Sample records for inorganic mercury determination

  1. Electrochemical determination of inorganic mercury and arsenic--A review.

    PubMed

    Zaib, Maria; Athar, Muhammad Makshoof; Saeed, Asma; Farooq, Umar

    2015-12-15

    Inorganic mercury and arsenic encompasses a term which includes As(III), As(V) and Hg(II) species. These metal ions have been extensively studied due to their toxicity related issues. Different analytical methods are used to monitor inorganic mercury and arsenic in a variety of samples at trace level. The present study reviews various analytical techniques available for detection of inorganic mercury and arsenic with particular emphasis on electrochemical methods especially stripping voltammetry. A detailed critical evaluation of methods, advantages of electrochemical methods over other analytical methods, and various electrode materials available for mercury and arsenic analysis is presented in this review study. Modified carbon paste electrode provides better determination due to better deposition with linear and improved response under studied set of conditions. Biological materials may be the potent and economical alternative as compared to macro-electrodes and chemically modified carbon paste electrodes in stripping analysis of inorganic mercury and arsenic. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Methylation of inorganic mercury in polar marine waters

    NASA Astrophysics Data System (ADS)

    Lehnherr, Igor; St. Louis, Vincent L.; Hintelmann, Holger; Kirk, Jane L.

    2011-05-01

    Monomethylmercury is a neurotoxin that accumulates in marine organisms, with serious implications for human health. The toxin is of particular concern to northern Inuit peoples, for example, whose traditional diets are composed primarily of marine mammals and fish. The ultimate source of monomethylmercury to marine organisms has remained uncertain, although various potential sources have been proposed, including export from coastal and deep-sea sediments and major river systems, atmospheric deposition and water-column production. Here, we report results from incubation experiments in which we added isotopically labelled inorganic mercury and monomethylmercury to seawater samples collected from a range of sites in the Canadian Arctic Archipelago. Monomethylmercury formed from the methylation of inorganic mercury in all samples. Demethylation of monomethylmercury was also observed in water from all sites. We determined steady-state concentrations of monomethylmercury in marine waters by incorporating the rate constants for monomethylmercury formation and degradation derived from these experiments into a numerical model. We estimate that the conversion of inorganic mercury to monomethylmercury in the water column accounts for around 47% (+/-62%, standard deviation) of the monomethylmercury present in polar marine waters, with site-to-site differences in inorganic mercury and monomethylmercury levels accounting for most of the variability. We suggest that water-column methylation of inorganic mercury is a significant source of monomethylmercury in pelagic marine food webs in the Arctic, and possibly in the world's oceans in general.

  3. Cystine alters the renal and hepatic disposition of inorganic mercury and plasma thiol status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalups, Rudolfs K.; Lash, Lawrence H.

    2006-07-01

    In the present study, we determined whether cystine can inhibit, under certain conditions, the renal tubular uptake of inorganic mercury in vivo. We co-injected (i.v.) cystine with a non-toxic dose of mercuric chloride to rats and then studied the disposition of inorganic mercury during the next 24 h. We also determined if pretreatment with cystine influences the disposition of administered inorganic mercury. Moreover, plasma thiol status was examined after the intravenous administration of cystine with or without mercuric chloride. During the initial hour after co-injection, the renal tubular uptake of mercuric ions was diminished significantly relative to that in controlmore » rats. The inhibitory effects of cystine were evident in both the renal cortex and outer stripe of the outer medulla. In contrast, the renal accumulation of mercury increased significantly between the 1st and 12th hour after co-treatment. Urinary excretion and fecal excretion of mercury were greatly elevated in the rats co-treated with cystine and mercuric chloride. Thus, when cystine and mercury are administered simultaneously, cystine can serve as an inhibitor of the renal tubular uptake of mercury during the initial hour after co-treatment. In rats pretreated with cystine, the renal uptake of inorganic mercury was enhanced significantly relative to that in rats not pretreated with cystine. This enhanced accumulation of inorganic mercury correlated with the increased circulating concentrations of the reduced cysteine and glutathione. Additionally, the present findings indicate that thiol status is an important determinant of renal and hepatic disposition, and urinary and fecal excretion, of inorganic mercury.« less

  4. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns ofmore » mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.« less

  5. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    PubMed Central

    Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety. PMID:23230464

  6. Human exposure and health effects of inorganic and elemental mercury.

    PubMed

    Park, Jung-Duck; Zheng, Wei

    2012-11-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.

  7. Methyl mercury, but not inorganic mercury, associated with higher blood pressure during pregnancy.

    PubMed

    Wells, Ellen M; Herbstman, Julie B; Lin, Yu Hong; Hibbeln, Joseph R; Halden, Rolf U; Witter, Frank R; Goldman, Lynn R

    2017-04-01

    Prior studies addressing associations between mercury and blood pressure have produced inconsistent findings; some of this may result from measuring total instead of speciated mercury. This cross-sectional study of 263 pregnant women assessed total mercury, speciated mercury, selenium, and n-3 polyunsaturated fatty acids in umbilical cord blood and blood pressure during labor and delivery. Models with a) total mercury or b) methyl and inorganic mercury were evaluated. Regression models adjusted for maternal age, race/ethnicity, prepregnancy body mass index, neighborhood income, parity, smoking, n-3 fatty acids and selenium. Geometric mean total, methyl, and inorganic mercury concentrations were 1.40µg/L (95% confidence interval: 1.29, 1.52); 0.95µg/L (0.84, 1.07); and 0.13µg/L (0.10, 0.17), respectively. Elevated systolic BP, diastolic BP, and pulse pressure were found, respectively, in 11.4%, 6.8%, and 19.8% of mothers. In adjusted multivariable models, a one-tertile increase of methyl mercury was associated with 2.83mmHg (0.17, 5.50) higher systolic blood pressure and 2.99mmHg (0.91, 5.08) higher pulse pressure. In the same models, an increase of one tertile of inorganic mercury was associated with -1.18mmHg (-3.72, 1.35) lower systolic blood pressure and -2.51mmHg (-4.49, -0.53) lower pulse pressure. No associations were observed with diastolic pressure. There was a non-significant trend of higher total mercury with higher systolic blood pressure. We observed a significant association of higher methyl mercury with higher systolic and pulse pressure, yet higher inorganic mercury was significantly associated with lower pulse pressure. These results should be confirmed with larger, longitudinal studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The use of emulsions for the determination of methylmercury and inorganic mercury in fish-eggs oil by cold vapor generation in a flow injection system with atomic absorption spectrometric detection.

    PubMed

    Burguera, J L; Quintana, I A; Salager, J L; Burguera, M; Rondón, C; Carrero, P; Anton de Salager, R; Petit de Peña, Y

    1999-04-01

    An on-line time based injection system used in conjunction with cold vapor generation atomic absorption spectrometry and microwave-aided oxidation with potassium persulfate has been developed for the determination of the different mercury species in fish-eggs oil samples. A three-phase surfactant-oil-water emulsion produced an advantageous flow when a peristaltic pump was used to introduce the highly viscous sample into the system. The optimum proportion of the oil-water mixture ratio was 2:3 v/v with a Tween 20 surfactant concentration in the emulsion of 0.008% v/v. Inorganic mercury was determined after reduction with sodium borohydride while total mercury was determined after an oxidation step with persulfate prior to the reduction step to elemental mercury with the same reducing agent. The difference between total and inorganic mercury determined the organomercury content in samples. A linear calibration graph was obtained in the range 0.1-20 micrograms l-1 of Hg2+ by injecting 0.7 ml of samples. The detection limits based on 3 sigma of the blank signals were 0.11 and 0.12 microgram l-1 for total and inorganic mercury, respectively. The relative standard deviation of ten independent measurements were 2.8 and 2.2% for 10 micrograms l-1 and 8.8 and 9.0% for 0.1 microgram l-1 amounts of total and inorganic mercury, respectively. The recoveries of 0.3, 0.6 and 8 micrograms l-1 of inorganic and organic mercury added to fish-eggs oil samples ranged from 93.0 to 94.8% and from 100 to 106%, respectively. Good agreement with those values obtained for total mercury content in real samples by electrothermal atomic absorption spectrometry was also obtained, differences between mean values were < 7%. With the proposed procedure, 22 proteropterous catfish-eggs oil samples from the northwestern coast of Venezuela were measured; while the organic mercury lay in the range 2.0 and 3.3 micrograms l-1, inorganic mercury was not detected.

  9. Determination of methylmercury and inorganic mercury in water samples by slurry sampling cold vapor atomic absorption spectrometry in a flow injection system after preconcentration on silica C(18) modified.

    PubMed

    Segade, Susana Río; Tyson, Julian F

    2007-03-15

    A novel method for preconcentration of methylmercury and inorganic mercury from water samples was developed involving the determination of ngl(-1) levels of analytes retained on the silica C(18) solid sorbent, previous complexation with ammonium pyrrolidine dithiocarbamate (APDC), by slurry sampling cold vapor atomic absorption spectrometry (SS-CVAAS) in a flow injection (FI) system. Several variables were optimized affecting either the retention of both mercury species, such as APDC concentration, silica C(18) amount, agitation times, or their determination, including hydrochloric acid concentration in the suspension medium, peristaltic pump speed and argon flow-rate. A Plackett-Burman saturated factorial design permitted to differentiate the influential parameters on the preconcentration efficiency, which were after optimized by the sequential simplex method. The contact time between mercury containing solution and APDC, required to reach an efficient sorption, was decreased from 26 to 3min by the use of sonication stirring instead of magnetic stirring. The use of 1moldm(-3) hydrochloric acid suspension medium and 0.75% (m/v) sodium borohydride reducing agent permitted the selective determination of methylmercury. The combination of 5moldm(-3) hydrochloric acid and 10(-4)% (m/v) sodium borohydride was used for the selective determination of inorganic mercury. The detection limits achieved for methylmercury and inorganic mercury determination under optimum conditions were 0.96 and 0.25ngl(-1), respectively. The reliability of the proposed method for the determination of both mercury species in waters was checked by the analysis of samples spiked with known concentrations of methylmercury and inorganic mercury; quantitative recoveries were obtained.

  10. Inorganic mercury poisoning associated with skin-lightening cosmetic products.

    PubMed

    Chan, Thomas Y K

    2011-12-01

    Mercury and mercury salts, including mercurous chloride and mercurous oxide, are prohibited for use in cosmetic products as skin-lightening agents because of their high toxicity. Yet, the public continue to have access to these products. Reports of skin-lightening cosmetic products containing mercury and cases of mercury poisoning following the use of such products were identified using Medline (1950 - 28 March 2011) with mercury, mercury compounds, mercury poisoning, cosmetics and skin absorption as the subject headings. These searches identified 118 citations of which 31 were relevant. The rate of dermal absorption increases with the concentration of mercury and prior hydration of the skin. The degree of dermal absorption varies with the skin integrity and lipid solubility of the vehicle in the cosmetic products. Ingestion may occur after topical application around the mouth and hand-to-mouth contact. After absorption, inorganic mercury is distributed widely and elimination occurs primarily through the urine and feces. With long-term exposure, urinary excretion is the major route of elimination. The half-life is approximately 1-2 months. The kidneys are the major site of inorganic mercury deposition; renal damage includes reversible proteinuria, acute tubular necrosis and nephrotic syndrome. Gastrointestinal symptoms include a metallic taste, gingivostomatitis, nausea and hypersalivation. Although penetration of the blood-brain barrier by inorganic mercury is poor, prolonged exposure can result in central nervous system (CNS) accumulation and neurotoxicity. Inorganic mercury poisoning following the use of skin-lightening creams has been reported from Africa, Europe, USA, Mexico, Australia and Hong Kong. Nephrotic syndrome (mainly due to minimal change or membranous nephropathy) and neurotoxicity were the most common presenting features. As mercury-containing cosmetic products can contaminate the home, some close household contacts were also reported to have

  11. Uptake of inorganic mercury by human locus ceruleus and corticomotor neurons: implications for amyotrophic lateral sclerosis

    PubMed Central

    2013-01-01

    Background Environmental toxins are suspected to play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS). In an attempt to determine which pathways these toxins can use to enter motor neurons we compared the distribution of mercury in the CNS of a human and of mice that had been exposed to inorganic mercury. Results In the human who had been exposed to metallic mercury, mercury was seen predominantly in the locus ceruleus and corticomotor neurons, as well as in scattered glial cells. In mice that had been exposed to mercury vapor or mercuric chloride, mercury was present in lower motor neurons in the spinal cord and brain stem. Conclusions In humans, inorganic mercury can be taken up predominantly by corticomotor neurons, possibly when the locus ceruleus is upregulated by stress. This toxin uptake into corticomotor neurons is in accord with the hypothesis that ALS originates in these upper motor neurons. In mice, inorganic mercury is taken up predominantly by lower motor neurons. The routes toxins use to enter motor neurons depends on the nature of the toxin, the duration of exposure, and possibly the amount of stress (for upper motor neuron uptake) and exercise (for lower motor neuron uptake) at the time of toxin exposure. PMID:24252585

  12. Multidrug Efflux Transporters Limit Accumulation of Inorganic, but Not Organic, Mercury in Sea Urchin Embryos

    PubMed Central

    Bošnjak, Ivana; Uhlinger, Kevin R.; Heim, Wesley; Smital, Tvrtko; Franekić-Čolić, Jasna; Coale, Kenneth; Epel, David; Hamdoun, Amro

    2011-01-01

    Mercuric compounds are persistent global pollutants that accumulate in marine organisms and in humans who consume them. While the chemical cycles and speciation of mercury in the oceans are relatively well described, the cellular mechanisms that govern which forms of mercury accumulate in cells and why they persist are less understood. In this study we examined the role of multidrug efflux transport in the differential accumulation of inorganic (HgCl2) and organic (CH3HgCl) mercury in sea urchin (Strongylocentrotus purpuratus) embryos. We found that inhibition of MRP/ABCC-type transporters increases intracellular accumulation of inorganic mercury but had no effect on accumulation of organic mercury. Similarly, pharmacological inhibition of metal conjugating enzymes by ligands GST/GSH significantly increases this antimitotic potency of inorganic mercury, but had no effect on the potency of organic mercury. Our results point to MRP-mediated elimination of inorganic mercury conjugates as a cellular basis for differences in the accumulation and potency of the two major forms of mercury found in marine environments. PMID:19924972

  13. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex.

    PubMed

    Teixeira, Francisco B; de Oliveira, Ana C A; Leão, Luana K R; Fagundes, Nathália C F; Fernandes, Rafael M; Fernandes, Luanna M P; da Silva, Márcia C F; Amado, Lilian L; Sagica, Fernanda E S; de Oliveira, Edivaldo H C; Crespo-Lopez, Maria E; Maia, Cristiane S F; Lima, Rafael R

    2018-01-01

    Mercury is a toxic metal that can be found in the environment in three different forms - elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood-brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2), an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats.

  14. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex

    PubMed Central

    Teixeira, Francisco B.; de Oliveira, Ana C. A.; Leão, Luana K. R.; Fagundes, Nathália C. F.; Fernandes, Rafael M.; Fernandes, Luanna M. P.; da Silva, Márcia C. F.; Amado, Lilian L.; Sagica, Fernanda E. S.; de Oliveira, Edivaldo H. C.; Crespo-Lopez, Maria E.; Maia, Cristiane S. F.; Lima, Rafael R.

    2018-01-01

    Mercury is a toxic metal that can be found in the environment in three different forms – elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood–brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2), an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats. PMID:29867340

  15. Essential Indicators Identifying Chronic Inorganic Mercury Intoxication: Pooled Analysis across Multiple Cross-Sectional Studies.

    PubMed

    Doering, Stefan; Bose-O'Reilly, Stephan; Berger, Ursula

    2016-01-01

    The continuous exposure to inorganic mercury vapour in artisanal small-scale gold mining (ASGM) areas leads to chronic health problems. It is therefore essential to have a quick, but reliable risk assessing tool to diagnose chronic inorganic mercury intoxication. This study re-evaluates the state-of-the-art toolkit to diagnose chronic inorganic mercury intoxication by analysing data from multiple pooled cross-sectional studies. The primary research question aims to reduce the currently used set of indicators without affecting essentially the capability to diagnose chronic inorganic mercury intoxication. In addition, a sensitivity analysis is performed on established biomonitoring exposure limits for mercury in blood, hair, urine and urine adjusted by creatinine, where the biomonitoring exposure limits are compared to thresholds most associated with chronic inorganic mercury intoxication in artisanal small-scale gold mining. Health data from miners and community members in Indonesia, Tanzania and Zimbabwe were obtained as part of the Global Mercury Project and pooled into one dataset together with their biomarkers mercury in urine, blood and hair. The individual prognostic impact of the indicators on the diagnosis of mercury intoxication is quantified using logistic regression models. The selection is performed by a stepwise forward/backward selection. Different models are compared based on the Bayesian information criterion (BIC) and Cohen`s kappa is used to evaluate the level of agreement between the diagnosis of mercury intoxication based on the currently used set of indicators and the result based on our reduced set of indicators. The sensitivity analysis of biomarker exposure limits of mercury is based on a sequence of chi square tests. The variable selection in logistic regression reduced the number of medical indicators from thirteen to ten in addition to the biomarkers. The estimated level of agreement using ten of thirteen medical indicators and all four

  16. Essential Indicators Identifying Chronic Inorganic Mercury Intoxication: Pooled Analysis across Multiple Cross-Sectional Studies

    PubMed Central

    Doering, Stefan

    2016-01-01

    Background The continuous exposure to inorganic mercury vapour in artisanal small-scale gold mining (ASGM) areas leads to chronic health problems. It is therefore essential to have a quick, but reliable risk assessing tool to diagnose chronic inorganic mercury intoxication. This study re-evaluates the state-of-the-art toolkit to diagnose chronic inorganic mercury intoxication by analysing data from multiple pooled cross-sectional studies. The primary research question aims to reduce the currently used set of indicators without affecting essentially the capability to diagnose chronic inorganic mercury intoxication. In addition, a sensitivity analysis is performed on established biomonitoring exposure limits for mercury in blood, hair, urine and urine adjusted by creatinine, where the biomonitoring exposure limits are compared to thresholds most associated with chronic inorganic mercury intoxication in artisanal small-scale gold mining. Methods Health data from miners and community members in Indonesia, Tanzania and Zimbabwe were obtained as part of the Global Mercury Project and pooled into one dataset together with their biomarkers mercury in urine, blood and hair. The individual prognostic impact of the indicators on the diagnosis of mercury intoxication is quantified using logistic regression models. The selection is performed by a stepwise forward/backward selection. Different models are compared based on the Bayesian information criterion (BIC) and Cohen`s kappa is used to evaluate the level of agreement between the diagnosis of mercury intoxication based on the currently used set of indicators and the result based on our reduced set of indicators. The sensitivity analysis of biomarker exposure limits of mercury is based on a sequence of chi square tests. Results The variable selection in logistic regression reduced the number of medical indicators from thirteen to ten in addition to the biomarkers. The estimated level of agreement using ten of thirteen medical

  17. Differential diagnosis between organic and inorganic mercury poisoning in human cases--the pathologic point of view.

    PubMed

    Eto, K; Takizawa, Y; Akagi, H; Haraguchi, K; Asano, S; Takahata, N; Tokunaga, H

    1999-01-01

    Differences in pathology were found between acute and chronic exposure to methylmercury, mercury vapor, and inorganic mercury. Characteristic pathologic changes produced by organic mercury in the brain have previously been described in patients with Minamata disease. The brains of patients who presented with acute onset of symptoms and died within 2-mo showed loss of neurons with reactive proliferation of glial cells, microcavitation, vascular congestion, petechial hemorrhage, and edema in the cerebral cortices, predominantly in the calcarine, pre- and postcentral, and transverse temporal cortices and in the cerebellar cortex. The neuropathologic changes in the patients with acute onset of symptoms who survived for a long period (>10 yr) were also included neuronal loss with reactive proliferation of glial cells in similar anatomic locations. The neuropathologic changes in patients with inorganic mercury poisoning are quite different. Autopsies performed on 3 individuals with fatal cases of acute inorganic mercury poisoning who were exposed to mercury vapor for about 2 wk revealed diffuse organized pneumonia, renal cortical necrosis, disseminated intravascular coagulopathy, and infarctions in the brain and kidneys. In 2 other patients who worked in mercury mines for about 10 yr and who suffered from chronic inorganic poisoning, no specific lesions were demonstrated in the brain. However, the assay and the histochemistry of mercury revealed that inorganic mercury was present in the brain in all 3 groups irrespective of the brain lesions and the duration of clinical signs.

  18. The retention time of inorganic mercury in the brain — A systematic review of the evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooney, James P.K., E-mail: jrooney@rcsi.ie

    2014-02-01

    Reports from human case studies indicate a half-life for inorganic mercury in the brain in the order of years—contradicting older radioisotope studies that estimated half-lives in the order of weeks to months in duration. This study systematically reviews available evidence on the retention time of inorganic mercury in humans and primates to better understand this conflicting evidence. A broad search strategy was used to capture 16,539 abstracts on the Pubmed database. Abstracts were screened to include only study types containing relevant information. 131 studies of interest were identified. Only 1 primate study made a numeric estimate for the half-life ofmore » inorganic mercury (227–540 days). Eighteen human mercury poisoning cases were followed up long term including autopsy. Brain inorganic mercury concentrations at death were consistent with a half-life of several years or longer. 5 radionucleotide studies were found, one of which estimated head half-life (21 days). This estimate has sometimes been misinterpreted to be equivalent to brain half-life—which ignores several confounding factors including limited radioactive half-life and radioactive decay from surrounding tissues including circulating blood. No autopsy cohort study estimated a half-life for inorganic mercury, although some noted bioaccumulation of brain mercury with age. Modelling studies provided some extreme estimates (69 days vs 22 years). Estimates from modelling studies appear sensitive to model assumptions, however predications based on a long half-life (27.4 years) are consistent with autopsy findings. In summary, shorter estimates of half-life are not supported by evidence from animal studies, human case studies, or modelling studies based on appropriate assumptions. Evidence from such studies point to a half-life of inorganic mercury in human brains of several years to several decades. This finding carries important implications for pharmcokinetic modelling of mercury and

  19. Removal of inorganic mercury from aquatic environments by multi-walled carbon nanotubes.

    PubMed

    Yaghmaeian, Kamyar; Khosravi Mashizi, Reza; Nasseri, Simin; Mahvi, Amir Hossein; Alimohammadi, Mahmood; Nazmara, Shahrokh

    2015-01-01

    Mercury is considered as a toxic heavy metal in aquatic environments due to accumulation in bodies of living organisms. Exposure to mercury may lead to different toxic effects in humans including damages to kidneys and nervous system. Multi-walled carbon nanotubes (MWCNTs) were selected as sorbent to remove mercury from aqueous solution using batch technique. ICP instrument was used to determine the amount of mercury in solution. Moreover, pH, contact time and initial concentration of mercury were studied to determine the influence of these parameters on the adsorption conditions. Results indicate that the adsorption strongly depended on pH and the best pH for adsorption is about 7. The rate of adsorption process initially was rapid but it was gradually reduced with increasing of contact time and reached the equilibrium after 120 min. In addition, more than 85 % of initial concentration of 0.1 mg/l was removed at 0.5 g/l concentration of sorbent and contact time of 120 min. Meanwhile, the adsorption process followed the pseudo second-order model and the adsorption isotherms could be described by both the Freundlich and the Langmuir models. This study showed that MWCNTs can effectively remove inorganic mercury from aqueous solutions as adsorbent.

  20. Prenatal and early postnatal intoxication by inorganic mercury resulting from the maternal use of mercury containing soap.

    PubMed

    Lauwerys, R; Bonnier, C; Evrard, P; Gennart, J P; Bernard, A

    1987-05-01

    A case of slight renal tubular dysfunction associated with cataract and anaemia was diagnosed in a 3-month-old black boy in whom high levels of mercury were found in blood and urine. Several arguments suggest that the renal, ocular and haematological defects may have resulted from exposure to mercury during foetal life and the 1-month lactation period due to the extensive use of inorganic mercury containing cosmetics by the mother.

  1. Evidence of mercury trapping in biofilm-EPS and mer operon-based volatilization of inorganic mercury in a marine bacterium Bacillus cereus BW-201B.

    PubMed

    Dash, Hirak R; Basu, Subham; Das, Surajit

    2017-04-01

    Biofilm-forming mercury-resistant marine bacterium Bacillus cereus BW-201B has been explored to evident that the bacterial biofilm-EPS (exopolymers) trap inorganic mercury but subsequently release EPS-bound mercury for induction of mer operon-mediated volatilization of inorganic mercury. The isolate was able to tolerate 50 ppm of mercury and forms biofilm in presence of mercury. mer operon-mediated volatilization was confirmed, and -SH was found to be the key functional group of bacterial EPS responsible for mercury binding. Biofilm-EPS-bound mercury was found to be internalized to the bacterial system as confirmed by reversible conformational change of -SH group and increased expression level of merA gene in a timescale experiment. Biofilm-EPS trapped Hg after 24 h of incubation, and by 96 h, the volatilization process reaches to its optimum confirming the internalization of EPS-bound mercury to the bacterial cells. Biofilm disintegration at the same time corroborates the results.

  2. DIVALENT INORGANIC REACTIVE GASEOUS MERCURY EMISSIONS FROM A MERCURY CELL CHLOR-ALKALI PLANT AND ITS IMPACT ON NEAR FIELD ATMOSPHERIC DRY DEPOSITION

    EPA Science Inventory

    The emission of inorganic divalent reactive gaseous mercury (RGM) from a mercury cell chlor-alkali plant (MCCAP) cell building and the impact on near field (100 km) dry deposition was investigated as part of a larger collaborative study between EPA, University of Michigan, Oak ...

  3. Trophic transfer efficiency of methylmercury and inorganic mercury to lake trout Salvelinus namaycush from its prey

    USGS Publications Warehouse

    Madenijian, C.P.; David, S.R.; Krabbenhoft, D.P.

    2012-01-01

    Based on a laboratory experiment, we estimated the net trophic transfer efficiency of methylmercury to lake trout Salvelinus namaycush from its prey to be equal to 76.6 %. Under the assumption that gross trophic transfer efficiency of methylmercury to lake trout from its prey was equal to 80 %, we estimated that the rate at which lake trout eliminated methylmercury was 0.000244 day−1. Our laboratory estimate of methylmercury elimination rate was 5.5 times lower than the value predicted by a published regression equation developed from estimates of methylmercury elimination rates for fish available from the literature. Thus, our results, in conjunction with other recent findings, suggested that methylmercury elimination rates for fish have been overestimated in previous studies. In addition, based on our laboratory experiment, we estimated that the net trophic transfer efficiency of inorganic mercury to lake trout from its prey was 63.5 %. The lower net trophic transfer efficiency for inorganic mercury compared with that for methylmercury was partly attributable to the greater elimination rate for inorganic mercury. We also found that the efficiency with which lake trout retained either methylmercury or inorganic mercury from their food did not appear to be significantly affected by the degree of their swimming activity.

  4. [Potential exposure to inorganic mercury in people living near a sewage sludge dumping site: urinary excretion of mercury, subjective symptoms and renal function].

    PubMed

    Arisawa, K; Takahashi, T; Nakano, A; Liu, X J; Saito, H; Takizawa, Y; Koba, T

    2000-02-01

    The purpose of this study was to evaluate the presence of exposure to inorganic mercury and its health effects among people living near a sewage sludge dumping site in Nagasaki Prefecture, Japan. In this area, sewage sludge and industrial waste have been dumped since 1975, and total mercury levels exceeding the water quality standards (0.0006-0.0020 mg/l) have been detected in seeping water and river water since July 1997. The population for the present study comprised 48 subjects (aged 11-91 years) living near a sewage sludge dumping site and 49 subjects (aged 10-82 years) living in a non-polluted area. In November and December 1998, subjective symptoms of inorganic mercury exposure, history of occupational exposure to inorganic mercury, frequency of fish intake, sources of drinking water and other health habits were inquired by a self-administered questionnaire. Total mercury and total protein levels and N-acetyl-beta-D-glucosaminidase (NAG) activity in morning urine specimens were also measured. Among males, the proportion of subjects who complained of tremor in the hands (P = 0.02) and increased irritability (P = 0.10) was higher in the polluted area than in the control area. In addition, the proportion of those who did not report being easily fatigued was lower in the polluted area than in the control area (P = 0.07). Among females there was no significant difference in the prevalence of self-reported symptoms related to the central nervous system disturbance between the two areas. After adjustment for gender and age using logistic regression analysis, the prevalence of increased irritability was significantly higher (P = 0.05) and the proportion of those who did not report being easily fatigued was significantly lower (P = 0.03) in the polluted area than in the control area. However, there was no significant difference in the geometric mean of urinary total mercury concentration (microgram/g creatinine) between the polluted area (0.66, 95% confidence interval

  5. Mercury poisoning

    MedlinePlus

    ... of the lungs Medicine to remove mercury and heavy metals from the body INORGANIC MERCURY For inorganic mercury ... chap 98. Theobald JL, Mycyk MB. Iron and heavy metals. In: Walls RM, Hockberger RS, Gausche-Hill M, ...

  6. Toxicity of Inorganic Mercury to Native Australian Grass Grown in Three Different Soils.

    PubMed

    Mahbub, Khandaker Rayhan; Kader, Mohammed; Krishnan, Kannan; Labbate, Maurizio; Naidu, Ravi; Megharaj, Mallavarapu

    2017-06-01

    In this study, three native Australian grasses namely Iseilema membranaceum (Barcoo), Dichanthium sericeum (Queensland Blue) and Sporobolus africanus (Tussock) were grown in three different soils spiked with different concentrations of inorganic mercury and the root elongation was monitored up to 28 days following the germination. Results showed that mercury at certain concentrations significantly inhibited the root growth of all three tested native grasses grown in three soils, however, the toxicity was less in the soil with high organic carbon content and acidic pH. The calculated EC 50 values ranged from 10 to 224 mg/kg total Hg in soil. However, the EC 10 values indicated that existing guideline values for mercury may be of protective to the native Australian vegetation. Considering their tolerance to soil mercury, these grass species have the potential for their use in rehabilitation of mercury contaminated sites.

  7. Uptake dynamics of inorganic mercury and methylmercury by the earthworm Pheretima guillemi.

    PubMed

    Dang, Fei; Zhao, Jie; Zhou, Dongmei

    2016-02-01

    Mercury uptake dynamics in the earthworm Pheretima guillemi, including the dissolved uptake rate constant (ku) from pore-water and assimilation efficiencies (AEs) from mercury-contaminated soil, was quantified in this study. Dissolved uptake rate constants were 0.087 and 0.553 L g(-1) d(-1) for inorganic mercury (IHg) and methylmercury (MeHg), respectively. Assimilation efficiency of IHg in field-contaminated soil was 7.2%, lower than 15.4% of spiked soil. In contrast, MeHg exhibited comparable AEs for both field-contaminated and spiked soil (82.4-87.2%). Within the framework of biodynamic model, we further modelled the exposure pathways (dissolved exposure vs soil ingestion) to source the accumulated mercury in Pheretima guillemi. The model showed that the relative importance of soil ingestion to mercury bioaccumulation depended largely on mercury partitioning coefficients (K(d)), and was also influenced by soil ingestion rate of earthworms. In the examined field-contaminated soil, almost (>99%) accumulated IHg and MeHg was predicted to derive from soil ingestion. Therefore, soil ingestion should be carefully considered when assessing mercury exposure risk to earthworms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Solid-phase extraction-gas chromatography-mass spectrometry using a fullerene sorbent for the determination of inorganic mercury(II), methylmercury(I) and ethylmercury(I) in surface waters at sub-ng/ml levels.

    PubMed

    Muñoz, J; Gallego, M; Valcárcel, M

    2004-11-05

    A novel, straightforward solid-phase extraction system for the determination of inorganic mercury and organomercury compounds in water is proposed. The analytes, in a buffer medium at pH 4.5, are sorbed as diethyldithiocarbamate complexes on a C60 fullerene column an subsequently eluted and derivatized with sodium tetra-n-propylborate in ethyl acetate. Following elution, 1 microl of extract is injected into a gas chromatograph-mass spectrometer system. The proposed gas chromatography-mass spectrometry speciation method exhibits a linear range of 4-1 ng/ml, and a detection limit of 1.5 ng/l (sample volume, 50 ml). Its repeatibility, as relative standard deviation (RSD) (from 11 standards containing 50 ng/l for each analyte), is ca. 7%. No interferences from metals ions, such as Zn2+, Fe3+, Sb3+, As3+, Pb2+, Ni2+, Cu2+, Sn2+, Co2+, Mn2+ and Cd2+ were encountered at concentrations 1000 times higher than those of the mercury compounds. The method was used for the speciation of inorganic mercury, methylmercury and ethylmercury in various types of water including sea and waste water.

  9. Sediment-water partitioning of inorganic mercury in estuaries.

    PubMed

    Turner, A; Millward, G E; Le Roux, S M

    2001-12-01

    The sediment-water partitioning and speciation of inorganic mercury have been studied under simulated estuarine conditions by monitoring the hydrophobicity and uptake of dissolved 203Hg(II) in samples from a variety of estuarine environments. A persistent increase in the distribution coefficientwith increasing salinity is inconsistent with inorganic speciation calculations, which predict an increase in the concentration of the soluble HgCl4(2-) complex (or reduction in sediment-water distribution coefficient) with increasing salinity. Partition data are, however, defined by an empirical equation relating to the salting out of nonelectrolytes via electrostriction and are characterized by salting constants between about 1.4 and 2.0 L mol(-1). Salting out of the neutral, covalent chloro-complex, HgCl2(0), is predicted but cannot account for the magnitude of salting out observed. Since Hg(II) strongly complexes with dissolved (and particulate) organic matter in natural environments, of more significance appears to be the salting out of Hg(II)-organic complexes. Operational measurements of the speciation of dissolved Hg(II) using Sep-Pak C18 columns indicate a reduction in the proportion of hydrophobic (C18-retained) dissolved Hg(II) complexes with increasing salinity, both in the presence and absence of suspended particles. Ratios of hydrophobic Hg(ll) before and after particle addition suggest a coupled salting out-sorption mechanism, with the precise nature of Hg(II) species salted out being determined bythe characteristics and concentrations of dissolved and sediment organic matter.

  10. Quantitative proteomic analysis reveals proteins involved in the neurotoxicity of marine medaka Oryzias melastigma chronically exposed to inorganic mercury.

    PubMed

    Wang, Yuyu; Wang, Dazhi; Lin, Lin; Wang, Minghua

    2015-01-01

    Mercury is a ubiquitous environmental contaminant which exerts neurotoxicity upon animals. Nevertheless, the molecular mechanisms involved in inorganic mercury neurotoxicity are unknown. We investigated protein profiles of marine medaka, chronically exposed to mercuric chloride using two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF MS) analysis. The mercury accumulation and ultrastructure were also examined in the brain. The results showed that mercury was significantly accumulated in the treated brain, and subsequently caused a noticeable damage. The comparison of 2D-DIGE protein profiles between the control and treatment revealed that 16 protein spots were remarkably altered in abundance, which were further submitted for MALDI-TOF-TOF MS analysis. The identified proteins indicated that inorganic mercury may cause neurotoxicity through the induction of oxidative stress, cytoskeletal assembly dysfunction and metabolic disorders. Thus, this study provided a basis for a better understanding of the molecular mechanisms involved in mercury neurotoxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Catalysis-reduction strategy for sensing inorganic and organic mercury based on gold nanoparticles.

    PubMed

    Li, Xiaokun; Zhang, Youlin; Chang, Yulei; Xue, Bin; Kong, Xianggui; Chen, Wei

    2017-06-15

    In view of the high biotoxicity and trace concentration of mercury (Hg) in environmental water, developing simple, ultra-sensitive and highly selective method capable of simultaneous determination of various Hg species has attracted wide attention. Here, we present a novel catalysis-reduction strategy for sensing inorganic and organic mercury in aqueous solution through the cooperative effect of AuNP-catalyzed properties and the formation of gold amalgam. For the first time, a new AuNP-catalyzed-organic reaction has been discovered and directly used for sensing Hg 2+ , Hg 2 2+ and CH 3 Hg + according to the change of the amount of the catalytic product induced by the deposition of Hg atoms on the surface of AuNPs. The detection limit of Hg species is 5.0pM (1 ppt), which is 3 orders of magnitude lower than the U.S. Environmental Protection Agency (EPA) limit value of Hg for drinking water (2 ppb). The high selectivity can be exceptionally achieved by the specific formation of gold amalgam. Moreover, the application for detecting tap water samples further demonstrates that this AuNP-based assay can be an excellent method used for sensing mercury at very low content in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury.

    PubMed

    Dakova, Ivanka; Karadjova, Irina; Georgieva, Ventsislava; Georgiev, George

    2009-04-30

    Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2'-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4M HNO(3). The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 micromol g(-1) for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 microg L(-1) (3 sigma), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 microg L(-1) Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample.

  13. Intracellular speciation and transformation of inorganic mercury in marine phytoplankton.

    PubMed

    Wu, Yun; Wang, Wen-Xiong

    2014-03-01

    Metal speciation is closely related to toxicity in aquatic organisms, but quantitative study of mercury transformation has rarely been reported. In this study, the ability of three marine phytoplankton species, including a green alga Chlorella autotrophica, a flagellate Isochrysis galbana and a diatom Thalassiosira weissflogii, to convert inorganic mercury were examined. We found that all algae tested were able to transform Hg(II) into dissolved gaseous mercury (DGM), phytochelatin (PC) complexes and metacinnabar (β-HgS). The most tolerant species, T. weissflogii, generally produced the highest level of PCs and β-HgS. Attributed to the highest DGM production ability, C. autotrophica accumulated the least Hg, but was the most sensitive due to low PC induction and β-HgS formation. Of the added Hg(II), less than 5% was reduced to DGM per day in all species. Of the intracellular Hg, <20% and 20-90% were chelated by PCs and transformed into β-HgS, respectively. These results suggest that intracellular biotransformation might be more important than bioavailability regulation in Hg(II) detoxification in marine phytoplankton. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Relationship between the loading rate of inorganic mercury to aquatic ecosystems and dissolved gaseous mercury production and evasion.

    PubMed

    Poulain, Alexandre J; Orihel, Diane M; Amyot, Marc; Paterson, Michael J; Hintelmann, Holger; Southworth, George R

    2006-12-01

    The purpose of our study was to test the hypothesis that dissolved gaseous mercury (DGM) production and evasion is directly proportional to the loading rate of inorganic mercury [Hg(II)] to aquatic ecosystems. We simulated different rates of atmospheric mercury deposition in 10-m diameter mesocosms in a boreal lake by adding multiple additions of Hg(II) enriched with a stable mercury isotope ((202)Hg). We measured DGM concentrations in surface waters and estimated evasion rates using the thin-film gas exchange model and mass transfer coefficients derived from sulfur hexafluoride (SF(6)) additions. The additions of Hg(II) stimulated DGM production, indicating that newly added Hg(II) was highly reactive. Concentrations of DGM derived from the experimental Hg(II) additions ("spike DGM") were directly proportional to the rate of Hg(II) loading to the mesocosms. Spike DGM concentrations averaged 0.15, 0.48 and 0.94 ng l(-1) in mesocosms loaded at 7.1, 14.2, and 35.5 microg Hg m(-2) yr(-1), respectively. The evasion rates of spike DGM from these mesocosms averaged 4.2, 17.2, and 22.3 ng m(-2)h(-1), respectively. The percentage of Hg(II) added to the mesocosms that was lost to the atmosphere was substantial (33-59% over 8 weeks) and was unrelated to the rate of Hg(II) loading. We conclude that changes in atmospheric mercury deposition to aquatic ecosystems will not change the relative proportion of mercury recycled to the atmosphere.

  15. Mercury study report to Congress. Volume 5. Health effects of mercury and mercury compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassett-Sipple, B.; Swartout, J.; Schoeny, R.

    1997-12-01

    This volume summarizes the available information on human health effects and animal data for hazard identification and dose-response assessment for three forms of mercury: elemental mercury, mercury chloride (inorganic mercury), and methylmercury (organic mercury). Effects are summarized by endpoint. The risk assessment evaluates carcinogenicity, mutagenicity, developmental toxicity and general systemic toxicity of these chemical species of mercury. Toxicokinetics (absorption, distribution, metabolism and excretion) are described for each of the three mercury species. Reference doses are calculated for inorganic and methylmercury; a reference concentrations for inhaled elemental mercury is provided. A quantitative analysis of factors contributing to variability and uncertainty inmore » the methylmercury RfD is provided in an appendix. Interactions and sensitive populations are described. the draft volume assesses ongoing research and research needs to reduce uncertainty surrounding adverse human health consequences of methylmercury exposure.« less

  16. Historical exposure to inorganic mercury at the smelter works of Abbadia San Salvatore, Italy.

    PubMed

    Bellander, T; Merler, E; Ceccarelli, F; Boffetta, P

    1998-02-01

    Metallic mercury production from cinnabar ore may result in high exposures to inorganic mercury, that are difficult to assess separately from the exposures originating from underground extraction, and previously have only been scantily described. We retrieved and analysed the air and biological mercury determinations on workers involved in the smelting process of the Abbadia San Salvatore mine (Monte Amiata, Italy). Native mercury was not present in the ore, and the exposure in the underground extraction was low. The smelter operated from 1897 to 1983. Blood and urine (24/h urine collections and concentration samples) had been sampled in 1968 to 1982, and analysed for mercury by atomic absorption spectrophotometry, and relate to all subjects. Exposure to mercury in air had been determined in a small set of personal samples in 1982. The data relate to all jobs in the smelter process, and all jobs entailed substantial exposure to mercury. The overall distribution of breathing zone air, blood and urinary levels is right-skewed and similar to the log-normal distribution (air, median 48 micrograms/m3, n = 49; blood, arithmetic mean AM 49 micrograms/L; geometric mean GM 26 micrograms/L, n = 192; urinary excretion, AM 140 micrograms/24 h, GM 78 micrograms/24 h, n = 839; and urinary concentration, AM 160 micrograms/L, GM 83 micrograms/L, n = 632). Air, blood and urinary values show a high ratio of the between- and within-job variance, indicating differences in exposure by job. Cinnabar pigment production, of which the exposure has not been characterised previously, was the job with the highest air (AM 160 micrograms/m3) and urinary levels (excretion AM 690 micrograms/24 h; concentration AM 1100 micrograms/L). Other jobs with high urinary levels were soot purification, laboratory work, and bottling. Cleaning of condensers showed the highest blood level (AM 280 micrograms/L). There is a downwards time trend in mercury concentration in blood and in urine. The corresponding

  17. Organic and inorganic amendment application on mercury-polluted soils: effects on soil chemical and biochemical properties.

    PubMed

    García-Sánchez, Mercedes; Klouza, Martin; Holečková, Zlata; Tlustoš, Pavel; Száková, Jiřina

    2016-07-01

    On the basis of a previous study performed in our laboratory, the use of organic and inorganic amendments can significantly modify the Hg mobility in soil. We have compared the effectiveness of organic and inorganic amendments such as digestate and fly ash, respectively, reducing the Hg mobility in Chernozem and Luvisol soils differing in their physicochemical properties. Hence, the aim of this work was to compare the impact of digestate and fly ash application on the chemical and biochemical parameters in these two mercury-contaminated soils in a model batch experiment. Chernozem and Luvisol soils were artificially contaminated with Hg and then incubated under controlled conditions for 21 days. Digestate and fly ash were applied to both soils in a dose of 10 and 1.5 %, respectively, and soil samples were collected after 1, 7, 14, and 21 days of incubation. The presence of Hg in both soils negatively affected to processes such as nitrification, provoked a decline in the soil microbial biomass C (soil microbial biomass C (MBC)), and the microbial activities (arylsulfatase, and β-glucosaminidase) in both soils. Meanwhile, the digestate addition to Chernozem and Luvisol soils contaminated with Hg improved the soil chemical properties (pH, dissolved organic carbon (DOC), N (Ntot), inorganic-N forms (N-NH4 (+) and N-NO3 (-))), as consequence of high content in C and N contained in digestate. Likewise, the soil MBC and soil microbial activities (dehydrogenase, arylsulfatase, and β-glucosaminidase) were greatly enhanced by the digestate application in both soils. In contrast, fly ash application did not have a remarkable positive effect when compared to digestate in Chernozem and Luvisol soil contaminated with mercury. These results may indicate that the use of organic amendments such as digestate considerably improved the soil health in Chernozem and Luvisol compared with fly ash, alleviating the detrimental impact of Hg. Probably, the chemical properties present in

  18. Pressure-driven mesofluidic platform integrating automated on-chip renewable micro-solid-phase extraction for ultrasensitive determination of waterborne inorganic mercury.

    PubMed

    Portugal, Lindomar A; Laglera, Luis M; Anthemidis, Aristidis N; Ferreira, Sérgio L C; Miró, Manuel

    2013-06-15

    A dedicated pressure-driven mesofluidic platform incorporating on-chip sample clean-up and analyte preconcentration is herein reported for expedient determination of trace level concentrations of waterborne inorganic mercury. Capitalizing upon the Lab-on-a-Valve (LOV) concept, the mesofluidic device integrates on-chip micro-solid phase extraction (μSPE) in automatic disposable mode followed by chemical vapor generation and gas-liquid separation prior to in-line atomic fluorescence spectrometric detection. In contrast to prevailing chelating sorbents for Hg(II), bare poly(divinylbenzene-N-vinylpyrrolidone) copolymer sorptive beads were resorted to efficient uptake of Hg(II) in hydrochloric acid milieu (pH=2.3) without the need for metal derivatization nor pH adjustment of prior acidified water samples for preservation to near-neutral conditions. Experimental variables influencing the sorptive uptake and retrieval of target species and the evolvement of elemental mercury within the miniaturized integrated reaction chamber/gas-liquid separator were investigated in detail. Using merely <10 mg of sorbent, the limits of detection and quantification at the 3s(blank) and 10s(blank) levels, respectively, for a sample volume of 3 mL were 12 and 42 ng L(-1) Hg(II) with a dynamic range extending up to 5.0 μg L(-1). The proposed mesofluidic platform copes with the requirements of regulatory bodies (US-EPA, WHO, EU-Commission) for drinking water quality and surface waters that endorse maximum allowed concentrations of mercury spanning from 0.07 to 6.0 μg L(-1). Demonstrated with the analysis of aqueous samples of varying matrix complexity, the LOV approach afforded reliable results with relative recoveries of 86-107% and intermediate precision down to 9% in the renewable μSPE format. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Determination of mercury and inorganic ions in rainwater collected in two different regions of Queretaro, Mexico from 2009 to 2014

    NASA Astrophysics Data System (ADS)

    Garcia, R.; Peralta, O.; Alvarez, H.; Carrasco, M.

    2016-12-01

    The objective of this study was to evaluate the concentration of mercury (Hg) and inorganic ions in rainwater collected in Juriquilla and San Joaquin during the rainy seasons from 2009 to 2014. A total of 380 rainwater samples were collected and analyzed for pH, conductivity, the ions NO3-, SO42-, Cl-, Ca2+, Mg2+, Na+, K+, NH4+ and Hg. The ions were measured by Ion Chromatography (IC) and Hg was measured by Hydride Vapor Generator system coupled to an Atomic Absorption Spectrometer (HVG-AAS). Ammonium presented the higher volume-weighted-mean-concentration (VWMC), followed by SO42-, NO3-, Ca2+, Cl-, Na+, Mg2+ and K+. Sulfate showed a significant increasing trend emission in San Joaquin due to the burning cinnabar (HgS) for the extraction of mercury in artisanal ovens. The authors emphasized that the associations between Hg concentrations and local meteorological conditions, such as wind's speed and direction, play an important role in the study of the chemical of precipitation.

  20. Mercury study report to Congress. Volume 4. Health effects of mercury and mercury compounds. Sab review draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoeny, R.

    1996-06-01

    This volume of the draft Mercury Study Report to Congress summarizes the available information on human health effects and animal data for hazard identification and dose-response assessment for three forms of mercury: elemental mercury, mercury chloride (inorganic mercury), and methylmercury (organic mercury). Effects are summarized by endpoint. The risk assessment evaluates carcinogenicity, mutagenicity, developmental toxicity and general systemic toxicity of these chemical species of mercury. Toxicokinetics (absorption, distribution, metabolism and excretion) are described for each of the three mercury species. PBPK models are described, but not applied in risk assessment. Reference doses are calculated for inorganic and methylmercury; a referencemore » concentration for inhaled elemental mercury is provided. A quantitiative analysis of factors contributing to variability and uncertainty in the methylmercury RfD is provided in an appendix. Interations and sensitive populations are described.« less

  1. Relationships between alterations in glutathione metabolism and the disposition of inorganic mercury in rats: effects of biliary ligation and chemically induced modulation of glutathione status.

    PubMed

    Zalups, R K; Barfuss, D W; Lash, L H

    1999-12-15

    Influences of biliary ligation and systemic depletion of glutathione (GSH) or modulation of GSH status on the disposition of a low, non-nephrotoxic i.v. dose of inorganic mercury were evaluated in rats in the present study. Renal and hepatic disposition, and the urinary and fecal excretion, of inorganic mercury were assessed 24 h after the injection of a 0.5-micromol/kg dose of mercuric chloride in control rats and rats pretreated with acivicin (two 10-mg/kg i.p. doses in 2 ml/kg normal saline, 90 min apart, 60 min before mercuric chloride), buthionine sulfoximine (BSO; 2 mmol/kg i.v. in 4 ml/kg normal saline, 2 h before mercuric chloride) or diethylmaleate (DEM; 3.37 mmol/kg i.p. in 2 ml/kg corn oil, 2 h before mercuric chloride) that either underwent or did not undergo acute biliary ligation prior to the injection of mercury. Among the groups that did not undergo biliary ligation, the pretreatments used to alter GSH status systemically had varying effects on the disposition of inorganic mercury in the kidneys, liver, and blood. Biliary ligation caused the net renal accumulation of mercury to decrease under all pretreatment conditions. By contrast, biliary ligation caused significant increases in the hepatic burden of mercury in all pretreatment groups except in theacivicin-pretreated group. Blood levels of mercury also increased as a result of biliary ligation, regardless of the type of pretreatment used. The present findings indicate that biliary ligation combined with methods used to modulate GSH status systemically have additive effects with respect to causing reductions in the net renal accumulation of mercury. Additionally, the findings indicate that at least some fraction of the renal accumulation of inorganic mercury is linked mechanistically to the hepato-biliary system.

  2. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Randall; Lanni, Lydia; Jen, K.-L. Catherine

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure maymore » be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg{sup 2+}) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg{sup 2+} intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3.« less

  3. Determination of mercurous chloride and total mercury in mercury ores

    USGS Publications Warehouse

    Fahey, J.J.

    1937-01-01

    A method for the determination of mercurous chloride and total mercury on the same sample is described. The mercury minerals are volatilized in a glass tube and brought into intimate contact with granulated sodium carbonate. The chlorine is fixed as sodium chloride, determined with silver nitrate, and computed to mercurous chloride. The mercury is collected on a previously weighed gold coil and weighed.

  4. Population-Based Inorganic Mercury Biomonitoring and the Identification of Skin Care Products as a Source of Exposure in New York City

    PubMed Central

    McKelvey, Wendy; Jeffery, Nancy; Clark, Nancy; Kass, Daniel; Parsons, Patrick J.

    2011-01-01

    Background Mercury is a toxic metal that has been used for centuries as a constituent of medicines and other items. Objective We assessed exposure to inorganic mercury in the adult population of New York City (NYC). Methods We measured mercury concentrations in spot urine specimens from a representative sample of 1,840 adult New Yorkers in the 2004 NYC Health and Nutrition Examination Survey. Cases with urine concentrations ≥ 20 μg/L were followed up with a telephone or in-person interview that asked about potential sources of exposure, including ritualistic/cultural practices, skin care products, mercury spills, herbal medicine products, and fish. Results Geometric mean urine mercury concentration in NYC was higher for Caribbean-born blacks [1.39 μg/L; 95% confidence interval (CI), 1.14–1.70] and Dominicans (1.04 μg/L; 95% CI, 0.82–1.33) than for non-Hispanic whites (0.67 μg/L; 95% CI, 0.60–0.75) or other racial/ethnic groups. It was also higher among those who reported at least 20 fish meals in the past 30 days (1.02 μg/L; 95% CI, 0.83–1.25) than among those who reported no fish meals (0.50 μg/L; 95% CI, 0.41–0.61). We observed the highest 95th percentile of exposure (21.18 μg/L; 95% CI, 7.25–51.29) among Dominican women. Mercury-containing skin-lightening creams were a source of exposure among those most highly exposed, and we subsequently identified 12 imported products containing illegal levels of mercury in NYC stores. Conclusion Population-based biomonitoring identified a previously unrecognized source of exposure to inorganic mercury among NYC residents. In response, the NYC Health Department embargoed products and notified store owners and the public that skin-lightening creams and other skin care products that contain mercury are dangerous and illegal. Although exposure to inorganic mercury is not a widespread problem in NYC, users of these products may be at risk of health effects from exposure. PMID:20923743

  5. Inorganic mercury detection by valve closure response in the freshwater clam Corbicula fluminea: integration of time and water metal concentration changes.

    PubMed

    Tran, Damien; Fournier, Elodie; Durrieu, Gilles; Massabuau, Jean-Charles

    2007-07-01

    The objective of the present study was to monitor water-quality assessment by a biological method. Optimum dissolved inorganic mercury sensitivity in the freshwater bivalve Corbicula fluminea was estimated using a combined approach to determine their potentials and limits in detecting contaminants. Detection by bivalves is based on shell closure, a protective strategy when exposed to a water contaminant. To take the rate of spontaneous closures into account, stress associated with fixation by one valve in common valvometers was integrated, and the spontaneous rhythm was associated with daily activity. The response in conditions where the probability of spontaneous closing is the lowest was thus taken into account. To develop dose-response curves, impedance valvometry, in which lightweight impedance electrodes are applied to study free-ranging animals in low-stress conditions, also was used combined with a new analytical approach. The logistic regression dose-response curves take into account variations in both response time and metal concentration in water to significantly improve the methods aiming at determining the optimal sensitivity threshold response. This approach demonstrates that in C. fluminea, inorganic mercury concentrations under the range of 2.0 to 5.1 microg/L (95% confidence interval) cannot be detected within 5 h of addition.

  6. Mercury in the nation's streams - Levels, trends, and implications

    USGS Publications Warehouse

    Wentz, Dennis A.; Brigham, Mark E.; Chasar, Lia C.; Lutz, Michelle A.; Krabbenhoft, David P.

    2014-01-01

    Mercury is a potent neurotoxin that accumulates in fish to levels of concern for human health and the health of fish-eating wildlife. Mercury contamination of fish is the primary reason for issuing fish consumption advisories, which exist in every State in the Nation. Much of the mercury originates from combustion of coal and can travel long distances in the atmosphere before being deposited. This can result in mercury-contaminated fish in areas with no obvious source of mercury pollution.Three key factors determine the level of mercury contamination in fish - the amount of inorganic mercury available to an ecosystem, the conversion of inorganic mercury to methylmercury, and the bioaccumulation of methylmercury through the food web. Inorganic mercury originates from both natural sources (such as volcanoes, geologic deposits of mercury, geothermal springs, and volatilization from the ocean) and anthropogenic sources (such as coal combustion, mining, and use of mercury in products and industrial processes). Humans have doubled the amount of inorganic mercury in the global atmosphere since pre-industrial times, with substantially greater increases occurring at locations closer to major urban areas.In aquatic ecosystems, some inorganic mercury is converted to methylmercury, the form that ultimately accumulates in fish. The rate of mercury methylation, thus the amount of methylmercury produced, varies greatly in time and space, and depends on numerous environmental factors, including temperature and the amounts of oxygen, organic matter, and sulfate that are present.Methylmercury enters aquatic food webs when it is taken up from water by algae and other microorganisms. Methylmercury concentrations increase with successively higher trophic levels in the food web—a process known as bioaccumulation. In general, fish at the top of the food web consume other fish and tend to accumulate the highest methylmercury concentrations.This report summarizes selected stream studies

  7. Long-Term Stability of Inorganic, Methyl and Ethyl Mercury in Whole Blood: Effects of Storage Temperature and Time

    PubMed Central

    Sommer, Yuliya L.; Ward, Cynthia D.; Pan, Yi; Caldwell, Kathleen L.; Jones, Robert L.

    2016-01-01

    In this study, we evaluated the effect of temperature on the long-term stability of three mercury species in bovine blood. We used inductively coupled plasma mass spectrometry (ICP-MS) analysis to determine the concentrations of inorganic (iHg), methyl (MeHg) and ethyl (EtHg) mercury species in two blood pools stored at temperatures of −70, −20, 4, 23°C (room temperature) and 37°C. Over the course of a year, we analyzed aliquots of pooled specimens at time intervals of 1, 2, 4 and 6 weeks and 2, 4, 6, 8, 10 and 12 months. We applied a fixed-effects linear model, step-down pairwise comparison and coefficient of variation statistical analysis to examine the temperature and time effects on changes in mercury species concentrations. We observed several instances of statistically significant differences in mercury species concentrations between different temperatures and time points; however, with considerations of experimental factors (such as instrumental drift and sample preparation procedures), not all differences were scientifically important. We concluded that iHg, MeHg and EtHg species in bovine whole blood were stable at −70, −20, 4 and 23°C for 1 year, but blood samples stored at 37°C were stable for no more than 2 weeks. PMID:26912563

  8. The local impact of a coal-fired power plant on inorganic mercury and methyl-mercury distribution in rice (Oryza sativa L.).

    PubMed

    Xu, Xiaohang; Meng, Bo; Zhang, Chao; Feng, Xinbin; Gu, Chunhao; Guo, Jianyang; Bishop, Kevin; Xu, Zhidong; Zhang, Sensen; Qiu, Guangle

    2017-04-01

    Emission from coal-fired power plants is one of the major anthropogenic sources of mercury (Hg) in the environment, because emitted Hg can be quickly deposited nearby the source, attention is paid to the effects of coal-burning facilities on levels of toxic methyl-mercury (MeHg) in biota near such sources. Since rice is an agricultural crop that can bio-accumulate MeHg, the potential effects of a large Hg-emitting coal-fired power plant in Hunan Province, China on both inorganic Hg (Hg(II)) and MeHg distributions in rice was investigated. Relatively high MeHg (up to 3.8 μg kg -1 ) and Hg(II) (up to 22 μg kg -1 ) concentrations were observed in rice samples collected adjacent to the plant, suggesting a potential impact of Hg emission from the coal fired power plant on the accumulation of Hg in rice in the area. Concentrations of MeHg in rice were positively correlated with soil MeHg, soil S, and gaseous elemental Hg (GEM) in ambient air. Soil MeHg was the most important factor controlling MeHg concentrations in rice. The methylation of Hg in soils may be controlled by factors such as the chemical speciation of inorganic Hg, soil S, and ambient GEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Determination of mercury compounds in fish by microwave-assisted extraction and liquid chromatography-vapor generation-inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chiou, Chwei-Sheng; Jiang, Shiuh-Jen; Kumar Danadurai, K. Suresh

    2001-07-01

    A method employing a vapor generation system and LC combined with inductively coupled plasma mass spectrometry (LC-ICP-MS) is presented for the determination of mercury in biological tissues. An open vessel microwave digestion system was used to extract the mercury compounds from the sample matrix. The efficiency of the mobile phase, a mixture of L-cysteine and 2-mercaptoethanol, was evaluated for LC separation of inorganic mercury [Hg(II)], methylmercury (methyl-Hg) and ethylmercury (ethyl-Hg). The sensitivity, detection limits and repeatability of the liquid chromatography (LC) ICP-MS system with a vapor generator were comparable to, or better than, that of an LC-ICP-MS system with conventional pneumatic nebulization, or other sample introduction techniques. The experimental detection limits for various mercury species were in the range of 0.05-0.09 ng ml -1 Hg, based on peak height. The proposed method was successfully applied to the determination of mercury compounds in a swordfish sample purchased from the local market. The accuracy of the method was evaluated by analyzing a marine biological certified reference material (DORM-2, NRCC).

  10. Mercury in traditional medicines: Is cinnabar toxicologically similar to common mercurials?

    PubMed Central

    Liu, Jie; Shi, Jing-Zheng; Yu, Li-Mei; Goyer, Robert A.; Waalkes, Michael P.

    2009-01-01

    Mercury is a major toxic metal ranking top in the Toxic Substances List. Cinnabar (contains mercury sulfide) has been used in traditional medicines for thousands years as an ingredient in various remedies, and 40 cinnabar-containing traditional medicines are still used today. Little is known about toxicology profiles or toxicokinetics of cinnabar and cinnabar-containing traditional medicines, and the high mercury content in these Chinese medicines raises justifiably escalations of public concern. This minireview searched the available database of cinnabar, compared cinnabar with common mercurials, such as mercury vapor, inorganic mercury, and organic mercury, and discusses differences in their bioavailability, disposition, and toxicity. The analysis showed that cinnabar is insoluble and poorly absorbed from the gastrointestinal tract. Absorbed mercury from cinnabar is mainly accumulated in kidney, resembling the disposition pattern of inorganic mercury. Heating cinnabar results in release of mercury vapor, which in turn can produce toxicity similar to inhalation of these vapors. The doses of cinnabar required to produce neurotoxicity are thousands 1000 times higher than methyl mercury. Following long-term use of cinnabar, renal dysfunction may occur. Dimercaprol and succimer are effective chelation therapies for general mercury intoxication including cinnabar. Pharmacology studies of cinnabar suggest sedative and hypnotic effects, but the therapeutic basis of cinnabar is still not clear. In summary, cinnabar is chemically inert with a relatively low toxic potential when taken orally. In risk assessment, cinnabar is less toxic than many other forms of mercury, but the rationale for its inclusion in traditional Chinese medicines remains to be fully justified. PMID:18445765

  11. Oral and intramuscular toxicity of inorganic and organic mercury chloride to growing quail

    USGS Publications Warehouse

    Hill, E.F.; Soares, J.H.

    1987-01-01

    The lethal toxicity of inorganic (HgCl2) and organic (CH3HgCl) mercury chloride was compared for Coturnix (Japanese quail, Coturnix japonica) of different ages from hatch through adulthood by single-dose acute oral and intramuscular injections and by a 5-d dietary trial. Sublethal mercury toxicity was studied by evaluation of plasma and brain cholinesterase activity. CH3HgCl was more toxic than HgCl2 in all tests at each age tested. LD50s consistently increased over the first 4 wk for both acute methods and both mercurials and then stabilized. The striking difference between single-dose acute and 5-d dietary tests was that CH3HgCl averaged about twice as toxic as HgCl2 by both acute methods, compared to 100 times as toxic by the dietary method. For example, at 2 wk of age, the oral LD50s for CH3HgCl and HgCl2 were 18 and 42 mg/kg and the dietary LC50s were 47 and 5086 ppm. When birds were fed HgCl2 and developed clinical signs of intoxication, they could recover once treatment was withdrawn; however, on CH3HgCl, clinical signs often commenced after treatment was withdrawn, and then actually intensified for several days and culminated in death.

  12. Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades

    USGS Publications Warehouse

    Reddy, M.M.; Aiken, G.R.

    2001-01-01

    Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.

  13. Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans.

    PubMed

    Wyatt, Lauren H; Luz, Anthony L; Cao, Xiou; Maurer, Laura L; Blawas, Ashley M; Aballay, Alejandro; Pan, William K Y; Meyer, Joel N

    2017-04-01

    Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Reported impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl 2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H 2 O 2 ), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl 2 , low-level DNA damage (∼0.25 lesions/10kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H 2 O 2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H 2 O 2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H 2 O 2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl 2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling

  14. Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans

    PubMed Central

    Wyatt, Lauren H.; Luz, Anthony L.; Cao, Xiou; Maurer, Laura L.; Blawas, Ashley M.; Aballay, Alejandro; Pan, William K.; Meyer, Joel N.

    2017-01-01

    Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H2O2), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl2, low-level DNA damage (~0.25 lesions/10 kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H2O2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H2O2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H2O2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or

  15. [Amalgam. IV. Metabolism of mercury].

    PubMed

    Gladys, S; van Meerbeek, B; Vanherle, G; Lambrechts, P

    1993-04-01

    After absorption in the body by four ways, each type of mercury undergoes a specific metabolism. Elementary mercury as mercury vapour becomes rapidly oxidized to Hg2+ and, afterwards, is metabolized as an inorganic mercurial compound. From the blood circulation mercury reaches target organs like the kidneys, the central nervous system, the liver and the hypophysis, in which mercury accumulates. The retention time varies by organ and is longest in the brain. Mercury is mainly eliminated with urine and faeces, to a lesser degree with transpiration and mother's milk and sometimes by respiration.

  16. A simple thermometric technique for reaction-rate determination of inorganic species, based on the iodide-catalysed cerium(IV)-arsenic(III) reaction.

    PubMed

    Grases, F; Forteza, R; March, J G; Cerda, V

    1985-02-01

    A very simple reaction-rate thermometric technique is used for determination of iodide (5-20 ng ml ), based on its catalytic action on the cerium(IV)-arsenic(III) reaction, and for determination of mercury(II) (1.5-10 ng ml ) and silver(I) (2-10 ng ml ), based on their inhibitory effect on this reaction. The reaction is followed by measuring the rate of temperature increase. The method suffers from very few interferences and is applied to determination of iodide in biological and inorganic samples, and Hg(II) and Ag(I) in pharmaceutical products.

  17. A dip-and-read test strip for the determination of mercury(II) ion in aqueous samples based on urease activity inhibition.

    PubMed

    Shi, Guo-Qing; Jiang, Guibin

    2002-11-01

    A sensitive dip-and-read test strip for the determination of mercury in aqueous samples based on the inhibition of urease reaction by the ion has been developed. The strip has a circular sensing zone that containing two layers: the top layer is a cellulose acetate membrane where urease is immobilized on it; the bottom layer is a pH indicator wafer that is impregnated with urea. The principle of the measurement is based on the disappearance of a yellow spot on the pH indicator wafer. The elapsing time until the disappearance of the spot which depends on the concentration of mercury(II) ion is measured with a stopwatch. Under the experimental conditions, as low as 0.2 ng/ml mercury can be observed with the detection range from 0.2 to 200 ng/ml in water. Organomercury compounds give essentially the same response as inorganic mercury. Heavy-metal ions such as Ag(I), Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) as well as other sample matrixes basically do not interfere with the mercury measurement.

  18. Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Fang, Yong; Pan, Yushi; Li, Peng; Xue, Mei; Pei, Fei; Yang, Wenjian; Ma, Ning; Hu, Qiuhui

    2016-12-15

    An analytical method using reversed phase chromatography-inductively coupled plasma mass spectrometry for arsenic and mercury speciation analysis was described. The effect of ion-pairing reagent on simultaneous separation of four arsenic (arsenite, arsenate, monomethlyarsonate and dimethylarsinate) and three mercury species (inorganic mercury (Hg(II)), methylmecury and ethylmercury) was investigated. Parameters including concentrations and pH of the mobile phase were optimized. The separation and re-equilibration time was attained within 20min. Meanwhile, a sequential extraction method for arsenic and mercury in rice was tested. Subsequently, 1% HNO3 microwave-assisted extraction was chosen. Calibration curves based on peak area measurements were linear with correlation coefficient greater than 0.9958 for each species in the range studied. The detection limits of the species were in the range of 0.84-2.41μg/L for arsenic and 0.01-0.04μg/L for mercury, respectively. The proposed method was then successfully applied for the simultaneous determination of arsenic and mercury species in rice flour standard material and two kinds of rice from local markets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Mercury Inhibits Soil Enzyme Activity in a Lower Concentration than the Guideline Value.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    Three soil types - neutral, alkaline and acidic were experimentally contaminated with nine different concentrations of inorganic mercury (0, 5, 10, 50, 100, 150, 200, 250, 300 mg/kg) to derive effective concentrations of mercury that exert toxicity on soil quality. Bioavailability of mercury in terms of water solubility was lower in acidic soil with higher organic carbon. Dehydrogenase enzyme activity and nitrification rate were chosen as indicators to assess soil quality. Inorganic mercury significantly inhibited (p < 0.001) microbial activities in the soils. The critical mercury contents (EC10) were found to be less than the available safe limits for inorganic mercury which demonstrated inadequacy of existing guideline values.

  20. Mercury in breast milk - a health hazard for infants in gold mining areas?

    PubMed

    Bose-O'Reilly, Stephan; Lettmeier, Beate; Roider, Gabriele; Siebert, Uwe; Drasch, Gustav

    2008-10-01

    Breast-feeding can be a source of mercury exposure for infants. The main concern up to now is methyl-mercury exposure of women at child-bearing age. Certain fish species have high levels of methyl-mercury leading to consumer's advisory guidelines in regard of fish consumption to protect infants from mercury exposure passing through breast milk. Little is known about the transfer of inorganic mercury passing through breast milk to infants. Epidemiological studies showed negative health effects of inorganic mercury in gold mining areas. Small-scale gold miners use mercury to extract the gold from the ore. Environmental and health assessments of gold mining areas in Indonesia, Tanzania and Zimbabwe showed a high exposure with inorganic mercury in these gold mining areas, and a negative health impact of the exposure to the miners and the communities. This paper reports about the analysis and the results of 46 breast milk samples collected from mercury-exposed mothers. The median level of 1.87mug/l is fairly high compared to other results from literature. Some breast milk samples showed very high levels of mercury (up to 149mug/l). Fourteen of the 46 breast milk samples exceed 4mug/l which is considered to be a "high" level. US EPA recommends a "Reference Dose" of 0.3mug inorganic mercury/kg body weight/day [United States Environmental Protection Agency, 1997. Volume V: Health Effects of Mercury and Mercury Compounds. Study Report EPA-452/R-97-007: US EPA]. Twenty-two of the 46 children from these gold mining areas had a higher calculated total mercury uptake. The highest calculated daily mercury uptake of 127mug exceeds by far the recommended maximum uptake of inorganic mercury. Further systematic research of mercury in breast milk from small-scale gold mining areas is needed to increase the knowledge about the bio-transfer of mercury from mercury vapour-exposed mothers passing through breast milk to the breast-fed infant.

  1. A comprehensive study of Mercury and MESSENGER orbit determination

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Nicholas, Joseph B.; Rowlands, David D.; Smith, David E.; Zuber, Maria; Solomon, Sean C.

