Sample records for inland hypersaline lakes

  1. Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic

    PubMed Central

    Blankenship, Donald D.; Schroeder, Dustin M.; Dowdeswell, Julian A.

    2018-01-01

    Subglacial lakes are unique environments that, despite the extreme dark and cold conditions, have been shown to host microbial life. Many subglacial lakes have been discovered beneath the ice sheets of Antarctica and Greenland, but no spatially isolated water body has been documented as hypersaline. We use radio-echo sounding measurements to identify two subglacial lakes situated in bedrock troughs near the ice divide of Devon Ice Cap, Canadian Arctic. Modeled basal ice temperatures in the lake area are no higher than −10.5°C, suggesting that these lakes consist of hypersaline water. This implication of hypersalinity is in agreement with the surrounding geology, which indicates that the subglacial lakes are situated within an evaporite-rich sediment unit containing a bedded salt sequence, which likely act as the solute source for the brine. Our results reveal the first evidence for subglacial lakes in the Canadian Arctic and the first hypersaline subglacial lakes reported to date. We conclude that these previously unknown hypersaline subglacial lakes may represent significant and largely isolated microbial habitats, and are compelling analogs for potential ice-covered brine lakes and lenses on planetary bodies across the solar system. PMID:29651462

  2. Anaerobic Halo-Alkaliphilic Baterial Community of Athalassic, Hypersaline Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Ng, Joseph D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The microorganisms of soda Mono Lake and other similar athalassic hypersaline alkaline soda lakes are of significance to Astrobiology. The microorganisms of these regimes represent the best known terrestrial analogs for microbial life that might have inhabited the hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters during the late Noachian and early Hesperian epochs (3.6 - 4.2 Gya) of ancient Mars. We have investigated the anaerobic microbiota of soda Mono Lake in northern California. In this paper we discuss the astrobiological significance of these ecosystems and describe several interesting features of two novel new species of anaerobic halo-alkaliphilic bacteria (Spirochaeta americana, sp. nov. and Desulfonatronum paiuteum, sp. nov) that we have isolated from Mono Lake.

  3. Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes

    PubMed Central

    Andrei, Adrian-Ştefan; Robeson, Michael S; Baricz, Andreea; Coman, Cristian; Muntean, Vasile; Ionescu, Artur; Etiope, Giuseppe; Alexe, Mircea; Sicora, Cosmin Ionel; Podar, Mircea; Banciu, Horia Leonard

    2015-01-01

    Hypersaline meromictic lakes are extreme environments in which water stratification is associated with powerful physicochemical gradients and high salt concentrations. Furthermore, their physical stability coupled with vertical water column partitioning makes them important research model systems in microbial niche differentiation and biogeochemical cycling. Here, we compare the prokaryotic assemblages from Ursu and Fara Fund hypersaline meromictic lakes (Transylvanian Basin, Romania) in relation to their limnological factors and infer their role in elemental cycling by matching taxa to known taxon-specific biogeochemical functions. To assess the composition and structure of prokaryotic communities and the environmental factors that structure them, deep-coverage small subunit (SSU) ribosomal RNA (rDNA) amplicon sequencing, community domain-specific quantitative PCR and physicochemical analyses were performed on samples collected along depth profiles. The analyses showed that the lakes harbored multiple and diverse prokaryotic communities whose distribution mirrored the water stratification patterns. Ursu Lake was found to be dominated by Bacteria and to have a greater prokaryotic diversity than Fara Fund Lake that harbored an increased cell density and was populated mostly by Archaea within oxic strata. In spite of their contrasting diversity, the microbial populations indigenous to each lake pointed to similar physiological functions within carbon degradation and sulfate reduction. Furthermore, the taxonomy results coupled with methane detection and its stable C isotope composition indicated the presence of a yet-undescribed methanogenic group in the lakes' hypersaline monimolimnion. In addition, ultrasmall uncultivated archaeal lineages were detected in the chemocline of Fara Fund Lake, where the recently proposed Nanohaloarchaeota phylum was found to thrive. PMID:25932617

  4. Microbial community structure and diversity within hypersaline Keke Salt Lake environments.

    PubMed

    Han, Rui; Zhang, Xin; Liu, Jing; Long, Qifu; Chen, Laisheng; Liu, Deli; Zhu, Derui

    2017-11-01

    Keke Salt Lake is located in the Qaidamu Basin of China. It is a unique magnesium sulfate-subtype hypersaline lake that exhibits a halite domain ecosystem, yet its microbial diversity has remained unstudied. Here, the microbial community structure and diversity was investigated via high-throughput sequencing of the V3-V5 regions of 16S rRNA genes. A high diversity of operational taxonomic units was detected for Bacteria and Archaea (734 and 747, respectively), comprising 21 phyla, 43 classes, and 201 genera of Bacteria and 4 phyla, 4 classes, and 39 genera of Archaea. Salt-saturated samples were dominated by the bacterial genera Bacillus (51.52%-58.35% relative abundance), Lactococcus (9.52%-10.51%), and Oceanobacillus (8.82%-9.88%) within the Firmicutes phylum (74.81%-80.99%), contrasting with other hypersaline lakes. The dominant Archaea belonged to the Halobacteriaceae family, and in particular, the genera (with an abundance of >10% of communities) Halonotius, Halorubellus, Halapricum, Halorubrum, and Natronomonas. Additionally, we report the presence of Nanohaloarchaeota and Woesearchaeota in Qinghai-Tibet Plateau lakes, which has not been previously documented. Total salinity (especially Mg 2+ , Cl - , Na + , and K + ) mostly correlated with taxonomic distribution across samples. These results expand our understanding of microbial resource utilization within hypersaline lakes and the potential adaptations of dominant microorganisms that allow them to inhabit such environments.

  5. Microbial Diversity in a Hypersaline Sulfate Lake: A Terrestrial Analog of Ancient Mars

    PubMed Central

    Pontefract, Alexandra; Zhu, Ting F.; Walker, Virginia K.; Hepburn, Holli; Lui, Clarissa; Zuber, Maria T.; Ruvkun, Gary; Carr, Christopher E.

    2017-01-01

    Life can persist under severe osmotic stress and low water activity in hypersaline environments. On Mars, evidence for the past presence of saline bodies of water is prevalent and resulted in the widespread deposition of sulfate and chloride salts. Here we investigate Spotted Lake (British Columbia, Canada), a hypersaline lake with extreme (>3 M) levels of sulfate salts as an exemplar of the conditions thought to be associated with ancient Mars. We provide the first characterization of microbial structure in Spotted Lake sediments through metagenomic sequencing, and report a bacteria-dominated community with abundant Proteobacteria, Firmicutes, and Bacteroidetes, as well as diverse extremophiles. Microbial abundance and functional comparisons reveal similarities to Ace Lake, a meromictic Antarctic lake with anoxic and sulfidic bottom waters. Our analysis suggests that hypersaline-associated species occupy niches characterized foremost by differential abundance of Archaea, uncharacterized Bacteria, and Cyanobacteria. Potential biosignatures in this environment are discussed, specifically the likelihood of a strong sulfur isotopic fractionation record within the sediments due to the presence of sulfate reducing bacteria. With its high sulfate levels and seasonal freeze-thaw cycles, Spotted Lake is an analog for ancient paleolakes on Mars in which sulfate salt deposits may have offered periodically habitable environments, and could have concentrated and preserved organic materials or their biomarkers over geologic time. PMID:29018418

  6. Microbial Diversity in a Hypersaline Sulfate Lake: A Terrestrial Analog of Ancient Mars.

    PubMed

    Pontefract, Alexandra; Zhu, Ting F; Walker, Virginia K; Hepburn, Holli; Lui, Clarissa; Zuber, Maria T; Ruvkun, Gary; Carr, Christopher E

    2017-01-01

    Life can persist under severe osmotic stress and low water activity in hypersaline environments. On Mars, evidence for the past presence of saline bodies of water is prevalent and resulted in the widespread deposition of sulfate and chloride salts. Here we investigate Spotted Lake (British Columbia, Canada), a hypersaline lake with extreme (>3 M) levels of sulfate salts as an exemplar of the conditions thought to be associated with ancient Mars. We provide the first characterization of microbial structure in Spotted Lake sediments through metagenomic sequencing, and report a bacteria-dominated community with abundant Proteobacteria, Firmicutes, and Bacteroidetes, as well as diverse extremophiles. Microbial abundance and functional comparisons reveal similarities to Ace Lake, a meromictic Antarctic lake with anoxic and sulfidic bottom waters. Our analysis suggests that hypersaline-associated species occupy niches characterized foremost by differential abundance of Archaea, uncharacterized Bacteria, and Cyanobacteria. Potential biosignatures in this environment are discussed, specifically the likelihood of a strong sulfur isotopic fractionation record within the sediments due to the presence of sulfate reducing bacteria. With its high sulfate levels and seasonal freeze-thaw cycles, Spotted Lake is an analog for ancient paleolakes on Mars in which sulfate salt deposits may have offered periodically habitable environments, and could have concentrated and preserved organic materials or their biomarkers over geologic time.

  7. Exploration of Microbial Diversity and Community Structure of Lonar Lake: The Only Hypersaline Meteorite Crater Lake within Basalt Rock

    PubMed Central

    Paul, Dhiraj; Kumbhare, Shreyas V.; Mhatre, Snehit S.; Chowdhury, Somak P.; Shetty, Sudarshan A.; Marathe, Nachiket P.; Bhute, Shrikant; Shouche, Yogesh S.

    2016-01-01

    Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world situated in basalt rocks. Although culture-dependent studies have been reported, a comprehensive understanding of microbial community composition and structure in Lonar Lake remains elusive. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high-throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet largely consistent communities. Proteobacteria (30%), Actinobacteria (24%), Firmicutes (11%), and Cyanobacteria (5%) predominated in the sequencing survey, whereas Bacteroidetes (1.12%), BD1-5 (0.5%), Nitrospirae (0.41%), and Verrucomicrobia (0.28%) were detected in relatively minor abundances in the Lonar Lake ecosystem. Within the Proteobacteria phylum, the Gammaproteobacteria represented the most abundantly detected class (21–47%) within sediment samples, but only a minor population in the water samples. Proteobacteria and Firmicutes were found at significantly higher abundance (p ≥ 0.05) in sediment samples, whereas members of Actinobacteria, Candidate division TM7 and Cyanobacteria (p ≥ 0.05) were significantly abundant in water samples. Compared to the microbial communities of other hypersaline soda lakes, those of Lonar Lake formed a distinct cluster, suggesting a different microbial community composition and structure. Here we report for the first time, the difference in composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. An improved census of microbial community structure in this Lake ecosystem provides a foundation for exploring microbial biogeochemical cycling and microbial function in hypersaline lake environments. PMID:26834712

  8. Authigenic carbonate precipitation in Lake Acigöl, a hypersaline lake in southwestern Turkey

    NASA Astrophysics Data System (ADS)

    Balci, Nurgul; Menekse, Meryem; Gül Karagüler, Nevin; Seref Sönmez, M.; Meister, Patrick

    2014-05-01

    Lake Acigöl (Bitter Lake) is a hypersaline lake in southwestern Turkey at an elevation of 836 m above sea level showing authigenic precipitation of several different carbonate mineral phases. It is a perennial lake and closed drainage basin where a semiarid continental climate dominates. Due to the extreme water chemistry (salinity 8-200 mg/l; SO4 112-15232 mg/l; Cl 290-35320 mg/l; Mg, 82-3425 mg/l; Ca 102-745 mg/l) unique microorganisms flourish in the lake. We studied microbial diversity from enrichment cultures and performed precipitation experiments using similar water chemistry and adding bacterial enrichment cultures from lake sediments in order to elucidate whether the mineral assemblages found in the lake can be reproduced. Experiments using moderately halophilic bacteria obtained from the lake sediments demonstrate the formation of various calcium-/magnesium-carbonates: hydromagnesite, dypingite, huntite, monohydrocalcite and aragonite. The relative amounts of different mineral phases, particularly monohydrocalcite, hydromagnesite and dypingite, could be controlled by varying the sulphate concentration in the media from 0 to 56 mM. The similar mineral assemblages identified in the sediments of Lake Acigöl and in the experiments point to similar thermodynamic conditions and kinetics of crystal growth. In particular, the similar spherical morphology points to a rapid crystal growth under strong kinetic inhibition, possibly by organic polymers that are commonly produced by microbial communities. Our results demonstrate that the authigenic carbonate paragenesis of hypersaline lakes as Lake Acigöl can be reproduced in halophilic bacterial cultures. The exact thermodynamic conditions and precipitation kinetics under seasonally changing water chemistry or in batch experiment, however, still have to be constrained in order to establish a microbial model for carbonate precipitation in such environments.

  9. The contribution of lakes to global inland fisheries harvest

    USGS Publications Warehouse

    Deines, Andrew M.; Bunnell, David B.; Rogers, Mark W.; Bennion, David; Woelmer, Whitney; Sayers, Michael J.; Grimm, Amanda G.; Shuchman, Robert A.; Raymer, Zachary B.; Brooks, Colin N.; Mychek-Londer, Justin G.; Taylor, William W.; Beard, Douglas

    2017-01-01

    Freshwater ecosystems provide numerous services for communities worldwide, including irrigation, hydropower, and municipal water; however, the services provided by inland fisheries – nourishment, employment, and recreational opportunities – are often comparatively undervalued. We provide an independent estimate of global lake harvest to improve biological and socioeconomic assessments of inland fisheries. On the basis of satellite-derived estimates of chlorophyll concentration from 80,012 globally distributed lakes, lake-specific fishing effort based on human population, and output from a Bayesian hierarchical model, we estimated that the global lake fishery harvest in the year 2011 was 8.4 million tons (mt). Our calculations excluded harvests from highly productive rivers, wetlands, and very small lakes; therefore, the true cumulative global fishery harvest from all freshwater sources likely exceeded 11 mt as reported by the Food and Agriculture Organization of the United Nations (FAO). This putative underestimate by the FAO could diminish the perceived importance of inland fisheries and perpetuate decisions that adversely affect these fisheries and millions of people.

  10. Preserving the world second largest hypersaline lake under future irrigation and climate change.

    PubMed

    Shadkam, Somayeh; Ludwig, Fulco; van Vliet, Michelle T H; Pastor, Amandine; Kabat, Pavel

    2016-07-15

    Iran Urmia Lake, the world second largest hypersaline lake, has been largely desiccated over the last two decades resulting in socio-environmental consequences similar or even larger than the Aral Sea disaster. To rescue the lake a new water management plan has been proposed, a rapid 40% decline in irrigation water use replacing a former plan which intended to develop reservoirs and irrigation. However, none of these water management plans, which have large socio-economic impacts, have been assessed under future changes in climate and water availability. By adapting a method of environmental flow requirements (EFRs) for hypersaline lakes, we estimated annually 3.7·10(9)m(3) water is needed to preserve Urmia Lake. Then, the Variable Infiltration Capacity (VIC) hydrological model was forced with bias-corrected climate model outputs for both the lowest (RCP2.6) and highest (RCP8.5) greenhouse-gas concentration scenarios to estimate future water availability and impacts of water management strategies. Results showed a 10% decline in future water availability in the basin under RCP2.6 and 27% under RCP8.5. Our results showed that if future climate change is highly limited (RCP2.6) inflow can be just enough to meet the EFRs by implementing the reduction irrigation plan. However, under more rapid climate change scenario (RCP8.5) reducing irrigation water use will not be enough to save the lake and more drastic measures are needed. Our results showed that future water management plans are not robust under climate change in this region. Therefore, an integrated approach of future land-water use planning and climate change adaptation is therefore needed to improve future water security and to reduce the desiccating of this hypersaline lake. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Spatial and Temporal Variations of Microbial Biodiversity at Hypersaline Microbial Mats

    NASA Astrophysics Data System (ADS)

    Gulecal, Y.; Unsal, N.; Temel, M.

    2014-12-01

    Hypersaline environments, such as hypersaline lakes are interesting sources with considerable potential for the isolation of extremophile microorganisms adapted to severe conditions. Biodiversity in such lakes (Dead Sea, the Great Salt Lake, the Solar Lake, the Soda Lake) varies due to differences in environmental conditions and specific lake characteristics such as local climate, lake size, water depth and lake water salt composition (Kamekura 1998; Sorokin et al. 2004). In this study area, Acigol Lake is an alkaline (pH:9), hypersaline lake located at Southwest Anatolia in Turkey. The aim of study was to determine the Archaea and Bacteria in microbial mats of hypersaline lacustrine environments. In conclusion, diagnostic biosignatures for methanogens and other archaeal groups within hypersaline microbial mats were identified through genomic DNA and lipid analyses.

  12. Climatic change and evaporative processes in the development of Common Era hypersaline lakes, East Antarctica: A study of Lake Suribati

    NASA Astrophysics Data System (ADS)

    Nakashima, H.; Seto, K.; Katsuki, K.; Kaneko, H.; yamada, K.; Imura, S.; Dettman, D. L.

    2011-12-01

    The Antarctic continent was uplifted by glacioisostatic rebound due to the regression of ice sheets after the last glacial period. Today's saline lakes were formed in shallow basins originally below sea level. Antarctic hypersaline lakes are formed by concentration of isolated seawater bodies as affected by recent climate change. Many saline lakes are found in the ice-free area of the Soya coast, East Antarctica. Lake Suribati is located in Sukarvsnes on the Soya coast. It is a hypersaline lake with maximum salinity ~200 psu, and an observable stable halocline at 7~12m depth. This study uses Lake Suribati sediment core Sr4C-01, collected by the 46th Japanese Antarctica Research Expedition, to examine the relationship of climatic change to evaporative processes and solute concentration in Lake Suribati in the Common Era. Sr4C-01 core was collected at 9.53m water depth in Lake Suribati in 2005 (core length is 63cm). This core primarily consists of black mud and laminated black organic mud. In the interval from 10 to 24cm below the sediment surface evaporite crystals occur. The age of the Sr4C-01 core bottom is estimated to be ~3,500 cal yrs BP, based on AMS carbon-14 dating at 6 core horizons. The evaporite crystals were indentified as aragonite based on XRD. Total inorganic carbon (TIC) content is low, around 0.5%, throughout the Sr4C-01 core, with higher values, approximately 1~4%, in two intervals, 57~52cm and 29~10cm core depth. Variation in CaO content tracks TIC content. We suggest that synchronous change in CaO and TIC contents indicate the vertical change in the amount of aragonite. Two intervals of evaporite precipition imply two intervals of evaporation and concentration of lake water. Hypersaline lake conditions did not occur soon after the isolation from the sea, rather these occurred under repeated concentration and dilution of lake water. Dilution of saline lake water could occur through the inflow of melt water from local snow or ice, indicating a warm

  13. Cyclic heliothermal behaviour of the shallow, hypersaline Lake Hayward, Western Australia

    NASA Astrophysics Data System (ADS)

    Turner, Jeffrey V.; Rosen, Michael R.; Coshell, Lee; Woodbury, Robert J.

    2018-05-01

    Lake Hayward is one of only about 30 hypersaline lakes worldwide that is meromictic and heliothermal and as such behaves as a natural salt gradient solar pond. Lake Hayward acts as a local groundwater sink, resulting in seasonally variable hypersaline lake water with total dissolved solids (TDS) in the upper layer (mixolimnion) ranging between 56 kg m-3 and 207 kg m-3 and the deeper layer (monimolimnion) from 153 kg m-3 to 211 kg m-3. This is up to six times the salinity of seawater and thus has the highest salinity of all eleven lakes in the Yalgorup National Park lake system. A program of continuously recorded water temperature profiles has shown that salinity stratification initiated by direct rainfall onto the lake's surface and local runoff into the lake results in the onset of heliothermal conditions within hours of rainfall onset. The lake alternates between being fully mixed and becoming thermally and chemically stratified several times during the annual cycle, with the longest extended periods of heliothermal behaviour lasting 23 and 22 weeks in the winters of 1992 and 1993 respectively. The objective was to quantify the heat budgets of the cyclical heliothermal behaviour of Lake Hayward. During the period of temperature profile logging, the maximum recorded temperature of the monimolimnion was 42.6 °C at which time the temperature of the mixolimnion was 29.4 °C. The heat budget of two closed heliothermal cycles initiated by two rainfall events of 50 mm and 52 mm in 1993 were analysed. The cycles prevailed for 11 and 20 days respectively and the heat budget showed net heat accumulations of 34.2 MJ m-3 and 15.4 MJ m-3, respectively. The corresponding efficiencies of lake heat gain to incident solar energy were 0.17 and 0.18 respectively. Typically, artificial salinity gradient solar ponds (SGSP) have a solar radiation capture efficiencies ranging from 0.10 up to 0.30. Results from Lake Hayward have implications for comparative biogeochemistry and its

  14. Cyclic heliothermal behaviour of the shallow, hypersaline Lake Hayward, Western Australia

    USGS Publications Warehouse

    Turner, Jeffrey V.; Rosen, Michael R.; Coshell, Lee; Woodbury, Robert J.

    2018-01-01

    Lake Hayward is one of only about 30 hypersaline lakes worldwide that is meromictic and heliothermal and as such behaves as a natural salt gradient solar pond. Lake Hayward acts as a local groundwater sink, resulting in seasonally variable hypersaline lake water with total dissolved solids (TDS) in the upper layer (mixolimnion) ranging between 56 kg m−3 and 207 kg m−3 and the deeper layer (monimolimnion) from 153 kg m−3 to 211 kg m−3. This is up to six times the salinity of seawater and thus has the highest salinity of all eleven lakes in the Yalgorup National Park lake system. A program of continuously recorded water temperature profiles has shown that salinity stratification initiated by direct rainfall onto the lake’s surface and local runoff into the lake results in the onset of heliothermal conditions within hours of rainfall onset.The lake alternates between being fully mixed and becoming thermally and chemically stratified several times during the annual cycle, with the longest extended periods of heliothermal behaviour lasting 23 and 22 weeks in the winters of 1992 and 1993 respectively. The objective was to quantify the heat budgets of the cyclical heliothermal behaviour of Lake Hayward.During the period of temperature profile logging, the maximum recorded temperature of the monimolimnion was 42.6 °C at which time the temperature of the mixolimnion was 29.4 °C.The heat budget of two closed heliothermal cycles initiated by two rainfall events of 50 mm and 52 mm in 1993 were analysed. The cycles prevailed for 11 and 20 days respectively and the heat budget showed net heat accumulations of 34.2 MJ m−3 and 15.4 MJ m−3, respectively. The corresponding efficiencies of lake heat gain to incident solar energy were 0.17 and 0.18 respectively. Typically, artificial salinity gradient solar ponds (SGSP) have a solar radiation capture efficiencies ranging from 0.10 up to 0.30. Results from Lake Hayward have

  15. Geo- and Biogeochemical Processes in a Heliothermal Hypersaline Lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Moran, James J.; Resch, Charles T.

    Water chemical variations were investigated over three annual hydrologic cycles in hypersaline, heliothermal, meromictic Hot Lake in north-central Washington State, USA. The lake, originally studied by Anderson (1958), contains diverse biota with dramatic zonation related to salinity and redox state. Water samples were collected at 10 cm depth intervals through the shallow lake (2.4 m) at a consistent location during 2012-2014, with comprehensive monitoring performed in 2013. Inorganic salt species, total dissolved solids (TDS), dissolved carbon forms (DOC, DIC), oxygen, sulfide, and methane were analyzed in lake water samples. Depth sonde measurements of pH and temperature were also performed tomore » track their seasonal variations. A bathymetric survey of the lake was conducted to enable lake water volume and solute inventory calculations. Sediment cores were collected at low water and analyzed by x-ray diffraction to investigate sediment mineralogy. The primary dissolved salt in Hot Lake water was Mg2+-SO42- while sediments were dominated by gypsum (CaSO4•2H2O). Lake water concentrations increased with depth to reach saturation with epsomite that was exposed at lake bottom. At maximum volume in spring, Hot Lake exhibited a relatively dilute mixolimnion containing phyto- and zooplankton; a lower saline metalimnion with stratified oxygenic and anoxygenic photosynthetic microbiologic communities; and a stable, hypersaline monimolimnion, separated from above layers by a chemocline, containing high levels of sulfide and methane. The thickness of the mixolimnion regulates a heliothermal effect which creates temperatures in excess of 60 oC in the underlying metalimnion and monimolimnion. The mixolimnion was dynamic and actively mixed. It displayed large pH variations, in-situ calcium carbonate precipitation, and large evaporative volume losses. The depletion of this ephemeral layer by fall allowed deeper mixing into the volume-stable lower mixolimnion, more rapid

  16. Geo- and biogeochemical processes in a heliothermal hypersaline lake

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, James K.

    2016-05-01

    Water chemical variations were investigated over three annual hydrologic cycles in hypersaline, heliothermal, meromictic Hot Lake in north-central Washington State, USA. The lake contains diverse biota with dramatic zonation related to salinity and redox state. Water samples were collected at 10-cm depth intervals through the shallow lake (2.4 m) during 2012-2014, with comprehensive monitoring performed in 2013. Inorganic salt species, dissolved carbon forms (DOC, DIC), oxygen, sulfide, and methane were analyzed in lake water samples. Depth sonde measurements of pH and temperature were also performed to track their seasonal variations. A bathymetric survey of the lake was conducted to enable lake water volume and solute inventory calculations. Sediment cores were collected at low water and analyzed by X-ray diffraction to investigate sediment mineralogy. The primary dissolved salt in Hot Lake water was Mg2+-SO42- whereas sediments were dominated by gypsum (CaSO4·2H2O). Lake water concentrations increased with depth, reaching saturation with epsomite (MgSO4·7H2O) that was exposed at lake bottom. At maximum volume in spring, Hot Lake exhibited a relatively dilute mixolimnion; a lower saline metalimnion with stratified oxygenic and anoxygenic photosynthetic microbiological communities; and a stable, hypersaline monimolimnion, separated from above layers by a chemocline, containing high levels of sulfide and methane. The thickness of the mixolimnion regulates a heliothermal effect that creates temperatures in excess of 60 °C in the underlying metalimnion and monimolimnion. The mixolimnion was dynamic in volume and actively mixed. It displayed large pH variations, in-situ calcium carbonate precipitation, and large evaporative volume losses. The depletion of this layer by fall allowed deeper mixing into the metalimnion, more rapid heat exchange, and lower winter lake temperatures. Solubility calculations indicate seasonal biogenic and thermogenic aragonite

  17. Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats

    PubMed Central

    Sorokin, Dimitry Y; Messina, Enzo; Smedile, Francesco; Roman, Pawel; Damsté, Jaap S Sinninghe; Ciordia, Sergio; Mena, Maria Carmen; Ferrer, Manuel; Golyshin, Peter N; Kublanov, Ilya V; Samarov, Nazar I; Toshchakov, Stepan V; La Cono, Violetta; Yakimov, Michail M

    2017-01-01

    Hypersaline anoxic habitats harbour numerous novel uncultured archaea whose metabolic and ecological roles remain to be elucidated. Until recently, it was believed that energy generation via dissimilatory reduction of sulfur compounds is not functional at salt saturation conditions. Recent discovery of the strictly anaerobic acetotrophic Halanaeroarchaeum compels to change both this assumption and the traditional view on haloarchaea as aerobic heterotrophs. Here we report on isolation and characterization of a novel group of strictly anaerobic lithoheterotrophic haloarchaea, which we propose to classify as a new genus Halodesulfurarchaeum. Members of this previously unknown physiological group are capable of utilising formate or hydrogen as electron donors and elemental sulfur, thiosulfate or dimethylsulfoxide as electron acceptors. Using genome-wide proteomic analysis we have detected the full set of enzymes required for anaerobic respiration and analysed their substrate-specific expression. Such advanced metabolic plasticity and type of respiration, never seen before in haloarchaea, empower the wide distribution of Halodesulfurarchaeum in hypersaline inland lakes, solar salterns, lagoons and deep submarine anoxic brines. The discovery of this novel functional group of sulfur-respiring haloarchaea strengthens the evidence of their possible role in biogeochemical sulfur cycling linked to the terminal anaerobic carbon mineralisation in so far overlooked hypersaline anoxic habitats. PMID:28106880

  18. USEPA Inland HAB Risk Management - Lake Harsha

    EPA Science Inventory

    Freshwater inland lakes and reservoirs supply approximately 70% of the nation’s drinking water and industrial needs. These are typically open ecological systems and susceptible to Harmful algal blooms (HABs) which are increasing in frequency, intensity, and geographic range. I...

  19. Estimation of a Trophic State Index for selected inland lakes in Michigan, 1999–2013

    USGS Publications Warehouse

    Fuller, Lori M.; Jodoin, Richard S.

    2016-03-11

    A 15-year estimated Trophic State Index (eTSI) for Michigan inland lakes is available, and it spans seven datasets, each representing 1 to 3 years of data from 1999 to 2013. On average, 3,000 inland lake eTSI values are represented in each of the datasets by a process that relates field-measured Secchi-disk transparency (SDT) to Landsat satellite imagery to provide eTSI values for unsampled inland lakes. The correlation between eTSI values and field-measured Trophic State Index (TSI) values from SDT was strong as shown by R2 values from 0.71 to 0.83. Mean eTSI values ranged from 42.7 to 46.8 units, which when converted to estimated SDT (eSDT) ranged from 8.9 to 12.5 feet for the datasets. Most eTSI values for Michigan inland lakes are in the mesotrophic TSI class. The Environmental Protection Agency (EPA) Level III Ecoregions were used to illustrate and compare the spatial distribution of eTSI classes for Michigan inland lakes. Lakes in the Northern Lakes and Forests, North Central Hardwood Forests, and Southern Michigan/Northern Indiana Drift Plains ecoregions are predominantly in the mesotrophic TSI class. The Huron/Erie Lake Plains and Eastern Corn Belt Plains ecoregions, had predominantly eutrophic class lakes and also the highest percent of hypereutrophic lakes than other ecoregions in the State. Data from multiple sampling programs—including data collected by volunteers with the Cooperative Lakes Monitoring Program (CLMP) through the Michigan Department of Environmental Quality (MDEQ), and the 2007 National Lakes Assessment (NLA)—were compiled to compare the distribution of lake TSI classes between each program. The seven eTSI datasets are available for viewing and download with eSDT from the Michigan Lake Water Clarity Interactive Map Viewer at http://mi.water.usgs.gov/projects/RemoteSensing/index.html.

  20. Alkaline Hypersaline Lakes as Analogs for Ancient Microbial Habitats on Mars

    NASA Technical Reports Server (NTRS)

    McDonald, G. D.; Tsapin, A. I.; Storrie-Lombardi, M. C.; Nealson, K. H.; Brinton, K. L. F.; Sun, H.; Venkateswaren, K.; Tsapin, I.; Melack, J.; Jellison, R.

    1999-01-01

    As the climate of ancient Mars became colder and drier with time, open bodies of water would have entered a regime in which evaporation exceeded input from precipitation or runoff. This would have resulted in increases in salinity and perhaps pH. The last open water on Mars was most likely found in alkaline hypersaline lakes, and these lakes would have been the last surface aquatic habitats for life on Mars. It follows, then, that the biomarkers most likely to be found in ancient sedimentary basins on Mars are those left by organisms adapted to high salt and high pH environments. We have begun to investigate the nature of biological diversity and adaptation to these environments, and the potential for biomarker preservation in them, using Mono Lake as a terrestrial analog environment. Additional information is contained in the original extended abstract.

  1. The Comparative Osmoregulatory Ability of Two Water Beetle Genera Whose Species Span the Fresh-Hypersaline Gradient in Inland Waters (Coleoptera: Dytiscidae, Hydrophilidae)

    PubMed Central

    Pallarés, Susana; Arribas, Paula; Bilton, David T.; Millán, Andrés; Velasco, Josefa

    2015-01-01

    A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh—hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal’s haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg-1). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg-1) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm-1, respectively, and maintained osmotic gradients over 3500 mosmol kg-1, comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by

  2. 46 CFR 11.433 - Requirements for master of Great Lakes and inland self-propelled vessels of unlimited tonnage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Requirements for master of Great Lakes and inland self... Requirements for National Deck Officer Endorsements § 11.433 Requirements for master of Great Lakes and inland... for an endorsement as master of Great Lakes and inland self-propelled vessels of unlimited tonnage is...

  3. Carbonate Biogenic Structures in Storrs Lake, Bahamas

    NASA Technical Reports Server (NTRS)

    Byrne, Monica; Morris, Penny A.; Wentworth, Susan J.; Brigmon, Robin L.; McKay, David S.

    2001-01-01

    Storr's Lake, an inland hypersaline lake on San Salvador Island, Bahamas, contains calcium carbonate-rich lithified mats of filamentous microorganisms, diatoms, associated photosynthetic and chemotrophic bacteria, and trapped sediment. In addition, 16S rRNA analysis indicates the presence of five sulfur-reducing genera of bacteria. These microbes are potential modern-day analogs to some ancient stromatolitic structures. The goals of this study are to identify unique compositional and biogenic features, possibly correlating some of these with some of the sulfate-reducing bacteria. Additional information is contained in the original extended abstract.

  4. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  5. 46 CFR 11.452 - Requirements for master of Great Lakes and inland self-propelled vessels of less than 200 GRT.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Requirements for master of Great Lakes and inland self... Requirements for National Deck Officer Endorsements § 11.452 Requirements for master of Great Lakes and inland... for an endorsement or license as master of Great Lakes and inland self-propelled vessels of less than...

  6. 46 CFR 11.455 - Requirements for master of Great Lakes and inland self-propelled vessels of less than 100 GRT.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Requirements for master of Great Lakes and inland self... Requirements for National Deck Officer Endorsements § 11.455 Requirements for master of Great Lakes and inland... for an endorsement as master of Great Lakes and inland self-propelled vessels of less than 100 GRT is...

  7. 46 CFR 11.446 - Requirements for master of Great Lakes and inland self-propelled vessels of less than 500 GRT.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Requirements for master of Great Lakes and inland self... Requirements for National Deck Officer Endorsements § 11.446 Requirements for master of Great Lakes and inland... for an endorsement as master of Great Lakes and inland self-propelled vessels of less than 500 GRT is...

  8. Predicting water quality by relating secchi-disk transparency and chlorophyll a measurements to Landsat satellite imagery for Michigan inland lakes, 2001-2006

    USGS Publications Warehouse

    Fuller, L.M.; Minnerick, R.J.

    2007-01-01

    The State of Michigan has more than 11,000 inland lakes; approximately 3,500 of these lakes are greater than 25 acres. The USGS, in cooperation with the Michigan Department of Environmental Quality (MDEQ), has been monitoring the quality of inland lakes in Michigan through the Lake Water Quality Assessment monitoring program. Approximately 100 inland lakes will be sampled per year from 2001 to 2015. Volunteers coordinated by MDEQ started sampling lakes in 1974, and continue to sample to date approximately 250 inland lakes each year through the Cooperative Lakes Monitoring Program (CLMP), Michigan’s volunteer lakes monitoring program. Despite this sampling effort, it is still impossible to physically collect the necessary water-quality measurements for all 3,500 Michigan inland lakes. Therefore, a technique was used by USGS, modeled after Olmanson and others (2001), in cooperation with MDEQ that uses satellite remote sensing to predict water quality in unsampled inland lakes greater than 25 acres. Water-quality characteristics that are associated with water clarity can be predicted for Michigan inland lakes by relating sampled measurements of secchi-disk transparency (SDT) and chlorophyll a concentrations (Chl-a), to satellite imagery. The trophic state index (TSI) which is an indicator of the biological productivity can be calculated based on SDT measurements, Chl-a concentrations, and total phosphorus (TP) concentrations measured near the lake’s surface. Through this process, unsampled inland lakes within the fourteen Landsat satellite scenes encompassing Michigan can be translated into estimated TSI from either predicted SDT or Chl-a (fig. 1).

  9. Predicting lake trophic state by relating Secchi-disk transparency measurements to Landsat-satellite imagery for Michigan inland lakes, 2003-05 and 2007-08

    USGS Publications Warehouse

    Fuller, L.M.; Jodoin, R.S.; Minnerick, R.J.

    2011-01-01

    Inland lakes are an important economic and environmental resource for Michigan. The U.S. Geological Survey and the Michigan Department of Natural Resources and Environment have been cooperatively monitoring the quality of selected lakes in Michigan through the Lake Water Quality Assessment program. Sampling for this program began in 2001; by 2010, 730 of Michigan’s 11,000 inland lakes are expected to have been sampled once. Volunteers coordinated by the Michigan Department of Natural Resources and Environment began sampling lakes in 1974 and continue to sample (in 2010) approximately 250 inland lakes each year through the Michigan Cooperative Lakes Monitoring Program. Despite these sampling efforts, it still is impossible to physically collect measurements for all Michigan inland lakes; however, Landsat-satellite imagery has been used successfully in Minnesota, Wisconsin, Michigan, and elsewhere to predict the trophic state of unsampled inland lakes greater than 20 acres by producing regression equations relating in-place Secchi-disk measurements to Landsat bands. This study tested three alternatives to methods previously used in Michigan to improve results for predicted statewide Trophic State Index (TSI) computed from Secchi-disk transparency (TSI (SDT)). The alternative methods were used on 14 Landsat-satellite scenes with statewide TSI (SDT) for two time periods (2003– 05 and 2007–08). Specifically, the methods were (1) satellitedata processing techniques to remove areas affected by clouds, cloud shadows, haze, shoreline, and dense vegetation for inland lakes greater than 20 acres in Michigan; (2) comparison of the previous method for producing a single open-water predicted TSI (SDT) value (which was based on an area of interest (AOI) and lake-average approach) to an alternative Gethist method for identifying open-water areas in inland lakes (which follows the initial satellite-data processing and targets the darkest pixels, representing the deepest water

  10. Tracking human footprints in Antarctica through passive sampling of polycyclic aromatic hydrocarbons in inland lakes.

    PubMed

    Yao, Yao; Meng, Xiang-Zhou; Wu, Chen-Chou; Bao, Lian-Jun; Wang, Feng; Wu, Feng-Chang; Zeng, Eddy Y

    2016-06-01

    Freely dissolved polycyclic aromatic hydrocarbons (PAHs) were monitored in seven inland lakes of Antarctica by a polyethylene (PE)-based passive sampling technique, with the objective of tracking human footprints. The measured concentrations of PAHs were in the range of 14-360 ng L(-1) with the highest values concentrated around the Russian Progress II Station, indicating the significance of human activities to the loading of PAHs in Antarctica. The concentrations of PAHs in the inland lakes were in the upper part of the PAHs levels in aquatic environments from remote and background regions across the globe. The composition profiles of PAHs indicated that PAHs in the inland lakes were derived mainly from local oil spills, which was corroborated by a large number of fuel spillage reports from ship and plane crash incidents in Antarctica during recent years. Clearly, local human activities, rather than long-range transport, are the dominant sources of PAH contamination to the inland lakes. Finally, the present study demonstrates the efficacy of PE-based passive samplers for investigating PAHs in the aquatic environment of Antarctica under complex field conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Diversity of virus-host systems in hypersaline Lake Retba, Senegal.

    PubMed

    Sime-Ngando, Télesphore; Lucas, Soizick; Robin, Agnès; Tucker, Kimberly Pause; Colombet, Jonathan; Bettarel, Yvan; Desmond, Elie; Gribaldo, Simonetta; Forterre, Patrick; Breitbart, Mya; Prangishvili, David

    2011-08-01

    Remarkable morphological diversity of virus-like particles was observed by transmission electron microscopy in a hypersaline water sample from Lake Retba, Senegal. The majority of particles morphologically resembled hyperthermophilic archaeal DNA viruses isolated from extreme geothermal environments. Some hypersaline viral morphotypes have not been previously observed in nature, and less than 1% of observed particles had a head-and-tail morphology, which is typical for bacterial DNA viruses. Culture-independent analysis of the microbial diversity in the sample suggested the dominance of extremely halophilic archaea. Few of the 16S sequences corresponded to known archeal genera (Haloquadratum, Halorubrum and Natronomonas), whereas the majority represented novel archaeal clades. Three sequences corresponded to a new basal lineage of the haloarchaea. Bacteria belonged to four major phyla, consistent with the known diversity in saline environments. Metagenomic sequencing of DNA from the purified virus-like particles revealed very few similarities to the NCBI non-redundant database at either the nucleotide or amino acid level. Some of the identifiable virus sequences were most similar to previously described haloarchaeal viruses, but no sequence similarities were found to archaeal viruses from extreme geothermal environments. A large proportion of the sequences had similarity to previously sequenced viral metagenomes from solar salterns. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. 46 CFR 11.442 - Requirements for master of Great Lakes and inland self-propelled vessels of less than 1,600 GRT.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Requirements for master of Great Lakes and inland self... Requirements for National Deck Officer Endorsements § 11.442 Requirements for master of Great Lakes and inland... for an endorsement as master of Great Lakes and inland self-propelled vessels of less than 1,600 GRT...

  13. Sodium toxicity and pathology associated with exposure of waterfowl to hypersaline playa lakes of southeast New Mexico

    USGS Publications Warehouse

    Meteyer, C.U.; Dubielzig, R.D.; Dein, F.J.; Baeten, L.A.; Moore, M.K.; Jehl, J.R.; Wesenberg, K.E.

    1997-01-01

    Cause of mortality was studied in waterfowl in hypersaline playa lakes of southeast New Mexico during spring and fall migration. Mortality was not common in wild ducks resting on the playas during good weather. However, when birds remained on the lakes for prolonged periods of time, such as during experimental trials and stormy weather, a heavy layer of salt precipitated on their feathers. Sodium toxicity was the cause of death for all experimental mallards housed on playa water and for 50% of the wild waterfowl found moribund or dead during the spring of 1995. Gross lesions included heavy salt precipitation on the feathers, ocular lens opacities, deeply congested brains, and dilated, thin-walled, fluid-filled cloacae. Microscopic lesions in the more severely affected birds included liquefaction of ocular lens cortex with lens fiber swelling and multifocal to diffuse ulcerative conjunctivitis with severe granulocytic inflammation, edema, and granulocytic vasculitis resulting in thrombosis. Inflammation similar to that seen in the conjunctiva occasionally involved the mucosa of the mouth, pharynx, nasal turbinates, cloaca, and bursa. Transcorneal movement of water in response to the hypersaline conditions on the playa lakes or direct contact with salt crystals could induce anterior segment dehydration of the aqueous humor and increased osmotic pressure on the lens, leading to cataract formation.

  14. 46 CFR 11.442 - Service requirements for master of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inland steam or motor vessels of not more than 1600 gross tons. 11.442 Section 11.442 Shipping COAST... Lakes and inland steam or motor vessels of not more than 1600 gross tons. The minimum service required to qualify an applicant for an endorsement as master of Great Lakes and inland steam or motor vessels...

  15. Sources and distribution of microplastics in China's largest inland lake - Qinghai Lake.

    PubMed

    Xiong, Xiong; Zhang, Kai; Chen, Xianchuan; Shi, Huahong; Luo, Ze; Wu, Chenxi

    2018-04-01

    Microplastic pollution was studied in China's largest inland lake - Qinghai Lake in this work. Microplastics were detected with abundance varies from 0.05 × 10 5 to 7.58 × 10 5 items km -2 in the lake surface water, 0.03 × 10 5 to 0.31 × 10 5 items km -2 in the inflowing rivers, 50 to 1292 items m -2 in the lakeshore sediment, and 2 to 15 items per individual in the fish samples, respectively. Small microplastics (0.1-0.5 mm) dominated in the lake surface water while large microplastics (1-5 mm) are more abundant in the river samples. Microplastics were predominantly in sheet and fiber shapes in the lake and river water samples but were more diverse in the lakeshore sediment samples. Polymer types of microplastics were mainly polyethylene (PE) and polypropylene (PP) as identified using Raman Spectroscopy. Spatially, microplastic abundance was the highest in the central part of the lake, likely due to the transport of lake current. Based on the higher abundance of microplastics near the tourist access points, plastic wastes from tourism are considered as an important source of microplastics in Qinghai Lake. As an important area for wildlife conservation, better waste management practice should be implemented, and waste disposal and recycling infrastructures should be improved for the protection of Qinghai Lake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Water-quality characteristics of Michigan's inland lakes, 2001-10

    USGS Publications Warehouse

    Fuller, L.M.; Taricska, C.K.

    2012-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality (MDEQ) jointly monitored for selected water-quality constituents and properties of inland lakes during 2001–10 as part of Michigan's Lake Water-Quality Assessment program. During 2001–10, 866 lake basins from 729 inland lakes greater than 25 acres were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of the monitored lakes throughout the State; the data include vertical-profile measurements, nutrient measurements at three discrete depths, Secchi-disk transparency (SDT) measurements, and chlorophyll a measurements for the spring and summer, with major ions and other chemical indicators measured during the spring at mid-depth and color during the summer from near-surface samples. In about 75 percent of inland lake deep basins (index stations), trophic characteristics were associated with oligotrophic or mesotrophic conditions; 5 percent or less were categorized as hypereutrophic, and 80 percent of hypereutrophic lakes had a maximum depth of 30 feet or less. Comparison of spring and summer measurements shows that water clarity based on SDT measurements were clearer in the spring than in the summer for 63 percent of lakes. For near-surface measurements made in spring, 97 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited; for summer measurements, 96 percent of lakes can be considered phosphorus limited and less than half a percent nitrogen limited. Spatial patterns of major ions, alkalinity, and hardness measured in the spring at mid-depth all showed lower values in the Upper Peninsula of Michigan and a southward increase toward the southern areas of the Lower Peninsula, though the location of increase varied by constituent. A spatial analysis of the data based on U.S. Environmental Protection Agency Level III Ecoregions separated potassium

  17. 46 CFR 11.452 - Service requirements for master of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Service requirements for master of Great Lakes and... Professional Requirements for Deck Officers § 11.452 Service requirements for master of Great Lakes and inland... applicant for an endorsement as master of Great Lakes and inland steam or motor vessels of not more than 200...

  18. 46 CFR 11.446 - Service requirements for master of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Service requirements for master of Great Lakes and... Professional Requirements for Deck Officers § 11.446 Service requirements for master of Great Lakes and inland... applicant for an endorsement as master of Great Lakes and inland steam or motor vessels of not more than 500...

  19. 46 CFR 11.455 - Service requirements for master of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Service requirements for master of Great Lakes and... Professional Requirements for Deck Officers § 11.455 Service requirements for master of Great Lakes and inland... applicant for an endorsement as master of Great Lakes and inland steam or motor vessels of not more than 100...

  20. 46 CFR 11.446 - Service requirements for master of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Service requirements for master of Great Lakes and... Professional Requirements for Deck Officers § 11.446 Service requirements for master of Great Lakes and inland... applicant for an endorsement as master of Great Lakes and inland steam or motor vessels of not more than 500...

  1. 46 CFR 11.446 - Service requirements for master of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Service requirements for master of Great Lakes and... Professional Requirements for Deck Officers § 11.446 Service requirements for master of Great Lakes and inland... applicant for an endorsement as master of Great Lakes and inland steam or motor vessels of not more than 500...

  2. 46 CFR 11.452 - Service requirements for master of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Service requirements for master of Great Lakes and... Professional Requirements for Deck Officers § 11.452 Service requirements for master of Great Lakes and inland... applicant for an endorsement as master of Great Lakes and inland steam or motor vessels of not more than 200...

  3. 46 CFR 11.455 - Service requirements for master of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Service requirements for master of Great Lakes and... Professional Requirements for Deck Officers § 11.455 Service requirements for master of Great Lakes and inland... applicant for an endorsement as master of Great Lakes and inland steam or motor vessels of not more than 100...

  4. 46 CFR 11.433 - Service requirements for master of Great Lakes and inland steam or motor vessels of any gross tons.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Service requirements for master of Great Lakes and... Professional Requirements for Deck Officers § 11.433 Service requirements for master of Great Lakes and inland... endorsement as master of Great Lakes and inland steam or motor vessels of any gross tons is: (a) One year of...

  5. 46 CFR 11.433 - Service requirements for master of Great Lakes and inland steam or motor vessels of any gross tons.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Service requirements for master of Great Lakes and... Professional Requirements for Deck Officers § 11.433 Service requirements for master of Great Lakes and inland... endorsement as master of Great Lakes and inland steam or motor vessels of any gross tons is: (a) One year of...

  6. 46 CFR 11.433 - Service requirements for master of Great Lakes and inland steam or motor vessels of any gross tons.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Service requirements for master of Great Lakes and... Professional Requirements for Deck Officers § 11.433 Service requirements for master of Great Lakes and inland... endorsement as master of Great Lakes and inland steam or motor vessels of any gross tons is: (a) One year of...

  7. Constraints on evaporation and dilution of terminal, hypersaline lakes under negative water balance: The Dead Sea, Israel

    NASA Astrophysics Data System (ADS)

    Zilberman, Tami; Gavrieli, Ittai; Yechieli, Yoseph; Gertman, Isaac; Katz, Amitai

    2017-11-01

    The response of hypersaline terminal lakes to negative water balance was investigated by studying brines evaporating to extreme salinities in sinkholes along the western coast of the Dead Sea and during on-site evaporation experiments of the Dead Sea brine. Density and temperature were determined in the field and all samples were analyzed for their major and a few minor solutes. The activity of H2O (aH2O) in the brines was calculated, and the degree of evaporation (DE) was established using Sr2+as a conservative solute. The relations between density and water activity were obtained by polynomial regression, and the relation between the lake's volume and level was established using Hall's (1996) hypsographic model for the Dead Sea basin. Relating the results to the modern, long-term relative humidity (RH) over the basin shows that (a) The lowermost attainable level of a terminal lake undergoing evaporation with no inflow is dictated by the median RH; this level represents equilibrium between the brine's aH2O and RH; (b) Small, saline water bodies with high surface to volume ratios (A/V), such as the hypersaline brines in the sinkholes, are very sensitive to short term changes in RH; in these, the brines' aH2O closely follows the seasonal changes; (c) the level decline of the Dead Sea due to evaporation under present climatic conditions and assuming no inflow to the lake may continue down to 516-537 m below mean sea level (bmsl), corresponding to a water activity range of 0.46-0.39 in its brine, in equilibrium with the overlying relative air humidity; this suggests that the lake level cannot drop more than ∼100 m from its present level; and (d) The maximum RH values that existed over the precursor lake of the Dead Sea (Lake Lisan) during geologically reconstructed minima levels can be similarly calculated.

  8. Comparing rapid and culture indicator bacteria methods at inland lake beaches

    USGS Publications Warehouse

    Francy, Donna S.; Bushon, Rebecca N.; Brady, Amie M.G.; Kephart, Christopher M.

    2013-01-01

    A rapid method, quantitative polymerase chain reaction (qPCR), for quantifying indicator bacteria in recreational waters is desirable for public health protection. We report that replacing current Escherichia coli standards with new US Environmental Protection Agency beach action values (BAVs) for enterococci by culture or qPCR may result in more advisories being posted at inland recreational lakes. In this study, concentrations of E. coli and enterococci by culture methods were compared to concentrations of Enterococcus spp. by qPCR at 3 inland lake beaches in Ohio. The E. coli and enterococci culture results were significantly related at all beaches; however, the relations between culture results and Enterococcus spp. qPCR results were not always significant and differed among beaches. All the qPCR results exceeded the new BAV for Enterococcus spp. by qPCR, whereas only 23.7% of culture results for E. coli and 79% of culture results for enterococci exceeded the current standard for E. coli or BAV for enterococci.

  9. 46 CFR 167.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS General Provisions § 167.01-7 Ocean or unlimited coastwise vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited...

  10. 46 CFR 188.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Application § 188.05-7 Ocean or unlimited coastwise vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited coastwise...

  11. 46 CFR 70.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) PASSENGER VESSELS GENERAL PROVISIONS Application § 70.05-7 Ocean or unlimited coastwise vessels on inland and Great Lakes Routes. (a) Vessels inspected and certificated for ocean or unlimited coastwise routes...

  12. 46 CFR 188.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Application § 188.05-7 Ocean or unlimited coastwise vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited coastwise...

  13. 46 CFR 70.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) PASSENGER VESSELS GENERAL PROVISIONS Application § 70.05-7 Ocean or unlimited coastwise vessels on inland and Great Lakes Routes. (a) Vessels inspected and certificated for ocean or unlimited coastwise routes...

  14. 46 CFR 90.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) CARGO AND MISCELLANEOUS VESSELS GENERAL PROVISIONS Application § 90.05-7 Ocean or unlimited coastwise vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited...

  15. 46 CFR 70.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) PASSENGER VESSELS GENERAL PROVISIONS Application § 70.05-7 Ocean or unlimited coastwise vessels on inland and Great Lakes Routes. (a) Vessels inspected and certificated for ocean or unlimited coastwise routes...

  16. 46 CFR 167.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS General Provisions § 167.01-7 Ocean or unlimited coastwise vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited...

  17. 46 CFR 70.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) PASSENGER VESSELS GENERAL PROVISIONS Application § 70.05-7 Ocean or unlimited coastwise vessels on inland and Great Lakes Routes. (a) Vessels inspected and certificated for ocean or unlimited coastwise routes...

  18. 46 CFR 188.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Application § 188.05-7 Ocean or unlimited coastwise vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited coastwise...

  19. 46 CFR 90.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) CARGO AND MISCELLANEOUS VESSELS GENERAL PROVISIONS Application § 90.05-7 Ocean or unlimited coastwise vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited...

  20. 46 CFR 90.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) CARGO AND MISCELLANEOUS VESSELS GENERAL PROVISIONS Application § 90.05-7 Ocean or unlimited coastwise vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited...

  1. 46 CFR 188.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Application § 188.05-7 Ocean or unlimited coastwise vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited coastwise...

  2. 46 CFR 167.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS General Provisions § 167.01-7 Ocean or unlimited coastwise vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited...

  3. 46 CFR 167.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS General Provisions § 167.01-7 Ocean or unlimited coastwise vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited...

  4. 46 CFR 167.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS General Provisions § 167.01-7 Ocean or unlimited coastwise vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited...

  5. 46 CFR 188.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Application § 188.05-7 Ocean or unlimited coastwise vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited coastwise...

  6. 46 CFR 70.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) PASSENGER VESSELS GENERAL PROVISIONS Application § 70.05-7 Ocean or unlimited coastwise vessels on inland and Great Lakes Routes. (a) Vessels inspected and certificated for ocean or unlimited coastwise routes...

  7. 46 CFR 90.05-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes routes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ocean or unlimited coastwise vessels on inland and Great...) CARGO AND MISCELLANEOUS VESSELS GENERAL PROVISIONS Application § 90.05-7 Ocean or unlimited coastwise vessels on inland and Great Lakes routes. (a) Vessels inspected and certificated for ocean or unlimited...

  8. High Genetic Diversity and Novelty in Eukaryotic Plankton Assemblages Inhabiting Saline Lakes in the Qaidam Basin

    PubMed Central

    Wang, Jiali; Wang, Fang; Chu, Limin; Wang, Hao; Zhong, Zhiping; Liu, Zhipei; Gao, Jianyong; Duan, Hairong

    2014-01-01

    Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing <90% identity to any previously reported sequence in GenBank. At least 4 operational taxonomic units (OTUs) in mesosaline lakes, while up to eighteen OTUs in hypersaline lakes show very low CCM and CEM scores, indicating that these sequences are highly distantly related to any existing sequence. Most of the 18S rRNA gene sequence reads obtained in investigated mesosaline lakes is closely related to Holozoa group (48.13%), whereas Stramenopiles (26.65%) and Alveolates (10.84%) are the next most common groups. Hypersaline lakes in the Qaidam Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution. PMID:25401703

  9. 46 CFR 11.456 - Service requirements for limited master of Great Lakes and inland steam or motor vessels of not...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Service requirements for limited master of Great Lakes and inland steam or motor vessels of not more than 100 gross tons. 11.456 Section 11.456 Shipping... master of Great Lakes and inland steam or motor vessels of not more than 100 gross tons. Limited masters...

  10. Microbial source tracking markers at three inland recreational lakes in Ohio, 2011

    USGS Publications Warehouse

    Francy, Donna S.; Stelzer, Erin A.

    2012-01-01

    During the 2011 recreational season, samples were collected for E. coli and microbial source tracking (MST) marker concentrations to begin to understand potential sources of fecal contamination at three inland recreational lakes in Ohio - Buckeye, Atwood, and Tappan Lakes. The results from 32 regular samples, 4 field blanks, and 7 field replicates collected at 5 sites are presented in this report. At the three lakes, the ruminant-associated marker was found most often (57-73 percent of samples) but at estimated quantities, followed by the dog-associated marker (30-43 percent of samples). The human-associated marker was found in 14 and 50 percent of samples from Atwood and Tappan Lakes, respectively, but was not found in any samples from the two Buckeye Lake sites. The gull-associated marker was detected in only two samples, both from Tappan Lake.

  11. Virus-Host and CRISPR Dynamics in Archaea-Dominated Hypersaline Lake Tyrrell, Victoria, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emerson, Joanne B.; Andrade, Karen; Thomas, Brian C.

    The study of natural archaeal assemblages requires community context, namely, a concurrent assessment of the dynamics of archaeal, bacterial, and viral populations. Here, we use filter size-resolved metagenomic analyses to report the dynamics of 101 archaeal and bacterial OTUs and 140 viral populations across 17 samples collected over different timescales from 2007–2010 from Australian hypersaline Lake Tyrrell (LT). All samples were dominated by Archaea (75–95%). Archaeal, bacterial, and viral populations were found to be dynamic on timescales of months to years, and different viral assemblages were present in planktonic, relative to host-associated (active and provirus) size fractions. Analyses of clusteredmore » regularly interspaced short palindromic repeat (CRISPR) regions indicate that both rare and abundant viruses were targeted, primarily by lower abundance hosts. Although very few spacers had hits to the NCBI nr database or to the 140 LT viral populations, 21% had hits to unassembled LT viral concentrate reads. This suggests local adaptation to LT-specific viruses and/or undersampling of haloviral assemblages in public databases, along with successful CRISPR-mediated maintenance of viral populations at abundances low enough to preclude genomic assembly. This is the first metagenomic report evaluating widespread archaeal dynamics at the population level on short timescales in a hypersaline system.« less

  12. Virus-Host and CRISPR Dynamics in Archaea-Dominated Hypersaline Lake Tyrrell, Victoria, Australia

    DOE PAGES

    Emerson, Joanne B.; Andrade, Karen; Thomas, Brian C.; ...

    2013-01-01

    The study of natural archaeal assemblages requires community context, namely, a concurrent assessment of the dynamics of archaeal, bacterial, and viral populations. Here, we use filter size-resolved metagenomic analyses to report the dynamics of 101 archaeal and bacterial OTUs and 140 viral populations across 17 samples collected over different timescales from 2007–2010 from Australian hypersaline Lake Tyrrell (LT). All samples were dominated by Archaea (75–95%). Archaeal, bacterial, and viral populations were found to be dynamic on timescales of months to years, and different viral assemblages were present in planktonic, relative to host-associated (active and provirus) size fractions. Analyses of clusteredmore » regularly interspaced short palindromic repeat (CRISPR) regions indicate that both rare and abundant viruses were targeted, primarily by lower abundance hosts. Although very few spacers had hits to the NCBI nr database or to the 140 LT viral populations, 21% had hits to unassembled LT viral concentrate reads. This suggests local adaptation to LT-specific viruses and/or undersampling of haloviral assemblages in public databases, along with successful CRISPR-mediated maintenance of viral populations at abundances low enough to preclude genomic assembly. This is the first metagenomic report evaluating widespread archaeal dynamics at the population level on short timescales in a hypersaline system.« less

  13. 46 CFR 11.437 - Service requirements for mate of Great Lakes and inland steam or motor vessels of any gross tons.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... steam or motor vessels of any gross tons. 11.437 Section 11.437 Shipping COAST GUARD, DEPARTMENT OF... Requirements for Deck Officers § 11.437 Service requirements for mate of Great Lakes and inland steam or motor... mate of Great Lakes and inland steam or motor vessels of any gross tons is: (1) Three years of service...

  14. Predicting water quality by relating secchi-disk transparency and chlorophyll a measurements to satellite imagery for Michigan Inland Lakes, August 2002

    USGS Publications Warehouse

    Fuller, L.M.; Aichele, Stephen S.; Minnerick, R.J.

    2004-01-01

    Inland lakes are an important economic and environmental resource for Michigan. The U.S. Geological Survey and the Michigan Department of Environmental Quality have been cooperatively monitoring the quality of selected lakes in Michigan through the Lake Water Quality Assessment program. Through this program, approximately 730 of Michigan's 11,000 inland lakes will be monitored once during this 15-year study. Targeted lakes will be sampled during spring turnover and again in late summer to characterize water quality. Because more extensive and more frequent sampling is not economically feasible in the Lake Water Quality Assessment program, the U.S. Geological Survey and Michigan Department of Environmental Quality investigate the use of satellite imagery as a means of estimating water quality in unsampled lakes. Satellite imagery has been successfully used in Minnesota, Wisconsin, and elsewhere to compute the trophic state of inland lakes from predicted secchi-disk measurements. Previous attempts of this kind in Michigan resulted in a poorer fit between observed and predicted data than was found for Minnesota or Wisconsin. This study tested whether estimates could be improved by using atmospherically corrected satellite imagery, whether a more appropriate regression model could be obtained for Michigan, and whether chlorophyll a concentrations could be reliably predicted from satellite imagery in order to compute trophic state of inland lakes. Although the atmospheric-correction did not significantly improve estimates of lake-water quality, a new regression equation was identified that consistently yielded better results than an equation obtained from the literature. A stepwise regression was used to determine an equation that accurately predicts chlorophyll a concentrations in northern Lower Michigan.

  15. 46 CFR 30.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes-TB/OC.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Ocean or unlimited coastwise vessels on inland and Great... VESSELS GENERAL PROVISIONS Administration § 30.01-7 Ocean or unlimited coastwise vessels on inland and Great Lakes Routes—TB/OC. (a) Vessels inspected and certificated for ocean or unlimited coastwise routes...

  16. 46 CFR 30.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes-TB/OC.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Ocean or unlimited coastwise vessels on inland and Great... VESSELS GENERAL PROVISIONS Administration § 30.01-7 Ocean or unlimited coastwise vessels on inland and Great Lakes Routes—TB/OC. (a) Vessels inspected and certificated for ocean or unlimited coastwise routes...

  17. 46 CFR 30.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes-TB/OC.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Ocean or unlimited coastwise vessels on inland and Great... VESSELS GENERAL PROVISIONS Administration § 30.01-7 Ocean or unlimited coastwise vessels on inland and Great Lakes Routes—TB/OC. (a) Vessels inspected and certificated for ocean or unlimited coastwise routes...

  18. 46 CFR 30.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes-TB/OC.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Ocean or unlimited coastwise vessels on inland and Great... VESSELS GENERAL PROVISIONS Administration § 30.01-7 Ocean or unlimited coastwise vessels on inland and Great Lakes Routes—TB/OC. (a) Vessels inspected and certificated for ocean or unlimited coastwise routes...

  19. 46 CFR 30.01-7 - Ocean or unlimited coastwise vessels on inland and Great Lakes Routes-TB/OC.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Ocean or unlimited coastwise vessels on inland and Great... VESSELS GENERAL PROVISIONS Administration § 30.01-7 Ocean or unlimited coastwise vessels on inland and Great Lakes Routes—TB/OC. (a) Vessels inspected and certificated for ocean or unlimited coastwise routes...

  20. Composition and Activity of Microbial Communities along the Redox Gradient of an Alkaline, Hypersaline, Lake

    PubMed Central

    Edwardson, Christian F.; Hollibaugh, James T.

    2018-01-01

    We compared the composition of microbial communities obtained by sequencing 16S rRNA gene amplicons with taxonomy derived from metatranscriptomes from the same samples. Samples were collected from alkaline, hypersaline Mono Lake, California, USA at five depths that captured the major redox zones of the lake during the onset of meromixis. The prokaryotic community was dominated by bacteria from the phyla Proteobacteria, Firmicutes, and Bacteroidetes, while the picoeukaryotic chlorophyte Picocystis dominated the eukaryotes. Most (80%) of the abundant (>1% relative abundance) OTUs recovered as amplicons of 16S rRNA genes have been reported in previous surveys, indicating that Mono Lake's microbial community has remained stable over 12 years that have included periods of regular, annual overturn interspersed by episodes of prolonged meromixis that result in extremely reducing conditions in bottom water. Metatranscriptomic sequences binned predominately to the Gammaproteobacteria genera Thioalkalivibrio (4–13%) and Thioalkalimicrobium (0–14%); and to the Firmicutes genera Dethiobacter (0–5%) and Clostridium (1–4%), which were also abundant in the 16S rRNA gene amplicon libraries. This study provides insight into the taxonomic affiliations of transcriptionally active communities of the lake's water column under different redox conditions. PMID:29445359

  1. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China.

    PubMed

    Yuan, Guo-Li; Liu, Chen; Chen, Long; Yang, Zhongfang

    2011-01-15

    The temporal and spatial distribution of heavy metals (Cd, Hg, Pb, As and Cr) in Poyang Lake, the largest freshwater lake (3050 km(2)) in China, were studied based on the sedimentary profiles. For this purpose, eight sedimentary cores were selected which located at lake area, outfall of lake and the main branch rivers, respectively. High-resolution profiles with interval 2 cm were used for analyzing the concentration of metals, and the ages of them were determined by (210)Pb and (137)Cs isotopic dating. While studying the change of metals concentration with the age in profile, it is found that the concentration of them in sediments was influenced not only by the sources in history but also by the sediment types. Based on this detailed work, the inventory and burden of heavy metals per decade were estimated in lake area during the past 50 years. Significantly, rivers-contribution ratio per decade was estimated to distinguish each river's contribution of heavy metals into lake while river-flux in history and metals concentration in profiles were considered as calculating factors. So, our research provides a proof to well understand the sedimentary history and the inputting history of heavy metals from main rivers into an inland lake. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Carbonate microbialites and hardgrounds from Manito Lake, an alkaline, hypersaline lake in the northern Great Plains of Canada

    NASA Astrophysics Data System (ADS)

    Last, Fawn M.; Last, William M.; Halden, Norman M.

    2010-03-01

    Manito Lake is a large, perennial, Na-SO 4 dominated saline to hypersaline lake located in the northern Great Plains of western Canada. Significant water level decrease over the past several decades has led to reduction in volume and surface area, as well as an increase in salinity. The salinity has increased from 10 ppt to about 50 ppt TDS. This decrease in water level has exposed large areas of nearshore microbialites. These organogenic structures range in size from several cm to over a meter and often form large bioherms several meters high. They have various external morphologies, vary in mineralogical composition, and show a variety of internal fabrics from finely laminated to massive. In addition to microbiolities and bioherms, the littoral zone of Manito Lake contains a variety of carbonate hardgrounds, pavements, and cemented clastic sediments. Dolomite and aragonite are the most common minerals found in these shoreline structures, however, calcite after ikaite, monohydrocalcite, magnesian calcite, and hydromagnesite are also present. The dolomite is nonstoichiometric and calcium-rich; the magnesian calcite has about 17 mol% MgCO 3. AMS radiocarbon dating of paired organic matter and endogenic carbonate material confirms little or no reservoir affect. Although there is abundant evidence for modern carbonate mineral precipitation and microbialite formation, most of the larger microbialites formed between about 2300 and 1000 cal BP, whereas the hardgrounds, cements, and laminated crusts formed about 1000-500 cal BP.

  3. A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters.

    PubMed

    Engel, Fabian; Farrell, Kaitlin J; McCullough, Ian M; Scordo, Facundo; Denfeld, Blaize A; Dugan, Hilary A; de Eyto, Elvira; Hanson, Paul C; McClure, Ryan P; Nõges, Peeter; Nõges, Tiina; Ryder, Elizabeth; Weathers, Kathleen C; Weyhenmeyer, Gesa A

    2018-03-26

    The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO 2 ) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO 2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO 2 production by mineralization as well as CO 2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of [Formula: see text] to [Formula: see text] Pg C yr -1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO 2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO 2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.

  4. A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters

    NASA Astrophysics Data System (ADS)

    Engel, Fabian; Farrell, Kaitlin J.; McCullough, Ian M.; Scordo, Facundo; Denfeld, Blaize A.; Dugan, Hilary A.; de Eyto, Elvira; Hanson, Paul C.; McClure, Ryan P.; Nõges, Peeter; Nõges, Tiina; Ryder, Elizabeth; Weathers, Kathleen C.; Weyhenmeyer, Gesa A.

    2018-04-01

    The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO2) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO2 production by mineralization as well as CO2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of {0.70}_{-0.31}^{+0.27} to {1.52}_{-0.90}^{+1.09} Pg C yr-1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.

  5. Optimizing best management practices to control anthropogenic sources of atmospheric phosphorus deposition to inland lakes.

    PubMed

    Weiss, Lee; Thé, Jesse; Winter, Jennifer; Gharabaghi, Bahram

    2018-04-18

    Excessive phosphorus loading to inland freshwater lakes around the globe has resulted in nuisance plant growth along the waterfronts, degraded habitat for cold water fisheries, and impaired beaches, marinas and waterfront property. The direct atmospheric deposition of phosphorus can be a significant contributing source to inland lakes. The atmospheric deposition monitoring program for Lake Simcoe, Ontario indicates roughly 20% of the annual total phosphorus load (2010-2014 period) is due to direct atmospheric deposition (both wet and dry deposition) on the lake. This novel study presents a first-time application of the Genetic Algorithm (GA) methodology to optimize the application of best management practices (BMPs) related to agriculture and mobile sources to achieve atmospheric phosphorus reduction targets and restore the ecological health of the lake. The novel methodology takes into account the spatial distribution of the emission sources in the airshed, the complex atmospheric long-range transport and deposition processes, cost and efficiency of the popular management practices and social constraints related to the adoption of BMPs. The optimization scenarios suggest that the optimal overall capital investment of approximately $2M, $4M, and $10M annually can achieve roughly 3, 4 and 5 tonnes reduction in atmospheric P load to the lake, respectively. The exponential trend indicates diminishing returns for the investment beyond roughly $3M per year and that focussing much of this investment in the upwind, nearshore area will significantly impact deposition to the lake. The optimization is based on a combination of the lowest-cost, most-beneficial and socially-acceptable management practices that develops a science-informed promotion of implementation/BMP adoption strategy. The geospatial aspect to the optimization (i.e. proximity and location with respect to the lake) will help land managers to encourage the use of these targeted best practices in areas that

  6. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years.

    PubMed

    Bai, Jie; Chen, Xi; Li, Junli; Yang, Liao; Fang, Hui

    2011-07-01

    Inland lakes are major surface water resource in arid regions of Central Asia. The area changes in these lakes have been proved to be the results of regional climate changes and recent human activities. This study aimed at investigating the area variations of the nine major lakes in Central Asia over the last 30 years. Firstly, multi-temporal Landsat imagery in 1975, 1990, 1999, and 2007 were used to delineate lake extents automatically based on Normalized Difference Water Index (NDWI) threshold segmentation, then lake area variations were detailed in three decades and the mechanism of these changes was analyzed with meteorological data and hydrological data. The results indicated that the total surface areas of these nine lakes had decreased from 91,402.06 km(2) to 46,049.23 km(2) during 1975-2007, accounting for 49.62% of their original area of 1975. Tail-end lakes in flat areas had shrunk dramatically as they were induced by both climate changes and human impacts, while alpine lakes remained relatively stable due to the small precipitation variations. With different water usage of river outlets, the variations of open lakes were more flexible than those of other two types. According to comprehensive analyses, different types of inland lakes presented different trends of area changes under the background of global warming effects in Central Asia, which showed that the increased human activities had broken the balance of water cycles in this region.

  7. Genome Sequence of Sphingomonas sp. S17, Isolated from an Alkaline, Hyperarsenic, and Hypersaline Volcano-Associated Lake at High Altitude in the Argentinean Puna ▿

    PubMed Central

    Farias, Maria Eugenia; Revale, Santiago; Mancini, Estefania; Ordoñez, Omar; Turjanski, Adrian; Cortez, Néstor; Vazquez, Martin P.

    2011-01-01

    The high-altitude Andean lakes (HAAL) in the Argentinean Puna-high Andes region represent an almost unexplored ecosystem exposed to extreme conditions (high UV irradiation, hypersalinity, drastic temperature changes, desiccation, and high pH). Here we present the first genome sequence, a Sphingomonas sp., isolated from this extreme environment. PMID:21602338

  8. Resilience of estuarine phytoplankton and their temporal variability along salinity gradients during drought and hypersalinity

    NASA Astrophysics Data System (ADS)

    Nche-Fambo, F. A.; Scharler, U. M.; Tirok, K.

