NMR spectrum via (11)B{(1)H}/(11)B{(1)H} (COSY), (1)H{(11)B(selective)} and (1)H{(11)B}/(1)H{(11)B} (COSY) spectroscopy. An electron- and X-ray diffraction investigation of 1, complemented by ab initio calculations, has been undertaken. The gas-phase electron-diffraction (GED) data can be fitted by several models describing conformations which differ in the position of the phenyl ring with respect to the carborane cage. Local symmetries ofC(2)(v)() and D(6)(h)() for the 1,2-C(2)B(10) and C(6) moieties, respectively, were adopted in the GED model in order to simplify the problem. In addition, constraints among the close-lying C-C and B-B bonds were employed. However, even though such simplifications led to satisfactory refinements (R(G) = 0.069-0.071), a unique, definitive solution could not be gained. The (C-C)(mean), (C-B)(mean) and (B-B)(mean) bond lengths,r(a), are ca. 1.44, 1.72, and 1.78 Å, respectively. The C(6) hexagon, with r(a)(C-C) = ca. 1.394 Å, either eclipses the C(1)-C(2) vector (overall C(s)() symmetry) or more or less eclipses the C(1)-B(4) cluster bond (overall C(1) symmetry). In contrast, in the solid at 199 K, the ring lies at a position intermediate between the two GED positions, as determined by X-ray crystallography [C(8)H(16)B(10), monoclinic P2(1)/a: a = 12.047(3) Å, b = 18.627(4) Å, c = 12.332(5) Å, beta = 110.09(4) degrees, Z = 8]. The C-B distances span the range 1.681(6)-1.743(5) Å, and B-B lengths lie between 1.756(6) and 1.795(6) Å. A similar conformation was found for the theoretical (RHF/6-31G level) structure which was fully optimized in C(1) symmetry. The r(e) distances are consistent with the dimensions derived in the experimental studies. IGLO calculations of the (11)B chemical shifts, in addition to SCF single-point energies of the GED structures

  4. Numerical criteria for the evaluation of ab initio predictions of protein structure.

    PubMed

    Zemla, A; Venclovas, C; Reinhardt, A; Fidelis, K; Hubbard, T J

    1997-01-01

    As part of the CASP2 protein structure prediction experiment, a set of numerical criteria were defined for the evaluation of "ab initio" predictions. The evaluation package comprises a series of electronic submission formats, a submission validator, evaluation software, and a series of scripts to summarize the results for the CASP2 meeting and for presentation via the World Wide Web (WWW). The evaluation package is accessible for use on new predictions via WWW so that results can be compared to those submitted to CASP2. With further input from the community, the evaluation criteria are expected to evolve into a comprehensive set of measures capturing the overall quality of a prediction as well as critical detail essential for further development of prediction methods. We discuss present measures, limitations of the current criteria, and possible improvements. PMID:9485506

  5. On combining temperature and pressure effects on structural properties of crystals with standard ab initio techniques

    NASA Astrophysics Data System (ADS)

    Erba, A.

    2014-09-01

    A general-purpose, fully automated, computationally efficient implementation is presented of a series of techniques for the simultaneous description of pressure and temperature effects on structural properties of materials, by means of standard ab initio simulations. Equilibrium volume, bulk modulus, thermal expansion coefficient, equation-of-state, Grüneisen parameter, constant-pressure and constant-volume specific heats are computed as a function of temperature and pressure for the simple crystal of diamond and compared with accurate experimental data. Convergence of computed properties with respect to super-cell size is critically discussed. The effect on such properties of the adopted exchange-correlation functional of the density-functional-theory is discussed by considering three different levels of approximation (including hybrids): it is found to be rather small for the temperature dependence of equilibrium volume and bulk modulus, whereas it is quite large as regards their absolute values.

  6. On combining temperature and pressure effects on structural properties of crystals with standard ab initio techniques.

    PubMed

    Erba, A

    2014-09-28

    A general-purpose, fully automated, computationally efficient implementation is presented of a series of techniques for the simultaneous description of pressure and temperature effects on structural properties of materials, by means of standard ab initio simulations. Equilibrium volume, bulk modulus, thermal expansion coefficient, equation-of-state, Grüneisen parameter, constant-pressure and constant-volume specific heats are computed as a function of temperature and pressure for the simple crystal of diamond and compared with accurate experimental data. Convergence of computed properties with respect to super-cell size is critically discussed. The effect on such properties of the adopted exchange-correlation functional of the density-functional-theory is discussed by considering three different levels of approximation (including hybrids): it is found to be rather small for the temperature dependence of equilibrium volume and bulk modulus, whereas it is quite large as regards their absolute values. PMID:25273420

  7. Ab Initio study of multiple exciton generation in layered structure quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Zimmerman, Paul; Cui, Yi; Musgrave, Charles

    2011-03-01

    Multiple Exciton Generation (MEG) can potentially increase the photovoltaic conversion efficiency significantly and has been reported in a large number of systems and has been extensively studies theoretically and experimentally. Here we report our study of the MEG process in inorganic layered structure quantum dots using high level Ab Initio methods that are capable of electronic states of multi-exciton in character. Our results show that multiple states that are of multi-exciton character exist in quantum dots and different mechanisms govern the MEG process in quantum dots: (1) MEG through an internal crossing mechanism from a optically active state to an optically dark multi-exciton state, as in the singlet fission process of pentacene; and (2) direct multi-exciton generation through an optically active excited state. We also discuss detailed structure evolution of quantum dots, from stable molecular like structures of various shapes and sizes, to larger quantum dots of bulk like bonding motifs with distinctive surface structures and illustrate the correlation between structure and the multi-exciton states.

  8. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.

    PubMed

    Rana, Malay Kumar; Chandra, Amalendu

    2013-05-28

    The behavior of water near a graphene sheet is investigated by means of ab initio and classical molecular dynamics simulations. The wetting of the graphene sheet by ab initio water and the relation of such behavior to the strength of classical dispersion interaction between surface atoms and water are explored. The first principles simulations reveal a layered solvation structure around the graphene sheet with a significant water density in the interfacial region implying no drying or cavitation effect. It is found that the ab initio results of water density at interfaces can be reproduced reasonably well by classical simulations with a tuned dispersion potential between the surface and water molecules. Calculations of vibrational power spectrum from ab initio simulations reveal a shift of the intramolecular stretch modes to higher frequencies for interfacial water molecules when compared with those of the second solvation later or bulk-like water due to the presence of free OH modes near the graphene sheet. Also, a weakening of the water-water hydrogen bonds in the vicinity of the graphene surface is found in our ab initio simulations as reflected in the shift of intermolecular vibrational modes to lower frequencies for interfacial water molecules. The first principles calculations also reveal that the residence and orientational dynamics of interfacial water are somewhat slower than those of the second layer or bulk-like molecules. However, the lateral diffusion and hydrogen bond relaxation of interfacial water molecules are found to occur at a somewhat faster rate than that of the bulk-like water molecules. The classical molecular dynamics simulations with tuned Lennard-Jones surface-water interaction are found to produce dynamical results that are qualitatively similar to those of ab initio molecular dynamics simulations. PMID:23742495

  9. Crystal structure, ab initio calculations and fingerprint plots of a new polymorph of N‧,N″,N″‧-triphenylbiuret

    NASA Astrophysics Data System (ADS)

    Pereira Silva, Pedro S.; Ghalib, Raza Murad; Mehdi, Sayed Hasan; Hashim, Rokiah; Sulaiman, Othman; Silva, Manuela Ramos

    2011-05-01

    A new polymorph of N', N″, N″'-triphenylbiuret, C 20H 17N 3O 2 (form II), has been synthesized and the structure has been solved by X-ray diffraction. The crystals are monoclinic, space group P2 1/ c, with a = 7.6966 (3) Å, b = 12.5490 (4) Å, c = 18.5996 (6) Å, β = 107.632(2)°, Mr = 331.37, V = 1712.04 (10) Å 3, Z = 4 and R = 0.0454. The hydrogen bonding of this polymorph is considerably different from that of the previously known structure. The molecules are linked in infinite chains, via C-H⋯O hydrogen bonds and there is also an intramolecular N-H⋯O hydrogen bond. The intermolecular interactions present in this polymorph, and on the previously reported polymorph, were analysed by means of the fingerprint plots derived from the Hirshfeld surfaces. The fingerprint plots evidenced the different packing modes of the two structures. Quantum-mechanical ab initio calculations for the free molecule were performed using the Hartree-Fock and DFT/B3LYP methods with the 6-31G(d,p) basis set of wave functions. The solid-state conformations compared with those obtained theoretically from DFT calculations for the isolated molecules show significant differences. Some difficulties of using quantum-mechanical calculations for the determination of relative conformational energies are also discussed.

  10. Ab initio study of the structural, tautomeric, pairing, and electronic properties of seleno-derivatives of thymine.

    PubMed

    Vázquez-Mayagoitia, Alvaro; Huertas, Oscar; Brancolini, Giorgia; Migliore, Agostino; Sumpter, Bobby G; Orozco, Modesto; Luque, F Javier; Di Felice, Rosa; Fuentes-Cabrera, Miguel

    2009-10-29

    The structural, tautomeric, hydrogen-bonding, stacking, and electronic properties of a seleno-derivative of thymine (T), denoted here as 4SeT and created by replacing O4 in T with Se, are investigated by means of ab initio computational techniques. The structural properties of T and 4SeT are very similar, and the geometrical differences are mainly limited to the adjacent environment of the C-Se bond. The canonical "keto" form is the most stable tautomer, in the gas phase and in aqueous solution, for both T and 4SeT. It is argued that the competition between two opposite trends, i.e., a decrease in the base-pairing ability and an increase of the stacking interaction upon incorporation of 4SeT into a duplex, likely explains the similar experimental melting points of a seleno-derivative duplex (Se-DNA) and its native counterpart. Interestingly, the underlying electronic structure shows that replacement of O4 with Se promotes a reduction in the HOMO-LUMO gap and an increase in interplane coupling, which suggests that Se-DNA could be potentially useful for nanodevice applications. This finding is further supported by the fact that transfer integrals between 4SeT...A stacked base pairs are larger than those determined for similarly stacked natural T...A pairs. PMID:19813710

  11. Comparative study of tight-binding and ab initio electronic structure calculations focused on magnetic anisotropy in ordered CoPt alloy

    NASA Astrophysics Data System (ADS)

    Zemen, J.; Mašek, J.; Kučera, J.; Mol, J. A.; Motloch, P.; Jungwirth, T.

    2014-04-01

    An empirical multiorbital (spd) tight binding (TB) model including magnetism and spin-orbit coupling is applied to calculations of magnetic anisotropy energy (MAE) in CoPt L10 structure. A realistic Slater-Koster parametrisation for single-element transition metals is adapted for the ordered binary alloy. Spin magnetic moment and density of states are calculated using a full-potential linearised augmented plane-wave (LAPW) ab initio method and our TB code with different variants of the interatomic parameters. Detailed mutual comparison of this data allows for determination of a subset of the compound TB parameters tuning of which improves the agreement of the TB and LAPW results. MAE calculated as a function of band filling using the refined parameters is in broad agreement with ab initio data for all valence states and in quantitative agreement with ab initio and experimental data for the natural band filling. Our work provides a practical basis for further studies of relativistic magnetotransport anisotropies by means of local Green's function formalism which is directly compatible with our TB approach.

  12. Ab initio molecular dynamics studies of the structure and dynamics of molten SexTe1-x alloys

    NASA Astrophysics Data System (ADS)

    Lomba, E.; Katcho, N. A.; Otero-Díaz, L. C.

    2005-10-01

    We calculate the microscopic structure and dynamics of molten SexTe1-x alloys ( x=0.3 , 0.5, 0.7) at 748 K by means of ab initio molecular dynamics. We present results for the static and dynamic structure factors, diffusion coefficients, and frequency spectra, in addition to the electronic density of states. Both the results for the structural and dynamic properties are in relatively good agreement with the available experimental data, despite the known shortcomings of ab initio techniques for the limiting case x=0 . The results also indicate that, as expected, the increase in the number of Te atoms augments the metallic character of the sample in close connection with a corresponding disruption of the Se chain network that dominates the structure of the condensed phases of pure selenium.

  13. Electronic and transport properties of structural defects in monolayer germanene: An ab initio investigation

    NASA Astrophysics Data System (ADS)

    Padilha, José Eduardo; Pontes, Renato Borges

    2016-01-01

    Ab initio electronic structure and transport calculations of 2D hexagonal germanium with four possible structural defects were performed. The considered defects were Stone-Wales (SW), single vacancy (5-9) and two divacancies (5-8-5 and 555-777). We showed that these defects present a local reconstruction that can be clearly identified by STM images. Among the investigated defects, we verified that the SW defect has the lowest formation energy. We showed that in the presence of structural defects the 2D hexagonal germanium maintains its Dirac cone feature only for the single vacancy. The divacancies and the SW defect destroy the linear dispersion relation of the electrons, near the Fermi level, in this system. Moreover, we verified that these defects create scattering centers, which can lead to diminishing of the current by roughly 42% for the Stone-Wales and single vacancy, 55% for the divacancy 5-8-5 and 68% for the 555-777 divacancy.

  14. Ab initio calculation of structural stability, electronic and optical properties of Ag{sub 2}Se

    SciTech Connect

    Rameshkumar, S.; Jayalakshmi, V.; Jaiganesh, G.; Palanivel, B.

    2015-06-24

    The structural stability, electronic and optical properties of Ag{sub 2}Se compound is studied using ab initio packages. Ag{sub 2}Se is found to crystallize in orthorhombic structure with two different space groups i.e. P2{sub 1}2{sub 1}2{sub 1} (No. 19) and P222{sub 1} (No. 17). For this compound in these two space groups, the total energy has been computed as a function of volume. Our calculated results suggest that the P2{sub 1}2{sub 1}2{sub 1}–phase is more stable than that of the P222{sub 1}–phase. The band structure calculation show that Ag{sub 2}Se is semimetallic with an overlap of about 0.014 eV in P2{sub 1}2{sub 1}2{sub 1}–phase whereas is metallic in nature in P222{sub 1}–phase. Moreover, the optical properties including the dielectric function, energy loss spectrum are obtained and analysed.

  15. Local Structure in Ab Initio Liquid Water: Signatures of Amorphous Phases

    NASA Astrophysics Data System (ADS)

    Santra, Biswajit; Distasio, Robert A., Jr.; Martelli, Fausto; Car, Roberto

    Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyze the local structure in such highly accurate ab initio liquid water. At ambient conditions, the LSI probability distribution, P(I), was unimodal with most water molecules characterized by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P(I) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies among water molecules with the same LSI identities, we demonstrate that the signatures of the experimentally observed low- and high-density amorphous phases of ice are present in the IPES of ambient liquid water This work was supported by the DOE: DE-SC0008626, DE-SC0005180.

  16. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    SciTech Connect

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  17. AB Initio Study of the Structure and Spectroscopic Properties of Halogenated Thioperoxy Radicals

    NASA Technical Reports Server (NTRS)

    Munoz, Luis A.; Binning, R. C., Jr.; Weiner, Brad R.; Ishikawa, Yasuyuki

    1997-01-01

    Thioperoxy (XSO or XOS) radicals exist in a variety of chemical environments, and they have as a consequence drawn some interest. HSO, an important species in the chemistry of the troposphere, has been examined both experimentally. The halogenated (X = F, Cl or Br) peroxy species and isovalent thioperoxy species have been studied less, but they too are potentially interesting because oxidized sulfur species and halogen sources are present in the atmosphere. Learning the fate of XSO and XOS radicals is important to understanding the atmospheric oxidation chemistry of sulfur compounds. Of these, FSO and ClSO are particularly interesting because they have been directly detected spectroscopically. Recent studies in our laboratory on the photochemistry of thionyl halides (X2SO; where X = F or Cl) have suggested new ways to generate XSO species. The laser-induced photodissociation of thionyl fluoride, F2SO, at 193 nm and thionyl chloride, ClSO, at 248 nm is characterized by a radical mechanism, X2SO -> XSO + X. The structure of FSO has been characterized experimentally by Endo et cd. employing microwave spectroscopy. Using the unrestricted Hartree-Fock (UHF) self-consistent field (SCF) method, Sakai and Morokuma computed the electronic structure of the ground (sup 2)A" and the first excited (sup 2)A' states of FSO. Electron correlation was not taken into account in their study. In a laser photodissociation experiment, Huber et al. identified ClSO mass spectromctrically. ClSO has also been detected in low temperature matrices by EPR and in the gas phase by far IR laser magnetic resonance. Although the structure of FSO is known in detail, the only study, experimental or theoretical, of CISO has been an ab initio HFSCF study by Hinchliffe. Electron correlation corrections were also excluded from this study. In order to better understand the isomerization and dissociation dynamics of the radical species, we have performed ab initio correlated studies of the potential energy

  18. Crystal structure and magnetism in α -RuCl3 : An ab initio study

    NASA Astrophysics Data System (ADS)

    Kim, Heung-Sik; Kee, Hae-Young

    2016-04-01

    α -RuCl3 has been proposed recently as an excellent playground for exploring Kitaev physics on a two-dimensional (2D) honeycomb lattice. However, structural clarification of the compound has not been completed, which is crucial in understanding the physics of this system. Here, using ab initio electronic structure calculations, we study a full three-dimensional (3D) structure of α -RuCl3 , including the effects of spin-orbit coupling (SOC) and electronic correlations. The three major results are as follows: (i) SOC suppresses dimerization of Ru atoms, which exists in other Ru compounds such as isostructural Li2RuO3 , and makes the honeycomb closer to an ideal one. (ii) The nearest-neighbor Kitaev exchange interaction between the jeff=1 /2 pseudospin strongly depends on the Ru-Ru distance and the Cl position, originating from the nature of the edge-sharing geometry. (iii) The optimized 3D structure without electronic correlations has P 3 ¯1 m space-group symmetry independent of SOC, but including electronic correlation changes the optimized 3D structure to either C 2 /m or C m c 21 within 0.1 meV per formula unit (f.u.) energy difference. The reported P 3112 structure is also close in energy. The interlayer spin-exchange coupling is a few percent of the in-plane spin-exchange terms, confirming that α -RuCl3 is close to a 2D system. We further suggest how to increase the Kitaev term via tensile strain, which sheds light in realizing the Kitaev spin-liquid phase in this system.

  19. High Resolution Powder Diffraction and Structure Determination

    SciTech Connect

    Cox, D. E.

    1999-04-23

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 {micro}m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  20. Ab initio electron affinity and hyperfine structure constants of ^231Pa:

    NASA Astrophysics Data System (ADS)

    Dinov, Konstantin D.; Beck, Donald R.

    1996-05-01

    We have performed valence shell Relativistic Configuration Interaction calculations(Konstantin D. Dinov and Donald R. Beck, Electron affinity and hyperfine structure constants of Pa^-: 7p attachment.) Submitted to Phys. Rev. A for the Electron Affinity (EA) of ^231Pa. Our result of 0.222 eV for the binding energy of the Pa^- 5f^2 6d 7s^2 7p J=6 state is consistent with the experimental yield(X-L. Zhao, M-J. Nadeau, M.A. Garwan, L.R. Kilius and A.E. Litherland, Nuc. Instr. Meth. B 92), 258-64 (1994). Our result for the hyperfine structure constants of Pa^-, is the first available ab initio result. No other bound states were found for the 7p attachment. We didn't find evidence to support possible 5d attachment in this system. This work extends our previous calculations for the Rare Earth negative ions(K.D. Dinov and D.R. Beck, Phys. Rev. A 52) , 2632-37 (1995); K. Dinov and D.R. Beck, Phys. Rev. A 51 (2), 1680-82 (1995); K. Dinov, D.R. Beck and D. Datta, Phys. Rev. A 50 (2), 1144-48 (1994).