    2016-10-01

    The MErcury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury for more than 4 years. The probe started its science mission in orbit around Mercury on 18 March 2011. The Mercury Laser Altimeter (MLA) and radio science system were the instruments dedicated to geodetic observations of the topography, gravity field, orientation, and tides of Mercury. X-band radio-tracking range-rate data collected by the NASA Deep Space Network (DSN) allowed the determination of Mercury's gravity field to spherical harmonic degree and order 100, the planet's obliquity, and the Love number k2.The extensive range data acquired in orbit around Mercury during the science mission (from April 2011 to April 2015), and during the three flybys of the planet in 2008 and 2009, provide a powerful dataset for the investigation of Mercury's ephemeris. The proximity of Mercury's orbit to the Sun leads to a significant perihelion precession attributable to the gravitational flattening of the Sun (J2) and the Parameterized Post-Newtonian (PPN) coefficients γ and β, which describe the space curvature produced by a unit rest mass and the nonlinearity in superposition of gravity, respectively. Therefore, the estimation of Mercury's ephemeris can provide crucial information on the interior structure of the Sun and Einstein's general theory of relativity. However, the high correlation among J2, γ, and β complicates the combined recovery of these parameters, so additional assumptions are required, such as the Nordtvedt relationship η = 4β - γ - 3.We have modified our orbit determination software, GEODYN II, to enable the simultaneous integration of the spacecraft and central body trajectories. The combined estimation of the MESSENGER and Mercury orbits allowed us to determine a more accurate gravity field, orientation, and tides of Mercury, and the values of GM and J2 for the Sun, where G is the gravitational constant and M is the solar mass

  2. MRP2 and the Handling of Mercuric Ions in Rats Exposed Acutely to Inorganic and Organic Species of Mercury

    PubMed Central

    Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.

    2011-01-01

    Mercuric ions accumulate preferentially in renal tubular epithelial cells and bond with intracellular thiols. Certain metal-complexing agents have been shown to promote extraction of mercuric ions via the multidrug resistance-associated protein 2 (MRP2). Following exposure to a non-toxic dose of inorganic mercury (Hg2+), in the absence of complexing agents, tubular cells are capable of exporting a small fraction of intracellular Hg2+ through one or more undetermined mechanisms. We hypothesize that MRP2 plays a role in this export. To test this hypothesis, Wistar (control) and TR− rats were injected intravenously with a non-nephrotoxic dose of HgCl2 (0.5 μmol/kg) or CH3HgCl (5 mg/kg), containing [203Hg], in the presence or absence of cysteine (Cys; 1.25 μmol/kg or 12.5 mg/kg, respectively). Animals were sacrificed 24 h after exposure to mercury and the content of [203Hg] in blood, kidneys, liver, urine and feces was determined. In addition, uptake of Cys-S-conjugates of Hg2+ and methylmercury (CH3Hg+) was measured in inside-out membrane vesicles prepared from either control Sf9 cells or Sf9 cells transfected with human MRP2. The amount of mercury in the total renal mass and liver was significantly greater in TR− rats than in controls. In contrast, the amount of mercury in urine and feces was significantly lower in TR− rats than in controls. Data from membrane vesicles indicate that Cys-S-conjugates of Hg2+ and CH3Hg+ are transportable substrates of MRP2. Collectively, these data indicate that MRP2 plays a role in the physiological handling and elimination of mercuric ions from the kidney. PMID:21134393

  3. Physiological model for the pharmacokinetics of methyl mercury in the growing rat.

    PubMed

    Farris, F F; Dedrick, R L; Allen, P V; Smith, J C

    1993-03-01

    We describe a physiological pharmacokinetic model for methyl mercury and its metabolite mercuric mercury in the growing rat. Demethylation appears to occur in both host tissues and gastrointestinal flora with elimination dominated by biliary secretion of inorganic mercury and by transport of methyl mercury into the gut lumen followed by substantial bacterial metabolism. Biliary transport of both organic and inorganic mercury is modeled in terms of the known secretion of glutathione from the hepatic pool. At 98 days following an oral tracer dose of 203Hg-labeled methyl mercury chloride, 65% of the administered dose had been recovered in the feces as inorganic mercury and 15% as organic mercury. Urinary excretion is a minor elimination route, accounting for less than 4% of the dose as methyl mercury and 1% of the dose as inorganic mercury. Irreversible incorporation of the mercurials into hair is a significant route of elimination. Ten percent of the administered dose was contained in the hair shed during the 98 days and over 12% of the dose (almost 90% of the body burden) remained in the hair at the end of that time period. Apparent ingestion of hair by the rats during grooming represents a novel form of toxin recirculation. Transport of both chemical species between blood and tissues is bidirectional and symmetric with relatively slow movement into and out of the brain. Transport mechanisms for both mercurial species are discussed in the context of capillary transport physiology and the blood-brain barrier to small molecules and proteins.

  4. Heavy metal, total arsenic, and inorganic arsenic contents of algae food products.

    PubMed

    Almela, C; Algora, S; Benito, V; Clemente, M J; Devesa, V; Súñer, M A; Vélez, D; Montoro, R

    2002-02-13

    The total arsenic, inorganic arsenic, lead, cadmium, and mercury contents of 18 algae food products currently on sale in Spain were determined. The suitability of the analytical methodologies for this type of matrix was confirmed by evaluating their analytical characteristics. The concentration ranges found for each contaminant, expressed in milligrams per kilogram of dry weight, were as follows: total arsenic, 2.3-141; inorganic arsenic, 0.15-88; lead, < 0.05-1.33; cadmium, 0.03-1.9; and mercury, 0.004-0.04. There is currently no legislation in Spain regarding contaminants in algae food products, but some of the samples analyzed revealed Cd and inorganic As levels higher than those permitted by legislation in other countries. Given the high concentrations of inorganic As found in Hizikia fusiforme, a daily consumption of 1.7 g of the product would reach the Provisional Tolerable Weekly Intake recommended by the WHO for an average body weight of 68 kg. A more comprehensive study of the contents and toxicological implications of the inorganic As present in the algae food products currently sold in Spain may be necessary, which might then be the basis for the introduction of specific sales restrictions.

  5. Modelling of mercury emissions from background soils.

    PubMed

    Scholtz, M T; Van Heyst, B J; Schroeder, W H

    2003-03-20

    Emissions of volatile mercury species from natural soils are believed to be a significant contributor to the atmospheric burden of mercury, but only order-of-magnitude estimates of emissions from these sources are available. The scaling-up of mercury flux measurements to regional or global scales is confounded by a limited understanding of the physical, chemical and biochemical processes that occur in the soil, a complex environmental matrix. This study is a first step toward the development of an air-surface exchange model for mercury (known as the mercury emission model (MEM)). The objective of the study is to model the partitioning and movement of inorganic Hg(II) and Hg(0) in open field soils, and to use MEM to interpret published data on mercury emissions to the atmosphere. MEM is a multi-layered, dynamic finite-element soil and atmospheric surface-layer model that simulates the exchange of heat, moisture and mercury between soils and the atmosphere. The model includes a simple formulation of the reduction of inorganic Hg(II) to Hg(0). Good agreement was found between the meteorological dependence of observed mercury emission fluxes, and hourly modelled fluxes, and it is concluded that MEM is able to simulate well the soil and atmospheric processes influencing the emission of Hg(0) to the atmosphere. The heretofore unexplained close correlation between soil temperature and mercury emission flux is fully modelled by MEM and is attributed to the temperature dependence of the Hg(0) Henry's Law coefficient and the control of the volumetric soil-air fraction on the diffusion of Hg(0) near the surface. The observed correlation between solar radiation intensity and mercury flux, appears in part to be due to the surface-energy balance between radiation, and sensible and latent heat fluxes which determines the soil temperature. The modelled results imply that empirical correlations that are based only on flux chamber data, may not extend to the open atmosphere for all

  6. Total Mercury, Methylmercury, Inorganic Arsenic and Other Elements in Meat from Minke Whale (Balaenoptera acutorostrata) from the North East Atlantic Ocean.

    PubMed

    Maage, Amund; Nilsen, Bente M; Julshamn, Kaare; Frøyland, Livar; Valdersnes, Stig

    2017-08-01

    Meat samples of 84 minke whales (Balaenoptera acutorostrata) mainly from the Barents Sea, collected between 1 May and 16 August 2011, were analyzed for total mercury, methylmercury, cadmium, lead, total arsenic, inorganic arsenic and selenium. The average total mercury concentration found was 0.15 ± 0.09 mg/kg, with a range from 0.05 to 0.49 mg/kg. The molar ratio of selenium to mercury varied between 1.0 and 10.3. Cadmium content ranged from 0.002 to 0.036 mg/kg, while the content of lead in whale meat ranged from <0.01 to 0.09 mg/kg. None of the whale samples exceeded established EU maximum levels for metals in fish muscle, but 4.8% and 6.8% of the samples exceeded Japanese maximum levels for total mercury and methylmercury, respectively, in whale meat. There was only minor variations in element concentrations between whales from different geographical areas, and cadmium was the only element were the concentration increased with increasing length.

  7. Isotopic composition of inorganic mercury and methylmercury downstream of a historical gold mining region

    USGS Publications Warehouse

    Donovan, Patrick M.; Blum, Joel D.; Singer, Michael B.; Marvin-DiPasquale, Mark C.; Tsui, Martin T.K.

    2016-01-01

    We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ202Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ202Hg = −0.38 ± 0.17‰ and Δ199Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ202Hg of MMHg prior to photodegradation (−1.29 to −1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to −0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments.

  8. Isotopic Composition of Inorganic Mercury and Methylmercury Downstream of a Historical Gold Mining Region.

    PubMed

    Donovan, Patrick M; Blum, Joel D; Singer, Michael Bliss; Marvin-DiPasquale, Mark; Tsui, Martin T K

    2016-02-16

    We measured total mercury (THg) and monomethyl mercury (MMHg) concentrations and mercury (Hg) isotopic compositions in sediment and aquatic organisms from the Yuba River (California, USA) to identify Hg sources and biogeochemical transformations downstream of a historical gold mining region. Sediment THg concentrations and δ(202)Hg decreased from the upper Yuba Fan to the lower Yuba Fan and the Feather River. These results are consistent with the release of Hg during gold mining followed by downstream mixing and dilution. The Hg isotopic composition of Yuba Fan sediment (δ(202)Hg = -0.38 ± 0.17‰ and Δ(199)Hg = 0.04 ± 0.03‰; mean ± 1 SD, n = 7) provides a fingerprint of inorganic Hg (IHg) that could be methylated locally or after transport downstream. The isotopic composition of MMHg in the Yuba River food web was estimated using biota with a range of %MMHg (the percent of THg present as MMHg) and compared to IHg in sediment, algae, and the food web. The estimated δ(202)Hg of MMHg prior to photodegradation (-1.29 to -1.07‰) was lower than that of IHg and we suggest this is due to mass-dependent fractionation (MDF) of up to -0.9‰ between IHg and MMHg. This result is in contrast to net positive MDF (+0.4 to +0.8‰) previously observed in lakes, estuaries, coastal oceans, and forests. We hypothesize that this unique relationship could be due to differences in the extent or pathway of biotic MMHg degradation in stream environments.

  9. Comparison of Adsorbed Mercury Screening Method With Cold-Vapor Atomic Absorption Spectrophotometry for Determination of Mercury in Soil

    NASA Technical Reports Server (NTRS)

    Easterling, Donald F.; Hovanitz, Edward S.; Street, Kenneth W.

    2000-01-01

    A field screening method for the determination of elemental mercury in environmental soil samples involves the thermal desorption of the mercury from the sample onto gold and then the thermal desorption from the gold to a gold-film mercury vapor analyzer. This field screening method contains a large number of conditions that could be optimized for the various types of soils encountered. In this study, the conditions were optimized for the determination of mercury in silty clay materials, and the results were comparable to the cold-vapor atomic absorption spectrophotometric method of determination. This paper discusses the benefits and disadvantages of employing the field screening method and provides the sequence of conditions that must be optimized to employ this method of determination on other soil types.

  10. Modeling Mercury in Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jeremy C; Parks, Jerry M

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with variousmore » proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.« less

  11. [Determination of mercury in Boletus impolitus by flow injection-atomic absorption spectrometry].

    PubMed

    Li, Tao; Wang, Yuan-Zhong

    2008-04-01

    Various test conditions and effect factors for the determination of mercury by flow injection-atomic absorption spectrometry were discussed, and a method for the determination of mercury in Boletus impolitus has been developed. The linear range for mercury is 0-60 microg x L(-1). The relative standard deviation is less than 3.0%, and the recovery is 96%-107%. This method is simple, rapid and has been applied to the determination of mercury in Boletus impolitus samples with satisfactory results.

  12. Global Mercury Pathways in the Arctic Ecosystem

    NASA Astrophysics Data System (ADS)

    Lahoutifard, N.; Lean, D.

    2003-12-01

    The sudden depletions of atmospheric mercury which occur during the Arctic spring are believed to involve oxidation of gaseous elemental mercury, Hg(0), rendering it less volatile and more soluble. The Hg(II) oxidation product(s) are more susceptible to deposition, consistent with the observation of dramatic increases in snow mercury levels during depletion events. Temporal correlations with ozone depletion events and the proliferation of BrO radicals support the hypothesis that oxidation of Hg(0) occurs in the gas phase and results in its conversion to RGM (Reactive Gaseous Mercury). The mechanisms of Hg(0) oxidation and particularly Hg(II) reduction are as yet unproven. In order to evaluate the feasibility of proposed chemical processes involving mercury in the Arctic atmosphere and its pathway after deposition on the snow from the air, we investigated mercury speciation in air and snow pack at Resolute, Nunavut, Canada (latitude 75° N) prior to and during snow melt during spring 2003. Quantitative, real-time information on emission, air transport and deposition were combined with experimental studies of the distribution and concentrations of different mercury species, methyl mercury, anions, total organic carbon and total inorganic carbon in snow samples. The effect of solar radiation and photoreductants on mercury in snow samples was also investigated. In this work, we quantify mercury removed from the air, and deposited on the snow and the transformation to inorganic and methyl mercury.

  13. Determination of total mercury in biological and geological samples

    USGS Publications Warehouse

    Crock, James G.

    2005-01-01

    The analytical chemist is faced with several challenges when determining mercury in biological and geological materials. These challenges include widespread mercury contamination, both in the laboratory and the environment, possible losses of mercury during sample preparation and digestion, the wide range of mercury values commonly observed, ranging from the low nanogram per gram or per liter for background areas to hundreds of milligrams per kilogram in contaminated or ore-bearing areas, great matrix diversity, and sample heterogeneity1. These factors can be naturally occurring or anthropogenic, but must be addressed to provide a precise and accurate analysis. Although there are many instrumental methods available for the successful determination of mercury, no one technique will address all problems or all samples all of the time. The approach for the determination of mercury used at the U.S. Geological Survey, Crustal Imaging and Characterization Team, Denver Laboratories, utilizes a suite of complementary instrumental methods when approaching a study requiring mercury analyses. Typically, a study could require the analysis of waters, leachates or selective digestions of solids, vegetation, and biological materials such as tissue, bone, or shell, soils, rocks, sediments, coals, sludges, and(or) ashes. No one digestion or sample preparation method will be suitable for all of these matrices. The digestions typically employed at our laboratories include: (i) a closed-vessel microwave method using nitric acid and hydrogen peroxide, followed by digestion/dilution with a nitric acid/sodium dichromate solution, (ii) a robotic open test-tube digestion with nitric acid and sodium dichromate, (iii) a sealed Teflon? vessel with nitric acid and sodium dichromate, (iv) a sealed glass bottle with nitric acid and sodium dichromate, or (v) open test tube digestion with nitric and sulfuric acids and vanadium pentoxide. The common factor in all these digestions is that they are

  14. Inorganic mercury causes pancreatic beta-cell death via the oxidative stress-induced apoptotic and necrotic pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yawen; Huang Chunfa; Yang Chingyao

    2010-03-15

    Mercury is a well-known highly toxic metal. In this study, we characterize and investigate the cytotoxicity and its possible mechanisms of inorganic mercury in pancreatic beta-cells. Mercury chloride (HgCl{sub 2}) dose-dependently decreased the function of insulin secretion and cell viability in pancreatic beta-cell-derived HIT-T15 cells and isolated mouse pancreatic islets. HgCl{sub 2} significantly increased ROS formation in HIT-T15 cells. Antioxidant N-acetylcysteine effectively reversed HgCl{sub 2}-induced insulin secretion dysfunction in HIT-T15 cells and isolated mouse pancreatic islets. Moreover, HgCl{sub 2} increased sub-G1 hypodiploids and annexin-V binding in HIT-T15 cells, indicating that HgCl{sub 2} possessed ability in apoptosis induction. HgCl{sub 2} alsomore » displayed several features of mitochondria-dependent apoptotic signals including disruption of the mitochondrial membrane potential, increase of mitochondrial cytochrome c release and activations of poly (ADP-ribose) polymerase (PARP) and caspase 3. Exposure of HIT-T15 cells to HgCl{sub 2} could significantly increase both apoptotic and necrotic cell populations by acridine orange/ethidium bromide dual staining. Meanwhile, HgCl{sub 2} could also trigger the depletion of intracellular ATP levels and increase the LDH release from HIT-T15 cells. These HgCl{sub 2}-induced cell death-related signals could be significantly reversed by N-acetylcysteine. The intracellular mercury levels were markedly elevated in HgCl{sub 2}-treated HIT-T15 cells. Taken together, these results suggest that HgCl{sub 2}-induced oxidative stress causes pancreatic beta-cell dysfunction and cytotoxicity involved the co-existence of apoptotic and necrotic cell death.« less

  15. PATHOLOIGCAL EFFECTS OF DIETARY METHYL MERCURY IN AMERICAN KESTRELS ( FALCO SPARVERIUS)

    EPA Science Inventory

    Methyl mercury in aquatic food webs poses significant health risks to both wildlife and humans. One primary source of mercury contamination for both aquatic and terrestrial systems is atmospheric deposition of inorganic mercury from industrial emissions. Once in the environment, ...

  16. Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Laura S., E-mail: lsaylors@umich.edu; Blum, Joel D.; Basu, Niladri

    Total mercury (Hg) concentrations in hair and urine are often used as biomarkers of exposure to fish-derived methylmercury (MeHg) and gaseous elemental Hg, respectively. We used Hg stable isotopes to assess the validity of these biomarkers among small-scale gold mining populations in Ghana and Indonesia. Urine from Ghanaian miners displayed similar Δ{sup 199}Hg values to Hg derived from ore deposits (mean urine Δ{sup 199}Hg=0.01‰, n=6). This suggests that urine total Hg concentrations accurately reflect exposure to inorganic Hg among this population. Hair samples from Ghanaian miners displayed low positive Δ{sup 199}Hg values (0.23–0.55‰, n=6) and low percentages of total Hgmore » as MeHg (7.6–29%, n=7). These data suggest that the majority of the Hg in these miners' hair samples is exogenously adsorbed inorganic Hg and not fish-derived MeHg. Hair samples from Indonesian gold miners who eat fish daily displayed a wider range of positive Δ{sup 199}Hg values (0.21–1.32‰, n=5) and percentages of total Hg as MeHg (32–72%, n=4). This suggests that total Hg in the hair samples from Indonesian gold miners is likely a mixture of ingested fish MeHg and exogenously adsorbed inorganic Hg. Based on data from both populations, we suggest that total Hg concentrations in hair samples from small-scale gold miners likely overestimate exposure to MeHg from fish consumption. - Highlights: • Mercury isotopes were measured in hair and urine from small-scale gold miners. • Mercury isotopes indicate that Hg in urine comes from mining activity. • Mercury isotopes suggest Hg in hair is a mixture of fish MeHg and inorganic Hg. • A large percentage of Hg in miner’s hair is released during amalgam burning and adsorbed.« less

  17. Inorganic mercury binding with different sulfur species in anoxic sediments and their gut juice extractions.

    PubMed

    Zhong, Huan; Wang, Wen-Xiong

    2009-09-01

    To investigate the roles of different sulfur (S) species in controlling the partitioning and bioavailability of inorganic mercury (Hg) in anoxic sediments, we examined the differential binding of Hg with three key S species in anoxic sediment (mackinawite [FeS], pyrite [FeS2], and S(2-)) and then quantified their extraction by the gut juice of deposit-feeding sipunculans Sipunculus nudus. A sequential extraction method was simultaneously used to distinguish Hg sorption with different sediment components. All three S-containing sediment components could lead to a high binding of Hg in sediments, but most Hg was sorbed with FeS or FeS2 instead of formation of Hg sulfide despite the presence of S(2-) or humic acid. The gut juice extraction was relatively low and constant whenever FeS and FeS2 were in the sediment, indicating that both FeS and FeS2 controlled the Hg gut juice extraction and thus bioavailability. Mercury sorbed with FeS2 had higher gut juice extraction than that with FeS, while Hg sulfide was not extracted, strongly suggesting that Hg sorbed with FeS2 was more bioavailable than that with other S species. Mercury sorbed with FeS had very low bioavailability to sipunculans at a low Hg:S ratio in the sediment but was more bioavailable with increasing Hg:S ratio up to a maximum (approximately 1:10, mole based). The present study showed that different S species (FeS, FeS2) and Hg:S ratios significantly affected the binding and bioavailability of Hg in anoxic sediments.

  18. PATHOLOGICAL EFFECTS OF DIETARY METHYL MERCURY IN AMERICAN KESTRELS (FALCO SPARVERIIUS)

    EPA Science Inventory

    Methyl mercury in the aquatic food web poses significant health risks to both wildlife and humans. One primary source of mercury contamination for both the aquatic and terrestrial systems is atmospheric deposition of inorganic mercury from industrial emissions. Once in the enviro...

  19. Determination of methyl mercury in dental-unit wastewater.

    PubMed

    Stone, Mark E; Cohen, Mark E; Liang, Lian; Pang, Patrick

    2003-11-01

    The objective of this investigation was to establish whether monomethyl mercury (MMHg) is present in dental-unit wastewater and if present, to determine the concentration relative to total mercury. Wastewater samples were collected over an 18-month period from three locations: at the dental chair; at a 30-chair clinic, and at a 107-chair clinic. Total mercury determinations were completed using United States Environmental Protection Agency's (USEPA) method 1631. MMHg was measured utilizing modified USEPA method 1630. The total mercury levels were found to be: 45182.11 microg/l (n=13, SD=68562.42) for the chair-side samples, 5350.74 microg/l (n=12, SD=2672.94) for samples at the 30-chair clinic, and 13439.13 microg/l (n=13, SD=9898.91) for samples at the107-chair clinic. Monomethyl Hg levels averaged 0.90 microg/l (n=13, SD=0.87) for chair side samples, 8.26 (n=12, SD=7.74) for the 30-chair facility, and 26.77 microg/l (n=13, SD=34.50) for 107-chair facility. By way of comparison, the MMHg levels for the open ocean, lakes and rain are orders of magnitude lower than methyl mercury levels seen in dental wastewater (part per billion levels for dental wastewater samples compared to part per trillion levels for samples from the environment). Environmentally important levels of MMHg were found to be present in dental-unit wastewater at concentrations orders of magnitude higher than seen in natural settings.

  20. In vitro evaluation of dietary compounds to reduce mercury bioavailability.

    PubMed

    Jadán-Piedra, Carlos; Vélez, Dinoraz; Devesa, Vicenta

    2018-05-15

    Mercury in foods, in inorganic form [Hg(II)] or as methylmercury (CH 3 Hg), can have adverse effects. Its elimination from foods is not technologically viable. To reduce human exposure, possible alternatives might be based on reducing its intestinal absorption. This study evaluates the ability of 23 dietary components to reduce the amount of mercury that is absorbed and reaches the bloodstream (bioavailability). We determined their effect on uptake of mercury in Caco-2 cells, a model of intestinal epithelium, exposed to Hg(II) and CH 3 Hg standards and to swordfish bioaccessible fractions. Cysteine, homocysteine, glutathione, quercetin, albumin and tannic reduce bioavailability of both mercury species. Fe(II), lipoic acid, pectin, epigallocatechin and thiamine are also effective for Hg(II). Some of these strategies also reduce Hg bioavailability in swordfish (glutathione, cysteine, homocysteine). Moreover, extracts and supplements rich in these compounds are also effective. This knowledge may help to define dietary strategies to reduce in vivo mercury bioavailability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Advances in understanding the renal transport and toxicity of mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalups, R.K.; Lash, L.H.

    1994-01-01

    As a result of industrialization and changes in the environment during the twentieth century, humans and animals are exposed to numerous chemical forms of mercury, including elemental mercury vapor (Hg[sup 0]), inorganic mercurous (Hg[sup +]) and mercuric (Hg[sup 2+]) compounds, and organic mercuric (R-Hg[sup +] or R-Hg-R; where R represents any organic ligand) compounds. The risk of exposure and subsequent intoxication is of increasing concern because of the steadily increasing deposition of mercury in the environment (Fitzgerald Clarkson, 1991). All forms of mercury have nephrotoxic effects, although disposition and toxicity of mercury in tissues can vary depending on the chemicalmore » form of mercury. For example, the initial toxic effects of both elemental mercury and organic forms of mercury are observed in the nervous system. This is due to their lipophilicity, which allows them to cross the blood-brain barrier. At later times, hepatotoxicity and nephrotoxicity can develop. With inorganic mercurous or mercuric salts, the most prominent effect is nephrotoxicity. Until recently, little was known about the mechanisms involved in the nephropathy induced by mercury. The purpose of this article is to review recent data on the intrarenal accumulation and disposition, nephrotoxicity, and target site specificity of mercury, and factors that modify or alter renal injury induced by mercury. 170 refs., 7 figs.« less

  2. [Genotoxic damage among artisanal and small-scale mining workers exposed to mercury].

    PubMed

    Rosales-Rimache, Jaime A; Elizabeth Malca, Nancy; Alarcón, Jhonatan J; Chávez, Manuel; Gonzáles, Marco Antonio

    2013-01-01

    To determine the genotoxic damage among artisanal and small-scale mining workers exposed to mercury. Observational cross-sectional study which evaluated mercury-exposed workers (n=83), whose cells were collected by mouth swab for further staining, microscopic observance, micronuclei count, and other nuclear alterations. 24-hour urine was also collected for the determination of inorganic mercury. 68.7% of participants were male, the mean age being 43 ± 12,4 years (range: 16-76). The average time of occupational exposure to mercury was 12,1 ± 6,7 years, and the contact with mercury was 4,1 ± 3,6 kg per person per day. 93% of participants failed to wear personal protection gear while handling mercury. Results of biological monitoring showed that 17% of participants had concentrations of mercury in urine higher than 2,5 µg/L, this value being the detection limit of the measurement technique used. Results of the genotoxic evaluation evidenced that 15% of people with labor exposure to mercury presented micronuclei in mouth epithelial cells, and other indicators of nuclear alteration such as nucleoplasmic bridges, gemmation and binucleation were found, which are also considered genotoxic events associated to the exposure of physical or chemical risk agents. The finding of micronuclei in mouth epithelial cells reflects genotoxic damage associated to the labor exposure of mercury used in artisanal and small-scale mining activities.

  3. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Jin, Yan; Han, Weiying; Miao, Qiang; Bi, Shuping

    2006-07-01

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH 4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h - 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l - 1 for Hg 2+ and 2.0 ng l - 1 for CH 3Hg +. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l - 1 of Hg 2+ and CH 3Hg + were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.

  4. Determining Inorganic and Organic Carbon.

    PubMed

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  5. Evaluation of mercury cycling and hypolimnetic oxygenation in mercury-impacted seasonally stratified reservoirs in the Guadalupe River watershed, California

    NASA Astrophysics Data System (ADS)

    McCord, Stephen A.; Beutel, Marc W.; Dent, Stephen R.; Schladow, S. G.

    2016-10-01

    Surface water reservoirs trap inorganic mercury delivered from their watersheds, create conditions that convert inorganic mercury to highly toxic methylmercury (MeHg), and host sportfish in which MeHg bioaccumulates. The Santa Clara Valley Water District (District) actively manages and monitors four mercury-impaired reservoirs that help to serve communities in South San Francisco Bay, California. The Guadalupe River watershed, which contains three of those reservoirs, also includes the New Almaden mercury-mining district, the largest historic mercury producer in North America. Monthly vertical profiles of field measurements and grab samples in years 2011-2013 portray annual cycling of density stratification, dissolved oxygen (DO), and MeHg. Monitoring results highlight the role that hypolimnetic hypoxia plays in MeHg distribution in the water column, as well as the consistent, tight coupling between MeHg in ecological compartments (water, zooplankton, and bass) across the four reservoirs. Following the 2011-2013 monitoring period, the District designed and installed hypolimnetic oxygenation systems (HOS) in the four reservoirs in an effort to repress MeHg buildup in bottom waters and attain regulatory targets for MeHg in water and fish tissue. Initial HOS operation in Calero Reservoir in 2014 enhanced bottom water DO and depressed hypolimnetic buildup of MeHg, but did not substantially decrease mercury levels in zooplankton or small fish.

  6. Simultaneous determination of mercury and organic carbon using a direct mercury analyzer: Mercury profiles in sediment cores from oxbow lakes in the Mississippi Delta

    USDA-ARS?s Scientific Manuscript database

    Sediment cores from seasonal wetland and open water areas from six oxbow lakes in the Mississippi River alluvial flood plain were analyzed for total-mercury (Hg) using a direct mercury analyzer (DMA). In the process we evaluated the feasibility of simultaneously determining organic matter content by...

  7. Current approaches of the management of mercury poisoning: need of the hour

    PubMed Central

    2014-01-01

    Mercury poisoning cases have been reported in many parts of the world, resulting in many deaths every year. Mercury compounds are classified in different chemical types such as elemental, inorganic and organic forms. Long term exposure to mercury compounds from different sources e.g. water, food, soil and air lead to toxic effects on cardiovascular, pulmonary, urinary, gastrointestinal, neurological systems and skin. Mercury level can be measured in plasma, urine, feces and hair samples. Urinary concentration is a good indicator of poisoning of elemental and inorganic mercury, but organic mercury (e.g. methyl mercury) can be detected easily in feces. Gold nanoparticles (AuNPs) are a rapid, cheap and sensitive method for detection of thymine bound mercuric ions. Silver nanoparticles are used as a sensitive detector of low concentration Hg2+ ions in homogeneous aqueous solutions. Besides supportive therapy, British anti lewisite, dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA. succimer) and dimercaptopropanesulfoxid acid (DMPS) are currently used as chelating agents in mercury poisoning. Natural biologic scavengers such as algae, azolla and other aquatic plants possess the ability to uptake mercury traces from the environment. PMID:24888360

  8. Effective mercury(II) bioremoval from aqueous solution, and its electrochemical determination.

    PubMed

    Balderas-Hernández, Patricia; Roa-Morales, Gabriela; Ramírez-Silva, María Teresa; Romero-Romo, Mario; Rodríguez-Sevilla, Erika; Esparza-Schulz, Juan Marcos; Juárez-Gómez, Jorge

    2017-01-01

    This work proposed mercury elimination using agricultural waste (Allium Cepa L.). The biomass removed 99.4% of mercury, following a pseudo-second order kinetics (r 2  = 0.9999). The Langmuir model was adequately fitted to the adsorption isotherm, thereby obtaining the maximum mercury adsorption capacity of 111.1 ± 0.3 mg g -1 . The biomass showed high density of strong mercury chelating groups, thus making it economically attractive. Also, the implementation of a mercury-selective electrode for continuous determination in real time is proposed; this electrode replaces techniques like atomic absorption spectroscopy, thus it can be applied to real time studies. This work therefore presents a new perspective for removing mercury(II) from contaminated water for environmental remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Determination of mercury in ayurvedic dietary supplements that are not rasa shastra using the hydra-C direct mercury analyzer.

    PubMed

    Abdalla, Amir A; Smith, Robert E

    2013-01-01

    Mercury has been determined in Ayurvedic dietary supplements (Trifala, Trifala Guggulu, Turmeric, Mahasudarshan, Yograj, Shatawari, Hingwastika, Shatavari, and Shilajit) by inductively coupled plasma-mass spectrometry (ICP-MS) and direct mercury analysis using the Hydra-C direct mercury analyzer (Teledyne Leeman Labs Hudson, NH, USA). Similar results were obtained from the two methods, but the direct mercury analysis method was much faster and safer and required no microwave digestion (unlike ICP-MS). Levels of mercury ranged from 0.002 to 56  μ g/g in samples of dietary supplements. Standard reference materials Ephedra 3240 and tomato leaves that were from the National Institute of Standard and Technology (NIST) and dogfish liver (DOLT3) that was from the Canadian Research Council were analyzed using Hydra-C method. Average mercury recoveries were 102% (RSD% 0.0018), 100% (RSD% 0.0009), and 101% (RSD% 0.0729), respectively. Hydra-C method Limit Of Quantitation was 0.5 ng.

  11. Determination of Mercury in Ayurvedic Dietary Supplements That Are Not Rasa Shastra Using the Hydra-C Direct Mercury Analyzer

    PubMed Central

    Abdalla, Amir A.; Smith, Robert E.

    2013-01-01

    Mercury has been determined in Ayurvedic dietary supplements (Trifala, Trifala Guggulu, Turmeric, Mahasudarshan, Yograj, Shatawari, Hingwastika, Shatavari, and Shilajit) by inductively coupled plasma-mass spectrometry (ICP-MS) and direct mercury analysis using the Hydra-C direct mercury analyzer (Teledyne Leeman Labs Hudson, NH, USA). Similar results were obtained from the two methods, but the direct mercury analysis method was much faster and safer and required no microwave digestion (unlike ICP-MS). Levels of mercury ranged from 0.002 to 56 μg/g in samples of dietary supplements. Standard reference materials Ephedra 3240 and tomato leaves that were from the National Institute of Standard and Technology (NIST) and dogfish liver (DOLT3) that was from the Canadian Research Council were analyzed using Hydra-C method. Average mercury recoveries were 102% (RSD% 0.0018), 100% (RSD% 0.0009), and 101% (RSD% 0.0729), respectively. Hydra-C method Limit Of Quantitation was 0.5 ng. PMID:23710181

  12. TRANSPORT OF THIOL-CONJUGATES OF INORGANIC MERCURY IN HUMAN RETINAL PIGMENT EPITHELIAL CELLS

    PubMed Central

    Bridges, Christy C.; Battle, Jamie R.; Zalups, Rudolfs K.

    2007-01-01

    Inorganic mercury (Hg2+) is a prevalent environmental contaminant to which exposure to can damage rod photoreceptor cells and compromise scotopic vision. The retinal pigment epithelium (RPE) likely plays a role in the ocular toxicity associated with Hg2+ exposure in that it mediates transport of substances to the photoreceptor cells. In order for Hg2+ to access photoreceptor cells, it must be first be taken up by the RPE, possibly by mechanisms involving transporters of essential nutrients. In other epithelia, Hg2+, when conjugated to cysteine (Cys) or homocysteine (Hcy), gains access to the intracellular compartment of the target cells via amino acid and organic anion transporters. Accordingly, the purpose of the current study was to test the hypothesis that Cys and Hcy S-conjugates of Hg2+ utilize amino acid transporters to gain access into RPE cells. Time- and temperature-dependence, saturation kinetics, and substrate-specificity of the transport of Hg2+, was assessed in ARPE-19 cells exposed to the following S-conjugates of Hg2+: Cys (Cys-S-Hg-S-Cys), Hcy (Hcy-S-Hg-S-Hcy), N-acetylcysteine (NAC-S-Hg-S-NAC) or glutathione (GSH-S-Hg-S-GSH). We discovered that only Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy were taken up by these cells. This transport was Na+-dependent and was inhibited by neutral and cationic amino acids. RT-PCR analyses identified systems B0,+ and ASC in ARPE-19 cells. Overall, our data suggest that Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy are taken up into ARPE-19 cells by Na-dependent amino acid transporters, possibly systems B0,+ and ASC. These amino acid transporters may play a role in the retinal toxicity observed following exposure to mercury. PMID:17467761

  13. Transport of thiol-conjugates of inorganic mercury in human retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, Christy C.; Battle, Jamie R.; Zalups, Rudolfs K.

    2007-06-01

    Inorganic mercury (Hg{sup 2+}) is a prevalent environmental contaminant to which exposure to can damage rod photoreceptor cells and compromise scotopic vision. The retinal pigment epithelium (RPE) likely plays a role in the ocular toxicity associated with Hg{sup 2+} exposure in that it mediates transport of substances to the photoreceptor cells. In order for Hg{sup 2+} to access photoreceptor cells, it must first be taken up by the RPE, possibly by mechanisms involving transporters of essential nutrients. In other epithelia, Hg{sup 2+}, when conjugated to cysteine (Cys) or homocysteine (Hcy), gains access to the intracellular compartment of the target cellsmore » via amino acid and organic anion transporters. Accordingly, the purpose of the current study was to test the hypothesis that Cys and Hcy S-conjugates of Hg{sup 2+} utilize amino acid transporters to gain access into RPE cells. Time- and temperature-dependence, saturation kinetics, and substrate-specificity of the transport of Hg{sup 2+}, was assessed in ARPE-19 cells exposed to the following S-conjugates of Hg{sup 2+}: Cys (Cys-S-Hg-S-Cys), Hcy (Hcy-S-Hg-S-Hcy), N-acetylcysteine (NAC-S-Hg-S-NAC) or glutathione (GSH-S-Hg-S-GSH). We discovered that only Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy were taken up by these cells. This transport was Na{sup +}-dependent and was inhibited by neutral and cationic amino acids. RT-PCR analyses identified systems B{sup 0,+} and ASC in ARPE-19 cells. Overall, our data suggest that Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy are taken up into ARPE-19 cells by Na-dependent amino acid transporters, possibly systems B{sup 0,+} and ASC. These amino acid transporters may play a role in the retinal toxicity observed following exposure to mercury.« less

  14. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium.

    PubMed

    Shekhar, R

    2012-05-15

    A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. GASEOUS ELEMENTAL MERCURY IN THE MARINE BOUNDARY LAYER: EVIDENCE FOR RAPID REMOVAL IN ANTHROPOGENIC POLLUTION

    EPA Science Inventory

    In this study, gas-phase elemental mercury (Hg0) and related species (including inorganic reactive gaseous mercury (RGM) and particulate mercury (PHg)) were measured at Cheeka Peak Observatory (CPO), Washington State, in the marine boundary layer (MBL) during 2001-2002. Air of...

  16. Health and environmental impact of mercury: Past and present experience

    NASA Astrophysics Data System (ADS)

    Rivera, A. T. F.; Cortes-Maramba, N. P.; Akagi, H.

    2003-05-01

    Mercury exists in various forms including metallic mercury, inorganie and organic mercury compounds. Research studies show that contamination brought about by natural and man-made activities is clearly a growing problem today. In 1956, the first recognized poisoning outbreaks occurred. Minamata Disease is a disorder of the central nervous system caused by the consumption of fish and shellfish contaminated with methylmercury. Clinical manifestation differs from inorganic mercury poisoning in which the kidneys and the renal system are damaged. The toxidrome consists of sensory disorders in the distal portion of the four extremities, cerebral ataxia, bilateral concentric constriction of the visual field. central disorder of ocular movement, central hearing impairment and disequilibrium. Fetal type Minamata Disease bom of mothers being exposed to methylmercury during pregnancy resulted in conditions similar to those associated with “infantile cerebral palsy" were also documented. Measures to control environmental pollution were implemented such as the environmental restoration project, compensation and relief of victims as part of the health and environmental management undertaken by the government. At present, global research studies are focusing on long-term and low-dose inorganic and methyl mercury exposure; and developmental neurobehavioral toxicity including relevant environmental factors influencing mercury transformations, mass balances and partitioning in ecosystems.

  17. Assessment of mobility and bioavailability of mercury compounds in sewage sludge and composts.

    PubMed

    Janowska, Beata; Szymański, Kazimierz; Sidełko, Robert; Siebielska, Izabela; Walendzik, Bartosz

    2017-07-01

    Content of heavy metals, including mercury, determines the method of management and disposal of sewage sludge. Excessive concentration of mercury in composts used as organic fertilizer may lead to accumulation of this element in soil and plant material. Fractionation of mercury in sewage sludge and composts provides a better understanding of the extent of mobility and bioavailability of the different mercury species and helps in more informed decision making on the application of sludge for agricultural purposes. The experimental setup comprises the composing process of the sewage sludge containing 13.1mgkg -1 of the total mercury, performed in static reactors with forced aeration. In order to evaluate the bioavailability of mercury, its fractionation was performed in sewage sludge and composts during the process. An analytical procedure based on four-stage sequential extraction was applied to determine the mercury content in the ion exchange (water soluble and exchangeable Hg), base soluble (Hg bound to humic and fulvic acid), acid soluble (Hg bound to Fe/Mn oxides and carbonates) and oxidizable (Hg bound to organic matter and sulphide) fractions. The results showed that from 50.09% to 64.55% of the total mercury was strongly bound to organo-sulphur and inorganic sulphide; that during composting, increase of concentrations of mercury compounds strongly bound with organic matter and sulphides; and that mercury content in the base soluble and oxidizable fractions was strongly correlated with concentration of dissolved organic carbon in those fractions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Isotopic Methods for Determining the Relative Importance of Bioavailability Versus Trophic Position in Controlling Mercury Concentrations in Everglades Mosquitofish

    NASA Astrophysics Data System (ADS)

    Bemis, B. E.; Kendall, C.

    2007-12-01

    The concentration of mercury in fish tissues is widely used as an indicator of the magnitude of mercury contamination in aquatic ecosystems. Eastern mosquitofish (Gambusia holbrookii) is an important sentinel species used for this purpose in the varied environments of the Florida Everglades, because mosquitofish are abundant, have a short lifespan, and migrate little. Like other freshwater fish, the primary route of mercury uptake into mosquitofish tissues is through diet as bioavailable methylmercury. Yet, it is unclear whether variations in mosquitofish mercury observed across the Everglades are due primarily to differences in bioaccumulation (i.e., trophic position) or abundance of methylmercury available to the food web base. We use isotopic methods to investigate the importance of these two controls on mosquitofish mercury at the landscape scale. As part of the USEPA REMAP project, mosquitofish and periphyton were collected during September 1996 from over one hundred sites throughout the Everglades and analyzed for mercury concentration. The USGS analyzed splits of the samples for nitrogen (d15N), carbon (d13C), and sulfur (d34S) isotopic composition, to investigate the causes of mercury variations. The d15N value of tissues is often used to estimate the relative trophic positions of organisms in a food web, and should correlate positively with tissue mercury if bioaccumulation is an important control on mosquitofish mercury concentration. The d13C value can be useful for detecting differences in food web base (e.g., algal versus detrital), and thus the entry point of contaminants. Tissue d34S potentially indicates the extent of dissimilatory sulfate reduction in sediments, a process used by sulfate-reducing bacteria (SRB) during conversion of inorganic Hg(II) to bioavailable methylmercury. Because this process increases the d34S value of remaining sulfate, which enters the food web base, mosquitofish sulfur isotopes should show positive correlations with SRB

  19. An Investigation of Organic and Inorganic Mercury Exposure and Blood Pressure in a Small-Scale Gold Mining Community in Ghana.

    PubMed

    Rajaee, Mozhgon; Sánchez, Brisa N; Renne, Elisha P; Basu, Niladri

    2015-08-21

    There is increasing concern about the cardiovascular effects of mercury (Hg) exposure, and that organic methylmercury and inorganic Hg(2+) may affect the cardiovascular system and blood pressure differentially. In small-scale gold mining communities where inorganic, elemental Hg exposures are high, little is known about the effects of Hg on blood pressure. In 2011, we assessed the relationship between Hg exposure and blood pressure (BP) in a cross-sectional study of adults from a small-scale gold mining community, Kejetia, and subsistence farming community, Gorogo, in Ghana's Upper East Region. Participants' resting heart rate and BP were measured, and hair and urine samples were provided to serve as biomarkers of organic and inorganic Hg exposure, respectively. Participants included 70 miners and 26 non-miners from Kejetia and 75 non-miners from Gorogo. Total specific gravity-adjusted urinary and hair Hg was higher among Kejetia miners than Kejetia non-miners and Gorogo participants (median urinary Hg: 5.17, 1.18, and 0.154 µg/L, respectively; hair Hg: 0.945, 0.419, and 0.181 µg/g, respectively). Hypertension was prevalent in 17.7% of Kejetia and 21.3% of Gorogo participants. Urinary and hair Hg were not significantly associated with systolic or diastolic BP for Kejetia or Gorogo participants while adjusting for sex, age, and smoking status. Although our results follow trends seen in other studies, the associations were not of statistical significance. Given the unique study population and high exposures to inorganic Hg, the work contained here will help increase our understanding of the cardiovascular effects of Hg.

  20. An Investigation of Organic and Inorganic Mercury Exposure and Blood Pressure in a Small-Scale Gold Mining Community in Ghana

    PubMed Central

    Rajaee, Mozhgon; Sánchez, Brisa N.; Renne, Elisha P.; Basu, Niladri

    2015-01-01

    There is increasing concern about the cardiovascular effects of mercury (Hg) exposure, and that organic methylmercury and inorganic Hg2+ may affect the cardiovascular system and blood pressure differentially. In small-scale gold mining communities where inorganic, elemental Hg exposures are high, little is known about the effects of Hg on blood pressure. In 2011, we assessed the relationship between Hg exposure and blood pressure (BP) in a cross-sectional study of adults from a small-scale gold mining community, Kejetia, and subsistence farming community, Gorogo, in Ghana’s Upper East Region. Participants’ resting heart rate and BP were measured, and hair and urine samples were provided to serve as biomarkers of organic and inorganic Hg exposure, respectively. Participants included 70 miners and 26 non-miners from Kejetia and 75 non-miners from Gorogo. Total specific gravity-adjusted urinary and hair Hg was higher among Kejetia miners than Kejetia non-miners and Gorogo participants (median urinary Hg: 5.17, 1.18, and 0.154 µg/L, respectively; hair Hg: 0.945, 0.419, and 0.181 µg/g, respectively). Hypertension was prevalent in 17.7% of Kejetia and 21.3% of Gorogo participants. Urinary and hair Hg were not significantly associated with systolic or diastolic BP for Kejetia or Gorogo participants while adjusting for sex, age, and smoking status. Although our results follow trends seen in other studies, the associations were not of statistical significance. Given the unique study population and high exposures to inorganic Hg, the work contained here will help increase our understanding of the cardiovascular effects of Hg. PMID:26308023

  1. Chronic effects of low-level mercury and cadmium to goldfish (Carassius Auratus)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerman, A.G.

    1984-01-01

    During this five and one half year investigation, experiments were performed to determine the effects of nanogram levels of cadmium and mercury on reproductive performance, growth, and tissue residues of goldfish. In addition, embryo-larval bioassays were conducted on these metals to compare the effects of a short-term exposure to a sensitive life-cycle stage (i.e., eggs and larvae) with a sustained exposure to a relatively insensitive life-cycle period (i.e., adult). Reproduction was blocked by the long-term exposure to 0.25 ..mu..g/l mercury and 0.27 ..mu..g/l cadmium. Over the 1972 days, the control fish spawned on eleven occasions, but the experimentals failed tomore » spawn. The metal-induced reproductive impairment continued in the experimentals even after six months in clean water. Growth of the populations exposed to mercury and cadmium was significantly less than that of the control population (P < 0.001). The mercury, cadmium and control populations grew by 229%, 232% and 353%, respectively. Mercury and cadmium continuously accumulated in fish tissues over the entire 1789 days of whole body exposure. Despite exposure to mercury as inorganic metal, organomercury also accumula« less

  2. Content and chemical form of mercury and selenium in Lake Ontario salmon and trout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappon, C.J.

    1984-01-01

    The content and chemical form of mercury and selenium were determined in the edible tissue of salmon (coho, chinook) and trout (lake, brown) taken offshore from Lake Ontario near Rochester, New York. For all species, total mercury content ranged from 0.3 to 0.8 micro g/g (fresh-weight), which is similar to concentrations commonly found in canned tuna. Most of the total mercury (63 to 79%) was present as methylmercury, the remainder being divalent inorganic mercury. For all species, 6 to 45% of the total selenium content was present as selenate (SeVI), the remainder being selenite (SeIV) and selenide (SEII). On amore » molar basis, total selenium content usually exceeded that of total mercury. Samples of smoked and unsmoked brown trout fillets were also examined. Based on the results of this study there is no immediate human health hazard from mercury and selenium. However, there is a need to report specific forms of these metals in Lake Ontario salmonid fish so that elevated concentrations can be better evaluated. 42 references, 1 figure, 4 tables.« less

  3. Exposure to mercury in the mine of Almadén

    PubMed Central

    Gómez, Montserrat García; Klink, José Diego Caballero; Boffetta, Paolo; Español, Santiago; Sällsten, Gerd; Quintana, Javier Gómez

    2007-01-01

    Objectives To describe the process for obtaining mercury and the historical exposure of Almadén miners to mercury. Methods Information on every workplace and historical data on production, technological changes in the productive process and biological and environmental values of mercury was collected. A job‐exposure matrix was built with these values and the exposure to inorganic mercury was estimated quantitatively as μg/l of urine mercury. A cumulative exposure index was calculated for every worker by adding the estimates for every year in the different workplaces. Results In the mine, the highest exposures occurred during drilling, with values up to 2.26 mg/m3 in air, 2194 μg/l in urine and 374 μg/l in blood. Furnace operation and cleaning were the tasks with the highest values in metallurgy, peaking up to 3.37 mg/m3. The filling of bottles with mercury by free fall gave values within a range of 1.13–2.43 mg/m3 in air; these values dropped to 0.32–0.83 mg/m3 after introducing a new ventilation system. The toxicity effects of high doses of inorganic mercury on the central nervous and urinary systems have been known for decades. Conclusions The exposure of the workers in Almadén mines to mercury has been very high. The extremely high content cinnabar ore of the mine explains the increased concentrations of mercury in air at the work places. This, together with inadequate working conditions, explains the high mercury levels found in blood and urine during the study period. PMID:17227836

  4. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rey-Raap, Natalia; Gallardo, Antonio, E-mail: gallardo@emc.uji.es

    Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix.more » Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.« less

  5. Mercury and halogens in coal--Their role in determining mercury emissions from coal combustion

    USGS Publications Warehouse

    Kolker, Allan; Quick, Jeffrey C.; Senior, Connie L.; Belkin, Harvey E.

    2012-01-01

    Mercury is a toxic pollutant. In its elemental form, gaseous mercury has a long residence time in the atmosphere, up to a year, allowing it to be transported long distances from emission sources. Mercury can be emitted from natural sources such as volcanoes, or from anthropogenic sources, such as coal-fired powerplants. In addition, all sources of mercury on the Earth's surface can re-emit it from land and sea back to the atmosphere, from which it is then redeposited. Mercury in the atmosphere is present in such low concentrations that it is not considered harmful. Once mercury enters the aquatic environment, however, it can undergo a series of biochemical transformations that convert a portion of the mercury originally present to methylmercury, a highly toxic organic form of mercury that accumulates in fish and birds. Many factors contribute to creation of methylmercury in aquatic ecosystems, including mercury availability, sediment and nutrient load, bacterial influence, and chemical conditions. In the United States, consumption of fish with high levels of methylmercury is the most common pathway for human exposure to mercury, leading the U.S. Environmental Protection Agency (EPA) to issue fish consumption advisories in every State. The EPA estimates that 50 percent of the mercury entering the atmosphere in the United States is emitted from coal-burning utility powerplants. An EPA rule, known as MATS (for Mercury and Air Toxics Standards), to reduce emissions of mercury and other toxic pollutants from powerplants, was signed in December 2011. The rule, which is currently under review, specifies limits for mercury and other toxic elements, such as arsenic, chromium, and nickel. MATS also places limits on emission of harmful acid gases, such as hydrochloric acid and hydrofluoric acid. These standards are the result of a 2010 detailed nationwide program by the EPA to sample stack emissions and thousands of shipments of coal to coal-burning powerplants. The United

  6. Mercury pollution in Malaysia.

    PubMed

    Hajeb, Parvaneh; Jinap, S; Ismail, Ahmad; Mahyudin, Nor Ainy

    2012-01-01

    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to

  7. Technical report: mercury in the environment: implications for pediatricians.

    PubMed

    Goldman, L R; Shannon, M W

    2001-07-01

    Mercury is a ubiquitous environmental toxin that causes a wide range of adverse health effects in humans. Three forms of mercury (elemental, inorganic, and organic) exist, and each has its own profile of toxicity. Exposure to mercury typically occurs by inhalation or ingestion. Readily absorbed after its inhalation, mercury can be an indoor air pollutant, for example, after spills of elemental mercury in the home; however, industry emissions with resulting ambient air pollution remain the most important source of inhaled mercury. Because fresh-water and ocean fish may contain large amounts of mercury, children and pregnant women can have significant exposure if they consume excessive amounts of fish. The developing fetus and young children are thought to be disproportionately affected by mercury exposure, because many aspects of development, particularly brain maturation, can be disturbed by the presence of mercury. Minimizing mercury exposure is, therefore, essential to optimal child health. This review provides pediatricians with current information on mercury, including environmental sources, toxicity, and treatment and prevention of mercury exposure.

  8. Recent Developments in the Speciation and Determination of Mercury Using Various Analytical Techniques

    PubMed Central

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2015-01-01

    This paper reviews the speciation and determination of mercury by various analytical techniques such as atomic absorption spectrometry, voltammetry, inductively coupled plasma techniques, spectrophotometry, spectrofluorometry, high performance liquid chromatography, and gas chromatography. Approximately 126 research papers on the speciation and determination of mercury by various analytical techniques published in international journals since 2013 are reviewed. PMID:26236539

  9. Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yannai, S.; Berdicevsky, I.; Duek, L.

    1991-01-01

    Saccharomyces cerevisiae and Candida albicans were incubated with 0.25, 0.5, or 0.75 {mu}g of Hg (as HgCl{sub 2}) per ml of Nelson's medium in the presence of trace amounts of oxygen at 28{degree}C for 12 days. Two control media were used, one without added Hg and one without yeast inoculum. Yeast cell growth was estimated after 1, 2, 3, and 8 days of incubation. The contents of organomercury in the system and of elemental mercury released from the media and collected in traps were determined at the end of the experiments. The results were as follows: (1) C. albicans wasmore » the more mercury-resistant species, but both yeast species failed to grown in the media containing 0.75 {mu}g of Hg per ml.; (2) The amounts of organomercury produced by the two species were proportional to the amount of HgCl{sub 2} added to the medium. In all cases C. albicans produced considerably larger amounts of methylmercury than S. cerevisiae; (3) The amounts of elemental Hg produced were inversely proportional to the HgCl{sub 2} level added in the case of S. cerevisiae but were all similar in the case of C. albicans;and (4) Neither organomercury nor elemental Hg was produced in any of the control media.« less

  10. High Throughput Determination of Mercury in Tobacco and Mainstream Smoke from Little Cigars

    PubMed Central

    Fresquez, Mark R.; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Watson, Clifford H.; Pappas, R. Steven

    2015-01-01

    A method was developed that utilizes a platinum trap for mercury from mainstream tobacco smoke which represents an improvement over traditional approaches that require impingers and long sample preparation procedures. In this approach, the trapped mercury is directly released for analysis by heating the trap in a direct mercury analyzer. The method was applied to the analysis of mercury in the mainstream smoke of little cigars. The mercury levels in little cigar smoke obtained under Health Canada Intense smoking machine conditions ranged from 7.1 × 10−3 mg/m3 to 1.2 × 10−2 mg/m3. These air mercury levels exceed the chronic inhalation Minimal Risk Level corrected for intermittent exposure to metallic mercury (e.g., 1 or 2 hours per day, 5 days per week) determined by the Agency for Toxic Substances and Disease Registry. Multivariate statistical analysis was used to assess associations between mercury levels and little cigar physical design properties. Filter ventilation was identified as the principal physical parameter influencing mercury concentrations in mainstream little cigar smoke generated under ISO machine smoking conditions. With filter ventilation blocked under Health Canada Intense smoking conditions, mercury concentrations in tobacco and puff number (smoke volume) were the primary physical parameters that influenced mainstream smoke mercury concentrations. PMID:26051388

  11. Analysis for the presence of determinants involved in the transport of mercury across bacterial membrane from polluted water bodies of India

    PubMed Central

    Jan, Arif Tasleem; Azam, Mudsser; Choi, Inho; Ali, Arif; Haq, Qazi Mohd. Rizwanul

    2016-01-01

    Mercury, which is ubiquitous and recalcitrant to biodegradation processes, threatens human health by escaping to the environment via various natural and anthropogenic activities. Non-biodegradability of mercury pollutants has necessitated the development and implementation of economic alternatives with promising potential to remove metals from the environment. Enhancement of microbial based remediation strategies through genetic engineering approaches provides one such alternative with a promising future. In this study, bacterial isolates inhabiting polluted sites were screened for tolerance to varying concentrations of mercuric chloride. Following identification, several Pseudomonas and Klebsiella species were found to exhibit the highest tolerance to both organic and inorganic mercury. Screened bacterial isolates were examined for their genetic make-up in terms of the presence of genes (merP and merT) involved in the transport of mercury across the membrane either alone or in combination to deal with the toxic mercury. Gene sequence analysis revealed that the merP gene showed 86–99% homology, while the merT gene showed >98% homology with previously reported sequences. By exploring the genes involved in imparting metal resistance to bacteria, this study will serve to highlight the credentials that are particularly advantageous for their practical application to remediation of mercury from the environment. PMID:26887227

  12. A simulation study of inorganic sulfur cycling in the water level fluctuation zone of the Three Gorges Reservoir, China and the implications for mercury methylation.

    PubMed

    Liu, Jiang; Jiang, Tao; Huang, Rong; Wang, Dingyong; Zhang, Jinzhong; Qian, Sheng; Yin, Deliang; Chen, Hong

    2017-01-01

    The water level fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) in China experiences a drying and wetting rotation every year, and the water level induced redox variation may influence inorganic sulfur speciation and mercury methylation. In this work, a simulative flooding and drying experiment and a sulfate added flooding experiment were conducted to study this topic. The results showed that sulfate was reduced from the 10th d during the flooding period based on the detected sulfide in water and the increased elemental sulfur (S 0 ) in sediment. Sulfate reduction and sulfide re-oxidation led to the increase of S 0 contents with the maximal values of 1.86 and 0.46 mg kg -1 during the flooding and drying period, respectively. Methylmercury (MeHg) content in sediment displayed a rising trend (0.16-0.28 μg kg -1 ) in the first 40 d during the flooding period, and then declined from 0.28 to 0.15 μg kg -1 . A positive correlation between MeHg content and S 0 content in soil (r = 0.53, p < 0.05) was found during the flooding period, and a positive but not significant correlation between the percent of MeHg in THg (%MeHg) and S 0 content (r = 0.85, p = 0.08). In sulfate added flooding simulation, MeHg content in sediment did not increase with the sulfate concentration increasing. The increased pyrite in high-sulfate treatment may fix mercury through adsorption process. This study demonstrated that inorganic sulfur species especially S 0 and chromium reducible sulfur (CRS) play an important role on mercury methylation in the WLFZ of the TGR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. UPTAKE, TOXICITY, AND TROPHIC TRANSFER OF MERCURY IN A COASTAL DIATOM. (R824778)

    EPA Science Inventory

    The primary mechanisms controlling the accumulation of methylmercury and
    inorganic mercury in aquatic food chains are not sufficiently understood.
    Differences in lipid solubility alone cannot account for the predominance of
    methylmercury in fish because inorganic m...

  14. Development of a novel method for determination of mercury based on its inhibitory effect on horseradish peroxidase activity followed by monitoring the surface plasmon resonance peak of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Khodaveisi, Javad; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Moghadam, Masoud Rohani; Hormozi-Nezhad, Mohammad Reza

    2016-01-01

    A highly sensitive and simple indirect spectrophotometric method has been developed for the determination of trace amounts of inorganic mercury (Hg2 +) in aqueous media. The method is based on the inhibitory effect of Hg2 + on the activity of horseradish peroxidase (HRP) in the oxidation of ascorbic acid by hydrogen peroxide followed by the reduction of Au3 + to Au-NPs by unreacted ascorbic acid and the measurement of the absorbance of localized surface plasmon resonance (LSPR) peak of gold nanoparticles (at 530 nm) which is directly proportional to the concentration of Hg2 +. Under the optimum conditions, the calibration curve was linear in the concentration range of 1-220 ng mL- 1. Limits of detection (LOD) and quantification (LOQ) were 0.2 and 0.7 ng mL- 1, respectively and the relative standard deviation at 100 ng mL- 1 level of Hg2 + was 2.6%. The method was successfully applied to the determination of mercury in different water samples.

  15. Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa.

    PubMed

    Lusilao-Makiese, J G; Tessier, E; Amouroux, D; Tutu, H; Chimuka, L; Weiersbye, I; Cukrowska, E M

    2016-01-01

    Total mercury (HgTOT), inorganic mercury (IHg), and methylmercury (MHg) were determined in dry season waters, sediments, and tailings from an active mine which has long history of gold exploitation. Although HgTOT in waters was generally low (0.03 to 19.60 ng L(-1)), the majority of the samples had proportions of MHg of at least 90 % of HgTOT which denotes a substantial methylation potential of the mine watersheds. Mercury was relatively high in tailing materials (up to 867 μg kg(-1)) and also in the mine sediments (up to 837 μg kg(-1)) especially in samples collected near tailing storage facilities and within a receiving water dam. Sediment profiles revealed mercury enrichment and enhanced methylation rate at deeper layers. The presence of IHg and decaying plants (organic matter) in the watersheds as well as the anoxic conditions of bulk sediments are believed to be some of the key factors favoring the mercury methylation at the site.

  16. Methylmercury determination in fish and seafood products and estimated daily intake for the Spanish population.

    PubMed

    Sahuquillo, I; Lagarda, M J; Silvestre, M D; Farré, R

    2007-08-01

    The mercury content of 25 samples of fish and seafood products most frequently consumed in Spain was determined. A simple method comprising cold vapour and atomic absorption spectrometry was used to determine separately inorganic and organic mercury. In all samples inorganic mercury content was below 50 microg kg(-1). There was wide variability, among not only the mercury levels of different fish species, but also for different samples of the same species - with the methylmercury content ranging from below 54 to 662 microg kg(-1). The highest mean methylmercury content was found in fresh tuna. Based on an average total fish consumption of 363 g/person week(-1), the methylmercury intake was estimated to be 46.2 microg/person week(-1). Therefore, the mercury intake of Spanish people with a body weight < or = 60 kg is lower than the Joint FAO/WHO Expert Committee on Food Additives (JECFA) provisional tolerable weekly intake (PTWI) of 1.6 microg kg(-1) body weight, but exceeds the US National Research Council (NRC) limit of 0.7 microg kg(-1) body weight week(-1) based on a benchmark dose.

  17. Disposition of inorganic mercury in pregnant rats and their offspring

    PubMed Central

    Oliveira, Cláudia S.; Joshee, Lucy; Zalups, Rudolfs K.; Pereira, Maria E.; Bridges, Christy C.

    2015-01-01

    Environmental toxicants such as methylmercury have been shown to negatively impact fetal health. Despite the prevalence of inorganic mercury (Hg2+) in the environment and the ability of methylmercury to biotransform into Hg2+, little is known about the ability of Hg2+ to cross the placenta into fetal tissues. Therefore, it is important to understand the handing and disposition of Hg2+ in the reproductive system. The purpose of the current study was to assess the disposition and transport of Hg2+ in placental and fetal tissues, and to test the hypothesis that acute renal injury in dams can alter the accumulation of Hg2+ in fetal tissues. Pregnant Wistar rats were injected intravenously with 0.5 or 2.5 μmol kg−1 HgCl2 for 6 or 48 h and the disposition of Hg2+ was measured. Accumulation of Hg2+ in the placenta was rapid and dose-dependent. Very little Hg2+ was eliminated during the initial 48 h after exposure. When dams were exposed to the low dose of HgCl2, fetal accumulation of Hg2+ increased between 6 h and 48 h, while at the higher dose, accumulation was similar at each time point. Within fetal organs, the greatest concentration of Hg2+ (nmol/g) was localized in the kidneys, followed by the liver and brain. A dose-dependent increase in the accumulation of Hg2+ in fetal organs was observed, suggesting that continued maternal exposure may lead to increased fetal exposure. Taken together, these data indicate that Hg2+ is capable of crossing the placenta and gaining access to fetal organs in a dose-dependent manner. PMID:26196528

  18. Intestinal solubilization of particle-associated organic and inorganic mercury as a measure of bioavailability to benthic invertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, A.L.; McAloon, K.M.; Mason, R.P.

    1999-06-01

    The bioavailability of particle-associated inorganic mercury (Hg{sub I}) and monomethylmercury (MMHg) was evaluated in vitro using digestive fluid of the deposit feeding lugworm, Arenicola marina. Digestive fluid, removed from the midgut of the polychaete, was incubated with contaminated sediment, and the proportion of Hg{sub I} or MMHg solubilized by the digestive fluid was determined. Digestive fluid was found to be a more effective solvent than seawater in solubilizing particle-associated Hg{sub I} or MMHg. A greater percentage of MMHg than Hg{sub I} was solubilized from most sediments, suggesting that sediment-associated MMHg is generally more readily available from sediment for biological uptake.more » The proportion of MMHg released from the sediment was inversely correlated with sediment organic matter content, decreasing exponentially with increasing organic matter content of the sediment. The results for Hg{sub I} were equivocal. MMHg bioaccumulation factors (BAFs) from previous studies showed a similar trend with organic content of sediment, suggesting that solubilization may be the process limiting the bioaccumulation of particle-bound MMHg. It is concluded that in vitro extraction with a deposit feeder`s digestive fluid provides a potential tool to study the process of Hg bioaccumulation via ingestion routes, although its application to various sediments and organisms needs further investigation.« less

  19. Copper-mercury film electrode for cathodic stripping voltammetric determination of Se(IV).

    PubMed

    Sladkov, Vladimir; David, François; Fourest, Blandine

    2003-01-01

    The copper-mercury film electrode has been suggested for the determination of Se(IV) in a wide range of concentration from 1x10(-9) to 1x10(-6) mol L(-1)by square-wave cathodic stripping voltammetry. Insufficient reproducibility and sensitivity of the mercury film electrode have been overcome by using copper(II) ions during the plating procedure. Copper(II) has been found to be reduced and form a reproducible copper-mercury film on a glassy carbon electrode surface. The plating potential and time, the concentration of copper(II) and the concentration of the supporting electrolyte have been optimised. Microscopy has been used for a study of the morphology of the copper-mercury film. It has been found that it is the same as for the mercury one. The preconcentration step consists in electrodeposition of copper selenide on the copper-mercury film. The relative standard deviation is 4.3% for 1x10(-6) mol L(-1) of Se(IV). The limit of detection is 8x10(-10) mol L(-1) for 5 min of accumulation.

  20. [Atomic absorption in mercury determination by "Julia-2" analyzer and urine mercury level in children of Moscow suburbs].

    PubMed

    Pavlovskaia, N A; Vagina, E N; Stepanova, E V

    2000-01-01

    The authors report on atomic absorption method determining mercury in urine. Being sensitive, with lower determination threshold of 10 nmole/l and correctness of 95.5%, the method was tested on children living in two districts of Moscow suburb.

  1. Mercury speciation and selenium in toothed-whale muscles.

    PubMed

    Sakamoto, Mineshi; Itai, Takaaki; Yasutake, Akira; Iwasaki, Toshihide; Yasunaga, Genta; Fujise, Yoshihiro; Nakamura, Masaaki; Murata, Katsuyuki; Chan, Hing Man; Domingo, José L; Marumoto, Masumi

    2015-11-01

    Mercury accumulates at high levels in marine mammal tissues. However, its speciation is poorly understood. The main goal of this investigation was to establish the relationships among mercury species and selenium (Se) concentrations in toothed-whale muscles at different mercury levels. The concentrations of total mercury (T-Hg), methylmercury (MeHg), inorganic mercury (I-Hg) and Se were determined in the muscles of four toothed-whale species: bottlenose dolphins (n=31), Risso's dolphins (n=30), striped dolphins (n=29), and short-finned pilot whales (n=30). In each species, the MeHg concentration increased with increasing T-Hg concentration, tending to reach a plateau. In contrast, the proportion of MeHg in T-Hg decreased from 90-100% to 20-40%. The levels of T-Hg and Se showed strong positive correlations. Se/I-Hg molar ratios rapidly decreased with the increase of I-Hg and reached almost 1 in all species. These results suggested that the demethylated MeHg immediately formed Se/I-Hg equimolar complex of mercury selenide (HgSe) in their muscles. In addition, an X-ray absorption fine structure analysis (XAFS) of a bottlenose dolphin muscle confirmed that the dominant chemical form of the Se/I-Hg equimolar complex was HgSe. HgSe was mainly localized in cells near the endomysium using electron probe microanalysis (EPMA). These results suggested that the demethylated MeHg finally deposits within muscle cells of bottlenose dolphin as an inert HgSe. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A simple {sup 197}Hg RNAA procedure for the determination of mercury in urine, blood, and tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blotcky, A.J.; Rack, E.P.; Meade, A.G.