    2015-06-01

    In South African estuaries, there is no knowledge on the resilience and variability in phytoplankton communities under conditions of hypersalinity, extended droughts and reverse salinity gradients. Phytoplankton composition, abundance and biomass vary with changes in environmental variables and taxa richness declines specifically under hypersaline conditions. This research thus investigated the phytoplankton community composition, its resilience and variability under highly variable and extreme environmental conditions in an estuarine lake system (Lake St. Lucia, South Africa) over one year. The lake system was characterised by a reverse salinity gradient with hypersalinity furthest from the estuarine inlet during the study period. During this study, 78 taxa were recorded: 56 diatoms, eight green algae, one cryptophyte, seven cyanobacteria and six dinoflagellates. Taxon variability and resilience depended on their ability to tolerate high salinities. Consequently, the phytoplankton communities as well as total abundance and biomass differed along the salinity gradient and over time with salinity as the main determinant. Cyanobacteria were dominant in hypersaline conditions, dinoflagellates in marine-brackish salinities, green algae and cryptophytes in lower salinities (brackish) and diatoms were abundant in marine-brackish salinities but survived in hypersaline conditions. Total abundance and biomass ranged from 3.66 × 103 to 1.11 × 109 Cells/L and 1.21 × 106 to 1.46 × 1010 pgC/L respectively, with the highest values observed under hypersaline conditions. Therefore, even under highly variable, extreme environmental conditions and hypersalinity the phytoplankton community as a whole was resilient enough to maintain a relatively high biomass throughout the study period. The resilience of few dominant taxa, such as Cyanothece, Spirulina, Protoperidinium and Nitzschia and the dominance of other common genera such as Chlamydomonas, Chroomonas, Navicula, Gyrosigma

  9. Metagenomic insights into strategies of carbon conservation and unusual sulfur biogeochemistry in a hypersaline Antarctic lake

    PubMed Central

    Yau, Sheree; Lauro, Federico M; Williams, Timothy J; DeMaere, Matthew Z; Brown, Mark V; Rich, John; Gibson, John AE; Cavicchioli, Ricardo

    2013-01-01

    Organic Lake is a shallow, marine-derived hypersaline lake in the Vestfold Hills, Antarctica that has the highest reported concentration of dimethylsulfide (DMS) in a natural body of water. To determine the composition and functional potential of the microbial community and learn about the unusual sulfur chemistry in Organic Lake, shotgun metagenomics was performed on size-fractionated samples collected along a depth profile. Eucaryal phytoflagellates were the main photosynthetic organisms. Bacteria were dominated by the globally distributed heterotrophic taxa Marinobacter, Roseovarius and Psychroflexus. The dominance of heterotrophic degradation, coupled with low fixation potential, indicates possible net carbon loss. However, abundant marker genes for aerobic anoxygenic phototrophy, sulfur oxidation, rhodopsins and CO oxidation were also linked to the dominant heterotrophic bacteria, and indicate the use of photo- and lithoheterotrophy as mechanisms for conserving organic carbon. Similarly, a high genetic potential for the recycling of nitrogen compounds likely functions to retain fixed nitrogen in the lake. Dimethylsulfoniopropionate (DMSP) lyase genes were abundant, indicating that DMSP is a significant carbon and energy source. Unlike marine environments, DMSP demethylases were less abundant, indicating that DMSP cleavage is the likely source of high DMS concentration. DMSP cleavage, carbon mixotrophy (photoheterotrophy and lithoheterotrophy) and nitrogen remineralization by dominant Organic Lake bacteria are potentially important adaptations to nutrient constraints. In particular, carbon mixotrophy relieves the extent of carbon oxidation for energy production, allowing more carbon to be used for biosynthetic processes. The study sheds light on how the microbial community has adapted to this unique Antarctic lake environment. PMID:23619305

  10. Phylogenetic Analysis of a Microbialite-Forming Microbial Mat from a Hypersaline Lake of the Kiritimati Atoll, Central Pacific

    PubMed Central

    Schneider, Dominik; Arp, Gernot; Reimer, Andreas; Reitner, Joachim; Daniel, Rolf

    2013-01-01

    On the Kiritimati atoll, several lakes exhibit microbial mat-formation under different hydrochemical conditions. Some of these lakes trigger microbialite formation such as Lake 21, which is an evaporitic, hypersaline lake (salinity of approximately 170‰). Lake 21 is completely covered with a thick multilayered microbial mat. This mat is associated with the formation of decimeter-thick highly porous microbialites, which are composed of aragonite and gypsum crystals. We assessed the bacterial and archaeal community composition and its alteration along the vertical stratification by large-scale analysis of 16S rRNA gene sequences of the nine different mat layers. The surface layers are dominated by aerobic, phototrophic, and halotolerant microbes. The bacterial community of these layers harbored Cyanobacteria (Halothece cluster), which were accompanied with known phototrophic members of the Bacteroidetes and Alphaproteobacteria. In deeper anaerobic layers more diverse communities than in the upper layers were present. The deeper layers were dominated by Spirochaetes, sulfate-reducing bacteria (Deltaproteobacteria), Chloroflexi (Anaerolineae and Caldilineae), purple non-sulfur bacteria (Alphaproteobacteria), purple sulfur bacteria (Chromatiales), anaerobic Bacteroidetes (Marinilabiacae), Nitrospirae (OPB95), Planctomycetes and several candidate divisions. The archaeal community, including numerous uncultured taxonomic lineages, generally changed from Euryarchaeota (mainly Halobacteria and Thermoplasmata) to uncultured members of the Thaumarchaeota (mainly Marine Benthic Group B) with increasing depth. PMID:23762495

  11. Trends and stability of inland fishery resources in Japanese lakes: introduction of exotic piscivores as a driver.

    PubMed

    Matsuzaki, Shin-ichiro S; Kadoya, Taku

    2015-07-01

    Although many studies have focused on marine resources, few studies have considered the resources of inland fisheries. Inland fishery resources are typically either monitored on the basis of catch data alone or are not assessed quantitatively at all, despite their social, economic, and ecological importance. Because freshwater ecosystems have been severely degraded by human activities, evaluating the trends and current status of fishery resources and assessing their drivers are urgent tasks. We compiled long-term data on the annual catch, fishing effort, and fishing power of 23 Japanese lakes, using two sets of government statistics that date back to the 1950s, which were previously neglected because of the large number of missing values. Using Bayesian state-space models, we examined the trajectories of the catch per unit effort (CPUE) of entire communities, considering changes in fishing effort and fishing power, and quantified both changes in the CPUE over the 10-, 20-, and 30-year periods preceding 2008 and the temporal detrended stability of the CPUE over the three periods. We also investigated the relationships among the CPUE changes and stability, anthropogenic drivers, and lake morphometric characteristics. The CPUE declined in 17, 19, and 15 of the 23 lakes over the past 10-, 20-, and 30-year periods, respectively. Our macroecological analyses demonstrate that the functional group richness of exotic piscivores was the most important predictor of changes in the CPUE among the drivers we considered. The stability of the CPUE was positively related to lake area; larger lakes have more stable CPUE. The functional group richness of exotic piscivores also negatively affected the stability of the CPUE. The effect of overfishing was considered to be small because both fishing effort and power declined in almost all of the lakes. Thus, our findings suggest that increasing exotic piscivore species may diminish the resources and their stability, particularly in

  12. 46 CFR 11.433 - Service requirements for master of Great Lakes and inland steam or motor vessels of any gross tons.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inland steam or motor vessels of any gross tons. 11.433 Section 11.433 Shipping COAST GUARD, DEPARTMENT... steam or motor vessels of any gross tons. The minimum service required to qualify an applicant for an endorsement as master of Great Lakes and inland steam or motor vessels of any gross tons is: (a) One year of...

  13. 46 CFR 11.446 - Service requirements for master of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inland steam or motor vessels of not more than 500 gross tons. 11.446 Section 11.446 Shipping COAST GUARD... steam or motor vessels of not more than 500 gross tons. The minimum service required to qualify an applicant for an endorsement as master of Great Lakes and inland steam or motor vessels of not more than 500...

  14. Bacteriophage in polar inland waters

    USGS Publications Warehouse

    Säwström, Christin; Lisle, John; Anesio, A.M.; Priscu, John C.; Laybourn-Parry, J.

    2008-01-01

    Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in polar inland waters are scant but the indications are that they play an active and dynamic role in these microbially dominated polar ecosystems. This review summarises what is presently known about polar inland bacteriophages, ranging from subglacial Antarctic lakes to glacial ecosystems in the Arctic. The review examines interactions between bacteriophages and their hosts and the abiotic and biotic variables that influence these interactions in polar inland waters. In addition, we consider the proportion of the bacteria in Arctic and Antarctic lake and glacial waters that are lysogenic and visibly infected with viruses. We assess the relevance of bacteriophages in the microbial loop in the extreme environments of Antarctic and Arctic inland waters with an emphasis on carbon cycling.

  15. Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile.

    PubMed

    Farias, Maria Eugenia; Rasuk, Maria Cecilia; Gallagher, Kimberley L; Contreras, Manuel; Kurth, Daniel; Fernandez, Ana Beatriz; Poiré, Daniel; Novoa, Fernando; Visscher, Pieter T

    2017-01-01

    Benthic microbial ecosystems of Laguna La Brava, Salar de Atacama, a high altitude hypersaline lake, were characterized in terms of bacterial and archaeal diversity, biogeochemistry, (including O2 and sulfide depth profiles and mineralogy), and physicochemical characteristics. La Brava is one of several lakes in the Salar de Atacama where microbial communities are growing in extreme conditions, including high salinity, high solar insolation, and high levels of metals such as lithium, arsenic, magnesium, and calcium. Evaporation creates hypersaline conditions in these lakes and mineral precipitation is a characteristic geomicrobiological feature of these benthic ecosystems. In this study, the La Brava non-lithifying microbial mats, microbialites, and rhizome-associated concretions were compared to each other and their diversity was related to their environmental conditions. All the ecosystems revealed an unusual community where Euryarchaeota, Crenarchaeota, Acetothermia, Firmicutes and Planctomycetes were the most abundant groups, and cyanobacteria, typically an important primary producer in microbial mats, were relatively insignificant or absent. This suggests that other microorganisms, and possibly novel pathways unique to this system, are responsible for carbon fixation. Depth profiles of O2 and sulfide showed active production and respiration. The mineralogy composition was calcium carbonate (as aragonite) and increased from mats to microbialites and rhizome-associated concretions. Halite was also present. Further analyses were performed on representative microbial mats and microbialites by layer. Different taxonomic compositions were observed in the upper layers, with Archaea dominating the non-lithifying mat, and Planctomycetes the microbialite. The bottom layers were similar, with Euryarchaeota, Crenarchaeota and Planctomycetes as dominant phyla. Sequences related to Cyanobacteria were very scarce. These systems may contain previously uncharacterized

  16. Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile

    PubMed Central

    Rasuk, Maria Cecilia; Gallagher, Kimberley L.; Contreras, Manuel; Kurth, Daniel; Fernandez, Ana Beatriz; Poiré, Daniel; Novoa, Fernando; Visscher, Pieter T.

    2017-01-01

    Benthic microbial ecosystems of Laguna La Brava, Salar de Atacama, a high altitude hypersaline lake, were characterized in terms of bacterial and archaeal diversity, biogeochemistry, (including O2 and sulfide depth profiles and mineralogy), and physicochemical characteristics. La Brava is one of several lakes in the Salar de Atacama where microbial communities are growing in extreme conditions, including high salinity, high solar insolation, and high levels of metals such as lithium, arsenic, magnesium, and calcium. Evaporation creates hypersaline conditions in these lakes and mineral precipitation is a characteristic geomicrobiological feature of these benthic ecosystems. In this study, the La Brava non-lithifying microbial mats, microbialites, and rhizome-associated concretions were compared to each other and their diversity was related to their environmental conditions. All the ecosystems revealed an unusual community where Euryarchaeota, Crenarchaeota, Acetothermia, Firmicutes and Planctomycetes were the most abundant groups, and cyanobacteria, typically an important primary producer in microbial mats, were relatively insignificant or absent. This suggests that other microorganisms, and possibly novel pathways unique to this system, are responsible for carbon fixation. Depth profiles of O2 and sulfide showed active production and respiration. The mineralogy composition was calcium carbonate (as aragonite) and increased from mats to microbialites and rhizome-associated concretions. Halite was also present. Further analyses were performed on representative microbial mats and microbialites by layer. Different taxonomic compositions were observed in the upper layers, with Archaea dominating the non-lithifying mat, and Planctomycetes the microbialite. The bottom layers were similar, with Euryarchaeota, Crenarchaeota and Planctomycetes as dominant phyla. Sequences related to Cyanobacteria were very scarce. These systems may contain previously uncharacterized

  17. Methanonatronarchaeum thermophilum gen. nov., sp. nov. and 'Candidatus Methanohalarchaeum thermophilum', extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov.

    PubMed

    Sorokin, Dimitry Y; Merkel, Alexander Y; Abbas, Ben; Makarova, Kira S; Rijpstra, W Irene C; Koenen, M; Sinninghe Damsté, Jaap S; Galinski, Erwin A; Koonin, Eugene V; van Loosdrecht, Mark C M

    2018-05-21

    Methanogenic enrichments from hypersaline lakes at moderate thermophilic conditions have resulted in the cultivation of an unknown deep lineage of euryarchaeota related to the class Halobacteria. Eleven soda lake isolates and three salt lake enrichment cultures were methyl-reducing methanogens that utilize C1 methylated compounds as electron acceptors and H2 or formate as electron donors, but they were unable to grow on either substrates alone or to form methane from acetate. They are extreme halophiles, growing optimally at 4 M total Na + and the first representatives of methanogens employing the 'salt-in' osmoprotective mechanism. The salt lake subgroup is neutrophilic, whereas the soda lake isolates are obligate alkaliphiles, with an optimum around pH 9.5. Both grow optimally at 50 °C. The genetic diversity inside the two subgroups is very low, indicating that the soda and salt lake clusters consist of a single genetic species each. The phylogenetic distance between the two subgroups is in the range of distant genera, whereas the distance to other euryarchaea is below 83 % identity of the 16S rRNA gene. These isolates and enriched methanogens, together with closely related environmental clones from hypersaline habitats (the SA1 group), form a novel class-level clade in the phylum Euryarchaeota. On the basis of distinct phenotypic and genetic properties, the soda lake isolates are classified into a new genus and species, Methanonatronarchaeum thermophilum, with the type strain AMET1 T (DSM 26684 T =NBRC 110805 T =UNIQEM U982 T ), and the salt lake methanogens into a candidate genus and species 'Candidatus Methanohalarchaeum thermophilum'. These organisms are proposed to form novel family, order and class Methanonatronarchaeaceae fam. nov., Methanonatronarchaeales ord. nov. and Methanonatronarchaeia classis nov., within the phylum Euryarchaeota.

  18. Brackish to hypersaline lake dolostones of the Mississippian

    NASA Astrophysics Data System (ADS)

    Bennett, Carys; Kearsey, Timothy; Davies, Sarah; Millward, David; Marshall, John

    2016-04-01

    , and 9% of all dolostone beds in the Norham Core are pedogenically altered. The isotopic composition of dolomite beds is δ18O -3.6‰ to -1.7‰ and δ13C -2.6‰ to 1.6‰ which is consistent with a brackish as opposed to marine origin. The dolostones are categorised by their sedimentary composition: Facies 1: Cemented siltstone and sandstone; Facies 2: Homogeneous micrite to micro-crystaline dolomite, within a clay matrix; Facies 3: Bedded dolomite and siltstone; Facies 4: Mixed calcite and dolomite; Facies 5: Dolomite with gypsum and anhydrite. Formation processes are diverse, and include diagenetic cementation (Facies 1), deposition in saline (brackish) lakes (Facies 2), deposition in saline lakes with clastic sediment input (Facies 3), lagoonal to shallow-marine carbonate deposition (Facies 4), and hypersaline lake to sabkha environments (Facies 5). 60% of the beds are facies 2 or 3 and their sedimentology, fauna, ichnofauna and isotopic composition indicate a brackish-water origin. Other Mississippian dolostones from around the world also contain a fairly restricted fauna and have been interpreted as brackish water deposits. The mechanism of dolomite formation under these conditions is discussed. These dolostones provided extensive coastal lakes that may have been an important habitat for tetrapods and other transitional groups during the Mississippian.

  19. 46 CFR 11.442 - Service requirements for master of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Service requirements for master of Great Lakes and... ENDORSEMENTS Professional Requirements for Deck Officers § 11.442 Service requirements for master of Great... to qualify an applicant for an endorsement as master of Great Lakes and inland steam or motor vessels...

  20. 46 CFR 11.442 - Service requirements for master of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Service requirements for master of Great Lakes and... ENDORSEMENTS Professional Requirements for Deck Officers § 11.442 Service requirements for master of Great... to qualify an applicant for an endorsement as master of Great Lakes and inland steam or motor vessels...

  1. 46 CFR 11.442 - Service requirements for master of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Service requirements for master of Great Lakes and... ENDORSEMENTS Professional Requirements for Deck Officers § 11.442 Service requirements for master of Great... to qualify an applicant for an endorsement as master of Great Lakes and inland steam or motor vessels...

  2. State and regional water-quality characteristics and trophic conditions of Michigan's inland lakes, 2001-2005

    USGS Publications Warehouse

    Fuller, L.M.; Minnerick, R.J.

    2008-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality are jointly monitoring selected water-quality constituents of inland lakes through 2015 as part of Michigan’s Lake Water Quality Assessment program. During 2001–2005, 433 lake basins from 364 inland lakes were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of those monitored lake basins throughout the State. Regional variation of water quality in lake basins was examined by grouping on the basis of the five Omernik level III ecoregions within Michigan. Concentrations of most constituents measured were significantly different between ecoregions. Less regional variation of phosphorus concentrations was noted between Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions during summer possibly because water samples were collected when lake productivity was high; hence the utilization of the limited amount of phosphorus by algae and macrophytes may have resulted in the more uniform concentrations between these two ecoregions. Concentrations of common ions (calcium, magnesium, potassium, sodium, chloride, and sulfate) measured in the spring typically were higher in the Michigan southern Lower Peninsula in the Eastern Corn Belt Plains (55), Southern Michigan/Northern Indiana Drift Plains (56), and Huron/Erie Lake Plains (57) ecoregions. Most ions whose concentrations were less than the minimum reporting levels or were nondetectable were from lakes in the Michigan northern Lower Peninsula and the Upper Peninsula in the Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions. Chlorophyll a concentrations followed a similar distribution pattern. Measured properties such as pH and specific conductance (indicative of dissolved solids) also showed a regional relation. The lakes with the lowest pH and specific conductance were generally in the western

  3. Predictive Models for Escherichia coli Concentrations at Inland Lake Beaches and Relationship of Model Variables to Pathogen Detection

    PubMed Central

    Stelzer, Erin A.; Duris, Joseph W.; Brady, Amie M. G.; Harrison, John H.; Johnson, Heather E.; Ware, Michael W.

    2013-01-01

    Predictive models, based on environmental and water quality variables, have been used to improve the timeliness and accuracy of recreational water quality assessments, but their effectiveness has not been studied in inland waters. Sampling at eight inland recreational lakes in Ohio was done in order to investigate using predictive models for Escherichia coli and to understand the links between E. coli concentrations, predictive variables, and pathogens. Based upon results from 21 beach sites, models were developed for 13 sites, and the most predictive variables were rainfall, wind direction and speed, turbidity, and water temperature. Models were not developed at sites where the E. coli standard was seldom exceeded. Models were validated at nine sites during an independent year. At three sites, the model resulted in increased correct responses, sensitivities, and specificities compared to use of the previous day's E. coli concentration (the current method). Drought conditions during the validation year precluded being able to adequately assess model performance at most of the other sites. Cryptosporidium, adenovirus, eaeA (E. coli), ipaH (Shigella), and spvC (Salmonella) were found in at least 20% of samples collected for pathogens at five sites. The presence or absence of the three bacterial genes was related to some of the model variables but was not consistently related to E. coli concentrations. Predictive models were not effective at all inland lake sites; however, their use at two lakes with high swimmer densities will provide better estimates of public health risk than current methods and will be a valuable resource for beach managers and the public. PMID:23291550

  4. Predictive models for Escherichia coli concentrations at inland lake beaches and relationship of model variables to pathogen detection

    USGS Publications Warehouse

    Francy, Donna S.; Stelzer, Erin A.; Duris, Joseph W.; Brady, Amie M.G.; Harrison, John H.; Johnson, Heather E.; Ware, Michael W.

    2013-01-01

    Predictive models, based on environmental and water quality variables, have been used to improve the timeliness and accuracy of recreational water quality assessments, but their effectiveness has not been studied in inland waters. Sampling at eight inland recreational lakes in Ohio was done in order to investigate using predictive models for Escherichia coli and to understand the links between E. coli concentrations, predictive variables, and pathogens. Based upon results from 21 beach sites, models were developed for 13 sites, and the most predictive variables were rainfall, wind direction and speed, turbidity, and water temperature. Models were not developed at sites where the E. coli standard was seldom exceeded. Models were validated at nine sites during an independent year. At three sites, the model resulted in increased correct responses, sensitivities, and specificities compared to use of the previous day's E. coli concentration (the current method). Drought conditions during the validation year precluded being able to adequately assess model performance at most of the other sites. Cryptosporidium, adenovirus, eaeA (E. coli), ipaH (Shigella), and spvC (Salmonella) were found in at least 20% of samples collected for pathogens at five sites. The presence or absence of the three bacterial genes was related to some of the model variables but was not consistently related to E. coli concentrations. Predictive models were not effective at all inland lake sites; however, their use at two lakes with high swimmer densities will provide better estimates of public health risk than current methods and will be a valuable resource for beach managers and the public.

  5. Predictive models for Escherichia coli concentrations at inland lake beaches and relationship of model variables to pathogen detection.

    PubMed

    Francy, Donna S; Stelzer, Erin A; Duris, Joseph W; Brady, Amie M G; Harrison, John H; Johnson, Heather E; Ware, Michael W

    2013-03-01

    Predictive models, based on environmental and water quality variables, have been used to improve the timeliness and accuracy of recreational water quality assessments, but their effectiveness has not been studied in inland waters. Sampling at eight inland recreational lakes in Ohio was done in order to investigate using predictive models for Escherichia coli and to understand the links between E. coli concentrations, predictive variables, and pathogens. Based upon results from 21 beach sites, models were developed for 13 sites, and the most predictive variables were rainfall, wind direction and speed, turbidity, and water temperature. Models were not developed at sites where the E. coli standard was seldom exceeded. Models were validated at nine sites during an independent year. At three sites, the model resulted in increased correct responses, sensitivities, and specificities compared to use of the previous day's E. coli concentration (the current method). Drought conditions during the validation year precluded being able to adequately assess model performance at most of the other sites. Cryptosporidium, adenovirus, eaeA (E. coli), ipaH (Shigella), and spvC (Salmonella) were found in at least 20% of samples collected for pathogens at five sites. The presence or absence of the three bacterial genes was related to some of the model variables but was not consistently related to E. coli concentrations. Predictive models were not effective at all inland lake sites; however, their use at two lakes with high swimmer densities will provide better estimates of public health risk than current methods and will be a valuable resource for beach managers and the public.

  6. Do copepods inhabit hypersaline waters worldwide? A short review and discussion

    NASA Astrophysics Data System (ADS)

    Anufriieva, Elena V.

    2015-11-01

    A small number of copepod species have adapted to an existence in the extreme habitat of hypersaline water. 13 copepod species have been recorded in the hypersaline waters of Crimea (the largest peninsula in the Black Sea with over 50 hypersaline lakes). Summarizing our own and literature data, the author concludes that the Crimean extreme environment is not an exception: copepod species dwell in hypersaline waters worldwide. There are at least 26 copepod species around the world living at salinity above 100; among them 12 species are found at salinity higher than 200. In the Crimea Cletocamptus retrogressus is found at salinity 360×10-3 (with a density of 1 320 individuals/m3) and Arctodiaptomus salinus at salinity 300×10-3 (with a density of 343 individuals/m3). Those species are probably the most halotolerant copepod species in the world. High halotolerance of osmoconforming copepods may be explained by exoosmolyte consumption, mainly with food. High tolerance to many factors in adults, availability of resting stages, and an opportunity of long-distance transportation of resting stages by birds and/or winds are responsible for the wide geographic distribution of these halophilic copepods.

  7. High prevalence of buccal ulcerations in largemouth bass, Micropterus salmoides (Centrarchidae) from Michigan inland lakes associated with Myzobdella lugubris Leidy 1851 (Annelida: Hirudinea)

    PubMed Central

    Faisal, M.; Schulz, C.; Eissa, A.; Whelan, G.

    2011-01-01

    Widespread mouth ulcerations were observed in largemouth bass collected from eight inland lakes in the Lower Peninsula of Michigan during the summer months of 2002 and 2003. These ulcerations were associated with, and most likely caused by, leech parasitism. Through the use of morphological dichotomous keys, it was determined that all leeches collected are of one species: Myzobdella lugubris. Among the eight lakes examined, Lake Orion and Devils Lake had the highest prevalence of leech parasitism (34% and 29%, respectively) and mouth ulcerations (53% and 68%, respectively). Statistical analyses demonstrated that leech and ulcer prevalence varied significantly from one lake to the other. Additionally, it was determined that the relationship between the prevalence of ulcers and the prevalence of leech attachment is significant, indicating that leech parasitism is most likely the cause of ulceration. The ulcers exhibited deep hemorrhagic centers and raised irregular edges. Affected areas lost their epithelial lining and submucosa, with masses of bacteria colonizing the damaged tissues. Since largemouth bass is a popular global sportfish and critical to the food web of inland lakes, there are concerns that the presence of leeches, damaged buccal mucosa, and general unsightliness may negatively affect this important sportfishery. PMID:21395209

  8. Hydrochemical and isotopes studies in a hypersaline wetland to define the hydrogeological conceptual model: Fuente de Piedra Lake (Malaga, Spain).

    PubMed

    Montalván, F J; Heredia, J; Ruiz, J M; Pardo-Igúzquiza, E; García de Domingo, A; Elorza, F J

    2017-01-15

    The Fuente de Piedra lake is a hypersaline wetland of great extension (13.5km 2 ) and rich in aquatic birds and other species. It became therefore the third Spanish wetland to be included in the Ramsar convention and has been a "nature reserve" since 1984. The lake has an endorheic basin (150km 2 ) with variable-density flows dominated by complex hydrogeological conditions. The traditional conceptualization of endorheic basins in semiarid climates considered that the brine in this hydric system was exclusively of evaporative origin and was placed only in the lake and its surrounding discharge area in the basin. Previous geophysical and hydrochemical studies identified different types of waters and brines. In this work, natural tracers (Cl - , Br - , Na + , Mg 2+ ) and environmental isotopes ( 18 O, 2 H, 14 C, 13 C and 3 H) were employed to a) discriminate different types of brines according to their degree of evaporation and genesis, and b) to estimate residence times of brine waters and identify recharge areas of the different flow subsystems. A conceptual model of the hydrogeological system of the lake basin and its links to a regional karst system is proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2 T, a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes

    DOE PAGES

    Melton, Emily Denise; Sorokin, Dimitry Y.; Overmars, Lex; ...

    2016-09-08

    Desulfurivibrio alkaliphilus strain AHT2 T is a strictly anaerobic sulfidogenic haloalkaliphile isolated from a composite sediment sample of eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Egyptian Libyan Desert. D. alkaliphilus AHT2 T is Gram-negative and belongs to the family Desulfobulbaceae within the Deltaproteobacteria. Here we report its genome sequence, which contains a 3.10 Mbp chromosome. Here, D. alkaliphilus AHT2 T is adapted to survive under highly alkaline and moderately saline conditions and therefore, is relevant to the biotechnology industry and life under extreme conditions. For these reasons, D. alkaliphilus AHT2 T was sequenced by themore » DOE Joint Genome Institute as part of the Community Science Program.« less

  10. Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2 T, a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melton, Emily Denise; Sorokin, Dimitry Y.; Overmars, Lex

    Desulfurivibrio alkaliphilus strain AHT2 T is a strictly anaerobic sulfidogenic haloalkaliphile isolated from a composite sediment sample of eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Egyptian Libyan Desert. D. alkaliphilus AHT2 T is Gram-negative and belongs to the family Desulfobulbaceae within the Deltaproteobacteria. Here we report its genome sequence, which contains a 3.10 Mbp chromosome. Here, D. alkaliphilus AHT2 T is adapted to survive under highly alkaline and moderately saline conditions and therefore, is relevant to the biotechnology industry and life under extreme conditions. For these reasons, D. alkaliphilus AHT2 T was sequenced by themore » DOE Joint Genome Institute as part of the Community Science Program.« less

  11. Inland capture fisheries

    PubMed Central

    Welcomme, Robin L.; Cowx, Ian G.; Coates, David; Béné, Christophe; Funge-Smith, Simon; Halls, Ashley; Lorenzen, Kai

    2010-01-01

    The reported annual yield from inland capture fisheries in 2008 was over 10 million tonnes, although real catches are probably considerably higher than this. Inland fisheries are extremely complex, and in many cases poorly understood. The numerous water bodies and small rivers are inhabited by a wide range of species and several types of fisher community with diversified livelihood strategies for whom inland fisheries are extremely important. Many drivers affect the fisheries, including internal fisheries management practices. There are also many drivers from outside the fishery that influence the state and functioning of the environment as well as the social and economic framework within which the fishery is pursued. The drivers affecting the various types of inland water, rivers, lakes, reservoirs and wetlands may differ, particularly with regard to ecosystem function. Many of these depend on land-use practices and demand for water which conflict with the sustainability of the fishery. Climate change is also exacerbating many of these factors. The future of inland fisheries varies between continents. In Asia and Africa the resources are very intensely exploited and there is probably little room for expansion; it is here that resources are most at risk. Inland fisheries are less heavily exploited in South and Central America, and in the North and South temperate zones inland fisheries are mostly oriented to recreation rather than food production. PMID:20713391

  12. amoA-encoding archaea and thaumarchaeol in the lakes on the northeastern Qinghai-Tibetan Plateau, China

    PubMed Central

    Yang, Jian; Jiang, Hongchen; Dong, Hailiang; Wang, Huanye; Wu, Geng; Hou, Weiguo; Liu, Weiguo; Zhang, Chuanlun; Sun, Yongjuan; Lai, Zhongping

    2013-01-01

    All known ammonia-oxidizing archaea (AOA) belong to the phylum Thaumarchaeota within the domain Archaea. AOA possess the diagnostic amoA gene (encoding the alpha subunit of ammonia monooxygenase) and produce lipid biomarker thaumarchaeol. Although the abundance and diversity of amoA gene-encoding archaea (AEA) in freshwater lakes have been well-studied, little is known about AEA ecology in saline/hypersaline lakes. In this study, the distribution of the archaeal amoA gene and thaumarchaeol were investigated in nine Qinghai–Tibetan lakes with a salinity range from freshwater to salt-saturation (salinity: 325 g L-1). The results showed that the archaeal amoA gene was present in hypersaline lakes with salinity up to 160 g L-1. The archaeal amoA gene diversity in Tibetan lakes was different from those in other lakes worldwide, suggesting Tibetan lakes (high elevation, strong ultraviolet, and dry climate) may host a unique AEA population of different evolutionary origin from those in other lakes. Thaumarchaeol was present in all of the studied hypersaline lakes, even in those where no AEA amoA gene was observed. Future research is needed to determine the ecological function of AEA and possible sources of thaumarchaeol in the Qinghai–Tibetan hypersaline lakes. PMID:24273535

  13. Application of Low-Cost Fixed-Wing UAV for Inland Lakes Shoreline Investigation

    NASA Astrophysics Data System (ADS)

    Templin, Tomasz; Popielarczyk, Dariusz; Kosecki, Rafał

    2017-10-01

    One of the most important factors that influences the performance of geomorphologic parameters on urban lakes is the water level. It fluctuates periodically, causing shoreline changes. It is especially significant for typical environmental studies like bathymetric surveys, morphometric parameters calculation, sediment depth changes, thermal structure, water quality monitoring, etc. In most reservoirs, it can be obtained from digitized historical maps or plans or directly measured using the instruments such as: geodetic total station, GNSS receivers, UAV with different sensors, satellite and aerial photos, terrestrial and airborne light detection and ranging, or others. Today one of the most popular measuring platforms, increasingly applied in many applications is UAV. Unmanned aerial system can be a cheap, easy to use, on-demand technology for gathering remote sensing data. Our study presents a reliable methodology for shallow lake shoreline investigation with the use of a low-cost fixed-wing UAV system. The research was implemented on a small, eutrophic urban inland reservoir located in the northern part of Poland—Lake Suskie. The geodetic TS, and RTK/GNSS measurements, hydroacoustic soundings and experimental aerial mapping were conducted by the authors in 2012-2015. The article specifically describes the UAV system used for experimental measurements, the obtained results and the accuracy analysis. Final conclusions demonstrate that even a low-cost fixed-wing UAV can provide an excellent tool for accurately surveying a shallow lake shoreline and generate valuable geoinformation data collected definitely faster than when traditional geodetic methods are employed.

  14. Heterotrophic Protists in Hypersaline Microbial Mats and Deep Hypersaline Basin Water Columns

    PubMed Central

    Edgcomb, Virginia P.; Bernhard, Joan M.

    2013-01-01

    Although hypersaline environments pose challenges to life because of the low water content (water activity), many such habitats appear to support eukaryotic microbes. This contribution presents brief reviews of our current knowledge on eukaryotes of water-column haloclines and brines from Deep Hypersaline Anoxic Basins (DHABs) of the Eastern Mediterranean, as well as shallow-water hypersaline microbial mats in solar salterns of Guerrero Negro, Mexico and benthic microbialite communities from Hamelin Pool, Shark Bay, Western Australia. New data on eukaryotic diversity from Shark Bay microbialites indicates eukaryotes are more diverse than previously reported. Although this comparison shows that eukaryotic communities in hypersaline habitats with varying physicochemical characteristics are unique, several groups are commonly found, including diverse alveolates, strameonopiles, and fungi, as well as radiolaria. Many eukaryote sequences (SSU) in both regions also have no close homologues in public databases, suggesting that these environments host unique microbial eukaryote assemblages with the potential to enhance our understanding of the capacity of eukaryotes to adapt to hypersaline conditions. PMID:25369746

  15. Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years

    PubMed Central

    Han, Y. M.; Wei, C.; Huang, R.-J.; Bandowe, B. A. M.; Ho, S. S. H.; Cao, J. J.; Jin, Z. D.; Xu, B. Q.; Gao, S. P.; Tie, X. X.; An, Z. S.; Wilcke, W.

    2016-01-01

    Historical reconstruction of atmospheric black carbon (BC, in the form of char and soot) is still constrained for inland areas. Here we determined and compared the past 150-yr records of BC and polycyclic aromatic compounds (PACs) in sediments from two representative lakes, Huguangyan (HGY) and Chaohu (CH), in eastern China. HGY only receives atmospheric deposition while CH is influenced by riverine input. BC, char, and soot have similar vertical concentration profiles as PACs in both lakes. Abrupt increases in concentrations and mass accumulation rates (MARs) of soot have mainly occurred since ~1950, the establishment of the People’s Republic of China, when energy usage changed to more fossil fuel contributions reflected by the variations in the concentration ratios of char/soot and individual PACs. In HGY, soot MARs increased by ~7.7 times in the period 1980–2012 relative to the period 1850–1950. Similar increases (~6.7 times) were observed in CH. The increase in soot MARs is also in line with the emission inventory records in the literature and the fact that the submicrometer-sized soot particles can be dispersed regionally. The study provides an alternative method to reconstruct the atmospheric soot history in populated inland areas. PMID:26750586

  16. "The Effect of Alternative Representations of Lake ...

    EPA Pesticide Factsheets

    Lakes can play a significant role in regional climate, modulating inland extremes in temperature and enhancing precipitation. Representing these effects becomes more important as regional climate modeling (RCM) efforts focus on simulating smaller scales. When using the Weather Research and Forecasting (WRF) model to downscale future global climate model (GCM) projections into RCM simulations, model users typically must rely on the GCM to represent temperatures at all water points. However, GCMs have insufficient resolution to adequately represent even large inland lakes, such as the Great Lakes. Some interpolation methods, such as setting lake surface temperatures (LSTs) equal to the nearest water point, can result in inland lake temperatures being set from sea surface temperatures (SSTs) that are hundreds of km away. In other cases, a single point is tasked with representing multiple large, heterogeneous lakes. Similar consequences can result from interpolating ice from GCMs to inland lake points, resulting in lakes as large as Lake Superior freezing completely in the space of a single timestep. The use of a computationally-efficient inland lake model can improve RCM simulations where the input data is too coarse to adequately represent inland lake temperatures and ice (Gula and Peltier 2012). This study examines three scenarios under which ice and LSTs can be set within the WRF model when applied as an RCM to produce 2-year simulations at 12 km gri

  17. Potential effects of climate change on inland glacial lakes and implications for lake-dependent biota in Wisconsin: final report April 2013

    USGS Publications Warehouse

    Meyer, Michael W.; Walker, John F.; Kenow, Kevin P.; Rasmussen, Paul W.; Garrison, Paul J.; Hanson, Paul C.; Hunt, Randall J.

    2013-01-01

    F statewide, and an increase in precipitation of 1”–2”. However, summer precipitation in the northern part of the state is expected to be less and winter precipitation will be greater. By the end of the 21st century, the magnitude of changes in temperature and precipitation are expected to intensify. Such climatic changes have altered, and would further alter hydrological, chemical, and physical properties of inland lakes. Lake-dependent wildlife sensitive to changes in water quality, are particularly susceptible to lake quality-associated habitat changes and are likely to suffer restrictions to current breeding distributions under some climate change scenarios. We have selected the common loon (Gavia immer) to serve as a sentinel lake-dependent piscivorous species to be used in the development of a template for linking primary lake-dependent biota endpoints (e.g., decline in productivity and/or breeding range contraction) to important lake quality indicators. In the current project, we evaluate how changes in freshwater habitat quality (specifically lake clarity) may impact common loon lake occupancy in Wisconsin under detailed climate-change scenarios. In addition, we employ simple land-use/land cover and habitat scenarios to illustrate the potential interaction of climate and land-use/land cover effects. The methods employed here provide a template for studies where integration of physical and biotic models is used to project future conditions under various climate and land use change scenarios. Findings presented here project the future conditions of lakes and loons within an important watershed in northern Wisconsin – of importance to water resource managers and state citizens alike.

  18. Evidence for migratory spawning behavior by morphologically distinct Cisco (Coregonus artedi) from a small inland lake

    USGS Publications Warehouse

    Ross, Alexander J.; Weidel, Brian C.; Leneker, Mellisa; Solomon, Christopher T.

    2017-01-01

    Conservation and management of rare fishes relies on managers having the most informed understanding of the underlying ecology of the species under investigation. Cisco (Coregonus artedi), a species of conservation concern, is a cold-water pelagic fish that is notoriously variable in morphometry and life history. Published reports indicate, at spawning time, Cisco in great lakes may migrate into or through large rivers, whereas those in small lakes move inshore. Nonetheless, during a sampling trip to Follensby Pond, a 393 ha lake in the Adirondack Mountains, New York, we observed gravid Cisco swimming over an outlet sill from a narrow shallow stream and into the lake. We opportunistically dip-netted a small subsample of 11 individuals entering the lake from the stream (three female, eight male) and compared them to fish captured between 2013 and 2015 with gillnets in the lake. Stream-captured Cisco were considerably larger than lake-captured individuals at a given age, had significantly larger asymptotic length, and were present only as mature individuals between age of 3 and age 5. These results could suggest either Cisco are migrating from a nearby lake to spawn in Follensby Pond, or that a distinct morphotype of Cisco from Follensby Pond migrates out to the stream and then back in at spawning time. Our results appear to complement a handful of other cases in which Cisco spawning migrations have been documented and to provide the first evidence for such behavior in a small inland lake.

  19. Evaluation of chlorophyll-a retrieval algorithms based on MERIS bands for optically varying eutrophic inland lakes.

    PubMed

    Lyu, Heng; Li, Xiaojun; Wang, Yannan; Jin, Qi; Cao, Kai; Wang, Qiao; Li, Yunmei

    2015-10-15

    Fourteen field campaigns were conducted in five inland lakes during different seasons between 2006 and 2013, and a total of 398 water samples with varying optical characteristics were collected. The characteristics were analyzed based on remote sensing reflectance, and an automatic cluster two-step method was applied for water classification. The inland waters could be clustered into three types, which we labeled water types I, II and III. From water types I to III, the effect of the phytoplankton on the optical characteristics gradually decreased. Four chlorophyll-a retrieval algorithms for Case II water, a two-band, three-band, four-band and SCI (Synthetic Chlorophyll Index) algorithm were evaluated for three water types based on the MERIS bands. Different MERIS bands were used for the three water types in each of the four algorithms. The four algorithms had different levels of retrieval accuracy for each water type, and no single algorithm could be successfully applied to all water types. For water types I and III, the three-band algorithm performed the best, while the four-band algorithm had the highest retrieval accuracy for water type II. However, the three-band algorithm is preferable to the two-band algorithm for turbid eutrophic inland waters. The SCI algorithm is recommended for highly turbid water with a higher concentration of total suspended solids. Our research indicates that the chlorophyll-a concentration retrieval by remote sensing for optically contrasted inland water requires a specific algorithm that is based on the optical characteristics of inland water bodies to obtain higher estimation accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments

    PubMed Central

    Sass, Andrea M; McKew, Boyd A; Sass, Henrik; Fichtel, Jörg; Timmis, Kenneth N; McGenity, Terry J

    2008-01-01

    Background The deep-sea, hypersaline anoxic brine lakes in the Mediterranean are among the most extreme environments on earth, and in one of them, the MgCl2-rich Discovery basin, the presence of active microbes is equivocal. However, thriving microbial communities have been detected especially in the chemocline between deep seawater and three NaCl-rich brine lakes, l'Atalante, Bannock and Urania. By contrast, the microbiota of these brine-lake sediments remains largely unexplored. Results Eighty nine isolates were obtained from the sediments of four deep-sea, hypersaline anoxic brine lakes in the Eastern Mediterranean Sea: l'Atalante, Bannock, Discovery and Urania basins. This culture collection was dominated by representatives of the genus Bacillus and close relatives (90% of all isolates) that were investigated further. Physiological characterization of representative strains revealed large versatility with respect to enzyme activities or substrate utilization. Two third of the isolates did not grow at in-situ salinities and were presumably present as endospores. This is supported by high numbers of endospores in Bannock, Discovery and Urania basins ranging from 3.8 × 105 to 1.2 × 106 g-1 dw sediment. However, the remaining isolates were highly halotolerant growing at salinities of up to 30% NaCl. Some of the novel isolates affiliating with the genus Pontibacillus grew well under anoxic conditions in sulfidic medium by fermentation or anaerobic respiration using dimethylsulfoxide or trimethylamine N-oxide as electron acceptor. Conclusion Some of the halophilic, facultatively anaerobic relatives of Bacillus appear well adapted to life in this hostile environment and suggest the presence of actively growing microbial communities in the NaCl-rich, deep-sea brine-lake sediments. PMID:18541011

  1. Distribution and significance of long-chain alkenones as salinity and temperature indicators in Spanish saline lake sediments

    NASA Astrophysics Data System (ADS)

    Pearson, Emma J.; Juggins, Steve; Farrimond, Paul

    2008-08-01

    We investigated relationships between sedimentary solvent-extractable long-chain alkenone (LCA) concentration and composition and environmental factors in a suite of endorheic lakes from inland Spain. LCAs were found in 14 of the 54 lakes examined, with concentrations comparable with those from previously published lacustrine settings. The composition of LCAs in our sites, however, contrast from the majority of those previously reported from lake environments; in our study the tri-unsaturated component is the most abundant component at most sites where LCAs are detected, and C 38:3 is the most abundant LCA in the majority of sites. LCA occurrence appears to be restricted to brackish-hypersaline sites and C 37 LCAs are absent above a salinity of ˜40 g L -1 suggesting a salinity control on LCA-producing organisms in these sites. Low concentrations of C 37 LCA components means U37k and U37k temperature indices are generally not applicable. Instead we find good relationships between C 38 components and (in particular mean autumn) temperature and the strongest LCA-temperature relationships are found when using a combination of all C 37 and C 38 compounds. We propose a new alkenone temperature index for lakes with elevated salinity and where the C 38 components dominate the LCA distributions. This is expressed as U3738k=0.0464×MAutAT-0.867 ( r2 = 0.80, n = 13). In this paper, we provide the first account of sedimentary LCA distributions from lakes in inland Spain, extending the range of environments within which these compounds have been found and highlighting their significance as indicators of both salinity and temperature in saline, endorheic lake environments. This has important implications for extending the potential role of LCAs as palaeoclimatic indicators in lacustrine environments.

  2. Controls on the pH of hyper-saline lakes - A lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Golan, Rotem; Gavrieli, Ittai; Ganor, Jiwchar; Lazar, Boaz

    2016-01-01

    high ionic strength (TDS = 348 g/L) and the dominance of the divalent cation, Mg2+. Other natural hyper-saline brines with high concentration of divalent cations such as Kunteyi Lake in China and Don-Juan Pond in Antarctica follow the same general pattern. In contrast, the high pH of soda lakes results not only from their high TA but also by the dominance of the monovalent cation, Na+. Our study emphasizes the strong control of brine composition on pKB‧ and pH. These factors should be taken into consideration when reconstructing past and present environmental evaporitic environments.

  3. Metagenomic sequencing of two salton sea microbiomes.

    PubMed

    Hawley, Erik R; Schackwitz, Wendy; Hess, Matthias

    2014-01-23

    The Salton Sea is the largest inland body of water in California, with salinities ranging from brackish freshwater to hypersaline. The lake experiences high nutrient input, and its surface water is exposed to temperatures up to 40°C. Here, we report the community profiles associated with surface water from the Salton Sea.

  4. Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid-Hypersaline Australian lakes

    USGS Publications Warehouse

    Alpers, Charles N.; Rye, R.O.; Nordstrom, D. Kirk; White, L.D.; King, B.-S.

    1992-01-01

    Chemical, crystallographic and isotopic analyses were made on samples containing alunite and jarosite from the sediments of four acid, hypersaline lakes in southeastern and southwestern Australia. The alunite and jarosite are K-rich with relatively low Na contents based on chemical analysis and determination of unit cell dimensions by powder X-ray diffraction. Correcting the chemical analyses of fine-grained mineral concentrates from Lake Tyrrell, Victoria, for the presence of halite, silica and poorly crystalline aluminosilicates, the following formulas indicate best estimates for solid-solution compositions: for alunite, K0.87Na0.04(H3O)0.09(Al 0.92Fe0.08)3(SO4)2(OH) 6 and for jarosite, K0.89Na0.07(H3O)0.04(Fe 0.80Al0.20)3(SO4)2(OH) 6. The ??D-values of alunite are notably larger than those for jarosite from Lake Tyrrell and it appears that the minerals have closely approached hydrogen isotope equilibrium with the acidic regional groundwaters. The ??D results are consistent with a fractionation ???60-70??? between alunite and jarosite observed in other areas. However, interpretation of ??D results is complicated by large variability in fluid ??DH2O from evaporation, mixing and possible ion hydration effects in the brine. ??D-values of water derived from jarosite by step-wise heating tend to be smaller at 250??C, at which temperature hydronium and other non-hydroxyl water is liberated, than at 550??C, where water is derived from the hydroxyl site, but the differences are not sufficiently different to invalidate measurements of total ??D obtained by conventional, single-step heating methods. ??34S-values for alunite and jarosite from the four lakes (+19.7 to +21.2??? CDT) and for aqueous sulfate from Lake Tyrrell (+18.3 to +19.8???) are close to the values for modern evaporites (+21.5 ??0.3???) and seawater (+20??0.5???) and are probably typical of seawater-derived aerosols in arid coastal environments. ??34-S-values slightly smaller than that for seawater may

  5. Radiocarbon analysis of halophilic microbial lipids from an Australian salt lake

    NASA Astrophysics Data System (ADS)

    Bray, P. Sargent; Jones, Claudia M.; Fallon, Stewart J.; Brocks, Jochen J.; George, Simon C.

    2012-01-01

    Assigning accurate dates to hypersaline sediments opens important terrestrial records of local and regional paleoecologies and paleoclimatology. However, as of yet no conventional method of dating hypersaline systems has been widely adopted. Biomarker, mineralogical, and radiocarbon analyses of sediments and organic extracts from a shallow (13 cm) core from a hypersaline playa, Lake Tyrrell, southeastern Australia, produce a coherent age-depth curve beginning with modern microbial mats and extending to ~ 7500 cal yr BP. These analyses are furthermore used to identify and constrain the timing of the most recent change in hydrological regime at Lake Tyrrell, a shift from a clay deposit to the precipitation of evaporitic sands occurring at some time between ~ 4500 and 7000 yr. These analyses show the potential for widespread dating of hypersaline systems integrating the biomarker approach, reinforce the value of the radiocarbon content of biomarkers in understanding the flow of carbon in modern ecologies, and validate the temporal dimension of data provided by biomarkers when dating late Quaternary sediments.

  6. Hydrocarbon biodegradation in hypersaline environments.

    PubMed

    Ward, D M; Brock, T D

    1978-02-01

    When mineral oil, hexadecane, and glutamate were added to natural samples of varying salinity (3.3 to 28.4%) from salt evaporation ponds and Great Salt Lake, Utah, rates of metabolism of these compounds decreased as salinity increased. Rate limitations did not appear to relate to low oxygen levels or to the availability of organic nutrients. Some oxidation of l-[U-C]glutamic acid occurred even at extreme salinities, whereas oxidation of [1-C]hexadecane was too low to be detected. Gas chromatographic examination of hexane-soluble components of tar samples from natural seeps at Rozel Point in Great Salt Lake demonstrated no evidence of biological oxidation of isoprenoid alkanes subject to degradation in normal environments. Some hexane-soluble components of the same tar were altered by incubation in a low-salinity enrichment culture inoculated with garden soil. Attempts to enrich for microorganisms in saline waters able to use mineral oil as a sole source of carbon and energy were successful below, but not above, about 20% salinity. This study strongly suggests a general reduction of metabolic rate at extreme salinities and raises doubt about the biodegradation of hydrocarbons in hypersaline environments.

  7. Hydrocarbon Biodegradation in Hypersaline Environments

    PubMed Central

    Ward, David M.; Brock, T. D.

    1978-01-01

    When mineral oil, hexadecane, and glutamate were added to natural samples of varying salinity (3.3 to 28.4%) from salt evaporation ponds and Great Salt Lake, Utah, rates of metabolism of these compounds decreased as salinity increased. Rate limitations did not appear to relate to low oxygen levels or to the availability of organic nutrients. Some oxidation of l-[U-14C]glutamic acid occurred even at extreme salinities, whereas oxidation of [1-14C]hexadecane was too low to be detected. Gas chromatographic examination of hexane-soluble components of tar samples from natural seeps at Rozel Point in Great Salt Lake demonstrated no evidence of biological oxidation of isoprenoid alkanes subject to degradation in normal environments. Some hexane-soluble components of the same tar were altered by incubation in a low-salinity enrichment culture inoculated with garden soil. Attempts to enrich for microorganisms in saline waters able to use mineral oil as a sole source of carbon and energy were successful below, but not above, about 20% salinity. This study strongly suggests a general reduction of metabolic rate at extreme salinities and raises doubt about the biodegradation of hydrocarbons in hypersaline environments. PMID:16345276

  8. 46 CFR 11.448 - Service requirements for mate of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... steam or motor vessels of not more than 500 gross tons. 11.448 Section 11.448 Shipping COAST GUARD... steam or motor vessels of not more than 500 gross tons. The minimum service required to qualify an applicant for an endorsement as mate of Great Lakes and inland steam or motor vessels of not more than 500...

  9. Mineralogy and Microbial Diversity of the Microbialites in the Hypersaline Storr's Lake, the Bahamas

    NASA Astrophysics Data System (ADS)

    Paul, Varun G.; Wronkiewicz, David J.; Mormile, Melanie R.; Foster, Jamie S.

    2016-04-01

    Microbialites found in the low-light-intensity, hypersaline waters of Storr's Lake (SL), San Salvador Island, the Bahamas, were investigated with respect to their morphology, mineralogy, and microbial diversity. Previously described microbialite morphologies, as well as a newly identified "multi-cuspate" morphology, were observed at various depths. Electron microscopy analysis revealed the presence of angular, blocky, and needle-shaped crystals with mineralized cyanobacterial filaments and remains of exopolymeric substances. X-ray diffraction studies confirmed the presence of both Mg-calcite and aragonite in the plateau-mushroom and pinnacle mound microbialites, whereas only Mg-calcite was identified in the other microbialite morphotypes. A comprehensive molecular analysis using barcoded pyrosequencing of five different microbial mat communities identified at least 12 dominant bacterial phyla. Cyanobacteria were generally low in abundance and ranged from ˜0.01% in the deeper pinnacle mounds to ˜3.2% in the shallow calcareous knobs. Other photosynthetic members included green nonsulfur bacteria of the phylum Chloroflexi and purple sulfur bacteria of the class Gammaproteobacteria. All mat types contained significant amounts of sulfate-reducing and dehalogenating bacteria. The low light intensity reaching the deeper microbialites, the lack of dominant cyanobacteria, and the abundance of sulfate reducers and Chloroflexi collectively suggest that sulfate reduction and anoxygenic photosynthetic processes influence the carbonate biomineralization process in these systems.

  10. Inland Waters and the North American Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Butman, D. E.; Striegl, R. G.; Stackpoole, S. M.; del Giorgio, P.; Prairie, Y.; Pilcher, D.; Raymond, P. A.; Alcocer, J.; Paz, F.

    2016-12-01

    Inland aquatic ecosystems process, store, and release carbon to the atmosphere and coastal margins. The form of this carbon is a function of terrestrial and aquatic primary and secondary production, the weathering of materials in soils and subsurface environments, the hydrologic controls on the movement of carbon from land to inland waters, and the connectivity between streams, rivers, lakes, reservoirs and groundwater. The 2007 1st State of the Carbon Cycle reported fluxes for the continental United States (CONUS) only. Streams and rivers exported 30-40 Tg C yr-1 to coastal environments, and 17-25 Tg C yr-1 were buried in lake and reservoir sediments. Remarkably, the 2007 report did not quantify gas emissions, which represent over half of the total carbon fluxes through inland water in the US. Current research has shown that 71-149 Tg C yr-1 exits freshwater systems either through atmospheric emissions of carbon dioxide or as inorganic and organic carbon fluxes to the coast from the CONUS. These estimates did not include the Laurentian Great Lakes. Variation in the magnitude of these fluxes across regions of the CONUS has been linked to differences in precipitation and terrestrial net ecosystem production. Similar comprehensive assessments have not been done for Canada or Mexico. Here we provide, as part of the 2nd State of the Carbon Cycle report, estimates for the river coastal export and vertical emissions of carbon from inland waters of North America, and report major data gaps, and weaknesses in methodologies. These findings stress that strong international partnerships are needed to improve assessment, monitoring, and modeling of human impacts on the magnitude and timing of aquatic fluxes in the future.

  11. Dynamics of dissolved organic matter (DOM) in a typical inland lake of the Three Gorges Reservoir area: Fluorescent properties and their implications for dissolved mercury species.

    PubMed

    Jiang, Tao; Chen, Xueshuang; Wang, Dingyong; Liang, Jian; Bai, Weiyang; Zhang, Cheng; Wang, Qilei; Wei, Shiqiang

    2018-01-15

    Dissolved organic matter (DOM) plays an important environmental and ecological role in inland aquatic systems, including lakes. In this study, using fluorescence analysis, we investigated the seasonal dynamics of DOM characteristics in Changshou Lake, which is a typical inland lake in the Three Gorges Reservoir (TGR) area. We also discuss the environmental implications of DOM for mercury (Hg) dynamics. Based on the origins of two end-members, the variations in DOM observed in this study in Changshou Lake suggest that hydrological processes (e.g., terrestrial inputs resulting from runoff and humic-like component residences) and biological activities (e.g., microbial and algae growth) are the two main principal components controlling the seasonal dynamics of DOM characteristics. Furthermore, the dynamics of dissolved Hg co-varied with variations in DOM properties, rather than with dissolved organic carbon (DOC) concentrations. This indicates that the previously reported simple correlations between DOC and Hg were not comprehensive and may lead to misunderstanding the interactions between DOM and Hg. Therefore, we recommend that when using DOM-Hg correlations to evaluate the role of DOM in the environmental fate of Hg, especially in field investigations of the spatial and temporal distribution of Hg, the properties of DOM must be taken into account. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Viruses Occur Incorporated in Biogenic High-Mg Calcite from Hypersaline Microbial Mats

    PubMed Central

    De Wit, Rutger; Gautret, Pascale; Bettarel, Yvan; Roques, Cécile; Marlière, Christian; Ramonda, Michel; Nguyen Thanh, Thuy; Tran Quang, Huy; Bouvier, Thierry

    2015-01-01

    Using three different microscopy techniques (epifluorescence, electronic and atomic force microscopy), we showed that high-Mg calcite grains in calcifying microbial mats from the hypersaline lake “La Salada de Chiprana”, Spain, contain viruses with a diameter of 50–80 nm. Energy-dispersive X-ray spectrometer analysis revealed that they contain nitrogen and phosphorus in a molar ratio of ~9, which is typical for viruses. Nucleic acid staining revealed that they contain DNA or RNA. As characteristic for hypersaline environments, the concentrations of free and attached viruses were high (>1010 viruses per g of mat). In addition, we showed that acid treatment (dissolution of calcite) resulted in release of viruses into suspension and estimated that there were ~15 × 109 viruses per g of calcite. We suggest that virus-mineral interactions are one of the possible ways for the formation of nano-sized structures often described as “nanobacteria” and that viruses may play a role in initiating calcification. PMID:26115121

  13. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobberley, Jennifer M.; Lindemann, Stephen R.; Bernstein, Hans C.

    2017-03-21

    Phototrophic mat communities are model ecosystems for studying energy cycling and elemental transformations because complete biogeochemical cycles occur over millimeter-to-centimeter scales. Characterization of energy and nutrient capture within hypersaline phototrophic mats has focused on specific processes and organisms, however little is known about community-wide distribution of and linkages between these processes. To investigate energy and macronutrient capture and flow through a structured community, the spatial and organismal distribution of metabolic functions within a compact hypersaline mat community from Hot Lake have been broadly elucidated through species-resolved metagenomics and geochemical, microbial diversity, and metabolic gradient measurements. Draft reconstructed genomes of abundantmore » organisms revealed three dominant cyanobacterial populations differentially distributed across the top layers of the mat suggesting niche separation along light and oxygen gradients. Many organisms contained diverse functional profiles, allowing for metabolic response to changing conditions within the mat. Organisms with partial nitrogen and sulfur metabolisms were widespread indicating dependence upon metabolite exchange. In addition, changes in community spatial structure were observed over the diel. These results indicate that organisms within the mat community have adapted to the temporally dynamic environmental gradients in this hypersaline mat through metabolic flexibility and fluid syntrophic interactions, including shifts in spatial arrangements.« less

  14. A case for the protection of saline and hypersaline environments: a microbiological perspective.

    PubMed

    Paul, Varun G; Mormile, Melanie R

    2017-08-01

    Saline and hypersaline environments are known for their unique geochemical properties, microbial populations and aesthetic appeal. Microbial activities and a spectrum of diversity seen in hypersaline environments are distinct with many novel species being identified and reported on a regular basis. Many distinguishing characteristics about the adaptation, morphology, evolutionary history, and potential environmental and biotechnological applications of these organisms are continually investigated. An abundance of interdisciplinary activities and opportunities exist to explore and understand the importance of these environments that potentially hold promising solutions for current and future global issues. Therefore, it is critical to conserve these unique environments and limit the damage inflicted by anthropogenic influences. Increased salinization due to water diversions, undesired freshening, extensive mineral extraction, sewage effluents, pollution due to agricultural runoff and industrial processes, urbanization, and global climate change are factors negatively affecting hypersaline lakes and their surrounding environments. If these harmful effects continue to proceed at the current or even accelerated rates, irrevocable consequences for these environments will occur, resulting in the loss of potential opportunities to gain new knowledge of the biogeochemistry as well as beneficial microbial populations closely associated with these unique and interesting environments. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Ecosystem Alterations and Species Range Shifts: An Atlantic-Mediterranean Cephalaspidean Gastropod in an Inland Egyptian Lake

    PubMed Central

    Malaquias, Manuel António E.

    2016-01-01

    The eastern Atlantic and Mediterranean marine Cephalaspidea gastropod Haminoea orbignyana was collected from Lake Qarun (Fayoum, Egypt), a landlocked lake that has undergone a shift from freshwater to estuarine conditions in the past 100 years. Species identity was confirmed by both morphological (anatomical dissection and scanning electron microscopy) and molecular methods (COI gene phylogeny). Observations suggested a robust population of H. orbignyana in the lake with a density of ca. 64 individuals/m2 and ca. 105 egg masses/m2 during surveys conducted in the summer of 2013. The vast majority of snails and egg masses were found under rocks. Observations of egg masses in the lab showed a gradual change from whitish to yellow-green as the eggs matured and the release of veliger larvae alone after about a week. Although adult cephalaspideans readily consumed filamentous red and green algae, and cyanobacteria, laboratory trials showed that they consumed significantly more of the red alga Ceramium sp., than of the green alga Cladophora glomerata, with consumption of Oscillatoria margaritifera being similar to those on the two algae. When grown on these resources for 16 days, H. orbignyana maintained their mass on the rhodophyte and cyanobacterium, but not in starvation controls. No cephalaspideans grew over the course of this experiment. Lake Qarun has been periodically restocked with Mediterranean fishes and prawns since the 1920s to maintain local fisheries, which represents a possible route of colonization for H. orbignyana. Yet, based on literature records, it seems more likely that invasion of the lake by this gastropod species has occurred only within the last 20 years. As human activities redistribute species through direct and indirect means, the structure of the community of this inland lake has become unpredictable and the long-term effects of these recent introductions are unknown. PMID:27248835

  16. Ecosystem Alterations and Species Range Shifts: An Atlantic-Mediterranean Cephalaspidean Gastropod in an Inland Egyptian Lake.

    PubMed

    Cruz-Rivera, Edwin; Malaquias, Manuel António E

    2016-01-01

    The eastern Atlantic and Mediterranean marine Cephalaspidea gastropod Haminoea orbignyana was collected from Lake Qarun (Fayoum, Egypt), a landlocked lake that has undergone a shift from freshwater to estuarine conditions in the past 100 years. Species identity was confirmed by both morphological (anatomical dissection and scanning electron microscopy) and molecular methods (COI gene phylogeny). Observations suggested a robust population of H. orbignyana in the lake with a density of ca. 64 individuals/m2 and ca. 105 egg masses/m2 during surveys conducted in the summer of 2013. The vast majority of snails and egg masses were found under rocks. Observations of egg masses in the lab showed a gradual change from whitish to yellow-green as the eggs matured and the release of veliger larvae alone after about a week. Although adult cephalaspideans readily consumed filamentous red and green algae, and cyanobacteria, laboratory trials showed that they consumed significantly more of the red alga Ceramium sp., than of the green alga Cladophora glomerata, with consumption of Oscillatoria margaritifera being similar to those on the two algae. When grown on these resources for 16 days, H. orbignyana maintained their mass on the rhodophyte and cyanobacterium, but not in starvation controls. No cephalaspideans grew over the course of this experiment. Lake Qarun has been periodically restocked with Mediterranean fishes and prawns since the 1920s to maintain local fisheries, which represents a possible route of colonization for H. orbignyana. Yet, based on literature records, it seems more likely that invasion of the lake by this gastropod species has occurred only within the last 20 years. As human activities redistribute species through direct and indirect means, the structure of the community of this inland lake has become unpredictable and the long-term effects of these recent introductions are unknown.

  17. Using VIIRS/NPP and MODIS/Aqua data to provide a continuous record of suspended particulate matter in a highly turbid inland lake

    NASA Astrophysics Data System (ADS)

    Cao, Zhigang; Duan, Hongtao; Shen, Ming; Ma, Ronghua; Xue, Kun; Liu, Dong; Xiao, Qitao

    2018-02-01

    Inland lakes are generally an important source of drinking water, and information on their water quality needs to be obtained in real time. To date, Moderate-resolution imaging spectroradiometer (MODIS) data have played a critical, effective and long-term role in fulfilling this function. However, the MODIS instruments on board both the Terra and Aqua satellites have operated beyond their designed five-year mission lifespans (Terra was launched in 1999, whereas Aqua was launched in 2002), and these instruments may stop running at any time in the near future. The Visible Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership (Suomi NPP, which was launched in Oct 2011) is expected to provide a consistent, long-term data record and continue the series of observations initiated by MODIS. To date, few evaluations of the consistency between VIIRS and MODIS have been conducted for turbid inland waters. In this study, we first used synchronous MODIS/Aqua and VIIRS/NPP data (±1 h) collected during 2012-2015 to evaluate the consistency of Rayleigh-corrected reflectance (Rrc) observations over Lake Hongze (the fourth-largest freshwater lake in China), since accurate remote sensing reflectance (Rrs) values cannot be acquired over turbid inland waters. Second, we used recently developed algorithms based on Rrc in the red band to estimate the concentrations of suspended particulate matter (SPM) from MODIS/Aqua and VIIRS/NPP data. Finally, we assessed the consistency of the SPM products derived from MODIS/Aqua and VIIRS/NPP. The results show the following. (1) The differences in Rrc among the green (VIIRS 551 nm and MODIS 555 nm) and red bands (VIIRS 671 nm and MODIS 645 nm) indicate a satisfactory consistency, and the unbiased percentage difference (UPD) is <12%. Meanwhile, the results for the near infrared (NIR) band (MODIS 859 nm and VIIRS 862 nm) indicate relatively large differences (UPD = 21.84%). (2) The satellite-derived SPM

  18. Methane Emissions from the Inland Waters of Alaska

    NASA Astrophysics Data System (ADS)

    Striegl, R. G.; Butman, D. E.; Stackpoole, S. M.; Dornblaser, M.

    2017-12-01

    Inland waters at high latitudes generally emit methane (CH4) continuously to the atmosphere during the open water season and build-up CH4 under ice during winter that is released over a short period following ice melt. Landscape position, stream and river size, water source, and turbulence created by water flow largely control CH4 emissions from streams and rivers. Organic carbon sources for CH4 production in lakes vary widely among lakes and landscapes and include hydrologic inputs from terrestrial sources, releases from permafrost thaw (thermokarst), and autochthonous inputs from aquatic macrophytes and algae. Lake emissions are therefore controlled by the balance between within-lake CH4 production and consumption, surface turbulence at the water-air interface, and CH4 ebullition. This creates a complex range of conditions that are difficult to characterize, where dissolved CH4 concentrations may vary by up to 4 orders of magnitude among lakes and/or within a single lake over an annual seasonal cycle. Moreover, large inputs of organic matter from permafrost thaw or other sources commonly result in high rates of bubble production and ebullition from some lakes, while other lakes have negligible ebullition. We quantified water surface areas and estimated CH4 emission rates for lakes, streams and rivers for the six major hydrologic regions of Alaska and determined that they collectively emit about 0.124 Tg C per year as CH4 to the atmosphere. Lake emissions comprise about 75% of the total. When adjusted for total land surface area in Alaska, our lake emission estimate is substantially smaller than previous global estimates for inland waters north of 50 degrees North latitude. We attribute this to incorporation of results that cover a broad range of lake conditions in interior Alaska and to new data from lakes in southwest Alaska that have very low CH4 concentration but very large surface area.

  19. Natronotalea proteinilytica gen. nov., sp. nov. and Longimonas haloalkaliphila sp. nov., extremely haloalkaliphilic members of the phylum Rhodothermaeota from hypersaline alkaline lakes.

    PubMed

    Sorokin, Dimitry Y; Khijniak, Tatiana V; Galinski, Erwin A; Kublanov, Ilya V

    2017-10-01

    Two proteolytic bacterial strains, BSker2 T and BSker3 T , were enriched from sediments of hypersaline alkaline lakes in Kulunda Steppe (Altai, Russia) with chicken feathers as substrate, followed by pure culture isolation on hypersaline alkaline media with casein. The cells were non-motile, filamentous, flexible rods. The isolates were obligately aerobic heterotrophs utilizing proteins and peptides as growth substrates. Both were obligate alkaliphiles, but differed in their pH optimum for growth: pH 9.5-9.8 for Bsker2 T and pH 8.5-8.8 for BSker3 T . The salt range for growth of both isolates was between 2 and 4.5 M total Na + with an optimum at 2.5-3 M. No organic osmolytes were detected in cells of BSker2 T , but they accumulated high intracellular concentrations of K + . The polar lipid fatty acids were dominated by unsaturated C16 and C18 species. The 16S rRNA gene phylogeny indicated that both strains belong to the recently proposed phylum Rhodothermaeota. BSker2 T forms a novel genus-level branch, while BSker3 T represents a novel species-level member in the genus Longimonas. On the basis of distinct phenotypic and genotypic properties, strain BSker2 T (=JCM 31342 T =UNIQEM U1009 T ) is proposed to be classified as a representative of a novel genus and species, Natronotalea proteinilyticagen. nov., sp. nov., and strain BSker3 T (=JCM 31343 T =UNIQEM U1010 T ) as a representative of a novel species, Longimonas haloalkaliphila sp. nov.

  20. Landsat Thematic Mapper monitoring of turbid inland water quality

    NASA Technical Reports Server (NTRS)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  1. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first "metagenomic snapshots" of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that themore » top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermace ae-related draft genome were indicative of a "salt-in" strategy of

  2. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines

    PubMed Central

    Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco; Sorokin, Dimitry Y.; Tringe, Susannah G.; Hugenholtz, Philip; Muyzer, Gerard

    2016-01-01

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first “metagenomic snapshots” of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that the top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermaceae-related draft genome were indicative of a “salt-in” strategy of

  3. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines

    DOE PAGES

    Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco; ...

    2016-02-25

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first "metagenomic snapshots" of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that themore » top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermace ae-related draft genome were indicative of a "salt-in" strategy of

  4. Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations.

    PubMed

    Johansen, Richard; Beck, Richard; Nowosad, Jakub; Nietch, Christopher; Xu, Min; Shu, Song; Yang, Bo; Liu, Hongxing; Emery, Erich; Reif, Molly; Harwood, Joseph; Young, Jade; Macke, Dana; Martin, Mark; Stillings, Garrett; Stumpf, Richard; Su, Haibin

    2018-06-01

    This study evaluated the performances of twenty-nine algorithms that use satellite-based spectral imager data to derive estimates of chlorophyll-a concentrations that, in turn, can be used as an indicator of the general status of algal cell densities and the potential for a harmful algal bloom (HAB). The performance assessment was based on making relative comparisons between two temperate inland lakes: Harsha Lake (7.99 km 2 ) in Southwest Ohio and Taylorsville Lake (11.88 km 2 ) in central Kentucky. Of interest was identifying algorithm-imager combinations that had high correlation with coincident chlorophyll-a surface observations for both lakes, as this suggests portability for regional HAB monitoring. The spectral data utilized to estimate surface water chlorophyll-a concentrations were derived from the airborne Compact Airborne Spectral Imager (CASI) 1500 hyperspectral imager, that was then used to derive synthetic versions of currently operational satellite-based imagers using spatial resampling and spectral binning. The synthetic data mimics the configurations of spectral imagers on current satellites in earth's orbit including, WorldView-2/3, Sentinel-2, Landsat-8, Moderate-resolution Imaging Spectroradiometer (MODIS), and Medium Resolution Imaging Spectrometer (MERIS). High correlations were found between the direct measurement and the imagery-estimated chlorophyll-a concentrations at both lakes. The results determined that eleven out of the twenty-nine algorithms were considered portable, with r 2 values greater than 0.5 for both lakes. Even though the two lakes are different in terms of background water quality, size and shape, with Taylorsville being generally less impaired, larger, but much narrower throughout, the results support the portability of utilizing a suite of certain algorithms across multiple sensors to detect potential algal blooms through the use of chlorophyll-a as a proxy. Furthermore, the strong performance of the Sentinel-2

  5. Lake Enriquillo, Dominican Republic

    NASA Image and Video Library

    2017-08-15

    Lake Enriquillo is a hypersaline lake in the Dominican Republic. In 2004, the lake covered an area of 164 square kilometers; by 2011, it had doubled in size and grown to 350 km2, inundating farmland and homes. Various reasons for the flooding include increases in rainfall; increase of sediments going into the lake, raising the lakebed; and milder temperatures, reducing surface evaporation. The lake is home to the largest population of American crocodiles in the Caribbean. The images were acquired October 26, 2003 and June 10, 2017, cover an area of 22.7 by 45.4 km, and are located at 18.5 degrees north, 71.6 degrees west. An image of Lake Enriquillo taken in 2003 is available at https://photojournal.jpl.nasa.gov/catalog/PIA21815

  6. Natronospira proteinivora gen. nov., sp. nov, an extremely salt-tolerant, alkaliphilic gammaproteobacterium from hypersaline soda lakes.