  1. Infrared spectra and structure of phenylacetonitrile and of its carbanion: an ab initio force field treatment

    NASA Astrophysics Data System (ADS)

    Binev, I. G.; Tsenov, J. A.; Velcheva, E. A.; Juchnovski, I. N.

    1995-01-01

    The structures of phenylacetonitrile and of its carbanion have been studied on the basis of IR spectroscopic data (including literature results) and of ab initio force field calculations. The assignment (D. Croisat et al., J. Org. Chem., 157 (1992) 6435) of the IR bands of phenylacetonitrile, its d5 analogue, and their carbanions has been confirmed. An excellent linear correlation ( R = 0.999) has been found between the theoretical and experimental IR frequencies of the species studied. The calculations predict well the strong increase in intensity (five to 42 fold) of the vCN, vS8 and vI9 bands which accompanies the conversion of the phenylacetonitrile molecule to its carbanion. The structures of both sodium and potassium derivatives of phenylacetonitrile in dimethyl sulfoxide are close to that of the kinetically free phenylacetonitrile carbanion. The carbanionic center is practically planar; the cyano group carries a considerable negative charge, but its influence on the carbanionic center is mainly inductive. The carbanionic charge is delocalized over the phenyl ring (0.42 e -), methide (0.30 e -), and cyano (0.28 e -) groups.

  2. Ab initio structural modeling of and experimental validation for Chlamydia trachomatis protein CT296 reveal structural similarity to Fe(II) 2-oxoglutarate-dependent enzymes

    SciTech Connect

    Kemege, Kyle E.; Hickey, John M.; Lovell, Scott; Battaile, Kevin P.; Zhang, Yang; Hefty, P. Scott

    2012-02-13

    Chlamydia trachomatis is a medically important pathogen that encodes a relatively high percentage of proteins with unknown function. The three-dimensional structure of a protein can be very informative regarding the protein's functional characteristics; however, determining protein structures experimentally can be very challenging. Computational methods that model protein structures with sufficient accuracy to facilitate functional studies have had notable successes. To evaluate the accuracy and potential impact of computational protein structure modeling of hypothetical proteins encoded by Chlamydia, a successful computational method termed I-TASSER was utilized to model the three-dimensional structure of a hypothetical protein encoded by open reading frame (ORF) CT296. CT296 has been reported to exhibit functional properties of a divalent cation transcription repressor (DcrA), with similarity to the Escherichia coli iron-responsive transcriptional repressor, Fur. Unexpectedly, the I-TASSER model of CT296 exhibited no structural similarity to any DNA-interacting proteins or motifs. To validate the I-TASSER-generated model, the structure of CT296 was solved experimentally using X-ray crystallography. Impressively, the ab initio I-TASSER-generated model closely matched (2.72-{angstrom} C{alpha} root mean square deviation [RMSD]) the high-resolution (1.8-{angstrom}) crystal structure of CT296. Modeled and experimentally determined structures of CT296 share structural characteristics of non-heme Fe(II) 2-oxoglutarate-dependent enzymes, although key enzymatic residues are not conserved, suggesting a unique biochemical process is likely associated with CT296 function. Additionally, functional analyses did not support prior reports that CT296 has properties shared with divalent cation repressors such as Fur.

  3. On the feasibility of ab initio electronic structure calculations for Cu using a single s orbital basis

    SciTech Connect

    Hegde, Ganesh Bowen, R. Chris

    2015-10-15

    The accuracy of a single s-orbital representation of Cu towards enabling multi-thousand atom ab initio calculations of electronic structure is evaluated in this work. If an electrostatic compensation charge of 0.3 electron per atom is used in this basis representation, the electronic transmission in bulk and nanocrystalline Cu can be made to compare accurately to that obtained with a Double Zeta Polarized basis set. The use of this representation is analogous to the use of single band effective mass representation for semiconductor electronic structure. With a basis of just one s-orbital per Cu atom, the representation is extremely computationally efficient and can be used to provide much needed ab initio insight into electronic transport in nanocrystalline Cu interconnects at realistic dimensions of several thousand atoms.

  4. A Initio Lcao Electronic Structure Calculations of Layered Transition Metal Compounds.

    NASA Astrophysics Data System (ADS)

    Dawson, William G.

    1987-09-01

    Available from UMI in association with The British Library. In this work the electronic structure of three systems of layered transition metal compounds are examined using an ab initio tight binding (LCAO) method using the Xalpha exchange/correlation approximation: group VI ditellurides, group IV trichalcogenides and quaternary copper oxide defect-perovskites. A chemical pseudopotential argument is presented in order to justify the use of a small basis set of atomic orbitals. The group VI transition metal compounds MoTe_2 and WTe _2 show strong metal-metal interactions and MoTe_2 undergoes an unusual phase transition with the lattice parameter perpendicular to the layers decreasing with increasing temperature. The group IV transition metal trichalcogenides provide a useful series for study due to their quasi-1-dimensional character and the occurrence of two closely related structural variants. The atypical compound ZrTe_3 is given special attention because of its apparent semimetallic nature. The final group of compounds studied are the high Tc superconducting ceramics Ba-La-Cu-O and Ba-Y-Cu-O. The technological importance of compounds with zero resistance and showing the Meissner effect (expelling magnetic fields) above liquid nitrogen temperatures and the, as yet, undefined nature of the mechanism of superconductivity stresses the need to carefully examine the electronic structure of these materials. The role of oxygen vacancies, the charge state of the copper ions and the possibility of structural phase transitions are some of the topics considered here. The use of an atomic-orbital basis allows a comparatively straightforward description of the chemical bonding in a crystal--especially useful when the unit cell contains a large number of atoms.

  5. Origin of the Hadži ABC structure: An ab initio study

    NASA Astrophysics Data System (ADS)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2015-11-01

    Medium and strong hydrogen bonds are well known to give rise to broad features in the vibrational spectrum often spanning several hundred wavenumbers. In some cases, these features can span over 1000 cm-1 and even contain multiple broad peaks. One class of strongly hydrogen-bonded dimers that includes many different phosphinic, phosphoric, sulfinic, and selenic acid homodimers exhibits a three-peaked structure over 1500 cm-1 broad. This unusual feature is often referred to as the Hadži ABC structure. The origin of this feature has been debated since its discovery in the 1950s. Only a couple of theoretical studies have attempted to interpret the origin of this feature; however, no previous study has been able to reproduce this feature from first principles. Here, we present the first ab initio calculation of the Hadži ABC structure. Using a reduced dimensionality calculation that includes four vibrational modes, we are able to reproduce the three-peak structure and much of the broadness of the feature. Our results indicate that Fermi resonances of the in-plane bend, out-of-plane bend, and combination of these bends play significant roles in explaining this feature. Much of the broadness of the feature and the ability of the OH stretch mode to couple with many overtone bending modes are captured by including an adiabatically separated dimer stretch mode in the model. This mode modulates the distance between the monomer units and accordingly the strength of the hydrogen-bonds causing the OH stretch frequency to shift from 2000 to 3000 cm-1. Using this model, we were also able to reproduce the vibrational spectrum of the deuterated isotopologue which consists of a single 500 cm-1 broad feature. Whereas previous empirical studies have asserted that Fermi resonances contribute very little to this feature, our study indicates that while not appearing as a separate peak, a Fermi resonance of the in-plane bend contributes substantially to the feature.

  6. Dynamics and Structure of Point Defects in Forsterite: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Churakov, S.; Khisina, N.; Urusov, V.; Wirth, R.

    2001-12-01

    OH-bearing fluid inclusions in Fo92 forsterite samples from peridotite nodule 9206 (Udachnaja kimberlite pipe)[1] were documented recently based on TEM and IR studies. The Fourier transform of diffraction pattern from the inclusions exhibited a pattern, which is interpreted as ordered planar (2H)xMg defects. In this study the structure and dynamics of protons associated with Mg(1), Mg(2) vacancies and interstitial polyhedrons ordered in a (100) plane corresponding to double unite cell periodicity of the forsterite lattice has been investigated by ab initio quantum mechanic calculations. Static structure optimizations and ab-initio molecular dynamics (MD) simulations have been performed using the CPMD density functional code[2]. The calculations were accomplished with the BLYP-functional utilizing the generalized gradient approximation. Non-local Goedecker-type pseudopotentials[3] have been applied to account for core electrons. Valence electron orbitals were approximated by plane wave expansion up to 70 Ry energy cutoff. The energy of static structures was sampled on 2x2x2 Monkhorst-Pack mesh[4]. During the structure relaxation parameters of an orthorhombic 2x1x2 supercell contaning 116 atoms corresponding to Mg28Si16O64H8 hydrous olivine was fixed at experimental values of a=9.524Å b=10.225Å and c=11.988Å relative to the Pbnm space group. Series of NVT-MD calculations were performed at 1000 K on 2x1x1 supercell with 58 atoms using four chain Nose thermostat. Randomly disturbed optimized structures were used as initial configuration for MD runs. The 1ps system equilibration is followed by trajectory production over 5 ps interval. A point energy sampling was applied in all MD calculations. A series of geometry optimizations, starting with various initial position of protons in Mg(1), Mg(2) and interstitial sites were carried out to obtain a structure with the lowest lattice energy. It was found that structures with protons completely located within the M1

  7. Structures and energies of D-galactose and galabiose conformers as calculated by ab initio and semiempirical methods.

    PubMed

    Rahal-Sekkal, Majda; Sekkal, Nezha; Kleb, Dirk C; Bleckmann, Paul

    2003-05-01

    Optimized geometries and total energies of some conformers of alpha- and beta-D-galactose have been calculated using the RHF/6-31G* ab initio method. Vibrational frequencies were computed at the 6-31G* level for the conformers that favor internal hydrogen bonding, in order to evaluate their enthalpies, entropies, Gibbs free energies, and then their structural stabilities. The semiempirical AM1, PM3, MNDO methods have also been performed on the conformers GG, GT, and TG of alpha- and beta-D-galactose. In order to test the reliability of each semiempirical method, the obtained structures and energies from the AM1, PM3, and MNDO methods have been compared to those achieved using the RHF/6-31G* ab initio method. The MNDO method has not been investigated further, because of the large deviation in the structural parameters compared with those obtained by the ab initio method for the galactose. The semiempirical method that has yielded the best results is AM1, and it has been chosen to perform structural and energy calculations on the galabiose molecule (the disaccharides constituted by two galactose units alpha 1,4 linked). The goal of such calculations is to draw the energy surface maps for this disaccharide. To realize each map, 144 different possible conformations resulting from the rotations of the two torsional angles psi and phi of the glycosidic linkage are considered. In each calculation, at each increment of psi and phi, using a step of 30 degrees from 0 to 330 degrees, the energy optimization is employed. In this article, we report also calculations concerning the galabiose molecule using different ab initio levels such as RHF/6-31G*, RHF/6-31G**, and B3Lyp/6-31G*. PMID:12692790

  8. Structure models: From shell model to ab initio methods. A brief introduction to microscopic theories for exotic nuclei

    NASA Astrophysics Data System (ADS)

    Bacca, Sonia

    2016-04-01

    A brief review of models to describe nuclear structure and reactions properties is presented, starting from the historical shell model picture and encompassing modern ab initio approaches. A selection of recent theoretical results on observables for exotic light and medium-mass nuclei is shown. Emphasis is given to the comparison with experiment and to what can be learned about three-body forces and continuum properties.

  9. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    SciTech Connect

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A.

    2015-12-28

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.

  10. Ab initio quasiparticle band structure of ABA and ABC-stacked graphene trilayers

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos G.; Capaz, Rodrigo B.; Louie, Steven G.

    2014-01-01

    We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density-functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low-energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the self-energy corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher-energy bands, which is proportional to the nearest-neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the self-energy corrections. Finally, other effects, such as trigonal warping, electron-hole asymmetry, and energy gaps, are discussed in terms of the associated parameters.

  11. Ab initio molecular orbital study of the structures of purine hydrates

    SciTech Connect

    Colson, A.O.; Sevilla, M.D.

    1996-03-14

    The structures of the isomers of purine hydrates [4(5)-hydroxy-5(4)-hydropurines] have been geometry optimized with ab initio quantum chemical methods at the 6-31G{sup *} basis set and with the semiempirical method PM3. These hydrates which can result from reduction of radical species formed by attack of hydroxyl radical at the 4,5 double bond in the purines, show significant geometrical distortion when compared to the natural bases. More specifically, the cis isomers adopt a `butterfly` conformation, while in the trans isomers, the pyrimidine and imidazole rings tilt opposite to each other. Our results predict the cis purine hydrate isomers are far more stable than the trans isomers by 10-18 kcal/mol at the 6-31G{sup *} level, whereas the 4-hydroxy-5-hydropurines are found to be slightly more energetically stable than the 5-hydroxy-4-hydropurines. The `butterfly` conformation of the cis isomers constitutes a bulky lesion which will result in a significant distortion of the DNA helix. 33 refs., 2 figs., 3 tabs.

  12. PSI3: an open-source Ab Initio electronic structure package.

    PubMed

    Crawford, T Daniel; Sherrill, C David; Valeev, Edward F; Fermann, Justin T; King, Rollin A; Leininger, Matthew L; Brown, Shawn T; Janssen, Curtis L; Seidl, Edward T; Kenny, Joseph P; Allen, Wesley D

    2007-07-15

    PSI3 is a program system and development platform for ab initio molecular electronic structure computations. The package includes mature programming interfaces for parsing user input, accessing commonly used data such as basis-set information or molecular orbital coefficients, and retrieving and storing binary data (with no software limitations on file sizes or file-system-sizes), especially multi-index quantities such as electron repulsion integrals. This platform is useful for the rapid implementation of both standard quantum chemical methods, as well as the development of new models. Features that have already been implemented include Hartree-Fock, multiconfigurational self-consistent-field, second-order Møller-Plesset perturbation theory, coupled cluster, and configuration interaction wave functions. Distinctive capabilities include the ability to employ Gaussian basis functions with arbitrary angular momentum levels; linear R12 second-order perturbation theory; coupled cluster frequency-dependent response properties, including dipole polarizabilities and optical rotation; and diagonal Born-Oppenheimer corrections with correlated wave functions. This article describes the programming infrastructure and main features of the package. PSI3 is available free of charge through the open-source, GNU General Public License. PMID:17420978

  13. On the structure of crystalline and molten cryolite: Insights from the ab initio molecular dynamics in NpT ensemble.

    PubMed

    Bučko, Tomáš; Šimko, František

    2016-02-14

    Ab initio molecular dynamics simulations in isobaric-isothermal ensemble have been performed to study the low- and the high-temperature crystalline and liquid phases of cryolite. The temperature induced transitions from the low-temperature solid (α) to the high-temperature solid phase (β) and from the phase β to the liquid phase have been simulated using a series of MD runs performed at gradually increasing temperature. The structure of crystalline and liquid phases is analysed in detail and our computational approach is shown to reliably reproduce the available experimental data for a wide range of temperatures. Relatively frequent reorientations of the AlF6 octahedra observed in our simulation of the phase β explain the thermal disorder in positions of the F(-) ions observed in X-ray diffraction experiments. The isolated AlF6(3-), AlF5(2-), AlF4(-), as well as the bridged Al2Fm(6-m) ionic entities have been identified as the main constituents of cryolite melt. In accord with the previous high-temperature NMR and Raman spectroscopic experiments, the compound AlF5(2-) has been shown to be the most abundant Al-containing species formed in the melt. The characteristic vibrational frequencies for the AlFn(3-n) species in realistic environment have been determined and the computed values have been found to be in a good agreement with experiment. PMID:26874492

  14. Ab initio simulation of the electronic structure of Ta{sub 2}O{sub 5} crystal modifications

    SciTech Connect

    Perevalov, T. V. Shaposhnikov, A. V.

    2013-06-15

    Ab initio simulation of the electronic structure crystalline {beta} and {delta} phases of tantalum(V) oxide (Ta{sub 2}O{sub 5}), representing a promising dielectric material for microelectronics, has been carried out. Both ideal crystals and those with neutral oxygen vacancies in various coordination positions have been studied. The simulation has been performed using the density functional theory with hybrid functionals involving the Hartree-Fock exchange energy. This approach gives a correct description of the bandgap width: 4.1 eV for {beta}-Ta{sub 2}O{sub 5} and 3.1 eV for {delta}-Ta{sub 2}O{sub 5}. The energy levels related to oxygen vacancies in various positions have been determined for the spectra of electron states in {beta}- and {delta}-Ta{sub 2}O{sub 5} polymorphs. It is established that the presence of oxygen vacancies in Ta{sub 2}O{sub 5} crystal modifications leads to the formation of characteristic absorption peaks in their electron energy loss spectra.

  15. On the structure of crystalline and molten cryolite: Insights from the ab initio molecular dynamics in NpT ensemble

    NASA Astrophysics Data System (ADS)

    Bučko, Tomáš; Šimko, František

    2016-02-01

    Ab initio molecular dynamics simulations in isobaric-isothermal ensemble have been performed to study the low- and the high-temperature crystalline and liquid phases of cryolite. The temperature induced transitions from the low-temperature solid (α) to the high-temperature solid phase (β) and from the phase β to the liquid phase have been simulated using a series of MD runs performed at gradually increasing temperature. The structure of crystalline and liquid phases is analysed in detail and our computational approach is shown to reliably reproduce the available experimental data for a wide range of temperatures. Relatively frequent reorientations of the AlF6 octahedra observed in our simulation of the phase β explain the thermal disorder in positions of the F- ions observed in X-ray diffraction experiments. The isolated AlF63-, AlF52-, AlF4-, as well as the bridged Al 2 Fm 6 - m ionic entities have been identified as the main constituents of cryolite melt. In accord with the previous high-temperature NMR and Raman spectroscopic experiments, the compound AlF5 2 - has been shown to be the most abundant Al-containing species formed in the melt. The characteristic vibrational frequencies for the AlFn 3 - n species in realistic environment have been determined and the computed values have been found to be in a good agreement with experiment.

  16. Analysis of the local structure around Cr3+ centers in perovskite KMgF3 using both ab initio (DFT) and semi-empirical (SPM) calculations

    NASA Astrophysics Data System (ADS)

    Emül, Y.; Erbahar, D.; Açıkgöz, M.

    2014-11-01

    The local structure around Cr3+ centers in perovskite KMgF3 crystal have been investigated through the applications of both an ab-initio, density functional theory (DFT), and a semi empirical, superposition model (SPM), analyses. A supercell approach is used for DFT calculations. All the tetragonal (Cr3+-VMg and Cr3+-Li+), trigonal (Cr3+-VK), and CrF5O cluster centers have been considered with various structural models based on the previously suggested experimental inferences. The significant structural changes around the Cr3+ centers induced by Mg2+ or K+ vacancies and the Li substitution at those vacancy sites have been determined and discussed by means of charge distribution. This study provides insight on both the roles of Mg2+ and K+ vacancies and Li+ ion in the local structural properties around Cr3+ centers in KMgF3.

