Science.gov

Sample records for insect flight performance

  1. Wing Flexion and Aerodynamics Performance of Insect Free Flights

    NASA Astrophysics Data System (ADS)

    Dong, Haibo; Liang, Zongxian; Ren, Yan

    2010-11-01

    Wing flexion in flapping flight is a hallmark of insect flight. It is widely thought that wing flexibility and wing deformation would potentially provide new aerodynamic mechanisms of aerodynamic force productions over completely rigid wings. However, there are lack of literatures on studying fluid dynamics of freely flying insects due to the presence of complex shaped moving boundaries in the flow domain. In this work, a computational study of freely flying insects is being conducted. High resolution, high speed videos of freely flying dragonflies and damselflies is obtained and used as a basis for developing high fidelity geometrical models of the dragonfly body and wings. 3D surface reconstruction technologies are used to obtain wing topologies and kinematics. The wing motions are highly complex and a number of different strategies including singular vector decomposition of the wing kinematics are used to examine the various kinematical features and their impact on the wing performance. Simulations are carried out to examine the aerodynamic performance of all four wings and understand the wake structures of such wings.

  2. Turbulence-driven instabilities limit insect flight performance

    PubMed Central

    Combes, Stacey A.; Dudley, Robert

    2009-01-01

    Environmental turbulence is ubiquitous in natural habitats, but its effect on flying animals remains unknown because most flight studies are performed in still air or artificially smooth flow. Here we show that variability in external airflow limits maximum flight speed in wild orchid bees by causing severe instabilities. Bees flying in front of an outdoor, turbulent air jet become increasingly unstable about their roll axis as airspeed and flow variability increase. Bees extend their hindlegs ventrally at higher speeds, improving roll stability but also increasing body drag and associated power requirements by 30%. Despite the energetic cost, we observed this stability-enhancing behavior in 10 euglossine species from 3 different genera, spanning an order of magnitude in body size. A field experiment in which we altered the level of turbulence demonstrates that flight instability and maximum flight speed are directly related to flow variability. The effect of environmental turbulence on flight stability is thus an important and previously unrecognized determinant of flight performance. PMID:19458254

  3. Flight of the smallest insects

    NASA Astrophysics Data System (ADS)

    Miller, Laura; Santhanakrishnan, Arvind; Hedrick, Tyson; Robinson, Alice

    2009-11-01

    A vast body of research has described the complexity of flight in insects ranging from the fruit fly, Drosophila melanogaster, to the hawk moth, Manduca sexta. Over this range of scales, flight aerodynamics as well as the relative lift and drag forces generated are surprisingly similar. The smallest flying insects (Re˜10) have received far less attention, although previous work has shown that flight kinematics and aerodynamics can be significantly different. In this presentation, we have used a three-pronged approach that consists of measurements of flight kinematics in the tiny insect Thysanoptera (thrips), measurements of flow velocities using physical models, and direct numerical simulations to compute lift and drag forces. We find that drag forces can be an order of magnitude larger than lift forces, particularly during the clap and fling motion used by all tiny insects recorded to date.

  4. The aerodynamics of insect flight.

    PubMed

    Sane, Sanjay P

    2003-12-01

    The flight of insects has fascinated physicists and biologists for more than a century. Yet, until recently, researchers were unable to rigorously quantify the complex wing motions of flapping insects or measure the forces and flows around their wings. However, recent developments in high-speed videography and tools for computational and mechanical modeling have allowed researchers to make rapid progress in advancing our understanding of insect flight. These mechanical and computational fluid dynamic models, combined with modern flow visualization techniques, have revealed that the fluid dynamic phenomena underlying flapping flight are different from those of non-flapping, 2-D wings on which most previous models were based. In particular, even at high angles of attack, a prominent leading edge vortex remains stably attached on the insect wing and does not shed into an unsteady wake, as would be expected from non-flapping 2-D wings. Its presence greatly enhances the forces generated by the wing, thus enabling insects to hover or maneuver. In addition, flight forces are further enhanced by other mechanisms acting during changes in angle of attack, especially at stroke reversal, the mutual interaction of the two wings at dorsal stroke reversal or wing-wake interactions following stroke reversal. This progress has enabled the development of simple analytical and empirical models that allow us to calculate the instantaneous forces on flapping insect wings more accurately than was previously possible. It also promises to foster new and exciting multi-disciplinary collaborations between physicists who seek to explain the phenomenology, biologists who seek to understand its relevance to insect physiology and evolution, and engineers who are inspired to build micro-robotic insects using these principles. This review covers the basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well

  5. Flight Control Study of an Virtual Insect by a Simulation

    NASA Astrophysics Data System (ADS)

    Tanaka, Futoshi; Ohmi, Toshiatsu; Kuroda, Shigeaki; Hirasawa, Kazuhiro

    In this paper, we show an approach to elucidate the free flight of an insect using a simulation. We modeled a fly, Drosophila, by using aerodynamics, body dynamics, and control theory. The modeled virtual insect performs free flight in virtual space generated by a computer. We simulated the free flight of a virtual insect having two dimensions and two degrees of freedom. The flight pass and flight velocity of the virtual insect during a free flight were calculated by Newton’s equations of motion. The aerodynamic force generated by the flapping motion of the virtual insect was estimated by using the blade element theory. An optimal regulator theory was used as a control law. The flight pass from the initial position to the target position and the wing motion was obtained from the results of the free flight simulation of the virtual insect. We can presume the wing motion of an insect in free flight by using the flight simulation of a virtual insect. These results have suggested that the approach based on the simulation is effective in elucidating the free flight of an insect.

  6. Flight stability analysis under changes in insect morphology

    NASA Astrophysics Data System (ADS)

    Noest, Robert; Wang, Z. Jane

    2015-11-01

    Insect have an amazing ability to control their flight, being able to perform both fast aerial maneuvers and stable hovering. The insect's neural system has developed various mechanism by which it can control these flying feats, but we expect that insect morphology is equally important in facilitating the aerial control. We perform a computational study using a quasi-steady instantaneous flapping flight model which allows us to freely adapt the insect's morphological parameters. We picked a fruit fly as the basis for the body shape and wing motion, and study the effect of changes to the morphology for a range of wing stroke amplitudes. In each case we determine the periodic flight mode, with the period equal to a single wing beat, and do a Floquet stability analysis of the flight. To interpret our results we will compare the changed morphology to related insects. We discuss the implications of the insects location on the stability diagram.