    PubMed

    Sorokin, Dimitry Y; Kublanov, Ilya V; Khijniak, Tatiana V

    2017-08-01

    Brine samples from Kulunda Steppe soda lakes (Altai, Russia) were inoculated into a hypersaline alkaline mineral medium with β-keratin (chicken feather) as a substrate. The micro-organisms dominating the enrichment culture were isolated by limiting serial dilution on the same medium with casein as a substrate. The cells of strain BSker1T were motile, curved rods. The strain was an obligately aerobic heterotroph utilizing proteins and peptides as growth substrates. The isolate was an obligate alkaliphile with a pH range for growth from pH 8.5 to 10.25 (optimum at pH 9.5), and it was extremely salt tolerant, growing with between 1 and 4.5 M total Na+ (optimally at 2-2.5 M). BSker1T had a unique composition of polar lipid fatty acids, dominated by two C17 species. The membrane polar lipids included multiple unidentified phospholipids and two aminolipids. According to phylogenetic analysis of the 16S rRNA gene sequence, the isolate forms a novel branch within the family Ectothiorhodospiraceae (class Gammaproteobacteria) with the highest sequence similarity to the members of this family being 91 %. On the basis of distinct phenotypic and genotypic properties, strain BSker1T (=JCM 31341T=UNIQEM U1008T) is proposed to be classified as a representative of a novel genus and species, Natronospira proteinivora gen. nov., sp. nov.

  7. Geobiological Comparisons of Preservation Potential within Hypersaline Mineral-Microbe Systems

    NASA Astrophysics Data System (ADS)

    Perl, S. M.; Celestian, A. J.; Vaishampayan, P.; Seuylemezian, A.; Mahseredjian, T.; Baxter, B.; Corsetti, F. A.

    2017-12-01

    The purpose of these investigations is to show comparative measurements between known biological sources of biomarkers and biosignatures and how they can be independently verified, within instrumentation limits, by laboratory investigations analogous to future surface missions to Mars and Europa. Precipitated hypersaline mineralogy can provide a biotic record of microbial activity and habitation within evaporating lake systems. The extent of microbial preservation is a direct relationship between the magnitudes of aqueous activity post-precipitation, original or in-situ biological habitats, dissolution events due to chemical weathering, and organic matter degradation due to UV exposure and desiccation. Chemical biomarkers and physical biosignatures to be quantified and correlated based from preserved DNA as the most sensitive biomarker to more recalcitrant biomarkers such as lipids and Total Organic Carbon (TOC). Moreover the timing of cell movement during nutrient cycling within specific evaporite minerals can be associated to the formation of physical biosignatures as a function of already active and abundant biomarkers allowing for relative timelines of biogenic actions (e.g., nutrient cycling, cell division) to be correlated together. Our investigation has compared hypersaline biotic activity within different photosynthetic and chemosynthetic settings to quantify preservation and detection profiles given measured DNA as the source validation standard and micron-scale Raman measurements for specific paleoenvironmental mineral sampling.

  8. Variation pattern of particulate organic carbon and nitrogen in oceans and inland waters

    NASA Astrophysics Data System (ADS)

    Huang, Changchun; Jiang, Quanliang; Yao, Ling; Yang, Hao; Lin, Chen; Huang, Tao; Zhu, A.-Xing; Zhang, Yimin

    2018-03-01

    We examined the relationship between, and variations in, particulate organic carbon (POC) and particulate organic nitrogen (PON) based on previously acquired ocean and inland water data. The latitudinal dependency of POC / PON is significant between 20 and 90° N but weak in low-latitude areas and in the Southern Hemisphere. The mean values of POC / PON in the Southern Hemisphere and Northern Hemisphere were 7.40 ± 3.83 and 7.80 ± 3.92, respectively. High values of POC / PON appeared between 80-90 (12.2 ± 7.5) and 70-80° N (9.4 ± 6.4), while relatively low POC / PON was found from 20 (6.6 ± 2.8) to 40° N (6.7 ± 2.7). The latitudinal variation of POC / PON in the Northern Hemisphere is much stronger than in the Southern Hemisphere due to the influence of more terrestrial organic matter. Higher POC and PON could be expected in coastal waters. POC / PON growth ranged from 6.89 ± 2.38 to 7.59 ± 4.22 in the Northern Hemisphere, with an increasing rate of 0.0024 km from the coastal to open ocean. Variations of POC / PON in lake water also showed a similar latitude-variation tendency of POC / PON with ocean water but were significantly regulated by the lakes' morphology, trophic state and climate. Small lakes and high-latitude lakes prefer relatively high POC / PON, and large lakes and low-latitude lakes tend to prefer low POC / PON. The coupling relationship between POC and PON in oceans is much stronger than in inland waters. Variations in POC, PON and POC / PON in inland waters should receive more attention due to the implications of these values for the global carbon and nitrogen cycles and the indeterminacy of the relationship between POC and PON.

  9. Identification of sources and seasonal variability of organic matter in Lake Sihwa and surrounding inland creeks, South Korea.

    PubMed

    Lee, Yeonjung; Hong, Seongjin; Kim, Min-Seob; Kim, Dahae; Choi, Bo-Hyung; Hur, Jin; Khim, Jong Seong; Shin, Kyung-Hoon

    2017-06-01

    Coastal areas are subjected to significant allochthonous organic matter deposits from surrounding areas; however, limited information is available on the source and delivery of this organic matter. In this study, to assess seasonal changes in the sources of organic matter in Lake Sihwa (Korea), biodegradability, fluorescence property, and stable isotopic compositions (carbon, nitrogen, and sulfur) of the organic matter were determined. Water samples were collected from the inner lake (n = 9) and inland creeks (n = 10) in five separate events, from November 2012 to October 2013. Organic matter originating from rural, urban, and industrial areas was examined as the potential sources. The organic matter contents and biodegradability in the industrial area were the highest, whereas low concentrations and poor biodegradability of organic matter were found in the rural area, and moderate properties were observed in the urban area. In Lake Sihwa, a large concentration of total organic matter and enhanced biodegradability were observed during March and August. However, main source of organic matter differed between the sampling events. The largest contribution of organic matter, deriving from marine phytoplankton, was found in March. On the other hand, in August, the organic matter originating from the industrial area, which is characterized by high levels of heavy metals and persistent organic pollutants, was significantly increased. Our results could be useful to enhance the management of water bodies aimed at reducing the organic matter concentrations and improving the water quality of Lake Sihwa, and even that of the Yellow Sea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Sunlight-induced carbon dioxide emissions from inland waters

    NASA Astrophysics Data System (ADS)

    Koehler, Birgit; Landelius, Tomas; Weyhenmeyer, Gesa A.; Machida, Nanako; Tranvik, Lars J.

    2014-07-01

    The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet the fundamental question remains open which proportion of these CO2 emissions is induced by sunlight via photochemical mineralization of dissolved organic carbon (DOC), rather than by microbial respiration during DOC decomposition. Also, it is unknown on larger spatial and temporal scales how photochemical mineralization compares to other C fluxes in the inland water C cycle. We combined field and laboratory data with atmospheric radiative transfer modeling to parameterize a photochemical rate model for each day of the year 2009, for 1086 lakes situated between latitudes from 55°N to 69°N in Sweden. The sunlight-induced production of dissolved inorganic carbon (DIC) averaged 3.8 ± 0.04 g C m-2 yr-1, which is a flux comparable in size to the organic carbon burial in the lake sediments. Countrywide, 151 ± 1 kt C yr-1 was produced by photochemical mineralization, corresponding to about 12% of total annual mean CO2 emissions from Swedish lakes. With a median depth of 3.2 m, the lakes were generally deep enough that incoming, photochemically active photons were absorbed in the water column. This resulted in a linear positive relationship between DIC photoproduction and the incoming photon flux, which corresponds to the absorbed photons. Therefore, the slope of the regression line represents the wavelength- and depth-integrated apparent quantum yield of DIC photoproduction. We used this relationship to obtain a first estimate of DIC photoproduction in lakes and reservoirs worldwide. Global DIC photoproduction amounted to 13 and 35 Mt C yr-1 under overcast and clear sky, respectively. Consequently, these directly sunlight-induced CO2 emissions contribute up to about one tenth to the global CO2 emissions from lakes and reservoirs, corroborating that microbial respiration contributes a substantially larger share than formerly thought, and generate annual C fluxes similar in

  11. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake.

    PubMed

    DeMaere, Matthew Z; Williams, Timothy J; Allen, Michelle A; Brown, Mark V; Gibson, John A E; Rich, John; Lauro, Federico M; Dyall-Smith, Michael; Davenport, Karen W; Woyke, Tanja; Kyrpides, Nikos C; Tringe, Susannah G; Cavicchioli, Ricardo

    2013-10-15

    Deep Lake in Antarctica is a globally isolated, hypersaline system that remains liquid at temperatures down to -20 °C. By analyzing metagenome data and genomes of four isolates we assessed genome variation and patterns of gene exchange to learn how the lake community evolved. The lake is completely and uniformly dominated by haloarchaea, comprising a hierarchically structured, low-complexity community that differs greatly to temperate and tropical hypersaline environments. The four Deep Lake isolates represent distinct genera (∼85% 16S rRNA gene similarity and ∼73% genome average nucleotide identity) with genomic characteristics indicative of niche adaptation, and collectively account for ∼72% of the cellular community. Network analysis revealed a remarkable level of intergenera gene exchange, including the sharing of long contiguous regions (up to 35 kb) of high identity (∼100%). Although the genomes of closely related Halobacterium, Haloquadratum, and Haloarcula (>90% average nucleotide identity) shared regions of high identity between species or strains, the four Deep Lake isolates were the only distantly related haloarchaea to share long high-identity regions. Moreover, the Deep Lake high-identity regions did not match to any other hypersaline environment metagenome data. The most abundant species, tADL, appears to play a central role in the exchange of insertion sequences, but not the exchange of high-identity regions. The genomic characteristics of the four haloarchaea are consistent with a lake ecosystem that sustains a high level of intergenera gene exchange while selecting for ecotypes that maintain sympatric speciation. The peculiarities of this polar system restrict which species can grow and provide a tempo and mode for accentuating gene exchange.

  12. Climate change in Brazil: perspective on the biogeochemistry of inland waters.

    PubMed

    Roland, F; Huszar, V L M; Farjalla, Vf; Enrich-Prast, A; Amado, A M; Ometto, J P H B

    2012-08-01

    Although only a small amount of the Earth's water exists as continental surface water bodies, this compartment plays an important role in the biogeochemical cycles connecting the land to the atmosphere. The territory of Brazil encompasses a dense river net and enormous number of shallow lakes. Human actions have been heavily influenced by the inland waters across the country. Both biodiversity and processes in the water are strongly driven by seasonal fluvial forces and/or precipitation. These macro drivers are sensitive to climate changes. In addition to their crucial importance to humans, inland waters are extremely rich ecosystems, harboring high biodiversity, promoting landscape equilibrium (connecting ecosystems, maintaining animal and plant flows in the landscape, and transferring mass, nutrients and inocula), and controlling regional climates through hydrological-cycle feedback. In this contribution, we describe the aquatic ecological responses to climate change in a conceptual perspective, and we then analyze the possible climate-change scenarios in different regions in Brazil. We also indentify some potential biogeochemical signals in running waters, natural lakes and man-made impoundments. The possible future changes in climate and aquatic ecosystems in Brazil are highly uncertain. Inland waters are pressured by local environmental changes because of land uses, landscape fragmentation, damming and diversion of water bodies, urbanization, wastewater load, and level of pollutants can alter biogeochemical patterns in inland waters over a shorter term than can climate changes. In fact, many intense environmental changes may enhance the effects of changes in climate. Therefore, the maintenance of key elements within the landscape and avoiding extreme perturbation in the systems are urgent to maintain the sustainability of Brazilian inland waters, in order to prevent more catastrophic future events.

  13. Temperature Trends in Montane Lakes

    NASA Astrophysics Data System (ADS)

    Melack, J. M.; Sadro, S.; Jellison, R.

    2014-12-01

    Long-term temperature trends in lakes integrate hydrological and meteorological factors. We examine temperature trends in a small montane lake with prolonged ice-cover and large seasonal snowfall and in a large saline lake. Emerald Lake, located in the Sierra Nevada (California), is representative of high-elevation lakes throughout the region. No significant trend in outflow temperature was apparent from 1991to 2012. Snowfall in the watershed accounted for 93% of the variability in average summer lake temperatures. Mono Lake (California) lies in a closed, montane basin and is hypersaline and monomictic or meromictic. Temperature profiles have been collected from 1982 to 2010. In the upper water column, the July-August-September water temperatures increased 0.8-1.0°C over the 29 years. This rate of warming is less than published estimates based on satellite-derived skin temperatures and will discussed in the context of general limnological interpretation of temperature trends.

  14. Global carbon dioxide emissions from inland waters

    USGS Publications Warehouse

    Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory P.; Hoover, Mark; Butman, David; Striegl, Robert G.; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Durr, Hans H.; Meybeck, Michel; Ciais, Philippe; Guth, Peter

    2013-01-01

    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8   petagrams of carbon (Pg C) per year from streams and rivers and 0.32  Pg C yr−1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr−1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  15. Deriving Equations of State for Specific Lakes and Inland Seas from Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Andrulionis, Natalia; Zavialov, Ivan; Zavialov, Peter; Osadchiev, Alexander; Kolokolova, Alexandra; Alukaeva, Alevtina; Izhitskiy, Alexander; Izhitskaya, Elena

    2017-04-01

    The equation of state is the dependence of water density on temperature, salinity, and pressure. It is important in many respects, in particular, for numerical modeling of marine systems. The widely used UNESCO equation of state, as well as the more recent and general TEOS-10 equation, are intended for the ocean waters. Hence, they are confined to salinities below 40 ‰ and, even more restrictively, valid only for ionic salt composition characteristic for the ocean. Both conditions do not hold for many lakes. Moreover, significant deviations of the ionic composition from the oceanic one have been documented for coastal zones, especially those exposed to river discharges. Therefore, the objective of this study was to find equations of state for areas or water bodies with non-oceanic ionic salt composition. In order to obtain the required equations, we analyzed water samples obtained in expeditions of 2014-2016 from the Black Sea, the Aral Sea, Lake Issyk-Kul and Caspian Sea. The filtered samples were submitted to high accuracy (up to 0.00001 g/cm3) density measurements in laboratory using the Anton Paar DMA 5000M in the temperature range from 1 to 29°C. The absolute salinity values of the initial samples were obtained through the dry residue method. Further, we diluted the samples by purified deionized water to produce different salinities. To control the accuracy of the dilution process, we used a reference sample of standard IAPSO-certified seawater at 35‰. The density versus salinity and temperature data obtained thereby were then approximated by a best fitting 2-order polynomial surface using the least squares method. This procedure yielded the approximate empirical equations of state for the selected marine areas (the Russian Black Sea shelf) and inland water bodies (the Aral Sea, the Lake Issyk-Kul, the Caspian Sea). The newly derived equations - even the one for the Black Sea shelf - are different from the oceanic equation significantly within the

  16. The operational use of Landsat for lake quality assessment

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Fisher, L. T.

    1980-01-01

    A cooperative program between the Wisconsin Department of Natural Resources and the University of Wisconsin for the assessment, with Landsat data, of the trophic status of all the significant inland lakes in Wisconsin is described. The analysis technique is a semiautomatic data acquisition and handling system which, in conjunction with an analytical categorization scheme, can be used for classifying inland lakes into one of seven categories of eutrophication and one of four problem types.

  17. Late quaternary sediments, minerals, and inferred geochemical history of Didwana Lake, Thar Desert, India

    USGS Publications Warehouse

    Wasson, R.J.; Smith, G.I.; Agrawal, D.P.

    1984-01-01

    Variations in clastic sediment texture, mineralogy of both evaporites formed at the surface and precipitates formed below the lake floor, and the relative chemical activities of the major dissolved components of the chemical precipitates, have allowed reconstruction of the history of salinity and water-level changes in Didwana Lake, Thar Desert, India. Hypersaline conditions prevailed at about the Last Glacial Maximum, with little evidence of clastic sediments entering the lake. Between ca. 13,000 and 6000 B.P. the lake level fluctuated widely, the lake alternately hypersaline and fresh, and clastic sediments were delivered to the lake at a low rate. Deep-water conditions occurred ca. 6000 B.P. and clastic influx increased abruptly. The water level dropped towards 4000 B.P. when the lake dried briefly. Since 4000 B.P. the lake has been ephemeral with a lowered rate of sedimentation and mildly saline conditions rather like those of today. This sequence of changes documented in the lake parallels changes in vegetation recorded in published pollen diagrams from both the Thar and the Arabian Sea. Correlation of the various lines of evidence suggests that the climate of the Last Glacial Maximum at Didwana was dry and windy with a weak monsson circulation. The monsson was re-established between ca. 13,000 and a little before 6000 B.P., and, when winter rainfall increased ca. 6000 B.P., the lake filled to its maximum depth. ?? 1984.

  18. Water: Wisconsin lakes, streams and wetlands

    EPA Science Inventory

    Wisconsin has a tremendous diversity of aquatic habitat: headwater streams, large rivers, inland lakes, and two Great Lakes. Knowing the fundamentals of aquatic ecosystem science is critical to understand how these ecosystems function and to predict how they will respond to human...

  19. Cyanotoxin occurrence associated with cyanoHAB events on an inland reservoir

    EPA Science Inventory

    A monitoring approach combining wet chemistry and high frequency (HF) water quality sensors was employed to improve our understanding of the ecology of an inland reservoir with a history of cyanoHAB events. The study was conducted with samples collected from Lake Harsha, is a mul...

  20. 27 CFR 9.83 - Lake Erie.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Cazenovia Creek and thence up the west branch of Cazenovia Creek to a point approximately one mile north of Colden, New York, exactly 12 statute miles inland from any point on the shore of Lake Erie. (3) The boundary proceeds southwestward and along a line exactly 12 statute miles inland from any point on the...

  1. 27 CFR 9.83 - Lake Erie.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Cazenovia Creek and thence up the west branch of Cazenovia Creek to a point approximately one mile north of Colden, New York, exactly 12 statute miles inland from any point on the shore of Lake Erie. (3) The boundary proceeds southwestward and along a line exactly 12 statute miles inland from any point on the...

  2. 27 CFR 9.83 - Lake Erie.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Cazenovia Creek and thence up the west branch of Cazenovia Creek to a point approximately one mile north of Colden, New York, exactly 12 statute miles inland from any point on the shore of Lake Erie. (3) The boundary proceeds southwestward and along a line exactly 12 statute miles inland from any point on the...

  3. Developing a semi-analytical algorithm to estimate particulate organic carbon (POC) levels in inland eutrophic turbid water based on MERIS images: A case study of Lake Taihu

    NASA Astrophysics Data System (ADS)

    Lyu, Heng; Wang, Yannan; Jin, Qi; Shi, Lei; Li, Yunmei; Wang, Qiao

    2017-10-01

    Particulate organic carbon (POC) plays an important role in the carbon cycle in water due to its biological pump process. In the open ocean, algorithms can accurately estimate the surface POC concentration. However, no suitable POC-estimation algorithm based on MERIS bands is available for inland turbid eutrophic water. A total of 228 field samples were collected from Lake Taihu in different seasons between 2013 and 2015. At each site, the optical parameters and water quality were analyzed. Using in situ data, it was found that POC-estimation algorithms developed for the open ocean and coastal waters using remote sensing reflectance were not suitable for inland turbid eutrophic water. The organic suspended matter (OSM) concentration was found to be the best indicator of the POC concentration, and POC has an exponential relationship with the OSM concentration. Through an analysis of the POC concentration and optical parameters, it was found that the absorption peak of total suspended matter (TSM) at 665 nm was the optimum parameter to estimate POC. As a result, MERIS band 7, MERIS band 10 and MERIS band 12 were used to derive the absorption coefficient of TSM at 665 nm, and then, a semi-analytical algorithm was used to estimate the POC concentration for inland turbid eutrophic water. An accuracy assessment showed that the developed semi-analytical algorithm could be successfully applied with a MAPE of 31.82% and RMSE of 2.68 mg/L. The developed algorithm was successfully applied to a MERIS image, and two full-resolution MERIS images, acquired on August 13, 2010, and December 7, 2010, were used to map the POC spatial distribution in Lake Taihu in summer and winter.

  4. 46 CFR 11.435 - Service requirements for master of inland steam or motor vessels of any gross tons.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Service requirements for master of inland steam or motor... Deck Officers § 11.435 Service requirements for master of inland steam or motor vessels of any gross... (excluding the Great Lakes) steam or motor vessels of any gross tons is: (a) One year of service as first...

  5. Characterization of thermo-solvent stable protease from Halobacillus sp. CJ4 isolated from Chott Eldjerid hypersaline lake in Tunisia.

    PubMed

    Daoud, Lobna; Jlidi, Mouna; Hmani, Houda; Hadj Brahim, Adel; El Arbi, Mahdi; Ben Ali, Mamdouh

    2017-02-01

    About 110 newly isolated halophilic and halotolerant bacteria were screened for protease production. A moderately halophilic strain (CJ4), isolated from Chott Eldjerid Hypersaline lake in Tunisia, showed the highest activity on agar plate and was then selected. The biochemical and physiological characterization of the isolate along with the 16S rRNA sequence analysis placed it in the genus Halobacillus. Protease production was maximal at 120 g/L NaCl (2 M) and it started from the post-exponential phase reaching a maximum level at the early decline phase of bacterial growth. Protease activity was optimal at 0.4 M NaCl, pH 9 and 45 °C. It showed an excellent stability over wide ranges of temperatures (30-60 °C), NaCl concentrations (0-5 M), and pH values (5-10), which make it a good candidate for industrial applications at harsh conditions. Crude protease was strongly inhibited by PMSF revealing the dominance of serine proteases. Protease activity exhibited high stability in the presence of several organic solvents and detergent additives. These findings make Halobacillus sp. CJ4 protease with a great interest for many biotechnological applications at high salt or low water content such as peptide synthesis and detergent formulation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Landsat analysis of lake quality

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Fisher, L. T.; Holmquist, K. W.

    1979-01-01

    The trophic status of a number of inland lakes in Wisconsin has been assessed. The feasibility of using both photographic and digital representations of Landsat imagery was investigated during the lake classification project. The result of the investigation has been a semi-automatic data acquisition and handling system which, in conjunction with an analytical categorization scheme, can be used to classify all the significant lakes in the state.

  7. Hypersalinity drives physiological and morphological changes in Limia perugiae (Poeciliidae)

    PubMed Central

    Tello, Oscar; Krieger, Jonathan; Marmolejo, Arlen; Weaver, Kathleen F.; Garcia, Jerome V.; Cruz, Alexander

    2016-01-01

    ABSTRACT A fundamental question in biology is how an organism's morphology and physiology are shaped by its environment. Here, we evaluate the effects of a hypersaline environment on the morphology and physiology of a population of livebearing fish in the genus Limia (Poeciliidae). We sampled from two populations of Limia perugiae (one freshwater and one hypersaline) in the southwest Dominican Republic. We evaluated relative abundance of osmoregulatory proteins using western blot analyses and used a geometric morphometric approach to evaluate fine-scale changes to size and shape. Our data show that gill tissue isolated from hypersaline fish contained approximately two and a half times higher expression of Na+/K+ ATPase proteins. We also show evidence for mitochondrial changes within the gills, with eight times more complex I and four times higher expression of ATP synthase within the gill tissue from the hypersaline population. The energetic consequences to Limia living in saline and hypersaline environments may be a driver for phenotypic diversity, reducing the overall body size and changing the relative size and shape of the head, as well as impeding the growth of secondary sex features among the males. PMID:27402966

  8. Response of Glacier and Lake Dynamics in Four Inland Basins to Climate Change at the Transition Zone between the Karakorum And Himalayas.

    PubMed

    Li, Zhiguo; Fan, Kuangsheng; Tian, Lide; Shi, Benlin; Zhang, Shuhong; Zhang, Jingjing

    2015-01-01

    Inland glacier and lake dynamics on the Tibetan Plateau (TP) and its surroundings over recent decades are good indicators of climate change and have a significant impact on the local water supply and ecosystem. The glacier and lake changes in Karakoram are quite different from those of the Himalayas. The mechanisms of the complex and regionally heterogeneous behavior of the glacier and lake changes between the Karakorum and Himalayas are poorly understood. Based on satellite images and meteorological data of Shiquanhe, Hetian, and Yutian stations, we demonstrate that the overall retreat of glaciers and increase of lake area at the transition zone between the Karakoram and Himalayas (TKH) have occurred since 1968 in response to a significant global climate change. Glacial areas in the Songmuxi Co basin, Zepu Co basin, Mang Co basin and Unnamed Co decreased by -1.98 ± 0.02 km2, -5.39 ± 0.02 km2, -0.01 ± 0.02 km2, and -0.12 ± 0.02 km2 during the study period, corresponding to losses of -1.42%, -2.86%, -1.54%, and -1.57%, respectively. The lake area of the Songmuxi Co, Zepu Co, Mang Co and Unnamed Co increased by 7.57 ± 0.02 km2, 8.53 ± 0.02 km2, 1.35 ± 0.02 km2, and 0.53 ± 0.02 km2, corresponding to growths of 30.22%, 7.55%, 11.39%, and 8.05%, respectively. Increases in temperature was the main reason for glacier retreat, whereas decreases in potential evapotranspiration of lakes, increases in precipitation, and increases in melt water from glaciers and frozen soil all contributed to lake area expansion.

  9. Response of Glacier and Lake Dynamics in Four Inland Basins to Climate Change at the Transition Zone between the Karakorum And Himalayas

    PubMed Central

    Li, Zhiguo; Fan, Kuangsheng; Tian, Lide; Shi, Benlin; Zhang, Shuhong; Zhang, Jingjing

    2015-01-01

    Inland glacier and lake dynamics on the Tibetan Plateau (TP) and its surroundings over recent decades are good indicators of climate change and have a significant impact on the local water supply and ecosystem. The glacier and lake changes in Karakoram are quite different from those of the Himalayas. The mechanisms of the complex and regionally heterogeneous behavior of the glacier and lake changes between the Karakorum and Himalayas are poorly understood. Based on satellite images and meteorological data of Shiquanhe, Hetian, and Yutian stations, we demonstrate that the overall retreat of glaciers and increase of lake area at the transition zone between the Karakoram and Himalayas (TKH) have occurred since 1968 in response to a significant global climate change. Glacial areas in the Songmuxi Co basin, Zepu Co basin, Mang Co basin and Unnamed Co decreased by -1.98 ± 0.02 km2, -5.39 ± 0.02 km2, -0.01 ± 0.02 km2, and -0.12 ± 0.02 km2 during the study period, corresponding to losses of -1.42%, -2.86%, -1.54%, and -1.57%, respectively. The lake area of the Songmuxi Co, Zepu Co, Mang Co and Unnamed Co increased by 7.57 ± 0.02 km2, 8.53 ± 0.02 km2, 1.35 ± 0.02 km2, and 0.53±0.02 km2, corresponding to growths of 30.22%, 7.55%, 11.39%, and 8.05%, respectively. Increases in temperature was the main reason for glacier retreat, whereas decreases in potential evapotranspiration of lakes, increases in precipitation, and increases in melt water from glaciers and frozen soil all contributed to lake area expansion. PMID:26699717

  10. Great Salt Lake Microbial Communities: The Foundation of a Terminal Lake Ecosystem

    NASA Astrophysics Data System (ADS)

    Baxter, B. K.; Acord, M.; Riddle, M. R.; Avery, B.

    2006-12-01

    Great Salt Lake (GSL) is a natural hypersaline ecosystem and a terminal lake of substantial size. The dramatic fluctuation in water levels and salinity creates an ecological backdrop selective for organisms with a high degree of adaptability. At the macro level, the biodiversity of the GSL ecosystem is simple, due to the limitations of an extreme saline environment: Birds eat the two invertebrates of the lake, and the invertebrates eat phytoplankton. However, analysis of the microbial level reveals an enormous diversity of species interacting with one another and the ecosystem as a whole. Our cultivation, biochemical tests, microscopy and DNA sequencing yielded data on dozens of isolates. These data demonstrate novel species, and possibly genera, living in the lake. In addition, we have discovered viruses (bacteriophage) that prey on the microorganisms. Preliminary data on bacteria dwelling in the gut of the brine shrimp, Artemia franciscana, link these prokaryotic organisms to the food chain for the first time. All of these results taken together open the door for the discussion of the significance of the microbial level of terminal lake ecosystem, particularly in light of lake water contamination and bioremediation possibilities.

  11. Michigan lakes: An assessment of water quality

    USGS Publications Warehouse

    Minnerick, R.J.

    2004-01-01

    Michigan has more than 11,000 inland lakes, that provide countless recreational opportunities and are an important resource that makes tourism and recreation a $15-billion-dollar per-year industry in the State (Stynes, 2002). Knowledge of the water-quality characteristics of inland lakes is essential for the current and future management of these resources.Historically the U. S. Geological Survey (USGS) and the Michigan Department of Environmental Quality (MDEQ) jointly have monitored water quality in Michigan's lakes and rivers. During the 1990's, however, funding for surface-water-quality monitoring was reduced greatly. In 1998, the citizens of Michigan passed the Clean Michigan Initiative to clean up, protect, and enhance Michigan's environmental infrastructure. Because of expanding water-quality-data needs, the MDEQ and the USGS jointly redesigned and implemented the Lake Water-Quality Assessment (LWQA) Monitoring Program (Michigan Department of Environmental Quality, 1997).

  12. Inland Water Temperature: An Ideal Indicator for the National Climate Assessment

    NASA Astrophysics Data System (ADS)

    Hook, S. J.; Lenters, J. D.; O'Reilly, C.; Healey, N. C.

    2014-12-01

    NASA is a significant contributor to the U.S. National Climate Assessment (NCA), which is a central component of the 2012-2022 U.S. Global Change Research Program Strategic Plan. The NCA has identified the need for indicators that provide a clear, concise way of communicating to NCA audiences about not only the status and trends of physical drivers of the climate system, but also the ecological and socioeconomic impacts, vulnerabilities, and responses to those drivers. We are using thermal infrared satellite data in conjunction with in situ measurements to produce water temperatures for all the large inland water bodies in North America for potential use as an indicator for the NCA. Recent studies have revealed significant warming of inland waters throughout the world. The observed rate of warming is - in many cases - greater than that of the ambient air temperature. These rapid, unprecedented changes in inland water temperatures have profound implications for lake hydrodynamics, productivity, and biotic communities. Scientists are just beginning to understand the global extent, regional patterns, physical mechanisms, and ecological consequences of lake warming. As part of our earlier studies we have collected thermal infrared satellite data from those satellite sensors that provide long-term and frequent spaceborne thermal infrared measurements of inland waters including ATSR, AVHRR, and MODIS and used these to examine trends in water surface temperature for approximately 100 of the largest inland water bodies in the world. We are now extending this work to generate temperature time-series of all North American inland water bodies that are sufficiently large to be studied using 1km resolution satellite data for the last 3 decades. These data are then being related to changes in the surface air temperature and compared with regional trends in water surface temperature derived from CMIP5/IPCC model simulations/projections to better predict future temperature changes

  13. Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Johnson, William P.; Swanson, Neil; Black, Brooks; Rudd, Abigail; Carling, Gregory; Fernandez, Diego P.; Luft, John; Van Leeuwen, Jim; Marvin-DiPasquale, Mark C.

    2015-01-01

    We examined mercury (Hg) speciation in water and sediment of the Great Salt Lake and surrounding wetlands, a locale spanning fresh to hypersaline and oxic to anoxic conditions, in order to test the hypothesis that spatial and temporal variations in Hg concentration and methylation rates correspond to observed spatial and temporal trends in Hg burdens previously reported in biota. Water column, sediment, and pore water concentrations of methylmercury (MeHg) and total mercury (THg), as well as related aquatic chemical parameters were examined. Inorganic Hg(II)-methylation rates were determined in selected water column and sediment subsamples spiked with inorganic divalent mercury (204Hg(II)). Net production of Me204Hg was expressed as apparent first-order rate constants for methylation (kmeth), which were also expanded to MeHg production potential (MPP) rates via combination with tin reducible ‘reactive’ Hg(II) (Hg(II)R) as a proxy for bioavailable Hg(II). Notable findings include: 1) elevated Hg concentrations previously reported in birds and brine flies were spatially proximal to the measured highest MeHg concentrations, the latter occurring in the anoxic deep brine layer (DBL) of the Great Salt Lake; 2) timing of reduced Hg(II)-methylation rates in the DBL (according to both kmeth and MPP) coincides with reduced Hg burdens among aquatic invertebrates (brine shrimp and brine flies) that act as potential vectors of Hg propagation to the terrestrial ecosystem; 3) values ofkmeth were found to fall within the range reported by other studies; and 4) MPP rates were on the lower end of the range reported in methodologically comparable studies, suggesting the possibility that elevated MeHg in the anoxic deep brine layer results from its accumulation and persistence in this quasi-isolated environment, due to the absence of light (restricting abiotic photo demethylation) and/or minimal microbiological demethylation.

  14. Virus-Bacterium Interactions in Water and Sediment of West African Inland Aquatic Systems

    PubMed Central

    Bettarel, Yvan; Bouvy, Marc; Dumont, Claire; Sime-Ngando, Télesphore

    2006-01-01

    The ecology of virioplankton in tropical aquatic ecosystems is poorly documented, and in particular, there are no references concerning African continental waters in the literature. In this study, we examined virus-bacterium interactions in the pelagic and benthic zones of seven contrasting shallow inland waters in Senegal, including one hypersaline lake. SYBR Gold-stained samples revealed that in the surface layers of the sites, the numbers of viruses were in the same range as the numbers of viruses reported previously for productive temperate systems. Despite high bacterial production rates, the percentages of visibly infected cells (as determined by transmission electron microscopy) were similar to the lowest percentages (range, 0.3 to 1.1%; mean, 0.5%) found previously at pelagic freshwater or marine sites, presumably because of the local environmental and climatic conditions. Since the percentages of lysogenic bacteria were consistently less than 8% for pelagic and benthic samples, lysogeny did not appear to be a dominant strategy for virus propagation at these sites. In the benthic samples, viruses were highly concentrated, but paradoxically, no bacteria were visibly infected. This suggests that sediment provides good conditions for virus preservation but ironically is an unfavorable environment for proliferation. In addition, given the comparable size distributions of viruses in the water and sediment samples, our results support the paradigm that aquatic viruses are ubiquitous and may have moved between the two compartments of the shallow systems examined. Overall, this study provides additional information about the relevance of viruses in tropical areas and indicates that the intensity of virus-bacterium interactions in benthic habitats may lower than the intensity in the adjacent bodies of water. PMID:16885276

  15. Skeletal aragonite dissolution from hypersaline seawater: a hypothesis

    NASA Astrophysics Data System (ADS)

    Qing Sun, S.

    1992-05-01

    Hypersaline seawater has often been invoked as a mechanism to explain the pervasive dolomitization of ancient platform carbonates, but its potential in causing skeletal aragonite dissolution of these carbonates has rarely been investigated. Previous experimental and theoretical studies have demonstrated that hypersaline seawater is undersaturated with respect to aragonite when evaporation reaches a certain degree. It is contended here that similar undersaturation could also have occurred in ancient evaporitic seas. Geological evidence from the Miocene carbonates of SE Spain, Gulf of Suez, Red Sea and Iraq suggests that this may have been the case. Despite differences in their geological settings, these carbonates have common diagenetic features including: (1) widespread dissolution of skeletal aragonite with little or no calcite cementation; and (2) pervasive dolomitization. Dolomite occurs as both a replacement of Mg calcite and mouldic pore-filling cement. The association of the dolomites with evaporites, their relatively heavy oxygen isotopic values and widespread distribution suggest a hypersaline seawater origin of these dolomites. Petrographic data indicate that skeletal aragonite was dissolved during dolomitization because the aragonite fossil moulds contain dolomite cements, but no pre-dolomitization calcite cements, implying that the dolomitizing fluids (hypersaline seawater) were probably undersaturated with respect to aragonite. The dissolved calcium may have been subsequently incorporated into the dolomite. This may help to explain the lack of calcite cementation despite the extensive skeletal aragonite dissolution.

  16. Sublethal toxicity of chlorpyrifos to salmonid olfaction after hypersaline acclimation.

    PubMed

    Maryoung, Lindley A; Blunt, Brian; Tierney, Keith B; Schlenk, Daniel

    2015-04-01

    Salmonid habitats can be impacted by several environmental factors, such as salinization, which can also affect salmonid tolerance to anthropogenic stressors, such as pesticides. Previous studies have shown that hypersaline acclimation enhances the acute toxicity of certain organophosphate and carbamate pesticides to euryhaline fish; however, sublethal impacts have been far less studied. The current study aims to determine how hypersaline acclimation and exposure to the organophosphate chlorpyrifos (CPF) impact salmonid olfaction. Combined acclimation and exposure to CPF was shown to impact rainbow trout olfaction at the molecular, physiological, and behavioral levels. Concurrent exposure to hypersalinity and 0.5μg/L CPF upregulated four genes (chloride intracellular channel 4, G protein zgc:101761, calcium calmodulin dependent protein kinase II delta, and adrenergic alpha 2C receptor) that inhibit olfactory signal transduction. At the physiological level, hypersalinity and chlorpyrifos caused a decrease in sensory response to the amino acid l-serine and the bile salt taurocholic acid. Combined acclimation and exposure also negatively impacted behavior and reduced the avoidance of a predator cue (l-serine). Thus, acclimation to hypersaline conditions and exposure to environmentally relevant concentrations of chlorpyrifos caused an inhibition of olfactory signal transduction leading to a decreased response to odorants and impairment of olfactory mediated behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Atmospheric correction for inland water based on Gordon model

    NASA Astrophysics Data System (ADS)

    Li, Yunmei; Wang, Haijun; Huang, Jiazhu

    2008-04-01

    Remote sensing technique is soundly used in water quality monitoring since it can receive area radiation information at the same time. But more than 80% radiance detected by sensors at the top of the atmosphere is contributed by atmosphere not directly by water body. Water radiance information is seriously confused by atmospheric molecular and aerosol scattering and absorption. A slight bias of evaluation for atmospheric influence can deduce large error for water quality evaluation. To inverse water composition accurately we have to separate water and air information firstly. In this paper, we studied on atmospheric correction methods for inland water such as Taihu Lake. Landsat-5 TM image was corrected based on Gordon atmospheric correction model. And two kinds of data were used to calculate Raleigh scattering, aerosol scattering and radiative transmission above Taihu Lake. Meanwhile, the influence of ozone and white cap were revised. One kind of data was synchronization meteorology data, and the other one was synchronization MODIS image. At last, remote sensing reflectance was retrieved from the TM image. The effect of different methods was analyzed using in situ measured water surface spectra. The result indicates that measured and estimated remote sensing reflectance were close for both methods. Compared to the method of using MODIS image, the method of using synchronization meteorology is more accurate. And the bias is close to inland water error criterion accepted by water quality inversing. It shows that this method is suitable for Taihu Lake atmospheric correction for TM image.

  18. Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California

    USGS Publications Warehouse

    Kulp, T.R.; Hoeft, S.E.; Miller, L.G.; Saltikov, C.; Murphy, J.N.; Han, S.; Lanoil, B.; Oremland, R.S.

    2006-01-01

    A radioisotope method was devised to study bacterial respiratory reduction of arsenate in sediments. The following two arsenic-rich soda lakes in California were chosen for comparison on the basis of their different salinities: Mono Lake (???90 g/liter) and Searles Lake (???340 g/liter). Profiles of arsenate reduction and sulfate reduction were constructed for both lakes. Reduction of [73As] arsenate occurred at all depth intervals in the cores from Mono Lake (rate constant [k] = 0.103 to 0.04 h-1) and Searles Lake (k = 0.012 to 0.002 h-1), and the highest activities occurred in the top sections of each core. In contrast, [35S] sulfate reduction was measurable in Mono Lake (k = 7.6 ?? 104 to 3.2 ?? 10-6 h-1) but not in Searles Lake. Sediment DNA was extracted, PCR amplified, and separated by denaturing gradient gel electrophoresis (DGGE) to obtain phylogenetic markers (i.e., 16S rRNA genes) and a partial functional gene for dissimilatory arsenate reduction (arrA). The amplified arrA gene product showed a similar trend in both lakes; the signal was strongest in surface sediments and decreased to undetectable levels deeper in the sediments. More arrA gene signal was observed in Mono Lake and was detectable at a greater depth, despite the higher arsenate reduction activity observed in Searles Lake. A partial sequence (about 900 bp) was obtained for a clone (SLAS-3) that matched the dominant DGGE band found in deeper parts of the Searles Lake sample (below 3 cm), and this clone was found to be closely related to SLAS-1, a novel extremophilic arsenate respirer previously cultivated from Searles Lake. Copyright ?? 2006, American Society for Microbiology. All Rights Reserved.

  19. Forest-Product Imports and Exports Via the Great Lakes-St. Lawrence Seaway Through Upper Lakes Ports

    Treesearch

    Eugene M. Carpenter

    1966-01-01

    The expanded Great Lakes-St. Lawrence Seaway system was opened in the early spring of 1959, and for the first time deep-draft ocean-going vessels could visit inland Great Lakes ports. In 1963 the Station published a Research Note reporting what effect this expansion may have had on the volume of forest products moving through Minnesota, Wisconsin, and Michigan ports;...

  20. Climate of a high altitude lake basin and lake-atmosphere interactions - observations and atmospheric modelling

    NASA Astrophysics Data System (ADS)

    Maussion, F.; Kropacek, J.; Finkelnburg, R.; Scherer, D.

    2012-04-01

    Large lakes and inland water bodies have a significant influence on their local climate. The hydrometeorological effect of inland water bodies is varying greatly between seasons, years and contrasting climatic conditions. It is generally hypothesised that the cool air above the lake will inhibit convection in summer; conversely, the relatively warm lake in late-autumn will initiate convective instability that may generate strong snowfalls. In this study we focus on the lake Nam Co (2'000 sq.km, 4700 m a.s.l). Located in a transition zone between the continental climate of Central Asia and the Indian Monsoon system, the Nam Co lake is covered by ice from mid-January to end of April and reaches surface temperatures of 13 °C in summer. We address three main research questions: (i) what is the influence of the Nam Co lake on local meteorological variables over the course of the year, (ii) what is the impact of the timing of the lake freezing on late-autumn and winter precipitation fields and (iii) how will the influence of the lake evolve in the context of a changing climate? In order to answer these questions, we combine satellite observations of lake surface temperatures from the ARC-Lake product and atmospheric modelling using the WRF model. The spatio-temporal variability of temperature, wind and precipitation fields during the last decade are analyzed using high-resolution (up to 2 km) simulations. The positive impact of the assimilation of the lake surface temperatures for the initialization of the model is analysed and discussed, as well as the combined influences of the large scale (westerlies, monsoon) and local (orographic) forcings. Our results are of relevance for any regional climate or hydrological modelling study and bring new insights in our understanding of the complex hydrometeorological processes taking place on the Tibetan Plateau.

  1. Microbial Species Richness and Metabolic Activities in Hypersaline Microbial Mats: Insight into Biosignature Formation Through Lithification

    NASA Astrophysics Data System (ADS)

    Baumgartner, Laura K.; Dupraz, Christophe; Buckley, Daniel H.; Spear, John R.; Pace, Norman R.; Visscher, Pieter T.

    2009-11-01

    Microbial mats in the hypersaline lake of Salt Pan, Eleuthera, Bahamas, display a gradient of lithification along a transect from the center to the shore of the lake. These mats exist under similar geochemical conditions, with light quantity and quality as the sole major environmental difference. Therefore, we hypothesized that the microbial community may be driving the differences in lithification and, by extension, mineral biosignature formation. The lithifying and non-lithifying mat communities were compared (via 16S rRNA gene sequencing, 485 and 464 sequences, respectively) over both temporal and spatial scales. Seven bacterial groups dominated in all the microbial mat libraries: bacteriodetes, alphaproteobacteria, deltaproetobacteria, chloroflexi, spirochaetes, cyanobacteria, and planctomycetes. The mat communities were all significantly different over space, time, and lithification state. Species richness is significantly higher in the non-lithifying mats, potentially due to differences in mat structure and activity. This increased richness may impact lithification and, hence, biosignature production.

  2. Investigations of Methane Production in Hypersaline Environments

    NASA Technical Reports Server (NTRS)

    Bebout, Brad M.

    2015-01-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleo-environments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption. Methane in the atmosphere of Mars may be an indication of life but might also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. Hypersaline environments have now been reported to be extremely likely in several locations in our solar system, including: Mars, Europa, and Enceladus. Modern hypersaline microbial mat communities, (thought to be analogous to those present on the early Earth at a period of time when Mars was experiencing very similar environmental conditions), have been shown to produce methane. However, very little is known about the physical and/or biological controls imposed upon the rates at which methane, and other important trace gases, are produced and consumed in these environments. We describe here the results of our investigations of methane production in hypersaline environments, including field sites in Chile, Baja California Mexico, California, USA and the United Arab Emirates. We have measured high concentrations of methane in bubbles of gas produced both in the sediments underlying microbial mats, as well as in areas not colonized by microbial mats in the Guerrero Negro hypersaline ecosystem, Baja California Mexico, in Chile, and in salt ponds on the San Francisco Bay. The carbon isotopic (d13C) composition of the methane in the bubbles exhibited an extremely wide range of values, (ca. -75 per mille ca. -25 per mille). The hydrogen isotopic composition of the methane (d2H) ranged from -60 to -30per mille and -450 to -350per mille. These isotopic values are outside of the range of values normally considered to be biogenic, however incubations of the sediments in contact with these gas bubbles reveals that the methane is indeed being

  3. Complete genome sequence of 'Halanaeroarchaeum sulfurireducens' M27-SA2, a sulfur-reducing and acetate-oxidizing haloarchaeon from the deep-sea hypersaline anoxic lake Medee.

    PubMed

    Messina, Enzo; Sorokin, Dimitry Y; Kublanov, Ilya V; Toshchakov, Stepan; Lopatina, Anna; Arcadi, Erika; Smedile, Francesco; La Spada, Gina; La Cono, Violetta; Yakimov, Michail M

    2016-01-01

    Strain M27-SA2 was isolated from the deep-sea salt-saturated anoxic lake Medee, which represents one of the most hostile extreme environments on our planet. On the basis of physiological studies and phylogenetic positioning this extremely halophilic euryarchaeon belongs to a novel genus 'Halanaeroarchaeum' within the family Halobacteriaceae. All members of this genus cultivated so far are strict anaerobes using acetate as the sole carbon and energy source and elemental sulfur as electron acceptor. Here we report the complete genome sequence of the strain M27-SA2 which is composed of a 2,129,244-bp chromosome and a 124,256-bp plasmid. This is the second complete genome sequence within the genus Halanaeroarchaeum. We demonstrate that genome of 'Halanaeroarchaeum sulfurireducens' M27-SA2 harbors complete metabolic pathways for acetate and sulfur catabolism and for de novo biosynthesis of 19 amino acids. The genomic analysis also reveals that 'Halanaeroarchaeum sulfurireducens' M27-SA2 harbors two prophage loci and one CRISPR locus, highly similar to that of Kulunda Steppe (Altai, Russia) isolate 'H. sulfurireducens' HSR2(T). The discovery of sulfur-respiring acetate-utilizing haloarchaeon in deep-sea hypersaline anoxic lakes has certain significance for understanding the biogeochemical functioning of these harsh ecosystems, which are incompatible with life for common organisms. Moreover, isolations of Halanaeroarchaeum members from geographically distant salt-saturated sites of different origin suggest a high degree of evolutionary success in their adaptation to this type of extreme biotopes around the world.

  4. Improved inland water levels from SAR altimetry using novel empirical and physical retrackers

    NASA Astrophysics Data System (ADS)

    Villadsen, Heidi; Deng, Xiaoli; Andersen, Ole B.; Stenseng, Lars; Nielsen, Karina; Knudsen, Per

    2016-06-01

    Satellite altimetry has proven a valuable resource of information on river and lake levels where in situ data are sparse or non-existent. In this study several new methods for obtaining stable inland water levels from CryoSat-2 Synthetic Aperture Radar (SAR) altimetry are presented and evaluated. In addition, the possible benefits from combining physical and empirical retrackers are investigated. The retracking methods evaluated in this paper include the physical SAR Altimetry MOde Studies and Applications (SAMOSA3) model, a traditional subwaveform threshold retracker, the proposed Multiple Waveform Persistent Peak (MWaPP) retracker, and a method combining the physical and empirical retrackers. Using a physical SAR waveform retracker over inland water has not been attempted before but shows great promise in this study. The evaluation is performed for two medium-sized lakes (Lake Vänern in Sweden and Lake Okeechobee in Florida), and in the Amazon River in Brazil. Comparing with in situ data shows that using the SAMOSA3 retracker generally provides the lowest root-mean-squared-errors (RMSE), closely followed by the MWaPP retracker. For the empirical retrackers, the RMSE values obtained when comparing with in situ data in Lake Vänern and Lake Okeechobee are in the order of 2-5 cm for well-behaved waveforms. Combining the physical and empirical retrackers did not offer significantly improved mean track standard deviations or RMSEs. Based on these studies, it is suggested that future SAR derived water levels are obtained using the SAMOSA3 retracker whenever information about other physical properties apart from range is desired. Otherwise we suggest using the empirical MWaPP retracker described in this paper, which is both easy to implement, computationally efficient, and gives a height estimate for even the most contaminated waveforms.

  5. Active hematite concretion formation in modern acid saline lake sediments, Lake Brown, Western Australia

    NASA Astrophysics Data System (ADS)

    Bowen, Brenda Beitler; Benison, K. C.; Oboh-Ikuenobe, F. E.; Story, S.; Mormile, M. R.

    2008-04-01

    Concretions can provide valuable records of diagenesis and fluid-sediment interactions, however, reconstruction of ancient concretion-forming conditions can be difficult. Observation of modern hematite concretion growth in a natural sedimentary setting provides a rare glimpse of conditions at the time of formation. Spheroidal hematite-cemented concretions are actively precipitating in shallow subsurface sediments at Lake Brown in Western Australia. Lake Brown is a hypersaline (total dissolved solids up to 23%) and acidic (pH ˜ 4) ephemeral lake. The concretion host sediments were deposited between ˜ 1 and 3 ka, based on dating of stratigraphically higher and lower beds. These age constraints indicate that the diagenetic concretions formed < 3 ka, and field observations suggest that some are currently forming. These modern concretions from Lake Brown provide an example of very early diagenetic formation in acid and saline conditions that may be analogous to past conditions on Mars. Previously, the hematite concretions in the Burns formation on Mars have been interpreted as late stage diagenetic products, requiring long geologic time scales and multiple fluid flow events to form. In contrast, the Lake Brown concretions support the possibility of similar syndepositional to very early diagenetic concretion precipitation on Mars.

  6. Aliicoccus persicus gen. nov., sp. nov., a halophilic member of the Firmicutes isolated from a hypersaline lake.

    PubMed

    Amoozegar, Mohammad Ali; Bagheri, Maryam; Makhdoumi-Kakhki, Ali; Didari, Maryam; Schumann, Peter; Nikou, Mahdi Moshtaghi; Sánchez-Porro, Cristina; Ventosa, Antonio

    2014-06-01

    A novel Gram-staining-positive, moderately halophilic bacterium, designated strain A76(T), was isolated from a brine sample of the hypersaline lake Aran-Bidgol in Iran. Cells were strictly aerobic, coccus-shaped, non-motile, non-sporulating, and catalase- and oxidase-positive. Strain A76(T) grew between pH 7.0 and 10.0 (optimal growth at pH 8.0), between 20 and 45 °C (optimal growth at 35 °C) and at salinities of 0.5 to 12.5% (w/v) NaCl (optimal growth at 7.5%, w/v, NaCl). On the basis of 16S rRNA gene sequence analysis, strain A76(T) was shown to belong to the phylum Firmicutes with sequence similarities of 94.1, 93.1 and 91.1%, to the type species of the genera Jeotgalicoccus, Salinicoccus and Nosocomiicoccus, respectively. The DNA G+C content of this new isolate was 38.8 mol%. The major cellular fatty acids of strain A76(T) were anteiso-C(15 : 0) and iso-C(15 : 0), and its polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, a glycolipid, an unknown lipid and two unknown phospholipids. The isoprenoid quinones were MK-6 (94%), MK-5 (3%) and MK-7 (3%). The amino acid constituents of the cell wall were Lys, Asp, Gly, Glu and Ala. The physiological, biochemical and phylogenetic differences between strain A76(T) and type strains of taxa with validly published names suggest that this strain represents a novel species in a novel genus within the family Staphylococcaceae, for which the name Aliicoccus persicus gen. nov., sp. nov. is proposed. The type strain of Aliicoccus persicus is strain A76(T) ( = CECT 8508(T) = DSM 28306(T) = IBRC-M 10081(T)). © 2014 IUMS.

  7. 46 CFR 11.450 - Tonnage limitations and qualifying requirements for endorsements as master or mate of Great Lakes...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... endorsements as master or mate of Great Lakes and inland vessels of less than 200 GRT. 11.450 Section 11.450... limitations and qualifying requirements for endorsements as master or mate of Great Lakes and inland vessels... for master or mate of vessels of less than 200 GRT are issued in 50 GRT increments based on the...

  8. 46 CFR 11.450 - Tonnage limitations and qualifying requirements for endorsements as master or mate of Great Lakes...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... endorsements as master or mate of Great Lakes and inland vessels of not more than 200 gross tons. 11.450... and qualifying requirements for endorsements as master or mate of Great Lakes and inland vessels of... master or mate of vessels of not more than 200 gross tons are issued in 50 ton increments based on the...

  9. 46 CFR 11.450 - Tonnage limitations and qualifying requirements for endorsements as master or mate of Great Lakes...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... endorsements as master or mate of Great Lakes and inland vessels of not more than 200 gross tons. 11.450... and qualifying requirements for endorsements as master or mate of Great Lakes and inland vessels of... master or mate of vessels of not more than 200 gross tons are issued in 50 ton increments based on the...

  10. 46 CFR 11.450 - Tonnage limitations and qualifying requirements for endorsements as master or mate of Great Lakes...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... endorsements as master or mate of Great Lakes and inland vessels of not more than 200 gross tons. 11.450... and qualifying requirements for endorsements as master or mate of Great Lakes and inland vessels of... master or mate of vessels of not more than 200 gross tons are issued in 50 ton increments based on the...

  11. 46 CFR 11.450 - Tonnage limitations and qualifying requirements for endorsements as master or mate of Great Lakes...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... endorsements as master or mate of Great Lakes and inland vessels of not more than 200 gross tons. 11.450... and qualifying requirements for endorsements as master or mate of Great Lakes and inland vessels of... master or mate of vessels of not more than 200 gross tons are issued in 50 ton increments based on the...

  12. Sedimentology of the saline lakes of the Cariboo Plateau, Interior British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Renaut, Robin W.; Long, Peter R.

    1989-10-01

    There are several hundred saline lakes in Interior British Columbia, including muddy siliciclastic playas, saline playas, perennial lakes (including meromictic sulphate lakes), and ephemeral lakes, some with permanent salts. The lake waters have highly variable compositions, with Na-CO 3-Cl, Na-CO 3-(SO 4)-Cl, Mg-Na-SO 4 and Na-Mg-SO 4, the dominant types of brine. On the Cariboo Plateau, where they are most abundant, the saline lakes are small, shallow, and occupy depressions within glacial and glacio-fluvial deposits. Most are groundwater-fed. The region is characterized by extremely cold winters and short hot summers. Dense coniferous forest mantles much of the plateau and surrounds most of the lakes. Most basins comprise three main subenvironments—hillslope, mudflat (saline and dry) and lake (ephemeral or perennial). Fluvial sediments are of little significance. Mudflats are primarily a zone of extensive interstitial carbonate precipitation from shallow groundwaters, including abundant magnesite and hydromagnesite. The amount of carbonate formed varies with groundwater composition. Some mudflats are carbonate-dominated; others are predominantly siliciclastic with only highly soluble interstitial salts forming. Sedimentary structures are disrupted by carbonate precipitation and displacive salt crystallization. Springs and ephemeral seepages are locally present. Microbial mats form extensively along many littoral zones and around springs; laminates are preserved in some cores. Efflorescent salt crusts cover saline mudflats around most lakes and playas. Subaqueous salts (including natron, epsomite, bloedite, mirabilite) are precipitated during late summer, autumn and winter in several hypersaline lakes, some by evaporative concentration, others by brine cooling and freeze-out. Several hypersaline, ephemeral lakes have an unusual "spotted" morphology, with hundreds of individual brine pools within carbonate-siliciclastic muds. Most recent sedimentation in the

  13. Nitrate Contamination in the groundwater of the Lake Acıgöl Basin, SW Turkey

    NASA Astrophysics Data System (ADS)

    Karaman, Muhittin; Budakoǧlu, Murat; Taşdelen, Suat

    2017-04-01

    The lacustrine Acıgöl basin, formed as an extensional half-graben, hosts various bodies of water, such as cold-hot springs, lakes, streams, and wells. The hydrologically closed basin contains a hypersaline lake (Lake Acıgöl) located in the southern part of the basin. The brackish springs and deep waters discharged along the Acıgöl fault zone in the southern part of the basin feed the hypersaline lake. Groundwater is used as drinking, irrigation, and domestic water in the closed Acıgöl Basin. Groundwater flows into the hypersaline lake from the highland. The Acıgöl basin hosts large plains (Hambat, Başmakçı, and Evciler). Waters in agricultural areas contain high amounts of nitrate; groundwater samples in agricultural areas contain nitrate levels higher than 10 mg/L. Nitrate concentrations in the groundwater samples varied from 0 to 487 mg/L (n=165); 25.4 % of the groundwater samples from the basin had nitrate concentrations above 10 mg/L (the WHO drinking guideline) and 52.2% of the groundwater samples from the basin had nitrate concentrations above 3.0 mg/L, and these high values were regarded as the result of human activity. The highest nitrate values were measured in the Hambat plain (480 and 100 mg/L) and Yirce Pinari spring (447 mg/L), which discharges along the Acıgöl fault zone in the southern part of the basin. The average multi-temporal nitrate concentration of the Yirce Pınarı spring was 3.3 mg/L. Extreme nitrate values were measured in the Yirce Pınarı spring during periods when sheep wool was washed (human activity). The lowest nitrate concentrations were observed in some springs that discharged along the Acıgöl fault zone in the southern part of the basin. Nitrate was not detected in deep groundwater discharged along the Acıgöl fault zone. Nitrate concentrations in deep groundwater and some springs discharged along the Acıgöl fault zone and those feeding the hypersaline lake were significantly affected by redox conditions

  14. Tracing groundwater input into Lake Vanda, Wright Valley, Antarctica using major ions, stable isotopes and noble gas

    NASA Astrophysics Data System (ADS)

    Dowling, C. B.; Poreda, R. J.; Snyder, G. T.

    2008-12-01

    The McMurdo Dry Valleys (MDV), Antarctica, is the largest ice-free region on Antarctica. Lake Vanda, located in central Wright Valley, is the deepest lake among the MDV lakes. It has a relatively fresh water layer above 50 m with a hypersaline calcium-chloride brine below (50-72 m). The Onyx River is the only stream input into Lake Vanda. It flows westward from the coastal Lower Wright Glacier and discharges into Lake Vanda. Suggested by the published literature and this study, there has been and may still be groundwater input into Lake Vanda. Stable isotopes, major ions, and noble gas data from this study coupled with previously published data indicate that the bottom waters of Lake Vanda have had significant contributions from a deep groundwater system. The dissolved gas of the bottom waters of Lake Vanda display solubility concentrations rather than the Ar-enriched dissolved gas seen in the Taylor Valley lakes (such as Lake Bonney). The isotopic data indicate that the bottom calcium-chloride-brine of Lake Vanda has undergone very little evaporation. The calcium-chloride chemistry of the groundwater that discharges into Lake Vanda most likely results from the chemical weathering and dissolution of cryogenic evaporites (antarcticite and gypsum) within the glacial sediments of Wright Valley. The high calcium concentrations of the brine have caused gypsum to precipitate on the lake bottom. Our work also supports previous physical and chemical observations suggesting that the upper portion actively circulates and the hypersaline bottom layer does not. The helium and calcium chloride values are concentrated at the bottom, with a very narrow transition layer between it and the above fresh water. If the freshwater layer did not actively circulate, then diffusion over time would have caused the helium and calcium chloride to slowly permeate upwards through the water column.

  15. Third-Year Results from the Circumarctic Lakes Observation Network (CALON) Project

    NASA Astrophysics Data System (ADS)

    Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Eisner, W. R.; Frey, K. E.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Townsend-Small, A.

    2014-12-01

    Since 2012, 60 lakes in northern Alaska have been instrumented under the auspices of CALON, a project designed to document landscape-scale variability in physical and biogeochemical processes of Arctic lakes in permafrost terrain. The network has ten observation nodes along two latitudinal transects extending from the Arctic Ocean inland some 200 km to the Brooks Range foothills. At each node, a meteorological station is deployed, and six representative lakes of differing area and depth are instrumented and sampled at different intensity levels to collect basic field measurements. In April, sensors measuring water temperature and depth are deployed through the ice in each lake, ice and snow thickness recorded, and water samples are collected. Data are downloaded, lakes re-sampled, and bathymetric surveys are conducted in August. In 2014, the snow cover on inland lakes was thinner than in previous years but thicker on lakes located near the coast. Lake ice was generally thinner near the coast, but the difference diminished inland. Winters (Oct-March) have been progressively warmer over the 3-year period, which partially explains the thinner lake ice that formed in 2013-14. Lakes are typically well-mixed and largely isothermal, with minor thermal stratification occurring in deeper lakes during calm, sunny periods. These regional lake and meteorological data sets, used in conjunction with satellite imagery, supports the wind-driven lake circulation model for the origin of thermokarst lakes. Results of biogeochemical analyses of lake waters generally show notably higher concentrations of cations/anions, chromophoric dissolved organic matter, and chlorophyll-a during April as compared with August. Dissolved methane concentrations are also much higher under ice than in open water during summer, although all lakes are a source of atmospheric methane. Interviews with indigenous elders in Anaktuvuk Pass indicate that mountain lakes are drying up. During the 2014 breakup

  16. Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA.

    PubMed

    Johnson, William P; Swanson, Neil; Black, Brooks; Rudd, Abigail; Carling, Greg; Fernandez, Diego P; Luft, John; Van Leeuwen, Jim; Marvin-DiPasquale, Mark

    2015-04-01

    We examined mercury (Hg) speciation in water and sediment of the Great Salt Lake and surrounding wetlands, a locale spanning fresh to hypersaline and oxic to anoxic conditions, in order to test the hypothesis that spatial and temporal variations in Hg concentration and methylation rates correspond to observed spatial and temporal trends in Hg burdens previously reported in biota. Water column, sediment, and pore water concentrations of methylmercury (MeHg) and total mercury (THg), as well as related aquatic chemical parameters were examined. Inorganic Hg(II)-methylation rates were determined in selected water column and sediment subsamples spiked with inorganic divalent mercury (204Hg(II)). Net production of Me204Hg was expressed as apparent first-order rate constants for methylation (kmeth), which were also expanded to MeHg production potential (MPP) rates via combination with tin reducible 'reactive' Hg(II) (Hg(II)R) as a proxy for bioavailable Hg(II). Notable findings include: 1) elevated Hg concentrations previously reported in birds and brine flies were spatially proximal to the measured highest MeHg concentrations, the latter occurring in the anoxic deep brine layer (DBL) of the Great Salt Lake; 2) timing of reduced Hg(II)-methylation rates in the DBL (according to both kmeth and MPP) coincides with reduced Hg burdens among aquatic invertebrates (brine shrimp and brine flies) that act as potential vectors of Hg propagation to the terrestrial ecosystem; 3) values of kmeth were found to fall within the range reported by other studies; and 4) MPP rates were on the lower end of the range reported in methodologically comparable studies, suggesting the possibility that elevated MeHg in the anoxic deep brine layer results from its accumulation and persistence in this quasi-isolated environment, due to the absence of light (restricting abiotic photo demethylation) and/or minimal microbiological demethylation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China.

    PubMed

    Wang, Wenfeng; Ndungu, Anne Wairimu; Li, Zhen; Wang, Jun

    2017-01-01

    Microplastics have been considered as an emerging pollutant in the aquatic environment. However, research about microplastic pollution in inland freshwaters of China is insufficient. The present study investigated the levels of microplastics in surface water of 20 urban lakes and urban reaches of the Hanjiang River and Yangtze River of Wuhan, the largest city in central China. Microplastic concentrations ranged from 1660.0±639.1 to 8925±1591n/m 3 for the studied waters, with the highest concentration found in Bei Lake. Microplastic abundance in lakes varied markedly in space, and negatively correlated with the distance from the city center (p<0.001), which confirmed the important role of anthropogenic factors in microplastic distribution. Urban reaches of the Hanjiang River and Yangtze River were found to have relatively lower levels of microplastics than most of the studied lakes. The major type of microplastics among the studied waters was colored plastic, with fiber being the most frequent shape. More than 80% of microplastics in number had a size of <2mm. Polyethylene terephthalate and polypropylene were the dominant polymer-types of microplastics analyzed. This study provided important reference for better understanding microplastic levels in inland freshwaters. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Shifts in the Source and Composition of Dissolved Organic Matter in Southwest Greenland Lakes Along a Regional Hydro-climatic Gradient

    NASA Astrophysics Data System (ADS)

    Osburn, Christopher L.; Anderson, Nicholas J.; Stedmon, Colin A.; Giles, Madeline E.; Whiteford, Erika J.; McGenity, Terry J.; Dumbrell, Alex J.; Underwood, Graham J. C.

    2017-12-01

    Dissolved organic matter (DOM) concentration and quality were examined from Arctic lakes located in three clusters across south-west (SW) Greenland, covering the regional climatic gradient: cool, wet coastal zone; dry inland interior; and cool, dry ice-marginal areas. We hypothesized that differences in mean annual precipitation between sites would result in a reduced hydrological connectivity between lakes and their catchments and that this concentrates degraded DOM. The DOM in the inland lake group was characterized by a lower aromaticity and molecular weight, a low soil-like fluorescence, and carbon stable isotope (δ13C-DOC) values enriched by 2‰ relative to the coastal group. DOC-specific absorbance (SUVA254) and DOC-specific soil-like fluorescence (SUVFC1) revealed seasonal and climatic gradients across which DOM exhibited a dynamic we term "pulse-process": Pulses of DOM exported from soils to lakes during snow and ice melt were followed by pulses of autochthonous DOM inputs (possibly from macrophytes), and their subsequent photochemical and microbial processing. These effects regulated the dynamics of DOM in the inland lakes and suggested that if circumpolar lakes currently situated in cool wetter climatic regimes with strong hydrological connectivity have reduced connectivity under a drier future climate, they may evolve toward an end-point of large stocks of highly degraded DOC, equivalent to the inland lakes in the present study. The regional climatic gradient across SW Greenland and its influence on DOM properties in these lakes provide a model of possible future changes to lake C cycling in high-latitude systems where climatic changes are most pronounced.

  19. Comprehensive lake dynamics mapping at continental scales using Landsat 8

    USDA-ARS?s Scientific Manuscript database

    Inland lakes, important water resources, play a crucial role in the global water cycle and are sensitive to global warming and human activities. There clearly is a pressing need to understand temporal and spatial variations of lakes at global and continental scales. The recent operation of Landsat...

  20. Minor contribution of small thaw ponds to the pools of carbon and methane in the inland waters of the permafrost-affected part of the Western Siberian Lowland

    NASA Astrophysics Data System (ADS)

    Polishchuk, Y. M.; Bogdanov, A. N.; Muratov, I. N.; Polishchuk, V. Y.; Lim, A.; Manasypov, R. M.; Shirokova, L. S.; Pokrovsky, O. S.

    2018-04-01

    Despite the potential importance of small (< 1000 m2) thaw ponds and thermokarst lakes in greenhouse gas (GHG) emissions from inland waters of high latitude and boreal regions, these features have not been fully inventoried and the volume of GHG and carbon in thermokarst lakes remains poorly constrained. This is especially true for the vast Western Siberia Lowland (WSL) which is subject to strong thermokarst activity. We assessed the number of thermokarst lakes and their size distribution for the permafrost-affected WSL territory based on a combination of medium-resolution Landsat-8 images and high-resolution Kanopus-V scenes on 78 test sites across the WSL in a wide range of lake sizes (from 20 to 2 × 108 m2). The results were in fair agreement with other published data for world lakes including those in circum-polar regions. Based on available measurements of CH4, CO2, and dissolved organic carbon (DOC) in thermokarst lakes and thaw ponds of the permafrost-affected part of the WSL, we found an inverse relationship between lake size and concentration, with concentrations of GHGs and DOC being highest in small thaw ponds. However, since these small ponds represent only a tiny fraction of the landscape (i.e. ~1.5% of the total lake area), their contribution to the total pool of GHG and DOC in inland lentic water of the permafrost-affected part of the WSL is less than 2%. As such, despite high concentrations of DOC and GHG in small ponds, their role in overall C storage can be negated. Ongoing lake drainage due to climate warming and permafrost thaw in the WSL may lead to a decrease in GHG emission potential from inland waters and DOC release from lakes to rivers.

  1. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.

    2012-04-01

    Western Australia is a semi-/arid region that is heavily influenced by global climate change and agricultural land use. The area is known for its many ephemeral saline and hypersaline lakes with a wide range of hydrogeochemical parameters that have gradually changed over the last fifty years. Historically, the region was covered by eucalyptus trees and shrubs, but was cleared mainly within 10 years after WWII to make room for wheat and live stock. After the clearance of the deep rooted native plants the groundwater started to rise, bringing increased amounts of dissolved salts and minerals to the surface and discharging them into streams and lakes. Thus most of Western Australia is influenced by secondary salinisation (soil salting) [1]. Another problem is that the discharged minerals affect the pH of ground and surface water, which ranges from acidic to slightly basic. During the 2011 campaign surface water was measured with a pH between 2.5 and 7.1. Another phenomenon in Western Australia is the decrease of rainfall over the last decades assumed to be linked to the secondary salinisation. The rising saline and mineral rich groundwater increases the biotical and abiotical activity of the salt lakes. Halogenated and non-halogenated volatile organic compounds emitted from those lakes undergo fast oxidation and chemical reactions to form small particles modifying cloud microphysics and thus suppressing rain events [2]. Our objective is to gain a better understanding of this extreme environment with its hypersaline acidic lakes with regard to the potential abiotic formation of volatile organic compounds and its impact on the local climate. In spring 2011 fifty-three sediment samples from ten salt lakes in the Lake King region where taken, freeze-dried and ground. In order to simulate the abiotic formation of volatile organic compounds the soil samples were resuspended with water in gas-tight headspace vials. The headspace was measured using a purge and trap GC

  2. Metagenomics Reveals a Novel Virophage Population in a Tibetan Mountain Lake

    PubMed Central

    Oh, Seungdae; Yoo, Dongwan; Liu, Wen-Tso

    2016-01-01

    Virophages are parasites of giant viruses that infect eukaryotic organisms and may affect the ecology of inland water ecosystems. Despite the potential ecological impact, limited information is available on the distribution, diversity, and hosts of virophages in ecosystems. Metagenomics revealed that virophages were widely distributed in inland waters with various environmental characteristics including salinity and nutrient availability. A novel virophage population was overrepresented in a planktonic microbial community of the Tibetan mountain lake, Lake Qinghai. Our study identified coccolithophores and coccolithovirus-like phycodnaviruses in the same community, which may serve as eukaryotic and viral hosts of the virophage population, respectively. PMID:27151658

  3. Spatial and Temporal Patterns of Mercury Accumulation in Lacustrine Sediments Across the Laurentian Great Lakes Region

    EPA Science Inventory

    Data from 103 sediment cores from the Great Lakes and inland lakes of the Great Lakes airshed were compiled to examine and provide a synthesis of patterns of historical and recent changes in mercury (Hg) deposition. Limited data from the lower Laurentian Great Lakes shows a lega...

