Science.gov

Sample records for input negative entropy

  1. Negative Entropy of Life

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2015-10-01

    We modify Newtonian gravity to probabilistic quantum mechanical gravity to derive strong coupling. If this approach is valid, we should be able to extend it to the physical body (life) as follows. Using Boltzmann equation, we get the entropy of the universe (137) as if its reciprocal, the fine structure constant (ALPHA), is the hidden candidate representing the negative entropy of the universe which is indicative of the binary information as its basis (http://www.arXiv.org/pdf/physics0210040v5). Since ALPHA relates to cosmology, it must relate to molecular biology too, with the binary system as the fundamental source of information for the nucleotides of the DNA as implicit in the book by the author: ``Quantum Consciousness - The Road to Reality.'' We debate claims of anthropic principle based on the negligible variation of ALPHA and throw light on thermodynamics. We question constancy of G in multiple ways.

  2. Photosynthesis and negative entropy production.

    PubMed

    Jennings, Robert C; Engelmann, Enrico; Garlaschi, Flavio; Casazza, Anna Paola; Zucchelli, Giuseppe

    2005-09-30

    The widely held view that the maximum efficiency of a photosynthetic pigment system is given by the Carnot cycle expression (1-T/Tr) for energy transfer from a hot bath (radiation at temperature Tr) to a cold bath (pigment system at temperature T) is critically examined and demonstrated to be inaccurate when the entropy changes associated with the microscopic process of photon absorption and photochemistry at the level of single photosystems are considered. This is because entropy losses due to excited state generation and relaxation are extremely small (DeltaS < T/Tr) and are essentially associated with the absorption-fluorescence Stokes shift. Total entropy changes associated with primary photochemistry for single photosystems are shown to depend critically on the thermodynamic efficiency of the process. This principle is applied to the case of primary photochemistry of the isolated core of higher plant photosystem I and photosystem II, which are demonstrated to have maximal thermodynamic efficiencies of xi > 0.98 and xi > 0.92 respectively, and which, in principle, function with negative entropy production. It is demonstrated that for the case of xi > (1-T/Tr) entropy production is always negative and only becomes positive when xi < (1-T/Tr). PMID:16139784

  3. Negative temperatures and the definition of entropy

    NASA Astrophysics Data System (ADS)

    Swendsen, Robert H.; Wang, Jian-Sheng

    2016-07-01

    The concept of negative temperature has recently received renewed interest in the context of debates about the correct definition of the thermodynamic entropy in statistical mechanics. Several researchers have identified the thermodynamic entropy exclusively with the "volume entropy" suggested by Gibbs, and have further concluded that by this definition, negative temperatures violate the principles of thermodynamics. We disagree with these conclusions. We demonstrate that volume entropy is inconsistent with the postulates of thermodynamics for systems with non-monotonic energy densities, while a definition of entropy based on the probability distributions of macroscopic variables does satisfy the postulates of thermodynamics. Our results confirm that negative temperature is a valid extension of thermodynamics.

  4. Entropy analysis of systems exhibiting negative probabilities

    NASA Astrophysics Data System (ADS)

    Tenreiro Machado, J. A.

    2016-07-01

    This paper addresses the concept of negative probability and its impact upon entropy. An analogy between the probability generating functions, in the scope of quasiprobability distributions, and the Grünwald-Letnikov definition of fractional derivatives, is explored. Two distinct cases producing negative probabilities are formulated and their distinct meaning clarified. Numerical calculations using the Shannon entropy characterize further the characteristics of the two limit cases.

  5. Negative entropy of mixing for vanadium-platinum solutions.

    PubMed

    Delaire, O; Swan-Wood, T; Fultz, B

    2004-10-29

    The phonon densities of states for pure vanadium and the solid solutions V-6.25% Ni, Pd, Pt were determined from inelastic neutron scattering measurements. The solute atoms caused a large stiffening of the phonons, resulting in large, negative vibrational entropies of mixing. For V-6.25%Pt, the negative vibrational entropy of mixing exceeds the conventional positive chemical entropy of mixing. This negative total entropy of mixing should extend to lower concentrations of Pt, and the effect on the bcc solvus line is discussed. The experimental data were inverted to obtain interatomic force constants by using a Born-von Kármán model with an iterative optimization algorithm. The stiffening of bonds responsible for the decrease of entropy was found to occur mainly in first-nearest-neighbor solute-host bonds, and correlates in part with the solute metallic radius. PMID:15525182

  6. Negative Entropy of Mixing for Vanadium-Platinum Solutions

    NASA Astrophysics Data System (ADS)

    Delaire, O.; Swan–Wood, T.; Fultz, B.

    2004-10-01

    The phonon densities of states for pure vanadium and the solid solutions V-6.25% Ni, Pd, Pt were determined from inelastic neutron scattering measurements. The solute atoms caused a large stiffening of the phonons, resulting in large, negative vibrational entropies of mixing. For V-6.25%Pt, the negative vibrational entropy of mixing exceeds the conventional positive chemical entropy of mixing. This negative total entropy of mixing should extend to lower concentrations of Pt, and the effect on the bcc solvus line is discussed. The experimental data were inverted to obtain interatomic force constants by using a Born von Kármán model with an iterative optimization algorithm. The stiffening of bonds responsible for the decrease of entropy was found to occur mainly in first-nearest-neighbor solute-host bonds, and correlates in part with the solute metallic radius.

  7. Connectivity in the human brain dissociates entropy and complexity of auditory inputs.

    PubMed

    Nastase, Samuel A; Iacovella, Vittorio; Davis, Ben; Hasson, Uri

    2015-03-01

    Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. PMID:25536493

  8. The Contrast Theory of Negative Input.

    ERIC Educational Resources Information Center

    Saxton, Matthew

    1997-01-01

    Presents an alternative definition of negative evidence, based on the idea that the unique discourse structure created in the juxtaposition of child error and adult correct form can reveal the child in contrast or conflict between the two forms. Findings reveal that children reproduced the correct irregular model more often and persisted with…

  9. Entropy versus APE production: On the buoyancy power input in the oceans energy cycle

    NASA Astrophysics Data System (ADS)

    Tailleux, R.

    2010-11-01

    This letter argues that the current controversy about whether Wbuoyancy, the power input due to the surface buoyancy fluxes, is large or small in the oceans stems from two distinct and incompatible views on how Wbuoyancy relates to the volume-integrated work of expansion/contraction B. The current prevailing view is that Wbuoyancy should be identified with the net value of B, which current theories estimate to be small. The alternative view, defended here, is that only the positive part of B, i.e., the one converting internal energy into mechanical energy, should enter the definition of Wbuoyancy, since the negative part of B is associated with the non-viscous dissipation of mechanical energy. Two indirect methods suggest that by contrast, the positive part of B is potentially large.

  10. Entropies of negative incomes, Pareto-distributed loss, and financial crises.

    PubMed

    Gao, Jianbo; Hu, Jing; Mao, Xiang; Zhou, Mi; Gurbaxani, Brian; Lin, Johnny

    2011-01-01

    Health monitoring of world economy is an important issue, especially in a time of profound economic difficulty world-wide. The most important aspect of health monitoring is to accurately predict economic downturns. To gain insights into how economic crises develop, we present two metrics, positive and negative income entropy and distribution analysis, to analyze the collective "spatial" and temporal dynamics of companies in nine sectors of the world economy over a 19 year period from 1990-2008. These metrics provide accurate predictive skill with a very low false-positive rate in predicting downturns. The new metrics also provide evidence of phase transition-like behavior prior to the onset of recessions. Such a transition occurs when negative pretax incomes prior to or during economic recessions transition from a thin-tailed exponential distribution to the higher entropy Pareto distribution, and develop even heavier tails than those of the positive pretax incomes. These features propagate from the crisis initiating sector of the economy to other sectors. PMID:22007270

  11. An entropy-based input variable selection approach to identify equally informative subsets for data-driven hydrological models

    NASA Astrophysics Data System (ADS)

    Karakaya, Gulsah; Taormina, Riccardo; Galelli, Stefano; Damla Ahipasaoglu, Selin

    2015-04-01

    Input Variable Selection (IVS) is an essential step in hydrological modelling problems, since it allows determining the optimal subset of input variables from a large set of candidates to characterize a preselected output. Interestingly, most of the existing IVS algorithms select a single subset, or, at most, one subset of input variables for each cardinality level, thus overlooking the fact that, for a given cardinality, there can be several subsets with similar information content. In this study, we develop a novel IVS approach specifically conceived to account for this issue. The approach is based on the formulation of a four-objective optimization problem that aims at minimizing the number of selected variables and maximizing the prediction accuracy of a data-driven model, while optimizing two entropy-based measures of relevance and redundancy. The redundancy measure ensures that the cross-dependence between the variables in a subset is minimized, while the relevance measure guarantees that the information content of each subset is maximized. In addition to the capability of selecting equally informative subsets, the approach is characterized by two other properties, namely 1) the capability of handling nonlinear interactions between the candidate input variables and preselected output, and 2) computational efficiency. These properties are guaranteed by the adoption of Extreme Learning Machine and Borg MOEA as data-driven model and heuristic optimization procedure, respectively. The approach is demonstrated on a long-term streamflow prediction problem, with the input dataset including both hydro-meteorological variables and climate indices representing dominant modes of climate variability. Results show that the availability of several equally informative subsets allows 1) determining the relative importance of each candidate input, thus supporting the understanding of the underlying physical processes, and 2) finding a better trade-off between multiple

  12. Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis

    PubMed Central

    Dordek, Yedidyah; Soudry, Daniel; Meir, Ron; Derdikman, Dori

    2016-01-01

    Many recent models study the downstream projection from grid cells to place cells, while recent data have pointed out the importance of the feedback projection. We thus asked how grid cells are affected by the nature of the input from the place cells. We propose a single-layer neural network with feedforward weights connecting place-like input cells to grid cell outputs. Place-to-grid weights are learned via a generalized Hebbian rule. The architecture of this network highly resembles neural networks used to perform Principal Component Analysis (PCA). Both numerical results and analytic considerations indicate that if the components of the feedforward neural network are non-negative, the output converges to a hexagonal lattice. Without the non-negativity constraint, the output converges to a square lattice. Consistent with experiments, grid spacing ratio between the first two consecutive modules is −1.4. Our results express a possible linkage between place cell to grid cell interactions and PCA. DOI: http://dx.doi.org/10.7554/eLife.10094.001 PMID:26952211

  13. Edge theory approach to topological entanglement entropy, mutual information, and entanglement negativity in Chern-Simons theories

    NASA Astrophysics Data System (ADS)

    Wen, Xueda; Matsuura, Shunji; Ryu, Shinsei

    2016-06-01

    We develop an approach based on edge theories to calculate the entanglement entropy and related quantities in (2+1)-dimensional topologically ordered phases. Our approach is complementary to, e.g., the existing methods using replica trick and Witten's method of surgery, and applies to a generic spatial manifold of genus g , which can be bipartitioned in an arbitrary way. The effects of fusion and braiding of Wilson lines can be also straightforwardly studied within our framework. By considering a generic superposition of states with different Wilson line configurations, through an interference effect, we can detect, by the entanglement entropy, the topological data of Chern-Simons theories, e.g., the R symbols, monodromy, and topological spins of quasiparticles. Furthermore, by using our method, we calculate other entanglement/correlation measures such as the mutual information and the entanglement negativity. In particular, it is found that the entanglement negativity of two adjacent noncontractible regions on a torus provides a simple way to distinguish Abelian and non-Abelian topological orders.

  14. Coherent Behavior and the Bound State of Water and K+ Imply Another Model of Bioenergetics: Negative Entropy Instead of High-energy Bonds

    PubMed Central

    Jaeken, Laurent; Vasilievich Matveev, Vladimir

    2012-01-01

    Observations of coherent cellular behavior cannot be integrated into widely accepted membrane (pump) theory (MT) and its steady state energetics because of the thermal noise of assumed ordinary cell water and freely soluble cytoplasmic K+. However, Ling disproved MT and proposed an alternative based on coherence, showing that rest (R) and action (A) are two different phases of protoplasm with different energy levels. The R-state is a coherent metastable low-entropy state as water and K+ are bound to unfolded proteins. The A-state is the higher-entropy state because water and K+ are free. The R-to-A phase transition is regarded as a mechanism to release energy for biological work, replacing the classical concept of high-energy bonds. Subsequent inactivation during the endergonic A-to-R phase transition needs an input of metabolic energy to restore the low entropy R-state. Matveev’s native aggregation hypothesis allows to integrate the energetic details of globular proteins into this view. PMID:23264833

  15. Negative entropy, energy, and heat capacity in connection with surface tension: artifact of a model or real

    SciTech Connect

    Lubkin, E.

    1987-05-01

    It is only by neglecting self-adsorption (a treatment referred to as pure-energy, PE) that one gets textbook thermodynamics of a surface, based upon the tension L as a function of temperature T, and one finds negative specific heat for hot water. Any lower critical point and PE provides the other exciting negatives: nicotine-and-water is an example. In order to include adsorption, T must be known in terms of T and chemical potentials as independent variables; this forces measurement of the tension of curved menisci. Will the minus signs remain.

  16. Estradiol, but not testosterone, heightens cortisol-mediated negative feedback on pulsatile ACTH secretion and ACTH approximate entropy in unstressed older men and women.

    PubMed

    Sharma, Animesh N; Aoun, Paul; Wigham, Jean R; Weist, Suanne M; Veldhuis, Johannes D

    2014-05-01

    How sex steroids modulate glucocorticoid feedback on the hypothalamic-pituitary-corticotrope (HPC) unit is controversial in humans. We postulated that testosterone (T) in men and estradiol (E2) in women govern unstressed cortisol-mediated negative feedback on ACTH secretion. To test this hypothesis, 24 men and 24 women age 58 ± 2.4 yr were pretreated with leuprolide and either sex steroid (E2 in women, T in men) or placebo addback. Placebo or ketoconazole (KTCZ) was administered overnight to inhibit adrenal steroidogenesis during overnight 14-h intravenous infusions of saline or cortisol in a continuous versus pulsatile manner to test for feedback differences. ACTH was measured every 10 min during the last 8 h of the infusions. The main outcome measures were mean ACTH concentrations, pulsatile ACTH secretion, and ACTH approximate entropy (ApEn). ACTH concentrations were lower in women than men (P < 0.01), and in women in the E2+ compared with E2- group under both continuous (P = 0.01) and pulsatile (P = 0.006) cortisol feedback, despite higher cortisol binding globulin and lower free cortisol levels in women than men (P < 0.01). In the combined groups, under both modes of cortisol addback, ACTH concentrations, pulsatile ACTH secretion, and ACTH secretory-burst mass correlated negatively and univariately with E2 levels (each P < 0.005). E2 also suppressed ACTH ApEn (process randomness) during continuous cortisol feedback (P = 0.004). T had no univariate effect but was a positive correlate of ACTH when assessed jointly with E2 (negative) under cortisol pulses. In conclusion, sex steroids modulate selective gender-related hypothalamic-pituitary adrenal-axis adaptations to cortisol feedback in unstressed humans. PMID:24573184

  17. A Regulated Double-Negative Feedback Decodes the Temporal Gradient of Input Stimulation in a Cell Signaling Network.

    PubMed

    Park, Sang-Min; Shin, Sung-Young; Cho, Kwang-Hyun

    2016-01-01

    Revealing the hidden mechanism of how cells sense and react to environmental signals has been a central question in cell biology. We focused on the rate of increase of stimulation, or temporal gradient, known to cause different responses of cells. We have investigated all possible three-node enzymatic networks and identified a network motif that robustly generates a transient or sustained response by acute or gradual stimulation, respectively. We also found that a regulated double-negative feedback within the motif is essential for the temporal gradient-sensitive switching. Our analysis highlights the essential structure and mechanism enabling cells to properly respond to dynamic environmental changes. PMID:27584002

  18. Minimum output entropy of bosonic channels: A conjecture

    SciTech Connect

    Giovannetti, Vittorio; Guha, Saikat; Maccone, Lorenzo; Shapiro, Jeffrey H.; Lloyd, Seth

    2004-09-01

    The von Neumann entropy at the output of a bosonic channel with thermal noise is analyzed. Coherent-state inputs are conjectured to minimize this output entropy. Physical and mathematical evidence in support of the conjecture is provided. A stronger conjecture - that output states resulting from coherent-state inputs majorize the output states from other inputs - is also discussed.

  19. Expression of the Troponin C at 41C Gene in Adult Drosophila Tubular Muscles Depends upon Both Positive and Negative Regulatory Inputs

    PubMed Central

    Chechenova, Maria B.; Maes, Sara; Cripps, Richard M.

    2015-01-01

    Most animals express multiple isoforms of structural muscle proteins to produce tissues with different physiological properties. In Drosophila, the adult muscles include tubular-type muscles and the fibrillar indirect flight muscles. Regulatory processes specifying tubular muscle fate remain incompletely understood, therefore we chose to analyze the transcriptional regulation of TpnC41C, a Troponin C gene expressed in the tubular jump muscles, but not in the fibrillar flight muscles. We identified a 300-bp promoter fragment of TpnC41C sufficient for the fiber-specific reporter expression. Through an analysis of this regulatory element, we identified two sites necessary for the activation of the enhancer. Mutations in each of these sites resulted in 70% reduction of enhancer activity. One site was characterized as a binding site for Myocyte Enhancer Factor-2. In addition, we identified a repressive element that prevents activation of the enhancer in other muscle fiber types. Mutation of this site increased jump muscle-specific expression of the reporter, but more importantly reporter expression expanded into the indirect flight muscles. Our findings demonstrate that expression of the TpnC41C gene in jump muscles requires integration of multiple positive and negative transcriptional inputs. Identification of the transcriptional regulators binding the cis-elements that we identified will reveal the regulatory pathways controlling muscle fiber differentiation. PMID:26641463

  20. The entropy in supernova explosions

    SciTech Connect

    Colgate, S.A.

    1990-12-06

    The explosion of a supernova forms because of the collapse to a neutron star. In addition an explosion requires that a region of relatively high entropy be in contact with the neutron star and persisting for a relatively protracted period of time. The high entropy region ensures that the maximum temperature in contact with the neutron star and in hydrostatic equilibrium is less than some maximum. This temperature must be low enough such that neutrino emission cooling is small, otherwise the equilibrium atmosphere will collapse adding a large accretion mass to the neutron star. A so-called normal explosion shock that must reverse the accretion flow corresponding to a typical stellar collapse must have sufficient strength or pressure to reverse this flow and eject the matter with 10{sup 51} ergs for a typical type II supernova. Surprisingly the matter behind such a shock wave has a relatively low entropy low enough such that neutrino cooling would be orders of magnitude faster than the expansion rate. The resulting accretion low would be inside the Bondi radius and result in free-fall accretion inside the expanding rarefaction wave. The accreted mass or reimplosion mass unless stopped by a high entropy bubble could than exceed that of bound neutron star models. In addition the explosion shock would be overtaken by the rarefaction wave and either disappear or at least weaken. Hence, a hot, high entropy bubble is required to support an equilibrium atmosphere in contact with a relatively cold neutron star. Subsequently during the expansion of the high entropy bubble that drives or pushes on the shocked matter, mixing of the matter of the high entropy bubble and lower entropy shock-ejected matter is ensured. The mixing is driven by the negative entropy gradient between the high entropy bubble accelerating the shocked matter and the lower entropy of the matter behind the shock.

  1. Entropy, materials, and posterity

    USGS Publications Warehouse

    Cloud, P.

    1977-01-01

    Materials and energy are the interdependent feedstocks of economic systems, and thermodynamics is their moderator. It costs energy to transform the dispersed minerals of Earth's crust into ordered materials and structures. And it costs materials to collect and focus the energy to perform work - be it from solar, fossil fuel, nuclear, or other sources. The greater the dispersal of minerals sought, the more energy is required to collect them into ordered states. But available energy can be used once only. And the ordered materials of industrial economies become disordered with time. They may be partially reordered and recycled, but only at further costs in energy. Available energy everywhere degrades to bound states and order to disorder - for though entropy may be juggled it always increases. Yet industry is utterly dependent on low entropy states of matter and energy, while decreasing grades of ore require ever higher inputs of energy to convert them to metals, with ever increasing growth both of entropy and environmental hazard. Except as we may prize a thing for its intrinsic qualities - beauty, leisure, love, or gold - low-entropy is the only thing of real value. It is worth whatever the market will bear, and it becomes more valuable as entropy increases. It would be foolish of suppliers to sell it more cheaply or in larger amounts than their own enjoyment of life requires, whatever form it may take. For this reason, and because of physical constraints on the availability of all low-entropy states, the recent energy crises is only the first of a sequence of crises to be expected in energy and materials as long as current trends continue. The apportioning of low-entropy states in a modern industrial society is achieved more or less according to the theory of competitive markets. But the rational powers of this theory suffer as the world grows increasingly polarized into rich, over-industrialized nations with diminishing resource bases and poor, supplier nations

  2. Saturating the holographic entropy bound

    SciTech Connect

    Bousso, Raphael; Freivogel, Ben; Leichenauer, Stefan

    2010-10-15

    The covariant entropy bound states that the entropy, S, of matter on a light sheet cannot exceed a quarter of its initial area, A, in Planck units. The gravitational entropy of black holes saturates this inequality. The entropy of matter systems, however, falls short of saturating the bound in known examples. This puzzling gap has led to speculation that a much stronger bound, S < or approx. A{sup 3/4}, may hold true. In this note, we exhibit light sheets whose entropy exceeds A{sup 3/4} by arbitrarily large factors. In open Friedmann-Robertson-Walker universes, such light sheets contain the entropy visible in the sky; in the limit of early curvature domination, the covariant bound can be saturated but not violated. As a corollary, we find that the maximum observable matter and radiation entropy in universes with positive (negative) cosmological constant is of order {Lambda}{sup -1} ({Lambda}{sup -2}), and not |{Lambda}|{sup -3/4} as had hitherto been believed. Our results strengthen the evidence for the covariant entropy bound, while showing that the stronger bound S < or approx. A{sup 3/4} is not universally valid. We conjecture that the stronger bound does hold for static, weakly gravitating systems.

  3. Upper entropy axioms and lower entropy axioms

    SciTech Connect

    Guo, Jin-Li Suo, Qi

    2015-04-15

    The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon–Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon–Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover, different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics.

  4. Upper entropy axioms and lower entropy axioms

    NASA Astrophysics Data System (ADS)

    Guo, Jin-Li; Suo, Qi

    2015-04-01

    The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon-Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon-Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover, different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics.

  5. Thermodynamic law from the entanglement entropy bound

    NASA Astrophysics Data System (ADS)

    Park, Chanyong

    2016-04-01

    From black hole thermodynamics, the Bekenstein bound has been proposed as a universal thermal entropy bound. It has been further generalized to an entanglement entropy bound which is valid even in a quantum system. In a quantumly entangled system, the non-negativity of the relative entropy leads to the entanglement entropy bound. When the entanglement entropy bound is saturated, a quantum system satisfies the thermodynamicslike law with an appropriately defined entanglement temperature. We show that the saturation of the entanglement entropy bound accounts for a universal feature of the entanglement temperature proportional to the inverse of the system size. In addition, we show that the deformed modular Hamiltonian under a global quench also satisfies the generalized entanglement entropy boundary after introducing a new quantity called the entanglement chemical potential.

  6. In defense of negative temperature

    NASA Astrophysics Data System (ADS)

    Poulter, J.

    2016-03-01

    This pedagogical comment highlights three misconceptions concerning the usefulness of the concept of negative temperature, being derived from the usual, often termed Boltzmann, definition of entropy. First, both the Boltzmann and Gibbs entropies must obey the same thermodynamic consistency relation. Second, the Boltzmann entropy does obey the second law of thermodynamics. Third, there exists an integrating factor of the heat differential with both definitions of entropy.

  7. Descending entropy in expanding the universe

    NASA Astrophysics Data System (ADS)

    Portnov, Yuriy A.

    2015-11-01

    Inter-relation between 1-form of nonmetricity and change of entropy in the course of time is considered in the study. It is shown that change of entropy in expanding universe will be always negative. The obtained result contravenes the second law of thermodynamics, however it explains available ordered macrostructures in the universe.

  8. The Maximum Entropy Principle for Generalized Entropies

    NASA Astrophysics Data System (ADS)

    Tsukada, Makoto

    2008-03-01

    It is well known that Gibbs states and the Gaussian distribution are characterized by the maximum entropy principle. In this paper we discuss probability distributions which maximize generalized entropies including Rényi's and Tsal-lis's.

  9. Entropy power inequalities for qudits

    NASA Astrophysics Data System (ADS)

    Audenaert, Koenraad; Datta, Nilanjana; Ozols, Maris

    2016-05-01

    Shannon's entropy power inequality (EPI) can be viewed as a statement of concavity of an entropic function of a continuous random variable under a scaled addition rule: f ( √{ a } X + √{ 1 - a } Y ) ≥ a f ( X ) + ( 1 - a ) f ( Y ) ∀ a ∈ [ 0 , 1 ] . Here, X and Y are continuous random variables and the function f is either the differential entropy or the entropy power. König and Smith [IEEE Trans. Inf. Theory 60(3), 1536-1548 (2014)] and De Palma, Mari, and Giovannetti [Nat. Photonics 8(12), 958-964 (2014)] obtained quantum analogues of these inequalities for continuous-variable quantum systems, where X and Y are replaced by bosonic fields and the addition rule is the action of a beam splitter with transmissivity a on those fields. In this paper, we similarly establish a class of EPI analogues for d-level quantum systems (i.e., qudits). The underlying addition rule for which these inequalities hold is given by a quantum channel that depends on the parameter a ∈ [0, 1] and acts like a finite-dimensional analogue of a beam splitter with transmissivity a, converting a two-qudit product state into a single qudit state. We refer to this channel as a partial swap channel because of the particular way its output interpolates between the states of the two qudits in the input as a is changed from zero to one. We obtain analogues of Shannon's EPI, not only for the von Neumann entropy and the entropy power for the output of such channels, but also for a much larger class of functions. This class includes the Rényi entropies and the subentropy. We also prove a qudit analogue of the entropy photon number inequality (EPnI). Finally, for the subclass of partial swap channels for which one of the qudit states in the input is fixed, our EPIs and EPnI yield lower bounds on the minimum output entropy and upper bounds on the Holevo capacity.

  10. Evolution of stellar entropy

    NASA Astrophysics Data System (ADS)

    de Souza, R. A.; de Avellar, M. G. B.; Horvath, J. E.

    2015-11-01

    An appraisal of the behavior of stellar entropy along stellar evolution is made. It is shown that the entropy per baryon of a star of a fixed baryon number decreases monotonically with increasing compactness of the star. The same entropy per baryon increases only whenever an irreversible collapse of the star happens. The recent proposals for a gravitational entropy related to curvature may justify the huge increase of the entropy in the ultimate collapse to a black hole.

  11. The third law of thermodynamics and the fractional entropies

    NASA Astrophysics Data System (ADS)

    Baris Bagci, G.

    2016-08-01

    We consider the fractal calculus based Ubriaco and Machado entropies and investigate whether they conform to the third law of thermodynamics. The Ubriaco entropy satisfies the third law of thermodynamics in the interval 0 < q ≤ 1 exactly where it is also thermodynamically stable. The Machado entropy, on the other hand, yields diverging inverse temperature in the region 0 < q ≤ 1, albeit with non-vanishing negative entropy values. Therefore, despite the divergent inverse temperature behavior, the Machado entropy fails the third law of thermodynamics. We also show that the aforementioned results are also supported by the one-dimensional Ising model with no external field.

  12. Generalized entropy production phenomena: a master-equation approach.

    PubMed

    Casas, G A; Nobre, F D; Curado, E M F

    2014-01-01

    The time rate of generalized entropic forms, defined in terms of discrete probabilities following a master equation, is investigated. Both contributions, namely entropy production and flux, are obtained, extending works carried previously for the Boltzmann-Gibbs entropy to a wide class of entropic forms. Particularly, it is shown that the entropy-production contribution is always non-negative for such entropies. Some illustrative examples for known generalized entropic forms in the literature are also worked out. Since generalized entropies have been lately associated with several complex systems in nature, the present analysis should be applicable to irreversible processes in these systems. PMID:24580179

  13. Structural complexity and configurational entropy of crystals.

    PubMed

    Krivovichev, Sergey V

    2016-04-01

    Using a statistical approach, it is demonstrated that the complexity of a crystal structure measured as the Shannon information per atom [Krivovichev (2012). Acta Cryst. A68, 393-398] represents a negative contribution to the configurational entropy of a crystalline solid. This conclusion is in full accordance with the general agreement that information and entropy are reciprocal variables. It also agrees well with the understanding that complex structures possess lower entropies relative to their simpler counterparts. The obtained equation is consistent with the Landauer principle and points out that the information encoded in a crystal structure has a physical nature. PMID:27048729

  14. Generalized entanglement entropy

    NASA Astrophysics Data System (ADS)

    Taylor, Marika

    2016-07-01

    We discuss two measures of entanglement in quantum field theory and their holographic realizations. For field theories admitting a global symmetry, we introduce a global symmetry entanglement entropy, associated with the partitioning of the symmetry group. This quantity is proposed to be related to the generalized holographic entanglement entropy defined via the partitioning of the internal space of the bulk geometry. Thesecond measure of quantum field theory entanglement is the field space entanglement entropy, obtained by integrating out a subset of the quantum fields. We argue that field space entanglement entropy cannot be precisely realised geometrically in a holographic dual. However, for holographic geometries with interior decoupling regions, the differential entropy provides a close analogue to the field space entanglement entropy. We derive generic descriptions of such inner throat regions in terms of gravity coupled to massive scalars and show how the differential entropy in the throat captures features of the field space entanglement entropy.

  15. Entropy descriptors and Entropy Stabilized Oxides

    NASA Astrophysics Data System (ADS)

    Curtarolo, Stefano

    In this presentation we will discuss the development of entropy descriptors for the AFLOWLIB.org ab-initio repository and the path leading to the synthesis of the novel entropy stabilized oxides. [Nat. Comm. 6:8485 (2015)]. Research sponsored by DOD-ONR N000141310635 and N000141512863.

  16. Entropy: Order or Information

    ERIC Educational Resources Information Center

    Ben-Naim, Arieh

    2011-01-01

    Changes in entropy can "sometimes" be interpreted in terms of changes in disorder. On the other hand, changes in entropy can "always" be interpreted in terms of changes in Shannon's measure of information. Mixing and demixing processes are used to highlight the pitfalls in the association of entropy with disorder. (Contains 3 figures.)

  17. Entropy Is Simple, Qualitatively.

    ERIC Educational Resources Information Center

    Lambert, Frank L.

    2002-01-01

    Suggests that qualitatively, entropy is simple. Entropy increase from a macro viewpoint is a measure of the dispersal of energy from localized to spread out at a temperature T. Fundamentally based on statistical and quantum mechanics, this approach is superior to the non-fundamental "disorder" as a descriptor of entropy change. (MM)

  18. RNA Thermodynamic Structural Entropy

    PubMed Central

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner’99 and Turner’04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  19. High Order Entropy-Constrained Residual VQ for Lossless Compression of Images

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen

    1995-01-01

    High order entropy coding is a powerful technique for exploiting high order statistical dependencies. However, the exponentially high complexity associated with such a method often discourages its use. In this paper, an entropy-constrained residual vector quantization method is proposed for lossless compression of images. The method consists of first quantizing the input image using a high order entropy-constrained residual vector quantizer and then coding the residual image using a first order entropy coder. The distortion measure used in the entropy-constrained optimization is essentially the first order entropy of the residual image. Experimental results show very competitive performance.

  20. On variational definition of quantum entropy

    SciTech Connect

    Belavkin, Roman V.

    2015-01-13

    Entropy of distribution P can be defined in at least three different ways: 1) as the expectation of the Kullback-Leibler (KL) divergence of P from elementary δ-measures (in this case, it is interpreted as expected surprise); 2) as a negative KL-divergence of some reference measure ν from the probability measure P; 3) as the supremum of Shannon’s mutual information taken over all channels such that P is the output probability, in which case it is dual of some transportation problem. In classical (i.e. commutative) probability, all three definitions lead to the same quantity, providing only different interpretations of entropy. In non-commutative (i.e. quantum) probability, however, these definitions are not equivalent. In particular, the third definition, where the supremum is taken over all entanglements of two quantum systems with P being the output state, leads to the quantity that can be twice the von Neumann entropy. It was proposed originally by V. Belavkin and Ohya [1] and called the proper quantum entropy, because it allows one to define quantum conditional entropy that is always non-negative. Here we extend these ideas to define also quantum counterpart of proper cross-entropy and cross-information. We also show inequality for the values of classical and quantum information.

  1. Applications of quantum entropy to statistics

    SciTech Connect

    Silver, R.N.; Martz, H.F.

    1994-07-01

    This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to heirarchical Bayes methods.

  2. Relative entropy equals bulk relative entropy

    NASA Astrophysics Data System (ADS)

    Jafferis, Daniel L.; Lewkowycz, Aitor; Maldacena, Juan; Suh, S. Josephine

    2016-06-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  3. Configurational Entropy Revisited

    NASA Astrophysics Data System (ADS)

    Lambert, Frank L.

    2007-09-01

    Entropy change is categorized in some prominent general chemistry textbooks as being either positional (configurational) or thermal. In those texts, the accompanying emphasis on the dispersal of matter—independent of energy considerations and thus in discord with kinetic molecular theory—is most troubling. This article shows that the variants of entropy can be treated from a unified viewpoint and argues that to decrease students' confusion about the nature of entropy change these variants of entropy should be merged. Molecular energy dispersal in space is implicit but unfortunately tacit in the cell models of statistical mechanics that develop the configurational entropy change in gas expansion, fluids mixing, or the addition of a non-volatile solute to a solvent. Two factors are necessary for entropy change in chemistry. An increase in thermodynamic entropy is enabled in a process by the motional energy of molecules (that, in chemical reactions, can arise from the energy released from a bond energy change). However, entropy increase is only actualized if the process results in a larger number of arrangements for the system's energy, that is, a final state that involves the most probable distribution for that energy under the new constraints. Positional entropy should be eliminated from general chemistry instruction and, especially benefiting "concrete minded" students, it should be replaced by emphasis on the motional energy of molecules as enabling entropy change.

  4. Maximum entropy and drug absorption.

    PubMed

    Charter, M K; Gull, S F

    1991-10-01

    The application of maximum entropy to the calculation of drug absorption rates was introduced in an earlier paper. Here it is developed further, and the whole procedure is presented as a problem in scientific inference to be solved using Bayes' theorem. Blood samples do not need to be taken at equally spaced intervals, and no smoothing, interpolation, extrapolation, or other preprocessing of the data is necessary. The resulting input rate estimates are smooth and physiologically realistic, even with noisy data, and their accuracy is quantified. Derived quantities such as the proportion of the dose absorbed, and the mean and median absorption times, are also obtained, together with their error estimates. There are no arbitrarily valued parameters in the analysis, and no specific functional form, such as an exponential or polynomial, is assumed for the input rate functions. PMID:1783989

  5. Theory of entropy production in quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Solano-Carrillo, E.; Millis, A. J.

    2016-06-01

    We define the entropy operator as the negative of the logarithm of the density matrix, give a prescription for extracting its thermodynamically measurable part, and discuss its dynamics. For an isolated system we derive the first, second, and third laws of thermodynamics. For weakly coupled subsystems of an isolated system, an expression for the long-time limit of the expectation value of the rate of change of the thermodynamically measurable part of the entropy operator is derived and interpreted in terms of entropy production and entropy transport terms. The interpretation is justified by comparison to the known expression for the entropy production in an aged classical Markovian system with Gaussian fluctuations and by a calculation of the current-induced entropy production in a conductor with electron-phonon scattering.

  6. Entropy in Rhetoric.

    ERIC Educational Resources Information Center

    Marder, Daniel

    The Second Law of Thermodynamics demonstrates the idea of entropy, the tendency of ordered energy to free itself and thus break apart the system that contains it and dissipate that system into chaos. When applied to communications theory, entropy increases not only with noise but with the density of information--particles of possible meaning…

  7. The Holographic Entropy Cone

    SciTech Connect

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  8. Generalized quantum entropies

    NASA Astrophysics Data System (ADS)

    Santos, A. P.; Silva, R.; Alcaniz, J. S.; Anselmo, D. H. A. L.

    2011-08-01

    A deduction of generalized quantum entropies within the Tsallis and Kaniadakis frameworks is derived using a generalization of the ordinary multinomial coefficient. This generalization is based on the respective deformed multiplication and division. We show that the two above entropies are consistent with ones arbitrarily assumed at other contexts.

  9. The Holographic Entropy Cone

    DOE PAGESBeta

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phasemore » space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.« less

  10. The holographic entropy cone

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-09-01

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  11. Charged topological entanglement entropy

    NASA Astrophysics Data System (ADS)

    Matsuura, Shunji; Wen, Xueda; Hung, Ling-Yan; Ryu, Shinsei

    2016-05-01

    A charged entanglement entropy is a new measure which probes quantum entanglement between different charge sectors. We study symmetry-protected topological (SPT) phases in (2+1)-dimensional space-time by using this charged entanglement entropy. SPT phases are short-range entangled states without topological order and hence cannot be detected by the topological entanglement entropy. We demonstrate that the universal part of the charged entanglement entropy is nonzero for nontrivial SPT phases and therefore it is a useful measure to detect short-range entangled topological phases. We also discuss that the classification of SPT phases based on the charged topological entanglement entropy is related to that of the braiding statistics of quasiparticles.

  12. Continuity of the entropy of macroscopic quantum systems.

    PubMed

    Swendsen, Robert H

    2015-11-01

    The proper definition of entropy is fundamental to the relationship between statistical mechanics and thermodynamics. It also plays a major role in the recent debate about the validity of the concept of negative temperature. In this paper, I analyze and calculate the thermodynamic entropy for large but finite quantum mechanical systems. A special feature of this analysis is that the thermodynamic energy of a quantum system is shown to be a continuous variable, rather than being associated with discrete energy eigenvalues. Calculations of the entropy as a function of energy can be carried out with a Legendre transform of thermodynamic potentials obtained from a canonical ensemble. The resultant expressions for the entropy are able to describe equilibrium between quantum systems having incommensurate energy-level spacings. This definition of entropy preserves all required thermodynamic properties, including satisfaction of all postulates and laws of thermodynamics. It demonstrates the consistency of the concept of negative temperature with the principles of thermodynamics. PMID:26651650

  13. Repositioning Recitation Input in College English Teaching

    ERIC Educational Resources Information Center

    Xu, Qing

    2009-01-01

    This paper tries to discuss how recitation input helps overcome the negative influences on the basis of second language acquisition theory and confirms the important role that recitation input plays in improving college students' oral and written English.

  14. Entropy and biological systems: Experimentally-investigated entropy-driven stacking of plant photosynthetic membranes

    NASA Astrophysics Data System (ADS)

    Jia, Husen; Liggins, John R.; Chow, Wah Soon

    2014-02-01

    According to the Second Law of Thermodynamics, an overall increase of entropy contributes to the driving force for any physicochemical process, but entropy has seldom been investigated in biological systems. Here, for the first time, we apply Isothermal Titration Calorimetry (ITC) to investigate the Mg2+-induced spontaneous stacking of photosynthetic membranes isolated from spinach leaves. After subtracting a large endothermic interaction of MgCl2 with membranes, unrelated to stacking, we demonstrate that the enthalpy change (heat change at constant pressure) is zero or marginally positive or negative. This first direct experimental evidence strongly suggests that an entropy increase significantly drives membrane stacking in this ordered biological structure. Possible mechanisms for the entropy increase include: (i) the attraction between discrete oppositely-charged areas, releasing counterions; (ii) the release of loosely-bound water molecules from the inter-membrane gap; (iii) the increased orientational freedom of previously-aligned water dipoles; and (iv) the lateral rearrangement of membrane components.

  15. The vibrational and configurational entropy of α-brass☆

    PubMed Central

    Benisek, Artur; Dachs, Edgar; Salihović, Miralem; Paunovic, Aleksandar; Maier, Maria E.

    2014-01-01

    The heat capacities of two samples of a fcc Cu–Zn alloy with the composition CuZn15 and CuZn34 were measured from T = 5 K to 573 K using relaxation and differential scanning calorimetry. Below ∼90 K, they are characterised by negative excess heat capacities deviating from ideal mixing by up to −0.20 and −0.44 J · mol−1 · K−1 for CuZn15 and CuZn34, respectively. The excess heat capacities produce excess vibrational entropies, which are less negative compared to the excess entropy available from the literature. Since the literature entropy data contain both, the configurational and the vibrational part of the entropy, the difference is attributed to the excess configurational entropy. The thermodynamics of different short-range ordered samples was also investigated. The extent of the short-range order had no influence on the heat capacity below T = 300 K. Above T = 300 K, where the ordering changed during the measurement, the heat capacity depended strongly on the thermal history of the samples. From these data, the heat and entropy of ordering was calculated. The results on the vibrational entropy of this study were also used to test a relationship for estimating the excess vibrational entropy of mixing. PMID:24926103

  16. Conditional entropy of ordinal patterns

    NASA Astrophysics Data System (ADS)

    Unakafov, Anton M.; Keller, Karsten

    2014-02-01

    In this paper we investigate a quantity called conditional entropy of ordinal patterns, akin to the permutation entropy. The conditional entropy of ordinal patterns describes the average diversity of the ordinal patterns succeeding a given ordinal pattern. We observe that this quantity provides a good estimation of the Kolmogorov-Sinai entropy in many cases. In particular, the conditional entropy of ordinal patterns of a finite order coincides with the Kolmogorov-Sinai entropy for periodic dynamics and for Markov shifts over a binary alphabet. Finally, the conditional entropy of ordinal patterns is computationally simple and thus can be well applied to real-world data.

  17. The Mystique of Entropy.

    ERIC Educational Resources Information Center

    Kyle, Benjamin G.

    1988-01-01

    Illustrates qualitative and metaphoric applications of entropy in the areas of cosmology, the birth and death of the universe and time; life and evolution; literature and art; and social science. (RT)

  18. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  19. Local entropy generation analysis

    SciTech Connect

    Drost, M.K.; White, M.D.

    1991-02-01

    Second law analysis techniques have been widely used to evaluate the sources of irreversibility in components and systems of components but the evaluation of local sources of irreversibility in thermal processes has received little attention. While analytical procedures for evaluating local entropy generation have been developed, applications have been limited to fluid flows with analytical solutions for the velocity and temperature fields. The analysis of local entropy generation can be used to evaluate more complicated flows by including entropy generation calculations in a computational fluid dynamics (CFD) code. The research documented in this report consists of incorporating local entropy generation calculations in an existing CFD code and then using the code to evaluate the distribution of thermodynamic losses in two applications: an impinging jet and a magnetic heat pump. 22 refs., 13 figs., 9 tabs.

  20. Entropy of stochastic flows

    SciTech Connect

    Dorogovtsev, Andrei A

    2010-06-29

    For sets in a Hilbert space the concept of quadratic entropy is introduced. It is shown that this entropy is finite for the range of a stochastic flow of Brownian particles on R. This implies, in particular, the fact that the total time of the free travel in the Arratia flow of all particles that started from a bounded interval is finite. Bibliography: 10 titles.

  1. Asymptotic entropy bounds

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael

    2016-07-01

    We show that known entropy bounds constrain the information carried off by radiation to null infinity. We consider distant, planar null hypersurfaces in asymptotically flat spacetime. Their focusing and area loss can be computed perturbatively on a Minkowski background, yielding entropy bounds in terms of the energy flux of the outgoing radiation. In the asymptotic limit, we obtain boundary versions of the quantum null energy condition, of the generalized Second Law, and of the quantum Bousso bound.

  2. Anomalies and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Nishioka, Tatsuma; Yarom, Amos

    2016-03-01

    We initiate a systematic study of entanglement and Rényi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanishing Pontryagin classes.

  3. Symbolic transfer entropy.

    PubMed

    Staniek, Matthäus; Lehnertz, Klaus

    2008-04-18

    We propose to estimate transfer entropy using a technique of symbolization. We demonstrate numerically that symbolic transfer entropy is a robust and computationally fast method to quantify the dominating direction of information flow between time series from structurally identical and nonidentical coupled systems. Analyzing multiday, multichannel electroencephalographic recordings from 15 epilepsy patients our approach allowed us to reliably identify the hemisphere containing the epileptic focus without observing actual seizure activity. PMID:18518155

  4. Symbolic Transfer Entropy

    NASA Astrophysics Data System (ADS)

    Staniek, Matthäus; Lehnertz, Klaus

    2008-04-01

    We propose to estimate transfer entropy using a technique of symbolization. We demonstrate numerically that symbolic transfer entropy is a robust and computationally fast method to quantify the dominating direction of information flow between time series from structurally identical and nonidentical coupled systems. Analyzing multiday, multichannel electroencephalographic recordings from 15 epilepsy patients our approach allowed us to reliably identify the hemisphere containing the epileptic focus without observing actual seizure activity.

  5. Connectivity in the human brain dissociates entropy and complexity of auditory inputs☆

    PubMed Central

    Nastase, Samuel A.; Iacovella, Vittorio; Davis, Ben; Hasson, Uri

    2015-01-01

    Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators. PMID:25536493

  6. Entropy, matter, and cosmology.

    PubMed

    Prigogine, I; Géhéniau, J

    1986-09-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747

  7. Entropy of quasiblack holes

    SciTech Connect

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2010-03-15

    We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

  8. Entropy, matter, and cosmology

    PubMed Central

    Prigogine, I.; Géhéniau, J.