  7. Insect Flight: Aerodynamics, Efficiency, and Evolution

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane

    2007-11-01

    Insects, like birds and fish, locomote via interactions between fluids and flapping wings. Their motion is governed by the Navier-Stokes equation coupled to moving boundaries. In this talk, I will first describe how dragonflies fly: their wing motions and the flows and forces they generate. I will then consider insects in several species and discuss three questions: 1) Is insect flight optimal? 2) How does the efficiency of flapping flight compare to classical fixed-wing flight? 3) How might aerodynamic effects have influenced the evolution of insect flight?

  8. Energy scavenging from insect flight

    NASA Astrophysics Data System (ADS)

    Erkan Aktakka, Ethem; Kim, Hanseup; Najafi, Khalil

    2011-09-01

    This paper reports the design, fabrication and testing of an energy scavenger that generates power from the wing motion of a Green June Beetle (Cotinis nitida) during its tethered flight. The generator utilizes non-resonant piezoelectric bimorphs operated in the d31 bending mode to convert mechanical vibrations of a beetle into electrical output. The available deflection, force, and power output from oscillatory movements at different locations on a beetle are measured with a meso-scale piezoelectric beam. This way, the optimum location to scavenge energy is determined, and up to ~115 µW total power is generated from body movements. Two initial generator prototypes were fabricated, mounted on a beetle, and harvested 11.5 and 7.5 µW in device volumes of 11.0 and 5.6 mm3, respectively, from 85 to 100 Hz wing strokes during the beetle's tethered flight. A spiral generator was designed to maximize the power output by employing a compliant structure in a limited area. The necessary technology needed to fabricate this prototype was developed, including a process to machine high-aspect ratio devices from bulk piezoelectric substrates with minimum damage to the material using a femto-second laser. The fabricated lightweight spiral generators produced 18.5-22.5 µW on a bench-top test setup mimicking beetles' wing strokes. Placing two generators (one on each wing) can result in more than 45 µW of power per insect. A direct connection between the generator and the flight muscles of the insect is expected to increase the final power output by one order of magnitude.

  9. Remote Radio Control of Insect Flight

    PubMed Central

    Sato, Hirotaka; Berry, Christopher W.; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E.; Lavella, Gabriel; VandenBrooks, John M.; Harrison, Jon F.; Maharbiz, Michel M.

    2009-01-01

    We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses. PMID:20161808

  10. Biomechanics and biomimetics in insect-inspired flight systems.

    PubMed

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-09-26

    Insect- and bird-size drones-micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10(4)-10(5) or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528780

  11. Regulating the contraction of insect flight muscle.

    PubMed

    Bullard, Belinda; Pastore, Annalisa

    2011-12-01

    The rapid movement of the wings in small insects is powered by the indirect flight muscles. These muscles are capable of contracting at up to 1,000 Hz because they are activated mechanically by stretching. The mechanism is so efficient that it is also used in larger insects like the waterbug, Lethocerus. The oscillatory activity of the muscles occurs a low concentration of Ca(2+), which stays constant as the muscles contract and relax. Activation by stretch requires particular isoforms of tropomyosin and the troponin complex on the thin filament. We compare the tropomyosin and troponin of Lethocerus and Drosophila with that of vertebrates. The characteristics of the flight muscle regulatory proteins suggest ways in which stretch-activation works. There is evidence for bridges between troponin on thin filaments and myosin crossbridges on the thick filaments. Recent X-ray fibre diffraction results suggest that a pull on the bridges activates the thin filament by shifting tropomyosin from a blocking position on actin. The troponin bridges are likely to contain extended sequences of tropomyosin or troponin I (TnI). Flight muscle has two isoforms of TnC with different Ca(2+)-binding properties: F1 TnC is needed for stretch-activation and F2 TnC for isometric contractions. In this review, we describe the structural changes in both isoforms on binding Ca(2+) and TnI, and discuss how the steric model of muscle regulation can apply to insect flight muscle. PMID:22105701

  12. Paddling Mode of Forward Flight in Insects

    NASA Astrophysics Data System (ADS)

    Ristroph, Leif; Bergou, Attila J.; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2011-04-01

    By analyzing high-speed video of the fruit fly, we discover a swimminglike mode of forward flight characterized by paddling wing motions. We develop a new aerodynamic analysis procedure to show that these insects generate drag-based thrust by slicing their wings forward at low angle of attack and pushing backwards at a higher angle. Reduced-order models and simulations reveal that the law for flight speed is determined by these wing motions but is insensitive to material properties of the fluid. Thus, paddling is as effective in air as in water and represents a common strategy for propulsion through aquatic and aerial environments.

  13. Fish Swimming and Bird/Insect Flight

    NASA Astrophysics Data System (ADS)

    Wu, Theodore Yaotsu

    2011-01-01

    This expository review is devoted to fish swimming and bird/insect flight. (a) The simple waving motion of an elongated flexible ribbon plate of constant width propagating a wave distally down the plate to swim forward in a fluid, initially at rest, is first considered to provide a fundamental concept on energy conservation. It is generalized to include variations in body width and thickness, with appended dorsal, ventral and caudal fins shedding vortices to closely simulate fish swimming, for which a nonlinear theory is presented for large-amplitude propulsion. (b) For bird flight, the pioneering studies on oscillatory rigid wings are discussed with delineating a fully nonlinear unsteady theory for a two-dimensional flexible wing with arbitrary variations in shape and trajectory to provide a comparative study with experiments. (c) For insect flight, recent advances are reviewed by items on aerodynamic theory and modeling, computational methods, and experiments, for forward and hovering flights with producing leading-edge vortex to yield unsteady high lift. (d) Prospects are explored on extracting prevailing intrinsic flow energy by fish and bird to enhance thrust for propulsion. (e) The mechanical and biological principles are drawn together for unified studies on the energetics in deriving metabolic power for animal locomotion, leading to the surprising discovery that the hydrodynamic viscous drag on swimming fish is largely associated with laminar boundary layers, thus drawing valid and sound evidences for a resounding resolution to the long-standing fish-swim paradox proclaimed by Gray (1936, 1968 ).