  17. Matrix-isolation study and ab initio calculations of the structure and spectra of hydroxyacetone.

    PubMed

    Sharma, Archna; Reva, Igor; Fausto, Rui

    2008-07-01

    The structure of hydroxyacetone (HA) isolated in an argon matrix (at 12 K) and in a neat solid phase (at 12-175 K) was characterized by using infrared (IR) spectroscopy. The interpretation of the experimental results was supported by high-level quantum chemical calculations, undertaken by using both ab initio (MP2) and density functional theory methods. A potential-energy surface scan, carried out at the MP2/6-311++G(d,p) level of theory, predicted four nonequivalent minima, Cc, Tt, Tg, and Ct, all of them doubly degenerate by symmetry. The energy barriers for conversion between most of the symmetrically related structures and also between some of the nonequivalent minima (e.g., Tg --> Tt and Ct --> Tt) are very small and stay below the zero-point vibrational level associated with the isomerization coordinate in the higher-energy form in each pair. Therefore, only Cc and Tt conformers have physical significance, with populations of 99 and 1%, respectively, in gas phase at room temperature. For the matrix-isolated compound, only the most stable Cc conformer was observed. On the other hand, the polarizable continuum model calculations indicated that in water solution, the population of Tt and Ct conformers might be high enough (ca. 6 and 11%, respectively) to enable their experimental detection, thus supporting the conclusions of a previous IR spectroscopy study [ Spectrochim. Acta A 2005, 61, 477] in which the presence of more than one HA conformer in aqueous solution was postulated. The signatures of these minor conformers, however, do not appear in the spectra of the neat HA crystal, and the crystal structure was rationalized in terms of centrosymmetric hydrogen-bonded dimers consisting of two Cc-like units. Finally, we calculated (1)H, (13)C, and (17)O NMR chemical shifts at different levels of theory and found them to agree with available experimental data. PMID:18537231

  18. Ab-initio structure, energy and stable Fe isotope equilibrium fractionation of some geochemically relevant H-O-Fe complexes

    NASA Astrophysics Data System (ADS)

    Ottonello, Giulio; Zuccolini, Marino Vetuschi

    2009-11-01

    The hexa-aqua complexes [Fe(H 2O) 6-m-n(OH) n] (2-n)+n = 0 → 3, m = 0 → 6 - n; [Fe(H 2O) 6-m-n(OH) n] (3-n)+n = 0 → 4, m = 0 → 6 - n were investigated by ab-initio methods with the aim of determining their ground-state geometries, total energies and vibrational properties by treating their inner solvation shell as part of their gaseous precursor (or " hybrid approach"). After a gas-phase energy optimization within the Density Functional Theory (DFT), the molecules were surrounded by a dielectric representing the Reaction Field through an implicit Polarized Continuum Model (PCM). The exploration of several structural ligand arrangements allowed us to quantify the relative stabilities of the various ionic species and the role of the various forms of energy (solute-solvent electronic interaction, cavitation, dispersion, repulsion, liberation free energy) that contribute to stabilize the aqueous complexes. A comparison with experimental thermochemistries showed that ab-initio gas-phase + solvation energies are quite consistent with experimental evidence and allow the depiction of the most stable form in solution and the eventual configurational disorder of water/hydroxyl species around central cations. A vibrational analysis performed on the 54Fe, 56Fe, 57Fe and 58Fe isotopomers indicated important separative effects systematically affected by the extent of deprotonation. The role of the system's redox state (fO 2) and acidity (pH) on the isotopic imprinting of the aqueous species in solution was investigated by coupling the separative effects with speciation calculations. The observed systematics provided a tool of general utility in the interpretation of the iron isotopic signature of natural waters. Applications to the interpretation of isotopic fractionation in solution dictated by redox equilibria and to the significance of the Fe-isotopic imprinting of Banded Iron Formations are given. With "gaseous precursor" it is intended here the isolated gaseous

  19. Input/Output of ab-initio nuclear structure calculations for improved performance and portability

    SciTech Connect

    Laghave, Nikhil

    2010-01-01

    Many modern scientific applications rely on highly computation intensive calculations. However, most applications do not concentrate as much on the role that input/output operations can play for improved performance and portability. Parallelizing input/output operations of large files can significantly improve the performance of parallel applications where sequential I/O is a bottleneck. A proper choice of I/O library also offers a scope for making input/output operations portable across different architectures. Thus, use of parallel I/O libraries for organizing I/O of large data files offers great scope in improving performance and portability of applications. In particular, sequential I/O has been identified as a bottleneck for the highly scalable MFDn (Many Fermion Dynamics for nuclear structure) code performing ab-initio nuclear structure calculations. We develop interfaces and parallel I/O procedures to use a well-known parallel I/O library in MFDn. As a result, we gain efficient I/O of large datasets along with their portability and ease of use in the down-stream processing. Even situations where the amount of data to be written is not huge, proper use of input/output operations can boost the performance of scientific applications. Application checkpointing offers enormous performance improvement and flexibility by doing a negligible amount of I/O to disk. Checkpointing saves and resumes application state in such a manner that in most cases the application is unaware that there has been an interruption to its execution. This helps in saving large amount of work that has been previously done and continue application execution. This small amount of I/O provides substantial time saving by offering restart/resume capability to applications. The need for checkpointing in optimization code NEWUOA has been identified and checkpoint/restart capability has been implemented in NEWUOA by using simple file I/O.

  20. Ab initio molecular dynamics study of the interlayer and micropore structure of aqueous montmorillonite clays

    NASA Astrophysics Data System (ADS)

    Suter, James L.; Kabalan, Lara; Khader, Mahmoud; Coveney, Peter V.

    2015-11-01

    Ab initio molecular dynamics simulations have been performed to gain an understanding of the interfacial microscopic structure and reactivity of fully hydrated clay edges. The models studied include both micropore and interlayer water. We identify acidic sites through dissociation mechanisms; the resulting ions can be stabilized by both micropore and interlayer water. We find clay edges possess a complex amphoteric behavior, which depends on the face under consideration and the location of isomorphic substitution. For the neutral (1 1 0) surface, we do not observe any dissociation on the timescale accessible. The edge terminating hydroxyl groups participate in a hydrogen bonded network of water molecules that spans the interlayer between periodic images of the clay framework. With isomorphic substitutions in the tetrahedral layer of the (1 1 0) clay edge, we find the adjacent exposed apical oxygen behaves as a Brönsted base and abstracts a proton from a nearby water molecule, which in turn removes a proton from an AlOH2 group. With isomorphic substitutions in the octahedral layer of the (1 1 0) clay edge the adjacent exposed apical oxygen atom does not abstract a proton from the water molecules, but increases the number of hydrogen bonded water molecules (from one to two). Acid treated clays are likely to have both sites protonated. The (0 1 0) surface does not have the same interfacial hydrogen bonding structure; it is much less stable and we observe dissociation of half the terminal SiOH groups (tbnd Sisbnd Osbnd H → tbnd Sisbnd O- + H+) in our models. The resulting anions are stabilized by solvation from both micropore and interlayer water molecules. This suggests that, when fully hydrated, the (0 1 0) surface can act as a Brönsted acid, even at neutral pH.

  1. Structure and mechanical properties of cement and intermetallic compounds via ab-initio simulations

    NASA Astrophysics Data System (ADS)

    Dharmawardhana, Chamila Chathuranga

    Calcium silicate hydrates comprise a class of minerals formed synthetically during Portland cement hydration or naturally through various geological processes. The importance of these minerals is immense since they are the primary binding phases for Portland cement derived construction materials. Efforts spanning centuries have been devoted to understand the structural aspects of cohesion in these minerals. In recent years, the focus has progressively turned to atomic level comprehension. Structurally these minerals can range from crystalline to highly disordered amorphous phases. This thesis focuses upon unraveling the nature of chemical bonding in a large subset of calcium silicate hydrate (CSH) crystals. Thus their electronic structure was calculated and bonding mechanisms were investigated quantitatively. Results highlight a wide range of contributions from each type of bonding (Si-O, Ca-O, O-H and hydrogen bond) with respect to silicate polymerization, crystal symmetry, water and OH content. Consequently, total bond order density (TBOD) was designated as the overall single criterion for characterizing crystal cohesion. The TBOD categorization indicates that a rarely known orthorhombic phase Suolunite is closest to the ideal composition and structure of cement. Present work finds the relationship of partial bond order density (PBOD) of each bond species, especially HBs to the mechanical properties of CSH crystals. This can be used as a basis to validate existing C-S-H models and to build improved ones. This work goes further and validates the recently proposed models (2014) for C-S-H (I) phase on the same basis of proposed electronic structure parameters. Then the respective Calcium aluminosilicate hydrates C-A-S-H (I) phase models are proposed. Finally, these results lead to improved interpretations and construction of realistic atomistic models of cement hydrates. Ab initio molecular dynamics (AIMD) could be vital to solve critical problems in complex

  2. Observation and Structure Determination of an Oxide Quasicrystal Approximant.

    PubMed

    Förster, S; Trautmann, M; Roy, S; Adeagbo, W A; Zollner, E M; Hammer, R; Schumann, F O; Meinel, K; Nayak, S K; Mohseni, K; Hergert, W; Meyerheim, H L; Widdra, W

    2016-08-26

    We report on the first observation of an approximant structure to the recently discovered two-dimensional oxide quasicrystal. Using scanning tunneling microscopy, low-energy electron diffraction, and surface x-ray diffraction in combination with ab initio calculations, the atomic structure and the bonding scheme are determined. The oxide approximant follows a 3^{2}.4.3.4 Archimedean tiling. Ti atoms reside at the corners of each tiling element and are threefold coordinated to oxygen atoms. Ba atoms separate the TiO_{3} clusters, leading to a fundamental edge length of the tiling 6.7 Å. PMID:27610863

  3. Ab initio determination of the proton affinities of small neutral and anionic molecules

    NASA Technical Reports Server (NTRS)

    DeFrees, D. J.; McLean, A. D.

    1986-01-01

    The proton affinity of a molecule in the gas phase is a fundamental measure of its basicity and is the factor controlling the course of many ion-molecule reactions. In this article, ab initio molecular orbital theory at the MP4/6-311 ++ G(3df, 3pd) level of theory is demonstrated to predict proton affinities (PA's) for small neutral and anionic bases to within 2 kcal mol-1. Furthermore, the errors are random, indicating that there are likely no systematic errors in either the experimental or theoretical PA's. Also, this level of theory is used to calibrate less sophisticated theoretical models which are suitable for larger molecules; the MP4/6-311 ++ G(2d, 2p) and MP2/6-311 ++ G(d, p) theoretical models should be particularly useful. A procedure for predicting the vibrational frequencies for anion is proposed and applied to CH3-, NH2-, OH-, and CN-.

  4. Ab initio determination of effective electron-phonon coupling factor in copper

    NASA Astrophysics Data System (ADS)

    Ji, Pengfei; Zhang, Yuwen

    2016-04-01

    The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.

  5. Ab initio study of the electronic structures of lithium containing diatomic molecules and ions

    NASA Astrophysics Data System (ADS)

    Boldyrev, Alexander I.; Simons, Jack; Schleyer, Paul von R.

    1993-12-01

    Ab initio calculations are used to provide bond lengths, harmonic frequencies, and dissociation energies of low-lying electronic states for LiX, LiX+, and LiX- (with X=Li through F and Na through Cl). Most of these species represent hitherto experimentally unknown molecules or ions, which provides the focus of the work presented here. All of these species are stable to dissociation and the anions are stable to loss of an electron. Differences among the electronic structures of the valence isoelectronic LiX; and HX, LiX+, and HX+; and LiX- and HX- species are analyzed. Optimized geometries, dissociation energies, ionization potentials, and electron affinities were calculated for the following ground states of the respective species: 1Σ+ for Li2(1Σ+g) LiNa, LiBe+, LiBe-, LiMg+, LiMg-, LiF, LiAl, LiS-, and LiCl; 2Σ+ for Li+2(2Σ+g), Li-2(2Σ+u) LiBe, LiB+, LiF-, LiNa+, LiNa-, LiMg, LiAl+, and LiCl-; 2Πr for LiB-, LiAl-; 2Πi for LiO, LiF+, LiS, and LiCl+; 3Πr for LiB, LiC+, and LiSi+; 3Σ- for LiN, LiO+, LiSi-, LiP, and LiS+; 4Σ- for LiC, LiN+, LiN-, LiSi, LiP+, and LiP-; and 5Σ- for LiC-.

  6. Origin of the Hadži ABC structure: An ab initio study

    SciTech Connect

    Van Hoozen, Brian L.; Petersen, Poul B.

    2015-11-14

    Medium and strong hydrogen bonds are well known to give rise to broad features in the vibrational spectrum often spanning several hundred wavenumbers. In some cases, these features can span over 1000 cm{sup −1} and even contain multiple broad peaks. One class of strongly hydrogen-bonded dimers that includes many different phosphinic, phosphoric, sulfinic, and selenic acid homodimers exhibits a three-peaked structure over 1500 cm{sup −1} broad. This unusual feature is often referred to as the Hadži ABC structure. The origin of this feature has been debated since its discovery in the 1950s. Only a couple of theoretical studies have attempted to interpret the origin of this feature; however, no previous study has been able to reproduce this feature from first principles. Here, we present the first ab initio calculation of the Hadži ABC structure. Using a reduced dimensionality calculation that includes four vibrational modes, we are able to reproduce the three-peak structure and much of the broadness of the feature. Our results indicate that Fermi resonances of the in-plane bend, out-of-plane bend, and combination of these bends play significant roles in explaining this feature. Much of the broadness of the feature and the ability of the OH stretch mode to couple with many overtone bending modes are captured by including an adiabatically separated dimer stretch mode in the model. This mode modulates the distance between the monomer units and accordingly the strength of the hydrogen-bonds causing the OH stretch frequency to shift from 2000 to 3000 cm{sup −1}. Using this model, we were also able to reproduce the vibrational spectrum of the deuterated isotopologue which consists of a single 500 cm{sup −1} broad feature. Whereas previous empirical studies have asserted that Fermi resonances contribute very little to this feature, our study indicates that while not appearing as a separate peak, a Fermi resonance of the in-plane bend contributes substantially to

  7. Ab initio molecular dynamics simulation of structural transformation in zinc blende GaN under high pressure

    SciTech Connect

    Xiao, Hai Yan; Gao, Fei; Zu, Xiaotao T.; Weber, William J.

    2010-02-04

    High-pressure induced zinc blende to rocksalt phase transition in GaN has been investigated by ab initio molecular dynamics method to characterize the transformation mechanism at the atomic level. It was shown that at 100 GPa GaN passes through tetragonal and monoclinic states before rocksalt structure is formed. The transformation mechanism is consistent with that for other zinc blende semiconductors obtained from the same method. Detailed structural analysis showed that there is no bond breaking involved in the phase transition.

  8. Determining structural performance

    NASA Technical Reports Server (NTRS)

    Ernst, Michael A.; Kiraly, Louis J.

    1987-01-01

    An overview is given of the methods and concepts developed to enhance and predict structural dynamic characteristics of advanced aeropropulsion systems. Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are four disciplines that make up the research program at NASA/Lewis Research Center. The Aeroelasticity program develops analytical and experimental methods to minimize flutter and forced vibration of aerospace propulsion systems. Both frequency domain and time domain methods have been developed for applications on the turbofan, turbopump, and advanced turboprop. To improve life and performance, the Vibration Control program conceives, analyzes, develops, and demonstrates new methods to control vibrations in aerospace systems. Active and passive vibration control is accomplished with electromagnetic dampers, magnetic bearings, and piezoelectric crystals to control rotor vibrations. The Dynamic Systems program analyzes and verifies the dynamics of interacting systems, as well as develops concepts and methods for high-temperature dynamic seals. The Computational Structural Methods program uses computer science to improve solutions of structural problems.

  9. Surface structure of CdSe Nanorods revealed by combined X-rayabsorption fine structure measurements and ab-initio calculations

    SciTech Connect

    Aruguete, Deborah A.; Marcus, Matthew A.; Li, Liang-shi; Williamson, Andrew; Fakra, Sirine; Gygi, Francois; Galli, Giulia; Alivisatos, A. Paul

    2006-01-27

    We report orientation-specific, surface-sensitive structural characterization of colloidal CdSe nanorods with extended X-ray absorption fine structure spectroscopy and ab-initio density functional theory calculations. Our measurements of crystallographically-aligned CdSe nanorods show that they have reconstructed Cd-rich surfaces. They exhibit orientation-dependent changes in interatomic distances which are qualitatively reproduced by our calculations. These calculations reveal that the measured interatomic distance anisotropy originates from the nanorod surface.

  10. Structure of the glass-forming metallic liquids by ab-initio and classical molecular dynamics, a case study: Quenching the Cu{sub 60}Ti{sub 20}Zr{sub 20} alloy

    SciTech Connect

    Amokrane, S.; Ayadim, A.; Levrel, L.

    2015-11-21

    We consider the question of the amorphization of metallic alloys by melt quenching, as predicted by molecular dynamics simulations with semi-empirical potentials. The parametrization of the potentials is discussed on the example of the ternary Cu-Ti-Zr transition metals alloy, using the ab-initio simulation as a reference. The pair structure in the amorphous state is computed from a potential of the Stillinger-Weber form. The transferability of the parameters during the quench is investigated using two parametrizations: from solid state data, as usual and from a new parametrization on the liquid structure. When the adjustment is made on the pair structure of the liquid, a satisfactory transferability is found between the pure components and their alloys. The liquid structure predicted in this way agrees well with experiment, in contrast with the one obtained using the adjustment on the solid. The final structure, after quenches down to the amorphous state, determined with the new set of parameters is shown to be very close to the ab-initio one, the latter being in excellent agreement with recent X-rays diffraction experiments. The corresponding critical temperature of the glass transition is estimated from the behavior of the heat capacity. Discussion on the consistency between the structures predicted using semi-empirical potentials and ab-initio simulation, and comparison of different experimental data underlines the question of the dependence of the final structure on the thermodynamic path followed to reach the amorphous state.

  11. Determining structural performance

    NASA Technical Reports Server (NTRS)

    Ernst, Michael A. (Editor); Brown, Gerald; Dirusso, Eliseo; Fleming, David; Janetzke, David; Kascak, Albert; Kaza, Krishna; Kielb, Robert; Kiraly, Louis J.; Lawrence, Charles

    1990-01-01

    An overview of the methods and concepts developed to enhance and predict structural dynamic characteristics of advanced aeropropulsion systems is presented. Aeroelasticity, vibration control, dynamic systems, and computational structural methods are four disciplines that make up the structural dynamic effort at LeRC. The aeroelasticity program develops analytical and experimental methods for minimizing flutter and forced vibration of aerospace propulsion systems. Both frequency domain and time domain methods were developed for applications on the turbofan, turbopump, and advanced turboprop. In order to improve life and performance, the vibration control program conceives, analyzes, develops, and demonstrates new methods for controlling vibrations in aerospace systems. Active and passive vibration control is accomplished with electromagnetic dampers, magnetic bearings, and piezoelectric crystals to control rotor vibrations. The dynamic systems program analyzes and verifies the dynamics of interacting systems, as well as develops concepts and methods for high-temperature dynamic seals. Work in this field involves the analysis and parametric identification of large, nonlinear, damped, stochastic systems. The computational structural methods program exploits modern computer science as an aid to the solutions of structural problems.

  12. Effect of pressure on the lattice structure and dynamics of elpasolites Cs2Na RF6 ( R = Y, Yb): ab initio calculation

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. A.; Petrov, V. P.; Nikiforov, A. E.; Zakir'yanov, D. O.

    2015-06-01

    The effect of hydrostatic compression on the lattice structure and dynamics of elpasolites Cs2NaYbF6 and Cs2NaYF6 (sp. gr. 225) has been investigated ab initio. The frequencies and types of fundamental oscillations are determined, and elastic constants are calculated. The computation is performed within the molecular orbitals-linear combinations of atomic orbitals (MO LCAO) approach using the density functional theory (DFT) method with hybrid functionals B3LYP and PBE0 in the CRYSTAL09 program. The rare-earth ion was described by representing the inner (in particular, 4 f) orbitals in the form of a pseudopotential. The outer 5 s and 5 p orbitals, which determine chemical bonding, were described using valence basis sets.