    1995-12-31

    Mercury has been implicated as a causal agent in such central nervous system diseases as Alzheimer`s and Parkinson`s. Consequently, there has been increased interest in the determination of ultra-trace-level mercury in biological matrices, especially in tissue. While such nonnuclear techniques as cold vapor atomic absorption spectrometry and cold vapor atomic fluorescence spectrometry have been employed routinely for mercury determinations in urine and blood, there is a paucity of nonnuclear techniques for the determination of mercury in the low parts-per-billion range in biological tissue. As pointed out by Fardy and Warner, instrumental and radiochemical neutron activation analysis (INAA and RNAA) requiremore » no blank determinations in contrast to nonnuclear analytical techniques employing digestion and/or chemical operations. Therefore, INAA and RNAA become the obvious choices for determination of ultra-trace levels of mercury in tissue. Most separation methods reported in the literature require different and separate methodologies for mercury determinations in urine, blood, or tissue. The purposes of this study are to develop a single methodology for the determination of low levels of mercury in all biological matrices by RNAA and to optimize parameters necessary for an efficacious trace-level determination. Previously, few studies have taken into account the effects of the Szilard-Chalmers reactions of the radioactivatable analyte within a biological matrix. It also would appear that little attention has been given to the optimum postirradiation carrier concentration of the analyte species necessary. This study discusses these various considerations.« less

  3. An integrated systems-based approach to mercury research and technology development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mark J; Brooks, Scott C; Mathews, Teresa J

    A 3-year strategic planning process was undertaken in Oak Ridge, Tennessee, to develop a research and technology development approach that can help guide mercury remediation in East Fork Poplar Creek (EFPC). Mercury remediation is a high priority for the US Department of Energy s (DOE s) Oak Ridge Office of Environmental Management because of large historical losses of mercury to the environment at the Y-12 National Security Complex (Y-12). Because of the extent of mercury losses and the complexities of mercury transport and fate in the stream environment, the success of conventional options for mercury remediation in the downstream sectionsmore » of EFPC is uncertain. The overall Oak Ridge mercury remediation strategy focuses on mercury treatment actions at Y-12 in the short-term and research and technology development to evaluate longer-term solutions in the downstream environment. The technology development strategy is consistent with a phased, adaptive management paradigm and DOE s Technology Readiness Level guidelines. That is, early evaluation includes literature review, site characterization, and small-scale studies of a broad number of potential technologies. As more information is gathered, technologies that may have the most promise and potential remediation benefit will be chosen for more extensive and larger-scale pilot testing before being considered for remedial implementation. Field and laboratory research in EFPC is providing an improved level of understanding of mercury transport and fate processes in EFPC that will inform the development of site-specific remedial technologies. Technology development has centered on developing strategies that can mitigate the primary factors affecting mercury risks in the stream: (1) the amount of inorganic mercury available to the stream system, (2) the conversion of inorganic mercury to methylmercury, and (3) the bioaccumulation of methylmercury through the food web. Given the downstream complexities and

  4. Mercury in the national parks

    USGS Publications Warehouse

    Pritz, Colleen Flanagan; Eagles-Smith, Collin A.; Krabbenhoft, David

    2014-01-01

    One thing is certain: Even for trained researchers, predicting mercury’s behavior in the environment is challenging. Fundamentally it is one of 98 naturally occurring elements, with natural sources, such as volcanoes, and concentrated ore deposits, such as cinnabar. Yet there are also human-caused sources, such as emissions from both coal-burning power plants and mining operations for gold and silver. There are elemental forms, inorganic or organic forms, reactive and unreactive species. Mercury is emitted, then deposited, then re-emitted—thus earning its mercurial reputation. Most importantly, however, it is ultimately transferred into food chains through processes fueled by tiny microscopic creatures: bacteria.

  5. On the use of certified reference materials for assuring the quality of results for the determination of mercury in environmental samples.

    PubMed

    Bulska, Ewa; Krata, Agnieszka; Kałabun, Mateusz; Wojciechowski, Marcin

    2017-03-01

    This work focused on the development and validation of methodologies for the accurate determination of mercury in environmental samples and its further application for the preparation and certification of new reference materials (RMs). Two certified RMs ERM-CC580 (inorganic matrix) and ERM-CE464 (organic matrix) were used for the evaluation of digestion conditions assuring the quantitative recovery of mercury. These conditions were then used for the digestion of new candidates for the environmental RMs: bottom sediment (M_2 BotSed), herring tissue (M_3 HerTis), cormorant tissue (M_4 CormTis), and codfish muscle (M_5 CodTis). Cold vapor atomic absorption spectrometry (CV AAS) and inductively coupled plasma mass spectrometry (ICP MS) were used for the measurement of mercury concentration in all RMs. In order to validate and assure the accuracy of results, isotope dilution mass spectrometry (IDMS) was applied as a primary method of measurement, assuring the traceability of obtained values to the SI units: the mole, the kilogram, and the second. Results obtained by IDMS using n( 200 Hg)/n( 202 Hg) ratio, with estimated combined uncertainty, were as follows: (916 ± 41)/[4.5 %] ng g -1 (M_2 BotSed), (236 ± 14)/[5.9 %] ng g -1 (M_3 HerTis), (2252 ± 54)/[2.4 %] ng g -1 (M_4 CormTis), and (303 ± 15)/[4.9 %] ng g -1 (M_CodTis), respectively. Different types of detection techniques and quantification (external calibration, standard addition, isotope dilution) were applied in order to improve the quality of the analytical results. The good agreement (within less than 2.5 %) between obtained results and those derived from the Inter-laboratory Comparison, executed by the Institute of Nuclear Chemistry and Technology (Warsaw, Poland) on the same sample matrices, further validated the analytical procedures developed in this study, as well as the concentration of mercury in all four new RMs. Although the developed protocol enabling the metrological

  6. Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry.

    PubMed

    Li, Zhenhan; Xia, Shanhong; Wang, Jinfen; Bian, Chao; Tong, Jianhua

    2016-01-15

    A novel method for determination of trace mercury in water is developed. The method is performed by extracting mercury firstly with ionic liquids (ILs) and then detecting the concentration of mercury in organic media with anodic stripping voltammetry. Liquid-liquid extraction of mercury(II) ions by four ionic liquids with N-octylpyridinium cations ([OPy](+)) was studied. N-octylpyridinium tetrafluoroborate and N-octylpyridinium trifluoromethylsulfonate were found to be efficient and selective extractant for mercury. Temperature controlled dispersive liquid phase microextraction (TC-DLPME) technique was utilized to improve the performance of preconcentration. After extraction, precipitated IL was diluted by acetonitrile buffer and mercury was detected by differential pulse stripping voltammetry (DPSV) with gold disc electrode. Mercury was enriched by 17 times while interfering ions were reduced by two orders of magnitude in the organic media under optimum condition. Sensitivity and selectivity for electrochemical determination of mercury were improved by using the proposed method. Tap, pond and waste water samples were analyzed with recoveries ranging from 81% to 107% and detection limit of 0.05 μg/L. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A Challenging Case of Acute Mercury Toxicity

    PubMed Central

    Alghoula, Faysal; Holewinski, Christopher

    2018-01-01

    Background Mercury exists in multiple forms: elemental, organic, and inorganic. Its toxic manifestations depend on the type and magnitude of exposure. The role of colonoscopic decompression in acute mercury toxicity is still unclear. We present a case of acute elemental mercury toxicity secondary to mercury ingestion, which markedly improved with colonoscopic decompression. Clinical Case A 54-year-old male presented to the ED five days after ingesting five ounces (148 cubic centimeters) of elemental mercury. Examination was only significant for a distended abdomen. Labs showed elevated serum and urine mercury levels. An abdominal radiograph showed radiopaque material throughout the colon. Succimer and laxatives were initiated. The patient had recurrent bowel movements, and serial radiographs showed interval decrease of mercury in the descending colon with interval increase in the cecum and ascending colon. Colonoscopic decompression was done successfully. The colon was evacuated, and a repeat radiograph showed decreased hyperdense material in the colon. Three months later, a repeat radiograph showed no hyperdense material in the colon. Conclusion Ingested elemental mercury can be retained in the colon. Although there are no established guidelines for colonoscopic decompression, our patient showed significant improvement. We believe further studies on this subject are needed to guide management practices. PMID:29559996

  8. Methods for Measuring Specific Rates of Mercury Methylation and Degradation and Their Use in Determining Factors Controlling Net Rates of Mercury Methylation

    PubMed Central

    Ramlal, Patricia S.; Rudd, John W. M.; Hecky, Robert E.

    1986-01-01

    A method was developed to estimate specific rates of demethylation of methyl mercury in aquatic samples by measuring the volatile 14C end products of 14CH3HgI demethylation. This method was used in conjunction with a 203Hg2+ radiochemical method which determines specific rates of mercury methylation. Together, these methods enabled us to examine some factors controlling the net rate of mercury methylation. The methodologies were field tested, using lake sediment samples from a recently flooded reservoir in the Southern Indian Lake system which had developed a mercury contamination problem in fish. Ratios of the specific rates of methylation/demethylation were calculated. The highest ratios of methylation/demethylation were calculated. The highest ratios of methylation/demethylation occurred in the flooded shorelines of Southern Indian Lake. These results provide an explanation for the observed increases in the methyl mercury concentrations in fish after flooding. PMID:16346959

  9. The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques.

    PubMed

    Jarzynska, Grazyna; Falandysz, Jerzy

    2011-01-01

    This research presents an example of an excellent applied study on analytical problems due to hazardous mercury determination in environmental materials and validity of published results on content of this element in wild growing mushrooms. The total mercury content has been analyzed in a several species of wild-grown mushrooms and some herbal origin certified reference materials, using two analytical methods. One method was commonly known and well validated the cold-vapour atomic absorption spectroscopy (CV-AAS) after a direct sample pyrolysis coupled to the gold wool trap, which was a reference method. A second method was a procedure that involved a final mercury measurement using the inductively-coupled plasma atomic emission spectroscopy (ICP-AES) at λ 194.163 nm, which was used by some authors to report on a high mercury content of a large sets of wild-grown mushrooms. We found that the method using the ICP-AES at λ 194.163 nm gave inaccurate and imprecise results. The results of this study imply that because of unsuitability of total mercury determination using the ICP-AES at λ 194.163 nm, the reports on great concentrations of this metal in a large sets of wild-grown mushrooms, when examined using this method, have to be studied with caution, since data are highly biased.

  10. Determination of total mercury in fillets of sport fishes collected from Folsom Reservoir, California, 2006

    USGS Publications Warehouse

    May, Thomas W.; Brumbaugh, William G.

    2007-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the U.S. Bureau of Reclamation, to determine mercury concentrations in selected sport fishes from Folsom Reservoir in California. Fillets were collected from each fish sample, and after homogenization and lyophilization of fish fillets, mercury concentrations were determined with a direct mercury analyzer utilizing the process of thermal combustion-gold amalgamation atomic absorption spectroscopy. Mercury concentrations in fillets ranged from 0.031 to 0.20 micrograms per gram wet weight in rainbow trout (Oncorhynchus mykiss) samples and 0.071 to 0.16 micrograms per gram wet weight in bluegill (Lepomis macrochirus) samples. Mercury concentration was 0.98 microgram per gram wet weight in a single spotted bass (Micropterus punctulatus) sample, which was the only one in the sample set which exceeded the U.S. Environmental Protection Agency's fish consumption advisory of 0.30 microgram per gram wet weight.

  11. [Levels of mercury in samples of bees and honey from areas with and without industrial contamination].

    PubMed

    Toporcák, J; Legáth, J; Kul'ková, J

    1992-07-01

    Increasing numbers of specialists have been concerned with the problem of friendly environment in relation to man as well as to farm and wild animals. Greater interest in the biological monitoring of environment and ecosystem contamination can be observed. Determination of residues of organic and inorganic substances in bees (Apis mellifera) and in their products is one of effective possibilities of environmental pollution monitoring. Our work was aimed at the study of mercury levels in bees and their products. Mercury levels were determined in the head, abdomen and thorax of bees (Apis mellifera) from 20 bee populations coming from industrially contaminated areas with a dominant load of mercury (10 populations) and from uncontaminated areas. Mercury levels were determined simultaneously in honey coming from both contaminated and uncontaminated areas. The following mercury levels were found in bees from the contaminated area: heads 0.029-0.385 mg/kg, thorax 0.028-0.595 mg/kg and abdomen 0.083-2.255 mg/kg. Mercury levels in samples from uncontaminated areas ranged from 0.004 to 0.024 mg/kg in the heads, from 0.004 to 0.008 mg/kg in the thorax and from 0.008 to 0.020 mg/kg in the abdomen. In honey samples from the contaminated and uncontaminated areas mercury levels ranged from 0.050 to 0.212 mg/kg and from 0.001 to 0.003 mg/kg, respectively. The results of sample analyses for mercury loads in bees and honey from both contaminated and uncontaminated areas are given in Tab. I. Mean mercury levels in the single parts of the body in Apis mellifera and in honey from contaminated and uncontaminated areas are given in Figs. 1, 2, 3.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, B.; Bryan, L.; Mathews, T.

    2012-03-30

    source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in upper

  13. Development of a novel method for determination of mercury based on its inhibitory effect on horseradish peroxidase activity followed by monitoring the surface plasmon resonance peak of gold nanoparticles.

    PubMed

    Khodaveisi, Javad; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Moghadam, Masoud Rohani; Hormozi-Nezhad, Mohammad Reza

    2016-01-15

    A highly sensitive and simple indirect spectrophotometric method has been developed for the determination of trace amounts of inorganic mercury (Hg(2+)) in aqueous media. The method is based on the inhibitory effect of Hg(2+) on the activity of horseradish peroxidase (HRP) in the oxidation of ascorbic acid by hydrogen peroxide followed by the reduction of Au(3+) to Au-NPs by unreacted ascorbic acid and the measurement of the absorbance of localized surface plasmon resonance (LSPR) peak of gold nanoparticles (at 530 nm) which is directly proportional to the concentration of Hg(2+). Under the optimum conditions, the calibration curve was linear in the concentration range of 1-220 ng mL(-1). Limits of detection (LOD) and quantification (LOQ) were 0.2 and 0.7 ng mL(-1), respectively and the relative standard deviation at 100 ng mL(-1) level of Hg(2+) was 2.6%. The method was successfully applied to the determination of mercury in different water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Mercury speciation and selenium in toothed-whale muscles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Mineshi, E-mail: sakamoto@nimd.go.jp; Itai, Takaaki; Yasutake, Akira

    2015-11-15

    Mercury accumulates at high levels in marine mammal tissues. However, its speciation is poorly understood. The main goal of this investigation was to establish the relationships among mercury species and selenium (Se) concentrations in toothed-whale muscles at different mercury levels. The concentrations of total mercury (T-Hg), methylmercury (MeHg), inorganic mercury (I-Hg) and Se were determined in the muscles of four toothed-whale species: bottlenose dolphins (n=31), Risso's dolphins (n=30), striped dolphins (n=29), and short-finned pilot whales (n=30). In each species, the MeHg concentration increased with increasing T-Hg concentration, tending to reach a plateau. In contrast, the proportion of MeHg in T-Hgmore » decreased from 90–100% to 20–40%. The levels of T-Hg and Se showed strong positive correlations. Se/I-Hg molar ratios rapidly decreased with the increase of I-Hg and reached almost 1 in all species. These results suggested that the demethylated MeHg immediately formed Se/I-Hg equimolar complex of mercury selenide (HgSe) in their muscles. In addition, an X-ray absorption fine structure analysis (XAFS) of a bottlenose dolphin muscle confirmed that the dominant chemical form of the Se/I-Hg equimolar complex was HgSe. HgSe was mainly localized in cells near the endomysium using electron probe microanalysis (EPMA). These results suggested that the demethylated MeHg finally deposits within muscle cells of bottlenose dolphin as an inert HgSe. - Highlights: • T-Hg, MeHg, I-Hg and Se were determined in the muscles of four toothed-whales. • MeHg increased with increasing T-Hg and tended to reach a plateau in all species. • Se/I-Hg molar ratios rapidly decreased with increase of I-Hg and reached almost 1. • XAFS of bottlenose dolphin muscle confirmed that HgSe was dominant chemical form. • EPMA of bottlenose dolphin muscle showed that HgSe deposited in muscle cells.« less

  15. High residue levels and the chemical form of mercury in tissues and organs of seabirds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, E.Y.; Murakami, Toru; Saeki, Kazutoshi

    1995-12-31

    Total and organic (methyl) mercury in liver, muscle, kidney and feather of 9 species of seabirds were analyzed to determine the levels and their distribution and to clarify the occurrences of high mercury levels and their detoxification process in seabirds. Total mercury levels in liver showed great variations in intra and interspecies, while organic mercury levels were less variable. As compared with species in relatively low mercury levels, the species which accumulated the high concentration of mercury like black-footed albatross exhibited the different distribution of mercury in the body: in total mercury burden, albatross species contained less than 10% inmore » feather and over 50% in liver, while other species contained over 40% in feather and less than 20% in liver. The order of organic mercury concentrations in tissues were as follows: liver > kidney > muscle in seabirds examined, except oldsquaw. The mean percentage of organic mercury in total was 35%, 66%, and 36% in liver, muscle and kidney, respectively, for all the species. The significant negative correlations were found between organic mercury percentage to total mercury and total mercury concentrations in the liver and muscle of black-footed albatross and in the liver of laysan albatross. Furthermore, in liver, muscle, and kidney of all the species, the percentages of organic mercury had a negative trend with an increase of total mercury concentrations. The results suggest that albatross species may be capable for demethylating organic mercury in the tissues (mainly in liver), and for storing the mercury as immobilizable inorganic form in the liver as substitution for delivering organic mercury to other organs. It is noteworthy that the species with high degree of demethylation showed the lower mercury burdens in feather and slow moulting pattern.« less

  16. Multicoloured fluorescent indicators for live-cell and in vivo imaging of inorganic mercury dynamics.

    PubMed

    Tao, Rongkun; Shi, Mei; Zou, Yejun; Cheng, Di; Wang, Qiaohui; Liu, Renmei; Wang, Aoxue; Zhu, Jiahuan; Deng, Lei; Hu, Hanyang; Chen, Xianjun; Du, Jiulin; Zhu, Weiping; Zhao, Yuzheng; Yang, Yi

    2018-06-01

    Engineered fluorescent indicators for visualizing mercury ion (Hg 2+ ) are powerful tools to illustrate the intracellular distribution and serious toxicity of the ion. However, the sensitive and specific detection of Hg 2+ in living cells and in vivo is challenging. This paper reported the development of fluorescent indicators for Hg 2+ in green or red color by inserting a circularly permuted fluorescent protein into a highly mercury-specific repressor. These sensors provided a rapid, sensitive, specific, and real-time read-out of Hg 2+ dynamics in solutions, bacteria, subcellular organelles of mammalian cells, and zebrafish, thereby providing a useful new method for Hg 2+ detection and bioimaging. In conjunction with the hydrogen peroxide sensor HyPer, we found mercury uptake would trigger subcellular oxidative events at the single-cell level, and provided visual evidence of the causality of mercury and oxidative damage. These sensors would paint the landscape of mercury toxicity to cell functions. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Geochemical modeling of mercury speciation in surface water and implications on mercury cycling in the everglades wetland.

    PubMed

    Jiang, Ping; Liu, Guangliang; Cui, Wenbin; Cai, Yong

    2018-06-01

    The geochemical model PHREEQC, abbreviated from PH (pH), RE (redox), EQ (equilibrium), and C (program written in C), was employed on the datasets generated by the USEPA Everglades Regional Environmental Monitoring and Assessment Program (R-EMAP) to determine the speciation distribution of inorganic mercury (iHg) in Everglades water and to explore the implications of iHg speciation on mercury cycling. The results suggest that sulfide and DOM were the key factors that regulate inorganic Hg speciation in the Everglades. When sulfide was present at measurable concentrations (>0.02 mg/L), Hg-S complexes dominated iHg species, occurring in the forms of HgS 2 2- , HgHS 2 - , and Hg(HS) 2 that were affected by a variety of environmental factors. When sulfide was assumed nonexistent, Hg-DOM complexes occurred as the predominant Hg species, accounting for almost 100% of iHg species. However, when sulfide was presumably present at a very low, environmentally relevant concentration (3.2 × 10 -7  mg/L), both Hg-DOM and Hg-S complexes were present as the major iHg species. These Hg-S species and Hg-DOM complex could be related to methylmercury (MeHg) in environmental matrices such floc, periphyton, and soil, and the correlations are dependent upon different circumstances (e.g., sulfide concentrations). The implications of the distribution of iHg species on MeHg production and fate in the Everglades were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Use of Saccharomyces cerevisiae To Reduce the Bioaccessibility of Mercury from Food.

    PubMed

    Jadán-Piedra, Carlos; Baquedano, Marta; Puig, Sergi; Vélez, Dinoraz; Devesa, Vicenta

    2017-04-05

    Food is the main pathway of exposure to inorganic mercury [Hg(II)] and methylmercury (CH 3 Hg). Intestinal absorption of these mercury species is influenced by their chemical form, the luminal pH, and the composition of the diet. In this regard, strategies have been proposed for reducing mercury absorption using dietary components. This study evaluates the capacity of Saccharomyces cerevisiae to reduce the amount of mercury solubilized after gastrointestinal digestion that is available for intestinal absorption (bioaccessibility). The results show that S. cerevisiae strains reduce mercury bioaccessibility from aqueous solutions of Hg(II) (89 ± 6%) and CH 3 Hg (83 ± 4%), and from mushrooms (19-77%), but not from seafood. The formation of mercury-cysteine or mercury-polypeptide complexes in the bioaccessible fraction may contribute to the reduced effect of yeasts on mercury bioaccessibility from seafood. Our study indicates that budding yeasts could be useful for reducing the extent of intestinal absorption of mercury present in water and some food matrices.

  19. Multivessel system for cold-vapor mercury generation. Determination of mercury in hair and fish.

    PubMed

    Boaventura, G R; Barbosa, A C; East, G A

    1997-01-01

    A multivessel system for the determination of mercury (Hg) by cold-vapor atomic absorption spectrometry (CV-AAS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed. The performance of the proposed device was tested by determining total Hg in quality-control samples of hair and fishes following acid digestion. Application of the apparatus to the determination of Hg by CV-AAS following alkaline digestion was studied as well. The detection limit obtained for CV-AAS was 0.11 ng/mL and for ICP-AES 1.39 ng/mL. The results show that the system is appropriate to be used in techniques involving cold-vapor generation of Hg.

  20. Rapid Determination of Mercury in Seafood in an Introductory Environmental Science Class

    ERIC Educational Resources Information Center

    Rice, Jeanette K.; Jenkins, J. David; Manley, A. Citabria; Sorel, Eric; Smith, C. Jimmy

    2005-01-01

    An experiment is described which allows easy, rapid determination of mercury levels in commercially seafood samples from a contaminated area. Students gain experience in the preparation of a calibration curve, the determination of unknown concentrations, and risk assessment based on experimentally determined data.

  1. Evaluation of the neurotoxic effects of chronic embryonic exposure with inorganic mercury on motor and anxiety-like responses in zebrafish (Danio rerio) larvae.

    PubMed

    Abu Bakar, Noraini; Mohd Sata, Nurul Syafida Asma'; Ramlan, Nurul Farhana; Wan Ibrahim, Wan Norhamidah; Zulkifli, Syaizwan Zahmir; Che Abdullah, Che Azurahanim; Ahmad, Syahida; Amal, Mohammad Noor Azmai

    Chronic exposure to mercury (Hg) can lead to cumulative impairments in motor and cognitive functions including alteration in anxiety responses. Although several risk factors have been identified in recent year, little is known about the environmental factors that either due exposure toward low level of inorganic mercury that may led to the developmental disorders. The present study investigated the effects of embryonic exposure of mercury chloride on motor function and anxiety-like behavior. The embryo exposed to 6 different concentrations of HgCl 2 (7.5, 15, 30, 100, 125, 250nM) at 5hpf until hatching (72hpf) in a semi-static condition. The mortality rate increased in a dose dependent manner where the chronic embryonic exposure to 100nM decreased the number of tail coiling, heartbeat, and swimming activity. Aversive stimulus was used to examine the effects of 100nM interferes with the development of anxiety-related behavior. No elevation in both thigmotaxis and avoidance response of 6dpf larvae exposed with 100nM were found. Biochemical analysis showed HgCl 2 exposure affects proteins, lipids, carbohydrates and nucleic acids of the zebrafish larvae. These results showed that implication of HgCl 2 on locomotor and biochemical defects affects motor performance and anxiety-like responses. Yet, the potential underlying mechanisms these responses need to be further investigated which is crucial to prevent potential hazards on the developing organism due to neurotoxicant exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Towards Mechanistic Understanding of Mercury Availability and Toxicity to Aquatic Primary Producers.

    PubMed

    Dranguet, Perrine; Flück, Rebecca; Regier, Nicole; Cosio, Claudia; Le Faucheur, Séverine; Slaveykova, Vera I

    2014-11-01

    The present article reviews current knowledge and recent progress on the bioavailability and toxicity of mercury to aquatic primary producers. Mercury is a ubiquitous toxic trace element of global concern. At the base of the food web, primary producers are central for mercury incorporation into the food web. Here, the emphasis is on key, but still poorly understood, processes governing the interactions between mercury species and phytoplankton, and macrophytes, two representatives of primary producers. Mass transfer to biota surface, adsorption to cell wall, internalization and release from cells, as well as underlying toxicity mechanisms of both inorganic mercury and methylmercury are discussed critically. In addition, the intracellular distribution and transformation processes, their importance for mercury toxicity, species-sensitivity differences and trophic transfer are presented. The mini-review is illustrated with examples of our own research.

  3. Development of a particle-trap preconcentration-soft ionization mass spectrometric technique for the quantification of mercury halides in air.

    PubMed

    Deeds, Daniel A; Ghoshdastidar, Avik; Raofie, Farhad; Guérette, Élise-Andrée; Tessier, Alain; Ariya, Parisa A

    2015-01-01

    Measurement of oxidized mercury, Hg(II), in the atmosphere poses a significant analytical challenge as Hg(II) is present at ultra-trace concentrations (picograms per cubic meter air). Current technologies are sufficiently sensitive to measure the total Hg present as Hg(II) but cannot determine the chemical speciation of Hg(II). We detail here the development of a soft ionization mass spectrometric technique coupled with preconcentration onto nano- or microparticle-based traps prior to analysis for the measurement of mercury halides in air. The current methodology has comparable detection limits (4-11 pg m(-3)) to previously developed techniques for the measurement of total inorganic mercury in air while allowing for the identification of HgX2 in collected samples. Both mercury chloride and mercury bromide have been sporadically detected in Montreal urban and indoor air using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). We discuss limitations and advantages of the current technique and discuss potential avenues for future research including quantitative trace measurements of a larger range of mercury compounds.

  4. Use of elemental and molecular-mass spectrometry to assess the toxicological effects of inorganic mercury in the mouse Mus musculus.

    PubMed

    García-Sevillano, Miguel Angel; García-Barrera, Tamara; Navarro, Francisco; Gailer, Jürgen; Gómez-Ariza, José Luiz

    2014-09-01

    The biochemical response of mice (Mus musculus) to acute subcutaneous inorganic-mercury exposure was assessed over a 14-day period by analyzing cytosolic extracts of the liver, the kidneys, and blood plasma. Integrated metallomic and metabolomic approaches using elemental and molecular-mass spectrometry were used to obtain comprehensive insight into the toxicological effects of mercury regarding its distribution and possible perturbation of metabolic pathways. The metallomic approach involved the use of size-exclusion chromatography (SEC) coupled with multiaffinity chromatography inductively coupled plasma-mass spectrometry (ICP-MS) and isotopic-dilution analysis. The metabolomic approach involved the direct infusion of polar and lipophilic tissue extracts into a mass spectrometer (DIMS) in the positive and negative acquisition mode (ESI+and ESI-). The use of SEC-ICP-MS enabled us to detect changes in the metalloproteome in the liver and the kidneys during the exposure period, and revealed that interactions between Hg and endogenous Cu and Zn adversely affected the homeostasis of these essential metals. The detection of an Hg-Se detoxification product in mouse plasma substantiated the known interaction between Hg and Se in mammals. Use of DIMS in conjunction with partial-least-squares discriminant analysis (PLS-DA) uncovered time-dependent changes of endogenous metabolites over time, corroborated by histopathology investigation of specific mouse tissues. The perturbations of endogenous metabolic profiles were explained in terms of the adverse effect of mercury on energy metabolism (e.g. glycolysis, Krebs cycle), the degradation of membrane phospholipids (apoptosis), and increased levels of specific lipids in plasma. In summary, use of an SEC-ICP-MS-based metallomics approach in conjunction with molecular-mass-spectrometry-based metabolomics is revealed as a promising strategy to more comprehensively investigate the toxicological effects of harmful environmental

  5. Relative contributions of gaseous oxidized mercury and fine and coarse particle-bound mercury to mercury wet deposition at nine monitoring sites in North America

    NASA Astrophysics Data System (ADS)

    Cheng, Irene; Zhang, Leiming; Mao, Huiting

    2015-08-01

    Relative contributions to mercury wet deposition by gaseous oxidized mercury (%GOM) and fine and coarse particle-bound mercury (%FPBM and %CPBM) were estimated making use of monitored FPBM air concentration and mercury wet deposition at nine North American locations. Scavenging ratios of particulate inorganic ions (K+ and Ca2+, Mg2+ and Na+) were used as a surrogate for those of FPBM and CPBM, respectively. FPBM and CPBM were estimated to contribute 8-36% and 5-27%, respectively, depending on the location, to total wet deposition. The rest of the 39-87% was attributed to the contribution of GOM. The average %GOM, %FPBM and %CPBM among all locations were 65%, 17%, and 18%, respectively. The relative distributions of %GOM, %FPBM, and %CPBM were influenced by Hg(II) gas-particle partitioning, urban site characteristics, and precipitation type. At the regional scale, %GOM dominated over %FPBM and %CPBM. However, the sum of FPBM and CPBM contributed to nearly half of the total Hg wet deposition in urban areas, which was greater than other site categories and is attributed to higher FPBM air concentrations. At four locations, %FPBM exceeded %GOM during winter in contrast to summer, suggesting the efficient snow scavenging of aerosols. The results from this study are useful in improving mercury transport models since most of these models do not estimate CPBM, but frequently use monitored mercury wet deposition data for model evaluation.

  6. The use of lactic acid bacteria to reduce mercury bioaccessibility.

    PubMed

    Jadán-Piedra, C; Alcántara, C; Monedero, V; Zúñiga, M; Vélez, D; Devesa, V

    2017-08-01

    Mercury in food is present in either inorganic [Hg(II)] or methylmercury (CH 3 Hg) form. Intestinal absorption of mercury is influenced by interactions with other food components. The use of dietary components to reduce mercury bioavailability has been previously proposed. The aim of this work is to explore the use of lactic acid bacteria to reduce the amount of mercury solubilized after gastrointestinal digestion and available for absorption (bioaccessibility). Ten strains were tested by addition to aqueous solutions containing Hg(II) or CH 3 Hg, or to food samples, and submission of the mixtures to gastrointestinal digestion. All of the strains assayed reduce the soluble fraction from standards of mercury species under gastrointestinal digestion conditions (72-98%). However their effectiveness is lower in food, and reductions in bioaccessibility are only observed with mushrooms (⩽68%). It is hypothesized that bioaccessible mercury in seafood forms part of complexes that do not interact with lactic acid bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. An elemental mercury diffusion coefficient for natural waters determined by molecular dynamics simulation.

    PubMed

    Kuss, Joachim; Holzmann, Jörg; Ludwig, Ralf

    2009-05-01

    Mercury is a priority pollutant as its mobility between the hydrosphere and the atmosphere threatens the biosphere globally. The air-water gas transfer of elemental mercury (Hg0) is controlled by its diffusion through the water-side boundary layer and thus by its diffusion coefficient, D(Hg), the value of which, however, has not been established. Here, the diffusion of Hg0 in water was modeled by molecular dynamics (MD) simulation and the diffusion coefficient subsequently determined. Therefore the movement of either Hg(0) or xenon and 1000 model water molecules (TIP4P-Ew) were traced for time spans of 50 ns. The modeled D(Xe) of the monatomic noble gas agreed well with measured data; thus, MD simulation was assumed to be a reliable approach to determine D(Hg) for monatomic Hg(0) as well. Accordingly, Hg(0) diffusion was then simulated for freshwater and seawater, and the data were well-described by the equation of Eyring. The activation energies for the diffusion of Hg0 in freshwater was 17.0 kJ mol(-1) and in seawater 17.8 kJ mol(-1). The newly determined D(Hg) is clearly lower than the one previously used for an oceanic mercury budget. Thus, its incorporation into the model should lead to lower estimates of global ocean mercury emissions.

  8. Mercury in the pelagic food web of Lake Champlain.

    PubMed

    Miller, Eric K; Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2012-04-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25-75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 μg g(-1) in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury.

  9. Mercury in the Pelagic Food Web of Lake Champlain

    PubMed Central

    Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2013-01-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25 to 75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 µg g−1 in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury. PMID:22193540

  10. Volatilization of mercury compounds by methylmercury-volatilizing bacteria in Minamata Bay sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K.; Sakata, T.; Nakahara, H.

    1988-11-01

    Minamata Bay has been heavily polluted by high mercury concentrations which gave rise for a long time to methylmercury poisoning, Minamata disease (Kutsuna 1968; Irukayama 1977). The mercury still exists in the sediments of the Bay. The population of mercury-resistant bacteria in the sediments of Minamata Bay is larger than that in the sediments of other marine environments. The mercury-resistant bacteria isolated from a marine environment have been found to transform organic and inorganic mercury compounds into mercury vapor. The mercury-resistance confirmed in various bacterial genera has been shown to be plasmid-mediated volatilization. However, there has been little definitive informationmore » on the volatilization of organic mercury by the bacteria living in the mercury-polluted environment. It is important to know what bacterial transformations of mercury have been taking place and how the mercury-resistant bacteria may be playing a role in the mercury cycle in the marine environment of Minamata Bay. The object of the present study is to clarify the characteristics of the methylmercury-volatilizing bacteria in the sediments of Minamata Bay and of the volatilization of various mercury compounds by these bacteria.« less

  11. Toward the next generation of air quality monitoring: Mercury

    NASA Astrophysics Data System (ADS)

    Pirrone, Nicola; Aas, Wenche; Cinnirella, Sergio; Ebinghaus, Ralf; Hedgecock, Ian M.; Pacyna, Jozef; Sprovieri, Francesca; Sunderland, Elsie M.

    2013-12-01

    Mercury is a global pollutant that is ubiquitous in the environment. Enrichment of mercury in the biosphere as the result of human activities and subsequent production of methylmercury (MeHg) has resulted in elevated concentrations in fish, wildlife and marine mammals globally. Elemental mercury (Hg0) is the most common form of mercury in the atmosphere, and the form that is most readily transported long distances from its emission source. Most mercury deposition from the atmosphere is in the highly soluble, oxidised inorganic form HgII. Thus, understanding atmospheric transport and oxidant distribution is essential for understanding mercury inputs to ecosystems. Methylmercury (MeHg) is the most toxic form of mercury that accumulates in aquatic food web and can cause a variety of negative health effects such as long-term IQ deficits and cardiovascular impairment in exposed individuals. Humans are predominately exposed to MeHg by consuming fish. Hg0 emitted from anthropogenic sources has a long (6 months-1 year) atmospheric residence time allowing it to be transported long distances in the atmosphere. It is eventually oxidised to the highly soluble HgII (likely by atomic Br and/or OH/O3) and rapidly deposited with precipitation. Some of the mercury deposited to terrestrial and marine ecosystems is converted to MeHg, which is the only form that bioaccumulates in aquatic food webs. Recent studies suggest that there is a first-order relationship between the supply of inorganic mercury to ecosystems and production of MeHg, thus implying that declines in deposition will translate directly into reduced concentrations in biota and human exposures. However, one of the major uncertainties in this cycle is the time scale required for these changes to take place and this is known to vary from years to centuries across different environmental compartments depending on their physical and biogeochemical attributes. Thus, a key challenge in the case of mercury pollution is

  12. Characterizing dry deposition of mercury in urban runoff

    USGS Publications Warehouse

    Fulkerson, M.; Nnadi, F.N.; Chasar, L.S.

    2007-01-01

    Stormwater runoff from urban surfaces often contains elevated levels of toxic metals. When discharged directly into water bodies, these pollutants degrade water quality and impact aquatic life and human health. In this study, the composition of impervious surface runoff and associated rainfall was investigated for several storm events at an urban site in Orlando, Florida. Total mercury in runoff consisted of 58% particulate and 42% filtered forms. Concentration comparisons at the start and end of runoff events indicate that about 85% of particulate total mercury and 93% of particulate methylmercury were removed from the surface before runoff ended. Filtered mercury concentrations showed less than 50% reduction of both total and methylmercury from first flush to final flush. Direct comparison between rainfall and runoff at this urban site indicates dry deposition accounted for 22% of total inorganic mercury in runoff. ?? 2007 Springer Science+Business Media B.V.

  13. Sensitive determination of trace mercury by UV-visible diffuse reflectance spectroscopy after complexation and membrane filtration-enrichment.

    PubMed

    Yin, Changhai; Iqbal, Jibran; Hu, Huilian; Liu, Bingxiang; Zhang, Lei; Zhu, Bilin; Du, Yiping

    2012-09-30

    A simple, sensitive and selective solid phase reflectometry method is proposed for the determination of trace mercury in aqueous samples. The complexation reagent dithizone was firstly injected into the properly buffered solution with vigorous stirring, which started a simultaneous formation of nanoparticles suspension of dithizone and its complexation reaction with the mercury(II) ions to make Hg-dithizone nanoparticles. After a definite time, the mixture was filtered with membrane, and then quantified directly on the surface of the membrane by using integrating sphere accessory of the UV-visible spectrophotometer. The quantitative analysis was carried out at a wavelength of 485 nm since it yielded the largest difference in diffuse reflectance spectra before and after reaction with mercury(II).A good linear correlation in the range of 0.2-4.0 μg/L with a squared correlation coefficient (R(2)) of 0.9944 and a detection limit of 0.12 μg/L were obtained. The accuracy of the method was evaluated by the analysis of spiked mercury(II) concentrations determined using this method along with those determined by the atomic fluorescence mercury vapourmeter and the results obtained were in good agreement. The proposed method was applied to the determination of mercury in tap water and river water samples with the recovery in an acceptable range (95.7-105.3%). Copyright © 2012 Elsevier B.V. All rights reserved.

  14. LABORATORY STUDIES ON THE REMEDIATION OF MERCURY-CONTAMINATED SOILS

    EPA Science Inventory

    Mercury, in contrast to other toxic metals, cycles between the atmosphere, land, and water. During this cycle, it undergoes a series of complex chemical and physical transformations. Because of these transformations, it is found in the environment not only as simple inorganic and...

  15. Decomposition of fish samples for determination of mercury.

    PubMed

    Prester, L; Juresa, D; Blanusa, M

    1998-12-01

    The aim of the study was to compare the efficiency of acid and alkaline decomposition of biological materials using an open and a closed system for total mercury determination. Acid digestion was performed with concentrated HNO3 in tubes at 80 degrees C and lasted five hours. Alkaline digestion was performed with a 45% NaOH and a 1% cysteine, heated at 120 degrees C for 20 minutes. Total mercury was measured by atomic absorption spectrometry using the cold vapour technique (CVAAS). The average recovery obtained for analysis of certified reference material in closed tubes for acid digested sample was superior to the alkaline one, 103 +/- 4% vs. 70 +/- 3%, respectively. In addition, the recoveries through the open system acid digestion (90 +/- 8%) and the open system alkaline digestion (57 +/- 2%) were lower than through the respective closed system digestions. Reproducibility of the acid decomposition method was superior to the alkaline one.

  16. Method validation for control determination of mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry.

    PubMed

    Torres, Daiane Placido; Martins-Teixeira, Maristela Braga; Cadore, Solange; Queiroz, Helena Müller

    2015-01-01

    A method for the determination of total mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) has been validated following international foodstuff protocols in order to fulfill the Brazilian National Residue Control Plan. The experimental parameters have been previously studied and optimized according to specific legislation on validation and inorganic contaminants in foodstuff. Linearity, sensitivity, specificity, detection and quantification limits, precision (repeatability and within-laboratory reproducibility), robustness as well as accuracy of the method have been evaluated. Linearity of response was satisfactory for the two range concentrations available on the TDA AAS equipment, between approximately 25.0 and 200.0 μg kg(-1) (square regression) and 250.0 and 2000.0 μg kg(-1) (linear regression) of mercury. The residues for both ranges were homoscedastic and independent, with normal distribution. Correlation coefficients obtained for these ranges were higher than 0.995. Limits of quantification (LOQ) and of detection of the method (LDM), based on signal standard deviation (SD) for a low-in-mercury sample, were 3.0 and 1.0 μg kg(-1), respectively. Repeatability of the method was better than 4%. Within-laboratory reproducibility achieved a relative SD better than 6%. Robustness of the current method was evaluated and pointed sample mass as a significant factor. Accuracy (assessed as the analyte recovery) was calculated on basis of the repeatability, and ranged from 89% to 99%. The obtained results showed the suitability of the present method for direct mercury measurement in fresh fish and shrimp samples and the importance of monitoring the analysis conditions for food control purposes. Additionally, the competence of this method was recognized by accreditation under the standard ISO/IEC 17025.

  17. Mercury and gold concentrations of highly polluted environmental samples determined using prompt gamma-ray analysis and instrument neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Osawa, Takahito; Hatsukawa, Yuichi; Appel, Peter W. U.; Matsue, Hideaki

    2011-04-01

    The authors have established a method of determining mercury and gold in severely polluted environmental samples using prompt gamma-ray analysis (PGA) and instrumental neutron activation analysis (INAA). Since large amounts of mercury are constantly being released into the environment by small-scale gold mining in many developing countries, the mercury concentration in tailings and water has to be determined to mitigate environmental pollution. Cold-vapor atomic absorption analysis, the most pervasive method of mercury analysis, is not suitable because tailings and water around mining facilities have extremely high mercury concentrations. On the other hand, PGA can determine high mercury concentrations in polluted samples as it has an appropriate level of sensitivity. Moreover, gold concentrations can be determined sequentially by using INAA after PGA. In conclusion, the analytical procedure established in this work using PGA and INAA is the best way to evaluate the degree of pollution and the tailing resource value. This method will significantly contribute to mitigating problems in the global environment.

  18. Formation of methyl mercury by bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdy, M.K.; Noyes, O.R.

    1975-09-01

    Twenty-three Hg/sup 2 +/-resistant cultures were isolated from sediment of the Savannah River in Georgia; of these, 14 were gram-negative short rods belonging to the genera Escherichia and Enterobacter, six were gram-positive cocci (three Staphylococcus sp. and three Streptococcus sp.) and three were Bacillus sp. All the Escherichia, Enterobacter, and the Bacillus strain were more resistant to Hg/sup 2 +/ than the strains of staphylococci and streptococci. Adaptation using serial dilutions and concentration gradient agar plant techniques showed that it was possible to select a Hg/sup 2 +/-resistant strain from a parent culture identified as Enterobacter aerogenes. This culture resistedmore » 1200 ..mu..g of Hg/sup 2 +/ per ml of medium and produced methyl mercury from HgCl/sub 2/, but was unable to convert Hg/sup 2 +/ to volatile elemental mercury (Hg/sup 0/). Under constant aeration (i.e., submerged culture), slightly more methyl mercury was formed than in the absence of aeration. Production of methyl mercury was cyclic in nature and slightly decreased if DL-homocysteine was present in media, but increased with methylcobalamine. It is concluded that the bacterial production of methyl mercury may be a means of resistance and detoxification against mercurials in which inorganic Hg/sup 2 +/ is converted to organic form and secreted into the environment. 39 references, 5 figures, 3 tables.« less

  19. Formation of methyl mercury by bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdy, M.K.; Noyes, O.R.

    1975-09-01

    Twenty-three Hg/sup 2 +/-resistant cultures were isolated from sediment of the Savannah River in Georgia; of these, 14 were gram-negative short rods belonging to the genera Escherichia and Enterobacter, six were gram-positive cocci (three Staphylococcus sp. and three Streptococcus sp.) and three were Bacillus sp. All the Escherichia, Enterobacter, and the Bacillus strain were more resistant to Hg/sup 2 +/ than the strains of staphylococci and streptococci. Adaptation using serial dilutions and concentration gradient agar plate techniques showed that it was possible to select a Hg/sup 2 +/-resistant strain from a parent culture identified as Enterobacter aerogenes. This culture resistedmore » 1,200 ..mu..g of Hg/sup 2 +/ per ml of medium and produced methyl mercury from HgCl/sub 2/, but was unable to convert Hg/sup 2 +/ to volatile elemental mercury (Hg/sup 0/). Under constant aeration (i.e., submerged culture), slightly more methyl mercury was formed than in the absence of aeration. Production of methyl mercury was cycle in nature and slightly decreased if DL-homocysteine was present in media, but increased with methylcobalamine. It is concluded that the bacterial production of methyl mercury may be a means of resistance and detoxification against mercurials in which inorganic Hg/sup 2 +/ is converted to organic form and secreted into the environment.« less

  20. Ion-pairing reversed-phase chromatography coupled to inductively coupled plasma mass spectrometry as a tool to determine mercurial species in freshwater fish.

    PubMed

    Cheng, Heyong; Chen, Xiaopan; Shen, Lihuan; Wang, Yuanchao; Xu, Zigang; Liu, Jinhua

    2018-01-05

    Most of analytical community is focused on reversed phase high performance liquid chromatography (RP-HPLC) for mercury speciation by employing mobile phases comprising of high salts and moderate amounts of organic solvents. This study aims at rapid mercury speciation analysis by ion-pairing RP-HPLC with inductively coupled plasma mass spectrometry (ICP-MS) detection only using low salts for the sake of green analytical chemistry. Two ion-pairing HPLC methods were developed on individual usage of positively and negatively charged ion-pairing reagents (tetrabutylammonium hydroxide -TBAH and sodium dodecylbenzene sulfonate -SDBS), where sodium 3-mercapto-1-propysulfonate (MPS) and l-cysteine (Cys) were individually added in mobile phases to transform mercury species into negative and positive Hg-complexes for good resolution. Addition of phenylalanine was also utilized for rapid baseline separation in combination of short C 18 guard columns. Optimum mobile phases of 2.0mM SDBS+2.0mM Cys+1.0mM Phe (pH 3.0) and 4.0mM TBAH+2.0mM MPS+2.0mM Phe (pH 6.0) both achieved baseline separation of inorganic mercury (Hg 2+ ), methylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) on two consecutive 12.5-mm C 18 columns. The former mobile phase was selected for mercury speciation in freshwater fish because of short separation time (3.0min). Detection limits of 0.015 for Hg 2+ , 0.014 for MeHg, 0.028 for EtHg and 0.042μgL -1 for PhHg were obtained along with satisfactory precisions of peak height and area (1.0-2.8% for 5.0μgL -1 Hg-mixture standard). Good accordance of determined values of MeHg and total mercury in certified reference materials of fish tissue (GBW 10029) and tuna fish (BCR-463) with certified values as well as good recoveries (91-106%) proved good accuracy of the proposed method. An example application to freshwater fish indicated its potential in routine analysis, where MeHg was presented at 3.7-20.3μgkg -1 as the dominate species. Copyright © 2017

  1. Versatile combustion-amalgamation technique for the photometric determination of mercury in fish and environmental samples

    USGS Publications Warehouse

    Willford, Wayne A.; Hesselberg, Robert J.; Bergman, Harold L.

    1973-01-01

    Total mercury in a variety of substances is determined rapidly and precisely by direct sample combustion, collection of released mercury by amalgamation, and photometric measurement of mercury volatilized from the heated amalgam. Up to 0.2 g fish tissue is heated in a stream of O2 (1.2 L/min) for 3.5 min in 1 tube of a 2-tube induction furnace. The released mercury vapor and combustion products are carried by the stream of O2 through a series of traps (6% NaOH scrubber, water condenser, and Mg(CIO4)2 drying tube) and the mercury is collected in a 10 mm diameter column of 24 gauge gold wire (8 g) cut into 3 mm lengths. The resulting amalgam is heated in the second tube of the induction furnace and the volatilized mercury is measured with a mercury vapor meter equipped with a recorder-integrator. Total analysis time is approximately 8 min/sample. The detection limit is less than 0.002 μg and the system is easily converted for use with other biological materials, water, and sediments.

  2. Mercury speciation comparison. BrooksApplied Laboratories and Eurofins Frontier Global Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Wilmarth, W. R.

    2016-12-16

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences (FGS), Inc. in Bothell, WA on behalf of the Savannah River Remediation (SRR) Mercury Program Team. These samples were analyzed for seven species including: total mercury, dissolved mercury, inorganic mercury ((Hg(I) and Hg(II)), elemental mercury, methylmercury, ethylmercury, and dimethylmercury, with an eighth species, particulate mercury, calculated from the difference between total and dissolved mercury after subtracting the elemental mercury. The species fraction of total mercury measured has ranged broadly from a low of 32% to a high of 146%,more » though the vast majority of samples have been <100%. This can be expected since one is summing multiple values that each have at least a ± 20% measurement uncertainty. Two liquid waste tanks particularly important to understanding the distribution of mercury species in the Savannah River Site (SRS) Tank Farm were selected for a round robin analysis by Eurofins FGS and BrooksApplied Laboratories (BAL). The analyses conducted by BAL on the Tank 22 and 38 samples and their agreement with those obtained from Eurofins FGS for total mercury, dissolved mercury, methylmercury, ethylmercury, and dimethylmercury provide a strong degree of confidence in these species measurements« less

  3. Total and methyl mercury contents and distribution characteristics in cicada, Cryptotympana atrata (Fabricius).

    PubMed

    Zheng, Dongmei; Zhang, Zhongsheng; Wang, Qichao

    2010-06-01

    Total and methyl mercury concentrations of cicada bodies, wings, and exuviae were investigated to study the mercury distribution characteristics. Results indicated that total and methyl mercury concentrations of cicada bodies were 2.64 mg/kg and 123.93 ng/g on average, respectively. In cicada tissues, total mercury concentrations were found to increase in the order of exuviae (0.50 mg/kg on average) < wings (0.98 mg/kg on average) < cicada bodies (2.64 mg/kg on average) and methyl mercury concentrations of cicada bodies were 123.93 ng/g on average and were the highest. Methyl mercury concentrations accounted for about 4.69% of total mercury in cicada bodies and most mercury was in inorganic forms in cicada. Sex differences of total mercury concentrations were significantly great (F = 8.433, p < 0.01) and total mercury concentrations of the males, which were 3.38 mg/kg on average, were much higher. Correlation analysis showed that neither total nor methyl mercury concentrations of cicada bodies was significantly related to the corresponding contents of soil (r = 0.0598, p > 0.05).

  4. MERCURY CAPTURE ON COAL COMBUSTION FLY ASH. (R827649)

    EPA Science Inventory

    A study was performed at the Energy and Environmental Research Center (EERC) to test the hypotheses that (1) different carbon types contained in coal combustion fly ash have variable sorption capabilities relative to mercury and (2) the inorganic fraction of coal combustion fl...

  5. Interaction of mercury and selenium in the larval stage zebrafish vertebrate model.

    PubMed

    MacDonald, Tracy C; Korbas, Malgorzata; James, Ashley K; Sylvain, Nicole J; Hackett, Mark J; Nehzati, Susan; Krone, Patrick H; George, Graham N; Pickering, Ingrid J

    2015-08-01

    The compounds of mercury can be more toxic than those of any other non-radioactive heavy element. Despite this, environmental mercury pollution and human exposure to mercury are widespread, and are increasing. While the unusual ability of selenium to cancel the toxicity of mercury compounds has been known for nearly five decades, only recently have some aspects of the molecular mechanisms begun to be understood. We report herein a study of the interaction of mercury and selenium in the larval stage zebrafish, a model vertebrate system, using X-ray fluorescence imaging. Exposure of larval zebrafish to inorganic mercury shows nano-scale structures containing co-localized mercury and selenium. No such co-localization is seen with methylmercury exposure under similar conditions. Micro X-ray absorption spectra support the hypothesis that the co-localized deposits are most likely comprised of highly insoluble mixed chalcogenide HgSxSe(1-x) where x is 0.4-0.9, probably with the cubic zincblende structure.

  6. DoE optimization of a mercury isotope ratio determination method for environmental studies.

    PubMed

    Berni, Alex; Baschieri, Carlo; Covelli, Stefano; Emili, Andrea; Marchetti, Andrea; Manzini, Daniela; Berto, Daniela; Rampazzo, Federico

    2016-05-15

    By using the experimental design (DoE) technique, we optimized an analytical method for the determination of mercury isotope ratios by means of cold-vapor multicollector ICP-MS (CV-MC-ICP-MS) to provide absolute Hg isotopic ratio measurements with a suitable internal precision. By running 32 experiments, the influence of mercury and thallium internal standard concentrations, total measuring time and sample flow rate was evaluated. Method was optimized varying Hg concentration between 2 and 20 ng g(-1). The model finds out some correlations within the parameters affect the measurements precision and predicts suitable sample measurement precisions for Hg concentrations from 5 ng g(-1) Hg upwards. The method was successfully applied to samples of Manila clams (Ruditapes philippinarum) coming from the Marano and Grado lagoon (NE Italy), a coastal environment affected by long term mercury contamination mainly due to mining activity. Results show different extents of both mass dependent fractionation (MDF) and mass independent fractionation (MIF) phenomena in clams according to their size and sampling sites in the lagoon. The method is fit for determinations on real samples, allowing for the use of Hg isotopic ratios to study mercury biogeochemical cycles in complex ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Dithizone-functionalized solid phase extraction-displacement elution-high performance liquid chromatography-inductively coupled plasma mass spectrometry for mercury speciation in water samples.

    PubMed

    Yin, Yong-guang; Chen, Ming; Peng, Jin-feng; Liu, Jing-fu; Jiang, Gui-bin

    2010-06-15

    A novel and simple solid phase extraction (SPE)-high performance liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) method was developed for determination of inorganic mercury (IHg), methylmercury MeHg and ethylmercury (EtHg) in water samples in the present work. The procedure involves pre-functionalization of the commercially available C18 SPE column with dithizone, loading water sample, displacement elution of mercury species by Na(2)S(2)O(3) solution, followed by HPLC-ICP-MS determination. Characterization and optimization of operation parameters of this new SPE procedure were discussed, including eluting reagent selection, concentration of eluting reagent, volume of eluting reagent, effect of NaCl and humic acid in sample matrix. At optimized conditions, the detection limits of mercury species for 100mL water sample were about 3ngL(-1) and the average recoveries were 93.7, 83.4, and 71.7% for MeHg, IHg and EtHg, respectively, by spiking 0.2microgL(-1) mercury species into de-ion water. Stability experiment reveals that both the dithizone-functionalized SPE cartridge and the mercury species incorporated were stable in the storage procedure. These results obtained demonstrate that SPE-HPLC-ICP-MS is a simple and sensitive technique for the determination of mercury species at trace level in water samples with high reproducibility and accuracy.

  8. Inorganic Contaminants, Nutrient Reserves and Molt Intensity in Autumn Migrant Red-Necked Grebes (Podiceps grisegena) at Georgian Bay.

    PubMed

    Holman, Katie L; Schummer, Michael L; Petrie, Scott A; Chen, Yu-Wei; Belzile, Nelson

    2015-11-01

    Red-necked grebes (Podiceps grisegena) are piscivorous waterbirds that breed on freshwater lakes in northwestern Canada and stop-over at the Great Lakes during autumn migration to molt feathers and replenish lipid and protein reserves. The objectives of this study were to (1) describe concentrations of, and correlations among, inorganic contaminants in a sample of autumn migrant red-necked grebes from the Great Lakes, (2) compare concentrations of inorganic contaminants to those in autumn migrant common loons from Schummer et al. (Arch Environ Contam Toxicol 62:704, 2011a), (3) evaluate if the inorganic elements are negatively associated with lipid and protein reserves, and (4) determine if nutrient reserves and molt intensity were correlated. None of the 14 contaminants analyzed were above threshold levels known to cause acute health problems in piscivorous birds. Body masses of plucked birds were within the normal reported range. Lipid reserves varied positively with hepatic concentrations of arsenic, copper, iron, nickel, lead, and selenium and negatively with mercury and magnesium. Protein reserves variety negatively with hepatic concentrations of arsenic, calcium, nickel, lead, and zinc and positively with aluminum, cadmium, and iron. A negative correlation was observed between chest molt and lipid reserves but not between nutrient reserves and other feather tracts. The relationships between lipid reserves and both mercury and selenium were consistent with current research on other piscivorous waterbirds at the Great Lakes and justify continued work to determine interactions of these contaminants in waterbirds that breed, stage, and winter in the region.

  9. l-Arginine normalizes NOS activity and zinc-MT homeostasis in the kidney of mice chronically exposed to inorganic mercury.

    PubMed

    Piacenza, Francesco; Malavolta, Marco; Cipriano, Catia; Costarelli, Laura; Giacconi, Robertina; Muti, Elisa; Tesei, Silvia; Pierpaoli, Sara; Basso, Andrea; Bracci, Massimo; Bonacucina, Viviana; Santarelli, Lory; Mocchegiani, Eugenio

    2009-09-28

    Inorganic mercury (HgCl2) exposure provokes damage in many organs, especially kidney. Inducible nitric oxide synthase (iNOS) expression, total NOS activity and the profiles of zinc (Zn), copper (Cu) and Hg as well as their distribution when bound to specific intracellular proteins, including metallothioneins (MT), were studied during HgCl2 exposure and after l-arginine treatment in C57BL/6 mouse kidney. HgCl2 exposure modulates differently iNOS expression and NOS activity, increasing iNOS expression but, conversely, decreasing total NOS activity in the mouse kidney. Moreover, during Hg exposure an increased MT production occurs. The kidney damage leads to a loss of urinary proteins, increased plasma creatinine and high Zn mobilization with consequent increased urinary Zn excretion. l-arginine treatment recovers NOS activity and induces a normalization of MT induction, plasma creatinine values and urinary proteins excretion, suggesting that l-arginine may limit kidney damages by Hg exposure.

  10. The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments.

    PubMed

    Zhong, Huan; Wang, Wen-Xiong

    2009-03-01

    This study compared the relative importance of three types of sorption (organic matter-particle, mercury-organic matter and mercury-particle) in controlling the overall mercury partitioning and bioavailability in sediments. We found that all three types of sorption were important for both inorganic mercury (Hg) and methylated mercury (MeHg). Mercury-particle sorption was more important than mercury-fulvic acid (FA) sorption in increasing the mercury concentrations with increasing aging. Bioavailability (quantified by gut juice extraction from sipunculans) was mainly controlled by mercury-particle sorption, while FA-particle and mercury-FA sorption were not as important, especially for MeHg. Bacterial activity also increased the partitioning of Hg or MeHg in the sediments and was further facilitated by the presence of organic matter. The bioavailability of Hg or MeHg from sediments was only slightly influenced by bacterial activity. This study highlights the importance of sorption from various sources (especially mercury-particle sorption) as well as bacteria in controlling the partitioning and bioavailability of Hg or MeHg in sediments.

  11. Predicting mercury in mallard ducklings from mercury in chorioallantoic membranes

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    2003-01-01

    Methylmercury has been suspected as a cause of impaired reproduction in wild birds, but the confounding effects of other environmental stressors has made it difficult to determine how much mercury in the eggs of these wild species is harmful. Even when a sample egg can be collected from the nest of a wild bird and the mercury concentration in that egg compared to the laboratory-derived thresholds for reproductive impairment, additional information on the mercury levels in other eggs from that nest would be helpful in determining whether harmful levels of mercury were present in the clutch. The measurement of mercury levels in chorioallantoic membranes offers a possible way to estimate how much mercury was in a chick that hatched from an egg, and also in the whole fresh egg itself. While an embryo is developing, wastes are collected in a sac called the chorioallantoic membranes, which often remain inside the eggshell and can be collected for contaminant analysis. We fed methylmercury to captive mallards to generate a broad range of mercury levels in eggs, allowed the eggs to hatch normally, and then compared mercury concentrations in the hatchling versus the chorioallantoic membranes left behind in the eggshell. When the data from eggs laid by mercury- treated females were expressed as common logarithms, a linear equation was created by which the concentration of mercury in a duckling could be predicted from the concentration of mercury in the chorioallantoic membranes from the same egg. Therefore, if it were not possible to collect a sample egg from a clutch of wild bird eggs, the collection of the chorioallantoic membranes could be substituted, and the mercury predicted to be in the chick or whole egg could be compared to the thresholds of mercury that have been shown to cause harm in controlled feeding studies with pheasants, chickens, and mallards.

  12. Ecosystem conceptual model- Mercury

    USGS Publications Warehouse

    Alpers, Charles N.; Eagles-Smith, Collin A.; Foe, Chris; Klasing, Susan; Marvin-DiPasquale, Mark C.; Slotton, Darell G.; Windham-Myers, Lisamarie

    2008-01-01

    Mercury has been identified as an important contaminant in the Delta, based on elevated concentrations of methylmercury (a toxic, organic form that readily bioaccumulates) in fish and wildlife. There are health risks associated with human exposure to methylmercury by consumption of sport fish, particularly top predators such as bass species. Original mercury sources were upstream tributaries where historical mining of mercury in the Coast Ranges and gold in the Sierra Nevada and Klamath-Trinity Mountains caused contamination of water and sediment on a regional scale. Remediation of abandoned mine sites may reduce local sources in these watersheds, but much of the mercury contamination occurs in sediments stored in the riverbeds, floodplains, and the Bay- Delta, where scouring of Gold-Rush-era sediment represents an ongoing source.Conversion of inorganic mercury to toxic methylmercury occurs in anaerobic environments including some wetlands. Wetland restoration managers must be cognizant of potential effects on mercury cycling so that the problem is not exacerbated. Recent research suggests that wettingdrying cycles can contribute to mercury methylation. For example, high marshes (inundated only during the highest tides for several days per month) tend to have higher methylmercury concentrations in water, sediment, and biota compared with low marshes, which do not dry out completely during the tidal cycle. Seasonally inundated flood plains are another environment experiencing wetting and drying where methylmercury concentrations are typically elevated. Stream restoration efforts using gravel injection or other reworking of coarse sediment in most watersheds of the Central Valley involve tailings from historical gold mining that are likely to contain elevated mercury in associated fines. Habitat restoration projects, particularly those involving wetlands, may cause increases in methylmercury exposure in the watershed. This possibility should be evaluated.The DRERIP

  13. [Research on mercury methylation by Geobacter sulfurreducens and its influencing factors].

    PubMed

    Zou, Yan; Si, You-Bin; Yan, Xue; Chen, Yan

    2012-09-01

    Mercury methylation by Geobacter sulfurreducens and the effects of environmental factors were studied under laboratory conditions. The results showed that G. sulfurreducens could grow well in the presence of low concentrations of mercuric chloride, but its growth was inhibited to a certain extent, mainly expressed in the prolonged lag phase. G. sulfurreducens could transform inorganic mercury into methylmercury, and this process was affected by many environmental factors. The efficiency of mercury methylation reached 38% under anaerobic conditions with 1 mg x L(-1) HgCl2 and 0.9% salinity at 35 degrees C, pH 6.0. Increasing the initial HgCl2 concentration or salinity in an appropriate manner improved mercury methylation, but the concentration of methylmercury reduced when the concentrations of HgCl2 and salinity were too high. The efficiency of mercury methylation increased with the increasing temperature in range of 4-35 degrees C. Weakly acidic environment was more beneficial to mercury methylation than acidic, neutral or alkaline conditions. In addition, the efficiency of mercury methylation was also affected by humic acid and cysteine. Humic acid inhibited mercury methyaltion, whereas cysteine could improve the efficiency of mercury methylation. This study provided a direct evidence for mercury methylation mediated by iron-reducing bacteria in the natural aquatic ecosystem.

  14. Automated dynamic hollow fiber liquid-liquid-liquid microextraction combined with capillary electrophoresis for speciation of mercury in biological and environmental samples.

    PubMed

    Li, Pingjing; He, Man; Chen, Beibei; Hu, Bin

    2015-10-09

    A simple home-made automatic dynamic hollow fiber based liquid-liquid-liquid microextraction (AD-HF-LLLME) device was designed and constructed for the simultaneous extraction of organomercury and inorganic mercury species with the assistant of a programmable flow injection analyzer. With 18-crown-6 as the complexing reagent, mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were extracted into the organic phase (chlorobenzene), and then back-extracted into the acceptor phase of 0.1% (m/v) 3-mercapto-1-propanesulfonic acid (MPS) aqueous solution. Compared with automatic static (AS)-HF-LLLME system, the extraction equilibrium of target mercury species was obtained in shorter time with higher extraction efficiency in AD-HF-LLLME system. Based on it, a new method of AD-HF-LLLME coupled with large volume sample stacking (LVSS)-capillary electrophoresis (CE)/UV detection was developed for the simultaneous analysis of methyl-, phenyl- and inorganic mercury species in biological samples and environmental water. Under the optimized conditions, AD-HF-LLLME provided high enrichment factors (EFs) of 149-253-fold within relatively short extraction equilibrium time (25min) and good precision with RSD between 3.8 and 8.1%. By combining AD-HF-LLLME with LVSS-CE/UV, EFs were magnified up to 2195-fold and the limits of detection (at S/N=3) for target mercury species were improved to be sub ppb level. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Mercury: major issues in environmental health.

    PubMed Central

    Clarkson, T W

    1993-01-01

    In the past, methylmercury compounds were manufactured as fungicides or appeared as unwanted byproducts of the chemical industry, but today the methylation of inorganic mercury in aquatic sediments and soils is the predominant if not the sole source of methylmercury. This form of mercury is bioaccumulated to a high degree in aquatic food chains to attain its highest concentrations in edible tissues in long-lived predatory fish living in both fresh and ocean waters. It is well absorbed from the diet and distributes within a few days to all tissues in the body. It crosses without hindrance the blood-brain and placental barriers to reach its principal target tissue, the brain. It is eliminated chiefly in the feces after conversion to inorganic mercury. The biological half-time of methylmercury in human tissues is about 50 days, but there is wide individual variation. Adult poisoning is characterized by focal damage to discrete anatomical areas of the brain such as the visual cortex and granule layer of the cerebellum. A latent period of weeks or months may ensue before the appearance of signs and symptoms of poisoning. The latter manifest themselves as paresthesia, ataxia, constriction of the visual fields, and hearing loss. The prenatal period is the most sensitive stage of the life cycle to methylmercury. Prenatally poisoned infants exhibit a range of effects from severe cerebral palsy to subtle developmental delays. Methylmercury is believed to inhibit those processes in the brain specially involved in development and growth such as neuronal cell division and migration. PMID:8354179

  16. Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05.

    PubMed

    Dash, Hirak R; Mangwani, Neelam; Das, Surajit

    2014-02-01

    Bacillus thuringiensis PW-05 was isolated from the Odisha coast and was found to resist 50 ppm of Hg as HgCl2 as well as higher concentrations of CdCl2, ZnSO4, PbNO3 and Na2HAsO4. Resistance towards several antibiotics, viz amoxycillin, ampicillin, methicillin, azithromycin and cephradine (CV) was also observed. The mer operon possessed by most of the mercury-resistant bacteria was also found in this isolate. Atomic absorption spectroscopy revealed that the isolate can volatilize >90 % of inorganic mercury. It showed biofilm formation in the presence of 50 ppm HgCl2 and can produce exopolysaccharide under same conditions. The isolate was found to volatilize mercury efficiently under a wide range of environmental parameters, i.e. pH (7 to 8), temperature (25 °C to 40 °C) and salinity (5 to 25 ppt). merA gene expression has been confirmed by real-time reverse transcriptase PCR study. Fourier transform infrared study revealed that -SH and -COOH groups play a major role in the process of adaptation to Hg. Hence, this isolate B. thuringiensis PW-05 shows an interesting potential for bioremediation of mercury.

  17. Applicability of two mobile analysers for mercury in urine in small-scale gold mining areas.

    PubMed

    Baeuml, Jennifer; Bose-O'Reilly, Stephan; Lettmeier, Beate; Maydl, Alexandra; Messerer, Katalin; Roider, Gabriele; Drasch, Gustav; Siebert, Uwe

    2011-12-01

    Mercury is still used in developing countries to extract gold from the ore in small-scale gold mining areas. This is a major health hazard for people living in mining areas. The concentration of mercury in urine was analysed in different mining areas in Zimbabwe, Indonesia and Tanzania. First the urine samples were analysed by CV-AAS (cold vapour atomic absorption spectrometry) during the field projects with a mobile mercury analyser (Lumex(®) or Seefelder(®)) and secondly, in a laboratory with a stationary CV-AAS mercury analyser (PerkinElmer(®)). Caused by the different systems (reduction agent either SnCl(2) (Lumex(®) or Seefelder(®))) or NaBH(4) (PerkinElmer(®)), with the mobile analysers only the inorganic mercury was obtained and with the stationary system the total mercury concentration was measured. The aims of the study were whether the results obtained in field with the mobile equipments can be compared with the stationary reference method in the laboratory and allow the application of these mobile analysers in screening studies on concerned populations to select those, who are exposed to critical mercury levels. Overall, the concentrations obtained with the two mobile systems were approximately 25% lower than determined with the stationary system. Nevertheless, both mobile systems seem to be very useful for screening of volunteers in field. Moreover, regional staff may be trained on such analysers to perform screening tests by themselves. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Conductometric Sensors for Detection of Elemental Mercury Vapor

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Homer, M. L.; Shevade, A. V.; Lara, L. M.; Yen, S.-P. S.; Kisor, A. K.; Manatt, K. S.

    2008-01-01

    Several organic and inorganic materials have been tested for possible incorporation into a sensing array in order to add elemental mercury vapor to the suite of chemical species detected. Materials have included gold films, treated gold films, polymer-carbon composite films, gold-polymer-carbon composite films and palladium chloride sintered films. The toxicity of mercury and its adverse effect on human and animal health has made environmental monitoring of mercury in gas and liquid phases important (1,2). As consumer products which contain elemental mercury, such as fluorescent lighting, become more widespread, the need to monitor environments for the presence of vapor phase elemental mercury will increase. Sensors in use today to detect mercury in gaseous streams are generally based on amalgam formation with gold or other metals, including noble metals and aluminum. Recently, NASA has recognized a need to detect elemental mercury vapor in the breathing atmosphere of the crew cabin in spacecraft and has requested that such a capability be incorporated into the JPL Electronic Nose (3). The detection concentration target for this application is 10 parts-per-billion (ppb), or 0.08 mg/m3. In order to respond to the request to incorporate mercury sensing into the JPL Electronic Nose (ENose) platform, it was necessary to consider only conductometric methods of sensing, as any other transduction method would have required redesign of the platform. Any mercury detection technique which could not be incorporated into the existing platform, such as an electrochemical technique, could not be considered.

  19. Determination of mercury in fish tissue using a minianalyzer based on cold vapor atomic absorption spectrometry at the 184.9 nm line.

    PubMed

    Rizea, Maria-Cristina; Bratu, Maria-Cristina; Danet, Andrei Florin; Bratu, Adrian

    2007-09-01

    A sensitive method was proposed and optimized for the determination of total mercury in fish tissue by using wet digestion, followed by cold vapor atomic absorption spectrometry (CVAAS) at the main resonance line of mercury (184.9 nm). The measurements were made using a new type of a non-dispersive mercury minianalyzer. This instrument was initially designed and built for atmospheric mercury-vapor detection. For determining mercury in aqueous samples, the minianalyzer was linked with a mercury/hydride system, Perkin Elmer Model MHS-10. To check the method, the analyzed samples were spiked with a standard solution of mercury. The recoveries of mercury spiked to wet fish tissue were >90% for 0.5 - 0.8 g samples. The results showed a better sensitivity (about 2.5 times higher) when using the mercury absorption line at 184.9 nm compared with the sensitivity obtained by conventional CVAAS at 253.7 nm.