  14. Numerical and Experimental Investigation of Flow Structures During Insect Flight

    NASA Astrophysics Data System (ADS)

    Badrya, Camli; Baeder, James D.

    2015-11-01

    Insect flight kinematics involves complex interplay between aerodynamics structural response and insect body control. Features such as cross-coupling kinematics, high flapping frequencies and geometrical small-scales, result in experiments being challenging to perform. In this study OVERTURNS, an in-house 3D compressible Navier-Stokes solver is utilized to simulate the simplified kinematics of an insect wing in hover and forward flight. The flapping wings simulate the full cycle of wing motion, i.e., the upstroke, downstroke, pronation and supination.The numerical results show good agreement against experimental data in predicting the lift and drag over the flapping cycle. The flow structures around the flapping wing are found to be highly unsteady and vortical. Aside from the tip vortex on the wings, the formation of a prominent leading edge vortex (LEV) during the up/down stroke portions, and the shedding of a trailing edge vortex (TEV) at end of each stroke were observed. Differences in the insect dynamics and the flow features of the LEV are observed between hover and forward flight. In hover the up and downstroke cycles are symmetric, whereas in forward flight, these up and downstroke are asymmetric and LEV strength varies as a function of the kinematics and advance ratio. This work was supported by the Micro Autonomous Systems and Technology (MAST) CTA at the Univer- sity of Maryland.

  15. Dynamic flight stability of hovering insects

    NASA Astrophysics Data System (ADS)

    Sun, Mao; Wang, Jikang; Xiong, Yan

    2007-06-01

    The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the “rigid body” assumption. On the basis of the simplified equations of motion, the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight is studied (the mass of the insects ranging from 11 to 1,648 mg and wingbeat frequency from 26 to 157 Hz). The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are used to solve the equations of motion. The validity of the “rigid body” assumption is tested and how differences in size and wing kinematics influence the applicability of the “rigid body” assumption is investigated. The primary findings are: (1) For insects considered in the present study and those with relatively high wingbeat frequency (hoverfly, drone fly and bumblebee), the “rigid body” assumption is reasonable, and for those with relatively low wingbeat frequency (cranefly and howkmoth), the applicability of the “rigid body” assumption is questionable. (2) The same three natural modes of motion as those reported recently for a bumblebee are identified, i.e., one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. (3) Approximate analytical expressions of the eigenvalues, which give physical insight into the genesis of the natural modes of motion, are derived. The expressions identify the speed derivative M u (pitching moment produced by unit horizontal speed) as the primary source of the unstable oscillatory mode and the stable fast subsidence mode and Z w (vertical force produced by unit vertical speed) as the primary source of the stable slow subsidence mode.

  16. Insect Flight: From Newton's Law to Neurons

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane

    2016-03-01

    Why do animals move the way they do? Bacteria, insects, birds, and fish share with us the necessity to move so as to live. Although each organism follows its own evolutionary course, it also obeys a set of common laws. At the very least, the movement of animals, like that of planets, is governed by Newton's law: All things fall. On Earth, most things fall in air or water, and their motions are thus subject to the laws of hydrodynamics. Through trial and error, animals have found ways to interact with fluid so they can float, drift, swim, sail, glide, soar, and fly. This elementary struggle to escape the fate of falling shapes the development of motors, sensors, and mind. Perhaps we can deduce parts of their neural computations by understanding what animals must do so as not to fall. Here I discuss recent developments along this line of inquiry in the case of insect flight. Asking how often a fly must sense its orientation in order to balance in air has shed new light on the role of motor neurons and steering muscles responsible for flight stability.

  17. Nonlinear flight dynamics and stability of hovering model insects

    PubMed Central

    Liang, Bin; Sun, Mao

    2013-01-01

    Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714

  18. Flight investigation of insect contamination and its alleviation

    NASA Technical Reports Server (NTRS)

    Peterson, J. B., Jr.; Fisher, D. F.

    1978-01-01

    An investigation of leading edge contamination by insects was conducted with a JetStar airplane instrumented to detect transition on the outboard leading edge flap and equipped with a system to spray the leading edge in flight. The results of airline type flights with the JetStar indicated that insects can contaminate the leading edge during takeoff and climbout. The results also showed that the insects collected on the leading edges at 180 knots did not erode at cruise conditions for a laminar flow control airplane and caused premature transition of the laminar boundary layer. None of the superslick and hydrophobic surfaces tested showed any significant advantages in alleviating the insect contamination problem. While there may be other solutions to the insect contamination problem, the results of these tests with a spray system showed that a continouous water spray while encountering the insects is effective in preventing insect contamination of the leading edges.

  19. Insect flight on fluid interfaces: a chaotic interfacial oscillator

    NASA Astrophysics Data System (ADS)

    Mukundarajan, Haripriya; Prakash, Manu

    2013-11-01

    Flight is critical to the dominance of insect species on our planet, with about 98 percent of insect species having wings. How complex flight control systems developed in insects is unknown, and arboreal or aquatic origins have been hypothesized. We examine the biomechanics of aquatic origins of flight. We recently reported discovery of a novel mode of ``2D flight'' in Galerucella beetles, which skim along an air-water interface using flapping wing flight. This unique flight mode is characterized by a balance between capillary forces from the interface and biomechanical forces exerted by the flapping wings. Complex interactions on the fluid interface form capillary wave trains behind the insect, and produce vertical oscillations at the surface due to non-linear forces arising from deformation of the fluid meniscus. We present both experimental observations of 2D flight kinematics and a dynamic model explaining the observed phenomena. Careful examination of this interaction predicts the chaotic nature of interfacial flight and takeoff from the interface into airborne flight. The role of wingbeat frequency, stroke plane angle and body angle in determining transition between interfacial and fully airborne flight is highlighted, shedding light on the aquatic theory of flight evolution.

  20. On the Optimal Dynamic Camber Formation in Insect Flight

    NASA Astrophysics Data System (ADS)

    Ren, Yan; Dong, Haibo

    2012-11-01

    It is widely thought that wing flexibility and wing deformation could significantly affect aerodynamic force productions over completely rigid wings in insect flights. However, there is a lack of quantitative discussion of dynamic formation of wing camber and its effect on wing's aerodynamic performance. In this work, a deformable wing is used to model the wing camber and its dynamic formation. A Direct Numerical Simulation (DNS) based computational optimization frame has been developed to obtain the optimal dynamic camber formation of dragonfly in takeoff and cruising flight. Comparative study is then performed between the optimized flexible wing and real dragonfly wing. Results have shown the maximum camber happens around 30% (downstroke) and 80% (upstroke) of one wing beat. Force production and unsteady flows of the flexible wing are also discussed.