  4. Organic carbon burial in global lakes and reservoirs

    USGS Publications Warehouse

    Mendonça, Raquel; Müller, Roger A.; Clow, David W.; Verpoorter, Charles; Raymond, Peter; Tranvik, Lars; Sobek, Sebastian

    2017-01-01

    Burial in sediments removes organic carbon (OC) from the short-term biosphere-atmosphere carbon (C) cycle, and therefore prevents greenhouse gas production in natural systems. Although OC burial in lakes and reservoirs is faster than in the ocean, the magnitude of inland water OC burial is not well constrained. Here we generate the first global-scale and regionally resolved estimate of modern OC burial in lakes and reservoirs, deriving from a comprehensive compilation of literature data. We coupled statistical models to inland water area inventories to estimate a yearly OC burial of 0.15 (range, 0.06–0.25) Pg C, of which ~40% is stored in reservoirs. Relatively higher OC burial rates are predicted for warm and dry regions. While we report lower burial than previously estimated, lake and reservoir OC burial corresponded to ~20% of their C emissions, making them an important C sink that is likely to increase with eutrophication and river damming.

  5. Citizen science shows systematic changes in the temperature difference between air and inland waters with global warming

    NASA Astrophysics Data System (ADS)

    Weyhenmeyer, Gesa A.; Mackay, Murray; Stockwell, Jason D.; Thiery, Wim; Grossart, Hans-Peter; Augusto-Silva, Pétala B.; Baulch, Helen M.; de Eyto, Elvira; Hejzlar, Josef; Kangur, Külli; Kirillin, Georgiy; Pierson, Don C.; Rusak, James A.; Sadro, Steven; Woolway, R. Iestyn

    2017-03-01

    Citizen science projects have a long history in ecological studies. The research usefulness of such projects is dependent on applying simple and standardized methods. Here, we conducted a citizen science project that involved more than 3500 Swedish high school students to examine the temperature difference between surface water and the overlying air (Tw-Ta) as a proxy for sensible heat flux (QH). If QH is directed upward, corresponding to positive Tw-Ta, it can enhance CO2 and CH4 emissions from inland waters, thereby contributing to increased greenhouse gas concentrations in the atmosphere. The students found mostly negative Tw-Ta across small ponds, lakes, streams/rivers and the sea shore (i.e. downward QH), with Tw-Ta becoming increasingly negative with increasing Ta. Further examination of Tw-Ta using high-frequency temperature data from inland waters across the globe confirmed that Tw-Ta is linearly related to Ta. Using the longest available high-frequency temperature time series from Lake Erken, Sweden, we found a rapid increase in the occasions of negative Tw-Ta with increasing annual mean Ta since 1989. From these results, we can expect that ongoing and projected global warming will result in increasingly negative Tw-Ta, thereby reducing CO2 and CH4 transfer velocities from inland waters into the atmosphere.

  6. Redfield Ratios in Inland Waters: Higher Biological Control of C:N:P Ratios in Tropical Semi-arid High Water Residence Time Lakes

    PubMed Central

    They, Ng H.; Amado, André M.; Cotner, James B.

    2017-01-01

    The canonical Redfield C:N:P ratio for algal biomass is often not achieved in inland waters due to higher C and N content and more variability when compared to the oceans. This has been attributed to much lower residence times and higher contributions of the watershed to the total organic matter pool of continental ecosystems. In this study we examined the effect of water residence times in low latitude lakes (in a gradient from humid to a semi-arid region) on seston elemental ratios in different size fractions. We used lake water specific conductivity as a proxy for residence time in a region of Eastern Brazil where there is a strong precipitation gradient. The C:P ratios decreased in the seston and bacterial size-fractions and increased in the dissolved fraction with increasing water retention time, suggesting uptake of N and P from the dissolved pool. Bacterial abundance, production and respiration increased in response to increased residence time and intracellular nutrient availability in agreement with the growth rate hypothesis. Our results reinforce the role of microorganisms in shaping the chemical environment in aquatic systems particularly at long water residence times and highlights the importance of this factor in influencing ecological stoichiometry in all aquatic ecosystems. PMID:28848518

  7. Lakes and lake-like waters of the Hawaiian Archipelago

    USGS Publications Warehouse

    Maciolek, J.A.

    1982-01-01

    This summary of Hawaiian lacustrine limnology is based on 12 years of field and literature surveys of archipelagic inland waters. Lakes here are distinguished from other standing waters by limits on surface oceanic area (> 0.1 ha) and depth (> 2 m), and by the absence of flatural surface oceanic connection. A variety of extinct and existing water bodies, sometimes referred to as lakes, are noted. Six lakes are described. Five of them are in crater basins, 3 are freshwater, and 2 are elevated (highest = 3969 m). The scarcity of elevated lakes results from general permeability of the substrata. Among the 6 lakes, surface areas range from 0.22 to 88 ha and maximum depths from 3 to 248 m. Naturally occurring aquatic biota generally is low in species diversity except for phytoplankton; fishes and submersed vascular plants are absent. Two lowland lakes, freshwater Green (Wai a Pele) and saline Kauhak6, are described for the first time. Profundal Kauhak6, 248 m deep, has a surface area of only 0.35 ha, which results in an extraordinary relative depth of 370%. It is permanently stratified, a condition apparently due primarily to the unique morphometry of its basin. 

  8. On the origins of hypersaline groundwater in the Nile Delta aquifer

    NASA Astrophysics Data System (ADS)

    van Engelen, Joeri; Oude Essink, Gualbert H. P.; Kooi, Henk; Bierkens, Marc F. P.

    2018-05-01

    The Nile Delta is essential to Egypt's agro- and socio-economy. Although surface water is the traditional source for Egypt's irrigation, the shallow fresh groundwater resources underlying the delta are increasingly burdened by groundwater pumping, which increases interest in the status of the groundwater resources. Groundwater up to three times more saline than sea water was found at 600 m depth. The occurrence of this hypersaline groundwater raises doubts on the often-made assumption in the literature that seawater is the only source of salt in the Nile Delta aquifer and makes further investigation necessary. Knowledge on the origin of this hypersaline groundwater is key in assessing the possibility of deep fresh groundwater pockets. In this paper we conducted computational analyses to assess possible origins using both analytical solutions and numerical models. It is concluded that the hypersaline groundwater can either originate from Quaternary free convection systems, or from compaction-induced upward salt transport of hypersaline groundwater that formed during the Messinian salinity crisis. Our results also indicate that with groundwater dating it is possible to discriminate between these two hypotheses. Furthermore, it is deduced that the hydrological connection between aquifer and sea is crucial to the hydrogeological functioning of the Nile Delta Aquifer.

  9. Small ponds play big role in greenhouse gas emissions from inland waters

    NASA Astrophysics Data System (ADS)

    Holgerson, M.; Raymond, P. A.

    2017-12-01

    Inland waters are an important part of the global carbon cycle, but there is uncertainty in estimating their greenhouse gas emissions. Uncertainty stems from different models and variable estimates of surface water gas concentrations, gas exchange rates, and the global size distribution of water bodies. Emissions from small water bodies are especially difficult to estimate because they are not globally mapped and few studies have assessed their greenhouse gas concentrations and gas exchange rates. To overcome these limitations, we studied greenhouse gases and gas exchange rates in small ponds in temperate forests of the northeastern United States. We then compiled our data with direct measurements of CO2 and CH4 concentrations from 427 ponds and lakes worldwide, and upscaled to estimate greenhouse gas emissions using estimates of gas exchange rates and the size distribution of lakes. We found that small ponds play a disproportionately large role in greenhouse gas emissions. While small ponds only account for about 9% of global lakes and ponds by area, they contribute 15% of CO2 and 41% of diffusive CH4 emissions from inland freshwaters. Secondly, we measured gas exchange velocities (k) in small ponds and compiled direct measurements of k from 67 global water bodies. We found that k is low but highly variable in small ponds, and increases and becomes even more variable with lake size, a finding that is not currently included in global carbon models. In a third study, we found that gas exchange in small ponds is highly sensitive to overnight cooling, which can lead to short bursts of increased k at night, with implications for greenhouse gas emissions. Overall, these studies show that small ponds are a critical part of the global carbon cycle, and also highlight many knowledge gaps. Therefore, understanding small pond carbon cycling is an important research priority.

  10. Holocene Depositional History of Shad Pond, a Hypersaline Coastal Lagoon, Eleuthera, Bahamas and Its Influence on Lucayan Occupation

    NASA Astrophysics Data System (ADS)

    Boush, L. E.; Fentress, S.; Conroy, M.; Cook, A.; Miseridina, D.; Buynevich, I. V.; Myrbo, A.; Brown, E. T.; Berman, M.; Gnivecki, P.; Kjellmark, E.; Savarese, M.; Brady, K.

    2013-12-01

    Shad Pond, an enclosed hypersaline lagoon on the southeastern tip of Eleuthera, Bahamas reveals a ~5000-year record of hurricane activity, as well as sea-level and climate change history. Three sediment cores recovered 1.04-2.54 m of sediment over bedrock along a transect perpendicular to shoreline. Sediment composition and grain size, loss on ignition, X-ray fluorescence (XRF) measurements of the cores along with dune transects and ground-penetrating radar (GPR) profiles adjacent to the lake provide a comprehensive dataset to interpret the history of this coastal basin. The sedimentary sequence was composed of alternating lithofacies that included microbial mats, sand, and peat. Laminated mats often alternated with sandy layers in thin to medium-bedded units. Two peat layers were found in the basal part of the shore-distal core (Site 1) between 1.82-2.40 m and 2.53-2.54 m and were separated by a 13-cm-thick gray mud layer. In general, organic matter and carbonate content tracked granulometry and composition in all cores. High-resolution XRF scans of Ca and Sr at Site 1 show elevated levels ~3,700 cal yBP, which correlate with the top of the peat layer, but these elemental concentrations vary at Site 3. XRF measurements of Fe indicate a dust flux that has been recorded regionally throughout the Caribbean. Dune transects and GPR profiles indicate a phased history of the pond, beginning with initial stages as an open lagoon dominated by red mangrove, with black mangrove and buttonwood also present. The lake likely closed at approximately 3,700 cal yBP indicated by the transition between the upper peat and microbial mat layers. This could have been due to increased storm events in a regime of rising sea level. Aeolian aggradation continued to heighten the barrier between the bedrock headlands to its present position. Hurricane overwash deposits punctuated the algal mat accumulation throughout this time period. Present-day hypersaline conditions sustain algal mats

  11. Mechanisms of fenthion activation in rainbow trout (Oncorhynchus mykiss) acclimated to hypersaline environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavado, Ramon; Rimoldi, John M.; Schlenk, Daniel

    2009-03-01

    Previous studies in rainbow trout have shown that acclimation to hypersaline environments enhances the toxicity to thioether organophosphate and carbamate pesticides. In order to determine the role of biotransformation in this process, the metabolism of the thioether organophosphate biocide, fenthion was evaluated in microsomes from gills, liver and olfactory tissues in rainbow trout (Oncorhynchus mykiss) acclimated to freshwater and 17 per mille salinity. Hypersalinity acclimation increased the formation of fenoxon and fenoxon sulfoxide from fenthion in liver microsomes from rainbow trout, but not in gills or in olfactory tissues. NADPH-dependent and independent hydrolysis was observed in all tissues, but onlymore » NADPH-dependent fenthion cleavage was differentially modulated by hypersalinity in liver (inhibited) and gills (induced). Enantiomers of fenthion sulfoxide (65% and 35% R- and S-fenthion sulfoxide, respectively) were formed in liver and gills. The predominant pathway of fenthion activation in freshwater appears to be initiated through initial formation of fenoxon which may be subsequently converted to the most toxic metabolite fenoxon R-sulfoxide. However, in hypersaline conditions both fenoxon and fenthion sulfoxide formation may precede fenoxon sulfoxide formation. Stereochemical evaluation of sulfoxide formation, cytochrome P450 inhibition studies with ketoconazole and immunoblots indicated that CYP3A27 was primarily involved in the enhancement of fenthion activation in hypersaline-acclimated fish with limited contribution of FMO to initial sulfoxidation.« less

  12. Discrimination among spawning concentrations of Lake Superior lake herring based on trace element profiles in sagittae

    USGS Publications Warehouse

    Bronte, Charles R.; Hesselberg, Robert J.; Shoesmith, John A.; Hoff, Michael H.

    1996-01-01

    Little is known about the stock structure of lake herring Coregonus artedi in Lake Superior, and recent increases in harvestable stock sizes has led to expanded exploitation in some areas. Research on marine teleosts has demonstrated that chemical differences in sagittal otoliths can be used for identification of fish stocks. We used plasma emission spectrophotometry to measure the concentrations of 10 trace elements in the sagittal otoliths from lake herring captured at eight spawning sites in Lake Superior and from Little Star Lake, an inland lake outside the Lake Superior basin. Discriminant function analysis indicated that elemental concentrations provided site-specific information but that considerable overlap existed among some locations, especially those in western Lake Superior. Correct classification rates varied from 12.0% to 86.1% and were generally higher for spawning locations from embayments in eastern Lake Superior and for the outgroup population from Little Star Lake. The results presented here demonstrate the potential usefulness of this technique for strictly freshwater species, especially those that live in highly oligotrophic waters such as Lake Superior.

  13. LakeSST: Lake Skin Surface Temperature in French inland water bodies for 1999-2016 from Landsat archives

    NASA Astrophysics Data System (ADS)

    Prats, Jordi; Reynaud, Nathalie; Rebière, Delphine; Peroux, Tiphaine; Tormos, Thierry; Danis, Pierre-Alain

    2018-04-01

    The spatial and temporal coverage of the Landsat satellite imagery make it an ideal resource for the monitoring of water temperature over large territories at a moderate spatial and temporal scale at a low cost. We used Landsat 5 and Landsat 7 archive images to create the Lake Skin Surface Temperature (LakeSST) data set, which contains skin water surface temperature data for 442 French water bodies (natural lakes, reservoirs, ponds, gravel pit lakes and quarry lakes) for the period 1999-2016. We assessed the quality of the satellite temperature measurements by comparing them to in situ measurements and taking into account the cool skin and warm layer effects. To estimate these effects and to investigate the theoretical differences between the freshwater and seawater cases, we adapted the COARE 3.0 algorithm to the freshwater environment. We also estimated the warm layer effect using in situ data. At the reservoir of Bimont, the estimated cool skin effect was about -0.3 and -0.6 °C most of time, while the warm layer effect at 0.55 m was negligible on average, but could occasionally attain several degrees, and a cool layer was often observed in the night. The overall RMSE of the satellite-derived temperature measurements was about 1.2 °C, similar to other applications of satellite images to estimate freshwater surface temperatures. The LakeSST data can be used for studies on the temporal evolution of lake water temperature and for geographical studies of temperature patterns. The LakeSST data are available at https://doi.org/10.5281/zenodo.1193745.

  14. A new method of quantifying discharge of small rivers into lakes and inland seas

    NASA Astrophysics Data System (ADS)

    Osadchiev, Alexander; Zavialov, Peter

    2014-05-01

    Continental discharge is an important component of the global hydrological cycle, providing the majority of the input part of the ocean water balance. Buoyant inflow usually causes surface density stratification at the large shelf areas, and plays a significant role in physical, chemical, and biological processes there that is especially important for the lakes and inland seas. Although there is a lack of discharge data for most of rivers in a global scale. Regular direct measurements of discharge are performed only for a relatively small number of rivers, generally the biggest ones or ones that flow through densely populated areas. Within this problem an indirect method of assuming a volume of river discharge was developed. The general idea of the method is the following. Firstly, the spatial surface spread of the plume generated by the considered river discharge is identified using high resolution satellite imagery of the coastal zone adjacent to the river estuary. Secondly, a series of numerical simulations of the river runoff spread is performed under various prescribed external forcing conditions which include the discharge rate. Varying forcing conditions we iteratively improve the accordance between simulated and observed river plumes therefore consequentially specifying the value of river discharge. The developed method was applied and validated against in situ date for several rivers feeding the Black Sea. Practical importance of this work consists in the fact, that the suggested method is an alternative for the expensive and laborious direct measurements of the river discharge, which are used nowadays.

  15. Transboundary fisheries science: Meeting the challenges of inland fisheries management in the 21st century

    USGS Publications Warehouse

    Midway, Stephen R.; Wagner, Tyler; Zydlewski, Joseph D.; Irwin, Brian J.; Paukert, Craig P.

    2016-01-01

    Managing inland fisheries in the 21st century presents several obstacles, including the need to view fisheries from multiple spatial and temporal scales, which usually involves populations and resources spanning sociopolitical boundaries. Though collaboration is not new to fisheries science, inland aquatic systems have historically been managed at local scales and present different challenges than in marine or large freshwater systems like the Laurentian Great Lakes. Therefore, we outline a flexible strategy that highlights organization, cooperation, analytics, and implementation as building blocks toward effectively addressing transboundary fisheries issues. Additionally, we discuss the use of Bayesian hierarchical models (within the analytical stage), due to their flexibility in dealing with the variability present in data from multiple scales. With growing recognition of both ecological drivers that span spatial and temporal scales and the subsequent need for collaboration to effectively manage heterogeneous resources, we expect implementation of transboundary approaches to become increasingly critical for effective inland fisheries management.

  16. Spatially-resolved carbon flow through a hypersaline phototrophic microbial mat

    NASA Astrophysics Data System (ADS)

    Moran, J.; Lindemann, S. R.; Cory, A. B.; Courtney, S.; Cole, J. K.; Fredrickson, J.

    2013-12-01

    Hot Lake is a hypersaline, meromictic lake located in an endorheic basin in north-central Washington. Low annual rainfall and high evaporation rates contribute to the lake's high salinity. The predominant dissolved salt is magnesium sulfate, of which monimolimnion waters may seasonally exceed 2 M concentrations. Induced by its high salinity and meromictic nature, Hot Lake displays an inverse thermal gradient with deep horizons seasonally exceeding 50 °C. Despite extreme conditions, dense benthic microbial mats composed of cyanobacteria, anoxygenic photoheterotrophs, and bacterial heterotroph populations develop in the lake. These mats can exceed 1 cm in thickness and display vertical stratification in color due to bacterial pigmentation. Typical mat stratification includes an orange surface layer underlain by green and purple layers at increasing depth. Carbonates, including aragonite and magnesite, are observed within the mat and their formation is likely induced or influenced by microbial metabolic activities and associated pH excursions. We are exploring the role Hot Lake's microbial mats play in carbon cycling. Cyanobacteria are the dominant CO2-fixing organisms in the mat and we seek to understand the spatial and metabolic controls on how the carbon initially fixed by mat cyanobacteria is transferred to associated heterotrophic populations spread throughout the mat strata. Secondly, we seek to understand the overall net carbon balance of the mat through a growing season. We are using a stable isotope probing approach for assessing carbon uptake and migration through representative mat samples. We performed a series of ex situ incubations of freshly harvested mat samples in lake water amended with 13C-labeled bicarbonate or substrates commonly consumed by heterotrophs (including acetate and glucose) and using multiple stable isotope techniques to track label uptake, residence time, remineralization, and location within the mat. In addition to bulk isotope

  17. Citizen science shows systematic changes in the temperature difference between air and inland waters with global warming

    PubMed Central

    Weyhenmeyer, Gesa A.; Mackay, Murray; Stockwell, Jason D.; Thiery, Wim; Grossart, Hans-Peter; Augusto-Silva, Pétala B.; Baulch, Helen M.; de Eyto, Elvira; Hejzlar, Josef; Kangur, Külli; Kirillin, Georgiy; Pierson, Don C.; Rusak, James A.; Sadro, Steven; Woolway, R. Iestyn

    2017-01-01

    Citizen science projects have a long history in ecological studies. The research usefulness of such projects is dependent on applying simple and standardized methods. Here, we conducted a citizen science project that involved more than 3500 Swedish high school students to examine the temperature difference between surface water and the overlying air (Tw-Ta) as a proxy for sensible heat flux (QH). If QH is directed upward, corresponding to positive Tw-Ta, it can enhance CO2 and CH4 emissions from inland waters, thereby contributing to increased greenhouse gas concentrations in the atmosphere. The students found mostly negative Tw-Ta across small ponds, lakes, streams/rivers and the sea shore (i.e. downward QH), with Tw-Ta becoming increasingly negative with increasing Ta. Further examination of Tw-Ta using high-frequency temperature data from inland waters across the globe confirmed that Tw-Ta is linearly related to Ta. Using the longest available high-frequency temperature time series from Lake Erken, Sweden, we found a rapid increase in the occasions of negative Tw-Ta with increasing annual mean Ta since 1989. From these results, we can expect that ongoing and projected global warming will result in increasingly negative Tw-Ta, thereby reducing CO2 and CH4 transfer velocities from inland waters into the atmosphere. PMID:28262715

  18. Ophiuroids Discovered in the Middle Triassic Hypersaline Environment

    PubMed Central

    Salamon, Mariusz A.; Niedźwiedzki, Robert; Lach, Rafał; Brachaniec, Tomasz; Gorzelak, Przemysław

    2012-01-01

    Echinoderms have long been considered to be one of the animal phyla that is strictly marine. However, there is growing evidence that some recent species may live in either brackish or hypersaline environments. Surprisingly, discoveries of fossil echinoderms in non-(open)marine paleoenvironments are lacking. In Wojkowice Quarry (Southern Poland), sediments of lowermost part of the Middle Triassic are exposed. In limestone layer with cellular structures and pseudomorphs after gypsum, two dense accumulations of articulated ophiuroids (Aspiduriella similis (Eck)) were documented. The sediments with ophiuroids were formed in environment of increased salinity waters as suggested by paleontological, sedimentological, petrographical and geochemical data. Discovery of Triassic hypersaline ophiuroids invalidates the paleontological assumption that fossil echinoderms are indicators of fully marine conditions. Thus caution needs to be taken when using fossil echinoderms in paleoenvironmental reconstructions. PMID:23185442

  19. Multidate Landsat lake quality monitoring program

    NASA Technical Reports Server (NTRS)

    Fisher, L. T.; Scarpace, F. L.; Thomsen, R. G.

    1979-01-01

    A unified package of files and programs has been developed to automate the multidate Landsat-derived analyses of water quality for about 3000 inland lakes throughout Wisconsin. A master lakes file which stores geographic information on the lakes, a file giving the latitudes and longitudes of control points for scene navigation, and a program to estimate control point locations and produce microfiche character maps for scene navigation are among the files and programs of the system. The use of ground coordinate systems to isolate irregular shaped areas which can be accessed at will appears to provide an economical means of restricting the size of the data set.

  20. Mono Lake sediments preserve a record of recent environmental change

    NASA Astrophysics Data System (ADS)

    Meixnerova, J.; Betts, M.; Westacott, S.; Ingalls, M.; Miller, L. G.; Sessions, A. L.; Trower, L.; Geobiology Course, A.

    2017-12-01

    Modern Mono Lake is a geochemically unique closed-basin, hypersaline soda lake. Since 1941, anthropogenic water diversions have decreased the lake's volume and water level, driving changes in water chemistry and ecology. Mono Lake sediments offer an opportunity to investigate the nature and extent of these changes. We analyzed a 70 cm sediment core from the center of Mono Lake recording the past 116 years of deposition. At the time of recovery, the entire core was dark green. 16S rRNA gene analysis indicated a sedimentary bacterial community dominated by Cyanobacteria. SEM imaging revealed abundant, well-preserved diatom frustules below 10 cm core depth, in contrast they are nearly absent above 10 cm depth. Fatty acid (FAME) biomarkers for diatoms and algal sterols were present throughout the core in varying concentrations. Phytol was exceptionally abundant in the core; ratios of phytol/C-18 FAME were commonly >200. The δ13Corg ranged between -17.5 and -20‰ in the lower 52 cm of the core while the upper part shows significant decrease of δ13Corg to -28‰. We interpret the shift in δ13Corg as an ecological transition from mainly diatoms in the lower core towards the green alga Picocystis, which is the main primary producer today and has a δ13Corg value of -32.5‰. The onset of this change dates back 23 years, which roughly coincides with the highest reported salinity, 88 g/L in 1995. We hypothesize that diatoms gradually became marginalized as a result of hypersaline conditions. We also observed a variety of trends that may be characterized as unique fingerprints of Mono Lake. The unusually high abundance of phytol was consistent with the core's pervasive green coloring and could potentially indicate a higher preservation potential of phytol under alkaline conditions. Throughout the core, δ15Norg fluctuated between +10 and +13‰. Such atypical enrichment in δ15Norg could be explained by NH4 dissociation and subsequent NH3 volatilization under high p

  1. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget

    USGS Publications Warehouse

    Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, Robert G.; Duarte, C.M.; Kortelainen, Pirkko; Downing, J.A.; Middelburg, J.J.; Melack, J.

    2007-01-01

    Because freshwater covers such a small fraction of the Earth's surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y-1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y-1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described. ?? 2007 Springer Science+Business Media, LLC.

  2. Utilization of ERTS-1 data to monitor and classify eutrophication of inland lakes

    NASA Technical Reports Server (NTRS)

    Rogers, R. H.; Smith, V. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Significant findings are: (1) one-acre lakes and one-acre islands are detectable; (2)removal of atmospheric parameters derived from RPMI measurements show test lakes to have reflectances of 3.1 to 5.5% in band 4 and 0.3 to 2.3% in band 5; (3) failure to remove reflectance caused by atmosphere results in errors up to 500% in computing lake reflectance from ERTS-1 data; (4) in band 4, up to seven reflectance levels were observed in test lakes; (5) reflectance patterns have been displayed on a color-coded TV monitor and on computer-generated gray scales; (6) deep and shallow water can be separated by a trained photointerpreter and automatic machine processing, with estimates of water depth possible in some cases; (7) RPMI provides direct spectral signature measurements of lakes and lake features such as algal scums and floating plants; (8) a method is reported for obtaining lake color, as estimated by Forel-Ule standards, from ERTS-1 data; (9) a strong correlation between browner water color, diminishing water transparency; and (10) classifying lake eutrophication by observation of surface scums or macrophytes in shallow water seems straightforward.

  3. Saline lakes of the glaciated Northern Great Plains

    USGS Publications Warehouse

    Mushet, David M.

    2011-01-01

    Unless you have flown over the region or seen aerial photographs, it is hard to grasp the scale of the millions of lakes and wetlands that dot the prairie landscape of the glaciated Northern Great Plains (Figure 1). This region of abundant aquatic habitats within a grassland matrix provides for the needs of a wide diversity of wildlife species and has appropriately been deemed the "duck factory of North America." While the sheer number of lakes and wetlands within this area of the Northern Great Plains can be truly awe-inspiring, their diversity in terms of the chemical composition of their water adds an equally important component supporting biotic diversity and productivity. Water within these lakes and wetlands can range from extremely fresh with salinities approaching that of rainwater to hypersaline with salinity ten times greater than that of seawater. Additionally, while variation in salinity among these water bodies can be great, the ionic composition of lakes and wetlands with similar salinities can vary markedly, influencing the overall spatial and temporal diversity of the region's biota.

  4. Hypersaline sapropels act as hotspots for microbial dark matter

    DOE PAGES

    Andrei, Adrian -Stefan; Baricz, Andreea; Robeson, Michael Scott; ...

    2017-07-21

    Present-day terrestrial analogue sites are crucial ground truth proxies for studying life in geochemical conditions close to those assumed to be present on early Earth or inferred to exist on other celestial bodies (e.g. Mars, Europa). Although hypersaline sapropels are border-of-life habitats with moderate occurrence, their microbiological and physicochemical characterization lags behind. Here, we study the diversity of life under low water activity by describing the prokaryotic communities from two disparate hypersaline sapropels (Transylvanian Basin, Romania) in relation to geochemical milieu and pore water chemistry, while inferring their role in carbon cycling by matching taxa to known taxon-specific biogeochemical functions.more » Furthermore, the polyphasic approach combined deep coverage SSU rRNA gene amplicon sequencing and bioinformatics with RT-qPCR and physicochemical investigations. We found that sapropels developed an analogous elemental milieu and harbored prokaryotes affiliated with fifty-nine phyla, among which the most abundant were Proteobacteria, Bacteroidetes and Chloroflexi. Containing thirty-two candidate divisions and possibly undocumented prokaryotic lineages, the hypersaline sapropels were found to accommodate one of the most diverse and novel ecosystems reported to date and may contribute to completing the phylogenetic branching of the tree of life.« less

  5. Hypersaline sapropels act as hotspots for microbial dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrei, Adrian -Stefan; Baricz, Andreea; Robeson, Michael Scott

    Present-day terrestrial analogue sites are crucial ground truth proxies for studying life in geochemical conditions close to those assumed to be present on early Earth or inferred to exist on other celestial bodies (e.g. Mars, Europa). Although hypersaline sapropels are border-of-life habitats with moderate occurrence, their microbiological and physicochemical characterization lags behind. Here, we study the diversity of life under low water activity by describing the prokaryotic communities from two disparate hypersaline sapropels (Transylvanian Basin, Romania) in relation to geochemical milieu and pore water chemistry, while inferring their role in carbon cycling by matching taxa to known taxon-specific biogeochemical functions.more » Furthermore, the polyphasic approach combined deep coverage SSU rRNA gene amplicon sequencing and bioinformatics with RT-qPCR and physicochemical investigations. We found that sapropels developed an analogous elemental milieu and harbored prokaryotes affiliated with fifty-nine phyla, among which the most abundant were Proteobacteria, Bacteroidetes and Chloroflexi. Containing thirty-two candidate divisions and possibly undocumented prokaryotic lineages, the hypersaline sapropels were found to accommodate one of the most diverse and novel ecosystems reported to date and may contribute to completing the phylogenetic branching of the tree of life.« less

  6. High Frequency monitoring of cyanoHABs and cyanotoxin production to characterize periods of greatest risk on an inland reservoir

    EPA Science Inventory

    A monitoring approach combining wet chemistry and high frequency (HF) water quality sensors has been employed to improve our understanding of the ecology of an inland reservoir with a history of cyanoHAB events. Lake Harsha is a multi-use reservoir managed by the USACE in southwe...

  7. The microbial arsenic cycle in Mono Lake, California

    USGS Publications Warehouse

    Oremland, Ronald S.; Stolz, John F.; Hollibaugh, James T.

    2004-01-01

    Significant concentrations of dissolved inorganic arsenic can be found in the waters of a number of lakes located in the western USA and in other water bodies around the world. These lakes are often situated in arid, volcanic terrain. The highest concentrations of arsenic occur in hypersaline, closed basin soda lakes and their remnant brines. Although arsenic is a well-known toxicant to eukaryotes and prokaryotes alike, some prokaryotes have evolved biochemical mechanisms to exploit arsenic oxyanions (i.e., arsenate and arsenite); they can use them either as an electron acceptor for anaerobic respiration (arsenate), or as an electron donor (arsenite) to support chemoautotrophic fixation of CO2 into cell carbon. Unlike in freshwater or marine ecosystems, these processes may assume quantitative significance with respect to the carbon cycle in arsenic-rich soda lakes. For the past several years our research has focused on the occurrence and biogeochemical manifestations of these processes in Mono Lake, a particularly arsenic-rich environment. Herein we review some of our findings concerning the biogeochemical arsenic cycle in this lake, with the hope that it may broaden the understanding of the influence of microorganisms upon the speciation of arsenic in more common, less “extreme” environments, such as drinking water aquifers.

  8. Natronobiforma cellulositropha gen. nov., sp. nov., a novel haloalkaliphilic member of the family Natrialbaceae (class Halobacteria) from hypersaline alkaline lakes.

    PubMed

    Sorokin, Dimitry Y; Khijniak, Tatiana V; Kostrikina, Nadezhda A; Elcheninov, Alexander G; Toshchakov, Stepan V; Bale, Nicole J; Damsté, Jaap S Sinninghe; Kublanov, Ilya V

    2018-04-27

    Six strains of extremely halophilic and alkaliphilic euryarchaea were enriched and isolated in pure culture from surface brines and sediments of hypersaline alkaline lakes in various geographical locations with various forms of insoluble cellulose as growth substrate. The cells are mostly flat motile rods with a thin monolayer cell wall while growing on cellobiose. In contrast, the cells growing with cellulose are mostly nonmotile cocci covered with a thick external EPS layer. The isolates, designated AArcel, are obligate aerobic heterotrophs with a narrow substrate spectrum. All strains can use insoluble celluloses, cellobiose, a few soluble glucans and xylan as their carbon and energy source. They are extreme halophiles, growing within the range from 2.5 to 4.8M total Na + (optimum at 4M) and obligate alkaliphiles, with the pH range for growth from 7.5 to 9.9 (optimum at 8.5-9). The core archaeal lipids of strain AArcel5 T were dominated by C 20 -C 20 dialkyl glycerol ether (DGE) (i.e. archaeol) and C 20 -C 25 DGE in nearly equal proportion. The 16S rRNA gene analysis indicated that all six isolates belong to a single genomic species mostly related to the genera Saliphagus-Natribaculum-Halovarius. Taking together a substantial phenotypic difference of the new isolates from the closest relatives and the phylogenetic distance, it is concluded that the AArcel group represents a novel genus-level branch within the family Natrialbaceae for which the name Natronobiforma cellulositropha gen. nov., sp. nov. is proposed with AArcel5 T as the type strain (JCM 31939 T =UNIQEM U972 T ). Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. Microbial fuel cells in saline and hypersaline environments: Advancements, challenges and future perspectives.

    PubMed

    Grattieri, Matteo; Minteer, Shelley D

    2018-04-01

    This review is aimed to report the possibility to utilize microbial fuel cells for the treatment of saline and hypersaline solutions. An introduction to the issues related with the biological treatment of saline and hypersaline wastewater is reported, discussing the limitation that characterizes classical aerobic and anaerobic digestions. The microbial fuel cell (MFC) technology, and the possibility to be applied in the presence of high salinity, is discussed before reviewing the most recent advancements in the development of MFCs operating in saline and hypersaline conditions, with their different and interesting applications. Specifically, the research performed in the last 5years will be the main focus of this review. Finally, the future perspectives for this technology, together with the most urgent research needs, are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Statewide lake classification utilizing LANDSAT imagery for the state of Wisconsin

    NASA Technical Reports Server (NTRS)

    Martin, R. H.; Merideth, R. W., Jr.

    1981-01-01

    A cooperative program between the Wisconsin Department of Natural Resources and the University of Wisconsin-Madison resulted in the assessment of the trophic condition of approximately 3,000 significant inland lakes in Wisconsin. The feasibility of using both photographic and digital representations of LANDSAT multispectral scanner data for lake classification was investigated. The result was the development of a nearly automated system which, with minimal human interaction, locates and extracts the lake data, then corrects the data for atmospheric effects, and finally classifies all the significant lakes in the state as to trophic condition.

  11. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    PubMed Central

    Navarro-Noya, Yendi E.; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G.; Marsch, Rodolfo

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH. PMID:26074731

  12. Datasets related to in-land water for limnology and remote sensing applications: distance-to-land, distance-to-water, water-body identifier and lake-centre co-ordinates.

    PubMed

    Carrea, Laura; Embury, Owen; Merchant, Christopher J

    2015-11-01

    Datasets containing information to locate and identify water bodies have been generated from data locating static-water-bodies with resolution of about 300 m (1/360 ∘ ) recently released by the Land Cover Climate Change Initiative (LC CCI) of the European Space Agency. The LC CCI water-bodies dataset has been obtained from multi-temporal metrics based on time series of the backscattered intensity recorded by ASAR on Envisat between 2005 and 2010. The new derived datasets provide coherently: distance to land, distance to water, water-body identifiers and lake-centre locations. The water-body identifier dataset locates the water bodies assigning the identifiers of the Global Lakes and Wetlands Database (GLWD), and lake centres are defined for in-land waters for which GLWD IDs were determined. The new datasets therefore link recent lake/reservoir/wetlands extent to the GLWD, together with a set of coordinates which locates unambiguously the water bodies in the database. Information on distance-to-land for each water cell and the distance-to-water for each land cell has many potential applications in remote sensing, where the applicability of geophysical retrieval algorithms may be affected by the presence of water or land within a satellite field of view (image pixel). During the generation and validation of the datasets some limitations of the GLWD database and of the LC CCI water-bodies mask have been found. Some examples of the inaccuracies/limitations are presented and discussed. Temporal change in water-body extent is common. Future versions of the LC CCI dataset are planned to represent temporal variation, and this will permit these derived datasets to be updated.

  13. Citizen science shows systematic changes in the temperature difference between air and inland waters with global warming.

    PubMed

    Weyhenmeyer, Gesa A; Mackay, Murray; Stockwell, Jason D; Thiery, Wim; Grossart, Hans-Peter; Augusto-Silva, Pétala B; Baulch, Helen M; de Eyto, Elvira; Hejzlar, Josef; Kangur, Külli; Kirillin, Georgiy; Pierson, Don C; Rusak, James A; Sadro, Steven; Woolway, R Iestyn

    2017-03-06

    Citizen science projects have a long history in ecological studies. The research usefulness of such projects is dependent on applying simple and standardized methods. Here, we conducted a citizen science project that involved more than 3500 Swedish high school students to examine the temperature difference between surface water and the overlying air (T w -T a ) as a proxy for sensible heat flux (Q H ). If Q H is directed upward, corresponding to positive T w -T a , it can enhance CO 2 and CH 4 emissions from inland waters, thereby contributing to increased greenhouse gas concentrations in the atmosphere. The students found mostly negative T w -T a across small ponds, lakes, streams/rivers and the sea shore (i.e. downward Q H ), with T w -T a becoming increasingly negative with increasing T a . Further examination of T w -T a using high-frequency temperature data from inland waters across the globe confirmed that T w -T a is linearly related to T a . Using the longest available high-frequency temperature time series from Lake Erken, Sweden, we found a rapid increase in the occasions of negative T w -T a with increasing annual mean T a since 1989. From these results, we can expect that ongoing and projected global warming will result in increasingly negative T w -T a , thereby reducing CO 2 and CH 4 transfer velocities from inland waters into the atmosphere.

  14. The study of Lake Urmia desiccation: morphometry impress

    NASA Astrophysics Data System (ADS)

    Moradi, Ayoub; Rasouli, Ali Akbar; Roostaei, Shahram

    2017-04-01

    Located in northwestern Iran, the hypersaline Lake Urmia has started a serious uninterrupted desiccation since 1995. The lake has lost about eight meters of water level and about 75% of water surface area during past 20 years. In particular, the lake water volume decrement has been accelerated in recent years. The importance of the Lake Urmia for human life in northwestern Iran, and its destructive effects on a vast region if totally dry up, demands comprehensive studies of the lake level fluctuations mechanism. According to literature review, the water volume of the lake behaves sometimes differently from the water storage of the whole basin. Our time series analysis using Land Data Assimilation Systems also confirms those differences within last decades. In other hand, many studies addressed the lake desiccation to climatic changes and/or anthropogenic influences such as excessive dam constructions in the watershed during last decades. As water leaves the lake only through evaporation, the fluctuation of evaporation has a distinctive role in the lake level variations. Dramatic decreament in the lake extent indicates of a special morphometry. The lake's morphometry has made it vulnerable to temperature and salinity changes. It strongly controls the lake's water heat capacity and water density. And, it therefore controls the rate of evaporation from water surface. We study the role of lake's morphometry on the lake desiccation. Although, the global climatic change is known as the primary reason for current droughts in the Middle East generally, our preliminary results show that the lake's morphometry is the main cause for the accelerating of water volume lost in Lake Urmia. In particular, after 2007, lake's water temperature and density show significant variations. Water heat capacity and evaporation rate are consistent with information of lake's hypsometry.

  15. Microplastics in surface waters of Dongting Lake and Hong Lake, China.

    PubMed

    Wang, Wenfeng; Yuan, Wenke; Chen, Yuling; Wang, Jun

    2018-08-15

    Microplastics pollution is an environmental issue of increasing concern. Much work has been done on the microplastics pollution in the marine environments. Although freshwaters are potential sources and transport pathways of plastic debris to the oceans, there is a lack of knowledge regarding the presence of microplastics in freshwater systems, especially in China, the world's largest producer of plastics. This study investigated the occurrence and properties of microplastics in surface waters of two important lakes in the middle reaches of the Yangtze River. The concentration ranges of microplastics in Dongting Lake and Hong Lake were 900-2800 and 1250-4650n/m 3 , respectively. Fiber was the dominant shape. Colored items occupied the majority. Particles with a size of <330μm comprised >20% of total microplastics collected in both lakes. Most of the selected particles were identified as plastics, with polyethylene (PE) and polypropylene (PP) being the major components. This study can provide valuable reference for better understanding the microplastics pollution in inland freshwater ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Northeast sector of the Greenland Ice Sheet to undergo the greatest inland expansion of supraglacial lakes during the 21st century

    NASA Astrophysics Data System (ADS)

    Ignéczi, Ádám.; Sole, Andrew J.; Livingstone, Stephen J.; Leeson, Amber A.; Fettweis, Xavier; Selmes, Nick; Gourmelen, Noel; Briggs, Kate

    2016-09-01

    The formation and rapid drainage of supraglacial lakes (SGL) influences the mass balance and dynamics of the Greenland Ice Sheet (GrIS). Although SGLs are expected to spread inland during the 21st century due to atmospheric warming, less is known about their future spatial distribution and volume. We use GrIS surface elevation model and regional climate model outputs to show that at the end of the 21st century (2070-2099) approximately 9.8 ± 3.9 km3 (+113% compared to 1980-2009) and 12.6 ± 5 km3 (+174%) of meltwater could be stored in SGLs under moderate and high representative concentration pathways (RCP 4.5 and 8.5), respectively. The largest increase is expected in the northeastern sector of the GrIS (191% in RCP 4.5 and 320% in RCP 8.5), whereas in west Greenland, where the most SGLs are currently observed, the future increase will be relatively moderate (55% in RCP 4.5 and 68% in RCP 8.5).

  17. Coastal wetlands of Lake Superior’s south shore

    EPA Science Inventory

    There are more than two thousand coastal wetlands that encompass an area of about 215,000 ha in the Laurentian Great Lakes (LGL) of North America. Coastal wetlands in the LGL are distinguished hydrologically from nearby inland wetlands by a direct surface water connection with wa...

  18. The Identification and Classification of Inland Ports

    DOT National Transportation Integrated Search

    2001-08-01

    This report presents a formal definition for inland ports and creates a classification methodology to promote familiarity with inland port operations and aid transportation planners interested in supporting inland port operations. Inland ports are si...

  19. Variability of wet troposphere delays over inland reservoirs as simulated by a high-resolution regional climate model

    NASA Astrophysics Data System (ADS)

    Clark, E.; Lettenmaier, D. P.

    2014-12-01

    Satellite radar altimetry is widely used for measuring global sea level variations and, increasingly, water height variations of inland water bodies. Existing satellite radar altimeters measure water surfaces directly below the spacecraft (approximately at nadir). Over the ocean, most of these satellites use radiometry to measure the delay of radar signals caused by water vapor in the atmosphere (also known as the wet troposphere delay (WTD)). However, radiometry can only be used to estimate this delay over the largest inland water bodies, such as the Great Lakes, due to spatial resolution issues. As a result, atmospheric models are typically used to simulate and correct for the WTD at the time of observations. The resolutions of these models are quite coarse, at best about 5000 km2 at 30˚N. The upcoming NASA- and CNES-led Surface Water and Ocean Topography (SWOT) mission, on the other hand, will use interferometric synthetic aperture radar (InSAR) techniques to measure a 120-km-wide swath of the Earth's surface. SWOT is expected to make useful measurements of water surface elevation and extent (and storage change) for inland water bodies at spatial scales as small as 250 m, which is much smaller than current altimetry targets and several orders of magnitude smaller than the models used for wet troposphere corrections. Here, we calculate WTD from very high-resolution (4/3-km to 4-km) simulations of the Weather Research and Forecasting (WRF) regional climate model, and use the results to evaluate spatial variations in WTD. We focus on six U.S. reservoirs: Lake Elwell (MT), Lake Pend Oreille (ID), Upper Klamath Lake (OR), Elephant Butte (NM), Ray Hubbard (TX), and Sam Rayburn (TX). The reservoirs vary in climate, shape, use, and size. Because evaporation from open water impacts local water vapor content, we compare time series of WTD over land and water in the vicinity of each reservoir. To account for resolution effects, we examine the difference in WRF

  20. Observations of Lake-Breeze Events During the Toronto 2015 Pan-American Games

    NASA Astrophysics Data System (ADS)

    Mariani, Zen; Dehghan, Armin; Joe, Paul; Sills, David

    2018-01-01

    Enhanced meteorological observations were made during the 2015 Pan and Parapan American Games in Toronto in order to measure the vertical and horizontal structure of lake-breeze events. Two scanning Doppler lidars (one fixed and one mobile), a C-band radar, and a network including 53 surface meteorological stations (mesonet) provided pressure, temperature, humidity, and wind speed and direction measurements over Lake Ontario and urban areas. These observations captured the full evolution (prior, during, and after) of 27 lake-breeze events (73% of observation days) in order to characterize the convective and dynamic processes driving lake breezes at the local scale and mesoscale. The dominant signal of a passing lake-breeze front (LBF) was an increase in dew-point temperature of 2.3 ± 0.3°C, coinciding with a 180° shift in wind direction and a decrease in air temperature of 2.1 ± 0.2°C. Doppler lidar observations over the lake detected lake breezes 1 hour (on average) before detection by radar and mesonet. On days with the synoptic flow in the offshore direction, the lidars observed wedge-shaped LBFs with shallow depths, which inhibited the radar's ability to detect the lake breeze. The LBF's ground speed and inland penetration distance were found to be well-correlated (r = 0.78), with larger inland penetration distances occurring on days with non-opposing (non-offshore) synoptic flow. The observed enhanced vertical motion ({>} 1 m s^{-1}) at the LBF, observed by the lidar on 54% of lake-breeze days, was greater (at times {>} 2.5 m s^{-1}) than that observed in previous studies and longer-lasting over the lake than over land. The weaker and less pronounced lake-breeze structure over land is illustrated in two case studies highlighting the lifetime of the lake-breeze circulation and the impact of propagation distance on lake-breeze intensity.

  1. The Oligochaeta (Annelida, Clitellata) of the St. Lawrence Great Lakes region: An update

    USGS Publications Warehouse

    Spencer, Douglas R.; Hudson, Patrick L.

    2003-01-01

    An updated oligochaete species list for the Great Lakes region is provided. The list was developed through the reexamination of the taxa reported in a previous report in 1980, addition of new taxa or records collected from the region since 1980, and an update of taxonomy commensurate with systematic and nomenclatural changes over the intervening years since the last review. The authors found 74 papers mentioning Great Lakes oligochaete species. The majority of these papers were published in the 1980s. The literature review and additional collections resulted in 15 species being added to the previous list. Nine taxa were removed from the previous list due to misidentification, synonymies, level of identification, or inability to confirm the identity. Based on this review, 101 species of Oligochaeta are now known from the St. Lawrence Great Lakes watershed. Of these, 95 species are known from the St. Lawrence Great Lakes proper, with an additional 6 species recorded from the inland waters of the watershed. The greatest diversity of oligochaete species was found in the inland waters of the region (81) followed by Lake Huron (72), Lake Ontario (65), Lake Erie (64), Lake Superior (63), Lake Michigan (62), St. Marys River (60), Niagara River (49), Saginaw Bay (44), St. Clair River (37), Lake St. Clair (36), St. Lawrence River (27), and the Detroit River (21). Three species are suspected of being introduced, Branchiura sowerbyi, Gianius aquaedulcisand Ripistes parasita, and two are believed to be endemic, Thalassodrilus hallae andTeneridrilus flexus.

  2. Zooplankton community structure during a transition from dry to wet state in a shallow, subtropical estuarine lake

    NASA Astrophysics Data System (ADS)

    Carrasco, Nicola K.; Perissinotto, Renzo

    2015-12-01

    Lake St Lucia is among the most important shallow ecosystems globally and Africa's largest estuarine lake. It has long been regarded as a resilient system, oscillating through periods of hypersalinity and freshwater conditions, depending on the prevailing climate. The alteration of the system's catchment involving the diversion of the Mfolozi River away from Lake St Lucia, however, challenged the resilience of the system, particularly during the most recent drought (2002-2011), sacrificing much of its biodiversity. This study reports on the transition of the St Lucia zooplankton community from a dry hypersaline state to a new wet phase. Sampling was undertaken during routine quarterly surveys at five representative stations along the lake system from February 2011 to November 2013. A total of 54 taxa were recorded during the study period. The zooplankton community was numerically dominated by the calanoid copepods Acartiella natalensis and Pseudodiaptomus stuhlmanni and the cyclopoid copepod Oithona brevicornis. While the mysid Mesopodopsis africana was still present in the system during the wet phase, it was not found in the swarming densities that were recorded during the previous dry phase, possibly due to increased predation pressure, competition with other taxa and or the reconnection with the Mfolozi River via a beach spillway. The increase in zooplankton species richness recorded during the present study shows that the system has undergone a transition to wet state, with the zooplankton community structure reflecting that recorded during the past. It is likely, though, that only a full restoration of natural mouth functioning will result in further diversity increases.

  3. Radar Altimetry for Inland Water: Current and Potential Applications

    NASA Astrophysics Data System (ADS)

    Tarpanelli, Angelica; Brocca, Luca; Barbetta, Silvia; Moramarco, Tommaso; da Silva, Joecila Santos; Calmant, Stephane

    2015-12-01

    Apart from oceans and ice-sheets, radar altimeters are shown by a plethora of works to be of considerable interest in monitoring inland water bodies such as rivers, lakes, wetlands and floodplains. More than a decade of research on the application in the field of continental hydrology has demonstrated the advantages of providing global coverage, regular temporal sampling and short delivery delays, especially via the acquisition of numerous useful measurements over ungauged areas. With the aim to investigate the benefits that can be achieved by Sentinel-3 mission, two applications are here shown for selected pilot rivers and the results on discharge estimation are analyzed and discussed in terms of performance measures.

  4. Alginate-Encapsulated Bacteria for the Treatment of Hypersaline Solutions in Microbial Fuel Cells.

    PubMed

    Alkotaini, Bassam; Tinucci, Samantha L; Robertson, Stuart J; Hasan, Kamrul; Minteer, Shelley D; Grattieri, Matteo

    2018-04-27

    A microbial fuel cell (MFC) based on a new wild-type strain of Salinivibrio sp. allowed the self-sustained treatment of hypersaline solutions (100 g L -1 , 1.71 m NaCl), reaching a removal of (87±11) % of the initial chemical oxygen demand after five days of operation, being the highest value achieved for hypersaline MFC. The degradation process and the evolution of the open circuit potential of the MFCs were correlated, opening the possibility for online monitoring of the treatment. The use of alginate capsules to trap bacterial cells, increasing cell density and stability, resulted in an eightfold higher power output, together with a more stable system, allowing operation up to five months with no maintenance required. The reported results are of critical importance to efforts to develop a sustainable and cost-effective system that treats hypersaline waste streams and reduces the quantity of polluting compounds released. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The distance that contaminated aquatic subsidies extend into lake riparian zones.

    PubMed

    Raikow, David F; Walters, David M; Fritz, Ken M; Mills, Marc A

    2011-04-01

    Consumption of emergent aquatic insects by terrestrial invertebrates is a poorly resolved, but potentially important, mechanism of contaminant flux across ecosystem borders leading to contaminant exposure in terrestrial invertivores. We characterized the spatial extent and magnitude of contaminant transfer from aquatic sediments to terrestrial invertebrate predators by examining riparian araneid spiders, terrestrial insects, and emergent aquatic insects for stable isotopes and polychlorinated biphenyls (PCBs, sum of 141 congeners) at Lake Hartwell, (Clemson, South Carolina, USA). PCB concentrations in aquatic insects were orders of magnitude higher than in terrestrial insects. Aquatic insect consumption by spiders (as indicated by delta13C and delta15N), PCB concentrations in spiders, and aquatic prey availability were greatest at the shoreline and declined inland, while terrestrial prey availability was invariant with distance. These patterns indicate PCB transfer to spiders through consumption of emergent aquatic insects extending to a distance of 5 m inland. Measurable, but much lower, PCBs were present in insect predators dominated by social wasps up to 30 m inland. These results illustrate the importance of emergent insects as vectors of contaminant transfer from lake sediments to riparian food webs, and that spiders are key predators in this process.

  6. Saving the Baltic Sea, the inland waters of its drainage basin, or both? spatial perspectives on reducing P-loads in eastern Sweden.

    PubMed

    Andersson, Ingela; Jarsjö, Jerker; Petersson, Mona

    2014-11-01

    Nutrient loads from inland sources to the Baltic Sea and adjacent inland waters need to be reduced in order to prevent eutrophication and meet requirements of the European Water Framework Directive (WFD) and the Baltic Sea Action Plan (BSAP). We here investigate the spatial implications of using different possible criteria for reducing water-borne phosphorous (P) loads in the Northern Baltic Sea River Basin District (NBS-RBD) in Sweden. Results show that most catchments that have a high degree of internal eutrophication do not express high export of P from their outlets. Furthermore, due to lake retention, lake catchments with high P-loads per agricultural area (which is potentially of concern for the WFD) did not considerably contribute to the P-loading of the Baltic Sea. Spatially uniform water quality goals may, therefore, not be effective in NBS-RBD, emphasizing more generally the need for regional adaptation of WFD and BSAP-related goals.

  7. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments

    PubMed Central

    Zalar, P.; de Hoog, G.S.; Schroers, H.-J.; Crous, P.W.; Groenewald, J.Z.; Gunde-Cimerman, N.

    2007-01-01

    Saprobic Cladosporium isolates morphologically similar to C. sphaerospermum are phylogenetically analysed on the basis of DNA sequences of the ribosomal RNA gene cluster, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S rDNA (ITS) and the small subunit (SSU) rDNA as well as β-tubulin and actin gene introns and exons. Most of the C. sphaerospermum-like species show halotolerance as a recurrent feature. Cladosporium sphaerospermum, which is characterised by almost globose conidia, is redefined on the basis of its ex-neotype culture. Cladosporium dominicanum, C. psychrotolerans, C. velox, C. spinulosum and C. halotolerans, all with globoid conidia, are newly described on the basis of phylogenetic analyses and cryptic morphological and physiological characters. Cladosporium halotolerans was isolated from hypersaline water and bathrooms and detected once on dolphin skin. Cladosporium dominicanum and C. velox were isolated from plant material and hypersaline water. Cladosporium psychrotolerans, which grows well at 4 °C but not at 30 °C, and C. spinulosum, having conspicuously ornamented conidia with long digitate projections, are currently only known from hypersaline water. We also newly describe C. salinae from hypersaline water and C. fusiforme from hypersaline water and animal feed. Both species have ovoid to ellipsoid conidia and are therefore reminiscent of C. herbarum. Cladosporium langeronii (= Hormodendrum langeronii) previously described as a pathogen on human skin, is halotolerant but has not yet been recorded from hypersaline environments. PMID:18490999

  8. Two-decade reconstruction of algal blooms in China's Lake Taihu.

    PubMed

    Duan, Hongtao; Ma, Ronghua; Xu, Xiaofeng; Kong, Fanxiang; Zhang, Shouxuan; Kong, Weijuan; Hao, Jingyan; Shang, Linlin

    2009-05-15

    The algal blooming in the inland lakes has become a critically important issue for its impacts not only on local natural and social environments, but also on global human community. However, the occurrences of blooming on larger spatial scale and longer time scale have rarely been studied. As the third largest freshwater lake in China, Lake Taihu has drawn increasing attention from both public and scientific communities concerning its degradation. Using available satellite images, we reconstructed the spatial and temporal patterns of algal blooms in Lake Taihu through the pasttwo decades. The blooming characteristics over the past two decades were examined with the dynamic of initial blooming date being highlighted. The initial blooming dates were gradually becoming later and later from 1987 to 1997. Since 1998, however, the initial blooming date came earlier and earlier year by year, with approximately 11.42 days advancement per year. From 1987 to 2007, the annual duration of algal blooms lengthened year by year, in line with the substantial increases in the occurrences of algal blooms in spring and summer months. The algal blooms usually occur in northern bays and spread to center and south parts of Lake Taihu. The increases in previous winter's mean daily minimum temperature partially contributed to the earlier blooming onset. However, human activities, expressed as total gross domestic product (GDP) and population, outweighed the climatic contribution on the initial blooming date and blooming duration. This study may provide insights for the policy makers who try to curb the algal blooming and improve the water quality of inland freshwater lakes.

  9. Preliminary evaluation of a lake whitefish (Coregonus clupeaformis) bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; Pothoven, Steven A.; Schneeberger, Philip J.; O'Connor, Daniel V.; Brandt, Stephen B.

    2005-01-01

    We conducted a preliminary evaluation of a lake whitefish (Coregonus clupeaformis) bioenergetics model by applying the model to size-at-age data for lake whitefish from northern Lake Michigan. We then compared estimates of gross growth efficiency (GGE) from our bioenergetis model with previously published estimates of GGE for bloater (C. hoyi) in Lake Michigan and for lake whitefish in Quebec. According to our model, the GGE of Lake Michigan lake whitefish decreased from 0.075 to 0.02 as age increased from 2 to 5 years. In contrast, the GGE of lake whitefish in Quebec inland waters decreased from 0.12 to 0.05 for the same ages. When our swimming-speed submodel was replaced with a submodel that had been used for lake trout (Salvelinus namaycush) in Lake Michigan and an observed predator energy density for Lake Michigan lake whitefish was employed, our model predicted that the GGE of Lake Michigan lake whitefish decreased from 0.12 to 0.04 as age increased from 2 to 5 years.

  10. Compounding Impacts of Climate Change and Increased Human Water Withdrawal on Urmia Lake Water Availability

    NASA Astrophysics Data System (ADS)

    Alborzi, A.; Moftakhari, H.; Azaranfar, A.; Mallakpour, I.; Ashraf, B.; AghaKouchak, A.

    2017-12-01

    In recent decades, climate change and increase in human water withdrawal, combined, have caused ecological degradation in several terminal lakes worldwide. Among them, the shallow and hyper-saline Urmia Lake in Iran has experienced about 6 meters drawdown in lake level and 80% reduction in surface area. Here, we assess the imposed stress on Urmia Basin's water availability and Lake's ecological condition in response to coupled climate change and human-induced water withdrawal. A generalized river basin decision support system model consisting network flow is developed to simulate the basin-lake interactions under a wide range of scenarios. This model explicitly includes water management infrastructure, reservoirs, and irrigation and municipal water use. Studied scenarios represent a wide range of historic climate and water use scenarios including a historical baseline, future increase in water demand, and also improved water efficiency. In this presentation, we show the lake's water level, as a measure of lake's ecological health, under the compounding effects of the climate condition (top-down) and water use (bottom-up) scenarios. This method illustrates what combinations lead to failure in meeting the lake's ecological level.

  11. Stratigraphic and microfossil evidence for hydroclimate changes over the middle to late Holocene in the northern Bahamas from an inland saline lake

    NASA Astrophysics Data System (ADS)

    van Hengstum, P. J.; Maale, G. E.; Donnelly, J. P.; Onac, B. P.; Sullivan, R.; Winkler, T. S.; Albury, N. A.

    2016-12-01

    No Man's Land is one of the largest inland lakes on the Little Bahama Bank in the northern Bahamas, so its paleoenvironmental history may provide insight into how the regional hydroclimate developed over the Holocene. In its modern state, the site is shallow (<3 m), brackish (20.6 psu), 170 m in diameter, and located 700 m from the coastline. Prior to 6400 Cal yrs BP, the accumulation of peat deposits and no aquatic invertebrates (e.g., ostracodes, foraminifera, aquatic mollusks) indicate that the site was a terrestrial ecosystem. However, the site transitioned into a subaqueous freshwater environment at 6400 Cal yrs BP, and the site became a palustrine-lacustrine setting thereafter until 4200 Cal yrs BP. During this time, widespread palustrine-lacustrine carbonate deposition and the appearance of freshwater to low mesohaline microfossils indicates that the lake's salinity was likely oligohaline (charophytes, ostracodes: Candona annae, Cypridopsis vidua, foraminifera: Helenina davescottensis, mollusks: Planorbis, Hydrobia). A salinity increase at 4200 Cal yrs BP is inferred from the appearance of the ostracode Cyprideis americana that typically prefers salinities exceeding 10 psu, and deposition of laminated microbial mats. Thereafter, an organic- rich, algal sapropel unit accumulated that was devoid of any microfossils or mollusks. This unit suggests that the lake hosted a stratified water column, where surface waters supported phytoplankton primary productivity and corrosive or anoxic bottom water conditions either hampered microfossil growth or precluded their preservation. The transition to the modern environment ( 20 psu) at 2600 cal yrs BP is characterized by diversification of brackish ostracodes (Aurila floridana, Dolerocypria inopinata, and Hemicyprideis setipunctata), foraminifera (Elphidium spp., Ammonia beccarii, Triloculina oblonga) and mollusks (Anomalocardia, Cerithidea). Over the middle to late Holocene, it appears that the stratigraphic development

  12. Spatial distribution of Chloroflexus-like bacteria in the hypersaline artificial microbial mat

    NASA Astrophysics Data System (ADS)

    Bachar, A.; Polerecky, L.; Vamvakopoulos, K.; de Beer, D.; Jonkers, H. M.

    An artificial microbial mat grown in a mesocosm originated from the Hypersaline Lake of La Salada de Chiprana NE Spain was examined with respect to its organism s spatial distribution via high resolution methods A special attention was given to the elucidative Chloroflexus -like bacteria on which spatial distribution data is not available We have characterized this thick 1cm and developed mat for photopigments HPLC and obtained the general pigment distribution pattern Furthermore fiberoptic and photosynthetic microsensor measurements gave inner light attenuations and flux rates of oxygen within the different layers respectively Using fluorescence and spectral imaging we were able to detect characteristic pigmentation in the different layers FISH probes targeting Chloroflexus -like bacteria confirmed the visualization techniques and showed a single hybridized layer below the cyanobacterial layer as did the HPLC fiberoptic microsensor and fluorescence imaging We conclude that Chloroflexus -like bacteria are located below the cyanobacterial layer and above the purple sulfur bacteria and for the firs time we are able to show it by different independent state of the art techniques These approaches can be important for rapid community investigations within a millimeter scale microniches

  13. Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat

    PubMed Central

    Brislawn, Colin J.; Dana, Karl; Flores-Wentz, Tobias; Cory, Alexandra B.; Fansler, Sarah J.; Fredrickson, James K.; Moran, James J.

    2017-01-01

    Abstract Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: (i) How does species diversity relate to the rates of primary and heterotrophic productivity? (ii) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon-based sequencing of 16S and 18S rRNA genes over two diel cycles. These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope tracers that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C-labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose or acetate, respectively. The bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, from energy constraints imposed by changing irradiance over a diel cycle. PMID:29045626

  14. 77 FR 69447 - Inland Waterways Users Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ... inland navigation projects and studies and the status of the Inland Waterways Trust Fund, the funding... for 2012 and the project investment recommendations, along with updates of the Inland Marine...

  15. Application of LANDSAT to the surveillance of lake eutrophication in the Great Lakes basin. [Saginaw Bay, Michigan

    NASA Technical Reports Server (NTRS)

    Rogers, R. H.; Smith, V. E.; Scherz, J. P.; Woelkerling, W. J.; Adams, M. S.; Gannon, J. E. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A step-by-step procedure for establishing and monitoring the trophic status of inland lakes with the use of LANDSAT data, surface sampling, laboratory analysis, and aerial observations were demonstrated. The biomass was related to chlorophyll-a concentrations, water clarity, and trophic state. A procedure was developed for using surface sampling, LANDSAT data, and linear regression equations to produce a color-coded image of large lakes showing the distribution and concentrations of water quality parameters, causing eutrophication as well as parameters which indicate its effects. Cover categories readily derived from LANDSAT were those for which loading rates were available and were known to have major effects on the quality and quantity of runoff and lake eutrophication. Urban, barren land, cropland, grassland, forest, wetlands, and water were included.

  16. Continuous CO2 escape from the hypersaline Dead Sea caused by aragonite precipitation

    NASA Astrophysics Data System (ADS)

    Golan, Rotem; Lazar, Boaz; Wurgaft, Eyal; Lensky, Nadav; Ganor, Jiwchar; Gavrieli, Ittai

    2017-06-01

    Chemical precipitation of CaCO3 occurs in diverse marine and lacustrine environments. In the hypersaline Ca-chloride lakes that have been occupying the Dead Sea basin since the late Pleistocene, CaCO3 precipitated, mostly as aragonite. The aragonite sediments precipitated mainly during periods of high lake level stands as a result of mixing of bicarbonate-rich freshwater runoff with Dead Sea brine, that is Ca-rich and have high Mg/Ca ratio. During periods of arid conditions with limited freshwater inflow, water level declined, salinity increased and gypsum and halite became the dominant evaporitic minerals to precipitate. The present study investigates the carbon cycle of the Dead Sea under the current limited water and bicarbonate supply to the brine, representing periods of extremely arid conditions. The decrease of inflows to the Dead Sea in recent years stems mainly from diversion of freshwater from the drainage basin and results in dramatic water level decline and massive halite precipitation. During 2013-2014, bi-monthly depth profiles of total alkalinity, dissolved inorganic carbon (DIC) and its isotopic composition (δ13C) were conducted in the Dead Sea, from surface down to the bottom of the lake (290 m). Mass balance calculations conducted for the period 1993-2013 show that while inventories of conservative ions such as Mg2+ remained constant, the net DIC inventory of the lake decreased by ∼10%. DIC supply to the lake during this period, however, amounted to ∼10% of lake's inventory indicating that during 20 years, the lake lost ∼20% of its 1993s inventory. Compilation of historical data with our data shows that during the past two decades the lake's low DIC (∼1 mmol kg-1) and very high PCO2 (1800 ppm V) remained relatively constant, suggesting that a quasi-steady-state situation prevails. In spite of the surprisingly stable DIC and CO2 concentrations, during this 20 year period δ13CDIC increased significantly, from 1.4‰ to 2.7‰. An isotopic

  17. Astrobiology of Antarctic ice Covered Lakes

    NASA Astrophysics Data System (ADS)

    Doran, P. T.; Fritsen, C. H.

    2005-12-01

    Antarctica contains a number of permanently ice-covered lakes which have often been used as analogs of purported lakes on Mars in the past. Antarctic subglacial lakes, such as Lake Vostok, have also been viewed as excellent analogs for an ice covered ocean on the Jovian moon Europa, and to a lesser extend on Mars. Lakes in the McMurdo Dry Valleys of East Antarctica have ice covers that range from 3 to 20 meters thick. Water salinities range from fresh to hypersaline. The thinner ice-covered lakes have a well-documented ecology that relies on the limited available nutrients and the small amount of light energy that penetrates the ice covers. The thickest ice-covered lake (Lake Vida in Victoria Valley) has a brine beneath 20 m of ice that is 7 times sea water and maintains a temperature below -10 degrees Celsius. This lake is vastly different from the thinner ice-covered lakes in that there is no communication with the atmosphere. The permanent ice cover is so thick, that summer melt waters can not access the sub-ice brine and so the ice grows from the top up, as well as from the bottom down. Brine trapped beneath the ice is believed to be ancient, stranded thousands of years ago when the ice grew thick enough to isolate it from the surface. We view Lake Vida as an excellent analog for the last aquatic ecosystem to have existed on Mars under a planetary cooling. If, as evidence is now increasingly supporting, standing bodies of water existed on Mars in the past, their fate under a cooling would be to go through a stage of permanent ice cover establishment, followed by a thickening of that ice cover until the final stage just prior to a cold extinction would be a Lake Vida-like lake. If dust storms or mass movements covered these ancient lakes, remnants may well be in existence in the subsurface today. A NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) project will drill the Lake Vida ice cover and access the brine and sediments beneath in

  18. Water level monitoring using radar remote sensing data: Application to Lake Kivu, central Africa

    NASA Astrophysics Data System (ADS)

    Munyaneza, Omar; Wali, Umaru G.; Uhlenbrook, Stefan; Maskey, Shreedhar; Mlotha, McArd J.

    Satellite radar altimetry measures the time required for a pulse to travel from the satellite antenna to the earth’s surface and back to the satellite receiver. Altimetry on inland lakes generally shows some deviation from in situ level measurements. The deviation is attributed to the geographically varying corrections applied to account for atmospheric effects on radar waves. This study was focused on verification of altimetry data for Lake Kivu (2400 km 2), a large inland lake between Rwanda and the Democratic Republic of Congo (DRC) and estimating the lake water levels using bathymetric data combined with satellite images. Altimetry data obtained from ENVISAT and ERS-2 satellite missions were compared with water level data from gauging stations for Lake Kivu. Gauge data for Lake Kivu were collected from the stations ELECTROGAZ and Rusizi. ENVISAT and ERS-2 data sets for Lake Kivu are in good agreement with gauge data having R2 of 0.86 and 0.77, respectively. A combination of the two data sets improved the coefficient of determination to 95% due to the improved temporal resolution of the data sets. The calculated standard deviation for Lake Kivu water levels was 0.642 m and 0.701 m, for ENVISAT and ERS-2 measurements, respectively. The elevation-surface area characteristics derived from bathymetric data in combination with satellite images were used to estimate the lake level gauge. Consequently, the water level of Lake Kivu could be estimated with an RMSE of 0.294 m and an accuracy of ±0.58 m. In situations where gauges become malfunctioning or inaccessible due to damage or extreme meteorological events, the method can be used to ensure data continuity.

  19. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China.

    PubMed

    Zhang, Kai; Su, Jing; Xiong, Xiong; Wu, Xiang; Wu, Chenxi; Liu, Jiantong

    2016-12-01

    Tibetan Plateau is known as the world's third pole, which is characterized by a low population density with very limited human activities. Tibetan Plateau possesses the greatest numbers of high-altitude inland lakes in the world. However, no information is currently available on the characteristic of microplastic pollution in those lakes within this remote area. In this work, lakeshore sediments from four lakes within the Siling Co basin in northern Tibet were sampled and examined for microplastics (<5 mm). Microplastics were detected in six out of seven sampling sites with abundances ranging from 8 ± 14 to 563 ± 1219 items/m 2 . Riverine input might have contributed to the high abundance of microplastics observed in this remote area. Morphological features suggest that microplastics are derived from the breakdown of daily used plastic products. Polyethylene, polypropylene, polystyrene, polyethylene terephthalate, and polyvinyl chloride were identified from the microplastic samples using laser Raman spectroscopy, and oxidative and mechanical weathering textures were observed on the surface of microplastics using scanning electron microscope. These results demonstrate the presence of microplastics even for inland lakes in remote areas under very low human impact, and microplastic pollution can be a global issue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. CDOM variations in Finnish lakes and rivers between 1913 and 2014.

    PubMed

    Arvola, Lauri; Leppäranta, Matti; Äijälä, Cecilia

    2017-12-01

    In lakes and rivers, the concentrations of dissolved organic carbon (DOC) and coloured dissolved organic matter (CDOM) are closely related. We analysed three large spectrophotometer data sets of Finnish inland waters from the years 1913-1914, 1913-1931 and 2014 for long-term changes in optical properties. The first data set consists of absorption spectra in the band 467-709nm of 212 filtered water samples, the second one contains 11-19years of data for seven rivers, and the third one contains 153 sites with high resolution spectra over the band 200-750nm. These data sets were supplemented with more recent monitoring data of DOC. The sites represent typical optical inland water types of north-eastern Europe. The results did not show any consistent large-scale changes in CDOM concentrations over the 101-year time period. The statistics of the absorption coefficients in 1913 and 2014 were almost identical, at 467nm they were 1.9±1.0m -1 in 1913 and 1.7±1.2m -1 in 2014, and the shape of the CDOM absorption spectrum was unchanged, proportional to exp(-S·λ), S=0.011nm -1 and λ is wavelength. Catchment properties, primarily lake and peat-land percentages, explained 50% of the variation of CDOM concentration in the lakes, and hydrological conditions explained 50% of the variation of CDOM in the rivers. Both illustrate the importance of catchments and hydrology to CDOM concentrations of boreal inland waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Impact of lake breezes on ozone and nitrogen oxides in the Greater Toronto Area

    NASA Astrophysics Data System (ADS)

    Wentworth, G. R.; Murphy, J. G.; Sills, D. M. L.