  13. Determination of a silane intermolecular force field potential model from an ab initio calculation

    SciTech Connect

    Li, Arvin Huang-Te; Chao, Sheng D.; Chang, Chien-Cheng

    2010-12-15

    Intermolecular interaction potentials of the silane dimer in 12 orientations have been calculated by using the Hartree-Fock (HF) self-consistent theory and the second-order Moeller-Plesset (MP2) perturbation theory. We employed basis sets from Pople's medium-size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (up to the triply augmented correlation-consistent polarized valence quadruple-zeta basis set). We found that the minimum energy orientations were the G and H conformers. We have suggested that the Si-H attractions, the central silicon atom size, and electronegativity play essential roles in weakly binding of a silane dimer. The calculated MP2 potential data were employed to parametrize a five-site force field for molecular simulations. The Si-Si, Si-H, and H-H interaction parameters in a pairwise-additive, site-site potential model for silane molecules were regressed from the ab initio energies.

  14. Specific force field parameters determination for the hybrid ab initio QM/MM LSCF method.

    PubMed

    Ferré, Nicolas; Assfeld, Xavier; Rivail, Jean-Louis

    2002-04-30

    The pure quantum mechanics method, called Local Self-Consistent Field (LSCF), that allows to optimize a wave function within the constraint that some predefined spinorbitals are kept frozen, is discussed. These spinorbitals can be of any shape, and their occupation numbers can be 0 or 1. Any post-Hartree-Fock method, based on the restricted or unrestricted Hartree-Fock Slater determinant, and Kohn-Sham-based DFT method are available. The LSCF method is easily applied to hybrid quantum mechanics/molecular mechanics (QM/MM) procedure where the quantum and the classical parts are covalently bonded. The complete methodology of our hybrid QM/MM scheme is detailed for studies of macromolecular systems. Not only the energy but also the gradients are derived; thus, the full geometry optimization of the whole system is feasible. We show that only specific force field parameters are needed for a correct description of the molecule, they are given for some general chemical bonds. A careful analysis of the errors induced by the use of molecular mechanics in hybrid computation show that a general procedure can be derived to obtain accurate results at low computation effort. The methodology is applied to the structure determination of the crambin protein and to Menshutkin reactions between primary amines and chloromethane. PMID:11939595

  15. Ab initio electronic structure of quasi-two-dimensional materials: A "native" Gaussian-plane wave approach

    NASA Astrophysics Data System (ADS)

    Trevisanutto, Paolo E.; Vignale, Giovanni

    2016-05-01

    Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is "native" to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basic tools of ab initio electronic structure theory — density functional theory, GW approximation and Bethe-Salpeter equation — are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields.

  16. Ab initio electronic structure of quasi-two-dimensional materials: A "native" Gaussian-plane wave approach.

    PubMed

    Trevisanutto, Paolo E; Vignale, Giovanni

    2016-05-28

    Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is "native" to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basic tools of ab initio electronic structure theory - density functional theory, GW approximation and Bethe-Salpeter equation - are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields. PMID:27250294

  17. Orbital free ab initio simulations of liquid alkaline earth metals: from pseudopotential construction to structural and dynamic properties.

    PubMed

    Rio, Beatriz G del; González, Luis E

    2014-11-19

    We have performed a comprehensive study of the properties of liquid Be, Ca and Ba, through the use of orbital free ab initio simulations. To this end we have developed a force-matching method to construct the necessary local pseudopotentials from standard ab initio calculations. The structural magnitudes are analyzed, including the average and local structures and the dynamic properties are studied. We find several common features, like an asymmetric second peak in the structure factor, a large amount of local structures with five-fold symmetry, a quasi-universal behaviour of the single-particle dynamic properties and a large degree of positive dispersion in the propagation of collective density fluctuations, whose damping is dictated by slow thermal relaxations and fast viscoelastic ones. Some peculiarities in the dynamic properties are however observed, like a very high sound velocity and a large violation of the Stokes-Einstein relation for Be, or an extremely high positive dispersion and a large slope in the dispersion relation of shear waves at the onset of the wavevector region where they are supported for Ba. PMID:25347355

  18. Structure and dynamics of high-spin Ru 2+ in aqueous solution: Ab initio QM/MM molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Kritayakornupong, Chinapong; Hannongbua, Supot

    2007-01-01

    The structural and dynamical properties of high-spin Ru 2+ in aqueous solution have been theoretically studied using molecular dynamics (MD) simulations. The conventional MD simulation based on pair potentials gives the overestimated average first shell coordination number of 9, whereas the value of 5.9 was observed when the three-body corrected function was included. A combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation has been performed to take into account the many-body effects on the hydration shell structure of Ru 2+. The most important region, the first hydration shell, was treated by ab initio quantum mechanics at UHF level using the SBKJC VDZ ECP basis set for Ru 2+ and the 6-31G ∗ basis sets for water. An exact coordination number of 6 for the first hydration shell was obtained from the QM/MM simulation. The QM/MM simulation predicts the average Ru 2+-O distance of 2.42 Å for the first hydration shell, whereas the values of 2.34 and 2.46 Å are resulted from the pair potentials without and with the three-body corrected simulations, respectively. Several other structural properties representing position and orientation of the solvate molecules were evaluated for describing the hydration shell structure of the Ru 2+ ion in dilute aqueous solution. A mean residence time of 7.1 ps was obtained for water ligands residing in the second hydration shell.

  19. Solvation structure of glucosamine in aqueous solution as studied by Monte Carlo simulation using ab initio fitted potential

    NASA Astrophysics Data System (ADS)

    Siraleartmukul, Krisana; Siriwong, Khatcharin; Remsungnen, Tawun; Muangsin, Nongnuj; Udomkichdecha, Werasak; Hannongbua, Supot

    2004-09-01

    The solvation structure of glucosamine in aqueous solution was investigated using Monte Carlo simulation at 298 K. The MCY rigid water model and ab initio glucosamine-water fitted potential were applied. The first hydration shell appears at 4.6 Å from the center of glucosamine with a coordination number of seven water molecules where one water lies in the ligand's plane while two and four of them are about 2-4 Å above and below the plane, respectively. Furthermore, the mobility distribution and orientation of the water molecules around the ligand have been intensively investigated and reported.

  20. A Nonparametrized Ab Initio Determination of the Heat of Formation of Hydroxylamine, NH2OH

    SciTech Connect

    Feller, David F.; Dixon, David A.

    2003-12-04

    Large basis set coupled cluster calculations through noniterative triple excitations were used to compute optimized structures, harmonic vibrational frequencies, atomization energies at 0 K and heats of formation at 298 K for hydroxylamine (NH2OH) and three related compounds (NH3, HNO and H2O2). The use of basis sets as large as augmented sextuple zeta resulted in small extrapolations to the complete basis set limit in order to achieve chemical accuracy ( 1 kcal/mol) in the thermodynamic properties. Complete basis set estimates were determined from several simple extrapolation formulas. In addition, four other corrections were applied to the frozen core atomization energies, (1) a zero point vibrational correction: (2) a core/valence correlation correction; (3) a Douglas-Kroll-Hess scalar relativistic correction; and (4) a first order atomic spin-orbit correction. For NH3 and HNO we incorporated a fifth correction term intended to approximate the difference between coupled cluster theory and the full configuration interact result. This correction was based on coupled cluster theory through iterative quadruple excitations (CCSDTQ). Excellent agreement with experiment was found for the heats of formation of NH3, HNO and H2O2. For NH2OH the best current estimate of the heat of formation at 298 K is 10.1 0.3 kcal/mol, which falls roughly midway between two experimental values at 12.0 2.4 and 7.9 1.5 kcal/mol.

  1. The structural phase transition of ZnSe under hydrostatic and nonhydrostatic compressions: an ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2009-03-01

    Ab initio constant pressure molecular dynamics simulations within a generalized gradient approximation (GGA) are carried out to study the structural phase transformation of ZnSe under hydrostatic and nonhydrostatic conditions. ZnSe undergoes a first-order phase transition from the zinc-blende structure to a rocksalt structure having practically identical transformation mechanisms under hydrostatic and nonhydrostatic compressions. This phase transformation is also analyzed using the enthalpy calculations. Our transition parameters and bulk properties are comparable with experimental and theoretical data. Furthermore, the influence of pressure on the electronic structure of ZnSe is investigated. It is found that the band gap energy increases nonlinearly under both hydrostatic and nonhydrostatic conditions and the effect of stress deviations on the band gap energy is small. The computed pressure coefficients and deformation potential of the band gap are in good agreement with experiments.

  2. MOTOR: model assisted software for NMR structure determination.

    PubMed

    Schieborr, Ulrich; Sreeramulu, Sridhar; Elshorst, Bettina; Maurer, Marcus; Saxena, Krishna; Stehle, Tanja; Kudlinzki, Denis; Gande, Santosh Lakshmi; Schwalbe, Harald

    2013-11-01

    Eukaryotic proteins with important biological function can be partially unstructured, conformational flexible, or heterogenic. Crystallization trials often fail for such proteins. In NMR spectroscopy, parts of the polypeptide chain undergoing dynamics in unfavorable time regimes cannot be observed. De novo NMR structure determination is seriously hampered when missing signals lead to an incomplete chemical shift assignment resulting in an information content of the NOE data insufficient to determine the structure ab initio. We developed a new protein structure determination strategy for such cases based on a novel NOE assignment strategy utilizing a number of model structures but no explicit reference structure as it is used for bootstrapping like algorithms. The software distinguishes in detail between consistent and mutually exclusive pairs of possible NOE assignments on the basis of different precision levels of measured chemical shifts searching for a set of maximum number of consistent NOE assignments in agreement with 3D space. Validation of the method using the structure of the low molecular-weight-protein tyrosine phosphatase A (MptpA) showed robust results utilizing protein structures with 30-45% sequence identity and 70% of the chemical shift assignments. About 60% of the resonance assignments are sufficient to identify those structural models with highest conformational similarity to the real structure. The software was benchmarked by de novo solution structures of fibroblast growth factor 21 (FGF21) and the extracellular fibroblast growth factor receptor domain FGFR4 D2, which both failed in crystallization trials and in classical NMR structure determination. PMID:23852655

  3. An ab initio study of the structure, torsional potential energy function, and electric properties of disilane, ethane, and their deuterated isotopomers.

    PubMed

    Puzzarini, Cristina; Taylor, Peter R

    2005-02-01

    Highly accurate ab initio computations of the molecular structure and properties, torsional potential energy function, and harmonic force field of disilane and ethane have been carried out. Equilibrium parameters as well as vibrational corrections have been evaluated. In addition, for these systems a vibrational averaging procedure has been employed for calculating the dipole moment of molecules which have no permanent dipole moment, i.e., SiH(3)SiD(3) and CH(3)CD(3). The molecular and spectroscopic properties calculated for ethane and its isotopomers provide a calibration against known experimental data, allowing us to estimate the reliability of our computed results for disilane for which there is much less experimental data. The goal of the present study is to predict the molecular parameters, with estimated uncertainties, that determine the microwave spectrum of SiH(3)SiD(3). PMID:15740330

  4. An ab initio study of the structure, torsional potential energy function, and electric properties of disilane, ethane, and their deuterated isotopomers

    NASA Astrophysics Data System (ADS)

    Puzzarini, Cristina; Taylor, Peter R.

    2005-02-01

    Highly accurate ab initio computations of the molecular structure and properties, torsional potential energy function, and harmonic force field of disilane and ethane have been carried out. Equilibrium parameters as well as vibrational corrections have been evaluated. In addition, for these systems a vibrational averaging procedure has been employed for calculating the dipole moment of molecules which have no permanent dipole moment, i.e., SiH3SiD3 and CH3CD3. The molecular and spectroscopic properties calculated for ethane and its isotopomers provide a calibration against known experimental data, allowing us to estimate the reliability of our computed results for disilane for which there is much less experimental data. The goal of the present study is to predict the molecular parameters, with estimated uncertainties, that determine the microwave spectrum of SiH3SiD3.

  5. Molecular structure, vibrational spectra and HOMO, LUMO analysis of yohimbine hydrochloride by density functional theory and ab initio Hartree-Fock calculations

    NASA Astrophysics Data System (ADS)

    Joshi, Bhawani Datt; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha

    2011-11-01

    Yohimbine hydrochloride (YHCl) is an aphrodisiac and promoted for erectile dysfunction, weight loss and depression. The optimized geometry, total energy, potential energy surface and vibrational wavenumbers of yohimbine hydrochloride have been determined using ab initio, Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set. A complete vibrational assignment is provided for the observed Raman and IR spectra of YHCl. The UV absorption spectrum was examined in ethanol solvent and compared with the calculated one in gas phase as well as in solvent environment (polarizable continuum model, PCM) using TD-DFT/6-31G basis set. These methods are proposed as a tool to be applied in the structural characterization of YHCl. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) with frontier orbital gap are presented.

  6. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure

    SciTech Connect

    Hoy, Erik P.; Mazziotti, David A.

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.

  7. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure.

    PubMed

    Hoy, Erik P; Mazziotti, David A

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory. PMID:26277123

  8. Conformational Characteristics of Poly(tetrafluoroethylene) (PTFE) Based Upon Ab Initio Electronic Structure Calculations on Model Molecules

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Conformational energy contours of perfluoroalkanes, determined from ab initio calculations, confirm the well-known spitting of trans states into two minima at plus or minus 17 degrees but also show that the gauche states split as well, with minima at plus or minus 124 degrees and plus or minus 84 in order to relieve steric crowding. The directions of such split distortions from the perfectly staggered states are strongly coupled for adjacent pairs of bonds in a manner identical to the intradyad pair for poly (isobutylene) chains. These conformational characteristics are fully represented by a six-state rotational isomeric state (RIS) model for PTFE comprised of t(+), t(-), g(sup +)+, g(sup +)-, g(sup -) + and g(sup -)-states, located at the split energy minima. The resultant 6 x 6 statistical weight matrix is described by first-order interaction parameters for the g+(+) (ca. 0.6 kcal/mol) and g+- (ca. 2.0 kcal/mol) states, and second order parameters for the g(sup +)+g(sup +)+ (ca 0.6 kcal/mol) and g(sup +)+g(sup -)+ (ca. 1.0 kcal/mol) states. This six-state RIS model, without adjustment of the geometric or energy parameters as determined from the ab initio calculations, predicts the unperturbed chain dimensions and the fraction of gauche bonds as a function of temperature for PTFE in good agreement with available experimental values.

  9. IR spectra and structure of benzylidenemalononitrile and its cyanide, methoxide and heptylamine adducts: experimental and ab initio studies

    NASA Astrophysics Data System (ADS)

    Binev, Ivan G.; Binev, Yuri I.; Stamboliyska, Bistra A.; Juchnovski, Ivan N.

    1997-12-01

    The potassium cyanide, alkali-metal methoxide and heptylamine adducts of benzylidenemalononitrile were prepared as dimethyl sulphoxide (DMSO) and DMSO- d6 solutions; their structures were studied by IR spectroscopy and ab initio force field calculations. The cyanide and methoxide adducts have a carbanionic structure, whereas heptylamine forms a zwitterion. The IR spectra of the adducts studied are characterized by very intense, low-frequency νCN bands with a strong νCNs- νCNas splitting. The changes in the structure and force field of benzylidenemalononitrile accompanying its conversion into the adducts studied are essential and are spread over the whole molecule. The anionic charge is localized mainly within the dicyanomethide groups of the adducts.

  10. Interplay between the structure and dynamics in liquid and undercooled boron: An ab initio molecular dynamics simulation study

    SciTech Connect

    Jakse, N.; Pasturel, A.

    2014-12-21

    In the present work, the structural and dynamic properties of liquid and undercooled boron are investigated by means of ab initio molecular dynamics simulation. Our results show that both liquid and undercooled states present a well pronounced short-range order (SRO) mainly due to the formation of inverted umbrella structural units. Moreover, we observe the development of a medium-range order (MRO) in the undercooling regime related to the increase of inverted umbrella structural units and of their interconnection as the temperature decreases. We also evidence that this MRO leads to a partial crystallization in the β-rhombohedral crystal below T = 1900 K. Finally, we discuss the role played by the SRO and MRO in the nearly Arrhenius evolution of the diffusion and the non-Arrhenius temperature dependence of the shear viscosity, in agreement with the experiment.

  11. Ab initio investigations of A-site doping on the structure and electric polarization of HoMnO3

    NASA Astrophysics Data System (ADS)

    S, Sathya Sheela; C, Kanagaraj; Natesan, Baskaran

    2015-06-01

    We have investigated the effect of A-site doping on the structure and electric polarization of orthorhombic HoMnO3 using ab initio density functional theory calculations. We find that the substitution of rare earth ions, such as Lu, Y and La in place of Ho in orthorhombic HoMnO3 modifies the local structure around Mn ions drastically, and leads to the formation of two distinct Mn sites Mn(0) and Mn(1). As a result, large variance between Mn(0)O6 and Mn(1)O6 octahedral distortions arises. This variance in the octahedral distortions drives the disparate hopping of electrons between the eg orbitals enhancing the electronic polarization with increasing rare earth ion radius. The largest polarization of 7 µC/cm2 is obtained for La doped HoMnO3. This increase in polarization has been explained on the basis of radius mismatch induced local structural effects.

  12. Ab Initio Theoretical Investigation of the Frequency Comb Structure in the XUV Regime via High Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Carrera, Juan J.; Son, Sang-Kil; Chu, Shih-I.

    2007-06-01

    We present an ab initio quantum investigation of the frequency comb structure formed within each high harmonic generation (HHG) power spectrum driven by a train of equal- spacing short laser pulses. The HHG power spectrum of atomic hydrogen is calculated by solving the time-dependent Schr"o dinger equation accurately and efficiently by means of the time- dependent generalized pseudospectral method. We found that the frequency comb structure is preserved within each harmonic. In addition, the repetition frequency of the comb laser depends upon the pulse separation τ and the spectral width of each individual comb fringe is inversely proportional to the number of pulses (n) used. However, the global HHG power spectrum pattern depends only upon the laser frequency and intensity used and is not sensitive to the τ and n parameters. Finally, the frequency comb structure persists even in the presence of appreciable ionization.

  13. An ab initio determination of the bending-torsion-torsion spectrum of dimethyl ether, CH3OCH3 and CD3OCD3

    NASA Astrophysics Data System (ADS)

    Senent, M. L.; Moule, D. C.; Smeyers, Y. G.

    1995-04-01

    We have calculated the potential energy hypersurface of dimethyl ether with respect to the COC bending coordinate α and the torsional angles of the two methyl groups, θ1 and θ2. Two sets of ab initio calculations were carried out. The first was made at the level MP2/6-31G(d,p) in which the structural coordinates were fully relaxed except for the grid points on the hypersurface. More extensive calculation were carried out with MP4 corrections for electron correlation with the same molecular structure. The torsional bending Hamiltonian matrix was symmetrized by the operations of the G36 nonrigid group and was solved variationally. The effect of explicitly considering the bending mode in the three-dimensional treatment was determined by a comparison to the two-dimensional model in which the flexibility of the frame was absorbed into the calculation by the fully relaxed method. It was found that the three-dimensional calculation gave a much better account of the sin(3θ1)sin(θ2) intermode coupling than the two-dimensional treatment.