  1. A Simple Flight Mill for the Study of Tethered Flight in Insects

    PubMed Central

    Attisano, Alfredo; Murphy, James T.; Vickers, Andrew; Moore, Patricia J.

    2015-01-01

    Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes. PMID:26709537

  2. Recent Developments in the Remote Radio Control of Insect Flight

    PubMed Central

    Sato, Hirotaka; Maharbiz, Michel M.

    2010-01-01

    The continuing miniaturization of digital circuits and the development of low power radio systems coupled with continuing studies into the neurophysiology and dynamics of insect flight are enabling a new class of implantable interfaces capable of controlling insects in free flight for extended periods. We provide context for these developments, review the state-of-the-art and discuss future directions in this field. PMID:21629761

  3. Insect-Inspired Flight Control for Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Stange, G.; Srinivasan, M.; Chahl, Javaan; Hine, Butler; Zornetzer, Steven

    2005-01-01

    Flight-control and navigation systems inspired by the structure and function of the visual system and brain of insects have been proposed for a class of developmental miniature robotic aircraft called "biomorphic flyers" described earlier in "Development of Biomorphic Flyers" (NPO-30554), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 54. These form a subset of biomorphic explorers, which, as reported in several articles in past issues of NASA Tech Briefs ["Biomorphic Explorers" (NPO-20142), Vol. 22, No. 9 (September 1998), page 71; "Bio-Inspired Engineering of Exploration Systems" (NPO-21142), Vol. 27, No. 5 (May 2003), page 54; and "Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration" (NPO-30286), Vol. 28, No. 5 (May 2004), page 36], are proposed small robots, equipped with microsensors and communication systems, that would incorporate crucial functions of mobility, adaptability, and even cooperative behavior. These functions are inherent to biological organisms but are challenging frontiers for technical systems. Biomorphic flyers could be used on Earth or remote planets to explore otherwise difficult or impossible to reach sites. An example of an exploratory task of search/surveillance functions currently being tested is to obtain high-resolution aerial imagery, using a variety of miniaturized electronic cameras. The control functions to be implemented by the systems in development include holding altitude, avoiding hazards, following terrain, navigation by reference to recognizable terrain features, stabilization of flight, and smooth landing. Flying insects perform these and other functions remarkably well, even though insect brains contains fewer than 10(exp -4) as many neurons as does the human brain. Although most insects have immobile, fixed-focus eyes and lack stereoscopy (and hence cannot perceive depth directly), they utilize a number of ingenious strategies for perceiving, and navigating in, three dimensions. Despite

  4. Flight evaluation of an insect contamination protection system for laminar flow wings

    NASA Technical Reports Server (NTRS)

    Croom, C. C.; Holmes, B. J.

    1985-01-01

    The maintenance of minimum wing leading edge contamination is critical to the preservation of drag-reducing laminar flow; previous methods for the prevention of leading edge contamination by insects have, however, been rendered impractical by their excessive weight, cost, or inconvenience. Attention is presently given to the results of a NASA flight experiment which evaluated the performance of a porous leading edge fluid-discharge ice protection system in the novel role of insect contamination removal; high insect contamination conditions were also noted in the experiment. Very small amounts of the fluid are found to be sufficient for insect contamination protection.

  5. Surface tension dominates insect flight on fluid interfaces.

    PubMed

    Mukundarajan, Haripriya; Bardon, Thibaut C; Kim, Dong Hyun; Prakash, Manu

    2016-03-01

    Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air. PMID:26936640

  6. Surface tension dominates insect flight on fluid interfaces

    PubMed Central

    Mukundarajan, Haripriya; Bardon, Thibaut C.; Kim, Dong Hyun; Prakash, Manu

    2016-01-01

    ABSTRACT Flight on the 2D air–water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary–gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air–water interface presents a radically modified force landscape for flapping wing flight compared with air. PMID:26936640

  7. Early metamorphic insertion technology for insect flight behavior monitoring.

    PubMed

    Verderber, Alexander; McKnight, Michael; Bozkurt, Alper

    2014-01-01

    Early Metamorphosis Insertion Technology (EMIT) is a novel methodology for integrating microfabricated neuromuscular recording and actuation platforms on insects during their metamorphic development. Here, the implants are fused within the structure and function of the neuromuscular system as a result of metamorphic tissue remaking. The implants emerge with the insect where the development of tissue around the electronics during pupal development results in a bioelectrically and biomechanically enhanced tissue interface. This relatively more reliable and stable interface would be beneficial for many researchers exploring the neural basis of the insect locomotion with alleviated traumatic effects caused during adult stage insertions. In this article, we implant our electrodes into the indirect flight muscles of Manduca sexta. Located in the dorsal-thorax, these main flight powering dorsoventral and dorsolongitudinal muscles actuate the wings and supply the mechanical power for up and down strokes. Relative contraction of these two muscle groups has been under investigation to explore how the yaw maneuver is neurophysiologically coordinated. To characterize the flight dynamics, insects are often tethered with wires and their flight is recorded with digital cameras. We also developed a novel way to tether Manduca sexta on a magnetically levitating frame where the insect is connected to a commercially available wireless neural amplifier. This set up can be used to limit the degree of freedom to yawing "only" while transmitting the related electromyography signals from dorsoventral and dorsolongitudinal muscle groups. PMID:25079130