    2015-05-01

    Meteorological and air quality datasets from summertime (May to September, 2010-2012) were analysed in order to assess the influence of lake-breeze circulations on pollutant levels in the Greater Toronto Area (GTA). While previous estimates of the frequency of summer days experiencing lake breezes range between 25 and 32 % for the GTA, a simple algorithm using surface meteorological observations suggested Lake Ontario breezes occurred on 56% of summer days, whereas a more reliable multiplatform approach yielded a frequency of 74%. Data from five air quality stations across the GTA were used to compare air quality on days during which a lake-breeze circulation formed ("lake breeze days") versus days when one did not ("non-lake breeze days"). Average daytime O3 maxima were 13.6-14.8 ppb higher on lake breeze days relative to non-lake breeze days. Furthermore, the Ontario Ambient Air Quality Criteria (AAQC) for 1-h average O3 (80 ppb) and 8-h average O3 (65 ppb) were exceeded only on lake breeze days and occurred on a total of 30 and 54 days throughout the study period, respectively. A causal link between lake-breeze circulations and enhanced O3 was identified by examining several days in which only some of the air quality sites were inside the lake-breeze circulation. O3 mixing ratios at sites located within the circulation were at least 30 ppb higher than sites outside the circulation, despite similar temperatures, cloud conditions and synoptic regimes across the region. Rapid O3 increases were concurrent with the arrival of the lake-breeze front, suggesting O3-rich air from over the lake is being advected inland throughout the day. Lake-breeze circulations were found to have less impact on nitrogen oxide (NOx) levels. Morning NOx was greater on lake breeze days, probably due to the stagnant conditions favourable for lake breeze formation. During the late afternoon, only inland sites experience increased NOx on lake breeze days, likely as a result of being downwind

  2. Halotolerant extremophile bacteria from the Great Salt Lake for recycling pollutants in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Grattieri, Matteo; Suvira, Milomir; Hasan, Kamrul; Minteer, Shelley D.

    2017-07-01

    The treatment of hypersaline wastewater (approximately 5% of the wastewater worldwide) cannot be performed by classical biological techniques. Herein the halotolerant extremophile bacteria obtained from the Great Salt Lake (Utah) were explored in single chamber microbial fuel cells with Pt-free cathodes for more than 18 days. The bacteria samples collected in two different locations of the lake (Stansbury Bay and Antelope Island) showed different electrochemical performances. The maximum achieved power output of 36 mW m-2 was from the microbial fuel cell based on the sample originated from Stansbury Bay, at a current density of 820 mA m-2. The performances throughout the long-term operation are discussed and a bioelectrochemical mechanism is proposed.

  3. Geochemistry and Mineralogy of Western Australian Salt Lake Sediments: Implications for Meridiani Planum on Mars.

    PubMed

    Ruecker, A; Schröder, C; Byrne, J; Weigold, P; Behrens, S; Kappler, A

    2016-07-01

    Hypersaline lakes are characteristic for Western Australia and display a rare combination of geochemical and mineralogical properties that make these lakes potential analogues for past conditions on Mars. In our study, we focused on the geochemistry and mineralogy of Lake Orr and Lake Whurr. While both lakes are poor in organic carbon (<1%), the sediments' pH values differ and range from 3.8 to 4.8 in Lake Orr and from 5.4 to 6.3 in Lake Whurr sediments. Lake Whurr sediments were dominated by orange and red sediment zones in which the main Fe minerals were identified as hematite, goethite, and tentatively jarosite and pyrite. Lake Orr was dominated by brownish and blackish sediments where the main Fe minerals were goethite and another paramagnetic Fe(III)-phase that could not be identified. Furthermore, a likely secondary Fe(II)-phase was observed in Lake Orr sediments. The mineralogy of these two salt lakes in the sampling area is strongly influenced by events such as flooding, evaporation, and desiccation, processes that explain at least to some extent the observed differences between Lake Orr and Lake Whurr. The iron mineralogy of Lake Whurr sediments and the high salinity make this lake a suitable analogue for Meridiani Planum on Mars, and in particular the tentative identification of pyrite in Lake Whurr sediments has implications for the interpretation of the Fe mineralogy of Meridiani Planum sediments. Western Australia-Salt lakes-Jarosite-Hematite-Pyrite-Mars analogue. Astrobiology 16, 525-538.

  4. The distance that contaminated aquatic subsidies extend into lake riparian zones

    USGS Publications Warehouse

    Raikow, D.F.; Walters, D.M.; Fritz, K.M.; Mills, M.A.

    2011-01-01

    Consumption of emergent aquatic insects by terrestrial invertebrates is a poorly resolved, but potentially important, mechanism of contaminant flux across ecosystem borders leading to contaminant exposure in terrestrial invertivores. We characterized the spatial extent and magnitude of contaminant transfer from aquatic sediments to terrestrial invertebrate predators by examining riparian araneid spiders, terrestrial insects, and emergent aquatic insects for stable isotopes and polychlorinated biphenyls (PCBs, sum of 141 congeners) at Lake Hartwell, (Clemson, South Carolina, USA). PCB concentrations in aquatic insects were orders of magnitude higher than in terrestrial insects. Aquatic insect consumption by spiders (as indicated by ??13C and ??15N), PCB concentrations in spiders, and aquatic prey availability were greatest at the shoreline and declined inland, while terrestrial prey availability was invariant with distance. These patterns indicate PCB transfer to spiders through consumption of emergent aquatic insects extending to a distance of ???5 m inland. Measurable, but much lower, PCBs were present in insect predators dominated by social wasps up to 30 m inland. These results illustrate the importance of emergent insects as vectors of contaminant transfer from lake sediments to riparian food webs, and that spiders are key predators in this process. ?? 2011 by the Ecological Society of America.

  5. Microbial ecology of soda lakes: investigating sulfur and nitrogen cycling at Mono Lake, CA, USA

    NASA Astrophysics Data System (ADS)

    Fairbanks, D.; Phillips, A. A.; Wells, M.; Bao, R.; Fullerton, K. M.; Stamps, B. W.; Speth, D. R.; Johnson, H.; Sessions, A. L.

    2017-12-01

    Soda lakes represent unique ecosystems characterized by extremes of pH, salinity and distinct geochemical cycling. Despite these extreme conditions, soda lakes are important repositories of biological adaptation and have a highly functional microbial system. We investigated the biogeochemical cycling of sulfur and nitrogen compounds in Mono Lake, California, located east of the Sierra Nevada mountains. Mono lake is characterized by hyperalkaline, hypersaline and high sulfate concentrations and can enter prolonged periods of meromixis due to freshwater inflow. Typically, the microbial sulfur cycle is highly active in soda lakes with both oxidation and reduction of sulfur compounds. However, the biological sulfur cycle is connected to many other main elemental cycles such as carbon, nitrogen and metals. Here we investigated the interaction between sulfur and nitrogen cycling in Mono lake using a combination of molecular, isotopic, and geochemical observations to explore the links between microbial phylogenetic composition and functionality. Metagenomic and 16S rRNA gene amplicon sequencing were determined at two locations and five depths in May 2017. 16S rRNA gene amplicon sequencing analysis revealed organisms capable of both sulfur and nitrogen cycling. The relative abundance and distribution of functional genes (dsrA, soxAB, nifH, etc) were also determined. These genetic markers indicate the potential in situ relevance of specific carbon, nitrogen, and sulfur pathways in the water column prior to the transition to meromictic stratification. However, genes for sulfide oxidation, denitrification, and ammonification were present. Genome binning guided by the most abundant dsrA sequences, GC content, and abundance with depth identified a Thioalkalivibrio paradoxus bin containing genes capable of sulfur oxidation, denitrification, and nitrate reduction. The presence of a large number of sulfur and nitrogen cycling genes associated with Thioalkalivibrio paradoxus

  6. Using a Freshwater Lake Model Coupled with WRF for Dynamical Downscaling Applications

    EPA Science Inventory

    The ability to represent extremes in temperature and precipitation in regional climates (including those affected by inland lakes) has become an area of focus as regional climate models (RCMs) simulate smaller temporal and spatial scales. When using the Weather Research and Fore...

  7. Volatile selenium flux from the great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Oliver, W.A.; Naftz, D.L.

    2009-01-01

    The removal mechanisms that govern Se concentrations in the Great Salt Lake are unknown despite this terminal lake being an avian habitat of hemispheric importance. However, the volatilization flux of Se from the Great Salt Lake has not been previously measured due to challenges of analysis in this hypersaline environment This paper presents results from recent field studies examining the spatial distribution of dissolved volatile Se (areally and with depth) in the south arm (main body) of the Great Salt Lake. The analyses involved collection of dissolved volatile Se in a cryofocusing trap system via sparging with helium. The cryotrapped volatile Se was digested with nitric acid and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Results show concentrations of dissolved volatile Se that increase with depth in the shallow brine, suggesting that phytoplankton in the open waters and bioherms in shallow sites (<4 m in depth) may be responsible for volatile Se production. Volatile Se flux to the atmosphere was determined using mass transport models corrected to simulate the highly saline environment of the south arm of the Great Salt Lake. The estimated annual flux of volatile Se was 1455 kg/year within a range from 560 to 3780 kg Se/year for the 95% confidence interval and from 970 to 2180 kg Se/year within the 68% confidence interval. ?? 2009 American Chemical Society.

  8. Natural attenuation processes of nitrate in a saline lake-aquifer system: Pétrola Basin (Central Spain)

    NASA Astrophysics Data System (ADS)

    Valiente, Nicolas; Menchen, Alfonso; Jirsa, Franz; Hein, Thomas; Wanek, Wolfgang; Gomez-Alday, Juan Jose

    2016-04-01

    Saline wetlands associated with intense agricultural activities in semi-arid to arid climates are among the most vulnerable environments to NO3- pollution. The endorheic Pétrola Basin (High Segura River Basin, Central Spain) was declared vulnerable to NO3- pollution by the Regional Government of Castilla-La Mancha in 1998. The hypersaline lake was classified as a heavily modified waterbody, due to the inputs of pollutants from agricultural sources and urban waste waters, the latest are discharged directly into the lake without proper treatment. Previous studies showed that the aquifer system has two main flow components: regional groundwater flow from recharge areas into the lake, and a density-driven flow from the lake to the underlying aquifer. The NO3- inputs derived from agriculture originate from nitrification of synthetic ammonium fertilizers, and afterwards, NO3- is expected to be attenuated by denitrification (up to 60%) in the saltwater-freshwater interface around the lake. However, the spatial and temporal pattern of nitrate reduction in lake sediments is not known. In this study, an isotope pairing technique was used in order to clarify the main pathways for the NO3- attenuation linked to the sediment-water interface. For that purpose mesocosm experiments were performed: organic-rich lake sediment (up to 23% organic carbon content) was incubated for 96 hours with the addition of 15N nitrate tracer. During the experiments two factors were modified: light and oxic conditions. Analyzing inorganic N-species (n=20) over time (72 hours) showed that NO3- attenuation was coupled with an increment in the NH4+ concentration (from 0.8 mg/L up to 5.3 mg/L) and a decrease in redox values (from 135.1 mV up to -422 mV) in the water column. The main outcome of this study was to elucidate the importance of different microbial pathways denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (Anammox), in controlling the fate

  9. Variability in response of lakes to climate change explained by surrounding watersheds

    NASA Astrophysics Data System (ADS)

    Råman Vinnå, Love; Wüest, Alfred; Bouffard, Damien

    2017-04-01

    The consequences of climate change for inland waters have been shown to vary extensively not only globally, but also on a sub-regional scale [O'Reilly et al., 2015, GRL]. Local factors affecting heating include morphology [Toffolon et al., 2014, LO], irradiance absorption [Williamson et al., 2015, SR], local weather conditions and onset of stratification [Zhong et al., 2016, LO] as well as ice conditions [Austin and Colman, 2007, GRL]. However, inland waters are often a complex web of rivers, streams, lakes and reservoirs. Thereby, to correctly assess and predict future changes in lakes/reservoirs due to climate change, it is important to consider the changes occurring in the surrounding watersheds and how they affect downstream waters. Here we evaluate the impact of climate change on rivers originating in the Swiss Alps (Aare and Rhône) and downstream located perialpine lakes (Lake Biel and Lake Geneva). We use regional predictions for air temperature increase and the subsequently expected shift in river discharge regime under the A1B emission scenario [Bey et al., 2011, CH2011; Federal Office for the Environment FOEN, 2012, CCHydro]. Focus is on predicting the changes in water temperature, particle content, stratification and deep water renewal rate using the 1D SIMSTRAT [Goudsmit et al., 2002, JGR] and Air2Stream [Toffolon and Piccolroaz, 2015, ERL] models. We show that the effect of tributaries on the reaction for downstream lakes to climate change are inversely proportional to the hydraulic residence time of the systems. We furthermore include known changes in anthropogenic thermal emissions, which in Lake Biel correspond to 2 decades of climate induced warming. Our results are put into context with future water utility plans in Lake Biel.

  10. Methanogenic and Sulfate-Reducing Activities in a Hypersaline Microbial Mat and Associated Microbial Diversity.

    PubMed

    Cadena, Santiago; García-Maldonado, José Q; López-Lozano, Nguyen E; Cervantes, Francisco J

    2018-05-01

    Methanogenesis and sulfate reduction are important microbial processes in hypersaline environments. However, key aspects determining substrate competition between these microbial processes have not been well documented. We evaluated competitive and non-competitive substrates for stimulation of both processes through microcosm experiments of hypersaline microbial mat samples from Guerrero Negro, Baja California Sur, Mexico, and we assessed the effect of these substrates on the microbial community composition. Methylotrophic methanogenesis evidenced by sequences belonging to methanogens of the family Methanosarcinaceae was found as the dominant methanogenic pathway in the studied hypersaline microbial mat. Nevertheless, our results showed that incubations supplemented with acetate and lactate, performed in absence of sulfate, also produced methane after 40 days of incubation, apparently driven by hydrogenotrophic methanogens affiliated to the family Methanomicrobiaceae. Sulfate reduction was mainly stimulated by addition of acetate and lactate; however, after 40 days of incubation, an increase of the H 2 S concentrations in microcosms amended with trimethylamine and methanol was also observed, suggesting that these substrates are putatively used for sulfate reduction. Moreover, 16S rRNA gene sequencing analysis showed remarkable differences in the microbial community composition among experimental treatments. In the analyzed sample amended with acetate, sulfate-reducing bacteria (SRB) belonging to the family Desulfobacteraceae were dominant, while members of Desulfohalobiaceae, Desulfomicrobiaceae, and Desulfovibrionaceae were found in the incubation with lactate. Additionally, we detected an unexpected high abundance of unclassified Hydrogenedentes (near 25%) in almost all the experimental treatments. This study contributes to better understand methanogenic and sulfate-reducing activities, which play an important role in the functioning of hypersaline environments.

  11. Monitoring lake level changes by altimetry in the arid region of Central Asia

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Liao, J. J.; Shen, G. Z.; Zhang, X. L.

    2017-07-01

    The study of lake level changes in arid region of Central Asia not only has important significance for the management and sustainable development of inland water resources, but also provides the basis for further study on the response of lakes to climate change and human activities. Therefore, in this paper, eleven typical lakes in Central Asia were observed. The lake edges were obtained through image interpretation using the quasi-synchronous MODIS image, and then water level information with long period (2002-2015) was acquired using ENVISAT/RA-2 and Cryosat-2 satellite borne radar altimeter data. The results show that these 11 lakes all have obvious seasonal changes of water level in a year with a high peak at different month. During 2002 - 2015, their water levels present decreased trend generally except Sarygamysh Lake, Alakol Lake and North Aral Sea. The alpine lakes are most stables, while open lakes’ levels change the most violently and closed lakes change diversely among different lakes.

  12. Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat

    DOE PAGES

    Bernstein, Hans C.; Brislawn, Colin J.; Dana, Karl; ...

    2017-10-17

    Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: (i) How does species diversity relate to the rates of primary and heterotrophic productivity? (ii) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon-based sequencing of 16S and 18S rRNA genes over two diel cycles.more » These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope tracers that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C-labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose or acetate, respectively. The bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, from energy constraints imposed by changing irradiance over a diel cycle.« less

  13. Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Hans C.; Brislawn, Colin J.; Dana, Karl

    Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: (i) How does species diversity relate to the rates of primary and heterotrophic productivity? (ii) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon-based sequencing of 16S and 18S rRNA genes over two diel cycles.more » These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope tracers that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C-labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose or acetate, respectively. The bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, from energy constraints imposed by changing irradiance over a diel cycle.« less

  14. Genomic comparison between members of the Salinibacteraceae family, and description of a new species of Salinibacter (Salinibacter altiplanensis sp. nov.) isolated from high altitude hypersaline environments of the Argentinian Altiplano.

    PubMed

    Viver, Tomeu; Orellana, Luis; González-Torres, Pedro; Díaz, Sara; Urdiain, Mercedes; Farías, María Eugenia; Benes, Vladimir; Kaempfer, Peter; Shahinpei, Azadeh; Ali Amoozegar, Mohammad; Amann, Rudolf; Antón, Josefa; Konstantinidis, Konstantinos T; Rosselló-Móra, Ramon

    2018-05-01

    The application of tandem MALDI-TOF MS screening with 16S rRNA gene sequencing of selected isolates has been demonstrated to be an excellent approach for retrieving novelty from large-scale culturing. The application of such methodologies in different hypersaline samples allowed the isolation of the culture-recalcitrant Salinibacter ruber second phylotype (EHB-2) for the first time, as well as a new species recently isolated from the Argentinian Altiplano hypersaline lakes. In this study, the genome sequences of the different species of the phylum Rhodothermaeota were compared and the genetic repertoire along the evolutionary gradient was analyzed together with each intraspecific variability. Altogether, the results indicated an open pan-genome for the family Salinibacteraceae, as well as the codification of relevant traits such as diverse rhodopsin genes, CRISPR-Cas systems and spacers, and one T6SS secretion system that could give ecological advantages to an EHB-2 isolate. For the new Salinibacter species, we propose the name Salinibacter altiplanensis sp. nov. (the designated type strain is AN15 T =CECT 9105 T =IBRC-M 11031 T ). Copyright © 2018 Elsevier GmbH. All rights reserved.

  15. Hydroclimate-driven changes in the landscape structure of the terminal lakes and wetlands of the China's Heihe River Basin.

    PubMed

    Xiao, Shengchun; Xiao, Honglang; Peng, Xiaomei; Song, Xiang

    2015-01-01

    Changes in the landscape structure of terminal lakes and wetlands along inland rivers in arid areas are determined by the water balance in the river basins under the impacts of climate change and human activities. Studying the evolution of these landscapes and the mechanisms driving these changes is critical to the sustainable development of river basins. The terminal lakes and wetlands along the lower reaches of the Heihe River, an inland river in arid northwestern China, can be grouped into three types: runoff-recharged, groundwater-recharged, and precipitation-recharged. These water-recharge characteristics determine the degree to which the landscape structure of a terminal lake or wetland is impacted by climate change and human activities. An analysis of seven remote-sensing and hydroclimatic data sets for the Heihe River basin during the last 50 years indicates that hydrological changes in the basin caused by regional human activities were the primary drivers of the observed changes in the spatial and temporal landscape-structure patterns of the terminal lakes and wetlands of the Heihe River. In this warm, dry climatic context, the lakes and wetlands gradually evolved toward and maintained a landscape dominated by saline-alkaline lands and grasslands.

  16. Application of LANDSAT to the surveillance and control of lake eutrophication in the Great Lakes Basin

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Preliminary results in Saginaw Bay show that processed LANDSAT data provides a synoptic view of turbidity and circulation patterns that no degree of ground monitoring can provide. Processed imagery was produced to show nine discrete categories of turbidity, as indicated by nine Secchi depths between 0.3 and 3.3 meters. Analysis of lakes near Madison, Wisconsin show that inland lake water can be categorized by LANDSAT as clear, tannin, algal, and red clay. LANDSAT's capability to inventory watershed land use was throughly demonstrated in the Ohio-Kentucky-Indiana regional planning area. Computer tabulations providing area covered by each of 16 land use categories were rapidly and economically produced for each of the 225 watersheds and nine counties.

  17. SICS: the Southern Inland and Coastal System interdisciplinary project of the USGS South Florida Ecosystem Program

    USGS Publications Warehouse

    ,

    2011-01-01

    State and Federal agencies are working jointly on structural modifications and improved water-delivery strategies to reestablish more natural surface-water flows through the Everglades wetlands and into Florida Bay. Changes in the magnitude, duration, timing, and distribution of inflows from the headwaters of the Taylor Slough and canal C-111 drainage basins have shifted the seasonal distribution and extent of wetland inundation, and also contributed to the development of hypersaline conditions in nearshore embayments of Florida Bay. Such changes are altering biological and vegetative communities in the wetlands and creating stresses on aquatic habitat. Affected biotic resources include federally listed species such as the Cape Sable seaside sparrow, American crocodile, wood stork, and roseate spoonbill. The U.S. Geological Survey (USGS) is synthesizing scientific findings from hydrologic process studies, collecting data to characterize the ecosystem properties and functions, and integrating the results of these efforts into a research tool and management model for this Southern Inland and Coastal System(SICS). Scientists from all four disciplinary divisions of the USGS, Biological Resources, Geology, National Mapping, and Water Resources are contributing to this interdisciplinary project.

  18. Chemistry of modern sediments in a hypersaline lagoon, north of Jeddah, Red Sea

    NASA Astrophysics Data System (ADS)

    El-Sayed, Mahmoud Kh.

    1987-10-01

    Previous studies of modern peritidal sedimentary environments of the Red Sea, such as hypersaline lagoons and sea-marginal flats, have concentrated on its northern part, particularly in the Gulf of Aqaba. However, little is known about lagoon sediments in other localities along the Red Sea coastal stretches. This paper deals with the chemical characteristics of the sediments of a hypersaline (Ras Hatiba) lagoon, north of Jeddah, Saudi Arabia. The chemistry of hypersaline lagoon sediments is considerably changed following the modifications to the water chemistry by evaporation and precipitation. Ras Hatiba lagoon is a hypersaline elongated water body connected to the Red Sea by a narrow and shallow opening. The total area of the lagoon is c. 30 km 2. Coarse bioclastic sands are dominant in the lagoon and mostly surround lithified calcareous grounds. However, fine silt and clay sediments are present in separate patches. The sediments are rich in carbonates (average 78·5%) and organic carbon (average 7·3%), although they are negatively correlated. Calcium (average 25·1%) and magnesium (average 10·8‰) show a similar distribution pattern in the lagoon sediments. Strontium (average 5·2‰) is positively correlated with calcium. Sodium and potassium are relatively highly concentrated in the sediments (average 118 ppm and 173 ppm, respectively). Magnesium and strontium are of prime importance in the process of mineralization and diagenesis. The sabkha formation surrounding the lagoon is of low carbonate and organic carbon content, compared with the lagoon sediments, whilst it is characterized by high magnesium, sodium and potassium concentrations. Ras Hatiba lagoon sediments and sabkha resemble those of the northern Red Sea in the Gulfs of Aqaba and Suez and the Arabian Gulf in their major sedimentological and chemical characteristics.

  19. Assessing Factors Contributing to Cyanobacteria Harmful Algal Blooms in U.S. Lakes

    NASA Astrophysics Data System (ADS)

    Salls, W. B.; Iiames, J. S., Jr.; Lunetta, R. S.; Mehaffey, M.; Schaeffer, B. A.

    2017-12-01

    Cyanobacteria Harmful Algal Blooms (CHABs) in inland lakes have emerged as a major threat to water quality from both ecological and public health standpoints. Understanding the factors and processes driving CHAB occurrence is important in order to properly manage ensuring more favorable water quality outcomes. High water temperatures and nutrient loadings are known drivers of CHABs; however, the contribution of landscape variables and their interactions with these drivers remains relatively unstudied at a regional or national scale. This study assesses upstream landscape variables that may contribute to or obstruct/delay nutrient loadings to freshwater systems in several hundred inland lakes in the Upper Mid-western and Northeastern United States. We employ multiple linear regression and random forest modeling to determine which variables contribute most strongly to CHAB occurrence. This lakeshed-based approach will rank the impact of each landscape variable on cyanobacteria levels derived from satellite remotely sensed data from the Medium Resolution Imaging Spectrometer (MERIS) sensor for the 2011 bloom season (July - October).

  20. Estimation of chlorophyll-a concentration on an inland lake by using satellite data.

    NASA Astrophysics Data System (ADS)

    Iwata, T.

    2017-12-01

    Chlorophyll concentration is common as an index of water quality and phytoplankton activity in coastal areas and lake water. In this research, we propose a method to estimate chlorophyll-a distribution of lake surface by using satellite data. The satellite data used is the sea surface reflectance of 3 channels of band-9, -10, and -12 by MODIS/Aqua MYDOCGA data provided by NASA/EOSDIS, and its data resolution is spatially 1 km and temporally 1 day. As index for estimating chlorophyll-a from reflection intensity, four indices of two types are proposed and comparatively analyzed. One of the two types is the ratio of the reflectance of the visible green light band (Gr) to the one of the visible blue light band (Bl), and the other index is obtained by normalizing difference of the reflectance between two bands. The two types of indices are expressed as follows. * Band ratio (BR) = Gr / Bl * Normalized difference (ND) = (Gr-Bl) / (Gr+Bl) As the visible blue light band, band-9 (438-448 nm) and band-10 (483-493 nm) were used. The four indices are represented as BR9, BR10, ND9, and ND10. The Lake Biwa in Japan is selected as the test area to be analyzed. At the Lake, temperature and the chlorophyll-a concentration around the lake center are periodically measured every month, and data is published. From April 2011 to December 2015, correlation analysis was done using 29 data on which the water measurement date and the valid satellite data acquisition date coincided ( Fig.1 and 2 ). Based on the analysis, the following two formulas were shown as models that can successfully express surface chlorophyll-a concentration. * Chl-a [μg/L] = 6.11×BR10 - 2.61 * Chl-a [μg/L] = 32.6×ND102 + 10.2×ND10 + 3.24

  1. Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L'Atalante, Eastern Mediterranean Sea.

    PubMed

    Yakimov, Michail M; La Cono, Violetta; Denaro, Renata; D'Auria, Giuseppe; Decembrini, Franco; Timmis, Kenneth N; Golyshin, Peter N; Giuliano, Laura

    2007-12-01

    Meso- and bathypelagic ecosystems represent the most common marine ecological niche on Earth and contain complex communities of microorganisms that are for the most part ecophysiologically poorly characterized. Gradients of physico-chemical factors (for example, depth-related gradients of light, temperature, salinity, nutrients and pressure) constitute major forces shaping ecosystems at activity 'hot spots' on the ocean floor, such as hydrothermal vents, cold seepages and mud volcanoes and hypersaline lakes, though the relationships between community composition, activities and environmental parameters remain largely elusive. We report here results of a detailed study of primary producing microbial communities in the deep Eastern Mediterranean Sea. The brine column of the deep anoxic hypersaline brine lake, L'Atalante, the overlying water column and the brine-seawater interface, were characterized physico- and geochemically, and microbiologically, in terms of their microbial community compositions, functional gene distributions and [(14)C]bicarbonate assimilation activities. The depth distribution of genes encoding the crenarchaeal ammonia monooxygenase alpha subunit (amoA), and the bacterial ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (RuBisCO), was found to coincide with two different types of chemoautotrophy. Meso- and bathypelagic microbial communities were enriched in ammonia-oxidizing Crenarchaeota, whereas the autotrophic community at the oxic/anoxic interface of L'Atalante lake was dominated by Epsilonproteobacteria and sulfur-oxidizing Gammaproteobacteria. These autotrophic microbes are thus the basis of the food webs populating these deep-sea ecosystems.

  2. An Equation of State for Hypersaline Water in Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Naftz, D.L.; Millero, F.J.; Jones, B.F.; Green, W.R.

    2011-01-01

    Great Salt Lake (GSL) is one of the largest and most saline lakes in the world. In order to accurately model limnological processes in GSL, hydrodynamic calculations require the precise estimation of water density (??) under a variety of environmental conditions. An equation of state was developed with water samples collected from GSL to estimate density as a function of salinity and water temperature. The ?? of water samples from the south arm of GSL was measured as a function of temperature ranging from 278 to 323 degrees Kelvin (oK) and conductivity salinities ranging from 23 to 182 g L-1 using an Anton Paar density meter. These results have been used to develop the following equation of state for GSL (?? = ?? 0.32 kg m-3): ?? - ??0 = 184.01062 + 1.04708 * S - 1.21061*T + 3.14721E - 4*S2 + 0.00199T2 where ??0 is the density of pure water in kg m-3, S is conductivity salinity g L-1, and T is water temperature in degrees Kelvin. ?? 2011 U.S. Government.

  3. "The Effect of Alternative Representations of Lake Temperatures and Ice on WRF Regional Climate Simulations"

    EPA Science Inventory

    Lakes can play a significant role in regional climate, modulating inland extremes in temperature and enhancing precipitation. Representing these effects becomes more important as regional climate modeling (RCM) efforts focus on simulating smaller scales. When using the Weathe...

  4. On the origins of hypersaline groundwater in the Nile Delta Aquifer

    NASA Astrophysics Data System (ADS)

    van Engelen, Joeri; Oude Essink, Gualbert H. P.; Kooi, Henk; Bierkens, Marc F. P.

    2017-04-01

    The fresh groundwater resources in the Nile Delta, Egypt, are of eminent socio-economic importance. These resources are under major stress due to population growth, the anticipated sea level rise and increased groundwater extraction rates, making fresh water availability the most challenging issue in this area. Up till now, numerous groundwater studies mainly focused on sea water intrusion on the top 100m of the groundwater system and assumed salinities not exceeding that of Mediterranean sea water, as there was no knowledge on groundwater in the deeper coastal parts of the Quaternary Nile Delta aquifer (that ranges up to 1000m depth). Recently, however, the Egyptian Research Institute for Groundwater (RIGW) collected salinity measurements and found a widespread occurrence of "hypersaline" groundwater: groundwater with salinities largely exceeding that of sea water at 600m depth (Nofal et al., 2015). This hypersaline groundwater greatly influences flow patterns and the fresh water potential of the aquifer. This research focuses on the origins of the hypersaline groundwater and the possible processes causing its transport. We consider all relevant salinization processes in the Nile Delta aquifer, over a time domain of up to 2.5 million years, which is the time span in which the aquifer got deposited. The following hypotheses were investigated with a combination of analytical solutions and numerical modelling: upward salt transport due to a) molecular diffusion, b) thermal buoyancy, c) consolidation-induced advection and dispersion, or downward transport due to d) composition buoyancy (salt inversion). We conclude that hypotheses a) and b) can be rejected, but c) and d) are both possible with the available information. An enhanced chemical analysis is suggested for further research, to determine the origins of this hypersaline water. This information in combination with the conclusions drawn in this research will give more insight in the potential amount of non

  5. Improved Atmospheric Correction for AVIRIS Spectra from Inland Waters

    NASA Technical Reports Server (NTRS)

    Gastil, Mary; Melack, John M.

    1998-01-01

    Remote sensing reflectance (Rrs) cannot be measured directly. Comparison of Rrs calculated from field measurements to Rrs calculated from AVIRIS spectra and the atmospheric radiative transfer model modtran provides a measure of the accuracy of our method. That and other comparisons are presented here as a validation of a method of retrieving Rrs from inland waters from AVIRIS radiance. The method of collecting field measurements for Rrs is described in Hamilton, 1993. Retrieval of Rrs from AVIRIS using modtran was developed from Carder, 1993. AVIRIS radiance is reduced by the path radiance modeled by modtran and divided by one-way transmission. Skylight, modeled by modtran, specularly reflected from the lake surface, is then subtracted from this radiance, leaving only that radiance which has come from under water. This water-leaving radiance is then normalized by the downwelling irradiance incident at the surface as modeled by modtran. Our improved retrieval of Rrs has allowed us to fit a single curve to a set of 134 pairs of AVIRIS Rrs and measured chlorophyll gathered on eight experiments at Mono Lake. Previously, spectra from different surveys varied more due to lingering atmospheric effects and/or radiometric calibration imprecision than they varied due to chlorophyll.

  6. Chlorinated hydrocarbon contamination in osprey eggs and nestlings from the Canadian Great Lakes basin, 1991-1995.

    PubMed

    Martin, Pamela A; De Solla, Shane R; Ewins, Peter

    2003-01-01

    Populations of osprey (Pandion haliaetus) in the Great Lakes basin declined dramatically during the 1950s-1970s due largely to adverse effects of persistent chlorinated hydrocarbons, ingested in their fish prey, on eggshell thickness and adult survival. Nevertheless, these contaminants were not measured in osprey tissues during the decades of decline on the Canadian Great Lakes. Between 1991 and 1995, we monitored recovering osprey populations on the Great Lakes, including Georgian Bay and the St. Marys River area on Lake Huron and the St. Lawrence Islands National Park, as well as at two inland sites within the basin. Current OC levels, even from the most contaminated lakes, were typically lower than those associated with reproductive effects. DDE levels in fresh eggs averaged 1.2-2.9 microg/g, well below the 4.2 microg/g level associated with significant eggshell thinning and shell breakage. Nevertheless, a proportion of eggs from all study areas did exceed this level. PCB levels in eggs seldom exceeded 5 microg/g except in one lake of high breeding density in the Kawartha Lakes inland study area, where the mean sum PCB level was 7.1 microg/g and the maximum concentration measured was 26.5 microg/g. On average, mean reproductive output (0.78-2.75 young per occupied nest) of breeding populations in Great Lakes basin study areas exceeded the threshold of 0.8 young thought necessary to maintain stable populations. We concluded that, although eggs and especially nestling plasma, are useful in reflecting local contaminant levels, ospreys are relatively insensitive, at least at the population level, to health effects of current levels of chlorinated hydrocarbons on the Canadian Great Lakes.

  7. Evaluating integration of inland bathymetry in the U.S. Geological Survey 3D Elevation Program, 2014

    USGS Publications Warehouse

    Miller-Corbett, Cynthia

    2016-09-01

    the 3D Elevation Program so that data can be integrated with a minimal level of effort. Geomorphic site conditions are known to affect the success and accuracy of light detection and ranging and other bathymetric surveys, and a baseline that includes geomorphic data is recommended to help in evaluation of limitations imposed by geomorphology for surveys completed in the variable physiographic provinces across the United States. The geographic distribution for existing surveys identifies regions where inland bathymetry data have been collected and, conversely, where little or no survey data seem to be available to provide hydrologic and hydraulic information. This distribution, in conjunction with local to regional data needs to characterize and monitor river and lake resources, provides another important set of criteria to propose and guide acquisition of new bathymetry data for the 3D Elevation Program. An initial evaluation of needs can be based on the importance of water resources that provide primary water supplies for communities, agriculture, energy, and ecological systems; the importance of flood plain analyses; and projected population growth across the United States.

  8. Discrimination among spawning aggregations of lake herring from Lake Superior using whole-body morphometric characters

    USGS Publications Warehouse

    Hoff, Michael H.

    2004-01-01

    The lake herring (Coregonus artedi) was one of the most commercially and ecologically valuable Lake Superior fishes, but declined in the second half of the 20th century as the result of overharvest of putatively discrete stocks. No tools were previously available that described lake herring stock structure and accurately classified lake herring to their spawning stocks. The accuracy of discriminating among spawning aggregations was evaluated using whole-body morphometrics based on a truss network. Lake herring were collected from 11 spawning aggregations in Lake Superior and two inland Wisconsin lakes to evaluate morphometrics as a stock discrimination tool. Discriminant function analysis correctly classified 53% of all fish from all spawning aggregations, and fish from all but one aggregation were classified at greater rates than were possible by chance. Discriminant analysis also correctly classified 66% of fish to nearest neighbor groups, which were groups that accounted for the possibility of mixing among the aggregations. Stepwise discriminant analysis showed that posterior body length and depth measurements were among the best discriminators of spawning aggregations. These findings support other evidence that discrete stocks of lake herring exist in Lake Superior, and fishery managers should consider all but one of the spawning aggregations as discrete stocks. Abundance, annual harvest, total annual mortality rate, and exploitation data should be collected from each stock, and surplus production of each stock should be estimated. Prudent management of stock surplus production and exploitation rates will aid in restoration of stocks and will prevent a repeat of the stock collapses that occurred in the middle of the 20th century, when the species was nearly extirpated from the lake.

  9. Cyanotoxins in Inland Lakes of the United States: Occurrence and Potential Recreational Health Risks in the EPA National Lakes Assessment 2007

    EPA Science Inventory

    A large nation-wide survey or cyanotoxlns (1161 lakes)in the United States (U.S.) was conducted dunng the EPA National Lakes Assessment 2007. Cyanotoxin data were compared with cyanobacteria abundance- and chlorophyll-based World Health Organization (WHO) thresholds and mouse to...

  10. Inland and coastal waters

    NASA Astrophysics Data System (ADS)

    Mouw, Colleen; Greb, Steven

    2012-09-01

    Workshop for Remote Sensing of Coastal and Inland Waters;Madison, Wisconsin, 20-22 June 2012 Coastal and inland water bodies, which have great value for recreation, food supply, commerce, transportation, and human health, have been experiencing external pressure from direct human activities and climate change. Given their societal and economic value, understanding issues of water quality, water quantity, and the impact of environmental change on the ecological and biogeochemical functioning of these water bodies is of interest to a broad range of communities. Remote sensing offers one of the most spatially and temporally comprehensive tools for observing these waters. While there has been some success with remotely observing these water bodies, many challenges still remain, including algorithm performance, atmospheric correction, the relationships between optical properties and biogeochemical parameters, sufficient spatial and spectral resolution, and a lack of uncertainty estimates over the wide range of environmental conditions encountered across these coastal and inland water bodies.

  11. Quantifying the Impacts of Outlet Control Structures on Lake Hydrology and Ecology

    NASA Astrophysics Data System (ADS)

    Budd, B. M.; Kendall, A. D.; Martin, S. L.; Hyndman, D. W.

    2012-12-01

    There have been limited studies of the impacts of lake level control structures on stream ecology and lake property erosion. We examine the influence of historical lake level management strategies on Higgins Lake in Michigan, which is regionally known for recreation, fisheries, and scenery. Lake control structures have potentially increased shoreline erosion and seasonally-reduced flow through the outlets, likely impacting fish habitat. Concerns over these issues spurred local land owners to seek a study on the possible hydrologic and ecological impacts of the removal or modification of the control structure. Bathymetry maps are fundamental to understanding and managing lake ecosystems. From the 1930's through the 1950's, these maps were developed for thousands of Michigan inland lakes using soundings lowered through holes cut in winter lake ice. Increased land use change and alterations of lake outlets have likely modified erosion and sedimentation rates of these lake systems. Our research includes bathymetry surveys of Higgins Lake using an Acoustic Doppler Current Profiler (ADCP) and side-scan sonar. The new higher-resolution bathymetry serves as the basis for simulating impacts of potential changes in lake management, on a verity of inpoint including shoreline position and fish habitat.

  12. Identification and Characterization of Bacteria in a Selenium-Contaminated Hypersaline Evaporation Pond

    PubMed Central

    de Souza, M. P.; Amini, A.; Dojka, M. A.; Pickering, I. J.; Dawson, S. C.; Pace, N. R.; Terry, N.

    2001-01-01

    Solar evaporation ponds are commonly used to reduce the volume of seleniferous agricultural drainage water in the San Joaquin Valley, Calif. These hypersaline ponds pose an environmental health hazard because they are heavily contaminated with selenium (Se), mainly in the form of selenate. Se in the ponds may be removed by microbial Se volatilization, a bioremediation process whereby toxic, bioavailable selenate is converted to relatively nontoxic dimethylselenide gas. In order to identify microbes that may be used for Se bioremediation, a 16S ribosomal DNA phylogenetic analysis of an aerobic hypersaline pond in the San Joaquin Valley showed that a previously unaffiliated group of uncultured bacteria (belonging to the order Cytophagales) was dominant, followed by a group of cultured γ-Proteobacteria which was closely related to Halomonas species. Se K-edge X-ray absorption spectroscopy of selenate-treated bacterial isolates showed that they accumulated a mixture of predominantly selenate and a selenomethionine-like species, consistent with the idea that selenate was assimilated via the S assimilation pathway. One of these bacterial isolates (Halomonas-like strain MPD-51) was the best candidate for the bioremediation of hypersaline evaporation ponds contaminated with high Se concentrations because it tolerated 2 M selenate and 32.5% NaCl, grew rapidly in media containing selenate, and accumulated and volatilized Se at high rates (1.65 μg of Se g of protein−1 h−1), compared to other cultured bacterial isolates. PMID:11525968

  13. The evolution of hydrological and water quality conditions on Techirghiol Lake

    NASA Astrophysics Data System (ADS)

    Maftei, Carmen; Buta, Constantin; Tofan, Lucica

    2015-04-01

    Changes in climate and environment conditions alter the hydraulic and chemical properties of lakes. With a surface from 1300ha, the Techirghiol Lake, situated on the littoral of the Black Sea at 15km from Constanta town, is considered the greatest hypersaline lake of Romania very well known (from 1891) especially for the curative qualities of its water and mud. Physical and geographical conditions associated with an arid climate regime - where the annual precipitation is less than 400mm and the average temperatures exceed (lead evaporative potential to 700-1000mm), cause a strong concentration of mineral salts that give the lake an excessive salinity. In conditions of excessive salinity forms a therapeutic mud as a result of bacterial decomposition of aquatic organisms that have done there, especially crustaceans Arthemia and algae that live in water. This mud, highly hydrated, rich in minerals, has therapeutic properties, for this reason in Techirghiol has developed a strong health resort. Fresh water is a threat to the therapeutic lake properties. In hydrological year 1961-1962, the overland flow value to the lake was approximately 0.4 million m3, and from 1972-1973 the value reached 6 million cubic meters per year a great contribution was from the irrigation water. One of the consequences is the increasing of the lake level and the second is the decreasing of salinity. For this reason a hydraulic work system has been built to separate the saline water of the lake and the freshwater. The aim of this paper is to investigate the hydrologic and chemical responses of the Techirghiol Lake to the changes in climate and environment conditions.

  14. The 1988 Inland Waterway Review

    DTIC Science & Technology

    1988-11-01

    Maintenance Costs ............. 91 Table 4.3 Major Rehabilitation Projects: ............................... 92 Table 4.4 Scheduled Constructed Projects in the...Maintenance Costs .......................... 100 Figure 4.7 Operations and Maintenance Costs Per Ton Mile in 1986 For Inland Waterways Suspect to Fuel Tax...application of study and construction cost -sharing. It also increased waterway fuel taxes and created the Inland Waterways Users Board. In effect, the Act

  15. Limitations to lake trout (Salvelinus namaycush) rehabilitation in the Great Lakes imposed by biotic interactions occurring at early life stages

    USGS Publications Warehouse

    Jones, Michael L.; Eck, Gary W.; Evans, David O.; Fabrizio, Mary C.; Hoff, Michael H.; Hudson, Patrick L.; Janssen, John; Jude, David; O'Gorman, Robert; Savino, Jacqueline F.

    1995-01-01

    We examine evidence that biotic factors, particularly predation, may be limiting early survival of wild lake trout (Salvelinus namaycush) juveniles in many areas of the Great Lakes. The Great Lakes contain numerous potential predators of lake trout eggs and fry, some of which are recent invaders, and most of which were probably absent when lake trout most recently re-invaded the Great Lakes after the last ice age. Simple quantitative models of predation suggest that plausible assumptions about prey densities, predator feeding rates, and duration of exposure of predator to prey can lead to very high estimates of predation mortality, in some instances approaching 100%. Indirect evidence from inter-Great Lake comparisons and inland lake examples also suggest that biotic factors may impede successful lake trout colonization. Our synthesis of the evidence leads to recommendations for research to better define field feeding rates of lake trout egg and fry predators and comparative studies of densities of potential egg and fry predators on lake trout spawning reefs. Management options should be designed to provide useful information as well as achieve short-term goals. From a management standpoint we recommend that: newly constructed lake trout reefs should be placed well away from concentrations of potential predators; offshore spawning reefs should be stocked; salmonine stocking, nutrient abatement, and commercial harvest of alewives should all be considered as options to enhance survival of young lake trout; hatchery lake trout should not be stocked at sites where wild lake trout are showing signs of recovery; and exotic species expansions or introductions must be curtailed to maintain or improve on our recent successes in lake trout rehabilitation.

  16. Geophysical Investigations of Hypersaline Subglacial Water Systems in the Canadian Arctic: A Planetary Analog

    NASA Astrophysics Data System (ADS)

    Rutishauser, A.; Sharp, M. J.; Blankenship, D. D.; Skidmore, M. L.; Grima, C.; Schroeder, D. M.; Greenbaum, J. S.; Dowdeswell, J. A.; Young, D. A.

    2017-12-01

    Robotic exploration and remote sensing of the solar system have identified the presence of liquid water beneath ice on several planetary bodies, with evidence for elevated salinity in certain cases. Subglacial water systems beneath Earth's glaciers and ice sheets may provide terrestrial analogs for microbial habitats in such extreme environments, especially those with higher salinity. Geological data suggest that several ice caps and glaciers in the eastern Canadian High Arctic are partially underlain by evaporite-rich sedimentary rocks, and subglacial weathering of these rocks is potentially conducive to the formation of hypersaline subglacial waters. Here, we combine airborne geophysical data with geological constraints to identify and characterize hypersaline subglacial water systems beneath ice caps in Canada's Queen Elizabeth Islands. High relative bedrock reflectivity and specularity anomalies that are apparent in radio-echo sounding data indicate multiple locations where subglacial water is present in areas where modeled ice temperatures at the glacier bed are well below the pressure melting point. This suggests that these water systems are hypersaline, with solute concentrations that significantly depress the freezing point of water. From combined interpretations of geological and airborne-magnetic data, we define the geological context within which these systems have developed, and identify possible solute-sources for the inferred brine-rich water systems. We also derive subglacial hydraulic potential gradients using airborne laser altimetry and ice thickness data, and apply water routing models to derive subglacial drainage pathways. These allow us to identify marine-terminating glaciers where outflow of the brine-rich waters may be anticipated. These hypersaline subglacial water systems beneath Canadian Arctic ice caps and glaciers may represent robust microbial habitats, and potential analogs for brines that may exist beneath ice masses on planetary

  17. Effects of short-term hypersalinity exposure on the susceptibility to wasting disease in the subtropical seagrass Thalassia testudinum.

    PubMed

    Trevathan, Stacey M; Kahn, Amanda; Ross, Cliff

    2011-09-01

    Seagrass meadows are a vital component of coastal ecosystems and have experienced declines in abundance due to a series of environmental stressors including elevated salinity and incidence of disease. This study evaluated the impacts of short-term hypersalinity stress on the early stages of infection in Thalassia testudinum Banks ex König by assessing changes in cellular physiology and metabolism. Seagrass short shoots were exposed to ambient (30 psu) and elevated (45 psu) salinities for 7 days and subsequently infected for one week by the causative pathogen of wasting disease, Labyrinthula sp. The occurrence of wasting disease was significantly lower in the hypersalinity treatments. Additionally, while exposure to elevated salinity caused a reduction in chlorophyll a and b content, T. testudinum's health, in terms of photochemical efficiency, was not significantly compromised by hypersalinity or infection. In contrast, plant respiratory demand was significantly enhanced as a function of infection. Elevated salinity caused T. testudinum to significantly increase its in vivo H(2)O(2) concentrations to levels that exceeded those which inhibited Labyrinthula growth in a liquid in vitro assay. The results suggest that while short-term exposure to hypersalinity alters selected cellular processes this does not necessarily lead to an immediate increase in wasting disease susceptibility. Published by Elsevier Masson SAS.

  18. Inland sea as a unit for environmental history: East Asian inland seas from prehistory to future.

    PubMed

    Lindstrom, Kati; Uchiyama, Junzo

    2012-04-01

    The boundaries of landscape policies often coincide with political or economic boundaries, thus creating a situation where a unit of landscape protection or management reflects more its present political status than its historico-geographical situation, its historical function and formation. At the same time, it is evident that no unit can exist independently of the context that has given birth to it and that environmental protection in isolated units cannot be very effective. The present paper will discuss inland sea as a landscape unit from prehistory to modern days and its implications for future landscape planning, using EastAsian inland sea (Japan Sea and East China Sea) rim as an example. Historically an area of active communication, EastAsian inland sea rim has become a politically very sharply divided area. The authors will bring examples to demonstrate how cultural communication on the inland sea level has influenced the formation of several landscape features that are now targets for local or national landscape protection programs, and how a unified view could benefit the future of landscape policies in the whole region.

  19. Hydroclimatic changes of Lake Bosten in Northwest China during the last decades.

    PubMed

    Yao, Junqiang; Chen, Yaning; Zhao, Yong; Yu, Xiaojing

    2018-06-14

    Bosten Lake, the largest inland freshwater lake in China, has experienced drastic change over the past five decades. Based on the lake water balance model and climate elasticity method, we identify annual changes in the lake's water components during 1961-2016 and investigate its water balance. We find a complex pattern in the lake's water: a decrease (1961-1987), a rapid increase (1988-2002), a drastic decrease (2003-2012), and a recent drastic increase (2013-2016). We also estimated the lake's water balance, finding that the drastic changes are caused by a climate-driven regime shift coupled with human disturbance. The changes in the lake accelerated after 1987, which may have been driven by regional climate wetting. During 2003 to 2012, implementation of the ecological water conveyance project (EWCP) significantly increased the lake's outflow, while a decreased precipitation led to an increased drought frequency. The glacier retreating trend accelerated by warming, and caused large variations in the observed lake's changes in recent years. Furthermore, wastewater emissions may give rise to water degradation, human activity is completely changing the natural water cycle system in the Bosten Lake. Indeed, the future of Bosten Lake is largely dependent on mankind.

  20. Verrucomicrobia are prevalent in north-temperate freshwater lakes and display class-level preferences between lake habitats

    PubMed Central

    Chiang, Edna; Schmidt, Marian L.; Berry, Michelle A.; Biddanda, Bopaiah A.; Burtner, Ashley; Johengen, Thomas H.; Palladino, Danna

    2018-01-01

    The bacterial phylum Verrucomicrobia was formally described two decades ago and originally believed to be a minor member of many ecosystems; however, it is now recognized as ubiquitous and abundant in both soil and aquatic systems. Nevertheless, knowledge of the drivers of its relative abundance and within-phylum habitat preferences remains sparse, especially in lake systems. Here, we documented the distribution of Verrucomicrobia in 12 inland lakes in Southeastern Michigan, a Laurentian Great Lake (Lake Michigan), and a freshwater estuary, which span a gradient in lake sizes, depths, residence times, and trophic states. A wide range of physical and geochemical parameters was covered by sampling seasonally from the surface and bottom of each lake, and by separating samples into particle-associated and free-living fractions. On average, Verrucomicrobia was the 4th most abundant phylum (range 1.7–41.7%). Fraction, season, station, and depth explained up to 70% of the variance in Verrucomicrobia community composition and preference for these habitats was phylogenetically conserved at the class-level. When relative abundance was linearly modeled against environmental data, Verrucomicrobia and non-Verrucomicrobia bacterial community composition correlated to similar quantitative environmental parameters, although there were lake system-dependent differences and > 55% of the variance remained unexplained. A majority of the phylum exhibited preference for the particle-associated fraction and two classes (Opitutae and Verrucomicrobiae) were identified to be more abundant during the spring season. This study highlights the high relative abundance of Verrucomicrobia in north temperate lake systems and expands insights into drivers of within-phylum habitat preferences of the Verrucomicrobia. PMID:29590198

  1. Regional assessment of lake ecological states using Landsat: A classification scheme for alkaline-saline, flamingo lakes in the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Tebbs, E. J.; Remedios, J. J.; Avery, S. T.; Rowland, C. S.; Harper, D. M.

    2015-08-01

    In situ reflectance measurements and Landsat satellite imagery were combined to develop an optical classification scheme for alkaline-saline lakes in the Eastern Rift Valley. The classification allows the ecological state and consequent value, in this case to Lesser Flamingos, to be determined using Landsat satellite imagery. Lesser Flamingos depend on a network of 15 alkaline-saline lakes in East African Rift Valley, where they feed by filtering cyanobacteria and benthic diatoms from the lakes' waters. The classification developed here was based on a decision tree which used the reflectance in Landsat ETM+ bands 2-4 to assign one of six classes: low phytoplankton biomass; suspended sediment-dominated; microphytobenthos; high cyanobacterial biomass; cyanobacterial scum and bleached cyanobacterial scum. The classification accuracy was 77% when verified against in situ measurements. Classified imagery and timeseries were produced for selected lakes, which show the different ecological behaviours of these complex systems. The results have highlighted the importance to flamingos of the food resources offered by the extremely remote Lake Logipi. This study has demonstrated the potential of high spatial resolution, low spectral resolution sensors for providing ecologically valuable information at a regional scale, for alkaline-saline lakes and similar hypereutrophic inland waters.

  2. Influence of the Little Ice Age on the biological structure of lakes in South West Greenland

    NASA Astrophysics Data System (ADS)

    McGowan, S.; Hogan, E. J.; Jones, V.; Anderson, N. J.; Simpson, G.

    2013-12-01

    Arctic lakes are considered to be particularly sensitive to environmental change, with biological remains in lake sediment records being interpreted as reflecting climate forcing. However the influence that differences in catchment properties and lake morphometries have on the sedimentary record is rarely considered. We investigated sediment cores from three lakes located close to the inland ice sheet margin in the Kangerlussuaq area of South West Greenland but within a few kilometres of one another. This regional replication allowed for direct comparisons of biological change in lakes exposed to identical environmental pressures (cooling, increased wind speeds) over the past c.2000 years. Sedimentary pigments were used as a proxy for whole-lake production and to investigate differences in phytoplankton community structure whilst fossil diatom assemblages were studied to determine differences in ecological responses during this time. We noted several major effects of the Little Ice Age cooling (LIA, c. 1400-1850AD). The organic content of sediments in all three lakes declined, and this effect was most pronounced in lakes closest to the inland ice sheet margin, which suggests that aeolian inputs derived from the glacial outwash plains (sandurs), and wind-scouring of the thin catchment soils by strong katabatic winds associated with the regional cooling might have both contributed to this sedimentary change. During the LIA total algal production (as indicated by chlorophyll and carotenoid pigments) was lower in all three lakes, most likely because of extended ice-cover and shorter growing seasons, and the ratio of planktonic: benthic diatom taxa increased, possibly because of lower light availability or fertilization from loess material. Despite this coherence in lake response to the LIA, diatom community composition changes in individual lakes differed, reflecting individual lake morphometry and catchment characteristics. These findings highlight the importance of

  3. [Fluorescence peak shift corresponding to high chlorophyll concentrations in inland water].

    PubMed

    Duan, Hong-Tao; Ma, Rong-Hua; Zhang, Yuan-Zhi; Zhang, Bai

    2009-01-01

    Hyperspectral remote sensing offers the potential to detect water quality variables such as Chl-a by using narrow spectral channels of less than 10 nm, which could otherwise be masked by broadband satellites such as Landsat TM. Fluorescence peak of the red region is very important for the remote sensing of inland and coastal waters, which is unique to phytoplankton Chl-a that takes place in this region. Based on in situ water sampling and field spectral measurement from 2004 to 2006 in Nanhu Lake, the features of the spectral reflectance were analyzed in detail with peak position shift. The results showed: An exponential fitting model, peak position = a(Chl-a)b, was developed between chlorophyll-a concentration and fluorescence peak shift, where a varies between 686.11 and 686.29, while b between 0.0062 and 0.0065. It was found that the better the spectral resolution, the higher the precision of the model. Except that, the average of peak shift showed a high correlation with the average of different Chl-a grades, and the determination coefficient (R2) was higher than 0.81. It contributed significantly to the increase in the accuracy of the derivation of chlorophyll values from remote sensing data in Nanhu Lake. There is satisfactory correspondence between hyperspectral models and chl-a concentration, therefore, it is possible to monitor the water quality of Nanhu lake throngh the hyperspetral remote sensing data.

  4. The Lake Bosumtwi impact structure in Ghana: A brief environmental assessment and discussion of ecotourism potential

    NASA Astrophysics Data System (ADS)

    Boamah, Daniel; Koeberl, Christian

    Lake Bosumtwi is a natural inland freshwater lake that originated from a meteorite impact. The lake is becoming a popular tourist attraction in Ghana and has the potential to be developed as an ecotourism site in the future. However, there have been some unregulated human activities and unplanned infrastructure development, and there are increased levels of pollutants in the lake water. In order to make ecotourism at Lake Bosumtwi successful in the long term, the Lake Bosumtwi Development Committee has been formed to ensure that local people are empowered to mobilize their own capacities. It has been realized that an important criterion required to develop ecotourism in a socially responsible, economically efficient, and environmentally viable way is to foster a constructive dialogue between the local people and tourists about the needs of the indigenous people.

  5. Inland diatoms from the McMurdo Dry Valleys and James Ross Island, Antarctica

    USGS Publications Warehouse

    Esposito, R.M.M.; Spaulding, S.A.; McKnight, Diane M.; Van De Vijver, B.; Kopalova, K.; Lubinski, D.; Hall, B.; Whittaker, T.

    2008-01-01

    Diatom taxa present in the inland streams and lakes of the McMurdo Dry Valleys and James Ross Island, Antarctica, are presented in this paper. A total of nine taxa are illustrated, with descriptions of four new species (Luticola austroatlantica sp. nov., Luticola dolia sp. nov., Luticola laeta sp. nov., Muelleria supra sp. nov.). In the perennially ice-covered lakes of the McMurdo Dry Valleys, diatoms are confined to benthic mats within the photic zone. In streams, diatoms are attached to benthic surfaces and within the microbial mat matrix. One species, L. austroatlantica, is found on James Ross Island, of the southern Atlantic archipelago, and the McMurdo Dry Valleys. The McMurdo Dry Valley populations are at the lower range of the size spectrum for the species. Streams flow for 6-10 weeks during the austral summer, when temperatures and solar radiation allow glacial ice to melt. The diatom flora of the region is characterized by species assemblages favored under harsh conditions, with naviculoid taxa as the dominant group and several major diatom groups conspicuously absent. ?? 2008 NRC.

  6. Utilization of ERTS-1 data to monitor and classify eutrophication of inland lakes

    NASA Technical Reports Server (NTRS)

    Chase, P. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Bands 6 and 7 have fine structure as obtained by proper selection of digital levels in processing the CCT's. This is contrary to the imagery density received. This means that the small lakes can be classified in IR for different types of water masses. At least four distinct water masses have been determined for test lakes. They are shoreline, shallow water, and two deep waters. One deep water is patchy and presents difficulty in training set selection. The excellent weather and a completely successful field test form a significant happening. It required 12 orbits over the test area before perfect weather occurred.

  7. Evaluating the performance of the newly-launched Landsat 8 sensor in detecting and mapping the spatial configuration of water hyacinth (Eichhornia crassipes) in inland lakes, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Mutanga, Onisimo; Sibanda, Mbulisi; Bangamwabo, Victor; Shoko, Cletah

    2017-08-01

    The remote sensing of freshwater resources is increasingly becoming important, due to increased patterns of water use and the current or projected impacts of climate change and the rapid invasion by lethal water weeds. This study therefore sought to explore the potential of the recently-launched Landsat 8 OLI/TIRS sensor in mapping invasive species in inland lakes. Specifically, the study compares the performance of the newly-launched Landsat 8 sensor, with more advanced sensor design and image acquisition approach to the traditional Landsat-7 ETM+ in detecting and mapping the water hyacinth (Eichhornia crassipes) invasive species across Lake Chivero, in Zimbabwe. The analysis of variance test was used to identify windows of spectral separability between water hyacinth and other land cover types. The results showed that portions of the visible (B3), NIR (B4), as well as the shortwave bands (Band 8, 9 and 10) of both Landsat 8 OLI and Landsat 7 ETM, exhibited windows of separability between water hyacinth and other land cover types. It was also observed that on the use of Landsat 8 OLI produced high overall classification accuracy of 72%, when compared Landsat 7 ETM, which yielded lower accuracy of 57%. Water hyacinth had optimal accuracies (i.e. 92%), when compared to other land cover types, based on Landsat 8 OLI data. However, when using Landsat 7 ETM data, classification accuracies of water hyacinth were relatively lower (i.e. 67%), when compared to other land cover types (i.e. water with accuracy of 100%). Spectral curves of the old, intermediate and the young water hyacinth in Lake Chivero based on: (a) Landsat 8 OLI, and (b) Landsat 7 ETM were derived. Overall, the findings of this study underscores the relevance of the new generation multispectral sensors in providing primary data-source required for mapping the spatial distribution, and even configuration of water weeds at lower or no cost over time and space.

  8. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia.

    PubMed

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches.

  9. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia

    PubMed Central

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G.; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches. PMID:26934492

  10. Ultimate strength analysis of inland tank barges

    DOT National Transportation Integrated Search

    1997-06-16

    In an effort to understand the cause of recent catastrophic failures of inland tank barges and reduce the possibility of future casualties, the Coast Guard Marine Safety Center (MSC) studied the buckling" phenomenon. In conclusion, inland tank barges...

  11. Employing the Disadvantaged: Inland Steel's Experience.

    ERIC Educational Resources Information Center

    Campbell, Ralph

    1969-01-01

    Among the various approaches used by the Inland Steel Company in training ghetto youth for jobs, greatest promise has been shown by the Work Experience and Training Program initiated in 1965 at the Joseph T. Ryerson and Son plant, an Inland subsidiary located in the Lawndale (West Side) area of Chicago near the scene of the 1966 riots. Results…

  12. Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites

    NASA Astrophysics Data System (ADS)

    Pace, Aurélie; Bourillot, Raphaël; Bouton, Anthony; Vennin, Emmanuelle; Galaup, Serge; Bundeleva, Irina; Patrier, Patricia; Dupraz, Christophe; Thomazo, Christophe; Sansjofre, Pierre; Yokoyama, Yusuke; Franceschi, Michel; Anguy, Yannick; Pigot, Léa; Virgone, Aurélien; Visscher, Pieter T.

    2016-08-01

    Microbialites are widespread in modern and fossil hypersaline environments, where they provide a unique sedimentary archive. Authigenic mineral precipitation in modern microbialites results from a complex interplay between microbial metabolisms, organic matrices and environmental parameters. Here, we combined mineralogical and microscopic analyses with measurements of metabolic activity in order to characterise the mineralisation of microbial mats forming microbialites in the Great Salt Lake (Utah, USA). Our results show that the mineralisation process takes place in three steps progressing along geochemical gradients produced through microbial activity. First, a poorly crystallized Mg-Si phase precipitates on alveolar extracellular organic matrix due to a rise of the pH in the zone of active oxygenic photosynthesis. Second, aragonite patches nucleate in close proximity to sulfate reduction hotspots, as a result of the degradation of cyanobacteria and extracellular organic matrix mediated by, among others, sulfate reducing bacteria. A final step consists of partial replacement of aragonite by dolomite, possibly in neutral to slightly acidic porewater. This might occur due to dissolution-precipitation reactions when the most recalcitrant part of the organic matrix is degraded. The mineralisation pathways proposed here provide pivotal insight for the interpretation of microbial processes in past hypersaline environments.

  13. The limnology and biology of the Dufek Massif, Transantarctic Mountains 82° South

    NASA Astrophysics Data System (ADS)

    Hodgson, Dominic A.; Convey, Peter; Verleyen, Elie; Vyverman, Wim; McInnes, Sandra J.; Sands, Chester J.; Fernández-Carazo, Rafael; Wilmotte, Annick; De Wever, Aaike; Peeters, Karolien; Tavernier, Ines; Willems, Anne

    2010-08-01

    Very little is known about the higher latitude inland biology of continental Antarctica. In this paper we describe the limnology and biology of the Dufek Massif, using a range of observational, microscopic and molecular methods. Here two dry valleys are home to some of the southernmost biota on Earth. Cyanobacteria were the dominant life forms, being found in lakes and ponds, in hypersaline brines, summer melt water, relict pond beds and in exposed terrestrial habitats. Their species diversity was the lowest yet observed in Antarctic lakes. Green algae, cercozoa and bacteria were present, but diatoms were absent except for a single valve; likely windblown. Mosses were absent and only one lichen specimen was found. The Metazoa included three microbivorous tardigrades ( Acutuncus antarcticus, Diphascon sanae and Echiniscus (cf) pseudowendti) and bdelloid rotifer species, but no arthropods or nematodes. These simple faunal and floral communities are missing most of the elements normally present at lower latitudes in the Antarctic which is probably a result of the very harsh environmental conditions in the area.

  14. Condition-dependent migratory behaviour of endangered Atlantic salmon smolts moving through an inland sea

    PubMed Central

    Crossin, Glenn T; Hatcher, Bruce G; Denny, Shelley; Whoriskey, Kim; Orr, Michael; Penney, Alicia; Whoriskey, Frederick G

    2016-01-01

    Abstract The Bras d’Or Lake watershed of Cape Breton Island, Nova Scotia, Canada is a unique inland sea ecosystem, UNESCO Biosphere Reserve and home to a group of regionally distinct Atlantic salmon (Salmo salar) populations. Recent population decreases in this region have raised concern about their long-term persistence. We used acoustic telemetry to track the migrations of juvenile salmon (smolts) from the Middle River into the Bras d’Or Lake and, subsequently, into the Atlantic Ocean. Roughly half of the tagged smolts transited the Bras d’Or Lakes to the Atlantic Ocean, using a migration route that took them through the Gulf of St Lawrence’s northern exit at the Strait of Belle Isle (∼650 km from the home river) towards feeding areas in the Labrador Sea and Greenland. However, a significant fraction spent >70 days in the Lakes, suggesting that this population has an alternative resident form, in which smolts limit their migrations within the Bras d’Or. Smolts in good relative condition (as determined from length-to-mass relationships) tended to be residents, whereas fish in poorer condition were ocean migrants. We also found a covarying effect of river temperature that helped to predict residence vs. ocean migration. We discuss these results relative to their bioenergetic implications and provide suggestions for future studies aimed at the conservation of declining salmon populations in Canada. PMID:27293765

  15. [New isolation methods and phylogenetic diversity of actinobacteria from hypersaline beach in Aksu].

    PubMed

    Zhang, Yao; Xia, Zhanfeng; Cao, Xinbo; Li, Jun; Zhang, Lili

    2013-08-04

    We explored 4 new methods to improve the isolation of actinobacterial resources from high salt areas. Optimized media based on 4 new strategies were used for isolating actinobacteria from hypersaline beaches. Glycerin-arginine, trehalose-creatine, glycerol-asparticacid, mannitol-casein, casein-mannitol, mannitol-alanine, chitosan-asparagineand GAUZE' No. 1 were used as basic media. New isolation strategy includes 4 methods: ten-fold dilution culture, simulation of the original environment, actinobacterial culture guided by uncultured molecular technology detected, and reference of actinobacterial media for brackish marine environment. The 16S rRNA genes of the isolates were amplified with bacterial universal primers. The results of 16S rRNA gene sequences were compared with sequences obtained from GenBank databases. We constructed phylogenetic tree with the neighbor-joining method. No actinobacterial strains were isolated by 8 media of control group, while 403 strains were isolated by new strategies. The isolates by new methods were members of 14 genera (Streptomyces, Streptomonospora, Saccharomonospora, Plantactinospora, Nocardia, Amycolatopsis, Glycomyces, Micromonospora, Nocardiopsis, Isoptericola, Nonomuraea, Thermobifida, Actinopolyspora, Actinomadura) of 10 families in 8 suborders. The most abundant and diverse isolates were the two suborders of Streptomycineae (69.96%) and Streptosporangineaesuborder (9.68%) within the phylum Actinobacteria, including 9 potential novel species. New isolation methods significantly improved the actinobacterial culturability of hypersaline areas, and obtained many potential novel species, which provided a new and more effective way to isolate actinobacteria resources in hypersaline environments.

  16. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Embaye, Tsege; Turk, Kendra A.

    2003-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments where microorganisms had virtually no competition apart from the harsh conditions of hypersalinity, desiccation and intense light. Today, the modern counterparts of these microbial ecosystems find appropriate niches in only a few places where extremes eliminate eukaryotic grazers. Answers to many outstanding questions about the evolution of microorganisms and their environments on early Earth are best answered through study of these extant analogs. Lipids associated with various groups of bacteria can be valuable biomarkers for identification of specific groups of microorganisms both in ancient organic-rich sedimentary rocks (geolipids) and contemporary microbial communities (membrane lipids). Use of compound specific isotope analysis adds additional refinement to the identification of biomarker source, so that it is possible to take advantage of the 3C-depletions associated with various functional groups of organisms (i.e. autotrophs, heterotrophs, methanotrophs, methanogens) responsible for the cycling of carbon within a microbial community. Our recent work has focused on a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico which support the abundant growth of Microcoleus-dominated microbial mats. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface.

  17. Biogeographical patterns of bacterial and archaeal communities from distant hypersaline environments.

    PubMed

    Mora-Ruiz, M Del R; Cifuentes, A; Font-Verdera, F; Pérez-Fernández, C; Farias, M E; González, B; Orfila, A; Rosselló-Móra, R

    2018-03-01

    Microorganisms are globally distributed but new evidence shows that the microbial structure of their communities can vary due to geographical location and environmental parameters. In this study, 50 samples including brines and sediments from Europe, Spanish-Atlantic and South America were analysed by applying the operational phylogenetic unit (OPU) approach in order to understand whether microbial community structures in hypersaline environments exhibited biogeographical patterns. The fine-tuned identification of approximately 1000 OPUs (almost equivalent to "species") using multivariate analysis revealed regionally distinct taxa compositions. This segregation was more diffuse at the genus level and pointed to a phylogenetic and metabolic redundancy at the higher taxa level, where their different species acquired distinct advantages related to the regional physicochemical idiosyncrasies. The presence of previously undescribed groups was also shown in these environments, such as Parcubacteria, or members of Nanohaloarchaeota in anaerobic hypersaline sediments. Finally, an important OPU overlap was observed between anoxic sediments and their overlaying brines, indicating versatile metabolism for the pelagic organisms. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. A systematic examination of the relationships between CDOM and DOC in inland waters in China

    NASA Astrophysics Data System (ADS)

    Song, Kaishan; Zhao, Ying; Wen, Zhidan; Fang, Chong; Shang, Yingxin

    2017-10-01

    Chromophoric dissolved organic matter (CDOM) plays a vital role in the biogeochemical cycle in aquatic ecosystems. The relationship between CDOM and dissolved organic carbon (DOC) has been investigated, and this significant relationship lays the foundation for the estimation of DOC using remotely sensed imagery data. The current study examined samples from freshwater lakes, saline lakes, rivers and streams, urban water bodies, and ice-covered lakes in China for tracking the variation of the relationships between DOC and CDOM. The regression model slopes for DOC vs. aCDOM (275) ranged from extremely low 0.33 (highly saline lakes) to 1.03 (urban waters) and 3.01 (river waters). The low values were observed in saline lake waters and waters from semi-arid or arid regions, where strong photobleaching is expected due to less cloud cover, longer water residence time, and daylight hours. In contrast, high values were found in waters developed in wetlands or forest in Northeast China, where more organic matter was transported from catchment to waters. The study also demonstrated that closer relationships between CDOM and DOC were revealed when aCDOM (275) were sorted by the ratio of aCDOM(250)/aCDOM (365), which is a measure for the CDOM absorption with respect to its composition, and the determination of coefficient of the regression models ranged from 0.79 to 0.98 for different groups of waters. Our results indicate the relationships between CDOM and DOC are variable for different inland waters; thus, models for DOC estimation through linking with CDOM absorption need to be tailored according to water types.

  19. Riparian ecosystem resilience and livelihood strategies under test: lessons from Lake Chilwa in Malawi and other lakes in Africa.

    PubMed

    Kafumbata, Dalitso; Jamu, Daniel; Chiotha, Sosten

    2014-04-05

    This paper reviews the importance of African lakes and their management challenges. African inland lakes contribute significantly to food security, livelihoods and national economies through direct exploitation of fisheries, water resources for irrigation and hydropower generation. Because of these key contributions, the ecosystem services provided are under significant stress mainly owing to high demand by increasing populations, negative anthropogenic impacts on lake catchments and high levels of poverty which result in unsustainable use. Climate variability exacerbates the stress on these ecosystems. Current research findings show that the lakes cannot sustain further development activities on the scale seen over the past few decades. Millions of people are at risk of losing livelihoods through impacts on livestock and wildlife. The review further shows that the problems facing these lakes are beyond the purview of current management practices. A much better understanding of the interactions and feedbacks between different components of the lake socio-ecological systems is needed to address the complex challenges of managing these ecosystem services. This review suggests that the three small wetlands of Chad, Chilwa and Naivasha provide an opportunity for testing novel ideas that integrate sustainability of natural resource management with livelihoods in order to inform policy on how future land use and climatic variability will affect both food security and the ecosystem services associated with it.

  20. Dispersion and transport of hypersaline gravity currents in the presence of internal waves at a pycnocline

    NASA Astrophysics Data System (ADS)

    Hogg, C. A. R.; Pietrasz, V. B.; Ouellette, N. T.; Koseff, J. R.