    1986-01-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary “C” field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747

  9. The continuity of the output entropy of positive maps

    SciTech Connect

    Shirokov, Maxim E

    2011-10-31

    Global and local continuity conditions for the output von Neumann entropy for positive maps between Banach spaces of trace-class operators in separable Hilbert spaces are obtained. Special attention is paid to completely positive maps: infinite dimensional quantum channels and operations. It is shown that as a result of some specific properties of the von Neumann entropy (as a function on the set of density operators) several results on the output entropy of positive maps can be obtained, which cannot be derived from the general properties of entropy type functions. In particular, it is proved that global continuity of the output entropy of a positive map follows from its finiteness. A characterization of positive linear maps preserving continuity of the entropy (in the following sense: continuity of the entropy on an arbitrary subset of input operators implies continuity of the output entropy on this subset) is obtained. A connection between the local continuity properties of two completely positive complementary maps is considered. Bibliography: 21 titles.

  10. Entanglement entropy and variational methods: Interacting scalar fields

    NASA Astrophysics Data System (ADS)

    Cotler, Jordan S.; Mueller, Mark T.

    2016-02-01

    We develop a variational approximation to the entanglement entropy for scalar ϕ4 theory in 1 + 1, 2 + 1, and 3 + 1 dimensions, and then examine the entanglement entropy as a function of the coupling. We find that in 1 + 1 and 2 + 1 dimensions, the entanglement entropy of ϕ4 theory as a function of coupling is monotonically decreasing and convex. While ϕ4 theory with positive bare coupling in 3 + 1 dimensions is thought to lead to a trivial free theory, we analyze a version of ϕ4 with infinitesimal negative bare coupling, an asymptotically free theory known as precariousϕ4 theory, and explore the monotonicity and convexity of its entanglement entropy as a function of coupling. Within the variational approximation, the stability of precarious ϕ4 theory is related to the sign of the first and second derivatives of the entanglement entropy with respect to the coupling.

  11. Swiveled Rényi entropies

    NASA Astrophysics Data System (ADS)

    Dupuis, Frédéric; Wilde, Mark M.

    2016-03-01

    This paper introduces "swiveled Rényi entropies" as an alternative to the Rényi entropic quantities put forward in Berta et al. (Phys Rev A 91(2):022333, 2015). What distinguishes the swiveled Rényi entropies from the prior proposal of Berta et al. is that there is an extra degree of freedom: an optimization over unitary rotations with respect to particular fixed bases (swivels). A consequence of this extra degree of freedom is that the swiveled Rényi entropies are ordered, which is an important property of the Rényi family of entropies. The swiveled Rényi entropies are, however, generally discontinuous at α =1 and do not converge to the von Neumann entropy-based measures in the limit as α rightarrow 1, instead bounding them from above and below. Particular variants reduce to known Rényi entropies, such as the Rényi relative entropy or the sandwiched Rényi relative entropy, but also lead to ordered Rényi conditional mutual information and ordered Rényi generalizations of a relative entropy difference. Refinements of entropy inequalities such as monotonicity of quantum relative entropy and strong subadditivity follow as a consequence of the aforementioned properties of the swiveled Rényi entropies. Due to the lack of convergence at α =1, it is unclear whether the swiveled Rényi entropies would be useful in one-shot information theory, so that the present contribution represents partial progress toward this goal.

  12. Entanglement entropy on fractals

    NASA Astrophysics Data System (ADS)

    Faraji Astaneh, Amin

    2016-03-01

    We use the heat kernel method to calculate the entanglement entropy for a given entangling region on a fractal. The leading divergent term of the entropy is obtained as a function of the fractal dimension as well as the walk dimension. The power of the UV cutoff parameter is (generally) a fractional number, which, indeed, is a certain combination of these two indices. This exponent is known as the spectral dimension. We show that there is a novel log-periodic oscillatory behavior in the expression of entropy which has root in the complex dimension of the fractal. We finally indicate that the holographic calculation in a certain hyperscaling-violating bulk geometry yields the same leading term for the entanglement entropy, if one identifies the effective dimension of the hyperscaling-violating theory with the spectral dimension of the fractal. We provide additional support by comparing the behavior of the thermal entropy in terms of the temperature, computed for two geometries, the fractal geometry and the hyperscaling-violating background.

  13. On Entropy Trail

    NASA Astrophysics Data System (ADS)

    Farokhi, Saeed; Taghavi, Ray; Keshmiri, Shawn

    2015-11-01

    Stealth technology is developed for military aircraft to minimize their signatures. The primary attention was focused on radar signature, followed by the thermal and noise signatures of the vehicle. For radar evasion, advanced configuration designs, extensive use of carbon composites and radar-absorbing material, are developed. On thermal signature, mainly in the infra-red (IR) bandwidth, the solution was found in blended rectangular nozzles of high aspect ratio that are shielded from ground detectors. For noise, quiet and calm jets are integrated into vehicles with low-turbulence configuration design. However, these technologies are totally incapable of detecting new generation of revolutionary aircraft. These shall use all electric, distributed, propulsion system that are thermally transparent. In addition, composite skin and non-emitting sensors onboard the aircraft will lead to low signature. However, based on the second-law of thermodynamics, there is no air vehicle that can escape from leaving an entropy trail. Entropy is thus the only inevitable signature of any system, that once measured, can detect the source. By characterizing the entropy field based on its statistical properties, the source may be recognized, akin to face recognition technology. Direct measurement of entropy is cumbersome, however as a derived property, it can be easily measured. The measurement accuracy depends on the probe design and the sensors onboard. One novel air data sensor suite is introduced with promising potential to capture the entropy trail.

  14. Generalized gravitational entropy

    NASA Astrophysics Data System (ADS)

    Lewkowycz, Aitor; Maldacena, Juan

    2013-08-01

    We consider classical Euclidean gravity solutions with a boundary. The boundary contains a non-contractible circle. These solutions can be interpreted as computing the trace of a density matrix in the full quantum gravity theory, in the classical approximation. When the circle is contractible in the bulk, we argue that the entropy of this density matrix is given by the area of a minimal surface. This is a generalization of the usual black hole entropy formula to euclidean solutions without a Killing vector. A particular example of this set up appears in the computation of the entanglement entropy of a subregion of a field theory with a gravity dual. In this context, the minimal area prescription was proposed by Ryu and Takayanagi. Our arguments explain their conjecture.

  15. Casimir entropy for magnetodielectrics

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Korikov, C. C.

    2015-06-01

    We find the analytic expressions for the Casimir free energy, entropy and pressure at low temperature in the configuration of two parallel plates made of magnetodielectic material. The cases of constant and frequency-dependent dielectic permittivity and magnetic permeability of the plates are considered. Special attention is paid to the account of dc conductivity. It is shown that in the case of finite static dielectric permittivity and magnetic permeability the Nernst heat theorem for the Casimir entropy is satisfied. If the dc conductivity is taken into account, the Casimir entropy goes to a positive nonzero limit depending on the parameters of a system when the temperature vanishes, i.e. the Nernst theorem is violated. The experimental situation is also discussed.

  16. Causality & holographic entanglement entropy

    NASA Astrophysics Data System (ADS)

    Headrick, Matthew; Hubeny, Veronika E.; Lawrence, Albion; Rangamani, Mukund

    2014-12-01

    We identify conditions for the entanglement entropy as a function of spatial region to be compatible with causality in an arbitrary relativistic quantum field theory. We then prove that the covariant holographic entanglement entropy prescription (which relates entanglement entropy of a given spatial region on the boundary to the area of a certain extremal surface in the bulk) obeys these conditions, as long as the bulk obeys the null energy condition. While necessary for the validity of the prescription, this consistency requirement is quite nontrivial from the bulk standpoint, and therefore provides important additional evidence for the prescription. In the process, we introduce a codimension-zero bulk region, named the entanglement wedge, naturally associated with the given boundary spatial region. We propose that the entanglement wedge is the most natural bulk region corresponding to the boundary reduced density matrix.

  17. Holographic entropy production

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Wu, Xiao-Ning; Zhang, Hongbao

    2014-10-01

    The suspicion that gravity is holographic has been supported mainly by a variety of specific examples from string theory. In this paper, we propose that such a holography can actually be observed in the context of Einstein's gravity and at least a class of generalized gravitational theories, based on a definite holographic principle where neither is the bulk space-time required to be asymptotically AdS nor the boundary to be located at conformal infinity, echoing Wilson's formulation of quantum field theory. After showing the general equilibrium thermodynamics from the corresponding holographic dictionary, in particular, we provide a rather general proof of the equality between the entropy production on the boundary and the increase of black hole entropy in the bulk, which can be regarded as strong support to this holographic principle. The entropy production in the familiar holographic superconductors/superfluids is investigated as an important example, where the role played by the holographic renormalization is explained.

  18. EEG entropy measures in anesthesia

    PubMed Central

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation

  19. Entropy squeezing for qubit – field system under decoherence effect

    SciTech Connect

    Abdel-Khalek, S; Berrada, K; A-S F Obada; Wahiddin, M R

    2014-03-28

    We study in detail the dynamics of field entropy squeezing (FES) for a qubit – field system whose dynamics is described by the phase-damped model. The results of calculations show that the initial state and decoherence play a crucial role in the evolution of FES. During the temporal evolution of the system under decoherence effect, an interesting monotonic relation between FES, Wehrl entropy (WE) and negativity is observed. (laser applications and other topics in quantum electronics)

  20. Valence bond entanglement entropy.

    PubMed

    Alet, Fabien; Capponi, Sylvain; Laflorencie, Nicolas; Mambrini, Matthieu

    2007-09-14

    We introduce for SU(2) quantum spin systems the valence bond entanglement entropy as a counting of valence bond spin singlets shared by two subsystems. For a large class of antiferromagnetic systems, it can be calculated in all dimensions with quantum Monte Carlo simulations in the valence bond basis. We show numerically that this quantity displays all features of the von Neumann entanglement entropy for several one-dimensional systems. For two-dimensional Heisenberg models, we find a strict area law for a valence bond solid state and multiplicative logarithmic corrections for the Néel phase. PMID:17930468

  1. Angular momentum independence of the entropy sum and entropy product for AdS rotating black holes in all dimensions

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Meng, Xin-he

    2016-08-01

    In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d > 4 with at least one rotation parameter ai = 0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d > 4) and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.

  2. A note on bounded entropies

    NASA Astrophysics Data System (ADS)

    Amblard, Pierre-Olivier; Vignat, Christophe

    2006-06-01

    The aim of the paper is to study the link between non-additivity of some entropies and their boundedness. We propose an axiomatic construction of the entropy relying on the fact that entropy belongs to a group isomorphic to the usual additive group. This allows to show that the entropies that are additive with respect to the addition of the group for independent random variables are nonlinear transforms of the Rényi entropies, including the particular case of the Shannon entropy. As a particular example, we study as a group a bounded interval in which the addition is a generalization of the addition of velocities in special relativity. We show that Tsallis-Havrda-Charvat entropy is included in the family of entropies we define. Finally, a link is made between the approach developed in the paper and the theory of deformed logarithms.

  3. Gradient-based manipulation of nonparametric entropy estimates.

    PubMed

    Schraudolph, Nicol N

    2004-07-01

    This paper derives a family of differential learning rules that optimize the Shannon entropy at the output of an adaptive system via kernel density estimation. In contrast to parametric formulations of entropy, this nonparametric approach assumes no particular functional form of the output density. We address problems associated with quantized data and finite sample size, and implement efficient maximum likelihood techniques for optimizing the regularizer. We also develop a normalized entropy estimate that is invariant with respect to affine transformations, facilitating optimization of the shape, rather than the scale, of the output density. Kernel density estimates are smooth and differentiable; this makes the derived entropy estimates amenable to manipulation by gradient descent. The resulting weight updates are surprisingly simple and efficient learning rules that operate on pairs of input samples. They can be tuned for data-limited or memory-limited situations, or modified to give a fully online implementation. PMID:15461076

  4. Shannon information entropy in position space for two-electron atomic systems

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Hao; Ho, Yew Kam

    2015-07-01

    Entropic measures provide analytic tools to help us understand correlation in quantum systems. In our previous work, we calculated linear entropy and von Neumann entropy as entanglement measures for the ground state and lower lying excited states in helium-like systems. In this work, we adopt another entropic measure, Shannon entropy, to probe the nature of correlation effects. Besides the results of the Shannon entropy in coordinate space for the singlet ground states of helium-like systems including positronium negative ion, hydrogen negative ion, helium atom, and lithium positive ion, we also show results for systems with nucleus charge around the ionization threshold.

  5. Entropy Effects in Chelation Reactions.

    ERIC Educational Resources Information Center

    Chung, Chung-Sun

    1984-01-01

    The entropy change for a reaction in aqueous solution can be evaluated as a combination of entropy factors. Valuable insight or understanding can be obtained from a detailed examination of these factors. Several entropy effects of inorganic chemical reactions are discussed as examples. (Author/JN)

  6. A Note on Quantum Entropy

    NASA Astrophysics Data System (ADS)

    Hansen, Frank

    2016-06-01

    Incremental information, as measured by the quantum entropy, is increasing when two ensembles are united. This result was proved by Lieb and Ruskai, and it is the foundation for the proof of strong subadditivity of quantum entropy. We present a truly elementary proof of this fact in the context of the broader family of matrix entropies introduced by Chen and Tropp.

  7. Maximum Entropies Copulas

    NASA Astrophysics Data System (ADS)

    Pougaza, Doriano-Boris; Mohammad-Djafari, Ali

    2011-03-01

    New families of copulas are obtained in a two-step process: first considering the inverse problem which consists of finding a joint distribution from its given marginals as the constrained maximization of some entropies (Shannon, Rényi, Burg, Tsallis-Havrda-Charvát), and then using Sklar's theorem, to define the corresponding copula.

  8. Rescaling Temperature and Entropy

    ERIC Educational Resources Information Center

    Olmsted, John, III

    2010-01-01

    Temperature and entropy traditionally are expressed in units of kelvin and joule/kelvin. These units obscure some important aspects of the natures of these thermodynamic quantities. Defining a rescaled temperature using the Boltzmann constant, T' = k[subscript B]T, expresses temperature in energy units, thereby emphasizing the close relationship…

  9. Entropy and evolution

    NASA Astrophysics Data System (ADS)

    Styer, Daniel F.

    2008-11-01

    Quantitative estimates of the entropy involved in biological evolution demonstrate that there is no conflict between evolution and the second law of thermodynamics. The calculations are elementary and could be used to enliven the thermodynamics portion of a high school or introductory college physics course.

  10. Entropy of the Universe

    NASA Astrophysics Data System (ADS)

    Sato, Humitaka

    2010-06-01

    Charles Darwin's calculation of a life of Earth had ignited Kelvin's insight on a life of Sun, which had eventually inherited to the physical study of stellar structure and energy source. Nuclear energy had secured a longevity of the universe and the goal of the cosmic evolution has been secured by the entropy of black holes.

  11. Entropy and cosmology.

    NASA Astrophysics Data System (ADS)

    Zucker, M. H.

    This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own

  12. Entropy of Li intercalation in Lix CoO2

    NASA Astrophysics Data System (ADS)

    Reynier, Yvan; Graetz, Jason; Swan-Wood, Tabitha; Rez, Peter; Yazami, Rachid; Fultz, Brent

    2004-11-01

    The entropy of lithiation of LixCoO2 for 0.5entropy of the lithiation reaction were as large as 9.0kB/atom , and as large as 4.2kB/atom within the “O3” layered hexagonal structure of LixCoO2 . Three contributions to the entropy of lithiation for the O3 phase were assessed by experiment and calculation. The phonon entropy of lithiation was determined from measurements of inelastic neutron scattering. Phonon entropy can account for much of the negative entropy of lithiation, but its changes with lithium concentration were found to be small. Electronic structure calculations in the local density approximation gave a small electronic entropy of lithiation of the O3 phase. The configurational entropy from lithium-vacancy disorder was large enough to account for most of the compositional trend in the entropy of lithiation of the O3 phase if ordered structures exist at lithium concentrations of x=1/2 and x=5/6 . The electrochemical measurements showed the existence of a two-phase region in the composition range between x=5/6 and 0.95. Electronic structure calculations gave evidence that these phases were metallic and insulating, respectively. Changes of the electronic and configurational entropy were found to be of comparable importance for this metal-insulator transition.

  13. Entropy Production in Convective Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Boersing, Nele; Wellmann, Florian; Niederau, Jan

    2016-04-01

    Rayleigh number and moderate aspect ratio, entropy production even enables to predict a preferred convection mode for a model with homogeneous parameter distribution. As a general rule, the thermodynamic measure of entropy production can be used to analyze uncertainties accompanied by modelling convective hydrothermal systems. Without considering any probability distributions of input data, this synthetic study shows that a higher entropy production implies a lower ability to uniquely predict the convection pattern. This in turn means that the uncertainty in estimating subsurface temperatures is higher.

  14. Diffusive mixing and Tsallis entropy

    DOE PAGESBeta

    O'Malley, Daniel; Vesselinov, Velimir V.; Cushman, John H.

    2015-04-29

    Brownian motion, the classical diffusive process, maximizes the Boltzmann-Gibbs entropy. The Tsallis q-entropy, which is non-additive, was developed as an alternative to the classical entropy for systems which are non-ergodic. A generalization of Brownian motion is provided that maximizes the Tsallis entropy rather than the Boltzmann-Gibbs entropy. This process is driven by a Brownian measure with a random diffusion coefficient. In addition, the distribution of this coefficient is derived as a function of q for 1 < q < 3. Applications to transport in porous media are considered.

  15. Renyi entropy as a statistical entropy for complex systems

    NASA Astrophysics Data System (ADS)

    Bashkirov, A. G.

    2006-11-01

    To describe a complex system, we propose using the Renyi entropy depending on the parameter q (0 < q ≤ 1) and passing into the Gibbs-Shannon entropy at q = 1. The maximum principle for the Renyi entropy yields a Renyi distribution that passes into the Gibbs canonical distribution at q = 1. The thermodynamic entropy of the complex system is defined as the Renyi entropy for the Renyi distribution. In contrast to the usual entropy based on the Gibbs-Shannon entropy, the Renyi entropy increases as the distribution deviates from the Gibbs distribution (the deviation is estimated by the parameter η = 1 - q) and reaches its maximum at the maximum possible value ηmax. As this occurs, the Renyi distribution becomes a power-law distribution. The parameter η can be regarded as an order parameter. At η = 0, the derivative of the thermodynamic entropy with respect to η exhibits a jump, which indicates a kind of phase transition into a more ordered state. The evolution of the system toward further order in this phase state is accompanied by an entropy gain. This means that in accordance with the second law of thermodynamics, a natural evolution in the direction of self-organization is preferable.

  16. Do `negative' temperatures exist?

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    1999-06-01

    A modification of the second law is required for a system with a bounded density of states and not the introduction of a `negative' temperature scale. The ascending and descending branches of the entropy versus energy curve describe particle and hole states, having thermal equations of state that are given by the Fermi and logistic distributions, respectively. Conservation of energy requires isentropic states to be isothermal. The effect of adiabatically reversing the field is entirely mechanical because the only difference between the two states is their energies. The laws of large and small numbers, leading to the normal and Poisson approximations, characterize statistically the states of infinite and zero temperatures, respectively. Since the heat capacity also vanishes in the state of maximum disorder, the third law can be generalized in systems with a bounded density of states: the entropy tends to a constant as the temperature tends to either zero or infinity.

  17. Entropy-stabilized oxides

    NASA Astrophysics Data System (ADS)

    Rost, Christina M.; Sachet, Edward; Borman, Trent; Moballegh, Ali; Dickey, Elizabeth C.; Hou, Dong; Jones, Jacob L.; Curtarolo, Stefano; Maria, Jon-Paul

    2015-09-01

    Configurational disorder can be compositionally engineered into mixed oxide by populating a single sublattice with many distinct cations. The formulations promote novel and entropy-stabilized forms of crystalline matter where metal cations are incorporated in new ways. Here, through rigorous experiments, a simple thermodynamic model, and a five-component oxide formulation, we demonstrate beyond reasonable doubt that entropy predominates the thermodynamic landscape, and drives a reversible solid-state transformation between a multiphase and single-phase state. In the latter, cation distributions are proven to be random and homogeneous. The findings validate the hypothesis that deliberate configurational disorder provides an orthogonal strategy to imagine and discover new phases of crystalline matter and untapped opportunities for property engineering.

  18. Avoiding the entropy trap

    SciTech Connect

    Weinberg, A.M.

    1982-10-01

    Utopians who use entropy to warn of a vast deterioration of energy and mineral resources seek a self-fulfilling prophesy when they work to deny society access to new energy sources, particularly nuclear power. While theoretically correct, entropy is not the relevant factor for the rest of this century. The more extreme entropists call for a return to an eotechnic society based on decentralized, renewable energy technologies, which rests on the assumptions of a loss in Gibbs Free Energy, a mineral depletion that will lead to OPEC-like manipulation, and a current technology that is destroying the environment. The author challenges these assumptions and calls for an exorcism of public fears over reactor accidents. He foresees a resurgence in public confidence in nuclear power by 1990 that will resolve Western dependence on foreign oil. (DCK)

  19. Entropy-stabilized oxides

    PubMed Central

    Rost, Christina M.; Sachet, Edward; Borman, Trent; Moballegh, Ali; Dickey, Elizabeth C.; Hou, Dong; Jones, Jacob L.; Curtarolo, Stefano; Maria, Jon-Paul

    2015-01-01

    Configurational disorder can be compositionally engineered into mixed oxide by populating a single sublattice with many distinct cations. The formulations promote novel and entropy-stabilized forms of crystalline matter where metal cations are incorporated in new ways. Here, through rigorous experiments, a simple thermodynamic model, and a five-component oxide formulation, we demonstrate beyond reasonable doubt that entropy predominates the thermodynamic landscape, and drives a reversible solid-state transformation between a multiphase and single-phase state. In the latter, cation distributions are proven to be random and homogeneous. The findings validate the hypothesis that deliberate configurational disorder provides an orthogonal strategy to imagine and discover new phases of crystalline matter and untapped opportunities for property engineering. PMID:26415623

  20. Entropy production and Fluctuation Relation in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Zonta, Francesco; Chibbaro, Sergio

    2016-06-01

    We report on a numerical experiment performed to analyze fluctuations of the entropy production in turbulent thermal convection, a physical configuration taken here as a prototype of an out-of-equilibrium dissipative system. We estimate the entropy production from instantaneous measurements of the local temperature and velocity fields sampled along the trajectory of a large number of pointwise Lagrangian tracers. The entropy production is characterized by large fluctuations and becomes often negative. This represents a sort of “finite-time” violation of the second principle of thermodynamics, since the direction of the energy flux is opposite to that prescribed by the external gradient. We clearly show that the entropy production normalized by a suitable small-scale energy verifies the Fluctuation Relation (FR), even though the system is time-irreversible.

  1. Maximal entanglement versus entropy for mixed quantum states

    SciTech Connect

    Wei, T.-C.; Goldbart, Paul M.; Kwiat, Paul G.; Nemoto, Kae; Munro, William J.; Verstraete, Frank

    2003-02-01

    Maximally entangled mixed states are those states that, for a given mixedness, achieve the greatest possible entanglement. For two-qubit systems and for various combinations of entanglement and mixedness measures, the form of the corresponding maximally entangled mixed states is determined primarily analytically. As measures of entanglement, we consider entanglement of formation, relative entropy of entanglement, and negativity; as measures of mixedness, we consider linear and von Neumann entropies. We show that the forms of the maximally entangled mixed states can vary with the combination of (entanglement and mixedness) measures chosen. Moreover, for certain combinations, the forms of the maximally entangled mixed states can change discontinuously at a specific value of the entropy. Along the way, we determine the states that, for a given value of entropy, achieve maximal violation of Bell's inequality.

  2. Warped entanglement entropy

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Samani, Joshua; Shaghoulian, Edgar

    2014-02-01

    We study the applicability of the covariant holographic entanglement entropy proposal to asymptotically warped AdS3 spacetimes with an SL(2, ℝ) × U(1) isometry. We begin by applying the proposal to locally AdS3 backgrounds which are written as an ℝ1 fibration over AdS2. We then perturb away from this geometry by considering a warping parameter a = 1 + δ to get an asymptotically warped AdS3 spacetime and compute the dual entanglement entropy perturbatively in δ. We find that for large separation in the fiber coordinate, the entanglement entropy can be computed to all orders in δ and takes the universal form appropriate for two-dimensional CFTs. The warping-dependent central charge thus identified exactly agrees with previous calculations in the literature. Performing the same perturbative calculations for the warped BTZ black hole again gives universal two-dimensional CFT answers, with the left-moving and right-moving temperatures appearing appropriately in the result.

  3. Quanta and entropy generation

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2015-02-01

    Is there a link between the macroscopic description of the irreversibility and microscopic behaviour of the systems? Transfer of the exergy, i.e., consumption of free energy will keep the system away from a stable equilibrium. So entropy generation results from the redistribution of energy, momentum, mass and charge. Moreover, irreversible consumption of free energy was underlined to create time's arrow. This concept represents the essence of the thermodynamic approach to irreversibility. The analysis developed in this paper points out that the principle of maximum of entropy generation and the least action can be recognized as the only single law. Quanta are exchanged between a system and its surroundings. Each quantum carries energy. The natural behaviour of the open systems is ascribed to the decrease of free energy in the least time, which can be related to the extremum entropy generation theorem. Irreversibility is the result of the interaction between systems and their environment with the consequence time symmetry breaking. The fundamental result of this paper is to introduce a link between the global analysis of irreversibility and Noether's results.

  4. Information and Entropy

    NASA Astrophysics Data System (ADS)

    Caticha, Ariel

    2007-11-01

    What is information? Is it physical? We argue that in a Bayesian theory the notion of information must be defined in terms of its effects on the beliefs of rational agents. Information is whatever constrains rational beliefs and therefore it is the force that induces us to change our minds. This problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), which is designed for updating from arbitrary priors given information in the form of arbitrary constraints, includes as special cases both MaxEnt (which allows arbitrary constraints) and Bayes' rule (which allows arbitrary priors). Thus, ME unifies the two themes of these workshops—the Maximum Entropy and the Bayesian methods—into a single general inference scheme that allows us to handle problems that lie beyond the reach of either of the two methods separately. I conclude with a couple of simple illustrative examples.

  5. Majorana tunneling entropy

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey

    2015-11-01

    In thermodynamics a macroscopic state of a system results from a number of its microscopic states. This number is given by the exponent of the system's entropy exp(S ) . In noninteracting systems with discrete energy spectra, such as large scale quantum dots, S as a function of the temperature has usually a plateau shape with integer values of exp(S ) on these plateaus. Plateaus with noninteger values of exp(S ) are fundamentally forbidden and would be thermodynamically infeasible. Here we investigate the entropy of a noninteracting quantum dot coupled via tunneling to normal metals with continuum spectra as well as to topological superconductors. We show that the entropy may have noninteger plateaus if the topological superconductors support weakly overlapping Majorana bound states. This brings a fundamental change in the thermodynamics of the quantum dot whose specific heat cV acquires low-temperature Majorana peaks which should be absent according to the conventional thermodynamics. We also provide a fundamental thermodynamic understanding of the transport properties, such as the linear conductance. In general our results show that the thermodynamics of systems coupled to Majorana modes represents a fundamental physical interest with diverse applications depending on versatility of possible coupling mechanisms.

  6. On the entropy of a hidden Markov process⋆

    PubMed Central

    Jacquet, Philippe; Seroussi, Gadiel; Szpankowski, Wojciech

    2008-01-01

    We study the entropy rate of a hidden Markov process (HMP) defined by observing the output of a binary symmetric channel whose input is a first-order binary Markov process. Despite the simplicity of the models involved, the characterization of this entropy is a long standing open problem. By presenting the probability of a sequence under the model as a product of random matrices, one can see that the entropy rate sought is equal to a top Lyapunov exponent of the product. This offers an explanation for the elusiveness of explicit expressions for the HMP entropy rate, as Lyapunov exponents are notoriously difficult to compute. Consequently, we focus on asymptotic estimates, and apply the same product of random matrices to derive an explicit expression for a Taylor approximation of the entropy rate with respect to the parameter of the binary symmetric channel. The accuracy of the approximation is validated against empirical simulation results. We also extend our results to higher-order Markov processes and to Rényi entropies of any order. PMID:19169438

  7. Gravitational entropy of local cosmic voids

    NASA Astrophysics Data System (ADS)

    Sussman, Roberto A.; Larena, Julien

    2015-08-01

    We undertake a non-perturbative study of the evolution of the ‘gravitational entropy’ proposed by Clifton, Ellis and Tavakol (CET) on local expanding cosmic CDM voids of ˜50-100 Mpc size described as spherical under-dense regions with negative spatial curvature, whose dynamics is determined by Lemaître-Tolman-Bondi (LTB) dust models asymptotic to three different types of FLRW background: ΛCDM, Einstein-de Sitter and ‘open’ FLRW with Λ =0 and negative spatial curvature. By assuming generic nearly spatially flat and linear initial conditions at the last scattering time, we examine analytically and numerically the CET entropy evolution into a fully nonlinear regime in our present cosmic time and beyond. Both analytic and numerical analysis reveal that the late time CET entropy growth is determined by the amplitude of initial fluctuations of spatial curvature at the last scattering time. This entropy growth decays to zero in the late asymptotic time range for all voids, but at a faster rate in voids with ΛCDM and open FLRW backgrounds. However, only for voids in a ΛCDM background is this suppression sufficiently rapid for the CET entropy itself to reach a terminal equilibrium (or ‘saturation’) value. The CET gravitational temperature vanishes asymptotically if Λ =0 and becomes asymptotically proportional to Λ for voids in a ΛCDM background. In the linear regime of the LTB evolution our results coincide, qualitatively and quantitatively, with previous results based on linear perturbation theory.

  8. Entropy meters and the entropy of non-extensive systems

    PubMed Central

    Lieb, Elliott H.; Yngvason, Jakob

    2014-01-01

    In our derivation of the second law of thermodynamics from the relation of adiabatic accessibility of equilibrium states, we stressed the importance of being able to scale a system's size without changing its intrinsic properties. This leaves open the question of defining the entropy of macroscopic, but unscalable systems, such as gravitating bodies or systems where surface effects are important. We show here how the problem can be overcome, in principle, with the aid of an ‘entropy meter’. An entropy meter can also be used to determine entropy functions for non-equilibrium states and mesoscopic systems. PMID:25002830

  9. Entropy generation method to quantify thermal comfort

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.

    2001-01-01

    The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study

  10. Quantum chaos: An entropy approach

    NASA Astrophysics Data System (ADS)

    Sl/omczyński, Wojciech; Życzkowski, Karol

    1994-11-01

    A new definition of the entropy of a given dynamical system and of an instrument describing the measurement process is proposed within the operational approach to quantum mechanics. It generalizes other definitions of entropy, in both the classical and quantum cases. The Kolmogorov-Sinai (KS) entropy is obtained for a classical system and the sharp measurement instrument. For a quantum system and a coherent states instrument, a new quantity, coherent states entropy, is defined. It may be used to measure chaos in quantum mechanics. The following correspondence principle is proved: the upper limit of the coherent states entropy of a quantum map as ℏ→0 is less than or equal to the KS-entropy of the corresponding classical map. ``Chaos umpire sits, And by decision more imbroils the fray By which he reigns: next him high arbiter Chance governs all.'' John Milton, Paradise Lost, Book II

  11. Entropy of electromyography time series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Zurcher, Ulrich; Sung, Paul S.

    2007-12-01

    A nonlinear analysis based on Renyi entropy is applied to electromyography (EMG) time series from back muscles. The time dependence of the entropy of the EMG signal exhibits a crossover from a subdiffusive regime at short times to a plateau at longer times. We argue that this behavior characterizes complex biological systems. The plateau value of the entropy can be used to differentiate between healthy and low back pain individuals.

  12. Self-organization and entropy reduction in a living cell

    PubMed Central

    Davies, Paul C.W.; Rieper, Elisabeth; Tuszynski, Jack A.

    2012-01-01

    In this paper we discuss the entropy and information aspects of a living cell. Particular attention is paid to the information gain on assembling and maintaining a living state. Numerical estimates of the information and entropy reduction are given and discussed in the context of the cell’s metabolic activity. We discuss a solution to an apparent paradox that there is less information content in DNA than in the proteins that are assembled based on the genetic code encrypted in DNA. When energy input required for protein synthesis is accounted for, the paradox is clearly resolved. Finally, differences between biological information and instruction are discussed. PMID:23159919

  13. Entanglement entropy on fuzzy spaces

    SciTech Connect

    Dou, Djamel; Ydri, Badis

    2006-08-15

    We study the entanglement entropy of a scalar field in 2+1 spacetime where space is modeled by a fuzzy sphere and a fuzzy disc. In both models we evaluate numerically the resulting entropies and find that they are proportional to the number of boundary degrees of freedom. In the Moyal plane limit of the fuzzy disc the entanglement entropy per unite area (length) diverges if the ignored region is of infinite size. The divergence is (interpreted) of IR-UV mixing origin. In general we expect the entanglement entropy per unite area to be finite on a noncommutative space if the ignored region is of finite size.

  14. Entropy Generation in Regenerative Systems

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1995-01-01

    Heat exchange to the oscillating flows in regenerative coolers generates entropy. These flows are characterized by oscillating mass flows and oscillating temperatures. Heat is transferred between the flow and heat exchangers and regenerators. In the former case, there is a steady temperature difference between the flow and the heat exchangers. In the latter case, there is no mean temperature difference. In this paper a mathematical model of the entropy generated is developed for both cases. Estimates of the entropy generated by this process are given for oscillating flows in heat exchangers and in regenerators. The practical significance of this entropy is also discussed.

  15. Order and correlation contributions to the entropy of hydrophobic solvation

    NASA Astrophysics Data System (ADS)

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus

    2015-03-01

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom's test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  16. Order and correlation contributions to the entropy of hydrophobic solvation

    SciTech Connect

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus

    2015-03-21

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom’s test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  17. Order and correlation contributions to the entropy of hydrophobic solvation.

    PubMed

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus

    2015-03-21

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom's test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  18. Note on entropies for quantum dynamical systems.

    PubMed

    Watanabe, Noboru

    2016-05-28

    Quantum entropy and channel are fundamental concepts for quantum information theory progressed recently in various directions. We will review the fundamental aspects of mean entropy and mean mutual entropy and calculate them for open system dynamics. PMID:27091165

  19. Thermal Expansion Anomaly Regulated by Entropy

    PubMed Central

    Liu, Zi-Kui; Wang, Yi; Shang, ShunLi

    2014-01-01

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions. PMID:25391631

  20. Waterlike structural and excess entropy anomalies in liquid beryllium fluoride.

    PubMed

    Agarwal, Manish; Chakravarty, Charusita

    2007-11-22

    The relationship between structural order metrics and the excess entropy is studied using the transferable rigid ion model (TRIM) of beryllium fluoride melt, which is known to display waterlike thermodynamic anomalies. The order map for liquid BeF2, plotted between translational and tetrahedral order metrics, shows a structurally anomalous regime, similar to that seen in water and silica melt, corresponding to a band of state points for which average tetrahedral (q(tet)) and translational (tau) order are strongly correlated. The tetrahedral order parameter distributions further substantiate the analogous structural properties of BeF2, SiO2, and H2O. A region of excess entropy anomaly can be defined within which the pair correlation contribution to the excess entropy (S2) shows an anomalous rise with isothermal compression. Within this region of anomalous entropy behavior, q(tet) and S2 display a strong negative correlation, indicating the connection between the thermodynamic and the structural anomalies. The existence of this region of excess entropy anomaly must play an important role in determining the existence of diffusional and mobility anomalies, given the excess entropy scaling of transport properties observed in many liquids. PMID:17963376

  1. Approximate entropy of network parameters.

    PubMed

    West, James; Lacasa, Lucas; Severini, Simone; Teschendorff, Andrew

    2012-04-01

    We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches. PMID:22680542

  2. Approximate entropy of network parameters

    NASA Astrophysics Data System (ADS)

    West, James; Lacasa, Lucas; Severini, Simone; Teschendorff, Andrew

    2012-04-01

    We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches.

  3. Trajectory versus probability density entropy.

    PubMed

    Bologna, M; Grigolini, P; Karagiorgis, M; Rosa, A

    2001-07-01

    We show that the widely accepted conviction that a connection can be established between the probability density entropy and the Kolmogorov-Sinai (KS) entropy is questionable. We adopt the definition of density entropy as a functional of a distribution density whose time evolution is determined by a transport equation, conceived as the only prescription to use for the calculation. Although the transport equation is built up for the purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible only in a limited number of cases. The proposals made by some authors to establish a connection between the two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is foreign to that of density entropy. PMID:11461383

  4. Trajectory versus probability density entropy

    NASA Astrophysics Data System (ADS)

    Bologna, Mauro; Grigolini, Paolo; Karagiorgis, Markos; Rosa, Angelo

    2001-07-01

    We show that the widely accepted conviction that a connection can be established between the probability density entropy and the Kolmogorov-Sinai (KS) entropy is questionable. We adopt the definition of density entropy as a functional of a distribution density whose time evolution is determined by a transport equation, conceived as the only prescription to use for the calculation. Although the transport equation is built up for the purpose of affording a picture equivalent to that stemming from trajectory dynamics, no direct use of trajectory time evolution is allowed, once the transport equation is defined. With this definition in mind we prove that the detection of a time regime of increase of the density entropy with a rate identical to the KS entropy is possible only in a limited number of cases. The proposals made by some authors to establish a connection between the two entropies in general, violate our definition of density entropy and imply the concept of trajectory, which is foreign to that of density entropy.

  5. Entropy, Its Language, and Interpretation

    NASA Astrophysics Data System (ADS)

    Leff, Harvey S.

    2007-12-01

    The language of entropy is examined for consistency with its mathematics and physics, and for its efficacy as a guide to what entropy means. Do common descriptors such as disorder, missing information, and multiplicity help or hinder understanding? Can the language of entropy be helpful in cases where entropy is not well defined? We argue in favor of the descriptor spreading, which entails space, time, and energy in a fundamental way. This includes spreading of energy spatially during processes and temporal spreading over accessible microstates states in thermodynamic equilibrium. Various examples illustrate the value of the spreading metaphor. To provide further support for this metaphor’s utility, it is shown how a set of reasonable spreading properties can be used to derive the entropy function. A main conclusion is that it is appropriate to view entropy’s symbol S as shorthand for spreading.

  6. Multiple sensitivity profiles to diversity and transition structure in non-stationary input.

    PubMed

    Tobia, Michael J; Iacovella, Vittorio; Hasson, Uri

    2012-04-01

    Recent formalizations suggest that the human brain codes for the degree of order in the environment and utilizes this knowledge to optimize perception and performance in the immediate future. However, the neural bases of how the brain spontaneously codes for order are poorly understood. It has been shown that activity in lateral temporal cortex and the hippocampus is linearly correlated with the order of short visual series under tasks requiring attention to the input and when series order is invariant over time. Here, we examined if sensitivity to order is manifested in both linear and non-linear BOLD response profiles, quantified the degree to which order-sensitive regions operate as a functional network, and evaluated these questions using a paradigm in which performance of the ongoing task could be completed without any attention to the stimulus whose order was manipulated. Participants listened to a 10-minute sequence of tones characterized by non-stationary order, and fMRI identified cortical regions sensitive to time-varying statistical features of this input. Activity in perisylvian regions was negatively correlated with input diversity, quantified via Shannon's Entropy. Activity in ventral premotor, lateral temporal, and insular regions was correlated linearly, parabolically, or via a step-function with the strength of transition constraints in the series, quantified via Markov Entropy. Granger-causality analysis revealed that order-sensitive regions form a functional network, with regions showing non-linear responses to order associated with more afferent connectivity than those showing linear responses. These findings identify networks that spontaneously code and respond to diverse aspects of order via multiple response profiles, and that play a central role in generating and gating predictive neural activity. PMID:22285219

  7. Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints

    NASA Astrophysics Data System (ADS)

    Winter, Andreas

    2016-03-01

    We present a bouquet of continuity bounds for quantum entropies, falling broadly into two classes: first, a tight analysis of the Alicki-Fannes continuity bounds for the conditional von Neumann entropy, reaching almost the best possible form that depends only on the system dimension and the trace distance of the states. Almost the same proof can be used to derive similar continuity bounds for the relative entropy distance from a convex set of states or positive operators. As applications, we give new proofs, with tighter bounds, of the asymptotic continuity of the relative entropy of entanglement, E R , and its regularization {E_R^{∞}} , as well as of the entanglement of formation, E F . Using a novel "quantum coupling" of density operators, which may be of independent interest, we extend the latter to an asymptotic continuity bound for the regularized entanglement of formation, aka entanglement cost, {E_C=E_F^{∞}} . Second, we derive analogous continuity bounds for the von Neumann entropy and conditional entropy in infinite dimensional systems under an energy constraint, most importantly systems of multiple quantum harmonic oscillators. While without an energy bound the entropy is discontinuous, it is well-known to be continuous on states of bounded energy. However, a quantitative statement to that effect seems not to have been known. Here, under some regularity assumptions on the Hamiltonian, we find that, quite intuitively, the Gibbs entropy at the given energy roughly takes the role of the Hilbert space dimension in the finite-dimensional Fannes inequality.

  8. Revisiting sample entropy analysis

    NASA Astrophysics Data System (ADS)

    Govindan, R. B.; Wilson, J. D.; Eswaran, H.; Lowery, C. L.; Preißl, H.

    2007-03-01

    We modify the definition of sample entropy (SaEn) by incorporating a time delay between the components of the block (from which the densities are estimated) and show that the modified method characterizes the complexity of the system better than the original version. We apply the modified SaEn to the standard deterministic systems and stochastic processes (uncorrelated and long range correlated (LRC) processes) and show that the underlying complexity of the system is better quantified by the modified method. We extend this analysis to the RR intervals of the normal and congestive heart failure (CHF) subjects (available via www.physionet.org) and show that there is a good degree of separation between the two groups.

  9. Topological entanglement entropy.

    PubMed

    Kitaev, Alexei; Preskill, John

    2006-03-24

    We formulate a universal characterization of the many-particle quantum entanglement in the ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a disk in the plane, with a smooth boundary of length L, large compared to the correlation length. In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a marginal density operator rho for the degrees of freedom in the interior. The von Neumann entropy of rho, a measure of the entanglement of the interior and exterior variables, has the form S(rho) = alphaL - gamma + ..., where the ellipsis represents terms that vanish in the limit L --> infinity. We show that - gamma is a universal constant characterizing a global feature of the entanglement in the ground state. Using topological quantum field theory methods, we derive a formula for gamma in terms of properties of the superselection sectors of the medium. PMID:16605802

  10. FULL PARTICLE ELECTROMAGNETIC SIMULATIONS OF ENTROPY GENERATION ACROSS A COLLISIONLESS SHOCK

    SciTech Connect

    Yang, Zhongwei; Liu, Ying D.; Wang, Rui; Hu, Huidong; Parks, George K.; Wu, Pin; Huang, Can; Shi, Run

    2014-09-20

    Experimental data from Cluster have shown that entropy density can be generated across Earth's bow shock. These new observations are a starting point for a more sophisticated analysis that includes computer modeling of a collisionless shock using observed shock parameters as input. In this Letter, we present the first comparison between observations and particle-in-cell simulations of such entropy generation across a collisionless shock. The ion heating at the shock is dominated by the phase mixing of reflected and directly transmitted ions, which are separated from the incident ions. The electron heating is a nearly thermal process due to the conservation of their angular momentum. For both species, we calculate the entropy density across the shock, and obtain good consistency between observations and simulations on entropy generation across the shock. We also find that the entropy generation rate is reduced as the shock Mach number decreases.

  11. Thermodynamical property of entanglement entropy for excited states.

    PubMed

    Bhattacharya, Jyotirmoy; Nozaki, Masahiro; Takayanagi, Tadashi; Ugajin, Tomonori

    2013-03-01

    We argue that the entanglement entropy for a very small subsystem obeys a property which is analogous to the first law of thermodynamics when we excite the system. In relativistic setups, its effective temperature is proportional to the inverse of the subsystem size. This provides a universal relationship between the energy and the amount of quantum information. We derive the results using holography and confirm them in two-dimensional field theories. We will also comment on an example with negative specific heat and suggest a connection between the second law of thermodynamics and the strong subadditivity of entanglement entropy. PMID:23496702

  12. Investigation of abnormal negative threshold voltage shift under positive bias stress in input/output n-channel metal-oxide-semiconductor field-effect transistors with TiN/HfO{sub 2} structure using fast I-V measurement

    SciTech Connect

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen; Chang, Ting-Chang Lu, Ying-Hsin; Tsai, Jyun-Yu; Liu, Kuan-Ju; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-03-17

    This letter investigates abnormal negative threshold voltage shifts under positive bias stress in input/output (I/O) TiN/HfO{sub 2} n-channel metal-oxide-semiconductor field-effect transistors using fast I-V measurement. This phenomenon is attributed to a reversible charge/discharge effect in pre-existing bulk traps. Moreover, in standard performance devices, threshold-voltage (V{sub t}) shifts positively during fast I-V double sweep measurement. However, in I/O devices, V{sub t} shifts negatively since electrons escape from bulk traps to metal gate rather than channel electrons injecting to bulk traps. Consequently, decreasing pre-existing bulk traps in I/O devices, which can be achieved by adopting Hf{sub x}Zr{sub 1−x}O{sub 2} as gate oxide, can reduce the charge/discharge effect.

  13. Entanglement entropy converges to classical entropy around periodic orbits

    NASA Astrophysics Data System (ADS)

    Asplund, Curtis T.; Berenstein, David

    2016-03-01

    We consider oscillators evolving subject to a periodic driving force that dynamically entangles them, and argue that this gives the linearized evolution around periodic orbits in a general chaotic Hamiltonian dynamical system. We show that the entanglement entropy, after tracing over half of the oscillators, generically asymptotes to linear growth at a rate given by the sum of the positive Lyapunov exponents of the system. These exponents give a classical entropy growth rate, in the sense of Kolmogorov, Sinai and Pesin. We also calculate the dependence of this entropy on linear mixtures of the oscillator Hilbert-space factors, to investigate the dependence of the entanglement entropy on the choice of coarse graining. We find that for almost all choices the asymptotic growth rate is the same.