  8. Early Metamorphic Insertion Technology for Insect Flight Behavior Monitoring

    PubMed Central

    Bozkurt, Alper

    2014-01-01

    Early Metamorphosis Insertion Technology (EMIT) is a novel methodology for integrating microfabricated neuromuscular recording and actuation platforms on insects during their metamorphic development. Here, the implants are fused within the structure and function of the neuromuscular system as a result of metamorphic tissue remaking. The implants emerge with the insect where the development of tissue around the electronics during pupal development results in a bioelectrically and biomechanically enhanced tissue interface. This relatively more reliable and stable interface would be beneficial for many researchers exploring the neural basis of the insect locomotion with alleviated traumatic effects caused during adult stage insertions. In this article, we implant our electrodes into the indirect flight muscles of Manduca sexta. Located in the dorsal-thorax, these main flight powering dorsoventral and dorsolongitudinal muscles actuate the wings and supply the mechanical power for up and down strokes. Relative contraction of these two muscle groups has been under investigation to explore how the yaw maneuver is neurophysiologically coordinated. To characterize the flight dynamics, insects are often tethered with wires and their flight is recorded with digital cameras. We also developed a novel way to tether Manduca sexta on a magnetically levitating frame where the insect is connected to a commercially available wireless neural amplifier. This set up can be used to limit the degree of freedom to yawing “only” while transmitting the related electromyography signals from dorsoventral and dorsolongitudinal muscle groups. PMID:25079130

  9. Predicting Fruit Fly's Sensing Rate From Insect Flight Simulations

    NASA Astrophysics Data System (ADS)

    Wang, Jane; Chang, Song

    2013-11-01

    Without sensory feedbacks, flies cannot fly. Exactly how sensory feedback controls work in flying insects is a complex puzzle to solve. What do insects measure in order to stabilize their flight? What kinds of neural computations and muscle activities are involved in order to correct their flight course or to turn? How often and how fast do animals adjust their wings to remain stable? To understand the algorithms used by insects to control their dynamic instability, we have developed a simulation tool to study flapping flight, where motions of the insect body and wings are coupled instantaneously. To stabilize the flight in the simulation, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds both on the sensing rate and the delay time between sensing and actuation. Interpreting these findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we give a sharper bound on the sensing rate and further reason that fruit flies sense their kinematic states every wing-beat in order to stabilize their flight.

  10. Controlled flight of a biologically inspired, insect-scale robot.

    PubMed

    Ma, Kevin Y; Chirarattananon, Pakpong; Fuller, Sawyer B; Wood, Robert J

    2013-05-01

    Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight. PMID:23641114

  11. Flight loss linked to faster molecular evolution in insects

    PubMed Central

    Mitterboeck, T. Fatima; Adamowicz, Sarah J.

    2013-01-01

    The loss of flight ability has occurred thousands of times independently during insect evolution. Flight loss may be linked to higher molecular evolutionary rates because of reductions in effective population sizes (Ne) and relaxed selective constraints. Reduced dispersal ability increases population subdivision, may decrease geographical range size and increases (sub)population extinction risk, thus leading to an expected reduction in Ne. Additionally, flight loss in birds has been linked to higher molecular rates of energy-related genes, probably owing to relaxed selective constraints on energy metabolism. We tested for an association between insect flight loss and molecular rates through comparative analysis in 49 phylogenetically independent transitions spanning multiple taxa, including moths, flies, beetles, mayflies, stick insects, stoneflies, scorpionflies and caddisflies, using available nuclear and mitochondrial protein-coding DNA sequences. We estimated the rate of molecular evolution of flightless (FL) and related flight-capable lineages by ratios of non-synonymous-to-synonymous substitutions (dN/dS) and overall substitution rates (OSRs). Across multiple instances of flight loss, we show a significant pattern of higher dN/dS ratios and OSRs in FL lineages in mitochondrial but not nuclear genes. These patterns may be explained by relaxed selective constraints in FL ectotherms relating to energy metabolism, possibly in combination with reduced Ne. PMID:23884090

  12. Predicting fruit fly's sensing rate with insect flight simulations.

    PubMed

    Chang, Song; Wang, Z Jane

    2014-08-01

    Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly's haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers. PMID:25049376

  13. Numerical study of insect free hovering flight

    NASA Astrophysics Data System (ADS)

    Wu, Di; Yeo, Khoon Seng; Lim, Tee Tai; Fluid lab, Mechanical Engineering, National University of Singapore Team

    2012-11-01

    In this paper we present the computational fluid dynamics study of three-dimensional flow field around a free hovering fruit fly integrated with unsteady FSI analysis and the adaptive flight control system for the first time. The FSI model being specified for fruitfly hovering is achieved by coupling a structural problem based on Newton's second law with a rigorous CFD solver concerning generalized finite difference method. In contrast to the previous hovering flight research, the wing motion employed here is not acquired from experimental data but governed by our proposed control systems. Two types of hovering control strategies i.e. stroke plane adjustment mode and paddling mode are explored, capable of generating the fixed body position and orientation characteristic of hovering flight. Hovering flight associated with multiple wing kinematics and body orientations are shown as well, indicating the means by which fruitfly actually maintains hovering may have considerable freedom and therefore might be influenced by many other factors beyond the physical and aerodynamic requirements. Additionally, both the near- and far-field flow and vortex structure agree well with the results from other researchers, demonstrating the reliability of our current model.

  14. Estimating insect flight densities from attractive trap catches and flight height distributions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect species often exhibit a specific mean flight height and vertical flight distribution that approximates a normal distribution with a characteristic standard deviation (SD). Many studies in the literature report catches on passive (non-attractive) traps at several heights. These catches were us...

  15. Active and passive stabilization of body pitch in insect flight

    PubMed Central

    Ristroph, Leif; Ristroph, Gunnar; Morozova, Svetlana; Bergou, Attila J.; Chang, Song; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2013-01-01

    Flying insects have evolved sophisticated sensory–motor systems, and here we argue that such systems are used to keep upright against intrinsic flight instabilities. We describe a theory that predicts the instability growth rate in body pitch from flapping-wing aerodynamics and reveals two ways of achieving balanced flight: active control with sufficiently rapid reactions and passive stabilization with high body drag. By glueing magnets to fruit flies and perturbing their flight using magnetic impulses, we show that these insects employ active control that is indeed fast relative to the instability. Moreover, we find that fruit flies with their control sensors disabled can keep upright if high-drag fibres are also attached to their bodies, an observation consistent with our prediction for the passive stability condition. Finally, we extend this framework to unify the control strategies used by hovering animals and also furnish criteria for achieving pitch stability in flapping-wing robots. PMID:23697713

  16. Design of a Computerised Flight Mill Device to Measure the Flight Potential of Different Insects.

    PubMed

    Martí-Campoy, Antonio; Ávalos, Juan Antonio; Soto, Antonia; Rodríguez-Ballester, Francisco; Martínez-Blay, Victoria; Malumbres, Manuel Pérez