  20. Single-Walled Carbon Nanotubes (SWCNTs), as a Novel Sorbent for Determination of Mercury in Air

    PubMed Central

    Golbabaei, Farideh; Ebrahimi, Ali; Shirkhanloo, Hamid; Koohpaei, Alireza; Faghihi-Zarandi, Ali

    2016-01-01

    Background: Based on the noticeable toxicity and numerous application of mercury in industries, removal of mercury vapor through sorbent is an important environmental challenge. Purpose of the Study: Due to their highly porous and hollow structure, large specific surface area, light mass density and strong interaction, Single-Walled Carbon Nanotubes (SWCNTs) sorbent were selected for this investigation. Methods: In this study, instrumental conditions, method procedure and different effective parameters such as adsorption efficiency, desorption capacity, time, temperature and repeatability as well as retention time of adsorbed mercury were studied and optimized. Also, mercury vapor was determined by cold vapor atomic absorption spectrometry (CV-AAS). Obtained data were analyzed by Independent T- test, Multivariate linear regression and one way–ANOVA finally. Results: For 80 mg nanotubes, working range of SWCNT were achieved 0.02-0.7 μg with linear range (R2=0.994). Our data revealed that maximum absorption capacity was 0.5 μg g-1 as well as limit of detection (LOD) for studied sorbent was 0.006 μg. Also, optimum time and temperature were reported, 10 min and 250 °C respectively. Retention time of mercury on CNTs for three weeks was over 90%. Results of repeated trials indicated that the CNTs had long life, so that after 30 cycles of experiments, efficiency was determined without performance loss. Conclusion: Results showed that carbon nanotubes have high potential for efficient extraction of mercury from air and can be used for occupational and environmental purposes. The study of adsorption properties of CNTs is recommended. PMID:26925918

  1. Mercury in the food chain of the Lagoon of Venice, Italy.

    PubMed

    Dominik, Janusz; Tagliapietra, Davide; Bravo, Andrea G; Sigovini, Marco; Spangenberg, Jorge E; Amouroux, David; Zonta, Roberto

    2014-11-15

    Sediments and biota samples were collected in a restricted area of the Lagoon of Venice and analysed for total mercury, monomethyl mercury (MMHg), and nitrogen and carbon isotopes. Results were used to examine mercury biomagnification in a complex food chain. Sedimentary organic matter (SOM) proved to be a major source of nutrients and mercury to primary consumers. Contrary to inorganic mercury, MMHg was strongly biomagnified along the food chain, although the lognormal relationship between MMHg and δ(15)N was less constrained than generally reported from lakes or coastal marine ecosystems. The relationship improved when logMMHg concentrations were plotted against trophic positions derived from baseline δ(15)N estimate for primary consumers. From the regression slope a mean MMHg trophic magnification factor of 10 was obtained. Filter-feeding benthic bivalves accumulated more MMHg than other primary consumers and were probably important in MMHg transfer from sediments to higher levels of the food chain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Determining mercury levels in anchovy and in individuals with different fish consumption habits, together with their neurological effects.

    PubMed

    Çamur, Derya; Güler, Çağatay; Vaizoğlu, Songül Acar; Özdilek, Betül

    2016-07-01

    An increase in enviromental pollution may lead to mercury toxicity of fish origin due to the accumulative nature of methylmercury in fish. The main sources of human exposure to organic mercury compounds are contaminated fish and other seafoods. This descriptive study was planned to determine mercury levels in anchovy and in hair samples from individuals with different fish consumption habits, and to evaluate those individuals in terms of toxic effects. For that purpose, we analyzed 100 anchovies from the Black Sea and 100 anchovies from the Sea of Marmara, and assessed 25 wholesale workers in fish markets and 25 cleaning firm employees from both Ankara and Istanbul. Mercury levels in samples were measured using a cold vapor atomic absorption spectrophotometer. Participants were examined neurologically and mini mental state examination was applied to evaluate their cognitive functions. Mercury levels in fish were found to be below the national and international permitted levels. There was no statistically significant relation between mercury levels and the sea from which fish were caught. Hair mercury levels for all participants were within permitted ranges. However, hair mercury levels in both cities increased significantly with amount and frequency of fish consumption. A significant correlation was determined at correlation analysis between levels of fish consumption and hair mercury levels in the fishmongers and in the entire group (r = 0.32, p = 0.025; r = 0.23, p = 0.023, respectively). Neurological examination results were normal, except for a decrease in deep tendon reflexes in some participants in both cities. There was no correlation between Standardized Mini Mental State Examination results and hair mercury levels. We conclude that establishing a monitoring system for mercury levels in fish and humans will be useful in terms of evaluating potential neurotoxic effects. © The Author(s) 2014.

  3. DEVELOPMENT OF AN ECOLOGICAL RISK ASSESSMENT METHODOLOGY FOR ASSESSING WILDLIFE EXPOSURE RISK ASSOCIATED WITH MERCURY-CONTAMINATED SEDIMENTS IN LAKE AND RIVER SYSTEMS

    EPA Science Inventory

    Mercury is an important environmental contaminant with a complex chemistry cycle. The form of mercury entering an ecosystem from anthropogenic and natural sources is generally inorganic, while the environmentally relevant form is in the organic form, methylmercury. Therefore, the...

  4. Interactions between Snow Chemistry, Mercury Inputs and Microbial Population Dynamics in an Arctic Snowpack

    PubMed Central

    Larose, Catherine; Prestat, Emmanuel; Cecillon, Sébastien; Berger, Sibel; Malandain, Cédric; Lyon, Delina; Ferrari, Christophe; Schneider, Dominique; Dommergue, Aurélien; Vogel, Timothy M.

    2013-01-01

    We investigated the interactions between snowpack chemistry, mercury (Hg) contamination and microbial community structure and function in Arctic snow. Snowpack chemistry (inorganic and organic ions) including mercury (Hg) speciation was studied in samples collected during a two-month field study in a high Arctic site, Svalbard, Norway (79°N). Shifts in microbial community structure were determined by using a 16S rRNA gene phylogenetic microarray. We linked snowpack and meltwater chemistry to changes in microbial community structure by using co-inertia analyses (CIA) and explored changes in community function due to Hg contamination by q-PCR quantification of Hg-resistance genes in metagenomic samples. Based on the CIA, chemical and microbial data were linked (p = 0.006) with bioavailable Hg (BioHg) and methylmercury (MeHg) contributing significantly to the ordination of samples. Mercury was shown to influence community function with increases in merA gene copy numbers at low BioHg levels. Our results show that snowpacks can be considered as dynamic habitats with microbial and chemical components responding rapidly to environmental changes. PMID:24282515

  5. [Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].

    PubMed

    Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin

    2014-09-01

    To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2 02 digested system was used to completely decomposed the organic compounds effectually by microwave digestion. 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camrnara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaves of Lantana camara were more than that in the root and the branch. The contents of Fe and Na in the root of Lantana camara were more than that in the leaves and the branch. The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity,which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.

  6. Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods.

    PubMed

    Pietilä, Heidi; Perämäki, Paavo; Piispanen, Juha; Starr, Mike; Nieminen, Tiina; Kantola, Marjatta; Ukonmaanaho, Liisa

    2015-04-01

    Most often, only total mercury concentrations in soil samples are determined in environmental studies. However, the determination of extremely toxic methylmercury (MeHg) in addition to the total mercury is critical to understand the biogeochemistry of mercury in the environment. In this study, N2-assisted distillation and acidic KBr/CuSO4 solvent extraction methods were applied to isolate MeHg from wet peat soil samples collected from boreal forest catchments. Determination of MeHg was performed using a purge and trap GC-ICP-MS technique with a species-specific isotope dilution quantification. Distillation is known to be more prone to artificial MeHg formation compared to solvent extraction which may result in the erroneous MeHg results, especially with samples containing high amounts of inorganic mercury. However, methylation of inorganic mercury during the distillation step had no effect on the reliability of the final MeHg results when natural peat soil samples were distilled. MeHg concentrations determined in peat soil samples after distillation were compared to those determined after the solvent extraction method. MeHg concentrations in peat soil samples varied from 0.8 to 18 μg kg(-1) (dry weight) and the results obtained with the two different methods did not differ significantly (p=0.05). The distillation method with an isotope dilution GC-ICP-MS was shown to be a reliable method for the determination of low MeHg concentrations in unpolluted soil samples. Furthermore, the distillation method is solvent-free and less time-consuming and labor-intensive when compared to the solvent extraction method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Mercury in the Sudbury River (Massachusetts, USA): pollution history and a synthesis of recent research

    USGS Publications Warehouse

    Wiener, J.G.; Shields, P.J.

    2000-01-01

    We review the transport, fate, and bioavailability of mercury in the Sudbury River, topics addressed in the following five papers. Mercury entered the river from an industrial complex (site) that operated from 1917 to 1978. Rates of mercury accumulation in sediment cores from two reservoirs just downstream from the site decreased soon after industrial operations ended and have decreased further since capping of contaminated soils at the site in 1991. The reservoirs contained the most contaminated sediments (some exceeding 50 mu g Hg.g dry weight(-1)) and were depositional sinks for total mercury. Methyl mercury concentrations in biota did not parallel concentrations of total mercury in the sediments to which organisms were exposed, experimentally or as residents. Contaminated wetlands within the floodplain about 25 km downstream from the site produced and exported methyl mercury from inorganic mercury that had originated from the site. Natural burial processes have gradually decreased the quantity of sedimentary mercury available for methylation within the reservoirs, whereas mercury in the lesser contaminated wetlands farther downstream has remained more available for transport, methylation, and entry into food webs.

  8. Naked-eye sensor for rapid determination of mercury ion.

    PubMed

    Liu, Jing; Wu, Dapeng; Yan, Xiaohui; Guan, Yafeng

    2013-11-15

    A naked-eye paper sensor for rapid determination of trace mercury ion in water samples was designed and demonstrated. The mercury-sensing rhodamine B thiolactone was immobilized in silica matrices and the silica matrices were impregnated firmly and uniformly in the filter paper. As water samples flow through the filter paper, the membrane color will change from white to purple red, which could be observed obviously with naked eye, when concentration of mercury ions equals to or exceeds 10nM, the maximum residue level in drinking water recommended by U.S. EPA. The color change can also be recorded by a flatbed scanner and then digitized, reducing the detection limit of Hg(2+) down to 1.2 nM. Moreover, this method is extremely specific for Hg(2+) and shows a high tolerance ratio of interferent coexisting ions. The presence of Na(+) (2 mM), K(+) (2 mM), Fe(3+) (0.1 mM), Zn(2+) (0.1 mM), Mg(2+) (0.1 mM), Ni(2+) (50 μM), Co(2+) (50 μM), Cd(2+) (50 μM), Pb(2+) (50 μM), Cu(2+) (50 μM) and Ag(+) (3.5 μM) did not interfere with the detection of Hg(2+) (25 nM). Finally, the present method was applied in the detection of Hg(2+) in mineral water, tap water and pond water. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    PubMed

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-04

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.

  10. Investigating Mercury's South Polar Deposits: Arecibo Radar Observations and High-Resolution Determination of Illumination Conditions

    NASA Astrophysics Data System (ADS)

    Chabot, Nancy L.; Shread, Evangela E.; Harmon, John K.

    2018-02-01

    There is strong evidence that Mercury's polar deposits are water ice hosted in permanently shadowed regions. In this study, we present new Arecibo radar observations of Mercury's south pole, which reveal numerous radar-bright deposits and substantially increase the radar imaging coverage. We also use images from MESSENGER's full mission to determine the illumination conditions of Mercury's south polar region at the same spatial resolution as the north polar region, enabling comparisons between the two poles. The area of radar-bright deposits in Mercury's south is roughly double that found in the north, consistent with the larger permanently shadowed area in the older, cratered terrain at the south relative to the younger smooth plains at the north. Radar-bright features are strongly associated with regions of permanent shadow at both poles, consistent with water ice being the dominant component of the deposits. However, both of Mercury's polar regions show that roughly 50% of permanently shadowed regions lack radar-bright deposits, despite some of these locations having thermal environments that are conducive to the presence of water ice. The observed uneven distribution of water ice among Mercury's polar cold traps may suggest that the source of Mercury's water ice was not a steady, regular process but rather that the source was an episodic event, such as a recent, large impact on the innermost planet.

  11. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkalai plant operation, metallurgy, and areas of agriculture in which mercuryrich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils.more » A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.« less

  12. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    DOE PAGES

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.; ...

    2017-08-30

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkalai plant operation, metallurgy, and areas of agriculture in which mercuryrich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils.more » A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.« less

  13. GENETIC ENGINEERING TO ENHANCE MERCURY PHYTOREMEDIATION

    PubMed Central

    Ruiz, Oscar N.; Daniell, Henry

    2009-01-01

    Summary Most phytoremediation studies utilize merA or merB genes to modify plants via the nuclear or chloroplast genome, expressing organomercurial lyase and/or mercuric ion reductase in the cytoplasm, endoplasmic reticulum or within plastids. Several plant species including Arabidopsis, tobacco, poplar, rice, Eastern cottonwood, peanut, salt marsh grass and Chlorella have been transformed with these genes. Transgenic plants grew exceedingly well in soil contaminated with organic (~400 μM PMA) or inorganic mercury (~500 μM HgCl2), accumulating Hg in roots surpassing the concentration in soil (~2000 μg/g). However, none of these plants were tested in the field to demonstrate real potential of this approach. Availability of metal transporters, translocators, chelators and the ability to express membrane proteins could further enhance mercury phytoremediation capabilities. PMID:19328673

  14. Genetic engineering to enhance mercury phytoremediation.

    PubMed

    Ruiz, Oscar N; Daniell, Henry

    2009-04-01

    Most phytoremediation studies utilize merA or merB genes to modify plants via the nuclear or chloroplast genome, expressing organomercurial lyase and/or mercuric ion reductase in the cytoplasm, endoplasmic reticulum or within plastids. Several plant species including Arabidopsis, tobacco, poplar, rice, Eastern cottonwood, peanut, salt marsh grass and Chlorella have been transformed with these genes. Transgenic plants grew exceedingly well in soil contaminated with organic (approximately 400 microM PMA) or inorganic mercury (approximately 500 microM HgCl(2)), accumulating Hg in roots surpassing the concentration in soil (approximately 2000 microg/g). However, none of these plants were tested in the field to demonstrate real potential of this approach. Availability of metal transporters, translocators, chelators and the ability to express membrane proteins could further enhance mercury phytoremediation capabilities.

  15. Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    NASA Technical Reports Server (NTRS)

    Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.; hide

    2014-01-01

    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.

  16. The use of a mercury biosensor to evaluate the bioavailability of mercury-thiol complexes and mechanisms of mercury uptake in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndu, Udonna; Barkay, Tamar; Mason, Robert P.

    We discuss as mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversionmore » of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS) 2) and Hg-glutathione (Hg(GSH) 2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH) 2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.« less

  17. The use of a mercury biosensor to evaluate the bioavailability of mercury-thiol complexes and mechanisms of mercury uptake in bacteria

    DOE PAGES

    Ndu, Udonna; Barkay, Tamar; Mason, Robert P.; ...

    2015-09-15

    We discuss as mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversionmore » of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS) 2) and Hg-glutathione (Hg(GSH) 2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH) 2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.« less

  18. HgL(3) XANES Study of Mercury Methylation in Shredded Eichhornia Crassipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajan, M.; Darrow, J.; Hua, M.

    2009-05-21

    Eichhornia crassipes (water hyacinth) is a non-native plant found in abundance in the Sacramento-San Joaquin River Delta (hereafter called Delta). This species has become a problem, clogging waterways and wetlands. Water hyacinth are also known to accumulate mercury. Recent attempts to curb its proliferation have included shredding with specialized boats. The purpose of this research is to better understand the ability of water hyacinth to phytoremediate mercury and to determine the effect of shredding and anoxic conditions on mercury speciation in plant tissue. In the field assessment, total mercury levels in sediment from the Dow Wetlands in the Delta weremore » found to be 0.273 {+-} 0.070 ppm Hg, and levels in hyacinth roots and shoots from this site were 1.17 {+-} 0.08 ppm and 1.03 {+-} 0.52 ppm, respectively, indicating bioaccumulation of mercury. Plant samples collected at this site were also grown in nutrient solution with 1 ppm HgCl{sub 2} under (1) aerobic conditions, (2) anaerobic conditions, and (3) with shredded plant material only. The greatest accumulation was found in the roots of whole plants. Plants grown in these conditions were also analyzed at Stanford Synchrotron Radiation Laboratory using Hg L{sub 3} X-ray Absorption Near Edge Spectroscopy (XANES), a method to examine speciation that is element-specific and noninvasive. Least-squares fitting of the XANES data to methylated and inorganic mercury(II) model compounds revealed that in plants grown live and aerobically, 5 {+-} 3% of the mercury was in the form of methylmercury, in a form similar to methylmercury cysteine. This percentage increased to 16 {+-} 4% in live plants grown anaerobically and to 22 {+-} 6% in shredded anaerobic plants. We conclude that shredding of the hyacinth plants and, in fact, subjection of plants to anaerobic conditions (e.g., as in normal decay, or in crowded growth conditions) increases mercury methylation. Mechanical removal of the entire plant is significantly

  19. Automated system for on-line determination of dimethylarsinic and inorganic arsenic by hydride generation-atomic fluorescence spectrometry.

    PubMed

    Chaparro, L L; Ferrer, L; Cerdà, V; Leal, L O

    2012-09-01

    A multisyringe flow-injection approach has been coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS) with UV photo-oxidation for dimethylarsinic (DMA), inorganic As and total As determination, depending on the pre-treatment given to the sample (extraction or digestion). The implementation of a UV lamp allows on-line photo-oxidation of DMA and the following arsenic detection, whereas a bypass leads the flow directly to the HG-AFS system, performing inorganic arsenic determination. DMA concentration is calculated by the difference of total inorganic arsenic and measurement of the photo-oxidation step. The detection limits for DMA and inorganic arsenic were 0.09 and 0.47 μg L(-1), respectively. The repeatability values accomplished were of 2.4 and 1.8%, whereas the injection frequencies were 24 and 28 injections per hour for DMA and inorganic arsenic, respectively. This method was validated by means of a solid reference material BCR-627 (muscle of tuna) with good agreement with the certified values. Satisfactory results for DMA and inorganic arsenic determination were obtained in several water matrices. The proposed method offers several advantages, such as increasing the sampling frequency, low detection limits and decreasing reagents and sample consumption, which leads to lower waste generation.

  20. Methylmercury and elemental mercury differentially associate with blood pressure among dental professionals

    PubMed Central

    Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2013-01-01

    Methylmercury-associated effects on the cardiovascular system have been documented though discrepancies exist, and most studied populations experience elevated methylmercury exposures. No paper has investigated the impact of low-level elemental (inorganic) mercury exposure on cardiovascular risk in humans. The purpose of this study was to increase understanding of the association between mercury exposure (methylmercury and elemental mercury) and blood pressure measures in a cohort of dental professionals that experience background exposures to both mercury forms. Dental professionals were recruited during the 2010 Michigan Dental Association Annual Convention. Mercury levels in hair and urine samples were analyzed as biomarkers of methylmercury and elemental mercury exposure, respectively. Blood pressure (systolic, diastolic) was measured using an automated device. Distribution of mercury in hair (mean, range: 0.45, 0.02–5.18 μg/g) and urine (0.94, 0.03–5.54 μg/L) correspond well with the US National Health and Nutrition Examination Survey. Linear regression models revealed significant associations between diastolic blood pressure (adjusted for blood pressure medication use) and hair mercury (n = 262, p = 0.02). Urine mercury results opposed hair mercury in many ways. Notably, elemental mercury exposure was associated with a significant systolic blood pressure decrease (n = 262, p = 0.04) that was driven by the male population. Associations between blood pressure and two forms of mercury were found at exposure levels relevant to the general population, and associations varied according to type of mercury exposure and gender. PMID:22494934

  1. Female reproductive health in two lamp factories: effects of exposure to inorganic mercury vapour and stress factors.

    PubMed

    De Rosis, F; Anastasio, S P; Selvaggi, L; Beltrame, A; Moriani, G

    1985-07-01

    To evaluate the possible influence of mercury vapour on female reproduction, 153 women working in a mercury vapour lamp factory have been compared with 193 women employed in another factory of the same company, where mercury was not used. Both groups of subjects were exposed to stress factors (noise, rhythms of production, and shift work). The production process has been analysed by inspection of the plants and by collective discussions with "homogeneous groups" of workers; a retrospective inquiry into work history and reproductive health events has been subsequently performed by an individual interview. Women exposed to mercury vapour currently not exceeding the time weighted average air concentration of 0.01 mg/m3 declared higher prevalence and incidence rates of menstrual disorders, primary subfecundity, and adverse pregnancy outcome; however, the progression of these problems with the level of exposure to mercury inside the same factory was not always clear. The results of this study neither prove nor exclude the possibility that occupational exposure to this concentration of mercury has a negative effect on female reproduction.

  2. Potential bioavailability of mercury in humus-coated clay minerals.

    PubMed

    Zhu, Daiwen; Zhong, Huan

    2015-10-01

    It is well-known that both clay and organic matter in soils play a key role in mercury biogeochemistry, while their combined effect is less studied. In this study, kaolinite, vermiculite, and montmorillonite were coated or not with humus, and spiked with inorganic mercury (IHg) or methylmercury (MeHg). The potential bioavailability of mercury to plants or deposit-feeders was assessed by CaCl2 or bovine serum albumin (BSA) extraction. For uncoated clay, IHg or MeHg extraction was generally lower in montmorillonite, due to its greater number of functional groups. Humus coating increased partitioning of IHg (0.5%-13.7%) and MeHg (0.8%-52.9%) in clay, because clay-sorbed humus provided more strong binding sites for mercury. Furthermore, humus coating led to a decrease in IHg (3.0%-59.8% for CaCl2 and 2.1%-5.0% for BSA) and MeHg (8.9%-74.6% for CaCl2 and 0.5%-8.2% for BSA) extraction, due to strong binding between mercury and clay-sorbed humus. Among various humus-coated clay particles, mercury extraction by CaCl2 (mainly through cation exchange) was lowest in humus-coated vermiculite, explained by the strong binding between humus and vermiculite. The inhibitory effect of humus on mercury bioavailability was also evidenced by the negative relationship between mercury extraction by CaCl2 and mercury in the organo-complexed fraction. In contrast, extraction of mercury by BSA (principally through complexation) was lowest in humus-coated montmorillonite. This was because BSA itself could be extensively sorbed onto montmorillonite. Results suggested that humus-coated clay could substantially decrease the potential bioavailability of mercury in soils, which should be considered when assessing risk in mercury-contaminated soils. Copyright © 2015. Published by Elsevier B.V.

  3. Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts

    USGS Publications Warehouse

    Henneberry, Y.K.; Kraus, T.E.C.; Fleck, J.A.; Krabbenhoft, D.P.; Bachand, P.M.; Horwath, W.R.

    2011-01-01

    The presence of inorganic mercury (IHg) and methylmercury (MeHg) in surface waters is a health concern worldwide. This study assessed the removal potential use of metal-based coagulants as a means to remove both dissolved IHg and MeHg from natural waters and provides information regarding the importance of Hg associations with the dissolved organic matter (DOM) fraction and metal hydroxides. Previous research indicated coagulants were not effective at removing Hg from solution; however these studies used high concentrations of Hg and did not reflect naturally occurring concentrations of Hg. In this study, water collected from an agricultural drain in the Sacramento-San Joaquin Delta was filtered to isolate the dissolved organic matter (DOM) fraction. The DOM was then treated with a range of coagulant doses to determine the efficacy of removing all forms of Hg from solution. Three industrial-grade coagulants were tested: ferric chloride, ferric sulfate, and polyaluminum chloride. Coagulation removed up to 85% of DOM from solution. In the absence of DOM, all three coagulants released IHg into solution, however in the presence of DOM the coagulants removed up to 97% of IHg and 80% of MeHg. Results suggest that the removal of Hg is mediated by DOM-coagulant interactions. There was a preferential association of IHg with the more aromatic, higher molecular weight fraction of DOM but no such relationship was found for MeHg. This study offers new fundamental insights regarding large-scale removal of Hg at environmentally relevant regarding large-scale removal of Hg at environmentally relevant concentrations.

  4. Signs and symptoms of mercury-exposed gold miners.

    PubMed

    Bose-O'Reilly, Stephan; Bernaudat, Ludovic; Siebert, Uwe; Roider, Gabriele; Nowak, Dennis; Drasch, Gustav

    2017-03-30

    Gold miners use mercury to extract gold from ore adding liquid mercury to the milled gold-containing ore. This results in a mercury-gold compound, called amalgam. Miners smelt this amalgam to obtain gold, vaporizing it and finally inhaling the toxic mercury fumes. The objective was to merge and analyze data from different projects, to identify typical signs and symptoms of chronic inorganic mercury exposure. Miners and community members from various artisanal small-scale gold mining areas had been examined (Philippines, Mongolia, Tanzania, Zimbabwe, Indonesia). Data of several health assessments were pooled. Urine, blood and hair samples were analyzed for mercury (N = 1252). Questionnaires, standardized medical examinations and neuropsychological tests were used. Participants were grouped into: Controls (N = 209), living in an exposed area (N = 408), working with mercury as panners (N = 181), working with mercury as amalgam burners (N = 454). Chi2 test, linear trend test, Mann-Whitney test, Kruskal-Wallis test, correlation coefficient, Spearman's rho, and analysis of variance tests were used. An algorithm was used to define participants with chronic mercury intoxication. Mean mercury concentrations in all exposed subgroups were elevated and above threshold limits, with amalgam burners showing highest levels. Typical symptoms of chronic metallic mercury intoxication were tremor, ataxia, coordination problems, excessive salivation and metallic taste. Participants from the exposed groups showed poorer results in different neuropsychological tests in comparison to the control group. Fifty-four percent of the high-exposed group (amalgam burners) were diagnosed as being mercury-intoxicated, compared to 0% within the control group (Chi2 p < 0.001). Chronic mercury intoxication, with tremor, ataxia and other neurological symptoms together with a raised body burden of mercury was clinically diagnosed in exposed people in artisanal small-scale mining

  5. Pore-structure and microstructural investigation of organomodified/Inorganic nano-montmorillonite cementitious nanocomposites

    NASA Astrophysics Data System (ADS)

    Papatzani, Styliani; Grammatikos, Sotirios; Adl-Zarrabi, Bijan; Paine, Kevin

    2018-04-01

    In the present paper, the effect of three different types of nano-montmorillonite dispersions (nMt) on the (i) microstructure as witnessed by Scanning Electron Microscopy, (ii) long term density measurements and (iii) pore structure as determined via Mercury Intrusion Porosimetry of Portland - limestone cement formulations have been compared, in an effort to determine the upper and lower bound of nMt addition in cementitious nanocomposites. The reference formulation, contained 60% PC and 40% LS by mass of binder aiming at the minimization of clinker and maximization of other constituents. Two aqueous organomodified NMt dispersions (one dispersed with non-ionic fatty alcohol and the other with anionic alkyl aryl sulphonate) and one aqueous inorganic NMt dispersion (dispersed with sodium tripolyphosphate) were added at 0.5, 1, 2, 4 and 5.5% by mass of solids as replacement of Portland cement. The water to solids ratio was kept constant at 0.3. The inorganic nMt showed the greatest potentials for microstructural enhancement. The way in which the level of the nMt platelet separation affected the pastes was discussed. The research reported was part of a much broader project supported by the EU.

  6. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    PubMed Central

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.; Gibson, Christopher T.; Sibley, Alexander; Slattery, Ashley D.; Campbell, Jonathan A.; Alboaiji, Salah F. K.; Muller, Katherine A.; Young, Jason; Adamson, Nick; Gascooke, Jason R.; Jampaiah, Deshetti; Sabri, Ylias M.; Bhargava, Suresh K.; Ippolito, Samuel J.; Lewis, David A.; Quinton, Jamie S.; Ellis, Amanda V.; Johs, Alexander; Bernardes, Gonçalo J. L.

    2017-01-01

    Abstract Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury‐rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low‐cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by‐product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury‐capturing polymers can be synthesised entirely from waste and supplied on multi‐kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry. PMID:28763123

  7. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils.

    PubMed

    Worthington, Max J H; Kucera, Renata L; Albuquerque, Inês S; Gibson, Christopher T; Sibley, Alexander; Slattery, Ashley D; Campbell, Jonathan A; Alboaiji, Salah F K; Muller, Katherine A; Young, Jason; Adamson, Nick; Gascooke, Jason R; Jampaiah, Deshetti; Sabri, Ylias M; Bhargava, Suresh K; Ippolito, Samuel J; Lewis, David A; Quinton, Jamie S; Ellis, Amanda V; Johs, Alexander; Bernardes, Gonçalo J L; Chalker, Justin M

    2017-11-16

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury-rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. [Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].

    PubMed

    Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin

    2014-10-01

    To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2O2 digested system was used to completely decompose the organic compounds effectually by microwave digestion. The 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaf were more those that in the root and branch; The contents of Fe, Na, Cr and Ni in the root were more than those in the leaf and branch; The contents of Mn, Zn, Sr and Cu in the branch were more than those in the root and the leaf; The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity, which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.

  9. Method and apparatus for sampling atmospheric mercury

    DOEpatents

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  10. Effects of metal-soil contact time on the extraction of mercury from soils.

    PubMed

    Ma, Lan; Zhong, Huan; Wu, Yong-Gui

    2015-03-01

    To investigate the mercury aging process in soils, soil samples were spiked with inorganic mercury (Hg(II)) or methylated mercury (MeHg) and incubated for 2, 7, 14 or 28 days in the laboratory. Potential availability of mercury, assessed by bovine serum albumin (BSA) or calcium chloride (CaCl2) extraction, decreased by 2-19 times for Hg(II) or 2-6 times for MeHg, when the contact time increased from 2 to 28 days. Decreased Hg(II) extraction could be explained by Hg(II) geochemical fractionation, i.e., Hg(II) migrated from more mobile fractions (water soluble and stomach acid soluble fractions) to refractory ones (organo-complexed, strongly complexed and residual fractions) over time, resulting in more stable association of Hg(II) with soils. In addition, decrease of mercury extraction was more evident in soils with lower organic content in most treatments, suggesting that organic matter may potentially play an important role in mercury aging process. In view of the significant decreased Hg(II) or MeHg extraction with prolonged contact time, mercury aging process should be taken into account when assessing risk of mercury in contaminated soils.

  11. Optimization of microwave digestion for mercury determination in marine biological samples by cold vapour atomic absorption spectrometry.

    PubMed

    Cardellicchio, Nicola; Di Leo, Antonella; Giandomenico, Santina; Santoro, Stefania

    2006-01-01

    Optimization of acid digestion method for mercury determination in marine biological samples (dolphin liver, fish and mussel tissues) using a closed vessel microwave sample preparation is presented. Five digestion procedures with different acid mixtures were investigated: the best results were obtained when the microwave-assisted digestion was based on sample dissolution with HNO3-H2SO4-K2Cr2O7 mixture. A comparison between microwave digestion and conventional reflux digestion shows there are considerable losses of mercury in the open digestion system. The microwave digestion method has been tested satisfactorily using two certified reference materials. Analytical results show a good agreement with certified values. The microwave digestion proved to be a reliable and rapid method for decomposition of biological samples in mercury determination.

  12. Determination of total mercury in fillets of sport fishes collected from Folsom and New Melones Reservoirs, California, 2004

    USGS Publications Warehouse

    May, Thomas W.; Brumbaugh, William G.

    2007-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the U.S. Bureau of Reclamation, to determine mercury concentrations in selected sport fishes from Folsom and New Melones Reservoirs in California. Fillets were collected from each fish sample, and after homogenization and lyophilization of fish fillets, mercury concentrations were determined with a direct mercury analyzer utilizing the process of thermal combustion-gold amalgamation atomic absorption spectroscopy. Mercury concentrations in fish fillets from Folsom Reservoir ranged from 0.09 to 1.16 micrograms per gram wet weight, and from New Melones Reservoir ranged from 0.03 to 0.94 microgram per gram wet weight. Most of the fish fillets from Folsom Reservoir (87 percent) and 27 percent of the fillets from New Melones Reservoir exceeded the U.S. Environmental Protection Agency's fish consumption advisory of 0.30 microgram per gram wet weight.

  13. Simple interface of high-performance liquid chromatography-atomic fluorescence spectrometry hyphenated system for speciation of mercury based on photo-induced chemical vapour generation with formic acid in mobile phase as reaction reagent.

    PubMed

    Yin, Yongguang; Liu, Jingfu; He, Bin; Shi, Jianbo; Jiang, Guibin

    2008-02-15

    Photo-induced chemical vapour generation (CVG) with formic acid in mobile phase as reaction reagent was developed as interface to on-line couple HPLC with atomic fluorescence spectrometry for the separation and determination of inorganic mercury, methylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg). In the developed procedure, formic acid in mobile phase was used to decompose organomercuries and reduce Hg(2+) to mercury cold vapour under UV irradiation. Therefore, no post-column reagent was used and the flow injection system in traditional procedure is omitted. A number of operating parameters including pH of mobile phase, concentration of formate, flow rate of mobile phase, length of PTFE reaction coil, flow rate of carrier gas and Na(2)S(2)O(3) in sample matrix were optimized. The limits of detection at the optimized conditions were 0.085, 0.033, 0.029 and 0.038 microg L(-1) for inorganic mercury, MeHg, EtHg and PhHg, respectively. The developed method was validated by determination of certified reference material DORM-2 and was further applied in analyses of seafood samples from Yantai port, China. The UV-CVG with formic acid simplifies the instrumentation and reduces the analytical cost significantly.

  14. Spatial and temporal assessment of mercury and organic matter in thermokarst affected lakes of the Mackenzie Delta uplands, NT, Canada.

    PubMed

    Deison, Ramin; Smol, John P; Kokelj, Steve V; Pisaric, Michael F J; Kimpe, Linda E; Poulain, Alexandre J; Sanei, Hamed; Thienpont, Joshua R; Blais, Jules M

    2012-08-21

    We examined dated sediment cores from 14 thermokarst affected lakes in the Mackenzie Delta uplands, NT, Arctic Canada, using a case-control analysis to determine how retrogressive thaw slump development from degrading permafrost affected the delivery of mercury (Hg) and organic carbon (OC) to lakes. We show that sediments from the lakes with retrogressive thaw slump development on their shorelines (slump-affected lakes) had higher sedimentation rates and lower total Hg (THg), methyl mercury (MeHg), and lower organic carbon concentrations compared to lakes where thaw slumps were absent (reference lakes). There was no difference in focus-corrected Hg flux to sediments between reference lakes and slump-affected lakes, indicating that the lower sediment Hg concentration in slump-affected lakes was due to dilution by rapid inorganic sedimentation in the slump-affected lakes. Sedimentation rates were inversely correlated with THg concentrations in sediments among the 14 lakes considered, and explained 68% of the variance in THg concentration in surface sediment, further supporting the dilution hypothesis. We observed higher S2 (algal-derived carbon) and particulate organic carbon (POC) concentrations in sediment profiles from reference lakes than in slump lakes, likely because of dilution by inorganic siliciclastic matter in cores from slump-affected lakes. We conclude that retrogressive thaw slump development increases inorganic sedimentation in lakes, and decreases concentrations of organic carbon and associated Hg and MeHg in sediments.

  15. Understanding reduced inorganic mercury accumulation in rice following selenium application: Selenium application routes, speciation and doses.

    PubMed

    Tang, Wenli; Dang, Fei; Evans, Douglas; Zhong, Huan; Xiao, Lin

    2017-02-01

    Selenium (Se) has recently been demonstrated to reduce inorganic mercury (IHg) accumulation in rice plants, while its mechanism is far from clear. Here, we aimed at exploring the potential effects of Se application routes (soil or foliar application with Se), speciation (selenite and selenate), and doses on IHg-Se antagonistic interactions in soil-rice systems. Results of our pot experiments indicated that soil application but not foliar application could evidently reduce tissue IHg concentrations (root: 0-48%, straw: 15-58%, and brown rice: 26-74%), although both application routes resulted in comparable Se accumulation in aboveground tissues. Meanwhile, IHg distribution in root generally increased with amended Se doses in soil, suggesting antagonistic interactions between IHg and Se in root. These results provided initial evidence that IHg-Se interactions in the rhizosphere (i.e., soil or rice root), instead of those in the aboveground tissues, could probably be more responsible for the reduced IHg bioaccumulation following Se application. Furthermore, Se dose rather than Se speciation was found to be more important in controlling IHg accumulation in rice. Our findings regarding the importance of IHg-Se interactions in the rhizosphere, together with the systematic investigation of key factors affecting IHg-Se antagonism and IHg bioaccumulation, advance our understanding of Hg dynamics in soil-rice systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues

    USGS Publications Warehouse

    Faust, Derek R.; Hooper, Michael J.; Cobb, George P.; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N.

    2014-01-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles.

  17. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues.

    PubMed

    Faust, Derek R; Hooper, Michael J; Cobb, George P; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N

    2014-09-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p < 0.05). Similarly, significant relationships were observed between skin biopsy concentrations and those in liver, kidney, and muscle tissues for mercury, arsenic, selenium, and vanadium (p < 0.05). Concentrations of arsenic, barium, chromium, nickel, strontium, vanadium, and zinc in claws and skin biopsies were substantially elevated when compared with all other tissues, indicating that these highly keratinized tissues may represent sequestration or excretion pathways. Correlations between standard carapace length and cobalt, lead, and manganese concentrations were observed (p < 0.05), indicating that tissue concentrations of these elements may be related to age and size. Results suggest that claws may indeed be useful indicators of mercury and nickel concentrations in liver and muscle tissues, whereas skin biopsy inorganic element concentrations may be better suited as indicators of mercury, selenium, and vanadium concentrations in liver, kidney, and muscle tissues of green sea turtles. © 2014 SETAC.

  18. Matrix influences on the determination of common ions by using ion chromatography part 1--determination of inorganic anions.

    PubMed

    Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona

    2012-07-01

    Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.

  19. A global ocean inventory of anthropogenic mercury based on water column measurements.

    PubMed

    Lamborg, Carl H; Hammerschmidt, Chad R; Bowman, Katlin L; Swarr, Gretchen J; Munson, Kathleen M; Ohnemus, Daniel C; Lam, Phoebe J; Heimbürger, Lars-Eric; Rijkenberg, Micha J A; Saito, Mak A

    2014-08-07

    Mercury is a toxic, bioaccumulating trace metal whose emissions to the environment have increased significantly as a result of anthropogenic activities such as mining and fossil fuel combustion. Several recent models have estimated that these emissions have increased the oceanic mercury inventory by 36-1,313 million moles since the 1500s. Such predictions have remained largely untested owing to a lack of appropriate historical data and natural archives. Here we report oceanographic measurements of total dissolved mercury and related parameters from several recent expeditions to the Atlantic, Pacific, Southern and Arctic oceans. We find that deep North Atlantic waters and most intermediate waters are anomalously enriched in mercury relative to the deep waters of the South Atlantic, Southern and Pacific oceans, probably as a result of the incorporation of anthropogenic mercury. We estimate the total amount of anthropogenic mercury present in the global ocean to be 290 ± 80 million moles, with almost two-thirds residing in water shallower than a thousand metres. Our findings suggest that anthropogenic perturbations to the global mercury cycle have led to an approximately 150 per cent increase in the amount of mercury in thermocline waters and have tripled the mercury content of surface waters compared to pre-anthropogenic conditions. This information may aid our understanding of the processes and the depths at which inorganic mercury species are converted into toxic methyl mercury and subsequently bioaccumulated in marine food webs.

  20. [Bibliographical study of the toxicity of organic mercury compounds].

    PubMed

    Ishihara, Nobuo

    2011-09-01

    The aim of this study is to correct the misunderstanding that the toxicity of organic mercury compounds is unknown at the time of the outbreak of Minamata disease (May 1, 1956). Two case reports of organic mercury (methylmercury) intoxication were published already in 1865 and 1866. The conversion of inorganic mercury added in acetoaldehyde synthesis was already pointed out in 1921. In 1930 several cases of organic mercury poisoning among workers engaged in acetoaldehyde production were reported. Many reports on not only in occupational exposure but a oral exposure via the ingestion of flour made from grains treated with organic mercurials were available at the time of the outbreak of Minamata disease (May 1, 1956). These reports pointed out the toxic effects of organic mercury on the central nervous system, and indicated cleary that the causal substance of Minamata disease must be the organic mercury compounds (methylmercury) from the Chisso plant. The identification of methylmercury as the causal substance by the authority was presented in 1968 when acetoaldehyde production in the Chisso plant was closed. Most of these reports except that of (Hunter et al.) were not referred to in the study of Minamata disease . Inadequate referencing should be pointed out. Several reports indicated that the causal substance of Minamata disease must be methylmercury from the Chisso Plant. However, most of these reports were not referred to during the study of Minamata disease. Inadequate referencing of literatures should be pointed out.

  1. Mercury content of Illinois soils

    USGS Publications Warehouse

    Dreher, G.B.; Follmer, L.R.

    2004-01-01

    For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.

  2. Determination of thimerosal in pharmaceutical industry effluents and river waters by HPLC coupled to atomic fluorescence spectrometry through post-column UV-assisted vapor generation.

    PubMed

    Acosta, Gimena; Spisso, Adrián; Fernández, Liliana P; Martinez, Luis D; Pacheco, Pablo H; Gil, Raúl A

    2015-03-15

    A high performance liquid chromatography coupled with atomic fluorescence spectrometry method for the determination of thimerosal (sodium ethylmercury thiosalicylate, C9H9HgNaO2S), ethylmercury, and inorganic mercury is proposed. Mercury vapor is generated by the post-column reduction of mercury species in formic acid media using UV-radiation. Thimerosal is quantitatively converted to Hg(II) followed by the reduction of Hg(II) to Hg(0). This method is applied to the determination of thimerosal (THM), ethylmercury (EtHg) and inorganic Hg in samples of a pharmaceutical industry effluent, and in waters of the San Luis River situated in the west side of San Luis city (Middle West, Argentine) where the effluents are dumped. The limit of detections, calculated on the basis of the 3σ criterion, where 0.09, 0.09 and 0.07 μg L(-1) for THM, EtHg(II) and for Hg(II), respectively. Linearity was attained from levels close to the detection limit up to at least 100 μg L(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Radiochemical Determination of Metallic Mercury Vapour in Air

    PubMed Central

    Magos, L.

    1966-01-01

    A radiochemical method has been developed for the estimation of atmospheric mercury. When air containing mercury is passed through a solution of 203Hg-mercuric acetate and KCL, isotope exchange takes place so that the issuing air contains the same concentration of mercury, but labelled and with the same specific activity as the reagent solution. The 203Hg is absorbed on hopcalite and estimated by gamma scintillation counting. The standard deviation of the method is 0·004 μg.Hg/litre in concentrations up to 0·2 μg.Hg/litre, and is 0·075 μg.Hg/litre in the range 0·2-1·2 μg.Hg/litre concentration. The method is simple and can be used for snap or long-run sampling, and with continuous recording. PMID:5946132

  4. Effects of maleic acid and uranyl on mercurial diuresis in dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrovic, V.; Koechel, D.A.; Cafruny, E.J.

    1973-01-01

    The effects of two nephrotoxic agents were studied in anesthetized dogs undergoing mercurial diuresis. One of the agents, uranyl, accumulates in the kidneys when administered as the acetate salt but does not readily react with sulfhydryl groups. In acute experiments uranyl acetate in doses up to 5 ..mu..mol/kg produced no change in the urinary excretion of sodium or chloride. Uranyl acetate given before the injection of mercury(II) did not reduce the diuretic response to inorganic mercury. The other compound, maleic acid, accumulates in the kidneys and also reacts readily with sulfhydryl groups. The administration of small doses of maleic acidmore » did not change the excretion of sodium but it decreased the excretion of chloride. The administration of maleic acid either before or after the administration of mercury completely abolished the diuretic response. The inhibition occurred without significant changes in urinary pH. Diuretic responses to ethacrynic acid, furosemide, hydrochlorothiazide or acetazolamide were preserved in maleate-treated dogs. Both the lack of any effect of uranyl on mercurial diuresis and the specific inhibition of mercurial diuresis by maleic acid support the presently accepted view that the renal diuretic receptor for mercury(II) has at least one sulfhydryl binding site. Although the inhibition is ascribed to competition between mercury(II) and maleate for binding on the receptor, it is conceivable that the reduction in urinary chloride excretion produced by maleate may be responsible, in part, for refractoriness to mercury(II).« less

  5. Effects of methyl mercury exposure on pancreatic beta cell development and function.

    PubMed

    Schumacher, Lauren; Abbott, Louise C

    2017-01-01

    Methyl mercury is an environmental contaminant of worldwide concern. Since the discovery of methyl mercury exposure due to eating contaminated fish as the underlying cause of the Minamata disaster, the scientific community has known about the sensitivity of the developing central nervous system to mercury toxicity. Warnings are given to pregnant women and young children to limit consumption of foods containing methyl mercury to protect the embryonic, fetal and postnatally developing central nervous system. However, evidence also suggests that exposure to methyl mercury or various forms of inorganic mercury may also affect development and function of other organs. Numerous reports indicate a worldwide increase in diabetes, particularly type 2 diabetes. Quite recently, methyl mercury has been shown to have adverse effects on pancreatic beta (β) cell development and function, resulting in insulin resistance and hyperglycemia and may even lead to the development of diabetes. This review discusses possible mechanisms by which methyl mercury exposure may adversely affect pancreatic β cell development and function, and the role that methyl mercury exposure may have in the reported worldwide increase in diabetes, particularly type 2 diabetes. While additional information is needed regarding associations between mercury exposure and specific mechanisms of the pathogenesis of diabetes in the human population, methyl mercury's adverse effects on the body's natural sources of antioxidants suggest that one possible therapeutic strategy could involve supplementation with antioxidants. Thus, it is important that additional investigation be undertaken into the role of methyl mercury exposure and reduced pancreatic β cell function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Determination of mercury and vanadium concentration in Johnius belangerii (C) fish in Musa estuary in Persian Gulf.

    PubMed

    Fard, Neamat Jaafarzadeh Haghighi; Ravanbakhsh, Maryam; Ramezani, Zahra; Ahmadi, Mehdi; Angali, Kambiz Ahmadi; Javid, Ahmad Zare

    2015-08-15

    The main aim of this study was to determine the concentrations of mercury and vanadium in Johnius belangerii (C) fish in the Musa estuary. A total of 67 fishes were caught from the Musa estuary during five intervals of 15days in the summer of 2013. After biometric measurements were conducted, the concentrations of mercury and vanadium were measured in the muscle tissue of fish using a direct method analyzer (DMA) and a graphite furnace atomic absorption spectrophotometer, respectively. The mean concentration of mercury and vanadium in the muscle tissue of fish was 3.154±1.981 and 2.921±0.873mg/kg w.w, respectively. The generalized linear model (GLM) analysis showed a significantly positive relationship among mercury concentration, length, and weight (P=0.000). In addition, there was a significantly negative relationship between vanadium concentration and fish length (P=0.000). A reverse association was found between concentrations of mercury and vanadium. Mercury concentration exceeded the allowable standards of the Environmental Protection Agency (EPA), the World Health Organization (WHO), and the Food and Drug Administration (FDA) in J. belangerii (C). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effects of in vivo exposure of Mya arenaria to organic and inorganic mercury on phagocytic activity of hemocytes.

    PubMed

    Fournier, M; Pellerin, J; Clermont, Y; Morin, Y; Brousseau, P

    2001-03-28

    Marine bivalves are aquatic invertebrate organisms which can be used as bioindicators in environmental monitoring. In vivo effects of mercuric chloride (HgCl(2)) and methylmercury (CH(3)HgCl) on phagocytic function of Mya arenaria hemocytes were evaluated in this study. Clams were exposed to single metal in water for up to 28 days at concentrations ranging from 10(-9) to 10(-5) M. Phagocytic activity of hemocytes was determined by uptake of fluorescent microspheres and flow cytometry. All clams exposed to 10(-5) M HgCl(2) died by day 7 of exposure. The viability of hemocytes was decreased only in clams exposed to 10(-6) M HgCl(2) for 28 days. A significant decrease in phagocytic activity of hemocytes was observed in clams exposed to 10(-6) M of HgCl(2) for 28 days. A similar pattern was observed with CH(3)HgCl, but at an earlier time. Chemical analysis performed on the tissues of the animals clearly show a greater uptake of the organic form of mercury by clams. Furthermore, a clear correlation was established between body burden of mercury and effects on phagocytic activity of hemocytes. Overall, the results of this study show that both speciations of mercury inhibited phagocytic function of Mya arenaria hemocytes following in vivo exposures.

  8. Measuring total mercury due to small-scale gold mining activities to determine community vulnerability in Cihonje, Central Java, Indonesia.

    PubMed

    Sari, Mega M; Inoue, Takanobu; Matsumoto, Yoshitaka; Yokota, Kuriko

    2016-01-01

    This research is comparative study of gold mining and non-gold mining areas, using four community vulnerability indicators. Vulnerability indicators are exposure degree, contamination rate, chronic, and acute toxicity. Each indicator used different samples, such as wastewater from gold mining process, river water from Tajum river, human hair samples, and health questionnaire. This research used cold vapor atomic absorption spectrometry to determine total mercury concentration. The result showed that concentration of total mercury was 2,420 times than the maximum content of mercury permitted in wastewater based on the Indonesian regulation. Moreover, the mercury concentration in river water reached 685 ng/l, exceeding the quality threshold standards of the World Health Organization (WHO). The mercury concentration in hair samples obtained from the people living in the research location was considered to identify the health quality level of the people or as a chronic toxicity indicator. The highest mercury concentration--i.e. 17 ng/mg, was found in the gold mining respondents. Therefore, based on the total mercury concentration in the four indicators, the community in the gold mining area were more vulnerable to mercury than communities in non-gold mining areas. It was concluded that the community in gold mining area was more vulnerable to mercury contamination than the community in non-gold mining area.

  9. Mercury: Aspects of its ecology and environmental toxicity. [physiological effects of mercury compound contamination of environment

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.

    1973-01-01

    A study was conducted to determine the effects of mercury pollution on the environment. The possible sources of mercury contamination in sea water are identified. The effects of mercury on food sources, as represented by swordfish, are analyzed. The physiological effects of varying concentrations of mercury are reported. Emphasis is placed on the situation existing in the Hawaiian Islands.

  10. Glutathione level after long-term occupational elemental mercury exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobal, Alfred Bogomir; Prezelj, Marija; Horvat, Milena

    2008-05-15

    Many in vitro and in vivo studies have elucidated the interaction of inorganic mercury (Hg) and glutathione. However, human studies are limited. In this study, we investigated the potential effects of remote long-term intermittent occupational elemental Hg vapour (Hg{sup o}) exposure on erythrocyte glutathione levels and some antioxidative enzyme activities in ex-mercury miners in the period after exposure. The study included 49 ex-mercury miners divided into subgroups of 28 still active, Hg{sup o}-not-exposed miners and 21 elderly retired miners, and 41 controls, age-matched to the miners subgroup. The control workers were taken from 'mercury-free works'. Reduced glutathione (GSH) and oxidizedmore » disulphide glutathione (GSSG) concentrations in haemolysed erythrocytes were determined by capillary electrophoresis, while total glutathione (total GSH) and the GSH/GSSG ratio were calculated from the determined values. Catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in erythrocytes were measured using commercially available reagent kits, while urine Hg (U-Hg) concentrations were determined by cold vapour atomic absorption (CVAAS). No correlation of present U-Hg levels, GSH, GSSG, and antioxidative enzymes with remote occupational biological exposure indices were found. The mean CAT activity in miners and retired miners was significantly higher (p<0.05) than in the controls. No differences in mean GPx activity among the three groups were found, whereas the mean GR activity was significantly higher (p<0.05) in miners than in retired miners. The mean concentrations of GSH (mmol/g Hb) in miners (13.03{+-}3.71) were significantly higher (p<0.05) than in the control group (11.68{+-}2.66). No differences in mean total GSH, GSSG levels, and GSH/GSSG ratio between miners and controls were found. A positive correlation between GSSG and present U-Hg excretion (r=0.41, p=0.001) in the whole group of ex-mercury miners was observed. The

  11. Mercury

    NASA Technical Reports Server (NTRS)

    Vilas, Faith (Editor); Chapman, Clark R. (Editor); Matthews, Mildred Shapley (Editor)

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury.

  12. Direct determination and speciation of mercury compounds in environmental and biological samples by carbon bed atomic absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skelly, E.M.

    A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine,more » blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.« less

  13. Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.

    PubMed

    Hlodák, Michal; Urík, Martin; Matúš, Peter; Kořenková, Lucia

    2016-01-01

    Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.

  14. Cooperative expression of atomic chirality in inorganic nanostructures.

    PubMed

    Wang, Peng-Peng; Yu, Shang-Jie; Govorov, Alexander O; Ouyang, Min

    2017-02-02

    Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks.

  15. Cooperative expression of atomic chirality in inorganic nanostructures

    PubMed Central

    Wang, Peng-peng; Yu, Shang-Jie; Govorov, Alexander O; Ouyang, Min

    2017-01-01

    Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks. PMID:28148957

  16. Quantifying uncertainty in measurement of mercury in suspended particulate matter by cold vapor technique using atomic absorption spectrometry with hydride generator.

    PubMed

    Singh, Nahar; Ahuja, Tarushee; Ojha, Vijay Narain; Soni, Daya; Tripathy, S Swarupa; Leito, Ivo

    2013-01-01

    As a result of rapid industrialization several chemical forms of organic and inorganic mercury are constantly introduced to the environment and affect humans and animals directly. All forms of mercury have toxic effects; therefore accurate measurement of mercury is of prime importance especially in suspended particulate matter (SPM) collected through high volume sampler (HVS). In the quantification of mercury in SPM samples several steps are involved from sampling to final result. The quality, reliability and confidence level of the analyzed data depends upon the measurement uncertainty of the whole process. Evaluation of measurement uncertainty of results is one of the requirements of the standard ISO/IEC 17025:2005 (European Standard EN IS/ISO/IEC 17025:2005, issue1:1-28, 2006). In the presented study the uncertainty estimation in mercury determination in suspended particulate matter (SPM) has been carried out using cold vapor Atomic Absorption Spectrometer-Hydride Generator (AAS-HG) technique followed by wet chemical digestion process. For the calculation of uncertainty, we have considered many general potential sources of uncertainty. After the analysis of data of seven diverse sites of Delhi, it has been concluded that the mercury concentration varies from 1.59 ± 0.37 to 14.5 ± 2.9 ng/m(3) with 95% confidence level (k = 2).

  17. Mercury(II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination.

    PubMed

    Tuzen, Mustafa; Karaman, Isa; Citak, Demirhan; Soylak, Mustafa

    2009-07-01

    A method has been developed for mercury(II) and methyl mercury speciation on Staphylococcus aureus loaded Dowex Optipore V-493 micro-column in the presented work, by using cold vapour atomic absorption spectrometry. Selective and sequential elution with 0.1 molL(-1) HCl for methyl mercury and 2 molL(-1) HCl for mercury(II) were performed at the pH range of 2-6. Optimal analytical conditions including pH, amounts of biosorbent, sample volumes were investigated. The detection limits of the analytes were 2.5 ngL(-1) for Hg(II) and 1.7 ngL(-1) for methyl mercury. The capacity of biosorbent for mercury(II) and methyl mercury was 6.5 and 5.4 mgg(-1), respectively. The validation of the presented procedure is performed by the analysis of standard reference material. The speciation procedure established was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and microwave digested fish samples.

  18. Measurements of mercury methylation rates and bioavailability in the Allequash Creek Wetland, Northern Wisconsin

    NASA Astrophysics Data System (ADS)

    Creswell, J. E.; Babiarz, C. L.; Shafer, M. M.; Armstrong, D. E.

    2008-12-01

    Wetlands are known to be hot spots for the production of methylmercury (MeHg) and subsequent export into other aquatic ecosystems. Because MeHg is a bioaccumulative neurotoxin, and because the primary route of human exposure to mercury is through the consumption of contaminated fish, understanding the processes by which MeHg is produced in the aquatic environment is important to the protection of human health. Inorganic Hg(II) is known to be methylated by bacteria in the anoxic zones of wetland sediments, but bioavailability plays a role in this process, as certain chemical complexes of mercury are unavailable to the microbial community. In the Allequash Creek wetland, a strong relationship has been observed between MeHg and Dissolved Organic Carbon (DOC) concentrations, but the observed relationship between MeHg and total Hg is weak. This observation implicates factors other than Hg(II) concentration as drivers of methylation. In this study, depth-resolved estimates of the bioavailability of inorganic Hg(II) were made by measuring the net mercury methylation rate potential in the hyporheic zone of the wetland. Gross mercury methylation was measured in sediment cores amended with stable isotope-enriched Hg(II), by analyzing isotopically-enriched methylmercury produced during an incubation. Demethylation was measured by amending replicate cores with stable isotope-enriched methylmercury and analyzing the amount consumed over the incubation period. Analyses were conducted using an inductively coupled plasma-quadrupole mass spectrometer. A method comparison was made between incubating cores intact, with mercury amendments injected through core tube walls, and incubating sectioned cores, with mercury amendments mixed into homogenized sediments. The value of incubating intact cores is that disturbance to the sediment and the microbial community is minimized, resulting in experimental conditions that more accurately mimic in situ conditions. The value of mixing mercury

  19. Retention of mercury by salmon

    USGS Publications Warehouse

    Amend, Donald F.

    1970-01-01

    Consuming fish that have been exposed repeatedly to mercury derivatives is a potential public health hazard because fish can accumulate and retain mercury in their tissues (Rucker, 1968). Concern has been expressed in the United States because mercurials have been used extensively in industry and as prophylactic and therapeutic agents in fish hatcheries. Rucker and Amend (1969) showed that yearling rainbow trout (Salmo gairdneri) and chinook salmon (Oncorhynchus tshawytscha) exposed to mercurials accumulated excessive amounts of mercury in many tissues. Further, Rucker and Amend (1969) concluded that wild fish that ate mercury-contaminated fish also could contain high mercury levels. Although mercury was eliminated from most tissues within several months, substantial levels remained in the kidney for more than 33 weeks after the last exposure. Since high levels of mercury can be retained in the kidney for an undetermined time, it is possible that returning adult salmon exposed to mercurials as juveniles could constitute a potential hazard to public health. The purpose of this study was to determine whether such fish contained high residual levels of mercury.

  20. Gaseous Elemental Mercury and Total and Leached Mercury in Building Materials from the Former Hg-Mining Area of Abbadia San Salvatore (Central Italy).

    PubMed

    Vaselli, Orlando; Nisi, Barbara; Rappuoli, Daniele; Cabassi, Jacopo; Tassi, Franco

    2017-04-15

    Mercury has a strong environmental impact since both its organic and inorganic forms are toxic, and it represents a pollutant of global concern. Liquid Hg is highly volatile and can be released during natural and anthropogenic processes in the hydrosphere, biosphere and atmosphere. In this study, the distribution of Gaseous Elemental Mercury (GEM) and the total and leached mercury concentrations on paint, plaster, roof tiles, concrete, metals, dust and wood structures were determined in the main buildings and structures of the former Hg-mining area of Abbadia San Salvatore (Siena, Central Italy). The mining complex (divided into seven units) covers a surface of about 65 ha and contains mining structures and managers' and workers' buildings. Nine surveys of GEM measurements were carried out from July 2011 to August 2015 for the buildings and structures located in Units 2, 3 and 6, the latter being the area where liquid mercury was produced. Measurements were also performed in February, April, July, September and December 2016 in the edifices and mining structures of Unit 6. GEM concentrations showed a strong variability in time and space mostly depending on ambient temperature and the operational activities that were carried out in each building. The Unit 2 surveys carried out in the hotter period (from June to September) showed GEM concentrations up to 27,500 ng·m -3 , while in Unit 6, they were on average much higher, and occasionally, they saturated the GEM measurement device (>50,000 ng·m -3 ). Concentrations of total (in mg·kg -1 ) and leached (in μg·L -1 ) mercury measured in different building materials (up to 46,580 mg·kg -1 and 4470 mg·L -1 , respectively) were highly variable, being related to the edifice or mining structure from which they were collected. The results obtained in this study are of relevant interest for operational cleanings to be carried out during reclamation activities.

  1. Gaseous Elemental Mercury and Total and Leached Mercury in Building Materials from the Former Hg-Mining Area of Abbadia San Salvatore (Central Italy)

    PubMed Central

    Vaselli, Orlando; Nisi, Barbara; Rappuoli, Daniele; Cabassi, Jacopo; Tassi, Franco

    2017-01-01

    Mercury has a strong environmental impact since both its organic and inorganic forms are toxic, and it represents a pollutant of global concern. Liquid Hg is highly volatile and can be released during natural and anthropogenic processes in the hydrosphere, biosphere and atmosphere. In this study, the distribution of Gaseous Elemental Mercury (GEM) and the total and leached mercury concentrations on paint, plaster, roof tiles, concrete, metals, dust and wood structures were determined in the main buildings and structures of the former Hg-mining area of Abbadia San Salvatore (Siena, Central Italy). The mining complex (divided into seven units) covers a surface of about 65 ha and contains mining structures and managers’ and workers’ buildings. Nine surveys of GEM measurements were carried out from July 2011 to August 2015 for the buildings and structures located in Units 2, 3 and 6, the latter being the area where liquid mercury was produced. Measurements were also performed in February, April, July, September and December 2016 in the edifices and mining structures of Unit 6. GEM concentrations showed a strong variability in time and space mostly depending on ambient temperature and the operational activities that were carried out in each building. The Unit 2 surveys carried out in the hotter period (from June to September) showed GEM concentrations up to 27,500 ng·m−3, while in Unit 6, they were on average much higher, and occasionally, they saturated the GEM measurement device (>50,000 ng·m−3). Concentrations of total (in mg·kg−1) and leached (in μg·L−1) mercury measured in different building materials (up to 46,580 mg·kg−1 and 4470 mg·L−1, respectively) were highly variable, being related to the edifice or mining structure from which they were collected. The results obtained in this study are of relevant interest for operational cleanings to be carried out during reclamation activities. PMID:28420130

  2. Solid Phase Extraction of Inorganic Mercury Using 5-Phenylazo-8-hydroxyquinoline and Determination by Cold Vapor Atomic Fluorescence Spectroscopy in Natural Water Samples

    PubMed Central

    Daye, Mirna; Halwani, Jalal; Hamzeh, Mariam

    2013-01-01

    8-Hydroxyquinoline (8-HQ) was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ) is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II) is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t 1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II), which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II). The developed method showed quantitative recoveries of Hg(II) with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS) with a preconcentration factor greater than 250. PMID:24459417

  3. Methylmercury is the predominant form of mercury in bird eggs: a synthesis

    USGS Publications Warehouse

    Ackerman, Joshua T.; Herzog, Mark P.; Schwarzbach, Steven E.

    2013-01-01

    Bird eggs are commonly used in mercury monitoring programs to assess methylmercury contamination and toxicity to birds. However, only 6% of >200 studies investigating mercury in bird eggs have actually measured methylmercury concentrations in eggs. Instead, studies typically measure total mercury in eggs (both organic and inorganic forms of mercury), with the explicit assumption that total mercury concentrations in eggs are a reliable proxy for methylmercury concentrations in eggs. This assumption is rarely tested, but has important implications for assessing risk of mercury to birds. We conducted a detailed assessment of this assumption by (1) collecting original data to examine the relationship between total and methylmercury in eggs of two species, and (2) reviewing the published literature on mercury concentrations in bird eggs to examine whether the percentage of total mercury in the methylmercury form differed among species. Within American avocets (Recurvirostra americana) and Forster’s terns (Sterna forsteri), methylmercury concentrations were highly correlated (R2 = 0.99) with total mercury concentrations in individual eggs (range: 0.03–7.33 μg/g fww), and the regression slope (log scale) was not different from one (m = 0.992). The mean percentage of total mercury in the methylmercury form in eggs was 97% for American avocets (n = 30 eggs), 96% for Forster’s terns (n = 30 eggs), and 96% among all 22 species of birds (n = 30 estimates of species means). The percentage of total mercury in the methylmercury form ranged from 63% to 116% among individual eggs and 82% to 111% among species means, but this variation was not related to total mercury concentrations in eggs, foraging guild, nor to a species life history strategy as characterized along the precocial to altricial spectrum. Our results support the use of total mercury concentrations to estimate methylmercury concentrations in bird eggs.

  4. Determination of Mercury Daily Intake and Hair-to-Blood Mercury Concentration Ratio in People Resident of the Coast of the Persian Gulf, Iran.

    PubMed

    Okati, Narjes; Esmaili-Sari, Abbas

    2018-01-01

    The objectives of this study were to understand the mercury daily intake and hair-to-blood mercury ratio in fishermen and non-fishermen families in the coast of the Persian Gulf in Iran. The mean mercury concentration in the hair of fishermen and non-fishermen families was 5.76 and 2.27 μg/g, respectively. The mean mercury concentrations of RBCs were obtained for fishermen families and non-fishermen families: 35.96 and 17.18 μg/L, respectively. Hair mercury concentrations in 17% of people were higher than 10 μg/g, the No Observed Adverse Effects Level set by the World Health Organization. 78% of people had a blood mercury value > 5.8 μg/L, the standard level set by the U.S. Environmental Protection Agency. A significant correlation (r = 0.94, p = 0.000) was seen between log hair and RBCs mercury concentrations. The mean mercury daily intake for fishermen and non-fishermen families was 0.42 and 0.20 µg/kg BW per day, respectively. The mean mercury daily intake of fishermen families was higher than the provisional tolerable daily intake (0.23 µg/kg BW per day) suggested by the Joint Expert Committee on Food Additives. Mercury daily intake significantly correlated with fish consumption (r = 0.50, p = 0.000) and log hair mercury (r = 0.88, p = 0.000). The total mean of hair-to-blood mercury concentration ratio was 306. We conclude that the use of mercury concentrations in the hair and RBCs could have been suitable biomarkers for predicting mercury exposure of people with a high rate of fish consumption.

  5. Preservation of samples for dissolved mercury

    USGS Publications Warehouse

    Hamlin, S.N.

    1989-01-01

    Water samples for dissolved mercury requires special treatment because of the high chemical mobility and volatility of this element. Widespread use of mercury and its compounds has provided many avenues for contamination of water. Two laboratory tests were done to determine the relative permeabilities of glass and plastic sample bottles to mercury vapor. Plastic containers were confirmed to be quite permeable to airborne mercury, glass containers were virtually impermeable. Methods of preservation include the use of various combinations of acids, oxidants, and complexing agents. The combination of nitric acid and potassium dichromate successfully preserved mercury in a large variety of concentrations and dissolved forms. Because this acid-oxidant preservative acts as a sink for airborne mercury and plastic containers are permeable to mercury vapor, glass bottles are preferred for sample collection. To maintain a healthy work environment and minimize the potential for contamination of water samples, mercury and its compounds are isolated from the atmosphere while in storage. Concurrently, a program to monitor environmental levels of mercury vapor in areas of potential contamination is needed to define the extent of mercury contamination and to assess the effectiveness of mercury clean-up procedures.Water samples for dissolved mercury require special treatment because of the high chemical mobility and volatility of this element. Widespread use of mercury and its compounds has provided many avenues for contamination of water. Two laboratory tests were done to determine the relative permeabilities of glass and plastic sample bottles to mercury vapor. Plastic containers were confirmed to be quite permeable to airborne mercury, glass containers were virtually impermeable. Methods of preservation include the use of various combinations of acids, oxidants, and complexing agents. The combination of nitric acid and potassium dichromate successfully preserved mercury in a

  6. Occurrence and mobility of mercury in groundwater: Chapter 5

    USGS Publications Warehouse

    Barringer, Julia L.; Szabo, Zoltan; Reilly, Pamela A.; Bradley, Paul M.

    2013-01-01

    Mercury (Hg) has long been identified as an element that is injurious, even lethal, to living organisms. Exposure to its inorganic form, mainly from elemental Hg (Hg(0)) vapor (Fitzgerald & Lamborg, 2007) can cause damage to respiratory, neural, and renal systems (Hutton, 1987; USEPA, 2012; WHO, 2012). The organic form, methylmercury (CH3Hg+; MeHg), is substantially more toxic than the inorganic form (Fitzgerald & Lamborg, 2007). Methylmercury attacks the nervous system and exposure can prove lethal, as demonstrated by well-known incidents such as those in 1956 in Minimata, Japan (Harada, 1995), and 1971 in rural Iraq (Bakir et al., 1973), where, in the former, industrial release of MeHg into coastal waters severely tainted the fish caught and eaten by the local population, and in the latter, grain seed treated with an organic mercurial fungicide was not planted, but eaten in bread instead. Resultant deaths are not known with certainty but have been estimated at about 100 and 500, respectively (Hutton, 1987). Absent such lethal accidents, human exposure to MeHg comes mainly from ingestion of piscivorous fish in which MeHg has accumulated, with potential fetal damage ascribed to high fish diets during their mothers’ pregnancies (USEPA, 2001). Lesser human exposure occurs through ingestion of drinking water (USEPA, 2001), where concentrations of total Hg (THg; inorganic plus organic forms) typically are in the low nanograms-per-liter range[1] - , particularly from many groundwater sources, and concentrations at the microgram-per-liter level are rare.

  7. Changes in tissue glutathione and mercury concentrations in rats following mercuric chloride injection through the hepatic portal vein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chey, Sin Wun; Keong, Wong Ming; Min, Sin Yoke

    The kidney is known as a primary target organ for mercury deposition. However, it is also known as an important organ for the elimination of the absorbed mercury. Tanaka and her collaborators showed that inorganic mercury when injected through caudal vein is transported to the kidney as mercury-GSH complex. If that is so, liver which contains the highest level of tissue GSH than any other organs in normal animals would appear to be a prime site for the complexion of mercury ions with GSH before they are released and transported to the kidney. In view of this, it is ofmore » interest to establish the interrelative changes of the amounts of GSH and mercury in between liver and kidney at the earlier time intervals after a direct injection of a low dosage of mercuric chloride (HgCl{sub 2}) into the hepatic portal vein.« less

  8. Seasonality of mercury in the Atlantic marine boundary layer

    NASA Astrophysics Data System (ADS)

    Soerensen, Anne L.; Sunderland, Elsie; Skov, Henrik; Holmes, Christopher; Jacob, Daniel J.