  14. Entropy distance: New quantum phenomena

    SciTech Connect

    Weis, Stephan; Knauf, Andreas

    2012-10-15

    We study a curve of Gibbsian families of complex 3 Multiplication-Sign 3-matrices and point out new features, absent in commutative finite-dimensional algebras: a discontinuous maximum-entropy inference, a discontinuous entropy distance, and non-exposed faces of the mean value set. We analyze these problems from various aspects including convex geometry, topology, and information geometry. This research is motivated by a theory of infomax principles, where we contribute by computing first order optimality conditions of the entropy distance.

  15. Gravitational entropy and global structure

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Hunter, C. J.

    1999-02-01

    The underlying reason for the existence of gravitational entropy is traced to the impossibility of foliating topologically non-trivial Euclidean spacetimes with a time function to give a unitary Hamiltonian evolution. In d dimensions the entropy can be expressed in terms of the d-2 obstructions to foliation, bolts and Misner strings, by a universal formula. We illustrate with a number of examples including spaces with nut charge. In these cases, the entropy is not just a quarter the area of the bolt, as it is for black holes.

  16. Neuronal Entropy Depends on the Level of Alertness in the Parkinsonian Globus Pallidus in vivo

    PubMed Central

    Andres, Daniela Sabrina; Cerquetti, Daniel; Merello, Marcelo; Stoop, Ruedi

    2014-01-01

    A new working hypothesis of Parkinson’s disease (PD) proposes to focus on the central role of entropy increase in the basal ganglia (BG) in movement disorders. The conditions necessary for entropy increase in vivo are, however, still not fully described. We recorded the activity of single globus pallidus pars interna neurons during the transition from deep anesthesia to full alertness in relaxed, head-restrained, control, and parkinsonian (6-hydroxydopamine-lesioned group-lesioned) rats. We found that during awakening from anesthesia, the variation of neuronal entropy was significantly higher in the parkinsonian than in the control group. This implies in our view that in PD the entropy of the output neurons of the BG varies dynamically with the input to the network, which is determined by the level of alertness. Therefore, entropy needs to be interpreted as a dynamic, emergent property that characterizes the global state of the BG neuronal network, rather than a static property of parkinsonian neurons themselves. Within the framework of the “entropy hypothesis,” this implies the presence of a pathological feedback loop in the parkinsonian BG, where increasing the network input results in a further increase of neuronal entropy and a worsening of akinesia. PMID:25009529

  17. Holographic entropy increases in quadratic curvature gravity

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Srijit; Sarkar, Sudipta; Wall, Aron C.

    2015-09-01

    Standard methods for calculating the black hole entropy beyond general relativity are ambiguous when the horizon is nonstationary. We fix these ambiguities in all quadratic curvature gravity theories, by demanding that the entropy be increasing at every time, for linear perturbations to a stationary black hole. Our result matches with the entropy formula found previously in holographic entanglement entropy calculations. We explicitly calculate the entropy increase for Vaidya-like solutions in Ricci-tensor gravity to show that (unlike the Wald entropy) the holographic entropy obeys a second law.

  18. Entropy exchange and entanglement in the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Boukobza, E.; Tannor, D. J.

    2005-06-01

    The Jaynes-Cummings model (JCM) is the simplest fully quantum model that describes the interaction between light and matter. We extend a previous analysis by Phoenix and Knight [Ann. Phys. 186, 381 (1988)] of the JCM by considering mixed states of both the light and matter. We present examples of qualitatively different entropic correlations. In particular, we explore the regime of entropy exchange between light and matter, i.e., where the rate of change of the two are anticorrelated. This behavior contrasts with the case of pure light-matter states in which the rate of change of the two entropies are positively correlated and in fact identical. We give an analytical derivation of the anticorrelation phenomenon and discuss the regime of its validity. Finally, we show a strong correlation between the region of the Bloch sphere characterized by entropy exchange and that characterized by minimal entanglement as measured by the negative eigenvalues of the partially transposed density matrix.

  19. Quantum jumps and entropy production

    SciTech Connect

    Breuer, Heinz-Peter

    2003-09-01

    The irreversible motion of an open quantum system can be represented through an ensemble of state vectors following a stochastic dynamics with piecewise deterministic paths. It is shown that this representation leads to a natural definition of the rate of quantum entropy production. The entropy production rate is expressed in terms of the von Neumann entropy and of the numbers of quantum jumps corresponding to the various decay channels of the open system. The proof of the positivity and of the convexity of the entropy production rate is given. Monte Carlo simulations of the stochastic dynamics of a driven qubit and of a {lambda} configuration involving a dark state are performed in order to illustrate the general theory.

  20. Entropy of quantum states: Ambiguities

    NASA Astrophysics Data System (ADS)

    Balachandran, A. P.; de Queiroz, A. R.; Vaidya, S.

    2013-10-01

    The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. As pointed out to us by Sorkin, this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This non-unique entropy can occur at zero temperature. We will argue elsewhere in detail that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. Finally, we establish the analogue of an H -theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix.

  1. An adaptable binary entropy coder

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.

    2001-01-01

    We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.

  2. Scaling behaviour of entropy estimates

    NASA Astrophysics Data System (ADS)

    Schürmann, Thomas

    2002-02-01

    Entropy estimation of information sources is highly non-trivial for symbol sequences with strong long-range correlations. The rabbit sequence, related to the symbolic dynamics of the nonlinear circle map at the critical point as well as the logistic map at the Feigenbaum point, is known to produce long memory tails. For both dynamical systems the scaling behaviour of the block entropy of order n has been shown to increase ∝log n. In contrast to such probabilistic concepts, we investigate the scaling behaviour of certain non-probabilistic entropy estimation schemes suggested by Lempel and Ziv (LZ) in the context of algorithmic complexity and data compression. These are applied in a sequential manner with the scaling variable being the length N of the sequence. We determine the scaling law for the LZ entropy estimate applied to the case of the critical circle map and the logistic map at the Feigenbaum point in a binary partition.

  3. Boundary effects in entanglement entropy

    NASA Astrophysics Data System (ADS)

    Berthiere, Clément; Solodukhin, Sergey N.

    2016-09-01

    We present a number of explicit calculations of Renyi and entanglement entropies in situations where the entangling surface intersects the boundary of d-dimensional Minkowski spacetime. When the boundary is a single plane we compute the contribution to the entropy due to this intersection, first in the case of the Neumann and Dirichlet boundary conditions, and then in the case of a generic Robin type boundary condition. The flow in the boundary coupling between the Neumann and Dirichlet phases is analyzed in arbitrary dimension d and is shown to be monotonic, the peculiarity of d = 3 case is noted. We argue that the translational symmetry along the entangling surface is broken due the presence of the boundary which reveals that the entanglement is not homogeneous. In order to characterize this quantitatively, we introduce a density of entanglement entropy and compute it explicitly. This quantity clearly indicates that the entanglement is maximal near the boundary. We then consider the situation where the boundary is composed of two parallel planes at a finite separation and compute the entanglement entropy as well as its density in this case. The complete contribution to entanglement entropy due to the boundaries is shown not to depend on the distance between the planes and is simply twice the entropy in the case of single plane boundary. Additionally, we find how the area law, the part in the entropy proportional to the area of entire entangling surface, depends on the size of the separation between the two boundaries. The latter is shown to appear in the UV finite part of the entropy.

  4. State Ensembles and Quantum Entropy

    NASA Astrophysics Data System (ADS)

    Kak, Subhash

    2016-06-01

    This paper considers quantum communication involving an ensemble of states. Apart from the von Neumann entropy, it considers other measures one of which may be useful in obtaining information about an unknown pure state and another that may be useful in quantum games. It is shown that under certain conditions in a two-party quantum game, the receiver of the states can increase the entropy by adding another pure state.

  5. Information entropy to measure the spatial and temporal complexity of solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Li, Weiyao; Huang, Guanhua; Xiong, Yunwu

    2016-04-01

    The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and

  6. Configurational entropy in thermoset polymers.

    PubMed

    Jensen, Martin; Jakobsen, Johnny

    2015-04-30

    The configurational entropy describes the atomic structure in a material and controls several material properties. Often the configurational entropy is determined through dielectric or calorimetric measurements where the difference between the entropies of the crystalline state and the amorphous state is determined. Many amorphous materials such as thermoset polymers have a high crystallization barrier, greatly limiting the applicability of the existing methods for determining the configurational entropy. In this work, a novel differential scanning calorimetry (DSC) method, based on measurement of the glass transition temperature at different heating rates, for determination of the configurational entropy is introduced. The theory behind the method has a universal character for amorphous materials, as it solely involves measurement of the glass transition temperature. The temperature dependency of the configurational entropy is determined for epoxy resins and PMMA (poly(methyl methacrylate)) to demonstrate the versatility of the method. On the basis of the findings of the introduced method, the influence of the degree of cross-linking and the chemical structure of the network is discussed. PMID:25844504

  7. Holographic holes and differential entropy

    NASA Astrophysics Data System (ADS)

    Headrick, Matthew; Myers, Robert C.; Wien, Jason

    2014-10-01

    Recently it has been shown that the Bekenstein-Hawking entropy formula evaluated on certain closed surfaces in the bulk of a holographic spacetime has an interpretation as the differential entropy of a particular family of intervals (or strips) in the boundary theory [1, 2]. We first extend this construction to bulk surfaces which vary in time. We then give a general proof of the equality between the gravitational entropy and the differential entropy. This proof applies to a broad class of holographic backgrounds possessing a generalized planar symmetry and to certain classes of higher-curvature theories of gravity. To apply this theorem, one can begin with a bulk surface and determine the appropriate family of boundary intervals by considering extremal surfaces tangent to the given surface in the bulk. Alternatively, one can begin with a family of boundary intervals; as we show, the differential entropy then equals the gravitational entropy of a bulk surface that emerges from the intersection of the neighboring entanglement wedges, in a continuum limit.

  8. Generalized Maximum Entropy

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John

    2005-01-01

    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  9. Talking Speech Input.

    ERIC Educational Resources Information Center

    Berliss-Vincent, Jane; Whitford, Gigi

    2002-01-01

    This article presents both the factors involved in successful speech input use and the potential barriers that may suggest that other access technologies could be more appropriate for a given individual. Speech input options that are available are reviewed and strategies for optimizing use of speech recognition technology are discussed. (Contains…

  10. MDS MIC Catalog Inputs

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Vowell, C. W.; Smith, Byron; Darcy, Jeannette

    2006-01-01

    This viewgraph presentation reviews the inputs to the MDS Medical Information Communique (MIC) catalog. The purpose of the group is to provide input for updating the MDS MIC Catalog and to request that MMOP assign Action Item to other working groups and FSs to support the MITWG Process for developing MIC-DDs.

  11. High input impedance amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1995-01-01

    High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provide an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.

  12. Relative Entropy and Squashed Entanglement

    NASA Astrophysics Data System (ADS)

    Li, Ke; Winter, Andreas

    2014-02-01

    We are interested in the properties and relations of entanglement measures. Especially, we focus on the squashed entanglement and relative entropy of entanglement, as well as their analogues and variants. Our first result is a monogamy-like inequality involving the relative entropy of entanglement and its one-way LOCC variant. The proof is accomplished by exploring the properties of relative entropy in the context of hypothesis testing via one-way LOCC operations, and by making use of an argument resembling that by Piani on the faithfulness of regularized relative entropy of entanglement. Following this, we obtain a commensurate and faithful lower bound for squashed entanglement, in the form of one-way LOCC relative entropy of entanglement. This gives a strengthening to the strong subadditivity of von Neumann entropy. Our result improves the trace-distance-type bound derived in Brandão et al. (Commun Math Phys, 306:805-830, 2011), where faithfulness of squashed entanglement was first proved. Applying Pinsker's inequality, we are able to recover the trace-distance-type bound, even with slightly better constant factor. However, the main improvement is that our new lower bound can be much larger than the old one and it is almost a genuine entanglement measure. We evaluate exactly the relative entropy of entanglement under various restricted measurement classes, for maximally entangled states. Then, by proving asymptotic continuity, we extend the exact evaluation to their regularized versions for all pure states. Finally, we consider comparisons and separations between some important entanglement measures and obtain several new results on these, too.

  13. Relative entropies in conformal field theory.

    PubMed

    Lashkari, Nima

    2014-08-01

    Relative entropy is a measure of distinguishability for quantum states, and it plays a central role in quantum information theory. The family of Renyi entropies generalizes to Renyi relative entropies that include, as special cases, most entropy measures used in quantum information theory. We construct a Euclidean path-integral approach to Renyi relative entropies in conformal field theory, then compute the fidelity and the relative entropy of states in one spatial dimension at zero and finite temperature using a replica trick. In contrast to the entanglement entropy, the relative entropy is free of ultraviolet divergences, and is obtained as a limit of certain correlation functions. The relative entropy of two states provides an upper bound on their trace distance. PMID:25126908

  14. Negative mass

    NASA Astrophysics Data System (ADS)

    Hammond, Richard T.

    2015-03-01

    Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analysed. Other surprising effects include the bizarre system of negative mass chasing positive mass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given.

  15. Some new measures of entropy, useful tools in biocomputing.

    PubMed

    Garrido, Angel

    2010-01-01

    The basic problem rooted in Information Theory (IT) foundations (Shannon, Bell Syst Tech J 27:379-423 and 623-656, 1948; Volkenstein, Entropy and Information. Series: Progress in Mathematical Physics, 2009) is to reconstruct, as closely as possible, the input signal after observing the received output signal.The Shannon information measure is the only possible one in this context, but it must be clear that it is only valid within the more restricted scope of coding problems that C. E. Shannon himself had seen in his lifetime (Shannon, Bell Syst Tech J 27:379-423 and 623-656, 1948). As pointed out by Alfred Rényi (1961), in his essential paper (Rényi, Proc. of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, 547-561, 1961) on generalized information measures, for other sorts of problems other quantities may serve just as well as measures of information, or even better. This would be supported either by their operational significance or by a set of natural postulates characterizing them, or preferably by both. Thus, the idea of generalized entropies arises in scientific literature.We analyze here some new measures of Entropy, very useful to be applied on Biocomputing (Ulanowicz and Hannon, Proc R Soc Lond B 232:181-192, 1987; Volkenstein, Entropy and Information. Series: Progress in Mathematical Physics, 2009). PMID:20865562

  16. Classification of 5-S Epileptic EEG Recordings Using Distribution Entropy and Sample Entropy

    PubMed Central

    Li, Peng; Karmakar, Chandan; Yan, Chang; Palaniswami, Marimuthu; Liu, Changchun

    2016-01-01

    Epilepsy is an electrophysiological disorder of the brain, the hallmark of which is recurrent and unprovoked seizures. Electroencephalogram (EEG) measures electrical activity of the brain that is commonly applied as a non-invasive technique for seizure detection. Although a vast number of publications have been published on intelligent algorithms to classify interictal and ictal EEG, it remains an open question whether they can be detected using short-length EEG recordings. In this study, we proposed three protocols to select 5 s EEG segment for classifying interictal and ictal EEG from normal. We used the publicly-accessible Bonn database, which consists of normal, interical, and ictal EEG signals with a length of 4097 sampling points (23.6 s) per record. In this study, we selected three segments of 868 points (5 s) length from each recordings and evaluated results for each of them separately. The well-studied irregularity measure—sample entropy (SampEn)—and a more recently proposed complexity measure—distribution entropy (DistEn)—were used as classification features. A total of 20 combinations of input parameters m and τ for the calculation of SampEn and DistEn were selected for compatibility. Results showed that SampEn was undefined for half of the used combinations of input parameters and indicated a large intra-class variance. Moreover, DistEn performed robustly for short-length EEG data indicating relative independence from input parameters and small intra-class fluctuations. In addition, it showed acceptable performance for all three classification problems (interictal EEG from normal, ictal EEG from normal, and ictal EEG from interictal) compared to SampEn, which showed better results only for distinguishing normal EEG from interictal and ictal. Both SampEn and DistEn showed good reproducibility and consistency, as evidenced by the independence of results on analysing protocol. PMID:27148074

  17. Format( )MEDIC( )Input

    NASA Astrophysics Data System (ADS)

    Foster, K.

    1994-09-01

    This document is a description of a computer program called Format( )MEDIC( )Input. The purpose of this program is to allow the user to quickly reformat wind velocity data in the Model Evaluation Database (MEDb) into a reasonable 'first cut' set of MEDIC input files (MEDIC.nml, StnLoc.Met, and Observ.Met). The user is cautioned that these resulting input files must be reviewed for correctness and completeness. This program will not format MEDb data into a Problem Station Library or Problem Metdata File. A description of how the program reformats the data is provided, along with a description of the required and optional user input and a description of the resulting output files. A description of the MEDb is not provided here but can be found in the RAS Division Model Evaluation Database Description document.

  18. Fano resonances and entanglement entropy

    SciTech Connect

    Eisler, Viktor; Garmon, Savannah Sterling

    2010-11-01

    We study the entanglement in the ground state of a chain of free spinless fermions with a single side-coupled impurity. We find a logarithmic scaling for the entanglement entropy of a segment neighboring the impurity. The prefactor of the logarithm varies continuously and contains an impurity contribution described by a one-parameter function while the contribution of the unmodified boundary enters additively. The coefficient is found explicitly by pointing out similarities with other models involving interface defects. The proposed formula gives excellent agreement with our numerical data. If the segment has an open boundary, one finds a rapidly oscillating subleading term in the entropy that persists in the limit of large block sizes. The particle-number fluctuation inside the subsystem is also reported. It is analogous with the expression for the entropy scaling, however, with a simpler functional form for the coefficient.

  19. Convex accelerated maximum entropy reconstruction

    NASA Astrophysics Data System (ADS)

    Worley, Bradley

    2016-04-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm - called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm - is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra.

  20. Quantum geometry and gravitational entropy

    SciTech Connect

    Simon, Joan; Balasubramanian, Vijay; Czech, Bart Iomiej; Larjo, Klaus; Marolf, Donald; Simon, Joan

    2007-05-29

    Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S5 universes. In this sector we devise a"coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.

  1. Gravitational entropy of cosmic expansion

    NASA Astrophysics Data System (ADS)

    Sussman , R. A.

    2014-09-01

    We apply a recent proposal to define ``gravitational entropy'' to the expansion of cosmic voids within the framework of non-perturbative General Relativity. By considering CDM void configurations compatible with basic observational constraints, we show that this entropy grows from post-inflationary conditions towards a final asymptotic value in a late time fully non-linear regime described by the Lemaître- Tolman-Bondi (LTB) dust models. A qualitatively analogous behavior occurs if we assume a positive cosmological constant consistent with a Λ-CDM background model. However, the Λ term introduces a significant suppression of entropy growth with the terminal equilibrium value reached at a much faster rate.

  2. Construction of microcanonical entropy on thermodynamic pillars.

    PubMed

    Campisi, Michele

    2015-05-01

    A question that is currently highly debated is whether the microcanonical entropy should be expressed as the logarithm of the phase volume (volume entropy, also known as the Gibbs entropy) or as the logarithm of the density of states (surface entropy, also known as the Boltzmann entropy). Rather than postulating them and investigating the consequence of each definition, as is customary, here we adopt a bottom-up approach and construct the entropy expression within the microcanonical formalism upon two fundamental thermodynamic pillars: (i) The second law of thermodynamics as formulated for quasistatic processes: δQ/T is an exact differential, and (ii) the law of ideal gases: PV=k(B)NT. The first pillar implies that entropy must be some function of the phase volume Ω. The second pillar singles out the logarithmic function among all possible functions. Hence the construction leads uniquely to the expression S=k(B)lnΩ, that is, the volume entropy. As a consequence any entropy expression other than that of Gibbs, e.g., the Boltzmann entropy, can lead to inconsistencies with the two thermodynamic pillars. We illustrate this with the prototypical example of a macroscopic collection of noninteracting spins in a magnetic field, and show that the Boltzmann entropy severely fails to predict the magnetization, even in the thermodynamic limit. The uniqueness of the Gibbs entropy, as well as the demonstrated potential harm of the Boltzmann entropy, provide compelling reasons for discarding the latter at once. PMID:26066159

  3. Entanglement entropy of scattering particles

    NASA Astrophysics Data System (ADS)

    Peschanski, Robi; Seki, Shigenori

    2016-07-01

    We study the entanglement entropy between the two outgoing particles in an elastic scattering process. It is formulated within an S-matrix formalism using the partial wave expansion of two-body states, which plays a significant role in our computation. As a result, we obtain a novel formula that expresses the entanglement entropy in a high energy scattering by the use of physical observables, namely the elastic and total cross sections and a physical bound on the impact parameter range, related to the elastic differential cross-section.

  4. Whose Entropy: A Maximal Entropy Analysis of Phosphorylation Signaling

    NASA Astrophysics Data System (ADS)

    Remacle, F.; Graeber, T. G.; Levine, R. D.

    2011-07-01

    High throughput experiments, characteristic of studies in systems biology, produce large output data sets often at different time points or under a variety of related conditions or for different patients. In several recent papers the data is modeled by using a distribution of maximal information-theoretic entropy. We pose the question: `whose entropy' meaning how do we select the variables whose distribution should be compared to that of maximal entropy. The point is that different choices can lead to different answers. Due to the technological advances that allow for the system-wide measurement of hundreds to thousands of events from biological samples, addressing this question is now part of the analysis of systems biology datasets. The analysis of the extent of phosphorylation in reference to the transformation potency of Bcr-Abl fusion oncogene mutants is used as a biological example. The approach taken seeks to use entropy not simply as a statistical measure of dispersion but as a physical, thermodynamic, state function. This highlights the dilemma of what are the variables that describe the state of the signaling network. Is what matters Boolean, spin-like, variables that specify whether a particular phosphorylation site is or is not actually phosphorylated. Or does the actual extent of phosphorylation matter. Last but not least is the possibility that in a signaling network some few specific phosphorylation sites are the key to the signal transduction even though these sites are not at any time abundantly phosphorylated in an absolute sense.

  5. Entropy Analyses of Four Familiar Processes.

    ERIC Educational Resources Information Center

    Craig, Norman C.

    1988-01-01

    Presents entropy analysis of four processes: a chemical reaction, a heat engine, the dissolution of a solid, and osmosis. Discusses entropy, the second law of thermodynamics, and the Gibbs free energy function. (MVL)

  6. The Effect of Input-Based Instruction Type on the Acquisition of Spanish Accusative Clitics

    ERIC Educational Resources Information Center

    White, Justin

    2015-01-01

    The purpose of this paper is to compare structured input (SI) with other input-based instructional treatments. The input-based instructional types include: input flood (IF), text enhancement (TE), SI activities, and focused input (FI; SI without implicit negative feedback). Participants included 145 adult learners enrolled in an intermediate…

  7. Remainder terms for some quantum entropy inequalities

    SciTech Connect

    Carlen, Eric A.; Lieb, Elliott H.

    2014-04-15

    We consider three von Neumann entropy inequalities: subadditivity; Pinsker's inequality for relative entropy; and the monotonicity of relative entropy. For these we state conditions for equality, and we prove some new error bounds away from equality, including an improved version of Pinsker's inequality.

  8. Quantum Kaniadakis entropy under projective measurement

    NASA Astrophysics Data System (ADS)

    Ourabah, Kamel; Hamici-Bendimerad, Amel Hiba; Tribeche, Mouloud

    2015-09-01

    It is well known that the von Neumann entropy of a quantum state does not decrease with a projective measurement. This property holds for Tsallis and Rényi entropies as well. We show that the recently introduced quantum version of the Kaniadakis entropy preserves this property.

  9. Quantum Kaniadakis entropy under projective measurement.

    PubMed

    Ourabah, Kamel; Hamici-Bendimerad, Amel Hiba; Tribeche, Mouloud

    2015-09-01

    It is well known that the von Neumann entropy of a quantum state does not decrease with a projective measurement. This property holds for Tsallis and Rényi entropies as well. We show that the recently introduced quantum version of the Kaniadakis entropy preserves this property. PMID:26465433

  10. Input Decimated Ensembles

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Using an ensemble of classifiers instead of a single classifier has been shown to improve generalization performance in many pattern recognition problems. However, the extent of such improvement depends greatly on the amount of correlation among the errors of the base classifiers. Therefore, reducing those correlations while keeping the classifiers' performance levels high is an important area of research. In this article, we explore input decimation (ID), a method which selects feature subsets for their ability to discriminate among the classes and uses them to decouple the base classifiers. We provide a summary of the theoretical benefits of correlation reduction, along with results of our method on two underwater sonar data sets, three benchmarks from the Probenl/UCI repositories, and two synthetic data sets. The results indicate that input decimated ensembles (IDEs) outperform ensembles whose base classifiers use all the input features; randomly selected subsets of features; and features created using principal components analysis, on a wide range of domains.

  11. Entropy: A new measure of stock market volatility?

    NASA Astrophysics Data System (ADS)

    Bentes, Sonia R.; Menezes, Rui

    2012-11-01

    When uncertainty dominates understanding stock market volatility is vital. There are a number of reasons for that. On one hand, substantial changes in volatility of financial market returns are capable of having significant negative effects on risk averse investors. In addition, such changes can also impact on consumption patterns, corporate capital investment decisions and macroeconomic variables. Arguably, volatility is one of the most important concepts in the whole finance theory. In the traditional approach this phenomenon has been addressed based on the concept of standard-deviation (or variance) from which all the famous ARCH type models - Autoregressive Conditional Heteroskedasticity Models- depart. In this context, volatility is often used to describe dispersion from an expected value, price or model. The variability of traded prices from their sample mean is only an example. Although as a measure of uncertainty and risk standard-deviation is very popular since it is simple and easy to calculate it has long been recognized that it is not fully satisfactory. The main reason for that lies in the fact that it is severely affected by extreme values. This may suggest that this is not a closed issue. Bearing on the above we might conclude that many other questions might arise while addressing this subject. One of outstanding importance, from which more sophisticated analysis can be carried out, is how to evaluate volatility, after all? If the standard-deviation has some drawbacks shall we still rely on it? Shall we look for an alternative measure? In searching for this shall we consider the insight of other domains of knowledge? In this paper we specifically address if the concept of entropy, originally developed in physics by Clausius in the XIX century, which can constitute an effective alternative. Basically, what we try to understand is, which are the potentialities of entropy compared to the standard deviation. But why entropy? The answer lies on the fact

  12. Entropy of dynamical social networks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Karsai, Marton; Bianconi, Ginestra

    2012-02-01

    Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.

  13. Entropy algebras and Birkhoff factorization

    NASA Astrophysics Data System (ADS)

    Marcolli, Matilde; Tedeschi, Nicolas

    2015-11-01

    We develop notions of Rota-Baxter structures and associated Birkhoff factorizations, in the context of min-plus semirings and their thermodynamic deformations, including deformations arising from quantum information measures such as the von Neumann entropy. We consider examples related to Manin's renormalization and computation program, to Markov random fields and to counting functions and zeta functions of algebraic varieties.

  14. Coherent Informational Energy and Entropy.

    ERIC Educational Resources Information Center

    Avramescu, Aurel

    1980-01-01

    Seeks to provide a common theoretical foundation for all known bibliometric laws by assimilating a systemic view of the information transfer process with a thermodynamic process, i.e., the conduction of heat in solids. The resulting diffusion model establishes new definitions for informational energy and entropy consistent with corresponding…

  15. Rigorous entropy-energy arguments

    NASA Astrophysics Data System (ADS)

    Simon, Barry; Sokal, Alan D.

    1981-08-01

    We present a method for making rigorous various arguments which predict that certain situations are unstable because of a balance of energy vs. entropy. As applications, we give yet another proof that the two-dimensional plane rotor has no spontaneous magnetization and we make rigorous Thouless' arguments on the one-dimensional Ising model with coupling J/n 2.

  16. Alternative Multiview Maximum Entropy Discrimination.

    PubMed

    Chao, Guoqing; Sun, Shiliang

    2016-07-01

    Maximum entropy discrimination (MED) is a general framework for discriminative estimation based on maximum entropy and maximum margin principles, and can produce hard-margin support vector machines under some assumptions. Recently, the multiview version of MED multiview MED (MVMED) was proposed. In this paper, we try to explore a more natural MVMED framework by assuming two separate distributions p1( Θ1) over the first-view classifier parameter Θ1 and p2( Θ2) over the second-view classifier parameter Θ2 . We name the new MVMED framework as alternative MVMED (AMVMED), which enforces the posteriors of two view margins to be equal. The proposed AMVMED is more flexible than the existing MVMED, because compared with MVMED, which optimizes one relative entropy, AMVMED assigns one relative entropy term to each of the two views, thus incorporating a tradeoff between the two views. We give the detailed solving procedure, which can be divided into two steps. The first step is solving our optimization problem without considering the equal margin posteriors from two views, and then, in the second step, we consider the equal posteriors. Experimental results on multiple real-world data sets verify the effectiveness of the AMVMED, and comparisons with MVMED are also reported. PMID:26111403

  17. Origin of the 'Extra Entropy'

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    2008-01-01

    I will discuss how one can determine the origin of the 'extra entropy' in groups and clusters and the feedback needed in models of galaxy formation. I will stress the use of x-ray spectroscopy and imaging and the critical value that Con-X has in this regard.

  18. Entanglement entropy in particle decay

    NASA Astrophysics Data System (ADS)

    Lello, Louis; Boyanovsky, Daniel; Holman, Richard

    2013-11-01

    The decay of a parent particle into two or more daughter particles results in an entangled quantum state as a consequence of conservation laws in the decay process. Recent experiments at Belle and BaBar take advantage of quantum entanglement and the correlations in the time evolution of the product particles to study CP and T violations. If one (or more) of the product particles are not observed, their degrees of freedom are traced out of the pure state density matrix resulting from the decay, leading to a mixed state density matrix and an entanglement entropy. This entropy is a measure of the loss of information present in the original quantum correlations of the entangled state. We use the Wigner-Weisskopf method to construct an approximation to this state that evolves in time in a manifestly unitary way. We then obtain the entanglement entropy from the reduced density matrix of one of the daughter particles obtained by tracing out the unobserved states, and follow its time evolution. We find that it grows over a time scale determined by the lifetime of the parent particle to a maximum, which when the width of the parent particle is narrow, describes the phase space distribution of maximally entangled Bell-like states. The method is generalized to the case in which the parent particle is described by a wave packet localized in space. Possible experimental avenues to measure the entanglement entropy in the decay of mesons at rest are discussed.

  19. q-entropy for symbolic dynamical systems

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Pesin, Yakov

    2015-12-01

    For symbolic dynamical systems we use the Carathéodory construction as described in (Pesin 1997 Dimension Theory in Dynamical Systems, ConTemporary Views and Applications (Chicago: University of Chicago Press)) to introduce the notions of q-topological and q-metric entropies. We describe some basic properties of these entropies and in particular, discuss relations between q-metric entropy and local metric entropy. Both q-topological and q-metric entropies are new invariants respectively under homeomorphisms and metric isomorphisms of dynamical systems.

  20. Towards information inequalities for generalized graph entropies.

    PubMed

    Sivakumar, Lavanya; Dehmer, Matthias

    2012-01-01

    In this article, we discuss the problem of establishing relations between information measures for network structures. Two types of entropy based measures namely, the Shannon entropy and its generalization, the Rényi entropy have been considered for this study. Our main results involve establishing formal relationships, by means of inequalities, between these two kinds of measures. Further, we also state and prove inequalities connecting the classical partition-based graph entropies and partition-independent entropy measures. In addition, several explicit inequalities are derived for special classes of graphs. PMID:22715375

  1. Entropy-Corrected Holographic Dark Energy

    NASA Astrophysics Data System (ADS)

    Wei, Hao

    2009-10-01

    The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called “entropy-corrected holographic dark energy" (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called “entropy-corrected agegraphic dark energy" (ECADE).

  2. A violation of the covariant entropy bound?

    NASA Astrophysics Data System (ADS)

    Masoumi, Ali; Mathur, Samir D.

    2015-04-01

    Several arguments suggest that the entropy density at high energy density ρ should be given by the expression s =K √{ρ /G } , where K is a constant of order unity. On the other hand the covariant entropy bound requires that the entropy on a light sheet be bounded by A /4 G , where A is the area of the boundary of the sheet. We find that in a suitably chosen cosmological geometry, the above expression for s violates the covariant entropy bound. We consider different possible explanations for this fact, in particular, the possibility that entropy bounds should be defined in terms of volumes of regions rather than areas of surfaces.

  3. Generalized gravitational entropy from total derivative action

    NASA Astrophysics Data System (ADS)

    Dong, Xi; Miao, Rong-Xin

    2015-12-01

    We investigate the generalized gravitational entropy from total derivative terms in the gravitational action. Following the method of Lewkowycz and Maldacena, we find that the generalized gravitational entropy from total derivatives vanishes. We compare our results with the work of Astaneh, Patrushev, and Solodukhin. We find that if total derivatives produced nonzero entropy, the holographic and the field-theoretic universal terms of entanglement entropy would not match. Furthermore, the second law of thermodynamics could be violated if the entropy of total derivatives did not vanish.

  4. Renyi entropy measures of heart rate Gaussianity.

    PubMed

    Lake, Douglas E

    2006-01-01

    Sample entropy and approximate entropy are measures that have been successfully utilized to study the deterministic dynamics of heart rate (HR). A complementary stochastic point of view and a heuristic argument using the Central Limit Theorem suggests that the Gaussianity of HR is a complementary measure of the physiological complexity of the underlying signal transduction processes. Renyi entropy (or q-entropy) is a widely used measure of Gaussianity in many applications. Particularly important members of this family are differential (or Shannon) entropy (q = 1) and quadratic entropy (q = 2). We introduce the concepts of differential and conditional Renyi entropy rate and, in conjunction with Burg's theorem, develop a measure of the Gaussianity of a linear random process. Robust algorithms for estimating these quantities are presented along with estimates of their standard errors. PMID:16402599

  5. Nonparametric entropy estimation using kernel densities.

    PubMed

    Lake, Douglas E

    2009-01-01

    The entropy of experimental data from the biological and medical sciences provides additional information over summary statistics. Calculating entropy involves estimates of probability density functions, which can be effectively accomplished using kernel density methods. Kernel density estimation has been widely studied and a univariate implementation is readily available in MATLAB. The traditional definition of Shannon entropy is part of a larger family of statistics, called Renyi entropy, which are useful in applications that require a measure of the Gaussianity of data. Of particular note is the quadratic entropy which is related to the Friedman-Tukey (FT) index, a widely used measure in the statistical community. One application where quadratic entropy is very useful is the detection of abnormal cardiac rhythms, such as atrial fibrillation (AF). Asymptotic and exact small-sample results for optimal bandwidth and kernel selection to estimate the FT index are presented and lead to improved methods for entropy estimation. PMID:19897106

  6. Entropy-Based Financial Asset Pricing

    PubMed Central

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return – entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy. PMID:25545668

  7. Entropy-based financial asset pricing.

    PubMed

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy. PMID:25545668

  8. Entropy Generation Across Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; Lin, Naiguo; Wilber, Mark

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  9. Universal crossovers between entanglement entropy and thermal entropy

    NASA Astrophysics Data System (ADS)

    Swingle, Brian; Senthil, T.

    2013-01-01

    We postulate the existence of universal crossover functions connecting the universal parts of the entanglement entropy to the low-temperature thermal entropy in gapless quantum many-body systems. These scaling functions encode the intuition that the same low-energy degrees of freedom which control low-temperature thermal physics are also responsible for the long-range entanglement in the quantum ground state. We demonstrate the correctness of the proposed scaling form and determine the scaling function for certain classes of gapless systems whose low-energy physics is described by a conformal field theory. We also use our crossover formalism to argue that local systems which are “natural” can violate the boundary law at most logarithmically. In particular, we show that several non-Fermi-liquid phases of matter have entanglement entropy that is at most of order Ld-1log(L) for a region of linear size L thereby confirming various earlier suggestions in the literature. We also briefly apply our crossover formalism to the study of fluctuations in conserved quantities and discuss some subtleties that occur in systems that spontaneously break a continuous symmetry.

  10. Entropy and climate. I - ERBE observations of the entropy production of the earth

    NASA Technical Reports Server (NTRS)

    Stephens, G. L.; O'Brien, D. M.

    1993-01-01

    An approximate method for estimating the global distributions of the entropy fluxes flowing through the upper boundary of the climate system is introduced, and an estimate of the entropy exchange between the earth and space and the entropy production of the planet is provided. Entropy fluxes calculated from the Earth Radiation Budget Experiment measurements show how the long-wave entropy flux densities dominate the total entropy fluxes at all latitudes compared with the entropy flux densities associated with reflected sunlight, although the short-wave flux densities are important in the context of clear sky-cloudy sky net entropy flux differences. It is suggested that the entropy production of the planet is both constant for the 36 months of data considered and very near its maximum possible value. The mean value of this production is 0.68 x 10 exp 15 W/K, and the amplitude of the annual cycle is approximately 1 to 2 percent of this value.

  11. Phonon Entropy of Alloying in Dilute Vanadium Alloys

    NASA Astrophysics Data System (ADS)

    Delaire, Olivier; Swan-Wood, Tabitha; Kresch, Max; Fultz, Brent

    2005-03-01

    We investigate the entropic effects associated with changes in the phonon modes of vanadium upon dilute substitutional alloying. Using inelastic neutron scattering, we have measured the phonon DOS and the phonon entropy of mixing in V - 6%X, with X a transition metal impurity. We study trends for impurities across the d-series and down several columns of the periodic table. We show that for Ni, Pd and Pt impurities, the phonon entropy of alloying is large and negative, and in the case of Pt it results in a negative total entropy of mixing for 6% impurities. A Born-von Karman model was used to invert the experimental DOS curves and showed that the phonon stiffening down this column is associated with an increases in 1NN longitudinal inter-atomic force-constants. The changes in the phonon DOS for impurities across the 3d series are also correlated with the previously measured changes in the superconducting temperature Tc. Ab-initio DFT simulations were used to compute the effect of impurities on the electronic and phonon properties of vanadium, and are compared to the experimental results. This work was supported by DOE through the BES Grant DE-FG03-0346055 and BES-MS, W-31-109-ENG-38.

  12. Quantum information entropies for position-dependent mass Schrödinger problem

    SciTech Connect

    Yañez-Navarro, G.; Sun, Guo-Hua; Dytrych, T.; Launey, K.D.; Dong, Shi-Hai; Draayer, J.P.

    2014-09-15

    The Shannon entropy for the position-dependent Schrödinger equation for a particle with a nonuniform solitonic mass density is evaluated in the case of a trivial null potential. The position S{sub x} and momentum S{sub p} information entropies for the three lowest-lying states are calculated. In particular, for these states, we are able to derive analytical solutions for the S{sub x} entropy as well as for the Fourier transformed wave functions, while the S{sub p} quantity is calculated numerically. We notice the behavior of the S{sub x} entropy, namely, it decreases as the mass barrier width narrows and becomes negative beyond a particular width. The negative Shannon entropy exists for the probability densities that are highly localized. The mass barrier determines the stability of the system. The dependence of S{sub p} on the width is contrary to the one for S{sub x}. Some interesting features of the information entropy densities ρ{sub s}(x) and ρ{sub s}(p) are demonstrated. In addition, the Bialynicki-Birula–Mycielski (BBM) inequality is tested for a number of states and found to hold for all the cases.

  13. Nonequilibrium thermodynamics and maximum entropy production in the Earth system

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel

    2009-02-01

    The Earth system is maintained in a unique state far from thermodynamic equilibrium, as, for instance, reflected in the high concentration of reactive oxygen in the atmosphere. The myriad of processes that transform energy, that result in the motion of mass in the atmosphere, in oceans, and on land, processes that drive the global water, carbon, and other biogeochemical cycles, all have in common that they are irreversible in their nature. Entropy production is a general consequence of these processes and measures their degree of irreversibility. The proposed principle of maximum entropy production (MEP) states that systems are driven to steady states in which they produce entropy at the maximum possible rate given the prevailing constraints. In this review, the basics of nonequilibrium thermodynamics are described, as well as how these apply to Earth system processes. Applications of the MEP principle are discussed, ranging from the strength of the atmospheric circulation, the hydrological cycle, and biogeochemical cycles to the role that life plays in these processes. Nonequilibrium thermodynamics and the MEP principle have potentially wide-ranging implications for our understanding of Earth system functioning, how it has evolved in the past, and why it is habitable. Entropy production allows us to quantify an objective direction of Earth system change (closer to vs further away from thermodynamic equilibrium, or, equivalently, towards a state of MEP). When a maximum in entropy production is reached, MEP implies that the Earth system reacts to perturbations primarily with negative feedbacks. In conclusion, this nonequilibrium thermodynamic view of the Earth system shows great promise to establish a holistic description of the Earth as one system. This perspective is likely to allow us to better understand and predict its function as one entity, how it has evolved in the past, and how it is modified by human activities in the future.

  14. Parameters Selection for Bivariate Multiscale Entropy Analysis of Postural Fluctuations in Fallers and Non-Fallers Older Adults.

    PubMed

    Ramdani, Sofiane; Bonnet, Vincent; Tallon, Guillaume; Lagarde, Julien; Bernard, Pierre Louis; Blain, Hubert

    2016-08-01

    Entropy measures are often used to quantify the regularity of postural sway time series. Recent methodological developments provided both multivariate and multiscale approaches allowing the extraction of complexity features from physiological signals; see "Dynamical complexity of human responses: A multivariate data-adaptive framework," in Bulletin of Polish Academy of Science and Technology, vol. 60, p. 433, 2012. The resulting entropy measures are good candidates for the analysis of bivariate postural sway signals exhibiting nonstationarity and multiscale properties. These methods are dependant on several input parameters such as embedding parameters. Using two data sets collected from institutionalized frail older adults, we numerically investigate the behavior of a recent multivariate and multiscale entropy estimator; see "Multivariate multiscale entropy: A tool for complexity analysis of multichannel data," Physics Review E, vol. 84, p. 061918, 2011. We propose criteria for the selection of the input parameters. Using these optimal parameters, we statistically compare the multivariate and multiscale entropy values of postural sway data of non-faller subjects to those of fallers. These two groups are discriminated by the resulting measures over multiple time scales. We also demonstrate that the typical parameter settings proposed in the literature lead to entropy measures that do not distinguish the two groups. This last result confirms the importance of the selection of appropriate input parameters. PMID:26372426

  15. Entropy favours open colloidal lattices

    NASA Astrophysics Data System (ADS)

    Mao, Xiaoming; Chen, Qian; Granick, Steve

    2013-03-01

    Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.

  16. Preserved entropy and fragile magnetism

    NASA Astrophysics Data System (ADS)

    Canfield, Paul C.; Bud’ko, Sergey L.

    2016-08-01

    A large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples.

  17. [Multiscale entropy analysis of electrocardiogram].

    PubMed

    Wang, Jun; Ning, Xinbao; Li, Jin; Ma, Qianli; Xu, Yinlin; Bian, Chunhua

    2007-10-01

    Using the algorithm proposed by Costa M, et al., we studied the multiscale entropy (MSE) of electrocardiogram. The sample entropy (SampEn) of the healthy subjects was found to be higher than that of the subjects with coronary heart disease or myocardial infarction. The healthy subjects' complexity was found to be the highest. The SampEn of the subjects with coronary heart disease was noted to be only slightly higher than that of the subjects with myocardial infarction. These findings show that the complexity of the subjects with coronary heart disease or myocardial infarction is distinctly lower than the complexity of the healthy ones, and the subjects suffereing from coronary heart disease are liable to the onset of myocardial infarction. PMID:18027679

  18. Entropy of unimodular lattice triangulations

    NASA Astrophysics Data System (ADS)

    Knauf, Johannes F.; Krüger, Benedikt; Mecke, Klaus

    2015-02-01

    Triangulations are important objects of study in combinatorics, finite element simulations and quantum gravity, where their entropy is crucial for many physical properties. Due to their inherent complex topological structure even the number of possible triangulations is unknown for large systems. We present a novel algorithm for an approximate enumeration which is based on calculations of the density of states using the Wang-Landau flat histogram sampling. For triangulations on two-dimensional integer lattices we achieve excellent agreement with known exact numbers of small triangulations as well as an improvement of analytical calculated asymptotics. The entropy density is C=2.196(3) consistent with rigorous upper and lower bounds. The presented numerical scheme can easily be applied to other counting and optimization problems.

  19. Mixing entropy in Dean flows

    NASA Astrophysics Data System (ADS)

    Fodor, Petru; Vyhnalek, Brian; Kaufman, Miron

    2013-03-01

    We investigate mixing in Dean flows by solving numerically the Navier-Stokes equation for a circular channel. Tracers of two chemical species are carried by the fluid. The centrifugal forces, experienced as the fluid travels along a curved trajectory, coupled with the fluid incompressibility induce cross-sectional rotating flows (Dean vortices). These transversal flows promote the mixing of the chemical species. We generate images for different cross sections along the trajectory. The mixing efficiency is evaluated using the Shannon entropy. Previously we have found, P. S. Fodor and M. Kaufman, Modern Physics Letters B 25, 1111 (2011), this measure to be useful in understanding mixing in the staggered herringbone mixer. The mixing entropy is determined as function of the Reynolds number, the angle of the cross section and the observation scale (number of bins). Quantitative comparison of the mixing in the Dean micromixer and in the staggered herringbone mixer is attempted.