    2016-01-01

    Several insect species pose a serious threat to different plant species, sometimes becoming a pest that produces significant damage to the landscape, biodiversity, and/or the economy. This is the case of Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae), Semanotus laurasii Lucas (Coleoptera: Cerambycidae), and Monochamus galloprovincialis Olivier (Coleoptera: Cerambycidae), which have become serious threats to ornamental and productive trees all over the world such as palm trees, cypresses, and pines. Knowledge about their flight potential is very important for designing and applying measures targeted to reduce the negative effects from these pests. Studying the flight capability and behaviour of some insects is difficult due to their small size and the large area wherein they can fly, so we wondered how we could obtain information about their flight capabilities in a controlled environment. The answer came with the design of flight mills. Relevant data about the flight potential of these insects may be recorded and analysed by means of a flight mill. Once an insect is attached to the flight mill, it is able to fly in a circular direction without hitting walls or objects. By adding sensors to the flight mill, it is possible to record the number of revolutions and flight time. This paper presents a full description of a computer monitored flight mill. The description covers both the mechanical and the electronic parts in detail. The mill was designed to easily adapt to the anatomy of different insects and was successfully tested with individuals from three species R. ferrugineus, S. laurasii, and M. galloprovincialis. PMID:27070600

  17. Design of a Computerised Flight Mill Device to Measure the Flight Potential of Different Insects

    PubMed Central

    Martí-Campoy, Antonio; Ávalos, Juan Antonio; Soto, Antonia; Rodríguez-Ballester, Francisco; Martínez-Blay, Victoria; Malumbres, Manuel Pérez

    2016-01-01

    Several insect species pose a serious threat to different plant species, sometimes becoming a pest that produces significant damage to the landscape, biodiversity, and/or the economy. This is the case of Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae), Semanotus laurasii Lucas (Coleoptera: Cerambycidae), and Monochamus galloprovincialis Olivier (Coleoptera: Cerambycidae), which have become serious threats to ornamental and productive trees all over the world such as palm trees, cypresses, and pines. Knowledge about their flight potential is very important for designing and applying measures targeted to reduce the negative effects from these pests. Studying the flight capability and behaviour of some insects is difficult due to their small size and the large area wherein they can fly, so we wondered how we could obtain information about their flight capabilities in a controlled environment. The answer came with the design of flight mills. Relevant data about the flight potential of these insects may be recorded and analysed by means of a flight mill. Once an insect is attached to the flight mill, it is able to fly in a circular direction without hitting walls or objects. By adding sensors to the flight mill, it is possible to record the number of revolutions and flight time. This paper presents a full description of a computer monitored flight mill. The description covers both the mechanical and the electronic parts in detail. The mill was designed to easily adapt to the anatomy of different insects and was successfully tested with individuals from three species R. ferrugineus, S. laurasii, and M. galloprovincialis. PMID:27070600

  18. Lift and power requirements of hovering insect flight

    NASA Astrophysics Data System (ADS)

    Mao, Sun; Gang, Du

    2003-10-01

    Lift and power requirements for hovering flight of eight species of insects are studied by solving the Navier-Stokes equation numerically. The solution provides velocity and pressure fields, from which unsteady aerodynamic forces and moments are obtained. The inertial torque of wing mass are computed analytically. The wing length of the insects ranges from 2 mm (fruit fly) to 52mm (hawkmoth); Reynolds numbers Re (based on mean flapping speed and mean chord length) ranges from 75 to 3 850. The primary findings are shown in the following: (1) Either small ( R=2mm, Re=75), medium ( R≈10mm, Re≈500) or large ( R≈50 mm, Re≈4000) insects mainly employ the same high-lift mechanism, delayed stall, to produce lift in hovering flight. The midstroke angle of attack needed to produce a mean lift equal to the insect weight is approximately in the range of 25° to 45°, which is approximately in agreement with observation. (2) For the small insect (fruit fly) and for the medium and large insects with relatively small wingbeat frequency (cranefly, ladybird and hawkmoth), the specific power ranges from 18 to 39 W·kg-1, the major part of the power is due to aerodynamic force, and the elastic storage of negatige work does not change the specific power greatly. However for medium and large insects with relatively large wingbeat frequency (hoverfly, dronefly, honey bee and bumble bee), the specific power ranges from 39 to 61 W·kg-1, the major part of the power is due to wing inertia, and the elastic storage of negative work can decrease the specific power by approximately 33%. (3) For the case of power being mainly contributed by aerodynamic force (fruit fly, cranefly, ladybird and hawkmoth), the specific power is proportional to the product of the wingbeat frequency, the stroke amplitude, the wing length and the drag-to-lift ratio. For the case of power being mainly contributed by wing inertia (hoverfly, dronefly, honey bee and bumble bee), the specific power (without

  19. The Immersed Interface Method for Insect Flight Simulation

    NASA Astrophysics Data System (ADS)

    Xu, Sheng

    2008-11-01

    The effect of a fluid-solid interface can be represented as a singular force in the Navier-Stokes equations. Two problems arise from this representation. One is how to calculate the force density, and the other is how to treat the force singularity. In the immersed interface method, the latter is solved with second-order accuracy and the sharp fluid-solid interface by incorporating singularity-induced flow jump conditions into discretization schemes. This talk focues on the former problem. In particular, I will present approaches to calculating the force density for both flexible and rigid solids. Results from insect flight simulation will be shown to demonstrate the approaches.

  20. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.

    PubMed

    Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R

    2009-09-18

    Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight. PMID:19762645

  1. Whole-field, time resolved velocity measurements of flow structures on insect wings during free flight

    NASA Astrophysics Data System (ADS)

    Langley, Kenneth; Thomson, Scott; Truscott, Tadd

    2012-11-01

    The development of micro air vehicles (MAVs) that are propelled using flapping flight necessitates an understanding of the unsteady aerodynamics that enable this mode of flight. Flapping flight has been studied using a variety of methods including computational models, experimentation and observation. Until recently, the observation of natural flyers has been limited to qualitative methods such as smoke-line visualization. Advances in imaging technology have enabled the use of particle image velocimetry (PIV) to gain a quantitative understanding of the unsteady nature of the flight. Previously published PIV studies performed on insects have been limited to velocities in a single plane on tethered insects in a wind tunnel. We present the three-dimensional, time-resolved velocity fields of flight around a butterfly, using an array of high-speed cameras at 1 kHz through a technique known as 3D Synthetic Aperture PIV (SAPIV). These results are useful in understanding the relationship between wing kinematics and the unsteady aerodynamics generated.