    2010-05-01

    Around one third of the mercury emissions today are from primary anthropogenic sources, with the remaining two-thirds from secondary reemissions of earlier deposition and natural sources (AMAP/UNEP 2008). Mercury exchange at the air-sea interface is important for the global distribution of atmospheric mercury as parts of deposited mercury will reenter the atmosphere through evasion. The exchange at the air-sea interface also affects the amount of inorganic mercury in the ocean and thereby the conversion to the neuro-toxic methylmercury. Here we combine new cruise measurements in the atmospheric marine boundary layer (MBL) of the Atlantic Ocean (Northern Hemisphere) from the fall of 2006 and the spring of 2007 with existing data from cruises in the Atlantic Ocean since 1978. We observe from these data a seasonal cycle in Hg(0) concentrations in the Atlantic marine boundary later (MBL) that exhibits minimum concentrations during summer and high concentrations during fall to spring. These observations suggest a local, seasonally dependent Hg(0) source in the MBL that causes variability in concentrations above the open ocean. To further investigate controls on Hg(0) concentrations in the MBL, we developed an improved representation of oceanic air-sea exchange processes within the GEOS-Chem global 3-D biogeochemical mercury model. Specifically, we used new data on mercury redox reactions in the surface ocean as a function of biological and photochemical processes, and implemented new algorithms for mercury dynamics associated with suspended particles. Our coupled atmospheric-oceanic modeling results support the premise that oceanic evasion is a main driver controlling Hg(0) concentrations in the MBL. We also use the model to investigate what drivers the evasion across the air-sea interface on shorter timescales. This is done by tracking evasion rates and other model components on an hourly basis for chosen locations in the Atlantic Ocean.

  9. Rapid separation on copper powder of total mercury in blood and determination of mercury by flameless atomic absorption spectrometry.

    PubMed

    Dogan, S; Haerdi, W

    1979-01-01

    The determination of mercury in blood by flameless atomic absorption spectrometry (FAAS) has been described. Prior to its analysis, the sample was decomposed by combustion and separated on a copper powder micro-column. A special type of cell has been used which gives a better sensitivity compared with the types of cells described in the literature and the method of FAAS analysis has been improved. The sensitivity of 0.1 ng for 1% absorbance was observed and the standard deviation for six determinations at this level was found to be +/- 0.05 ng, for 95% probability.

  10. Biogeochemical controls on mercury methylation in the Allequash Creek wetland.

    PubMed

    Creswell, Joel E; Shafer, Martin M; Babiarz, Christopher L; Tan, Sue-Zanne; Musinsky, Abbey L; Schott, Trevor H; Roden, Eric E; Armstrong, David E

    2017-06-01

    We measured mercury methylation potentials and a suite of related biogeochemical parameters in sediment cores and porewater from two geochemically distinct sites in the Allequash Creek wetland, northern Wisconsin, USA. We found a high degree of spatial variability in the methylation rate potentials but no significant differences between the two sites. We identified the primary geochemical factors controlling net methylmercury production at this site to be acid-volatile sulfide, dissolved organic carbon, total dissolved iron, and porewater iron(II). Season and demethylation rates also appear to regulate net methylmercury production. Our equilibrium speciation modeling demonstrated that sulfide likely regulated methylation rates by controlling the speciation of inorganic mercury and therefore its bioavailability to methylating bacteria. We found that no individual geochemical parameter could explain a significant amount of the observed variability in mercury methylation rates, but we found significant multivariate relationships, supporting the widely held understanding that net methylmercury production is balance of several simultaneously occurring processes.

  11. DEVELOPMENT AND CHARACTERIZATION OF AN ANNULAR DENUDER METHODOLOGY FOR THE MEASUREMENT OF DIVALENT INORGANIC REACTIVE GASEOUS MERCURY IN AMBIENT AIR

    EPA Science Inventory

    Atmospheric mercury is predominantly present in the gaseous elemental form (Hg0). However, anthropogenic emissions (e.g. incineration, fossil fuel combustion) emit and natural processes create particulate-phase mercury (Hg(p)) and divalent reactive gas-phase mercury (RGM). RG...

  12. Total mercury levels in hair, toenail, and urine among women free from occupational exposure and their relations to renal tubular function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Tomoko; Sakamoto, Mineshi; Kurosawa, Tomoko

    2007-02-15

    To investigate the relations among total mercury levels in hair, toenail, and urine, together with potential effects of methylmercury intake on renal tubular function, we determined their levels, and urinary N-acetyl-{beta}-d-glucosaminidase activity (NAG) and {alpha}{sub 1}-microglobulin (AMG) in 59 women free from occupational exposures, and estimated daily mercury intakes from fish and other seafood using a food frequency questionnaire. Mercury levels (mean+/-SD) in the women were 1.51+/-0.91{mu}g/g in hair, 0.59+/-0.32{mu}g/g in toenail, and 0.86+/-0.66{mu}g/g creatinine in urine; and, there were positive correlations among them (P<0.001). The daily mercury intake of 9.15+/-7.84{mu}g/day was significantly correlated with total mercury levels in hair,more » toenail, and urine (r=0.551, 0.537, and 0.604, P<0.001). Among the women, the NAG and AMG were positively correlated with both the daily mercury intake and mercury levels in hair, toenail, and urine (P<0.01); and, these relations were almost similar when using multiple regression analysis to adjust for possible confounders such as urinary cadmium (0.47+/-0.28{mu}g/g creatinine) and smoking status. In conclusion, mercury resulting from fish consumption can explain total mercury levels in hair, toenail, and urine to some degree (about 30%), partly through the degradation into the inorganic form, and it may confound the renal tubular effect of other nephrotoxic agents. Also, the following equation may be applicable to the population neither with dental amalgam fillings nor with occupational exposures: [hair mercury ({mu}g/g)]=2.44x[toenail mercury ({mu}g/g)].« less

  13. The effect of occupational exposure to mercury vapour on the fertility of female dental assistants.

    PubMed Central

    Rowland, A S; Baird, D D; Weinberg, C R; Shore, D L; Shy, C M; Wilcox, A J

    1994-01-01

    Exposure to mercury vapour or inorganic mercury compounds can impair fertility in laboratory animals. To study the effects of mercury vapour on fertility in women, eligibility questionnaires were sent to 7000 registered dental assistants in California. The final eligible sample of 418 women, who had become pregnant during the previous four years, were interviewed by telephone. Detailed information was collected on mercury handling practices and the number of menstrual cycles without contraception it had taken them to become pregnant. Dental assistants not working with amalgam served as unexposed controls. Women with high occupational exposure to mercury were less fertile than unexposed controls. The fecundability (probability of conception each menstrual cycle) of women who prepared 30 or more amalgams per week and who had five or more poor mercury hygiene factors was only 63% of that for unexposed women (95% CI 42%-96%) after controlling for covariates. Women with low exposure were more fertile, however, than unexposed controls. Possible explanations for the U shaped dose response and limitations of the exposure measure are discussed. Further investigation is needed that uses biological measures of mercury exposure. PMID:8124459

  14. Characterization of the binding capacity of mercurial species in Lactobacillus strains.

    PubMed

    Alcántara, Cristina; Jadán-Piedra, Carlos; Vélez, Dinoraz; Devesa, Vicenta; Zúñiga, Manuel; Monedero, Vicente

    2017-12-01

    Metal sequestration by bacteria has been proposed as a strategy to counteract metal contamination in foodstuffs. Lactobacilli can interact with metals, although studies with important foodborne metals such as inorganic [Hg(II)] or organic (CH 3 Hg) mercury are lacking. Lactobacilli were evaluated for their potential to bind these contaminants and the nature of the interaction was assessed by the use of metal competitors, chemical and enzymatical treatments, and mutants affected in the cell wall structure. Lactobacillus strains efficiently bound Hg(II) and CH 3 Hg. Mercury binding by Lactobacillus casei BL23 was independent of cell viability. In BL23, both forms of mercury were cell wall bound. Their interaction was not inhibited by cations and it was resistant to chelating agents and protein digestion. Lactobacillus casei mutants affected in genes involved in the modulation of the negative charge of the cell wall anionic polymer lipoteichoic acid showed increased mercury biosorption. In these mutants, mercury toxicity was enhanced compared to wild-type bacteria. These data suggest that lipoteichoic acid itself or the physicochemical characteristics that it confers to the cell wall play a major role in mercury complexation. This is the first example of the biosorption of Hg(II) and CH 3 Hg in lactobacilli and it represents a first step towards their possible use as agents for diminishing mercury bioaccessibility from food at the gastrointestinal tract. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Atomic-absorption determination of mercury in geological materials by flame and carbon-rod atomisation after solvent extraction and using co-extracted silver as a matrix modifier

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1983-01-01

    Based on modifications and expansion of the original Tindall's solvent extraction flame atomic-absorption procedure, an atomic-absorption spectrophotometric method has been developed for the determination of mercury in geological materials. The sample is digested with nitric and hydrochloric acids in a boiling water-bath. The solution is made ammoniacal and potassium iodide and silver nitrate are added. The mercury is extracted into isobutyl methyl ketone as the tetraiodomercurate(ll). Added silver is co-extracted with mercury and serves as a matrix modifier in the carbon-rod atomiser. The mercury in the isobutyl methyl ketone extract may be determined by either the flame- or the carbon-rod atomisation method, depending on the concentration level. The limits of determination are 0.05-10 p.p.m. of mercury for the carbon-rod atomisation and 1 -200 p.p.m. of mercury for the flame atomisation. Mercury values for reference samples obtained by replicate analyses are in good agreement with those reported by other workers, with relative standard deviations ranging from 2.3 to 0.9%. Recoveries of mercury spiked at two levels were 93-106%. Major and trace elements commonly found in geological materials do not interfere.

  16. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    PubMed

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg + ), ethylmercury (EtHg + ) and inorganic mercury (Hg 2+ ) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL -1 for EtHg + and 5-450ngL -1 for MeHg + and Hg 2+ . Limits of detection were 3.0ngL -1 for EtHg + and 1.5ngL -1 for MeHg + and Hg 2+ . Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Distribution of total mercury and methyl mercury in water, sediment, and fish from South Florida estuaries

    USGS Publications Warehouse

    Kannan, K.; Smith, R.G.; Lee, R.F.; Windom, H.L.; Heitmuller, P.T.; Macauley, J.M.; Summers, J.K.

    1998-01-01

    Concentrations of total mercury and methyl mercury were determined in sediment and fish collected from estuarine waters of Florida to understand their distribution and partitioning. Total mercury concentrations in sediments ranged from 1 to 219 ng/g dry wt. Methyl mercury accounted for, on average, 0.77% of total mercury in sediment. Methyl mercury concentrations were not correlated with total mercury or organic carbon content in sediments. The concentrations of total mercury in fish muscle were between 0.03 and 2.22 (mean: 0.31) ??g/g, wet wt, with methyl mercury contributing 83% of total mercury. Methyl mercury concentrations in fish muscle were directly proportional to total mercury concentrations. The relationship of total and methyl mercury concentrations in fish to those of sediments from corresponding locations was fish-species dependent, in addition to several abiotic factors. Among fish species analyzed, hardhead catfish, gafftopsail catfish, and sand seatrout contained the highest concentrations of mercury. Filtered water samples from canals and creeks that discharge into the Florida Bay showed mercury concentrations of 3-7.4 ng/L, with methyl mercury accounting for <0.03-52% of the total mercury. Consumption of fish containing 0.31 ??g mercury/g wet wt, the mean concentration found in this study, at rates greater than 70 g/day, was estimated to be hazardous to human health.

  18. Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes.

    PubMed

    Bernalte, E; Marín Sánchez, C; Pinilla Gil, E

    2011-03-09

    The applicability of commercial screen-printed gold electrodes (SPGEs) for the determination of Hg(II) in ambient water samples by square wave anodic stripping voltammetry has been demonstrated. Electrode conditioning procedures, chemical and instrumental variables have been optimized to develop a reliable method capable of measuring dissolved mercury in the low ng mL(-1) range (detection limit 1.1 ng mL(-1)), useful for pollution monitoring or screening purposes. The proposed method was tested with the NIST 1641d Mercury in Water Standard Reference Material (recoveries 90.0-110%) and the NCS ZC 76303 Mercury in Water Certified Reference Material (recoveries 82.5-90.6%). Waste water samples from industrial origin and fortified rain water samples were assayed for mercury by the proposed method and by a reference ICP-MS method, with good agreement. Screen printing technology thus opens a useful way for the construction of reliable electrochemical sensors for decentralized or even field Hg(II) testing. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Mercury Transport Modeling of the Carson River System, Nevada: An Investigation of Total and Dissolved Species and Associated Uncertainty

    NASA Astrophysics Data System (ADS)

    Carroll, R. W.; Warwick, J. J.

    2009-12-01

    Past mercury modeling studies of the Carson River-Lahontan Reservoir (CRLR) system have focused on total Hg and total MeHg transport in the Carson River, most of which is cycled through the river via sediment transport processes of bank erosion and over bank deposition during higher flow events. Much less attention has been given to low flow events and dissolved species. Four flow regimes are defined to capture significant mechanisms of mercury loading for total and dissolved species at all flow regimes. For extremely low flows, only gradient driven diffusion of mercury from the bottom sediments occurs. At low flows, diffusional loads are augmented with turbulent mixing of channel bed material. Mercury loading into the river during medium to higher flows is driven by bank erosion process, but flows remain within the confines of the river’s channel. Finally, mercury cycling during overbank flows is dominated by both bank erosion as well as floodplain deposition. Methylation and demethylation are allowed to occur in the channel and reservoir bed sediments as well as in channel bank sediments and are described by the first order kinetic equations using observed methylation and demethylation rates. Calibration and verification is divided into geomorphic as well as mercury geochemical and transport processes with evaluation done for pre- and post- 1997 flood conditions to determine systematic changes to mercury cycling as a result of the January 1997 flood. Preliminary results for a Monte Carlo simulation are presented. Monte Carlo couples output uncertainty due to ranges in bank erosion rates, inorganic mercury in the channel banks, floodplain transport capacity during over bank flows, methylation and demethylation rates and diffusional distance in the reservoir bottom sediments. Uncertainty is compared to observed variability in water column mercury concentrations and discussed in the context of flow regime and reservoir residence time.

  20. Determination of total mercury in aluminium industrial zones and soil contaminated with red mud.

    PubMed

    Rasulov, Oqil; Zacharová, Andrea; Schwarz, Marián

    2017-08-01

    This study investigated total mercury contents in areas impacted by aluminium plants in Tajikistan and Slovakia and in one area flooded with red mud in Hungary. We present the first determination of total mercury contents in the near-top soil (0-10 and 10-20 cm) in Tajikistan and the first comparative investigation of Tajikistan-Slovakia-Hungary. The Tajik Aluminium Company (TALCO) is one of the leading producers of primary aluminium in Central Asia. In the past 30 years, the plant has been producing large volumes of industrial waste, resulting in negative impacts on soil, groundwater and air quality of the surrounding region. Mercury concentrations were significant in Slovakia and Hungary, 6 years after the flooding. In studied areas in Slovakia and Hungary, concentrations of total mercury exceeded the threshold limit value (TLV = 0.5 mg Hg kg -1 ). However, in Tajikistan, values were below the TLV (0.006-0.074 mg kg -1 ) and did not significantly vary between depths. Total Hg in Slovakia ranged from 0.057 to 0.668 mg kg -1 and in Hungary from 0.029 to 1.275 mg kg -1 . However, in the plots near to the red mud reservoir and the flooded area, Hg concentrations were higher in the upper layers than in the lower ones.

  1. DIRECT MERCURY ANALYSIS IN ENVIRONMENTAL SOLIDS BY ICPMS WITH ON-LINE SAMPLE ASHING AND MERCURY PRE-CONCENTRATION USING THE DIRECT MERCURY ANALYZER

    EPA Science Inventory



    A Direct Mercury Analyzer based on sample combustion and mercury concentration by gold amalgamation, followed by atomic absorption determination, was interfaced with a quadrupole and a magnet sector ICPMS. In this paper, we discuss design and operating parameters and eval...

  2. Geochemistry of selected mercury mine-tailings in the Parkfield Mercury District, California

    USGS Publications Warehouse

    Rytuba, James J.; Kotlyar, Boris B.; Wilkerson, Gregg; Olson, Jerry

    2001-01-01

    The Parkfield mercury district is located in the southern part of the California Coast Range mercury mineral belt and contains three silica-carbonate-type mercury deposits that have had significant mercury production. Mercury was first produced in the district in 1873, but the main period of production occurred from 1915-1922. Total production from the district is about 5,000 flasks of mercury (a flask equals 76 pounds of mercury) with most production coming from the Patriquin mine (1,875 flasks), and somewhat less from the King (1,600 flasks) and Dawson (1,470 flasks) mines. Several other small prospects and mines occur in the district but only minor production has come from them. In 1969, Phelan Sulphur Company carried out mineral exploration at the King mine and announced the discovery of 55,000 tons of mercury ore with an average grade of 5.2 pounds per ton. The King mine is located on federal land administered by the U.S. Bureau of Land Management. Several other parcels of federal land are present adjacent to other mines and prospects in the Parkfield district. An environmental assessment of mine sites on and adjacent to federal land was carried out to determine the amount of mercury and other trace metals present in mine wastes and in sediments from streams impacted by past mining.

  3. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    DOE PAGES

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; ...

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less

  4. Mercury biogeochemical cycling in the ocean and policy implications.

    PubMed

    Mason, Robert P; Choi, Anna L; Fitzgerald, William F; Hammerschmidt, Chad R; Lamborg, Carl H; Soerensen, Anne L; Sunderland, Elsie M

    2012-11-01

    Anthropogenic activities have enriched mercury in the biosphere by at least a factor of three, leading to increases in total mercury (Hg) in the surface ocean. However, the impacts on ocean fish and associated trends in human exposure as a result of such changes are less clear. Here we review our understanding of global mass budgets for both inorganic and methylated Hg species in ocean seawater. We consider external inputs from atmospheric deposition and rivers as well as internal production of monomethylmercury (CH₃Hg) and dimethylmercury ((CH₃)₂Hg). Impacts of large-scale ocean circulation and vertical transport processes on Hg distribution throughout the water column and how this influences bioaccumulation into ocean food chains are also discussed. Our analysis suggests that while atmospheric deposition is the main source of inorganic Hg to open ocean systems, most of the CH₃Hg accumulating in ocean fish is derived from in situ production within the upper waters (<1000 m). An analysis of the available data suggests that concentrations in the various ocean basins are changing at different rates due to differences in atmospheric loading and that the deeper waters of the oceans are responding slowly to changes in atmospheric Hg inputs. Most biological exposures occur in the upper ocean and therefore should respond over years to decades to changes in atmospheric mercury inputs achieved by regulatory control strategies. Migratory pelagic fish such as tuna and swordfish are an important component of CH₃Hg exposure for many human populations and therefore any reduction in anthropogenic releases of Hg and associated deposition to the ocean will result in a decline in human exposure and risk. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Mercury Biogeochemical Cycling in the Ocean and Policy Implications

    PubMed Central

    Mason, Robert P.; Choi, Anna L.; Fitzgerald, William F.; Hammerschmidt, Chad R.; Lamborg, Carl H.; Soerensen, Anne L.; Sunderland, Elsie M.

    2012-01-01

    Anthropogenic activities have enriched mercury in the biosphere by at least a factor of three, leading to increases in total mercury (Hg) in the surface ocean. However, the impacts on ocean fish and associated trends in human exposure as a result of such changes are less clear. Here we review our understanding of global mass budgets for both inorganic and methylated Hg species in ocean seawater. We consider external inputs from atmospheric deposition and rivers as well as internal production of monomethylmercury (CH3Hg) and dimethylmercury ((CH3)2Hg). Impacts of large-scale ocean circulation and vertical transport processes on Hg distribution throughout the water column and how this influences bioaccumulation into ocean food chains are also discussed. Our analysis suggests that while atmospheric deposition is the main source of inorganic Hg to open ocean systems, most of the CH3Hg accumulating in ocean fish is derived from in situ production within the upper waters (<1000 m). An analysis of the available data suggests that concentrations in the various ocean basins are changing at different rates due to differences in atmospheric loading and that the deeper waters of the oceans are responding slowly to changes in atmospheric Hg inputs. Most biological exposures occur in the upper ocean and therefore should respond over years to decades to changes in atmospheric mercury inputs achieved by regulatory control strategies. Migratory pelagic fish such as tuna and swordfish are an important component of CH3Hg exposure for many human populations and therefore any reduction in anthropogenic releases of Hg and associated deposition to the ocean will result in a decline in human exposure and risk. PMID:22559948

  6. Mercury-impacted scrap metal: Source and nature of the mercury.

    PubMed

    Finster, Molly E; Raymond, Michelle R; Scofield, Marcienne A; Smith, Karen P

    2015-09-15

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent

  7. Urinary mercury in people living near point sources of mercury emissions.

    PubMed

    Barregard, Lars; Horvat, Milena; Mazzolai, Barbara; Sällsten, Gerd; Gibicar, Darija; Fajon, Vesna; Dibona, Sergio; Munthe, John; Wängberg, Ingvar; Haeger Eugensson, Marie

    2006-09-01

    As part of the European Mercury Emissions from Chlor Alkali Plants (EMECAP) project, we tested the hypothesis that contamination of ambient air with mercury around chlor alkali plants using mercury cells would increase the internal dose of mercury in people living close to the plants. Mercury in urine (U-Hg) was determined in 225 individuals living near a Swedish or an Italian chlor alkali plant, and in 256 age- and sex-matched individuals from two reference areas. Other factors possibly affecting mercury exposure were examined. Emissions and concentrations of total gaseous mercury (TGM) around the plants were measured and modeled. No increase in U-Hg could be demonstrated in the populations living close to the plants. This was the case also when the comparison was restricted to subjects with no dental amalgam and low fish consumption. The emissions of mercury to air doubled the background level, but contributed only about 2 ng/m(3) to long-term averages in the residential areas. The median U-Hg levels in subjects with dental amalgam were 1.2 microg/g creatinine (micro/gC) in Italy and 0.6 microg/gC in Sweden. In individuals without dental amalgam, the medians were 0.9 microg/gC and 0.2 microg/gC, respectively. The number of amalgam fillings, as well as chewing, fish consumption, and female sex were associated with higher U-Hg. The difference between the countries is probably due to higher fish consumption in Italy, demethylated methyl mercury (MeHg) being partly excreted in urine. Post hoc power calculations showed that if the background mercury exposure is low it may be possible to demonstrate an increase in U-Hg of as little as about 10 ng/m(3) as a contribution to ambient mercury from a point source.

  8. Potential Impacts of Climate Change on Sediment - Water Exchange of Mercury in a Managed Flood Conveyance System

    NASA Astrophysics Data System (ADS)

    Heim, W. A.; Stephenson, M.; Negrey, J.; Gill, G. A.; Coale, K. H.; DiGiorgio, C.; Harris, R. C.

    2016-12-01

    Yolo Bypass is the largest flood bypass in the Sacramento Valley, California. During high flow flood events water is diverted into the Yolo Bypass from the Sacramento River to control river stage and protect the cities of Sacramento, West Sacramento, and Davis from flooding. Climate change projections for the Yolo Bypass indicate the risk of flooding will increase. An increase in flooding would result in increased connectivity of the flood plain with downstream habitats as well as provide conditions favorable for in situ production of methylmercury (MeHg). Conversion of inorganic mercury (Hg) to the more toxic organic form MeHg in freshwater systems is generally accepted to be mediated by bacteria activity. There are a number of environmental variables (organic carbon, sulfate, oxygen) and conditions (temperature, porosity, soil type) that could influence the net production of MeHg and its ultimate release into the water column. This study investigated sediment-water exchange of both Hg and MeHg from the following habitat types in the Yolo Bypass: wild rice, white rice, seasonal wetlands, irrigated pasture, non-irrigated pasture, fallow land, farm land, freshwater tidal wetland, and agricultural drain. Two methods were used to determine sediment-water exchange of inorganic and organic mercury; first a direct assessment using incubated cores and second, modeling the sediment-water exchange from measurements of interstitial pore water concentration gradients. Results indicate habitat type, land use, and flooding influence Hg and MeHg fluxes. If flooding frequency increases in the Yolo Bypass mercury fluxes are expected to increase resulting in an increase in Hg load to downstream habitats and an increase in biotic exposure to MeHg in the system. A next step will be to utilize data generated from this study in the Dynamic Mercury Cycling Model (D-MCM) which will be used to improve our understanding of factors controlling production and transport of Hg and MeHg in the

  9. Mercury adsorption to gold nanoparticle and thin film surfaces

    NASA Astrophysics Data System (ADS)

    Morris, Todd Ashley

    Mercury adsorption to gold nanoparticle and thin film surfaces was monitored by spectroscopic techniques. Adsorption of elemental mercury to colloidal gold nanoparticles causes a color change from wine-red to orange that was quantified by UV-Vis absorption spectroscopy. The wavelength of the surface plasmon mode of 5, 12, and 31 nm gold particles blue-shifts 17, 14, and 7.5 nm, respectively, after a saturation exposure of mercury vapor. Colorimetric detection of inorganic mercury was demonstrated by employing 2.5 nm gold nanoparticles. The addition of low microgram quantities of Hg 2+ to these nanoparticles induces a color change from yellow to peach or blue. It is postulated that Hg2+ is reduced to elemental mercury by SCN- before and/or during adsorption to the nanoparticle surface. It has been demonstrated that surface plasmon resonance spectroscopy (SPRS) is sensitive to mercury adsorption to gold and silver surfaces. By monitoring the maximum change in reflectivity as a function of amount of mercury adsorbed to the surface, 50 nm Ag films were shown to be 2--3 times more sensitive than 50 nm Au films and bimetallic 15 nm Au/35 nm Ag films. In addition, a surface coverage of ˜40 ng Hg/cm2 on the gold surface results in a 0.03° decrease in the SPR angle of minimum reflectivity. SPRS was employed to follow Hg exposure to self-assembled monolayers (SAMs) on Au. The data indicate that the hydrophilic or hydrophobic character of the SAM has a significant effect on the efficiency of Hg penetration. Water adsorbed to carboxylic acid end group of the hydrophilic SAMs is believed to slow the penetration of Hg compared to methyl terminated SAMs. Finally, two protocols were followed to remove mercury from gold films: immersion in concentrated nitric acid and thermal annealing up to 200°C. The latter protocol is preferred because it removes all of the adsorbed mercury from the gold surface and does not affect the morphology of the gold surface.

  10. Subcellular controls of mercury trophic transfer to a marine fish.

    PubMed

    Dang, Fei; Wang, Wen-Xiong

    2010-09-15

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies. 2010 Elsevier B.V. All rights reserved.

  11. Ion time-of-flight determinations of doubly to singly ionized mercury ion ratios from a mercury electron bombardment discharge

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Kemp, R. F.; Hall, D. F.

    1973-01-01

    Doubly to singly charged mercury ion ratios in electron bombardment ion thruster exhaust beams have been determined as functions of bombardment discharge potential, thrust beam current, thrust beam radial position, acceleration-deceleration voltage ratio, and propellant utilization fraction. A mathematical model for two-step ionization processes has been derived, and calculated ion ratios are compared to observed ratios. Production of Hg(++) appears to result primarily from sequential ionization of Hg(+) in the discharge. Experimental and analytical results are presented, and design, construction, and operation features of an electrostatic deflection ion time-of-flight analyzer for the determination of the above-mentioned ratios are reviewed.

  12. THE EFFECT OF MERCURY CONTROLS ON WALLBOARD MANUFACTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandra Meischen

    2004-07-01

    Pending EPA regulations may mandate 70 to 90% mercury removal efficiency from utility flue gas. A mercury control option is the trapping of oxidized mercury in wet flue gas desulfurization systems (FGD). The potential doubling of mercury in the FGD material and its effect on mercury volatility at temperatures common to wallboard manufacture is a concern that could limit the growing byproduct use of FGD material. Prediction of mercury fate is limited by lack of information on the mercury form in the FGD material. The parts per billion mercury concentrations prevent the identification of mercury compounds by common analytical methods.more » A sensitive analytical method, cold vapor atomic fluorescence, coupled with leaching and thermodecomposition methods were evaluated for their potential to identify mercury compounds in FGD material. The results of the study suggest that the mercury form is dominated by the calcium sulfate matrix and is probably associated with the sulfate form in the FGD material. Additionally, to determine the effect of high mercury concentration FGD material on wallboard manufacture, a laboratory FGD unit was built to trap the oxidized mercury generated in a simulated flue gas. Although the laboratory prepared FGD material did not contain the mercury concentrations anticipated, further thermal tests determined that mercury begins to evolve from FGD material at 380 to 390 F, consequently dropping the drying temperature should mitigate mercury evolution if necessary. Mercury evolution is also diminished as the weight of the wallboard sample increased. Consequently, mercury evolution may not be a significant problem in wallboard manufacture.« less

  13. Speciation Analysis of Trace Mercury in Sea Cucumber Species of Apostichopus japonicus Using High-Performance Liquid Chromatography Conjunction With Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Liu, Hao; Luo, Jiaoyang; Ding, Tong; Gu, Shanyong; Yang, Shihai; Yang, Meihua

    2018-03-25

    In this paper, a simple and cost-effective method using high-performance liquid chromatography in conjunction with inductively coupled plasma mass spectrometry with a rapid ultrasound-assisted extraction was used for analysis speciation of trace mercury in sea cucumber species of Apostichopus japonicus. The effective separation of inorganic mercury, methylmercury, and ethylmercury was achieved within 10 min using Agilent ZORBAX SB-C 18 analytical and guard columns with an isocratic mobile phase consisting of 8% methanol and 92% H 2 O containing 0.12% L-cysteine (m/v) and 0.01 mol/L ammonium acetate. Mercury species were extracted from A. japonicus samples using a solution containing 2-mercaptoethanol, L-cysteine, and hydrochloric acid and sonicating for 0.5 h. The limits of detection of inorganic mercury, methylmercury, and ethylmercury were 0.12, 0.08, and 0.20 μg/L, and the minimum detectable concentrations (measured at 0.500 g sample volume in 10.00 mL) were 2.4, 1.6, and 4.0 μg/kg, respectively. Analysis of a scallop certified reference material (GBW 10024) revealed accordance between the experimental and certified values. This study provides a reference for the evaluation of mercury speciation in sea cucumber and other seafood.

  14. The Chemical Nature of Mercury in Human Brain Following Poisoning or Environmental Exposure

    PubMed Central

    2010-01-01

    Methylmercury is among the most potentially toxic species to which human populations are exposed, both at high levels through poisonings and at lower levels through consumption of fish and other seafood. However, the molecular mechanisms of methylmercury toxicity in humans remain poorly understood. We used synchrotron X-ray absorption spectroscopy (XAS) to study mercury chemical forms in human brain tissue. Individuals poisoned with high levels of methylmercury species showed elevated cortical selenium with significant proportions of nanoparticulate mercuric selenide plus some inorganic mercury and methylmercury bound to organic sulfur. Individuals with a lifetime of high fish consumption showed much lower levels of mercuric selenide and methylmercury cysteineate. Mercury exposure did not perturb organic selenium levels. These results elucidate a key detoxification pathway in the central nervous system and provide new insights into the appropriate methods for biological monitoring. PMID:22826746

  15. Distribution and speciation of mercury affected by humic acid in mariculture sites at the Pearl River estuary.

    PubMed

    Ding, Lingyun; Zhao, Kaiyun; Zhang, Lijuan; Liang, Peng; Wu, Shengchun; Wong, Ming Hung; Tao, Huchun

    2018-05-14

    At the Pearl River Estuary of southern China, mercury and its environmental problems have long been a great concern. This study investigated the distribution and speciation of mercury compounds that are significantly influenced by the increasing content of humic acid (HA, a model natural organic matter) in this region. The inorganic mercury and methyl mercury, being adsorbed and converted at different HA levels, were studied in sediments and surface water at both mariculture and their reference sites. In mariculture sediments with higher HA content (up to 4.5%), more mercury were adsorbed at different compound levels, promoting the methylation and accumulation of mercury (P < 0.05) at the sediment-water interface. Seasonal shift in environmental temperature might control the HA content, subsequently favouring mercury methylation (maximum 1.75 ± 0.08 mg L -1 d -1 ) under warm weather conditions. In reference sites received less HA wastes, lower adsorption capacity and methylation rate were observed for mercury in sediments and surface water. Our work points to the significant roles of HA on mercury distribution and speciation both spatially and seasonally, thus addressing the impacts of mariculture activities on estuary eco-system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Determination of Inorganic Ion Profiles of Illicit Drugs by Capillary Electrophoresis.

    PubMed

    Evans, Elizabeth; Costrino, Carolina; do Lago, Claudimir L; Garcia, Carlos D; Roux, Claude; Blanes, Lucas

    2016-11-01

    A portable capillary electrophoresis instrument with dual capacitively coupled contactless conductivity detection (C 4 D) was used to determine the inorganic ionic profiles of three pharmaceutical samples and precursors of two illicit drugs (contemporary samples of methylone and para-methoxymethamphetamine). The LODs ranged from 0.10 μmol/L to 1.25 μmol/L for the 10 selected cations, and from 0.13 μmol/L to 1.03 μmol/L for the eight selected anions. All separations were performed in less than 6 min with migration times and peak area RSD values ranging from 2 to 7%. The results demonstrate the potential of the analysis of inorganic ionic species to aid in the identification and/or differentiation of unknown tablets, and real samples found in illicit drug manufacture scenarios. From the resulting ionic fingerprint, the unknown tablets and samples can be further classified. © 2016 American Academy of Forensic Sciences.

  17. Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Murphy, James; Jones, Phil; Hill, Steve J.

    1996-12-01

    A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry. The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g -1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1-3.0 mg kg -1.

  18. Health effects of long-term mercury exposure among chloralkali plant workers.

    PubMed

    Frumkin, H; Letz, R; Williams, P L; Gerr, F; Pierce, M; Sanders, A; Elon, L; Manning, C C; Woods, J S; Hertzberg, V S; Mueller, P; Taylor, B B

    2001-01-01

    Inorganic mercury is toxic to the nervous system, kidneys, and reproductive system. We studied the health effects of mercury exposure among former employees of a chloralkali plant that operated from 1955 to 1994 in Georgia. Former plant workers and unexposed workers from nearby employers were studied. Exposure was assessed with a job-exposure matrix based on historical measurements and personnel records. Health outcomes were assessed with interviews, physical examinations, neurological and neurobehavioral testing, renal function testing, and urinary porphyrin measurements. Exposure-disease associations were assessed with multivariate modeling. Exposed workers reported more symptoms, and tended toward more physical examination abnormalities, than unexposed workers. Exposed workers performed worse than unexposed subjects on some quantitative tests of vibration sense, motor speed and coordination, and tremor, and on one test of cognitive function. Few findings remained significant when exposure was modeled as a continuous variable. Neither renal function nor porphyrin excretion was associated with mercury exposure. Mercury-exposed chloralkali plant workers reported more symptoms than unexposed controls, but no strong associations were demonstrated with neurological or renal function or with porphyrin excretion. Copyright 2001 Wiley-Liss, Inc.

  19. TEST METHODS TO DETERMINE THE MERCURY EMISSIONS FROM SLUDGE INCINERATION PLANTS

    EPA Science Inventory

    Two test methods for mercury are described along with the laboratory and field studies done in developing and validating them. One method describes how to homogenize and analyze large quantities of sewage sludge. The other test method describes how to measure the mercury emission...

  20. Mercury Report-Children's exposure to elemental mercury

    MedlinePlus

    ... gov . Mercury Background Mercury Report Additional Resources Mercury Report - Children's Exposure to Elemental Mercury Recommend on Facebook ... I limit exposure to mercury? Why was the report written? Children attending a daycare in New Jersey ...

  1. Mercury in Indiana watersheds: retrospective for 2001-2006

    USGS Publications Warehouse

    Risch, Martin R.; Baker, Nancy T.; Fowler, Kathleen K.; Egler, Amanda L.; Lampe, David C.

    2010-01-01

    Information about total mercury and methylmercury concentrations in water samples and mercury concentrations in fish-tissue samples was summarized for 26 watersheds in Indiana that drain most of the land area of the State. Mercury levels were interpreted with information on streamflow, atmospheric mercury deposition, mercury emissions to the atmosphere, mercury in wastewater, and landscape characteristics. Unfiltered total mercury concentrations in 411 water samples from streams in the 26 watersheds had a median of 2.32 nanograms per liter (ng/L) and a maximum of 28.2 ng/L. When these concentrations were compared to Indiana water-quality criteria for mercury, 5.4 percent exceeded the 12-ng/L chronic-aquatic criterion, 59 percent exceeded the 1.8-ng/L Great Lakes human-health criterion, and 72.5 percent exceeded the 1.3-ng/L Great Lakes wildlife criterion. Mercury concentrations in water were related to streamflow, and the highest mercury concentrations were associated with the highest streamflows. On average, 67 percent of total mercury in streams was in a particulate form, and particulate mercury concentrations were significantly lower downstream from dams than at monitoring stations not affected by dams. Methylmercury is the organic fraction of total mercury and is the form of mercury that accumulates and magnifies in food chains. It is made from inorganic mercury by natural processes under specific conditions. Unfiltered methylmercury concentrations in 411 water samples had a median of 0.10 ng/L and a maximum of 0.66 ng/L. Methylmercury was a median 3.7 percent and maximum 64.8 percent of the total mercury in 252 samples for which methylmercury was reported. The percentages of methylmercury in water samples were significantly higher downstream from dams than at other monitoring stations. Nearly all of the total mercury detected in fish tissue was assumed to be methylmercury. Fish-tissue samples from the 26 watersheds had wet-weight mercury concentrations that

  2. Remote Monitoring, Inorganic Monitoring

    EPA Science Inventory

    This chapter provides an overview of applicability, amenability, and operating parameter ranges for various inorganic parameters:this chapter will also provide a compilation of existing and new online technologies for determining inorganic compounds in water samples. A wide vari...

  3. Inorganic elemental determinations of marine traditional Chinese Medicine Meretricis concha from Jiaozhou Bay: The construction of inorganic elemental fingerprint based on chemometric analysis

    NASA Astrophysics Data System (ADS)

    Shao, Mingying; Li, Xuejie; Zheng, Kang; Jiang, Man; Yan, Cuiwei; Li, Yantuan

    2016-04-01

    The goal of this paper is to explore the relationship between the inorganic elemental fingerprint and the geographical origin identification of Meretricis concha, which is a commonly used marine traditional Chinese medicine (TCM) for the treatment of asthma and scald burns. For that, the inorganic elemental contents of Meretricis concha from five sampling points in Jiaozhou Bay have been determined by means of inductively coupled plasma optical emission spectrometry, and the comparative investigations based on the contents of 14 inorganic elements (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se and Zn) of the samples from Jiaozhou Bay and the previous reported Rushan Bay were performed. It has been found that the samples from the two bays are approximately classified into two kinds using hierarchical cluster analysis, and a four-factor model based on principle component analysis could explain approximately 75% of the detection data, also linear discriminant analysis can be used to develop a prediction model to distinguish the samples from Jiaozhou Bay and Rushan Bay with accuracy of about 93%. The results of the present investigation suggested that the inorganic elemental fingerprint based on the combination of the measured elemental content and chemometric analysis is a promising approach for verifying the geographical origin of Meretricis concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.

  4. Small Mercury Relativity Orbiter

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  5. Mercury Emission Measurement at a CFB Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Pavlish; Jeffrey Thompson; Lucinda Hamre

    2009-02-28

    In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years ofmore » mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were

  6. Localized surface plasmon resonance mercury detection system and methods

    DOEpatents

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  7. Flow Injection Photochemical Vapor Generation Coupled with Miniaturized Solution-Cathode Glow Discharge Atomic Emission Spectrometry for Determination and Speciation Analysis of Mercury.

    PubMed

    Mo, Jiamei; Li, Qing; Guo, Xiaohong; Zhang, Guoxia; Wang, Zheng

    2017-10-03

    A novel, compact, and green method was developed for the determination and speciation analysis of mercury, based on flow injection photochemical vapor generation (PVG) coupled with miniaturized solution cathode glow discharge-atomic emission spectroscopy (SCGD-AES). The SCGD was generated between a miniature hollow titanium tube and a solution emerging from a glass capillary. Cold mercury vapor (Hg(0)) was generated by PVG and subsequently delivered to the SCGD for excitation, and finally the emission signals were recorded by a miniaturized spectrograph. The detection limits (DLs) of Hg(II) and methylmercury (MeHg) were both determined to be 0.2 μg L -1 . Moreover, mercury speciation analysis could also be performed by using different wavelengths and powers from the UV lamp and irradiation times. Both Hg(II) and MeHg can be converted to Hg(0) for the determination of total mercury (T-Hg) with 8 W/254 nm UV lamp and 60 s irradiation time; while only Hg(II) can be reduced to Hg(0) and determined selectively with 4 W/365 nm UV lamp and 20 s irradiation time. Then, the concentration of MeHg can be calculated by subtracting the Hg(II) from the T-Hg. Because of its similar sensitivity and DL at 8 W/254 nm, the simpler and less toxic Hg(II) was used successfully as a primary standard for the quantification of T-Hg. The novel PVG-SCGD-AES system provides not only a 365-fold improvement in the DL for Hg(II) but also a nonchromatographic method for the speciation analysis of mercury. After validating its accuracy, this method was successfully used for mercury speciation analysis of water and biological samples.

  8. Spatial variation of mercury bioaccumulation in bats of Canada linked to atmospheric mercury deposition.

    PubMed

    Chételat, John; Hickey, M Brian C; Poulain, Alexandre J; Dastoor, Ashu; Ryjkov, Andrei; McAlpine, Donald; Vanderwolf, Karen; Jung, Thomas S; Hale, Lesley; Cooke, Emma L L; Hobson, Dave; Jonasson, Kristin; Kaupas, Laura; McCarthy, Sara; McClelland, Christine; Morningstar, Derek; Norquay, Kaleigh J O; Novy, Richard; Player, Delanie; Redford, Tony; Simard, Anouk; Stamler, Samantha; Webber, Quinn M R; Yumvihoze, Emmanuel; Zanuttig, Michelle

    2018-06-01

    mercury deposition is important in determining spatial patterns of mercury accumulation in a mammalian species. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  9. Increase in Nutrients, Mercury, and Methylmercury as a Consequence of Elevated Sulfate Reduction to Sulfide in Experimental Wetland Mesocosms

    NASA Astrophysics Data System (ADS)

    Myrbo, A.; Swain, E. B.; Johnson, N. W.; Engstrom, D. R.; Pastor, J.; Dewey, B.; Monson, P.; Brenner, J.; Dykhuizen Shore, M.; Peters, E. B.

    2017-11-01

    Microbial sulfate reduction (MSR) in both freshwater and marine ecosystems is a pathway for the decomposition of sedimentary organic matter (OM) after oxygen has been consumed. In experimental freshwater wetland mesocosms, sulfate additions allowed MSR to mineralize OM that would not otherwise have been decomposed. The mineralization of OM by MSR increased surface water concentrations of ecologically important constituents of OM: dissolved inorganic carbon, dissolved organic carbon, phosphorus, nitrogen, total mercury, and methylmercury. Increases in surface water concentrations, except for methylmercury, were in proportion to cumulative sulfate reduction, which was estimated by sulfate loss from the surface water into the sediments. Stoichiometric analysis shows that the increases were less than would be predicted from ratios with carbon in sediment, indicating that there are processes that limit P, N, and Hg mobilization to, or retention in, surface water. The highest sulfate treatment produced high levels of sulfide that retarded the methylation of mercury but simultaneously mobilized sedimentary inorganic mercury into surface water. As a result, the proportion of mercury in the surface water as methylmercury peaked at intermediate pore water sulfide concentrations. The mesocosms have a relatively high ratio of wall and sediment surfaces to the volume of overlying water, perhaps enhancing the removal of nutrients and mercury to periphyton. The presence of wild rice decreased sediment sulfide concentrations by 30%, which was most likely a result of oxygen release from the wild rice roots. An additional consequence of the enhanced MSR was that sulfate additions produced phytotoxic levels of sulfide in sediment pore water.

  10. Validation of methodology for determination of the mercury methylation potential in sediments using radiotracers.

    PubMed

    Zizek, Suzana; Ribeiro Guevara, Sergio; Horvat, Milena

    2008-04-01

    Experiments to determine the mercury methylation potential were performed on sediments from two locations on the river Idrijca (Slovenia), differing in ambient mercury concentrations. The tracer used was the radioactive isotope (197)Hg. The benefit of using this tracer is its high specific activity, which enables spikes as low as 0.02 ng Hg(2+) g(-1) of sample to be used. It was therefore possible to compare the efficiency of the methylation potential experiments over a range of spike concentrations from picogram to microgram levels. The first part of the work aimed to validate the experimental blanks and the second part consisted of several series of incubation experiments on two different river sediments using a range of tracer additions. The results showed high variability in the obtained methylation potentials. Increasing Hg(2+) additions gave a decrease in the percentage of the tracer methylated during incubation; in absolute terms, the spikes that spanned four orders of magnitude (0.019-190 pg g(-1) of sediment slurry) resulted in MeHg formation between 0.01 and 0.1 ng MeHg g(-1) in Podroteja and Kozarska Grapa. Higher spikes resulted in slightly elevated MeHg production (up to a maximum of 0.27 ng g(-1)). The values of methylation potential were similar in both sediments. The results imply that the experimental determination of mercury methylation potential strongly depends on the experimental setup itself and the amount of tracer added to the system under study. It is therefore recommended to use different concentrations of tracer and perform the experiments in several replicates. The amount of mercury available for methylation in nature is usually very small. Therefore, adding very low amounts of tracer in the methylation potential studies probably gives results that have a higher environmental relevance. It is also suggested to express the results obtained in absolute amounts of MeHg produced and not just as the percentage of the added tracer.

  11. Determination of total mercury in whole-body fish and fish muscle plugs collected from the South Fork of the Humboldt River, Nevada, September 2005

    USGS Publications Warehouse

    May, Thomas W.; Brumbaugh, William G.

    2007-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the U.S. Bureau of Reclamation, to determine mercury concentrations in whole-body fish and fish muscle plugs from the South Fork of the Humboldt River near Elko in the Te-Moak Indian Reservation. A single muscle plug was collected from beneath the dorsal fin area in each of the three whole-body fish samples. After homogenization and lyophilization of the muscle plugs and whole-body fish samples, mercury concentrations were determined with a direct mercury analyzer utilizing the process of thermal combustion-gold amalgamation atomic absorption spectroscopy. Mercury concentrations in whole-body fish ranged from 0.048 to 0.061 microgram per gram wet weight, and 0.061 to 0.082 microgram per gram wet weight in muscle plugs. All sample mercury concentrations were well below the U.S. Environmental Protection Agency's fish consumption advisory of 0.30 microgram per gram wet weight.

  12. Determination of mercury in an assortment of dietary supplements using an inexpensive combustion atomic absorption spectrometry technique.

    PubMed

    Levine, Keith E; Levine, Michael A; Weber, Frank X; Hu, Ye; Perlmutter, Jason; Grohse, Peter M

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a result, manufacturers and regulatory agencies concerned with monitoring lot-to-lot product quality may find this approach an attractive alternative to the more classical acid-decomposition, cold vapor atomic absorption methodology. Dietary supplement samples analyzed included astragalus, calcium, chromium picolinate, echinacea, ephedra, fish oil, ginger, ginkgo biloba, ginseng, goldenseal, guggul, senna, St John's wort, and yohimbe products. Quality control samples analyzed with the dietary supplements indicated a high level of method accuracy and precision. Ten replicate preparations of a standard reference material (NIST 1573a, tomato leaves) were analyzed, and the average mercury recovery was 109% (2.0% RSD). The method quantitation limit was 0.3 ng, which corresponded to 1.5 ng/g sample. The highest found mercury concentration (123 ng/g) was measured in a concentrated salmon oil sample. When taken as directed by an adult, this product would result in an approximate mercury ingestion of 7 mug per week.

  13. Anodic stripping voltammetric determination of mercury using multi-walled carbon nanotubes film coated glassy carbon electrode.

    PubMed

    Yi, Hongchao

    2003-10-01

    An electrochemical method for the determination of trace levels of mercury based on a multi-walled carbon nanotubes (MWNT) film coated glassy carbon electrode (GCE) is described. In 0.1 mol L(-1) HCl solution containing 0.02 mol L(-1) KI, Hg(2+) was firstly preconcentrated at the MWNT film and then reduced at -0.60 V. During the anodic potential sweep, reduced mercury was oxidized, and then a sensitive and well-defined stripping peak at about -0.20 V appeared. Under identical conditions, a MWNT film coated GCE greatly enhances the stripping peak current of mercury in contrast to a bare GCE. Low concentrations of I(-) remarkably improve the determining sensitivity, since this increases the accumulation efficiency of Hg(2+) at the MWNT film coated GCE. The stripping peak current is proportional to the concentration of Hg(2+) over the range 8 x 10(-10)-5 x 10(-7) mol L(-1). The lowest detectable concentration of Hg(2+) is 2 x 10(-10) mol L(-1) at 5 min accumulation. The relative standard deviation (RSD) at 1 x 10(-8) mol L(-1) Hg(2+) was about 6% ( n=10). By using this proposed method, Hg(2+) in some water samples was determined, and the results were compared with those obtained by atomic absorption spectrometry (AAS). The two results are similar, suggesting that the MWNT-film coated GCE has great potential in practical analysis.

  14. Mercury in breast milk from women in the Federal District, Brazil and dietary risk assessment for breastfed infants.

    PubMed

    Rebelo, Fernanda M; Cunha, Leandro R da; Andrade, Patrícia D; Costa Junior, Walkimar A da; Bastos, Wanderley R; Caldas, Eloisa D

    2017-12-01

    Mercury is a toxic metal, ubiquitous in nature; it is excreted in breast milk from exposed mothers and may affect infant neuro-development. In this study, 224 breast milk samples provided by eight human milk banks in the Federal District of Brazil were analyzed for total mercury (THg), of which 183 were also analyzed for methyl mercury (MeHg), the most relevant form of this metal for the breastfed infants. Samples were acid digested in a microwave oven and THg determined by atomic fluorescence spectrometry (LOQ of 0.76μg/L). Samples were lyophilized, ethylated and MeHg determined in a MERX automated system (LOQ of 0.10μg/L). Inorganic mercury (IHg) levels were estimated from the THg and MeHg determined in the samples. Most of the samples were collected 1-2 months postpartum, with 38% during the first month. Over 80% of the samples had THg values above the LOQ, reaching a maximum of 8.40μg/L, with a mean of 2.56μg/L. On average, MeHg accounted for 11.8% of THg, with a maximum of 97.4%. Weekly intakes were estimated individually, considering the baby's age and body weight at the time of milk collection. Mean weekly intake for MeHg was 0.16±0.22μg/kg bw, which represented 10% of the PTWI; in only one case, the intake exceeded 100% of the PTWI (1.90μg/kg bw, 119% of PTWI). Mean intake for IHg was 2.1±1.5μg/kg bw, corresponding to 53% PTWI. These results indicate no health concern for the breastfed babies, a conclusion that can be extended to the consumers of breast milk donated to the milk banks, primarily immature and low weight babies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. An evaluation of a reagentless method for the determination of total mercury in aquatic life

    USGS Publications Warehouse

    Haynes, Sekeenia; Gragg, Richard D.; Johnson, Elijah; Robinson, Larry; Orazio, Carl E.

    2006-01-01

    Multiple treatment (i.e., drying, chemical digestion, and oxidation) steps are often required during preparation of biological matrices for quantitative analysis of mercury; these multiple steps could potentially lead to systematic errors and poor recovery of the analyte. In this study, the Direct Mercury Analyzer (Milestone Inc., Monroe, CT) was utilized to measure total mercury in fish tissue by integrating steps of drying, sample combustion and gold sequestration with successive identification using atomic absorption spectrometry. We also evaluated the differences between the mercury concentrations found in samples that were homogenized and samples with no preparation. These results were confirmed with cold vapor atomic absorbance and fluorescence spectrometric methods of analysis. Finally, total mercury in wild captured largemouth bass (n = 20) were assessed using the Direct Mercury Analyzer to examine internal variability between mercury concentrations in muscle, liver and brain organs. Direct analysis of total mercury measured in muscle tissue was strongly correlated with muscle tissue that was homogenized before analysis (r = 0.81, p < 0.0001). Additionally, results using this integrated method compared favorably (p < 0.05) with conventional cold vapor spectrometry with atomic absorbance and fluorescence detection methods. Mercury concentrations in brain were significantly lower than concentrations in muscle (p < 0.001) and liver (p < 0.05) tissues. This integrated method can measure a wide range of mercury concentrations (0-500 ??g) using small sample sizes. Total mercury measurements in this study are comparative to the methods (cold vapor) commonly used for total mercury analysis and are devoid of laborious sample preparation and expensive hazardous waste. ?? Springer 2006.

  16. Indirect Determination of Mercury Ion by Inhibition of a Glucose Biosensor Based on ZnO Nanorods

    PubMed Central

    Chey, Chan Oeurn; Ibupoto, Zafar Hussain; Khun, Kimleang; Nur, Omer; Willander, Magnus

    2012-01-01

    A potentiometric glucose biosensor based on immobilization of glucose oxidase (GOD) on ZnO nanorods (ZnO-NRs) has been developed for the indirect determination of environmental mercury ions. The ZnO-NRs were grown on a gold coated glass substrate by using the low temperature aqueous chemical growth (ACG) approach. Glucose oxidase in conjunction with a chitosan membrane and a glutaraldehyde (GA) were immobilized on the surface of the ZnO-NRs using a simple physical adsorption method and then used as a potentiometric working electrode. The potential response of the biosensor between the working electrode and an Ag/AgCl reference electrode was measured in a 1mM phosphate buffer solution (PBS). The detection limit of the mercury ion sensor was found to be 0.5 nM. The experimental results provide two linear ranges of the inhibition from 0.5 × 10−6 mM to 0.5 × 10−4 mM, and from 0.5 × 10−4 mM to 20 mM of mercury ion for fixed 1 mM of glucose concentration in the solution. The linear range of the inhibition from 10−3 mM to 6 mM of mercury ion was also acquired for a fixed 10 mM of glucose concentration. The working electrode can be reactivated by more than 70% after inhibition by simply dipping the used electrode in a 10 mM PBS solution for 7 min. The electrodes retained their original enzyme activity by about 90% for more than three weeks. The response to mercury ions was highly sensitive, selective, stable, reproducible, and interference resistant, and exhibits a fast response time. The developed glucose biosensor has a great potential for detection of mercury with several advantages such as being inexpensive, requiring minimum hardware and being suitable for unskilled users. PMID:23202200

  17. Indirect determination of mercury ion by inhibition of a glucose biosensor based on ZnO nanorods.

    PubMed

    Chey, Chan Oeurn; Ibupoto, Zafar Hussain; Khun, Kimleang; Nur, Omer; Willander, Magnus

    2012-11-06

    A potentiometric glucose biosensor based on immobilization of glucose oxidase (GOD) on ZnO nanorods (ZnO-NRs) has been developed for the indirect determination of environmental mercury ions. The ZnO-NRs were grown on a gold coated glass substrate by using the low temperature aqueous chemical growth (ACG) approach. Glucose oxidase in conjunction with a chitosan membrane and a glutaraldehyde (GA) were immobilized on the surface of the ZnO-NRs using a simple physical adsorption method and then used as a potentiometric working electrode. The potential response of the biosensor between the working electrode and an Ag/AgCl reference electrode was measured in a 1mM phosphate buffer solution (PBS). The detection limit of the mercury ion sensor was found to be 0.5 nM. The experimental results provide two linear ranges of the inhibition from 0.5 × 10(-6) mM to 0.5 × 10(-4) mM, and from 0.5 × 10(-4) mM to 20 mM of mercury ion for fixed 1 mM of glucose concentration in the solution. The linear range of the inhibition from 10(-3) mM to 6 mM of mercury ion was also acquired for a fixed 10 mM of glucose concentration. The working electrode can be reactivated by more than 70% after inhibition by simply dipping the used electrode in a 10 mM PBS solution for 7 min. The electrodes retained their original enzyme activity by about 90% for more than three weeks. The response to mercury ions was highly sensitive, selective, stable, reproducible, and interference resistant, and exhibits a fast response time. The developed glucose biosensor has a great potential for detection of mercury with several advantages such as being inexpensive, requiring minimum hardware and being suitable for unskilled users.

  18. Low picomolar, instrument-free visual detection of mercury and silver ions using low-cost programmable nanoprobes

    PubMed Central

    Rana, Muhit; Balcioglu, Mustafa; Robertson, Neil M.; Hizir, Mustafa Salih; Yumak, Sumeyra

    2017-01-01

    The EPA's recommended maximum allowable level of inorganic mercury in drinking water is 2 ppb (10 nM). To our knowledge, the most sensitive colorimetric mercury sensor reported to date has a limit of detection (LOD) of 800 pM. Here, we report an instrument-free and highly practical colorimetric methodology, which enables detection of as low as 2 ppt (10 pM) of mercury and/or silver ions with the naked eye using a gold nanoprobe. Synthesis of the nanoprobe costs less than $1.42, which is enough to perform 200 tests in a microplate; less than a penny for each test. We have demonstrated the detection of inorganic mercury from water, soil and urine samples. The assay takes about four hours and the color change is observed within minutes after the addition of the last required element of the assay. The nanoprobe is highly programmable which allows for the detection of mercury and/or silver ions separately or simultaneously by changing only a single parameter of the assay. This highly sensitive approach for the visual detection relies on the combination of the signal amplification features of the hybridization chain reaction with the plasmonic properties of the gold nanoparticles. Considering that heavy metal ion contamination of natural resources is a major challenge and routine environmental monitoring is needed, yet time-consuming, this colorimetric approach may be instrumental for on-site heavy metal ion detection. Since the color transition can be measured in a variety of formats including using the naked eye, a simple UV-Vis spectrophotometer, or recording using mobile phone apps for future directions, our cost-efficient assay and method have the potential to be translated into the field. PMID:28451261

  19. Methods for determination of inorganic substances in water and fluvial sediments

    USGS Publications Warehouse

    Fishman, Marvin J.; Friedman, Linda C.

    1989-01-01

    Chapter Al of the laboratory manual contains methods used by the U.S. Geological Survey to analyze samples of water, suspended sediments, and bottom material for their content of inorganic constituents. Included are methods for determining the concentration of dissolved constituents in water, the total recoverable and total of constituents in water-suspended sediment samples, and the recoverable and total concentrations of constituents in samples of bottom material. The introduction to the manual includes essential definitions and a brief discussion of the use of significant figures in calculating and reporting analytical results. Quality control in the water-analysis laboratory is discussed, including the accuracy and precision of analyses, the use of standard-reference water samples, and the operation of an effective quality-assurance program. Methods for sample preparation and pretreatment are given also. A brief discussion of the principles of the analytical techniques involved and their particular application to water and sediment analysis is presented. The analytical methods of these techniques are arranged alphabetically by constituent. For each method, the general topics covered are the application, the principle of the method, the interferences, the apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data, when available. More than 126 methods are given for the determination of 70 inorganic constituents and physical properties of water, suspended sediment, and bottom material.

  20. Methods for determination of inorganic substances in water and fluvial sediments

    USGS Publications Warehouse

    Fishman, Marvin J.; Friedman, Linda C.

    1985-01-01

    Chapter Al of the laboratory manual contains methods used by the Geological Survey to analyze samples of water, suspended sediments, and bottom material for their content of inorganic constituents. Included are methods for determining the concentration of dissolved constituents in water, total recoverable and total of constituents in water-suspended sediment samples, and recoverable and total concentrations of constituents in samples of bottom material. Essential definitions are included in the introduction to the manual, along with a brief discussion of the use of significant figures in calculating and reporting analytical results. Quality control in the water-analysis laboratory is discussed, including accuracy and precision of analyses, the use of standard reference water samples, and the operation of an effective quality assurance program. Methods for sample preparation and pretreatment are given also.A brief discussion of the principles of the analytical techniques involved and their particular application to water and sediment analysis is presented. The analytical methods involving these techniques are arranged alphabetically according to constituent. For each method given, the general topics covered are application, principle of the method, interferences, apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data, when available. More than 125 methods are given for the determination of 70 different inorganic constituents and physical properties of water, suspended sediment, and bottom material.

  1. Bismuth citrate in the quantification of inorganic phosphate and its utility in the determination of membrane-bound phosphatases.

    PubMed

    Cariani, L; Thomas, L; Brito, J; del Castillo, J R

    2004-01-01

    This paper describes a rapid and sensitive method to determine inorganic phosphate, even in the presence of labile organic phosphate compounds and large quantities of proteins. The method eliminates the use of sodium arsenite, a highly toxic compound, substituting bismuth citrate for it to stabilize the phosphomolybdic acid complex formed during the interaction of inorganic phosphate and molybdate reduced by ascorbic acid. This method has also been adapted to microplates and has been used to determine the activities of Na/K ATPase and alkaline phosphatase of intestinal basolateral and luminal plasma membranes.

  2. Mercury Exposure and Heart Diseases

    PubMed Central

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system. PMID:28085104

  3. Mercury Exposure and Heart Diseases.

    PubMed

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-12

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  4. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).

    PubMed

    Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina

    2016-02-01

    Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China.

    PubMed

    Horvat, Milena; Nolde, Natasa; Fajon, Vesna; Jereb, Vesna; Logar, Martina; Lojen, Sonja; Jacimovic, Radojko; Falnoga, Ingrid; Liya, Qu; Faganeli, Jadran; Drobne, Damjana

    2003-03-20

    The province of Guizhou in Southwestern China is currently one of the world's most important mercury production areas. Emissions of mercury from the province to the global atmosphere have been estimated to be approximately 12% of the world total anthropogenic emissions. The main objective of this study was to assess the level of contamination with Hg in two geographical areas of Guizhou province. Mercury pollution in the areas concerned originates from mercury mining and ore processing in the area of Wanshan, while in the area of Quingzhen mercury pollution originates from the chemical industry discharging Hg through wastewaters and emissions to the atmosphere due to coal burning for electricity production. The results of this study confirmed high contamination with Hg in soil, sediments and rice in the Hg mining area in Wanshan. High levels of Hg in soil and rice were also found in the vicinity of the chemical plant in Quingzhen. The concentrations of Hg decreased with distance from the main sources of pollution considerably. The general conclusion is that Hg contamination in Wanshan is geographically more widespread, due to deposition and scavenging of Hg from contaminated air and deposition on land. In Quingzhen Hg contamination of soil is very high close to the chemical plant but the levels reach background concentrations at a distance of several km. Even though the major source of Hg in both areas is inorganic Hg, it was observed that active transformation of inorganic Hg to organic Hg species (MeHg) takes place in water, sediments and soils. The concentration of Hg in rice grains can reach up to 569 microg/kg of total Hg of which 145 microg/kg was in MeHg form. The percentage of Hg as MeHg varied from 5 to 83%. The concentrations of selenium can reach up to 16 mg/kg in soil and up to 1 mg/g in rice. A correlation exists between the concentration of Se in soil and rice, indicating that a portion of Se is bioavailable to plants. No correlation between Hg and Se

  6. Determination of nitrobenzene in wastewater using a hanging mercury drop electrode.

    PubMed

    Liang, Shu-Xuan; Zhang, Huan-Kun; Lu, Da

    2007-06-01

    The determination of trace amount nitrobenzene in wastewater on a hanging mercury drop electrode was studied. The determination conditions of pH, supporting electrolyte, accumulation potential, accumulation time, and voltammetric response were optimized. The sharp peak of the nitrobenzene was appeared at 0.05 V. The peak electric current was proportional to the concentration of nitrobenzene in the range of 1.47 x 10(-5) approximately 1.0 x 10(-3) mol/l with relative standard deviations of 3.99 approximately 8.94%. The detection limit of the nitrobenzene in water was 5 x 10(-6) mol/l. The proposed method offered low limit of determination, easy operation, the use of simple instrumentation, high sensitivity and good reproducibility. It was applied to the determination of nitrobenzene in wastewater with an average recovery of 94.0% approximately 105%. The proposed method provided fast, sensitive and sometimes real time detection of nitrobenzene.

  7. Sources of inorganic and monomethyl mercury to high and sub Arctic marine ecosystems

    NASA Astrophysics Data System (ADS)

    Kirk, Jane Liza

    Monomethyl mercury (MMHg), a toxic and bioaccumulative form of Hg, is present in some Canadian high and sub Arctic marine mammals at concentrations high enough to pose health risks to Northern peoples using these animals as food. To quantify potentially large sources of Hg to Arctic marine ecosystems, we examined several aspects of Hg cycling in the Canadian Arctic Archipelago (CAA) and Hudson Bay. Firstly, we quantified net Hg inputs to Hudson Bay from atmospheric Hg depletion events (AMDEs). During AMDEs, gaseous elemental Hg(0) (GEM), which is present in the Arctic atmosphere at global background concentrations, is oxidized to inorganic Hg(II) species that deposit to snowpacks. By simultaneously monitoring Hg in the atmosphere and in snowpacks of western Hudson Bay, we demonstrated that most of the Hg(II) deposited during AMDEs is rapidly (photo)reduced and emitted to the atmosphere. Secondly, we examined Hg speciation in marine waters of the CAA and Hudson Bay. We found high concentrations of MMHg and dimethyl Hg (DMHg; a toxic, gaseous form of Hg) in deep marine waters, where they are likely produced from Hg(II). Arctic marine waters were also found to be a substantial source of DMHg and GEM to the atmosphere. Thirdly, we quantified Hg exports to Hudson Bay from two major rivers, the Nelson and the Churchill, which have been altered for hydroelectric power production. When landscapes are inundated during river diversion or reservoir creation, microbial production of MMHg is stimulated in flooded soils. Newly produced MMHg can then be exported to downstream waterbodies. We found that annual inputs of total Hg (THg; includes both Hg(II) and MMHg) to Hudson Bay from combined Nelson and Churchill River discharge were comparable to inputs from AMDEs. MMHg inputs from river discharge are, however, ˜13 times greater than those from annual snowmelt of Hudson Bay snowpacks. Finally, although combined river and AMDE Hg inputs may account for a large portion of the THg

  8. [Study on the determination of 14 inorganic elements in coffee by inductively coupled plasma mass spectrometry].

    PubMed

    Nie, Xi-Du; Fu, Liang

    2013-07-01

    Samples of coffee were digested by microwave digestion, and inorganic elements amounts of Na, Mg, P, Ca, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Mo and Pb in sample solutions were determined by inductively coupled plasma mass spectrometry (ICP-MS). HNO3 + H2O2 was used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The working parameters of the instrument were optimized. The results showed that the relative standard deviation (RSD) was less than 3.84% for all the elements, and the recovery was found to be 92.00% -106.52% by adding standard recovery experiment. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of coffee, which could satisfy the sample examination request and provide scientific rationale for determining inorganic elements of coffee.

  9. Investigating Mercury's South Polar Deposits with High-Resolution Determination of Illumination Conditions

    NASA Astrophysics Data System (ADS)

    Shread, E. E.; Chabot, N. L.

    2018-05-01

    High-resolution images acquired by MESSENGER's Mercury Dual Imaging System were used to investigate the illumination conditions of Mercury's south polar deposits and to map the areas of permanent shadow in the region to compare with radar imaging.

  10. Legacy Mercury in Alviso Slough, South San Francisco Bay, California: Concentration, Speciation and Mobility

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark; Cox, Marisa H.

    2007-01-01

    Mercury (Hg) is a significant contaminant in the waters, sediment and biota of San Francisco Bay, largely resulting from extensive historic regional mining activities. Alviso Slough represents one of the most mercury contaminated waterways entering south San Francisco Bay, as it is associated with the drainage of the New Almaden mercury mining district. Wetland habitat restoration of former salt manufacturing ponds adjacent to Alviso Slough is currently being planned. One management scenario being considered is a levee breach between Alviso Slough and Pond A8, which will allow reconnection of the salt pond with the tidal slough. This action is projected to increase the tidal prism within Alviso Slough and result in some degree of sediment remobilization as the main channel deepens and widens. The focus of the current study is to assess: a) the current mercury species composition and concentration in sediments within the Alviso Slough main channel and its associated fringing marsh plain, b) how much of each mercury species will be mobilized as a result of projected channel deepening and widening, and c) potential changes in inorganic reactive mercury bioavailability (for conversion to toxic methylmercury) associated with the mobilized sediment fraction. The current report details the field sampling approach and all laboratory analyses conducted, as well as provides the complete dataset associated with this project including a) a quantitative assessment of mercury speciation (total mercury, reactive mercury and methylmercury), b) estimates of the quantity of sediment and mercury mobilized based on 20-foot and 40-foot levee wall notch scenarios, and c) results from a sediment scour experiment examining the changes in the reactive mercury pool under four treatment conditions (high / low salinity and oxic / anoxic water). Ancillary sediment data also collected and reported herein include bulk density, organic content, magnetic susceptibility, percent dry weight, grain

  11. Subchronic mercury exposure in coturnix and a method of hazard evaluation

    USGS Publications Warehouse

    Hill, E.F.; Soares, J.H.

    1984-01-01

    The sublethal toxicity of inorganic (HgCI 2) and organic (CH3HgCI) mercury chloride was studied in coturnix (Corurnix japonica) by feeding them mercuric compounds (CH3HgCI at concentrations of 0.125,0.5,2 and 8 ppm; HgCI2 at 0.5, 2, 8 and 32 ppm) in ad libitum diets from hatching to adulthood. Differences of response to the mercurials were compared on the basis of selected indicator enzymes and plasma chemistries. Comparisons of response to equivalent concentrations of the two mercurials and dose-response relationships were made at 1,3,5,7 and 9 weeks. Changes of activity were detected for brain acetylcholinesterase (AChE) and the plasma enzymes aspartate aminotransferase (ASA T), butyrylcholinesterase (BChE), lactate dehydrogenase (LDH) and ornithine carbamoyl transferase (OCT). Changes of ASA T, LDH and OCT were then quantified by probit analysis and the mercurials were compared through their median effective concentrations (EC50). This quantal procedure was based on the establishment of normal control values for each enzyme and then classifying mercury-treated outliers (more than + 2 SD) as respondents. The EC50 values at 9 weeks for ASA T, LDH and OCT, respectively, were 9, 3 and 63 ppm for HgCl 2, and 5, 1 and 4 ppm for CH3HgCI. These results provided the basis for two hazard indices that were calculated by dividing the EC50 into the oral LD50 and the 5-d dietary LC50. Mercury also had contradictory effects on gonadal maturation in both sexes.