  20. Preserved entropy and fragile magnetism.

    PubMed

    Canfield, Paul C; Bud'ko, Sergey L

    2016-08-01

    A large swath of quantum critical and strongly correlated electron systems can be associated with the phenomena of preserved entropy and fragile magnetism. In this overview we present our thoughts and plans for the discovery and development of lanthanide and transition metal based, strongly correlated systems that are revealed by suppressed, fragile magnetism, quantum criticality, or grow out of preserved entropy. We will present and discuss current examples such as YbBiPt, YbAgGe, YbFe2Zn20, PrAg2In, BaFe2As2, CaFe2As2, LaCrSb3 and LaCrGe3 as part of our motivation and to provide illustrative examples. PMID:27377181

  1. Bacterial chemotaxis and entropy production

    PubMed Central

    Županović, Paško; Brumen, Milan; Jagodič, Marko; Juretić, Davor

    2010-01-01

    Entropy production is calculated for bacterial chemotaxis in the case of a migrating band of bacteria in a capillary tube. It is found that the speed of the migrating band is a decreasing function of the starting concentration of the metabolizable attractant. The experimentally found dependence of speed on the starting concentration of galactose, glucose and oxygen is fitted with power-law functions. It is found that the corresponding exponents lie within the theoretically predicted interval. The effect of the reproduction of bacteria on band speed is considered, too. The acceleration of the band is predicted due to the reproduction rate of bacteria. The relationship between chemotaxis, the maximum entropy production principle and the formation of self-organizing structure is discussed. PMID:20368258

  2. Entropy estimation and Fibonacci numbers

    NASA Astrophysics Data System (ADS)

    Timofeev, Evgeniy A.; Kaltchenko, Alexei

    2013-05-01

    We introduce a new metric on a space of right-sided infinite sequences drawn from a finite alphabet. Emerging from a problem of entropy estimation of a discrete stationary ergodic process, the metric is important on its own part and exhibits some interesting properties. Notably, the number of distinct metric values for a set of sequences of length m is equal to Fm+3 - 1, where Fm is a Fibonacci number.

  3. Coverage-adjusted entropy estimation.

    PubMed

    Vu, Vincent Q; Yu, Bin; Kass, Robert E

    2007-09-20

    Data on 'neural coding' have frequently been analyzed using information-theoretic measures. These formulations involve the fundamental and generally difficult statistical problem of estimating entropy. We review briefly several methods that have been advanced to estimate entropy and highlight a method, the coverage-adjusted entropy estimator (CAE), due to Chao and Shen that appeared recently in the environmental statistics literature. This method begins with the elementary Horvitz-Thompson estimator, developed for sampling from a finite population, and adjusts for the potential new species that have not yet been observed in the sample-these become the new patterns or 'words' in a spike train that have not yet been observed. The adjustment is due to I. J. Good, and is called the Good-Turing coverage estimate. We provide a new empirical regularization derivation of the coverage-adjusted probability estimator, which shrinks the maximum likelihood estimate. We prove that the CAE is consistent and first-order optimal, with rate O(P)(1/log n), in the class of distributions with finite entropy variance and that, within the class of distributions with finite qth moment of the log-likelihood, the Good-Turing coverage estimate and the total probability of unobserved words converge at rate O(P)(1/(log n)(q)). We then provide a simulation study of the estimator with standard distributions and examples from neuronal data, where observations are dependent. The results show that, with a minor modification, the CAE performs much better than the MLE and is better than the best upper bound estimator, due to Paninski, when the number of possible words m is unknown or infinite. PMID:17567838

  4. Entropy from the Foam II

    NASA Astrophysics Data System (ADS)

    Garattini, Remo

    A simple model of space-time foam, made by two different types of wormholes in a semiclassical approximation, is taken under examination: one type is a collection of Nw Schwarzschild wormholes, while the other one is made by Schwarzschild-Anti-de Sitter wormholes. The area quantization related to the entropy via the Bekenstein-Hawking formula hints a possible selection between the two configurations. Application to the charged black hole are discussed.

  5. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    USGS Publications Warehouse

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  6. Entropy of random entangling surfaces

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2012-09-01

    We consider the situation when a globally defined four-dimensional field system is separated on two entangled sub-systems by a dynamical (random) two-dimensional surface. The reduced density matrix averaged over ensemble of random surfaces of fixed area and the corresponding average entropy are introduced. The average entanglement entropy is analyzed for a generic conformal field theory in four dimensions. Two important particular cases are considered. In the first, both the intrinsic metric on the entangling surface and the spacetime metric are fluctuating. An important example of this type is when the entangling surface is a black hole horizon, the fluctuations of which cause necessarily the fluctuations in the spacetime geometry. In the second case, the spacetime is considered to be fixed. The detailed analysis is carried out for the random entangling surfaces embedded in flat Minkowski spacetime. In all cases, the problem reduces to an effectively two-dimensional problem of random surfaces which can be treated by means of the well-known conformal methods. Focusing on the logarithmic terms in the entropy, we predict the appearance of a new ln ln(A) term. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.

  7. Economics and Maximum Entropy Production

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2003-04-01

    Price differentials, sales volume and profit can be seen as analogues of temperature difference, heat flow and work or entropy production in the climate system. One aspect in which economic systems exhibit more clarity than the climate is that the empirical and/or statistical mechanical tendency for systems to seek a maximum in production is very evident in economics, in that the profit motive is very clear. Noting the common link between 1/f noise, power laws and Self-Organized Criticality with Maximum Entropy Production, the power law fluctuations in security and commodity prices is not inconsistent with the analogy. There is an additional thermodynamic analogy, in that scarcity is valued. A commodity concentrated among a few traders is valued highly by the many who do not have it. The market therefore encourages via prices the spreading of those goods among a wider group, just as heat tends to diffuse, increasing entropy. I explore some empirical price-volume relationships of metals and meteorites in this context.

  8. Crowd macro state detection using entropy model

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Yuan, Mengqi; Su, Guofeng; Chen, Tao

    2015-08-01

    In the crowd security research area a primary concern is to identify the macro state of crowd behaviors to prevent disasters and to supervise the crowd behaviors. The entropy is used to describe the macro state of a self-organization system in physics. The entropy change indicates the system macro state change. This paper provides a method to construct crowd behavior microstates and the corresponded probability distribution using the individuals' velocity information (magnitude and direction). Then an entropy model was built up to describe the crowd behavior macro state. Simulation experiments and video detection experiments were conducted. It was verified that in the disordered state, the crowd behavior entropy is close to the theoretical maximum entropy; while in ordered state, the entropy is much lower than half of the theoretical maximum entropy. The crowd behavior macro state sudden change leads to the entropy change. The proposed entropy model is more applicable than the order parameter model in crowd behavior detection. By recognizing the entropy mutation, it is possible to detect the crowd behavior macro state automatically by utilizing cameras. Results will provide data support on crowd emergency prevention and on emergency manual intervention.

  9. Quality evaluation of adaptive optical image based on DCT and Rényi entropy

    NASA Astrophysics Data System (ADS)

    Xu, Yuannan; Li, Junwei; Wang, Jing; Deng, Rong; Dong, Yanbing

    2015-04-01

    The adaptive optical telescopes play a more and more important role in the detection system on the ground, and the adaptive optical images are so many that we need find a suitable method of quality evaluation to choose good quality images automatically in order to save human power. It is well known that the adaptive optical images are no-reference images. In this paper, a new logarithmic evaluation method based on the use of the discrete cosine transform(DCT) and Rényi entropy for the adaptive optical images is proposed. Through the DCT using one or two dimension window, the statistical property of Rényi entropy for images is studied. The different directional Rényi entropy maps of an input image containing different information content are obtained. The mean values of different directional Rényi entropy maps are calculated. For image quality evaluation, the different directional Rényi entropy and its standard deviation corresponding to region of interest is selected as an indicator for the anisotropy of the images. The standard deviation of different directional Rényi entropy is obtained as the quality evaluation value for adaptive optical image. Experimental results show the proposed method that the sorting quality matches well with the visual inspection.

  10. Maximum entropy analysis of cosmic ray composition

    NASA Astrophysics Data System (ADS)

    Nosek, Dalibor; Ebr, Jan; Vícha, Jakub; Trávníček, Petr; Nosková, Jana

    2016-03-01

    We focus on the primary composition of cosmic rays with the highest energies that cause extensive air showers in the Earth's atmosphere. A way of examining the two lowest order moments of the sample distribution of the depth of shower maximum is presented. The aim is to show that useful information about the composition of the primary beam can be inferred with limited knowledge we have about processes underlying these observations. In order to describe how the moments of the depth of shower maximum depend on the type of primary particles and their energies, we utilize a superposition model. Using the principle of maximum entropy, we are able to determine what trends in the primary composition are consistent with the input data, while relying on a limited amount of information from shower physics. Some capabilities and limitations of the proposed method are discussed. In order to achieve a realistic description of the primary mass composition, we pay special attention to the choice of the parameters of the superposition model. We present two examples that demonstrate what consequences can be drawn for energy dependent changes in the primary composition.

  11. Hypermnesia using auditory input.

    PubMed

    Allen, J

    1992-07-01

    The author investigated whether hypermnesia would occur with auditory input. In addition, the author examined the effects of subjects' knowledge that they would later be asked to recall the stimuli. Two groups of 26 subjects each were given three successive recall trials after they listened to an audiotape of 59 high-imagery nouns. The subjects in the uninformed group were not told that they would later be asked to remember the words; those in the informed group were. Hypermnesia was evident, but only in the uninformed group. PMID:1447564

  12. Input distributions for VISA

    SciTech Connect

    Liebetrau, A.M.

    1983-10-01

    Work is underway at Pacific Northwest Laboratory (PNL) to improve the probabilistic analysis used to model pressurized thermal shock (PTS) incidents in reactor pressure vessels, and, further, to incorporate these improvements into the existing Vessel Integrity Simulation Analysis (VISA) code. Two topics related to work on input distributions in VISA are discussed in this paper. The first involves the treatment of flaw size distributions and the second concerns errors in the parameters in the (Guthrie) equation which is used to compute ..delta..RT/sub NDT/, the shift in reference temperature for nil ductility transition.

  13. Entropy bounds for hierarchical molecular networks.

    PubMed

    Dehmer, Matthias; Borgert, Stephan; Emmert-Streib, Frank

    2008-01-01

    In this paper we derive entropy bounds for hierarchical networks. More precisely, starting from a recently introduced measure to determine the topological entropy of non-hierarchical networks, we provide bounds for estimating the entropy of hierarchical graphs. Apart from bounds to estimate the entropy of a single hierarchical graph, we see that the derived bounds can also be used for characterizing graph classes. Our contribution is an important extension to previous results about the entropy of non-hierarchical networks because for practical applications hierarchical networks are playing an important role in chemistry and biology. In addition to the derivation of the entropy bounds, we provide a numerical analysis for two special graph classes, rooted trees and generalized trees, and demonstrate hereby not only the computational feasibility of our method but also learn about its characteristics and interpretability with respect to data analysis. PMID:18769487

  14. Renyi Entropies of a Black Hole

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.

    2008-08-01

    The Renyi entropies, Hl, of Hawking radiation contained in a thin shell surrounding the black hole are evaluated. When the width of the shell is adjusted to the energy content corresponding to the mass defect, the Bekenstein-Hawking formula for the Shannon (S=H1) entropy of a black hole is reproduced. This result does not depend on the distance of the shell from the horizon. The Renyi entropies of higher order, however, are sensitive to it.

  15. Entropy jump across an inviscid shock wave

    NASA Technical Reports Server (NTRS)

    Salas, Manuel D.; Iollo, Angelo

    1995-01-01

    The shock jump conditions for the Euler equations in their primitive form are derived by using generalized functions. The shock profiles for specific volume, speed, and pressure are shown to be the same, however density has a different shock profile. Careful study of the equations that govern the entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We demonstrate that because of this phenomenon, the entropy, propagation equation cannot be used as a conservation law.

  16. Entropy in an Arc Plasma Source

    SciTech Connect

    Kaminska, A.; Dudeck, M

    2008-03-19

    The entropy properties in a D.C. argon arc plasma source are studied. The local thermodynamical entropy relations are established for a set of uniform sub-systems (Ar, Ar{sup +}, e) in order to deduce the entropy balance equation in presence of dissipative effects and in the case of a thermal non equilibrium. Phenomenological linear laws are deduced in near equilibrium situation. The flow parameters inside the plasma source are calculated by a Navier-Stokes fluid description taking into account a thermal local non equilibrium. The entropy function is calculated in the plasma source using the values of the local variables obtained from the numerical code.

  17. Constructing black hole entropy from gravitational collapse

    NASA Astrophysics Data System (ADS)

    Acquaviva, Giovanni; Ellis, George F. R.; Goswami, Rituparno; Hamid, Aymen I. M.

    2015-03-01

    Based on a recent proposal for the gravitational entropy of free gravitational fields, we investigate the thermodynamic properties of black hole formation through gravitational collapse in the framework of the semitetrad 1 +1 +2 covariant formalism. In the simplest case of an Oppenheimer-Snyder-Datt collapse, we prove that the change in gravitational entropy outside a collapsing body is related to the variation of the surface area of the body itself, even before the formation of horizons. As a result, we are able to relate the Bekenstein-Hawking entropy of the black hole end state to the variation of the vacuum gravitational entropy outside the collapsing body.

  18. Link prediction based on path entropy

    NASA Astrophysics Data System (ADS)

    Xu, Zhongqi; Pu, Cunlai; Yang, Jian

    2016-08-01

    Information theory has been taken as a prospective tool for quantifying the complexity of complex networks. In this paper, first we study the information entropy or uncertainty of a path using the information theory. After that, we apply the path entropy to the link prediction problem in real-world networks. Specifically, we propose a new similarity index, namely Path Entropy (PE) index, which considers the information entropies of shortest paths between node pairs with penalization to long paths. Empirical experiments demonstrate that PE index outperforms the mainstream of link predictors.

  19. Unrestrained Expansion - A Source of Entropy

    NASA Astrophysics Data System (ADS)

    Michaud, L. M.

    2005-12-01

    The paper examines the role of unrestrained expansion in atmospheric entropy production. Lack of mechanical equilibrium is shown to be a far larger producer of internally generated entropy than other internally generated entropy production processes. Isentropic expanders are used to explain atmospheric entropy production. Unrestrained expansion can account for the discrepancy between the energy that would be produced if the heat were carried by Carnot engines and the energy actually produced. Having an expander in more important to mechanical energy production than reducing friction losses. The method of analysis is also applicable to: the solar chimney and to the atmospheric vortex engine.

  20. Beyond Gibbs-Boltzmann-Shannon: General Entropies -- The Gibbs-Lorentzian Example

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf; Baumjohann, Wolfgang

    2014-08-01

    We propose a generalisation of Gibbs' statistical mechanics into the domain of non-negligible phase space correlations. Derived are the probability distribution and entropy as a generalised ensemble average, replacing Gibbs-Boltzmann-Shannon's entropy definition enabling construction of new forms of statistical mechanics. The general entropy may also be of importance in information theory and data analysis. Application to generalised Lorentzian phase space elements yields the Gibbs-Lorentzian power law probability distribution and statistical mechanics. The corresponding Boltzmann, Fermi and Bose-Einstein distributions are found. They apply only to finite temperature states including correlations. As a by-product any negative absolute temperatures are categorically excluded, supporting a recent ``no-negative T" claim.

  1. Arctic science input wanted

    NASA Astrophysics Data System (ADS)

    The Arctic Research and Policy Act (Eos, June 26, 1984, p. 412) was signed into law by President Ronald Reagan this past July. One of its objectives is to develop a 5-year research plan for the Arctic. A request for input to this plan is being issued this week to nearly 500 people in science, engineering, and industry.To promote Arctic research and to recommend research policy in the Arctic, the new law establishes a five-member Arctic Research Commission, to be appointed by the President, and establishes an Interagency Arctic Research Policy Committee, to be composed of representatives from nearly a dozen agencies having interests in the region. The commission will make policy recommendations, and the interagency committee will implement those recommendations. The National Science Foundation (NSF) has been designated as the lead agency of the interagency committee.

  2. Entropy bounds and dark energy

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen D. H.

    2004-07-01

    Entropy bounds render quantum corrections to the cosmological constant Λ finite. Under certain assumptions, the natural value of Λ is of order the observed dark energy density ~10-10 eV4, thereby resolving the cosmological constant problem. We note that the dark energy equation of state in these scenarios is w≡p/ρ=0 over cosmological distances, and is strongly disfavored by observational data. Alternatively, Λ in these scenarios might account for the diffuse dark matter component of the cosmological energy density. Permanent address: Institute of Theoretical Science and Department of Physics, University of Oregon, Eugene, OR 97403.

  3. Time dependence of Hawking radiation entropy

    SciTech Connect

    Page, Don N.

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM{sub 0}{sup 2}, or about 7.509M{sub 0}{sup 2} ≈ 6.268 × 10{sup 76}(M{sub 0}/M{sub s}un){sup 2}, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M{sub 0}{sup 2} ≈ 1.254 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}, and then decreases back down to 4πM{sub 0}{sup 2} = 1.049 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}.

  4. Time dependence of Hawking radiation entropy

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM02, or about 7.509M02 ≈ 6.268 × 1076(M0/Msolar)2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M02 ≈ 1.254 × 1077(M0/Msolar)2, and then decreases back down to 4πM02 = 1.049 × 1077(M0/Msolar)2.

  5. Detection of Events in Biomedical Signals by a Rényi Entropy Measure

    NASA Astrophysics Data System (ADS)

    Gabarda, S.; Cristóbal, G.; Martínez-Alajarín, J.; Ruiz, R.

    2006-10-01

    Biomedical signals contain important information about the healthy condition of human beings. Anomalous events in these signals are commonly associated to diseases. The information content enclosed by time-frequency representations (TFR) of biomedical signals can be explored by means of different Rényi entropy measures. To be precise, Rényi entropy can be approached under different normalizations, producing different outcomes. The best choice depends upon the particularities of the application considered. In this paper we propose a new processing scheme to the problem of events detection in biomedical signals, based on a particular normalization of the Rény entropy measurement. As in the case of another TFR's, the pseudo-Wigner distribution (PWD) of a biomedical signal can take negative values and thus it cannot be properly interpreted as a probability density function. Therefore a complexity measure based on the classical Shannon entropy cannot be used and a generalized measure such as the Rényi entropy is required. Our method allows the identification of the events as the moments having the highest amount of information (entropy) along the temporal data. This provides localized information about normal and pathological events in biomedical signals. Therefore, the diagnosis of diseases is facilitated in this way. The method is illustrated with examples of application to phonocardiograms and electrocardiograms and result are discussed.

  6. Entropy and generalized least square methods in assessment of the regional value of streamgages

    USGS Publications Warehouse

    Markus, M.; Vernon, Knapp H.; Tasker, Gary D.

    2003-01-01

    The Illinois State Water Survey performed a study to assess the streamgaging network in the State of Illinois. One of the important aspects of the study was to assess the regional value of each station through an assessment of the information transfer among gaging records for low, average, and high flow conditions. This analysis was performed for the main hydrologic regions in the State, and the stations were initially evaluated using a new approach based on entropy analysis. To determine the regional value of each station within a region, several information parameters, including total net information, were defined based on entropy. Stations were ranked based on the total net information. For comparison, the regional value of the same stations was assessed using the generalized least square regression (GLS) method, developed by the US Geological Survey. Finally, a hybrid combination of GLS and entropy was created by including a function of the negative net information as a penalty function in the GLS. The weights of the combined model were determined to maximize the average correlation with the results of GLS and entropy. The entropy and GLS methods were evaluated using the high-flow data from southern Illinois stations. The combined method was compared with the entropy and GLS approaches using the high-flow data from eastern Illinois stations. ?? 2003 Elsevier B.V. All rights reserved.

  7. Entanglement entropy between real and virtual particles in ϕ4 quantum field theory

    NASA Astrophysics Data System (ADS)

    Ardenghi, Juan Sebastián

    2015-04-01

    The aim of this work is to compute the entanglement entropy of real and virtual particles by rewriting the generating functional of ϕ4 theory as a mean value between states and observables defined through the correlation functions. Then the von Neumann definition of entropy can be applied to these quantum states and in particular, for the partial traces taken over the internal or external degrees of freedom. This procedure can be done for each order in the perturbation expansion showing that the entanglement entropy for real and virtual particles behaves as ln (m0). In particular, entanglement entropy is computed at first order for the correlation function of two external points showing that mutual information is identical to the external entropy and that conditional entropies are negative for all the domain of m0. In turn, from the definition of the quantum states, it is possible to obtain general relations between total traces between different quantum states of a ϕr theory. Finally, discussion about the possibility of taking partial traces over external degrees of freedom is considered, which implies the introduction of some observables that measure space-time points where an interaction occurs.

  8. Gibbs paradox of entropy of mixing experimental facts. Its rejection, and the theoretical consequences

    SciTech Connect

    Lin, Shu-Kun |

    1996-12-31

    Gibbs paradox statement of entropy of mixing has been regarded as the theoretical foundation of statistical mechanics, quantum theory and biophysics. However, all the relevant chemical experimental observations and logical analyses indicate that the Gibbs paradox statement is false. I prove that this statement is wrong: Gibbs paradox statement implies that entropy decreases with the increase in symmetry (as represented by a symmetry number {sigma}; see any statistical mechanics textbook). From group theory any system has at least a symmetry number {sigma}=1 which is the identity operation for a strictly asymmetric system. It follows that the entropy of a system is equal to, or less than, zero. However, from either von Neumann-Shannon entropy formula (S(w) =-{Sigma}{sup {omega}} in p{sub 1}) or the Boltzmann entropy formula (S = in w) and the original definition, entropy is non-negative. Therefore, this statement is false. It should not be a surprise that for the first time, many outstanding problems such as the validity of Pauling`s resonance theory, the explanation of second order phase transition phenomena, the biophysical problem of protein folding and the related hydrophobic effect, etc., can be solved. Empirical principles such as Pauli principle (and Hund`s rule) and HSAB principle, etc., can also be given a theoretical explanation.

  9. Input Multiplicities in Process Control.

    ERIC Educational Resources Information Center

    Koppel, Lowell B.

    1983-01-01

    Describes research investigating potential effect of input multiplicity on multivariable chemical process control systems. Several simple processes are shown to exhibit the possibility of theoretical developments on input multiplicity and closely related phenomena are discussed. (JN)

  10. Modeling and generating input processes

    SciTech Connect

    Johnson, M.E.

    1987-01-01

    This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.

  11. Negative specific heat of a magnetically self-confined plasma torus

    PubMed Central

    Kiessling, Michael K.-H.; Neukirch, Thomas

    2003-01-01

    It is shown that the thermodynamic maximum-entropy principle predicts negative specific heat for a stationary, magnetically self-confined current-carrying plasma torus. Implications for the magnetic self-confinement of fusion plasma are considered. PMID:12576553

  12. Extensive ground state entropy in supersymmetric lattice models

    SciTech Connect

    Eerten, Hendrik van

    2005-12-15

    We present the result of calculations of the Witten index for a supersymmetric lattice model on lattices of various type and size. Because the model remains supersymmetric at finite lattice size, the Witten index can be calculated using row-to-row transfer matrices and the calculations are similar to calculations of the partition function at negative activity -1. The Witten index provides a lower bound on the number of ground states. We find strong numerical evidence that the Witten index grows exponentially with the number of sites of the lattice, implying that the model has extensive entropy in the ground state.

  13. The Origins of the Entropy Concept

    NASA Astrophysics Data System (ADS)

    Darrigol, Olivier

    To this day entropy remains a strange, difficult, and multiform concept. Even the great Henri Poincaré renounced precisely defining energy and entropy. In order to justify the success of the two laws of thermodynamics for his students at the Sorbonne, he turned to history:

  14. Ehrenfest's Lottery--Time and Entropy Maximization

    ERIC Educational Resources Information Center

    Ashbaugh, Henry S.

    2010-01-01

    Successful teaching of the Second Law of Thermodynamics suffers from limited simple examples linking equilibrium to entropy maximization. I describe a thought experiment connecting entropy to a lottery that mixes marbles amongst a collection of urns. This mixing obeys diffusion-like dynamics. Equilibrium is achieved when the marble distribution is…

  15. Campbell's Rule for Estimating Entropy Changes

    ERIC Educational Resources Information Center

    Jensen, William B.

    2004-01-01

    Campbell's rule for estimating entropy changes is discussed in relation to an earlier article by Norman Craig, where it was proposed that the approximate value of the entropy of reaction was related to net moles of gas consumed or generated. It was seen that the average for Campbell's data set was lower than that for Craig's data set and…

  16. Chemical Engineering Students' Ideas of Entropy

    ERIC Educational Resources Information Center

    Haglund, Jesper; Andersson, Staffan; Elmgren, Maja

    2015-01-01

    Thermodynamics, and in particular entropy, has been found to be challenging for students, not least due to its abstract character. Comparisons with more familiar and concrete domains, by means of analogy and metaphor, are commonly used in thermodynamics teaching, in particular the metaphor "entropy is disorder." However, this particular…

  17. Progress in High-Entropy Alloys

    SciTech Connect

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  18. Entropy and Certainty in Lossless Data Compression

    ERIC Educational Resources Information Center

    Jacobs, James Jay

    2009-01-01

    Data compression is the art of using encoding techniques to represent data symbols using less storage space compared to the original data representation. The encoding process builds a relationship between the entropy of the data and the certainty of the system. The theoretical limits of this relationship are defined by the theory of entropy in…

  19. Entropy estimation of very short symbolic sequences

    NASA Astrophysics Data System (ADS)

    Lesne, Annick; Blanc, Jean-Luc; Pezard, Laurent

    2009-04-01

    While entropy per unit time is a meaningful index to quantify the dynamic features of experimental time series, its estimation is often hampered in practice by the finite length of the data. We here investigate the performance of entropy estimation procedures, relying either on block entropies or Lempel-Ziv complexity, when only very short symbolic sequences are available. Heuristic analytical arguments point at the influence of temporal correlations on the bias and statistical fluctuations, and put forward a reduced effective sequence length suitable for error estimation. Numerical studies are conducted using, as benchmarks, the wealth of different dynamic regimes generated by the family of logistic maps and stochastic evolutions generated by a Markov chain of tunable correlation time. Practical guidelines and validity criteria are proposed. For instance, block entropy leads to a dramatic overestimation for sequences of low entropy, whereas it outperforms Lempel-Ziv complexity at high entropy. As a general result, the quality of entropy estimation is sensitive to the sequence temporal correlation hence self-consistently depends on the entropy value itself, thus promoting a two-step procedure. Lempel-Ziv complexity is to be preferred in the first step and remains the best estimator for highly correlated sequences.

  20. Generalized Entropic Uncertainty Relations with Tsallis' Entropy

    NASA Technical Reports Server (NTRS)

    Portesi, M.; Plastino, A.

    1996-01-01

    A generalization of the entropic formulation of the Uncertainty Principle of Quantum Mechanics is considered with the introduction of the q-entropies recently proposed by Tsallis. The concomitant generalized measure is illustrated for the case of phase and number operators in quantum optics. Interesting results are obtained when making use of q-entropies as the basis for constructing generalized entropic uncertainty measures.

  1. Entropy Generation in a Chemical Reaction

    ERIC Educational Resources Information Center

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  2. Entropy and Information: A Multidisciplinary Overview.

    ERIC Educational Resources Information Center

    Shaw, Debora; Davis, Charles H.

    1983-01-01

    Cites representative extensions of concept of entropy (measure of the amount of energy unavailable for useful work; from the second law of thermodynamics) noting basic relationships between entropy, order, information, and meaning in such disciplines as biology, economics, information science, the arts, and religion. Seventy-eight references are…

  3. Invariant of dynamical systems: A generalized entropy

    SciTech Connect

    Meson, A.M.; Vericat, F. |

    1996-09-01

    In this work the concept of entropy of a dynamical system, as given by Kolmogorov, is generalized in the sense of Tsallis. It is shown that this entropy is an isomorphism invariant, being complete for Bernoulli schemes. {copyright} {ital 1996 American Institute of Physics.}

  4. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state

    PubMed Central

    Gosseries, Olivia; Schnakers, Caroline; Ledoux, Didier; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurélie; Demertzi, Athéna; Noirhomme, Quentin; Lehembre, Rémy; Damas, Pierre; Goldman, Serge; Peeters, Erika; Moonen, Gustave; Laureys, Steven

    Summary Monitoring the level of consciousness in brain-injured patients with disorders of consciousness is crucial as it provides diagnostic and prognostic information. Behavioral assessment remains the gold standard for assessing consciousness but previous studies have shown a high rate of misdiagnosis. This study aimed to investigate the usefulness of electroencephalography (EEG) entropy measurements in differentiating unconscious (coma or vegetative) from minimally conscious patients. Left fronto-temporal EEG recordings (10-minute resting state epochs) were prospectively obtained in 56 patients and 16 age-matched healthy volunteers. Patients were assessed in the acute (≤1 month post-injury; n=29) or chronic (>1 month post-injury; n=27) stage. The etiology was traumatic in 23 patients. Automated online EEG entropy calculations (providing an arbitrary value ranging from 0 to 91) were compared with behavioral assessments (Coma Recovery Scale-Revised) and outcome. EEG entropy correlated with Coma Recovery Scale total scores (r=0.49). Mean EEG entropy values were higher in minimally conscious (73±19; mean and standard deviation) than in vegetative/unresponsive wakefulness syndrome patients (45±28). Receiver operating characteristic analysis revealed an entropy cut-off value of 52 differentiating acute unconscious from minimally conscious patients (sensitivity 89% and specificity 90%). In chronic patients, entropy measurements offered no reliable diagnostic information. EEG entropy measurements did not allow prediction of outcome. User-independent time-frequency balanced spectral EEG entropy measurements seem to constitute an interesting diagnostic – albeit not prognostic – tool for assessing neural network complexity in disorders of consciousness in the acute setting. Future studies are needed before using this tool in routine clinical practice, and these should seek to improve automated EEG quantification paradigms in order to reduce the remaining false

  5. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state.

    PubMed

    Gosseries, Olivia; Schnakers, Caroline; Ledoux, Didier; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurélie; Demertzi, Athéna; Noirhomme, Quentin; Lehembre, Rémy; Damas, Pierre; Goldman, Serge; Peeters, Erika; Moonen, Gustave; Laureys, Steven

    2011-01-01

    Monitoring the level of consciousness in brain-injured patients with disorders of consciousness is crucial as it provides diagnostic and prognostic information. Behavioral assessment remains the gold standard for assessing consciousness but previous studies have shown a high rate of misdiagnosis. This study aimed to investigate the usefulness of electroencephalography (EEG) entropy measurements in differentiating unconscious (coma or vegetative) from minimally conscious patients. Left fronto-temporal EEG recordings (10-minute resting state epochs) were prospectively obtained in 56 patients and 16 age-matched healthy volunteers. Patients were assessed in the acute (≤1 month post-injury; n=29) or chronic (>1 month post-injury; n=27) stage. The etiology was traumatic in 23 patients. Automated online EEG entropy calculations (providing an arbitrary value ranging from 0 to 91) were compared with behavioral assessments (Coma Recovery Scale-Revised) and outcome. EEG entropy correlated with Coma Recovery Scale total scores (r=0.49). Mean EEG entropy values were higher in minimally conscious (73±19; mean and standard deviation) than in vegetative/unresponsive wakefulness syndrome patients (45±28). Receiver operating characteristic analysis revealed an entropy cut-off value of 52 differentiating acute unconscious from minimally conscious patients (sensitivity 89% and specificity 90%). In chronic patients, entropy measurements offered no reliable diagnostic information. EEG entropy measurements did not allow prediction of outcome. User-independent time-frequency balanced spectral EEG entropy measurements seem to constitute an interesting diagnostic - albeit not prognostic - tool for assessing neural network complexity in disorders of consciousness in the acute setting. Future studies are needed before using this tool in routine clinical practice, and these should seek to improve automated EEG quantification paradigms in order to reduce the remaining false negative and

  6. Revisiting the Generalization of Entropy for Non-positive Distribution: Application for Exponent Spectra Analysis

    NASA Astrophysics Data System (ADS)

    Kalaidzidis, Yannis L.; Gopta, Oxana; Kalaidzidis, Inna V.

    2009-12-01

    Originally the maximum entropy method for exponent deconvolution was restricted to the positive exponent's amplitudes by the entropy S(f, m) definition. It limits application of the method, since many experimental kinetics show both the rise and the decay, which manifest themselves as positive and negative amplitudes in the exponent spectrum. The generalization of entropy formulation for non-negative distribution (S. F. Gull and J. Skilling) overcomes this limitation. The drawback of the approach was, that m lost the meaning of the prior distribution, since that maximum of generalized S(f, m) is independent on m and achieved at f ≡ 0. It is significant problem when there are apriori information about possible spectrum behaviour. In the present work some assumptions of the entropy generalization was relaxed and alternative entropy formulation, with non-uniform prior was used for analysis of simulated and experimental data. The new approach was applied to spectra analysis of the absorption kinetics of the bacteriorhodopsin (bR—light driven proton pump from archea Halobacterium salinarium) photocycle. It was shown that the process of the intermediate M formation is non-exponential in the wild type bR. The non-exponential process could be interpreted as result of the protein conformational changes during proton transfer from the Shiff-base of bR.

  7. Low Streamflow Forcasting using Minimum Relative Entropy

    NASA Astrophysics Data System (ADS)

    Cui, H.; Singh, V. P.

    2013-12-01

    Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.

  8. The role of entropy in magnetotail dynamics

    SciTech Connect

    Birn, Joachim; Zaharia, Sorin; Hesse, Michael

    2008-01-01

    The role of entropy conservation and loss in magnetospheric dynamics, particularly in relation to substorm phases, is discussed on the basis of MHD theory and simulations, using comparisons with PIC simulations for validation. Entropy conservation appears to be a crucial element leading to the formation of thin embedded current sheets in the late substorm growth phase and the potential loss of equilibrium. Entropy loss (in the form of plasmoids) is essential in the earthward transport of flux tubes (bubbles, bursty bulk flows). Entropy loss also changes the tail stability properties and may render ballooning modes unstable and thus contribute to cross-tail variability. We illustrate these effects through results from theory and simulations. Entropy conservation also governs the accessibility of final states of evolution and the amount of energy that may be released.

  9. Trends of stellar entropy along stellar evolution

    NASA Astrophysics Data System (ADS)

    de Avellar, Guilherme Bronzato, Marcio; Alvares de Souza, Rodrigo; Horvath, Jorge Ernesto

    2016-02-01

    This paper is devoted to discussing the difference in the thermodynamic entropy budget per baryon in each type of stellar object found in the Universe. We track and discuss the actual decrease of the stored baryonic thermodynamic entropy from the most primitive molecular cloud up to the final fate of matter in black holes, passing through evolved states of matter as found in white dwarfs and neutron stars. We then discuss the case of actual stars with different masses throughout their evolution, clarifying the role of the virial equilibrium condition for the decrease in entropy and related issues. Finally, we discuss the role of gravity in driving the composition and the structural changes of stars with different Main Sequence masses during their evolution up to the final product. Particularly, we discuss the entropy of a black hole in this context arguing that the dramatic increase in its entropy, differently from the other cases, is due to the gravitational field itself.

  10. Entropy of uremia and dialysis technology.

    PubMed

    Ronco, Claudio

    2013-01-01

    The second law of thermodynamics applies with local exceptions to patient history and therapy interventions. Living things preserve their low level of entropy throughout time because they receive energy from their surroundings in the form of food. They gain their order at the expense of disordering the nutrients they consume. Death is the thermodynamically favored state: it represents a large increase in entropy as molecular structure yields to chaos. The kidney is an organ dissipating large amounts of energy to maintain the level of entropy of the organism as low as possible. Diseases, and in particular uremia, represent conditions of rapid increase in entropy. Therapeutic strategies are oriented towards a reduction in entropy or at least a decrease in the speed of entropy increase. Uremia is a process accelerating the trend towards randomness and disorder (increase in entropy). Dialysis is a factor external to the patient that tends to reduce the level of entropy caused by kidney disease. Since entropy can only increase in closed systems, energy and work must be spent to limit the entropy of uremia. This energy should be adapted to the system (patient) and be specifically oriented and personalized. This includes a multidimensional effort to achieve an adequate dialysis that goes beyond small molecular weight solute clearance. It includes a biological plan for recovery of homeostasis and a strategy towards long-term rehabilitation of the patient. Such objectives can be achieved with a combination of technology and innovation to answer specific questions that are still present after 60 years of dialysis history. This change in the individual bioentropy may represent a local exception to natural trends as the patient could be considered an isolated universe responding to the classic laws of thermodynamics. PMID:23343540

  11. Channel capacity and receiver deployment optimization for multi-input multi-output visible light communications.

    PubMed

    Wang, Jin-Yuan; Dai, Jianxin; Guan, Rui; Jia, Linqiong; Wang, Yongjin; Chen, Ming

    2016-06-13

    Multi-input multi-output (MIMO) technique is attractive for visible light communication (VLC), which exploits the high signal-to-noise ratio (SNR) of a single channel to overcome the capacity limitation due to the small modulation bandwidth of the light emitting diode. This paper establishes a MIMO VLC system under the non-negativity, peak power and dimmable average power constraints. Assume that perfect channel state information at the transmitter is known, the MIMO channel is changed to parallel, non-interfering sub-channels by using the singular value decomposition (SVD). Based on the SVD, the lower bound on the channel capacity for MIMO VLC is derived by employing entropy power inequality and variational method. Moreover, by maximizing the derived lower bound on the capacity under the given constraints, the receiver deployment optimization problem is formulated. The problem is solved by employing the principle of particle swarm optimization. Numerical results verify the derived capacity bound and the proposed deployment optimization scheme. PMID:27410325

  12. Entropy Splitting and Numerical Dissipation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Vinokur, M.; Djomehri, M. J.

    1999-01-01

    A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock

  13. Relative von Neumann entropy for evaluating amino acid conservation.

    PubMed

    Johansson, Fredrik; Toh, Hiroyuki

    2010-10-01

    The Shannon entropy is a common way of measuring conservation of sites in multiple sequence alignments, and has also been extended with the relative Shannon entropy to account for background frequencies. The von Neumann entropy is another extension of the Shannon entropy, adapted from quantum mechanics in order to account for amino acid similarities. However, there is yet no relative von Neumann entropy defined for sequence analysis. We introduce a new definition of the von Neumann entropy for use in sequence analysis, which we found to perform better than the previous definition. We also introduce the relative von Neumann entropy and a way of parametrizing this in order to obtain the Shannon entropy, the relative Shannon entropy and the von Neumann entropy at special parameter values. We performed an exhaustive search of this parameter space and found better predictions of catalytic sites compared to any of the previously used entropies. PMID:20981889

  14. Urban Transfer Entropy across Scales

    PubMed Central

    Murcio, Roberto

    2015-01-01

    The morphology of urban agglomeration is studied here in the context of information exchange between different spatio-temporal scales. Urban migration to and from cities is characterised as non-random and following non-random pathways. Cities are multidimensional non-linear phenomena, so understanding the relationships and connectivity between scales is important in determining how the interplay of local/regional urban policies may affect the distribution of urban settlements. In order to quantify these relationships, we follow an information theoretic approach using the concept of Transfer Entropy. Our analysis is based on a stochastic urban fractal model, which mimics urban growing settlements and migration waves. The results indicate how different policies could affect urban morphology in terms of the information generated across geographical scales. PMID:26207628

  15. Area terms in entanglement entropy

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Mazzitelli, F. D.; Testé, Eduardo

    2015-05-01

    We discuss area terms in entanglement entropy and show that a recent formula by Rosenhaus and Smolkin is equivalent to the term involving a correlator of traces of the stress tensor in the Adler-Zee formula for the renormalization of the Newton constant. We elaborate on how to fix the ambiguities in these formulas: Improving terms for the stress tensor of free fields, boundary terms in the modular Hamiltonian, and contact terms in the Euclidean correlation functions. We make computations for free fields and show how to apply these calculations to understand some results for interacting theories which have been studied in the literature. We also discuss an application to the F-theorem.

  16. Measuring anomaly with algorithmic entropy

    NASA Astrophysics Data System (ADS)

    Solano, Wanda M.

    Anomaly detection refers to the identification of observations that are considered outside of normal. Since they are unknown to the system prior to training and rare, the anomaly detection problem is particularly challenging. Model based techniques require large quantities of existing data are to build the model. Statistically based techniques result in the use of statistical metrics or thresholds for determining whether a particular observation is anomalous. I propose a novel approach to anomaly detection using wavelet based algorithmic entropy that does not require modeling or large amounts of data. My method embodies the concept of information distance that rests on the fact that data encodes information. This distance is large when little information is shared, and small when there is greater information sharing. I compare my approach with several techniques in the literature using data obtained from testing of NASA's Space Shuttle Main Engines (SSME)

  17. Entropy changes in brain function.

    PubMed

    Rosso, Osvaldo A

    2007-04-01

    The traditional way of analyzing brain electrical activity, on the basis of electroencephalography (EEG) records, relies mainly on visual inspection and years of training. Although it is quite useful, of course, one has to acknowledge its subjective nature that hardly allows for a systematic protocol. In the present work quantifiers based on information theory and wavelet transform are reviewed. The "relative wavelet energy" provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The "normalized total wavelet entropy" carries information about the degree of order-disorder associated with a multi-frequency signal response. Their application in the analysis and quantification of short duration EEG signals (event-related potentials) and epileptic EEG records are summarized. PMID:17234291

  18. Decreased entropy of symbolic heart rate dynamics during daily activity as a predictor of positive head-up tilt test in patients with alleged neurocardiogenic syncope

    NASA Astrophysics Data System (ADS)

    Kim, June-Soo; Park, Jeong-Euy; Seo, Jung-Don; Lee, Won-Ro; Kim, Hee-Soo; Noh, Jung-Il; Kim, Nam-Su; Yum, Myung-Kul

    2000-11-01

    Entropy measures of RR interval variability during daily activity over a 24 h period were compared in 30 patients with a positive head-up tilt (HUT) test and 30 patients with a negative HUT test who had a history of alleged neurocardiogenic syncope. Two different entropies, approximate entropy (ApEn) and entropy of symbolic dynamics (SymEn), were employed. In patients showing a positive HUT test, the entropies were significantly decreased when compared with the patients with a negative HUT test. In addition, SymEn in the patients with a negative HUT test was significantly lower than in the normal controls. Discriminant analysis using SymEn could correctly identify 89.3% (520/582) of the 1 h RR interval data of the patients with a positive HUT test regardless of the time of day. Baseline entropies of heart rate dynamics during daily activity were found to be significantly lower in patients with alleged neurocardiogenic syncope and a positive HUT test than in those with the same history but with a negative HUT test. The decreased entropy of symbolic heart rate dynamics may be of predictive value of a positive HUT test in patients with alleged neurocardiogenic syncope.

  19. Serial Input Output

    SciTech Connect

    Waite, Anthony; /SLAC

    2011-09-07

    Serial Input/Output (SIO) is designed to be a long term storage format of a sophistication somewhere between simple ASCII files and the techniques provided by inter alia Objectivity and Root. The former tend to be low density, information lossy (floating point numbers lose precision) and inflexible. The latter require abstract descriptions of the data with all that that implies in terms of extra complexity. The basic building blocks of SIO are streams, records and blocks. Streams provide the connections between the program and files. The user can define an arbitrary list of streams as required. A given stream must be opened for either reading or writing. SIO does not support read/write streams. If a stream is closed during the execution of a program, it can be reopened in either read or write mode to the same or a different file. Records represent a coherent grouping of data. Records consist of a collection of blocks (see next paragraph). The user can define a variety of records (headers, events, error logs, etc.) and request that any of them be written to any stream. When SIO reads a file, it first decodes the record name and if that record has been defined and unpacking has been requested for it, SIO proceeds to unpack the blocks. Blocks are user provided objects which do the real work of reading/writing the data. The user is responsible for writing the code for these blocks and for identifying these blocks to SIO at run time. To write a collection of blocks, the user must first connect them to a record. The record can then be written to a stream as described above. Note that the same block can be connected to many different records. When SIO reads a record, it scans through the blocks written and calls the corresponding block object (if it has been defined) to decode it. Undefined blocks are skipped. Each of these categories (streams, records and blocks) have some characteristics in common. Every stream, record and block has a name with the condition that each

  20. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems

    PubMed Central

    Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray

    2014-01-01

    The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann–Gibbs–Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon–Khinchin axioms, the -entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process. PMID:24782541

  1. Controlling chaos in balanced neural circuits with input spike trains

    NASA Astrophysics Data System (ADS)

    Engelken, Rainer; Wolf, Fred

    The cerebral cortex can be seen as a system of neural circuits driving each other with spike trains. Here we study how the statistics of these spike trains affects chaos in balanced target circuits.Earlier studies of chaos in balanced neural circuits either used a fixed input [van Vreeswijk, Sompolinsky 1996, Monteforte, Wolf 2010] or white noise [Lajoie et al. 2014]. We study dynamical stability of balanced networks driven by input spike trains with variable statistics. The analytically obtained Jacobian enables us to calculate the complete Lyapunov spectrum. We solved the dynamics in event-based simulations and calculated Lyapunov spectra, entropy production rate and attractor dimension. We vary correlations, irregularity, coupling strength and spike rate of the input and action potential onset rapidness of recurrent neurons.We generally find a suppression of chaos by input spike trains. This is strengthened by bursty and correlated input spike trains and increased action potential onset rapidness. We find a link between response reliability and the Lyapunov spectrum. Our study extends findings in chaotic rate models [Molgedey et al. 1992] to spiking neuron models and opens a novel avenue to study the role of projections in shaping the dynamics of large neural circuits.

  2. SDR input power estimation algorithms

    NASA Astrophysics Data System (ADS)

    Briones, J. C.; Nappier, J. M.

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.

  3. SDR Input Power Estimation Algorithms

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Briones, Janette C.

    2013-01-01

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.