  2. Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest.

    PubMed

    Jones, Christopher M; Papanicolaou, Alexie; Mironidis, George K; Vontas, John; Yang, Yihua; Lim, Ka S; Oakeshott, John G; Bass, Chris; Chapman, Jason W

    2015-10-01

    Migration is a key life history strategy for many animals and requires a suite of behavioural, morphological and physiological adaptations which together form the 'migratory syndrome'. Genetic variation has been demonstrated for many traits that make up this syndrome, but the underlying genes involved remain elusive. Recent studies investigating migration-associated genes have focussed on sampling migratory and nonmigratory populations from different geographic locations but have seldom explored phenotypic variation in a migratory trait. Here, we use a novel combination of tethered flight and next-generation sequencing to determine transcriptomic differences associated with flight activity in a globally invasive moth pest, the cotton bollworm Helicoverpa armigera. By developing a state-of-the-art phenotyping platform, we show that field-collected H. armigera display continuous variation in flight performance with individuals capable of flying up to 40 km during a single night. Comparative transcriptomics of flight phenotypes drove a gene expression analysis to reveal a suite of expressed candidate genes which are clearly related to physiological adaptations required for long-distance flight. These include genes important to the mobilization of lipids as flight fuel, the development of flight muscle structure and the regulation of hormones that influence migratory physiology. We conclude that the ability to express this complex set of pathways underlines the remarkable flexibility of facultative insect migrants to respond to deteriorating conditions in the form of migratory flight and, more broadly, the results provide novel insights into the fundamental transcriptional changes required for migration in insects and other taxa. PMID:26331997

  3. Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight Characteristics

    PubMed Central

    Schwegmann, Alexander; Lindemann, Jens Peter; Egelhaaf, Martin

    2014-01-01

    Many flying insects, such as flies, wasps and bees, pursue a saccadic flight and gaze strategy. This behavioral strategy is thought to separate the translational and rotational components of self-motion and, thereby, to reduce the computational efforts to extract information about the environment from the retinal image flow. Because of the distinguishing dynamic features of this active flight and gaze strategy of insects, the present study analyzes systematically the spatiotemporal statistics of image sequences generated during saccades and intersaccadic intervals in cluttered natural environments. We show that, in general, rotational movements with saccade-like dynamics elicit fluctuations and overall changes in brightness, contrast and spatial frequency of up to two orders of magnitude larger than translational movements at velocities that are characteristic of insects. Distinct changes in image parameters during translations are only caused by nearby objects. Image analysis based on larger patches in the visual field reveals smaller fluctuations in brightness and spatial frequency composition compared to small patches. The temporal structure and extent of these changes in image parameters define the temporal constraints imposed on signal processing performed by the insect visual system under behavioral conditions in natural environments. PMID:25340761

  4. Understanding the Role of Moment-of-Inertia Variation in Insect Flight Maneuvers

    NASA Astrophysics Data System (ADS)

    Lin, Tiras; Mittal, Rajat; Zheng, Lingxiao; Hedrick, Tyson

    2011-11-01

    The objective of this study is to gain insights into insect flight maneuvers and, in particular, the role that changes in body moment-of-inertia might play during these maneuvers. High-speed, high-resolution videogrammetry is used to quantify the trajectory and body conformation of Painted Lady butterflies during flight maneuvers; the 3D kinematics of the center-of-masses of the various body parts of the insect are determined experimentally. Measurements of the mass properties of the insect are then made and used to parameterize a simple flight dynamics model of the butterfly. Even though the mass of the flapping wings is small compared to the total mass of the insect, these experiments and subsequent analyses indicate that changes in moment-of-inertia during flight are large enough to have a noticeable impact on the maneuvers of these insects. Research is supported by NSF and AFOSR.

  5. Clap and fling mechanism with interacting porous wings in tiny insect flight.

    PubMed

    Santhanakrishnan, Arvind; Robinson, Alice K; Jones, Shannon; Low, Audrey Ann; Gadi, Sneha; Hedrick, Tyson L; Miller, Laura A

    2014-11-01

    The aerodynamics of flapping flight for the smallest insects such as thrips is often characterized by a 'clap and fling' of the wings at the end of the upstroke and the beginning of the downstroke. These insects fly at Reynolds numbers (Re) of the order of 10 or less where viscous effects are significant. Although this wing motion is known to augment the lift generated during flight, the drag required to fling the wings apart at this scale is an order of magnitude larger than the corresponding force acting on a single wing. As the opposing forces acting normal to each wing nearly cancel during the fling, these large forces do not have a clear aerodynamic benefit. If flight efficiency is defined as the ratio of lift to drag, the clap and fling motion dramatically reduces efficiency relative to the case of wings that do not aerodynamically interact. In this paper, the effect of a bristled wing characteristic of many of these insects was investigated using computational fluid dynamics. We performed 2D numerical simulations using a porous version of the immersed boundary method. Given the computational complexity involved in modeling flow through exact descriptions of bristled wings, the wing was modeled as a homogeneous porous layer as a first approximation. High-speed video recordings of free-flying thrips in take-off flight were captured in the laboratory, and an analysis of the wing kinematics was performed. This information was used for the estimation of input parameters for the simulations. Compared with a solid wing (without bristles), the results of the study show that the porous nature of the wings contributes largely to drag reduction across the Re range explored. The aerodynamic efficiency, calculated as the ratio of lift to drag coefficients, was larger for some porosities when compared with solid wings. PMID:25189374

  6. The Aerodynamics of Hovering Insect Flight. III. Kinematics

    NASA Astrophysics Data System (ADS)

    Ellington, C. P.