    2015-12-01

    Desalination of seawater offers a source of potable water in arid regions and during drought. However, hypersaline discharge from desalination facilities presents environmental risks, particularly to benthic organisms. The risks posed by salt levels and chemical additives, which can be toxic to local ecosystems, are typically mitigated by ensuring high levels of dilution close to the source. We report on laboratory flume experiments examining how internal waves at the pycnocline of a layered ambient density stratification influence the transport of hypersaline effluent moving as a gravity current down the slope. We found that some of the hypersaline fluid from the gravity current was diverted away from the slope into an intrusion along the pycnocline. A parametric study investigated how varying the energy of the internal wave altered the amount of dense fluid that was diverted into the pycnocline intrusion. The results are compared to an analytical framework that compares the incident energy in the internal wave to potential energy used in diluting the gravity current. These results are significant for desalination effluents because fluid diverted into the intrusion avoids the ecologically sensitive benthic layer and disperses more quickly than if it had continued to propagate along the bed.

  1. Inland waters and their role in the carbon cycle of Alaska

    USGS Publications Warehouse

    Stackpoole, Sarah M.; Butman, David E.; Clow, David W.; Verdin, Kristine L.; Gaglioti, Benjamin V.; Genet, Hélène; Striegl, Robert G.

    2017-01-01

    The magnitude of Alaska (AK) inland waters carbon (C) fluxes is likely to change in the future due to amplified climate warming impacts on the hydrology and biogeochemical processes in high latitude regions. Although current estimates of major aquatic C fluxes represent an essential baseline against which future change can be compared, a comprehensive assessment for AK has not yet been completed. To address this gap, we combined available data sets and applied consistent methodologies to estimate river lateral C export to the coast, river and lake carbon dioxide (CO2) and methane (CH4) emissions, and C burial in lakes for the six major hydrologic regions in the state. Estimated total aquatic C flux for AK was 41 Tg C/yr. Major components of this total flux, in Tg C/yr, were 18 for river lateral export, 17 for river CO2 emissions, and 8 for lake CO2 emissions. Lake C burial offset these fluxes by 2 Tg C/yr. River and lake CH4 emissions were 0.03 and 0.10 Tg C/yr, respectively. The Southeast and South central regions had the highest temperature, precipitation, terrestrial net primary productivity (NPP), and C yields (fluxes normalized to land area) were 77 and 42 g C·m−2·yr−1, respectively. Lake CO2 emissions represented over half of the total aquatic flux from the Southwest (37 g C·m−2·yr−1). The North Slope, Northwest, and Yukon regions had lesser yields (11, 15, and 17 g C·m2·yr−1), but these estimates may be the most vulnerable to future climate change, because of the heightened sensitivity of arctic and boreal ecosystems to intensified warming. Total aquatic C yield for AK was 27 g C·m−2·yr−1, which represented 16% of the estimated terrestrial NPP. Freshwater ecosystems represent a significant conduit for C loss, and a more comprehensive view of land-water-atmosphere interactions is necessary to predict future climate change impacts on the Alaskan ecosystem C balance.

  2. Physical Mechanisms of Rapid Lake Warming

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.

    2016-12-01

    Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.

  3. Remote Sensing as a Tool to Track Algal Blooms in the Great Salt Lake, Utah, USA

    NASA Astrophysics Data System (ADS)

    Bradt, S. R.; Wurtsbaugh, W. A.; Naftz, D.; Moore, T.; Haney, J.

    2006-12-01

    The Great Salt Lake is a large hypersaline, terminal water body in northern Utah, USA. The lake has both a significant economic importance to the local community as a source of brine shrimp and mineral resources, as well as, an ecological importance to large numbers of migratory waterfowl. Due to nutrient input from sewage treatment plants, sections of the Great Salt Lake are subjected to highly eutrophic conditions. One of the main tributaries, Farmington Bay, experiences massive blooms of cyanobacteria which can reach concentrations in excess of 300 mg l-1 in the bay. Effects of these blooms can be observed stretching into the rest of the lake. The detrimental outcomes of the blooms include unsightly scums, foul odor and the danger of cyanobacterial toxins. While the blooms have an obvious effect on Farmington Bay, it is quite possible that the cyanobacteria impact a much wider area of the lake as currents move eutrophic water masses. Of particular interest is the reaction of brine shrimp to the plumes of cyanobacteria-rich water leaving Farmington Bay. We are employing remote sensing as a tool to map the distribution of algae throughout the lake and produce lake-wide maps of water quality on a regular basis. On-lake reflectance measurements have been coupled with MODIS satellite imagery to produce a time series of maps illustrating changes in algal distribution. The successes and shortcomings of our remote sensing technique will be a central topic of this presentation.

  4. Response of biotic communities to salinity changes in a Mediterranean hypersaline stream

    PubMed Central

    Velasco, Josefa; Millán, Andrés; Hernández, Juan; Gutiérrez, Cayetano; Abellán, Pedro; Sánchez, David; Ruiz, Mar

    2006-01-01

    Background This study investigates the relationship between salinity and biotic communities (primary producers and macroinvertebrates) in Rambla Salada, a Mediterranean hypersaline stream in SE Spain. Since the 1980's, the mean salinity of the stream has fallen from about 100 g L-1 to 35.5 g L-1, due to intensive irrigated agriculture in the watershed. Furthermore, large dilutions occur occasionally when the water irrigation channel suffers cracks. Results Along the salinity gradient studied (3.5 – 76.4 g L-1) Cladophora glomerata and Ruppia maritima biomass decreased with increasing salinity, while the biomass of epipelic algae increased. Diptera and Coleoptera species dominated the community both in disturbed as in re-established conditions. Most macroinvertebrates species found in Rambla Salada stream are euryhaline species with a broad range of salinity tolerance. Eight of them were recorded in natural hypersaline conditions (~100 g L-1) prior to important change in land use of the watershed: Ephydra flavipes, Stratyomis longicornis, Nebrioporus ceresyi, N. baeticus, Berosus hispanicus, Enochrus falcarius, Ochthebius cuprescens and Sigara selecta. However, other species recorded in the past, such as Ochthebius glaber, O. notabilis and Enochrus politus, were restricted to a hypersaline source or absent from Rambla Salada. The dilution of salinity to 3.5 – 6.8 gL-1 allowed the colonization of species with low salininty tolerance, such as Melanopsis praemorsa, Anax sp., Simulidae, Ceratopogonidae and Tanypodinae. The abundance of Ephydra flavipes and Ochthebius corrugatus showed a positive significant response to salinity, while Anax sp., Simulidae, S. selecta, N. ceresyi, N. baeticus, and B. hispanicus showed significant negative correlations. The number of total macroinvertebrate taxa, Diptera and Coleoptera species, number of families, Margalef's index and Shannon's diversity index decreased with increasing salinity. However, the rest of community

  5. Lake Qinghai Drilling Project: Evolution History of Lake Qinghai and East Asian Monsoon Changes since the Late Miocene

    NASA Astrophysics Data System (ADS)

    An, Z.; Colman, S.

    2007-12-01

    As a closed continental lake on the north-east margin of the Tibetan Plateau, Lake Qinghai is sensitive to climate variations as well as the environmental effects of Plateau growth/uplift. Supported by Chinese funding agencies and ICDP, onshore and offshore lake cores were drilled in 2005. We compare our preliminary chronostratigraphic, sedimentologic, and geochemical results with climatic records from the Loess Plateau, South China Sea, Arctic and global oceans, and we discuss the evolution of Lake Qinghai at different time scales since the late Miocene. Lake Qinghai is shown to have intimate linkages with the warm/moist East Asian summer monsoon, the cold/dry East Asian winter monsoon, and the growth/uplift of the Tibetan Plateau. Magnetostratigraphic studies of the onshore drill cores indicate that thick greenish clays were deposited during Late Miocene, suggesting the initial formation of the Qinghai Lake basin. Consistent with proxies from the Loess Plateau and the South China Sea, they imply summer-monsoon strengthening and inland intrusion. These changes may be related to a growth event of the Tibetan Plateau at 10-8 Ma, which led to the uplift of Qinghai Nanshan, formation of faulted lake basins, and enhanced summer monsoon circulation. From 6 to 4.6Ma eolian red clays in the core indicate lake basin dessication, as Loess Plateau dust flux increased with the strengthening of the winter monsoon and coincident with intense Arctic ice rafting at 6-5 Ma. From 4.6 to 3.5 Ma thick greenish clays were deposited as modern Lake Qinghai formed. Significantly increased fluxes of TOC, C/N and total sediment might be related to uplift of Qinghai Nanshan and basin subsidence at that time, and they are coeval with the increasing strength of East Asian monsoon during early Pliocene. At 3.5-2.6 Ma, continued strengthening of the East Asian summer monsoon, inland aridification, and increases in global ice volume suggest another growth event of the Tibetan Plateau. Shallow

  6. Regionalization of precipitation characteristics in Iran's Lake Urmia basin

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn

    2018-04-01

    Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.

  7. Quantity and quality of groundwater discharge in a hypersaline lake environment

    USGS Publications Warehouse

    Anderson, R.B.; Naftz, D.L.; Day-Lewis, F. D.; Henderson, R.D.; Rosenberry, D.O.; Stolp, B.J.; Jewell, P.

    2014-01-01

    Geophysical and geochemical surveys were conducted to understand groundwater discharge to Great Salt Lake (GSL) and assess the potential significance of groundwater discharge as a source of selenium (Se). Continuous resistivity profiling (CRP) focusing below the sediment/water interface and fiber-optic distributed temperature sensing (FO-DTS) surveys were conducted along the south shore of GSL. FO-DTS surveys identified persistent cold-water temperature anomalies at 10 separate locations. Seepage measurements were conducted at 17 sites (mean seepage rate = 0.8 cm/day). High resistivity anomalies identified by the CRP survey were likely a mirabilite (Na2SO4·10H2O) salt layer acting as a semi-confining layer for the shallow groundwater below the south shore of the lake. Positive seepage rates measured along the near-shore areas of GSL indicate that a ∼1-m thick oolitic sand overlying the mirabilite layer is likely acting as a shallow, unconfined aquifer. Using the average seepage rate of 0.8 cm/day over an area of 1.6 km2, an annual Se mass loading to GSL of 23.5 kg was estimated. Determination of R/Ra values (calculated 3He/4He ratio over the present-day atmospheric 3He/4He ratio) 34S and δ18O isotopic values in samples of dissolved sulfate from the shallow groundwater below the mirabilite are almost identical to the isotopic signature of the mirabilite core material. The saturation index calculated for groundwater samples using PHREEQC indicates the water is at equilibrium with mirabilite. Water samples collected from GSL immediately off shore contained Se concentrations that were 3–4 times higher than other sampling sites >25 km offshore from the study site and may be originating from less saline groundwater seeps mixing with the more saline water from GSL. Additional evidence for mixing with near shore seeps is found in the δD and δ18O isotopic values and Br:Cl ratios. Geochemical modeling for a water sample collected in the vicinity of the study area

  8. Investigating Climate at an Inland Sea During Snowball Earth

    NASA Astrophysics Data System (ADS)

    Campbell, A. J.; Bitz, C. M.; Warren, S. G.; Waddington, E. D.

    2013-12-01

    During the Neoproterozoic, the Earth's oceans may have been completely covered with thick ice, during periods commonly called Snowball Earth events. The Snowball Earth environment would seemingly have prohibited the survival of photosynthetic eukaryotic algae; however, these organisms were alive immediately prior to and immediate subsequent to these periods. Where on a Snowball Earth, or a Snowball-like exoplanet, could photosynthetic eukaryotic algae survive? Recent research, in attempt to reconcile this paradox, has demonstrated that narrow channels connected the ocean, called inland seas, could have provided refugia for photosynthetic eukaryotic algae during Snowball Earth events. Narrow channels could have restricted the flow of ocean-derived ice, called sea glaciers, diminishing sea-glacier penetration into these channels. Provided certain climate conditions and channel geometries, this diminished sea-glacier penetration would have allowed for either open water or thin sea ice, at the far end of these channels. A channel with open water or thin sea ice would provide the conditions needed for survival of photosynthetic eukaryotic algae. Here we test whether the climate needed to prevent sea-glacier penetration, could have existed in the special inland sea environment. Previous climate modeling of Snowball Earth has shown that tropical regions would have likely been warmer than the global average and would have experienced net sublimation at the surface. An inland sea located in the tropics would be surrounded by land that is bare and free from snow, while the inland sea itself would be either ice-covered or open water. With these conditions the inland sea would likely have a high albedo, while the surrounding bare land, would have a lower albedo. This albedo contrast could cause the climate over an inland sea to be warmer than the climate over the ice-covered ocean at the same latitude. We calculate the surface temperature and sublimation rate at an inland sea

  9. Spatial Variability of Wet Troposphere Delays Over Inland Water Bodies

    NASA Astrophysics Data System (ADS)

    Mehran, Ali; Clark, Elizabeth A.; Lettenmaier, Dennis P.

    2017-11-01

    Satellite radar altimetry has enabled the study of water levels in large lakes and reservoirs at a global scale. The upcoming Surface Water and Ocean Topography (SWOT) satellite mission (scheduled launch 2020) will simultaneously measure water surface extent and elevation at an unprecedented accuracy and resolution. However, SWOT retrieval accuracy will be affected by a number of factors, including wet tropospheric delay—the delay in the signal's passage through the atmosphere due to atmospheric water content. In past applications, the wet tropospheric delay over large inland water bodies has been corrected using atmospheric moisture profiles based on atmospheric reanalysis data at relatively coarse (tens to hundreds of kilometers) spatial resolution. These products cannot resolve subgrid variations in wet tropospheric delays at the spatial resolutions (of 1 km and finer) that SWOT is intended to resolve. We calculate zenith wet tropospheric delays (ZWDs) and their spatial variability from Weather Research and Forecasting (WRF) numerical weather prediction model simulations at 2.33 km spatial resolution over the southwestern U.S., with attention in particular to Sam Rayburn, Ray Hubbard, and Elephant Butte Reservoirs which have width and length dimensions that are of order or larger than the WRF spatial resolution. We find that spatiotemporal variability of ZWD over the inland reservoirs depends on climatic conditions at the reservoir location, as well as distance from ocean, elevation, and surface area of the reservoir, but that the magnitude of subgrid variability (relative to analysis and reanalysis products) is generally less than 10 mm.

  10. Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation

    NASA Astrophysics Data System (ADS)

    Yakimov, Michail M.; La Cono, Violetta; Slepak, Vladlen Z.; La Spada, Gina; Arcadi, Erika; Messina, Enzo; Borghini, Mireno; Monticelli, Luis S.; Rojo, David; Barbas, Coral; Golyshina, Olga V.; Ferrer, Manuel; Golyshin, Peter N.; Giuliano, Laura

    2013-12-01

    Deep-sea hypersaline anoxic lakes (DHALs) of the Eastern Mediterranean represent some of the most hostile environments on our planet. We investigated microbial life in the recently discovered Lake Medee, the largest DHAL found to-date. Medee has two unique features: a complex geobiochemical stratification and an absence of chemolithoautotrophic Epsilonproteobacteria, which usually play the primary role in dark bicarbonate assimilation in DHALs interfaces. Presumably because of these features, Medee is less productive and exhibits reduced diversity of autochthonous prokaryotes in its interior. Indeed, the brine community almost exclusively consists of the members of euryarchaeal MSBL1 and bacterial KB1 candidate divisions. Our experiments utilizing cultivation and [14C]-assimilation, showed that these organisms at least partially rely on reductive cleavage of osmoprotectant glycine betaine and are engaged in trophic cooperation. These findings provide novel insights into how prokaryotic communities can adapt to salt-saturated conditions and sustain active metabolism at the thermodynamic edge of life.

  11. A global database of lake surface temperatures collected by in situ and satellite methods from 1985-2009.

    PubMed

    Sharma, Sapna; Gray, Derek K; Read, Jordan S; O'Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest'eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

  12. Rotifers from selected inland saline waters in the Chihuahuan Desert of México

    PubMed Central

    Walsh, Elizabeth J; Schröder, Thomas; Wallace, Robert L; Ríos-Arana, Judith V; Rico-Martínez, Roberto

    2008-01-01

    Background In spite of considerable efforts over past decades we still know relatively little regarding the biogeography of rotifers of inland waters in México. To help rectify this we undertook an extensive survey of the rotifer fauna of 48 water bodies in the Chihuahuan Desert of México. Results Of the sites surveyed, 21 had salinities ≥ 2000 μS cm-1 and in these we found 57 species of monogonont rotifers and several bdelloids. Species richness in the saline sites varied widely, with a range in species richness of 1 to 27 and a mean (± 1SD) = 8.8 (± 6.2). Collectively all sites possess relatively high percent single- and doubletons, 33.3 and 21.7%, respectively. Simpson's Asymmetric Index indicated that similarity in rotifer species composition varied widely among a set of 10 sites. These were selected because they were sampled more frequently or represent unusual habitats. These SAI values ranged from 0.00 (complete dissimilarity) to 1.00 (complete similarity). The Jaccard Index varied between 0.00 and 0.35. This observation probably reflects similarities and differences in water chemistry among these sites. Inland saline systems differed in their chemical composition by region. Conductivity was related to hardness and alkalinity. In addition, hardness was positively associated with chloride and sulfate. RDA showed that several species were positively associated with chloride concentration. Other factors that were significantly associated with rotifer species included the presence of macrophytes, nitrate content, oxygen concentration, TDS, latitude and whether the habitat was a large lake or reservoir. Conclusion This study illustrates the diversity of the rotiferan fauna of inland saline systems and the uniqueness among waterbodies. Conservation of these systems is needed to preserve these unique sources of biodiversity that include rotifers and the other endemic species found in association with them. PMID:18533042

  13. Two Fixed Ratio Dilutions for Soil Salinity Monitoring in Hypersaline Wetlands

    PubMed Central

    Herrero, Juan; Weindorf, David C.; Castañeda, Carmen

    2015-01-01

    Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m-1 to 183.0 dS m-1. This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content. PMID:26001130

  14. Two fixed ratio dilutions for soil salinity monitoring in hypersaline wetlands.

    PubMed

    Herrero, Juan; Weindorf, David C; Castañeda, Carmen

    2015-01-01

    Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m(-1) to 183.0 dS m(-1). This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content.

  15. Hypersaline groundwater genesis assessment through a multidisciplinary approach: the case of Pozzo del Sale Spring (southern Italy)

    NASA Astrophysics Data System (ADS)

    Celico, Fulvio; Capuano, Paolo; de Felice, Vincenzo; Naclerio, Gino

    2008-11-01

    A tool, based on a multidisciplinary field investigation approach for studying the characteristics of a hypersaline spring, was developed and its effectiveness tested on a spring in southern Italy; a preliminary model of the aquifer system at medium and local scale was derived. Hydrologic measurements, vertical electric soundings, and chemical and isotopic (δ18O, δ2H, 3H) analyses were undertaken, along with microbiological analyses and species identification. These demonstrate the coexistence of hypersaline and fresh water, generating a significant diversification of the groundwater hydrochemical signature. The isotopic signature shows that both types of water have a meteoric origin. Microbial contamination of fecal origin indicates the mixing of hyper- and low- saline water related to local infiltration. The hypersaline groundwater flows in confined horizons within a sequence that is mainly of fractured clays. These horizons are probably concentrated where well-developed fracture network and dissolution openings within evaporitic rocks enhance fluid flow. In a wider context, this study determines that microbiological pollution of saline groundwater may not be detected if using nonhalophilic bacterial indicators such as fecal coliforms. Fecal enterococci are better indicators, due to their higher halotolerance.

  16. Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts.

    PubMed

    Al-Mailem, D M; Eliyas, M; Radwan, S S

    2013-05-01

    Two halophilic, hydrocarbonoclastics bacteria, Marinobacter sedimentarum and M. flavimaris, with diazotrophic potential occured in hypersaline waters and soils in southern and northern coasts of Kuwait. Their numbers were in the magnitude of 10(3) colony forming units g(-1). The ambient salinity in the hypersaline environments was between 3.2 and 3.5 M NaCl. The partial 16S rRNA gene sequences of the two strains showed, respectively, 99 and 100% similarities to the sequences in the GenBank. The two strains failed to grow in the absence of NaCl, exhibited best growth and hydrocarbon biodegradation in the presence of 1 to 1.5 M NaCl, and still grew and maintained their hydrocarbonoclastic activity at salinities up to 5 M NaCl. Both species utilized Tween 80, a wide range of individual aliphatic hydrocarbons (C9-C40) and the aromatics benzene, biphenyl, phenanthrene, anthracene and naphthalene as sole sources of carbon and energy. Experimental evidence was provided for their nitrogen-fixation potential. The two halophilic Marinobacter strains successfully mineralized crude oil in nutrient media as well as in hypersaline soil and water microcosms without the use of any nitrogen fertilizers.

  17. Lake level fluctuations boost toxic cyanobacterial "oligotrophic blooms".

    PubMed

    Callieri, Cristiana; Bertoni, Roberto; Contesini, Mario; Bertoni, Filippo

    2014-01-01

    Global warming has been shown to strongly influence inland water systems, producing noticeable increases in water temperatures. Rising temperatures, especially when combined with widespread nutrient pollution, directly favour the growth of toxic cyanobacteria. Climate changes have also altered natural water level fluctuations increasing the probability of extreme events as dry periods followed by heavy rains. The massive appearance of Dolichospermum lemmermannii ( = planktonic Anabaena), a toxic species absent from the pelagic zone of the subalpine oligotrophic Lake Maggiore before 2005, could be a consequence of the unusual fluctuations of lake level in recent years. We hypothesized that these fluctuations may favour the cyanobacterium as result of nutrient pulses from the biofilms formed in the littoral zone when the lake level is high. To help verify this, we exposed artificial substrates in the lake, and evaluated their nutrient enrichment and release after desiccation, together with measurements of fluctuations in lake level, precipitation and D. lemmermannii population. The highest percentage of P release and the lowest C:P molar ratio of released nutrients coincided with the summer appearance of the D. lemmermannii bloom. The P pulse indicates that fluctuations in level counteract nutrient limitation in this lake and it is suggested that this may apply more widely to other oligotrophic lakes. In view of the predicted increase in water level fluctuations due to climate change, it is important to try to minimize such fluctuations in order to mitigate the occurrence of cyanobacterial blooms.

  18. Impact of lakes and wetlands on present and future boreal climate

    NASA Astrophysics Data System (ADS)

    Poutou, E.; Krinner, G.; Genthon, C.

    2002-12-01

    Impact of lakes and wetlands on present and future boreal climate The role of lakes and wetlands in present-day high latitude climate is quantified using a general circulation model of the atmosphere. The atmospheric model includes a lake module which is presented and validated. Seasonal and spatial wetland distribution is calculated as a function of the hydrological budget of the wetlands themselves and of continental soil whose runoff feeds them. Wetland extent is simulated and discussed both in simulations forced by observed climate and in general circulation model simulations. In off-line simulations, forced by ECMWF reanalyses, the lake model simulates correctly observed lake ice durations, while the wetland extent is somewhat underestimated in the boreal regions. Coupled to the general circulation model, the lake model yields satisfying ice durations, although the climate model biases have impacts on the modeled lake ice conditions. Boreal wetland extents are overestimated in the general circulation model as simulated precipitation is too high. The impact of inundated surfaces on the simulated climate is strongest in summer when these surfaces are ice-free. Wetlands seem to play a more important role than lakes in cooling the boreal regions in summer and in humidifying the atmosphere. The role of lakes and wetlands in future climate change is evaluated by analyzing simulations of present and future climate with and without prescribed inland water bodies.

  19. Tree Guidelines for Inland Empire Communities

    Treesearch

    E.G. McPherson; J.R. Simpson; P.J. Peper; Q. Xiao; D.R. Pittenger; D.R. Hodel

    2001-01-01

    Communities in the Inland Empire region of California contain over 8 million people, or about 25% of the state’s population. The region’s inhabitants derive great benefit from trees because compared to coastal areas, the summers are hotter and air pollution levels are higher. The region’s climate is still mild enough to grow a diverse mix of trees. The Inland Empire’s...

  20. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009

    PubMed Central

    Sharma, Sapna; Gray, Derek K; Read, Jordan S; O’Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest’eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues. PMID:25977814

  1. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009

    USGS Publications Warehouse

    Sharma, Sapna; Gray, Derek; Read, Jordan S.; O'Reilly, Catherine; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie; Hook, Simon; Lenters, John; Livingstone, David M.; McIntyre, Peter B.; Adrian, Rita; Allan, Mathew; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John E.; Baron, Jill S.; Brookes, Justin D; Chen, Yuwei; Daly, Robert; Ewing, Kye; de Eyto, Elvira; Dokulil, Martin; Hamilton, David B.; Havens, Karl; Haydon, Shane; Hetzenaeur, Harald; Heneberry, Jocelyn; Hetherington, Amy; Higgins, Scott; Hixson, Eric; Izmest'eva, Lyubov; Jones, Benjamin M.; Kangur, Kulli; Kasprzak, Peter; Kraemer, Benjamin; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Dörthe Müller-Navarra,; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Pius Niederhauser,; North, Ryan P.; Andrew Paterson,; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Daniel E. Schindler,; Geoffrey Schladow,; Schmidt, Silke R.; Tracey Schultz,; Silow, Eugene A.; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A.; Craig E. Williamson,; Kara H. Woo,

    2015-01-01

    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

  2. Modern Microbial Fossilization Processes as Signatures for Interpreting Ancient Terrestrial and Extraterrestrial Microbial Forms

    NASA Technical Reports Server (NTRS)

    Morris, Penny A.; Wentworth, Susan J.; Nelman, Mayra; Byrne, Monica; Longazo, Teresa; Galindo, Charles; McKay, David S.; Sams, Clarence

    2003-01-01

    Terrestrial biotas from microbially dominated hypersaline environments will help us understand microbial fossilization processes. Hypersaline tolerant biota from Storr's Lake, San Salvador Island (Bahamas), Mono Lake (California), and the Dead Sea (Israel) represent marine and nonmarine sites for comparative studies of potential analogs for interpreting some Mars meteorites and Mars sample return rocks [1,2,3,4,5,6]. The purpose of this study is to compare microbial fossilization processes, the dominant associated minerals, and potential diagenic implications.

  3. Cyanobacterial diversity and halotolerance in a variable hypersaline environment.

    PubMed

    Kirkwood, Andrea E; Buchheim, Julie A; Buchheim, Mark A; Henley, William J

    2008-04-01

    The Great Salt Plains (GSP) in north-central Oklahoma, USA is an expansive salt flat (approximately 65 km(2)) that is part of the federally protected Salt Plains National Wildlife Refuge. The GSP serves as an ideal environment to study the microbial diversity of a terrestrial, hypersaline system that experiences wide fluctuations in freshwater influx and diel temperature. Our study assessed cyanobacterial diversity at the GSP by focusing on the taxonomic and physiological diversity of GSP isolates, and the 16S rRNA phylogenetic diversity of isolates and environmental clones from three sites (north, central, and south). Taxonomic diversity of isolates was limited to a few genera (mostly Phormidium and Geitlerinema), but physiological diversity based on halotolerance ranges was strikingly more diverse, even between strains of the same phylotype. The phylogenetic tree revealed diversity that spanned a number of cyanobacterial lineages, although diversity at each site was dominated by only a few phylotypes. Unlike other hypersaline systems, a number of environmental clones from the GSP were members of the heterocystous lineage. Although a number of cyanobacterial isolates were close matches with prevalent environmental clones, it is not certain if these clones reflect the same halotolerance ranges of their matching isolates. This caveat is based on the notable disparities we found between strains of the same phylotype and their inherent halotolerance. Our findings support the hypothesis that variable or poikilotrophic environments promote diversification, and in particular, select for variation in ecotype more than phylotype.

  4. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology

    NASA Astrophysics Data System (ADS)

    Lei, Yanbin; Yao, Tandong; Yang, Kun; Sheng, Yongwei; Kleinherenbrink, Marcel; Yi, Shuang; Bird, Broxton W.; Zhang, Xiaowen; Zhu, La; Zhang, Guoqing

    2017-01-01

    The recent growth and deepening of inland lakes in the Tibetan Plateau (TP) may be a salient indicator of the consequences of climate change. The seasonal dynamics of these lakes is poorly understood despite this being potentially crucial for disentangling contributions from glacier melt and precipitation, which are all sensitive to climate, to lake water budget. Using in situ observations, satellite altimetry and gravimetry data, we identified two patterns of lake level seasonality. In the central, northern, and northeastern TP, lake levels are characterized by considerable increases during warm seasons and decreases during cold seasons, which is consistent with regional mass changes related to monsoon precipitation and evaporation. In the northwestern TP, however, lake levels exhibit dramatic increases during both warm and cold seasons, which deviate from regional mass changes. This appears to be more connected with high spring snowfall and large summer glacier melt. The variable lake level response to different drivers indicates heterogeneous sensitivity to climate change between the northwestern TP and other regions.

  5. Inland and Near Shore Water Profiles Derived from the High Altitude Multiple Altimeter Beam Experimental Lidar (MABEL)

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532 nm laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in icecaps, sea ice and vegetation, the polar-orbital satellite will observe global surface water during its designed three year life span, including inland water bodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype or the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the datasets of three MABEL transects observed from 20 km above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 km in length and included the middle Chesapeake Bay, the near shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision of approximately 5-7 cm per 100m segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR0, were observed over a range of 1.3 to 9.3 meters depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when solar background rate was low. Near shore bottom reflectance was detected only at the Lake Mead site down to maximum of 10 m under a clear night sky and low turbidity of approximately 1.6 Nephelometric Turbidity Units (NTU). The overall results suggest

  6. Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL)

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Stoll, Jeremy D.; Cook, William B.; Ondrusek, Michael; Stengel, Eric; Brunt, Kelly

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat-2) mission is a six beam, low energy, high repetition rate, 532-nanometer laser transmitter with photon counting detectors. Although designed primarily for detecting height changes in ice caps, sea ice, and vegetation, the polar-orbiting satellite will observe global surface water during its designed three-year life span, including inland waterbodies, coasts, and open oceans. In preparation for the mission, an ICESat-2 prototype, the Multiple Altimeter Beam Experimental Lidar (MABEL), was built and flown on high-altitude aircraft experiments over a range of inland and near-shore targets. The purpose was to test the ATLAS concept and to provide a database for developing an algorithm that detects along track surface water height and light penetration under a range of atmospheric and water conditions. The current analysis examines the data sets of three MABEL transects observed from 20 kilometers above ground of coastal and inland waters conducted in 2012 and 2013. Transects ranged from about 2 to 12 kilometers in length and included the middle Chesapeake Bay, the near-shore Atlantic coast at Virginia Beach, and Lake Mead. Results indicate MABEL's high capability for retrieving surface water height statistics with a mean height precision ofapproximately 5-7 centimeters per 100-meter segment length. Profiles of attenuated subsurface backscatter, characterized using a Signal to Background Ratio written in Log10 base, or LSBR (sub 0), were observed over a range of 1.3 to 9.3 meters, depending on water clarity and atmospheric background. Results indicate that observable penetration depth, although primarily dependent on water properties, was greatest when the solar background rate was low. Near-shore bottom reflectance was detected only at the Lake Mead site down to a maximum of 10 meters under a clear night sky and low turbidity of approximately 1

  7. Prokaryotic diversity in one of the largest hypersaline coastal lagoons in the world.

    PubMed

    Clementino, M M; Vieira, R P; Cardoso, A M; Nascimento, A P A; Silveira, C B; Riva, T C; Gonzalez, A S M; Paranhos, R; Albano, R M; Ventosa, A; Martins, O B

    2008-07-01

    Araruama Lagoon is an environment characterized by high salt concentrations. The low raining and high evaporation rates in this region favored the development of many salty ponds around the lagoon. In order to reveal the microbial composition of this system, we performed a 16S rRNA gene survey. Among archaea, most clones were related to uncultured environmental Euryarchaeota. In lagoon water, we found some clones related to Methanomicrobia and Methanothermococcus groups, while in the saline pond water members related to the genus Haloarcula were detected. Bacterial community was dominated by clones related to Gamma-proteobacteria, Actinobacteria, and Synechococcus in lagoon water, while Salinibacter ruber relatives dominated in saline pond. We also detected the presence of Alpha-proteobacteria, Pseudomonas-like bacteria and Verrucomicrobia. Only representatives of the genus Ralstonia were cosmopolitan, being observed in both systems. The detection of a substantial number of clones related to uncultured archaea and bacteria suggest that the hypersaline waters of Araruama harbor a pool of novel prokaryotic phylotypes, distinct from those observed in other similar systems. We also observed clones related to halophilic genera of cyanobacteria that are specific for each habitat studied. Additionally, two bacterioplankton molecular markers with ecological relevance were analyzed, one is linked to nitrogen fixation (nifH) and the other is linked to carbon fixation by bacterial photosynthesis, the protochlorophyllide genes, revealing a specific genetic distribution in this ecosystem. This is the first study of the biogeography and community structure of microbial assemblages in Brazilian tropical hypersaline environments. This work is directed towards a better understanding of the free-living prokaryotic diversity adapted to life in hypersaline waters.

  8. 77 FR 29271 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    .... Entities discharging nitrogen or phosphorus to lakes and flowing waters of Florida could be indirectly.../phosphorus pollution in Florida's waters may be affected through implementation of Florida's water quality... phosphorus, nitrate+nitrite, and chlorophyll a for the different types of Florida's inland waters to assure...

  9. Evidence that sea lampreys (Petromyzon marinus) complete their life cycle within a tributary of the Laurentian Great Lakes by parasitizing fishes in inland lakes

    USGS Publications Warehouse

    Johnson, Nicholas; Twohey, Michael B.; Miehls, Scott M.; Cwalinski, Tim A; Godby, Neal A; Lochet, Aude; Slade, Jeffrey W.; Jubar, Aaron K.; Siefkes, Michael J.

    2016-01-01

    The sea lamprey (Petromyzon marinus) invaded the upper Laurentian Great Lakes and feeds on valued fish. The Cheboygan River, Michigan, USA, is a large sea lamprey producing tributary to Lake Huron and despite having a renovated dam 2 km from the river mouth that presumably blocks sea lamprey spawning migrations, the watershed upstream of the dam remains infested with larval sea lamprey. A navigational lock near the dam has been hypothesized as the means of escapement of adult sea lampreys from Lake Huron and source of the upper river population (H1). However, an alternative hypothesis (H2) is that some sea lampreys complete their life cycle upstream of the dam, without entering Lake Huron. To evaluate the alternative hypothesis, we gathered angler reports of lamprey wounds on game fishes upstream of the dam, and captured adult sea lampreys downstream and upstream of the dam to contrast abundance, run timing, size, and statolith microchemistry. Results indicate that a small population of adult sea lampreys (n < 200) completed their life cycle upstream of the dam during 2013 and 2014. This is the most comprehensive evidence that sea lampreys complete their life history within a tributary of the upper Great Lakes, and indicates that similar landlocked populations could occur in other watersheds. Because the adult sea lamprey population upstream of the dam is small, complete elimination of the already low adult escapement from Lake Huron might allow multiple control tactics such as lampricides, trapping, and sterile male release to eradicate the population.

  10. Tributaries affect the thermal response of lakes to climate change

    NASA Astrophysics Data System (ADS)

    Råman Vinnå, Love; Wüest, Alfred; Zappa, Massimiliano; Fink, Gabriel; Bouffard, Damien

    2018-01-01

    Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC), lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.

  11. In-lake carbon dioxide concentration patterns in four distinct phases in relation to ice cover dynamics

    NASA Astrophysics Data System (ADS)

    Denfeld, B. A.; Wallin, M.; Sahlee, E.; Sobek, S.; Kokic, J.; Chmiel, H.; Weyhenmeyer, G. A.

    2014-12-01

    Global carbon dioxide (CO2) emission estimates from inland waters include emissions at ice melt that are based on simple assumptions rather than evidence. To account for CO2 accumulation below ice and potential emissions into the atmosphere at ice melt we combined continuous CO2 concentrations with spatial CO2 sampling in an ice-covered small boreal lake. From early ice cover to ice melt, our continuous surface water CO2 concentration measurements at 2 m depth showed a temporal development in four distinct phases: In early winter, CO2 accumulated continuously below ice, most likely due to biological in-lake and catchment inputs. Thereafter, in late winter, CO2 concentrations remained rather constant below ice, as catchment inputs were minimized and vertical mixing of hypolimnetic water was cut off. As ice melt began, surface water CO2 concentrations were rapidly changing, showing two distinct peaks, the first one reflecting horizontal mixing of CO2 from surface and catchment waters, the second one reflecting deep water mixing. We detected that 83% of the CO2 accumulated in the water during ice cover left the lake at ice melt which corresponded to one third of the total CO2 storage. Our results imply that CO2 emissions at ice melt must be accurately integrated into annual CO2 emission estimates from inland waters. If up-scaling approaches assume that CO2 accumulates linearly under ice and at ice melt all CO2 accumulated during ice cover period leaves the lake again, present estimates may overestimate CO2 emissions from small ice covered lakes. Likewise, neglecting CO2 spring outbursts will result in an underestimation of CO2 emissions from small ice covered lakes.

  12. Ecophysiological plasticity of shallow and deep populations of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa in response to hypersaline stress.

    PubMed

    Sandoval-Gil, Jose Miguel; Ruiz, Juan Manuel; Marín-Guirao, Lázaro; Bernardeau-Esteller, Jaime; Sánchez-Lizaso, Jose Luis

    2014-04-01

    The differential expression of the plant phenotypic plasticity due to inter- and intraspecific divergences can determine the plant physiological tolerance under stress. In this work, we examined the interspecific ecophysiological plasticity that the main Mediterranean seagrass species with distinct marine environmental distribution (Posidonia oceanica and Cymodocea nodosa) can exhibit in response to hypersaline stress. We also tested the potential implication of ecotypic intraspecific divergences in the development of such plasticities. To this end, plants from shallow (5-7 m) and deep (18-20 m) meadows of both were maintained under two salinity treatments (natural salinity level of 37, and hypersaline treatment of 43; Practical Salinity Scale) during a long-term experiment (i.e. 62 days) developed in a highly controlled mesocosm system. Hypersaline stress caused notable plastic physiological alterations in P. oceanica and C. nodosa, with appreciable inter- and intraspecific differences. Although both species were similarly able to osmoregulate by means of organic solute accumulation (proline and sugars) in response to hypersalinity stress, higher carbon balance reductions were detected in P. oceanica plants from the deep meadow and in shallower C. nodosa plants, due to both photosynthetic inhibition and enhancement of respiration. None of these deleterious effects were found in C. nodosa plants form the deeper meadow. Leaf photosynthetic pigments generally increased in P. oceanica from both depths, but light absorbance capacities by leaves and photosynthetic efficiency followed contrasting patterns, increasing and decreasing in plants from the deep and the shallow meadows, respectively, indicating distinct strategies to cope with photosynthetic dysfunctions. Despite the significant reduction of pigments in the shallower C. nodosa plants, their leaves were able to increase their light capture capacities under hypersaline stress, by means of particular leaf optics

  13. Hypersalinity Acclimation Increases the Toxicity of the Insecticide Phorate in Coho Salmon (Oncorhynchus kisutch)

    PubMed Central

    Lavado, Ramon; Maryoung, Lindley A.; Schlenk, Daniel

    2012-01-01

    Previous studies in euryhaline fish have shown that acclimation to hypersaline environments enhances the toxicity of thioether organophosphate and carbamate pesticides. To better understand the potential mechanism of enhanced toxicity, the effects of the organophosphate insecticide phorate were evaluated in coho salmon (Oncorhynchus kisutch) maintained in freshwater (<0.5 g/L salinity) and 32 g/L salinity. The observed 96-h LC50 in freshwater fish (67.34 ± 3.41 μg/L) was significantly reduced to 2.07 ± 0.16 μg/L in hypersaline-acclimated fish. Because organophosphates often require bioactivation to elicit toxicity through acetylcholinesterase (AChE) inhibition, the in vitro biotransformation of phorate was evaluated in coho salmon maintained in different salinities in liver, gills, and olfactory tissues. Phorate sulfoxide was the predominant metabolite in each tissue but rates of formation diminished in a salinity-dependent manner. In contrast, formation of phorate-oxon (gill; olfactory tissues), phorate sulfone (liver), and phorate-oxon sulfoxide (liver; olfactory tissues) was significantly enhanced in fish acclimated to higher salinities. From previous studies, it was expected that phorate and phorate sulfoxide would be less potent AChE inhibitors than phorate-oxon, with phorate-oxon sulfoxide being the most potent of the compounds tested. This trend was confirmed in this study. In summary, these results suggest that differential expression and/or catalytic activities of Phase I enzymes may be involved to enhance phorate oxidative metabolism and subsequent toxicity of phorate to coho salmon under hypersaline conditions. The outcome may be enhanced fish susceptibility to anticholineterase oxon sulfoxides. PMID:21488666

  14. Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer

    PubMed Central

    Avrahamov, N; Antler, G; Yechieli, Y; Gavrieli, I; Joye, S B; Saxton, M; Turchyn, A V; Sivan, O

    2014-01-01

    Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ13CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed (34ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment. PMID:25039851

  15. Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer.

    PubMed

    Avrahamov, N; Antler, G; Yechieli, Y; Gavrieli, I; Joye, S B; Saxton, M; Turchyn, A V; Sivan, O

    2014-11-01

    Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ(13) CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed ((34) ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment. © 2014 The Authors. Geobiology Published by John Wiley & Sons Ltd.

  16. On the sustainability of inland fisheries: Finding a future for the forgotten

    USGS Publications Warehouse

    Cooke, Steven J.; Allison, Edward H.; Beard, Douglas; Arlinghaus, Robert; Arthington, Angela; Bartley, Devin; Cowx, Ian G.; Fuentevilla, Carlos; Léonard, Nancy J.; Lorenzen, Kai; Lynch, Abigail; Nguyen, Vivian M.; Youn, So-Jung; Tayor, William W.; Welcomme, Robin

    2016-01-01

    At present, inland fisheries are not often a national or regional governance priority and as a result, inland capture fisheries are undervalued and largely overlooked. As such they are threatened in both developing and developed countries. Indeed, due to lack of reliable data, inland fisheries have never been part of any high profile global fisheries assessment and are notably absent from the Sustainable Development Goals. The general public and policy makers are largely ignorant of the plight of freshwater ecosystems and the fish they support, as well as the ecosystem services generated by inland fisheries. This ignorance is particularly salient given that the current emphasis on the food-water-energy nexus often fails to include the important role that inland fish and fisheries play in food security and supporting livelihoods in low-income food deficit countries. Developing countries in Africa and Asia produce about 11 million tonnes of inland fish annually, 90 % of the global total. The role of inland fisheries goes beyond just kilocalories; fish provide important micronutrients and essentially fatty acids. In some regions, inland recreational fisheries are important, generating much wealth and supporting livelihoods. The following three key recommendations are necessary for action if inland fisheries are to become a part of the food-water-energy discussion: invest in improved valuation and assessment methods, build better methods to effectively govern inland fisheries (requires capacity building and incentives), and develop approaches to managing waters across sectors and scales. Moreover, if inland fisheries are recognized as important to food security, livelihoods, and human well-being, they can be more easily incorporated in regional, national, and global policies and agreements on water issues. Through these approaches, inland fisheries can be better evaluated and be more fully recognized in broader water resource and aquatic ecosystem planning and decision

  17. On the sustainability of inland fisheries: Finding a future for the forgotten.

    PubMed

    Cooke, Steven J; Allison, Edward H; Beard, T Douglas; Arlinghaus, Robert; Arthington, Angela H; Bartley, Devin M; Cowx, Ian G; Fuentevilla, Carlos; Leonard, Nancy J; Lorenzen, Kai; Lynch, Abigail J; Nguyen, Vivian M; Youn, So-Jung; Taylor, William W; Welcomme, Robin L

    2016-11-01

    At present, inland fisheries are not often a national or regional governance priority and as a result, inland capture fisheries are undervalued and largely overlooked. As such they are threatened in both developing and developed countries. Indeed, due to lack of reliable data, inland fisheries have never been part of any high profile global fisheries assessment and are notably absent from the Sustainable Development Goals. The general public and policy makers are largely ignorant of the plight of freshwater ecosystems and the fish they support, as well as the ecosystem services generated by inland fisheries. This ignorance is particularly salient given that the current emphasis on the food-water-energy nexus often fails to include the important role that inland fish and fisheries play in food security and supporting livelihoods in low-income food deficit countries. Developing countries in Africa and Asia produce about 11 million tonnes of inland fish annually, 90 % of the global total. The role of inland fisheries goes beyond just kilocalories; fish provide important micronutrients and essentially fatty acids. In some regions, inland recreational fisheries are important, generating much wealth and supporting livelihoods. The following three key recommendations are necessary for action if inland fisheries are to become a part of the food-water-energy discussion: invest in improved valuation and assessment methods, build better methods to effectively govern inland fisheries (requires capacity building and incentives), and develop approaches to managing waters across sectors and scales. Moreover, if inland fisheries are recognized as important to food security, livelihoods, and human well-being, they can be more easily incorporated in regional, national, and global policies and agreements on water issues. Through these approaches, inland fisheries can be better evaluated and be more fully recognized in broader water resource and aquatic ecosystem planning and decision

  18. Fishing Farmers or Farming Fishers? Fishing Typology of Inland Small-Scale Fishing Households and Fisheries Management in Singkarak Lake, West Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Yuerlita; Perret, Sylvain Roger; Shivakoti, Ganesh P.

    2013-07-01

    Technical and socio-economic characteristics are known to determine different types of fishers and their livelihood strategies. Faced with declining fish and water resources, small-scale fisheries engage into transformations in livelihood and fishing practices. The paper is an attempt to understand these changes and their socio-economic patterns, in the case of Singkarak Lake in West Sumatra, Indonesia. Based upon the hypothesis that riparian communities have diverse, complex yet structured and dynamic livelihood systems, the paper's main objective is to study, document and model the actual diversity in livelihood, practices and performance of inland small-scale fisheries along the Singkarak Lake, to picture how households are adapted to the situation, and propose an updated, workable model (typology) of those for policy. Principal component analysis and cluster analysis were used to develop a typology of fishing households. The results show that small-scale fishers can be classified into different types characterized by distinct livelihood strategies. Three household types are identified, namely "farming fishers" households (type I, 30 %), "fishing farmers" households (type II, 30 %), and "mainly fishers" households (type III, 40 %). There are significant differences among these groups in the number of boats owned, annual fishing income, agriculture income and farming experience. Type I consists of farming fishers, well equipped, with high fishing costs and income, yet with the lowest return on fishing assets. They are also landowners with farming income, showing the lowest return on land capital. Type II includes poor fishing farmers, landowners with higher farming income; they show the highest return on land asset. They have less fishing equipment, costs and income. Type III (mainly fishers) consists of poorer, younger fishers, with highest return on fishing assets and on fishing costs. They have little land, low farming income, and diversified livelihood

  19. Fishing farmers or farming fishers? Fishing typology of inland small-scale fishing households and fisheries management in singkarak lake, west sumatra, indonesia.

    PubMed

    Yuerlita; Perret, Sylvain Roger; Shivakoti, Ganesh P

    2013-07-01

    Technical and socio-economic characteristics are known to determine different types of fishers and their livelihood strategies. Faced with declining fish and water resources, small-scale fisheries engage into transformations in livelihood and fishing practices. The paper is an attempt to understand these changes and their socio-economic patterns, in the case of Singkarak Lake in West Sumatra, Indonesia. Based upon the hypothesis that riparian communities have diverse, complex yet structured and dynamic livelihood systems, the paper's main objective is to study, document and model the actual diversity in livelihood, practices and performance of inland small-scale fisheries along the Singkarak Lake, to picture how households are adapted to the situation, and propose an updated, workable model (typology) of those for policy. Principal component analysis and cluster analysis were used to develop a typology of fishing households. The results show that small-scale fishers can be classified into different types characterized by distinct livelihood strategies. Three household types are identified, namely "farming fishers" households (type I, 30 %), "fishing farmers" households (type II, 30 %), and "mainly fishers" households (type III, 40 %). There are significant differences among these groups in the number of boats owned, annual fishing income, agriculture income and farming experience. Type I consists of farming fishers, well equipped, with high fishing costs and income, yet with the lowest return on fishing assets. They are also landowners with farming income, showing the lowest return on land capital. Type II includes poor fishing farmers, landowners with higher farming income; they show the highest return on land asset. They have less fishing equipment, costs and income. Type III (mainly fishers) consists of poorer, younger fishers, with highest return on fishing assets and on fishing costs. They have little land, low farming income, and diversified livelihood

  20. Remote estimation of colored dissolved organic matter and chlorophyll-a in Lake Huron using Sentinel-2 measurements

    NASA Astrophysics Data System (ADS)

    Chen, Jiang; Zhu, Weining; Tian, Yong Q.; Yu, Qian; Zheng, Yuhan; Huang, Litong

    2017-07-01

    Colored dissolved organic matter (CDOM) and chlorophyll-a (Chla) are important water quality parameters and play crucial roles in aquatic environment. Remote sensing of CDOM and Chla concentrations for inland lakes is often limited by low spatial resolution. The newly launched Sentinel-2 satellite is equipped with high spatial resolution (10, 20, and 60 m). Empirical band ratio models were developed to derive CDOM and Chla concentrations in Lake Huron. The leave-one-out cross-validation method was used for model calibration and validation. The best CDOM retrieval algorithm is a B3/B5 model with accuracy coefficient of determination (R2)=0.884, root-mean-squared error (RMSE)=0.731 m-1, relative root-mean-squared error (RRMSE)=28.02%, and bias=-0.1 m-1. The best Chla retrieval algorithm is a B5/B4 model with accuracy R2=0.49, RMSE=9.972 mg/m3, RRMSE=48.47%, and bias=-0.116 mg/m3. Neural network models were further implemented to improve inversion accuracy. The applications of the two best band ratio models to Sentinel-2 imagery with 10 m×10 m pixel size presented the high potential of the sensor for monitoring water quality of inland lakes.

  1. Subsistence, tourism, and research: Layers of meaning in Lake Clark National Park and Preserve

    Treesearch

    Karen Gaul

    2007-01-01

    Overlapping designations of park, preserve, and wilderness are assigned to Lake Clark National Park and Preserve in south-central Alaska. The Park was established in 1980 as a result of the Alaska National Interest Lands Conservation Act (ANILCA). Consisting of over four million acres, it includes homelands and hunting and fishing grounds for the inland Dena’ina, a...

  2. Expression of Key Ion Transporters in the Gill and Esophageal-Gastrointestinal Tract of Euryhaline Mozambique Tilapia Oreochromis mossambicus Acclimated to Fresh Water, Seawater and Hypersaline Water

    PubMed Central

    Li, Zhengjun; Lui, Eei Yin; Wilson, Jonathan M.; Ip, Yuen Kwong; Lin, Qingsong; Lam, Toong Jin; Lam, Siew Hong

    2014-01-01

    The ability of euryhaline Mozambique tilapia to tolerate extreme environmental salinities makes it an excellent model for investigating iono-regulation. This study aimed to characterize and fill important information gap of the expression levels of key ion transporters for Na+ and Cl− in the gill and esophageal-gastrointestinal tract of Mozambique tilapia acclimated to freshwater (0 ppt), seawater (30 ppt) and hypersaline (70 ppt) environments. Among the seven genes studied, it was found that nkcc2, nkcc1a, cftr, nka-α1 and nka-α3, were more responsive to salinity challenge than nkcc1b and ncc within the investigated tissues. The ncc expression was restricted to gills of freshwater-acclimated fish while nkcc2 expression was restricted to intestinal segments irrespective of salinity challenge. Among the tissues investigated, gill and posterior intestine were found to be highly responsive to salinity changes, followed by anterior and middle intestine. Both esophagus and stomach displayed significant up-regulation of nka-α1 and nka-α3, but not nkcc isoforms and cftr, in hypersaline-acclimated fish suggesting a response to hypersalinity challenge and involvement of other forms of transporters in iono-regulation. Changes in gene expression levels were partly corroborated by immunohistochemical localization of transport proteins. Apical expression of Ncc was found in Nka-immunoreactive cells in freshwater-acclimated gills while Nkcc co-localized with Nka-immunoreactive cells expressing Cftr apically in seawater- and hypersaline-acclimated gills. In the intestine, Nkcc-stained apical brush border was found in Nka-immunoreactive cells at greater levels under hypersaline conditions. These findings provided new insights into the responsiveness of these genes and tissues under hypersalinity challenge, specifically the posterior intestine being vital for salt absorption and iono-osmoregulation in the Mozambique tilapia; its ability to survive in hypersalinity may be in

  3. Inland water resources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The work is reported of the panel concerning the application of space technology to the improved management of the nation's inland resources. The progress since the 1967-68 study is briefly reviewed. The data needed for the management of inlet water ways, and the potential benefits of better management are discussed along with 16 proposed demonstration projects.

  4. Ecosystem approach to inland fisheries: research needs and implementation strategies

    PubMed Central

    Beard, T. Douglas; Arlinghaus, Robert; Cooke, Steven J.; McIntyre, Peter B.; De Silva, Sena; Bartley, Devin; Cowx, Ian G.

    2011-01-01

    Inland fisheries are a vital component in the livelihoods and food security of people throughout the world, as well as contributing huge recreational and economic benefits. These valuable assets are jeopardized by lack of research-based understanding of the impacts of fisheries on inland ecosystems, and similarly the impact of human activities associated with inland waters on fisheries and aquatic biodiversity. To explore this topic, an international workshop was organized in order to examine strategies to incorporate fisheries into ecosystem approaches for management of inland waters. To achieve this goal, a new research agenda is needed that focuses on: quantifying the ecosystem services provided by fresh waters; quantifying the economic, social and nutritional benefits of inland fisheries; improving assessments designed to evaluate fisheries exploitation potential; and examining feedbacks between fisheries, ecosystem productivity and aquatic biodiversity. Accomplishing these objectives will require merging natural and social science approaches to address coupled social–ecological system dynamics. PMID:21325307

  5. Ecosystem approach to inland fisheries: Research needs and implementation strategies

    USGS Publications Warehouse

    Beard, T.D.; Arlinghaus, R.; Cooke, S.J.; McIntyre, P.B.; De Silva, S.; Bartley, D.; Cowx, I.G.

    2011-01-01

    Inland fisheries are a vital component in the livelihoods and food security of people throughout the world, as well as contributing huge recreational and economic benefits. These valuable assets are jeopardized by lack of research-based understanding of the impacts of fisheries on inland ecosystems, and similarly the impact of human activities associated with inland waters on fisheries and aquatic biodiversity. To explore this topic, an international workshop was organized in order to examine strategies to incorporate fisheries into ecosystem approaches for management of inland waters. To achieve this goal, a new research agenda is needed that focuses on: quantifying the ecosystem services provided by fresh waters; quantifying the economic, social and nutritional benefits of inland fisheries; improving assessments designed to evaluate fisheries exploitation potential; and examining feedbacks between fisheries, ecosystem productivity and aquatic biodiversity. Accomplishing these objectives will require merging natural and social science approaches to address coupled social-ecological system dynamics. ?? 2010 The Royal Society.

  6. Ecosystem approach to inland fisheries: research needs and implementation strategies

    USGS Publications Warehouse

    Beard, T. Douglas; Arlinghaus, Robert; Cooke, Steven J.; McIntyre, Peter B.; De Silva, Sena; Bartley, Devin M.; Cowx, Ian G.

    2011-01-01

    Inland fisheries are a vital component in the livelihoods and food security of people throughout the world, as well as contributing huge recreational and economic benefits. These valuable assets are jeopardized by lack of research-based understanding of the impacts of fisheries on inland ecosystems, and similarly the impact of human activities associated with inland waters on fisheries and aquatic biodiversity. To explore this topic, an international workshop was organized in order to examine strategies to incorporate fisheries into ecosystem approaches for management of inland waters. To achieve this goal, a new research agenda is needed that focuses on: quantifying the ecosystem services provided by fresh waters; quantifying the economic, social and nutritional benefits of inland fisheries; improving assessments designed to evaluate fisheries exploitation potential; and examining feedbacks between fisheries, ecosystem productivity and aquatic biodiversity. Accomplishing these objectives will require merging natural and social science approaches to address coupled social–ecological system dynamics.

  7. Adaptive re-tracking algorithm for retrieval of water level variations and wave heights from satellite altimetry data for middle-sized inland water bodies

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Lebedev, Sergey; Soustova, Irina; Rybushkina, Galina; Papko, Vladislav; Baidakov, Georgy; Panyutin, Andrey

    One of the recent applications of satellite altimetry originally designed for measurements of the sea level [1] is associated with remote investigation of the water level of inland waters: lakes, rivers, reservoirs [2-7]. The altimetry data re-tracking algorithms developed for open ocean conditions (e.g. Ocean-1,2) [1] often cannot be used in these cases, since the radar return is significantly contaminated by reflection from the land. The problem of minimization of errors in the water level retrieval for inland waters from altimetry measurements can be resolved by re-tracking satellite altimetry data. Recently, special re-tracking algorithms have been actively developed for re-processing altimetry data in the coastal zone when reflection from land strongly affects echo shapes: threshold re-tracking, The other methods of re-tracking (threshold re-tracking, beta-re-tracking, improved threshold re-tracking) were developed in [9-11]. The latest development in this field is PISTACH product [12], in which retracking bases on the classification of typical forms of telemetric waveforms in the coastal zones and inland water bodies. In this paper a novel method of regional adaptive re-tracking based on constructing a theoretical model describing the formation of telemetric waveforms by reflection from the piecewise constant model surface corresponding to the geography of the region is considered. It was proposed in [13, 14], where the algorithm for assessing water level in inland water bodies and in the coastal zone of the ocean with an error of about 10-15 cm was constructed. The algorithm includes four consecutive steps: - constructing a local piecewise model of a reflecting surface in the neighbourhood of the reservoir; - solving a direct problem by calculating the reflected waveforms within the framework of the model; - imposing restrictions and validity criteria for the algorithm based on waveform modelling; - solving the inverse problem by retrieving a tracking point

  8. Charting the Inland Seas: A History of the U.S. Lake Survey

    DTIC Science & Technology

    1991-01-01

    thermometer sport- ing in the nineties, we were roasted ; had the pains of purgatory within and without. Return to camp after sundown-supper same as...Islands, and to the east of Bass, and Hen and Chicken Islands on Lake Erie. Early in the season, the party on the steamer Col. J.L. Lusk con- ducted...and outflow rivers from es- tablished relationships, distributed the data to a number of regular recip - ients, and compiled diversion tabulations

  9. Patterns of metal distribution in hypersaline microbialites during early diagenesis: Implications for the fossil record.

    PubMed

    Sforna, M C; Daye, M; Philippot, P; Somogyi, A; van Zuilen, M A; Medjoubi, K; Gérard, E; Jamme, F; Dupraz, C; Braissant, O; Glunk, C; Visscher, P T

    2017-03-01

    The use of metals as biosignatures in the fossil stromatolite record requires understanding of the processes controlling the initial metal(loid) incorporation and diagenetic preservation in living microbialites. Here, we report the distribution of metals and the organic fraction within the lithifying microbialite of the hypersaline Big Pond Lake (Bahamas). Using synchrotron-based X-ray microfluorescence, confocal, and biphoton microscopies at different scales (cm-μm) in combination with traditional geochemical analyses, we show that the initial cation sorption at the surface of an active microbialite is governed by passive binding to the organic matrix, resulting in a homogeneous metal distribution. During early diagenesis, the metabolic activity in deeper microbialite layers slows down and the distribution of the metals becomes progressively heterogeneous, resulting from remobilization and concentration as metal(loid)-enriched sulfides, which are aligned with the lamination of the microbialite. In addition, we were able to identify globules containing significant Mn, Cu, Zn, and As enrichments potentially produced through microbial activity. The similarity of the metal(loid) distributions observed in the Big Pond microbialite to those observed in the Archean stromatolites of Tumbiana provides the foundation for a conceptual model of the evolution of the metal distribution through initial growth, early diagenesis, and fossilization of a microbialite, with a potential application to the fossil record. © 2016 John Wiley & Sons Ltd.

  10. Modeling of subglacial hydrological development following rapid supraglacial lake drainage.

    PubMed

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-06-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Model for subglacial hydrological analysis of rapid lake drainage eventsLimited subglacial channel growth during and following rapid lake drainagePersistence of distributed drainage in inland areas where channel growth is limited.

  11. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    PubMed Central

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindbäck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and examine whether substantial, efficient subglacial channels can form during or following lake drainage events and their effect on the water pressure in the surrounding distributed system. We force the model with field data from a lake drainage site, 70 km from the terminus of Russell Glacier in West Greenland. The model outputs suggest that efficient subglacial channels do not readily form in the vicinity of the lake during rapid drainage and instead water is evacuated primarily by a transient turbulent sheet and the distributed system. Following lake drainage, channels grow but are not large enough to reduce the water pressure in the surrounding distributed system, unless preexisting channels are present throughout the domain. Our results have implications for the analysis of subglacial hydrological systems in regions where rapid lake drainage provides the primary mechanism for surface-to-bed connections. Key Points Model for subglacial hydrological analysis of rapid lake drainage events Limited subglacial channel growth during and following rapid lake drainage Persistence of distributed drainage in inland areas where channel growth is limited PMID:26640746

  12. Cyanotoxins in inland lakes of the continental United States: Photic Zone Occurrence and potential recreational health risks in the 2007 Survey of the Nation's lakes

    EPA Science Inventory

    The largest spatial survey of cylindrospermosins, microcystins, and saxitoxins in the United States was conducted as part of the 2007 U.S. Survey of the Nation’s Lakes. Integrated photic zone samples were collected from 1,161 lakes during May-September 2007. Cyanotoxin, cya...

  13. Mercury in sediment, water, and fish in a managed tropical wetland-lake ecosystem.

    PubMed

    Malczyk, Evan A; Branfireun, Brian A

    2015-08-15

    Mercury pollution has not been well documented in the inland lakes or fishes of Mexico, despite the importance of freshwater fish as a source of protein in local diets. Total mercury and methylmercury in waters, sediments, and the commercial fish catch were investigated in Lake Zapotlán, Mexico. Concentrations of total and methylmercury were very high in runoff and wastewater inputs, but very low in sediments and surface waters of the open water area of the lake. Concentrations of total mercury in tilapia and carp were very low, consistent with the low concentrations in lake water and sediments. Particle settling, sorption, the biogeochemical environment, and/or bloom dilution are all plausible explanations for the significant reductions in both total mercury and methylmercury. Despite very high loading of mercury, this shallow tropical lake was not a mercury-impaired ecosystem, and these findings may translate across other shallow, alkaline tropical lakes. Importantly, the ecosystem services that seemed to be provided by peripheral wetlands in reducing mercury inputs highlight the potential for wetland conservation or restoration in Mexico. Copyright © 2015. Published by Elsevier B.V.

  14. Linking Archaeal Molecular Diversity and Lipid Biomarker Composition in a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda; Orphan, Victoria; Turk, Kendra; Embaye, Tsegereda; Kubo, Mike; Summons, Roger

    2005-01-01

    Lipid biomarkers for discrete microbial groups are a valuable tool for establishing links to ancient microbial ecosystems. Lipid biomarkers can establish organism source and function in contemporary microbial ecosystems (membrane lipids) and by analogy, potential relevance to the fossilized carbon skeletons (geolipids) extracted from ancient sedimentary rock. The Mars Exploration Rovers have provided clear evidence for an early wet Mars and the presence of hypersaline evaporitic basins. Ongoing work on an early Earth analog, the hypersaline benthic mats in Guerrero Negro, Baja California Sur, may provide clues to what may have evolved and flourished on an early wet Mars, if only for a short period. Cyanobacterial mats are a pertinent early Earth analog for consideration of evolutionary and microbial processes within the aerobic photosynthetic and adjacent anoxic layers. Fluctuations in physio-chemical parameters associated with spatial and temporal scales are expressed through vast microbial metabolic diversity. Our recent work hopes to establish the dynamic of archaeal diversity, particularly as it relates to methane production in this high sulfate environment, through the use of lipid biomarker and phylogenetic analyses. Archaeal 16s rRNA and mcrA gene assemblages, demonstrated distinct spatial separation over the 130 mm core of at least three distinct genera within the order Methanosarcinales, as well as an abundance of uncultured members of the Thermoplasmales and Crenarchaeota. Ether-bound lipid analysis identified abundant 0-alkyl and 0-isopranyl chains throughout the core, and the presence of sn-2 hydroxyarchaeol, a biomarker for methylotrophic methanogens. A unique ether isoprenoid chain, a C30:1 , possibly related to the geolipid squalane, a paleobiomarker associated with hypersaline environments, was most abundant within the oxic-anoxic transition zone.

  15. Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake (Kulunda Steppe, Russia).

    PubMed

    Namsaraev, Zorigto; Samylina, Olga; Sukhacheva, Marina; Borisenko, Gennadii; Sorokin, Dimitry Y; Tourova, Tatiana

    2018-04-16

    Bitter-1 is a shallow hypersaline soda lake in Kulunda Steppe (Altai region, Russia). During a study period between 2005 and 2016, the salinity in the littoral area of the lake fluctuated within the range from 85 to 400 g/L (in July of each year). Light-dependent nitrogen fixation occurred in this lake up to the salt-saturating conditions. The rates increased with a decrease in salinity, both under environmental conditions and in laboratory simulations. The salinities below 100 g/L were favorable for light-dependent nitrogen fixation, while the process was dramatically inhibited above 200 g/L salts. The analysis of nifH genes in environmental samples and in enrichment cultures of diazotrophic phototrophs suggested that anaerobic fermenting and sulfate-reducing bacteria could participate in the dark nitrogen fixation process up to soda-saturating conditions. However, we cannot exclude the possibility that haloalkaliphilic nonheterocystous cyanobacteria (Euhalothece sp. and Geitlerinema sp.) and anoxygenic purple sulfur bacteria (Ectothiorhodospira sp.) might also play a role in the process at light conditions. The heterocystous cyanobacterium Nodularia sp. develops at low salinity (below 80 g/L) that is not characteristic for Bitter-1 Lake and thus does not make a significant contribution to the nitrogen fixation in this lake.

  16. Identification of subsurface brines in the McMurdo Dry Valleys, Antarctica, via an airborne EM resistivity survey

    NASA Astrophysics Data System (ADS)

    Foley, N.; Tulaczyk, S. M.; Auken, E.; Schamper, C.; Dugan, H. A.; Mikucki, J.; Virginia, R. A.; Doran, P. T.

    2015-12-01

    We used a helicopter-borne time domain electromagnetic resistivity survey to detect and map hypersaline brines beneath glaciers and permafrost in the McMurdo Dry Valleys (MDV). In the MDV, a substantially ice-free region of coastal Antarctica, liquid water is present at the surface only in summer streams, ice-covered lakes with brackish to hypersaline bottom waters, and at Blood Falls, a hypersaline discharge from Taylor Glacier. Beneath the surface, however, water can remain liquid at temperatures below 0 °C (and therefore at unexpectedly shallow depths) as a hypersaline brine. These brines, which are measured as zones of low resistivity in an otherwise high resistivity environment, are widespread in Taylor Valley, where they may connect lakes, subglacial waters, and the ocean. By using surface landscape characteristics - such as the presence of lakes, glaciers, or bare ground - we are able to compare changes in resistivity with depth. We find that in areas of surface permafrost (most of the MDV) there is a marked shift to low resistivity material around 200 m below the surface. At lakes, the stratified nature of their waters is detectable and sufficiently large lakes create taliks (unfrozen 'holes' in permafrost) that penetrate to the low resistivity zone around 200 m depth, suggesting connectivity through a regional aquifer. Underneath Taylor Glacier, we detect similar brines, which are the probable source for Blood Falls. These subglacial brines extend from the snout of Taylor Glacier (where they appear to connect to the hypersaline waters of West Lake Bonney) to the limit of our detection ability several kilometers up glacier where the ice became too thick for measurements. Our measurements are consistent with limited drilling done in the MDV during the 1970s and radar measurements taken more recently on Taylor Glacier. The transition to low resistivity at ~200 m depth occurs over a temperature range measured in boreholes of about -10 to -5 °C, which is

  17. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes.

    PubMed

    Cooper, Ryan N; Wissel, Björn

    2012-11-27

    Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes.

  18. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes

    PubMed Central

    2012-01-01

    Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes. PMID:23186395

  19. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?

    NASA Astrophysics Data System (ADS)

    Lin, Peng; Guo, Laodong

    2016-12-01

    The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800 μatm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to those prior to or during the early stage of the colonization of invasive quagga mussels. The increased CO2 supersaturation is most prominent in Lakes Huron and Michigan, followed by Lakes Ontario and Erie, but no evident change was observed in Lake Superior. This trend mirrors the infestation extent of invasive quagga mussels in the Great Lakes and is consistent with the decline in primary production and increase in water clarity observed pre- and post-Dreissena introduction, revealing a close linkage between invasive species and carbon dynamics. The Great Lakes have become a significant CO2 source to the atmosphere, emitting >7.7 ± 1.0 Tg-C annually, which is higher than the organic carbon burial rate in global inland-seas and attesting to the significant role of the Laurentian Great Lakes in regional/global CO2 budget and cycling.

  20. EVALUATING PERTUBATIONS AND DEVELOPING RESTORATION STRATEGIES FOR INLAND WETLANDS IN THE GREAT LAKES BASIN

    EPA Science Inventory

    Wetland coverage and type distributions vary systematically by ecoregion across the Great Lakes Basin. Land use and subsequent changes in wetland type distributions also vary among ecoregions. Incidence of wetland disturbance varies significantly within ecoregions but tends to i...

  1. Spectral feature measurements and analyses of the East Lake

    NASA Astrophysics Data System (ADS)

    Fang, Shenghui; Zhou, Yuan; Zhu, Wu

    2005-10-01

    It is one of basis of water color remote sensing to investigate the method to obtain and analyze the spectral features of the water bodies. This paper concerns the above-water method for the spectral measurements of inland water. A series of experiments were taken in areas of the East Lake with the EPP2000CCD radiometer, and the geometry attitude of the observation and the method of the elimination of the noise of the water Signals will be discussed. The method of the above-water spectral measurements was studied from the point of view of error source. On the basis of the experiments of the water depth and the observing direction form the sun and surface, it is suggested to remove the radiances of the whitecaps, surface-reflected sun glint and skylight which have not the spectral features of water from the lake surface by specialized observing attitude and data processing. At last, a suit of methods is concluded for the water body of the East Lake in measuring and analyzing the spectral features from above-water.

  2. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; Parkes, R John; Cragg, Barry A; L'Haridon, Stéphane; Toffin, Laurent

    2011-08-01

    Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates. Biogeochemical and molecular genetic analyses were carried out to assess the methanogenic activity rates, pathways and diversity in the hypersaline sediments of the centre of the Napoli mud volcano. Methylotrophic methanogenesis was the only significant methanogenic pathway in the shallow sediments (0-40 cm) but was also measured throughout the sediment core, confirming that methylotrophic methanogens could be well adapted to hypersaline environments. Hydrogenotrophic methanogenesis was the dominant pathway below 50 cm; however, low rates of acetoclastic methanogenesis were also present, even in sediment layers with the highest salinity, showing that these methanogens can thrive in this extreme environment. PCR-DGGE and methyl coenzyme M reductase gene libraries detected sequences affiliated with anaerobic methanotrophs (mainly ANME-1) as well as Methanococcoides methanogens. Results show that the hypersaline conditions in the centre of the Napoli mud volcano influence active biogenic methane fluxes and methanogenic/methylotrophic diversity. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. [Ecosystem services valuation of Qinghai Lake].