  12. Mercury

    MedlinePlus

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  13. Chronic psychological effects of exposure to mercury vapour among chlorine-alkali plant workers.

    PubMed

    Pranjić, N; Sinanović, O; Jakubović, R

    2003-01-01

    Quantitative assessment of nervous system function is essential in characterising the nature and extent of impairment in individuals experiencing symptoms following work-place mercury vapour exposure. The purpose of this study was the application of standardised tests of behavioural, psychomotor and memory function to understand the neuropsychological effects of mercury in occupationally exposed chlorine-alkali plant workers. The study comprised 45 workers at a chlorine-alkali plant with the mean age of 39.36 +/- 5.94 years, who had been exposed to daily inhalation of mercury vapour over long-term employment of 16.06 +/- 4.29 years. The cumulative mercury index was 155.32 +/- 95.02 micrograms/g creatinine, the mean of urinary mercury concentrations on the first day of the study was 119.50 +/- 157.24 micrograms/g creatinine, and the mean of urinary mercury concentrations 120 days after cessation of exposure was 21.70 +/- 26.07 micrograms/g creatinine. The analysis included tests of behavioural, psychomotor and memory function. The behavioural test battery consisted of: Environmental Worry Scale (EWS), Minnesota Modified Personal Inventory (MMPI-2), Purdue standard 25 minute test, and adapted, 10 minutes test, Bender's Visual-Motor Gestalt test (BGT), and Eysenck Personality Inventory (EPQ). The data were compared to a control group of 32 not directly exposed workers. In the mercury vapour exposed workers with relatively high level exposure to inorganic mercury vapour (TWA/TLV = 0.12 mg/m3/0.025 mg/m3) we identified somatic depression-hypochondria symptoms with higher scores for scales: hysteria (P < 0.001), schizoid and psycho-asthenia (MMPI-2). The mercury-exposed workers had introvert behaviour (EPQ, MMPI-2). The cognitive disturbances in mercury-exposed workers were identified as: concentration difficulty, psychomotor, perceptual and motor coordination disturbances, and brain effects. We identified fine tremor of the hands in 34 out of 45 mercury-exposed workers

  14. Phytoremediation of Mercury and Organomercurials in Chloroplast Transgenic Plants: Enhanced Root Uptake, Translocation to Shoots, and Volatilization

    PubMed Central

    Hussein, Hussein S.; Ruiz, Oscar N.; Terry, Norman; Daniell, Henry

    2008-01-01

    Transgenic tobacco plants engineered with bacterial merA and merB genes via the chloroplast genome were investigated to study the uptake, translocation of different forms of mercury (Hg) from roots to shoots, and their volatilization. Untransformed plants, regardless of the form of Hg supplied, reached a saturation point at 200 µM of phenylmercuric acetate (PMA) or HgCl2, accumulating Hg concentrations up to 500 µg g−1 with significant reduction in growth. In contrast, chloroplast transgenic lines continued to grow well with Hg concentrations in root tissues up to 2000 µg g−1. Chloroplast transgenic lines accumulated both the organic and inorganic Hg forms to levels surpassing the concentrations found in the soil. The organic-Hg form was absorbed and translocated more efficiently than the inorganic-Hg form in transgenic lines, whereas no such difference was observed in untransformed plants. Chloroplast-transgenic lines showed about 100-fold increase in the efficiency of Hg accumulation in shoots compared to untransformed plants. This is the first report of such high levels of Hg accumulation in green leaves or tissues. Transgenic plants attained a maximum rate of elemental-Hg volatilization in two days when supplied with PMA and in three days when supplied with inorganic-Hg, attaining complete volatilization within a week. The combined expression of merAB via the chloroplast genome enhanced conversion of Hg2+ into Hg,0 conferred tolerance by rapid volatilization and increased uptake of different forms of mercury, surpassing the concentrations found in the soil. These investigations provide novel insights for improvement of plant tolerance and detoxification of mercury. PMID:18200876

  15. Determination of methylmercury in marine biota samples with advanced mercury analyzer: method validation.

    PubMed

    Azemard, Sabine; Vassileva, Emilia

    2015-06-01

    In this paper, we present a simple, fast and cost-effective method for determination of methyl mercury (MeHg) in marine samples. All important parameters influencing the sample preparation process were investigated and optimized. Full validation of the method was performed in accordance to the ISO-17025 (ISO/IEC, 2005) and Eurachem guidelines. Blanks, selectivity, working range (0.09-3.0ng), recovery (92-108%), intermediate precision (1.7-4.5%), traceability, limit of detection (0.009ng), limit of quantification (0.045ng) and expanded uncertainty (15%, k=2) were assessed. Estimation of the uncertainty contribution of each parameter and the demonstration of traceability of measurement results was provided as well. Furthermore, the selectivity of the method was studied by analyzing the same sample extracts by advanced mercury analyzer (AMA) and gas chromatography-atomic fluorescence spectrometry (GC-AFS). Additional validation of the proposed procedure was effectuated by participation in the IAEA-461 worldwide inter-laboratory comparison exercises. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. MERCURY IN AN INSECTIVOROUS BIRD SPECIES

    EPA Science Inventory

    Mercury distributions within ecosystems must be examined to determine exposure and risk to wildlife in specific areas. In the current study, we examined exposure and uptake of mercury in nestling prothonotary warblers (protonitaria citrea) inhabiting two National Priority List (...

  17. Evidence of Mercurial Contamination and Denundation Downstream of New Idria Mercury Mine, San Benito County, California

    NASA Astrophysics Data System (ADS)

    Letsinger, H. E.; Sharma, R. K.; Weinman, B.

    2014-12-01

    California's Central Valley water quality and soils are essential to the survival of the valley's communities and agriculture. Therefore, detection of possible contaminants within the valley streams and soils are paramount to the protection of this land and the people that depend upon it. Here we explore the impact of the contaminated stream beds near the New Idria Mercury Mine site, San Benito County, California. Previous work by Ganguli et al. (2000) has been done in this area to determine the mercury levels associated with the water that flows near the ghost town of New Idria. We performed geochemical analyses on the finer bed sediments from channels draining the area, as well as the coarser sediments taken from along the channel banks, to determine mercury transport downriver from the source. Using a novel application of tau, a mass transfer coefficient typically used in critical zone studies or soil production and weathering rates, we determine downstream weathering, accumulation, and transport of mercury. Our initial geochemical data showed higher tau values upstream as well as within the banks of the contaminated streambed and a greater accumulation of mercury near the pollution source (i.e., mine tailings, (τ ~ 103)). Tau results also show elevated mercurial levels existing downstream, with accumulations in mid- (τ ~ 102) and down-stream (τ ~ 10) reaches. Combining tau results with more traditional indices of chemical weathering (CIA) support consistent overall Hg-weathering processes with low levels of chemical weathering and higher dominance of coupled physical-anthropogenic weathering.

  18. Determination and assessment of total mercury levels in local, frozen and canned fish in Lebanon.

    PubMed

    Obeid, Pierre J; El-Khoury, Bilal; Burger, Joanne; Aouad, Samer; Younis, Mira; Aoun, Amal; El-Nakat, John Hanna

    2011-01-01

    Fish is an important constituent of the Lebanese diet. However, very little attention in our area is given to bring awareness regarding the effect of the toxicity of mercury (Hg) mainly through fish consumption. This study aimed to report analytical data on total mercury levels in several fish species for the first time in thirty years and to also made individuals aware of the presence and danger from exposure to mercury through fish consumption. Fish samples were selected from local Lebanese markets and fisheries and included 94 samples of which were fresh, frozen, processed, and canned fish. All values were reported as microgram of mercury per gram of fish based on wet weight. The level of mercury ranged from 0.0190 to 0.5700 microg/g in fresh samples, 0.0059 to 0.0665 microg/g in frozen samples, and 0.0305 to 0.1190 microg/g in canned samples. The data clearly showed that higher levels of mercury were detected in local fresh fish as opposed to other types thus placing consumers at higher risk from mercury exposure. Moreover, the data revealed that Mallifa (yellowstripe barracuda/Sphyraena chrysotaenia), Sargous (white seabream/Diplodus sargus), Ghobbos (bogue/Boops boops), and shrimp (Penaeus sp.) were among the types containing the highest amounts of mercury. On the other hand, processed fish such as fish fillet, fish burger, small shrimp and crab are found to contain lower levels of mercury and are associated with lower exposure risks to mercury. Lebanese population should therefore, be aware to consume limited amounts of fresh local fish to minimize exposure to mercury.

  19. To Mercury dynamics

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    frequencies of free oscillations of core-mantle system of Mercury. Based on the mentioned data about Mercury (Barkin, 1976) we have been obtained the following model values of moments of inertia of the Mercury and for its core:A=0.3499534, B=0.3499667, C=0.35; A_c =B_c =0.1749767, C_c =0.175000 (1quad unit=mR^2, m and R is a mass and a mean radius of the Mercury). Here we used model values for moments of inertia of the core using also some analogy with axysimmetrical model of the core of the Moon from paper Williams et al. (2003). Corresponding periods of free oscillations were determined on the base specially constructed equations of developed theory. They are equal: T_1 =260543\\cdot Trot years and T_2 =0.999468\\cdot Trot (Trot =58.6462 days is a period of Mercury rotation). Last period determines long period of relative oscillation of the core and mantleT_r . The mentioned periods are equal: T_1 =713years and T_r =302years. Barkin's work was accepted by grant SAB2000-0235 of Ministry of Education of Spain and partially by grants AYA2001-0787 and ESP2001-4533 is also aknowledged. References Anderson J.D., Colombo G., Esposito P.B., Lau E.L., Trager G.B.: 1987. The mass, gravity field and ephemeris of Mercury. Icarus, pp. 337-349. Anselmi A., Scoon G.E.N.: 2001. BepiColombo, ESA's Mercury Cornerstone mission. Planetary and Space Science, 49, pp. 1409-1420. Barkin Yu.V.: 1976. About plane periodic motions of a rigid body in gravitational field of a sphere. Astron. J., v. 53, pp. 1110-1119. In Russian. Barkin Yu.V.: 1987. An analytical theory of the lunar rotational motion. Proc. Int. Symp. ``Figure and Dynamics of Earth, Moon and Planets'' (September 1986, Prague). Monograph series of VUGTK. Prague. Pp. 657-677. Beletskij V.V.: 1972. Resonance rotation of celestial bodies and Cassini's laws. Celestial Mechanics, v.6, N3, pp. 356-378. Colombo G.: 1966. Cassini's second and third laws, Astron. J., 71, p. 891. Esposito P.B., Anderson J.D., Ng A.T.Y.: 1977. Experimental

  20. Characterization of mercury contamination in the Androscoggin River, Coos County, New Hampshire

    USGS Publications Warehouse

    Chalmers, Ann; Marvin-DiPasquale, Mark C.; Degnan, James R.; Coles, James; Agee, Jennifer L.; Luce, Darryl

    2013-01-01

    Concentrations of total mercury (THg) and MeHg in sediment, pore water, and biota in the Androscoggin River were elevated downstream from the former chloralkali facility compared with those upstream from reference sites. Sequential extraction of surface sediment showed a distinct difference in Hg speciation upstream compared with downstream from the contamination site. An upstream site was dominated by potassium hydroxide-extractable forms (for example, organic-Hg or particle-bound Hg(II)), whereas sites downstream from the point source were dominated by more chemically recalcitrant forms (largely concentrated nitric acid-extractable), indicative of elemental mercury or mercurous chloride. At all sites, only a minor fraction (less than 0.1 percent) of THg existed in chemically labile forms (for example, water extractable or weak acid extractable). All metrics indicated that a greater percentage of mercury at an upstream site was available for Hg(II)-methylation compared with sites downstream from the point source, but the absolute concentration of bioavailable Hg(II) was greater downstream from the point source. In addition, the concentration of tin-reducible inorganic reactive mercury, a surrogate measure of bioavailable Hg(II) generally increased with distance downstream from the point source. Whereas concentrations of mercury species on a sediment-dry-weight basis generally reflected the relative location of the sample to the point source, river-reach integrated mercury-species inventories and MeHg production potential (MPP) rates reflected the amount of fine-grained sediment in a given reach. THg concentrations in biota were significantly higher downstream from the point source compared with upstream reference sites for smallmouth bass, white sucker, crayfish, oligochaetes, bat fur, nestling tree swallow blood and feathers, adult tree swallow blood, and tree swallow eggs. As with tin-reducible inorganic reactive mercury, THg in smallmouth bass also increased

  1. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  2. Microfluidic Analysis with Front-Face Fluorometric Detection for the Determination of Total Inorganic Iodine in Drinking Water.

    PubMed

    Inpota, Prawpan; Strzelak, Kamil; Koncki, Robert; Sripumkhai, Wisaroot; Jeamsaksiri, Wutthinan; Ratanawimarnwong, Nuanlaor; Wilairat, Prapin; Choengchan, Nathawut; Chantiwas, Rattikan; Nacapricha, Duangjai

    2018-01-01

    A microfluidic method with front-face fluorometric detection was developed for the determination of total inorganic iodine in drinking water. A polydimethylsiloxane (PDMS) microfluidic device was employed in conjunction with the Sandell-Kolthoff reaction, in which iodide catalyzed the redox reaction between Ce(IV) and As(III). Direct alignment of an optical fiber attached to a spectrofluorometer was used as a convenient detector for remote front-face fluorometric detection. Trace inorganic iodine (IO 3 - and I - ) present naturally in drinking water was measured by on-line conversion of iodate to iodide for determination of total inorganic iodine. On-line conversion efficiency of iodate to iodide using the microfluidic device was investigated. Excellent conversion efficiency of 93 - 103% (%RSD = 1.6 - 11%) was obtained. Inorganic iodine concentrations in drinking water samples were measured, and the results obtained were in good agreement with those obtained by an ICP-MS method. Spiked sample recoveries were in the range of 86%(±5) - 128%(±8) (n = 12). Interference of various anions and cations were investigated with tolerance limit concentrations ranging from 10 -6 to 2.5 M depending on the type of ions. The developed method is simple and convenient, and it is a green method for iodine analysis, as it greatly reduces the amount of toxic reagent consumed with reagent volumes in the microfluidic scale.

  3. Detection of mercury compounds using invertase-glucose oxidase-based biosensor

    NASA Astrophysics Data System (ADS)

    Amine, A.; Cremisini, C.; Palleschi, G.

    1995-10-01

    Mercury compounds have been determined with an electrochemical biosensor based on invertase inhibition. When invertase is in the presence of mercury its activity decreases; this causes a decrease of glucose production which is monitored by the glucose sensor and correlated to the concentration of mercury in solution. Parameters as pH, enzyme concentration, substrate concentration, and reaction and incubation time were optimized. Mercury compounds determination using soluble or immobilized invertase were reported. Results show that the inhibition was competitive and reversible. Mercury compounds can be detected directly in aqueous solution in the range 2 - 10 ppb.

  4. Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum).

    PubMed

    Zhao, Jiating; Gao, Yuxi; Li, Yu-Feng; Hu, Yi; Peng, Xiaomin; Dong, Yuanxing; Li, Bai; Chen, Chunying; Chai, Zhifang

    2013-08-01

    To investigate the influence of selenium on mercury phytotoxicity, the levels of selenium and mercury were analyzed with inductively coupled plasma-mass spectrometry (ICP-MS) in garlic tissues upon exposure to different dosages of inorganic mercury (Hg(2+)) and selenite (SeO3(2-)) or selenate (SeO4(2-)). The distributions of selenium and mercury were examined with micro-synchrotron radiation X-ray fluorescence (μ-SRXRF), and the mercury speciation was investigated with micro-X-ray absorption near edge structure (μ-XANES). The results show that Se at higher exposure levels (>1mg/L of SeO3(2-) or SeO4(2-)) would significantly inhibit the absorption and transportation of Hg when Hg(2+) levels are higher than 1mg/L in culture media. SeO3(2-) and SeO4(2-) were found to be equally effective in reducing Hg accumulation in garlic. The inhibition of Hg uptake by Se correlates well with the influence of Se on Hg phytotoxicity as indicated by the growth inhibition factor. Elemental imaging using μ-SRXRF also shows that Se could inhibit the accumulation and translocation of Hg in garlic. μ-XANES analysis shows that Hg is mainly present in the forms of Hg-S bonding as Hg(GSH)2 and Hg(Met)2. Se exposure elicited decrease of Hg-S bonding in the form of Hg(GSH)2, together with Se-mediated alteration of Hg absorption, transportation and accumulation, may account for attenuated Hg phytotoxicity by Se in garlic. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Morphofunctional Alterations in Zebrafish (Danio rerio) Gills after Exposure to Mercury Chloride

    PubMed Central

    Macirella, Rachele; Brunelli, Elvira

    2017-01-01

    Mercury (Hg) is a global pollutant that may exert its toxic effects on living organisms and is found in both aquatic and terrestrial ecosystems in three chemical forms; elemental, organic, and inorganic. The inorganic form (iHg) tends to predominantly accumulate in aquatic environments. The gill apparatus is a very dynamic organ that plays a fundamental role in gas exchange, osmoregulation, acid-base regulation, detoxification, and excretion, and the gills are the primary route of waterborne iHg entrance in fish. In the present work we investigated the morphofunctional and ultrastructural effects in Danio rerio gills after 96 h exposure to two low HgCl2 concentrations (7.7 and 38.5 µg/L). Our results clearly demonstrated that a short-term exposure to low concentrations of mercury chloride resulted in gill morphology alterations and in the modifications of both Na+/K+-ATPase and metallothioneins (MTs) expression pattern. The main morphological effects recorded in this work were represented by hyperplasia and ectopia of chloride cells (CCs), lamellar fusion, increased mucous secretion, alteration of pavement cells (PVCs), detachment of the secondary epithelium, pillar cell degeneration, degeneration, and apoptosis. Trough immunohistochemistry and real-time PCR analysis also showed a dose-related modulation of Na+/K+-ATPase and MTs. PMID:28406445

  6. Fish mercury distribution in Massachusetts, USA lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, J.; Hutcheson, M.S.; West, C.R.

    1999-07-01

    The sediment, water, and three species of fish from 24 of Massachusetts' (relatively) least-impacted water bodies were sampled to determine the patterns of variation in edible tissue mercury concentrations and the relationships of these patterns to characteristics of the water, sediment, and water bodies (lake, wetland, and watershed areas). Sampling was apportioned among three different ecological subregions and among lakes of differing trophic status. The authors sought to partition the variance to discover if these broadly defined concepts are suitable predictors of mercury levels in fish. Average muscle mercury concentrations were 0.15 mg/kg wet weight in the bottom-feeding brown bullheadsmore » (Ameriurus nebulosus); 0.31 mg/kg in the omnivorous yellow perch (Perca flavescens); and 0.39 mg/kg in the predaceous largemouth bass (Micropterus salmoides). Statistically significant differences in fish mercury concentrations between ecological subregions in Massachusetts, USA, existed only in yellow perch. The productivity level of the lakes (as deduced from Carlson's Trophic Status Index) was not a strong predictor of tissue mercury concentrations in any species. pH was a highly (inversely) correlated environmental variable with yellow perch and brown bullhead tissue mercury. Largemouth bass tissue mercury concentrations were most highly correlated with the weight of the fish (+), lake size (+), and source area sizes (+). Properties of individual lakes appear more important for determining fish tissue mercury concentrations than do small-scale ecoregional differences. Species that show major mercury variation with size or trophic level may not be good choices for use in evaluating the importance of environmental variables.« less

  7. [Occupational acute mercury intoxication--a case report].

    PubMed

    Złotkowska, Renata; Zajac-Nedza, Maria

    2002-01-01

    The aim of this paper is to present a case of acute occupational mercury poisoning treated at the Clinical Department of Occupational Diseases. A welder, forty years old was employed at a large chemical plant in the dissembling department involved in the production of acetaldehyde. The patient was referred to the hospital by an occupational physician. During his shift; dissembling mercury-covered tubes a nausea, abdominal pain and elevated temperature occurred. He was also complaining of headache and symptoms of gingivitis, which lasted two weeks before hospitalization. Before admission to the Clinical Department, mercury concentrations in urine were measured twice. The urine mercury levels were very high, impossible to determine precisely. During hospitalization, the patient was complaining of head and gingiva pains. Since the symptoms persisted and high urine mercury levels (830 micrograms/l) were determined--DMPS--Heyl was administered. After treatment symptoms subsided and the concentration of mercury in urine was gradually returning to normal. The results of laboratory tests did not reveal any impairment of internal organs. Consultant in neurology found the presence of nystagmus and positive Romberg test in the patient. Neurological signs disappeared after a month. The measurements performed by the Department of Work Safety revealed high exceeded hygiene permissible limits of mercury vapors in the air. The information provided by the employer's technical services also showed that the patient was working with the face mask, but its absorber was not readjusted to mercury vapors. A control ambulatory examination (one and a half year later) did not reveal health effects of acute exposure to mercury vapors.

  8. Mercury Exposure: Protein Biomarkers of Mercury Exposure in Jaraqui Fish from the Amazon Region.

    PubMed

    Vieira, José Cavalcante Souza; Braga, Camila Pereira; de Oliveira, Grasieli; Padilha, Cilene do Carmo Federici; de Moraes, Paula Martin; Zara, Luiz Fabricio; Leite, Aline de Lima; Buzalaf, Marília Afonso Rabelo; Padilha, Pedro de Magalhães

    2018-05-01

    This study presents data on the extraction and characterization of proteins associated with mercury in the muscle and liver tissues of jaraqui (Semaprochilodus spp.) from the Madeira River in the Brazilian Amazon. Protein fractionation was carried out by two-dimensional electrophoresis (2D-PAGE). Mercury determination in tissues, pellets, and protein spots was performed by graphite furnace atomic absorption spectrometry (GFAAS). Proteins in the spots that showed mercury were characterized by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The highest mercury concentrations were found in liver tissues and pellets (426 ± 6 and 277 ± 4 μg kg -1 ), followed by muscle tissues and pellets (132 ± 4 and 86 ± 1 μg kg -1 , respectively). Mercury quantification in the protein spots allowed us to propose stoichiometric ratios in the range of 1-4 mercury atoms per molecule of protein in the protein spots. The proteins characterized in the analysis by ESI-MS/MS were keratin, type II cytoskeletal 8, parvalbumin beta, parvalbumin-2, ubiquitin-40S ribosomal S27a, 39S ribosomal protein L36 mitochondrial, hemoglobin subunit beta, and hemoglobin subunit beta-A/B. The results suggest that proteins such as ubiquitin-40S ribosomal protein S27a, which have specific domains, possibly zinc finger, can be used as biomarkers of mercury, whereas mercury and zinc present characteristics of soft acids.

  9. Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water

    NASA Astrophysics Data System (ADS)

    Guerrini, Luca; Rodriguez-Loureiro, Ignacio; Correa-Duarte, Miguel A.; Lee, Yih Hong; Ling, Xing Yi; García de Abajo, F. Javier; Alvarez-Puebla, Ramon A.

    2014-06-01

    Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels. Specifically, the inorganic Hg2+ and the more toxicologically relevant methylmercury (CH3Hg+) are selected as analytical targets. The sensing platform consists of a self-assembled monolayer of 4-mercaptopyridine (MPY) on highly SERS-active and robust hybrid plasmonic materials formed by a dense layer of interacting gold nanoparticles anchored onto polystyrene microbeads. The co-ordination of Hg2+ and CH3Hg+ to the nitrogen atom of the MPY ring yields characteristic changes in the vibrational SERS spectra of the organic chemoreceptor that can be qualitatively and quantitatively correlated to the presence of the two different mercury forms.Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels

  10. The distribution of, and relation among, mercury and methylmercury, organic carbon, carbonate, nitrogen and phosphorus, in periphyton of the south florida ecosystem

    USGS Publications Warehouse

    Simon, N.S.; Spencer, R.; Cox, T.

    1999-01-01

    Periphyton samples from Water Conservation Areas, Big Cypress National Preserve, and Everglades National Park in south Florida were analyzed for concentrations of total mercury, methylmercury, nitrogen, phosphorus, organic carbon, and inorganic carbon. Concentrations of total mercury in periphyton decrease slightly along a gradient from north-to-south. Both total mercury and methylmercury are positively correlated with organic carbon, nitrogen and phosphorus in periphyton. In horizontal sections of periphyton mats, total mercury concentrations tend to be largest at the tops and bottoms of the mats. Methylmercury concentrations tend to be the largest near the bottom of mats. These localized elevated concentrations of methylmercury suggest that there are "hot spots" of methylmercury in periphyton. ?? 1999 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

  11. Dragonfly Mercury Project—A citizen science driven approach to linking surface-water chemistry and landscape characteristics to biosentinels on a national scale

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Nelson, Sarah J.; Willacker,, James J.; Flanagan Pritz, Colleen M.; Krabbenhoft, David P.

    2016-02-29

    Mercury is a globally distributed pollutant that threatens human and ecosystem health. Even protected areas, such as national parks, are subjected to mercury contamination because it is delivered through atmospheric deposition, often after long-range transport. In aquatic ecosystems, certain environmental conditions can promote microbial processes that convert inorganic mercury to an organic form (methylmercury). Methylmercury biomagnifies through food webs and is a potent neurotoxicant and endocrine disruptor. The U.S. Geological Survey (USGS), the University of Maine, and the National Park Service (NPS) Air Resources Division are working in partnership at more than 50 national parks across the United States, and with citizen scientists as key participants in data collection, to develop dragonfly nymphs as biosentinels for mercury in aquatic food webs. To validate the use of these biosentinels, and gain a better understanding of the connection between biotic and abiotic pools of mercury, this project also includes collection of landscape data and surface-water chemistry including mercury, methylmercury, pH, sulfate, and dissolved organic carbon and sediment mercury concentration. Because of the wide geographic scope of the research, the project also provides a nationwide “snapshot” of mercury in primarily undeveloped watersheds.

  12. Determination of total cadmium, lead, arsenic, mercury and inorganic arsenic in mushrooms: outcome of IMEP-116 and IMEP-39

    PubMed Central

    Cordeiro, F.; Llorente-Mirandes, T.; López-Sánchez, J.F.; Rubio, R.; Sánchez Agullo, A.; Raber, G.; Scharf, H.; Vélez, D.; Devesa, V.; Fiamegos, Y.; Emteborg, H.; Seghers, J.; Robouch, P.; de la Calle, M.B.

    2015-01-01

    The Institute for Reference Materials and Measurements (IRMM) of the Joint Research Centre (JRC), a Directorate General of the European Commission, operates the International Measurement Evaluation Program (IMEP). IMEP organises inter-laboratory comparisons in support of European Union policies. This paper presents the results of two proficiency tests (PTs): IMEP-116 and IMEP-39, organised for the determination of total Cd, Pb, As, Hg and inorganic As (iAs) in mushrooms. Participation in IMEP-116 was restricted to National Reference Laboratories (NRLs) officially appointed by national authorities in European Union member states. IMEP-39 was open to all other laboratories wishing to participate. Thirty-seven participants from 25 countries reported results in IMEP-116, and 62 laboratories from 36 countries reported for the IMEP-39 study. Both PTs were organised in support to Regulation (EC) No. 1881/2006, which sets the maximum levels for certain contaminants in food. The test item used in both PTs was a blend of mushrooms of the variety shiitake (Lentinula edodes). Five laboratories, with demonstrated measurement capability in the field, provided results to establish the assigned values (X ref). The standard uncertainties associated to the assigned values (u ref) were calculated by combining the uncertainty of the characterisation (u char) with a contribution for homogeneity (u bb) and for stability (u st), whilst u char was calculated following ISO 13528. Laboratory results were rated with z- and zeta (ζ)-scores in accordance with ISO 13528. The standard deviation for proficiency assessment, σ p, ranged from 10% to 20% depending on the analyte. The percentage of satisfactory z-scores ranged from 81% (iAs) to 97% (total Cd) in IMEP-116 and from 64% (iAs) to 84% (total Hg) in IMEP-39. PMID:25365736

  13. Determination of total cadmium, lead, arsenic, mercury and inorganic arsenic in mushrooms: outcome of IMEP-116 and IMEP-39.

    PubMed

    Cordeiro, F; Llorente-Mirandes, T; López-Sánchez, J F; Rubio, R; Sánchez Agullo, A; Raber, G; Scharf, H; Vélez, D; Devesa, V; Fiamegos, Y; Emteborg, H; Seghers, J; Robouch, P; de la Calle, M B

    2015-01-01

    The Institute for Reference Materials and Measurements (IRMM) of the Joint Research Centre (JRC), a Directorate General of the European Commission, operates the International Measurement Evaluation Program (IMEP). IMEP organises inter-laboratory comparisons in support of European Union policies. This paper presents the results of two proficiency tests (PTs): IMEP-116 and IMEP-39, organised for the determination of total Cd, Pb, As, Hg and inorganic As (iAs) in mushrooms. Participation in IMEP-116 was restricted to National Reference Laboratories (NRLs) officially appointed by national authorities in European Union member states. IMEP-39 was open to all other laboratories wishing to participate. Thirty-seven participants from 25 countries reported results in IMEP-116, and 62 laboratories from 36 countries reported for the IMEP-39 study. Both PTs were organised in support to Regulation (EC) No. 1881/2006, which sets the maximum levels for certain contaminants in food. The test item used in both PTs was a blend of mushrooms of the variety shiitake (Lentinula edodes). Five laboratories, with demonstrated measurement capability in the field, provided results to establish the assigned values (Xref). The standard uncertainties associated to the assigned values (uref) were calculated by combining the uncertainty of the characterisation (uchar) with a contribution for homogeneity (ubb) and for stability (ust), whilst uchar was calculated following ISO 13528. Laboratory results were rated with z- and zeta (ζ)-scores in accordance with ISO 13528. The standard deviation for proficiency assessment, σp, ranged from 10% to 20% depending on the analyte. The percentage of satisfactory z-scores ranged from 81% (iAs) to 97% (total Cd) in IMEP-116 and from 64% (iAs) to 84% (total Hg) in IMEP-39.

  14. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  15. Dietary mercury exposure and bioaccumulation in southern leopard frog (Rana sphenocephala) larvae.

    PubMed

    Unrine, Jason M; Jagoe, Charles H

    2004-12-01

    Aufwuchs was collected from three reservoirs, a constructed wetland used for groundwater treatment, and mercury (Hg)-enriched mesocosms to examine the relationship between inorganic Hg and methylmercury concentrations in the diet of tadpoles. Four diets were then formulated with Hg-enriched aufwuchs to concentrations that bracketed those of Hg observed in aufwuchs from the field and reported in the literature from sites contaminated by atmospheric deposition. The diets were fed to southern leopard frog tadpoles in the laboratory for the entire larval period (60-254 d). Metamorphs and tadpoles were analyzed for inorganic Hg and methylmercury contents by gas chromatography-cold-vapor atomic fluorescence spectrophotometry. Methylmercury concentration increased with total Hg concentration in aufwuchs, but the proportion of methylmercury to inorganic Hg decreased with increasing total Hg concentration. In the feeding experiment, there was an inverse relationship between Hg exposure concentration and the bioaccumulation factor for each Hg species. We concluded that neither methylmercury nor inorganic Hg in aufwuchs is highly bioavailable to tadpoles and that bioaccumulation is not well explained by a simple partitioning model. This suggests that bioaccumulation factors as currently used are not the best predictors of dietary Hg bioaccumulation.

  16. Cadmium, lead, tin, total mercury, and methylmercury in canned tuna commercialised in São Paulo, Brazil.

    PubMed

    de Paiva, Esther Lima; Morgano, Marcelo Antonio; Milani, Raquel Fernanda

    2017-09-01

    The objective of this work was to determine levels of inorganic contaminants in 30 samples of five commercial brands of canned tuna, acquired on the local market in Campinas, São Paulo, Brazil, in the year of 2015. Total mercury and methylmercury (MeHg+) were determined by atomic absorption with thermal decomposition and amalgamation; and cadmium, lead, and tin were determined by inductively coupled plasma optical emission spectrometry. Results indicated that 20% of the tuna samples surpassed limits determined by the Brazilian and European Commission legislation for cadmium; for lead, the maximum value found was 59 µg kg -1 and tin was not detected in any samples. The maximum values found for total Hg and MeHg+ were 261 and 258 µg kg -1 , respectively. As from the results obtained, it was estimated that the consumption of four cans per week (540 g) of tuna canned in water could surpass the provisional tolerable monthly intake for MeHg + by 100%.

  17. Application of ion chromatography to the determination of water-soluble inorganic and organic ions in atmospheric aerosols.

    PubMed

    Yu, Xue-Chun; He, Ke-Bin; Ma, Yong-Liang; Yang, Fu-Mo; Duan, Feng-Kui; Zheng, Ai-Hua; Zhao, Cheng-Yi

    2004-01-01

    A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F- , Cl- , NO2(-), NO3(-), SO3(2-), SO4(2-) , PO4(3-)), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 microg/m3 to 500 microg/m3 ( r = 0.999-0.9999). The relative standard deviation (RSD) were 0.43%-2.00% and the detection limits were from 2.7 ng/m3 to 88 ng/m3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM2.5 of Beijing.

  18. RELIABILITY STUDY OF THE U.S. EPA'S METHODS 101A - DETERMINATION OF PARTICULATE AND GASEOUS MERCURY EMISSIONS

    EPA Science Inventory

    EPA Method 101A applies to the determination of particulate and gaseous mercury missions from sewage sludge incinerators and other sources. oncern has been expressed hat ammonia or hydrogen chloride (HCl) when present in the emissions, interferes in the analytical processes and p...

  19. Simultaneous determination of mercury and organic carbon in sediment and soils using a direct mercury analyzer based on thermal decomposition-atomic absorption spectrophotometry.

    PubMed

    Chen, Jingjing; Chakravarty, Pragya; Davidson, Gregg R; Wren, Daniel G; Locke, Martin A; Zhou, Ying; Brown, Garry; Cizdziel, James V

    2015-04-29

    The purpose of this work was to study the feasibility of using a direct mercury analyzer (DMA) to simultaneously determine mercury (Hg) and organic matter content in sediment and soils. Organic carbon was estimated by re-weighing the sample boats post analysis to obtain loss-on-ignition (LOI) data. The DMA-LOI results were statistically similar (p<0.05) to the conventional muffle furnace approach. A regression equation was developed to convert DMA-LOI data to total organic carbon (TOC), which varied between 0.2% and 13.0%. Thus, mercury analyzers based on combustion can provide accurate estimates of organic carbon content in non-calcareous sediment and soils; however, weight gain from moisture (post-analysis), measurement uncertainty, and sample representativeness should all be taken into account. Sediment cores from seasonal wetland and open water areas from six oxbow lakes in the Mississippi River alluvial flood plain were analyzed. Wetland sediments generally had higher levels of Hg than open water areas owing to a greater fraction of fine particles and higher levels of organic matter. Annual loading of Hg in open water areas was estimated at 4.3, 13.4, 19.2, 20.7, 129, and 135 ng cm(-2) yr(-1) for Beasley, Roundaway, Hampton, Washington, Wolf and Sky Lakes, respectively. Generally, the interval with the highest Hg flux was dated to the 1960s and 1970s. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Epidemiologic confirmation that fruit consumption influences mercury exposure in riparian communities in the Brazilian Amazon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sousa Passos, Carlos Jose; Mergler, Donna; Fillion, Myriam

    2007-10-15

    Since deforestation has recently been associated with increased mercury load in the Amazon, the problem of mercury exposure is now much more widespread than initially thought. A previous exploratory study suggested that fruit consumption may reduce mercury exposure. The objectives of the study were to determine the effects of fruit consumption on the relation between fish consumption and bioindicators of mercury (Hg) exposure in Amazonian fish-eating communities. A cross-sectional dietary survey based on a 7-day recall of fish and fruit consumption frequency was conducted within 13 riparian communities from the Tapajos River, Brazilian Amazon. Hair samples were collected from 449more » persons, and blood samples were collected from a subset of 225, for total and inorganic mercury determination by atomic absorption spectrometry. On average, participants consumed 6.6 fish meals/week and ate 11 fruits/week. The average blood Hg (BHg) was 57.1{+-}36.3 {mu}g/L (median: 55.1 {mu}g/L), and the average hair-Hg (HHg) was 16.8{+-}10.3 {mu}g/g (median: 15.7 {mu}g/g). There was a positive relation between fish consumption and BHg (r=0.48; P<0.0001), as well as HHg (r=0.34; P<0.0001). Both fish and fruit consumption entered significantly in multivariate models explaining BHg (fish: {beta}=5.6, P<0.0001; fruit: {beta}=-0.5, P=0.0011; adjusted model R{sup 2}=36.0%) and HHg levels (fish: {beta}=1.2, P<0.0001; fruit: {beta}=-0.2, P=0.0002; adjusted model R{sup 2}=21.0%). ANCOVA models showed that for the same number of fish meals, persons consuming fruits more frequently had significantly lower blood and HHg concentrations. For low fruit consumers, each fish meal contributed 9.8 {mu}g/L Hg increase in blood compared to only 3.3 {mu}g/L Hg increase for the high fruit consumers. In conclusion, fruit consumption may provide a protective effect for Hg exposure in Amazonian riparians. Prevention strategies that seek to maintain fish consumption while reducing Hg exposure in fish

  1. Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000.

    PubMed Central

    Mahaffey, Kathryn R; Clickner, Robert P; Bodurow, Catherine C

    2004-01-01

    Blood organic mercury (i.e., methyl mercury) concentrations among 1,709 women who were participants in the National Health and Nutrition Examination Survey (NHANES) in 1999 and 2000 (1999-2000 NHANES) were 0.6 microg/L at the 50th percentile and ranged from concentrations that were nondetectable (5th percentile) to 6.7 microg/L (95th percentile). Blood organic/methyl mercury reflects methyl mercury intake from fish and shellfish as determined from a methyl mercury exposure parameter based on 24-hr dietary recall, 30-day food frequency, and mean concentrations of mercury in the fish/shellfish species reported as consumed (multiple correlation coefficient > 0.5). Blood organic/methyl mercury concentrations were lowest among Mexican Americans and highest among participants who designated themselves in the Other racial/ethnic category, which includes Asians, Native Americans, and Pacific Islanders. Blood organic/methyl mercury concentrations were ~1.5 times higher among women 30-49 years of age than among women 16-29 years of age. Blood mercury (BHg) concentrations were seven times higher among women who reported eating nine or more fish and/or shellfish meals within the past 30 days than among women who reported no fish and/or shellfish consumption in the past 30 days. Blood organic/methyl mercury concentrations greater than or equal to 5.8 microg/L were lowest among Mexican Americans (2.0%) and highest among examinees in the Other racial/ethnic category (21.7%). Based on the distribution of BHg concentrations among the adult female participants in 1999-2000 NHANES and the number of U.S. births in 2000, > 300,000 newborns each year in the United States may have been exposed in utero to methyl mercury concentrations higher than those considered to be without increased risk of adverse neurodevelopmental effects associated with methyl mercury exposure. PMID:15064162

  2. Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Johnson, William P.; Swanson, Neil; Black, Brooks; Rudd, Abigail; Carling, Gregory; Fernandez, Diego P.; Luft, John; Van Leeuwen, Jim; Marvin-DiPasquale, Mark C.

    2015-01-01

    We examined mercury (Hg) speciation in water and sediment of the Great Salt Lake and surrounding wetlands, a locale spanning fresh to hypersaline and oxic to anoxic conditions, in order to test the hypothesis that spatial and temporal variations in Hg concentration and methylation rates correspond to observed spatial and temporal trends in Hg burdens previously reported in biota. Water column, sediment, and pore water concentrations of methylmercury (MeHg) and total mercury (THg), as well as related aquatic chemical parameters were examined. Inorganic Hg(II)-methylation rates were determined in selected water column and sediment subsamples spiked with inorganic divalent mercury (204Hg(II)). Net production of Me204Hg was expressed as apparent first-order rate constants for methylation (kmeth), which were also expanded to MeHg production potential (MPP) rates via combination with tin reducible ‘reactive’ Hg(II) (Hg(II)R) as a proxy for bioavailable Hg(II). Notable findings include: 1) elevated Hg concentrations previously reported in birds and brine flies were spatially proximal to the measured highest MeHg concentrations, the latter occurring in the anoxic deep brine layer (DBL) of the Great Salt Lake; 2) timing of reduced Hg(II)-methylation rates in the DBL (according to both kmeth and MPP) coincides with reduced Hg burdens among aquatic invertebrates (brine shrimp and brine flies) that act as potential vectors of Hg propagation to the terrestrial ecosystem; 3) values ofkmeth were found to fall within the range reported by other studies; and 4) MPP rates were on the lower end of the range reported in methodologically comparable studies, suggesting the possibility that elevated MeHg in the anoxic deep brine layer results from its accumulation and persistence in this quasi-isolated environment, due to the absence of light (restricting abiotic photo demethylation) and/or minimal microbiological demethylation.

  3. The evaporation of a drop of mercury

    NASA Astrophysics Data System (ADS)

    Winter, Thomas G.

    2003-08-01

    The evaporative rates of two drops of mercury at room temperature are determined experimentally and theoretically. The resulting mercury vapor levels are estimated and measured, compared with the OSHA permissible exposure limit, and found to be small by comparison.

  4. Improved hopcalite procedure for the determination of mercury vapor in air by flameless atomic absorption.

    PubMed

    Rathje, A O; Marcero, D H

    1976-05-01

    Mercury vapor is efficiently trapped from air by passage through a small glass tube filled with hopcalite. The hopcalite and adsorbed mercury are dissolved in a mixture of nitric and hydrochloric acids. Solution is rapid and complete, with no loss of mercury. Analysis is completed by flameless atomic absorption.

  5. Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.).

    PubMed

    Zhou, Jun; Liu, Hongyan; Du, Buyun; Shang, Lihai; Yang, Junbo; Wang, Yusheng

    2015-04-01

    Recent studies showed that rice is the major pathway for methylmercury (MeHg) exposure to inhabitants in mercury (Hg) mining areas in China. There is, therefore, a concern regarding accumulation of Hg in rice grown in soils with high Hg concentrations. A soil pot experimental study was conducted to investigate the effects of Hg-contaminated soil on the growth of rice and uptake and speciation of Hg in the rice. Our results imply that the growth of rice promotes residual fraction of Hg transforming to organic-bound fraction in soil and increased the potential risks of MeHg production. Bioaccumulation factors deceased for IHg but relatively stabilized for MeHg with soil total mercury (THg) increasing. IHg in soil was the major source of Hg in the root and stalk, but leaf was contributed by Hg from both atmosphere and soil. Soluble and exchangeable Hg fraction can predict the bioavailability of IHg and MeHg in soils, and that can provide quantitative description of the rate of uptake of the bioavailable Hg. Soluble and exchangeable Hg fraction in paddy soil exceeding 0.0087 mg kg(-1) may cause THg concentration in rice grain above the permissible limit standard, and MeHg concentration in paddy soil more than 0.0091 mg kg(-1) may have the health risks to humans.

  6. Mercury distribution in Douro estuary (Portugal).

    PubMed

    Ramalhosa, E; Pereira, E; Vale, C; Válega, M; Monterroso, P; Duarte, A C

    2005-11-01

    Determinations of dissolved reactive and total dissolved mercury, particulate and sedimentary mercury, dissolved organic carbon (DOC), particulate organic carbon (POC) and suspended particulate matter (SPM) have been made in the estuary of river Douro, in northern Portugal. The estuary was stratified by salinity along most of its length, it had low concentrations of SPM, typically <20 mg dm(-3), and concentrations of DOC in the range <1.0-1.8 mg dm(-3). The surface waters had a maximum dissolved concentration of reactive mercury of about 10 ng dm(-3), whereas for the more saline bottom waters it was about 65 ng dm(-3). The surface waters had maximum concentrations of total suspended particulate mercury of approximately 7 microg g(-1) and the bottom waters were always <1 microg g(-1). Concentrations of mercury in sediments was low and in the range from 0.06 to 0.18 microg g(-1). The transport of mercury in surface waters was mainly associated with organic-rich particulate matter, while in bottom waters the dissolved phase transport of mercury is more important. Lower particulate organic matter, formation of chlorocomplexes in more saline waters and eventually the presence of colloids appear to explain the difference of mercury partitioning in Douro estuarine waters.

  7. Determination of methyl mercury by aqueous phase Eehylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection

    USGS Publications Warehouse

    De Wild, John F.; Olsen, Mark L.; Olund, Shane D.

    2002-01-01

    A recent national sampling of streams in the United States revealed low methyl mercury concentrations in surface waters. The resulting median and mean concentrations, calculated from 104 samples, were 0.06 nanograms per liter (ng/L) and 0.15 ng/L, respectively. This level of methyl mercury in surface water in the United States has created a need for analytical techniques capable of detecting sub-nanogram per liter concentrations. In an attempt to create a U.S. Geological Survey approved method, the Wisconsin District Mercury Laboratory has adapted a distillation/ethylation/ gas-phase separation method with cold vapor atomic fluorescence spectroscopy detection for the determination of methyl mercury in filtered and unfiltered waters. This method is described in this report. Based on multiple analyses of surface water and ground-water samples, a method detection limit of 0.04 ng/L was established. Precision and accuracy were evaluated for the method using both spiked and unspiked ground-water and surface-water samples. The percent relative standard deviations ranged from 10.2 to 15.6 for all analyses at all concentrations. Average recoveries obtained for the spiked matrices ranged from 88.8 to 117 percent. The precision and accuracy ranges are within the acceptable method-performance limits. Considering the demonstrated detection limit, precision, and accuracy, the method is an effective means to quantify methyl mercury in waters at or below environmentally relevant concentrations

  8. Mercury speciation in plankton from the Cabo Frio Bay, SE--Brazil.

    PubMed

    Silva-Filho, Emmanoel V; Kütter, Vinicius T; Figueiredo, Thiago S; Tessier, Emmanuel; Rezende, Carlos E; Teixeira, Daniel C; Silva, Carlos A; Donard, Olivier F X

    2014-12-01

    Mercury (Hg) is considered a global pollutant, and the scientific community has shown great concern about its toxicity as it may affect the biota of entire systems, through bioaccumulation and bioamplification processes of its organic form, methylmercury (MeHg), along food web. However, few research studies deal with bioaccumulation of Hg from marine primary producers and the first-order consumers. So, this study aims to determine Hg distribution and concentration levels in phytoplankton and zooplankton in the Cabo Frio Bay, Brazil, a site influenced by coastal upwelling. The results from Hg speciation analyses show that inorganic mercury Hg(II) was the predominant specie in plankton from this bay. The annual Hg species distribution in plankton shown mean concentration of 2.00 ± 1.28 ng Hg(II) g(-1) and 0.15 ± 0.08 ng MeHg g(-1) wet weight (phytoplankton) and 2.5 ± 2.03 ng Hg(II) g(-1) and 0.25 ± 0.09 ng MeHg g(-1) wet weight (zooplankton). Therefore, upwelling zones should be considered in the Hg biogeochemical cycle models as a process that enhances Hg(II) bioaccumulation in plankton, raising its bioavailability and shelf deposition.

  9. [Evaluation of the mercury accumulating capacity of pepper (Capsicum annuum)].

    PubMed

    Pérez-Vargas, Híver M; Vidal-Durango, Jhon V; Marrugo-Negrete, José L

    2014-01-01

    To assess the mercury accumulating capacity in contaminated soils from the community of Mina Santa Cruz, in the south of the department of Bolívar, Colombia, of the pepper plant (Capsicum annuum), in order to establish the risk to the health of the consuming population. Samples were taken from tissues (roots, stems, and leaves) of pepper plants grown in two soils contaminated with mercury and a control soil during the first five months of growth to determine total mercury through cold vapor atomic absorption spectrometry. Total mercury was determined in the samples of pepper plant fruits consumed in Mina Santa Cruz. The mean concentrations of total mercury in the roots were higher than in stems and leaves. Accumulation in tissues was influenced by mercury levels in soil and the growth time of the plants. Mercury concentrations in fruits of pepper plant were lower than tolerable weekly intake provided by WHO. Percent of translocation of mercury to aerial parts of the plant were low in both control and contaminated soils. Despite low levels of mercury in this food, it is necessary to minimize the consumption of food contaminated with this metal.

  10. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroid Space Weathering Studies

    NASA Technical Reports Server (NTRS)

    Dominque, Deborah L.; Chapman, Clark R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Orlando, Thomas M.; Schriver, David; hide

    2011-01-01

    Understanding the composition of Mercury's crust is key to comprehending the formation of the planet. The regolith, derived from the crustal bedrock, has been altered via a set of space weathering processes. These processes are the same set of mechanisms that work to form Mercury's exosphere, and are moderated by the local space environment and the presence of an intrinsic planetary magnetic field. The alterations need to be understood in order to determine the initial crustal compositions. The complex interrelationships between Mercury's exospheric processes, the space environment, and surface composition are examined and reviewed. The processes are examined in the context of our understanding of these same processes on the lunar and asteroid regoliths. Keywords: Mercury (planet) Space weathering Surface processes Exosphere Surface composition Space environment 3

  11. Simultaneous determination of inorganic anions and cations in explosive residues by ion chromatography.

    PubMed

    Meng, Hong-Bo; Wang, Tian-Ran; Guo, Bao-Yuan; Hashi, Yuki; Guo, Can-Xiong; Lin, Jin-Ming

    2008-07-15

    A non-suppressed ion chromatographic method by connecting anion-exchange and cation-exchange columns directly was developed for the separation and determination of five inorganic anions (sulfate, nitrate, chloride, nitrite, and chlorate) and three cations (sodium, ammonium, and potassium) simultaneously in explosive residues. The mobile phase was composed of 3.5mM phthalic acid with 2% acetonitrile and water at flow rate of 0.2 mL/min. Under the optimal conditions, the eight inorganic ions were completely separated and detected simultaneously within 16 min. The limits of detection (S/N=3) of the anions and cations were in the range of 50-100 microg/L and 150-320 microg/L, respectively, the linear correlation coefficients were 0.9941-0.9996, and the R.S.D. of retention time and peak area were 0.10-0.29% and 5.65-8.12%, respectively. The method was applied successfully to the analysis of the explosive samples with satisfactory results.

  12. Mercury

    USGS Publications Warehouse

    Franson, J.C.

    1999-01-01

    Mercury has been used by humans for over 2,000 years and was associated with premature deaths of cinnabar (mercuric sulfide) miners as early as 700 B.C. More recent human poisonings have been related to agricultural and industrial uses of mercury. One of the best documented of these cases occurred in the 1950s in Minamata Bay, Japan, when mercury was discharged into the environment and accumulated in fish and shellfish used as human food. In addition to human poisonings, mercury poisoning or toxicosis has been identified in many other species.Mercury is sometimes used to recover gold from stream sediments, and it may pose hazards to wildlife if it is released to the environment during ore recovery. Fungicidal treatment of seeds with mercury was common in the 1950s and 1960s, but this agricultural practice has been largely halted in the Northern Hemisphere.

  13. Sensitive determination of mercury by a miniaturized spectrophotometer after in situ single-drop microextraction.

    PubMed

    Yang, Fangwen; Liu, Rui; Tan, Zhiqiang; Wen, Xiaodong; Zheng, Chengbin; Lv, Yi

    2010-11-15

    An in situ single-drop microextraction (SDME) method was developed for trace mercury determination by a miniaturized spectrophotometer, in which a simple and cheap light-emitting diode (LED) was employed as the light source, and a handheld charge coupled device (CCD) was served as the detector. A droplet of 0.006% dithizone-CCl(4) (m/v) was used as extraction phase and hanged on a rolled PTFE tube. LED light was adjusted carefully to pass through the centre of the droplet and the entrance slit of the CCD detector. The radiation intensities of 475 nm before and after SDME (I(0) and I(i)) were recorded for quantification. Under the optimum conditions, the system provided a linear range of 2-50 μg L(-1), with a correlation coefficient of 0.9983 and a limit of detection (3σ) of 0.2 μg L(-1). The enrichment factor was about 69. The present method showed the merits of high sensitivity, simplicity, rapidity, low reagent consumption and field analysis potential. Finally, this method was successfully applied for the determination of the total mercury in spiked tap water sample, spiked river water sample and certified reference material (GBW (E) 080393, simulated water). Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Planet Mercury

    NASA Image and Video Library

    1999-06-12

    The first image of Mercury acquired by NASA's Mariner 10 in 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments. This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth. Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage. http://photojournal.jpl.nasa.gov/catalog/PIA00437

  15. Planet Mercury

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.

    This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.

    Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  16. Distribution of mercury in the deep sea water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takizawa, Y.; Amano, Y.

    1974-01-01

    A study was performed to determine why deep sea fish and shellfish contain a large percentage of mercury. The material selected for study consisted of sediments, corals, seaweeds, and seawater. Total mercury was determined by ultraviolet atomic absorption, and methylmercury was analyzed via gas chromatography. The sediments of the Japan Sea bed contained low (0.001-0.011 ppm) amounts of total mercury. Methylmercury was not detected in the sediments. In corals, total mercury varied according to age; there was a tendency for the accumulation to be larger in the modern living coral than in the old corals. Mercury concentrations in seaweeds variedmore » from none to 0.032 ppm. Methylmercury was not detected in seaweeds. The concentrations detected in this study cannot explain the high levels found in fish and shellfish. The authors speculate that a food chain transfer is operating, its structure being phytoplankton-based. 3 tables.« less

  17. Mercury Exposure among Garbage Workers in Southern Thailand

    PubMed Central

    2012-01-01

    Objectives 1) To determine mercury levels in urine samples from garbage workers in Southern Thailand, and 2) to describe the association between work characteristics, work positions, behavioral factors, and acute symptoms; and levels of mercury in urine samples. Methods A case-control study was conducted by interviewing 60 workers in 5 hazardous-waste-management factories, and 60 matched non-exposed persons living in the same area of Southern Thailand. Urine samples were collected to determine mercury levels by cold-vapor atomic absorption spectrometer mercury analyzer. Results The hazardous-waste workers' urinary mercury levels (10.07 µg/g creatinine) were significantly higher than the control group (1.33 µg/g creatinine) (p < 0.001). Work position, duration of work, personal protective equipment (PPE), and personal hygiene, were significantly associated with urinary mercury level (p < 0.001). The workers developed acute symptoms - of headaches, nausea, chest tightness, fatigue, and loss of consciousness at least once a week - and those who developed symptoms had significantly higher urinary mercury levels than those who did not, at p < 0.05. A multiple regression model was constructed. Significant predictors of urinary mercury levels included hours worked per day, days worked per week, duration of work (years), work position, use of PPE (mask, trousers, and gloves), and personal hygiene behavior (ate snacks or drank water at work, washed hands before lunch, and washed hands after work). Conclusion Changing garbage workers' hygiene habits can reduce urinary mercury levels. Personal hygiene is important, and should be stressed in education programs. Employers should institute engineering controls to reduce urinary mercury levels among garbage workers. PMID:23251842

  18. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Wiener, James G.; Eckley, Chris S.; Willacker, James J.; Evers, David C.; Marvin-DiPasquale, Mark C.; Obrist, Daniel; Fleck, Jacob; Aiken, George R.; Lepak, Jesse M.; Jackson, Allyson K.; Webster, Jackson; Stewart, Robin; Davis, Jay; Alpers, Charles N.; Ackerman, Joshua T.

    2016-01-01

    Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing

  19. Anodic stripping voltammetry with gold electrodes as an alternative method for the routine determination of mercury in fish. Comparison with spectroscopic approaches.

    PubMed

    Giacomino, Agnese; Ruo Redda, Andrea; Squadrone, Stefania; Rizzi, Marco; Abete, Maria Cesarina; La Gioia, Carmela; Toniolo, Rosanna; Abollino, Ornella; Malandrino, Mery

    2017-04-15

    The applicability to the determination of mercury in tuna of square wave anodic stripping voltammetry (SW-ASV) conducted at both solid gold electrode (SGE) and a gold nanoparticle-modified glassy carbon electrode (AuNPs-GCE) was demonstrated. Mercury content in two certified materials and in ten samples of canned tuna was measured. The performances of the electrodes were compared with one another as well as with two spectroscopic techniques, namely cold vapour atomic absorption spectroscopy (CV-AAS) and a direct mercury analyser (DMA). The results found pointed out that both SW-ASV approaches were suitable and easy-to-use method to monitor mercury concentration in tunas, since they allowed accurate quantification at concentration values lower than the maximum admissible level in this matrix ([Hg]=1mg/kg wet weight,ww ). In particular, mercury detection at the AuNPs-GCE showed a LOQ in fish-matrix of 0.1μg/l, corresponding to 0.06mg/kg ww , with performance comparable to that of DMA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mercury Dispersion Modeling And Purge Ventilation Stack Height Determination For Tank 40H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Giboyeaux, A.

    2017-05-19

    The SRNL Atmospheric Technologies Group performed an analysis for mercury emissions from H-Tank Farm - Tank 40 ventilation system exhaust in order to assess whether the Short Term Exposure Limit (STEL), or Threshold Limit Value (TLV) levels for mercury will be exceeded during bulk sludge slurry mixing and sludge removal operations. The American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used as the main dispersion modelling tool for this analysis. The results indicated that a 45-foot stack is sufficient to raise the plume centerline from the Tank 40 release to prevent mercury exposure problems for any of the stackmore » discharge scenarios provided. However, a 42-foot stack at Tank 40 is sufficient to prevent mercury exposure concerns in all emission scenarios except the 50 mg/m 3 release. At a 42-foot stack height, values exceeding the exposure standards are only measured on receptors located above 34 feet.« less

  1. A preliminary study on health effects in villagers exposed to mercury in a small-scale artisanal gold mining area in Indonesia.

    PubMed

    Bose-O'Reilly, Stephan; Schierl, Rudolf; Nowak, Dennis; Siebert, Uwe; William, Jossep Frederick; Owi, Fradico Teorgi; Ir, Yuyun Ismawati

    2016-08-01

    Cisitu is a small-scale gold mining village in Indonesia. Mercury (Hg) is used to extract gold from ore, heavily polluting air, soil, fish and rice paddy fields with Hg. Rice in Cisitu is burdened with mercury. The main staple food of the inhabitants of Cisitu is this polluted rice. Villagers were concerned that the severe diseases they observed in the community might be related to their mining activities, including high mercury exposure. Case report of the medical examinations and the mercury levels in urine and hair of 18 people with neurological symptoms. Typical signs and symptoms of chronic mercury intoxication were found (excessive salivation, sleep disturbances, tremor, ataxia, dysdiadochokinesia, pathological coordination tests, gray to bluish discoloration of the oral cavity and proteinuria). Mercury levels in urine were increased in eight patients (>7µg Hg/L urine). All 18 people had increased hair levels (>1µg Hg/g hair). 15 patients exhibited several, and sometimes numerous, symptoms in addition to having moderately to highly elevated levels of mercury in their specimens. These patients were classified as intoxicated. The situation in Cisitu is special, with rice paddy fields being irrigated with mercury-contaminated water and villagers consuming only local food, especially mercury-contaminated rice. Severe neurological symptoms and increased levels of mercury in urine and hair support are possibly caused by exposure to inorganic mercury in air, and the consumption of mercury-contaminated fish and rice. The mercury exposure needs to be reduced and treatment provided. Further research is needed to test the hypothesis that mercury-contaminated rice from small-scale gold mining areas might cause mercury intoxication. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Coupling pervaporation to AAS for inorganic and organic mercury determination. A new approach to speciation of Hg in environmental samples.

    PubMed

    Fernandez-Rivas, C; Muñoz-Olivas, R; Camara, C

    2001-12-01

    The design and development of a new approach for Hg speciation in environmental samples is described in detail. This method, consisting of the coupling of pervaporation and atomic absorption spectrometry, is based on a membrane phenomenon that combines the evaporation of volatile analytes and their diffusion through a polymeric membrane. It is proposed here as an alternative to gas chromatography for speciation of inorganic and organic Hg compounds, as the latter compounds are volatile and can be separated by applying the principles mentioned above. The interest of this method lies in its easy handling, low cost, and rapidity for the analysis of liquid and solid samples. This method has been applied to Hg speciation in a compost sample provided by a waste water treatment plant.

  3. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TESTING OF FOUR MERCURY EMISSION SAMPLING SYSTEMS

    EPA Science Inventory

    CEMs - Tekran Instrument Corp. Series 3300 and Thermo Electron's Mercury Freedom System Continuous Emission Monitors (CEMs) for mercury are designed to determine total and/or chemically speciated vapor-phase mercury in combustion emissions. Performance for mercury CEMs are cont...

  4. Unexpectedly high mercury concentration in commercial fish feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, H.; Cech, J. Jr.

    1995-12-31

    Unexpectedly high mercury was found in a commercial fish pellet which has been widely used to feed fish in laboratory and fish farm settings. Researchers working with fish in mercury studies need to know that fish pellets contain mercury and consider the pellets, influence in their results. Mean mercury concentration in the commercial fish pellet was 47.4 ug/g (ranging from 35 to 56 ug Hg/g). Total mercury (T-Hg) in the blood of Sacramento blackfish (orthodon microlepidotus), fed the commercial feed for 8 months, was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Mean blood T-Hg reached a steady state at 41more » ug Hg/L (ranging from 34 to 51 ug Hg/L) during 5 months of feeding after capture from Clear Lake in California. The accumulation of mercury in blood followed a monoexponential pattern, in accordance with a one-compartment model. There were great variations in mercury levels in blood between individual fishes. The mercury concentrations in the blood did not tend to increase with the growth of the fish. In summary, feed sources of mercury need to be considered in mercury exposure experiments.« less

  5. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Krimigis, Stamatios M.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Levi, Stefano; Mauk, Barry H.; Solomon, Sean C.; hide

    2005-01-01

    driving field-aligned electric currents. However, these field-aligned currents do not close in an ionosphere, but in some other manner. In addition to the insights- into magnetospheric physics offered by study of the solar wind - Mercury system, quantitative specification of the "external" magnetic field generated by magnetospheric currents is necessary for accurate determination of the strength and multi-polar decomposition of Mercury s intrinsic magnetic field. MESSENGER S highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin of Mercury s magnetic field and the acceleration of charged particles in small magnetospheres. In. this article, we review what is known about Mercury s magnetosphere and describe the MESSENGER science team s strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere.

  6. Method development for the control determination of mercury in seafood by solid-sampling thermal decomposition amalgamation atomic absorption spectrometry (TDA AAS).

    PubMed

    Torres, D P; Martins-Teixeira, M B; Silva, E F; Queiroz, H M

    2012-01-01

    A very simple and rapid method for the determination of total mercury in fish samples using the Direct Mercury Analyser DMA-80 was developed. In this system, a previously weighted portion of fresh fish is combusted and the released mercury is selectively trapped in a gold amalgamator. Upon heating, mercury is desorbed from the amalgamator, an atomic absorption measurement is performed and the mercury concentration is calculated. Some experimental parameters have been studied and optimised. In this study the sample mass was about 100.0 mg. The relative standard deviation was lower than 8.0% for all measurements of solid samples. Two calibration curves against aqueous standard solutions were prepared through the low linear range from 2.5 to 20.0 ng of Hg, and the high linear range from 25.0 to 200.0 ng of Hg, for which a correlation coefficient better than 0.997 was achieved, as well as a normal distribution of the residuals. Mercury reference solutions were prepared in 5.0% v/v nitric acid medium. Lyophilised fish tissues were also analysed; however, the additional procedure had no advantage over the direct analysis of the fresh fish, and additionally increased the total analytical process time. A fish tissue reference material, IAEA-407, was analysed and the mercury concentration was in agreement with the certified value, according to the t-test at a 95% confidence level. The limit of quantification (LOQ), based on a mercury-free sample, was 3.0 µg kg(-1). This LOQ is in accordance with performance criteria required by the Commission Regulation No. 333/2007. Simplicity and high efficiency, without the need for any sample preparation procedure, are some of the qualities of the proposed method.

  7. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  8. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  9. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  10. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  11. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  12. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  13. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  14. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  15. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  16. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  17. Determination of 14C age of inorganic and organic carbon in ancient Siberian permafrost

    NASA Astrophysics Data System (ADS)

    Onstott, T. C.; Liang, R.; Lau, M.; Vishnivetskaya, T. A.; Lloyd, K. G.; Pfiffner, S. M.; Hodgins, G.; Rivkina, E.

    2017-12-01

    Permafrost represents a large reservoir of ancient carbon that could have an important impact on the global carbon budget during climate warming. Due to the low turnover rate of carbon by microorganisms at subzero temperatures, the persistence of ancient carbon in younger permafrost deposits could also pose challenges for radiocarbon dating of permafrost sediment. We utilized Accelerator Mass Spectrometry to determine the 14C age of inorganic carbon, labile and recalcitrant organic carbon in Siberian permafrost sediment sampled at various depths from 2.9 to 5.6m. The fraction of inorganic carbon (CO2) was collected after acidification using phosphoric acid. The labile (younger) and recalcitrant (old) organic carbon in the subsequent residues were collected after combustion at 400 ºC and 800 ºC, respectively. The percentages of inorganic carbon increased from the youngest (2.9m) to the oldest (5.6m), whereas the fractions for organic carbon varied significantly at different depths. The 14C age determined in the inorganic fraction in the top sample (2.9 m) was 21,760 yr BP and gradually increased to 33,900 yr BP in the relative deeper sediment (3.5 and 5.6 m). Surprisingly, the fraction of "younger" carbon liberated at 400 oC was older than the more recalcitrant and presumably older organic carbon liberated at 800 oC in all cases. Moreover, the 14C age of the younger and older organic carbon fractions did not increase with depth as observed in the carbonate fraction. In particular, the 14C age of the organic carbon in the top sample (38,590-41,700 yr BP) was much older than the deeper samples at depth of 3.5m (18,228-20,158 yr BP) and 5.6m (29,040-38,020 yr BP). It should be noticed that the metabolism of ancient carbon in frozen permafrost may vary at different depths due to the different proportion of necromass and metabolically active microbes. Therefore, additional knowledge about the carbon dynamics of permafrost and more investigation would be required to

  18. Mercury Shopping Cart Interface

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; McMahon, Joe

    2006-01-01

    Mercury Shopping Cart Interface (MSCI) is a reusable component of the Power User Interface 5.0 (PUI) program described in another article. MSCI is a means of encapsulating the logic and information needed to describe an orderable item consistent with Mercury Shopping Cart service protocol. Designed to be used with Web-browser software, MSCI generates Hypertext Markup Language (HTML) pages on which ordering information can be entered. MSCI comprises two types of Practical Extraction and Report Language (PERL) modules: template modules and shopping-cart logic modules. Template modules generate HTML pages for entering the required ordering details and enable submission of the order via a Hypertext Transfer Protocol (HTTP) post. Shopping cart modules encapsulate the logic and data needed to describe an individual orderable item to the Mercury Shopping Cart service. These modules evaluate information entered by the user to determine whether it is sufficient for the Shopping Cart service to process the order. Once an order has been passed from MSCI to a deployed Mercury Shopping Cart server, there is no further interaction with the user.

  19. Speciation of mercury and mode of transport from placer gold mine tailings

    USGS Publications Warehouse

    Slowey, A.J.; Rytuba, J.J.; Brown, Gordon E.

    2005-01-01

    Historic placer gold mining in the Clear Creek tributary to the Sacramento River (Redding, CA) has highly impacted the hydrology and ecology of an important salmonid spawning stream. Restoration of the watershed utilized dredge tailings contaminated with mercury (Hg) introduced during gold mining, posing the possibility of persistent Hg release to the surrounding environment, including the San Francisco Bay Delta. Column experiments have been performed to evaluate the extent of Hg transport under chemical conditions potentially similar to those in river restoration projects utilizing dredge tailings such as at Clear Creek. Physicochemical perturbations, in the form of shifts in column influent ionic strength and the presence of a low molecular weight organic acid, were applied to coarse and fine sand placer tailings containing 109-194 and 69-90 ng of Hg/g, respectively. Significant concentrations of mercury, up to 16 ??g/L, leach from these sediments in dissolved and particle-associated forms. Sequential chemical extractions (SCE) of these tailings indicate that elemental Hg initially introduced during gold mining has been transformed to readily soluble species, such as mercury oxides and chlorides (3-4%), intermediately extractable phases that likely include (in)organic sorption complexes and amalgams (75-87%), and fractions of highly insoluble forms such as mercury sulfides (6-20%; e.g., cinnabar and metacinnabar). Extended X-ray absorption fine structure (EXAFS) spectroscopic analysis of colloids obtained from column effluent identified cinnabar particles as the dominant mobile mercury-bearing phase. The fraction of intermediately extractable Hg phases also likely includes mobile colloids to which Hg is adsorbed. ?? 2005 American Chemical Society.

  20. Associations of Blood and Urinary Mercury with Hypertension in U.S. Adults: the NHANES 2003–2006

    PubMed Central

    Park, Sung Kyun; Lee, Sunghee; Basu, Niladri; Franzblau, Alfred

    2013-01-01

    Background Few studies have examined the association between hypertension and mercury exposure in the general population. We examined cross-sectional associations between blood (mainly methylmercury) or urinary mercury (mainly inorganic mercury) and hypertension in representative U.S. adults and effect modifications by dietary omega-3 fatty acids and serum selenium. Methods We examined 6,607 adults aged 20 years or older, using the National Health and Nutrition Examination Survey (NHANES) from 2003/2004 to 2005/2006 (2,201 adults were available for urinary mercury from NHANES 2003–2006; 2,117 available for serum selenium from NHANES 2003–2004 aged 40 years or older). The average of omega-3 fatty acids from two 24-hour recalls was calculated. Results The weighted prevalence of hypertension was 32.2%. The geometric means (95% confidence intervals) of blood total and urinary mercury were 1.03 (0.95, 1.11) µg/L and 0.51 (0.47, 0.54) µg/L, respectively. The adjusted odds ratios for a doubling increase in blood mercury and urinary mercury were 0.94 (0.87 to 1.01) and 0.87 (0.78 to 0.99), respectively, after adjusting for potential confounders. The associations remained similar, even after adjusting for either omega-3 fatty acids or selenium or both. No significant effect modification by either omega-3 fatty acids or selenium was observed. Conclusions In this cross-sectional study of the U.S. general population, we found no association of hypertension with blood mercury but a suggestive inverse association with urinary mercury. Future prospective studies are warranted to confirm these findings. PMID:23472608

  1. Increasing rates of atmospheric mercury deposition in midcontinental North America

    USGS Publications Warehouse

    Swain, Edward B.; Engstrom, Daniel R.; Brigham, Mark E.; Henning, Thomas A.; Brezonik, P.L.