  14. Metallic VS2 Monolayer Polytypes as Potential Sodium-Ion Battery Anode via ab Initio Random Structure Searching.

    PubMed

    Putungan, Darwin Barayang; Lin, Shi-Hsin; Kuo, Jer-Lai

    2016-07-27

    We systematically investigated the potential of single-layer VS2 polytypes as Na-battery anode materials via density functional theory calculations. We found that sodiation tends to inhibit the 1H-to-1T structural phase transition, in contrast to lithiation-induced transition on monolayer MoS2. Thus, VS2 can have better structural stability in the cycles of charging and discharging. Diffussion of Na atom was found to be very fast on both polytypes, with very small diffusion barriers of 0.085 eV (1H) and 0.088 eV (1T). Ab initio random structure searching was performed in order to explore stable configurations of Na on VS2. Our search found that both the V top and the hexagonal center sites are preferred adsorption sites for Na, with the 1H phase showing a relatively stronger binding. Notably, our random structures search revealed that Na clusters can form as a stacked second layer at full Na concentration, which is not reported in earlier works wherein uniform, single-layer Na adsorption phases were assumed. With reasonably high specific energy capacity (232.91 and 116.45 mAh/g for 1H and 1T phases, respectively) and open-circuit voltage (1.30 and 1.42 V for 1H and 1T phases, respectively), VS2 is a promising alternative material for Na-ion battery anodes with great structural sturdiness. Finally, we have shown the capability of the ab initio random structure searching in the assessment of potential materials for energy storage applications. PMID:27373121

  15. Phosphine adsorption and dissociation on the Si(001) surface: An ab initio survey of structures

    NASA Astrophysics Data System (ADS)

    Warschkow, O.; Wilson, H. F.; Marks, N. A.; Schofield, S. R.; Curson, N. J.; Smith, P. V.; Radny, M. W.; McKenzie, D. R.; Simmons, M. Y.

    2005-09-01

    We report a comprehensive ab initio survey of possible dissociation intermediates of phosphine (PH3) on the Si(001) surface. We assign three scanning tunneling microscopy (STM) features, commonly observed in room-temperature dosing experiments, to PH2+H , PH+2H , and P+3H species, respectively, on the basis of calculated energetics and STM simulation. These assignments and a time series of STM images which shows these three STM features converting into another, allow us to outline a mechanism for the complete dissociation of phosphine on the Si(001) surface. This mechanism closes an important gap in the understanding of the doping process of semiconductor devices.

  16. Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-01

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  17. Ground state structures and excited state dynamics of pyrrole-water complexes: Ab initio excited state molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kumar, Anupriya; Kołaski, Maciej; Kim, Kwang S.

    2008-01-01

    Structures of the ground state pyrrole-(H2O)n clusters are investigated using ab initio calculations. The charge-transfer driven femtosecond scale dynamics are studied with excited state ab initio molecular dynamics simulations employing the complete-active-space self-consistent-field method for pyrrole-(H2O)n clusters. Upon the excitation of these clusters, the charge density is located over the farthest water molecule which is repelled by the depleted π-electron cloud of pyrrole ring, resulting in a highly polarized complex. For pyrrole-(H2O), the charge transfer is maximized (up to 0.34a.u.) around ˜100fs and then oscillates. For pyrrole-(H2O)2, the initial charge transfer occurs through the space between the pyrrole and the π H-bonded water molecule and then the charge transfer takes place from this water molecule to the σ H-bonded water molecule. The total charge transfer from the pyrrole to the water molecules is maximized (up to 0.53a.u.) around ˜100fs.

  18. Ab initio, density functional theory and structural studies of 4-amino-2-methylquinoline.

    PubMed

    Arjunan, V; Saravanan, I; Ravindran, P; Mohan, S

    2009-10-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of 4-amino-2-methylquinoline (AMQ) have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. The experimental vibrational frequency was compared with the wavenumbers obtained theoretically by ab initio HF and DFT-B3LYP gradient calculations employing the standard 6-31 G** and high level 6-311 ++G** basis sets for optimised geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compounds were carried out using the experimental FTIR and FT-Raman data, and quantum mechanical studies. The geometry and normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental data. The potential energy distribution of the fundamental modes was calculated with ab initio force fields utilising Wilson's FG matrix method. The NH-pi interactions and the influence of amino and methyl groups on the skeletal modes are investigated. PMID:19581121

  19. Ab initio, density functional theory and structural studies of 4-amino-2-methylquinoline

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Saravanan, I.; Ravindran, P.; Mohan, S.

    2009-10-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of 4-amino-2-methylquinoline (AMQ) have been recorded in the range 4000-400 and 4000-100 cm -1, respectively. The experimental vibrational frequency was compared with the wavenumbers obtained theoretically by ab initio HF and DFT-B3LYP gradient calculations employing the standard 6-31G** and high level 6-311++G** basis sets for optimised geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compounds were carried out using the experimental FTIR and FT-Raman data, and quantum mechanical studies. The geometry and normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental data. The potential energy distribution of the fundamental modes was calculated with ab initio force fields utilising Wilson's FG matrix method. The NH -π interactions and the influence of amino and methyl groups on the skeletal modes are investigated.

  20. IR spectra and structure of (4-nitrophenyl)acetonitrile and of its carbanion: experimental and ab initio studies

    NASA Astrophysics Data System (ADS)

    Binev, Y. I.; Petrova, R. R.; Tsenov, J. A.; Binev, I. G.

    2000-01-01

    The structures of (4-nitrophenyl)acetonitrile and of its carbanion were studied on the basis of both quantitative IR spectra and ab initio force field calculations. The spectral and structural changes, which take place in the course of the conversion of the parent molecule into the carbanion, are essential and spread over the whole species. In agreement between theory and experiment, the conversion studied causes strong frequency decreases (down to 136 cm -1) and intensity increases (up to 90-fold) of the cyano and nitro stretching bands. The molecule→carbanion conversion is accompanied by both quinoidization of the phenylene ring and a change in the configuration of the methylenic carbon atom: from tetrahedral in the molecule it becomes planar in the carbanion. The carbanionic charge is delocalized over the carbanionic center (0.40 e -), phenylene (0.24 e -), nitro (0.21 e -) and cyano (0.15 e -) groups.

  1. Ab initio structural and electronic analysis of CH3SH self-assembled on a Cu(110) substrate

    NASA Astrophysics Data System (ADS)

    D'Agostino, S.; Chiodo, L.; Della Sala, F.; Cingolani, R.; Rinaldi, R.

    2007-05-01

    Ab initio Density Functional Theory calculations are here reported to characterize the adsorption of methanethiol at the Cu(110) surface. Theoretical results suggest that the binding of the adsorbate to the substrate is rather weak and the molecular geometry is correspondingly almost unaffected by the adsorption. Otherwise, when CH3SH deprotonates producing methanethiolate, a stronger chemical bond is realized between the sulfur atom of CH3S radical and Cu surface atoms. A detailed study of structural and electronic properties of methanethiolate on Cu(110) for a p(2×2) and a c(2×2) overlayer structure has been carried out. We find that, in the most stable configuration, the molecule adsorbs in the shortbridge site. The chemical bond arises due to a strong hybridization among p orbitals of sulfur and d states from the substrate, as it is deduced by an analysis of partial densities of states and charge densities.

  2. Structural Analysis of SiGe and SiGeC Alloys by Ab Initio Total-Energy Calculations

    NASA Astrophysics Data System (ADS)

    Yamada, Akira; Konagai, Nagako

    1999-04-01

    The structural properties of SiGe and SiGeC alloysare studied byab initio total-energy calculations.It is found from these calculations that the Ge cluster isa stable structure in a SiGe alloy. Furthermore, it is alsodemonstrated that Vegard's law is validin a SiGeC system whose C content is less than 3%.The total-energy calculation of the Si0.72Ge0.25C0.03alloy in which the number of Ge C bonds around a C atom variesshows that the energy increases on increasing the number of Ge C bonds.The mechanism of this increase is considered, taking into account thecohesive energy difference of the SiC and GeC alloys and the atomicconfiguration around the C atom.

  3. Ab initio MO Calculations on the Structure and Raman and Infrared Spectra of [Al4O2Cl10]2- Oxide in Chloroaluminate Melts

    NASA Astrophysics Data System (ADS)

    Berg, Rolf W.

    2007-04-01

    The oxide complexation chemistry in molten tetrachloroaluminate salts and ionic liquids is discussed with respect to what possible structures may be formed in addition to [AlCl4]-: [Al2OCl6]2-, [Al3OCl8]-, [Al2O2Cl4]2-, [Al3O2Cl6]- and [Al4O2Cl10]2-. Ab initio molecular orbital calculations are carried out on these various aluminium chloride and oxochloride ions, in assumed isolated gaseous free ionic state, by use of the Gaussian 03W program at the restricted Hartree-Fock (HF) level and with the 6-31+G(d,p) basis set.Without any pre-assumed symmetries and with tight optimization convergence criteria and by using the modified GDIIS algorithm, the model calculations generally converge. The structures and their binding energies are presented. The expected geometries are supported, with one exception perhaps being the [Al2OCl6]2- ion, that gave a linear Al-O-Al bonding system of staggered AlCl3-groups (approximate D3d symmetry), in analogy to the linear Al-O-Al geometry of the analogous [Al2OF6]2- ion, found previously. The calculations include determination of the vibrational harmonic normal modes and the infrared and Raman spectra (vibrational band wavenumbers and intensities), without any empiric adjustments of the harmonic force constants, using constants directly predicted from the Gaussian 03W program. Previously obtained IR absorption and Raman scattering spectra of melts are assigned, by comparing to the ab initio quantum mechanical vibrational analysis results. It is concluded that the small oxide content commonly found in basic and neutral tetrachloroaluminate melts, most probably consists of [Al4O2Cl10]2- ions, and the vibrational spectra are given.

  4. Quantum mechanical ab initio calculations of the structural, electronic and optical properties of bulk gold nitrides

    NASA Astrophysics Data System (ADS)

    Suleiman, Mohammed S. H.; Joubert, Daniel P.

    2015-11-01

    In the present work, the atomic and the electronic structures of Au3N, AuN and AuN2 are investigated using first-principles density-functional theory (DFT). We studied cohesive energy vs. volume data for a wide range of possible structures of these nitrides. Obtained data were fitted to a Birch-Murnaghan third-order equation of state (EOS) so as to identify the most likely candidates for the true crystal structure in this subset of the infinite parameter space, and to determine their equilibrium structural parameters. The analysis of the electronic properties was achieved by the calculations of the band structure and the total and partial density of states (DOS). Some possible pressure-induced structural phase transitions have been pointed out. Further, we carried out GW0 calculations within the random-phase approximation (RPA) to the dielectric tensor to investigate the optical spectra of the experimentally suggested modification: Au3N(D09). Obtained results are compared with experiment and with some available previous calculations.

  5. Ab initio study of thermodynamic, electronic, magnetic, structural, and elastic properties of Ni4N allotropes

    NASA Astrophysics Data System (ADS)

    Hemzalová, P.; Friák, M.; Šob, M.; Ma, D.; Udyansky, A.; Raabe, D.; Neugebauer, J.

    2013-11-01

    We have employed parameter-free density functional theory calculations to study the thermodynamic stability and structural parameters as well as elastic and electronic properties of Ni4N in eight selected crystallographic phases. In agreement with the experimental findings, the cubic structure with Pearson symbol cP5, space group Pm3¯m (221) is found to be the most stable and it is also the only thermodynamically stable structure at T=0 K with respect to decomposition to the elemental Ni crystal and N2 gas phase. We determine structural parameters, bulk moduli, and their pressure derivatives for all eight allotropes. The thermodynamic stability and bulk modulus is shown to be anticorrelated. Comparing ferromagnetic and nonmagnetic states, we find common features between the magnetism of elemental Ni and studied ferromagnetic Ni4N structures. For the ground-state Ni4N structure and other two Ni4N cubic allotropes, we predict a complete set of single-crystalline elastic constants (in the equilibrium and under hydrostatic pressure), the Young and area moduli, as well as homogenized polycrystalline elastic moduli obtained by different homogenization methods. We demonstrate that the elastic anisotropy of the ground-state Ni4N is qualitatively opposite to that in the elemental Ni, i.e., these materials have hard and soft crystallographic directions interchanged. Moreover, one of the studied metastable cubic phases is found auxetic, i.e., exhibiting negative Poisson ratio.

  6. Optimized Structures and Proton Affinities of Fluorinated Dimethyl Ethers: An Ab Initio Study

    NASA Technical Reports Server (NTRS)

    Orgel, Victoria B.; Ball, David W.; Zehe, Michael J.

    1996-01-01

    Ab initio methods have been used to investigate the proton affinity and the geometry changes upon protonation for the molecules (CH3)2O, (CH2F)2O, (CHF2)2O, and (CF3)2O. Geometry optimizations were performed at the MP2/3-2 I G level, and the resulting geometries were used for single-point energy MP2/6-31G calculations. The proton affinity calculated for (CH3)2O was 7 Kjoule/mole from the experimental value, within the desired variance of +/- 8Kjoule/mole for G2 theory, suggesting that the methodology used in this study is adequate for energy difference considerations. For (CF3)20, the calculated proton affinity of 602 Kjoule/mole suggests that perfluorinated ether molecules do not act as Lewis bases under normal circumstances; e.g. degradation of commercial lubricants in tribological applications.

  7. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    SciTech Connect

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.; Malozovsky, Y.; Zhao, G. L.; Bagayoko, D.

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus, 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.

  8. Precise Lifetime Measurements in Light Nuclei for Benchmarking Modern Ab-initio Nuclear Structure Models

    SciTech Connect

    Lister, C.J.; McCutchan, E.A.

    2014-06-15

    A new generation of ab-initio calculations, based on realistic two- and three-body forces, is having a profound impact on our view of how nuclei work. To improve the numerical methods, and the parameterization of 3-body forces, new precise data are needed. Electromagnetic transitions are very sensitive to the dynamics which drive mixing between configurations. We have made a series of precise (< 3%) measurements of electromagnetic transitions in the A=10 nuclei {sup 10}C and {sup 10}Be by using the Doppler Shift Attenuation method carefully. Many interesting features can be reproduced including the strong α clustering. New measurements on {sup 8}Be and {sup 12}Be highlight the interplay between the alpha clusters and their valence neutrons.

  9. Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.

  10. Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.

  11. Ab initio investigation of the structure and nonlinear optical properties of five-membered heterocycles containing sulfur

    NASA Astrophysics Data System (ADS)

    Spassova, Milena; Enchev, Venelin

    2004-03-01

    An ab initio HF and MP2 study of the static (hyper)polarizabilities of 2,4-substituted imidazoles and thiazoles is presented. The comparison of the two types of five-membered heterocycles suggests, that the exocyclic heteroatoms have much more influence upon the calculated hyperpolarizabilities, than the ring heteroatoms. It has been found, that adding diffuse functions to the 6-31G** basis set and inclusion of the electron correlation result in drastic changes in the second hyperpolarizability. The changes are more pronounced for the structures with larger number of sulfur atoms. A HF/6-31G** investigation of a push-pull system, in which thiorhodanine has been chosen as acceptor fragment shows an enhancement of the molecular polarizabilities with respect to the corresponding typical donor-acceptor NH 2/NO 2 polyene.

  12. The Free Energies of Reactions of Chlorinated Methanes with Aqueous Monovalent Anions: Applications of ab initio Electronic Structure Theory

    SciTech Connect

    Bylaska, Eric J.; Dixon, David A.; Felmy, Andrew R.

    2000-01-01

    The presence of different anionic species in natural waters can significantly alter the degradation rates of chlorinated methanes and other organic compounds. Favorable reaction energetics is a necessary feature of these nucleophilic substitution reactions that can result in the degradation of the chlorinated methanes. In this study, ab initio electronic structure theory is used to evaluate the free energies of reaction of a series of monovalent anionic species (OH-, SH-, NO3 -, HCO3 -, HSO3 -, HSO4 -, H2PO4 -, and F-) that can occur in natural waters with the chlorinated methanes, CCl4, CCl3H, CCl2H2, and CClH3. The results of this investigation show that nucleophilic substitution reactions of OH-, SH-, HCO3 -, and F- are significantly exothermic for chlorine displacement, NO3 - reactions are slightly exothermic to thermoneutral, HSO3

  13. Ab initio calculations of structure and thermodynamic properties of tetragonal-TiH2 under high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Liu, X. K.; Tang, B.; Zhang, Y.

    2013-10-01

    The structural and thermodynamic properties of tetragonal-TiH2 under high temperatures and pressures are investigated by Ab initio calculations based on pseudo-potential plane-wave density functional theory method within using the generalized gradient approximation (GGA) and quasi-harmonic Debye model. Some ground state properties such as lattice constants, bulk modulus and elastic constants are good agreement with the available experimental results and other theoretical data. Through the quasiharmonic Debye model, in which the phononic effects are considered, the thermodynamic properties of tetragonal-TiH2 such as thermal expansion coefficient, Debye temperature, heat capacity and Grüneisen parameters dependence of temperature and pressure in the range of 0-1000 K and 0-10 GPa are also presented, respectively.

  14. Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.

  15. Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.

  16. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    SciTech Connect

    Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H.; Antusek, Andrej; Parlinska-Wojtan, Magdalena; Bissig, Vinzenz

    2012-10-29

    Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  17. Transition from exohedral to endohedral structures of AuGen(-) (n = 2-12) clusters: photoelectron spectroscopy and ab initio calculations.

    PubMed

    Lu, Sheng-Jie; Hu, Lian-Rui; Xu, Xi-Ling; Xu, Hong-Guang; Chen, Hui; Zheng, Wei-Jun

    2016-07-27

    Gold-doped germanium clusters, AuGen(-) (n = 2-12), were investigated by using anion photoelectron spectroscopy in combination with ab initio calculations. Their geometric structures were determined by comparison of the theoretical calculations with the experimental results. The results show that the most stable isomers of AuGen(-) with n = 2-10 are all exohedral structures with the Au atom capping the vertex, edge or face of Gen clusters, while AuGe11(-) is found to be the critical size of the endohedral structure. Interestingly, AuGe12(-) has an Ih symmetric icosahedral structure with the Au atom located at the center. The molecular orbital analysis of the AuGe12(-) cluster suggests that the interactions between the 5d orbitals of the Au atom and the 4s4p hybridized orbitals of the Ge atoms may stabilize the Ih symmetric icosahedral cage and promote the Au atom to be encapsulated in the cage of Ge12. The NICS(0) and NICS(1) values are calculated to be -143.7 ppm and -36.3 ppm, respectively, indicating that the icosahedral AuGe12(-) cluster is significantly aromatic. PMID:27066757

  18. Structure of ZnCl2 Melt. Part I: Raman Spectroscopy Analysis Driven by Ab Initio Methods.

    PubMed

    Alsayoud, Abduljabar Q; Venkateswara Rao, Manga; Edwards, Angharad N; Deymier, Pierre A; Muralidharan, Krishna; Potter, B G; Runge, Keith; Lucas, Pierre

    2016-05-01

    The structure of molten ZnCl2 is investigated using a combination of computer simulation and experimental methods. Ab initio molecular dynamics (AIMD) is used to model the structure of ZnCl2 at 600 K. The structure factors and pair distribution functions derived from AIMD show a good match with those previously measured by neutron diffraction (ND). In addition, Raman spectroscopy is used to investigate the structure of liquid ZnCl2 and identify the relative fractions of constituent structural units. To ascertain the assignment of each Raman mode, a series of ZnCl2 crystalline prototypes are modeled and the corresponding Raman modes are derived by first-principles calculations. Curve fitting of experimental Raman spectra using these mode assignments shows excellent agreement with both AIMD and ND. These results confirm the presence of significant fractions of edge-sharing tetrahedra in liquid ZnCl2. The presence of these structural motifs has significant impact on the fragility of this tetrahedral glass-forming liquid. The assignment of Raman bands present in molten ZnCl2 is revised and discussed in view of these results. PMID:27070739

  19. Ab Initio Approach for Prediction of Oxide Surface Structure, Stoichiometry, and Electrocatalytic Activity in Aqueous Solution.