  4. Entropy perturbations in N-flation

    SciTech Connect

    Cai Ronggen; Hu Bin; Piao Yunsong

    2009-12-15

    In this paper we study the entropy perturbations in N-flation by using the {delta}N formalism. We calculate the entropy corrections to the power spectrum of the overall curvature perturbation P{sub {zeta}}. We obtain an analytic form of the transfer coefficient T{sub RS}{sup 2}, which describes the correlation between the curvature and entropy perturbations, and investigate its behavior numerically. It turns out that the entropy perturbations cannot be neglected in N-flation because the amplitude of entropy components is approximately in the same order as the adiabatic one at the end of inflation T{sub RS}{sup 2}{approx}O(1). The spectral index n{sub S} is calculated and it becomes smaller after the entropy modes are taken into account, i.e., the spectrum becomes redder, compared to the pure adiabatic case. Finally we study the modified consistency relation of N-flation, and find that the tensor-to-scalar ratio (r{approx_equal}0.006) is greatly suppressed by the entropy modes, compared to the pure adiabatic one (r{approx_equal}0.017) at the end of inflation.

  5. Entropy Convective Flux for Tropical Cyclone Haiyan

    NASA Astrophysics Data System (ADS)

    Pegahfar, Nafiseh; Gharaylou, Maryam; Ghafarian, Parvin

    2016-07-01

    It is well-known that the environmental factors control tropical cyclones (TCs). one of the most considered thermodynamical parameters is entropy that its significant role on tropical cyclogenesis and TC intensification has been professionally focused in some recent research studies. In the current work, two data sets including satellite data and NCEP-GFS data have been used to investigate the entropy parameter and its convective flux, during tropical cyclone Haiyan (TCH) occurred on 3-11 November 2013 and nominated as the strongest TC over Pacific Ocean before 2014. This purpose has been proceeded for three domain areas with different size. These domains cover inner, eyewall and rainbands, and environmental regions of TCH at various pressure levels. Also three terms of entropy vertical flux including dissipative heating, surface entropy flux and difference between entropy values over inner and outer regions have been analyzed. Our obtained results showed relatively similar behavior of averaged entropy over all selected domain, but with a delay and decrease in maximum values for the smaller domains. In addition our findings revealed different considerable contributions for three terms of entropy vertical flux.

  6. Impact of Ions on Individual Water Entropy.

    PubMed

    Saha, Debasis; Mukherjee, Arnab

    2016-08-01

    Solutes determine the properties of a solution. In this study, we probe ionic solutions through the entropy of individual water molecules in the solvation shells around different cations and anions. Using a method recently developed by our group, we show the solvation shell entropy stemming from the individual contributions correlates extremely well with experimental values for both polarizable and nonpolarizable force fields. The behavior of water entropy as a function of distance reveals significant (∼20%) contributions from the second solvation shell even for the low concentration considered here. While for the cations, contributions from both translational and rotational entropy loss are similar in different solvation shells, water around anions loses much more rotational entropy due to their ability to accept hydrogen bonds. Most importantly, while charge density of cations or anions correlates with the translational entropy loss, anions with similar charge density as that of cations has a much stronger and long-range effect on water. We also show how the modulation of water entropy by ions is correlated to the structural modifications of hydration shell. This study thus provides a step toward understanding the entropic behavior of water in molecular recognition processes between proteins and drug molecules. PMID:27404917

  7. On entropy, financial markets and minority games

    NASA Astrophysics Data System (ADS)

    Zapart, Christopher A.

    2009-04-01

    The paper builds upon an earlier statistical analysis of financial time series with Shannon information entropy, published in [L. Molgedey, W. Ebeling, Local order, entropy and predictability of financial time series, European Physical Journal B-Condensed Matter and Complex Systems 15/4 (2000) 733-737]. A novel generic procedure is proposed for making multistep-ahead predictions of time series by building a statistical model of entropy. The approach is first demonstrated on the chaotic Mackey-Glass time series and later applied to Japanese Yen/US dollar intraday currency data. The paper also reinterprets Minority Games [E. Moro, The minority game: An introductory guide, Advances in Condensed Matter and Statistical Physics (2004)] within the context of physical entropy, and uses models derived from minority game theory as a tool for measuring the entropy of a model in response to time series. This entropy conditional upon a model is subsequently used in place of information-theoretic entropy in the proposed multistep prediction algorithm.

  8. Renyi entropy of the XY spin chain

    NASA Astrophysics Data System (ADS)

    Franchini, F.; Its, A. R.; Korepin, V. E.

    2008-01-01

    We consider the one-dimensional XY quantum spin chain in a transverse magnetic field. We are interested in the Renyi entropy of a block of L neighboring spins at zero temperature on an infinite lattice. The Renyi entropy is essentially the trace of some power α of the density matrix of the block. We calculate the asymptotic for L → ∞ analytically in terms of Klein's elliptic λ-function. We study the limiting entropy as a function of its parameter α. We show that up to the trivial addition terms and multiplicative factors, and after a proper rescaling, the Renyi entropy is an automorphic function with respect to a certain subgroup of the modular group; moreover, the subgroup depends on whether the magnetic field is above or below its critical value. Using this fact, we derive the transformation properties of the Renyi entropy under the map α → α-1 and show that the entropy becomes an elementary function of the magnetic field and the anisotropy when α is an integer power of 2; this includes the purity tr ρ2. We also analyze the behavior of the entropy as α → 0 and ∞ and at the critical magnetic field and in the isotropic limit (XX model).

  9. Pesin's Entropy Formula for Systems Between and

    NASA Astrophysics Data System (ADS)

    Tian, Xueting

    2014-09-01

    In this article we give a new observation of Pesin's entropy formula, motivated from Mañé's proof of (Ergod Theory Dyn Sys 1:95-102, 1981). Let be a compact Riemann manifold and be a diffeomorphism on . If is an -invariant probability measure which is absolutely continuous relative to Lebesgue measure and nonuniformly-Hlder-continuous(see Definition 1.1), then we have Pesin's entropy formula, i.e., the metric entropy satisfies where are the Lyapunov exponents at with respect to Nonuniformly-H lder-continuous is a new notion from probabilistic perspective weaker than

  10. Component analysis of the protein hydration entropy

    NASA Astrophysics Data System (ADS)

    Chong, Song-Ho; Ham, Sihyun

    2012-05-01

    We report the development of an atomic decomposition method of the protein solvation entropy in water, which allows us to understand global change in the solvation entropy in terms of local changes in protein conformation as well as in hydration structure. This method can be implemented via a combined approach based on molecular dynamics simulation and integral-equation theory of liquids. An illustrative application is made to 42-residue amyloid-beta protein in water. We demonstrate how this method enables one to elucidate the molecular origin for the hydration entropy change upon conformational transitions of protein.

  11. Device-independent tests of entropy.

    PubMed

    Chaves, Rafael; Brask, Jonatan Bohr; Brunner, Nicolas

    2015-09-11

    We show that the entropy of a message can be tested in a device-independent way. Specifically, we consider a prepare-and-measure scenario with classical or quantum communication, and develop two different methods for placing lower bounds on the communication entropy, given observable data. The first method is based on the framework of causal inference networks. The second technique, based on convex optimization, shows that quantum communication provides an advantage over classical communication, in the sense of requiring a lower entropy to reproduce given data. These ideas may serve as a basis for novel applications in device-independent quantum information processing. PMID:26406813

  12. Duality in a maximum generalized entropy model

    NASA Astrophysics Data System (ADS)

    Eguchi, Shinto; Komori, Osamu; Ohara, Atsumi

    2015-01-01

    This paper discusses a possible generalization for the maximum entropy principle. A class of generalized entropy is introduced by that of generator functions, in which the maximum generalized distribution model is explicitly derived including q-Gaussian distributions, Wigner semicircle distributions and Pareto distributions. We define a totally geodesic subspace in the total space of all probability density functions in a framework of information geometry. The model of maximum generalized entropy distributions is shown to be totally geodesic. The duality of the model and the estimation in the maximum generalized principle is elucidated to give intrinsic understandings from the point of information geometry.

  13. Temporal extensivity of Tsallis' entropy and the bound on entropy production rate.

    PubMed

    Abe, Sumiyoshi; Nakada, Yutaka

    2006-08-01

    The Tsallis entropy, which is a generalization of the Boltzmann-Gibbs entropy, plays a central role in nonextensive statistical mechanics of complex systems. A lot of efforts have recently been made on establishing a dynamical foundation for the Tsallis entropy. They are primarily concerned with nonlinear dynamical systems at the edge of chaos. Here, it is shown by generalizing a formulation of thermostatistics based on time averages recently proposed by Carati [A. Carati, Physica A 348, 110 (2005)] that, whenever relevant, the Tsallis entropy indexed by q is temporally extensive: linear growth in time, i.e., finite entropy production rate. Then, the universal bound on the entropy production rate is shown to be 1/ absolute value (1-q). The property of the associated probabilistic process, i.e., the sojourn time distribution, determining randomness of motion in phase space is also analyzed. PMID:17025406

  14. Universal corner contributions to entanglement negativity

    NASA Astrophysics Data System (ADS)

    Kim, Keun-Young; Niu, Chao; Pang, Da-Wei

    2016-09-01

    It has been realised that corners in entangling surfaces can induce new universal contributions to the entanglement entropy and Rényi entropy. In this paper we study universal corner contributions to entanglement negativity in three- and four-dimensional CFTs using both field theory and holographic techniques. We focus on the quantity χ defined by the ratio of the universal part of the entanglement negativity over that of the entanglement entropy, which may characterise the amount of distillable entanglement. We find that for most of the examples χ takes bigger values for singular entangling regions, which may suggest increase in distillable entanglement. However, there also exist counterexamples where distillable entanglement decreases for singular surfaces. We also explore the behaviour of χ as the coupling varies and observe that for singular entangling surfaces, the amount of distillable entanglement is mostly largest for free theories, while counterexample exists for free Dirac fermion in three dimensions. For holographic CFTs described by higher derivative gravity, χ may increase or decrease, depending on the sign of the relevant parameters. Our results may reveal a more profound connection between geometry and distillable entanglement.

  15. Rényi squashed entanglement, discord, and relative entropy differences

    NASA Astrophysics Data System (ADS)

    Seshadreesan, Kaushik P.; Berta, Mario; Wilde, Mark M.

    2015-10-01

    The squashed entanglement quantifies the amount of entanglement in a bipartite quantum state, and it satisfies all of the axioms desired for an entanglement measure. The quantum discord is a measure of quantum correlations that are different from those due to entanglement. What these two measures have in common is that they are both based upon the conditional quantum mutual information. In Berta et al (2015 J. Math. Phys. 56 022205), we recently proposed Rényi generalizations of the conditional quantum mutual information of a tripartite state on ABC (with C being the conditioning system), which were shown to satisfy some properties that hold for the original quantity, such as non-negativity, duality, and monotonicity with respect to local operations on the system B (with it being left open to show that the Rényi quantity is monotone with respect to local operations on system A). Here we define a Rényi squashed entanglement and a Rényi quantum discord based on a Rényi conditional quantum mutual information and investigate these quantities in detail. Taking as a conjecture that the Rényi conditional quantum mutual information is monotone with respect to local operations on both systems A and B, we prove that the Rényi squashed entanglement and the Rényi quantum discord satisfy many of the properties of the respective original von Neumann entropy based quantities. In our prior work (Berta et al 2015 Phys. Rev. A 91 022333), we also detailed a procedure to obtain Rényi generalizations of any quantum information measure that is equal to a linear combination of von Neumann entropies with coefficients chosen from the set \\{-1,0,1\\}. Here, we extend this procedure to include differences of relative entropies. Using the extended procedure and a conjectured monotonicity of the Rényi generalizations in the Rényi parameter, we discuss potential remainder terms for well known inequalities such as monotonicity of the relative entropy, joint convexity of the relative

  16. Entanglement negativity in the multiverse

    SciTech Connect

    Kanno, Sugumi; Shock, Jonathan P.; Soda, Jiro

    2015-03-10

    We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.

  17. Entanglement negativity in the multiverse

    NASA Astrophysics Data System (ADS)

    Kanno, Sugumi; Shock, Jonathan P.; Soda, Jiro

    2015-03-01

    We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.

  18. Negative pressures and melting point depression in oxide-coated liquid metal droplets

    NASA Technical Reports Server (NTRS)

    Spaepen, F.; Turnbull, D.

    1979-01-01

    Negative pressures and melting point depression in oxide-coated liquid metal droplets are studied. The calculation presented show the existence of large negative pressures when the oxide coating is thick enough. The change in the melting point caused by these negative pressures should be considered in studies of homogeneous crystal nucleation. Furthermore, since the negative pressure raises the entropy of the melt, it increases the entropy loss at the crystal-melt interface; the resulting increase of the surface tension could have a large effect on the homogeneous nucleation frequency.

  19. Identifying topological order in the Shastry-Sutherland model via entanglement entropy

    NASA Astrophysics Data System (ADS)

    Ronquillo, David; Peterson, Michael

    2015-03-01

    It is known that for a topologically ordered state the area law for the entanglement entropy shows a negative universal additive constant contribution, - γ , called the topological entanglement entropy. We theoretically study the entanglement entropy of the two-dimensional Shastry-Sutherland quantum antiferromagnet using exact diagonalization on clusters of 16 and 24 spins. By utilizing the Kitaev-Preskill construction [A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006)] we extract a finite topological term, - γ , in the region of bond-strength parameter space corresponding to high geometrical frustration. Thus, we provide strong evidence for the existence of an exotic topologically ordered state and shed light on the nature of this model's strongly frustrated, and long controversial, intermediate phase. We acknowledge California State University Long Beach Office of Research and Sponsored Programs. Published as Phys. Rev. B 90, 201108(R) (2014).

  20. Up-hill diffusion, creation of density gradients: Entropy measure for systems with topological constraints.

    PubMed

    Sato, N; Yoshida, Z

    2016-06-01

    It is always some constraint that yields any nontrivial structure from statistical averages. As epitomized by the Boltzmann distribution, the energy conservation is often the principal constraint acting on mechanical systems. Here we investigate a different type: the topological constraint imposed on "space." Such a constraint emerges from the null space of the Poisson operator linking an energy gradient to phase space velocity and appears as an adiabatic invariant altering the preserved phase space volume at the core of statistical mechanics. The correct measure of entropy, built on the distorted invariant measure, behaves consistently with the second law of thermodynamics. The opposite behavior (decreasing entropy and negative entropy production) arises in arbitrary coordinates. An ensemble of rotating rigid bodies is worked out. The theory is then applied to up-hill diffusion in a magnetosphere. PMID:27415241

  1. Up-hill diffusion, creation of density gradients: Entropy measure for systems with topological constraints

    NASA Astrophysics Data System (ADS)

    Sato, N.; Yoshida, Z.

    2016-06-01

    It is always some constraint that yields any nontrivial structure from statistical averages. As epitomized by the Boltzmann distribution, the energy conservation is often the principal constraint acting on mechanical systems. Here we investigate a different type: the topological constraint imposed on "space." Such a constraint emerges from the null space of the Poisson operator linking an energy gradient to phase space velocity and appears as an adiabatic invariant altering the preserved phase space volume at the core of statistical mechanics. The correct measure of entropy, built on the distorted invariant measure, behaves consistently with the second law of thermodynamics. The opposite behavior (decreasing entropy and negative entropy production) arises in arbitrary coordinates. An ensemble of rotating rigid bodies is worked out. The theory is then applied to up-hill diffusion in a magnetosphere.

  2. Quantum statistical entropy of Schwarzchild-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Zhang, Li-Chun; Zhao, Hui-Hua

    2012-10-01

    Using the quantum statistical method, we calculate quantum statistical entropy between the black hole horizon and the cosmological horizon in Schwarzchild spacetime and derive the expression of quantum statistical entropy in de Sitter spacetime. Under the Unruh-Verlinde temperature of Schwarzchild-de Sitter spacetime in the entropic force views, we obtain the expression of quantum statistical entropy in de Sitter spacetime. It is shown that in de Sitter spacetime quantum statistical entropy is the sum of thermodynamic entropy corresponding black hole horizon and the one corresponding cosmological horizon. And the correction term of de Sitter spacetime entropy is obtained. Therefore, it is confirmed that the black hole entropy is the entropy of quantum field outside the black hole horizon. The entropy of de Sitter spacetime is the entropy of quantum field between the black hole horizon and the cosmological horizon.

  3. Entropy and order in urban street networks

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2013-11-01

    Many complex networks erase parts of their geometry as they develop, so that their evolution is difficult to quantify and trace. Here we introduce entropy measures for quantifying the complexity of street orientations and length variations within planar networks and apply them to the street networks of 41 British cities, whose geometric evolution over centuries can be explored. The results show that the street networks of the old central parts of the cities have lower orientation/length entropies - the streets are more tightly ordered and form denser networks - than the outer and more recent parts. Entropy and street length increase, because of spreading, with distance from the network centre. Tracing the 400-year evolution of one network indicates growth through densification (streets are added within the existing network) and expansion (streets are added at the margin of the network) and a gradual increase in entropy over time.

  4. Relative entropy convergence for depolarizing channels

    NASA Astrophysics Data System (ADS)

    Müller-Hermes, Alexander; Stilck França, Daniel; Wolf, Michael M.

    2016-02-01

    We study the convergence of states under continuous-time depolarizing channels with full rank fixed points in terms of the relative entropy. The optimal exponent of an upper bound on the relative entropy in this case is given by the log-Sobolev-1 constant. Our main result is the computation of this constant. As an application, we use the log-Sobolev-1 constant of the depolarizing channels to improve the concavity inequality of the von Neumann entropy. This result is compared to similar bounds obtained recently by Kim and we show a version of Pinsker's inequality, which is optimal and tight if we fix the second argument of the relative entropy. Finally, we consider the log-Sobolev-1 constant of tensor-powers of the completely depolarizing channel and use a quantum version of Shearer's inequality to prove a uniform lower bound.

  5. Quantum entanglement and entropy in particle creation

    SciTech Connect

    Lin, S.-Y.; Chou, C.-H.; Hu, B. L.

    2010-04-15

    We investigate the basic theoretical issues in the quantum entanglement of particle pairs created from the vacuum in a time-dependent background field or spacetime. Similar to entropy generation from these processes which depends on the choice of physical variables and how certain information is coarse grained, entanglement dynamics hinges on the choice of measurable quantities and how the two parties are selected as well as the background dynamics of the field or spacetime. We discuss the conditions of separability of quantum states in particle creation processes and point out the differences in how the von Neumann entropy is used as a measure of entropy generation versus for entanglement dynamics. We show by an explicit construction that adoption of a different set of physical variables yields a different entanglement entropy. As an application of these theoretical considerations we show how the particle number and the quantum phase enter the entanglement dynamics in cosmological particle production.

  6. Charged entanglement entropy of local operators

    NASA Astrophysics Data System (ADS)

    Caputa, Paweł; Nozaki, Masahiro; Numasawa, Tokiro

    2016-05-01

    In this work we consider the time evolution of charged Rényi entanglement entropies after exciting the vacuum with local fermionic operators. In order to explore the information contained in charged Rényi entropies, we perform computations of their excess due to the operator excitation in two-dimensional conformal field theory, free fermionic field theories in various dimensions as well as holography. In the analysis we focus on the dependence on the entanglement charge, the chemical potential and the spacetime dimension. We find that excesses of charged (Rényi) entanglement entropy can be interpreted in terms of charged quasiparticles. Moreover, we show that by appropriately tuning the chemical potential, charged Rényi entropies can be used to extract entanglement in a certain charge sector of the excited state.

  7. On multiscale entropy analysis for physiological data

    NASA Astrophysics Data System (ADS)

    Thuraisingham, Ranjit A.; Gottwald, Georg A.

    2006-07-01

    We perform an analysis of cardiac data using multiscale entropy as proposed in Costa et al. [Multiscale entropy analysis of complex physiological time series, Phys. Rev. Lett. 89 (2002) 068102]. We reproduce the signatures of the multiscale entropy for the three cases of young healthy hearts, atrial fibrillation and congestive heart failure. We show that one has to be cautious how to interpret these signatures in terms of the underlying dynamics. In particular, we show that different dynamical systems can exhibit the same signatures depending on the sampling time, and that similar systems may have different signatures depending on the time scales involved. Besides the total amount of data we identify the sampling time, the correlation time and the period of possible nonlinear oscillations as important time scales which have to be involved in a detailed analysis of the signatures of multiscale entropies. We illustrate our ideas with the Lorenz equation as a simple deterministic chaotic system.

  8. α-z-Rényi relative entropies

    SciTech Connect

    Audenaert, Koenraad M. R.; Datta, Nilanjana

    2015-02-15

    We consider a two-parameter family of Rényi relative entropies D{sub α,z}(ρ ∥ σ) that are quantum generalisations of the classical Rényi divergence D{sub α}(p ∥ q). This family includes many known relative entropies (or divergences) such as the quantum relative entropy, the recently defined quantum Rényi divergences, as well as the quantum Rényi relative entropies. All its members satisfy the quantum generalizations of Rényi’s axioms for a divergence. We consider the range of the parameters α, z for which the data-processing inequality holds. We also investigate a variety of limiting cases for the two parameters, obtaining explicit formulas for each one of them.

  9. Kaluza-Klein nature of entropy function

    NASA Astrophysics Data System (ADS)

    Salti, Mustafa; Aydogdu, Oktay; Yanar, Hilmi

    2015-11-01

    In the present study, we mainly investigate the nature of entropy function in non-flat Kaluza-Klein universe. We prove that the first and generalized second laws of gravitational thermodynamics are valid on the dynamical apparent horizon.

  10. Entropy growth in emotional online dialogues

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, J.; Skowron, M.; Paltoglou, G.; Hołyst, Janusz A.

    2013-02-01

    We analyze emotionally annotated massive data from IRC (Internet Relay Chat) and model the dialogues between its participants by assuming that the driving force for the discussion is the entropy growth of emotional probability distribution.

  11. Joint entropy of quantum damped harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Aguiar, V.; Guedes, I.

    2014-05-01

    We use the dynamical invariant method and a unitary transformation to obtain the exact Schrödinger wave function, ψn(x,t), and calculate for n=0 the time-dependent joint entropy (Leipnik’s entropy) for two classes of quantum damped harmonic oscillators. We observe that the joint entropy does not vary in time for the Caldirola-Kanai oscillator, while it decreases and tends to a constant value (ln({e}/{2})) for asymptotic times for the Lane-Emden ones. This is due to the fact that for the latter, the damping factor decreases as time increases. The results show that the time dependence of the joint entropy is quite complex and does not obey a general trend of monotonously increase with time.

  12. Entropy analysis of natural language written texts

    NASA Astrophysics Data System (ADS)

    Papadimitriou, C.; Karamanos, K.; Diakonos, F. K.; Constantoudis, V.; Papageorgiou, H.

    2010-08-01

    The aim of the present work is to investigate the relative contribution of ordered and stochastic components in natural written texts and examine the influence of text category and language on these. To this end, a binary representation of written texts and the generated symbolic sequences are examined by the standard block entropy analysis and the Shannon and Kolmogorov entropies are obtained. It is found that both entropies are sensitive to both language and text category with the text category sensitivity to follow almost the same trends in both languages (English and Greek) considered. The values of these entropies are compared with those of stochastically generated symbolic sequences and the nature of correlations present in this representation of real written texts is identified.

  13. Stimulus-dependent Maximum Entropy Models of Neural Population Codes

    PubMed Central

    Segev, Ronen; Schneidman, Elad

    2013-01-01

    Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME) model—a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population. PMID:23516339

  14. Tissue Radiation Response with Maximum Tsallis Entropy

    SciTech Connect

    Sotolongo-Grau, O.; Rodriguez-Perez, D.; Antoranz, J. C.; Sotolongo-Costa, Oscar

    2010-10-08

    The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.

  15. Maximum entropy production - Full steam ahead

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2012-05-01

    The application of a principle of Maximum Entropy Production (MEP, or less ambiguously MaxEP) to planetary climate is discussed. This idea suggests that if sufficiently free of dynamical constraints, the atmospheric and oceanic heat flows across a planet may conspire to maximize the generation of mechanical work, or entropy. Thermodynamic and information-theoretic aspects of this idea are discussed. These issues are also discussed in the context of dust devils, convective vortices found in strongly-heated desert areas.

  16. Nonrelativistic Shannon information entropy for Kratzer potential

    NASA Astrophysics Data System (ADS)

    S, A. Najafizade; H, Hassanabadi; S, Zarrinkamar

    2016-04-01

    The Shannon information entropy is investigated within the nonrelativistic framework. The Kratzer potential is considered as the interaction and the problem is solved in a quasi-exact analytical manner to discuss the ground and first excited states. Some interesting features of the information entropy densities as well as the probability densities are demonstrated. The Bialynicki–Birula–Mycielski inequality is also tested and found to hold for these cases.

  17. The role of entropy in word ranking

    NASA Astrophysics Data System (ADS)

    Mehri, Ali; Darooneh, Amir H.

    2011-09-01

    Entropy as a measure of complexity in the systems has been applied for ranking the words in the human written texts. We introduce a novel approach to evaluate accuracy for retrieved indices. We also have an illustrative comparison between proposed entropic metrics and some other methods in extracting the keywords. It seems that, some of the discussed metrics apply similar features for word ranking in the text. This work recommend the entropy as a systematic measure in text mining.

  18. Minimum entropy deconvolution and blind equalisation

    NASA Technical Reports Server (NTRS)

    Satorius, E. H.; Mulligan, J. J.

    1992-01-01

    Relationships between minimum entropy deconvolution, developed primarily for geophysics applications, and blind equalization are pointed out. It is seen that a large class of existing blind equalization algorithms are directly related to the scale-invariant cost functions used in minimum entropy deconvolution. Thus the extensive analyses of these cost functions can be directly applied to blind equalization, including the important asymptotic results of Donoho.

  19. Random coding strategies for minimum entropy

    NASA Technical Reports Server (NTRS)

    Posner, E. C.

    1975-01-01

    This paper proves that there exists a fixed random coding strategy for block coding a memoryless information source to achieve the absolute epsilon entropy of the source. That is, the strategy can be chosen independent of the block length. The principal new tool is an easy result on the semicontinuity of the relative entropy functional of one probability distribution with respect to another. The theorem generalizes a result from rate-distortion theory to the 'zero-infinity' case.

  20. Entropies and correlations in classical and quantum systems

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.; Man'ko, Vladimir I.; Marmo, Giuseppe

    2016-09-01

    We present a review of entropy properties for classical and quantum systems including Shannon entropy, von Neumann entropy, Rényi entropy, and Tsallis entropy. We discuss known and new entropic and information inequalities for classical and quantum systems, both composite and noncomposite. We demonstrate matrix inequalities associated with the entropic subadditivity and strong subadditivity conditions and give a new inequality for matrix elements of unitary matrices.

  1. REL - English Bulk Data Input.

    ERIC Educational Resources Information Center

    Bigelow, Richard Henry

    A bulk data input processor which is available for the Rapidly Extensible Language (REL) English versions is described. In REL English versions, statements that declare names of data items and their interrelationships normally are lines from a terminal or cards in a batch input stream. These statements provide a convenient means of declaring some…

  2. Entropy Transfer of Quantum Gravity Information Processing

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2015-05-01

    We introduce the term smooth entanglement entropy transfer, a phenomenon that is a consequence of the causality-cancellation property of the quantum gravity environment. The causality-cancellation of the quantum gravity space removes the causal dependencies of the local systems. We study the physical effects of the causality-cancellation and show that it stimulates entropy transfer between the quantum gravity environment and the independent local systems of the quantum gravity space. The entropy transfer reduces the entropies of the contributing local systems and increases the entropy of the quantum gravity environment. We discuss the space-time geometry structure of the quantum gravity environment and the local quantum systems. We propose the space-time geometry model of the smooth entropy transfer. We reveal on a smooth Cauchy slice that the space-time geometry of the quantum gravity environment dynamically adapts to the vanishing causality. We prove that the Cauchy area expansion, along with the dilation of the Rindler horizon area of the quantum gravity environment, is a corollary of the causality-cancellation of the quantum gravity environment. This work was partially supported by the GOP-1.1.1-11-2012-0092 (Secure quantum key distribution between two units on optical fiber network) project sponsored by the EU and European Structural Fund, and by the COST Action MP1006.

  3. Computing the conformational entropy for RNA folds

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Chen, Shi-Jie

    2010-06-01

    We develop a polymer physics-based method to compute the conformational entropy for RNA tertiary folds, namely, conformations consisting of multiple helices connected through (cross-linked) loops. The theory is based on a virtual bond conformational model for the nucleotide chain. A key issue in the calculation of the entropy is how to treat the excluded volume interactions. The weak excluded volume interference between the different loops leads to the decomposition of the whole structure into a number of three-body building blocks, each consisting of a loop and two helices connected to the two ends of the loop. The simple construct of the three-body system allows an accurate computation for the conformational entropy for each building block. The assembly of the building blocks gives the entropy of the whole structure. This approach enables treatment of molten globule-like folds (partially unfolded tertiary structures) for RNAs. Extensive tests against experiments and exact computer enumerations indicate that the method can give accurate results for the entropy. The method developed here provides a solid first step toward a systematic development of a theory for the entropy and free energy landscape for complex tertiary folds for RNAs and proteins.

  4. Entanglement entropy and nonabelian gauge symmetry

    NASA Astrophysics Data System (ADS)

    Donnelly, William

    2014-11-01

    Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang-Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity.

  5. Hidden entropy production by fast variables

    NASA Astrophysics Data System (ADS)

    Chun, Hyun-Myung; Noh, Jae Dong

    2015-05-01

    We investigate nonequilibrium underdamped Langevin dynamics of Brownian particles that interact through a harmonic potential with coupling constant K and are in thermal contact with two heat baths at different temperatures. The system is characterized by a net heat flow and an entropy production in the steady state. We compare the entropy production of the harmonic system with that of Brownian particles linked with a rigid rod. The harmonic system may be expected to reduce to the rigid rod system in the infinite K limit. However, we find that the harmonic system in the K →∞ limit produces more entropy than the rigid rod system. The harmonic system has the center-of-mass coordinate as a slow variable and the relative coordinate as a fast variable. By identifying the contributions of the degrees of freedom to the total entropy production, we show that the hidden entropy production by the fast variable is responsible for the extra entropy production. We discuss the K dependence of each contribution.

  6. Intra-tumour signalling entropy determines clinical outcome in breast and lung cancer.

    PubMed

    Banerji, Christopher R S; Severini, Simone; Caldas, Carlos; Teschendorff, Andrew E

    2015-03-01

    The cancer stem cell hypothesis, that a small population of tumour cells are responsible for tumorigenesis and cancer progression, is becoming widely accepted and recent evidence has suggested a prognostic and predictive role for such cells. Intra-tumour heterogeneity, the diversity of the cancer cell population within the tumour of an individual patient, is related to cancer stem cells and is also considered a potential prognostic indicator in oncology. The measurement of cancer stem cell abundance and intra-tumour heterogeneity in a clinically relevant manner however, currently presents a challenge. Here we propose signalling entropy, a measure of signalling pathway promiscuity derived from a sample's genome-wide gene expression profile, as an estimate of the stemness of a tumour sample. By considering over 500 mixtures of diverse cellular expression profiles, we reveal that signalling entropy also associates with intra-tumour heterogeneity. By analysing 3668 breast cancer and 1692 lung adenocarcinoma samples, we further demonstrate that signalling entropy correlates negatively with survival, outperforming leading clinical gene expression based prognostic tools. Signalling entropy is found to be a general prognostic measure, valid in different breast cancer clinical subgroups, as well as within stage I lung adenocarcinoma. We find that its prognostic power is driven by genes involved in cancer stem cells and treatment resistance. In summary, by approximating both stemness and intra-tumour heterogeneity, signalling entropy provides a powerful prognostic measure across different epithelial cancers. PMID:25793737

  7. Intra-Tumour Signalling Entropy Determines Clinical Outcome in Breast and Lung Cancer

    PubMed Central

    Banerji, Christopher R. S.; Severini, Simone; Caldas, Carlos; Teschendorff, Andrew E.

    2015-01-01

    The cancer stem cell hypothesis, that a small population of tumour cells are responsible for tumorigenesis and cancer progression, is becoming widely accepted and recent evidence has suggested a prognostic and predictive role for such cells. Intra-tumour heterogeneity, the diversity of the cancer cell population within the tumour of an individual patient, is related to cancer stem cells and is also considered a potential prognostic indicator in oncology. The measurement of cancer stem cell abundance and intra-tumour heterogeneity in a clinically relevant manner however, currently presents a challenge. Here we propose signalling entropy, a measure of signalling pathway promiscuity derived from a sample’s genome-wide gene expression profile, as an estimate of the stemness of a tumour sample. By considering over 500 mixtures of diverse cellular expression profiles, we reveal that signalling entropy also associates with intra-tumour heterogeneity. By analysing 3668 breast cancer and 1692 lung adenocarcinoma samples, we further demonstrate that signalling entropy correlates negatively with survival, outperforming leading clinical gene expression based prognostic tools. Signalling entropy is found to be a general prognostic measure, valid in different breast cancer clinical subgroups, as well as within stage I lung adenocarcinoma. We find that its prognostic power is driven by genes involved in cancer stem cells and treatment resistance. In summary, by approximating both stemness and intra-tumour heterogeneity, signalling entropy provides a powerful prognostic measure across different epithelial cancers. PMID:25793737

  8. Entropy of single-file water in (6,6) carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Waghe, Aparna; Rasaiah, Jayendran C.; Hummer, Gerhard

    2012-07-01

    We used molecular dynamics simulations to investigate the thermodynamics of filling of a (6,6) open carbon nanotube (diameter D = 0.806 nm) solvated in TIP3P water over a temperature range from 280 K to 320 K at atmospheric pressure. In simulations of tubes with slightly weakened carbon-water attractive interactions, we observed multiple filling and emptying events. From the water occupancy statistics, we directly obtained the free energy of filling, and from its temperature dependence the entropy of filling. We found a negative entropy of about -1.3 kB per molecule for filling the nanotube with a hydrogen-bonded single-file chain of water molecules. The entropy of filling is nearly independent of the strength of the attractive carbon-water interactions over the range studied. In contrast, the energy of transfer depends strongly on the carbon-water attraction strength. These results are in good agreement with entropies of about -0.5 kB per water molecule obtained from grand-canonical Monte Carlo calculations of water in quasi-infinite tubes in vacuum under periodic boundary conditions. Overall, for realistic carbon-water interactions we expect that at ambient conditions filling of a (6,6) carbon nanotube open to a water reservoir is driven by a favorable decrease in energy, and opposed by a small loss of water entropy.

  9. Min-entropy and quantum key distribution: Nonzero key rates for ''small'' numbers of signals

    SciTech Connect

    Bratzik, Sylvia; Mertz, Markus; Kampermann, Hermann; Bruss, Dagmar

    2011-02-15

    We calculate an achievable secret key rate for quantum key distribution with a finite number of signals by evaluating the quantum conditional min-entropy explicitly. The min-entropy for a classical random variable is the negative logarithm of the maximal value in its probability distribution. The quantum conditional min-entropy can be expressed in terms of the guessing probability, which we calculate for d-dimensional systems. We compare these key rates to previous approaches using the von Neumann entropy and find nonzero key rates for a smaller number of signals. Furthermore, we improve the secret key rates by modifying the parameter estimation step. Both improvements taken together lead to nonzero key rates for only 10{sup 4}-10{sup 5} signals. An interesting conclusion can also be drawn from the additivity of the min-entropy and its relation to the guessing probability: for a set of symmetric tensor product states, the optimal minimum-error discrimination (MED) measurement is the optimal MED measurement on each subsystem.

  10. A tetrahedral entropy for water.

    PubMed

    Kumar, Pradeep; Buldyrev, Sergey V; Stanley, H Eugene

    2009-12-29

    We introduce the space-dependent correlation function C (Q)(r) and time-dependent autocorrelation function C (Q)(t) of the local tetrahedral order parameter Q identical with Q(r,t). By using computer simulations of 512 waterlike particles interacting through the transferable interaction potential with five points (TIP5 potential), we investigate C (Q)(r) in a broad region of the phase diagram. We find that at low temperatures C (Q)(t) exhibits a two-step time-dependent decay similar to the self-intermediate scattering function and that the corresponding correlation time tau(Q) displays a dynamic cross-over from non-Arrhenius behavior for T > T (W) to Arrhenius behavior for T < T (W), where T (W) denotes the Widom temperature where the correlation length has a maximum as T is decreased along a constant-pressure path. We define a tetrahedral entropy S (Q) associated with the local tetrahedral order of water molecules and find that it produces a major contribution to the specific heat maximum at the Widom line. Finally, we show that tau(Q) can be extracted from S (Q) by using an analog of the Adam-Gibbs relation. PMID:20018692

  11. Entropy and the Magic Flute

    NASA Astrophysics Data System (ADS)

    Morowitz, Harold J.

    1996-10-01

    Harold Morowitz has long been highly regarded both as an eminent scientist and as an accomplished science writer. The essays in The Wine of Life , his first collection, were hailed by C.P. Snow as "some of the wisest, wittiest and best informed I have ever read," and Carl Sagan called them "a delight to read." In later volumes he established a reputation for a wide-ranging intellect, an ability to see unexpected connections and draw striking parallels, and a talent for communicating scientific ideas with optimism and wit. With Entropy and the Magic Flute , Morowitz once again offers an appealing mix of brief reflections on everything from litmus paper to the hippopotamus to the sociology of Palo Alto coffee shops. Many of these pieces are appreciations of scientists that Morowitz holds in high regard, while others focus on health issues, such as America's obsession with cheese toppings. There is also a fascinating piece on the American Type Culture Collection, a zoo or warehouse for microbes that houses some 11,800 strains of bacteria, and over 3,000 specimens of protozoa, algae, plasmids, and oncogenes. Here then are over forty light, graceful essays in which one of our wisest experimental biologists comments on issues of science, technology, society, philosophy, and the arts.

  12. Maximum entropy production in daisyworld

    NASA Astrophysics Data System (ADS)

    Maunu, Haley A.; Knuth, Kevin H.

    2012-05-01

    Daisyworld was first introduced in 1983 by Watson and Lovelock as a model that illustrates how life can influence a planet's climate. These models typically involve modeling a planetary surface on which black and white daisies can grow thus influencing the local surface albedo and therefore also the temperature distribution. Since then, variations of daisyworld have been applied to study problems ranging from ecological systems to global climate. Much of the interest in daisyworld models is due to the fact that they enable one to study self-regulating systems. These models are nonlinear, and as such they exhibit sensitive dependence on initial conditions, and depending on the specifics of the model they can also exhibit feedback loops, oscillations, and chaotic behavior. Many daisyworld models are thermodynamic in nature in that they rely on heat flux and temperature gradients. However, what is not well-known is whether, or even why, a daisyworld model might settle into a maximum entropy production (MEP) state. With the aim to better understand these systems, this paper will discuss what is known about the role of MEP in daisyworld models.

  13. Entanglement entropy of electronic excitations

    NASA Astrophysics Data System (ADS)

    Plasser, Felix

    2016-05-01

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.

  14. Entanglement entropy of electronic excitations.

    PubMed

    Plasser, Felix

    2016-05-21

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule. PMID:27208936

  15. Optimization of floodplain monitoring sensors through an entropy approach

    NASA Astrophysics Data System (ADS)

    Ridolfi, E.; Yan, K.; Alfonso, L.; Di Baldassarre, G.; Napolitano, F.; Russo, F.; Bates, P. D.

    2012-04-01

    To support the decision making processes of flood risk management and long term floodplain planning, a significant issue is the availability of data to build appropriate and reliable models. Often the required data for model building, calibration and validation are not sufficient or available. A unique opportunity is offered nowadays by the globally available data, which can be freely downloaded from internet. However, there remains the question of what is the real potential of those global remote sensing data, characterized by different accuracies, for global inundation monitoring and how to integrate them with inundation models. In order to monitor a reach of the River Dee (UK), a network of cheap wireless sensors (GridStix) was deployed both in the channel and in the floodplain. These sensors measure the water depth, supplying the input data for flood mapping. Besides their accuracy and reliability, their location represents a big issue, having the purpose of providing as much information as possible and at the same time as low redundancy as possible. In order to update their layout, the initial number of six sensors has been increased up to create a redundant network over the area. Through an entropy approach, the most informative and the least redundant sensors have been chosen among all. First, a simple raster-based inundation model (LISFLOOD-FP) is used to generate a synthetic GridStix data set of water stages. The Digital Elevation Model (DEM) used for hydraulic model building is the globally and freely available SRTM DEM. Second, the information content of each sensor has been compared by evaluating their marginal entropy. Those with a low marginal entropy are excluded from the process because of their low capability to provide information. Then the number of sensors has been optimized considering a Multi-Objective Optimization Problem (MOOP) with two objectives, namely maximization of the joint entropy (a measure of the information content) and

  16. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  17. Minimum relative entropy, Bayes and Kapur

    NASA Astrophysics Data System (ADS)

    Woodbury, Allan D.

    2011-04-01

    The focus of this paper is to illustrate important philosophies on inversion and the similarly and differences between Bayesian and minimum relative entropy (MRE) methods. The development of each approach is illustrated through the general-discrete linear inverse. MRE differs from both Bayes and classical statistical methods in that knowledge of moments are used as ‘data’ rather than sample values. MRE like Bayes, presumes knowledge of a prior probability distribution and produces the posterior pdf itself. MRE attempts to produce this pdf based on the information provided by new moments. It will use moments of the prior distribution only if new data on these moments is not available. It is important to note that MRE makes a strong statement that the imposed constraints are exact and complete. In this way, MRE is maximally uncommitted with respect to unknown information. In general, since input data are known only to within a certain accuracy, it is important that any inversion method should allow for errors in the measured data. The MRE approach can accommodate such uncertainty and in new work described here, previous results are modified to include a Gaussian prior. A variety of MRE solutions are reproduced under a number of assumed moments and these include second-order central moments. Various solutions of Jacobs & van der Geest were repeated and clarified. Menke's weighted minimum length solution was shown to have a basis in information theory, and the classic least-squares estimate is shown as a solution to MRE under the conditions of more data than unknowns and where we utilize the observed data and their associated noise. An example inverse problem involving a gravity survey over a layered and faulted zone is shown. In all cases the inverse results match quite closely the actual density profile, at least in the upper portions of the profile. The similar results to Bayes presented in are a reflection of the fact that the MRE posterior pdf, and its mean

  18. Phonon anharmonicity and components of the entropy in palladium and platinum

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Li, Chen W.; Tang, Xiaoli; Smith, Hillary L.; Fultz, B.

    2016-06-01

    Inelastic neutron scattering was used to measure the phonon density of states in fcc palladium and platinum metal at temperatures from 7 K to 1576 K. Both phonon-phonon interactions and electron-phonon interactions were calculated by methods based on density functional theory (DFT) and were consistent with the measured shifts and broadenings of phonons with temperature. Unlike the longitudinal modes, the characteristic transverse modes had a nonlinear dependence on temperature owing to the requirement for a population of thermal phonons for upscattering. Kohn anomalies were observed in the measurements at low temperature and were reproduced by calculations based on DFT. Contributions to the entropy from phonons and electrons were assessed and summed to obtain excellent agreement with prior calorimetric data. The entropy from thermal expansion is positive for both phonons and electrons but larger for phonons. The anharmonic phonon entropy is negative in Pt, but in Pd it changes from positive to negative with increasing temperature. Owing to the position of the Fermi level on the electronic DOS, the electronic entropy was sensitive to the adiabatic electron-phonon interaction in both Pd and Pt. The adiabatic EPI depended strongly on thermal atom displacements.

  19. Spatial Decomposition of Translational Water-Water Correlation Entropy in Binding Pockets.

    PubMed

    Nguyen, Crystal N; Kurtzman, Tom; Gilson, Michael K

    2016-01-12

    A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST's entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water-water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water-water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water-water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined. PMID:26636620

  20. Band target entropy minimization for retrieving the information of individual components from overlapping chromatographic data.

    PubMed

    Xia, Zhenzhen; Liu, Yan; Cai, Wensheng; Shao, Xueguang

    2015-09-11

    Band target entropy minimization (BTEM) is a self-modeling curve resolution (SMCR) approach relying on non-negative criterion and minimization of Shannon entropy. In this study, BTEM algorithm was applied to retrieving the information of individual components from overlapping gas chromatography-mass spectrometry (GC-MS) data. The algorithm starts with dividing the whole data into bands along the retention time. In each band, singular value decomposition (SVD) is used to decompose the data into scores and loadings. Because the pure chromatographic signal possesses the lowest Shannon entropy, the chromatographic signal of each component can be constructed by optimizing the combination of the loadings with minimal Shannon entropy under non-negative criterion. To show the efficiency of the algorithm, a simulated four-component overlapping GC-MS data and an experimental GC-MS data of 18 organophosphorus pesticide mixture are investigated. The results show that both the chromatographic profiles and mass spectra of the components can be successfully extracted from the overlapping signals. PMID:26265003

  1. A refinement of entanglement entropy and the number of degrees of freedom

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Mezei, Márk

    2013-04-01

    We introduce a "renormalized entanglement entropy" which is intrinsically UV finite and is most sensitive to the degrees of freedom at the scale of the size R of the entangled region. We illustrated the power of this construction by showing that the qualitative behavior of the entanglement entropy for a non-Fermi liquid can be obtained by simple dimensional analysis. We argue that the functional dependence of the "renormalized entanglement entropy" on R can be interpreted as describing the renormalization group flow of the entanglement entropy with distance scale. The corresponding quantity for a spherical region in the vacuum, has some particularly interesting properties. For a conformal field theory, it reduces to the previously proposed central charge in all dimensions, and for a general quantum field theory, it interpolates between the central charges of the UV and IR fixed points as R is varied from zero to infinity. We conjecture that in three (spacetime) dimensions, it is always non-negative and monotonic, and provides a measure of the number of degrees of freedom of a system at scale R. In four dimensions, however, we find examples in which it is neither monotonic nor non-negative.