    PubMed

    Jiang, Bo; Zhang, Lu; Ouyang, Zhi-yun

    2015-10-01

    Qinghai Lake is the largest inland and salt water lake in China, and provides important ecosystem services to beneficiaries. Economic valuation of wetland ecosystem services from Qinghai Lake can reveal the direct contribution of lake ecosystems to beneficiaries using economic data, which can advance the incorporation of wetland protection of Qinghai Lake into economic tradeoffs and decision analyses. In this paper, we established a final ecosystem services valuation system based on the underlying ecological mechanisms and regional socio-economic conditions. We then evaluated the eco-economic value provided by the wetlands at Qinghai Lake to beneficiaries in 2012 using the market value method, replacement cost method, zonal travel cost method, and contingent valuation method. According to the valuation result, the total economic values of the final ecosystem services provided by the wetlands at Qinghai Lake were estimated to be 6749.08 x 10(8) yuan RMB in 2012, among which the value of water storage service and climate regulation service were 4797.57 x 10(8) and 1929.34 x 10(8) yuan RMB, accounting for 71.1% and 28.6% of the total value, respectively. The economic value of the 8 final ecosystem services was ranked from greatest to lowest as: water storage service > climate regulation service > recreation and tourism service > non-use value > oxygen release service > raw material production service > carbon sequestration service > food production service. The evaluation result of this paper reflects the substantial value that the wetlands of Qinghai Lake provide to beneficiaries using monetary values, which has the potential to help increase wetland protection awareness among the public and decision-makers, and inform managers about ways to create ecological compensation incentives. The final ecosystem service evaluation system presented in this paper will offer guidance on separating intermediate services and final services, and establishing monitoring programs for

  4. Ecosystem transformations of the Laurentian Great Lake Michigan by nonindigenous biological invaders.

    PubMed

    Cuhel, Russell L; Aguilar, Carmen

    2013-01-01

    Lake Michigan, a 58,000-km(2) freshwater inland sea, is large enough to have persistent basin-scale circulation yet small enough to enable development of approximately balanced budgets for water, energy, and elements including carbon and silicon. Introduction of nonindigenous species-whether through invasion, intentional stocking, or accidental transplantation-has transformed the lake's ecosystem function and habitat structure. Of the 79 nonindigenous species known to have established reproductive populations in the lake, only a few have brought considerable ecological pressure to bear. Four of these were chosen for this review to exemplify top-down (sea lamprey, Petromyzon marinus), middle-out (alewife, Alosa pseudoharengus), and bottom-up (the dreissenid zebra and quagga mussels, Dreissena polymorpha and Dreissena rostriformis bugensis, respectively) transformations of Lake Michigan ecology, habitability, and ultimately physical environment. Lampreys attacked and extirpated indigenous lake trout, the top predator. Alewives outcompeted native planktivorous fish and curtailed invertebrate populations. Dreissenid mussels-especially quagga mussels, which have had a much greater impact than the preceding zebra mussels-moved ecosystem metabolism basin-wide from water column to bottom dominance and engineered structures throughout the lake. Each of these non indigenous species exerted devastating effects on commercial and sport fisheries through ecosystem structure modification.

  5. Sensitivity of Great Lakes Ice Cover to Air Temperature

    NASA Astrophysics Data System (ADS)

    Austin, J. A.; Titze, D.

    2016-12-01

    Ice cover is shown to exhibit a strong linear sensitivity to air temperature. Upwards of 70% of ice cover variability on all of the Great Lakes can be explained in terms of air temperature, alone, and nearly 90% of ice cover variability can be explained in some lakes. Ice cover sensitivity to air temperature is high, and a difference in seasonally-averaged (Dec-May) air temperature on the order of 1°C to 2°C can be the difference between a low-ice year and a moderate- to high- ice year. The total amount of seasonal ice cover is most influenced by air temperatures during the meteorological winter, contemporaneous with the time of ice formation. Air temperature conditions during the pre-winter conditioning period and during the spring melting period were found to have less of an impact on seasonal ice cover. This is likely due to the fact that there is a negative feedback mechanism when heat loss goes toward cooling the lake, but a positive feedback mechanism when heat loss goes toward ice formation. Ice cover sensitivity relationships were compared between shallow coastal regions of the Great Lakes and similarly shallow smaller, inland lakes. It was found that the sensitivity to air temperature is similar between these coastal regions and smaller lakes, but that the absolute amount of ice that forms varies significantly between small lakes and the Great Lakes, and amongst the Great Lakes themselves. The Lake Superior application of the ROMS three-dimensional hydrodynamic numerical model verifies a deterministic linear relationship between air temperature and ice cover, which is also strongest around the period of ice formation. When the Lake Superior bathymetry is experimentally adjusted by a constant vertical multiplier, average lake depth is shown to have a nonlinear relationship with seasonal ice cover, and this nonlinearity may be associated with a nonlinear increase in the lake-wide volume of the surface mixed layer.

  6. Investigating the causality of changes in the landscape pattern of Lake Urmia basin, Iran using remote sensing and time series analysis.

    PubMed

    Mehrian, Majid Ramezani; Hernandez, Raul Ponce; Yavari, Ahmad Reza; Faryadi, Shahrzad; Salehi, Esmaeil

    2016-08-01

    Lake Urmia is the second largest hypersaline lake in the world in terms of surface area. In recent decades, the drop in water level of the lake has been one of the most important environmental issues in Iran. At present, the entire basin is threatened due to abrupt decline of the lake's water level and the consequent increase in salinity. Despite the numerous studies, there is still an ambiguity about the main cause of this environmental crisis. This paper is an attempt to detect the changes in the landscape structure of the main elements of the whole basin using remote sensing techniques and analyze the results against climate data with time series analysis for the purpose of achieving a more clarified illustration of processes and trends. Trend analysis of the different affecting factors indicates that the main cause of the drastic dry out of the lake is the huge expansion of irrigated agriculture in the basin between 1999 and 2014. The climatological parameters including precipitation and temperature cannot be the main reasons for reduced water level in the lake. The results show how the increase in irrigated agricultural area without considering the water resources limits can lead to a regional disaster. The approach used in this study can be a useful tool to monitor and assess the causality of environmental disaster.

  7. Navigation Rules, International-Inland

    DTIC Science & Technology

    1977-05-01

    Light, a line drawn to Mobile Entrance Lighted Whis- tle Buoy 1; thence to Ship Island Light; thence to Chandeleur Light; thence in a curved line...following the general trend of the sea- ward, highwater shorelines of the Chandeleur Islands to the south- 100 ... BOUNDARY LINES OF INLAND WATERS

  8. Do Patterns of Bacterial Diversity along Salinity Gradients Differ from Those Observed for Macroorganisms?

    PubMed Central

    Zhang, Yong; Shen, Ji; van der Gast, Christopher; Hahn, Martin W.; Wu, Qinglong

    2011-01-01

    It is widely accepted that biodiversity is lower in more extreme environments. In this study, we sought to determine whether this trend, well documented for macroorganisms, also holds at the microbial level for bacteria. We used denaturing gradient gel electrophoresis (DGGE) with phylum-specific primers to quantify the taxon richness (i.e., the DGGE band numbers) of the bacterioplankton communities of 32 pristine Tibetan lakes that represent a broad salinity range (freshwater to hypersaline). For the lakes investigated, salinity was found to be the environmental variable with the strongest influence on the bacterial community composition. We found that the bacterial taxon richness in freshwater habitats increased with increasing salinity up to a value of 1‰. In saline systems (systems with >1‰ salinity), the expected decrease of taxon richness along a gradient of further increasing salinity was not observed. These patterns were consistently observed for two sets of samples taken in two different years. A comparison of 16S rRNA gene clone libraries revealed that the bacterial community of the lake with the highest salinity was characterized by a higher recent accelerated diversification than the community of a freshwater lake, whereas the phylogenetic diversity in the hypersaline lake was lower than that in the freshwater lake. These results suggest that different evolutionary forces may act on bacterial populations in freshwater and hypersaline lakes on the Tibetan Plateau, potentially resulting in different community structures and diversity patterns. PMID:22125616

  9. Studies on the Biodiversity of Halophilic Microorganisms Isolated from El-Djerid Salt Lake (Tunisia) under Aerobic Conditions

    PubMed Central

    Hedi, Abdeljabbar; Sadfi, Najla; Fardeau, Marie-Laure; Rebib, Hanene; Cayol, Jean-Luc; Ollivier, Bernard; Boudabous, Abdellatif

    2009-01-01

    Bacterial and archaeal aerobic communities were recovered from sediments from the shallow El-Djerid salt lake in Tunisia, and their salinity gradient distribution was established. Six samples for physicochemical and microbiological analyses were obtained from 6 saline sites in the lake for physico-chemical and microbiological analyses. All samples studied were considered hypersaline with NaCl concentration ranging from 150 to 260 g/L. A specific halophilic microbial community was recovered from each site, and characterization of isolated microorganisms was performed via both phenotypic and phylogenetic approaches. Only one extreme halophilic organism, domain Archaea, was isolated from site 4 only, whereas organisms in the domain Bacteria were recovered from the five remaining sampling sites that contained up to 250 g/L NaCl. Members of the domain Bacteria belonged to genera Salicola, Pontibacillus, Halomonas, Marinococcus, and Halobacillus, whereas the only member of domain Archaea isolated belonged to the genus Halorubrum. The results of this study are discussed in terms of the ecological significance of these microorganisms in the breakdown of organic matter in Lake El-Djerid and their potential for industry applications. PMID:20066169

  10. Great Lakes and St. Lawrence Seaway Navigation Season Extension. Volume 4. Appendixes D - F

    DTIC Science & Technology

    1979-08-01

    the American additions Fort Presque Isle Rique Archaeological Somewhere unknown Palisaded Erie site within the princi- town destroyed by present city...7) 2.285 Rochester, New York (8) 2.173 Buffalo, New York (9) 2.520 Erie , Pennsylvania (10) 2.172 Cleveland, Ohio (68) 2.720 Toledo, Ohio (70) 2.370...Two Harbors, Duluth, Presque Isle , Marquette, Taconite, Silver Bay, Ashland, Escanaba, Port Dolomite, Port Inland, Drummond Island, other Lake

  11. Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France).

    PubMed

    Tapilatu, Yosmina H; Grossi, Vincent; Acquaviva, Monique; Militon, Cécile; Bertrand, Jean-Claude; Cuny, Philippe

    2010-03-01

    Little information exists about the ability of halophilic archaea present in hypersaline environments to degrade hydrocarbons. In order to identify the potential actors of hydrocarbon degradation in these environments, enrichment cultures were prepared using samples collected from a shallow crystallizer pond with no known contamination history in Camargue, France, with n-alkanes provided as source of carbon and energy. Five alkane-degrading halophilic archaeal strains were isolated: one (strain MSNC 2) was closely related to Haloarcula and three (strains MSNC 4, MSNC 14, and MSNC 16) to Haloferax. Biodegradation assays showed that depending on the strain, 32 to 95% (0.5 g/l) of heptadecane was degraded after 30 days of incubation at 40 degrees C in 225 g/l NaCl artificial medium. One of the strains (MSNC 14) was also able to degrade phenanthrene. This work clearly shows for the first time the potential role of halophilic archaea belonging to the genera Haloarcula and Haloferax in the degradation of hydrocarbons in both pristine and hydrocarbon-contaminated hypersaline environments.

  12. Supraglacial Lakes in the Percolation Zone of the Western Greenland Ice Sheet: Formation and Development using Operation IceBridge Snow Radar and ATM (2009-2014)

    NASA Astrophysics Data System (ADS)

    Chen, C.; Howat, I. M.; de la Peña, S.

    2015-12-01

    Surface meltwater lakes on the Greenland Ice Sheet have appeared at higher elevations, extending well into the percolation zone, under recent warming, with the largest expansion occurring in the western Greenland Ice Sheet. The conditions that allow lakes to form atop firn are poorly constrained, but the formation of new lakes imply changes in the permeability of the firn at high elevations, promoting meltwater runoff. We explore the formation and evolution of new surface lakes in this region above 1500 meters, using a combination of satellite imagery and repeat Snow (2-6.5 GHz) radar echograms and LIDAR measurements from NASA's Operation IceBridge of 2009-2014. We identify conditions for surface lake formation at their farthest inland extent and suggest behaviors of persistence and lake drainage are due to differences in regional ice dynamics.

  13. Bacterial Community Response to Petroleum Hydrocarbon Amendments in Freshwater, Marine, and Hypersaline Water-Containing Microcosms

    PubMed Central

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Marques, Joana Montezano; de Sousa Lima, Laryssa Ribeiro Fonseca; Dias, Felipe de Almeida

    2013-01-01

    Hydrocarbon-degrading bacterial communities from freshwater, marine, and hypersaline Brazilian aquatic ecosystems (with water salinities corresponding to 0.2%, 4%, and 5%, respectively) were enriched with different hydrocarbons (heptadecane, naphthalene, or crude oil). Changes within the different microcosms of bacterial communities were analyzed using cultivation approaches and molecular methods (DNA and RNA extraction, followed by genetic fingerprinting and analyses of clone libraries based on the 16S rRNA-coding gene). A redundancy analysis (RDA) of the genetic fingerprint data and a principal component analysis (PCA) of the clone libraries revealed hydrocarbon-enriched bacterial communities specific for each ecosystem studied. However, within the same ecosystem, different bacterial communities were selected according to the petroleum hydrocarbon used. In general, the results demonstrated that Acinetobacter and Cloacibacterium were the dominant genera in freshwater microcosms; the Oceanospirillales order and the Marinobacter, Pseudomonas, and Cycloclasticus genera predominated in marine microcosms; and the Oceanospirillales order and the Marinobacter genus were selected in the different hydrocarbon-containing microcosms in hypersaline water. Determination of total petroleum hydrocarbons (TPHs) in all microcosms after 32 days of incubation showed a decrease in the hydrocarbon concentration compared to that for the controls. A total of 50 (41.3%) isolates from the different hydrocarbon-contaminated microcosms were associated with the dominant operational taxonomic units (OTUs) obtained from the clone libraries, and their growth in the hydrocarbon contaminating the microcosm from which they were isolated as the sole carbon source was observed. These data provide insight into the general response of bacterial communities from freshwater, marine, and hypersaline aquatic ecosystems to petroleum hydrocarbon contamination. PMID:23872573

  14. Survey of fish impingement at power plants in the United States. Volume II. Inland waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, III, Richard F.; Sharma, Rajendra K.

    1977-03-01

    Impingement of fish at cooling-water intakes of 33 power plants located on inland waters other than the Great Lakes has been surveyed and data are presented. Descriptions of site, plant, and intake design and operation are provided. Reports in this volume summarize impingement data for individual plants in tabular and histogram formats. Information was available from differing sources such as the utilities themselves, public documents, regulatory agencies, and others. Thus, the extent of detail in the reports varies greatly from plant to plant. Histogram preparation involved an extrapolation procedure that has inadequacies. The reader is cautioned in the use ofmore » information presented in this volume to determine intake-design acceptability or intensity of impacts on ecosystems. No conclusions are presented herein; data comparisons are made in Volume IV.« less

  15. Retrieval of total suspended matter concentrations from high resolution WorldView-2 imagery: a case study of inland rivers

    NASA Astrophysics Data System (ADS)

    Shi, Liangliang; Mao, Zhihua; Wang, Zheng

    2018-02-01

    Satellite imagery has played an important role in monitoring water quality of lakes or coastal waters presently, but scarcely been applied in inland rivers. This paper presents an attempt of feasibility to apply regression model to quantify and map the concentrations of total suspended matter (CTSM) in inland rivers which have a large scale of spatial and a high CTSM dynamic range by using high resolution satellite remote sensing data, WorldView-2. An empirical approach to quantify CTSM by integrated use of high resolution WorldView-2 multispectral data and 21 in situ CTSM measurements. Radiometric correction, geometric and atmospheric correction involved in image processing procedure is carried out for deriving the surface reflectance to correlate the CTSM and satellite data by using single-variable and multivariable regression technique. Results of regression model show that the single near-infrared (NIR) band 8 of WorldView-2 have a relative strong relationship (R2=0.93) with CTSM. Different prediction models were developed on various combinations of WorldView-2 bands, the Akaike Information Criteria approach was used to choose the best model. The model involving band 1, 3, 5, and 8 of WorldView-2 had a best performance, whose R2 reach to 0.92, with SEE of 53.30 g/m3. The spatial distribution maps were produced by using the best multiple regression model. The results of this paper indicated that it is feasible to apply the empirical model by using high resolution satellite imagery to retrieve CTSM of inland rivers in routine monitoring of water quality.

  16. Diversity of inland valleys and opportunities for agricultural development in Sierra Leone.

    PubMed

    Dossou-Yovo, Elliott Ronald; Baggie, Idriss; Djagba, Justin Fagnombo; Zwart, Sander Jaap

    2017-01-01

    Inland valleys are becoming increasingly important agricultural production areas for rural households in sub-Saharan Africa due to their relative high and secure water availability and soil fertility. In addition, inland valleys are important as water buffer and biodiversity hot spots and they provide local communities with forest, forage, and fishing resources. As different inland-valley ecosystem functions may conflict with agricultural objectives, indiscriminate development should be avoided. This study aims to analyze the diversity of inland valleys in Sierra Leone and to develop guidelines for more precise interventions. Land use, biophysical and socio-economic data were analyzed on 257 inland valleys using spatial and multivariate techniques. Five cluster groups of inland valleys were identified: (i) semi-permanently flooded with high soil organic carbon (4.2%) and moderate available phosphorus (10.2 ppm), mostly under natural vegetation; (ii) semi-permanently flooded with low soil organic carbon (1.5%) and very low available phosphorus (3.1 ppm), abandoned by farmers; (iii) seasonally flooded with moderate soil organic carbon (3.1%) and low available phosphorus (8.3 ppm), used for rainfed rice and off-season vegetables produced without fertilizer application for household consumption and market; (iv) well drained with moderate soil organic carbon (3.8%) and moderate available phosphorus (10.0 ppm), used for rainfed rice and off-season vegetables produced with fertilizer application for household consumption and market; and (v) well drained with moderate soil organic carbon (3.6%) and moderate available phosphorus (11 ppm), used for household consumption without fertilizer application. Soil organic carbon, available phosphorus, hydrological regime, physical accessibility and market opportunity were the major factors affecting agricultural intensification of inland valleys. Opening up the areas in which inland valleys occur through improved roads and markets

  17. Differences in lateral gene transfer in hypersaline versus thermal environments.

    PubMed

    Rhodes, Matthew E; Spear, John R; Oren, Aharon; House, Christopher H

    2011-07-08

    The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles. We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei) and a halophilic class of Archaea (Halobacteria). We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles. Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.

  18. Reconstructing time series water volumes of drying lakes in Central Asia with ZY-3 stereo remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, J.; Warner, T.; Bao, A.

    2017-12-01

    Central Asia is one of the world most vulnerable areas responding to global change. Lakes in arid regions of Central Asia remain sensitive to climatic change and fluctuate with temperature and precipitation variations. Study showed that some central asian inland lakes in showed a trend of area shrinkage or extinct in the last decades. Quantitative analysis of lake volume changes in spatio-temporal processes will improve our understanding water resource utilization in arid regions and their responses to regional climate change. However, due to the lack of lake bathmetry or observation data, the volumes of these lakes remain unknown. In this paper, three lakes, such as Chaiwopu lake, Alik Lake and Selectyteniz Lake in Central Asia are used to reconstruct lake volume changes. Firstly, stereo mapping technologies derived from ZY-3 high resolution data are used to map the high-precision 3-D lake bathmetry, so as to create "Area-Level-Volume" based on contours of lake bathmetry. Secondly, time series lake areas in the last 50 years are mapped with multi-source and multi-temporal remote sensing images. Based on lake storage curves and time series lake areas, lake volumes in the last 5 decades can be reconstructed, and the spatio-temporal characteristics of lake volume changes and their mechanisms are also analyzed. The results showed that the high-precision lake hydrological elements are reconstructed on arid drying lakes through the application of stereo mapping technology in remote sensing.

  19. Evidence of El Niño driven desiccation cycles in a shallow estuarine lake: The evolution and fate of Africa's largest estuarine system, Lake St Lucia

    NASA Astrophysics Data System (ADS)

    Humphries, M. S.; Green, A. N.; Finch, J. M.

    2016-12-01

    Projections of an increase in drought frequency and intensity over the next century are expected to have severe implications for a number of globally important coastal ecosystems. In this paper, we present geochemical data from three sediment cores extracted from the main depositional basins of Lake St Lucia, Africa's largest estuarine system. Lake St Lucia is subject to extreme natural variations in salinity. The sedimentary record documents the evolution of the system from a relatively deep-water, open lagoon to a confined, shallow estuarine lake that today is highly sensitive to changes in freshwater supply. This is particularly evident in the northern portions of the system, where the presence of distinct halite-enriched horizons document episodes of prolonged drought. The lateral persistence of these halite layers, as revealed by seismic profiling, point to a system-wide onset of desiccation associated with a major shift in the regional hydroclimate. The most severe drought events identified, which may have lasted several years, occur at 1100 and 1750 cal year BP, and are associated with known peaks in El Niño frequency and intensity. Our analyses suggest that past cycles of desiccation and hyper-salinity have been controlled by climatic changes related to ENSO intensification. This study provides a valuable new record from a key ENSO-sensitive region of the Southern Hemisphere. Our findings have important relevance for understanding ENSO variability across the Indo-Pacific region and the influence exerted on systems sensitive to changes in moisture balance.

  20. Numerical modeling of thermal regime in inland water bodies with field measurement data

    NASA Astrophysics Data System (ADS)

    Gladskikh, D.; Sergeev, D.; Baydakov, G.; Soustova, I.; Troitskaya, Yu.

    2018-01-01

    Modification of the program complex LAKE, which is intended to compute the thermal regimes of inland water bodies, and the results of its validation in accordance with the parameters of lake part of Gorky water reservoir are reviewed in the research. The modification caused changing the procedure of input temperature profile assignment and parameterization of surface stress on air-water boundary in accordance with the consideration of wind influence on mixing process. Also the innovation consists in combined methods of gathering meteorological parameters from files of global meteorological reanalysis and data of hydrometeorological station. Temperature profiles carried out with CTD-probe during expeditions in the period 2014-2017 were used for validation of the model. The comparison between the real data and the numerical results and its assessment based on time and temperature dependences in control points, correspondence of the forms of the profiles and standard deviation for all performed realizations are provided. It is demonstrated that the model reproduces the results of field measurement data for all observed conditions and seasons. The numerical results for the regimes with strong mixing are in the best quantitative and qualitative agreement with the real profiles. The accuracy of the forecast for the ones with strong stratification near the surface is lower but all specificities of the forms are correctly reproduced.

  1. Climate change effects on North American inland fish populations and assemblages

    USGS Publications Warehouse

    Lynch, Abigail J.; Myers, Bonnie; Chu, Cindy; Eby, Lisa A.; Falke, Jeffrey A.; Kovach, Ryan P.; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Lyons, John; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Climate is a critical driver of many fish populations, assemblages, and aquatic communities. However, direct observational studies of climate change impacts on North American inland fishes are rare. In this synthesis, we (1) summarize climate trends that may influence North American inland fish populations and assemblages, (2) compile 31 peer-reviewed studies of documented climate change effects on North American inland fish populations and assemblages, and (3) highlight four case studies representing a variety of observed responses ranging from warmwater systems in the southwestern and southeastern United States to coldwater systems along the Pacific Coast and Canadian Shield. We conclude by identifying key data gaps and research needs to inform adaptive, ecosystem-based approaches to managing North American inland fishes and fisheries in a changing climate.

  2. The effect of light on lake herring (Coregonus artedi) reactive volume

    USGS Publications Warehouse

    Link, Jason; Edsall, Thomas A.

    1996-01-01

    The lake herring (Coregonus artedi) is an important coldwater planktivore in the Laurentian Great Lakes and in smaller inland lakes in portions of Canada and the northern United States. Lake herring cruise the pelagia and feed selectively in both gulping and particulate modes. They are visual predators in environments with adequate illumination. Visual predation by fish consists of a series of discrete steps. We studied the first step in the predation sequence, reaction to prey, at light intensities of 2–1500 Lx in a simulated pelagic environment at 10–13°C. We measured lake herring reactive distances, the distance at which a prey item will be detected and attacked, to liveLimnocalanus macrurus, a natural prey of lake herring in Lake Superior. We used the reactive distances and associated angles of bearing and elevation, which described the location of the prey relative to the lake herring, to calculate reactive volume. This reactive volume can be envisioned as an irregular sphere surrounding the fish, within which prey are detected and attacked. All of the attacks on prey occurred in the anterior portions of the sagittal and lateral planes of the lake herring, as would be expected for a pelagic, cruising fish. The reactive volume surrounding the lake herring was generally spherical, but was more irregular than the simple spheres, hemispheres, cylinders, cones or other geometries assumed in previous studies. The reactive distances and the reactive volume changed with light intensity and were significantly smaller at 2–10 Lx than at 40–1500 Lx. At 40–1500 Lx, the reactive volume was expanded over that observed at 2–10 Lx laterally and caudally. Collectively our results indicate that lake herring can visually forage most effectively in environments with light levels >10 Lx.

  3. Grand challenges in the management and conservation of North American inland fishes and fisheries

    USGS Publications Warehouse

    Lynch, Abigail; Cooke, Steven J.; Beard, Douglas; Kao, Yu-Chun; Lorenzen, Kai; Song, Andrew M.; Allen, Micheal S.; Basher, Zeenatul; Bunnell, David B.; Camp, Edward V.; Cowx, Ian G.; Freedman, Jonathan A.; Nguyen, Vivian M.; Nohner, Joel K.; Rogers, Mark W.; Siders, Zachary A.; Taylor, William W.; Youn, So-Jung

    2017-01-01

    Even with long-standing management and extensive science support, North American inland fish and fisheries still face many conservation and management challenges. We used a grand challenges approach to identify critical roadblocks that if removed would help solve important problems in the management and long-term conservation of North American inland fish and fisheries. We identified seven grand challenges within three themes (valuation, governance, and externalities) and 34 research needs and management actions. The major themes identified are to (1) raise awareness of diverse values associated with inland fish and fisheries, (2) govern inland fish and fisheries to satisfy multiple use and conservation objectives, and (3) ensure productive inland fisheries given nonfishing sector externalities. Addressing these grand challenges will help the broader community understand the diverse values of inland fish and fisheries, promote open forums for engagement of diverse stakeholders in fisheries management, and better integrate the inland fish sector into the greater water and land use policy process.

  4. A decision support tool for locating an impact of an inland port in Inland Empire.

    DOT National Transportation Integrated Search

    2009-01-01

    By diverting port-related truck trips to rail, the development and operation of an inland port in : southern california (i) increase transportation efficiency by switching from truck to train, (ii) : create a smoother flow on the highways, (iii) crea...

  5. Drivers of pluvial lake distributions in western North America

    NASA Astrophysics Data System (ADS)

    Ibarra, D. E.; Oster, J. L.; Winnick, M.; Caves, J. K.; Ritch, A. J.; Chamberlain, C. P.; Maher, K.

    2016-12-01

    The distribution of large inland lakes in western North America during the Plio-Pleistocene is intimately linked to the regional hydroclimate and moisture delivery dynamics. We investigate the climatological conditions driving terminal basin lakes in western North America during the mid-Pliocene warm period and the latest Pleistocene glacial maximum. Lacustrine deposits and geologic proxies suggest that lakes and wet conditions persisted during both warm and cold periods in the southwest, despite dramatically different global climate, ice sheet configuration and pCO2 levels. We use two complementary methods to quantify the hydroclimate drivers of terminal basin lake levels. First, a quantitative proxy-model comparison is conducted using compilations of geologic proxies and an ensemble of climate models. We utilize archived climate model simulations of the Last Glacial Maximum (21 ka, LGM) and mid-Pliocene (3.3 Ma) produced by the Paleoclimate Modelling Intercomparison Project (PMIP and PlioMIP). Our proxy network is made up of stable isotope records from caves, soils and paleosols, lake deposits and shorelines, glacier chronologies, and packrat middens. Second, we forward model the spatial distribution of lakes in the region using a Budyko framework to constrain the water balance for terminally draining watersheds, and make quantitative comparisons to mapped lacustrine shorelines and outcrops. Cumulatively these two approaches suggest that reduced evaporation and moderate increases in precipitation, relative to modern, drove moderate to large pluvial lakes during the LGM in the Great Basin. In contrast, larger precipitation increases appear to be the primary driver of lake levels during the mid-Pliocene in the southwest, with this spatial difference suggesting a role for El Niño teleconnections. These results demonstrate that during past periods of global change patterns of `dry-gets-drier, wet-gets-wetter' do not hold true for western North America.

  6. Inland wetland mineral soils

    Treesearch

    Kimberly P. Wickland; Alex V. Krusche; Randall K. Kolka; Ayaka W. Kishimoto-Mo; Rodney A. Chimner; Stephen Ogle; Nalin Srivastava

    2013-01-01

    This chapter provides supplementary guidance for estimating and reporting greenhouse gas (GHG) emissions and removals from managed lands with Inland Wetland Mineral Soils (IWMS) for all land-use categories (see Chapter 1 and decision tree in Chapter 1 in this supplement for what is specifically covered in this chapter in relationship to other chapters in this...

  7. Moderately halophilic gram-positive cocci from hypersaline environments.

    PubMed

    Ventosa, A; Ramos-Cormenzana, A; Kocur, M

    1983-01-01

    38 strains of moderately halophilic Gram-positive, catalase-positive cocci were isolated from saline soils and the ponds of a solar saltern in Alicante (Spain). They were divided into three biochemically distinct groups. On the basis of the characteristics investigated the 25 strains of group I corresponded to Planococcus halophilus; the ten strains of group II were morphologically and biochemically similar to the species Sporosarcina halophila; group III, comprising three strains, differed strikingly from the previous groups in certain biochemical tests. These strains differed from the planococci and micrococci so far described and were tentatively designated as Planococcus sp. The results have shown that moderately halophilic Gram-positive, motile cocci, are frequent inhabitants of hypersaline environments. Copyright © 1983 Gustav Fischer Verlag, Stuttgart/New York. Published by Elsevier GmbH.. All rights reserved.

  8. Application of an enhanced spill management information system to inland waterways.

    PubMed

    Camp, Janey S; LeBoeuf, Eugene J; Abkowitz, Mark D

    2010-03-15

    Spill response managers on inland waterways have indicated the need for an improved decision-support system, one that provides advanced modeling technology within a visual framework. Efforts to address these considerations led the authors to develop an enhanced version of the Spill Management Information System (SMIS 2.0). SMIS 2.0 represents a state-of-the-art 3D hydrodynamic and chemical spill modeling system tool that provides for improved predictive spill fate and transport capability, combined with a geographic information systems (GIS) spatial environment in which to communicate propagation risks and locate response resources. This paper focuses on the application of SMIS 2.0 in a case study of several spill scenarios involving the release of diesel fuel and trichloroethylene (TCE) that were simulated on the Kentucky Lake portion of the Tennessee River, each analyzed at low, average, and high flow conditions. A discussion of the decision-support implications of the model results is also included, as are suggestions for future enhancements to this evolving platform. (c) 2009 Elsevier B.V. All rights reserved.

  9. Morphological and genetic divergence in Swedish postglacial stickleback (Pungitius pungitius) populations

    PubMed Central

    2011-01-01

    Background An important objective of evolutionary biology is to understand the processes that govern phenotypic variation in natural populations. We assessed patterns of morphological and genetic divergence among coastal and inland lake populations of nine-spined stickleback in northern Sweden. Coastal populations are either from the Baltic coast (n = 5) or from nearby coastal lakes (n = 3) that became isolated from the Baltic Sea (< 100 years before present, ybp). Inland populations are from freshwater lakes that became isolated from the Baltic approximately 10,000 ybp; either single species lakes without predators (n = 5), or lakes with a recent history of predation (n = 5) from stocking of salmonid predators (~50 ybp). Results Coastal populations showed little variation in 11 morphological traits and had longer spines per unit of body length than inland populations. Inland populations were larger, on average, and showed greater morphological variation than coastal populations. A principal component analysis (PCA) across all populations revealed two major morphological axes related to spine length (PC1, 47.7% variation) and body size (PC2, 32.9% variation). Analysis of PCA scores showed marked similarity in coastal (Baltic coast and coastal lake) populations. PCA scores indicate that inland populations with predators have higher within-group variance in spine length and lower within-group variance in body size than inland populations without predators. Estimates of within-group PST (a proxy for QST) from PCA scores are similar to estimates of FST for coastal lake populations but PST >FST for Baltic coast populations. PST >FST for PC1 and PC2 for inland predator and inland no predator populations, with the exception that PST inland populations lacking predators. Conclusions Baltic coast and coastal lake populations show little morphological and genetic variation within and between groups suggesting that these populations experience similar

  10. Trends and variability of water quality in Lake Tana, Ethiopia using MODIS-Aqua

    NASA Astrophysics Data System (ADS)

    DeLuca, N. M.; Zaitchik, B. F.; Monger, B. C.

    2017-12-01

    Determining long-term water quality trends and variability in remote inland lakes has been challenging due to a lack of continuous in situ measurements. Utilizing ocean color remote sensing techniques for these lakes is difficult due to their sizes, shapes, and optically complex waters. Lake Tana is the largest body of water in Ethiopia, and is located in the country's northwestern highlands. The lake is quite shallow, averaging at about 8 meters depth, and is characteristically turbid due to nearby land degradation and high soil erosion rates. Lake Tana is an important source of accessible water for the rapidly growing population of Ethiopia and serves as the headwaters for the Blue Nile. Therefore, understanding water quality trends and seasonal variation over the past decade is essential to better preparing for future water needs. Here we use MODIS-Aqua data spanning years 2002-2016 to investigate these trends and variability in Lake Tana, where in situ measurements are limited. Daily water quality products were first processed using SeaDAS and then aggregated by month and year for analyses. Frequent cloud cover in the June, July, and August (JJA) rainy season due to monsoon and zonal dynamics presents an obstacle for obtaining mean lake values during these months. We also performed analyses on targeted regions of Lake Tana to determine whether some of the major tributaries and their corresponding watersheds have more influence on observed trends than others.

  11. Mapping lake level changes using ICESat/GLAS satellite laser altimetry data: a case study in arid regions of central Asia

    NASA Astrophysics Data System (ADS)

    Li, JunLi; Fang, Hui; Yang, Liao

    2011-12-01

    Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.

  12. 48 CFR 47.303-10 - F.o.b. inland carrier, point of exportation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false F.o.b. inland carrier... ACQUISITION REGULATION CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.303-10 F.o.b. inland carrier, point of exportation. (a) Explanation of delivery term. F.o.b. inland carrier, point of...

  13. 48 CFR 47.303-11 - F.o.b. inland point, country of importation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false F.o.b. inland point... ACQUISITION REGULATION CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.303-11 F.o.b. inland point, country of importation. (a) Explanation of delivery term. F.o.b. inland point, country of...

  14. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.

    PubMed

    Lin, Qiuqi; Xu, Lei; Hou, Juzhi; Liu, Zhengwen; Jeppesen, Erik; Han, Bo-Ping

    2017-11-01

    Warming has pronounced effects on lake ecosystems, either directly by increased temperatures or indirectly by a change in salinity. We investigated the current status of zooplankton communities and trophic structure in 45 Tibetan lakes along a 2300 m altitude and a 76 g/l salinity gradient. Freshwater to hyposaline lakes mainly had three trophic levels: phytoplankton, small zooplankton and fish/Gammarus, while mesosaline to hypersaline lakes only had two: phytoplankton and large zooplankton. Zooplankton species richness declined significantly with salinity, but did not relate with temperature. Furthermore, the decline in species richness with salinity in lakes with two trophic levels was much less abrupt than in lakes with three trophic levels. The structural variation of the zooplankton community depended on the length of the food chain, and was significantly explained by salinity as the critical environmental variable. The zooplankton community shifted from dominance of copepods and small cladoceran species in the lakes with low salinity and three trophic levels to large saline filter-feeding phyllopod species in those lakes with high salinity and two trophic levels. The zooplankton to phytoplankton biomass ratio was positively related with temperature in two-trophic-level systems and vice versa in three-trophic-level systems. As the Tibetan Plateau is warming about three times faster than the global average, our results imply that warming could have a considerable impact on the structure and function of Tibetan lake ecosystems, either via indirect effects of salinization/desalinization on species richness, composition and trophic structure or through direct effects of water temperature on trophic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Impacts of flamingos on saline lake margin and shallow lacustrine sediments in the Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Scott, Jennifer J.; Renaut, Robin W.; Owen, R. Bernhart

    2012-11-01

    Studies of modern, Holocene, and Pleistocene sediments around saline to hypersaline, alkaline Lake Bogoria and Lake Magadi show that evidence of flamingo activity in marginal areas of these lakes is nearly ubiquitous. Flamingos produce discrete structures such as webbed footprints (~ 9 cm long, ~ 11 cm wide) and nest mounds (~ 30 cm wide, ~ 20 cm high), and they also extensively rework sediments in delta front, delta plain, and shoreline areas. Large (~ 0.5-2 cm in diameter), pinched, 'bubble pores' and ped-like mud clumps are formed by the trampling and churning of wet clay-rich sediments in these settings. Flamingo nest mounds, although superficially similar to some thrombolite mounds, are typically internally structureless, unless formed on pre-existing sediments that preserve internal structures. The flamingo mounds consist of a dense, packed oval-shaped core, a surrounding 'body' of packed sediment, and an external layer with a ped-like texture of clumped mud. The nests may contain open holes from roots or feather shafts incorporated into the nest, and (or) burrows produced once the nests are abandoned. In areas with high densities of flamingos, lake margin sediments may be preferentially compacted, particularly at breeding sites, and become resistant to subaerial erosion and the effects of transgressive ravinement on time scales ranging from seasons to tens of thousands of years. The relatively well-compacted nest mounds and associated sediments also contribute to the stability of delta distributary channels during regressive-transgressive cycles, and can lead to the minor channelization of unconfined flows where currents are diverted around nest mounds. Pleistocene exhumed surfaces of relatively well-indurated lake margin sediments at Lake Bogoria and Lake Magadi that are interpreted as combined regressive and transgressive surfaces (flooding surface/sequence boundary) preserve evidence of flamingo activities, and are overlain by younger, porous lacustrine

  16. Paleohydrologic record of spring deposits in and around Pleistocene pluvial Lake Tecopa, southeastern California

    USGS Publications Warehouse

    Nelson, Stephen T.; Karlsson, Haraldur R.; Paces, James B.; Tingey, David G.; Ward, Stephen; Peters, Mark T.

    2001-01-01

    Tufa (spring) deposits in the Tecopa basin, California, reflect the response of arid groundwater regimes to wet climate episodes. Two types of tufa are represented, informally defined as (1) an easily disaggregated, fine-grained mixture of calcite and quartz (friable tufa) in the southwest Tecopa Valley, and (2) hard, vuggy micrite, laminated carbonate, and carbonate-cemented sands and gravels (indurated tufa) along the eastern margin of Lake Tecopa. High δ18OVSMOW (Vienna standard mean ocean water) water values, field relations, and the texture of friable tufa suggest rapid nucleation of calcite as subaqueous, fault- controlled groundwater discharge mixed with high-pH, hypersaline lake water. Variations between δ18OVSMOW and δ13CPDB (Peedee belemnite) values relative to other closed basin lakes such as the Great Salt Lake and Lake Lahontan suggest similarities in climatic and hydrologic settings. Indurated tufa, also fault controlled, formed mounds and associated feeder systems as well as stratabound carbonate-cemented ledges. Both deposits represent discharge of deeply circulated, high total dissolved solids, and high pCO2 regional groundwater with kinetic enrichments of as much as several per mil for δ18OVSMOW values. Field relations show that indurated tufa represents episodic discharge, and U-series ages imply that discharge was correlated with cold, wet climate episodes. In response to both the breaching of the Tecopa basin and a modern arid climate, most discharge has changed from fault-controlled locations near basin margins to topographic lows of the Amargosa River drainage at elevations 30–130 m lower. Because of episodic climate change, spring flows may have relocated from basin margin to basin center multiple times.

  17. Long-Term Remote Monitoring of Three Typical Lake Area Variations in the Northwest China Over the Past 40 Years

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Lu, Y.; Li, Y.; Yue, H.

    2018-04-01

    water resources management and sustainable development strategy, but also provide reference for assessing the impact of climate change and human activities. This paper selects three inland lakes in Northwest China, using Landsat MSS/TM/ETM+/OLI data from 1970 to 2015, Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI) were used to extract lake area and analysed the dynamic trends. Meteorological station rainfall, evaporation and other meteorological data of the lakes were used to analyse reasons for the area change. The results showed that area of Hongjiannao Lake in the past 40 a was reduced, the groundwater impoundment and underground coal mining are the main cause of area reduction; the area of Bosten Lake in recent 40 a showed a decreasing trend after the first increase, the area was mainly affected by the surface runoff and snowmelt; the area of Qinghai Lake in the past 40 a shows a trend of decreasing first and then increasing, the change of its area is mainly affected by regional precipitation and the inflow.

  18. The social, economic, and environmental importance of inland fish and fisheries

    USGS Publications Warehouse

    Lynch, Abigail J.; Cooke, Steven J.; Deines, Andrew M.; Bower, Shannon D.; Bunnell, David B.; Cowx, Ian G.; Nguyen, Vivian M.; Nohner, Joel K.; Phouthavong, Kaviphone; Riley, Betsy; Rogers, Mark W.; Taylor, William W.; Woelmer, Whitney; Youn, So-Jung; Beard, T. Douglas

    2016-01-01

    Though reported capture fisheries are dominated by marine production, inland fish and fisheries make substantial contributions to meeting the challenges faced by individuals, society, and the environment in a changing global landscape. Inland capture fisheries and aquaculture contribute over 40% to the world’s reported finfish production from less than 0.01% of the total volume of water on earth. These fisheries provide food for billions and livelihoods for millions of people worldwide. Herein, using supporting evidence from the literature, we review 10 reasons why inland fish and fisheries are important to the individual (food security, economic security, empowerment), to society (cultural services, recreational services, human health and well-being, knowledge transfer and capacity building), and to the environment (ecosystem function and biodiversity, as aquatic “canaries”, the “green food” movement). However, the current limitations to valuing the services provided by inland fish and fisheries make comparison with other water resource users extremely difficult. This list can serve to demonstrate the importance of inland fish and fisheries, a necessary first step to better incorporating them into agriculture, land-use, and water resource planning, where they are currently often underappreciated or ignored.

  19. A Global Observatory of Lake Water Quality

    NASA Astrophysics Data System (ADS)

    Tyler, Andrew N.; Hunter, Peter D.; Spyrakos, Evangelos; Neil, Claire; Simis, Stephen; Groom, Steve; Merchant, Chris J.; Miller, Claire A.; O'Donnell, Ruth; Scott, E. Marian

    2017-04-01

    Our planet's surface waters are a fundamental resource encompassing a broad range of ecosystems that are core to global biogeochemical cycling, biodiversity and food and energy security. Despite this, these same waters are impacted by multiple natural and anthropogenic pressures and drivers of environmental change. The complex interaction between physical, chemical and biological processes in surface waters poses significant challenges for in situ monitoring and assessment and this often limits our ability to adequately capture the dynamics of aquatic systems and our understanding of their status, functioning and response to pressures. Recent developments in the availability of satellite platforms for Earth observation (including ESA's Copernicus Programme) offers an unprecedented opportunity to deliver measures of water quality at a global scale. The UK NERC-funded GloboLakes project is a five-year research programme investigating the state of lakes and their response to climatic and other environmental drivers of change through the realization of a near-real time satellite based observatory (Sentinel-3) and archive data processing (MERIS, SeaWiFS) to produce a 20-year time-series of observed ecological parameters and lake temperature for more than 1000 lakes globally. However, the diverse and complex optical properties of lakes mean that algorithm performance often varies markedly between different water types. The GloboLakes project is overcoming this challenge by developing a processing chain whereby algorithms are dynamically selected according to the optical properties of the lake under observation. The development and validation of the GloboLakes processing chain has been supported by access to extensive in situ data from more than thirty partners around the world that are now held in the LIMNADES community-owned data repository developed under the auspices of GloboLakes. This approach has resulted in a step-change in our ability to produce regional and

  20. Hypersaline Microbial Mat Lipid Biomarkers

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Embaye, Tsegereda; Turk, Kendra A.; Summons, Roger E.

    2002-01-01

    Lipid biomarkers and compound specific isotopic abundances are powerful tools for studies of contemporary microbial ecosystems. Knowledge of the relationship of biomarkers to microbial physiology and community structure creates important links for understanding the nature of early organisms and paleoenvironments. Our recent work has focused on the hypersaline microbial mats in evaporation ponds at Guerrero Negro, Baja California Sur, Mexico. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, sulfur oxidizing and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface. The delta C-13 of cyanobacterial biomarkers such as the monomethylalkanes and hopanoids are consistent with the delta C-13 measured for bulk mat (-10%o), while a GNS biomarker, wax esters (WXE), suggests a more depleted delta C-13 for GNS biomass (-16%o). This isotopic relationship is different than that observed in mats at Octopus Spring, Yellowstone National Park (YSNP) where GNS appear to grow photoheterotrophic ally. WXE abundance, while relatively low, is most pronounced in an anaerobic zone just below the cyanobacterial layer. The WXE isotope composition at GN suggests that these bacteria utilize photoautotrophy incorporating dissolved inorganic carbon (DIC) via the 3-hydroxypropionate pathway using H2S or H2.

  1. Hydrology and Salt Balance in a Large, Hypersaline Coastal Lagoon: Lagoa de Araruama, Brazil

    NASA Astrophysics Data System (ADS)

    Kjerfve, Björn; Schettini, C. A. F.; Knoppers, Bastiaan; Lessa, Guilherme; Ferreira, H. O.

    1996-06-01

    Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline coastal lagoon as a result of semi-arid climate conditions, a small drainage basin and a choked entrance channel. The lagoon has been continuously hypersaline for at least 4·5 centuries, but the mean salinity has varied substantially. It has recently decreased from 57 to 52 as indicated by density (salinity) measurements between 1965 and 1990. Analysis of more than 20 years of salinity time series data, in addition to monthly lagoon cruises to measure the spatial salinity distribution, indicate that the lagoon salinity largely fluctuates in response to the difference between evaporation and precipitation. The major factor explaining the long-term trend of decreasing salinity in the lagoon is the constant pumping of 1 m 3s -1of freshwater to the communities surrounding the lagoon from an adjacent watershed, and subsequent discharge of this water into Lagoa de Araruama. The net salt budget is primarily a balance between the advective import of salt from the coastal ocean and eddy diffusive export of salt to the ocean, although the extensive mining of salt from the lagoon during past decades is also a small but significant contribution to the salt budget. The flushing half-life is proposed as a useful time scale of water exchange, is calculated based on a combination of hydrological and tidal processes, and is excellent for comparison of lagoons and assessing water quality changes. The flushing half-life measures 83·5 days for Lagoa de Araruama, considerably longer than for most other coastal lagoons. The proposed dredging of a second ocean channel to Lagoa de Araruama is probably not a good idea. It is likely to accelerate the decrease of lagoon salinity and somewhat improve the lagoon water exchange. At the same time, this will eliminate the apparent buffering capacity provided by the hypersaline environment, and thus may potentially cause water quality problems.

  2. 48 CFR 52.247-38 - F.o.b. Inland Carrier, Point of Exportation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false F.o.b. Inland Carrier... Provisions and Clauses 52.247-38 F.o.b. Inland Carrier, Point of Exportation. As prescribed in 47.303-10(c), insert the following clause in solicitations and contracts when the delivery term is f.o.b. inland...

  3. 48 CFR 52.247-39 - F.o.b. Inland Point, Country of Importation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false F.o.b. Inland Point... Provisions and Clauses 52.247-39 F.o.b. Inland Point, Country of Importation. As prescribed in 47.303-11(c), insert the following clause in solicitations and contracts when the delivery term is f.o.b. inland point...

  4. A flux-gradient system for simultaneous measurement of the CH4, CO2, and H2O fluxes at a lake-air interface.

    PubMed

    Xiao, Wei; Liu, Shoudong; Li, Hanchao; Xiao, Qitao; Wang, Wei; Hu, Zhenghua; Hu, Cheng; Gao, Yunqiu; Shen, Jing; Zhao, Xiaoyan; Zhang, Mi; Lee, Xuhui

    2014-12-16

    Inland lakes play important roles in water and greenhouse gas cycling in the environment. This study aims to test the performance of a flux-gradient system for simultaneous measurement of the fluxes of water vapor, CO2, and CH4 at a lake-air interface. The concentration gradients over the water surface were measured with an analyzer based on the wavelength-scanned cavity ring-down spectroscopy technology, and the eddy diffusivity was measured with a sonic anemometer. Results of a zero-gradient test indicate a flux measurement precision of 4.8 W m(-2) for water vapor, 0.010 mg m(-2) s(-1) for CO2, and 0.029 μg m(-2) s(-1) for CH4. During the 620 day measurement period, 97%, 69%, and 67% of H2O, CO2, and CH4 hourly fluxes were higher in magnitude than the measurement precision, which confirms that the flux-gradient system had adequate precision for the measurement of the lake-air exchanges. This study illustrates four strengths of the flux-gradient method: (1) the ability to simultaneously measure the flux of H2O, CO2, and CH4; (2) negligibly small density corrections; (3) the ability to resolve small CH4 gradient and flux; and (4) continuous and noninvasive operation. The annual mean CH4 flux (1.8 g CH4 m(-2) year(-1)) at this hypereutrophic lake was close to the median value for inland lakes in the world (1.6 g CH4 m(-2) year(-1)). The system has adequate precision for CH4 flux for broad applications but requires further improvement to resolve small CO2 flux in many lakes.

  5. Global Lakes Sentinel Services: Water Quality Parameters Retrieval in Lakes Using the MERIS and S3-OLCI Band Sets

    NASA Astrophysics Data System (ADS)

    Peters, Steef; Alikas, Krista; Hommersom, Annelies; Latt, Silver; Reinart, Anu; Giardino, Claudia; Bresciani, Mariano; Philipson, Petra; Ruescas, Ana; Stelzer, Kerstin; Schenk, Karin; Heege, Thomas; Gege, Peter; Koponen, Sampsa; Kallio, Karri; Zhang, Yunlin

    2015-12-01

    The European collaborative project GLaSS aims to prepare for the use of the data streams from Sentinel 2 and Sentinel 3. Its focus is on inland waters, since these are considered to be sentinels for land-use- and climate change and need to be monitored closely. One of the objectives of the project is to compare existing water quality algorithms and parameterizations on the basis of in-situ spectral observations and Hydrolight simulations. A first achievement of the project is the collection of over 400 Rrs spectra with accompanying data on CHL, TSM, aCDOM and Secchi depth. Especially the dataset on Lake CDOM measurements represents a rather unique reference dataset.

  6. To manage inland fisheries is to manage at the social-ecological watershed scale.

    PubMed

    Nguyen, Vivian M; Lynch, Abigail J; Young, Nathan; Cowx, Ian G; Beard, T Douglas; Taylor, William W; Cooke, Steven J

    2016-10-01

    Approaches to managing inland fisheries vary between systems and regions but are often based on large-scale marine fisheries principles and thus limited and outdated. Rarely do they adopt holistic approaches that consider the complex interplay among humans, fish, and the environment. We argue that there is an urgent need for a shift in inland fisheries management towards holistic and transdisciplinary approaches that embrace the principles of social-ecological systems at the watershed scale. The interconnectedness of inland fisheries with their associated watershed (biotic, abiotic, and humans) make them extremely complex and challenging to manage and protect. For this reason, the watershed is a logical management unit. To assist management at this scale, we propose a framework that integrates disparate concepts and management paradigms to facilitate inland fisheries management and sustainability. We contend that inland fisheries need to be managed as social-ecological watershed system (SEWS). The framework supports watershed-scale and transboundary governance to manage inland fisheries, and transdisciplinary projects and teams to ensure relevant and applicable monitoring and research. We discuss concepts of social-ecological feedback and interactions of multiple stressors and factors within/between the social-ecological systems. Moreover, we emphasize that management, monitoring, and research on inland fisheries at the watershed scale are needed to ensure long-term sustainable and resilient fisheries. Copyright © 2016. Published by Elsevier Ltd.

  7. Can single empirical algorithms accurately predict inland shallow water quality status from high resolution, multi-sensor, multi-temporal satellite data?

    NASA Astrophysics Data System (ADS)

    Theologou, I.; Patelaki, M.; Karantzalos, K.

    2015-04-01

    Assessing and monitoring water quality status through timely, cost effective and accurate manner is of fundamental importance for numerous environmental management and policy making purposes. Therefore, there is a current need for validated methodologies which can effectively exploit, in an unsupervised way, the enormous amount of earth observation imaging datasets from various high-resolution satellite multispectral sensors. To this end, many research efforts are based on building concrete relationships and empirical algorithms from concurrent satellite and in-situ data collection campaigns. We have experimented with Landsat 7 and Landsat 8 multi-temporal satellite data, coupled with hyperspectral data from a field spectroradiometer and in-situ ground truth data with several physico-chemical and other key monitoring indicators. All available datasets, covering a 4 years period, in our case study Lake Karla in Greece, were processed and fused under a quantitative evaluation framework. The performed comprehensive analysis posed certain questions regarding the applicability of single empirical models across multi-temporal, multi-sensor datasets towards the accurate prediction of key water quality indicators for shallow inland systems. Single linear regression models didn't establish concrete relations across multi-temporal, multi-sensor observations. Moreover, the shallower parts of the inland system followed, in accordance with the literature, different regression patterns. Landsat 7 and 8 resulted in quite promising results indicating that from the recreation of the lake and onward consistent per-sensor, per-depth prediction models can be successfully established. The highest rates were for chl-a (r2=89.80%), dissolved oxygen (r2=88.53%), conductivity (r2=88.18%), ammonium (r2=87.2%) and pH (r2=86.35%), while the total phosphorus (r2=70.55%) and nitrates (r2=55.50%) resulted in lower correlation rates.

  8. A Holocene history of dune-mediated landscape change along the southeastern shore of Lake Superior

    USGS Publications Warehouse

    Loope, Walter L.; Fisher, Timothy G.; Jol, Harry M.; Anderton, John B.; Blewett, William L.

    2004-01-01

    Causal links that connect Holocene high stands of Lake Superior with dune building, stream damming and diversion and reservoir impoundment and infilling are inferred from a multidisciplinary investigation of a small watershed along the SE shore of Lake Superior. Radiocarbon ages of wood fragments from in-place stumps and soil O horizons, recovered from the bottom of 300-ha Grand Sable Lake, suggest that the near-shore inland lake was formed during multiple episodes of late Holocene dune damming of ancestral Sable Creek. Forest drownings at ~3000, 1530, and 300 cal. years BP are highly correlated with local soil burial events that occurred during high stands of Lake Superior. During these and earlier events, Sable Creek was diverted onto eastward-graded late Pleistocene meltwater terraces. Ground penetrating radar (GPR) reveals the early Holocene valley of Sable Creek (now filled) and its constituent sedimentary structures. Near-planar paleosols, identified with GPR, suggest two repeating modes of landscape evolution mediated by levels of Lake Superior. High lake stands drove stream damming, reservoir impoundment, and eolian infilling of impoundments. Falling Lake Superior levels brought decreased sand supply to dune dams and lowered stream base level. These latter factors promoted stream piracy, breaching of dune dams, and aerial exposure and forestation of infilled lakebeds. The bathymetry of Grand Sable Lake suggests that its shoreline configuration and depth varied in response to events of dune damming and subsequent dam breaching. The interrelated late Holocene events apparent in this study area suggest that variations in lake level have imposed complex hydrologic and geomorphic signatures on upper Great Lakes coasts.

  9. Statewide summary for Texas: Chapter B in Emergent wetlands status and trends in the northern Gulf of Mexico: 1950-2010

    USGS Publications Warehouse

    Handley, Lawrence R.; Spear, Kathryn A.; Gibeaut, Jim; Thatcher, Cindy A.

    2014-01-01

    The Texas coast (Figure 1) consists of complex and diverse ecosystems with a varying precipitation gradient. The northernmost portion of the coast, extending from Sabine Lake to Galveston Bay, is composed of salt, brackish, intermediate, and fresh marshes, with humid flatwoods inland (Moulton and others, 1997). Coastal prairies are found across the entire coast. From Galveston Bay to Corpus Christi Bay, rivers feed into large bays and estuarine ecosystems. Barrier islands and peninsulas exist along the coast from Galveston Bay to the Mexican border. The southernmost portion of the coast is composed of wind-tidal flats and the hypersaline Laguna Madre. The Laguna Madre lacks rivers and has little rainfall and restricted inlet access to the Gulf. Semiarid rangeland and irrigated agricultural land can be found inland.Approximately 6 million people live in Texas’ coastal counties (U.S. Census Bureau, 2010; Texas GLO, 2013). Seventy percent of the state’s industry and commerce occurs within 160.9 km (100 miles) of the coast (Moulton and others, 1997). Texas ports support 1.4 million jobs and generate $6.5 billion in tax revenues (Texas GLO, 2013). Chemical and petroleum production and marine commerce thrive on the Texas coast. Agriculture, grazing, commercial and recreational fishing, and recreation and tourism are strong industries along the coast and in adjacent areas; oil and gas production, agriculture, and tourism are the state’s three largest industries.

  10. Navigation Rules -- International Inland -- Part I

    DOT National Transportation Integrated Search

    1995-10-01

    This instruction forwards International and Inland : Navigation Rules and Regulations for use by Coast Guard personnel. This manual contains the International Regulations for Prevention of Collisions at Sea, 1972 (72 COLREGS). It also contains the In...

  11. Inland waterway ports nodal attraction indices relevant in development strategies on regional level

    NASA Astrophysics Data System (ADS)

    Dinu, O.; Burciu, Ş.; Oprea, C.; Ilie, A.; Rosca, M.

    2016-08-01

    Present paper aims to propose a set of ranking indices and related criteria, concerning mainly spatial analysis, for the inland waterway port, with special view on inland ports of Danube. Commonly, the attraction potential of a certain transport node is assessed by its spatial accessibility indices considering both spatial features of the location provided by the networks that connect into that node and its economic potential defining the level of traffic flows depending on the economic centers of its hinterland. Paper starts with a overview of the critical needs that are required for potential sites to become inland waterway ports and presents nodal functions that coexist at different levels, leading to a port hierarchy from the points of view of: capacity, connection to hinterland, traffic structure and volume. After a brief review of the key inland waterway port ranking criterion, a selection of nodal attraction measures is made. Particular considerations for the Danube inland port case follows proposed methodology concerning indices of performance for network scale and centrality. As expected, the shorter the distance from an inland port to the nearest access point the greater accessibility. Major differences in ranking, dependent on selected criterion, were registered.

  12. Inland capture fishery contributions to global food security and threats to their future

    USGS Publications Warehouse

    Youn, So-Jung; Taylor, William W.; Lynch, Abigail J.; Cowx, Ian G.; Beard, T. Douglas; Bartley, Devin; Wu, Felicia

    2014-01-01

    Inland fish and fisheries play important roles in ensuring global food security. They provide a crucial source of animal protein and essential micronutrients for local communities, especially in the developing world. Data concerning fisheries production and consumption of freshwater fish are generally inadequately assessed, often leading decision makers to undervalue their importance. Modification of inland waterways for alternative uses of freshwater (particularly dams for hydropower and water diversions for human use) negatively impacts the productivity of inland fisheries for food security at local and regional levels. This paper highlights the importance of inland fisheries to global food security, the challenges they face due to competing demands for freshwater, and possible solutions.

  13. Prokaryotic diversity in the extreme lakes of Turkey, SW Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Gül Karagüler, Nevin; Menekşe-Kılıç, Meryem; Akçer-Ön, Sena; Haydar Gültekin, A.; Balcı, Nurgül

    2016-04-01

    The Lake District, located in the SW Anatolia region of Turkey, hosts a number of lakes with unique water chemistry. Among them, Lake Acigol, Lake Salda and Lake Yarisli display extreme biogeochemical conditions. In terms of their water chemistry and diverse prokaryotic community, each lake sets a great example for microbially mediated reactions (e.g carbonate precipitation). Lake Acigol (average pH around 8.6) is known for hypersaline and alkaline water chemistry. Lake Salda (average pH around 9.1) is known for its hydromagnesite beaches, clayey-hydromagnesite shoreline and ancient-modern stromatolite formations as well as being a model for Mars. For the first time, Lake Yarisli having alkaline conditions with an average pH value of 9.5 is investigated for its geochemistry and geobiology during this study. Algal bloom and well developed cyanobacterial mats are visible on shallow waters along the Eastern shoreline of the lake. In scope of elucidating complex bio/geochemical reactions that regulate C, S and O cycles in the extreme conditions of these lakes, water, surface sediment and shallow core samples were collected. For the first time, prokaryotic diversity of Lake Acigol, Salda and Yarisli were determined by Next-Generation Sequencing (NGS) during this study (Balci et al., 2013). Preliminary results revealed the total number of bacterial classes determined for Lake Acigol, Lake Salda and Lake Yarisli as 22, 19 and 19; respectively. Lake Acigol, Salda and Yarisli are mostly dominated by bacterial classes of Alphaproteobacteria (68.2%, 25.6% and 1.9%; respectively), Cyanobacteria (10.2%, 5.3% and 92.9%; respectively), Bacilli (9.6%, 23.7% and 0.45%; respectively), Gammaproteobacteria (6.1%, 39.6% and 4.3%; respectively) and Actinobacteria (2.7%, 1.8% and 0.06%; respectively). The total number of archaeal classes determined for Lake Acigol, Lake Salda and Lake Yarisli are 8, 7 and 6; respectively. Common most dominant archaeal classes of Lake Acigol, Lake Salda

  14. Final Results From the Circumarctic Lakes Observation Network (CALON) Project

    NASA Astrophysics Data System (ADS)

    Hinkel, K. M.; Arp, C. D.; Eisner, W. R.; Frey, K. E.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Townsend-Small, A.

    2015-12-01

    Since 2012, the physical and biogeochemical properties of ~60 lakes in northern Alaska have been investigated under CALON, a project to document landscape-scale variability of Arctic lakes in permafrost terrain. The network has ten nodes along two latitudinal transects extending inland 200 km from the Arctic Ocean. A meteorological station is deployed at each node and six representative lakes instrumented and continuously monitored, with winter and summer visits for synoptic assessment of lake conditions. Over the 4-year period, winter and summer climatology varied to create a rich range of lake responses over a short period. For example, winter 2012-13 was very cold with a thin snowpack producing thick ice across the region. Subsequent years had relatively warm winters, yet regionally variable snow resulted in differing gradients of ice thickness. Ice-out timing was unusually late in 2014 and unusually early in 2015. Lakes are typically well-mixed and largely isothermal, with minor thermal stratification occurring in deeper lakes during calm, sunny periods in summer. Lake water temperature records and morphometric data were used to estimate the ground thermal condition beneath 28 lakes. Application of a thermal equilibrium steady-state model suggests a talik penetrating the permafrost under many larger lakes, but lake geochemical data do not indicate a significant contribution of subpermafrost groundwater. Biogeochemical data reveal distinct spatial and seasonal variability in chlorophyll biomass, chromophoric dissolved organic carbon (CDOM), and major cations/anions. Generally, waters sampled beneath ice in April had distinctly higher concentrations of inorganic solutes and methane compared with August. Chlorophyll concentrations and CDOM absorption were higher in April, suggesting significant biological/biogeochemical activity under lake ice. Lakes are a positive source of methane in summer, and some also emit nitrous oxide and carbon dioxide. As part of the

  15. Monitoring Lakes in Africa with Altimetry and GRACE

    NASA Astrophysics Data System (ADS)

    Carabajal, C. C.; Boy, J. P.

    2017-12-01

    Thanks to more than two decades of radar altimetry measurements from TOPEX/POSEIDON, Jason 1, 2 and 3, ENVISAT and others, 18 Ice, Cloud and Land Elevation Satellite (ICESat) laser altimeter measurement campaigns over 6 years, and 15 years of Gravity Recovery And Climate Experiment (GRACE) observations, water levels changes of major lakes and reservoirs can be remotely measured regularly with unprecedented precision, facilitating monitoring of continental water storage variations. Smaller footprint laser altimeters like ICESat are more suitable for the retrieval of water level variations of small inland water bodies, better discriminating water returns when water height measurements have the potential to be contaminated by land or vegetation. Using imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) contemporaneous with the altimetry data collections, in combination with careful examination of the laser waveforms, one can better isolate returns form the water surface. Combining these altimetry observations, we derive and compare water height estimates for several lakes and reservoirs in Africa from radar and laser altimetry measurements, we estimate the surface extent of each individual water body from available MODIS imagery, and derive corresponding estimates of volume variations for each water body. Mass variations from time-variable gravity measurements from the GRACE mission, using the latest one-degree global iterated mascons solution from GSFC are then transformed into volume changes, assuming a constant density, and compared to altimetry plus imagery estimates. These methods demonstrate the power of combined observations to monitor water resources and facilitate their management. Upcoming laser altimetry missions like ICESat-2, with vastly improved coverage and temporal sampling, continuous observations, better measurements techniques, including inland water products specifically formulated for these applications, when combined with SWOT

  16. Nutrient budgets and trophic state in a hypersaline coastal lagoon: Lagoa de Araruama, Brazil

    NASA Astrophysics Data System (ADS)

    Souza, Marcelo F. L.; Kjerfve, Björn; Knoppers, Bastiaan; Landim de Souza, Weber F.; Damasceno, Raimundo N.

    2003-08-01

    Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline lagoon with salinity varying spatially from 45 to 56. We collected water samples during monthly cruises throughout the lagoon, and along the streams feeding the system, from April 1991 to March 1992. Nutrients and other water quality parameters exhibited great spatial and temporal variations. Mass balance calculations indicate large amounts of anthropogenic nutrient inputs. The data indicate that the lagoon currently is oligotrophic but is in a state of transition to become a mesotrophic system. Molar dissolved inorganic nitrogen:dissolved inorganic phosphorus (DIN/DIP) varied between 2.2:1 and 659:1 with a volume-weighted average of 22:1. The high DIN/DIP ratio contrasts with that found in nearby lagoons, suggesting that phytoplankton primary production is limited by phosphorus in Lagoa de Araruama. The major loss of DIP is apparently driven by biological assimilation and diagenic reactions in the sediments. Calculations indicate that the lagoon is slightly net autotrophic at +0.9 mol C m -2 yr -1. This suggests that the biomass of the primary producers is restricted by phosphorus availability. Phosphorus retention in the sediment and the hypersaline state of the lagoon prevent changes in autotrophic communities and the formation of eutrophic conditions.

  17. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda; Orphan, Victoria; Embaye, Tsegereda; Turk, Kendra; Kubo, Mike; Summons, Roger

    2004-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. Various lipids associated with specific microbial groups can serve as biomarkers for establishing organism source and function in contemporary microbial ecosystems (membrane lipids), and by analogy, potential relevance to ancient organic-rich sedimentary rocks (geolipids). As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments. Our recent work has focused on lipid biomarker analysis of a potential analogue for such ancient mats growing in a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico. The aerobic, surface layer of this mat (0 to 1 mm) contained a variety of ester-bound fatty acids (FA) representing a diverse bacterial population including cyanobacteria, sulphate reducers (SRB) and heterotrophs. Biomarkers for microeukaryotes detected in this layer included sterols, C-20 polyunsaturated FA and a highly branched isoprenoid, diagnostic for diatoms. Cyanobacteria were also indicated by the presence of a diagnostic set of mid-chain methylalkanes. C-28, to C-34 wax esters (WXE) present in relatively small amounts in the upper 3 mm of the mat are considered biomarkers for green non-sulphur bacteria. Ether-bound isoprenoids were also identified although in considerably lower abundance than ester-bound FA (approx. 1:l0). These complex ether lipids included archatol, hydroxyarchaeol and a C-40 tetraether, all in small amounts. After ether cleavage with boron tribromide, the major recovered isoprenyl was a C-30:1. This C(sub 30;1) yelded squalane after hydrogenation, a known geobiomarker for hypersaline environments in ancient oils and sediments. In this mat, it represents the dominant Archaeal population. The carbon isotopic composition of biomarker lipids were generally depleted relative to the bulk organic material (delta C-13 TOC -10%). Most

  18. Inland empire logistics GIS mapping project.

    DOT National Transportation Integrated Search

    2009-01-01

    The Inland Empire has experienced exponential growth in the area of warehousing and distribution facilities within the last decade and it seems that it will continue way into the future. Where are these facilities located? How large are the facilitie...

  19. Screening of polyhydroxyalkanoate-producing bacteria and PhaC-encoding genes in two hypersaline microbial mats from Guerrero Negro, Baja California Sur, Mexico.

    PubMed

    Martínez-Gutiérrez, Carolina A; Latisnere-Barragán, Hever; García-Maldonado, José Q; López-Cortés, Alejandro

    2018-01-01

    Hypersaline microbial mats develop through seasonal and diel fluctuations, as well as under several physicochemical variables. Hence, resident microorganisms commonly employ strategies such as the synthesis of polyhydroxyalkanoates (PHAs) in order to resist changing and stressful conditions. However, the knowledge of bacterial PHA production in hypersaline microbial mats has been limited to date, particularly in regard to medium-chain length PHAs (mcl-PHAs), which have biotechnological applications due to their plastic properties. The aim of this study was to obtain evidence for PHA production in two hypersaline microbial mats of Guerrero Negro, Mexico by searching for PHA granules and PHA synthase genes in isolated bacterial strains and environmental samples. Six PHA-producing strains were identified by 16S rRNA gene sequencing; three of them corresponded to a Halomonas sp. In addition, Paracoccus sp., Planomicrobium sp. and Staphylococcus sp. were also identified as PHA producers. Presumptive PHA granules and PHA synthases genes were detected in both sampling sites. Moreover, phylogenetic analysis showed that most of the phylotypes were distantly related to putative PhaC synthases class I sequences belonging to members of the classes Alphaproteobacteria and Gammaproteobacteria distributed within eight families, with higher abundances corresponding mainly to Rhodobacteraceae and Rhodospirillaceae. This analysis also showed that PhaC synthases class II sequences were closely related to those of Pseudomonas putida , suggesting the presence of this group, which is probably involved in the production of mcl-PHA in the mats. According to our state of knowledge, this study reports for the first time the occurrence of phaC and phaC1 sequences in hypersaline microbial mats, suggesting that these ecosystems may be a novel source for the isolation of short- and medium-chain length PHA producers.

  20. Mechanisms Controlling Variability of Lake Salinity in Dune Environments in a Semi-arid Climate: The Nebraska Sand Hills (Invited)

    NASA Astrophysics Data System (ADS)

    Zlotnik, V. A.; Ong, J. T.; Swinehart, J. B.; Fritz, S. C.; Lenters, J. D.; Schmieder, J. U.; Lane, J. W.; Halihan, T.

    2010-12-01

    Shallow endorheic saline lakes are common in semi-arid environments in North America, Africa, Asia, and Australia. These lakes receive minimal surface runoff and are supported by groundwater seepage. A combination of hydrologic and geologic factors (regional groundwater flow, evaporation, precipitation, lake size, groundwater recharge, and geologic setting) may preclude seepage out of these lakes, even in the presence of ambient regional flow. Solutes from groundwater are captured by these lakes and become enriched over time by evaporation. The importance of understanding lake dynamics in these arid and semi-arid systems is increasing with societal concerns, including water availability and quality, the use of aquatic ecosystems by waterfowl and other biota, and dangers of dust emissions associated with lake desiccation. We consider the salinity of shallow lakes as a useful indicator of hydroclimatic factors operating at centennial and millennial scales. The Nebraska Sand Hills cover 58 000 km2 of the central Great Plains and are the largest dunefield in the Western Hemisphere. The grass-stabilized dunes attain heights up to 130 m and have been modified by soil development and erosion. In an area <7000 km2, there are ~400 lakes with surface areas >4 ha and depths <1 m. Annual lake evaporation exceeds precipitation by 600 mm, according to some estimates. The salinity of natural lakes in the Nebraska Sand Hills ranges from fresh (~0.3 g L-1) to hypersaline (>100 g L-1), with pH values as high as ~10. We assess the mechanisms that control lake salinity in a group of lakes with different subsurface flow regimes. Our methods combine aquifer coring, electromagnetic and electrical resistivity tomography geophysics, hydraulic testing, lakebed dating using 14C and optically stimulated luminescence, energy and water balance analysis, and salt crust and dust collection. Our theory and results show that terrain and water-table topography, lithology, and climate control the

  1. Origin and development of inland notches in the Classical Karst (NE Adriatic)

    NASA Astrophysics Data System (ADS)

    Furlani, Stefano; Biolchi, Sara; Devoto, Stefano; Raad, Fadl

    2017-04-01

    Karst landscapes show morphological features that are different compared to other lithological settings. Inland notches, sub-horizontal indentations extending along carbonate cliffs, are common in the Mediterranean area, in tropical, alpine and semi-arid environments, and develop because of higher erosion rates in correspondence of lithological differences. They can be extended over maximum some hundreds of meters, with an amplitude ranging from 0.5 to 3 m. There is a lack of quantitative data on inland notches with respect to marine notches. We aim at discussing their genesis and evolution by means of morphometric, thermal lithological and micro erosion meter data collected in the Classical Karst area. Rock type is thought to be important in the development of inland notches. Thin sections show that the central part of inland notches are made of more soluble limestones, so lowering rates are higher inside notches rather than outside. Preliminary data on mean lowering rates support the idea that small differences in limestone texture produce differences up to 5 μm/year in lowering rates. For this purpose, their formation is usually associated with limestone beds, although the role and magnitude of karst processes is not completely known. Thermal data show that inland notches are always warmer than the surrounding slopes, with maximum measured differences of 7.5°C. The difference in temperature is higher during the day with respect to the night mainly because of insolation. Data support the hypothesis that inland notches are presently carved in correspondence of even very small differences in lowering rates mainly along bedding planes and, secondly, along geological weakness, such as joints or fractures, as long as lithological differences occur. We assess present understanding of the roles of climate, structural and lithological conditions in inland notches development by new data collected in the Classical Karst area.