    PubMed

    Rong, Xi; Kolpak, Alexie M

    2015-05-01

    The design of efficient, stable, and inexpensive catalysts for oxygen evolution and reduction is crucial for the development of electrochemical energy conversion devices such as fuel cells and metal-air batteries. Currently, such design is limited by challenges in atomic-scale experimental characterization and computational modeling of solid-liquid interfaces. Here, we begin to address these issues by developing a general-, first-principles-, and electrochemical-principles-based framework for prediction of catalyst surface structure, stoichiometry, and stability as a function of pH, electrode potential, and aqueous cation concentration. We demonstrate the approach by determining the surface phase diagram of LaMnO3, which has been studied for oxygen evolution and reduction and computing the reaction overpotentials on the relevant surface phases. Our results illustrate the critical role of solvated cation species in governing the catalyst surface structure and stoichiometry, and thereby catalytic activity, in aqueous solution. PMID:26263350

  20. Structure and energetics of graphene oxide isomers: ab initio thermodynamic analysis

    NASA Astrophysics Data System (ADS)

    Chaban, Vitaly V.; Prezhdo, Oleg V.

    2015-10-01

    Graphene oxide (GO) holds significant promise for electronic devices and nanocomposite materials. A number of models were proposed for the GO structure, combining carboxyl, hydroxyl, carbonyl and epoxide groups at different locations. The complexity and variety of GO isomers, whose thermodynamic stability and formation kinetics depend on the applied conditions, make determination of the GO structure with atomistic precision challenging. We report high level theoretical investigation of multiple molecular configurations, which are anticipated in GO. We conclude that all oxygen containing groups at the GO surface are thermodynamically permitted, whereas the `edge' positions are systematically more favorable than the `center' and `side' positions. We discuss a potentially novel type of chemical bond or bonding reinforcement in GO, which consists of a covalent bond and a strong electrostatic contribution from a polarized graphene plane. We observe and analyze significant modifications of the graphene geometry and electronic structure upon oxidation. The reported thermodynamic data guide experiments aimed at deciphering the GO chemical composition and structure, and form the basis for predicting GO properties required for nano-technological applications.

  1. Structure and energetics of graphene oxide isomers: ab initio thermodynamic analysis.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2015-10-28

    Graphene oxide (GO) holds significant promise for electronic devices and nanocomposite materials. A number of models were proposed for the GO structure, combining carboxyl, hydroxyl, carbonyl and epoxide groups at different locations. The complexity and variety of GO isomers, whose thermodynamic stability and formation kinetics depend on the applied conditions, make determination of the GO structure with atomistic precision challenging. We report high level theoretical investigation of multiple molecular configurations, which are anticipated in GO. We conclude that all oxygen containing groups at the GO surface are thermodynamically permitted, whereas the 'edge' positions are systematically more favorable than the 'center' and 'side' positions. We discuss a potentially novel type of chemical bond or bonding reinforcement in GO, which consists of a covalent bond and a strong electrostatic contribution from a polarized graphene plane. We observe and analyze significant modifications of the graphene geometry and electronic structure upon oxidation. The reported thermodynamic data guide experiments aimed at deciphering the GO chemical composition and structure, and form the basis for predicting GO properties required for nano-technological applications. PMID:26420562

  2. Rotation spectrum and infrared fundamental bands of 123SbD3. Determination of molecular geometry and ab initio calculations of spectroscopic parameters

    NASA Astrophysics Data System (ADS)

    Canè, E.; di Lonardo, G.; Fusina, L.; Jerzembeck, W.; Bürger, H.; Breidung, J.; Thiel, W.

    The high resolution infrared spectrum of 123SbD3 has been recorded in the 20-350 cm-1 range and in the regions of the ν1, ν3 and ν2, ν4 fundamental bands centred at 1350 and 600 cm-1, respectively. Splitting of the K'' = 3, 6 lines have been observed both in the rotation and ro-vibration spectra. A large number of 'perturbation allowed' transitions with selection rules Δ(k -l) = ± 3, ± 6, and ± 9 have been identified in all fundamental bands. Accurate ground state molecular parameters have been determined by means of a simultaneous fit of the rotational transitions and about 12 000 ground state combination differences from the infrared bands. The A and B reductions of the rotational Hamiltonian provided almost equivalent results. The molecular parameters of the νi = 1 (i = 1 - 4) states were obtained as a result of the simultaneous analysis of the ν1 (A1)/ν3 (E) stretching and of the ν2 (A1)/ν4 (E) bending dyads. In fact, the corresponding excited states are affected by strong perturbations due to rovibrational interactions of Coriolis and k-type that have been treated explicitly in the model adopted for the analysis. Improved effective ground state and equilibrium geometries were determined for the molecule and compared to those of 123SbH3. Ab initio calculations at the coupled cluster CCSD(T) level with an energy-consistent large-core pseudopotential and large basis sets were carried out to determine the equilibrium structure, the anharmonic force field, and the associated spectroscopic constants of 123SbH3 and 123SbD3. The theoretical results are in good agreement with the experimental data.

  3. Crystal structure determination of Efavirenz

    NASA Astrophysics Data System (ADS)

    Popeneciu, Horea; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria; Dumitru, Ristoiu

    2015-12-01

    Needle-shaped single crystals of the title compound, C14H9ClF3NO2, were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring.

  4. Catalytic Reaction Mechanism of Acetylcholinesterase Determined by Born-Oppenheimer ab initio QM/MM Molecular Dynamics Simulations

    PubMed Central

    Zhou, Yanzi; Wang, Shenglong; Zhang, Yingkai

    2010-01-01

    Acetylcholinesterase (AChE) is a remarkably efficient serine hydrolase responsible for the termination of impulse signaling at cholinergic synapses. By employing Born-Oppenheimer molecular dynamics simulations with B3LYP/6-31G(d) QM/MM potential and the umbrella sampling method, we have characterized its complete catalytic reaction mechanism for hydrolyzing neurotransmitter acetylcholine (ACh) and determined its multi-step free energy reaction profiles for the first time. In both acylation and deacylation reaction stages, the first step involves the nucleophilic attack to the carbonyl carbon with the triad His447 serving as the general base, and leads to a tetrahedral covalent intermediate stabilized by the oxyanion hole. From the intermediate to the product, the orientation of His447 ring needs to be adjusted very slightly, and then the proton transfers from His447 to the product and the break of the scissile bond happen spontaneously. For the three-pronged oxyanion hole, it only makes two hydrogen bonds with the carbonyl oxygen at either the initial reactant or the final product state, but the third hydrogen bond is formed and stable at all transition and intermediate states during the catalytic process. At the intermediate state of the acylation reaction, a short and low-barrier hydrogen bond (LBHB) is found to be formed between two catalytic triad residues His447 and Glu334, and the spontaneous proton transfer between two residues has been observed. However, it is only about 1 ~ 2 kcal/mol stronger than the normal hydrogen bond. In comparison with previous theoretical investigations of the AChE catalytic mechanism, our current study clearly demonstrates the power and advantages of employing Born-Oppenheimer ab initio QM/MM MD simulations in characterizing enzyme reaction mechanisms. PMID:20550161

  5. Dynamical structures of glycol and ethanedithiol examined by infrared spectroscopy, ab initio computation, and molecular dynamics simulations.

    PubMed

    Ma, Xiaoyan; Cai, Kaicong; Wang, Jianping

    2011-02-10

    Infrared (IR) experiment, ab initio computations, and molecular dynamics (MD) simulations were used to examine the dynamical structures of ethylene glycol (EG) and 1,2-ethanedithiol (EDT) in carbon tetrachloride and deuterated chloroform. Using the O-H and S-H stretching modes as structural probes, EG and EDT were found to exhibit different conformational preferences, even though they share similar molecular formula. Results suggest that the gauche conformation of EG presents and is stabilized by the intramolecular hydrogen bond (IHB), while both the trans and gauche EDT are possible in the two solvents. Exchangeable IHB donor and acceptor pairs were predicted in the case of EG. Anharmonic vibrational frequencies, anharmonicities, and couplings of the O-H and S-H stretching modes were predicted and found to be structurally dependent. Linear IR and two-dimensional IR spectra containing these structural signatures were simulated and discussed. These results demonstrate that a combination of the methods used here is very useful in revealing structural dynamics of small molecules in condensed phases. PMID:21208002

  6. Determinants and Polynomial Root Structure

    ERIC Educational Resources Information Center

    De Pillis, L. G.

    2005-01-01

    A little known property of determinants is developed in a manner accessible to beginning undergraduates in linear algebra. Using the language of matrix theory, a classical result by Sylvester that describes when two polynomials have a common root is recaptured. Among results concerning the structure of polynomial roots, polynomials with pairs of…

  7. Ab initio global optimization of the structures of Si{sub n}H, n=4-10, using parallel genetic algorithms

    SciTech Connect

    Ona, Ofelia; Facelli, Julio C.; Bazterra, Victor E.; Caputo, Maria C.; Ferraro, Marta B.

    2005-11-15

    The results of ab initio global optimizations of the structures of Si{sub n}H, n=4-10, atomic clusters using a parallel genetic algorithm are presented. Driving the global search with the parallel implementation of the genetic algorithm are presented and using the density functional theory as implemented in the Carr-Parinello molecular dynamics code to calculate atomic cluster energies and perform the local optimization of their structures, we have been able to demonstrate that it is possible to perform global optimizations of the structure of atomic clusters using ab initio methods. The results show that this approach is able to find many structures that were not previously reported in the literature. Moreover, in most cases the new structures have considerable lower energies than those previously known. The results clearly demonstrate that these calculations are now possible and in spite of their larger computational demands provide more reliable results.

  8. Ab initio and DFT study of the geometric structures and static dipole (hyper)polarizabilities of aromatic anions.

    PubMed

    Castellano, O; Bermúdez, Y; Giffard, M; Mabon, G; Cubillan, N; Sylla, M; Nguyen-Phu, X; Hinchliffe, A; Soscún, H

    2005-11-17

    The geometries and the static dipole (hyper)polarizabilities (alpha, beta, gamma) of a series of aromatic anions were investigated at the ab initio (HF, MP2, and MP4) and density functional theory DFT (B3LYP) levels of theory. The anions chosen for the present study are the benzenethiolate (Ph-S-), benzenecarboxylate (Ph-CO2-), benzenesulfinate (Ph-SO2-), benzenesulfonate (Ph-SO3-), and 1,3-benzenedicarboxylate (1,3-Ph-(CO2)2(2-)). For benzenethiolate anion, additional alpha, beta, and gamma calculations were performed at the coupled cluster CCSD level with MP2 optimized geometries. The standard diffuse and polarized 6-31+G(d,p) basis set was employed in conjunction to the ab initio and DFT methods. Additional HF calculations were performed with the 6-311++G(3d,3p) basis set for all the anions. The correlated electric properties were evaluated numerically within the formalism of finite field. The optimized geometries were analyzed in terms of the few reports about the phenolate and sulfonate ions. The results show that electron correlation effects on the polarizabilities are very important in all the anion series. Was found that Ph-SO2- is highly polarizable in terms of alpha and beta, and the Ph-S- is the highest second hyperpolarizable in the series. The results of alpha were rationalized in terms of the analysis of the polarization of charge based in Mulliken atomic population and the structural features of the optimized geometries of anions, whereas the large differences in the beta and gamma values in the series were respectively interpreted in terms of the bond length alternation BLA and the separation of charge in the aromatic ring by effects of the substitution. These results allowed us to suggest the benzenesulfinate and benzenethiolate anions as promising candidates that should be incorporated in ionic materials for second and third-order nonlinear optical devices. PMID:16833334

  9. Structural determinants of limited proteolysis.

    PubMed

    Kazanov, Marat D; Igarashi, Yoshinobu; Eroshkin, Alexey M; Cieplak, Piotr; Ratnikov, Boris; Zhang, Ying; Li, Zhanwen; Godzik, Adam; Osterman, Andrei L; Smith, Jeffrey W

    2011-08-01

    Limited or regulatory proteolysis plays a critical role in many important biological pathways like blood coagulation, cell proliferation, and apoptosis. A better understanding of mechanisms that control this process is required for discovering new proteolytic events and for developing inhibitors with potential therapeutic value. Two features that determine the susceptibility of peptide bonds to proteolysis are the sequence in the vicinity of the scissile bond and the structural context in which the bond is displayed. In this study, we assessed statistical significance and predictive power of individual structural descriptors and combination thereof for the identification of cleavage sites. The analysis was performed on a data set of >200 proteolytic events documented in CutDB for a variety of mammalian regulatory proteases and their physiological substrates with known 3D structures. The results confirmed the significance and provided a ranking within three main categories of structural features: exposure > flexibility > local interactions. Among secondary structure elements, the largest frequency of proteolytic cleavage was confirmed for loops and lower but significant frequency for helices. Limited proteolysis has lower albeit appreciable frequency of occurrence in certain types of β-strands, which is in contrast with some previous reports. Descriptors deduced directly from the amino acid sequence displayed only marginal predictive capabilities. Homology-based structural models showed a predictive performance comparable to protein substrates with experimentally established structures. Overall, this study provided a foundation for accurate automated prediction of segments of protein structure susceptible to proteolytic processing and, potentially, other post-translational modifications. PMID:21682278

  10. Structural determinants of limited proteolysis

    PubMed Central

    Kazanov, Marat D.; Igarashi, Yoshinobu; Eroshkin, Alexey M.; Cieplak, Piotr; Ratnikov, Boris; Zhang, Ying; Li, Zhanwen; Godzik, Adam; Osterman, Andrei L.; Smith1, Jeffrey W.

    2011-01-01

    Limited or regulatory proteolysis plays a critical role in many important biological pathways like blood coagulation, cell proliferation, and apoptosis. A better understanding of mechanisms that control this process is required for discovering new proteolytic events and for developing inhibitors with potential therapeutic value. Two features that determine the susceptibility of peptide bonds to proteolysis are the sequence in the vicinity of the scissile bond and the structural context in which the bond is displayed. In this study we assessed statistical significance and predictive power of individual structural descriptors and combination thereof for the identification of cleavage sites. The analysis was performed on a dataset of >200 proteolytic events documented in CutDB for a variety of mammalian regulatory proteases and their physiological substrates with known 3D structures. The results confirmed the significance and provided a ranking within three main categories of structural features: exposure > flexibility > local interactions. Among secondary structure elements, the largest frequency of proteolytic cleavage was confirmed for loops and lower but significant frequency for helices. Limited proteolysis has lower albeit appreciable frequency of occurrence in certain types of β-strands, which is in contrast with some previous reports. Descriptors deduced directly from the amino acid sequence displayed only marginal predictive capabilities. Homology-based structural models showed a predictive performance comparable to protein substrates with experimentally established structures. Overall, this study provided a foundation for accurate automated prediction of segments of protein structure susceptible to proteolytic processing and, potentially, other post-translational modifications. PMID:21682278

  11. Ab initio calculation and anharmonic force field of hypochlorous acid, HOCl

    NASA Astrophysics Data System (ADS)

    Halonen, L.; Ha, T.-K.

    1988-03-01

    Ab initio calculations on HOCl have been performed at the third-order Møller-Plesset perturbation theory level to determine the equilibrium structure and the anharmonic force field. An empirical anharmonic force field based on the ab initio results is obtained using available experimental vibration-rotation data. Four of the six harmonic and six of the ten cubic force constants have been determined experimentally, the remaining values being fixed at the ab initio values. A good fit to the experimental vibration-rotation data of four isotopic species is obtained.

  12. Pressure-induced changes in structural and dynamic properties of liquid Fe close to the melting line. An ab initio study

    NASA Astrophysics Data System (ADS)

    Marqués, Miriam; González, Luis E.; González, David J.

    2016-02-01

    The static and dynamic properties of liquid Fe at high pressure and temperature have been studied using an ab initio molecular dynamics method. We have focused on four thermodynamic states at pressures of 27, 42, 50 and 58 GPa for which x-ray scattering data are available. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak which becomes more marked with increasing pressure. The dynamical structure reveals the existence of propagating density fluctuations and the associated dispersion relation has also been determined. The relaxation mechanisms for the density fluctuations have been analyzed in terms of a model with two decay channels (fast and slow, respectively). We found that the thermal relaxation proceeds along the slow decaying channel whereas the fast one is that of the viscoelastic relaxation. The possible coupling between longitudinal and transverse excitation modes has been investigated by looking at specific signatures in two wavevector regions: the first one is located around the position of the main peak of the structure factor, q p , as suggested by the recently reported appearance of high frequency transverse waves in liquid Li under high pressures; the second region is around q p /2, as suggested by the recent finding of transverse acoustic modes in inelastic x-ray scattering intensities of liquid Fe at ambient pressure. Finally, results are also reported for several transport coefficients.

  13. Pressure-induced changes in structural and dynamic properties of liquid Fe close to the melting line. An ab initio study.

    PubMed

    Marqués, Miriam; González, Luis E; González, David J

    2016-02-24

    The static and dynamic properties of liquid Fe at high pressure and temperature have been studied using an ab initio molecular dynamics method. We have focused on four thermodynamic states at pressures of 27, 42, 50 and 58 GPa for which x-ray scattering data are available. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak which becomes more marked with increasing pressure. The dynamical structure reveals the existence of propagating density fluctuations and the associated dispersion relation has also been determined. The relaxation mechanisms for the density fluctuations have been analyzed in terms of a model with two decay channels (fast and slow, respectively). We found that the thermal relaxation proceeds along the slow decaying channel whereas the fast one is that of the viscoelastic relaxation. The possible coupling between longitudinal and transverse excitation modes has been investigated by looking at specific signatures in two wavevector regions: the first one is located around the position of the main peak of the structure factor, qp, as suggested by the recently reported appearance of high frequency transverse waves in liquid Li under high pressures; the second region is around qp/2, as suggested by the recent finding of transverse acoustic modes in inelastic x-ray scattering intensities of liquid Fe at ambient pressure. Finally, results are also reported for several transport coefficients. PMID:26811899

  14. Relation between Magnetic, Spectroscopic and Structural Properties of Binuclear Copper(II) Complexes of Pentadentate Schiff-base Ligand, Semi-empirical and ab-initio Calculations

    NASA Astrophysics Data System (ADS)

    Elerman, Y.; Kara, H.; Elmali, A.

    2003-06-01

    The synthesis and characterization of [Cu2(L1)(3,5 prz)] (L1=1,3-Bis(2-hydroxy-3,5-chlorosalicylideneamino) propan-2-ol) 1 and of [Cu2(L2)(3,5 prz)] (L2=1,3-Bis(2-hydroxy-bromosalicylideneamino) propan-2-ol) 2 are reported. The compounds were studied by elemental analysis, infrared and electronic spectra. The structure of the Cu2(L1)(3,5 prz)] complex was determined by x-ray diffraction. The magnetochemical characteristics of these compounds were determined by temperaturedependent magnetic susceptibility measurements, revealing their antiferromagnetic coupling. The superexchange coupling constants are 210 cm-1 for 1 and 440 cm-1 for 2. The difference in the magnitude of the coupling constants was explained by the metal-ligand orbital overlaps and confirmed by ab-initio restricted Hartree-Fock (RHF) calculations. In order to determine the nature of the frontier orbitals, Extended Hückel Molecular Orbital (EHMO) calculations are also reported.