  2. Maximum Entropy Principle for Transportation

    NASA Astrophysics Data System (ADS)

    Bilich, F.; DaSilva, R.

    2008-11-01

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  3. Maximum entropy principal for transportation

    SciTech Connect

    Bilich, F.; Da Silva, R.

    2008-11-06

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  4. Entropy of balance - some recent results

    PubMed Central

    2010-01-01

    Background Entropy when applied to biological signals is expected to reflect the state of the biological system. However the physiological interpretation of the entropy is not always straightforward. When should high entropy be interpreted as a healthy sign, and when as marker of deteriorating health? We address this question for the particular case of human standing balance and the Center of Pressure data. Methods We have measured and analyzed balance data of 136 participants (young, n = 45; elderly, n = 91) comprising in all 1085 trials, and calculated the Sample Entropy (SampEn) for medio-lateral (M/L) and anterior-posterior (A/P) Center of Pressure (COP) together with the Hurst self-similariy (ss) exponent α using Detrended Fluctuation Analysis (DFA). The COP was measured with a force plate in eight 30 seconds trials with eyes closed, eyes open, foam, self-perturbation and nudge conditions. Results 1) There is a significant difference in SampEn for the A/P-direction between the elderly and the younger groups Old > young. 2) For the elderly we have in general A/P > M/L. 3) For the younger group there was no significant A/P-M/L difference with the exception for the nudge trials where we had the reverse situation, A/P < M/L. 4) For the elderly we have, Eyes Closed > Eyes Open. 5) In case of the Hurst ss-exponent we have for the elderly, M/L > A/P. Conclusions These results seem to be require some modifications of the more or less established attention-constraint interpretation of entropy. This holds that higher entropy correlates with a more automatic and a less constrained mode of balance control, and that a higher entropy reflects, in this sense, a more efficient balancing. PMID:20670457

  5. Substorm onset: A switch on the sequence of transport from decreasing entropy to increasing entropy

    NASA Astrophysics Data System (ADS)

    Chen, C. X.

    2016-05-01

    In this study, we propose a scenario about the trigger for substorm onset. In a stable magnetosphere, entropy is an increasing function tailward. However, in the growth phase of a substorm, a later born bubble has lower entropy than earlier born bubbles. When a bubble arrives at its final destination in the near-Earth region, it will spread azimuthally because of its relatively uniform entropy. The magnetic flux tubes of a dying bubble, which cause the most equatorward aurora thin arc, would block the later coming bubble tailward of them, forming an unstable domain. Therefore, an interchange instability develops, which leads to the collapse of the unstable domain, followed by the collapse of the stretched plasma sheet. We regard the substorm onset as a switch on the sequence of transport, i.e., from a decreasing entropy process to an increasing entropy process. We calculated the most unstable growth rates and the wavelengths of instability, and both are in agreement with observations.

  6. On the use of area-averaged void fraction and local bubble chord length entropies as two-phase flow regime indicators

    NASA Astrophysics Data System (ADS)

    Hernández, Leonor; Juliá, J. Enrique; Paranjape, Sidharth; Hibiki, Takashi; Ishii, Mamoru

    2010-11-01

    In this work, the use of the area-averaged void fraction and bubble chord length entropies is introduced as flow regime indicators in two-phase flow systems. The entropy provides quantitative information about the disorder in the area-averaged void fraction or bubble chord length distributions. The CPDF (cumulative probability distribution function) of void fractions and bubble chord lengths obtained by means of impedance meters and conductivity probes are used to calculate both entropies. Entropy values for 242 flow conditions in upward two-phase flows in 25.4 and 50.8-mm pipes have been calculated. The measured conditions cover ranges from 0.13 to 5 m/s in the superficial liquid velocity j f and ranges from 0.01 to 25 m/s in the superficial gas velocity j g. The physical meaning of both entropies has been interpreted using the visual flow regime map information. The area-averaged void fraction and bubble chord length entropies capability as flow regime indicators have been checked with other statistical parameters and also with different input signals durations. The area-averaged void fraction and the bubble chord length entropies provide better or at least similar results than those obtained with other indicators that include more than one parameter. The entropy is capable to reduce the relevant information of the flow regimes in only one significant and useful parameter. In addition, the entropy computation time is shorter than the majority of the other indicators. The use of one parameter as input also represents faster predictions.

  7. Nonlinear input-output systems

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Luksic, Mladen; Su, Renjeng

    1987-01-01

    Necessary and sufficient conditions that the nonlinear system dot-x = f(x) + ug(x) and y = h(x) be locally feedback equivalent to the controllable linear system dot-xi = A xi + bv and y = C xi having linear output are found. Only the single input and single output case is considered, however, the results generalize to multi-input and multi-output systems.

  8. Entropy generation of radial rotation convective channels

    NASA Astrophysics Data System (ADS)

    Alić, Fikret

    2012-03-01

    The exchange of heat between two fluids is established by radial rotating pipe or a channel. The hotter fluid flows through the pipe, while the cold fluid is ambient air. Total length of pipe is made up of multiple sections of different shape and position in relation to the common axis of rotation. In such heat exchanger the hydraulic and thermal irreversibility of the hotter and colder fluid occur. Therefore, the total entropy generated within the radial rotating pipe consists of the total entropy of hotter and colder fluid, taking into account all the hydraulic and thermal irreversibility of both fluids. Finding a mathematical model of the total generated entropy is based on coupled mathematical expressions that combine hydraulic and thermal effects of both fluids with the complex geometry of the radial rotating pipe. Mathematical model follows the each section of the pipe and establishes the function between the sections, so the total generated entropy is different from section to section of the pipe. In one section of the pipe thermal irreversibility may dominate over the hydraulic irreversibility, while in another section of the pipe the situation may be reverse. In this paper, continuous analytic functions that connect sections of pipe in geometric meaning are associated with functions that describe the thermo-hydraulic effects of hotter and colder fluid. In this way, the total generated entropy of the radial rotating pipe is a continuous analytic function of any complex geometry of the rotating pipe. The above method of establishing a relationship between the continuous function of entropy with the complex geometry of the rotating pipe enables indirect monitoring of unnecessary hydraulic and thermal losses of both fluids. Therefore, continuous analytic functions of generated entropy enable analysis of hydraulic and thermal irreversibility of individual sections of pipe, as well as the possibility of improving the thermal-hydraulic performance of the rotating

  9. Enzyme catalysis by entropy without Circe effect.

    PubMed

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan

    2016-03-01

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution. PMID:26755610

  10. Enzyme catalysis by entropy without Circe effect

    PubMed Central

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan

    2016-01-01

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution. PMID:26755610

  11. Fractal Dimensions and Entropies of Meragi Songs

    NASA Astrophysics Data System (ADS)

    Aydemir, Adnan; Gündüz, Güngör

    Melodies can be treated as time series systems with the pitches (or frequencies of the notes) representing the values in subsequent intervals. The pattern of a melody can be revealed in a scattering diagram where pitches represent vertices, and the directed pathways which connect the former pitches to the next ones signify the relations established during the performance. The pathways form a pattern which is called animal diagram (or lattice animal) in the vocabulary of graph theory. The slopes of pathways can be used to characterize an animal diagram and thus to characterize a melody; and the scattering diagram can be used to find out the fractal dimension . In addition, the entropy , the maximum entropy , and the negentropy (or the order) of melodies can be determined. The analysis of Meragi songs in terms of fractal dimension and entropy was carried out in this work. It was found out that there is not a correlation between the fractal dimension and the entropy ; therefore, the fractal dimension and the entropy each characterizes different aspects of Meragi songs.

  12. Approximate von Neumann entropy for directed graphs.

    PubMed

    Ye, Cheng; Wilson, Richard C; Comin, César H; Costa, Luciano da F; Hancock, Edwin R

    2014-05-01

    In this paper, we develop an entropy measure for assessing the structural complexity of directed graphs. Although there are many existing alternative measures for quantifying the structural properties of undirected graphs, there are relatively few corresponding measures for directed graphs. To fill this gap in the literature, we explore an alternative technique that is applicable to directed graphs. We commence by using Chung's generalization of the Laplacian of a directed graph to extend the computation of von Neumann entropy from undirected to directed graphs. We provide a simplified form of the entropy which can be expressed in terms of simple node in-degree and out-degree statistics. Moreover, we find approximate forms of the von Neumann entropy that apply to both weakly and strongly directed graphs, and that can be used to characterize network structure. We illustrate the usefulness of these simplified entropy forms defined in this paper on both artificial and real-world data sets, including structures from protein databases and high energy physics theory citation networks. PMID:25353841

  13. Entropy Measurement for Biometric Verification Systems.

    PubMed

    Lim, Meng-Hui; Yuen, Pong C

    2016-05-01

    Biometric verification systems are designed to accept multiple similar biometric measurements per user due to inherent intrauser variations in the biometric data. This is important to preserve reasonable acceptance rate of genuine queries and the overall feasibility of the recognition system. However, such acceptance of multiple similar measurements decreases the imposter's difficulty of obtaining a system-acceptable measurement, thus resulting in a degraded security level. This deteriorated security needs to be measurable to provide truthful security assurance to the users. Entropy is a standard measure of security. However, the entropy formula is applicable only when there is a single acceptable possibility. In this paper, we develop an entropy-measuring model for biometric systems that accepts multiple similar measurements per user. Based on the idea of guessing entropy, the proposed model quantifies biometric system security in terms of adversarial guessing effort for two practical attacks. Excellent agreement between analytic and experimental simulation-based measurement results on a synthetic and a benchmark face dataset justify the correctness of our model and thus the feasibility of the proposed entropy-measuring approach. PMID:26054080

  14. Entropy current for non-relativistic fluid

    NASA Astrophysics Data System (ADS)

    Banerjee, Nabamita; Dutta, Suvankar; Jain, Akash; Roychowdhury, Dibakar

    2014-08-01

    We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermodynamics. Therefore, we need to add two parity-odd vectors to the entropy current with arbitrary coefficients. Upon demanding the validity of second law, we see that one can fix these two coefficients exactly.

  15. Information entropies of many-electron systems

    SciTech Connect

    Yanez, R.J.; Angulo, J.C.; Dehesa, J.S.

    1995-12-05

    The Boltzmann-Shannon (BS) information entropy S{sub {rho}} = - {integral} {rho}(r)log {rho}(r) dr measures the spread or extent of the one-electron density {rho}(r), which is the basic variable of the density function theory of the many electron systems. This quantity cannot be analytically computed, not even for simple quantum mechanical systems such as, e.g., the harmonic oscillator (HO) and the hydrogen atom (HA) in arbitrary excited states. Here, we first review (i) the present knowledge and open problems in the analytical determination of the BS entropies for the HO and HA systems in both position and momentum spaces and (ii) the known rigorous lower and upper bounds to the position and momentum BS entropies of many-electron systems in terms of the radial expectation values in the corresponding space. Then, we find general inequalities which relate the BS entropies and various density functionals. Particular cases of these results are rigorous relationships of the BS entropies and some relevant density functionals (e.g., the Thomas-Fermi kinetic energy, the Dirac-Slater exchange energy, the average electron density) for finite many-electron systems. 28 refs.

  16. Partial transfer entropy on rank vectors

    NASA Astrophysics Data System (ADS)

    Kugiumtzis, D.

    2013-06-01

    For the evaluation of information flow in bivariate time series, information measures have been employed, such as the transfer entropy (TE), the symbolic transfer entropy (STE), defined similarly to TE but on the ranks of the components of the reconstructed vectors, and the transfer entropy on rank vectors (TERV), similar to STE but forming the ranks for the future samples of the response system with regard to the current reconstructed vector. Here we extend TERV for multivariate time series, and account for the presence of confounding variables, called partial transfer entropy on ranks (PTERV). We investigate the asymptotic properties of PTERV, and also partial STE (PSTE), construct parametric significance tests under approximations with Gaussian and gamma null distributions, and show that the parametric tests cannot achieve the power of the randomization test using time-shifted surrogates. Using simulations on known coupled dynamical systems and applying parametric and randomization significance tests, we show that PTERV performs better than PSTE but worse than the partial transfer entropy (PTE). However, PTERV, unlike PTE, is robust to the presence of drifts in the time series and it is also not affected by the level of detrending.

  17. The Gaussian entropy of fermionic systems

    SciTech Connect

    Prokopec, Tomislav; Schmidt, Michael G.; Weenink, Jan

    2012-12-15

    We consider the entropy and decoherence in fermionic quantum systems. By making a Gaussian Ansatz for the density operator of a collection of fermions we study statistical 2-point correlators and express the entropy of a system fermion in terms of these correlators. In a simple case when a set of N thermalised environmental fermionic oscillators interacts bi-linearly with the system fermion we can study its time dependent entropy, which also represents a quantitative measure for decoherence and classicalization. We then consider a relativistic fermionic quantum field theory and take a mass mixing term as a simple model for the Yukawa interaction. It turns out that even in this Gaussian approximation, the fermionic system decoheres quite effectively, such that in a large coupling and high temperature regime the system field approaches the temperature of the environmental fields. - Highlights: Black-Right-Pointing-Pointer We construct the Gaussian density operator for relativistic fermionic systems. Black-Right-Pointing-Pointer The Gaussian entropy of relativistic fermionic systems is described in terms of 2-point correlators. Black-Right-Pointing-Pointer We explicitly show the growth of entropy for fermionic fields mixing with a thermal fermionic environment.

  18. Valence bond and von Neumann entanglement entropy in Heisenberg ladders.

    PubMed

    Kallin, Ann B; González, Iván; Hastings, Matthew B; Melko, Roger G

    2009-09-11

    We present a direct comparison of the recently proposed valence bond entanglement entropy and the von Neumann entanglement entropy on spin-1/2 Heisenberg systems using quantum Monte Carlo and density-matrix renormalization group simulations. For one-dimensional chains we show that the valence bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bound on the latter. On ladder geometries, simulations with up to seven legs are sufficient to indicate that the von Neumann entropy in two dimensions obeys an area law, even though the valence bond entanglement entropy has a multiplicative logarithmic correction. PMID:19792398

  19. Information entropy of multi-qubit Rabi system

    NASA Astrophysics Data System (ADS)

    Abo-Kahla, D. A. M.; Abdel-Aty, M.

    2015-09-01

    We consider quantum information entropy phenomenon for multi-qubit Rabi system. By introducing different measurements schemes, we establish the relation between information entropy approach and Von Neumann entropy. It is shown that the information entropy is more sensitive to the time development than the Von Neumann entropy. Furthermore, the suggested protocol exhibits excellent scaling of relevant characteristics, with respect to population dynamics, such that more accurate dynamical results may be obtained using information entropy due to variation of the frequency detuning and the coupling constant.

  20. Measuring entanglement entropies in many-body systems

    SciTech Connect

    Klich, Israel; Refael, Gil; Silva, Alessandro

    2006-09-15

    We explore the relation between entanglement entropy of quantum many-body systems and the distribution of corresponding, properly selected, observables. Such a relation is necessary to actually measure the entanglement entropy. We show that, in general, the Shannon entropy of the probability distribution of certain symmetry observables gives a lower bound to the entropy. In some cases this bound is saturated and directly gives the entropy. We also show other cases in which the probability distribution contains enough information to extract the entropy: we show how this is done in several examples including BEC wave functions, the Dicke model, XY spin chain, and chains with strong randomness.

  1. Time Dependence of Joint Entropy of Oscillating Quantum Systems

    NASA Astrophysics Data System (ADS)

    Özcan, Özgür; Aktürk, Ethem; Sever, Ramazan

    2008-12-01

    The time dependent entropy (or Leipnik’s entropy) of harmonic and damped harmonic oscillator systems is studied by using time dependent wave function obtained by the Feynman path integral method. The Leipnik entropy and its envelope change as a function of time, angular frequency and damping factor. Our results for simple harmonic oscillator are in agreement with the literature. However, the joint entropy of damped harmonic oscillator shows remarkable discontinuity with time for certain values of damping factor. The envelope of the joint entropy curve increases with time monotonically. These results show the general properties of the envelope of the joint entropy curve for quantum systems.

  2. Constraining the mSUGRA parameter space through entropy and abundance criteria

    SciTech Connect

    Cabral-Rosetti, Luis G.; Mondragon, Myriam; Nunez, Dario; Sussman, Roberto A.; Zavala, Jesus; Nellen, Lukas

    2007-06-19

    We explore the use of two criteria to constrain the allowed parameter space in mSUGRA models; both criteria are based in the calculation of the present density of neutralinos {chi}0 as Dark Matter in the Universe. The first one is the usual ''abundance'' criterion that requieres that present neutralino relic density complies with 0.0945 < {omega}CDMh2 < 0.1287, which are the 2{sigma} bounds according to WMAP. To calculate the relic density we use the public numerical code micrOMEGAS. The second criterion is the original idea presented in [3] that basically applies the microcanonical definition of entropy to a weakly interacting and self-gravitating gas, and then evaluate the change in entropy per particle of this gas between the freeze-out era and present day virialized structures. An 'entropy consistency' criterion emerges by comparing theoretical and empirical estimates of this entropy. One of the objetives of the work is to analyze the joint application of both criteria, already done in [3], to see if their results, using approximations for the calculations of the relic density, agree with the results coming from the exact numerical results of micrOMEGAS. The main objetive of the work is to use this method to constrain the parameter space in mSUGRA models that are inputs for the calculations of micrOMEGAS, and thus to get some bounds on the predictions for the SUSY spectra.

  3. Kerr Black Hole Entropy and its Quantization

    NASA Astrophysics Data System (ADS)

    Jiang, Ji-Jian; Li, Chuan-An; Cheng, Xie-Feng

    2016-08-01

    By constructing the four-dimensional phase space based on the observable physical quantity of Kerr black hole and gauge transformation, the Kerr black hole entropy in the phase space was obtained. Then considering the corresponding mechanical quantities as operators and making the operators quantized, entropy spectrum of Kerr black hole was obtained. Our results show that the Kerr black hole has the entropy spectrum with equal intervals, which is in agreement with the idea of Bekenstein. In the limit of large event horizon, the area of the adjacent event horizon of the black hole have equal intervals. The results are in consistent with the results based on the loop quantum gravity theory by Dreyer et al.

  4. Holographic entanglement entropy of surface defects

    NASA Astrophysics Data System (ADS)

    Gentle, Simon A.; Gutperle, Michael; Marasinou, Chrysostomos

    2016-04-01

    We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N=4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena [1] to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.

  5. Minimum entropy approach to word segmentation problems

    NASA Astrophysics Data System (ADS)

    Wang, Bin

    2001-04-01

    Given a sequence composed of a limited number of characters, we try to “read” it as a “text”. This involves segmenting the sequence into “words”. The difficulty is to distinguish good segmentation from enormous numbers of random ones. Aiming at revealing the nonrandomness of the sequence as strongly as possible, by applying maximum likelihood method, we find a quantity called segmentation entropy that can be used to fulfill the aim. Contrary to commonplace where maximum entropy principle was applied to obtain good solution, we chose to minimize the segmentation entropy to obtain good segmentation. The concept developed in this letter can be used to study the noncoding DNA sequences, e.g., for regulatory elements prediction, in eukaryote genomes.

  6. Entropy production of doubly stochastic quantum channels

    NASA Astrophysics Data System (ADS)

    Müller-Hermes, Alexander; Stilck França, Daniel; Wolf, Michael M.

    2016-02-01

    We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an application we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.

  7. Entropy, area, and black hole pairs

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Horowitz, Gary T.; Ross, Simon F.

    1995-04-01

    We clarify the relation between gravitational entropy and the area of horizons. We first show that the entropy of an extreme Reissner-Nordström black hole is zero, despite the fact that its horizon has nonzero area. Next, we consider the pair creation of extremal and nonextremal black holes. It is shown that the action which governs the rate of this pair creation is directly related to the area of the acceleration horizon and (in the nonextremal case) the area of the black hole event horizon. This provides a simple explanation of the result that the rate of pair creation of nonextreme black holes is enhanced by precisely the black hole entropy. Finally, we discuss black hole annihilation, and argue that Planck scale remnants are not sufficient to preserve unitarity in quantum gravity.

  8. Adaptive entropy coded subband coding of images.

    PubMed

    Kim, Y H; Modestino, J W

    1992-01-01

    The authors describe a design approach, called 2-D entropy-constrained subband coding (ECSBC), based upon recently developed 2-D entropy-constrained vector quantization (ECVQ) schemes. The output indexes of the embedded quantizers are further compressed by use of noiseless entropy coding schemes, such as Huffman or arithmetic codes, resulting in variable-rate outputs. Depending upon the specific configurations of the ECVQ and the ECPVQ over the subbands, many different types of SBC schemes can be derived within the generic 2-D ECSBC framework. Among these, the authors concentrate on three representative types of 2-D ECSBC schemes and provide relative performance evaluations. They also describe an adaptive buffer instrumented version of 2-D ECSBC, called 2-D ECSBC/AEC, for use with fixed-rate channels which completely eliminates buffer overflow/underflow problems. This adaptive scheme achieves performance quite close to the corresponding ideal 2-D ECSBC system. PMID:18296138

  9. What is the entropy in entropic gravity?

    NASA Astrophysics Data System (ADS)

    Carroll, Sean M.; Remmen, Grant N.

    2016-06-01

    We investigate theories in which gravity arises as a consequence of entropy. We distinguish between two approaches to this idea: holographic gravity, in which Einstein's equation arises from keeping entropy stationary in equilibrium under variations of the geometry and quantum state of a small region, and thermodynamic gravity, in which Einstein's equation emerges as a local equation of state from constraints on the area of a dynamical light sheet in a fixed spacetime background. Examining holographic gravity, we argue that its underlying assumptions can be justified in part using recent results on the form of the modular energy in quantum field theory. For thermodynamic gravity, on the other hand, we find that it is difficult to formulate a self-consistent definition of the entropy, which represents an obstacle for this approach. This investigation points the way forward in understanding the connections between gravity and entanglement.

  10. Zipf's law, power laws and maximum entropy

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    2013-04-01

    Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.

  11. Black Hole Entropy: From Shannon to Bekenstein

    NASA Astrophysics Data System (ADS)

    Ghosh, Subir

    2011-11-01

    In this note we have applied directly the Shannon formula for information theory entropy to derive the Black Hole (Bekenstein-Hawking) entropy. Our analysis is semi-classical in nature since we use the (recently proposed Banerjee in Int. J. Mod. Phys. D 19:2365-2369, 2010 and Banerjee and Majhi in Phys. Rev. D 81:124006, 2010; Phys. Rev. D 79:064024, 2009; Phys. Lett. B 675:243, 2009) quantum mechanical near horizon mode functions to compute the tunneling probability that goes in to the Shannon formula, following the general idea of Brillouin (Science and Information Theory, Dover, New York, 2004). Our framework conforms to the information theoretic origin of Black Hole entropy, as originally proposed by Bekenstein.

  12. Horizon Entropy from Quantum Gravity Condensates

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2016-05-01

    We construct condensate states encoding the continuum spherically symmetric quantum geometry of a horizon in full quantum gravity, i.e., without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits a holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the horizon boundary conditions and semiclassical thermodynamical properties, we recover the Bekenstein-Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one.

  13. Horizon Entropy from Quantum Gravity Condensates.

    PubMed

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2016-05-27

    We construct condensate states encoding the continuum spherically symmetric quantum geometry of a horizon in full quantum gravity, i.e., without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits a holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the horizon boundary conditions and semiclassical thermodynamical properties, we recover the Bekenstein-Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one. PMID:27284642

  14. Generalized gravitational entropy without replica symmetry

    NASA Astrophysics Data System (ADS)

    Camps, Joan; Kelly, William R.

    2015-03-01

    We explore several extensions of the generalized entropy construction of Lewkowycz and Maldacena, including a formulation that does not rely on preserving replica symmetry in the bulk. We show that an appropriately general ansatz for the analytically continued replica metric gives us the flexibility needed to solve the gravitational field equations beyond general relativity. As an application of this observation we study EinsteinGauss-Bonnet gravity with a small Gauss-Bonnet coupling and derive the condition that the holographic entanglement entropy must be evaluated on a surface which extremizes the Jacobson-Myers entropy. We find that in both general relativity and Einstein-Gauss-Bonnet gravity replica symmetry breaking terms are permitted by the field equations, suggesting that they do not generically vanish.

  15. Maximum entropy criteria applied to signal recovery

    NASA Astrophysics Data System (ADS)

    MacKinnon, Robert F.; Wilmut, Michael J.

    1988-06-01

    A method based on the minimization of cross-entropy is presented for the recovery of signals from noisy data either in the form of time series or images. Finite Fourier transforms are applied to the data and constraints are placed on the magnitude and phase of the Fourier coefficients based on their statistics for noise-only data. The minimization of cross-entropy is achieved through application of well-established functional minimization techniques which allow for further constraints in the spatial, temporal or frequency domain. Derivatives of the entropy function are obtained analytically and the results applied to the cases of correlated noise and of signal perturbations about a mean. Demonstrations of applications to one-dimensional data are presented.

  16. Entanglement entropy of multipartite pure states

    SciTech Connect

    Bravyi, Sergei

    2003-01-01

    Consider a system consisting of n d-dimensional quantum particles and an arbitrary pure state vertical bar {psi}> of the whole system. Suppose we simultaneously perform complete von Neumann measurements on each particle. The Shannon entropy of the outcomes' joint probability distribution is a functional of the state vertical bar {psi}> and of n measurements chosen for each particle. Denote S[{psi}] the minimum of this entropy over all choices of the measurements. We show that S[{psi}] coincides with the entropy of entanglement for bipartite states. We compute S[{psi}] for some special multipartite states: the hexacode state vertical bar H> (n=6, d=2) and the determinant states vertical bar Det{sub n}> (d=n). The computation yields S[H]=4 log 2 and S[Det{sub n}]=log(n{exclamation_point}). Counterparts of the determinant state defined for d

  17. On the shape dependence of Entanglement Entropy

    NASA Astrophysics Data System (ADS)

    Carmi, Dean

    2015-12-01

    We study the shape dependence of entanglement entropy (EE) by deforming symmetric entangling surfaces. We show that entangling surfaces with a rotational or translational symmetry extremize (locally) the EE with respect to shape deformations that break some of the symmetry (i.e. the 1st order correction vanishes). This result applies to EE and Renyi entropy for any QFT in any dimension. Using Solodukhin's formula in 4 d and holography in any d, we calculate the 2nd order correction to the universal EE for CFTs and simple symmetric entangling surfaces. For several entangling surfaces we find that the 2nd order correction is positive for any perturbation, and thus the corresponding symmetric entangling surface is a local minimum. Some of the results are extended to free massive fields and to 4d Renyi entropy.

  18. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Annamalai, Kalyan

    2008-06-01

    The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB) and Centers for Disease Control and Prevention (CDC), which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death) was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years). From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a “healthy minimum” if entropy generation is to be minimized.

  19. Large field inflation and gravitational entropy

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja; Kleban, Matthew; Lawrence, Albion; Sloth, Martin S.

    2016-02-01

    Large field inflation can be sensitive to perturbative and nonperturbative quantum corrections that spoil slow roll. A large number N of light species in the theory, which occur in many string constructions, can amplify these problems. One might even worry that in a de Sitter background, light species will lead to a violation of the covariant entropy bound at large N . If so, requiring the validity of the covariant entropy bound could limit the number of light species and their couplings, which in turn could severely constrain axion-driven inflation. Here we show that there is no such problem when we correctly renormalize models with many light species, taking the physical Planck scale to be Mpl 2≳N MUV2 , where MUV is the cutoff for the quantum field theory coupled to semiclassical quantum gravity. The number of light species then cancels out of the gravitational entropy of de Sitter or near-de Sitter backgrounds at leading order. Working in detail with N scalar fields in de Sitter space, renormalized to one loop order, we show that the gravitational entropy automatically obeys the covariant entropy bound. Furthermore, while the axion decay constant is a strong coupling scale for the axion dynamics, we show that it is not in general the cutoff of 4d semiclassical gravity. After renormalizing the two point function of the inflaton, we note that it is also controlled by scales much below the cutoff. We revisit N -flation and Kachru-Kallosh-Linde-Trivedi-type compactifications in this light, and show that they are perfectly consistent with the covariant entropy bound. Thus, while quantum gravity might yet spoil large field inflation, holographic considerations in the semiclassical theory do not obstruct it.

  20. Autonomous entropy-based intelligent experimental design

    NASA Astrophysics Data System (ADS)

    Malakar, Nabin Kumar

    2011-07-01

    The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner. Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method. Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment. We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same

  1. Entropy spectrum of dimensional stringy black holes

    NASA Astrophysics Data System (ADS)

    Suresh, Jishnu; Kuriakose, V. C.

    2015-05-01

    We explore the entropy spectrum of dimensional dilatonic stringy black holes via the adiabatic invariant integral method known as Jiang and Han's method (Phys Lett B 718:584, 2012) and the Bohr-Sommerfeld quantization rule. It is found that the corresponding spectrum depends on black hole parameters like charge, ADM mass, and, more interestingly, on the dilatonic field. We calculate the entropy of the present black hole system via the Euclidean treatment of quantum gravity and study the thermodynamics of the black hole and find that the system does not undergo any phase transition.

  2. Entropy production in irreversible processes with friction.

    PubMed

    Bizarro, João P S

    2008-08-01

    Established expressions for entropy production in irreversible processes are generalized to include friction explicitly, as a source of irreversibility in the interaction between a system and its surroundings. The net amount of heat delivered to the system does not come now only from the reservoir, but may have an additional component coming from the work done against friction forces and dissipated as heat. To avoid ambiguities in interpreting the different contributions to entropy increase, the latter is also written in terms of the heat directly exchanged between the system and surroundings and of the fraction of frictional work that is lost in the system. PMID:18850816

  3. Pattern Recognition via PCNN and Tsallis Entropy

    PubMed Central

    Zhang, YuDong; Wu, LeNan

    2008-01-01

    In this paper a novel feature extraction method for image processing via PCNN and Tsallis entropy is presented. We describe the mathematical model of the PCNN and the basic concept of Tsallis entropy in order to find a recognition method for isolated objects. Experiments show that the novel feature is translation and scale independent, while rotation independence is a bit weak at diagonal angles of 45° and 135°. Parameters of the application on face recognition are acquired by bacterial chemotaxis optimization (BCO), and the highest classification rate is 72.5%, which demonstrates its acceptable performance and potential value.

  4. Distribution entropy analysis of epileptic EEG signals.

    PubMed

    Li, Peng; Yan, Chang; Karmakar, Chandan; Liu, Changchun

    2015-08-01

    It is an open-ended challenge to accurately detect the epileptic seizures through electroencephalogram (EEG) signals. Recently published studies have made elaborate attempts to distinguish between the normal and epileptic EEG signals by advanced nonlinear entropy methods, such as the approximate entropy, sample entropy, fuzzy entropy, and permutation entropy, etc. Most recently, a novel distribution entropy (DistEn) has been reported to have superior performance compared with the conventional entropy methods for especially short length data. We thus aimed, in the present study, to show the potential of DistEn in the analysis of epileptic EEG signals. The publicly-accessible Bonn database which consisted of normal, interictal, and ictal EEG signals was used in this study. Three different measurement protocols were set for better understanding the performance of DistEn, which are: i) calculate the DistEn of a specific EEG signal using the full recording; ii) calculate the DistEn by averaging the results for all its possible non-overlapped 5 second segments; and iii) calculate it by averaging the DistEn values for all the possible non-overlapped segments of 1 second length, respectively. Results for all three protocols indicated a statistically significantly increased DistEn for the ictal class compared with both the normal and interictal classes. Besides, the results obtained under the third protocol, which only used very short segments (1 s) of EEG recordings showed a significantly (p <; 0.05) increased DistEn for the interictal class in compassion with the normal class, whereas both analyses using relatively long EEG signals failed in tracking this difference between them, which may be due to a nonstationarity effect on entropy algorithm. The capability of discriminating between the normal and interictal EEG signals is of great clinical relevance since it may provide helpful tools for the detection of a seizure onset. Therefore, our study suggests that the Dist

  5. Integrals, Expectation-Values and Entropy.

    NASA Astrophysics Data System (ADS)

    Barron, Arthur Randall

    1982-03-01

    The maximum entropy principle, one of the cornerstones of equilibrium statistical mechanics, has been introduced into probability theory by E. T. JAYNES as part of a rational strategy for making plausible inferences from incomplete information. The conventional maximum entropy formalism, involving the familiar machinery of partition functions, is practically the same in both classical and quantum mechanical formulations of statistical mechanics. The present work undertakes to extend the maximum entropy principle to a generalized abstract formulation of probability theory, encompassing the familiar classical and quantal models as well as certain more exotic models uncovered by G. W. MACKEY in his axiomatization of quantum mechanics--the so-called quantum logics. In this more general approach, the conventional machinery of partition functions is not available. Instead, one makes use of a family of conditional entropy functions. In its dependence on the constraint conditions, the conditional entropy enjoys concavity and monotonicity properties analogous to those of the phenomenological entropy in equilibrium thermodynamics. The new formalism is able to take in stride the possibility that the constraints, although consistent, may fail to determine a unique maximum entropy state (probability distribution). Examples which demonstrate this possibility are readily constructed in both classical and quantal models of probability theory. One observes that, in the convex set of states compatible with the constraints, there is none of greatest entropy; typically this happens at or beyond a "barrier" where the conventional partition function becomes singular. Such examples should not simply be dismissed as "pathological"; they may perhaps have interesting physical interpretations (e.g., turbulence, disorder, chaos). In carrying out the above program it is essential to recognize that the expectation-values of an unbounded observable (real random variable) need not be finite: they

  6. Aspects of entanglement entropy for gauge theories

    NASA Astrophysics Data System (ADS)

    Soni, Ronak M.; Trivedi, Sandip P.

    2016-01-01

    A definition for the entanglement entropy in a gauge theory was given recently in arXiv:1501.02593. Working on a spatial lattice, it involves embedding the physical state in an extended Hilbert space obtained by taking the tensor product of the Hilbert space of states on each link of the lattice. This extended Hilbert space admits a tensor product decomposition by definition and allows a density matrix and entanglement entropy for the set of links of interest to be defined. Here, we continue the study of this extended Hilbert space definition with particular emphasis on the case of Non-Abelian gauge theories.

  7. Entropy and predictability of information carriers.

    PubMed

    Ebeling, W; Frömmel, C

    1998-04-01

    The structure of linear strings carrying information is investigated by means of entropy concepts. First conditional entropy and transinformation are introduced and several generalizations are discussed. The capability to describe the structure of information carriers as DNA, proteins, texts and musical strings is investigated. The relation between order and the predictability of informational strings is discussed. As examples we study the mutual information function of virus DNA and several long proteins. Further we show some (rather formal) analogies to the structure of texts, and strings generated by musical melodies. It is shown that several information carriers show long-range correlations. PMID:9648674

  8. Entropy Inequality Violations from Ultraspinning Black Holes.

    PubMed

    Hennigar, Robie A; Mann, Robert B; Kubizňák, David

    2015-07-17

    We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold. PMID:26230779

  9. Instrumentation for negative ion detection.

    PubMed

    McKeown, M

    1980-06-01

    The instrumentation and practical circuitry required for the detection of negative ions exiting the mass analysis section of a mass spectrometer is examined. The potentials needed to bias the electron multiplier when detecting negative ions from a low ion-energy mass spectrometer, e.g., a quadrupole, are contrasted with the biasing requirements of a mass spectrometer having high ion-energies, e.g., a magnetic sector. Methods of decoupling the biasing high voltage on the signal lead of the multiplier in pulse counting measurements are discussed in detail so that normal, ground referenced input, pulse preamplifiers may be used. Easily understood, practical rules for determining the values of circuit components are given together with a simplified theory of transferring pulse signals from multiplier collector to pulse preamplifier. The changes in circuitry needed when attempting to detect ions by current measurement methods from an electron multiplier area detailed. The effects of leakage currents into athe input of the current preamplifier and their avoidance bay using triaxial shielding on vacuum feed-throughs are explained. The article suggests possible methods of decoupling the high voltage referenced input and the ground referenced output of a current measuring preamplifier. PMID:7428750

  10. Input Type and Parameter Resetting: Is Naturalistic Input Necessary?

    ERIC Educational Resources Information Center

    Rothman, Jason; Iverson, Michael

    2007-01-01

    It has been argued that extended exposure to naturalistic input provides L2 learners with more of an opportunity to converge of target morphosyntactic competence as compared to classroom-only environments, given that the former provide more positive evidence of less salient linguistic properties than the latter (e.g., Isabelli 2004). Implicitly,…

  11. A logarithmic correction in the entropy functional formalism

    NASA Astrophysics Data System (ADS)

    Hammad, Fayçal; Faizal, Mir

    2016-04-01

    The entropy functional formalism allows one to recover general relativity, modified gravity theories, as well as the Bekenstein-Hawking entropy formula. In most approaches to quantum gravity, the Bekenstein-Hawking’s entropy formula acquires a logarithmic correction term. As such terms occur almost universally in most approaches to quantum gravity, we analyze the effect of such terms on the entropy functional formalism. We demonstrate that the leading correction to the micro-canonical entropy in the entropy functional formalism can be used to recover modified theories of gravity already obtained with an uncorrected micro-canonical entropy. Furthermore, since the entropy functional formalism reproduces modified gravity, the rise of gravity-dependent logarithmic corrections turns out to be one way to impose constraints on these theories of modified gravity. The constraints found here for the simple case of an ℱ(R)-gravity are the same as those obtained in the literature from cosmological considerations.

  12. Tomographic Rényi entropy of multimode Gaussian states

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.

    2013-03-01

    The Rényi and Shannon entropies associated with optical and symplectic tomograms of multimode photon states are obtained in explicit form. Some new inequalities for the tomographic entropies are studied.

  13. Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces

    SciTech Connect

    Benatti, Fabio; Oskouei, Samad Khabbazi Deh Abad, Ahmad Shafiei

    2014-08-15

    We extend the notion of Gacs quantum algorithmic entropy, originally formulated for finitely many qubits, to infinite dimensional quantum spin chains and investigate the relation of this extension with two quantum dynamical entropies that have been proposed in recent years.

  14. A Study of Turkish Chemistry Undergraduates' Understandings of Entropy

    ERIC Educational Resources Information Center

    Sozbilir, Mustafa; Bennett, Judith M.

    2007-01-01

    Entropy is that fundamental concept of chemical thermodynamics, which explains the natural tendency of matter and energy in the Universe. The analysis presents the description of entropy, as understood by the Turkish chemistry undergraduates.

  15. Entropy analysis in foreign exchange markets and economic crisis

    NASA Astrophysics Data System (ADS)

    Ha, Jin-Gi; Yim, Kyubin; Kim, Seunghwan; Jung, Woo-Sung

    2012-08-01

    We investigate the relative market efficiency in 11 foreign exchange markets by using the Lempel-Ziv (LZ) complexity algorithm and several entropy values such as the Shannon entropy, the approximate entropy, and the sample entropy. With daily data in 11 foreign exchange markets from Jan. 2000 to Sep. 2011, we observe that mature markets have higher LZ complexities and entropy values than emerging markets. Furthermore, with sliding time windows, we also investigate the temporal evolutions of those entropies from Jan. 1994 to Sep. 2011, and we find that, after an economic crisis, the approximate entropy and the sample entropy of mature markets such as Japan, Europe and the United Kingdom suddenly become lower.

  16. Quantum Statistical Entropy of Five-Dimensional Black Hole

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Wu, Yue-Qin; Zhang, Sheng-Li

    2006-05-01

    The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.

  17. Volcano shapes, entropies, and eruption probabilities

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2014-05-01

    We propose that the shapes of polygenetic volcanic edifices reflect the shapes of the associated probability distributions of eruptions. In this view, the peak of a given volcanic edifice coincides roughly with the peak of the probability (or frequency) distribution of its eruptions. The broadness and slopes of the edifices vary widely, however. The shapes of volcanic edifices can be approximated by various distributions, either discrete (binning or histogram approximation) or continuous. For a volcano shape (profile) approximated by a normal curve, for example, the broadness would be reflected in its standard deviation (spread). Entropy (S) of a discrete probability distribution is a measure of the absolute uncertainty as to the next outcome/message: in this case, the uncertainty as to time and place of the next eruption. A uniform discrete distribution (all bins of equal height), representing a flat volcanic field or zone, has the largest entropy or uncertainty. For continuous distributions, we use differential entropy, which is a measure of relative uncertainty, or uncertainty change, rather than absolute uncertainty. Volcano shapes can be approximated by various distributions, from which the entropies and thus the uncertainties as regards future eruptions can be calculated. We use the Gibbs-Shannon formula for the discrete entropies and the analogues general formula for the differential entropies and compare their usefulness for assessing the probabilities of eruptions in volcanoes. We relate the entropies to the work done by the volcano during an eruption using the Helmholtz free energy. Many factors other than the frequency of eruptions determine the shape of a volcano. These include erosion, landslides, and the properties of the erupted materials (including their angle of repose). The exact functional relation between the volcano shape and the eruption probability distribution must be explored for individual volcanoes but, once established, can be used to

  18. On dS4 extremal surfaces and entanglement entropy in some ghost CFTs

    NASA Astrophysics Data System (ADS)

    Narayan, K.

    2016-08-01

    In arXiv [K. Narayan, arXiv:1501.03019], the areas of certain complex extremal surfaces in de Sitter space were found to have resemblance with entanglement entropy in appropriate dual Euclidean nonunitary CFTs, with the area being real and negative in dS4 . In this paper, we study some toy models of 2-dim ghost conformal field theories with negative central charge with a view to exploring this further from the CFT point of view. In particular we consider b c -ghost systems with central charge c =-2 and study the replica formulation for entanglement entropy for a single interval, and associated issues arising in this case, notably pertaining to (i) the S L (2 ) vacuum coinciding with the ghost ground state, and (ii) the background charge inherent in these systems which leads to particular forms for the norms of states (involving zero modes). This eventually gives rise to negative entanglement entropy. We also discuss a (logarithmic) CFT of anticommuting scalars, with similarities in some features. Finally we discuss a simple toy model of two "ghost-spins" which mimics some of these features.

  19. Scalar fields in BTZ black hole spacetime and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Veer Singh, Dharm; Siwach, Sanjay

    2013-12-01

    We study the quantum scalar fields in the background of BTZ black hole spacetime. We calculate the entanglement entropy using the discretized model, which resembles a system of coupled harmonic oscillators. The leading term of the entropy formula is standard Bakenstein-Hawking entropy and sub-leading corresponds to quantum corrections to black hole entropy. We calculate the coefficient of sub-leading logarithmic corrections numerically.

  20. Entropy inequalities and Bell inequalities for two-qubit systems

    SciTech Connect

    Santos, Emilio

    2004-02-01

    Sufficient conditions for the nonviolation of the Bell-Clauser-Horne-Shimony-Holt inequalities in a mixed state of a two-qubit system are: (1) the linear entropy of the state is not smaller than 0.457; (2) the sum of the conditional linear entropies is not smaller than -0.086; (3) the von Neumann entropy is not smaller than 0.833; and (4) the sum of the conditional von Neumann entropies is not smaller than 0.280.

  1. Adolescent Psychic Entropy: A Response to Unacknowledged Fears.

    ERIC Educational Resources Information Center

    Faupel, Kathryn C.

    1989-01-01

    Explored measuring psychic entropy (loss of motivation, unfocused attention, passivity, bad moods) in junior and senior high school students (N=22) and noted predictability of gender and grade using Psychic Entropy Measure for Adolescents. Found results did not support hypotheses that girls experience greater psychic entropy than boys or that…

  2. Discovery and Entropy in the Revision of Technical Reports.

    ERIC Educational Resources Information Center

    Marder, Daniel

    A useful device in revising technical reports is the metaphor of entropy, which refers to the amount of disorder that is present in a system. Applied to communication theory, high entropy would correspond to increased amounts of unfamiliar or useless information in a text. Since entropy in rhetorical systems increases with the unfamiliarity of…

  3. Psychological Entropy: A Framework for Understanding Uncertainty-Related Anxiety

    ERIC Educational Resources Information Center

    Hirsh, Jacob B.; Mar, Raymond A.; Peterson, Jordan B.

    2012-01-01

    Entropy, a concept derived from thermodynamics and information theory, describes the amount of uncertainty and disorder within a system. Self-organizing systems engage in a continual dialogue with the environment and must adapt themselves to changing circumstances to keep internal entropy at a manageable level. We propose the entropy model of…

  4. Critical time scale of coarse-graining entropy production

    NASA Astrophysics Data System (ADS)

    Sohn, Jang-il

    2016-04-01

    We study coarse-grained entropy production in an asymmetric random walk system on a periodic one-dimensional lattice. In coarse-grained systems, the original dynamics are unavoidably destroyed, but the coarse-grained entropy production is not hidden below the critical time-scale separation. The hidden entropy production is rapidly increasing near the critical time-scale separation.

  5. The advanced LIGO input optics.

    PubMed

    Mueller, Chris L; Arain, Muzammil A; Ciani, Giacomo; DeRosa, Ryan T; Effler, Anamaria; Feldbaum, David; Frolov, Valery V; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J; Kokeyama, Keiko; Korth, William Z; Martin, Rodica M; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H; Tanner, David B; Vorvick, Cheryl; Williams, Luke F; Mueller, Guido

    2016-01-01

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design. PMID:26827334

  6. The advanced LIGO input optics

    NASA Astrophysics Data System (ADS)

    Mueller, Chris L.; Arain, Muzammil A.; Ciani, Giacomo; DeRosa, Ryan. T.; Effler, Anamaria; Feldbaum, David; Frolov, Valery V.; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J.; Kokeyama, Keiko; Korth, William Z.; Martin, Rodica M.; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H.; Tanner, David B.; Vorvick, Cheryl; Williams, Luke F.; Mueller, Guido

    2016-01-01

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  7. Signal Prediction With Input Identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Chen, Ya-Chin

    1999-01-01

    A novel coding technique is presented for signal prediction with applications including speech coding, system identification, and estimation of input excitation. The approach is based on the blind equalization method for speech signal processing in conjunction with the geometric subspace projection theory to formulate the basic prediction equation. The speech-coding problem is often divided into two parts, a linear prediction model and excitation input. The parameter coefficients of the linear predictor and the input excitation are solved simultaneously and recursively by a conventional recursive least-squares algorithm. The excitation input is computed by coding all possible outcomes into a binary codebook. The coefficients of the linear predictor and excitation, and the index of the codebook can then be used to represent the signal. In addition, a variable-frame concept is proposed to block the same excitation signal in sequence in order to reduce the storage size and increase the transmission rate. The results of this work can be easily extended to the problem of disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. Simulations are included to demonstrate the proposed method.