    1992-01-01

    Mercury contamination of remote lakes has been attributed to increasing deposition of atmospheric mercury, yet historic deposition rates and inputs from terrestrial sources are essentially unknown. Sediments of seven headwater lakes in Minnesota and Wisconsin were used to reconstruct regional modern and preindustrial deposition rates of mercury. Whole-basin mercury fluxes, determined from lake-wide arrays of dated cores, indicate that the annual deposition of atmospheric mercury has increased from 3.7 to 12.5 micrograms per square meter since 1850 and that 25 percent of atmospheric mercury deposition to the terrestrial catchment is exported to the lake. The deposition increase is similar among sites, implying regional or global sources for the mercury entering these lakes.

  2. Temporal increase in organic mercury in an endangered pelagic seabird assessed by century-old museum specimens

    PubMed Central

    Vo, Anh-Thu E.; Bank, Michael S.; Shine, James P.; Edwards, Scott V.

    2011-01-01

    Methylmercury cycling in the Pacific Ocean has garnered significant attention in recent years, especially with regard to rising mercury emissions from Asia. Uncertainty exists concerning whether increases in anthropogenic emissions over time may have caused increased mercury bioaccumulation in the biota. To address this, we measured total mercury and, for a subset of samples, methylmercury (the bioaccumulated form of mercury) in museum feathers from an endangered seabird, the black-footed albatross (Phoebastria nigripes), spanning a 120-y period. We analyzed stable isotopes of nitrogen (δ15N) and carbon (δ13C) to control for temporal changes in trophic structure and diet. In post-1940 and -1990 feathers, we detected significantly higher mean methylmercury concentrations and higher proportions of samples exhibiting above deleterious threshold levels (∼40,000 ng·g−1) of methylmercury relative to prior time points, suggesting that mercury toxicity may undermine reproductive effort in the species. We also found higher levels of (presumably curator-mediated) inorganic mercury in older specimens of albatross as well as two nonpelagic species lacking historical exposure to bioavailable mercury, patterns suggesting that studies on bioaccumulation should measure methylmercury rather than total mercury when using museum collections. δ15N contributed substantially to models explaining the observed methylmercury variation. After simultaneously controlling for significant trends in δ13C over time and δ15N with methylmercury exposure, year remained a significant independent covariate with feather methylmercury levels among the albatrosses. These data show that remote seabird colonies in the Pacific basin exhibit temporal changes in methylmercury levels consistent with historical global and recent regional increases in anthropogenic emissions. PMID:21502496

  3. MESSENGER: The Discovery Mission to Mercury

    NASA Astrophysics Data System (ADS)

    McNutt, R. L.; Solomon, S. C.; Gold, R. E.; Domingue, D. L.

    2004-12-01

    NASA's MErcury, Surface, Space ENvironment, GEochenistry, and Ranging (MESSENGER) spacecraft, launched on 3 August 2004, has begun its voyage to initiate a new era in our understanding of the terrestrial planets. The mission, spacecraft, and payload are designed to answer six fundamental questions regarding the innermost planet: What planetary formational processes led to Mercury's high metal/silicate ratio? What is the geological history of Mercury? What are the nature and origin of Mercury's magnetic field? What are the structure and state of Mercury's core? What are the radar-reflective materials at Mercury's poles? What are the important volatile species and their sources and sinks on and near Mercury? Planet formational hypotheses will be tested by measuring the surface abundances of major elements by X-ray and gamma-ray spectrometry. The geological history will be determined from high-resolution color imaging of the heavily cratered highlands, intercrater plains, and smooth plains. MESSENGER will provide detailed views of both the Caloris basin and its antipodal terrain. Topographic, mineralogical, and elemental abundance data will be used to seek evidence of volcanic features and units. Measurement of Mercury's magnetic field and its interaction with the solar wind will distinguish the intrinsic dipole and quadrupole components while separating these from the current systems driven by solar-wind-induced convection. The structure of the internal field will put constraints on dynamo models. Such models will also be constrained by measuring Mercury's libration to determine the extent of a fluid outer core. Both water ice and sulfur have been postulated as major constituents of the high-radar-backscatter polar deposits. MESSENGER will combine gamma-ray and neutron spectrometry of the surface with ultraviolet spectrometry and in situ particle measurements to detect both neutral and charged species originating from the surface. Such measurements will address the

  4. ICP OES and CV AAS in determination of mercury in an unusual fatal case of long-term exposure to elemental mercury in a teenager.

    PubMed

    Lech, Teresa

    2014-04-01

    In this work, a case of deliberate self-poisoning is presented. A 14-year-old girl suddenly died during one of the several hospitalizations. Abdominal computer tomography showed a large number of metallic particles in the large intestine. Analysis of blood and internal organs for mercury and other toxic metals carried out by inductively coupled plasma optical emission spectrometry (ICP OES) revealed high concentrations of mercury in kidneys and liver (64,200 and 2470ng/g, respectively), less in stomach (90ng/g), and none in blood. Using cold vapor-atomic absorption spectrometry (CV AAS), high levels of mercury were confirmed in all examined materials, including blood (87ng/g), and additionally in hair. The results of analysis obtained by two techniques revealed that the exposure to mercury was considerable (some time later, it was stated that the mercury originated from thermometers that had been broken over the course of about 1 year, because of Münchausen syndrome). CV AAS is a more sensitive technique, particularly for blood samples (negative results using ICP OES), and tissue samples - with LOQ: 0.63ng/g of Hg (CV AAS) vis-à-vis 70ng/g of Hg (ICP OES). However, ICP OES may be used as a screening technique for autopsy material in acute poisoning by a heavy metal, even one as volatile as mercury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Association of Dietary Intake and Biomarker Levels of Arsenic, Cadmium, Lead, and Mercury among Asian Populations in the United States: NHANES 2011-2012.

    PubMed

    Awata, Hiroshi; Linder, Stephen; Mitchell, Laura E; Delclos, George L

    2017-03-01

    We have recently shown that biomarker levels of selected metals are higher in Asians than in other U.S. ethnic groups, with important differences within selected Asian subgroups. Much of this difference may be dietary in origin; however, this is not well established. We evaluated dietary intake of toxic metals as a source of increased biomarker levels of metals among U.S. Asians. We estimated daily food consumption and dietary intake of arsenic, cadmium, lead, and mercury by combining 24-hr dietary intake recall data from the 2011-2012 National Health and Nutrition Examination Survey (NHANES) with data from the USDA Food Composition Intake Database and FDA Total Dietary Study. We analyzed associations between dietary metal intake and biomarker levels of the metals using linear regression. Further, estimated food consumption and metal intake levels were compared between Asians and other racial/ethnic groups (white, black, Mexican American, and other Hispanic) and within three Asian subgroups (Chinese, Indian Asian, and other Asians). Significant associations ( p < 0.05) were found between biomarker levels and estimated dietary metal intake for total and inorganic arsenic and mercury among Asians. Asians had the highest daily fish and rice consumption across the racial/ethnic groups. Fish was the major contributor to dietary mercury and total arsenic intake, whereas rice was the major contributor to inorganic arsenic dietary intake. Fish consumption across the Asian subgroups varied, with Asian Indians having lower fish consumption than the other Asian subgroups. Rice consumption was similar across the Asian subgroups. We confirmed that estimated dietary intake of arsenic (total and inorganic) and mercury is significantly associated with their corresponding biomarkers in U.S. Asians, using nationally representative data. In contrast, estimated dietary intake of cadmium and lead were not significantly associated with their corresponding biomarker levels in U.S. Asians

  6. Effects of environmental temperature change on mercury absorption in aquatic organisms with respect to climate warming.

    PubMed

    Pack, Eun Chul; Lee, Seung Ha; Kim, Chun Huem; Lim, Chae Hee; Sung, Dea Gwan; Kim, Mee Hye; Park, Ki Hwan; Lim, Kyung Min; Choi, Dal Woong; Kim, Suhng Wook

    2014-01-01

    Because of global warming, the quantity of naturally generated mercury (Hg) will increase, subsequently methylation of Hg existing in seawater may be enhanced, and the content of metal in marine products rise which consequently results in harm to human health. Studies of the effects of temperatures on Hg absorption have not been adequate. In this study, in order to observe the effects of temperature changes on Hg absorption, inorganic Hg or methylmercury (MeHg) was added to water tanks containing loaches. Loach survival rates decreased with rising temperatures, duration, and exposure concentrations in individuals exposed to inorganic Hg and MeHg. The MeHg-treated group died sooner than the inorganic Hg-exposed group. The total Hg and MeHg content significantly increased with temperature and time in both metal-exposed groups. The MeHg-treated group had higher metal absorption rates than inorganic Hg-treated loaches. The correlation coefficients for temperature elevation and absorption were significant in both groups. The results of this study may be used as basic data for assessing in vivo hazards from environmental changes such as climate warming.

  7. Maternal transfer of mercury to songbird eggs.

    PubMed

    Ackerman, Joshua T; Hartman, C Alex; Herzog, Mark P

    2017-11-01

    We evaluated the maternal transfer of mercury to eggs in songbirds, determined whether this relationship differed between songbird species, and developed equations for predicting mercury concentrations in eggs from maternal blood. We sampled blood and feathers from 44 house wren (Troglodytes aedon) and 34 tree swallow (Tachycineta bicolor) mothers and collected their full clutches (n = 476 eggs) within 3 days of clutch completion. Additionally, we sampled blood and feathers from 53 tree swallow mothers and randomly collected one egg from their clutches (n = 53 eggs) during mid to late incubation (6-10 days incubated) to evaluate whether the relationship varied with the timing of sampling the mother's blood. Mercury concentrations in eggs were positively correlated with mercury concentrations in maternal blood sampled at (1) the time of clutch completion for both house wrens (R 2  = 0.97) and tree swallows (R 2  = 0.97) and (2) during mid to late incubation for tree swallows (R 2  = 0.71). The relationship between mercury concentrations in eggs and maternal blood did not differ with the stage of incubation when maternal blood was sampled. Importantly, the proportion of mercury transferred from mothers to their eggs decreased substantially with increasing blood mercury concentrations in tree swallows, but increased slightly with increasing blood mercury concentrations in house wrens. Additionally, the proportion of mercury transferred to eggs at the same maternal blood mercury concentration differed between species. Specifically, tree swallow mothers transferred 17%-107% more mercury to their eggs than house wren mothers over the observed mercury concentrations in maternal blood (0.15-1.92 μg/g ww). In contrast, mercury concentrations in eggs were not correlated with those in maternal feathers and, likewise, mercury concentrations in maternal blood were not correlated with those in feathers (all R 2  < 0.01). We provide equations to translate mercury

  8. Maternal transfer of mercury to songbird eggs

    USGS Publications Warehouse

    Ackerman, Joshua T.; Hartman, C. Alex; Herzog, Mark

    2017-01-01

    We evaluated the maternal transfer of mercury to eggs in songbirds, determined whether this relationship differed between songbird species, and developed equations for predicting mercury concentrations in eggs from maternal blood. We sampled blood and feathers from 44 house wren (Troglodytes aedon) and 34 tree swallow (Tachycineta bicolor) mothers and collected their full clutches (n = 476 eggs) within 3 days of clutch completion. Additionally, we sampled blood and feathers from 53 tree swallow mothers and randomly collected one egg from their clutches (n = 53 eggs) during mid to late incubation (6–10 days incubated) to evaluate whether the relationship varied with the timing of sampling the mother's blood. Mercury concentrations in eggs were positively correlated with mercury concentrations in maternal blood sampled at (1) the time of clutch completion for both house wrens (R2 = 0.97) and tree swallows (R2 = 0.97) and (2) during mid to late incubation for tree swallows (R2 = 0.71). The relationship between mercury concentrations in eggs and maternal blood did not differ with the stage of incubation when maternal blood was sampled. Importantly, the proportion of mercury transferred from mothers to their eggs decreased substantially with increasing blood mercury concentrations in tree swallows, but increased slightly with increasing blood mercury concentrations in house wrens. Additionally, the proportion of mercury transferred to eggs at the same maternal blood mercury concentration differed between species. Specifically, tree swallow mothers transferred 17%–107% more mercury to their eggs than house wren mothers over the observed mercury concentrations in maternal blood (0.15–1.92 μg/g ww). In contrast, mercury concentrations in eggs were not correlated with those in maternal feathers and, likewise, mercury concentrations in maternal blood were not correlated with those in feathers (all R2 < 0.01). We provide equations to translate mercury

  9. Ft. McHenry tunnel study: Source profiles and mercury emissions from diesel and gasoline powered vehicles

    NASA Astrophysics Data System (ADS)

    Landis, Matthew S.; Lewis, Charles W.; Stevens, Robert K.; Keeler, Gerald J.; Dvonch, J. Timothy; Tremblay, Raphael T.

    During the fall of 1998, the US Environmental Protection Agency and the Florida Department of Environmental Protection sponsored a 7-day study at the Ft. McHenry tunnel in Baltimore, MD with the objective of obtaining PM 2.5 vehicle source profiles for use in atmospheric mercury source apportionment studies. PM 2.5 emission profiles from gasoline and diesel powered vehicles were developed from analysis of trace elements, polycyclic aromatic hydrocarbons (PAH), and condensed aliphatic hydrocarbons. PM 2.5 samples were collected using commercially available sampling systems and were extracted and analyzed using conventional well-established methods. Both inorganic and organic profiles were sufficiently unique to mathematically discriminate the contributions from each source type using a chemical mass balance source apportionment approach. However, only the organic source profiles provided unique PAH tracers (e.g., fluoranthene, pyrene, and chrysene) for diesel combustion that could be used to identify source contributions generated using multivariate statistical receptor modeling approaches. In addition, the study found significant emission of gaseous elemental mercury (Hg 0), divalent reactive gaseous mercury (RGM), and particulate mercury (Hg(p)) from gasoline but not from diesel powered motor vehicles. Fuel analysis supported the tunnel measurement results showing that total mercury content in all grades of gasoline (284±108 ng L -1) was substantially higher than total mercury content in diesel fuel (62±37 ng L -1) collected contemporaneously at local Baltimore retailers.

  10. Mercury contamination of riverine sediments in the vicinity of a mercury cell chlor-alkali plant in Sagua River, Cuba.

    PubMed

    Bolaños-Álvarez, Yoelvis; Alonso-Hernández, Carlos Manuel; Morabito, Roberto; Díaz-Asencio, Misael; Pinto, Valentina; Gómez-Batista, Miguel

    2016-06-01

    Sediment is a great indicator for assessing coastal mercury contamination. The objective of this study was to assess the magnitude of mercury pollution in the sediments of the Sagua River, Cuba, where a mercury-cell chlor-alkali plant has operated since the beginning of the 1980s. Surface sediments and a sediment core were collected in the Sagua River and analyzed for mercury using an Advanced Mercury Analyser (LECO AMA-254). Total mercury concentrations ranged from 0.165 to 97 μg g(-1) dry weight surface sediments. Enrichment Factor (EF), Index of Geoaccumulation (Igeo) and Sediment Quality Guidelines were applied to calculate the degrees of sediment contamination. The EF showed the significant role of anthropogenic mercury inputs in sediments of the Sagua River. The result also determined that in all stations downstream from the chlor-alkali plant effluents, the mercury concentrations in the sediments were higher than the Probable Effect Levels value, indicating a high potential for adverse biological effects. The Igeo index indicated that the sediments in the Sagua River are evaluated as heavily polluted to extremely contaminated and should be remediated as a hazardous material. This study could provide the latest benchmark of mercury pollution and prove beneficial to future pollution studies in relation to monitoring works in sediments from tropical rivers and estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mercury content in soils on the territory of Mezhdurechensk

    NASA Astrophysics Data System (ADS)

    Nicolaenko, A. N.; Osipova, N. A.; Yazikov, E. G.; Matveenko, I. A.

    2016-09-01

    The geochemical features of mercury content and distribution in the zone of coal producers have been studied (Mezhdurechensk town). Mercury content in soil (30 samples) was determined by atomic absorption method using mercury analyzer PA-915+ with pyrolytic device. Mercury content in soil samples changed from 0.12 to 0.17 mg/kg, the average value being 0.057 mg/kg. Within the town territory five zones with mercury elevated concentrations in soil were distinguished. 25-year observation period showed a 2.8 time decrease in average mercury content in soil. The major contribution to soil pollution in the urban territory was made by the two factors: local and regional. The mercury content in soil is affected by the emissions from boilers operating on coal as well as coal dust from the open pits near the town.

  12. Leaching of mercury from seal carcasses into Antarctic soils.

    PubMed

    Zvěřina, Ondřej; Coufalík, Pavel; Brat, Kristián; Červenka, Rostislav; Kuta, Jan; Mikeš, Ondřej; Komárek, Josef

    2017-01-01

    More than 400 seal mummies and skeletons are now mapped in the northern part of James Ross Island, Antarctica. Decomposing carcasses represent a rare source of both organic matter and associated elements for the soil. Owing to their high trophic position, seals are known to carry a significant mercury body burden. This work focuses on the extent of the mercury input from seal carcasses and shows that such carcasses represent locally significant sources of mercury and methylmercury for the environment. Mercury contents in soil samples from the surrounding areas were determined using a single-purpose AAS mercury analyzer. For the determination of methylmercury, an ultra-sensitive isotopic dilution HPLC-ICP-MS technique was used. In the soils lying directly under seal carcasses, mercury contents were higher, with levels reaching almost 40 μg/kg dry weight of which methylmercury formed up to 2.8 % of the total. The spatial distribution implies rather slow vertical transport to the lower soil layers instead of a horizontal spread. For comparison, the background level of mercury in soils of the investigated area was found to be 8 μg/kg dry weight, with methylmercury accounting for less than 0.1 %. Apart from the direct mercury input, an enhanced level of nutrients in the vicinity of carcasses enables the growth of lichens and mosses with accumulative ability with respect to metals. The enhanced capacity of soil to retain mercury is also anticipated due to the high content of total organic carbon (from 1.6 to 7.5 %). According to the results, seal remains represent a clear source of mercury in the observed area.

  13. AQUEOUS AND VAPOR PHASE MERCURY SORPTION BY INORGANIC OXIDE MATERIALS FUNCTIONALIZED WITH THIOLS AND POLY-THIOLS

    EPA Science Inventory

    The objective of the study is the development of sorbents where the sorption sites are highly accessible for the capture of mercury from aqueous and vapor streams. Only a small fraction of the equilibrium capacity is utilized for a sorbent in applications involving short residenc...

  14. Mercury

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.; Scott, E. R. D.

    2003-12-01

    Mercury is an important part of the solar system puzzle, yet we know less about it than any other planet, except Pluto. Mercury is the smallest of the terrestrial planets (0.05 Earth masses) and the closest to the Sun. Its relatively high density (5.4 g cm -3) indicates that it has a large metallic core (˜3/4 of the planet's radius) compared to its silicate mantle and crust. The existence of a magnetic field implies that the metallic core is still partly molten. The surface is heavily cratered like the highlands of the Moon, but some areas are smooth and less cratered, possibly like the lunar maria (but not as dark). Its surface composition, as explained in the next section, appears to be low in FeO (only ˜3 wt.%), which implies that either its crust is anorthositic (Jeanloz et al., 1995) or its mantle is similarly low in FeO ( Robinson and Taylor, 2001).The proximity of Mercury to the Sun is particularly important. In one somewhat outmoded view of how the solar system formed, Mercury was assembled in the hottest region close to the Sun so that virtually all of the iron was in the metallic state, rather than oxidized to FeO (e.g., Lewis, 1972, 1974). If correct, Mercury ought to have relatively a low content of FeO. This hypothesis also predicts that Mercury should have high concentrations of refractory elements, such as calcium, aluminum, and thorium, and low concentrations of volatile elements, such as sodium and potassium, compared to the other terrestrial planets.Alternative hypotheses tell a much more nomadic and dramatic story of Mercury's birth. In one alternative view, wandering planetesimals that might have come from as far away as Mars or the inner asteroid belt accreted to form Mercury (Wetherill, 1994). This model predicts higher FeO and volatile elements than does the high-temperature model, and similar compositions among the terrestrial planets. The accretion process might have been accompanied by a monumental impact that stripped away much of the

  15. A simple mercury vapor detector for geochemical prospecting

    USGS Publications Warehouse

    Vaughn, William W.

    1967-01-01

    The detector utilizes a large-volume atomic-absorption technique for quantitative determinations of mercury vapor thermally released from crushed rock. A quartz-enclosed noble-metal amalgamative stage, which is temperature controlled and is actuated by a radio-frequency induction heater, selectively traps the mercury and eliminates low-level contamination. As little as 1 part per billion of mercury can be detected in a 1-gram sample in a 1-minute analytical period.

  16. Mercury and Your Health

    MedlinePlus

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  17. The gravity field and orientation of Mercury after the MESSENGER mission

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Genova, A.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.; Solomon, S. C.

    2015-12-01

    After more than four years in orbit about Mercury, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft impacted the planet's surface north of Shakespeare crater (54.44° N, 210.12° E,) on 30 April 2015. One of the main goals of the mission was to determine the gravity field of Mercury in order to learn about Mercury's interior. Together with ground-based radar measurements of the obliquity and forced librations, MESSENGER-derived gravity models helped revise models of Mercury's interior. Nevertheless, the refinement of Mercury's orientation with the latest data from MESSENGER can further improve the interior modeling of the planet. The last eight months of the mission provided a special opportunity to conduct low-altitude measurements, with extensive radio tracking coverage below 200 km altitude north of ~30°N. MESSENGER's Mercury Laser Altimeter (MLA) mapped the topography of Mercury's northern hemisphere with a sub-meter vertical precision, an along-track sampling of ~500 m, and a longitudinal resolution (~0.1°) limited by the number of spacecraft orbits (~4,000). The combination of gravity and topography helps determine crustal thickness and interior properties. Altimetric ranges provide geodetic constraints to improve the spacecraft orbit determination, and thus the gravity field model. In particular, whereas the MESSENGER spacecraft was not tracked at each periapsis passage, MLA operated nearly continuously (outside of thermally challenging periods). From an analysis of the entire radiometric and altimetric datasets acquired by MESSENGER, a new gravity field to degree and order 100 has been obtained, resolving features down to ~75 km horizontal scale. The altimetric data help reduce the uncertainties in the determination of the pole position. A reanalysis of the Mercury flybys also constrains the spin rate over the longest available time span.

  18. Mercury and cause of death in great white herons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spalding, M.G.; Sundlof, S.F.; Djork, R.D.

    1994-10-01

    Mercury contamination is suspected to adversely affect wading birds in southern Florida. To determine the magnitude of contamination associated with cause of death we followed 3 adult and 19 juvenile radio-tagged great white herons (Ardea herodias occidentalis), recovered them soon after death, and determined liver mercury content and cause of death. Birds that died from acute causes had less (P < 0.001) mercury in their livers (geometric [bar x] [GM] = 1.77 ppm wet mass [wm], range 0.6-4.0 ppm, n = 9) than did those that died of chronic, often multiple, diseases (GM = 9.76 ppm, range 2.9-59.4 ppm, nmore » = 13). Juvenile herons that migrated to mainland Florida accumulated more (P = 0.009) mercury in their livers than those that did not migrate. Kidney disease and gout were present in birds that died with >25 ppm wm liver mercury. Although detrimental to the health of wading birds, mercury contamination is presumably more detrimental to their reproductive efforts; therefore, an understanding of its ill effects is important in the management of these birds. 29 refs., 1 fig.« less

  19. Determination of Inorganic Cations and Anions in Chitooligosaccharides by Ion Chromatography with Conductivity Detection.

    PubMed

    Cao, Lidong; Li, Xiuhuan; Fan, Li; Zheng, Li; Wu, Miaomiao; Zhang, Shanxue; Huang, Qiliang

    2017-02-22

    Chitooligosaccharides (COSs) are a promising drug candidate and food ingredient because they are innately biocompatible, non-toxic, and non-allergenic to living tissues. Therefore, the impurities in COSs must be clearly elucidated and precisely determined. As for COSs, most analytical methods focus on the determination of the average degrees of polymerization (DPs) and deacetylation (DD), as well as separation and analysis of the single COSs with different DPs. However, little is known about the concentrations of inorganic cations and anions in COSs. In the present study, an efficient and sensitive ion chromatography coupled with conductivity detection (IC-CD) for the determination of inorganic cations Na⁺, NH₄⁺, K⁺, Mg 2+ , Ca 2+ , and chloride, acetate and lactate anions was developed. Detection limits were 0.01-0.05 μM for cations and 0.5-0.6 μM for anions. The linear range was 0.001-0.8 mM. The optimized analysis was carried out on IonPac CS12A and IonPac AS12A analytical column for cations and anions, respectively, using isocratic elution with 20 mM methanesulfonic acid and 4 mM sodium hydroxide aqueous solution as the mobile phase at a 1.0 mL/min flow rate. Quality parameters, including precision and accuracy, were fully validated and found to be satisfactory. The fully validated IC-CD method was readily applied for the quantification of various cations and anions in commercial COS technical concentrate.

  20. Determination of Inorganic Cations and Anions in Chitooligosaccharides by Ion Chromatography with Conductivity Detection

    PubMed Central

    Cao, Lidong; Li, Xiuhuan; Fan, Li; Zheng, Li; Wu, Miaomiao; Zhang, Shanxue; Huang, Qiliang

    2017-01-01

    Chitooligosaccharides (COSs) are a promising drug candidate and food ingredient because they are innately biocompatible, non-toxic, and non-allergenic to living tissues. Therefore, the impurities in COSs must be clearly elucidated and precisely determined. As for COSs, most analytical methods focus on the determination of the average degrees of polymerization (DPs) and deacetylation (DD), as well as separation and analysis of the single COSs with different DPs. However, little is known about the concentrations of inorganic cations and anions in COSs. In the present study, an efficient and sensitive ion chromatography coupled with conductivity detection (IC-CD) for the determination of inorganic cations Na+, NH4+, K+, Mg2+, Ca2+, and chloride, acetate and lactate anions was developed. Detection limits were 0.01–0.05 μM for cations and 0.5–0.6 μM for anions. The linear range was 0.001–0.8 mM. The optimized analysis was carried out on IonPac CS12A and IonPac AS12A analytical column for cations and anions, respectively, using isocratic elution with 20 mM methanesulfonic acid and 4 mM sodium hydroxide aqueous solution as the mobile phase at a 1.0 mL/min flow rate. Quality parameters, including precision and accuracy, were fully validated and found to be satisfactory. The fully validated IC-CD method was readily applied for the quantification of various cations and anions in commercial COS technical concentrate. PMID:28241416

  1. Association of Dietary Intake and Biomarker Levels of Arsenic, Cadmium, Lead, and Mercury among Asian Populations in the United States: NHANES 2011–2012

    PubMed Central

    Awata, Hiroshi; Linder, Stephen; Mitchell, Laura E.; Delclos, George L.

    2016-01-01

    Background: We have recently shown that biomarker levels of selected metals are higher in Asians than in other U.S. ethnic groups, with important differences within selected Asian subgroups. Much of this difference may be dietary in origin; however, this is not well established. Objective: We evaluated dietary intake of toxic metals as a source of increased biomarker levels of metals among U.S. Asians. Methods: We estimated daily food consumption and dietary intake of arsenic, cadmium, lead, and mercury by combining 24-hr dietary intake recall data from the 2011–2012 National Health and Nutrition Examination Survey (NHANES) with data from the USDA Food Composition Intake Database and FDA Total Dietary Study. We analyzed associations between dietary metal intake and biomarker levels of the metals using linear regression. Further, estimated food consumption and metal intake levels were compared between Asians and other racial/ethnic groups (white, black, Mexican American, and other Hispanic) and within three Asian subgroups (Chinese, Indian Asian, and other Asians). Results: Significant associations (p < 0.05) were found between biomarker levels and estimated dietary metal intake for total and inorganic arsenic and mercury among Asians. Asians had the highest daily fish and rice consumption across the racial/ethnic groups. Fish was the major contributor to dietary mercury and total arsenic intake, whereas rice was the major contributor to inorganic arsenic dietary intake. Fish consumption across the Asian subgroups varied, with Asian Indians having lower fish consumption than the other Asian subgroups. Rice consumption was similar across the Asian subgroups. Conclusions: We confirmed that estimated dietary intake of arsenic (total and inorganic) and mercury is significantly associated with their corresponding biomarkers in U.S. Asians, using nationally representative data. In contrast, estimated dietary intake of cadmium and lead were not significantly associated

  2. Detoxification of mercury, cadmium, and lead in Klebsiella aerogenes NCTC 418 growing in continuous culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiking, H.; Govers, H.; van 'T Riet, J.

    1985-11-01

    Klebsiella aerogenes NCTC 418 growing in the presence of cadmium under glucose-, sulfate-, or phosphate-limited conditions in continuous culture exhibited sulfide formation and P/sub i/ accumulation as the only demonstrable detoxification mechanisms. In the presence of mercury under similar conditions only HgS formation could be confirmed, by an increased sensitivity to mercury under sulfate-limited conditions, among others. The fact that the cells were most sensitive to cadmium under conditions of phosphate limitation and most sensitive to mercury under conditions of sulfate limitation led to the hypothesis that these inorganic detoxification mechanisms generally depended on a kind of facilitated precipitation. Themore » process was coined thus because heavy metals were probably accumulated and precipitated near the cell perimeter due to the relatively high local concentrations of sulfide and phosphate there. Depending on the growth-limiting nutrient, mercury proved to be 25-fold (phosphate limitation), 75-fold (glycerol limitation), or 150-fold (sulfate limitation) more toxic than cadmium to this organism. In the presence of lead, PbS formation was suggested. since no other detoxification mechanisms were detected, for example, rendering heavy metal ions innocuous as metallo-organic compounds, it was concluded that formation of heavy metal precipitates is crucially important to this organism. In addition, it was observed that several components of a defined mineral medium were able to reduce mercuric ions to elemental mercury. This abiotic mercury volatilization was studied in detail, and its general and environmental implications are discussed.« less

  3. Using Fur to Estimate Mercury Concentrations in Mink

    EPA Science Inventory

    Total mercury (Hg) concentrations in fur and muscle tissue from mink (Mustela vison) were compared to determine the utility of fur analysis as a non-lethal and convenient method for predicting mercury concentrations in tissues. Sixty nine wild-trapped mink were collected in Rhode...

  4. Determination of mercury evasion in a contaminated headwater stream.

    PubMed

    Maprani, Antu C; Al, Tom A; Macquarrie, Kerry T; Dalziel, John A; Shaw, Sean A; Yeats, Phillip A

    2005-03-15

    Evasion from first- and second-order streams in a watershed may be a significant factor in the atmospheric recycling of volatile pollutants such as mercury; however, methods developed for the determination of Hg evasion rates from larger water bodies are not expected to provide satisfactory results in highly turbulent and morphologically complex first- and second-order streams. A new method for determining the Hg evasion rates from these streams, involving laboratory gas-indexing experiments and field tracer tests, was developed in this study to estimate the evasion rate of Hg from Gossan Creek, a first-order stream in the Upsalquitch River watershed in northern New Brunswick, Canada. Gossan Creek receives Hg-contaminated groundwater discharge from a gold mine tailings pile. Laboratory gas-indexing experiments provided the ratio of gas-exchange coefficients for zero-valent Hg to propane (tracer gas) of 0.81+/-0.16, suggesting that the evasion mechanism in highly turbulent systems can be described by the surface renewal model with an additional component of enhanced gas evasion probably related to the formation of bubbles. Deliberate field tracer tests with propane and chloride tracers were found to be a reliable and practical method for the determination of gas-exchange coefficients for small streams. Estimation of Hg evasion from the first 1 km of Gossan Creek indicates that about 6.4 kg of Hg per year is entering the atmosphere, which is a significant fraction of the regional sources of Hg to the atmosphere.

  5. Determination of mercury by cold vapor atomic absorption spectrophotometer in Tongkat Ali preparations obtained in Malaysia.

    PubMed

    Ang, Hooi-Hoon; Lee, Ee-Lin; Cheang, Hui-Seong

    2004-01-01

    The DCA (Drug Control Authority), Malaysia, has implemented the phase 3 registration of traditional medicines on 1 January 1992, with special emphasis on the quality, efficacy, and safety (including the presence of heavy metals) in all pharmaceutical dosage forms of traditional medicine preparations. As such, a total of 100 products in various pharmaceutical dosage forms of a herbal preparation, containing Tongkat Ali, were analyzed for mercury content using cold vapor atomic absorption spectrophotometer. Results showed that 36% of the above products possessed 0.52 to 5.30 ppm of mercury and, therefore, do not comply with the quality requirement for traditional medicines in Malaysia. Out of these 36 products, 5 products that possessed 1.05 to 4.41 ppm of mercury were in fact have already registered with the DCA, Malaysia. However, the rest of the products that contain 0.52 to 5.30 ppm of mercury still have not registered with the DCA, Malaysia. Although this study showed that only 64% of the products complied with the quality requirement for traditional medicines in Malaysia pertaining to mercury, they cannot be assumed safe from mercury contamination because of batch-to-batch inconsistency.

  6. Evaluation of mercury contamination using plant leaves and humus as indicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, R.; Fukuzaki, N.; Hirano, Y.

    Plant leaves and humus were collected from three areas with and without mercury emission sources. Mercury in these samples were determined by cold flameless atomic absorption spectrometry. A part of mercury emitted from the source into the atmosphere is absorbed by plant leaves, and move to humus through fallen leaves. Consequently, plant leaves are able to be used as an indicator for the evaluation of mercury in air at present. Humus is useful for the evaluation of mercury contamination through the air from the past to present.

  7. Determination of Inorganic Arsenic in a Wide Range of Food Matrices using Hydride Generation - Atomic Absorption Spectrometry.

    PubMed

    de la Calle, Maria B; Devesa, Vicenta; Fiamegos, Yiannis; Vélez, Dinoraz

    2017-09-01

    The European Food Safety Authority (EFSA) underlined in its Scientific Opinion on Arsenic in Food that in order to support a sound exposure assessment to inorganic arsenic through diet, information about distribution of arsenic species in various food types must be generated. A method, previously validated in a collaborative trial, has been applied to determine inorganic arsenic in a wide variety of food matrices, covering grains, mushrooms and food of marine origin (31 samples in total). The method is based on detection by flow injection-hydride generation-atomic absorption spectrometry of the iAs selectively extracted into chloroform after digestion of the proteins with concentrated HCl. The method is characterized by a limit of quantification of 10 µg/kg dry weight, which allowed quantification of inorganic arsenic in a large amount of food matrices. Information is provided about performance scores given to results obtained with this method and which were reported by different laboratories in several proficiency tests. The percentage of satisfactory results obtained with the discussed method is higher than that of the results obtained with other analytical approaches.

  8. Synthesis of a novel molecularly imprinted organic-inorganic hybrid polymer for the selective isolation and determination of fluoroquinolones in tilapia.

    PubMed

    Yang, Xun; Wang, Ruiling; Wang, Weihua; Yan, Hongyuan; Qiu, Mande; Song, Yanxue

    2014-01-15

    A novel molecularly imprinted organic-inorganic hybrid polymer (MI-MAA/APTS) based on a dummy molecular imprinting technique and an organic-inorganic hybrid material technique was synthesised and used as a sorbent in solid-phase extraction for the selective isolation and determination of ofloxacin (OFL), lomefloxacin (LOM), and ciprofloxacin (CIP) in tilapia samples. The MI-MAA/APTS sorbent was prepared from 3-aminopropyltriethoxysilanes (APTS) as an inorganic source and methacrylic acid (MAA) as an organic source and exhibited high mechanical strength and special affinities to the analytes. A comparison of MI-MAA/APTS with other conventional sorbents (C18 and HLB) showed that MI-MAA/APTS displayed good selectivity and affinity for OFL, LOM, and CIP, and the recoveries of the analytes at three spiked levels were in the range of 85.1-101.0%, with the relative standard deviations ≤5.1%. The presented MI-MAA/APTS-SPE-HPLC method could be potentially applied to the determination of fluoroquinolones (FQs) in complex fish samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Determination of Mercury in Aqueous and Geologic Materials by Continuous Flow-Cold Vapor-Atomic Fluorescence Spectrometry (CVAFS)

    USGS Publications Warehouse

    Hageman, Philip L.

    2007-01-01

    New methods for the determination of total mercury in geologic materials and dissolved mercury in aqueous samples have been developed that will replace the methods currently (2006) in use. The new methods eliminate the use of sodium dichromate (Na2Cr2O7 ?2H2O) as an oxidizer and preservative and significantly lower the detection limit for geologic and aqueous samples. The new methods also update instrumentation from the traditional use of cold vapor-atomic absorption spectrometry to cold vapor-atomic fluorescence spectrometry. At the same time, the new digestion procedures for geologic materials use the same size test tubes, and the same aluminum heating block and hot plate as required by the current methods. New procedures for collecting and processing of aqueous samples use the same procedures that are currently (2006) in use except that the samples are now preserved with concentrated hydrochloric acid/bromine monochloride instead of sodium dichromate/nitric acid. Both the 'old' and new methods have the same analyst productivity rates. These similarities should permit easy migration to the new methods. Analysis of geologic and aqueous reference standards using the new methods show that these procedures provide mercury recoveries that are as good as or better than the previously used methods.

  10. Sample weight and digestion temperature as critical factors in mercury determination in fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadiq, M.; Zaidi, T.H.; Al-Mohana, H.

    The concern about mercury (Hg) pollution of the marine environment started with the well publicized case of Minimata (Japan) where in the 1950s several persons died or became seriously ill after consuming fish or shellfish containing high levels of methylmercury. It is now accepted that Hg contaminated seafoods constitute a hazard to human health. To safeguard humans, accurate determination of Hg in marine biota is, therefore, very important. Two steps are involved in the determination of total Hg in biological materials: (a) decomposition of organic matrix (sample preparation), and (b) determination of Hg in aliquot samples. Although the procedures formore » determining Hg using the cold vapor technique are well established, sample preparation procedures have not been standardized. In general, samples of marine biota have been prepared by digesting different weights at different temperatures, by using mixtures of different chemicals and of varying quantities, and by digesting for variable durations. The objectives of the present paper were to evaluate the effects of sample weights and digestion temperatures on Hg determination in fish.« less

  11. Atmospheric mercury concentrations in the basin of the amazon, Brazil.

    PubMed

    Hachiya, N; Takizawa, Y; Hisamatsu, S; Abe, T; Abe, Y; Motohashi, Y

    1998-01-01

    A wide regional mercury pollution in Amazon, Brazil is closely associated with goldmining that has been carried out in the basin of tributaries of the Amazon since the eighteenth century. Possible involvement has been discussed on atmospheric circulation in distributing the volatile pollutant. We developed a portable air sampler for the collection of mercury compounds and determined atmospheric mercury concentrations at several sites in Brazil including the basin of the Amazon tributaries. The mean concentration of total mercury was between 9.1 and 14.0 ng/m(3) in the basin of the Uatumã River located in the tropical rain forest far from goldmining sites and from urbanized area. These mercury levels exceeded the background level previously reported in rural area and, furthermore, were higher than concentrations observed in Rio de Janeiro and in Manaus that were compatible with the reference values for urban area. Mercury concentrations were also determined in gold refineries in the basin of the Tapajos River, and detected at a significant but not a health deteriorating level. Although only preliminary data were available, the present observations were in favor of the hypothesis that mercury is distributed widely by long distant transport by the atmospheric circulation after released at gold mining sites.

  12. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry.

    PubMed

    Leal, L O; Elsholz, O; Forteza, R; Cerdà, V

    2006-07-28

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L(-1). The detection limit (3sigma(b)/S) achieved is 5 ng L(-1). The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L(-1) Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples.

  13. Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Wiener, James G.; Eckley, Chris S.; Willacker, James J.; Evers, David C.; Marvin-DiPasquale, Mark C.; Obrist, Daniel; Fleck, Jacob; Aiken, George R.; Lepak, Jesse M.; Jackson, Allyson K.; Webster, Jackson; Stewart, Robin; Davis, Jay; Alpers, Charles N.; Ackerman, Joshua T.

    2016-10-15

    Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that

  14. Searching for the Source of Salt Marsh Buried Mercury.

    NASA Astrophysics Data System (ADS)

    Brooke, C. G.; Nelson, D. C.; Fleming, E. J.

    2016-12-01

    Salt marshes provide a barrier between upstream mercury contamination and coastal ecosystems. Mercury is sorbed, transported, and deposited in estuarine systems. Once the upstream mercury source has been remediated, the downstream mercury contaminated salt marsh sediments should become "capped" or buried by uncontaminated sediments preventing further ecosystem contamination. Downstream from a remediated mercury mine, an estuarine intertidal marsh in Tomales Bay, CA, USA, scavengers/predators (e.g. Pachygrapsus crassipes, Lined Shore Crab) have leg mercury concentrations as high as 5.5 ppm (dry wt./dry wt.), which increase significantly with crab size, a surrogate for trophic level. These elevated mercury concentrations suggests that "buried" mercury is rereleased into the environment. To locate possible sources of mercury release in Walker Marsh, we sampled a transect across the marsh that included diverse micro-environments (e.g. rhizoshere, stratified sediments, faunal burrows). From each location we determined the sediment structure, sediment color, total sediment mercury, total sediment iron, and microbial composition (n = 28). Where flora or fauna had perturbed the sediment, mercury concentrations were 10% less than undisturbed stratified sediments (1025 ppb vs. 1164 ppb, respectively). High-throughput SSU rRNA gene sequencing and subsequent co-occurrence network analysis genera indicated that in flora- or fauna- perturbed sediments there was an increased likelihood that microbial genera contained mercury mobilizing genes (94% vs 57%; in perturbed vs stratified sediments, respectively). Our observations are consistent with findings by others that in perturbed sites mercury mobility increased. We did however identify a microbial and geochemical profile with increased mercury mobility. For future work we plan to quantify the role these micro-environments have on mercury-efflux from salt marshes.

  15. MERCURY RESEARCH STRATEGY.

    EPA Science Inventory

    The USEPA's ORD is pleased to announce the availability of its Mercury Research Strategy. This strategy guides ORD's mercury research program and covers the FY2001-2005 time frame. ORD will use it to prepare a multi-year mercury research implementation plan in 2001. The Mercury R...

  16. Transfer of mercury and phenol derivatives across the placenta of Baltic grey seals (Halichoerus grypus grypus).

    PubMed

    Nehring, Iga; Grajewska, Agnieszka; Falkowska, Lucyna; Staniszewska, Marta; Pawliczka, Iwona; Saniewska, Dominika

    2017-12-01

    The placenta is an intermediary organ between the female and the developing foetus. Some chemical substances, including the most harmful ones, exhibit the ability to accumulate in or penetrate through the placenta. The aim of the study was to determine the role of the placenta of the Baltic grey seal (Halichoerus grypus grypus) in the transfer of endocrine disrupting compounds (EDCs) - (bisphenol A, 4-tert- octylphenol, 4- nonylphenol), as well as total and organic mercury. 30 placentas were collected from grey seals pupping under human care at the Hel Marine Station in the years 2007-2016. The assays were conducted using the technique of high-preformance liquid chromatography (phenol derivatives) and atomic absorption spectrometry (mercury and selenium). A measurable level of EDCs was indicated in the placentas of grey seals. It was established that the inorganic Hg form was accumulated in the placenta, and that its concentrations were an order of magnitude higher than the concentrations of the organic form, which penetrated to the foetus. Similar observations were made for phenol derivatives - bisphenol A, 4-tert- octylphenol and 4-nonylphenol. For this compound group the placenta was a barrier, but the properties of phenol derivatives suggest the possibility of their penetration through this organ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. In situ sulphate stimulation of mercury methylation in a boreal peatland: Toward a link between acid rain and methylmercury contamination in remote environments

    NASA Astrophysics Data System (ADS)

    Branfireun, Brian A.; Roulet, Nigel T.; Kelly, Carol. A.; Rudd, John W. M.

    1999-09-01

    Recent studies have found that "pristine" peatlands have high peat and pore water methylmercury (MeHg) concentrations and that peatlands may act as large sources of MeHg to the downstream aquatic system, depending upon the degree of hydrologie connectivity and catchment physiography. Sulphate-reducing bacteria have been implicated as principal methylators of inorganic mercury in many environments with previous research focused primarily on mercury methylation in aquatic sediments. Experiments in a poor fen in the Experimental Lakes Area, northwestern Ontario, Canada, demonstrated that the in situ addition of sulphate to peat and peat pore water resulted in a significant increase in pore water MeHg concentrations. As peatlands cover a large area of the Northern Hemisphere, this finding has potentially far ranging implications for the global mercury cycle, particularly in areas impacted by anthropogenically derived sulphate where the methylmercury fraction of total mercury species may be much larger than in nonimpacted environments.

  18. Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains

    USGS Publications Warehouse

    Gustin, M.S.; Coolbaugh, M.F.; Engle, M.A.; Fitzgerald, B.C.; Keislar, R.E.; Lindberg, S.E.; Nacht, D.M.; Quashnick, J.; Rytuba, J.J.; Sladek, C.; Zhang, H.; Zehner, R.E.

    2003-01-01

    Waste rock and ore associated with Hg, precious and base metal mining, and their surrounding host rocks are typically enriched in mercury relative to natural background concentrations (<0.1 ??g Hg g-1). Mercury fluxes to the atmosphere from mineralized areas can range from background rates (0-15 ng m-2 h-1) to tens of thousands of ng m-2 h-1. Mercury enriched substrate constitutes a long-term source of mercury to the global atmospheric mercury pool. Mercury emissions from substrate are influenced by light, temperature, precipitation, and substrate mercury concentration, and occur during the day and night. Light-enhanced emissions are driven by two processes: desorption of elemental mercury accumulated at the soil:air interface, and photo reduction of mercury containing phases. To determine the need for and effectiveness of regulatory controls on short-lived anthropogenic point sources the contribution of mercury from geologic non-point sources to the atmospheric mercury pool needs to be quantified. The atmospheric mercury contribution from small areas of mining disturbance with relatively high mercury concentrations are, in general, less than that from surrounding large areas of low levels of mercury enrichment. In the arid to semi-arid west-ern United States volatilization is the primary means by which mercury is released from enriched sites.

  19. Speciation of mercury by hydrostatically modified electroosmotic flow capillary electrophoresis coupled with volatile species generation atomic fluorescence spectrometry.

    PubMed

    Yan, Xiu-Ping; Yin, Xue-Bo; Jiang, Dong-Qing; He, Xi-Wen

    2003-04-01

    A novel method for speciation analysis of mercury was developed by on-line hyphenating capillary electrophoresis (CE) with atomic fluorescence spectrometry (AFS). The four mercury species of inorganic mercury Hg(II), methymercury MeHg(I), ethylmercury EtHg(I), and phenylmercury PhHg(I) were separated as mercury-cysteine complexes by CE in a 50-cm x 100-microm-i.d. fused-silica capillary at 15 kV and using a mixture of 100 mmol L(-1) of boric acid and 12% v/v methanol (pH 9.1) as electrolyte. A novel technique, hydrostatically modified electroosmotic flow (HSMEOF) in which the electroosmotic flow (EOF) was modified by applying hydrostatical pressure opposite to the direction of EOF was used to improve resolution. A volatile species generation technique was used to convert the mercury species into their respective volatile species. A newly developed CE-AFS interface was employed to provide an electrical connection for stable electrophoretic separations and to allow on-line volatile species formation. The generated volatile species were on-line detected with AFS. The precisions (RSD, n = 5) were in the range of 1.9-2.5% for migration time, 1.8-6.3% for peak area response, and 2.3-6.1% for peak height response for the four mercury species. The detection limits ranged from 6.8 to 16.5 microg L(-1) (as Hg). The recoveries of the four mercury species in the water samples were in the range of 86.6-111%. The developed technique was successfully applied to speciation analysis of mercury in a certified reference material (DORM-2, dogfish muscle).

  20. Development of extraction procedure for determination of mercury species using SPME-assisted dispersive derivative agent

    NASA Astrophysics Data System (ADS)

    Abdullah, Md Pauzi; Khalik, Wan Mohd Afiq Wan Mohd; Othman, Mohamed Rozali

    2016-11-01

    The extraction procedure for determination of low level mercury using solid phase microextraction was successfully carried out. Design of experimental works using factorial design and central composite design were applied to screen and predict the optimum condition for extraction step. In this study, variables namely concentration level (5 % m/v) and volume of derivatization solution (150 µL) has depicted as main effect for controlling the suitability of derivative reagent condition. Maximum of signal response (account as total peak areas for mercury species) was obtained when extraction procedure was set up at pH of water sample (5.8), extraction time (14 min), extraction temperature (43 °C) and stirring rate (450 rpm). Reducing time required to reach equilibrium is new improvement achieved in this study. Detection limit for each species (MeHg 26.17 ngL-1; EtHg 48.84 ngL-1 and IHg 14.11 ngL-1) was calculated lower than our previous work. Recovery, repeatability and reproducibility trial were recorded varied at acceptable range and relative standard deviation was calculated below than 10 %.

  1. Mpo - the Bepicolombo Mercury Planetary Orbiter.

    NASA Astrophysics Data System (ADS)

    Benkhoff, J.

    2008-09-01

    proximity of the Sun Since and considering that the advance Mercury's perihelion was explained in terms of relativistic spacetime curvature. MPO Scientific Instruments BepiColombo Mercury Planetary Orbiter's and Mercury Magnetospheric Orbiter's instruments were selected in November 2004, by ESA and JAXA respectively. The MPO will carry a highly sophisticated suit of eleven scientific instruments, ten of which will be provided by Principal Investigators through national funding by ESA Member States and one from Russia: BepiColombo Laser Altimeter (BELA) will characterise the topography and surface morphology of Mercury. It will also provide a digital terrain model that, compared with the data from the MORE instrument, will allow to obtain information about the internal structure, the geology, the tectonics, and the age of the planet's surface. The objectives of the Italian Spring Accelerometer (ISA) are strongly connected with those of the MORE experiment. Together the experiments can give information on Mercury's interior structure as well as test Einstein's theory of the General Relativity. Mercury Magnetometer (MPO-MAG) will provide measurements that will lead to the detailed description of Mercury's planetary magnetic field and its source, to better understand the origin, evolution and current state of the planetary interior , as well as the interaction between Mercury's magnetosphere with the planet's itself and with the solar wind. Mercury Thermal Infrared Spectrometer (MERTIS) will provide detailed information about the mineralogical composition of Mercury's surface layer with a high spectral resolution, crucial for selecting the valid model for origin and evolution of the planet. Mercury Gamma ray and Neutron Spectrometer (MGNS) will determine the elemental compositions of the surface and subsurface of Mercury, and will determine the regional distribution of volatile depositions on the polar areas which are permanently shadowed from the Sun. Mercury Imaging X

  2. Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA.

    PubMed

    Johnson, William P; Swanson, Neil; Black, Brooks; Rudd, Abigail; Carling, Greg; Fernandez, Diego P; Luft, John; Van Leeuwen, Jim; Marvin-DiPasquale, Mark

    2015-04-01

    We examined mercury (Hg) speciation in water and sediment of the Great Salt Lake and surrounding wetlands, a locale spanning fresh to hypersaline and oxic to anoxic conditions, in order to test the hypothesis that spatial and temporal variations in Hg concentration and methylation rates correspond to observed spatial and temporal trends in Hg burdens previously reported in biota. Water column, sediment, and pore water concentrations of methylmercury (MeHg) and total mercury (THg), as well as related aquatic chemical parameters were examined. Inorganic Hg(II)-methylation rates were determined in selected water column and sediment subsamples spiked with inorganic divalent mercury (204Hg(II)). Net production of Me204Hg was expressed as apparent first-order rate constants for methylation (kmeth), which were also expanded to MeHg production potential (MPP) rates via combination with tin reducible 'reactive' Hg(II) (Hg(II)R) as a proxy for bioavailable Hg(II). Notable findings include: 1) elevated Hg concentrations previously reported in birds and brine flies were spatially proximal to the measured highest MeHg concentrations, the latter occurring in the anoxic deep brine layer (DBL) of the Great Salt Lake; 2) timing of reduced Hg(II)-methylation rates in the DBL (according to both kmeth and MPP) coincides with reduced Hg burdens among aquatic invertebrates (brine shrimp and brine flies) that act as potential vectors of Hg propagation to the terrestrial ecosystem; 3) values of kmeth were found to fall within the range reported by other studies; and 4) MPP rates were on the lower end of the range reported in methodologically comparable studies, suggesting the possibility that elevated MeHg in the anoxic deep brine layer results from its accumulation and persistence in this quasi-isolated environment, due to the absence of light (restricting abiotic photo demethylation) and/or minimal microbiological demethylation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Voltammetric analysis of ceftazidime after preconcentration at various mercury and carbon electrodes: application to sub-ppb level determination in urine samples.

    PubMed

    El-Maali, N A

    2000-04-28

    The electrochemical behavior of ceftazidime (CFZ) at four different kinds of electrodes viz. static mercury drop electrode (SMDE), controlled growth mercury electrode (CGME), glassy carbon electrode (GCE) and carbon paste electrode (CPE) has been presented. Optimal operational parameters have been selected for the drug preconcentration and determination in aqueous medium. Down to 2x10(-10) M CFZ is achieved as detection limit at the CGME. Modification of the CPE with polyvinyl alcohol (PVA) enhances both the sensitivity and selectivity for the drug accumulation and, therefore, its determination at very low levels. Application of the proposed method for CFZ analysis in spiked urine samples or those taken after metabolism has been easily assessed. Down to 1x10(-9) M CFZ (0.695 ng ml(-1)) could be easily achieved in such samples.

  4. MESSENGER at Mercury: Early Orbital Operations

    NASA Technical Reports Server (NTRS)

    McNutt, Ralph L., Jr; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; hide

    2013-01-01

    angles. Targeted areas have been selected for spectral coverage into the ultraviolet with the Ultraviolet and Visible Spectrometer (UVVS). MESSENGER's Mercury Laser Altimeter is acquiring topographic profiles when the slant range to Mercury's surface is less than 1800 km, encompassing latitudes from 20 deg. S to the north pole. Topography over the remainder of the southern hemisphere will be derived from stereo imaging, radio occultations, and limb profiles. MESSENGER's radio science experiment is determining Mercury's gravity field from Doppler signals acquired during frequent downlinks. MESSENGER's Magnetometer is measuring the vector magnetic field both within Mercury's magnetosphere and in Mercury's solar wind environment at an instrument sampling rate of up to 20 samples/s. The UVVS is determining the three-dimensional, time-dependent distribution of Mercury's exospheric neutral and ionic species via their emission lines. During each spacecraft orbit, the Energetic Particle Spectrometer measures energetic electrons and ions, and the Fast Imaging Plasma Spectrometer measures the energies and mass per charge of thermal plasma components, both within Mercury's magnetosphere and in Mercury's solar-wind environment. The primary mission observation sequence will continue for one Earth year, until March 2012. An extended mission, currently under discussion with NASA, would add a second year of orbital observations targeting a set of focused follow-on questions that build on observations to date and take advantage of the more active Sun expected during 2012-2013. MESSENGER's total primary mission cost, projected at $446 M in real-year dollars, is comparable to that of Mariner 10 after adjustment for inflation.

  5. MESSENGER at Mercury: Early Orbital Operations

    NASA Technical Reports Server (NTRS)

    McNutt, Ralph L., Jr.; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; hide

    2012-01-01

    . Targeted areas have been selected for spectral coverage into the ultraviolet with the Ultraviolet and Visible Spectrometer (UVVS). MESSENGER's Mercury Laser Altimeter is acquiring topographic profiles when the slant range to Mercury's surface is less than 1800 km, encompassing latitudes from 201S to the north pole. Topography over the remainder of the southern hemisphere will be derived from stereo imaging, radio occultations, and limb profiles. MESSENGER's radio science experiment is determining Mercury's gravity field from Doppler signals acquired during frequent downlinks. MESSENGER's Magnetometer is measuring the vector magnetic field both within Mercury's magnetosphere and in Mercury's solar wind environment at an instrument sampling rate of up to 20 samples/s. The UVVS is determining the three-dimensional, time-dependent distribution of Mercury's exospheric neutral and ionic species via their emission lines. During each spacecraft orbit, the Energetic Particle Spectrometer measures energetic electrons and ions, and the Fast Imaging Plasma Spectrometer measures the energies and mass per charge of thermal plasma components, both within Mercury's magnetosphere and in Mercury's solar-wind environment. The primary mission observation sequence will continue for one Earth year, until March 2012. An extended mission, currently under discussion with NASA, would add a second year of orbital observations targeting a set of focused follow-on questions that build on observations to date and take advantage of the more active Sun expected during 2012-2013. MESSENGER's total primary mission cost, projected at $446 M in real-year dollars, is comparable to that of Mariner 10 after adjustment for inflation.

  6. Mercury and halogens in coal: Chapter 2

    USGS Publications Warehouse

    Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.

    2014-01-01

    Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for

  7. Method for removal and stabilization of mercury in mercury-containing gas streams

    DOEpatents

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  8. Oligotrophic wetland sediments susceptible to shifts in microbiomes and mercury cycling with dissolved organic matter addition

    PubMed Central

    Gabor, Rachel S.; Schooler, Shon; McKnight, Diane M.; Knelman, Joseph E.

    2018-01-01

    Recent advances have allowed for greater investigation into microbial regulation of mercury toxicity in the environment. In wetlands in particular, dissolved organic matter (DOM) may influence methylmercury (MeHg) production both through chemical interactions and through substrate effects on microbiomes. We conducted microcosm experiments in two disparate wetland environments (oligotrophic unvegetated and high-C vegetated sediments) to examine the impacts of plant leachate and inorganic mercury loadings (20 mg/L HgCl2) on microbiomes and MeHg production in the St. Louis River Estuary. Our research reveals the greater relative capacity for mercury methylation in vegetated over unvegetated sediments. Further, our work shows how mercury cycling in oligotrophic unvegetated sediments may be susceptible to DOM inputs in the St. Louis River Estuary: unvegetated microcosms receiving leachate produced substantially more MeHg than unamended microcosms. We also demonstrate (1) changes in microbiome structure towards Clostridia, (2) metagenomic shifts toward fermentation, and (3) degradation of complex DOM; all of which coincide with elevated net MeHg production in unvegetated microcosms receiving leachate. Together, our work shows the influence of wetland vegetation in controlling MeHg production in the Great Lakes region and provides evidence that this may be due to both enhanced microbial activity as well as differences in microbiome composition. PMID:29632744

  9. Analysis of mercury adsorption at the gibbsite-water interface using the CD-MUSIC model.

    PubMed

    Park, Chang Min

    2018-05-22

    Mercury (Hg), one of the most toxic substances in nature, has long been released during the anthropogenic activity. A correct description of the adsorptive behavior of mercury is important to gain a better insight into its fate and transport in natural mineral surfaces, which will be a prerequisite for the development of surface complexation model for the adsorption processes. In the present study, simulation experiments on macroscopic Hg(II) sorption by gibbsite (α-Al(OH) 3 ), a representative aluminum (hydr)oxide mineral, were performed using the charge distribution and multi-site complexation (CD-MUSIC) approach with 1-pK triple plane model (TPM). For this purpose, several data sets which had already been reported in the literature were employed to analyze the effect of pH, ionic strength, and co-exisiting ions (NO 3 - and Cl - ) on the Hg(II) adsorption onto gibbsite. Sequential optimization approach was used to determine the acidity and asymmetric binding constants for electrolyte ions and the affinity constants of the surface species through the model simulation using FITEQLC (a modified code of FITEQL 4.0). The model successfully incorporated the presence of inorganic ligands at the dominant edge (100) face of gibbsite with consistent surface species, which was evidenced by molecular scale analysis. The model was verified with an independent set of Hg(II) adsorption data incorporating carbonate binding species in an open gibbsite-water system.

  10. Diminished mercury emission from waters with duckweed cover

    NASA Astrophysics Data System (ADS)

    Wollenberg, Jennifer L.; Peters, Stephen C.

    2009-06-01

    Duckweeds (Lemnaceae) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and limits gas exchange at the water-air interface by decreasing the area of open water surface. Experiments were conducted to determine whether duckweed decreases mercury emission by limiting gas diffusion across the water-air interface and attenuating light, or, conversely, enhances emission via transpiration of mercury vapor. Microcosm flux chamber experiments indicate that duckweed decreases mercury emission from the water surface compared to open water controls. Fluxes under duckweed were 17-67% lower than in controls, with lower fluxes occurring at higher percent cover. The decrease in mercury emission suggests that duckweed may limit emission through one of several mechanisms, including limited gas transport across the air-water interface, decreased photoreactions due to light attenuation, and plant-mercury interactions. The results of this experiment were applied to a model lake system to illustrate the magnitude of potential effects on mercury cycling. The mercury retained in the lake as a result of hindered emission may increase bioaccumulation potential in lakes with duckweed cover.

  11. OPTIMIZATION OF VOLTAMMETRIC METHODS FOR AN IN SITU DETERMINATION OF TOTAL SULFIDE IN ANOXIC POREWATER USING A MERCURY PLATED GOLD ELECTRODE

    EPA Science Inventory

    Voltammetric methods for determination of total sulfide concentrations in anoxic sediments utilizing a previously described [1] gold-based mercury amalgam microelectrode were optimized. Systematic studies in NaCl (supporting electrolyte) and porewater indicate variations in ionic...

  12. Mercury contamination extraction

    DOEpatents

    Fuhrmann, Mark [Silver Spring, MD; Heiser, John [Bayport, NY; Kalb, Paul [Wading River, NY

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  13. Mercury transformation and release differs with depth and time in a contaminated riparian soil during simulated flooding

    USGS Publications Warehouse

    Poulin, Brett; Aiken, George R.; Nagy, Kathryn L.; Manceau, Alain; Krabbenhoft, David P.; Ryan, Joseph N.

    2016-01-01

    concentration of MeHg increased with flooding time in both the Oa and A horizon pore waters. Temporal changes in pore water constituents (iron, manganese, sulfate, inorganic carbon, headspace methane) all implicate microbial control of redox transitions. The mobilization of mercury in multiple forms, including HgT associated with organic matter, MeHg, and Hg0(aq), to pore waters during periodic soil flooding may contribute to mercury releases to adjacent surface waters and the recycling of the legacy mercury to the atmosphere.

  14. Global Trends in Mercury Management

    PubMed Central

    Choi, Kyunghee

    2012-01-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  15. Multiple regression analysis to assess the role of plankton on the distribution and speciation of mercury in water of a contaminated lagoon.

    PubMed

    Stoichev, T; Tessier, E; Amouroux, D; Almeida, C M; Basto, M C P; Vasconcelos, V M

    2016-11-15

    Spatial and seasonal variation of mercury species aqueous concentrations and distributions was carried out during six sampling campaigns at four locations within Laranjo Bay, the most mercury-contaminated area of the Aveiro Lagoon (Portugal). Inorganic mercury (IHg(II)) and methylmercury (MeHg) were determined in filter-retained (IHgPART, MeHgPART) and filtered (<0.45μm) fractions (IHg(II)DISS, MeHgDISS). The concentrations of IHgPART depended on site and on dilution with downstream particles. Similar processes were evidenced for MeHgPART, however, its concentrations increased for particles rich in phaeophytin (Pha). The concentrations of MeHgDISS, and especially those of IHg(II)DISS, increased with Pha concentrations in the water. Multiple regression models are able to depict MeHgPART, IHg(II)DISS and MeHgDISS concentrations with salinity and Pha concentrations exhibiting additive statistical effects and allowing separation of possible addition and removal processes. A link between phytoplankton/algae and consumers' grazing pressure in the contaminated area can be involved to increase concentrations of IHg(II)DISS and MeHgPART. These processes could lead to suspended particles enriched with MeHg and to the enhancement of IHg(II) and MeHg availability in surface waters and higher transfer to the food web. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Utility of EXAFS in characterization and speciation of mercury-bearing mine wastes

    USGS Publications Warehouse

    Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.

    1999-01-01

    Extensive mining of large mercury deposits located in the California Coast Range has resulted in mercury contamination of both the local environment and water supplies. The solubility, dispersal, and ultimate fate of mercury are all affected by its chemical speciation, which can be most readily determined in a direct fashion using EXAFS spectroscopy. EXAFS spectra of mine wastes collected from several mercury mines in the California Coast Range with mercury concentrations ranging from 230 to 1060 mg/kg (ppm) have been analyzed using a spectral database of mercury minerals and sorbed mercury complexes. While some calcines have been found to consist almost exclusively of mercuric sulfide, HgS, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. This experimental approach can provide a quantitative measurement of the mercury compounds present and may serve as an indicator of the bioavailability and toxicity levels of mercury mine wastes.

  17. Mercury Project

    NASA Image and Video Library

    1959-04-27

    Astronaut L. Gordon Cooper, Jr., one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MA-9 mission, boosted by the Mercury-Atlas launch vehicle, was the last flight of the Mercury Project. The Faith 7 spacecraft orbited the Earth 22 times in 1-1/2 days.

  18. Constraining Modern and Historic Mercury Emissions From Gold Mining

    NASA Astrophysics Data System (ADS)

    Strode, S. A.; Jaeglé, L.; Selin, N. E.; Sunderland, E.

    2007-12-01

    Mercury emissions from both historic gold and silver mining and modern small-scale gold mining are highly uncertain. Historic mercury emissions can affect the modern atmosphere through reemission from land and ocean, and quantifying mercury emissions from historic gold and silver mining can help constrain modern mining sources. While estimates of mercury emissions during historic gold rushes exceed modern anthropogenic mercury emissions in North America, sediment records in many regions do not show a strong gold rush signal. We use the GEOS-Chem chemical transport model to determine the spatial footprint of mercury emissions from mining and compare model runs from gold rush periods to sediment and ice core records of historic mercury deposition. Based on records of gold and silver production, we include mercury emissions from North and South American mining of 1900 Mg/year in 1880, compared to modern global anthropogenic emissions of 3400 Mg/year. Including this large mining source in GEOS-Chem leads to an overestimate of the modeled 1880 to preindustrial enhancement ratio compared to the sediment core record. We conduct sensitivity studies to constrain the level of mercury emissions from modern and historic mining that is consistent with the deposition records for different regions.

  19. MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY

    EPA Science Inventory

    While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...

  20. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie; James, John T.; McCoy, Torin; Garcia, Hector

    2010-01-01

    Many lamps used in various spacecraft contain elemental mercury, which is efficiently absorbed through the lungs as a vapor. The liquid metal vaporizes slowly at room temperature, but may be completely vaporized when lamps are operating. Because current spacecraft environmental control systems are unable to remove mercury vapors, we considered short-term and long-term exposures. Using an existing study, we estimated mercury vapor releases from lamps that are not in operation during missions lasting less than or equal to 30 days; whereas we conservatively assumed complete vaporization from lamps that are operating or being used during missions lasing more than 30 days. Based on mercury toxicity, the Johnson Space Center's Toxicology Group recommends stringent safety controls and verifications for any hardware containing elemental mercury that could yield airborne mercury vapor concentrations greater than 0.1 mg/m3 in the total spacecraft atmosphere for exposures lasting less than or equal to 30 days, or concentrations greater than 0.01 mg/m3 for exposures lasting more than 30 days.

  1. Inheritance of mercury tolerance in the aquatic oligochaete Tubifex tubifex.

    PubMed

    Vidal, Dora Elva; Horne, Alex John

    2003-09-01

    Resistance to contaminants is an important yet unmeasured factor in sediment toxicity tests. The rate at which mercury resistance develops and its genetic persistence in the oligochaete worm Tubifex tubifex were studied under laboratory conditions. Worms were raised for four generations under two different sediment treatments, one reference clean sediment, the other contaminated with mercury. Worms raised in mercury-contaminated sediment developed mercury tolerance that persisted even when the worms were raised for three subsequent generations in clean sediment. Mercury tolerance was determined by comparative water-only toxicity tests with mercury as the only stressor. Control worms had a mean lethal concentration (LC50) of 0.18 mg/L(-1). Worms exposed to high levels of mercury in sediment had high mercury tolerance with a mean LC50 of 1.40 mg/L(-1). When mercury-tolerant and control mercury-intolerant worms were crossed, their descendants also demonstrated mercury tolerance during lethal toxicity tests. The LC50 for worm descendants resulting from this cross was 1.39 mg/L(-1). Adaptation to mercury exposures occurred rapidly in this group of worms and appears to be due to both phenotypic and genotypic mechanisms. Development of contaminant resistance and adaptation may be common phenomena in aquatic benthic invertebrates, which should be considered during the design and interpretation of toxicity tests.

  2. VALIDATION OF MERCURY CEMS WHEN COFIRING BIOMASS AT MADISON ELECTRIC'S BLOUNT STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis L. Laudal; Jeffrey S. Thompson

    2000-09-30

    The state of Wisconsin has been concerned about mercury deposition into its lakes and streams and has been evaluating strategies to reduce mercury emissions. As part of this effort, the Blount Station, owned and operated by Madison Gas and Electric Company (MGE), has undergone a project to evaluate the effects and potential mercury emissions reduction of cofiring preconsumer waste. MGE owns and operates the Blount Generating Station located in central Madison, Wisconsin. At present, Blount operates with nine boilers and six turbine generators. The two largest boilers at Blount produce 400,000 pounds of steam per hour at 950 F andmore » 1250 psi. These larger boilers, MGE's Boiler Nos. 8 and 9, have the capability of cofiring both paper and plastic. MGE's Blount Generating Station was one of the first electric generating stations in the United States to retrofit its existing steam boilers to successfully burn refuse-derived fuel and other alternate fuels including waste paper and wood. It is the No. 9 boiler that was the focus of this project to determine the effect of cofiring PDF (plastic- and paper-derived fuel) on speciated mercury emissions. The project was laid out to compare four different fuel combinations: (1) coal feed only, (2) coal with plastic, (3) coal with paper, and (4) coal with paper and plastic. The design was to run the boiler for 2 days at each condition, thus allowing four samples to be taken at each condition. This plan was aimed at getting at least three representative samples at each condition and allowed for difficulties in sampling and boiler operation. The following objectives were accomplished as part of the project to determine the effects of cofiring PDF on mercury emissions and speciation at MGE Blount Station: Successfully completed all of the mercury sampling for each of the four boiler/PDF conditions using the Ontario Hydro (OH) mercury speciation method; Determined mercury concentrations at the stack location using mercury

  3. Inorganic mercury (Hg2+) accumulation in autotrophic and mixotrophic planktonic protists: Implications for Hg trophodynamics in ultraoligotrophic Andean Patagonian lakes.