  15. Ab initio study of the structures and hydrogen storage capacity of (H2)nCH4 compound

    NASA Astrophysics Data System (ADS)

    Wang, Minghui; Cheng, Xinlu; Ren, Dahua; Zhang, Hong; Tang, Yongjian

    2015-05-01

    The hydrogen-rich compound (H2)nCH4 (for n = 1, 2, 3, 4) or for short (H2)nM is one of the most promising hydrogen storage materials. The (H2)4M molecule is the best hydrogen-rich compound among the (H2)nM structures and it can reach the hydrogen storage capacity of 50.2 wt.%. However, the (H2)nM always requires a certain pressure to remain stable. In this work, we first investigated the binding energy of the different structures in (H2)nM and energy barrier of H2 rotation under different pressures at ambient temperature, applying ab initio methods based on van der Waals density functional (vdW-DF). It was found that at 0 GPa, the (H2)nM is not stable, while at 5.8 GPa, the stability of (H2)nM strongly depends on its structure. We further investigate the Raman spectra of (H2)nM structures at 5.8 GPa and found the results were consistent with experiments. Excitingly, we found that boron nitride nanotubes (BNNTs) and graphite and hexagonal boron nitride (h-BN) can be used to store (H2)4M, which give insights into hydrogen storage practical applications.

  16. Effects of Paramagnetism and Electron Correlations on the Electronic Structure of MnO: Ab Initio Study

    NASA Astrophysics Data System (ADS)

    Yoon, Sangmoon; Jin, Kyoungsuk; Kang, Seoung-Hun; Nam, Ki Tae; Kim, Miyoung; Kwon, Young-Kyun

    Manganese oxide nanoparticles have attracted a lot of attentions as a promising candidate for next-generation catalyst. Therefore, understanding the electronic structure of manganese oxide in room temperature is highly required for the rational design of catalysts. We study the effects of paramagnetism and electron correlations on the electronic structure of MnO using ab initio density functional theory. Spin configurations of paramagnetism are postulated as the ensemble average of various spin disorders. Each initial disordered spin configuration is randomly generated with two constraints on magnetic local moments. We first investigate the influence of magnetic ordering on the elctronic structure of MnO using noncollinear spin calculations and find that the magnetic disorders make valence band maximum more delocalized. Moreover, we examine the role of electron correlations in the electronic structure of paramagnetic MnO using DFT +U calculations. Strong electron correlations modify not only the size of band gap but also the magnitude of local moments as in the antiferromagnetic MnO. Besides, the initialized spin disorder remains almost unchanged as electron correlation get stronger. Furthermore, our results obtained by considering both strong electron correlation and paramagnetism confirm experimentally-observed oxygen K edge X-ray emission spectra [1] reflecting the feature of valence bands. [1] E. Z. Kurmaev et al., Phys. Rev. B. 77, 165127 (2008).

  17. Ab-initio Calculation of Optoelectronic and Structural Properties of Cubic Lithium Oxide (Li2O)

    NASA Astrophysics Data System (ADS)

    Ziegler, Joshua; Polin, Daniel; Malozovsky, Yuriy; Bagayoko, Diola

    Using the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), we performed ab-initio, density functional theory (DFT) calculations of optoelectronic, transport, and bulk properties of Li2S. In so doing, we avoid ``band gap'' and problems plaguing many DET calculations [AIP Advances 4, 127104 (2014)]. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). With the BZW-EF method, our results possess the full, physical content of DFT and agree with available, corresponding experimental ones. In particular, we found a room temperature indirect band gap of 6.659 eV that compares favorably with experimental values ranging from 5 to 7.99 eV. We also calculated total and partial density of states (DOS and PDOS), effective masses of charge carriers, the equilibrium lattice constant, and the bulk modulus. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award Nos. DE-NA0001861 and DE- NA0002630), LaSPACE, and LONI-SUBR.

  18. Ab Initio Study of the Structural, Electronic, and Thermal Properties of Alloy

    NASA Astrophysics Data System (ADS)

    Benkaddour, I.; Khachai, H.; Chiker, F.; Benosman, N.; Benkaddour, Y.; Murtaza, G.; Omran, S. Bin; Khenata, R.

    2015-07-01

    The results of a first-principle study of the structural, electronic, and thermal properties of a alloy, using the full-potential linear muffin-tin-orbital (FP-LMTO) method in the framework of density functional theory, within both the local density approximation and the generalized gradient approximation are presented. The composition effect on lattice constants, bulk moduli, band gaps, and effective masses is analyzed. The quasi-harmonic Debye model, using a set of total energy versus volume calculations obtained with the FP-LMTO method, is applied to study the thermal and vibrational effects. The temperature effect on the lattice parameters, thermal expansions, heat capacities, and Debye temperatures is determined from the non-equilibrium Gibbs functions. The microscopic origins of the bowing parameter were explained using the approach of Zunger and coworkers.

  19. Structure of 1-naphthol-water clusters in the S1 state studied by UV-IR fluorescence dip spectroscopy and ab initio molecular orbital calculations

    NASA Astrophysics Data System (ADS)

    Shimizu, Toshihiko; Yoshino, Ruriko; Ishiuchi, Shun-ichi; Hashimoto, Kenro; Miyazaki, Mitsuhiko; Fujii, Masaaki

    2013-02-01

    IR spectra of trans-1-naphthol-(H2O)n (n = 0-3) clusters in the S1 state were measured by UV-IR fluorescence dip spectroscopy. The observed dip spectra were compared with theoretical ones of various stable conformations predicted by ab initio MO calculations. From the comparison, linear (n = 1) and cyclic hydrogen-bond structures (n = 2 and 3) were concluded. The relation between the structures and photochemical reactivity was discussed.

  20. Structural characterization of tellurite glasses doped with transition metal oxides using Raman spectra and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mohamed, Tarek A.; Shaltout, I.; Al Yahyaei, K. M.

    2006-05-01

    Systems of iron tellurite glasses were prepared by melt quenching with compositions of [85%TeO 2 + 5%Fe 2O 3 + 10%TMO], where transition metal oxides (TMO) are TiO 2, V 2O 5, MnO, CoO, NiO and CuO. Furthermore, the main structural units of these samples have been characterized by means of Raman spectra (150-1200 cm -1) as well as wavenumber predictions by means of Gaussian 98 ab initio calculations for the proposed site symmetries of TeO 44- triagonal bipyramid ( C2v) and Te 2O 76- bridged tetrahedra ( Cs and C1). Aided by normal coordinate analysis, calculated vibrational frequencies, Raman scattering activities, force constants in internal coordinates and potential energy distributions (PEDs), revised vibrational assignments for the fundamental modes have been proposed. The main structural features are correlated to the dominant units of triagonal bipyramid (tbp) or bridged tetrahedral (TeO 3+1 binds to TeO 3 through TeOTe bridge; corner sharing). Moreover, the Raman spectra of the investigated tellurites reflect a structural change from tbp (coordination number is four) to triagonal pyramidal (coordination number is three).

  1. Hydration structures of U(III) and U(IV) ions from ab initio molecular dynamics simulations

    SciTech Connect

    Leung, Kevin; Nenoff, Tina M.

    2012-08-21

    We apply DFT+U-based ab initio molecular dynamics simulations to study the hydration structures of U(III) and U(IV) ions, pertinent to redox reactions associated with uranium salts in aqueous media. U(III) is predicted to be coordinated to 8 water molecules, while U(IV) has a hydration number between 7 and 8. At least one of the innershell water molecules of the hydrated U(IV) complex becomes spontaneously deprotonated. As a result, the U(IV)-O pair correlation function exhibits a satellite peak at 2.15 A associated with the shorter U(IV)-(OH{sup -}) bond. This feature is not accounted for in analysis of extended x-ray absorption fine structure and x-ray adsorption near edge structure measurements, which yield higher estimates of U(IV) hydration numbers. This suggests that it may be useful to include the effect of possible hydrolysis in future interpretation of experiments, especially when the experimental pH is close to the reported hydrolysis equilibrium constant value.

  2. Crystal structure determination of Efavirenz

    SciTech Connect

    Popeneciu, Horea Dumitru, Ristoiu; Tripon, Carmen Borodi, Gheorghe Pop, Mihaela Maria

    2015-12-23

    Needle-shaped single crystals of the title compound, C{sub 14}H{sub 9}ClF{sub 3}NO{sub 2}, were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring.

  3. Tunneling Splittings in Vibronic Structure of CH_3F^+ ( X^2E): Studied by High Resolution Photoelectron Spectra and AB Initio Theoretical Method

    NASA Astrophysics Data System (ADS)

    Mo, Yuxiang; Gao, Shuming; Dai, Zuyang; Li, Hua

    2013-06-01

    We report a combined experimental and theoretical study on the vibronic structure of CH_3F^+. The results show that the tunneling splittings of vibrational energy levels occur in CH_3F^+ due to the Jahn-Teller effect. Experimentally, we have measured a high resolution ZEKE spectrum of CH_3F up to 3500 cm^-^1 above the ground state. Theoretically, we performed an ab initio calculation based on the diabatic model. The adiabatic potential energy surfaces (APES) of CH_3F^+ have been calculated at the MRCI/CAS/avq(t)z level and expressed by Taylor expansions with normal coordinates as variables. The energy gradients for the lower and upper APES, the derivative couplings between them and also the energies of the APES have been used to determine the coefficients in the Taylor expansion. The spin-vibronic energy levels have been calculated by accounting all six vibrational modes and their couplings. The experimental ZEKE spectra were assigned based on the theoretical calculations. W. Domcke, D. R. Yarkony, and H. Köpple (Eds.), Conical Intersections: Eletronic Structure, Dynamics and Spectroscopy (World Scientific, Singapore, 2004). M. S. Schuurman, D. E. Weinberg, and D. R. Yarkony, J. Chem. Phys. 127, 104309 (2007).

  4. A photoelectron spectroscopy and ab initio study of the structures and chemical bonding of the B{sub 25}{sup −} cluster

    SciTech Connect

    Piazza, Zachary A.; Li, Wei-Li; Wang, Lai-Sheng E-mail: lai-sheng-wang@brown.edu; Popov, Ivan A.; Boldyrev, Alexander I. E-mail: lai-sheng-wang@brown.edu; Pal, Rhitankar; Cheng Zeng, Xiao

    2014-07-21

    Photoelectron spectroscopy and ab initio calculations are used to investigate the structures and chemical bonding of the B{sub 25}{sup −} cluster. Global minimum searches reveal a dense potential energy landscape with 13 quasi-planar structures within 10 kcal/mol at the CCSD(T)/6-311+G(d) level of theory. Three quasi-planar isomers (I, II, and III) are lowest in energy and nearly degenerate at the CCSD(T) level of theory, with II and III being 0.8 and 0.9 kcal/mol higher, respectively, whereas at two density functional levels of theory isomer III is the lowest in energy (8.4 kcal/mol more stable than I at PBE0/6-311+G(2df) level). Comparison with experimental photoelectron spectroscopic data shows isomer II to be the major contributor while isomers I and III cannot be ruled out as minor contributors to the observed spectrum. Theoretical analyses reveal similar chemical bonding in I and II, both involving peripheral 2c-2e B−B σ-bonding and delocalized interior σ- and π-bonding. Isomer III has an interesting elongated ribbon-like structure with a π-bonding pattern analogous to those of dibenzopentalene. The high density of low-lying isomers indicates the complexity of the medium-sized boron clusters; the method dependency of predicting relative energies of the low-lying structures for B{sub 25}{sup −} suggests the importance of comparison with experiment in determining the global minima of boron clusters at this size range. The appearance of many low-lying quasi-planar structures containing a hexagonal hole in B{sub 25}{sup −} suggests the importance of this structural feature in maintaining planarity of larger boron clusters.

  5. Homologous series of layered structures in binary and ternary Bi-Sb-Te-Se systems: Ab initio study

    NASA Astrophysics Data System (ADS)

    Govaerts, K.; Sluiter, M. H. F.; Partoens, B.; Lamoen, D.

    2014-02-01

    In order to account explicitly for the existence of long-periodic layered structures and the strong structural relaxations in the most common binary and ternary alloys of the Bi-Sb-Te-Se system, we have developed a one-dimensional cluster expansion (CE) based on first-principles electronic structure calculations, which accounts for the Bi and Sb bilayer formation. Excellent interlayer distances are obtained with a van der Waals density functional. It is shown that a CE solely based on pair interactions is sufficient to provide an accurate description of the ground-state energies of Bi-Sb-Te-Se binary and ternary systems without making the data set of ab initio calculated structures unreasonably large. For the binary alloys A1-xQx (A =Sb, Bi; Q =Te, Se), a ternary CE yields an almost continuous series of (meta)stable structures consisting of consecutive A bilayers next to consecutive A2Q3 for 00.6, the binary alloy segregates into pure Q and A2Q3. The Bi-Sb system is described by a quaternary CE and is found to be an ideal solid solution stabilized by entropic effects at T ≠0 K but with an ordered structure of alternating Bi and Sb layers for x =0.5 at T =0 K. A quintuple CE is used for the ternary Bi-Sb-Te system, where stable ternary layered compounds with an arbitrary stacking of Sb2Te3,Bi2Te3, and Te-Bi-Te-Sb-Te quintuple units are found, optionally separated by mixed Bi/Sb bilayers. Electronic properties of the stable compounds were studied taking spin-orbit coupling into account.

  6. Methodological approach to study energetic and structural properties of nanostructured cadmium sulfide by using ab-initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Burresi, E.; Celino, M.

    2012-05-01

    A single wurtzite phase of cadmium sulfide cluster is investigated by ab-initio molecular dynamics simulations at different temperatures, ranging from 100 K to 600 K. In this study we propose a possible procedure to characterize the CdS quantum dots system by means of molecular dynamics calculations using a standard Car-Parrinello scheme. In order to ensure the accuracy of the numerical approach, preliminary calculations to test pseudopotentials, cutoff and box size on both single atoms systems and Cd-Cd, S-S, Cd-S dimers have been performed. Calculated binding energies and bond lengths are obtained in good agreement with experimental data. Subsequently, an uncapped CdS cluster with size below 2 nm, 48 atoms of cadmium and 48 atoms of sulfur, in a wurtzite geometry was structurally optimized to minimize internal stresses. The CdS cluster has been carefully characterized structurally at several temperatures up to T = 600 K. At the temperature of 340 K atomic diffusion on the surface allows the onset of a new stable atomic configuration.

  7. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lee, Mal-Soon; Peter McGrail, B.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2015-10-01

    The boundary layer at solid-liquid interfaces is a unique reaction environment that poses significant scientific challenges to characterize and understand by experimentation alone. Using ab initio molecular dynamics (AIMD) methods, we report on the structure and dynamics of boundary layer formation, cation mobilization and carbonation under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar) on a prototypical anorthite (001) surface. At low coverage, water film formation is enthalpically favored, but entropically hindered. Simulated adsorption isotherms show that a water monolayer will form even at the low water concentrations of water-saturated scCO2. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies that readily form in the presence of a water monolayer. These results point to a carbonation mechanism that does not require prior carbonic acid formation in the bulk liquid. This work also highlights the modern capabilities of theoretical methods to address structure and reactivity at interfaces of high chemical complexity.

  8. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations

    PubMed Central

    Lee, Mal-Soon; Peter McGrail, B.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2015-01-01

    The boundary layer at solid-liquid interfaces is a unique reaction environment that poses significant scientific challenges to characterize and understand by experimentation alone. Using ab initio molecular dynamics (AIMD) methods, we report on the structure and dynamics of boundary layer formation, cation mobilization and carbonation under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar) on a prototypical anorthite (001) surface. At low coverage, water film formation is enthalpically favored, but entropically hindered. Simulated adsorption isotherms show that a water monolayer will form even at the low water concentrations of water-saturated scCO2. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies that readily form in the presence of a water monolayer. These results point to a carbonation mechanism that does not require prior carbonic acid formation in the bulk liquid. This work also highlights the modern capabilities of theoretical methods to address structure and reactivity at interfaces of high chemical complexity. PMID:26456362

  9. Infrared spectra and structure of alkane- and cycloalkanecarbonitriles and of their carbanions: An ab initio force field treatment

    NASA Astrophysics Data System (ADS)

    Juchnovski, I. N.; Tsenov, J. A.; Binev, I. G.

    1996-08-01

    The structure of alkane- and cycloalkanecarbonitriles (seven compounds) and of their carbanions has been studied by both infrared spectrometry and ab initio force field calculations. The carbanions (counter ions Li +, Na + and K +) have been found to exist mainly as ionic aggregates in hexamethylphosphoric triamide solutions. The calculations describe well the marked decrease, by 124-214 cm -1, in the nitrile band frequencies and also the strong increase, by 1-2 orders, in the nitrile band integrated intensities which accompany the conversion of the parent neutral molecules into carbanions. Cyclopropanecarbonitrile is remarkable as having the highest nitrile band intensity among all the neutral molecules and the lowest one among all the carbanions studied. This result has also been predicted by the calculations, and it can be explained by certain peculiarities in the structure of the particles. The conjugation of the carbanionic charge with the cyano group in the cyclopropanecarbonitrile carbanion is greatly hindered by the considerable deviation (estimated at 56°) of the cyano group from the ring plane. The carbanionic charges of the carbanions studied are delocalized over the cyano groups (0.30-0.41 e -), carbanionic centres (0.08-0.29 e -) and hydrocarbon moieties (0.34-0.63 e -).

  10. Infrared spectra and structure of isomeric (cyanophenyl)acetonitriles and their carbanions: an ab initio force field treatment

    NASA Astrophysics Data System (ADS)

    Binev, I. G.; Tsenov, J. A.; Velcheva, E. A.; Radomirska, V. B.; Juchnovski, I. N.

    1996-05-01

    The structures of o-, m- and p-(cyanophenyl)acetonitrile molecules and their carbanions were studied on the basis of infrared spectroscopic data and ab initio force field calculations. The assignment was given for the 3100-1100 cm -1 bands of the substances studied. The scaled theoretical infrared band frequencies agree well with those measured experimentally. An excellent linear correlation ( R = 0.999) was found between the theoretical and experimental vCN frequencies of both molecules and carbanions. The calculations predict well the strong increase in intensity (1.5- to 70-fold) of the vCN, v8 and v19 bands, which accompanies the conversion of the isomeric (cyanophenyl)acetonitrile molecules into the corresponding carbanions. The structures of the lithium, sodium and potassium derivatives of the nitriles studied in dimethyl sulphoxide are close to those of the kinetically free carbanions. The carbanionic centres are practically planar; the cyano groups carry considerable negative charges, but their influences on the carbanionic centres are mainly inductive. The carbanionic charges are delocalized over the phenylene rings (0.35-0.40 e-), methide (0.22-0.29 e-), α-cyano (0.24-0.27 e-) and ring-cyano (0.08-0.14 e-) groups.

  11. Dominance of Low Spin and High Deformation in Ab Initio Approaches to the Structure of Light Nuclei

    SciTech Connect

    Dytrych, T.; Draayer, J. P.; Sviratcheva, K. D.; Bahri, C.; Vary, J. P.

    2009-08-26

    Ab initio no-core shell-model solutions for the structure of light nuclei are shown to be dominated by low-spin and high-deformation configurations. This implies that only a small fraction of the full model space is important for a description of bound-state properties of light nuclei. It further points to the fact that the coupling scheme of choice for carrying out calculations for light nuclear systems is an algebraic-based, no-core shell-model scheme that builds upon an LS coupling [SO(3) x SU(2)] foundation with the spatial part of the model space further organized into its symplectic [SO(3) subset of SU(3) subset of Sp(3, R)] structure. Results for {sup 12}C and {sup 16}O are presented with the cluster nature of the excited 0{sup +} states in {sup 16}O analyzed within this framework. The results of the analysis encourages the development of a no-core shell model code that takes advantage of algebraic methods as well as modern computational techniques. Indeed, although it is often a very challenging task to cast complex algebraic constructs into simple logical ones that execute efficiently on modern computational systems, the construction of such a next-generation code is currently underway.

  12. 42214 layered Fe-based superconductors: An ab initio study of their structural, magnetic, and electronic properties

    NASA Astrophysics Data System (ADS)

    Bucci, F.; Sanna, A.; Continenza, A.; Katrych, S.; Karpinski, J.; Gross, E. K. U.; Profeta, G.