  8. World Input-Output Network

    PubMed Central

    Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo

    2015-01-01

    Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389

  9. Regional Hospital Input Price Indexes

    PubMed Central

    Freeland, Mark S.; Schendler, Carol Ellen; Anderson, Gerard

    1981-01-01

    This paper describes the development of regional hospital input price indexes that is consistent with the general methodology used for the National Hospital Input Price Index. The feasibility of developing regional indexes was investigated because individuals inquired whether different regions experienced different rates of increase in hospital input prices. The regional indexes incorporate variations in cost-share weights (the amount an expense category contributes to total spending) associated with hospital type and location, and variations in the rate of input price increases for various regions. We found that between 1972 and 1979 none of the regional price indexes increased at average annual rates significantly different from the national rate. For the more recent period 1977 through 1979, the increase in one Census Region was significantly below the national rate. Further analyses indicated that variations in cost-share weights for various types of hospitals produced no substantial variations in the regional price indexes relative to the national index. We consider these findings preliminary because of limitations in the availability of current, relevant, and reliable data, especially for local area wage rate increases. PMID:10309557

  10. World Input-Output Network.

    PubMed

    Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo

    2015-01-01

    Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389

  11. Analog Input Data Acquisition Software

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2009-01-01

    DAQ Master Software allows users to easily set up a system to monitor up to five analog input channels and save the data after acquisition. This program was written in LabVIEW 8.0, and requires the LabVIEW runtime engine 8.0 to run the executable.

  12. Input/output interface module

    NASA Technical Reports Server (NTRS)

    Ozyazici, E. M.

    1980-01-01

    Module detects level changes in any of its 16 inputs, transfers changes to its outputs, and generates interrupts when changes are detected. Up to four changes-in-state per line are stored for later retrieval by controlling computer. Using standard TTL logic, module fits 19-inch rack-mounted console.

  13. Maximum Entropy, Word-Frequency, Chinese Characters, and Multiple Meanings

    PubMed Central

    Yan, Xiaoyong; Minnhagen, Petter

    2015-01-01

    The word-frequency distribution of a text written by an author is well accounted for by a maximum entropy distribution, the RGF (random group formation)-prediction. The RGF-distribution is completely determined by the a priori values of the total number of words in the text (M), the number of distinct words (N) and the number of repetitions of the most common word (kmax). It is here shown that this maximum entropy prediction also describes a text written in Chinese characters. In particular it is shown that although the same Chinese text written in words and Chinese characters have quite differently shaped distributions, they are nevertheless both well predicted by their respective three a priori characteristic values. It is pointed out that this is analogous to the change in the shape of the distribution when translating a given text to another language. Another consequence of the RGF-prediction is that taking a part of a long text will change the input parameters (M, N, kmax) and consequently also the shape of the frequency distribution. This is explicitly confirmed for texts written in Chinese characters. Since the RGF-prediction has no system-specific information beyond the three a priori values (M, N, kmax), any specific language characteristic has to be sought in systematic deviations from the RGF-prediction and the measured frequencies. One such systematic deviation is identified and, through a statistical information theoretical argument and an extended RGF-model, it is proposed that this deviation is caused by multiple meanings of Chinese characters. The effect is stronger for Chinese characters than for Chinese words. The relation between Zipf’s law, the Simon-model for texts and the present results are discussed. PMID:25955175

  14. Excess entropy and crystallization in Stillinger-Weber and Lennard-Jones fluids.

    PubMed

    Dhabal, Debdas; Nguyen, Andrew Huy; Singh, Murari; Khatua, Prabir; Molinero, Valeria; Bandyopadhyay, Sanjoy; Chakravarty, Charusita

    2015-10-28

    Molecular dynamics simulations are used to contrast the supercooling and crystallization behaviour of monatomic liquids that exemplify the transition from simple to anomalous, tetrahedral liquids. As examples of simple fluids, we use the Lennard-Jones (LJ) liquid and a pair-dominated Stillinger-Weber liquid (SW16). As examples of tetrahedral, water-like fluids, we use the Stillinger-Weber model with variable tetrahedrality parameterized for germanium (SW20), silicon (SW21), and water (SW(23.15) or mW model). The thermodynamic response functions show clear qualitative differences between simple and water-like liquids. For simple liquids, the compressibility and the heat capacity remain small on isobaric cooling. The tetrahedral liquids in contrast show a very sharp rise in these two response functions as the lower limit of liquid-phase stability is reached. While the thermal expansivity decreases with temperature but never crosses zero in simple liquids, in all three tetrahedral liquids at the studied pressure, there is a temperature of maximum density below which thermal expansivity is negative. In contrast to the thermodynamic response functions, the excess entropy on isobaric cooling does not show qualitatively different features for simple and water-like liquids; however, the slope and curvature of the entropy-temperature plots reflect the heat capacity trends. Two trajectory-based computational estimation methods for the entropy and the heat capacity are compared for possible structural insights into supercooling, with the entropy obtained from thermodynamic integration. The two-phase thermodynamic estimator for the excess entropy proves to be fairly accurate in comparison to the excess entropy values obtained by thermodynamic integration, for all five Lennard-Jones and Stillinger-Weber liquids. The entropy estimator based on the multiparticle correlation expansion that accounts for both pair and triplet correlations, denoted by S(trip), is also studied. S

  15. Excess entropy and crystallization in Stillinger-Weber and Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Dhabal, Debdas; Nguyen, Andrew Huy; Singh, Murari; Khatua, Prabir; Molinero, Valeria; Bandyopadhyay, Sanjoy; Chakravarty, Charusita

    2015-10-01

    Molecular dynamics simulations are used to contrast the supercooling and crystallization behaviour of monatomic liquids that exemplify the transition from simple to anomalous, tetrahedral liquids. As examples of simple fluids, we use the Lennard-Jones (LJ) liquid and a pair-dominated Stillinger-Weber liquid (SW16). As examples of tetrahedral, water-like fluids, we use the Stillinger-Weber model with variable tetrahedrality parameterized for germanium (SW20), silicon (SW21), and water (SW23.15 or mW model). The thermodynamic response functions show clear qualitative differences between simple and water-like liquids. For simple liquids, the compressibility and the heat capacity remain small on isobaric cooling. The tetrahedral liquids in contrast show a very sharp rise in these two response functions as the lower limit of liquid-phase stability is reached. While the thermal expansivity decreases with temperature but never crosses zero in simple liquids, in all three tetrahedral liquids at the studied pressure, there is a temperature of maximum density below which thermal expansivity is negative. In contrast to the thermodynamic response functions, the excess entropy on isobaric cooling does not show qualitatively different features for simple and water-like liquids; however, the slope and curvature of the entropy-temperature plots reflect the heat capacity trends. Two trajectory-based computational estimation methods for the entropy and the heat capacity are compared for possible structural insights into supercooling, with the entropy obtained from thermodynamic integration. The two-phase thermodynamic estimator for the excess entropy proves to be fairly accurate in comparison to the excess entropy values obtained by thermodynamic integration, for all five Lennard-Jones and Stillinger-Weber liquids. The entropy estimator based on the multiparticle correlation expansion that accounts for both pair and triplet correlations, denoted by Strip, is also studied. Strip is a

  16. Excess entropy and crystallization in Stillinger-Weber and Lennard-Jones fluids

    SciTech Connect

    Dhabal, Debdas; Chakravarty, Charusita; Nguyen, Andrew Huy; Molinero, Valeria; Singh, Murari; Khatua, Prabir; Bandyopadhyay, Sanjoy

    2015-10-28

    Molecular dynamics simulations are used to contrast the supercooling and crystallization behaviour of monatomic liquids that exemplify the transition from simple to anomalous, tetrahedral liquids. As examples of simple fluids, we use the Lennard-Jones (LJ) liquid and a pair-dominated Stillinger-Weber liquid (SW{sub 16}). As examples of tetrahedral, water-like fluids, we use the Stillinger-Weber model with variable tetrahedrality parameterized for germanium (SW{sub 20}), silicon (SW{sub 21}), and water (SW{sub 23.15} or mW model). The thermodynamic response functions show clear qualitative differences between simple and water-like liquids. For simple liquids, the compressibility and the heat capacity remain small on isobaric cooling. The tetrahedral liquids in contrast show a very sharp rise in these two response functions as the lower limit of liquid-phase stability is reached. While the thermal expansivity decreases with temperature but never crosses zero in simple liquids, in all three tetrahedral liquids at the studied pressure, there is a temperature of maximum density below which thermal expansivity is negative. In contrast to the thermodynamic response functions, the excess entropy on isobaric cooling does not show qualitatively different features for simple and water-like liquids; however, the slope and curvature of the entropy-temperature plots reflect the heat capacity trends. Two trajectory-based computational estimation methods for the entropy and the heat capacity are compared for possible structural insights into supercooling, with the entropy obtained from thermodynamic integration. The two-phase thermodynamic estimator for the excess entropy proves to be fairly accurate in comparison to the excess entropy values obtained by thermodynamic integration, for all five Lennard-Jones and Stillinger-Weber liquids. The entropy estimator based on the multiparticle correlation expansion that accounts for both pair and triplet correlations, denoted by S{sub trip

  17. Approximate reversibility in the context of entropy gain, information gain, and complete positivity

    NASA Astrophysics Data System (ADS)

    Buscemi, Francesco; Das, Siddhartha; Wilde, Mark M.

    2016-06-01

    There are several inequalities in physics which limit how well we can process physical systems to achieve some intended goal, including the second law of thermodynamics, entropy bounds in quantum information theory, and the uncertainty principle of quantum mechanics. Recent results provide physically meaningful enhancements of these limiting statements, determining how well one can attempt to reverse an irreversible process. In this paper, we apply and extend these results to give strong enhancements to several entropy inequalities, having to do with entropy gain, information gain, entropic disturbance, and complete positivity of open quantum systems dynamics. Our first result is a remainder term for the entropy gain of a quantum channel. This result implies that a small increase in entropy under the action of a subunital channel is a witness to the fact that the channel's adjoint can be used as a recovery map to undo the action of the original channel. We apply this result to pure-loss, quantum-limited amplifier, and phase-insensitive quantum Gaussian channels, showing how a quantum-limited amplifier can serve as a recovery from a pure-loss channel and vice versa. Our second result regards the information gain of a quantum measurement, both without and with quantum side information. We find here that a small information gain implies that it is possible to undo the action of the original measurement if it is efficient. The result also has operational ramifications for the information-theoretic tasks known as measurement compression without and with quantum side information. Our third result shows that the loss of Holevo information caused by the action of a noisy channel on an input ensemble of quantum states is small if and only if the noise can be approximately corrected on average. We finally establish that the reduced dynamics of a system-environment interaction are approximately completely positive and trace preserving if and only if the data processing

  18. Entropy flow in quantum heat engines

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad; Nazarov, Yuli

    2015-03-01

    We evaluate Shannon and Renyi entropy flows from generic quantum heat engines (QHE) to a weakly-coupled probe environment kept in thermal equilibrium. We show the flows are determined by two quantities: heat flow and fictitious dissipation that manifest the quantum coherence in the engine. Our theory leads to novel physics in quantum heat engines.

  19. Rényi entropy and conformal defects

    NASA Astrophysics Data System (ADS)

    Bianchi, Lorenzo; Meineri, Marco; Myers, Robert C.; Smolkin, Michael

    2016-07-01

    We propose a field theoretic framework for calculating the dependence of Rényi entropies on the shape of the entangling surface in a conformal field theory. Our approach rests on regarding the corresponding twist operator as a conformal defect and in particular, we define the displacement operator which implements small local deformations of the entangling surface. We identify a simple constraint between the coefficient defining the two-point function of the displacement operator and the conformal weight of the twist operator, which consolidates a number of distinct conjectures on the shape dependence of the Rényi entropy. As an example, using this approach, we examine a conjecture regarding the universal coefficient associated with a conical singularity in the entangling surface for CFTs in any number of spacetime dimensions. We also provide a general formula for the second order variation of the Rényi entropy arising from small deformations of a spherical entangling surface, extending Mezei's results for the entanglement entropy.

  20. Impact of Information Entropy on Teaching Effectiveness

    ERIC Educational Resources Information Center

    Wang, Zhi-guo

    2007-01-01

    Information entropy refers to the process in which information is sent out from the information source, transmitted through information channel and acquired by information sink, while the teaching process is the one of transmitting teaching information from teachers and teaching material to students. How to improve teaching effectiveness is…

  1. Carnot to Clausius: Caloric to Entropy

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2009-01-01

    This paper discusses how the Carnot engine led to the formulation of the second law of thermodynamics and entropy. The operation of the engine is analysed both in terms of heat as the caloric fluid and heat as a form of energy. A keystone of Carnot's thinking was the absolute conservation of caloric. Although the Carnot analysis was partly…

  2. On the Entropy of Protein Families

    NASA Astrophysics Data System (ADS)

    Barton, John P.; Chakraborty, Arup K.; Cocco, Simona; Jacquin, Hugo; Monasson, Rémi

    2016-03-01

    Proteins are essential components of living systems, capable of performing a huge variety of tasks at the molecular level, such as recognition, signalling, copy, transport, ... The protein sequences realizing a given function may largely vary across organisms, giving rise to a protein family. Here, we estimate the entropy of those families based on different approaches, including Hidden Markov Models used for protein databases and inferred statistical models reproducing the low-order (1- and 2-point) statistics of multi-sequence alignments. We also compute the entropic cost, that is, the loss in entropy resulting from a constraint acting on the protein, such as the mutation of one particular amino-acid on a specific site, and relate this notion to the escape probability of the HIV virus. The case of lattice proteins, for which the entropy can be computed exactly, allows us to provide another illustration of the concept of cost, due to the competition of different folds. The relevance of the entropy in relation to directed evolution experiments is stressed.

  3. Entropy of Mixing of Distinguishable Particles

    ERIC Educational Resources Information Center

    Kozliak, Evguenii I.

    2014-01-01

    The molar entropy of mixing yields values that depend only on the number of mixing components rather than on their chemical nature. To explain this phenomenon using the logic of chemistry, this article considers mixing of distinguishable particles, thus complementing the well-known approach developed for nondistinguishable particles, for example,…

  4. Entropy viscosity method applied to Euler equations

    SciTech Connect

    Delchini, M. O.; Ragusa, J. C.; Berry, R. A.

    2013-07-01

    The entropy viscosity method [4] has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)

  5. Entanglement entropy in scalar field theory

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.

    2013-01-01

    Understanding the dependence of entanglement entropy on the renormalized mass in quantum field theories can provide insight into phenomena such as quantum phase transitions, since the mass varies in a singular way near the transition. Here we perturbatively calculate the entanglement entropy in interacting scalar field theory, focusing on the dependence on the field’s mass. We study λϕ4 and gϕ3 theories in their ground state. By tracing over a half space, using the replica trick and position space Green’s functions on the cone, we show that spacetime volume divergences cancel and renormalization can be consistently performed in this conical geometry. We establish finite contributions to the entanglement entropy up to two-loop order, involving a finite area law. The resulting entropy is simple and intuitive: the free theory result in d = 3 (that we included in an earlier publication) ΔS ˜ A m2ln (m2) is altered, to leading order, by replacing the bare mass m by the renormalized mass mr evaluated at the renormalization scale of zero momentum.

  6. Stock market stability: Diffusion entropy analysis

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; Zhuang, Yangyang; He, Jianmin

    2016-05-01

    In this article, we propose a method to analyze the stock market stability based on diffusion entropy, and conduct an empirical analysis of Dow Jones Industrial Average. Empirical results show that this method can reflect the volatility and extreme cases of the stock market.

  7. Entropy conservation in simulations of magnetic reconnection

    SciTech Connect

    Birn, J.; Hesse, M.; Schindler, K.

    2006-09-15

    Entropy and mass conservation are investigated for the dynamic field evolution associated with fast magnetic reconnection, based on the 'Newton Challenge' problem [Birn et al., Geophys. Res. Lett. 32, L06105 (2005)]. In this problem, the formation of a thin current sheet and magnetic reconnection are initiated in a plane Harris-type current sheet by temporally limited, spatially varying, inflow of magnetic flux. Using resistive magnetohydrodynamic (MHD) and particle-in-cell (PIC) simulations, specifically the entropy and mass integrated along the magnetic flux tubes are compared between the simulations. In the MHD simulation these should be exactly conserved quantities, when slippage and Ohmic dissipation are negligible. It is shown that there is very good agreement between the conservation of these quantities in the two simulation approaches, despite the effects of dissipation, provided that the resistivity in the MHD simulation is strongly localized. This demonstrates that dissipation is highly localized in the PIC simulation also, and that heat flux across magnetic flux tubes has negligible effect as well, so that the entropy increase on a full flux tube remains small even during reconnection. The mass conservation also implies that the frozen-in flux condition of ideal MHD is a good integral approximation outside the reconnection site. This result lends support for using the entropy-conserving MHD approach not only before and after reconnection but even as a constraint connecting the two phases.

  8. The Statistical Interpretation of Entropy: An Activity

    ERIC Educational Resources Information Center

    Timmberlake, Todd

    2010-01-01

    The second law of thermodynamics, which states that the entropy of an isolated macroscopic system can increase but will not decrease, is a cornerstone of modern physics. Ludwig Boltzmann argued that the second law arises from the motion of the atoms that compose the system. Boltzmann's statistical mechanics provides deep insight into the…

  9. Information, entropy and fidelity in visual communication

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1992-01-01

    This paper presents an assessment of visual communication that integrates the critical limiting factors of image gathering and display with the digital processing that is used to code and restore images. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image.

  10. Information entropy of conditionally exactly solvable potentials

    SciTech Connect

    Dutta, D.; Roy, P.

    2011-03-15

    We evaluate Shannon entropy for the position and momentum eigenstates of some conditionally exactly solvable potentials which are isospectral to harmonic oscillator and whose solutions are given in terms of exceptional orthogonal polynomials. The Bialynicki-Birula-Mycielski inequality has also been tested for a number of states.

  11. A Computer Analogy for Illustrating Entropy Concepts.

    ERIC Educational Resources Information Center

    Powers, Michael H.

    1982-01-01

    Describes a computer program for Commodore PET (requiring 8K) which illustrates the statistical nature of entropy by providing a simple analogy. The analogy involves the distribution of objects free to move in a box divided into two compartments. A listing of program statements is also included. (JN)

  12. Computing Entanglement Entropy in Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Melko, Roger

    2012-02-01

    The scaling of entanglement entropy in quantum many-body wavefunctions is expected to be a fruitful resource for studying quantum phases and phase transitions in condensed matter. However, until the recent development of estimators for Renyi entropy in quantum Monte Carlo (QMC), we have been in the dark about the behaviour of entanglement in all but the simplest two-dimensional models. In this talk, I will outline the measurement techniques that allow access to the Renyi entropies in several different QMC methodologies. I will then discuss recent simulation results demonstrating the richness of entanglement scaling in 2D, including: the prevalence of the ``area law''; topological entanglement entropy in a gapped spin liquid; anomalous subleading logarithmic terms due to Goldstone modes; universal scaling at critical points; and examples of emergent conformal-like scaling in several gapless wavefunctions. Finally, I will explore the idea that ``long range entanglement'' may complement the notion of ``long range order'' for quantum phases and phase transitions which lack a conventional order parameter description.

  13. Distilling topological entropy from a single measurement of entanglement on projected systems

    NASA Astrophysics Data System (ADS)

    Castelnovo, C.

    2014-04-01

    Entanglement measures find frequent application in the study of topologically ordered systems, where the presence of topological order is reflected in an additional contribution to the entanglement of the system. Obtaining this topological entropy from analytical calculations or numerical simulations is generally difficult due to the fact that it is an order-one correction to leading terms that scale with the size of the system. In order to distill the topological entropy, one resorts to extrapolation as a function of system size or to clever subtraction schemes that allow one to cancel out the leading terms. Both approaches have the disadvantage of requiring multiple (accurate) calculations of the entanglement of the system. Here we propose a modification of conventional entanglement calculations that allows one to obtain the topological entropy of a system from a single measurement of entanglement. In our approach, we replace the conventional trace over the degrees of freedom of a partition of the system with a projection onto a given state (which need not be known). We show that a proper choice of partition and projective measurement allows one to rid the entanglement measures of the typical boundary terms, thus exposing the topological contribution alone. We consider specifically the measures known as von Neumann entropy and entanglement negativity and we discuss their application to both models that exhibit quantum as well as classical topological order.

  14. Hagedorn transition and topological entanglement entropy

    NASA Astrophysics Data System (ADS)

    Zuo, Fen; Gao, Yi-Hong

    2016-06-01

    Induced by the Hagedorn instability, weakly-coupled U (N) gauge theories on a compact manifold exhibit a confinement/deconfinement phase transition in the large-N limit. Recently we discover that the thermal entropy of a free theory on S3 gets reduced by a universal constant term, -N2 / 4, compared to that from completely deconfined colored states. This entropy deficit is due to the persistence of Gauss's law, and actually independent of the shape of the manifold. In this paper we show that this universal term can be identified as the topological entangle entropy both in the corresponding 4 + 1 D bulk theory and the dimensionally reduced theory. First, entanglement entropy in the bulk theory contains the so-called "particle" contribution on the entangling surface, which naturally gives rise to an area-law term. The topological term results from the Gauss's constraint of these surface states. Secondly, the high-temperature limit also defines a dimensionally reduced theory. We calculate the geometric entropy in the reduced theory explicitly, and find that it is given by the same constant term after subtracting the leading term of O (β-1). The two procedures are then applied to the confining phase, by extending the temperature to the complex plane. Generalizing the recently proposed 2D modular description to an arbitrary matter content, we show the leading local term is missing and no topological term could be definitely isolated. For the special case of N = 4 super Yang-Mills theory, the results obtained here are compared with that at strong coupling from the holographic derivation.

  15. Systems and methods for reconfiguring input devices

    NASA Technical Reports Server (NTRS)

    Lancaster, Jeff (Inventor); De Mers, Robert E. (Inventor)

    2012-01-01

    A system includes an input device having first and second input members configured to be activated by a user. The input device is configured to generate activation signals associated with activation of the first and second input members, and each of the first and second input members are associated with an input function. A processor is coupled to the input device and configured to receive the activation signals. A memory coupled to the processor, and includes a reconfiguration module configured to store the input functions assigned to the first and second input members and, upon execution of the processor, to reconfigure the input functions assigned to the input members when the first input member is inoperable.

  16. Meningitis - gram-negative

    MedlinePlus

    Gram-negative meningitis ... Acute bacterial meningitis can be caused by Gram-negative bacteria. Meningococcal and H. influenzae meningitis are caused by Gram-negative bacteria and are covered in detail in other articles. This article ...

  17. Numerical calculation of granular entropy: counting the uncountable

    NASA Astrophysics Data System (ADS)

    Frenkel, Daan

    In 1989, Sir Sam Edwards introduced the concept of `granular entropy', defined as the logarithm of the number of distinct packings of N granular particles in a fixed volume V. The proposal was rather controversial but much of the debate was sterile because the granular entropy could not even be computed for systems as small as 20 particles - hardly a good approximation of the thermodynamic limit. In my talk I will describe how granular entropies of much larger systems can now be computed, using a novel algorithm. Interestingly, it turns out the definition of granular entropy will have to be modified to guarantee that granular entropy is extensive.

  18. Nonlinear negative refraction by difference frequency generation

    NASA Astrophysics Data System (ADS)

    Cao, Jianjun; Shen, Dongyi; Feng, Yaming; Wan, Wenjie

    2016-05-01

    Negative refraction has attracted much interest for its promising capability in imaging applications. Such an effect can be implemented by negative index meta-materials, however, which are usually accompanied by high loss and demanding fabrication processes. Recently, alternative nonlinear approaches like phase conjugation and four wave mixing have shown advantages of low-loss and easy-to-implement, but associated problems like narrow accepting angles can still halt their practical applications. Here, we demonstrate theoretically and experimentally a scheme to realize negative refraction by nonlinear difference frequency generation with wide tunability, where a thin Beta barium borate slice serves as a negative refraction layer bending the input signal beam to the idler beam at a negative angle. Furthermore, we realize optical focusing effect using such nonlinear negative refraction, which may enable many potential applications in imaging science.

  19. Dark Energy and the Entropy of the Observable Universe

    NASA Astrophysics Data System (ADS)

    Lineweaver, Charles H.; Egan, Chas A.

    2010-06-01

    The initial low entropy of the universe has allowed irreversible processes, such as the reader reading this abstract, to happen in the universe. This initial low entropy is due to a low value for the initial gravitational entropy of the universe. The standard ΛCDM cosmology has a cosmic event horizon and an associated Gibbons-Hawking entropy. We compute the entropy of the universe including the entropy of the current event horizon and the entropy of the matter and photons within the cosmic event horizon. We estimate the entropy of the current cosmic event horizon to be 2.6+/-0.3×10122 k and find it to be ~1019 times larger than the next most dominant contribution, which is from super massive black holes. We plot an entropy budget as a function of time and find that the cosmic event horizon entropy has dominated other sources of entropy since 10-20 seconds after the big bang. See Egan & Lineweaver (2009) for details and discussion.

  20. Entanglement entropy of a black hole and isolated horizon

    NASA Astrophysics Data System (ADS)

    Shi, Jianhua; Hu, Shuangqi; Zhao, Ren

    2013-02-01

    Using Unruh-Verlinde temperature obtained by entropic force, we directly calculate partition functions of quantum field in Schwarzschild spacetime via quantum statistical method and derive the expression of the black hole statistical entropy. In our calculation the lower limit of integral is the location of isolated horizon introduced in loop quantum gravity and the upper limit of integral is infinity. So the obtained entropy is the statistical entropy from isolated horizon to the infinite. In our calculation there are not the cutoff and approximation. The results showed that, as long as proper Immirzi parameters are selected, the entropy obtained by loop quantum gravity is consistent with the quantum statistical entropy outside the black hole horizon. Therefore the black hole entropy is a quantum entanglement entropy outside the isolated horizon.

  1. National Hospital Input Price Index

    PubMed Central

    Freeland, Mark S.; Anderson, Gerard; Schendler, Carol Ellen

    1979-01-01

    The national community hospital input price index presented here isolates the effects of prices of goods and services required to produce hospital care and measures the average percent change in prices for a fixed market basket of hospital inputs. Using the methodology described in this article, weights for various expenditure categories were estimated and proxy price variables associated with each were selected. The index is calculated for the historical period 1970 through 1978 and forecast for 1979 through 1981. During the historical period, the input price index increased an average of 8.0 percent a year, compared with an average rate of increase of 6.6 percent for overall consumer prices. For the period 1979 through 1981, the average annual increase is forecast at between 8.5 and 9.0 percent. Using the index to deflate growth in expenses, the level of real growth in expenditures per inpatient day (net service intensity growth) averaged 4.5 percent per year with considerable annual variation related to government and hospital industry policies. PMID:10309052

  2. Minimal entropy probability paths between genome families.

    PubMed

    Ahlbrandt, Calvin; Benson, Gary; Casey, William

    2004-05-01

    We develop a metric for probability distributions with applications to biological sequence analysis. Our distance metric is obtained by minimizing a functional defined on the class of paths over probability measures on N categories. The underlying mathematical theory is connected to a constrained problem in the calculus of variations. The solution presented is a numerical solution, which approximates the true solution in a set of cases called rich paths where none of the components of the path is zero. The functional to be minimized is motivated by entropy considerations, reflecting the idea that nature might efficiently carry out mutations of genome sequences in such a way that the increase in entropy involved in transformation is as small as possible. We characterize sequences by frequency profiles or probability vectors, in the case of DNA where N is 4 and the components of the probability vector are the frequency of occurrence of each of the bases A, C, G and T. Given two probability vectors a and b, we define a distance function based as the infimum of path integrals of the entropy function H( p) over all admissible paths p(t), 0 < or = t< or =1, with p(t) a probability vector such that p(0)=a and p(1)=b. If the probability paths p(t) are parameterized as y(s) in terms of arc length s and the optimal path is smooth with arc length L, then smooth and "rich" optimal probability paths may be numerically estimated by a hybrid method of iterating Newton's method on solutions of a two point boundary value problem, with unknown distance L between the abscissas, for the Euler-Lagrange equations resulting from a multiplier rule for the constrained optimization problem together with linear regression to improve the arc length estimate L. Matlab code for these numerical methods is provided which works only for "rich" optimal probability vectors. These methods motivate a definition of an elementary distance function which is easier and faster to calculate, works on non

  3. Computational assessment of the entropy of solvation of small-sized hydrophobic entities.

    PubMed

    Mahajan, Reema; Kranzlmüller, Dieter; Volkert, Jens; Hansmann, Ulrich H E; Höfinger, Siegfried

    2006-12-21

    A high level polarizable force field is used to study the temperature dependence of hydrophobic hydration of small-sized molecules from computer simulations. Molecular dynamics (MD) simulations of liquid water at various temperatures form the basis of free energy perturbation calculations that consider the onset and growth of a repulsive sphere. This repulsive sphere acts as a model construct for the hydrophobic species. In the present study, an extension is pursued for seven independent target temperatures, ranging from close to the freezing point almost up to the boiling point of liquid water under standard conditions. Care is taken to maintain proper physico-chemical model descriptions by cross-checking with experimental water densities at the selected target temperatures. The polarizable force field description of molecular water turns out to be suitable throughout the entire temperature domain considered. Derivatives of the computed free energies of hydrophobic hydration with respect to the temperature give access to the changes in entropy. In practice the entropy differential is determined from the negative of the slope of tangential lines formed at a certain target temperature in the free energy profile. The obtained changes in entropy are negative for small-sized cavities, and hence reconfirm the basic ideas of the Lum-Chandler-Weeks theory on hydrophobic hydration of small-sized solutes. PMID:17136266

  4. Quantum information entropy and multi-qubit entanglement

    NASA Astrophysics Data System (ADS)

    Abdel-Aty, Mahmoud

    The exciting new features of entanglement are burgeoning with revolutionary new advances in the areas of quantum communication, quantum information processing and quantum computing. We review recent theoretical studies and applications of pure and mixed states entanglement of trapped ions interacting with a laser field. After an introduction to the basic concepts of traditional entanglement measures and methodology, the main phenomena and observations of two-, three- and four-level systems are summarized. In particular, we explore the influence of the various parameters of these systems on the entanglement. The particular advantages of using atomic Wehrl entropy and Shannon entropy are highlighted. A general expression of the mixed state entanglement is obtained with the physical significance and without the diagonal approximation. Based on this result, we provide a general expression for the entanglement in a multi-level system. We show that the mixed-state and specific eigenstates of the two or three-level system posses remarkable entanglement properties that can reveal new insight into quantum correlations present in the multi-level models. Furthermore, we propose an intuitive picture of the behavior of mixed-state entanglement in the presence of the decoherence. After a short presentation of the entanglement measures of two qubits, each defined as an effective two-level system (negativity, Bures metric and concurrence) we discuss the general behaviors of the concurrence as a measure of entanglement. We identify and numerically demonstrate the region of parameters where significantly large entanglement can be obtained. Most interestingly, it is shown that features of the entanglement are influenced significantly when the multi-photon process is involved.

  5. Towards Accurate Microscopic Calculation of Solvation Entropies: Extending the Restraint Release Approach to Studies of Solvation Effects

    PubMed Central

    Singh, Nidhi; Warshel, Arieh

    2009-01-01

    The evaluation of the solvation entropies is a major conceptual and practical challenge. On the one hand, it is interesting to quantify the factors that are responsible for the solvation entropies in solutions, while on the other, it is essential to be able to assess the contributions of the solvation entropies to the binding free energies and related properties. In fact, the solvation entropies are neglected in almost all the studies of the binding entropies. The main problem is that widely used approaches, such as the quasiharmonic (QH) approximation do not provide reliable results particularly, in cases of shallow potential and multidimensional surfaces while brute force evaluations of the entropic effects by simulating temperature dependence of the free energy converges very slowly. This paper addresses the above issue by starting with an analysis of the factors that are responsible for the negative solvation entropy of ions, showing that it is not due to the change in the solvent vibration modes or to the solvent force constant but to the changes in the solvent configurational space upon change in the solute charges. We begin by clarifying that when one deals with aqueous solutions, it is easy to evaluate the corresponding entropic effect by the Langevin dipole(LD) treatment. However, in this work we are interested in developing a general microscopic tool that can be used to study similar effects in the proteins. To this end, we explore the ability of our restraint release (RR) approach to evaluate the solvation entropy. We start this analysis by reviewing the foundation of this approach and in particular, the requirements of minimizing the enthalpy contribution to the RR free energy. We then establish that our approach is not a specialized harmonic treatment but a rather powerful approach. Moving to the main topic of this work, we demonstrate that the RR approach provides quantitative results for the solvation entropies of monovalent and divalent ions and

  6. Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2014-07-01

    We utilize long-term memory, fractal dimension and approximate entropy as input variables for the Efficiency Index [L. Kristoufek, M. Vosvrda, Physica A 392, 184 (2013)]. This way, we are able to comment on stock market efficiency after controlling for different types of inefficiencies. Applying the methodology on 38 stock market indices across the world, we find that the most efficient markets are situated in the Eurozone (the Netherlands, France and Germany) and the least efficient ones in the Latin America (Venezuela and Chile).

  7. Energy and Entropy Effects in Dissociation of Peptide Radical Anions

    SciTech Connect

    Laskin, Julia; Yang, Zhibo; Lam, Corey; Chu, Ivan K.

    2012-04-15

    Time- and collision energy-resolved surface-induced dissociation (SID) of peptide radical anions was studied for the first time using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) configured for SID experiments. Peptide radical cations and anions were produced by gas-phase fragmentation of CoIII(salen)-peptide complexes. The effect of the charge, radical, and the presence of a basic residue on the energetics and dynamics of dissociation of peptide ions was examined using RVYIHPF (1) and HVYIHPF (2) as model systems. Comparison of the survival curves for of [M+H]{sup +}, [M-H]{sup -}, M{sup +{sm_bullet}}, and [M-2H]{sup -{sm_bullet}} ions of these precursors demonstrated that even-electron ions are more stable towards fragmentation than their odd-electron counterparts. RRKM modeling of the experimental data demonstrated that the lower stability of the positive radicals is mainly attributed to lower dissociation thresholds while entropy effects are responsible the relative instability of the negative radicals. Substitution of arginine with less basic histidine residue has a strong destabilizing effect on the [M+H]{sup +} ions and a measurable stabilizing effect on the odd-electron ions. Lower threshold energies for dissociation of both positive and negative radicals of 1 are attributed to the presence of lower-energy dissociation pathways that are most likely promoted by the presence of the basic residue.

  8. Irreversible Entropy Production in Two-Phase Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okongo, Nora

    2003-01-01

    This report presents a study of dissipation (irreversible production of entropy) in three-dimensional, temporal mixing layers laden with evaporating liquid drops. The purpose of the study is to examine the effects of evaporating drops on the development of turbulent features in flows. Direct numerical simulations were performed to analyze transitional states of three mixing layers: one without drops, and two that included drops at different initial mass loadings. Without drops, the dissipation is essentially due to viscous effects. It was found that in the presence of drops, the largest contribution to dissipation was made by heating and evaporation of the drops, and that at large length scales, this contribution is positive (signifying that the drops reduce turbulence), while at small scales, this contribution is negative (the drops increase turbulence). The second largest contribution to dissipation was found to be associated with the chemical potential, which leads to an increase in turbulence at large scales and a decrease in turbulence at small scales. The next smaller contribution was found to be that of viscosity. The fact that viscosity effects are only third in order of magnitude in the dissipation is in sharp contrast to the situation for the mixing layer without the drops. The next smaller contribution - that of the drag and momentum of the vapor from the drops - was found to be negative at lower mass loading but to become positive at higher mass loading.

  9. Energy and entropy of interacting dislocations

    SciTech Connect

    Ladd, A.J.C.; Hoover, W.G.

    1982-11-15

    The energy and entropy of interacting edge dislocations have been calculated by atomistic simulations, with the use of piecewise-linear forces in a two-dimensional triangular lattice. We conclude that the interaction energy between small groups of dislocations is well described by continuum mechanics for separations greater than a few lattice spacings. Our calculations enable us to make a precise determination of the core energy, which is an essential parameter in determining dislocation multiplication rates. We find also that continuum mechanics gives an accurate representation of the interaction of a dislocation pair with a homogeneous elastic stress field. The vibrational contribution to the entropy of such a pair is small, about 0.3k.

  10. The Increasingly Disordered History of Entropy

    NASA Astrophysics Data System (ADS)

    Rodriguez-Rosario, Cesar

    2008-03-01

    The interpretation of irreversibility had played a significant part of philosophical debates, but it was not until Carnot and his son established entropy as part of the empirical science of engines that the issue reached practical importance. It also had to wait for Maxwell, Boltzman, Gibbs and the birth of statistical mechanics that the concept of entropy was given a stronger theoretical basis, although the approximation it was based on is still a source of disagreement. This talk will focus on the debate from its early ``demonic'' times, past Szilard and Einstein building a refrigerator, to the role of von Neumann and Shannon in connecting the idea to information theory, without forgetting about the quantum mechanical master equations, all the way into its current use in quantum information theory.

  11. Entanglement Entropy in 1-D integrable chains

    NASA Astrophysics Data System (ADS)

    Franchini, Fabio; Evangelisti, Stefano; Ercolessi, Elisa; Ravanini, Francesco; de Luca, Andrea

    2012-02-01

    We study analytically the Renyi entropy of a bipartite lattice in the limit of two semi-infinite chains joined at the origin, for a few integrable 1-dimensional models, by using the techniques of Corner Transfer Matrices of the corresponding 2-D classical systems, namely the 8-vertex model and the RSOS. In the scaling limit, close to a conformal point, we reproduce the leading behavior expected from CFT prediction. The sub-leading corrections, however, differ from na"ive expectations and we show that lattice effect can give rise to additional relevant terms in any numerical approach. Moreover, in the vicinity of a non-conformal (ferromagnetic) point, we observe a violation of universality and a behavior of the entropy characteristic of an essential singularity.

  12. On the entropy function in sociotechnical systems

    PubMed Central

    Montroll, Elliott W.

    1981-01-01

    The entropy function H = -Σpj log pj (pj being the probability of a system being in state j) and its continuum analogue H = ∫p(x) log p(x) dx are fundamental in Shannon's theory of information transfer in communication systems. It is here shown that the discrete form of H also appears naturally in single-lane traffic flow theory. In merchandising, goods flow from a whole-saler through a retailer to a customer. Certain features of the process may be deduced from price distribution functions derived from Sears Roebuck and Company catalogues. It is found that the dispersion in logarithm of catalogue prices of a given year has remained about constant, independently of the year, for over 75 years. From this it may be inferred that the continuum entropy function for the variable logarithm of price had inadvertently, through Sears Roebuck policies, been maximized for that firm subject to the observed dispersion. PMID:16593136

  13. Pareto versus lognormal: A maximum entropy test

    NASA Astrophysics Data System (ADS)

    Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano

    2011-08-01

    It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.

  14. Entanglement entropy from the truncated conformal space

    NASA Astrophysics Data System (ADS)

    Palmai, T.

    2016-08-01

    A new numerical approach to entanglement entropies of the Rényi type is proposed for one-dimensional quantum field theories. The method extends the truncated conformal spectrum approach and we will demonstrate that it is especially suited to study the crossover from massless to massive behavior when the subsystem size is comparable to the correlation length. We apply it to different deformations of massless free fermions, corresponding to the scaling limit of the Ising model in transverse and longitudinal fields. For massive free fermions the exactly known crossover function is reproduced already in very small system sizes. The new method treats ground states and excited states on the same footing, and the applicability for excited states is illustrated by reproducing Rényi entropies of low-lying states in the transverse field Ising model.

  15. Entropy generation analysis of magnetohydrodynamic induction devices

    NASA Astrophysics Data System (ADS)

    Salas, Hugo; Cuevas, Sergio; López de Haro, Mariano

    1999-10-01

    Magnetohydrodynamic (MHD) induction devices such as electromagnetic pumps or electric generators are analysed within the approach of entropy generation. The flow of an electrically-conducting incompressible fluid in an MHD induction machine is described through the well known Hartmann model. Irreversibilities in the system due to ohmic dissipation, flow friction and heat flow are included in the entropy-generation rate. This quantity is used to define an overall efficiency for the induction machine that considers the total loss caused by process irreversibility. For an MHD generator working at maximum power output with walls at constant temperature, an optimum magnetic field strength (i.e. Hartmann number) is found based on the maximum overall efficiency.

  16. Hamiltonian formalism and path entropy maximization

    NASA Astrophysics Data System (ADS)

    Davis, Sergio; González, Diego

    2015-10-01

    Maximization of the path information entropy is a clear prescription for constructing models in non-equilibrium statistical mechanics. Here it is shown that, following this prescription under the assumption of arbitrary instantaneous constraints on position and velocity, a Lagrangian emerges which determines the most probable trajectory. Deviations from the probability maximum can be consistently described as slices in time by a Hamiltonian, according to a nonlinear Langevin equation and its associated Fokker-Planck equation. The connections unveiled between the maximization of path entropy and the Langevin/Fokker-Planck equations imply that missing information about the phase space coordinate never decreases in time, a purely information-theoretical version of the second law of thermodynamics. All of these results are independent of any physical assumptions, and thus valid for any generalized coordinate as a function of time, or any other parameter. This reinforces the view that the second law is a fundamental property of plausible inference.

  17. Teaching Electrostatics and Entropy in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Reeves, Mark

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology courses is important contribution of the entropy in driving fundamental biological processes towards equilibrium. I will present material developed to teach electrostatic screening in solutions and the function of nerve cells where entropic effects act to counterbalance electrostatic attraction. These ideas are taught in an introductory, calculus-based physics course to biomedical engineers using SCALEUP pedagogy. Results of student mastering of complex problems that cross disciplinary boundaries between biology and physics, as well as the challenges that they face in learning this material will be presented.

  18. Maximum-entropy description of animal movement.

    PubMed

    Fleming, Chris H; Subaşı, Yiğit; Calabrese, Justin M

    2015-03-01

    We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic. PMID:25871054

  19. Maximum-entropy description of animal movement

    NASA Astrophysics Data System (ADS)

    Fleming, Chris H.; Subaşı, Yiǧit; Calabrese, Justin M.

    2015-03-01

    We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.

  20. Entanglement Entropy and the Fermi Surface

    NASA Astrophysics Data System (ADS)

    Swingle, Brian

    2010-07-01

    Free fermions with a finite Fermi surface are known to exhibit an anomalously large entanglement entropy. The leading contribution to the entanglement entropy of a region of linear size L in d spatial dimensions is S˜Ld-1log⁡L, a result that should be contrasted with the usual boundary law S˜Ld-1. This term depends only on the geometry of the Fermi surface and on the boundary of the region in question. I give an intuitive account of this anomalous scaling based on a low energy description of the Fermi surface as a collection of one-dimensional gapless modes. Using this picture, I predict a violation of the boundary law in a number of other strongly correlated systems.

  1. Introducing thermodynamics through energy and entropy

    NASA Astrophysics Data System (ADS)

    de Abreu, Rodrigo; Guerra, Vasco

    2012-07-01

    We suggest a simple approach to introducing thermodynamics, beginning with the concept of internal energy of deformable bodies. From a series of thought experiments involving ideal gases, we show that the internal energy depends on the volume and on a second parameter, leading to the development of the concept of entropy. By introducing entropy before the notions of temperature and heat, the proposed approach avoids some of the major conceptual difficulties with the traditional presentation. The relationship between mechanics and thermodynamics naturally emerges, mechanics corresponding to isentropic thermodynamics. The questions of evolution to equilibrium and irreversibility are studied under the light of the action of the "dynamic force" and its dissipative character, evincing the benefits of keeping in mind the microscopic picture.

  2. Multidimensional Scaling Visualization Using Parametric Entropy

    NASA Astrophysics Data System (ADS)

    Lopes, António M.; Tenreiro Machado, J. A.; Galhano, Alexandra M.

    2015-12-01

    This paper studies complex systems using a generalized multidimensional scaling (MDS) technique. Complex systems are characterized by time-series responses, interpreted as a manifestation of their dynamics. Two types of time-series are analyzed, namely 18 stock markets and the gross domestic product per capita of 18 countries. For constructing the MDS charts, indices based on parametric entropies are adopted. Multiparameter entropies allow the variation of the parameters leading to alternative sets of charts. The final MDS maps are then assembled by means of Procrustes’ method that maximizes the fit between the individual charts. Therefore, the proposed method can be interpreted as a generalization to higher dimensions of the standard technique that represents (and discretizes) items by means of single “points” (i.e. zero-dimensional “objects”). The MDS plots, involving one-, two- and three-dimensional “objects”, reveal a good performance in capturing the correlations between data.

  3. Logarithmic corrections to the entanglement entropy

    NASA Astrophysics Data System (ADS)

    Park, Chanyong

    2015-12-01

    In a d -dimensional conformal field theory, it has been known that a relevant deformation operator with the conformal dimension, Δ =d/+2 2 , generates a logarithmic correction to the entanglement entropy. In the large 't Hooft coupling limit, we can investigate such a logarithmic correction holographically by deforming an AdS space with a massive scalar field dual to the operator with Δ =d/+2 2 . There are two sources generating the logarithmic correction. One is the metric deformation and the other is the minimal surface deformation. In this work, we investigate the change of the entanglement entropy caused by the minimal surface deformation and find that the second order minimal surface deformation leads to an additional logarithmic correction.