    PubMed

    Soto Cárdenas, Carolina; Gerea, Marina; Queimaliños, Claudia; Ribeiro Guevara, Sergio; Diéguez, María C

    2018-05-01

    Microbial assemblages are typical of deep ultraoligotrophic Andean Patagonian lakes and comprise picoplankton and protists (phytoflagellates and mixotrophic ciliates), having a central role in the C cycle, primary production and in the incorporation of dissolved inorganic mercury (Hg 2+ ) into lake food webs. In this study we evaluated the mechanisms of Hg 2+ incorporation in hetero- and autotrophic bacteria, in the autotrophic dinoflagellate (Gymnodinium paradoxum) and in two mixotrophic ciliates (Stentor araucanus and Ophrydium naumanni) dominating the planktonic microbial assemblage. The radioisotope 197 Hg was used to trace the Hg 2+ incorporation in microbiota. Hg uptake was analyzed as a function of cell abundance (BCF: bioconcentration factor), cell surface (SCF: surface concentration factor) and cell volume (VCF: volume concentration factor). Overall, the results obtained showed that these organisms incorporate substantial amounts of dissolved Hg 2+ passively (adsorption) and actively (bacteria consumption or attachment), displaying different Hg internalization and therefore, varying potential for Hg transfer. Surface area and quality, and surface:volume ratio (S:V) control the passive uptake in all the organisms. Active incorporation depends on bacteria consumption in the mixotrophic ciliates, or on bacteria association to surface in the autotrophic dinoflagellate. Hg bioaccumulated by pelagic protists can be transferred to higher trophic levels through plankton and fish feeding, regenerated to the dissolved phase by excretion, and/or transferred to the sediments by particle sinking. In ultraoligotrophic Andean Patagonian lakes, picoplankton and planktonic protists are key components of lake food webs, linking the pelagic and benthic Hg pathways, and thereby playing a central role in Hg trophodynamics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Solid-phase partitioning of mercury in artisanal gold mine tailings from selected key areas in Mindanao, Philippines, and its implications for mercury detoxification.

    PubMed

    Opiso, Einstine M; Aseneiro, John Paul J; Banda, Marybeth Hope T; Tabelin, Carlito B

    2018-03-01

    The solid-phase partitioning of mercury could provide necessary data in the identification of remediation techniques in contaminated artisanal gold mine tailings. This study was conducted to determine the total mercury content of mine wastes and identify its solid-phase partitioning through selective sequential extraction coupled with cold vapour atomic absorption spectroscopy. Samples from mine tailings and the carbon-in-pulp (CIP) process were obtained from selected key areas in Mindanao, Philippines. The results showed that mercury use is still prevalent among small-scale gold miners in the Philippines. Tailings after ball mill-gravity concentration (W-BM and Li-BM samples) from Mt Diwata and Libona contained high levels of mercury amounting to 25.024 and 6.5 mg kg -1 , respectively. The most prevalent form of mercury in the mine tailings was elemental/amalgamated mercury, followed by water soluble, exchangeable, organic and strongly bound phases, respectively. In contrast, mercury content of carbon-in-pulp residues were significantly lower at only 0.3 and 0.06 mg kg -1 for P-CIP (Del Pilar) and W-CIP (Mt Diwata), respectively. The bulk of mercury in P-CIP samples was partitioned in residual fraction while in W-CIP samples, water soluble mercury predominated. Overall, this study has several important implications with regards to mercury detoxification of contaminated mine tailings from Mindanao, Philippines.

  5. Levels of mercury and pathological changes in patients with organomercury poisoning

    PubMed Central

    Al-Saleem, T.

    1976-01-01

    Autopsies were carried out on 4 adults who died during the outbreak of mercury poisoning in Iraq and on 4 infants who were exposed to organomercury in utero. Mercury levels in tissues and in some body fluids were determined. The high levels of mercury in the central nervous system and the marked neuronal degeneration are noted. PMID:1086172

  6. Mercury's helium exosphere after Mariner 10's third encounter

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Hartle, R. E.

    1977-01-01

    From Mariner 10 third encounter UV data, a value of .00045 was calculated as the fraction of the solar wind He++ flux intercepted and captured by Mercury's magnetosphere if the observed He atmosphere is maintained by the solar wind. If an internal source for He prevails, the corresponding upper bound for the global outgassing rate is estimated to be 4.5 x 10 to the 22nd power per sec. A surface temperature distribution was used which satisfies the heat equation over Mercury's entire surface using Mariner 10 determined mean surface thermal characteristics. The means stand off distance of Mercury's magnetopause averaged over Mercury's orbit was also used.

  7. Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jiating; Gao, Yuxi, E-mail: gaoyx@ihep.ac.cn; Li, Yu-Feng

    2013-08-15

    To investigate the influence of selenium on mercury phytotoxicity, the levels of selenium and mercury were analyzed with inductively coupled plasma-mass spectrometry (ICP-MS) in garlic tissues upon exposure to different dosages of inorganic mercury (Hg{sup 2+}) and selenite (SeO{sub 3}{sup 2−}) or selenate (SeO{sub 4}{sup 2−}). The distributions of selenium and mercury were examined with micro-synchrotron radiation X-ray fluorescence (μ-SRXRF), and the mercury speciation was investigated with micro-X-ray absorption near edge structure (μ-XANES). The results show that Se at higher exposure levels (>1 mg/L of SeO{sub 3}{sup 2−} or SeO{sub 4}{sup 2−}) would significantly inhibit the absorption and transportation ofmore » Hg when Hg{sup 2+} levels are higher than 1 mg/L in culture media. SeO{sub 3}{sup 2−} and SeO{sub 4}{sup 2−} were found to be equally effective in reducing Hg accumulation in garlic. The inhibition of Hg uptake by Se correlates well with the influence of Se on Hg phytotoxicity as indicated by the growth inhibition factor. Elemental imaging using μ-SRXRF also shows that Se could inhibit the accumulation and translocation of Hg in garlic. μ-XANES analysis shows that Hg is mainly present in the forms of Hg–S bonding as Hg(GSH){sub 2} and Hg(Met){sub 2}. Se exposure elicited decrease of Hg–S bonding in the form of Hg(GSH){sub 2}, together with Se-mediated alteration of Hg absorption, transportation and accumulation, may account for attenuated Hg phytotoxicity by Se in garlic. -- Highlights: ► Hg phytotoxicity can be mitigated by Se supplement in garlic growth. ► Se can inhibit the accumulation and transportation of Hg in garlic tissues. ► Localization and speciation of Hg in garlic can be modified by Se.« less

  8. [Determination of total mercury in water samples, sediments and solids in suspension in aquatic systems by cold-vapor atomic absorption spectrophotometry].

    PubMed

    Vieira, J L; Passarelli, M M

    1996-06-01

    The use of metallic mercury in the extraction and concentration of gold causes the discarding of tons of this metal in the environment, leading to a considerable increase in the natural levels of the same and the contamination of the surrounding areas. Thus it is extremely important to monitor the presence of this metal in various sectors of the environment with a view aiming to preventing human exposure to excessive concentrations which can result in serious episodes of mercury poisoning. It is also important to estimate the possibility of river sediments becoming potential sources of contamination of human beings. The determination of total mercury was undertaken by using cold vapor atomic absorption spectrometry. River waters, as well as sediments and suspended solids were used as samples for the standardization of the analytical procedure. Later on, this method was tested on samples originating in gold mining areas for the purpose of assessing its validity.

  9. Interspecific and intraspecific variation in selenium:mercury molar ratios in saltwater fish from the Aleutians: Potential protection on mercury toxicity by selenium

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Donio, Mark; Pittfield, Taryn

    2014-01-01

    A number of factors affect the consumption risk from mercury in fish, including mercury levels, seasonal patterns of mercury concentrations, human consumption patterns, and sensitive populations (e.g. pregnant women, fetuses, young children, and yet unknown genetic factors). Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for saltwater fish. We examine levels of mercury and selenium in several species of fish and seabirds from the Aleutians (Alaska), determine selenium:mercury molar ratios, and examine species-specific and individual variation in the ratios as a means of exploring the use of the ratio in risk assessment and risk management. Variation among species was similar for mercury and selenium. There was significant inter-specific and intraspecific variation in selenium:mercury molar ratios for fish, and for birds. The mean selenium:mercury molar ratios for all fish and bird species were above 1, meaning there was an excess of selenium relative to mercury. It has been suggested that an excess of selenium confers some protective advantage for salt water fish, although the degree of excess necessary is unclear. The selenium:mercury molar ratio was significantly correlated negatively with total length for most fish species, but not for dolly varden. Some individuals of Pacific cod, yellow irish lord, rock greenling, Pacific halibut, dolly varden, and to a lesser extent, flathead sole, had selenium:mercury ratios below 1. No bird muscle had an excess of mercury (ratio below 1), and only glaucous-winged gull and pigeon guillemot had ratios between 1 and 5. There was a great deal of variation in selenium:mercury molar ratios within fish species, and within bird species, making it difficult and impractical to use these ratios in risk assessment or management, for fish advisories, or for consumers, particularly given the difficulty of interpreting the ratios. PMID:22664537

  10. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition

    USGS Publications Warehouse

    Harris, R.C.; Rudd, J.W.M.; Amyot, M.; Babiarz, Christopher L.; Beaty, K.G.; Blanchfield, P.J.; Bodaly, R.A.; Branfireun, B.A.; Gilmour, C.C.; Graydon, J.A.; Heyes, A.; Hintelmann, H.; Hurley, J.P.; Kelly, C.A.; Krabbenhoft, D.P.; Lindberg, S.E.; Mason, R.P.; Paterson, M.J.; Podemski, C.L.; Robinson, A.; Sandilands, K.A.; Southworthn, G.R.; St. Louis, V.L.; Tate, M.T.

    2007-01-01

    Methylmercury contamination of fisheries from centuries of industrial atmospheric emissions negatively impacts humans and wild-life worldwide. The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we conducted a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Fish methylmercury concentrations responded rapidly to changes in mercury deposition over the first 3 years of study. Essentially all of the increase in fish methylmercury concentrations came from mercury deposited directly to the lake surface. In contrast, <1% of the mercury isotope deposited to the watershed was exported to the lake. Steady state was not reached within 3 years. Lake mercury isotope concentrations were still rising in lake biota, and watershed mercury isotope exports to the lake were increasing slowly. Therefore, we predict that mercury emissions reductions will yield rapid (years) reductions in fish methylmercury concentrations and will yield concomitant reductions in risk. However, a full response will be delayed by the gradual export of mercury stored in watersheds. The rate of response will vary among lakes depending on the relative surface areas of water and watershed. ?? 2007 by The National Academy of Sciences of the USA.

  11. Mercury concentrations in cattle from NW Spain.

    PubMed

    López Alonso, M; Benedito, J L; Miranda, M; Castillo, C; Hernández, J; Shore, R F

    2003-01-20

    Mercury is a toxic metal that is released into the environment as a result of various industrial and agricultural processes. It can be accumulated by domestic animals and so contaminate human foodstuffs. To date, there is no information on mercury residues in livestock in Spain and the aim of the present study was to quantify the concentrations of mercury in cattle in two of the major regions in north-west Spain, Galicia (a largely rural region) and Asturias, which is characterised by heavy industry and mining. Total mercury concentrations were determined in tissue (liver, kidney and muscle) and blood from 284 calves (6-10 months old) and 56 cows (2-16 years old) from across the whole of the two regions. Mercury was usually detected in the kidney (62.4-87.5% of samples) but most (79.5-96%) liver, muscle and blood samples did not contain detectable residues. Renal mercury concentrations did not differ between male and female calves but were significantly greater in female calves than in cows. Unexpectedly, kidney mercury concentrations were significantly higher in calves from the predominantly rural region of Galicia (geometric mean: 12.2 microg/kg w.wt.) than in animals from the industrialised-mining region of Asturias (3.40 microg/kg w.wt.). Overall, mercury residues in cattle from NW Spain were similar to those reported in cattle from non-polluted areas in other countries and do not constitute a risk to animal or human health. Copyright 2002 Elsevier Science B.V.

  12. Mercury Test on macroalgae from Burung and Tikus Island, Jakarta

    NASA Astrophysics Data System (ADS)

    Novianty, H.; Herandarudewi, S. M. C.; Suratno

    2018-04-01

    Environmental pollution, caused by the introduction of hazardous substances such as heavy metals into coastal waters, affects not only the condition of the waters but also the source of food that will be contaminated by hazardous metals, one of them is mercury (Hg). Mercury is toxic metal which could cause damage to the human body in certain threshold amounts. The aim of this study was to determin the content of mercury in several species of algae from Burung and Tikus Island, Jakarta. This study was using a descriptive method. The samples were collected from Burung and Tikus Island by simple rundown sampling. Mercury level was measured by NIC3000 mercury analyzer tool. The results showed that none of the mercury levels have passed 0.5 mg/kg (the safety standart level of mercury by SNI (Indonesian National Standard)7387 in 2019) mangrove. From tikus Island had lower total mercury than the ones from Burung Island. Burung Island is located near Pari Island which is a residential area, where pollution is more likely to occur.

  13. Accumulation factors of mercury by King Bolete Boletus edulis

    NASA Astrophysics Data System (ADS)

    Falandysz, J.; Frankowska, A.

    2003-05-01

    To understand pollution picture with mercury and to examine suitability of King Bolete Boletits edulis Bull.: Fr. as possible bioindicator the total mercurv concentrations were determined both in the fruiting bodies and underlying soil substrate collected from various regions of Poland. There were quite large spatial variations of mercury concentration and some seasonal also were noted. Mercury content of the caps exceeded that of stalks (p<0.05), Nvhile Hg BCF values varied between 9 and 40, and 4 and 40, respectively.

  14. Mercury in Nelson's Sparrow Subspecies at Breeding Sites

    PubMed Central

    Winder, Virginia L.; Emslie, Steven D.

    2012-01-01

    Background Mercury is a persistent, biomagnifying contaminant that can cause negative effects on ecosystems. Marshes are often areas of relatively high mercury methylation and bioaccumulation. Nelson's Sparrows (Ammodramus nelsoni) use marsh habitats year-round and have been documented to exhibit tissue mercury concentrations that exceed negative effects thresholds. We sought to further characterize the potential risk of Nelson's Sparrows to mercury exposure by sampling individuals from sites within the range of each of its subspecies. Methodology/Principal Findings From 2009 to 2011, we captured adult Nelson's Sparrows at sites within the breeding range of each subspecies (A. n. nelsoni: Grand Forks and Upham, North Dakota; A. n. alterus: Moosonee, Ontario; and A. n. subvirgatus: Grand Manan Island, New Brunswick) and sampled breast feathers, the first primary feather (P1), and blood for total mercury analysis. Mean blood mercury in nelsoni individuals captured near Grand Forks ranged from 0.84±0.37 to 1.65±1.02 SD ppm among years, between 2.0 and 4.9 times as high as concentrations at the other sites (P<0.01). Breast feather mercury did not vary among sites within a given sampling year (site means ranged from 0.98±0.69 to 2.71±2.93 ppm). Mean P1 mercury in alterus (2.96±1.84 ppm fw) was significantly lower than in any other sampled population (5.25±2.24–6.77±3.51 ppm; P≤0.03). Conclusions/Significance Our study further characterized mercury in Nelson's Sparrows near Grand Forks; we documented localized and potentially harmful mercury concentrations, indicating that this area may represent a biological mercury hotspot. This finding warrants further research to determine if wildlife populations of conservation or recreational interest in this area may be experiencing negative effects due to mercury exposure. We present preliminary conclusions about the risk of each sampled population to mercury exposure. PMID:22384194

  15. Peru Mercury Inventory 2006

    USGS Publications Warehouse

    Brooks, William E.; Sandoval, Esteban; Yepez, Miguel A.; Howard, Howell

    2007-01-01

    In 2004, a specific need for data on mercury use in South America was indicated by the United Nations Environmental Programme-Chemicals (UNEP-Chemicals) at a workshop on regional mercury pollution that took place in Buenos Aires, Argentina. Mercury has long been mined and used in South America for artisanal gold mining and imported for chlor-alkali production, dental amalgam, and other uses. The U.S. Geological Survey (USGS) provides information on domestic and international mercury production, trade, prices, sources, and recycling in its annual Minerals Yearbook mercury chapter. Therefore, in response to UNEP-Chemicals, the USGS, in collaboration with the Economic Section of the U.S. Embassy, Lima, has herein compiled data on Peru's exports, imports, and byproduct production of mercury. Peru was selected for this inventory because it has a 2000-year history of mercury production and use, and continues today as an important source of mercury for the global market, as a byproduct from its gold mines. Peru is a regional distributor of imported mercury and user of mercury for artisanal gold mining and chlor-alkali production. Peruvian customs data showed that 22 metric tons (t) of byproduct mercury was exported to the United States in 2006. Transshipped mercury was exported to Brazil (1 t), Colombia (1 t), and Guyana (1 t). Mercury was imported from the United States (54 t), Spain (19 t), and Kyrgyzstan (8 t) in 2006 and was used for artisanal gold mining, chlor-alkali production, dental amalgam, or transshipment to other countries in the region. Site visits and interviews provided information on the use and disposition of mercury for artisanal gold mining and other uses. Peru also imports mercury-containing batteries, electronics and computers, fluorescent lamps, and thermometers. In 2006, Peru imported approximately 1,900 t of a wide variety of fluorescent lamps; however, the mercury contained in these lamps, a minimum of approximately 76 kilograms (kg), and in

  16. Modeling Mercury

    NASA Astrophysics Data System (ADS)

    Burger, M. H.; Killen, R. M.; M, N.; Sarantos, M.; Crider, D. H.; Vervak, R. J.

    2009-04-01

    Mercury has a tenuous exosphere created by the combined effects of solar radiation and micrometeoroid bombardment on the surface and the interaction of the solar wind with Mercury's magnetic field and surface. Observations of this exosphere provide essential data necessary for understanding the composition and evolution of Mercury's surface, as well as the interaction between Mercury's magnetosphere with the solar wind. The sodium component of the exosphere has been well observed from the ground (see review by Killen et al., 2007). These observations have revealed a highly variable and inhomogeneous exosphere with emission often peaking in the polar regions. Radiation acceleration drives exospheric escape producing a sodium tail pointing away from the sun which has been detected up to 1400 Mercury radii from the planet (Potter et al. 2002; Baumgardner et al. 2008). Calcium has also been observed in Mercury's exosphere showing a distribution distinct from sodium, although also variable (Killen et al. 2005). During the first two encounters with Mercury by MESSENGER, observations of the exosphere were made by the UltraViolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). Sodium and calcium emission were detected during both flybys, and magnesium was detected for the first time in Mercury's exosphere during the second flyby. The spatial distributions of these species showed significant, unexpected differences which suggest differences in the mechanisms responsible for releasing them from the surface. We present a Monte-Carlo model of sodium, magnesium, and calcium in Mercury's exosphere. The important source mechanisms for ejecting these species from the surface are sputtering by solar wind ions, photon-stimulated desorption, and micrometeoroid impact vaporization. Thermal desorption on the dayside does not supply enough energy to significantly populate the exosphere, although it does play a role in

  17. Phytoremediation of mercury-contaminated soils by Jatropha curcas.

    PubMed

    Marrugo-Negrete, José; Durango-Hernández, José; Pinedo-Hernández, José; Olivero-Verbel, Jesús; Díez, Sergi

    2015-05-01

    Jatropha curcas plants species were tested to evaluate their phytoremediation capacity in soils contaminated by different levels of mercury. The experimental treatments consisted of four levels of mercury concentrations in the soil - T0, T1, T5, and T10 (0, 1, 5, and 10 μg Hg per g soil, respectively). The total mercury content absorbed by the different plant tissues (roots, stems and leaves) was determined during four months of exposure. The growth behavior, mercury accumulation, translocation (TF) and bioconcentration (BCF) factors were determined. The different tissues in J. curcas can be classified in order of decreasing accumulation Hg as follows: roots>leaves>stems. The highest cumulative absorption of the metal occurred between the second and third month of exposure. Maximum TF was detected during the second month and ranged from 0.79 to 1.04 for the different mercury concentrations. Values of BCF ranged from 0.21 to 1.43. Soils with T1 showed significantly higher BCF (1.43) followed by T10 (1.32) and T5 (0.91), all of them at the fourth month. On the other hand TFs were low (range 0.10-0.26) at the en of the experiment. The maximum reduction of biomass (16.3%) occurred for T10 (10 μg Hg g(-1)). In sum, J. curcas species showed high BCFs and low TFs, and their use could be a promising approach to remediating mercury-contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Indicators: Sediment Mercury

    EPA Pesticide Factsheets

    Sediment mercury is mercury that has become embedded into the bottom substrates of aquatic ecosystems. Mercury is a common pollutant of aquatic ecosystems and it can have a substantial impact on both human and wildlife health.

  19. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes.

    PubMed

    Wan, Qi; Feng, Xinbin; Lu, Julia; Zheng, Wei; Song, Xinjie; Li, Ping; Han, Shijie; Xu, Hao

    2009-08-01

    Reactive gaseous mercury (RGM) and particulate mercury (Hgp) concentrations in ambient air from a remote site at Changbai Mountain area in northeastern China were intermittently monitored from August 2005 to July 2006 totaling 93 days representing fall, winter-spring and summer season, respectively. Rainwater and snow samples were collected during a whole year, and total mercury (THg) in rain samples were used to calculate wet depositional flux. A throughfall method and a model method were used to estimate dry depositional flux. Results showed mean concentrations of RGM and Hgp are 65 and 77 pg m(-3). Compared to background concentrations of atmospheric mercury species in Northern Hemisphere, RGM and Hgp are significantly elevated in Changbai area. Large values for standard deviation indicated fast reactivity and a low residence time for these mercury species. Seasonal variability is also important, with lower mercury levels in summer compared to other seasons, which is attributed to scavenging by rainfall and low local mercury emissions in summer. THg concentrations ranged from 11.5 to 15.9 ng L(-1) in rainwater samples and 14.9-18.6 ng L(-1) in throughfall samples. Wet depositional flux in Changbai area is calculated to be 8.4 microg m(-2) a(-1), and dry deposition flux is estimated to be 16.5 microg m(-2) a(-1) according to a throughfall method and 20.2 microg m(-2) a(-1) using a model method.

  20. Dissolved organic matter kinetically controls mercury bioavailability to bacteria.

    PubMed

    Chiasson-Gould, Sophie A; Blais, Jules M; Poulain, Alexandre J

    2014-03-18

    Predicting the bioavailability of inorganic mercury (Hg) to bacteria that produce the potent bioaccumulative neurotoxin monomethylmercury remains one of the greatest challenges in predicting the environmental fate and transport of Hg. Dissolved organic matter (DOM) affects mercury methylation due to its influence on cell physiology (as a potential nutrient) and its influence on Hg(II) speciation in solution (as a complexing agent), therefore controlling Hg bioavailability. We assessed the role of DOM on Hg(II) bioavailability to a gram-negative bacterium bioreporter under oxic pseudo- and nonequilibrium conditions, using defined media and field samples spanning a wide range of DOM levels. Our results showed that Hg(II) was considerably more bioavailable under nonequilibrium conditions than when DOM was absent or when Hg(II) and DOM had reached pseudoequilibrium (24 h) prior to cell exposure. Under these enhanced uptake conditions, Hg(II) bioavailability followed a bell shaped curve as DOM concentrations increased, both for defined media and natural water samples, consistent with bioaccumulation results in a companion paper (this issue) observed for amphipods. Experiments also suggest that DOM may not only provide shuttle molecules facilitating Hg uptake, but also alter cell wall properties to facilitate the first steps toward Hg(II) internalization. We propose the existence of a short-lived yet critical time window (<24 h) during which DOM facilitates the entry of newly deposited Hg(II) into aquatic food webs, suggesting that the bulk of mercury incorporation in aquatic food webs would occur within hours following its deposition from the atmosphere.

  1. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites.

    PubMed

    Xun, Yu; Feng, Liu; Li, Youdan; Dong, Haochen

    2017-12-01

    Cyrtomium macrophyllum naturally grown in 225.73 mg kg -1 of soil mercury in mining area was found to be a potential mercury accumulator plant with the translocation factor of 2.62 and the high mercury concentration of 36.44 mg kg -1 accumulated in its aerial parts. Pot experiments indicated that Cyrtomium macrophyllum could even grow in 500 mg kg -1 of soil mercury with observed inhibition on growth but no obvious toxic effects, and showed excellent mercury accumulation and translocation abilities with both translocation and bioconcentration factors greater than 1 when exposed to 200 mg kg -1 and lower soil mercury, indicating that it could be considered as a great mercury accumulating species. Furthermore, the leaf tissue of Cyrtomium macrophyllum showed high resistance to mercury stress because of both the increased superoxide dismutase activity and the accumulation of glutathione and proline induced by mercury stress, which favorited mercury translocation from the roots to the aerial parts, revealing the possible reason for Cyrtomium macrophyllum to tolerate high concentration of soil mercury. In sum, due to its excellent mercury accumulation and translocation abilities as well as its high resistance to mercury stress, the use of Cyrtomium macrophyllum should be a promising approach to remediating mercury polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Toward a Unified Understanding of Mercury and Methylated Mercury from the World's Oceans

    NASA Astrophysics Data System (ADS)

    McNutt, M. K.; Krabbenhoft, D. P.; Landing, W. M.; Sunderland, E. M.

    2012-12-01

    Marine fish and shellfish are the main source of toxic methylmercury exposure for humans. As recently as decade ago, very limited aqueous methylated mercury data were available from marine settings, resulting in a generally poor understanding of the processes controlling mercury in pelagic marine food webs. Recent oceanographic cruises have significantly improved availability of reliable measurements of methylated mercury and total mercury in seawater. This presentation will focus on vertical seawater profiles collected to depths 1000 m from three recent sampling efforts in collaboration with the CLIVAR Repeat Hydrography Program sponsored by NOAA including: 1) the northeastern Pacific (P16N cruise from Honolulu, Hawaii to Kodiak, Alaska); (2) the southern Indian Ocean (I5 cruise from Cape Town, South Africa, to Fremantle, Australia); and, (3) the Southern Ocean cruise (S4P from McMurdo, Antarctica, to Punta Arenas, Chile). Analytical results presented were all derived from the USGS Mercury Research Lab (http://wi.water.usgs.gov/mercury-lab). Supporting data derived from these cruises on water mass ages, nutrients, carbon and dissolved oxygen provide an opportunity to develop a stronger understanding of the biogeochemical factors controlling oceanic distributions of mercury and methylated mercury. Whole-water, median total mercury, and methylated mercury concentrations for the northern Pacific, southern Indian, and Southern Ocean were 1.10, 0.80, and 1.65 pM, , and 0.11, 0.08, and 0.32 pM, respectively. For all three oceans, vertical profiles of total mercury generally show the lowest concentrations in the surface mixed layer, and concentration maxima at the 700-1000 m depths. Surface depletion of total mercury is attributed to photo-chemical reduction and evasion of gaseous elemental mercury as well as scavenging by settling particulate matter, the main vector of transport to the subsurface ocean. Methylated mercury in all the ocean profiles reveal distinct mid

  3. Use of a Smartphone as a Colorimetric Analyzer in Paper-based Devices for Sensitive and Selective Determination of Mercury in Water Samples.

    PubMed

    Jarujamrus, Purim; Meelapsom, Rattapol; Pencharee, Somkid; Obma, Apinya; Amatatongchai, Maliwan; Ditcharoen, Nadh; Chairam, Sanoe; Tamuang, Suparb

    2018-01-01

    A smartphone application, called CAnal, was developed as a colorimetric analyzer in paper-based devices for sensitive and selective determination of mercury(II) in water samples. Measurement on the double layer of a microfluidic paper-based analytical device (μPAD) fabricated by alkyl ketene dimer (AKD)-inkjet printing technique with special design doped with unmodified silver nanoparticles (AgNPs) onto the detection zones was performed by monitoring the gray intensity in the blue channel of AgNPs, which disintegrated when exposed to mercury(II) on μPAD. Under the optimized conditions, the developed approach showed high sensitivity, low limit of detection (0.003 mg L -1 , 3SD blank/slope of the calibration curve), small sample volume uptake (two times of 2 μL), and short analysis time. The linearity range of this technique ranged from 0.01 to 10 mg L -1 (r 2 = 0.993). Furthermore, practical analysis of various water samples was also demonstrated to have acceptable performance that was in agreement with the data from cold vapor atomic absorption spectrophotometry (CV-AAS), a conventional method. The proposed technique allows for a rapid, simple (instant report of the final mercury(II) concentration in water samples via smartphone display), sensitive, selective, and on-site analysis with high sample throughput (48 samples h -1 , n = 3) of trace mercury(II) in water samples, which is suitable for end users who are unskilled in analyzing mercury(II) in water samples.

  4. The Texarkana mercury incident.

    PubMed

    Lowry, L K; Rountree, P P; Levin, J L; Collins, S; Anger, W K

    1999-10-01

    In November 1997, 2 teenagers allegedly removed a large amount of metallic mercury from an abandoned sign plant and distributed the material among friends. One teenager developed symptoms and admitted playing with mercury to his physician. His blood mercury was elevated. In February 1998, faculty from the University of Texas Health Center at Tyler conducted an investigation that included in-depth evaluations on 10 patients with urine mercury concentrations up to 100 micrograms/L. Exposure pathways and timelines were reconstructed from records assembled by the Arkansas State Health Department epidemiologist. Mercury contamination was found among teenagers, children, and adults who came in contact with the metal. Biomarkers of exposure documented reduction in mercury concentrations after these persons were removed from their homes and sources of mercury. Neurobehavioral assessment, including assessment of tremor, failed to establish a relationship between mercury exposure and performance.

  5. A passive integrative sampler for mercury vapor in air and neutral mercury species in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; May, T.W.; Huckins, J.N.

    2000-01-01

    A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15 x 2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ??? 5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended periods at remote locations. Preliminary results indicate that sampling for dissolved gaseous mercury (DGM) and potentially other neutral mercury species from water is also feasible. Rigorous validation of the sampler performance is currently in progress. (C) 1999 Elsevier Science Ltd.A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15??2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ???5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended

  6. Total and inorganic arsenic in dietary supplement supplies in northern Mexico.

    PubMed

    García-Rico, Leticia; Tejeda-Valenzuela, Lourdes

    2013-07-01

    The aim of this study was to evaluate the presence of total and inorganic arsenic in dietary supplements composed of herbal plants and seaweed, and to determine the potential toxicological risk. Total arsenic was determined by dry ashing and hydride generation atomic absorption spectrometry, and inorganic arsenic was determined by acid digestion, solvent extraction, and hydride generation atomic absorption spectrometry. Total and inorganic arsenic in the supplements ranged from 0.07 to 8.31 mg kg(-1) dry weight and from 0.14 to 0.28 mg kg(-1) dry weight, respectively. Daily intake of total arsenic ranged from 0.05 to 12.46 μg day(-1). Inorganic arsenic intake ranged from 0.21 to 0.83 μg day(-1), values that are below the Benchmark Dose Lower Confidence Limit recommended by the Word Health Organization. Therefore, there appears to be a low risk of adverse effects resulting from excess inorganic arsenic intake from these supplements. This is the first study conducted in Mexico that investigates total and inorganic arsenic in dietary supplements. Although the results do not suggest toxicological risk, it is nonetheless important considering the toxicity of inorganic arsenic and the increasing number consumer preferences for dietary supplements. Moreover, it is important to improve and ensure the safety of dietary supplements containing inorganic arsenic.

  7. Mercury Project

    NASA Image and Video Library

    1961-01-01

    Ham, a three-year-old chimpanzee, in the spacesuit he would wear for the second Mercury- Redstone (MR-2) suborbital test flight in January, 1961. NASA used chimpanzees and other primates to test the Mercury capsule before launching the fisrt American astronaut, Alan Shepard, in May 1961. The Mercury capsule rode atop a modified Redstone rocket, developed by Dr. Wernher von Braun and the German Rocket Team in Huntsville, Alabama.

  8. Mercury Levels in Locally Manufactured Mexican Skin-Lightening Creams

    PubMed Central

    Peregrino, Claudia P.; Moreno, Myriam V.; Miranda, Silvia V.; Rubio, Alma D.; Leal, Luz O.

    2011-01-01

    Mercury is considered one of the most toxic elements for plants and animals. Nevertheless, in the Middle East, Asia and Latin America, whitening creams containing mercury are being manufactured and purchased, despite their obvious health risks. Due to the mass distribution of these products, this can be considered a global public health issue. In Mexico, these products are widely available in pharmacies, beauty aid and health stores. They are used for their skin lightening effects. The aim of this work was to analyze the mercury content in some cosmetic whitening creams using the cold vapor technique coupled with atomic absorption spectrometry (CV-AAS). A total of 16 skin-lightening creams from the local market were investigated. No warning information was noted on the packaging. In 10 of the samples, no mercury was detected. The mercury content in six of the samples varied between 878 and 36,000 ppm, despite the fact that the U.S. Food and Drug Administration (FDA) has determined that the limit for mercury in creams should be less than 1 ppm. Skin creams containing mercury are still available and commonly used in Mexico and many developing countries, and their contents are poorly controlled. PMID:21776243

  9. Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application.

    PubMed

    Sinha, Arvind; Khare, Sunil Kumar

    2012-02-01

    The effective microbial remediation of the mercury necessitates the mercury to be trapped within the cells without being recycled back to the environment. The study describes a mercury bioaccumulating strain of Enterobacter sp., which remediated mercury from the medium simultaneous to its growth. The transmission electron micrographs and electron dispersive X-ray analysis revealed the accumulation of remediated mercury as nano-size particles in the cytoplasm as well as on the cell wall. The Enterobacter sp. in the present work was able to accumulate mercury, without being engineered in its native form. The possibility of recovering the accumulated mercury from the cells is also indicated. The applicability of the alginate immobilized cells in removing mercury from synthetic and complex industrial effluent in a batch mode was amply demonstrated. The initial load of 7.3 mg l(-1) mercury in the industrial effluent was completely removed in 72 h. The cells immobilized in calcium alginate were similarly effective in the complete removal of 5 mg l(-1) HgCl(2) of mercury from the synthetic effluent in less than 72 h. The immobilized cells could be reused for multiple cycles.

  10. Simulated In Situ Determination of Soil Profile Organic and Inorganic Carbon With LIBS and VisNIR

    NASA Astrophysics Data System (ADS)

    Bricklemyer, R. S.; Brown, D. J.; Clegg, S. M.; Barefield, J. E.

    2008-12-01

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laser Induced Breakdown Spectroscopy (LIBS) and Visible and Near Infrared Spectroscopy (VisNIR) are complementary analytical techniques that have the potential to fill that need. The LIBS method provides precise elemental analysis of soils, but generally cannot distinguish between organic C and inorganic C. VisNIR has been established as a viable technique for measuring soil properties including SOC and inorganic carbon (IC). As part of the Big Sky Carbon Sequestration Regional Partnership, 240 intact core samples (3.8 x 50 cm) have been collected from six agricultural fields in north central Montana, USA. Each of these core samples were probed concurrently with LIBS and VisNIR at 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 35 and 45 cm (+/- 1.5 cm) depths. VisNIR measurements were taken using an Analytical Spectral Devices (ASD, Boulder, CO, USA) Agrispec spectrometer to determine the partition of SOC vs. IC in the samples. The LIBS scans were collected with the LANL LIBS Core Scanner Instrument which collected the entire 200 - 900 nm plasma emission including the 247.8 nm carbon emission line. This instrument also collected the emission from the elements typically found in inorganic carbon (Ca and Mg) and organic carbon (H, O, and N). Subsamples of soil (~ 4 g) were taken from interrogation points for laboratory determination of SOC and IC. Using this analytical data, we constructed several full spectrum multivariate VisNIR/LIBS calibration models for SOC and IC. These models were then applied to independent validation cores for model evaluation.

  11. Mechanism study on inorganic oxidants induced inhibition of Ru(bpy)₃²+ electrochemiluminescence and its application for sensitive determination of some inorganic oxidants.

    PubMed

    Qiu, Bin; Xue, Lingling; Wu, Yanping; Lin, Zhenyu; Guo, Longhua; Chen, Guonan

    2011-07-15

    Inhibited Ru(bpy)(3)(2+) electrochemiluminescence by inorganic oxidants is investigated. Results showed that a number of inorganic oxidants can quench the ECL of Ru(bpy)(3)(2+)/tri-n-propylamine (TPrA) system, and the logarithm of the decrease in ECL intensity (ΔI) was proportional to the logarithm of analyte concentrations. Based on which, a sensitive approach for detection of these inorganic oxidants was established, e.g. the log-log plots of ΔI versus the concentration of MnO(4)(-), Cr(2)O(7)(2-) and Fe(CN)(6)(3-) are linear in the range of 1×10(-7) to 3×10(-4)M for MnO(4)(-) and Cr(2)O(7)(2-), and 1×10(-7) to 1×10(-4)M for Fe(CN)(6)(3-), with the limit of detection (LOD) of 8.0×10(-8)M, 2×10(-8)M, and 1×10(-8)M, respectively. A series of experiments such as a comparison of the inhibitory effect of different compounds on Ru(bpy)(3)(2+)/TPrA ECL, ECL emission spectra, UV-Vis absorption spectra etc. were investigated in order to discover how these inorganic analytes quench the ECL of Ru(bpy)(3)(2+)/TPrA system. A mechanism based on consumption of TPrA intermediate (TPrA(·)) by inorganic oxidants was proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Mercury Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on mercury exposure is presented including forms, sources, permissible exposure limits, and physiological effects. The purpose of the Mercury Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Mercury Exposure at LeRC are discussed.

  13. Distribution and transport of total mercury and methylmercury in mercury-contaminated sediments in reservoirs and wetlands of the Sudbury River, east-central Massachusetts

    USGS Publications Warehouse

    Colman, John A.; Waldron, Marcus C.; Breault, Robert F.; Lent, Robert M.

    1999-01-01

    Total mercury and methylmercury were measured in 4 reservoir cores and 12 wetland cores from Sudbury River. The distribution of total mercury and methylmercury in these cores was evaluated to determine the potential for total mercury and methylmercury transport from reservoir and wetlands sediments to the water column. Concentrations of methylmercury were corrected for an analytical artifact introduced during the separation distillation used in the analysis procedure. Corrected methylmercury concentrations correlated with total mercury concentrations in bulk sediment from below the top layers of reservoir and wetland cores; methylmercury concentrations at the top layers of cores were relatively high, however, and were not correlated with total mercury concentrations. Concentrations of methylmercury in pore water were positively correlated with methylmercury concentrations in the bulk sediment. High concentrations of total mercury and methylmercury in sediment (73 and 0.047 micrograms per gram dry-weight basis, respectively) contributed less to the water column in the reservoir than in the wetlands probably because of burial by low concentration sediment and differences in the processes available to transport mercury from the sediments to the water in the reservoirs, as compared to the wetlands .

  14. Oligotrophic wetland sediments susceptible to shifts in microbiomes and mercury cycling with dissolved organic matter addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Emily B.; Gabor, Rachel S.; Schooler, Shon

    Recent advances have allowed for greater investigation into microbial regulation of mercury toxicity in the environment. In wetlands in particular, dissolved organic matter (DOM) may influence methylmercury (MeHg) production both through chemical interactions and through substrate effects on microbiomes. We conducted microcosm experiments in two disparate wetland environments (oligotrophic unvegetated and high-C vegetated sediments) to examine the impacts of plant leachate and inorganic mercury loadings (20 mg/L HgCl 2) on microbiomes and MeHg production in the St. Louis River Estuary. Our research reveals the greater relative capacity for mercury methylation in vegetated over unvegetated sediments. Further, our work shows howmore » mercury cycling in oligotrophic unvegetated sediments may be susceptible to DOM inputs in the St. Louis River Estuary: unvegetated microcosms receiving leachate produced substantially more MeHg than unamended microcosms. We also demonstrate (1) changes in microbiome structure towards Clostridia, (2) metagenomic shifts toward fermentation, and (3) degradation of complex DOM; all of which coincide with elevated net MeHg production in unvegetated microcosms receiving leachate. Altogether, our work shows the influence of wetland vegetation in controlling MeHg production in the Great Lakes region and provides evidence that this may be due to both enhanced microbial activity as well as differences in microbiome composition.« less

  15. Oligotrophic wetland sediments susceptible to shifts in microbiomes and mercury cycling with dissolved organic matter addition

    DOE PAGES

    Graham, Emily B.; Gabor, Rachel S.; Schooler, Shon; ...

    2018-04-03

    Recent advances have allowed for greater investigation into microbial regulation of mercury toxicity in the environment. In wetlands in particular, dissolved organic matter (DOM) may influence methylmercury (MeHg) production both through chemical interactions and through substrate effects on microbiomes. We conducted microcosm experiments in two disparate wetland environments (oligotrophic unvegetated and high-C vegetated sediments) to examine the impacts of plant leachate and inorganic mercury loadings (20 mg/L HgCl 2) on microbiomes and MeHg production in the St. Louis River Estuary. Our research reveals the greater relative capacity for mercury methylation in vegetated over unvegetated sediments. Further, our work shows howmore » mercury cycling in oligotrophic unvegetated sediments may be susceptible to DOM inputs in the St. Louis River Estuary: unvegetated microcosms receiving leachate produced substantially more MeHg than unamended microcosms. We also demonstrate (1) changes in microbiome structure towards Clostridia, (2) metagenomic shifts toward fermentation, and (3) degradation of complex DOM; all of which coincide with elevated net MeHg production in unvegetated microcosms receiving leachate. Altogether, our work shows the influence of wetland vegetation in controlling MeHg production in the Great Lakes region and provides evidence that this may be due to both enhanced microbial activity as well as differences in microbiome composition.« less

  16. PRACTICAL APPLICATIONS FROM OBSERVATIONS OF MERCURY OXIDATION AND BINDING MECHANISMS

    EPA Science Inventory

    This paper describes a bench-scale program at the U.S. EPA. The goals of this program are to (a) isolate individual mechanisms of elemental mercury oxidation and oxidized mercury capture, (b) compete these mechanisms over a broad temperature range to determine which are dominant...

  17. Mercury Sodium Tail

    NASA Image and Video Library

    2015-04-16

    This image from NASA MESSENGER spacecraft is stitched together from thousands of observations made over the past 4 years by the MASCS/UVVS instrument, which measures sunlight scattered off of Mercury tenuous atmosphere. Scattered sunlight gives the sodium a bright orange glow. This scattering process also gives sodium atoms a push - this "radiation pressure" is strong enough, during parts of Mercury's year, to strip the atmosphere and give Mercury a long glowing tail. Someone standing on Mercury's nightside at the right time of year would see a faint orange similar to a city sky illuminated by sodium lamps! Instrument: Mercury Atmospheric and Surface Composition Spectrometer (MASCS)/Ultraviolet and Visible Spectrometer (UVVS) http://photojournal.jpl.nasa.gov/catalog/PIA19418

  18. Mercury Project

    NASA Image and Video Library

    1959-01-01

    Dr. Wernher von Braun, Director of the Army Ballistic Missile Agency's (ABMA) Development Operations Division, poses with the original Mercury astronauts in ABMA's Fabrication Laboratory during a 1959 visit. Inspecting Mercury-Redstone hardware are from left to right, Alan Shepard, Donald Deke Slayton, Virgil Gus Grissom, von Braun, Gordon Cooper, Wally Schirra, John Glenn, and Scott Carpenter. Project Mercury officially began October 7, 1958 as the United States' first manned space program.

  19. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  20. Assessing consumer awareness about mercury in fish.

    PubMed

    Ratnapradipa, Dhitinut; Quilliam, Daniela; Wier, Lauren M; Migliore, Beverly; Dundulis, William

    2009-12-01

    The study discussed in this article was conducted to determine if a retail-based educational campaign would be an effective tool to inform consumers about mercury in fish. In 2005, the Rhode Island (RI) Department of Health, in conjunction with the RI Food Dealers Association, conducted surveys in eight supermarkets to assess consumers' knowledge and awareness of mercury in fish. A presurvey was administered to 523 respondents as they prepared to exit the store June 17-19. During the week of July 11-17, a "Fish Week" educational program was conducted. An identical postsurvey to evaluate the effectiveness of "Fish Week" was administered to 556 customers exiting participating supermarkets on July 21-24. A significant (p < .05) increase occurred in the number of respondents who identified brochures as an information source about mercury in fish. Small, but significant, decreases in awareness and knowledge about mercury in fish issues, however, were unexpected findings that were likely due to factors discussed.

  1. Identifying occupational and nonoccupational exposure to mercury in dental personnel.

    PubMed

    Shirkhanloo, Hamid; Fallah Mehrjerdi, Mohammad Ali; Hassani, Hamid

    2017-03-04

    The objective of this study was to investigate the occupational and nonoccupational exposure to mercury (Hg) vapor in dental personnel by examining the relationships between blood mercury, urine mercury, and their ratio with air mercury. The method was performed on 50 occupational exposed and 50 unexposed controls (25 men and 25 women). The mercury concentrations in air and human biological samples were determined based on the National Institute for Occupational Safety and Health (NIOSH) method and standard method (SM) by a new mode of liquid-phase microextraction, respectively. The mean mercury concentrations in urine (μg Hg 0 /g creatinine) and blood were significantly higher than control group, respectively (19.41 ± 5.18 vs 2.15 ± 0.07 μg/g and 16.40 ± 4.97 vs 2.50 ± 0.02 μg/L) (p <.001). The relationships between mercury concentration in blood/urine ratio (r = .380) with dental office air are new indicators for assessing occupational exposure in dental personnel.

  2. The mercury levels in crustaceans and cephalopods from Peninsular Malaysia.

    PubMed

    Ahmad, Nurul Izzah; Noh, Mohd Fairulnizal Mohd; Mahiyuddin, Wan Rozita Wan; Jaafar, Hamdan; Ishak, Ismail; Azmi, Wan Nurul Farah Wan; Veloo, Yuvaneswary; Mokhtar, Fazlin Anis

    2015-09-01

    This study is to determine total mercury in edible tissues of eight species of cephalopods and 12 species of crustaceans purchased from 11 identified major fish landing ports and wet markets throughout Peninsular Malaysia. The concentration of mercury was measured by cold vapor atomic absorption spectrometry (AAS) technique using the Perkin Elmer Flow Injection Mercury System (FIMS-400). In general, the mercury levels were low with concentrations in cephalopods ranging from 0.099 to 2.715 mg/kg dry weight (or 0.0184-0.505 mg/kg wet weight) and in crustaceans ranging from 0.057 to 1.359 mg/kg dry weight (or 0.0111-0.265 mg/kg wet weight). The mercury levels showed no significant differences (P > 0.05) between species for both cephalopods and crustaceans. There was no significant correlation between mercury concentrations and the body size of individual for both groups as well. Comparisons with mercury levels obtained found from other previous studies and/or species noted that they were of the same magnitude or relatively low compared to various locations reported worldwide.

  3. The role of groundwater transport in aquatic mercury cycling

    USGS Publications Warehouse

    Krabbenhoft, David P.; Babiarz, Christopher L.

    1992-01-01

    Mercury, which is transported globally by atmospheric pathways to remote aquatic environments, is a ubiquitous contaminant at very low (nanograms Hg per liter) aqueous concentrations. Until recently, however, analytical and sampling techniques were not available for freshwater systems to quantify the actual levels of mercury concentrations without introducing significant contamination artifacts. Four different sampling strategies were used to evaluate ground water flow as a mercury source and transport mechanism within aquatic systems. The sampling strategies employ ultraclean techniques to determine mercury concentrations in groundwater and pore water near Pallette Lake, Wisconsin. Ambient groundwater concentrations are about 2–4 ng Hg L−1, whereas pore waters near the sediment/water interface average about 12 ng Hg L−1, emphasizing the importance of biogeochemical processes near the interface. Overall, the groundwater system removes about twice as much mercury (1.5 g yr−1) as it contributes (0.7 g yr−1) to Pallette Lake. About three fourths of the groundwater mercury load is recycled, thought to be derived from the water column.

  4. Mercury Emission Measurement in Coal-Fired Boilers by Continuous Mercury Monitor and Ontario Hydro Method

    NASA Astrophysics Data System (ADS)

    Zhu, Yanqun; Zhou, Jinsong; He, Sheng; Cai, Xiaoshu; Hu, Changxin; Zheng, Jianming; Zhang, Le; Luo, Zhongyang; Cen, Kefa

    2007-06-01

    The mercury emission control approach attaches more importance. The accurate measurement of mercury speciation is a first step. Because OH method (accepted method) can't provide the real-time data and 2-week time for results attained, it's high time to seek on line mercury continuous emission monitors(Hg-CEM). Firstly, the gaseous elemental and oxidized mercury were conducted to measure using OH and CEM method under normal operation conditions of PC boiler after ESP, the results between two methods show good consistency. Secondly, through ESP, gaseous oxidized mercury decrease a little and particulate mercury reduce a little bit, but the elemental mercury is just the opposite. Besides, the WFGD system achieved to gaseous oxidized mercury removal of 53.4%, gaseous overall mercury and elemental mercury are 37.1% and 22.1%, respectively.

  5. Investigating Atmospheric Mercury with the U.S. Geological Survey Mobile Mercury Laboratory

    USGS Publications Warehouse

    Kolker, Allan

    2007-01-01

    Atmospheric mercury is thought to be an important source of mercury present in fish, resulting in numerous local, statewide, tribal, and province-wide fish consumption advisories in the United States and Canada (U.S. Environmental Protection Agency, 2007a). To understand how mercury occurs in the atmosphere and its potential to be transferred from the atmosphere to the biosphere, the U.S. Geological Survey (USGS) has been investigating sources and forms of atmospheric mercury, especially in locations where the amount of mercury deposited from precipitation is above average.

  6. Experiment Study on Determination of Surface Area of Finegrained Soils by Mercury Intrusion Porosimetry

    NASA Astrophysics Data System (ADS)

    Yan, X. Q.; Zhou, C. Y.; Fang, Y. G.; Lin, L. S.

    2017-12-01

    The specific surface area (SSA) has a great influence on the physical and chemical properties of fine-grained soils. Determination of specific surface area is an important content for fine-grained soils micro-meso analysis and characteristic research. In this paper, mercury intrusion porosimetry (MIP) was adopted to determine the SSA of fine-grained soils including quartz, kaolinite, bentonite and natural Shenzhen soft clay. The test results show that the average values of SSA obtained by MIP are 0.78m2/g, 11.31m2/g, 57.28m2/g and 27.15m2/g respectively for very fine-grained quartz, kaolin, bentonite and natural Shenzhen soft clay, and that it is feasible to apply MIP to obtain the SSA of fine-grained soils through statistical analysis of 97 samples. Through discussion, it is necessary to consider the state of fine-grained soils such as pore ratio when the SSA of fine-grained soils is determined by MIP.

  7. Migration And Entrapment Of Mercury In The Subsurface

    NASA Astrophysics Data System (ADS)

    M, D.; Nambi, I. M.

    2009-12-01

    Elemental mercury is an immiscible liquid with high density and high surface tension. The movement of mercury in the saturated subsurface region is therefore considered a case of two phase flow involving mercury and water and is expected to be governed by gravity, viscous and capillary forces. Fundamental investigation into the migration and capillary entrapment of mercury in the subsurface was done by controlled laboratory capillary pressure saturation experiments using mercury and water as non wetting and wetting fluid respectively. Residual mercury saturation and van Genuchten’s capillary entrapment parameters were determined independently for different sizes of porous media. Based on the experimental data, theoretical investigations were done on the role of the three predominant forces and their influence on mercury migration and entrapment. The effects of fluid density and interfacial tension and the influence of Capillary and Bond number on mercury entrapment were analyzed with the help of similar capillary pressure - saturation experiments using Tetrachloroethylene (PCE)-water fluid pair. Mercury-water systems exhibited a low residual saturation of 0.02 and 0.07 as compared to 0.16 and 0.27 for PCE-water systems. Less residual mercury saturation, lack of apparent hysteresis in capillary pressure saturation curves and large variation in van Genuchten’s parameters 'α'(inverse of displacement pressure) and ‘n’ (pore size distribution index) for mercury-water systems compared to PCE-water systems were observed. These anomalies between the two systems elucidate that the capillary trapping is equally dependent on the fluid characteristics especially for high density immiscible fluids. Gravity force nevertheless a predominant controlling factor in the migration of highly dense mercury, is counteracted by not less trivial capillary force which was 1.22x104 times higher than gravity force. The capillary forces thus surmount the gravity forces and cause

  8. Mercury cycling in terrestrial watersheds

    USGS Publications Warehouse

    Shanley, James B.; Bishop, Kevin; Banks, Michael S.

    2012-01-01

    This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.

  9. [Distribution characteristics of particulate mercury in aerosol in coastal city].

    PubMed

    Zhang, Fu-Wang; Zhao, Jin-Ping; Chen, Jin-Sheng; Xu, Ya

    2010-10-01

    Particulate mercury, which is bound with aerosol in atmosphere, has a negative impact on human health and the environment, also plays an important role in the biogeochemical process of mercury. In this paper, taking southeast coastal city of Xiamen as research object, the PM2.5, PM10 and TSP were collected in residential, tourism, industrial area and background, respectively, during four seasons (October 2008-September 2009). RA-915 + mercury analyzer was employed to determinate mercury concentration in different size particle matters based on zeeman atomic absorption spectrometry. The results showed that the contents of particulate mercury in different size of aerosol during Winter, Spring were obviously higher than that of Summer, Autumn; the concentrations of particulate mercury in fine particle during Spring, Summer, Autumn and Winter were (51.46 +/- 19.28), (42.41 +/- 12.74), (38.38 +/- 6.08) and (127.23 +/- 33.70) pg/m3, respectively. The experimental data showed that the particulate mercury were mainly distributed in fine particles (PM2.5), which covered 42.48%-67.87%, and it can be concluded that the rate of particulate mercury enrichment in coarse particle was much lower than that of fine particle. The sequence of atmospheric particulate mercury concentration in different functional areas was: background < resident < tourism < industrial area < suburban; which showed characteristics of spatial distribution of particulate mercury was affected by the sampling location. On the whole, Xiamen had a low level of atmospheric particulate mercury; the enrichment of PM2.5 to particulate mercury was significantly higher than that of PM10 and TSP, and showed that fine particle pollution should be tightly controlled to reduce particulate mercury.

  10. Mercury in municipal solid wastes and New Jersey mercury prevention and reduction program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdogan, H.; Stevenson, E.

    1994-12-31

    Mercury is a very toxic heavy metal which accumulates in the brain causing neurological damages involving psychasthenic and vegetative syndrome. At high exposure levels it causes behavioral and personality changes, loss of memory and insomnia. Long-term exposure or exposure during pregnancy to mercury or mercury compounds can permanently damage the kidney and fetus. In addition to potential effects on human health, mercury poisoning can also affect other living organisms. Mercury is different than other heavy metals. It consistently biomagnifies and bioaccumulates within the aquatic food chain. Global sources of mercury release are both natural and anthropogenic. Natural sources include volatilizationmore » of gaseous-mercury iron soils ana rocks, volcanic releases, evaporation from the ocean and other water bodies. Anthropogenic sources are fuel and coal combustion, mining, smelting, manufacturing activities, disposal of sludge, pesticides, animal and food waste, and incineration of municipal solid waste. Worldwide combustion of municipal solid waste is the second largest source of atmospheric emission of mercury. In New Jersey, incineration of solid waste is the largest source of atmospheric emission of mercury. The New Jersey Department of Environmental Protection and Energy (NJDEPE) has developed a comprehensive program to control and prevent emission of mercury resulting from combustion municipal solid waste.« less

  11. Biomarkers of mercury exposure at a mercury recycling facility in Ukraine.

    PubMed

    Gibb, Herman Jones; Kozlov, Kostj; Buckley, Jessie Poulin; Centeno, Jose; Jurgenson, Vera; Kolker, Allan; Conko, Kathryn; Landa, Edward; Panov, Boris; Panov, Yuri; Xu, Hanna

    2008-08-01

    This study evaluates biomarkers of occupational mercury exposure among workers at a mercury recycling operation in Gorlovka, Ukraine. The 29 study participants were divided into three occupational categories for analysis: (1) those who worked in the mercury recycling operation (Group A, n = 8), (2) those who worked at the facility but not in the yard where the recycling was done (Group B, n = 14), and (3) those who did not work at the facility (Group C, n = 7). Urine, blood, hair, and nail samples were collected from the participants, and a questionnaire was administered to obtain data on age, gender, occupational history, smoking, alcohol consumption, fish consumption, tattoos, dental amalgams, home heating system, education, source of drinking water, and family employment in the former mercury mine/smelter located on the site of the recycling facility. Each factor was tested in a univariate regression with total mercury in urine, blood, hair, and nails. Median biomarker concentrations were 4.04 microg/g-Cr (urine), 2.58 microg/L (blood), 3.95 microg/g (hair), and 1.16 microg/g (nails). Occupational category was significantly correlated (p < 0.001) with both blood and urinary mercury concentrations but not with hair or nail mercury. Four individuals had urinary mercury concentrations in a range previously found to be associated with subtle neurological and subjective symptoms (e.g., fatigue, loss of appetite, irritability), and one worker had a urinary mercury concentration in a range associated with a high probability of neurological effects and proteinuria. Comparison of results by occupational category found that workers directly involved with the recycling operation had the highest blood and urinary mercury levels. Those who worked at the facility but were not directly involved with the recycling operation had higher levels than those who did not work at the facility.

  12. Biomarkers of mercury exposure at a mercury recycling facility in Ukraine

    USGS Publications Warehouse

    Gibb, H.J.; Kozlov, K.; Buckley, J.P.; Centeno, J.; Jurgenson, V.; Kolker, A.; Conko, K.; Landa, E.; Panov, B.; Panov, Y.; Xu, H.

    2008-01-01

    This study evaluates biomarkers of occupational mercury exposure among workers at a mercury recycling operation in Gorlovka, Ukraine. The 29 study participants were divided into three occupational categories for analysis: (1) those who worked in the mercury recycling operation (Group A, n = 8), (2) those who worked at the facility but not in the yard where the recycling was done (Group B, n = 14), and (3) those who did not work at the facility (Group C, n = 7). Urine, blood, hair, and nail samples were collected from the participants, and a questionnaire was administered to obtain data on age, gender, occupational history, smoking, alcohol consumption, fish consumption, tattoos, dental amalgams, home heating system, education, source of drinking water, and family employment in the former mercury mine/smelter located on the site of the recycling facility. Each factor was tested in a univariate regression with total mercury in urine, blood, hair, and nails. Median biomarker concentrations were 4.04 ??g/g-Cr (urine), 2.58 ??g/L (blood), 3.95 ??g/g (hair), and 1.16 ??g/g (nails). Occupational category was significantly correlated (p < 0.001) with both blood and urinary mercury concentrations but not with hair or nail mercury. Four individuals had urinary mercury concentrations in a range previously found to be associated with subtle neurological and subjective symptoms (e.g., fatigue, loss of appetite, irritability), and one worker had a urinary mercury concentration in a range associated with a high probability of neurological effects and proteinuria. Comparison of results by occupational category found that workers directly involved with the recycling operation had the highest blood and urinary mercury levels. Those who worked at the facility but were not directly involved with the recycling operation had higher levels than those who did not work at the facility. Copyright ?? 2008 JOEH, LLC.

  13. Interactive toxicity of inorganic mercury and trichloroethylene in rat and human proximal tubules: Effects on apoptosis, necrosis, and glutathione status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lash, Lawrence H.; Putt, David A.; Hueni, Sarah E.

    Simultaneous or prior exposure to one chemical may alter the concurrent or subsequent response to another chemical, often in unexpected ways. This is particularly true when the two chemicals share common mechanisms of action. The present study uses the paradigm of prior exposure to study the interactive toxicity between inorganic mercury (Hg{sup 2+}) and trichloroethylene (TRI) or its metabolite S-(1,2-dichlorovinyl)-L-cysteine (DCVC) in rat and human proximal tubule. Pretreatment of rats with a subtoxic dose of Hg{sup 2+} increased expression of glutathione S-transferase-{alpha}1 (GST{alpha}1) but decreased expression of GST{alpha}2, increased activities of several GSH-dependent enzymes, and increased GSH conjugation of TRI.more » Primary cultures of rat proximal tubular (rPT) cells exhibited both necrosis and apoptosis after incubation with Hg{sup 2+}. Pretreatment of human proximal tubular (hPT) cells with Hg{sup 2+} caused little or no changes in GST expression or activities of GSH-dependent enzymes, decreased apoptosis induced by TRI or DCVC, but increased necrosis induced by DCVC. In contrast, pretreatment of hPT cells with TRI or DCVC protected from Hg{sup 2+} by decreasing necrosis and increasing apoptosis. Thus, whereas pretreatment of hPT cells with Hg{sup 2+} exacerbated cellular injury due to TRI or DCVC by shifting the response from apoptosis to necrosis, pretreatment of hPT cells with either TRI or DCVC protected from Hg{sup 2+}-induced cytotoxicity by shifting the response from necrosis to apoptosis. These results demonstrate that by altering processes related to GSH status, susceptibilities of rPT and hPT cells to acute injury from Hg{sup 2+}, TRI, or DCVC are markedly altered by prior exposures.« less

  14. Mercury Flow Through the Mercury-Containing Lamp Sector of the Economy of the United States

    USGS Publications Warehouse

    Goonan, Thomas G.

    2006-01-01

    Introduction: This Scientific Investigations Report examines the flow of mercury through the mercury-containing lamp sector of the U.S. economy in 2001 from lamp manufacture through disposal or recycling. Mercury-containing lamps illuminate commercial and industrial buildings, outdoor areas, and residences. Mercury is an essential component in fluorescent lamps and high-intensity discharge lamps (high-pressure sodium, mercury-vapor, and metal halide). A typical fluorescent lamp is composed of a phosphor-coated glass tube with electrodes located at either end. Only a very small amount of the mercury is in vapor form. The remainder of the mercury is in the form of either liquid mercury metal or solid mercury oxide (mercury oxidizes over the life of the lamp). When voltage is applied, the electrodes energize the mercury vapor and cause it to emit ultraviolet energy. The phosphor coating absorbs the ultraviolet energy, which causes the phosphor to fluoresce and emit visible light. Mercury-containing lamps provide more lumens per watt than incandescent lamps and, as a result, require from three to four times less energy to operate. Mercury is persistent and toxic within the environment. Mercury-containing lamps are of environmental concern because they are widely distributed throughout the environment and are easily broken in handling. The magnitude of lamp sector mercury emissions, estimated to be 2.9 metric tons per year (t/yr), is small compared with the estimated mercury losses of the U.S. coal-burning and chlor-alkali industries, which are about 70 t/yr and about 90 t/yr, respectively.

  15. Mercury in the National Parks: Current Status and Effects

    NASA Astrophysics Data System (ADS)

    Flanagan, C.; Blett, T. F.; Morris, K.

    2012-12-01

    Mercury is a globally distributed contaminant that can harm human and wildlife health, and threaten resources the National Park Service (NPS) is charged with protecting. Due in part to emissions and long-range transport from coal burning power plants, even remote national park environments receive mercury deposition from the atmosphere. Given the concern regarding mercury, there are and have been many mercury monitoring initiatives in national parks to determine the risk from mercury contamination. This includes the study of litter fall at Acadia National Park (Maine), snow at Mount Rainier National Park (Washington), heron eggs at Indiana Dunes National Lakeshore (Indiana), bat hair at Mammoth Cave National Park (Kentucky), and panthers at Everglades National Park (Florida). Wet deposition is also measured at 16 national parks as part of the National Atmospheric Deposition Network / Mercury Deposition Network. Results from these studies indicate that mercury deposition is increasing or is elevated in many national parks, and fish and other biota have been found to contain levels of mercury above toxicity thresholds for impacts to both humans and wildlife. Current research coordinated by the NPS Air Resources Division (ARD) in Denver, Colorado, on the effects of mercury includes broad-scale assessments of mercury in fish, dragonfly larvae, and songbirds across 30+ national parks. Fish provide the trophic link to human and wildlife health, dragonfly larvae can describe fine-scale differences in mercury levels, and songbirds shed light on the risk to terrestrial ecosystems. External project partners include the U.S. Geological Survey, University of Maine, and the Biodiversity Research Institute. In addition, the dragonfly project engages citizen scientists in the collection of dragonfly larvae, supporting the NPS Centennial Initiative by connecting people to parks and advancing the educational mission, and increasing public awareness about mercury impacts. Much of

  16. Mercury from chlor-alkali plants: measured concentrations in food product sugar.

    PubMed

    Dufault, Renee; LeBlanc, Blaise; Schnoll, Roseanne; Cornett, Charles; Schweitzer, Laura; Wallinga, David; Hightower, Jane; Patrick, Lyn; Lukiw, Walter J

    2009-01-26

    Mercury cell chlor-alkali products are used to produce thousands of other products including food ingredients such as citric acid, sodium benzoate, and high fructose corn syrup. High fructose corn syrup is used in food products to enhance shelf life. A pilot study was conducted to determine if high fructose corn syrup contains mercury, a toxic metal historically used as an anti-microbial. High fructose corn syrup samples were collected from three different manufacturers and analyzed for total mercury. The samples were found to contain levels of mercury ranging from below a detection limit of 0.005 to 0.570 micrograms mercury per gram of high fructose corn syrup. Average daily consumption of high fructose corn syrup is about 50 grams per person in the United States. With respect to total mercury exposure, it may be necessary to account for this source of mercury in the diet of children and sensitive populations.

  17. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    PubMed

    Kotnik; Horvat; Mandic; Logar

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg2+, Hg0) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  18. Method development estimating ambient mercury concentration from monitored mercury wet deposition

    NASA Astrophysics Data System (ADS)

    Chen, S. M.; Qiu, X.; Zhang, L.; Yang, F.; Blanchard, P.

    2013-05-01

    Speciated atmospheric mercury data have recently been monitored at multiple locations in North America; but the spatial coverage is far less than the long-established mercury wet deposition network. The present study describes a first attempt linking ambient concentration with wet deposition using Beta distribution fitting of a ratio estimate. The mean, median, mode, standard deviation, and skewness of the fitted Beta distribution parameters were generated using data collected in 2009 at 11 monitoring stations. Comparing the normalized histogram and the fitted density function, the empirical and fitted Beta distribution of the ratio shows a close fit. The estimated ambient mercury concentration was further partitioned into reactive gaseous mercury and particulate bound mercury using linear regression model developed by Amos et al. (2012). The method presented here can be used to roughly estimate mercury ambient concentration at locations and/or times where such measurement is not available but where wet deposition is monitored.

  19. Mercury exposure induces cytoskeleton disruption and loss of renal function through epigenetic modulation of MMP9 expression.

    PubMed

    Khan, Hafizurrahman; Singh, Radha Dutt; Tiwari, Ratnakar; Gangopadhyay, Siddhartha; Roy, Somendu Kumar; Singh, Dhirendra; Srivastava, Vikas

    2017-07-01

    Mercury is one of the major heavy metal pollutants occurring in elemental, inorganic and organic forms. Due to ban on most inorganic mercury containing products, human exposure to mercury generally occurs as methylmercury (MeHg) by consumption of contaminated fish and other sea food. Animal and epidemiological studies indicate that MeHg affects neural and renal function. Our study is focused on nephrotoxic potential of MeHg. In this study, we have shown for the first time how MeHg could epigenetically modulate matrix metalloproteinase 9(MMP9) to promote nephrotoxicity using an animal model of sub chronic MeHg exposure. MeHg caused renal toxicity as was seen by increased levels of serum creatinine and expression of early nephrotoxicity markers (KIM-1, Clusterin, IP-10, and TIMP). MeHg exposure also correlated strongly with induction of MMP9 mRNA and protein in a dose dependent manner. Further, while induction of MMP9 promoted cytoskeleton disruption and loss of cell-cell adhesion (loss of F-actin, Vimentin and Fibronectin), inhibition of MMP9 was found to reduce these disruptions. Mechanistic studies by ChIP analysis showed that MeHg modulated MMP9 by promoting demethylation of its regulatory region to increase its expression. Bisulfite sequencing identified critical CpGs in the first exon of MMP9 which were demethylated following MeHg exposure. ChIP studies also showed loss of methyl binding protein, MeCP2 and transcription factor PEA3 at the demethylated site confirming decreased CpG methylation. Our studies thus show how MeHg could epigenetically modulate MMP9 to promote cytoskeleton disruption leading to loss of renal function. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Mercury in dental amalgam: Are our health care workers at risk?

    PubMed

    Sahani, M; Sulaiman, N S; Tan, B S; Yahya, N A; Anual, Z F; Mahiyuddin, W R Wan; Khan, M F; Muttalib, K A

    2016-11-01

    Dental amalgam in fillings exposes workers to mercury. The exposure to mercury was investigated among 1871 dental health care workers. The aim of the study was to evaluate the risk of mercury exposure among dental compared to nondental health care workers and to determine other risk factors for mercury exposure. Respondents answered questionnaires to obtain demographic, personal, professional, and workplace information and were examined for their own amalgam fillings. Chronic mercury exposure was assessed through urinary mercury levels. In total, 1409 dental and 462 nondental health care workers participated in the study. Median urine mercury levels for dental and nondental health care workers were 2.75 μg/L (interquartile range [IQR] = 3.0175) and 2.66 μg/L (IQR = 3.04) respectively. For mercury exposure, there were no significant risk factor found among the workers involved within the dental care. The Mann-Whitney test showed that urine mercury levels were significantly different between respondents who eat seafood more than 5 times per week compared to those who eat it less frequently or not at all (p = 0.003). The urinary mercury levels indicated significant difference between dental workers in their practice using squeeze cloths (Mann-Whitney test, p = 0.03). Multiple logistic regression showed that only the usage of cosmetic products that might contain mercury was found to be significantly associated with the urinary mercury levels (odds ratio [OR] = 15.237; CI: 3.612-64.276). Therefore, mean urinary mercury levels of health care workers were low. Exposure to dental amalgam is not associated with high mercury exposure. However, usage of cosmetic products containing mercury and high seafood consumption may lead to the increase of exposure to mercury. Exposure to the high levels of mercury from dental amalgam can lead to serious health effects among the dental health care workers. Nationwide chronic mercury exposure among dental personnel was assessed through