    2016-01-01

    As a follow-up to the discovery of a new family of Fe-based superconductors, namely, the RE4Fe2As2Te1 -xO4 (42214) (RE = Pr, Sm, and Gd), we present a detailed ab initio study of these compounds highlighting the role of rare-earth (RE) atoms, external pressure, and Te content on their physical properties. Modifications of the structural, magnetic, and electronic properties of the pure (e.g., x =0.0 ) 42214 compounds and their possible correlations with the observed superconducting properties are calculated and discussed. The careful analysis of the results obtained shows that (i) changing the RE atoms allows one to tune the internal pressure acting on the As height with respect to the Fe planes; (ii) similarly to other Fe pnictides, the 42214 pure compounds show an antiferromagnetic-stripe magnetic ground state phase joined by an orthorhombic distortion (not experimentally found yet); (iii) smaller RE atoms increase the magnetic instability of the compounds possibly favoring the onset of the superconducting state; (iv) external pressure induces the vanishing of the magnetic order with a transition to the tetragonal phase and can be a possible experimental route towards higher superconducting critical temperature (Tc) ; and (v) Te vacancies act on the structural parameters, changing the As height and affecting the stability of the magnetic phase.

  13. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO-

    NASA Astrophysics Data System (ADS)

    Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun

    2016-02-01

    The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  14. Structural transformation between long and short-chain form of liquid sulfur from ab initio molecular dynamics

    SciTech Connect

    Plašienka, Dušan Martoňák, Roman; Cifra, Peter

    2015-04-21

    We present results of ab initio molecular dynamics study of the structural transformation occurring in hot liquid sulfur under high pressure, which corresponds to the recently observed chain-breakage phenomenon and to the electronic transition reported earlier. The transformation is temperature-induced and separates two distinct polymeric forms of liquid sulfur: high-temperature form composed of short chain-like fragments with open endings and low-temperature form with very long chains. We offer a structural description of the two liquid forms in terms of chain lengths, cross-linking, and chain geometry and investigate several physical properties. We conclude that the transformation is accompanied by changes in energy (but not density) as well as in diffusion coefficient and electronic properties—semiconductor-metal transition. We also describe the analogy of the investigated process to similar phenomena that take place in two other chalcogens selenium and tellurium. Finally, we remark that the behavior of heated liquid sulfur at ambient pressure might indicate a possible existence of a critical point in the low-pressure region of sulfur phase diagram.

  15. Interfacing the Ab initio multiple spawning method with electronic structure methods in GAMESS: Photodecay of trans-Azomethane

    DOE PAGESBeta

    Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; Martínez, Todd J.; Gordon, Mark S.

    2014-10-20

    This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitationmore » on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.« less

  16. Structural transformation between long and short-chain form of liquid sulfur from ab initio molecular dynamics.

    PubMed

    Plašienka, Dušan; Cifra, Peter; Martoňák, Roman

    2015-04-21

    We present results of ab initio molecular dynamics study of the structural transformation occurring in hot liquid sulfur under high pressure, which corresponds to the recently observed chain-breakage phenomenon and to the electronic transition reported earlier. The transformation is temperature-induced and separates two distinct polymeric forms of liquid sulfur: high-temperature form composed of short chain-like fragments with open endings and low-temperature form with very long chains. We offer a structural description of the two liquid forms in terms of chain lengths, cross-linking, and chain geometry and investigate several physical properties. We conclude that the transformation is accompanied by changes in energy (but not density) as well as in diffusion coefficient and electronic properties—semiconductor-metal transition. We also describe the analogy of the investigated process to similar phenomena that take place in two other chalcogens selenium and tellurium. Finally, we remark that the behavior of heated liquid sulfur at ambient pressure might indicate a possible existence of a critical point in the low-pressure region of sulfur phase diagram. PMID:25903892

  17. The free energies of reactions of chlorinated methanes with aqueous monovalent anions: Application of ab initio electronic structure theory

    SciTech Connect

    Bylaska, E.J.; Dixon, D.A.; Felmy, A.R.

    2000-01-27

    The presence of different anionic species in natural waters can significantly alter the degradation rates of chlorinated methanes and other organic compounds. favorable reaction energetics is a necessary feature of these nucleophilic substitution reactions that can result in the degradation of the chlorinated methanes. In this study, ab initio electronic structure theory is used to evaluate the free energies of reaction of a series of monovalent anionic species (OH{sup {minus}}, SH{sup {minus}}, NO{sub 3}{sup {minus}}, HCO{sub 3}{sup {minus}}, HSO{sub 3}{sup {minus}}, HSO{sub 4}{sup {minus}}, H{sub 2}PO{sub 4}{sup {minus}}, and F{sup {minus}}) that can occur in natural waters with the chlorinated methanes, CCk{sub 4}, CCl{sub 3}H, CCl{sub 2}H{sub 2}, and CClH{sub 3}. The results of this investigation show that nucleophilic substitution reactions of OH{sup {minus}}, SH{sup {minus}}, HCO{sub 3}{sup {minus}}, and F{sup {minus}} are significantly exothermic for chlorine displacement, NO{sub 3}{sup {minus}} reactions are slightly exothermic to the thermoneutral, HSO{sub 3}{sup {minus}} reactions are slightly endothermic to thermoneutral and HSO{sub 4}{sup {minus}}, and H{sub 2}PO{sub 4}{sup {minus}} reactions are significantly endothermic. In the case of OH{sup {minus}}, SH{sup {minus}}, and F{sup {minus}} where there are limited experimental data, these results agree well with experiment. The results for HCO{sub 3}{sup {minus}} are potentially important given the near ubiquitous occurrence of carbonate species in natural waters. The calculations reveal that the degree of chlorination, with the exception of substitution of OH{sup {minus}}, does not have a large effect on the Gibbs free energies of the substitution reactions. These results demonstrate that ab initio electronic structure methods can be used to calculate the reaction energetics of a potentially large number of organic compounds with other aqueous species in natural waters and can be used to help identify

  18. The ionic structure of liquid sodium obtained by numerical simulation from 'first principles' and ab initio 'norm-conserving' pseudopotentials

    NASA Astrophysics Data System (ADS)

    Harchaoui, N.; Hellal, S.; Grosdidier, B.; Gasser, J. G.

    2008-02-01

    The physical properties of disordered matter depend on the 'atomic structure' i.e. the arrangement of the atoms. This arrangement is described by the structure factor S (q) in reciprocal space and by the pair correlation function g(r) in real space. The structure factor is obtained experimentally while the numerical simulation enables us to obtain the pair correlation function. Liquid sodium is one of the elements the most studied and one can wonder about new scientific contribution appropriateness. The majority of theoretical calculations are compared with the experiment of Waseda. However two other posterior measurements have been published and give different results, in particular with regard to the height of the first peak of the structure factor. Three models of pseudopotential are considered to describe the electron-ion interaction. The first is a local pseudopotential with the alternative known as 'individual' of the model suggested by Fiolhais et al. The second model considered is that of Bachelet et al. This one, ab-initio and 'norm conserving', is non local. The last model is that proposed by Shaw known as 'first principles' and 'energy dependent'. Various static dielectric functions characteristic of the effects of exchange and correlation have been used and developed by Hellal et al. We calculated the form factors (pseudopotential in reciprocal space) and deduce the normalized energy-wave-number characteristic FN (q), the interatomic pair potential Veff (r), then the pair correlation function g(r) by molecular dynamics. The structure factor S(q) is obtained by Fourier transform and is compared with the experiment. Our calculations with the Bachelet and Shaw pseudopotentials are close to the last experiments of Greenfield et al. and of Huijben et al. Our results are discussed.

  19. Structure determination of enterovirus 71

    SciTech Connect

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G.

    2013-02-20

    Enterovirus 71 is a picornavirus that causes hand, foot and mouth disease but may induce fatal neurological illness in infants and young children. Enterovirus 71 crystallized in a body-centered orthorhombic space group with two particles in general orientations in the crystallographic asymmetric unit. Determination of the particle orientations required that the locked rotation function excluded the twofold symmetry axes from the set of icosahedral symmetry operators. This avoided the occurrence of misleading high rotation-function values produced by the alignment of icosahedral and crystallographic twofold axes. Once the orientations and positions of the particles had been established, the structure was solved by molecular replacement and phase extension.

  20. Ab initio investigations of the electronic structure and chemical bonding of Li{sub 2}ZrN{sub 2}

    SciTech Connect

    Matar, S.F.; Poettgen, R.; Al Alam, A.F.; Ouaini, N.

    2012-06-15

    The electronic structure of the ternary nitride Li{sub 2}ZrN{sub 2} is examined from ab initio with DFT computations for an assessment of the properties of chemical bonding. The compound is found insulating with 1.8 eV band gap; it becomes metallic and less ionic upon removal of one equivalent of Li. The chemical interaction is found mainly between Zr and N on one hand and Li and N on the other hand. While all pair interactions are bonding, antibonding N-N interactions are found dominant at the top of the valence band of Li{sub 2}ZrN{sub 2} and they become less intense upon removal of Li. From energy differences the partial delithiation leading to Li{sub 2-x}ZrN{sub 2} (x={approx}1) is favored. - Graphical abstract: Trigonal structure of Li{sub 2}ZrN{sub 2} showing the Zr-N-Li layers along the c-axis. Highlights: Black-Right-Pointing-Pointer Li{sub 2}ZrN{sub 2} calculated insulating with a 1.8 eV gap in agreement with its light green color. Black-Right-Pointing-Pointer Lithium de-intercalation is energetically favored for one out of two Li equivalents. Black-Right-Pointing-Pointer Li plays little role in the change of the structure, ensured by Zr and N binding. Black-Right-Pointing-Pointer Similar changes in the electronic structure as for various intercalated phases of ZrN.

  1. A web-deployed interface for performing ab initio molecular dynamics, optimization, and electronic structure in FIREBALL

    NASA Astrophysics Data System (ADS)

    Keith, J. Brandon; Fennick, Jacob R.; Junkermeier, Chad E.; Nelson, Daniel R.; Lewis, James P.

    2009-03-01

    FIREBALL is an ab initio technique for fast local orbital simulations of nanotechnological, solid state, and biological systems. We have implemented a convenient interface for new users and software architects in the platform-independent Java language to access FIREBALL's unique and powerful capabilities. The graphical user interface can be run directly from a web server or from within a larger framework such as the Computational Science and Engineering Online (CSE-Online) environment or the Distributed Analysis of Neutron Scattering Experiments (DANSE) framework. We demonstrate its use for high-throughput electronic structure calculations and a multi-100 atom quantum molecular dynamics (MD) simulation. Program summaryProgram title: FireballUI Catalogue identifier: AECF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 279 784 No. of bytes in distributed program, including test data, etc.: 12 836 145 Distribution format: tar.gz Programming language: Java Computer: PC and workstation Operating system: The GUI will run under Windows, Mac and Linux. Executables for Mac and Linux are included in the package. RAM: 512 MB Word size: 32 or 64 bits Classification: 4.14 Nature of problem: The set up and running of many simulations (all of the same type), from the command line, is a slow process. But most research quality codes, including the ab initio tight-binding code FIREBALL, are designed to run from the command line. The desire is to have a method for quickly and efficiently setting up and running a host of simulations. Solution method: We have created a graphical user interface for use with the FIREBALL code. Once the user has created the files containing the atomic coordinates for each system that they are

  2. Ab initio treatment of the structures of square-planar Pt(PH/sub 3/)/sub 2/XY species (X, Y = H, Cl) using relativistic effective core potentials

    SciTech Connect

    Noell, J.O.; Hay, P.J.

    1982-01-01

    The structures and relative energies of Pt(PH/sub 3/)XY isomers are investigated with use of ab initio molecular orbital theory and effective potentials. In particular, the cis and trans isomers of the dihydride, dichloride, and hydrochloride are studied. In all cases, the trans isomer is the more stable. Available experimental information is in good agreement with calculated bond lengths, bond angles, and vibrational frequencies.

  3. Molecular structure, spectroscopic characterization of (S)-2-Oxopyrrolidin-1-yl Butanamide and ab initio, DFT based quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Ramya, T.; Gunasekaran, S.; Ramkumaar, G. R.

    2015-10-01

    The experimental and theoretical spectra of (S)-2-Oxopyrrolidin-1-yl Butanamide (S2OPB) were studied. FT-IR and FT-Raman spectra of S2OPB in the solid phase were recorded and analyzed in the range 4000-450 and 5000-50 cm-1 respectively. The structural and spectroscopic analyses of S2OPB were calculated using ab initio Hartree Fock (HF) and density functional theory calculations (B3PW91, B3LYP) with 6-31G(d,p) basis set. A complete vibrational interpretation has been made on the basis of the calculated Potential Energy Distribution (PED). The HF, B3LYP and B3PW91 methods based NMR calculation has been used to assign the 1H NMR and 13C NMR chemical shift of S2OPB. Comparative study on UV-Vis spectral analysis between the experimental and theoretical (B3PW91, B3LYP) methods and the global chemical parameters and local descriptor of reactivity through the Fukui function were performed. Finally the thermodynamic properties of S2OPB were calculated at different temperatures and the corresponding relations between the properties and temperature were also studied.

  4. Molecular structure, spectroscopic characterization of (S)-2-Oxopyrrolidin-1-yl Butanamide and ab initio, DFT based quantum chemical calculations.

    PubMed

    Ramya, T; Gunasekaran, S; Ramkumaar, G R

    2015-10-01

    The experimental and theoretical spectra of (S)-2-Oxopyrrolidin-1-yl Butanamide (S2OPB) were studied. FT-IR and FT-Raman spectra of S2OPB in the solid phase were recorded and analyzed in the range 4000-450 and 5000-50 cm(-1) respectively. The structural and spectroscopic analyses of S2OPB were calculated using ab initio Hartree Fock (HF) and density functional theory calculations (B3PW91, B3LYP) with 6-31G(d,p) basis set. A complete vibrational interpretation has been made on the basis of the calculated Potential Energy Distribution (PED). The HF, B3LYP and B3PW91 methods based NMR calculation has been used to assign the (1)H NMR and (13)C NMR chemical shift of S2OPB. Comparative study on UV-Vis spectral analysis between the experimental and theoretical (B3PW91, B3LYP) methods and the global chemical parameters and local descriptor of reactivity through the Fukui function were performed. Finally the thermodynamic properties of S2OPB were calculated at different temperatures and the corresponding relations between the properties and temperature were also studied. PMID:25956325

  5. Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule

    SciTech Connect

    Tohme, Samir N.; Korek, Mahmoud E-mail: fkorek@yahoo.com; Awad, Ramadan

    2015-03-21

    Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born–Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ω{sub e}, R{sub e}, B{sub e}, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, E{sub v}, the rotational constant, B{sub v}, the centrifugal distortion constant, D{sub v}, and the abscissas of the turning points, R{sub min} and R{sub max}, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.

  6. IR spectra and structure of 4-hydroxybenzylidenemalononitrile, its oxyanion, cyanide adduct and adduct-oxyanion: experimental and ab initio studies

    NASA Astrophysics Data System (ADS)

    Velcheva, Evelina A.; Binev, Yuri I.; Petrova, Milena J.

    1999-01-01

    The structures of 4-hydroxybenzylidenemalononitrile (HO-C 6H 4-CHC(CN) 2, I), its oxyanion ( -O-C 6H 4-CHC(CN) 2, II), cyanide adduct (HO-C 6H 4-CH(CN)-C¯(CN) 2, III) and adduct-oxyanion ( -O-C 6H 4-CH(CN)-C¯(CN) 2, IV) have been studied by means of both quantitative IR spectra and ab initio force field calculations. The conversion of ( I) into the anionic species causes strong changes in the IR spectra: decreases in the ν CN frequency down to 110 cm -1, up to 7-fold increases in the ACN intensity, up to 58 cm -1 ν CN splitting, etc. The charge analysis shows that the intramolecular charge transfer between the electronegative [C(CN) 2] and electropositive fragments of ( I) is 0.34 e -. Nearly 0.6 e - of the oxyanionic charge of ( II) remains within the oxyphenylene fragment and nearly 0.5 e - of the carbanionic charge of ( III) delocalizes within the dicyanomethide fragment. The two charges in ( IV) are spread over the whole species.

  7. Li adsorption, hydrogen storage and dissociation using monolayer MoS2: an ab initio random structure searching approach.

    PubMed

    Putungan, Darwin Barayang; Lin, Shi-Hsin; Wei, Ching-Ming; Kuo, Jer-Lai

    2015-05-01

    Utilizing ab initio random structure searching, we investigated Li adsorption on MoS2 and hydrogen molecules on Li-decorated MoS2. In contrast to graphene, Li can be adsorbed on both sides of MoS2, with even stronger binding than on the single side. We found that high coverages of Li can be attained without Li clustering, which is essential for hydrogen storage and Li ion batteries. Moreover, regarding battery applications, Li diffusion was also found to be easy. The fully-lithiated MoS2 can then adsorb H2 with 4.4 wt%. Interestingly, our calculations revealed that hydrogen molecules can be dissociated at high Li coverage with a minimal energy barrier. We further showed that the dissociated hydrogen atom can readily diffuse on the surface, thus keeping the reaction site active. We therefore propose that Li-MoS2 could be an inexpensive alternative catalyst to noble metals in hydrogen dissociation reactions. PMID:25849099

  8. Nonlocal Pseudopotentials and Long-Range Interactions in Ab Initio Finite-Element Electronic-Structure Calculations

    NASA Astrophysics Data System (ADS)

    Pask, J. E.; Sterne, P. A.

    2004-03-01

    The finite-element (FE) method is a general approach for the solution of partial differential equations. Like the planewave (PW) method, the FE method is a systematically improvable expansion approach. Unlike the PW method, however, its basis functions are strictly local in real space, which allows for variable resolution in real space and facilitates massively parallel implementation. We discuss the application of the FE method to ab initio electronic-structure calculations.(J.E. Pask, B.M. Klein, C.Y. Fong, and P.A. Sterne, Phys. Rev. B 59), 12352 (1999). In particular, we discuss the use of nonlocal pseudopotentials in bulk calculations, and the handling of long-range interactions in the construction of the Kohn-Sham effective potential and total energy. We show that the total energy converges variationally, and at the optimal theoretical rate consistent with the cubic completeness of the basis. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  9. Experimental and ab initio MO studies on the IR spectra and structure of 4-hydroxyacetanilide (paracetamol), its oxyanion and dianion

    NASA Astrophysics Data System (ADS)

    Binev, Ivan G.; Vassileva-Boyadjieva, Pavlina; Binev, Yuri I.

    1998-06-01

    The spectral and structural changes taking place during the course of the conversion of 4-hydroxyacetanilide (paracetamol), HOC 6H 4NHCOCH 3, into the corresponding oxyanion, -OC 6H 4NHCOCH 3, and dianion, -OC 6H 4N¯COCH 3, have been followed by both quantitative infrared spectra and ab initio HF/6-31G force-field calculations. The changes accompanying the first deprotonation concern mainly the oxyphenylene fragment; those resulting from the second one are spread over the whole dianion. Analysis of the atomic charge changes shows that over 90% of the first (oxyanionic) charge remains localized within the oxyphenylene fragment. The second (nitranionic) charge delocalizes over the acetyl (0.51 e-) and phenylene (0.26 e-) groups, nitranionic (0.14 e-) and oxyanionic (0.09 e-) centres. The trans conformers (with respect to phenylene and methyl groups) have been calculated to be more stable than the cis ones in all cases studied.

  10. Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule.

    PubMed

    Tohme, Samir N; Korek, Mahmoud; Awad, Ramadan

    2015-03-21

    Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time. PMID:25796254