  4. Entanglement entropy in warped conformal field theories

    NASA Astrophysics Data System (ADS)

    Castro, Alejandra; Hofman, Diego M.; Iqbal, Nabil

    2016-02-01

    We present a detailed discussion of entanglement entropy in (1+1)-dimensional Warped Conformal Field Theories (WCFTs). We implement the Rindler method to evaluate entanglement and Renyi entropies for a single interval and along the way we interpret our results in terms of twist field correlation functions. Holographically a WCFT can be described in terms of Lower Spin Gravity, a SL (2, ℝ) × U (1) Chern-Simons theory in three dimensions. We show how to obtain the universal field theory results for entanglement in a WCFT via holography. For the geometrical description of the theory we introduce the concept of geodesic and massive point particles in the warped geometry associated to Lower Spin Gravity. In the Chern-Simons description we evaluate the appropriate Wilson line that captures the dynamics of a massive particle.

  5. Some Calculable Contributions to Entanglement Entropy

    SciTech Connect

    Hertzberg, Mark P.; Wilczek, Frank

    2011-02-04

    Entanglement entropy appears as a central property of quantum systems in broad areas of physics. However, its precise value is often sensitive to unknown microphysics, rendering it incalculable. By considering parametric dependence on correlation length, we extract finite, calculable contributions to the entanglement entropy for a scalar field between the interior and exterior of a spatial domain of arbitrary shape. The leading term is proportional to the area of the dividing boundary; we also extract finite subleading contributions for a field defined in the bulk interior of a waveguide in 3+1 dimensions, including terms proportional to the waveguide's cross-sectional geometry: its area, perimeter length, and integrated curvature. We also consider related quantities at criticality and suggest a class of systems for which these contributions might be measurable.

  6. An investigation of combustion and entropy noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    The relative importance of entropy and direct combustion noise in turbopropulsion systems and the parameters upon which these noise sources depend were studied. Theory and experiment were employed to determine that at least with the apparatus used here, entropy noise can dominate combustion noise if there is a sufficient pressure gradient terminating the combustor. Measurements included combustor interior fluctuating pressure, near and far field fluctuating pressure, and combustor exit plane fluctuating temperatures, as well as mean pressures and temperatures. Analysis techniques included spectral, cross-correlation, cross power spectra, and ordinary and partial coherence analysis. Also conducted were combustor liner modification experiments to investigate the origin of the frequency content of combustion noise. Techniques were developed to extract nonpropagational pseudo-sound and the heat release fluctuation spectra from the data.

  7. Nonsingular decaying vacuum cosmology and entropy production

    NASA Astrophysics Data System (ADS)

    Lima, J. A. S.; Basilakos, Spyros; Solà, Joan

    2015-04-01

    The thermodynamic behavior of a decaying vacuum cosmology describing the entire cosmological history evolving between two extreme (early and late time) de Sitter eras is investigated. The thermal evolution from the early de Sitter to the radiation phase is discussed in detail. The temperature evolution law and the increasing entropy function are analytically determined. The entropy of the effectively massless particles is initially zero but evolves continuously to the present day maximum value within the current Hubble radius, in natural units. By using the Gibbons-Hawking temperature relation for the de Sitter spacetime, it is found that the ratio between the primeval and the late time vacuum energy densities is , as required by some naive estimates from quantum field theory.

  8. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys

    SciTech Connect

    Otto, Frederik; Yang, Ying; Bei, Hongbin; George, Easo P

    2013-01-01

    High configurational entropies have been hypothesized to stabilize solid solutions in equiatomic, multi-element alloys which have attracted much attention recently as high-entropy alloys with potentially interesting properties. To evaluate the usefulness of configurational entropy as a predictor of single-phase (solid solution) stability, we prepared five new equiatomic, quinary alloys by replacing individual elements one at a time in a CoCrFeMnNi alloy that was previously shown to be single-phase [1]. An implicit assumption here is that, if any one element is replaced by another, while keeping the total number of elements constant, the configurational entropy of the alloy is unchanged; therefore, the new alloys should also be single-phase. Additionally, the substitute elements that we chose, Ti for Co, Mo or V for Cr, V for Fe, and Cu for Ni, had the same room-temperature crystal structure and comparable size/electronegativity as the elements being replaced to maximize solid solubility consistent with the Hume-Rothery rules. For comparison, the base CoCrFeMnNi alloy was also prepared. After three-day anneals at elevated temperatures, multiple phases were observed in all but the base CoCrFeMnNi alloy suggesting that, by itself, configurational entropy is generally not able to override competing driving forces that also govern phase stability. Thermodynamic analyses were carried out for each of the constituent binaries in the investigated alloys (Co-Cr, Fe-Ni, Mo-Mn, etc,). Experimental results combined with the thermodynamic analyses suggest that, in general, enthalpy and non-configurational entropy have bigger influences on phase stability in equiatomic, multi-component alloys. Only when the alloy microstructure is a single-phase, approximately ideal solid solution does the contribution of configurational entropy to the total Gibbs free energy become dominant. Thus, high configurational entropy provides a way to rationalize, after the fact, why a solid solution

  9. Entropy, recycling and macroeconomics of water resources

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences

  10. Entropy Involved in Fidelity of DNA Replication

    PubMed Central

    Arias-Gonzalez, J. Ricardo

    2012-01-01

    Information has an entropic character which can be analyzed within the framework of the Statistical Theory in molecular systems. R. Landauer and C.H. Bennett showed that a logical copy can be carried out in the limit of no dissipation if the computation is performed sufficiently slowly. Structural and recent single-molecule assays have provided dynamic details of polymerase machinery with insight into information processing. Here, we introduce a rigorous characterization of Shannon Information in biomolecular systems and apply it to DNA replication in the limit of no dissipation. Specifically, we devise an equilibrium pathway in DNA replication to determine the entropy generated in copying the information from a DNA template in the absence of friction. Both the initial state, the free nucleotides randomly distributed in certain concentrations, and the final state, a polymerized strand, are mesoscopic equilibrium states for the nucleotide distribution. We use empirical stacking free energies to calculate the probabilities of incorporation of the nucleotides. The copied strand is, to first order of approximation, a state of independent and non-indentically distributed random variables for which the nucleotide that is incorporated by the polymerase at each step is dictated by the template strand, and to second order of approximation, a state of non-uniformly distributed random variables with nearest-neighbor interactions for which the recognition of secondary structure by the polymerase in the resultant double-stranded polymer determines the entropy of the replicated strand. Two incorporation mechanisms arise naturally and their biological meanings are explained. It is known that replication occurs far from equilibrium and therefore the Shannon entropy here derived represents an upper bound for replication to take place. Likewise, this entropy sets a universal lower bound for the copying fidelity in replication. PMID:22912695

  11. The Tsallis entropy of natural information

    NASA Astrophysics Data System (ADS)

    Sneddon, Robert

    2007-12-01

    Estimating the information contained in natural data, such as electroencephalography data, is unusually difficult because the relationship between the physical data and the information that it encodes is unknown. This unknown relationship is often called the encoding problem. The present work provides a solution to this problem by deriving a method to estimate the Tsallis entropy in natural data. The method is based on two findings. The first finding is that the physical instantiation of any information event, that is, the physical occurrence of a symbol of information, must begin and end at a discontinuity or critical point (maximum, minimum, or saddle point) in the data. The second finding is that, in certain data types such as the encephalogram (EEG), the variance within of an EEG waveform event is directly proportional to its probability of occurrence. These two outcomes yield two results. The first is the easy binning of data into separate information events. The second is the ability to estimate probabilities in two ways: frequency counting and computing the variance within of an EEG waveform. These results are used to derive a linear estimator of the Tsallis entropy functional, allowing it to be estimated without deducing the encoding. This method for estimating the Tsallis entropy is first used to estimate the information in simple signals. The amount of information estimated is highly accurate. The method is then applied to two problems in electroencephalography. The first is distinguishing normal aging from very early Alzheimer's disease (mild cognitive impairment), and the second is medication monitoring of Alzheimer's disease treatment. The former is done with an accuracy of 92% and the latter with an accuracy of 91%. This detection accuracy is the highest published accuracy in the literature, which suggests that this method for Tsallis entropy estimation is both accurate and useful.

  12. Duality, entropy, and ADM mass in supergravity

    SciTech Connect

    Cerchiai, Bianca L.; Zumino, Bruno; Ferrara, Sergio; Marrani, Alessio

    2009-06-15

    We consider the Bekenstein-Hawking entropy-area formula in four dimensional extended ungauged supergravity and its electric-magnetic duality property. Symmetries of both 'large' and 'small' extremal black holes are considered, as well as the ADM mass formula for N=4 and N=8 supergravity, preserving different fraction of supersymmetry. The interplay between BPS conditions and duality properties is an important aspect of this investigation.

  13. Maximum entropy and Bayesian methods. Proceedings.

    NASA Astrophysics Data System (ADS)

    Grandy, W. T., Jr.; Schick, L. H.

    This volume contains a selection of papers presented at the Tenth Annual Workshop on Maximum Entropy and Bayesian Methods. The thirty-six papers included cover a wide range of applications in areas such as economics and econometrics, astronomy and astrophysics, general physics, complex systems, image reconstruction, and probability and mathematics. Together they give an excellent state-of-the-art overview of fundamental methods of data analysis.

  14. The Statistical Interpretation of Entropy: An Activity

    NASA Astrophysics Data System (ADS)

    Timmberlake, Todd

    2010-11-01

    The second law of thermodynamics, which states that the entropy of an isolated macroscopic system can increase but will not decrease, is a cornerstone of modern physics. Ludwig Boltzmann argued that the second law arises from the motion of the atoms that compose the system. Boltzmann's statistical mechanics provides deep insight into the functioning of the second law and also provided evidence for the existence of atoms at a time when many scientists (like Ernst Mach and Wilhelm Ostwald) were skeptical.

  15. Entropy bottlenecks in ion-molecule reactions

    NASA Technical Reports Server (NTRS)

    Dodd, J. A.; Brauman, J. I.; Golden, D. M.

    1984-01-01

    The significance of entropy bottlenecks in dissociation and recombination pathways in the prototype ionic system CH3 + CH3(+) has been investigated. Ion-molecule systems are shown to react through an entirely different dynamics than neutral systems, due to intrinsic differences in the shapes of the relevant potential surfaces. Consequences with regard to the interpretation of experimental rate parameters in the ion-molecule area are discussed.

  16. Entropy-Based Approach To Nonlinear Stability

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1991-01-01

    NASA technical memorandum suggests schemes for numerical solution of differential equations of flow made more accurate and robust by invoking second law of thermodynamics. Proposes instead of using artificial viscosity to suppress such unphysical solutions as spurious numerical oscillations and nonlinear instabilities, one should formulate equations so that rate of production of entropy within each cell of computational grid be nonnegative, as required by second law.

  17. Radiation Entropy and Near-Field Thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuomin M.

    2008-08-01

    Radiation entropy was key to the original derivation of Planck's law of blackbody radiation, in 1900. This discovery opened the door to quantum mechanical theory and Planck was awarded the Nobel Prize in Physics in 1918. Thermal radiation plays an important role in incandescent lamps, solar energy utilization, temperature measurements, materials processing, remote sensing for astronomy and space exploration, combustion and furnace design, food processing, cryogenic engineering, as well as numerous agricultural, health, and military applications. While Planck's law has been fruitfully applied to a large number of engineering problems for over 100 years, questions have been raised about its limitation in micro/nano systems, especially at subwavelength distances or in the near field. When two objects are located closer than the characteristic wavelength, wave interference and photon tunneling occurs that can result in significant enhancement of the radiative transfer. Recent studies have shown that the near-field effects can realize emerging technologies, such as superlens, sub-wavelength light source, polariton-assisted nanolithography, thermophotovoltaic (TPV) systems, scanning tunneling thermal microscopy, etc. The concept of entropy has also been applied to explain laser cooling of solids as well as the second law efficiency of devices that utilize thermal radiation to produce electricity. However, little is known as regards the nature of entropy in near-field radiation. Some history and recent advances are reviewed in this presentation with a call for research of radiation entropy in the near field, due to the important applications in the optimization of thermophotovoltaic converters and in the design of practical systems that can harvest photon energies efficiently.

  18. Duality, Entropy and ADM Mass in Supergravity

    SciTech Connect

    Cerchiai, Bianca L.; Ferrara, Sergio; Marrani, Alessio; Zumino, Bruno

    2009-02-23

    We consider the Bekenstein-Hawking entropy-area formula in four dimensional extended ungauged supergravity and its electric-magnetic duality property. Symmetries of both"large" and"small" extremal black holes are considered, as well as the ADM mass formula for N=4 and N=8 supergravity, preserving different fraction of supersymmetry. The interplay between BPS conditions and duality properties is an important aspect of this investigation.

  19. Symbolic transfer entropy: inferring directionality in biosignals.

    PubMed

    Staniek, Matthäus; Lehnertz, Klaus

    2009-12-01

    Inferring directional interactions from biosignals is of crucial importance to improve understanding of dynamical interdependences underlying various physiological and pathophysiological conditions. We here present symbolic transfer entropy as a robust measure to infer the direction of interactions between multidimensional dynamical systems. We demonstrate its performance in quantifying driver-responder relationships in a network of coupled nonlinear oscillators and in the human epileptic brain. PMID:19938889

  20. Thermodynamics and entanglement entropy with Weyl corrections

    NASA Astrophysics Data System (ADS)

    Dey, Anshuman; Mahapatra, Subhash; Sarkar, Tapobrata

    2016-07-01

    We consider charged black holes in four-dimensional anti-de Sitter space, in the presence of a Weyl correction. We obtain the solution including the effect of backreaction, perturbatively up to first order in the Weyl coupling, and study its thermodynamic properties. This is complemented by a calculation of the holographic entanglement entropy of the boundary theory. The consistency of results obtained from both computations is established.

  1. Entropy Based Modelling for Estimating Demographic Trends

    PubMed Central

    Kuo, Shyh-Hao; Xu, Hai-Yan; Hu, Nan; Zhao, Guangshe; Monterola, Christopher

    2015-01-01

    In this paper, an entropy-based method is proposed to forecast the demographical changes of countries. We formulate the estimation of future demographical profiles as a constrained optimization problem, anchored on the empirically validated assumption that the entropy of age distribution is increasing in time. The procedure of the proposed method involves three stages, namely: 1) Prediction of the age distribution of a country’s population based on an “age-structured population model”; 2) Estimation the age distribution of each individual household size with an entropy-based formulation based on an “individual household size model”; and 3) Estimation the number of each household size based on a “total household size model”. The last stage is achieved by projecting the age distribution of the country’s population (obtained in stage 1) onto the age distributions of individual household sizes (obtained in stage 2). The effectiveness of the proposed method is demonstrated by feeding real world data, and it is general and versatile enough to be extended to other time dependent demographic variables. PMID:26382594

  2. Understanding shape entropy through local dense packing

    PubMed Central

    van Anders, Greg; Klotsa, Daphne; Ahmed, N. Khalid; Engel, Michael; Glotzer, Sharon C.

    2014-01-01

    Entropy drives the phase behavior of colloids ranging from dense suspensions of hard spheres or rods to dilute suspensions of hard spheres and depletants. Entropic ordering of anisotropic shapes into complex crystals, liquid crystals, and even quasicrystals was demonstrated recently in computer simulations and experiments. The ordering of shapes appears to arise from the emergence of directional entropic forces (DEFs) that align neighboring particles, but these forces have been neither rigorously defined nor quantified in generic systems. Here, we show quantitatively that shape drives the phase behavior of systems of anisotropic particles upon crowding through DEFs. We define DEFs in generic systems and compute them for several hard particle systems. We show they are on the order of a few times the thermal energy (kBT) at the onset of ordering, placing DEFs on par with traditional depletion, van der Waals, and other intrinsic interactions. In experimental systems with these other interactions, we provide direct quantitative evidence that entropic effects of shape also contribute to self-assembly. We use DEFs to draw a distinction between self-assembly and packing behavior. We show that the mechanism that generates directional entropic forces is the maximization of entropy by optimizing local particle packing. We show that this mechanism occurs in a wide class of systems and we treat, in a unified way, the entropy-driven phase behavior of arbitrary shapes, incorporating the well-known works of Kirkwood, Onsager, and Asakura and Oosawa. PMID:25344532

  3. Information Flows? A Critique of Transfer Entropies

    NASA Astrophysics Data System (ADS)

    James, Ryan G.; Barnett, Nix; Crutchfield, James P.

    2016-06-01

    A central task in analyzing complex dynamics is to determine the loci of information storage and the communication topology of information flows within a system. Over the last decade and a half, diagnostics for the latter have come to be dominated by the transfer entropy. Via straightforward examples, we show that it and a derivative quantity, the causation entropy, do not, in fact, quantify the flow of information. At one and the same time they can overestimate flow or underestimate influence. We isolate why this is the case and propose several avenues to alternate measures for information flow. We also address an auxiliary consequence: The proliferation of networks as a now-common theoretical model for large-scale systems, in concert with the use of transferlike entropies, has shoehorned dyadic relationships into our structural interpretation of the organization and behavior of complex systems. This interpretation thus fails to include the effects of polyadic dependencies. The net result is that much of the sophisticated organization of complex systems may go undetected.

  4. Ensemble estimators for multivariate entropy estimation

    PubMed Central

    Sricharan, Kumar; Wei, Dennis; Hero, Alfred O.

    2015-01-01

    The problem of estimation of density functionals like entropy and mutual information has received much attention in the statistics and information theory communities. A large class of estimators of functionals of the probability density suffer from the curse of dimensionality, wherein the mean squared error (MSE) decays increasingly slowly as a function of the sample size T as the dimension d of the samples increases. In particular, the rate is often glacially slow of order O(T−γ/d), where γ > 0 is a rate parameter. Examples of such estimators include kernel density estimators, k-nearest neighbor (k-NN) density estimators, k-NN entropy estimators, intrinsic dimension estimators and other examples. In this paper, we propose a weighted affine combination of an ensemble of such estimators, where optimal weights can be chosen such that the weighted estimator converges at a much faster dimension invariant rate of O(T−1). Furthermore, we show that these optimal weights can be determined by solving a convex optimization problem which can be performed offline and does not require training data. We illustrate the superior performance of our weighted estimator for two important applications: (i) estimating the Panter-Dite distortion-rate factor and (ii) estimating the Shannon entropy for testing the probability distribution of a random sample. PMID:25897177

  5. Entropy Budgets in Oscillating and Freezing Systems

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2005-12-01

    An interesting spontaneously oscillating system was demonstrated some decades ago by Welander : an open-topped water tank supplied with a continuous supply of heat is exposed to chilled air. A layer of ice forms, as one might expect. However, the ice retards the loss of heat to the air, and the water temperature rises until eventually the ice melts. The enhanced heat loss allows the system to cool again to the point where ice can form, and the cycle repeats. The oscillating behaviour is counterintuitive (like another freezing phenomenon, the Mpemba effect, wherein a warm liquid will begin freezing before a cool one), but is in full accord with the laws of thermodynamics and can be demonstrated in the laboratory and with numerical models. Oscillations occur in specific regions of parameter space (heating rate, heat transfer coefficients etc) - smooth variation, e.g. of the ice:air heat transfer coefficient yields a smooth variation of entropy production, except for a jump to increased entropy production when oscillations begin. A geophysical system where similar oscillations may occur is the icy Jovian satellite Europa, which appears to have a young crust. More generally, where a system is subject to a varying excitation (such as diurnal or seasonal forcing of the climate of Earth or Mars) the presence of phase changes such as melting of water or the condensation of carbon dioxide as frost have an important impact on the entropy budget of the system.

  6. Bekenstein-Hawking Entropy and Strange Metals

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir

    2015-10-01

    We examine models of fermions with infinite-range interactions that realize non-Fermi liquids with a continuously variable U(1) charge density Q and a nonzero entropy density S at vanishing temperature. Real-time correlators of operators carrying U(1) charge q at a low temperature T are characterized by a Q -dependent frequency ωS=(q T /ℏ)(∂S /∂Q ) , which determines a spectral asymmetry. We show that the correlators match precisely with those of the two-dimensional anti-de Sitter (AdS2 ) horizons of extremal charged black holes. On the black hole side, the matching employs S as the Bekenstein-Hawking entropy density and the laws of black hole thermodynamics that relate (∂S /∂Q )/(2 π ) to the electric field strength in AdS2 . The fermion model entropy is computed using the microscopic degrees of freedom of a UV complete theory without supersymmetry.

  7. Physical Metallurgy of High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Yeh, Jien-Wei

    2015-08-01

    Two definitions of high-entropy alloys (HEAs), based on composition and entropy, are reviewed. Four core effects, i.e., high entropy, sluggish diffusion, severe lattice distortion, and cocktail effects, are mentioned to show the uniqueness of HEAs. The current state of physical metallurgy is discussed. As the compositions of HEAs are entirely different from that of conventional alloys, physical metallurgy principles might need to be modified for HEAs. The thermodynamics, kinetics, structure, and properties of HEAs are briefly discussed relating with the four core effects of HEAs. Among these, a severe lattice distortion effect is particularly emphasized because it exerts direct and indirect influences on many aspects of microstructure and properties. Because a constituent phase in HEAs can be regarded as a whole-solute matrix, every lattice site in the matrix has atomic-scale lattice distortion. In such a distorted lattice, point defects, line defects, and planar defects are different from those in conventional matrices in terms of atomic configuration, defect energy, and dynamic behavior. As a result, mechanical and physical properties are significantly influenced by such a distortion. Suitable mechanisms and theories correlating composition, microstructure, and properties for HEAs are required to be built in the future. Only these understandings make it possible to complete the physical metallurgy of the alloy world.

  8. Entropy Based Modelling for Estimating Demographic Trends.

    PubMed

    Li, Guoqi; Zhao, Daxuan; Xu, Yi; Kuo, Shyh-Hao; Xu, Hai-Yan; Hu, Nan; Zhao, Guangshe; Monterola, Christopher

    2015-01-01

    In this paper, an entropy-based method is proposed to forecast the demographical changes of countries. We formulate the estimation of future demographical profiles as a constrained optimization problem, anchored on the empirically validated assumption that the entropy of age distribution is increasing in time. The procedure of the proposed method involves three stages, namely: 1) Prediction of the age distribution of a country's population based on an "age-structured population model"; 2) Estimation the age distribution of each individual household size with an entropy-based formulation based on an "individual household size model"; and 3) Estimation the number of each household size based on a "total household size model". The last stage is achieved by projecting the age distribution of the country's population (obtained in stage 1) onto the age distributions of individual household sizes (obtained in stage 2). The effectiveness of the proposed method is demonstrated by feeding real world data, and it is general and versatile enough to be extended to other time dependent demographic variables. PMID:26382594

  9. Understanding shape entropy through local dense packing.

    PubMed

    van Anders, Greg; Klotsa, Daphne; Ahmed, N Khalid; Engel, Michael; Glotzer, Sharon C

    2014-11-11

    Entropy drives the phase behavior of colloids ranging from dense suspensions of hard spheres or rods to dilute suspensions of hard spheres and depletants. Entropic ordering of anisotropic shapes into complex crystals, liquid crystals, and even quasicrystals was demonstrated recently in computer simulations and experiments. The ordering of shapes appears to arise from the emergence of directional entropic forces (DEFs) that align neighboring particles, but these forces have been neither rigorously defined nor quantified in generic systems. Here, we show quantitatively that shape drives the phase behavior of systems of anisotropic particles upon crowding through DEFs. We define DEFs in generic systems and compute them for several hard particle systems. We show they are on the order of a few times the thermal energy ([Formula: see text]) at the onset of ordering, placing DEFs on par with traditional depletion, van der Waals, and other intrinsic interactions. In experimental systems with these other interactions, we provide direct quantitative evidence that entropic effects of shape also contribute to self-assembly. We use DEFs to draw a distinction between self-assembly and packing behavior. We show that the mechanism that generates directional entropic forces is the maximization of entropy by optimizing local particle packing. We show that this mechanism occurs in a wide class of systems and we treat, in a unified way, the entropy-driven phase behavior of arbitrary shapes, incorporating the well-known works of Kirkwood, Onsager, and Asakura and Oosawa. PMID:25344532

  10. Ligand configurational entropy and protein binding.

    PubMed

    Chang, Chia-en A; Chen, Wei; Gilson, Michael K

    2007-01-30

    The restriction of a small molecule's motion on binding to a protein causes a loss of configurational entropy, and thus a penalty in binding affinity. Some energy models used in computer-aided ligand design neglect this entropic penalty, whereas others account for it based on an expected drop in the number of accessible rotamers upon binding. However, the validity of the physical assumptions underlying the various approaches is largely unexamined. The present study addresses this issue by using Mining Minima calculations to analyze the association of amprenavir with HIV protease. The computed loss in ligand configurational entropy is large, contributing approximately 25 kcal/mol (4.184 kJ/kcal) to DeltaG degrees. Most of this loss results from narrower energy wells in the bound state, rather than a drop in the number of accessible rotamers. Coupling among rotation/translation and internal degrees of freedom complicates the decomposition of the entropy change into additive terms. The results highlight the potential to gain affinity by designing conformationally restricted ligands and have implications for the formulation of energy models for ligand scoring. PMID:17242351

  11. Information Flows? A Critique of Transfer Entropies.

    PubMed

    James, Ryan G; Barnett, Nix; Crutchfield, James P

    2016-06-10

    A central task in analyzing complex dynamics is to determine the loci of information storage and the communication topology of information flows within a system. Over the last decade and a half, diagnostics for the latter have come to be dominated by the transfer entropy. Via straightforward examples, we show that it and a derivative quantity, the causation entropy, do not, in fact, quantify the flow of information. At one and the same time they can overestimate flow or underestimate influence. We isolate why this is the case and propose several avenues to alternate measures for information flow. We also address an auxiliary consequence: The proliferation of networks as a now-common theoretical model for large-scale systems, in concert with the use of transferlike entropies, has shoehorned dyadic relationships into our structural interpretation of the organization and behavior of complex systems. This interpretation thus fails to include the effects of polyadic dependencies. The net result is that much of the sophisticated organization of complex systems may go undetected. PMID:27341264

  12. Ligand configurational entropy and protein binding

    PubMed Central

    Chang, Chia-en A.; Chen, Wei; Gilson, Michael K.

    2007-01-01

    The restriction of a small molecule's motion on binding to a protein causes a loss of configurational entropy, and thus a penalty in binding affinity. Some energy models used in computer-aided ligand design neglect this entropic penalty, whereas others account for it based on an expected drop in the number of accessible rotamers upon binding. However, the validity of the physical assumptions underlying the various approaches is largely unexamined. The present study addresses this issue by using Mining Minima calculations to analyze the association of amprenavir with HIV protease. The computed loss in ligand configurational entropy is large, contributing ∼25 kcal/mol (4.184 kJ/kcal) to ΔG°. Most of this loss results from narrower energy wells in the bound state, rather than a drop in the number of accessible rotamers. Coupling among rotation/translation and internal degrees of freedom complicates the decomposition of the entropy change into additive terms. The results highlight the potential to gain affinity by designing conformationally restricted ligands and have implications for the formulation of energy models for ligand scoring. PMID:17242351

  13. Steepest entropy ascent model for far-nonequilibrium thermodynamics: Unified implementation of the maximum entropy production principle

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2014-10-01

    By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium

  14. Steepest entropy ascent model for far-nonequilibrium thermodynamics: unified implementation of the maximum entropy production principle.

    PubMed

    Beretta, Gian Paolo

    2014-10-01

    By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium

  15. Unconventional entropy production in the presence of momentum-dependent forces

    NASA Astrophysics Data System (ADS)

    Kwon, Chulan; Yeo, Joonhyun; Lee, Hyun Keun; Park, Hyunggyu

    2016-03-01

    We investigate the unconventional nature of entropy production (EP) in nonequilibrium systems with odd-parity variables that change signs under time reversal. We consider the Brownian motion of a particle in contact with a heat reservoir, where the particle's momentum is an odd-parity variable. In the presence of an external momentum-dependent force, the EP transferred to the environment is found to be not equivalent to the usual reservoir entropy change due to heat transfer. An additional unconventional contribution to the EP, which is crucial for maintaining the non-negativity of the (average) total EP enforced by the second law of thermodynamics, appears. A few examples are considered to elucidate the novel nature of the EP. We also discuss detailed balance conditions with a momentum-dependent force.

  16. Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture

    SciTech Connect

    Guha, Saikat; Shapiro, Jeffrey H.; Erkmen, Baris I.

    2007-09-15

    Previous work on the classical information capacities of bosonic channels has established the capacity of the single-user pure-loss channel, bounded the capacity of the single-user thermal-noise channel, and bounded the capacity region of the multiple-access channel. The latter is a multiple-user scenario in which several transmitters seek to simultaneously and independently communicate to a single receiver. We study the capacity region of the bosonic broadcast channel, in which a single transmitter seeks to simultaneously and independently communicate to two different receivers. It is known that the tightest available lower bound on the capacity of the single-user thermal-noise channel is that channel's capacity if, as conjectured, the minimum von Neumann entropy at the output of a bosonic channel with additive thermal noise occurs for coherent-state inputs. Evidence in support of this minimum output entropy conjecture has been accumulated, but a rigorous proof has not been obtained. We propose a minimum output entropy conjecture that, if proved to be correct, will establish that the capacity region of the bosonic broadcast channel equals the inner bound achieved using a coherent-state encoding and optimum detection. We provide some evidence that supports this conjecture, but again a full proof is not available.

  17. Learning, entropy, free energy, an underlying commonality?

    NASA Astrophysics Data System (ADS)

    Gray, John E.; Szu, Harold H.

    2007-04-01

    Statistical Mechanics, which is due primarily to Maxwell, Gibbs, and Boltzmann in the ninetieth century, has proven to be useful model for drawing inferences about the collective behavior of individual objects that interact according to a known force law (which for more general usage is referred to as interacting units.). Collective behavior is determined not by computing F = ma for each interacting unit because the problem is mathematically intractable. Instead, one computes the partition function for the collection of interacting units and predicts statistical behavior from the partition function. Statistical mechanics was united with Bayesian inference by Jaynes [4]. As a continuation, Shannon [7] demonstrated that the partition function assignment of probabilities via the interaction Hamiltonian is the solution to Bayesian assignment of probabilities (based on the maximum entropy method with known means and standard deviations). Once this technique has been applied to a variety of problems and obtained a solution, one can, of course, solve the inverse problem of to determine the solution to an inverse problem to determine what interaction model gives rise to a given probability assignment [1] and [8]. The usage of statistical mechanics allows one can draw general inferences about any complex system including networks [5] by defining "energy", "heat capacity", "temperature", and other thermodynamic characteristics of most complex systems based on the common standard of the Helmholtz free energy. Principle has noted that the aspect of entropy used in reasoning with uncertainty may not be the most appropriate entropy for learning mechanisms [6]. Instead he has explored using Renyi entropy and derived a form of information learning dynamics that has some promising features [2]. To fully realize the potential of the usage of a more generalized entropy to the three aspects of survival, we suggest some connections to the free energy and learning. We also connect some

  18. Persistent confusion of total entropy and chemical system entropy in chemical thermodynamics.

    PubMed

    Weber, G

    1996-07-23

    The change in free energy with temperature at constant pressure of a chemical reaction is determined by the sum (dS) of changes in entropy of the system of reagents, dS(i), and the additional entropy change of the surroundings, dS(H), that results from the enthalpy change, W. A faulty identification of the total entropy change on reaction with dS(i) has been responsible for the attribution of general validity to the expressions (d deltaG/dT)p = -deltaS(i) and d(deltaG/T)/d(1/T)= deltaH, which are found in most textbooks and in innumerable papers. PMID:8755493

  19. A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM

    NASA Astrophysics Data System (ADS)

    Pascale, Salvatore; Gregory, Jonathan M.; Ambaum, Maarten H. P.; Tailleux, Rémi

    2012-03-01

    The possibility of applying either the maximum entropy production conjecture of Paltridge (Q J R Meteorol Soc 101:475-484, 1975) or the conjecture of Lorenz (Generation of available potential energy and the intensity of the general circulation. Pergamon, Tarrytown, 1960) of maximum generation of available potential energy (APE) in FAMOUS, a complex but low-resolution AOGCM, is explored by varying some model parameters to which the simulated climate is highly sensitive, particularly the convective entrainment rate, ɛ, and cloud droplet-to-rain-conversion rate, c T . The climate response is analysed in terms of its entropy production and the strength of the Lorenz energy cycle. If either conjecture is true, the parameter values which yield the most realistic climate will also maximise the relevant quantity. No maximum is found in the total material entropy production, which is dominated by the hydrological cycle and tends to increase monotonically with global-mean temperature, which is not constant because the parameter variations affect the net input of solar radiation at the top of the atmosphere (TOA). In contrast, there is a non-monotonic, peaked behaviour in the generation of APE and entropy production associated with kinetic energy dissipation, with the standard FAMOUS values for ɛ and c T occurring nearly at the maximising ones. The maximum states are shown to be states of vigorous baroclinic activity. The peak in the generation of APE appears to be related to a trade-off between the mean vertical stability and horizontal stratification. Experiments are repeated for a simplified setup in which the net solar input at TOA is fixed. Again a peak in the generation of APE is found in association with the maximum baroclinic activity, but no trade-off of the kind shown by simple climate models is found between meridional heat transport and the meridional temperature gradient. We conclude that the maximum entropy production conjecture does not hold within the

  20. Entropy of orthogonal polynomials with Freud weights and information entropies of the harmonic oscillator potential

    NASA Astrophysics Data System (ADS)

    Van Assche, W.; Yáñez, R. J.; Dehesa, J. S.

    1995-08-01

    The information entropy of the harmonic oscillator potential V(x)=1/2λx2 in both position and momentum spaces can be expressed in terms of the so-called ``entropy of Hermite polynomials,'' i.e., the quantity Sn(H):= -∫-∞+∞H2n(x)log H2n(x) e-x2dx. These polynomials are instances of the polynomials orthogonal with respect to the Freud weights w(x)=exp(-||x||m), m≳0. Here, a very precise and general result of the entropy of Freud polynomials recently established by Aptekarev et al. [J. Math. Phys. 35, 4423-4428 (1994)], specialized to the Hermite kernel (case m=2), leads to an important refined asymptotic expression for the information entropies of very excited states (i.e., for large n) in both position and momentum spaces, to be denoted by Sρ and Sγ, respectively. Briefly, it is shown that, for large values of n, Sρ+1/2logλ≂log(π√2n/e)+o(1) and Sγ-1/2log λ≂log(π√2n/e)+o(1), so that Sρ+Sγ≂log(2π2n/e2)+o(1) in agreement with the generalized indetermination relation of Byalinicki-Birula and Mycielski [Commun. Math. Phys. 44, 129-132 (1975)]. Finally, the rate of convergence of these two information entropies is numerically analyzed. In addition, using a Rakhmanov result, we describe a totally new proof of the leading term of the entropy of Freud polynomials which, naturally, is just a weak version of the aforementioned general result.

  1. On quantum Rényi entropies: A new generalization and some properties

    NASA Astrophysics Data System (ADS)

    Müller-Lennert, Martin; Dupuis, Frédéric; Szehr, Oleg; Fehr, Serge; Tomamichel, Marco

    2013-12-01

    The Rényi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in information theory and beyond. Various generalizations of Rényi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new quantum generalization of the family of Rényi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data-processing inequalities, a duality relation, and an entropic uncertainty relation.

  2. On quantum Rényi entropies: A new generalization and some properties

    SciTech Connect

    Müller-Lennert, Martin; Dupuis, Frédéric; Szehr, Oleg; Fehr, Serge; Tomamichel, Marco

    2013-12-15

    The Rényi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in information theory and beyond. Various generalizations of Rényi entropies to the quantum setting have been proposed, most prominently Petz's quasi-entropies and Renner's conditional min-, max-, and collision entropy. However, these quantum extensions are incompatible and thus unsatisfactory. We propose a new quantum generalization of the family of Rényi entropies that contains the von Neumann entropy, min-entropy, collision entropy, and the max-entropy as special cases, thus encompassing most quantum entropies in use today. We show several natural properties for this definition, including data-processing inequalities, a duality relation, and an entropic uncertainty relation.

  3. A family of generalized quantum entropies: definition and properties

    NASA Astrophysics Data System (ADS)

    Bosyk, G. M.; Zozor, S.; Holik, F.; Portesi, M.; Lamberti, P. W.

    2016-08-01

    We present a quantum version of the generalized (h,φ )-entropies, introduced by Salicrú et al. for the study of classical probability distributions. We establish their basic properties and show that already known quantum entropies such as von Neumann, and quantum versions of Rényi, Tsallis, and unified entropies, constitute particular classes of the present general quantum Salicrú form. We exhibit that majorization plays a key role in explaining most of their common features. We give a characterization of the quantum (h,φ )-entropies under the action of quantum operations and study their properties for composite systems. We apply these generalized entropies to the problem of detection of quantum entanglement and introduce a discussion on possible generalized conditional entropies as well.

  4. ECG contamination of EEG signals: effect on entropy.

    PubMed

    Chakrabarti, Dhritiman; Bansal, Sonia

    2016-02-01

    Entropy™ is a proprietary algorithm which uses spectral entropy analysis of electroencephalographic (EEG) signals to produce indices which are used as a measure of depth of hypnosis. We describe a report of electrocardiographic (ECG) contamination of EEG signals leading to fluctuating erroneous Entropy values. An explanation is provided for mechanism behind this observation by describing the spread of ECG signals in head and neck and its influence on EEG/Entropy by correlating the observation with the published Entropy algorithm. While the Entropy algorithm has been well conceived, there are still instances in which it can produce erroneous values. Such erroneous values and their cause may be identified by close scrutiny of the EEG waveform if Entropy values seem out of sync with that expected at given anaesthetic levels. PMID:25900143

  5. Notes on entropy force in general spherically symmetric spacetimes

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Cao, Li-Ming; Ohta, Nobuyoshi

    2010-04-01

    In a recent paper [arXiv:1001.0785], Verlinde has shown that the Newton gravity appears as an entropy force. In this paper we show how gravity appears as entropy force in Einstein’s equation of gravitational field in a general spherically symmetric spacetime. We mainly focus on the trapping horizon of the spacetime. We find that when matter fields are absent, the change of entropy associated with the trapping horizon indeed can be identified with an entropy force. When matter fields are present, we see that heat flux of matter fields also leads to the change of entropy. Applying arguments made by Verlinde and Smolin, respectively, to the trapping horizon, we find that the entropy force is given by the surface gravity of the horizon. The cases in the untrapped region of the spacetime are also discussed.

  6. Generalized entropies and logarithms and their duality relations

    PubMed Central

    Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray

    2012-01-01

    For statistical systems that violate one of the four Shannon–Khinchin axioms, entropy takes a more general form than the Boltzmann–Gibbs entropy. The framework of superstatistics allows one to formulate a maximum entropy principle with these generalized entropies, making them useful for understanding distribution functions of non-Markovian or nonergodic complex systems. For such systems where the composability axiom is violated there exist only two ways to implement the maximum entropy principle, one using escort probabilities, the other not. The two ways are connected through a duality. Here we show that this duality fixes a unique escort probability, which allows us to derive a complete theory of the generalized logarithms that naturally arise from the violation of this axiom. We then show how the functional forms of these generalized logarithms are related to the asymptotic scaling behavior of the entropy. PMID:23129618

  7. A family of generalized quantum entropies: definition and properties

    NASA Astrophysics Data System (ADS)

    Bosyk, G. M.; Zozor, S.; Holik, F.; Portesi, M.; Lamberti, P. W.

    2016-05-01

    We present a quantum version of the generalized (h,φ ) -entropies, introduced by Salicrú et al. for the study of classical probability distributions. We establish their basic properties and show that already known quantum entropies such as von Neumann, and quantum versions of Rényi, Tsallis, and unified entropies, constitute particular classes of the present general quantum Salicrú form. We exhibit that majorization plays a key role in explaining most of their common features. We give a characterization of the quantum (h,φ ) -entropies under the action of quantum operations and study their properties for composite systems. We apply these generalized entropies to the problem of detection of quantum entanglement and introduce a discussion on possible generalized conditional entropies as well.

  8. Rényi entropy uncertainty relation for successive projective measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhang, Yang; Yu, Chang-shui

    2015-06-01

    We investigate the uncertainty principle for two successive projective measurements in terms of Rényi entropy based on a single quantum system. Our results cover a large family of the entropy (including the Shannon entropy) uncertainty relations with a lower optimal bound. We compare our relation with other formulations of the uncertainty principle in two-spin observables measured on a pure quantum state of qubit. It is shown that the low bound of our uncertainty relation has better tightness.

  9. Rényi entropy flows from quantum heat engines

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad H.; Nazarov, Yuli V.

    2015-03-01

    We evaluate Rényi entropy flows from generic quantum heat engines (QHE) to a weakly coupled probe environment kept in thermal equilibrium. We show that the flows are determined not only by heat flow but also by a quantum coherent flow that can be separately measured in experiment apart from the heat flow measurement. The same pertains to Shannon entropy flow. This appeals for a revision of the concept of entropy flows in quantum nonequlibrium thermodynamics.

  10. Average diagonal entropy in nonequilibrium isolated quantum systems.

    PubMed

    Giraud, Olivier; García-Mata, Ignacio

    2016-07-01

    The diagonal entropy was introduced as a good entropy candidate especially for isolated quantum systems out of equilibrium. Here we present an analytical calculation of the average diagonal entropy for systems undergoing unitary evolution and an external perturbation in the form of a cyclic quench. We compare our analytical findings with numerical simulations of various quantum systems. Our calculations elucidate various heuristic relations proposed recently in the literature. PMID:27575092

  11. von Neumann entropy of N interacting pencils of radiation

    SciTech Connect

    Barakat, R. ); Brosseau, C. )

    1993-03-01

    The von Neumann entropy of N interacting pencils of radiation is analyzed by using their spectral density matrix. When the cross-spectral density is the same for all pairs of pencils, the entropy is evaluated in closed form as a function of Barakat's N-fold polarization measures. Some technical and historical remarks are made concerning the Planck-von Laue entropy of such pencils. 16 refs., 3 figs.

  12. Entropy production in the early-cosmology pionic phase

    NASA Astrophysics Data System (ADS)

    Dobado, Antonio; Llanes-Estrada, Felipe J.; Rodríguez Fernández, David

    2016-07-01

    We point out that in the early universe, for temperatures in the approximate interval 150-80 MeV (after the quark-gluon plasma), pions carried a large share of the entropy and supported the largest inhomogeneities. Its thermal conductivity (previously calculated) allows the characterization of entropy production due to equilibration (damping) of thermal fluctuations. Simple model distributions of thermal fluctuations are considered and the associated entropy production evaluated.

  13. Proof of the entropy principle in Einstein-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Gao, Sijie

    We consider a self-gravitating charged perfect fluid in a static spacetime. We assume that the Einstein constraint equation is satisfied. Then we prove that the extrema of the total entropy of fluid implies other components of Einstein's equation. Conversely, if Einstein's equation is satisfied, we show that the total entropy achieves an extremum. This work suggests that the maximum entropy principle is consistent with Einstein's equation when an electrostatic field is taken into account.

  14. Entropy of Field Interacting With Two Atoms in Bell State

    NASA Astrophysics Data System (ADS)

    Jiao, Zhi-Yong; Ma, Jun-Mao; Li, Ning; Fu, Xia

    2009-01-01

    In this paper, we investigate entropy properties of the single-mode coherent optical field interacting with the two two-level atoms initially in one of the four Bell states. It is found that the different initial states of the two atoms lead to different evolutions of field entropy and the intensity of the field plays an important role for the evolution properties of field entropy.

  15. Entropy stable schemes for initial-boundary-value conservation laws

    NASA Astrophysics Data System (ADS)

    Svärd, Magnus; Mishra, Siddhartha

    2012-12-01

    We consider initial-boundary-value problems for systems of conservation laws and design entropy stable finite difference schemes to approximate them. The schemes are shown to be entropy stable for a large class of systems that are equipped with a symmetric splitting, derived from the entropy formulation. Numerical examples for the Euler equations of gas dynamics are presented to illustrate the robust performance of the proposed method.

  16. Entropy and heat generation of lithium cells/batteries

    NASA Astrophysics Data System (ADS)

    Songrui, Wang

    2016-01-01

    The methods and techniques commonly used in investigating the change of entropy and heat generation in Li cells/batteries are introduced, as are the measurements, calculations and purposes. The changes of entropy and heat generation are concomitant with the use of Li cells/batteries. In order to improve the management and the application of Li cells/batteries, especially for large scale power batteries, the quantitative investigations of the change of entropy and heat generating are necessary.

  17. Negative-ion states

    SciTech Connect

    Compton, R.N.

    1982-01-01

    In this brief review, we discuss some of the properties of atomic and molecular negative ions and their excited states. Experiments involving photon reactions with negative ions and polar dissociation are summarized. 116 references, 14 figures.

  18. Negative ion generator

    DOEpatents

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  19. Negative ion generator

    DOEpatents

    Stinnett, Regan W.

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  20. [Negative symptoms: which antipsychotics?].

    PubMed

    Maurel, M; Belzeaux, R; Adida, M; Azorin, J-M

    2015-12-01

    Treating negative symptoms of schizophrenia is a major issue and a challenge for the functional and social prognosis of the disease, to which they are closely linked. First- and second-generation antipsychotics allow a reduction of all negative symptoms. The hope of acting directly on primary negative symptoms with any antipsychotic is not supported by the literature. However, the effectiveness of first- and second-generation antipsychotics is demonstrated on secondary negative symptoms. PMID:26776390