  2. Prokaryotic Community in Lacustrine Sediments of Byers Peninsula (Livingston Island, Maritime Antarctica).

    PubMed

    Gugliandolo, Concetta; Michaud, Luigi; Lo Giudice, Angelina; Lentini, Valeria; Rochera, Carlos; Camacho, Antonio; Maugeri, Teresa Luciana

    2016-02-01

    Byers Peninsula (Livingston Island, Antarctica), the largest seasonally ice-free region of the Maritime Antarctica, holds a large number of lakes, ponds, and streams. The prokaryotic structure and bacterial diversity in sediment samples collected during the 2008-2009 austral summer from five inland lakes, two coastal lakes, and an estuarine site were analyzed by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) and 16S rRNA 454 tag pyrosequencing techniques, respectively. Differently from inland lakes, which range around the oligotrophic status, coastal lakes are eutrophic environments, enriched by nutrient inputs from marine animals. Although the prokaryotic abundances (estimated as DAPI stained cells) in sediment samples were quite similar among inland and coastal lakes, Bacteria always far dominated over Archaea. Despite the phylogenetic analysis indicated that most of sequences were affiliated to a few taxonomic groups, mainly referred to Proteobacteria, Bacteroidetes, and Actinobacteria, their relative abundances greatly differed from each site. Differences in bacterial composition showed that lacustrine sediments were more phyla rich than the estuarine sediment. Proteobacterial classes in lacustrine samples were dominated by Betaproteobacteria (followed by Alphaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria), while in the estuarine sample, they were mainly related to Gammaproteobacteria (followed by Deltaproteobacteria, Epsilonproteobacteria, Alphaproteobacteria, and Betaproteobacteria). Higher number of sequences of Alphaproteobacteria, Cyanobacteria, Verrucomicrobia, and Planctomycetes were observed in sediments of inland lakes compared to those of coastal lakes, whereas Chloroflexi were relatively more abundant in the sediments of coastal eutrophic lakes. As demonstrated by the great number of dominant bacterial genera, bacterial diversity was higher in the sediments of inland lakes than that in coastal lakes

  3. Global synthesis of the documented and projected effects of climate change on inland fishes

    USGS Publications Warehouse

    Myers, Bonnie; Lynch, Abigail; Bunnell, David; Chu, Cindy; Falke, Jeffrey A.; Kovach, Ryan; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Paukert, Craig P.

    2017-01-01

    Although climate change is an important factor affecting inland fishes globally, a comprehensive review of how climate change has impacted and will continue to impact inland fishes worldwide does not currently exist. We conducted an extensive, systematic primary literature review to identify English-language, peer-reviewed journal publications with projected and documented examples of climate change impacts on inland fishes globally. Since the mid-1980s, scientists have projected the effects of climate change on inland fishes, and more recently, documentation of climate change impacts on inland fishes has increased. Of the thousands of title and abstracts reviewed, we selected 624 publications for a full text review: 63 of these publications documented an effect of climate change on inland fishes, while 116 publications projected inland fishes’ response to future climate change. Documented and projected impacts of climate change varied, but several trends emerged including differences between documented and projected impacts of climate change on salmonid abundance (P = 0.0002). Salmonid abundance decreased in 89.5% of documented effects compared to 35.7% of projected effects, where variable effects were more commonly reported (64.3%). Studies focused on responses of salmonids (61% of total) to climate change in North America and Europe, highlighting major gaps in the literature for taxonomic groups and geographic focus. Elucidating global patterns and identifying knowledge gaps of climate change effects on inland fishes will help managers better anticipate local changes in fish populations and assemblages, resulting in better development of management plans, particularly in systems with little information on climate change effects on fish.

  4. Bill spurs efforts to improve forecasting of inland flooding from tropical storms

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Newly-enacted U.S. legislation to reduce the threat of inland flooding from tropical storms could provide a "laser beam" focus to dealing with this natural hazard, according to Rep. Bob Etheridge (D-N.C.), the chief sponsor of the bill.The Tropical Cyclone Inland Forecasting Improvement and Warning System Development Act, (PL. 107-253), signed into law on 29 October, authorizes the National Oceanic and Atmospheric Administration's U.S. Weather Research Program (USWRP) to improve the capability to accurately forecast inland flooding from tropical storms through research and modeling.

  5. Near real-time qualitative monitoring of lake water chlorophyll globally using GoogleEarth Engine

    NASA Astrophysics Data System (ADS)

    Zlinszky, András; Supan, Peter; Koma, Zsófia

    2017-04-01

    Monitoring ocean chlorophyll and suspended sediment has been made possible using optical satellite imaging, and has contributed immensely to our understanding of the Earth and its climate. However, lake water quality monitoring has limitations due to the optical complexity of shallow, sediment- and organic matter-laden waters. Meanwhile, timely and detailed information on basic lake water quality parameters would be essential for sustainable management of inland waters. Satellite-based remote sensing can deliver area-covering, high resolution maps of basic lake water quality parameters, but scientific application of these datasets for lake monitoring has been hindered by limitations to calibration and accuracy evaluation, and therefore access to such data has been the privilege of scientific users. Nevertheless, since for many inland waters satellite imaging is the only source of monitoring data, we believe it is urgent to make map products of chlorophyll and suspended sediment concentrations available to a wide range of users. Even if absolute accuracy can not be validated, patterns, processes and qualitative information delivered by such datasets in near-real time can act as an early warning system, raise awareness to water quality processes and serve education, in addition to complementing local monitoring activities. By making these datasets openly available on the internet through an easy to use framework, dialogue between stakeholders, management and governance authorities can be facilitated. We use GoogleEarthEngine to access and process archive and current satellite data. GoogleEarth Engine is a development and visualization framework that provides access to satellite datasets and processing capacity for analysis at the Petabyte scale. Based on earlier investigations, we chose the fluorescence line height index to represent water chlorophyll concentration. This index relies on the chlorophyll fluorescence peak at 680 nm, and has been tested for open ocean

  6. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments

    PubMed Central

    Fathepure, Babu Z.

    2014-01-01

    Many hypersaline environments are often contaminated with petroleum compounds. Among these, oil and natural gas production sites all over the world and hundreds of kilometers of coastlines in the more arid regions of Gulf countries are of major concern due to the extent and magnitude of contamination. Because conventional microbiological processes do not function well at elevated salinities, bioremediation of hypersaline environments can only be accomplished using high salt-tolerant microorganisms capable of degrading petroleum compounds. In the last two decades, there have been many reports on the biodegradation of hydrocarbons in moderate to high salinity environments. Numerous microorganisms belonging to the domain Bacteria and Archaea have been isolated and their phylogeny and metabolic capacity to degrade a variety of aliphatic and aromatic hydrocarbons in varying salinities have been demonstrated. This article focuses on our growing understanding of bacteria and archaea responsible for the degradation of hydrocarbons under aerobic conditions in moderate to high salinity conditions. Even though organisms belonging to various genera have been shown to degrade hydrocarbons, members of the genera Halomonas Alcanivorax, Marinobacter, Haloferax, Haloarcula, and Halobacterium dominate the published literature. Despite rapid advances in understanding microbial taxa that degrade hydrocarbons under aerobic conditions, not much is known about organisms that carry out similar processes in anaerobic conditions. Also, information on molecular mechanisms and pathways of hydrocarbon degradation in high salinity is scarce and only recently there have been a few reports describing genes, enzymes and breakdown steps for some hydrocarbons. These limited studies have clearly revealed that degradation of oxygenated and non-oxygenated hydrocarbons by halophilic and halotolerant microorganisms occur by pathways similar to those found in non-halophiles. PMID:24795705

  7. Sequence analysis of the mitochondrial DNA control region of ciscoes (genus Coregonus): taxonomic implications for the Great Lakes species flock.

    PubMed

    Reed, K M; Dorschner, M O; Todd, T N; Phillips, R B

    1998-09-01

    Sequence variation in the control region (D-loop) of the mitochondrial DNA (mtDNA) was examined to assess the genetic distinctiveness of the shortjaw cisco (Coregonus zenithicus). Individuals from within the Great Lakes Basin as well as inland lakes outside the basin were sampled. DNA fragments containing the entire D-loop were amplified by PCR from specimens of C. zenithicus and the related species C. artedi, C. hoyi, C. kiyi, and C. clupeaformis. DNA sequence analysis revealed high similarity within and among species and shared polymorphism for length variants. Based on this analysis, the shortjaw cisco is not genetically distinct from other cisco species.

  8. Sequence analysis of the mitochondrial DNA control region of ciscoes (genus Coregonus): Taxonomic implications for the Great Lakes species flock

    USGS Publications Warehouse

    Reed, Kent M.; Dorschner, Michael O.; Todd, Thomas N.; Phillips, Ruth B.

    1998-01-01

    Sequence variation in the control region (D-loop) of the mitochondrial DNA (mtDNA) was examined to assess the genetic distinctiveness of the shortjaw cisco (Coregonus zenithicus). Individuals from within the Great Lakes Basin as well as inland lakes outside the basin were sampled. DNA fragments containing the entire D-loop were amplified by PCR from specimens ofC. zenithicus and the related species C. artedi, C. hoyi, C. kiyi, and C. clupeaformis. DNA sequence analysis revealed high similarity within and among species and shared polymorphism for length variants. Based on this analysis, the shortjaw cisco is not genetically distinct from other cisco species.

  9. Biogeochemistry of Lakes in Western Papua, Indonesia - First Results of a Pilot Study.

    NASA Astrophysics Data System (ADS)

    Kallmeyer, J.; Nomosatryo, S.; Henny, C.; Kopalit, H.

    2016-12-01

    Despite years of exploration for mineral and hydrocarbon resources, the lakes of Western Papua have received very little attention from a limnogeologic perspective. In some cases not even the maximum water depth of the lakes is published. The only research carried out so far focused on the fish and invertebrate fauna of the lakes, because the macrofauna of Papuan Lakes is significantly different from other islands of western Indonesia. Most lakes harbor numerous endemic species. We carried out a first limnogeologic pilot campaign in spring 2016 to measure water column profiles and take short (max 80 cm long) sediment cores.Lake Sentani is seated in Mesozoic mafic bedrock and consists of four separate basins with maximum water depths of 30 to 40 m. Three basins are connected by shallow sills and one by a natural canal. Although all four basins share almost identical surface water chemistry and exhibit sub- to anoxic bottom waters, each basin has its distinct water column stratification and sediment geochemistry. Despite its coastal location and minimal elevation we could not identify an influx of seawater into the lake. Lake Ayamaru is located further inland on a densely forested karstified carbonate platform. The lake level has dropped significantly in recent years due to water loss into the karst, further reduction of open water surface is caused by massive growth of Pistia. Currently the lake has a maximum depth of around 2 m. Its sediment is mainly composed of carbonate minerals and methane saturated. Due to the carbonate bedrock the lake is highly alkaline (up to 20 meq/L) despite its very low salinity. The initial analyses show that these lakes offer unique biogeochemical conditions that require further in-depth studies.Our research will expand to lakes Anggi Giji and Anggi Gida, which are at almost 2000 m elevation. They have maximum depths of around 200 m and much colder surface waters (12-20°C) compared to the other two lakes that have about 30

  10. Chapter 12: Daily Patterns of Marbled Murrelet Activity at Inland Sites

    Treesearch

    Nancy L. Naslund; Brian P. O’Donnell

    1995-01-01

    Patterns in the daily activity of Marbled Murrelets (Brachyramphus marmoratus) at inland sites has been studied throughout their range from California to Alaska. Murrelets are most active at inland sites around dawn, and to a lesser degree, at dusk. Throughout their range, peak levels of activity (detections) occur in the hour around dawn, but...

  11. 75 FR 57264 - Inland Waterways Users Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... System (IMTS) Investment Strategy Team recommendations, as well as the status of the funding for inland... scheduled to adjourn at approximately 1 p.m. Agenda: The Board will consider its project investment...

  12. [Hydrogen and oxygen isotopes of lake water and geothermal spring water in arid area of south Tibet].

    PubMed

    Xiao, Ke; Shen, Li-Cheng; Wang, Peng

    2014-08-01

    The condition of water cycles in Tibet Plateau is a complex process, and the hydrogen and oxygen isotopes contain important information of this process. Based on the analysis of isotopic composition of freshwater lake, saltwater lake and geothermal water in the southern Tibetan Plateau, this study investigated water cycling, composition and variation of hydrogen and oxygen isotopes and the influencing factors in the study area. The study found that the mean values of delta18O and deltaD in Daggyaima lake water (-17.0 per thousand for delta18O and -138. 6 per thousand for deltaD), Langcuo lake water (-6.4 per thousand for delta18O and -87.4 per thousand for deltaD) and Dagejia geothermal water (-19.2 per thousand for delta18 and -158.2 per thousand for deltaD) all showed negative delta18O and deltaD values in Tibetan Plateau by the influence of altitude effects. Lake water and geothermal water were influenced by evaporation effects in inland arid area, and the slope of evaporation line was less than 8. Deuterium excess parameters of lake water and geothermal water were all negative. The temperature of geothermal reservoirs in Dagejia geothermal field was high,and oxygen shift existed in the relationship of hydrogen and oxygen isotopes.

  13. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    NASA Astrophysics Data System (ADS)

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-11-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g-1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  14. The Lake Urmia environmental disaster in Iran: A look at aerosol pollution.

    PubMed

    Hossein Mardi, Ali; Khaghani, Ali; MacDonald, Alexander B; Nguyen, Phu; Karimi, Neamat; Heidary, Parisa; Karimi, Nima; Saemian, Peyman; Sehatkashani, Saviz; Tajrishy, Massoud; Sorooshian, Armin

    2018-08-15

    Lake Urmia (LU) once was the second largest hypersaline lake in the world, covering up to 6000km 2 , but has undergone catastrophic desiccation in recent years resulting in loss of 90% of its area and extensive coverage by playas and marshlands that represent a source of salt and dust. This study examines daily Aerosol Optical Depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2001 and 2015 over northwestern Iran, which encompasses LU. Intriguingly, salt emissions from the LU surface associated with ongoing desiccation do not drive the study region's AOD profile, whereas pollution transported from other regions and emissions around LU are more important. Signatures of increasing local crustal emissions are most evident outside of the peak dust season (January, February, and October) and on the periphery of LU. AOD has generally increased in the latter half of the study period with the onset of the AOD ramp-up starting a month earlier in the spring season when comparing 2009-2015 versus earlier years. Results indicate that suppression of emissions on the LU border is critical as the combined area of salt and salty soil bodies around LU have increased by two orders of magnitude in the past two decades, and disturbing these areas via activities such as grazing and salt harvesting on the lake surface can have more detrimental impacts on regional pollution as compared to benefits. These results have important implications for public health, climate, the hydrological cycle, and pollution control efforts. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Hydroperiod enhancement using underground pipes for the efficient removal of hypersaline conditions in a semiarid coastal lagoon

    NASA Astrophysics Data System (ADS)

    Flores-Verdugo, Francisco; Ramírez-Barrón, Eduardo; Flores-de-Santiago, Francisco

    2018-06-01

    Pore-water hypersaline conditions are common in semiarid coastlines where freshwater availability is limited. Hence, hydroperiod (or flood regime), contributes to the regular supply of new water enhancing mangrove survival and growth. The purpose of this investigation was to assess pore-water salinity and hydroperiod variability of basin mangrove distribution by installing three underground PVC (polyvinyl chloride) pipes connected to the main tidal channel. All pipes were placed perpendicular to the main channel for an annual cycle. Results indicated hydroperiod enhancement at the location of the underground pipes, compared to control stations. Overall, spring tides and rainy season played a key role in temporal hydroperiod variability. Indeed, the interior structure of the pipes allows rapid and continuous intrusion of new water into the saltpan during flood and ebb currents. After three months, pore-water salinity of 170 in the saltpan area was reduced to 80 at a distance of 2 m from the underground pipes. This study shows the applicability of underground pipes for the efficient removal of hypersaline conditions by enhancing tidal flow for possible recruitment of mangrove propagules in semiarid coastlines.

  16. Physical effects of thermal pollution in lakes

    NASA Astrophysics Data System (ADS)

    Râman Vinnâ, Love; Wüest, Alfred; Bouffard, Damien

    2017-05-01

    Anthropogenic heat emissions into inland waters influence water temperature and affect stratification, heat and nutrient fluxes, deep water renewal, and biota. Given the increased thermal stress on these systems by growing cooling demands of riparian/coastal infrastructures in combination with climate warming, the question arises on how to best monitor and manage these systems. In this study, we investigate local and system-wide physical effects on the medium-sized perialpine Lake Biel (Switzerland), influenced by point-source cooling water emission from an upstream nuclear power plant (heat emission ˜700 MW, ˜18 W m-2 lake wide). We use one-dimensional (SIMSTRAT) and three-dimensional (Delft3D-Flow) hydrodynamic numerical simulations and provide model resolution guidelines for future studies of thermal pollution. The effects on Lake Biel by the emitted excess heat are summarized as: (i) clear seasonal trend in temperature increase, locally up to 3.4°C and system-wide volume mean ˜0.3°C, which corresponds to one decade of regional surface water climate warming; (ii) the majority of supplied thermal pollution (˜60%) leaves this short residence time (˜58 days) system via the main outlet, whereas the remaining heat exits to the atmosphere; (iii) increased length of stratified period due to the stabilizing effects of additional heat; (iv) system-wide effects such as warmer temperature, prolonged stratified period, and river-caused epilimnion flushing are resolved by both models whereas local raised temperature and river short circuiting was only identifiable with the three-dimensional model approach. This model-based method provides an ideal tool to assess man-made impacts on lakes and their downstream outflows.

  17. Integrated synoptic surveys using an autonomous underwater vehicle and manned boats

    USGS Publications Warehouse

    Jackson, P. Ryan

    2013-01-01

    Traditional surface-water surveys are being combined with autonomous technology to produce integrated surveys of bathymetry, water quality, and velocity in inland lakes and reservoirs. This new technology provides valuable, high-resolution, integrated data that allow a systems-based approach to understanding common environmental problems. This fact sheet presents several example applications of integrated surveys within inland lakes and coastal Lake Michigan and Lake Erie.

  18. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters.

    PubMed

    Ruddick, K G; Ovidio, F; Rijkeboer, M

    2000-02-20

    The standard SeaWiFS atmospheric correction algorithm, designed for open ocean water, has been extended for use over turbid coastal and inland waters. Failure of the standard algorithm over turbid waters can be attributed to invalid assumptions of zero water-leaving radiance for the near-infrared bands at 765 and 865 nm. In the present study these assumptions are replaced by the assumptions of spatial homogeneity of the 765:865-nm ratios for aerosol reflectance and for water-leaving reflectance. These two ratios are imposed as calibration parameters after inspection of the Rayleigh-corrected reflectance scatterplot. The performance of the new algorithm is demonstrated for imagery of Belgian coastal waters and yields physically realistic water-leaving radiance spectra. A preliminary comparison with in situ radiance spectra for the Dutch Lake Markermeer shows significant improvement over the standard atmospheric correction algorithm. An analysis is made of the sensitivity of results to the choice of calibration parameters, and perspectives for application of the method to other sensors are briefly discussed.

  19. Water Quality Monitoring of Inland Waters using Meris data

    NASA Astrophysics Data System (ADS)

    Potes, M.; Costa, M. J.; Salgado, R.; Le Moigne, P.

    2012-04-01

    The successful launch of ENVISAT in March 2002 has given a great opportunity to understand the optical changes of water surfaces, including inland waters such as lakes and reservoirs, through the use of the Medium Resolution Imaging Spectrometer (MERIS). The potential of this instrument to describe variations of optically active substances has been examined in the Alqueva reservoir, located in the south of Portugal, where satellite spectral radiances are corrected for the atmospheric effects to obtain the surface spectral reflectance. In order to validate this spectral reflectance, several field campaigns were carried out, with a portable spectroradiometer, during the satellite overpass. The retrieved lake surface spectral reflectance was combined with limnological laboratory data and with the resulting algorithms, spatial maps of biological quantities and turbidity were obtained, allowing for the monitoring of these water quality indicators. In the framework of the recent THAUMEX 2011 field campaign performed in Thau lagoon (southeast of France) in-water radiation, surface irradiation and reflectance measurements were taken with a portable spectrometer in order to test the methodology described above. At the same time, water samples were collected for laboratory analysis. The two cases present different results related to the geographic position, water composition, environment, resources exploration, etc. Acknowledgements This work is financed through FCT grant SFRH/BD/45577/2008 and through FEDER (Programa Operacional Factores de Competitividade - COMPETE) and National funding through FCT - Fundação para a Ciência e a Tecnologia in the framework of projects FCOMP-01-0124-FEDER-007122 (PTDC / CTE-ATM / 65307 / 2006) and FCOMP-01-0124-FEDER-009303 (PTDC/CTE-ATM/102142/2008). Image data has been provided by ESA in the frame of ENVISAT projects AOPT-2423 and AOPT-2357. We thank AERONET investigators for their effort in establishing and maintaining Évora AERONET

  20. Analysis of Thermal Structure of Arctic Lakes at Local and Regional Scales Using in Situ and Multidate Landsat-8 Data

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping

    2017-11-01

    The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.

  1. Leaf Spectral Reflectance Shows Thalassia testudinum Seedlings More Sensitive to Hypersalinity than Hyposalinity.

    PubMed

    Durako, Michael J; Howarth, Jacqueline F

    2017-01-01

    Thalassia testudinum (turtle grass) is the dominant and climax-successional seagrass species in the subtropical/tropical Atlantic and Caribbean region. Two die-offs of T. testudinum in Florida Bay, United States have raised concerns regarding the resilience of this species to environmental disturbances. Seedlings are important in recovery of T. testudinum , following disturbance events. Leaf spectral reflectance [ R (λ)] was measured in T. testudinum seedlings exposed for 2 weeks to three salinities (20, 35, and 50) and two light levels (full sun and 50-70% light reduction) in experimental mesocosms. Multivariate analyses indicated that hypersalinity had a greater effect on spectral reflectance than hyposalinity or light reduction. There was an increase in variability and flattening of reflectance spectra at the highest salinity. All three salinity treatments had distinct reflectance spectra across green wavelengths (530-580 nm), with additional discrimination between 20 versus 50 and 35 versus 50 treatments across red wavelengths (630-690 nm). Red:Green reflectance ratios were highest and photochemical reflective index values were lowest for the salinity 50 treatment, but were not significantly different between the salinity 20 and 35 treatments. The changes in the R (λ) spectra for the salinity 50 seedlings were consistent with previously observed reductions in leaf pigments and maximum photochemical efficiency of photosystem II. These observations indicate that leaf spectral reflectance is a sensitive indicator of plant stress in T. testudinum seedlings and that seedlings are more sensitive to short-term exposures to hypersalinity than hyposalinity.

  2. Tírez lake as a terrestrial analog of Europa.

    PubMed

    Prieto-Ballesteros, Olga; Rodríguez, Nuria; Kargel, Jeffrey S; Kessler, Carola González; Amils, Ricardo; Remolar, David Fernández

    2003-01-01

    Tírez Lake (La Mancha, central Spain) is proposed as a terrestrial analogue of Europa's ocean. The proposal is based on the comparison of the hydrogeochemistry of Tírez Lake with the geochemical features of the alteration mineralogy of meteoritic precursors and with Galileo's Near Infrared Mapping Spectrometer data on Europa's surface. To validate the astrobiological potential of Tírez Lake as an analog of Europa, different hydrogeochemical, mineral, and microbial analyses were performed. Experimental and theoretical modeling helped to understand the crystallization pathways that may occur in Europa's crust. Calculations about the oxidation state of the hypothetical Europan ocean were estimated to support the sulfate-rich neutral liquid model as the origin of Europa's observed hydrated minerals and to facilitate their comparison with Tírez's hydrogeochemistry. Hydrogeochemical and mineralogical analyses showed that Tírez waters corresponded to Mg-Na-SO(4)-Cl brines with epsomite, hexahydrite, and halite as end members. A preliminary microbial ecology characterization identified two different microbial domains: a photosynthetically sustained community represented by planktonic/benthonic forms and microbial mat communities, and a subsurficial anaerobic realm in which chemolithotrophy predominates. Fluorescence in situ hybridization has been used to characterize the prokaryotic diversity of the system. The subsurficial community seemed to be dominated by sulfate-reducing bacteria and methanogens. Frozen Tírez brines were analyzed by Fourier-transform infrared techniques providing spectra similar to those reported previously using pure components and to the Galileo spectral data. Calorimetric measurements of Tírez brines showed pathways and phase metastability for magnesium sulfate and sodium chloride crystallization that may aid in understanding the processes involved in the formation of Europa's icy crust. The use of fluorescence hybridization techniques for

  3. [Hygiene problems in inland and sea navigation].

    PubMed

    Goethe, H

    1983-09-01

    Both waste and sewage disposal are ubiquitous problems which have also affected navigation. Shipping is a very important transport carrier on a worldwide basis which together with the fishing industry employs roughly two million people. The problems associated with waste and sewage disposal obviously present a severe hazard to the coastal areas, narrow sea basins and, in particular, to inland and open-sea waterways. These problems are particularly alarming in large sea-ports, docks without outfall etc. The reduction of the crews aboard the ships operated by the industialised countries has helped to quantitatively ease the problem of waste and sewage disposal caused by the crews. However, passenger steamers with high waste and sewage volumes cause considerable nuisance in small harbours and the same holds for the disposal of technical waste products from ships such as dunnage packing material, ropes, plastic material, oil, etc. The quantity of waste water aboard a sea-going vessel including that from the toilets, washrooms, galley, and cleaning is rather considerable and is estimated at 300 litres per person and day under tropical climates. The volume of waste varies greatly and depends mainly on the type of material used aboard as mentioned above. Passenger liners with a very high volume of kitchen refuse and other solid waste give rise to specially insidious problems. In the past, sea-going vessels as well as ships employed in inland navigation used to throw overboard any type of refuse and sewage. However, during the last few decades the port authorities and also governments have introduced local and national regulations ruling that waste may no longer be thrown into harbour basins, but must be collected and disposed of on shore. Most ships have complied with these provisions, but some of them kept the collected refuse aboard and disposed of it on the open sea outside the harbours. International agreements on the prohibition of emptying oil and oil

  4. Lake Afrera, a structural depression in the Northern Afar Rift (Red Sea).

    PubMed

    Bonatti, Enrico; Gasperini, Elia; Vigliotti, Luigi; Lupi, Luca; Vaselli, Orlando; Polonia, Alina; Gasperini, Luca

    2017-05-01

    The boundary between the African and Arabian plates in the Southern Red Sea region is displaced inland in the northern Afar rift, where it is marked by the Red Sea-parallel Erta Ale, Alaita, and Tat Ali volcanic ridges. The Erta Ale is offset by about 20 and 40 km from the two en echelon ridges to the south. The offset area is highly seismic and marked by a depression filled by lake Afrera, a saline body of water fed by hydrothermal springs. Acoustic bathymetric profiles show ≈80 m deep canyons parallel to the NNW shore of the lake, part of a system of extensional normal faults striking parallel to the Red Sea. This system is intersected by oblique structures, some with strike-slip earthquakes, in what might evolve into a transform boundary. Given that the lake's surface lies today about 112 m below sea level, the depressed (minus ≈190 m below sea level) lake's bottom area may be considered the equivalent of the "nodal deep" in slow-slip oceanic transforms. The chemistry of the lake is compatible with the water having originated from hydrothermal liquids that had reacted with evaporites and basalts, rather than residual from evaporation of sea water. Bottom sediments include calcitic grains, halite and gypsum, as well as ostracod and diatom tests. The lake's level appears to have dropped by over 10 m during the last ≈50 years, continuing a drying up trend of the last few thousand years, after a "wet" stage 9,800 and 7,800 years before present when according to Gasse (1973) Lake Afrera covered an area several times larger than at present. This "wet" stage corresponds to an early Holocene warm-humid climate that prevailed in Saharan and Sub Saharan Africa. Lake Abhé, located roughly 250 km south of Afrera, shows similar climate-driven oscillations of its level.

  5. Assembly-Driven Metagenomics of a Hypersaline Microbial Ecosystem (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    ScienceCinema

    Allen, Eric

    2018-02-05

    Eric Allen of Scripps and UC San Diego on Assembly-driven metagenomics of a hypersaline microbial ecosystem at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, CA.

  6. Assembly-Driven Metagenomics of a Hypersaline Microbial Ecosystem (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Eric

    2013-03-01

    Eric Allen of Scripps and UC San Diego on Assembly-driven metagenomics of a hypersaline microbial ecosystem at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, CA.

  7. Inputs and internal cycling of nitrogen to a causeway influenced, hypersaline lake, Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Naftz, David L.

    2017-01-01

    Nitrogen inputs to Great Salt Lake (GSL), located in the western USA, were quantified relative to the resident nitrogen mass in order to better determine numeric nutrient criteria that may be considered at some point in the future. Total dissolved nitrogen inputs from four surface-water sources entering GSL were modeled during the 5-year study period (2010–2014) and ranged from 1.90 × 106 to 5.56 × 106 kg/year. The railroad causeway breach was a significant conduit for the export of dissolved nitrogen from Gilbert to Gunnison Bay, and in 2011 and 2012, net losses of total nitrogen mass from Gilbert Bay via the Causeway breach were 9.59 × 105 and 1.51 × 106 kg. Atmospheric deposition (wet + dry) was a significant source of nitrogen to Gilbert Bay, exceeding the dissolved nitrogen load contributed via the Farmington Bay causeway surface-water input by >100,000 kg during 2 years of the study. Closure of two railroad causeway culverts in 2012 and 2013 likely initiated a decreasing trend in the volume of the higher density Deep Brine Layer and associated declines in total dissolved nitrogen mass contained in this layer. The large dissolved nitrogen pool in Gilbert Bay relative to the amount of nitrogen contributed by surface-water inflow sources is consistent with the terminal nature of GSL and the predominance of internal nutrient cycling. The opening of the new railroad causeway breach in 2016 will likely facilitate more efficient bidirectional flow between Gilbert and Gunnison Bays, resulting in potentially substantial changes in nutrient pools within GSL.

  8. Prokaryotic Community Structure Driven by Salinity and Ionic Concentrations in Plateau Lakes of the Tibetan Plateau

    PubMed Central

    Zhong, Zhi-Ping; Liu, Ying; Miao, Li-Li; Wang, Fang; Chu, Li-Min; Wang, Jia-Li

    2016-01-01

    The prokaryotic community composition and diversity and the distribution patterns at various taxonomic levels across gradients of salinity and physiochemical properties in the surface waters of seven plateau lakes in the Qaidam Basin, Tibetan Plateau, were evaluated using Illumina MiSeq sequencing. These lakes included Lakes Keluke (salinity, <1 g/liter), Qing (salinity, 5.5 to 6.6 g/liter), Tuosu (salinity, 24 to 35 g/liter), Dasugan (salinity, 30 to 33 g/liter), Gahai (salinity, 92 to 96 g/liter), Xiaochaidan (salinity, 94 to 99 g/liter), and Gasikule (salinity, 317 to 344 g/liter). The communities were dominated by Bacteria in lakes with salinities of <100 g/liter and by Archaea in Lake Gasikule. The clades At12OctB3 and Salinibacter, previously reported only in hypersaline environments, were found in a hyposaline lake (salinity, 5.5 to 6.6 g/liter) at an abundance of ∼1.0%, indicating their ecological plasticity. Salinity and the concentrations of the chemical ions whose concentrations covary with salinity (Mg2+, K+, Cl−, Na+, SO42−, and Ca2+) were found to be the primary environmental factors that directly or indirectly determined the composition and diversity at the level of individual clades as well as entire prokaryotic communities. The distribution patterns of two phyla, five classes, five orders, five families, and three genera were well predicted by salinity. The variation of the prokaryotic community structure also significantly correlated with the dissolved oxygen concentration, pH, the total nitrogen concentration, and the PO43− concentration. Such correlations varied depending on the taxonomic level, demonstrating the importance of comprehensive correlation analyses at various taxonomic levels in evaluating the effects of environmental variable factors on prokaryotic community structures. Our findings clarify the distribution patterns of the prokaryotic community composition in plateau lakes at the levels of individual clades as well as whole

  9. Designing a global assessment of climate change on inland fishes and fisheries: knowns and needs

    USGS Publications Warehouse

    Paukert, Craig P.; Lynch, Abigail J.; Beard, T. Douglas; Chen, Yushun; Cooke, Steven J.; Cooperman, Michael S.; Cowx, Ian G.; Infante, Dana M.; Ibengwe, Lilian; Myers, Bonnie; Nguyen, Phu Hoa; Winfield, Ian J.

    2017-01-01

    To date, there are few comprehensive assessments of how climate change affects inland finfish, fisheries, and aquaculture at a global scale, but one is necessary to identify research needs and commonalities across regions and to help guide decision making and funding priorities. Broadly, the consequences of climate change on inland fishes will impact global food security, the livelihoods of people who depend on inland capture and recreational fisheries. However, understanding how climate change will affect inland fishes and fisheries has lagged behind marine assessments. Building from a North American inland fisheries assessment, we convened an expert panel from seven countries to provide a first-step to a framework for determining how to approach an assessment of how climate change may affect inland fishes, capture fisheries, and aquaculture globally. Starting with the small group helped frame the key questions (e.g., who is the audience? What is the best approach and spatial scale?). Data gaps identified by the group include: the tolerances of inland fisheries to changes in temperature, stream flows, salinity, and other environmental factors linked to climate change, and the adaptive capacity of fishes and fisheries to adjust to these changes. These questions are difficult to address, but long-term and large-scale datasets are becoming more readily available as a means to test hypotheses related to climate change. We hope this perspective will help researchers and decision makers identify research priorities and provide a framework to help sustain inland fish populations and fisheries for the diversity of users around the globe.

  10. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    PubMed Central

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to −25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g−1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  11. Methane as a biomarker in the search for extraterrestrial life: Lessons learned from Mars analog hypersaline environments

    NASA Astrophysics Data System (ADS)

    Bebout, B.; Tazaz, A.; Kelley, C. A.; Poole, J. A.; Davila, A.; Chanton, J.

    2010-12-01

    Methane released from discrete regions on Mars, together with previous reports of methane determined with ground-based telescopes, has revived the possibility of past or even extant life near the surface on Mars, since 90% of the methane on Earth has a biological origin. This intriguing possibility is supported by the abundant evidence of large bodies of liquid water, and therefore of conditions conducive to the origin of life, early in the planet's history. The detection and analysis of methane is at the core of NASA’s strategies to search for life in the solar system, and on extrasolar planets. Because methane is also produced abiotically, it is important to generate criteria to unambiguously assess biogenicity. The stable carbon and hydrogen isotopic signature of methane, as well as its ratio to other low molecular weight hydrocarbons (the methane/(ethane + propane) ratio: C1/(C2 + C3)), has been suggested to be diagnostic for biogenic methane. We report measurements of the concentrations and stable isotopic signature of methane from hypersaline environments. We focus on hypersaline environments because spectrometers orbiting Mars have detected widespread chloride bearing deposits resembling salt flats. Other evaporitic minerals, e.g., sulfates, are also abundant in several regions, including those studied by the Mars Exploration Rovers. The presence of evaporitic minerals, together with the known evolution of the Martian climate, from warmer and wetter to cold and hyper-arid, suggest that evaporitic and hypersaline environments were common in the past. Hypersaline environments examined to date include salt ponds located in Baja California, the San Francisco Bay, and the Atacama Desert. Methane was found in gas produced both in the sediments, and in gypsum- and halite-hosted (endolithic) microbial communities. Maximum methane concentrations were as high as 40% by volume. The methane carbon isotopic (δ13C) composition showed a wide range of values, from about

  12. Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007

    USGS Publications Warehouse

    Loftin, Keith A.; Graham, Jennifer L.; Elizabeth Hilborn,; Sarah Lehmann,; Meyer, Michael T.; Dietze, Julie E.; Griffith, Christopher

    2016-01-01

    A large nation-wide survey of cyanotoxins (1161 lakes) in the United States (U.S.) was conducted during the EPA National Lakes Assessment 2007. Cyanotoxin data were compared with cyanobacteria abundance- and chlorophyll-based World Health Organization (WHO) thresholds and mouse toxicity data to evaluate potential recreational risks. Cylindrospermopsins, microcystins, and saxitoxins were detected (ELISA) in 4.0, 32, and 7.7% of samples with mean concentrations of 0.56, 3.0, and 0.061 mg/L, respectively (detections only). Co-occurrence of the three cyanotoxin classes was rare (0.32%) when at least one toxin was detected. Cyanobacteria were present and dominant in 98 and 76% of samples, respectively. Potential anatoxin-, cylindrospermopsin-, microcystin-, and saxitoxin-producing cyanobacteria occurred in 81, 67, 95, and 79% of samples, respectively. Anatoxin-a and nodularin-R were detected (LC/MS/MS) in 15 and 3.7% samples (n = 27). The WHO moderate and high risk thresholds for microcystins, cyanobacteria abundance, and total chlorophyll were exceeded in 1.1, 27, and 44% of samples, respectively. Complete agreement by all three WHO microcystin metrics occurred in 27% of samples. This suggests that WHO microcystin metrics based on total chlorophyll and cyanobacterial abundance can overestimate microcystin risk when compared to WHO microcystin thresholds. The lack of parity among the WHO thresholds was expected since chlorophyll is common amongst all phytoplankton and not all cyanobacteria produce microcystins.

  13. Flexural-response of the McMurdo Ice Shelf to surface lake filling and drainage

    NASA Astrophysics Data System (ADS)

    Banwell, A. F.; MacAyeal, D. R.; Willis, I.; Macdonald, G. J.; Goodsell, B.

    2017-12-01

    Antarctic ice-shelf instability and break-up, as exhibited by the Larsen B ice shelf in 2002, remains one of the most difficult glaciological processes to observe directly. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have previously been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain. During the austral summer of 2016/2017, we monitored the filling and draining of four surface lakes on the McMurdo Ice Shelf, Antarctica, and the effect of these processes on ice-shelf flexure. Water-depth data from pressure sensors reveal that two lakes filled to >2 m in depth and subsequently drained over multiple week timescales, which had a simultaneous effect on vertical ice deflection in the area. Differential GPS data from 12 receivers over three months show that vertical deflection varies as a function of distance from the maximum load change (i.e. at the lake centre). Using remote sensing techniques applied to both Landsat 8 and Worldview imagery, we also quantify the meltwater volume in these two lakes through the melt season, which, together with the vertical deflection data, are used to constrain key flexural parameter values in numerical models of ice-shelf flexure.

  14. Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes

    USGS Publications Warehouse

    Domagalski, Joseph L.; Orem, W.H.; Eugster, H.P.

    1989-01-01

    aromatic carbon and the absence of chemical structures indicative of the lignin of vascular plants. The dissolved organic carbon of the Mono Lake pore fluids is structurally related to humic acid and is also related to carbohydrate metabolism. The alkaline pore fluids, due to high pH, solubilize high molecular weight organic matter from the sediments. This hydrophilic material is a metal complexing agent. Despite very high algal productivities, organic carbon accumulation can be low in stratified lakes if the anoxic bottom waters are hypersaline with high concentrations of sulfate ion. Labile organic matter is recycled to the water column and the sedimentary organic matter is relatively nonsusceptible to bacterial metabolism. As a result, pore-fluid dissolved organic carbon and metal-organic complexation are low. ?? 1989.

  15. The epsomitic phototrophic microbial mat of Hot Lake, Washington: community structural responses to seasonal cycling

    PubMed Central

    Lindemann, Stephen R.; Moran, James J.; Stegen, James C.; Renslow, Ryan S.; Hutchison, Janine R.; Cole, Jessica K.; Dohnalkova, Alice C.; Tremblay, Julien; Singh, Kanwar; Malfatti, Stephanie A.; Chen, Feng; Tringe, Susannah G.; Beyenal, Haluk; Fredrickson, James K.

    2013-01-01

    Phototrophic microbial mats are compact ecosystems composed of highly interactive organisms in which energy and element cycling take place over millimeter-to-centimeter-scale distances. Although microbial mats are common in hypersaline environments, they have not been extensively characterized in systems dominated by divalent ions. Hot Lake is a meromictic, epsomitic lake that occupies a small, endorheic basin in north-central Washington. The lake harbors a benthic, phototrophic mat that assembles each spring, disassembles each fall, and is subject to greater than tenfold variation in salinity (primarily Mg2+ and SO2−4) and irradiation over the annual cycle. We examined spatiotemporal variation in the mat community at five time points throughout the annual cycle with respect to prevailing physicochemical parameters by amplicon sequencing of the V4 region of the 16S rRNA gene coupled to near-full-length 16S RNA clone sequences. The composition of these microbial communities was relatively stable over the seasonal cycle and included dominant populations of Cyanobacteria, primarily a group IV cyanobacterium (Leptolyngbya), and Alphaproteobacteria (specifically, members of Rhodobacteraceae and Geminicoccus). Members of Gammaproteobacteria (e.g., Thioalkalivibrio and Halochromatium) and Deltaproteobacteria (e.g., Desulfofustis) that are likely to be involved in sulfur cycling peaked in summer and declined significantly by mid-fall, mirroring larger trends in mat community richness and evenness. Phylogenetic turnover analysis of abundant phylotypes employing environmental metadata suggests that seasonal shifts in light variability exert a dominant influence on the composition of Hot Lake microbial mat communities. The seasonal development and organization of these structured microbial mats provide opportunities for analysis of the temporal and physical dynamics that feed back to community function. PMID:24312082

  16. The Epsomitic Phototrophic Microbial Mat of Hot Lake, Washington. Community Structural Responses to Seasonal Cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemann, Stephen R.; Moran, James J.; Stegen, James C.

    2013-11-13

    Phototrophic microbial mats are compact ecosystems composed of highly interactive organisms in which energy and element cycling take place over millimeter-to-centimeter-scale distances. Although microbial mats are common in hypersaline environments, they have not been extensively characterized in systems dominated by divalent ions. Hot Lake is a meromictic, epsomitic lake that occupies a small, endorheic basin in north-central Washington. The lake harbors a benthic, phototrophic mat that assembles each spring, disassembles each fall, and is subject to greater than tenfold variation in salinity (primarily Mg 2+ and SO 2 -4) and irradiation over the annual cycle. We examined spatiotemporal variation inmore » the mat community at five time points throughout the annual cycle with respect to prevailing physicochemical parameters by amplicon sequencing of the V4 region of the 16S rRNA gene coupled to near-full-length 16S RNA clone sequences. The composition of these microbial communities was relatively stable over the seasonal cycle and included dominant populations of Cyanobacteria, primarily a group IV cyanobacterium (Leptolyngbya), and Alphaproteobacteria (specifically, members of Rhodobacteraceae and Geminicoccus). Members of Gammaproteobacteria (e.g., Thioalkalivibrio and Halochromatium) and Deltaproteobacteria (e.g., Desulfofustis) that are likely to be involved in sulfur cycling peaked in summer and declined significantly by mid-fall, mirroring larger trends in mat community richness and evenness. Phylogenetic turnover analysis of abundant phylotypes employing environmental metadata suggests that seasonal shifts in light variability exert a dominant influence on the composition of Hot Lake microbial mat communities. The seasonal development and organization of these structured microbial mats provide opportunities for analysis of the temporal and physical dynamics that feed back to community function.« less

  17. Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teske, A.; Ramsing, N.B.; Habicht, K.

    1998-08-01

    The sulfate-reducing bacteria within the surface layer of the hypersaline cyanobacterial mat of Solar Lake (Sinai, Egypt) were investigated with combined microbiological, molecular, and biogeochemical approaches. The diurnally oxic surface layer contained between 10{sup 6} and 10{sup 7} cultivable sulfate-reducing bacteria ml{sup {minus}1} day{sup {minus}1}, both in the same range as and sometimes higher than those in anaerobic deeper mat layers. In the oxic surface layer and in the mat layers below, filamentous sulfate-reducing Desulfonema bacteria were found in variable densities of 10{sup 4} and 10{sup 6} cells ml{sup {minus}1}. A Desulfonema-related, diurnally migrating bacterium was detected with PCR andmore » denaturing gradient gel electrophoresis within and below the oxic surface layer. Facultative aerobic respiration, filamentous morphology, motility, diurnal migration, and aggregate formation were the most conspicuous adaptations of Solar Lake sulfate-reducing bacteria to the mat matrix and to diurnal oxygen stress. A comparison of sulfate reduction rates within the mat and previously published photosynthesis rates showed that CO{sub 2} from sulfate reduction in the upper 5 mm accounted for 7 to 8% of the total photosynthetic CO{sub 2} demand of the mat.« less

  18. Wind effects on prey availability: How northward migrating waders use brackish and hypersaline lagoons in the sivash, Ukraine

    NASA Astrophysics Data System (ADS)

    Verkuil, Yvonne; Koolhaas, Anita; Van Der Winden, Jan

    Large numbers of waders migrating northward in spring use the Sivash, a large system of shallow, brackish and hypersaline lagoons in the Black Sea and Azov Sea region (Ukraine). The bottoms of these lagoons are often uncovered by the wind. Hence, for waders the time and space available for feeding depend on wind conditions. In hypersaline lagoons the benthic and pelagic fauna was very poor, consisting mainly of chironomid larvae (0.19 g AFDM·m -2) and brine shrimps Artemia salina, respectively. Brine shrimp abundance was correlated with salinity, wind force, wind direction and water depth. Dunlin Calidris alpina and curlew sandpiper Calidris ferruginea were the only species feeding on brine shrimp. As brine shrimp densities are higher in deeper water, smaller waders such as broad-billed sandpipers Limicola falcinellus are too short-legged to reach exploitable densities of brine shrimp. In brackish lagoons the benthic and pelagic fauna was rich, consisting of polychaetes, bivalves, gastropods, chironomid larvae, isopods and amphipods (8.9 to 30.5 g AFDM·m -2), but there were no brine shrimps. Prey biomass increased with the distance from the coast, being highest on the site that was most frequently inundated. Dunlin, broad-billed sandpiper and grey plover Pluvialis squatarola were the most abundant birds in the brackish lagoon. Due to the effects of wind-tides only a small area was usually available as a feeding site. Gammarus insensibilis was the alternative prey resource in the water layer, and their density varied with wind direction in the same way as brine shrimp. Curlew sandpipers and dunlins in the hypersaline lagoons and broad-billed sandpipers in the brackish lagoons often changed feeding sites, probably following the variation in prey availability. Only because of the large size and variety of lagoons are waders in the Sivash always able to find good feeding sites.

  19. Regional variability among nonlinear chlorophyll-phosphorus relationships in lakes

    USGS Publications Warehouse

    Filstrup, Christopher T.; Wagner, Tyler; Soranno, Patricia A.; Stanley, Emily H.; Stow, Craig A.; Webster, Katherine E.; Downing, John A.

    2014-01-01

    The relationship between chlorophyll a (Chl a) and total phosphorus (TP) is a fundamental relationship in lakes that reflects multiple aspects of ecosystem function and is also used in the regulation and management of inland waters. The exact form of this relationship has substantial implications on its meaning and its use. We assembled a spatially extensive data set to examine whether nonlinear models are a better fit for Chl a—TP relationships than traditional log-linear models, whether there were regional differences in the form of the relationships, and, if so, which regional factors were related to these differences. We analyzed a data set from 2105 temperate lakes across 35 ecoregions by fitting and comparing two different nonlinear models and one log-linear model. The two nonlinear models fit the data better than the log-linear model. In addition, the parameters for the best-fitting model varied among regions: the maximum and lower Chl aasymptotes were positively and negatively related to percent regional pasture land use, respectively, and the rate at which chlorophyll increased with TP was negatively related to percent regional wetland cover. Lakes in regions with more pasture fields had higher maximum chlorophyll concentrations at high TP concentrations but lower minimum chlorophyll concentrations at low TP concentrations. Lakes in regions with less wetland cover showed a steeper Chl a—TP relationship than wetland-rich regions. Interpretation of Chl a—TP relationships depends on regional differences, and theory and management based on a monolithic relationship may be inaccurate.

  20. Energy Input is a Primary Controller of Methane Bubbling in Subarctic Lakes (Invited)

    NASA Astrophysics Data System (ADS)

    Wik, M.; Thornton, B.; Bastviken, D.; MacIntyre, S.; Varner, R. K.; Crill, P. M.

    2013-12-01

    Methane (CH4) emission from inland waters is suggested to be equal in greenhouse gas strength to approximately 25% of the carbon (C) uptake of all land-based ecosystems combined. A substantial amount of CH4 escapes lake surfaces via ebullition (bubbling), which is considered a highly heterogeneous and difficult pathway to predict. We use four summer seasons of ebullition data from three subarctic lakes to demonstrate striking (r2 of up to 0.997) linear relationships between cumulative bubble CH4 flux from June to September and four easily measurable, energy-related parameters of the lakes (solar shortwave input, number of ice-free days and shallow and deep water sediment temperature). In our lakes, there is essentially no ebullition at low temperatures, but ebullition increases exponentially above 6°C. It appears that persistent gas releases cannot start immediately after ice out due to a delay in the recharge of enough gas to form bubbles. Lack of continuous sampling procedures has until now made it difficult to identify relationships and confirm that heat energy transfer alone is a strong driver for ebullition that is independent of possible seasonal changes in organic substrate. In contrast to earlier studies highlighting the extreme variability of ebullition, we suggest that gas venting is a highly predictable process if measurements are made in a consistent manner across many different lake zones and over long time periods. Future changes to energy input to lakes and ponds may thus predictably alter the CH4 source strength of water bodies across northern landscapes.

  1. Spatial changes of the evaporation/inflow ratio of lake water deduced from surface water isotopes in Bangongcuo, western Tibet

    NASA Astrophysics Data System (ADS)

    Wen, R.; Tian, L.; Weng, Y.; Qu, D.

    2013-12-01

    Oxygen isotope analysis provides a practical approach to understand the regional hydrologic cycle and to reconstruct the paleoclimate and paleoenvironment from lacustrine sediment. The large number of inland lakes on the northern part of the Tibetan Plateau provides the opportunity for this work, and an understanding of the isotope variation of the lake water in the water cycle is vital for this purpose. A water isotope sampling network was set up in the Banggongcuo Lake basin in western Tibet in 2009 that measured precipitation, lake water, and river water. Two years of collecting isotope data, together with AWS observations at the Ngari station in the basin, allowed for a study of lake water isotope variations in the water cycle in narrow Banggongcuo Lake. Observations showed much higher water δ18O in the closed lake due to the strong evaporation fractionation process when compared with local precipitation. An obvious spatial change of lake water δ18O was also found, varying from about -4.9‰ in the east to about +0.9‰ in the west. This spatial change is largely due to the fact that the main river water input to the lake is on the eastern part of the lake, while the lake water evaporates out gradually westward. This phenomenon also matches the spatial change of lake water chemical components. We simulate the gradual evaporation of the lake water using an isotope evaporation fractionation model, in an effort to quantitatively estimate the E/I ratio (evaporation to total lake water inflow) in different parts of the lake. From the observation lake water δ18O, we estimate that the E/I ratio is about 42~60% in the eastern part of the lake and increases to 76~87% in the western part.

  2. Inland waterborne transportation : an industry under siege

    DOT National Transportation Integrated Search

    2000-11-01

    The first section of this report contains a brief history of the development of and role played by the inland waterway transportation system. The role of this mode in international trade is examined, along with the competitive and complementary roles...

  3. Ephemerality of discrete methane vents in lake sediments

    USGS Publications Warehouse

    Scandella, Benjamin P.; Pillsbury, Liam; Weber, Thomas; Ruppel, Carolyn D.; Hemond, Harold F.; Juanes, Ruben

    2016-01-01

    Methane is a potent greenhouse gas whose emission from sediments in inland waters and shallow oceans may both contribute to global warming and be exacerbated by it. The fraction of methane emitted by sediments that bypasses dissolution in the water column and reaches the atmosphere as bubbles depends on the mode and spatiotemporal characteristics of venting from the sediments. Earlier studies have concluded that hot spots—persistent, high-flux vents—dominate the regional ebullitive flux from submerged sediments. Here the spatial structure, persistence, and variability in the intensity of methane venting are analyzed using a high-resolution multibeam sonar record acquired at the bottom of a lake during multiple deployments over a 9 month period. We confirm that ebullition is strongly episodic, with distinct regimes of high flux and low flux largely controlled by changes in hydrostatic pressure. Our analysis shows that the spatial pattern of ebullition becomes homogeneous at the sonar's resolution over time scales of hours (for high-flux periods) or days (for low-flux periods), demonstrating that vents are ephemeral rather than persistent, and suggesting that long-term, lake-wide ebullition dynamics may be modeled without resolving the fine-scale spatial structure of venting.

  4. 46 CFR 11.455 - Service requirements for master of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... gross tons is one year of total service in the deck department of steam or motor, sail, or auxiliary sail vessels. To obtain authority to serve on the Great Lakes, three months of the required service... the United States (excluding the Great Lakes). (b) In order to obtain an endorsement for sail or...

  5. 46 CFR 11.455 - Service requirements for master of Great Lakes and inland steam or motor vessels of not more than...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... gross tons is one year of total service in the deck department of steam or motor, sail, or auxiliary sail vessels. To obtain authority to serve on the Great Lakes, three months of the required service... the United States (excluding the Great Lakes). (b) In order to obtain an endorsement for sail or...

  6. Spatial versus Day-To-Day Within-Lake Variability in Tropical Floodplain Lake CH4 Emissions – Developing Optimized Approaches to Representative Flux Measurements

    PubMed Central

    Peixoto, Roberta B.; Machado-Silva, Fausto; Marotta, Humberto; Enrich-Prast, Alex; Bastviken, David

    2015-01-01

    Inland waters (lakes, rivers and reservoirs) are now understood to contribute large amounts of methane (CH4) to the atmosphere. However, fluxes are poorly constrained and there is a need for improved knowledge on spatiotemporal variability and on ways of optimizing sampling efforts to yield representative emission estimates for different types of aquatic ecosystems. Low-latitude floodplain lakes and wetlands are among the most high-emitting environments, and here we provide a detailed investigation of spatial and day-to-day variability in a shallow floodplain lake in the Pantanal in Brazil over a five-day period. CH4 flux was dominated by frequent and ubiquitous ebullition. A strong but predictable spatial variability (decreasing flux with increasing distance to the shore or to littoral vegetation) was found, and this pattern can be addressed by sampling along transects from the shore to the center. Although no distinct day-to-day variability were found, a significant increase in flux was identified from measurement day 1 to measurement day 5, which was likely attributable to a simultaneous increase in temperature. Our study demonstrates that representative emission assessments requires consideration of spatial variability, but also that spatial variability patterns are predictable for lakes of this type and may therefore be addressed through limited sampling efforts if designed properly (e.g., fewer chambers may be used if organized along transects). Such optimized assessments of spatial variability are beneficial by allowing more of the available sampling resources to focus on assessing temporal variability, thereby improving overall flux assessments. PMID:25860229

  7. Relationships between bald eagle productivity and dynamics of fish populations and fisheries in the Wisconsin waters of Lake Superior, 1983-1999

    USGS Publications Warehouse

    Hoff, Michael H.; Meyer, Michael W.; Van Stappen, Julie; Fratt, Thomas W.

    2004-01-01

    Bald eagle (Haliaeetus leucocephalus) abundance declined in the 1950s and 1960s along the Wisconsin waters of Lake Superior, and were nearly absent along Wisconsin's Lake Superior shoreline. The population began to increase again between 1980 and 1983, and since then bald eagles nesting on islands along Wisconsin's Lake Superior shoreline (i.e., Apostle Islands) reproduced at a lower rate than have those nesting along the mainland shoreline of the lake and inland. Recent research indicated that bioaccumulation of toxic chemicals in the aquatic food chain no longer limits bald eagle reproduction there, and that productivity at island nests was lower than at mainland nests and inland nests as the result of low food availability. Management agencies have sought models that accurately predict productivity and explain ecological relationships, but no satisfactory models had previously been developed. Modeling was conducted here to determine which factors best explained productivity variability. The Ricker stock-recruitment model derived from only the bivariate breeding pair and productivity data explained only 1% of the variability in productivity data. The functional relationship that explained the greatest amount of productivity variation (83%) included the number of breeding pairs, burbot (Lota lota) biomass, longnose sucker (Catostomus catostomus) biomass, and commercial harvest of nontarget fishes. Model results were interpreted to mean that productivity was positively affected by populations of burbot and longnose sucker, which are important prey items, and by commercial fishermen feeding nontarget fish to bald eagles. Harvest of nontarget fishes by tribal fishermen and burbot and longnose sucker populations have not tended to change during the entire study period, although the burbot population has declined since 1991. Therefore, bald eagle productivity is not predicted to increase unless burbot, longnose sucker, or other preferred prey of bald eagles increases

  8. Impact of Groundwater-Lake Interaction on Levels of E. coli in Near-Shore Swimming Waters at Beaches of the Great Lakes

    NASA Astrophysics Data System (ADS)

    Crowe, A. S.

    2009-12-01

    a hydraulic barrier to inland migration of E. coli. Because groundwater discharge velocities following a storm event are much lower than the recharging groundwater velocities during infiltration, E. coli will enter the groundwater and sand much faster than in will discharge. Hence groundwater discharge of E. coli from this zone into the lake represents a long-term and continuous source of E. coli that will challenge regulators and beach managers who are trying to reduce levels of E. coli at swimming beaches throughout the Great Lakes.

  9. Stable isotope analysis of dissolved carbon species of Hot Lake, WA

    NASA Astrophysics Data System (ADS)

    Courtney, S.; Moran, J.; Cory, A. B.; Lindemann, S. R.; Fredrickson, J.

    2013-12-01

    Hot Lake is a hypersaline, meromictic lake in north-central Washington. The lake is epsomitic, with seasonably-variable salinity (.2 to 2 M magnesium sulfate) and produces carbonates and salt precipitates. The maximum depth of the lake is around 2.5 m, and below a thermocline there is intense solar heat retention in the monolimnion, often exceeding 50°C. Despite these extreme and variable conditions, a microbial mat of up to 1.5 cm thick thrives annually in Hot Lake. The mat is widespread throughout the lake at water depths (during our experiments) ranging from 60cm-140cm. It is comprised of a variety of cyanobacteria along with other autotrophic and heterotrophic bacteria. These populations are visibly stratified with four consistent laminae displaying differences in bacterial pigmentation. Many of the layers contain carbonate species, but the full relationship between the mat and the carbonate crystallization is not known. We are studying the microbial interactions and carbon cycling of the mat communities, using stable isotope analysis of the mat and the lake water, both in situ and ex situ. We are exploring the incorporation and movement of carbon in the mat, spatially and temporally, to understand the fixation mechanisms and metabolic processes at play in this environment. This was done primarily using stable isotope ratio mass spectrometry. The focus of this work is on the study and measurement of dissolved organic and inorganic carbon using a GasBench and IRMS setup, following methods adapted from Lang et al. (2012). To account for the unique chemistry of Hot Lake, trials on the effects of oxidation conditions and salinity were done on lab-synthesized samples to compare to Hot Lake results. The majority of lake water analyses were done in conjunction with a stable isotope probing (SIP) experiment, completed during two 24-hour periods at Hot Lake in June and July of 2013. The SIP experiments included ex situ incubations (in separate glass containers on the

  10. Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007.

    PubMed

    Loftin, Keith A; Graham, Jennifer L; Hilborn, Elizabeth D; Lehmann, Sarah C; Meyer, Michael T; Dietze, Julie E; Griffith, Christopher B

    2016-06-01

    A large nation-wide survey of cyanotoxins (1161 lakes) in the United States (U.S.) was conducted during the EPA National Lakes Assessment 2007. Cyanotoxin data were compared with cyanobacteria abundance- and chlorophyll-based World Health Organization (WHO) thresholds and mouse toxicity data to evaluate potential recreational risks. Cylindrospermopsins, microcystins, and saxitoxins were detected (ELISA) in 4.0, 32, and 7.7% of samples with mean concentrations of 0.56, 3.0, and 0.061μg/L, respectively (detections only). Co-occurrence of the three cyanotoxin classes was rare (0.32%) when at least one toxin was detected. Cyanobacteria were present and dominant in 98 and 76% of samples, respectively. Potential anatoxin-, cylindrospermopsin-, microcystin-, and saxitoxin-producing cyanobacteria occurred in 81, 67, 95, and 79% of samples, respectively. Anatoxin-a and nodularin-R were detected (LC/MS/MS) in 15 and 3.7% samples (n=27). The WHO moderate and high risk thresholds for microcystins, cyanobacteria abundance, and total chlorophyll were exceeded in 1.1, 27, and 44% of samples, respectively. Complete agreement by all three WHO microcystin metrics occurred in 27% of samples. This suggests that WHO microcystin metrics based on total chlorophyll and cyanobacterial abundance can overestimate microcystin risk when compared to WHO microcystin thresholds. The lack of parity among the WHO thresholds was expected since chlorophyll is common amongst all phytoplankton and not all cyanobacteria produce microcystins. Published by Elsevier B.V.

  11. Leaf Spectral Reflectance Shows Thalassia testudinum Seedlings More Sensitive to Hypersalinity than Hyposalinity

    PubMed Central

    Durako, Michael J.; Howarth, Jacqueline F.

    2017-01-01

    Thalassia testudinum (turtle grass) is the dominant and climax-successional seagrass species in the subtropical/tropical Atlantic and Caribbean region. Two die-offs of T. testudinum in Florida Bay, United States have raised concerns regarding the resilience of this species to environmental disturbances. Seedlings are important in recovery of T. testudinum, following disturbance events. Leaf spectral reflectance [R(λ)] was measured in T. testudinum seedlings exposed for 2 weeks to three salinities (20, 35, and 50) and two light levels (full sun and 50–70% light reduction) in experimental mesocosms. Multivariate analyses indicated that hypersalinity had a greater effect on spectral reflectance than hyposalinity or light reduction. There was an increase in variability and flattening of reflectance spectra at the highest salinity. All three salinity treatments had distinct reflectance spectra across green wavelengths (530–580 nm), with additional discrimination between 20 versus 50 and 35 versus 50 treatments across red wavelengths (630–690 nm). Red:Green reflectance ratios were highest and photochemical reflective index values were lowest for the salinity 50 treatment, but were not significantly different between the salinity 20 and 35 treatments. The changes in the R(λ) spectra for the salinity 50 seedlings were consistent with previously observed reductions in leaf pigments and maximum photochemical efficiency of photosystem II. These observations indicate that leaf spectral reflectance is a sensitive indicator of plant stress in T. testudinum seedlings and that seedlings are more sensitive to short-term exposures to hypersalinity than hyposalinity. PMID:28702044

  12. Identification of nitrogen sources to four small lakes in the agricultural region of Khorezm, Uzbekistan

    USGS Publications Warehouse

    Shanafield, M.; Rosen, M.; Saito, L.; Chandra, S.; Lamers, J.; Nishonov, Bakhriddin

    2010-01-01

    Pollution of inland waters by agricultural land use is a concern in many areas of the world, and especially in arid regions, where water resources are inherently scarce. This study used physical and chemical water quality and stable nitrogen isotope (δ15N) measurements from zooplankton to examine nitrogen (N) sources and concentrations in four small lakes of Khorezm, Uzbekistan, an arid, highly agricultural region, which is part of the environmentally-impacted Aral Sea Basin. During the 2-year study period, ammonium concentrations were the highest dissolved inorganic N species in all lakes, with a maximum of 3.00 mg N l−1 and an average concentration of 0.62 mg N l−1. Nitrate levels were low, with a maximum concentration of 0.46 mg N l−1 and an average of 0.05 mg N l−1 for all four lakes. The limited zooplankton δ15N values did not correlate with the high loads of synthetic fertilizer applied to local croplands during summer months. These results suggest that the N cycles in these lakes may be more influenced by regional dynamics than agricultural activity in the immediate surroundings. The Amu-Darya River, which provides the main source of irrigation water to the region, was identified as a possible source of the primary N input to the lakes.

  13. Responses of macroinvertebrates and local environment to short-term commercial sand dredging practices in a flood-plain lake.

    PubMed

    Meng, Xingliang; Jiang, Xiaoming; Li, Zhengfei; Wang, Jun; Cooper, Keith M; Xie, Zhicai

    2018-08-01

    In parts of the developing world, the expansion of industrial sand mining activities has led to serious environmental concerns. However, current understanding of the effects of this activity on an inland water ecosystem remains limited. Herein, we choose the "most affected" lake in China (Dongting Lake), to assess short-term (1year) effects of sand dredging on key environmental parameters and on the structure of the macroinvertebrate assemblage. Within the dredged area we observed increases in water depth (on average 2.17m), turbidity and changes in sediment composition (e.g., increase in % medium sand, and a decrease in % clay). In addition, dredging was associated with a 50 % reduction in taxa richness, Simpson and Shannon-Wiener indices, and a 72 and 99 % reduction in abundance and biomass, respectively. Indirect effects were also observed in the zone surrounding the extraction sites (ca. 500m), most likely as a result of the dredging processes (e.g., sediment screening and overspill) and water flow. No such effects were observed at a nearby reference site. The direct removal of sediment and indirect alteration of physical conditions (e.g., water depth, turbidity and sediment composition) appear to be the most likely cause of variations in the benthic community. Implications of our findings for the planning, management and monitoring of sand dredging in inland waters are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Influence of near-surface stratigraphy on coastal landslides at Sleeping Bear Dunes National Lakeshore, Lake Michigan, USA

    USGS Publications Warehouse

    Barnhardt, W.A.; Jaffe, B.E.; Kayen, R.E.; Cochrane, G.R.

    2004-01-01

    Lake-level change and landslides are primary controls on the development of coastal environments along the coast of northeastern Lake Michigan. The late Quaternary geology of Sleeping Bear Dunes National Lakeshore was examined with high-resolution seismic reflection profiles, ground-penetrating radar (GPR), and boreholes. Based on sequence-stratigraphic principles, this study recognizes ten stratigraphic units and three major unconformities that were formed by late Pleistocene glaciation and postglacial lake-level changes. Locally high sediment supply, and reworking by two regressions and a transgression have produced a complex stratigraphy that is prone to episodic failure. In 1995, a large landslide deposited approximately 1 million m3 of sediment on the lake floor. The highly deformed landslide deposits, up to 18 m thick, extend 3-4 km offshore and unconformably overlie well-stratified glacial and lacustrine sediment. The landslide-prone bluff is underlain by channel-fill deposits that are oriented nearly perpendicular to the shoreline. The paleochannels are at least 10 m deep and 400 m wide and probably represent stream incision during a lake-level lowstand about 10.3 ka B.P. The channels filled with sediment during the subsequent transgression and lake-level highstand, which climaxed about 4.5 ka B.P. As lake level fell from the highstand, the formation of beach ridges and sand dunes sealed off the channel and isolated a small inland lake (Glen Lake), which lies 5 m above the level of Lake Michigan and may be a source of piped groundwater. Our hypothesis is that the paleochannels act as conduits for pore water flow, and thereby locally reduce soil strength and promote slope failure.

  15. Insights from the metagenome of an acid salt lake: the role of biology in an extreme depositional environment.

    PubMed

    Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L; Benison, Kathleen Counter

    2015-01-01

    The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars.

  16. Insights from the Metagenome of an Acid Salt Lake: The Role of Biology in an Extreme Depositional Environment

    PubMed Central

    Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L.; Benison, Kathleen Counter

    2015-01-01

    The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars. PMID:25923206

  17. Effect of hypersaline cooling canals on aquifer salinization

    USGS Publications Warehouse

    Hughes, Joseph D.; Langevin, Christian D.; Brakefield-Goswami, Linzy

    2010-01-01

    The combined effect of salinity and temperature on density-driven convection was evaluated in this study for a large (28 km2) cooling canal system (CCS) at a thermoelectric power plant in south Florida, USA. A two-dimensional cross-section model was used to evaluate the effects of hydraulic heterogeneities, cooling canal salinity, heat transport, and cooling canal geometry on aquifer salinization and movement of the freshwater/saltwater interface. Four different hydraulic conductivity configurations, with values ranging over several orders of magnitude, were evaluated with the model. For all of the conditions evaluated, aquifer salinization was initiated by the formation of dense, hypersaline fingers that descended downward to the bottom of the 30-m thick aquifer. Saline fingers reached the aquifer bottom in times ranging from a few days to approximately 5 years for the lowest hydraulic conductivity case. Aquifer salinization continued after saline fingers reached the aquifer bottom and coalesced by lateral movement away from the site. Model results showed that aquifer salinization was most sensitive to aquifer heterogeneity, but was also sensitive to CCS salinity, temperature, and configuration.

  18. Microbial ecology of deep-sea hypersaline anoxic basins.

    PubMed

    Merlino, Giuseppe; Barozzi, Alan; Michoud, Grégoire; Ngugi, David Kamanda; Daffonchio, Daniele

    2018-07-01

    Deep hypersaline anoxic basins (DHABs) are unique water bodies occurring within fractures at the bottom of the sea, where the dissolution of anciently buried evaporites created dense anoxic brines that are separated by a chemocline/pycnocline from the overlying oxygenated deep-seawater column. DHABs have been described in the Gulf of Mexico, the Mediterranean Sea, the Black Sea and the Red Sea. They are characterized by prolonged historical separation of the brines from the upper water column due to lack of mixing and by extreme conditions of salinity, anoxia, and relatively high hydrostatic pressure and temperatures. Due to these combined selection factors, unique microbial assemblages thrive in these polyextreme ecosystems. The topological localization of the different taxa in the brine-seawater transition zone coupled with the metabolic interactions and niche adaptations determine the metabolic functioning and biogeochemistry of DHABs. In particular, inherent metabolic strategies accompanied by genetic adaptations have provided insights on how prokaryotic communities can adapt to salt-saturated conditions. Here, we review the current knowledge of the diversity, genomics, metabolisms and ecology of prokaryotes in DHABs.

  19. Effects of Accelerated Deglaciation on Chemical Characteristics of Sub-arctic Lakes and Rivers in South and West Iceland

    NASA Astrophysics Data System (ADS)

    Ritter, M.; Strock, K.; Edwards, B. R.

    2017-12-01

    Glaciers and their associated paraglacial landscapes have changed rapidly over the past century, and may see increased rates of melt as temperatures increase in high latitude environments. As glaciers recede, glacial meltwater subsidies increase to inland freshwater systems, influencing their structure and function. Evidence suggests melting ice influences the chemical characteristics of systems by providing nutrient subsidies, while inputs of glacial flour influence their physical structure by affecting temperature, reducing water clarity and increasing turbidity. Together, changes in physical and chemical structure of these systems have subsequent effects on biota, with the potential to lower taxonomic richness. This study characterized the chemistry of rivers and lakes fed by glacial meltwater in sub-arctic environments of Iceland, where there is limited limnological data. The survey characterized nutrient chemistry, dissolved organic carbon, and ion chemistry. We surveyed glacial meltwater from six glaciers in south and west Iceland, using the drainage basin of Gigjökull glacier along the southern coast as a detailed study area to examine the interactions between groundwater and surface runoff. The southern systems, within the Eastern Volcanic Zone, have minimal soil development and active volcanoes produce ash input to lakes. Lakes in the Western Volcanic Zone were more diverse, located in older bedrock with more extensively weathered soil. Key differences were observed between aquatic environments subsidized with glacial meltwater and those without. This included physical effects, such as lower temperatures and chemical effects such as lower conductivity and higher pH in glacially fed systems. In the drainage basin of Gigjökull glacier, lakes formed after the former lagoon was emptied and then partly refilled with debris from jokulhlaups during the 2010 Eyjafjallajökull eruption. These newly formed lakes resembled non-glacial melt systems despite receiving

  20. The computer coordination method and research of inland river traffic based on ship database

    NASA Astrophysics Data System (ADS)

    Liu, Shanshan; Li, Gen

    2018-04-01

    A computer coordinated management method for inland river ship traffic is proposed in this paper, Get the inland ship's position, speed and other navigation information by VTS, building ship's statics and dynamic data bases, writing a program of computer coordinated management of inland river traffic by VB software, Automatic simulation and calculation of the meeting states of ships, Providing ship's long-distance collision avoidance information. The long-distance collision avoidance of ships will be realized. The results show that, Ships avoid or reduce meetings, this method can effectively control the macro collision avoidance of ships.