    1984-02-01

    Insects in free flight were filmed at 5000 frames per second to determine the motion of their wings and bodies. General comments are offered on flight behaviour and manoeuvrability. Changes in the tilt of the stroke plane with respect to the horizontal provides kinematic control of manoeuvres, analogous to the type of control used for helicopters. A projection analysis technique is described that solves for the orientation of the animal with respect to a camera-based coordinate system, giving full kinematic details for the longitudinal wing and body axes from single-view films. The technique can be applied to all types of flight where the wing motions are bilaterally symmetrical: forward, backward and hovering flight, as well as properly banked turns. An analysis of the errors of the technique is presented, and shows that the reconstructed angles for wing position should be accurate to within 1-2^circ in general. Although measurement of the angles of attack was not possible, visual estimations are given. Only 11 film sequences show flight velocities and accelerations that are small enough for the flight to be considered as `hovering'. Two sequences are presented for a hover-fly using an inclined stroke plane, and nine sequences of hovering with a horizontal stroke plane by another hover-fly, two crane-flies, a drone-fly, a ladybird beetle, a honey bee, and two bumble bees. In general, oscillations in the body position from its mean motion are within measurement error, about 1-2% of the wing length. The amplitudes of oscillation for the body angle are only a few degrees, but the phase relation of this oscillation to the wingbeat cycle could be determined for a few sequences. The phase indicates that the pitching moments governing the oscillations result from the wing lift at the ends of the wingbeat, and not from the wing drag or inertial forces. The mean pitching moment of the wings, which determines the mean body angle, is controlled by shifting the centre of lift

  7. Flight Testing Surfaces Engineered for Mitigating Insect Adhesion on a Falcon HU-25C

    NASA Technical Reports Server (NTRS)

    Shanahan, Michelle; Wohl, Chris J.; Smith, Joseph G., Jr.; Connell, John W.; Siochi, Emilie J.; Doss, Jereme R.; Penner, Ronald K.

    2015-01-01

    Insect residue contamination on aircraft wings can decrease fuel efficiency in aircraft designed for natural laminar flow. Insect residues can cause a premature transition to turbulent flow, increasing fuel burn and making the aircraft less environmentally friendly. Surfaces, designed to minimize insect residue adhesion, were evaluated through flight testing on a Falcon HU-25C aircraft flown along the coast of Virginia and North Carolina. The surfaces were affixed to the wing leading edge and the aircraft remained at altitudes lower than 1000 feet throughout the flight to assure high insect density. The number of strikes on the engineered surfaces was compared to, and found to be lower than, untreated aluminum control surfaces flown concurrently. Optical profilometry was used to determine insect residue height and areal coverage. Differences in results between flight and laboratory tests suggest the importance of testing in realistic use environments to evaluate the effectiveness of engineered surface designs.

  8. Regulation of oscillatory contraction in insect flight muscle by troponin.

    PubMed

    Krzic, Uros; Rybin, Vladimir; Leonard, Kevin R; Linke, Wolfgang A; Bullard, Belinda

    2010-03-19

    Insect indirect flight muscle is activated by sinusoidal length change, which enables the muscle to work at high frequencies, and contracts isometrically in response to Ca(2+). Indirect flight muscle has two TnC isoforms: F1 binding a single Ca(2+) in the C-domain, and F2 binding Ca(2+) in the N- and C-domains. Fibres substituted with F1 produce delayed force in response to a single rapid stretch, and those with F2 produce isometric force in response to Ca(2+). We have studied the effect of TnC isoforms on oscillatory work. In native Lethocerus indicus fibres, oscillatory work was superimposed on a level of isometric force that depended on Ca(2+) concentration. Maximum work was produced at pCa 6.1; at higher concentrations, work decreased as isometric force increased. In fibres substituted with F1 alone, work continued to rise as Ca(2+) was increased up to pCa 4.7. Fibres substituted with various F1:F2 ratios produced maximal work at a ratio of 100:1 or 50:1; a higher proportion of F2 increased isometric force at the expense of oscillatory work. The F1:F2 ratio was 9.8:1 in native fibres, as measured by immunofluorescence, using isoform-specific antibodies. The small amount of F2 needed to restore work to levels obtained for the native fibre is likely to be due to the relative affinity of F1 and F2 for TnH, the Lethocerus homologue of TnI. Affinity of TnC isoforms for a TnI fragment of TnH was measured by isothermal titration calorimetry. The K(d) was 1.01 muM for F1 binding and 22.7 nM for F2. The higher affinity of F2 can be attributed to two TnH binding sites on F2 and a single site on F1. Stretch may be sensed by an extended C-terminal domain of TnH, resulting in reversible dissociation of the inhibitory sequence from actin during the oscillatory cycle. PMID:20100491

  9. Scales affect performance of Monarch butterfly forewings in autorotational flight

    NASA Astrophysics Data System (ADS)

    Demko, Anya; Lang, Amy

    2012-11-01

    Butterfly wings are characterized by rows of scales (approximately 100 microns in length) that create a shingle-like pattern of cavities over the entire surface. It is hypothesized that these cavities influence the airflow around the wing and increase aerodynamic performance. A forewing of the Monarch butterfly (Danus plexippus) naturally undergoes autorotational flight in the laminar regime. Autorotational flight is an accurate representation of insect flight because the rotation induces a velocity gradient similar to that found over a flapping wing. Drop test flights of 22 forewings before and after scale removal were recorded with a high-speed camera and flight behavior was quantified. It was found that removing the scales increased the descent speed and decreased the descent factor, a measure of aerodynamic efficacy, suggesting that scales increased the performance of the forewings. Funded by NSF REU Grant 1062611.

  10. Pilot Fullerton examines SE-81-8 Insect Flight Motion Study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Fullerton examines Student Experiment 81-8 (SE-81-8) Insect Flight Motion Study taped to the airlock on aft middeck. Todd Nelson, a high school senior from Minnesota, won a national contest to fly his experiment on this particular flight. Moths, flies, and bees were studied in the near weightless environment.

  11. NSTA-NASA Shuttle Student Involvement Project. Experiment Results: Insect Flight Observation at Zero Gravity

    NASA Technical Reports Server (NTRS)

    Nelson, T. E.; Peterson, J. R.

    1982-01-01

    The flight responses of common houseflies, velvetbean caterpillar moths, and worker honeybees were observed and filmed for a period of about 25 minutes in a zero-g environment during the third flight of the Space Shuttle Vehicle (flight number STS-3; March 22-30, 1982). Twelve fly puparia, 24 adult moths, 24 moth pupae, and 14 adult bees were loaded into an insect flight box, which was then stowed aboard the Shuttle Orbiter, the night before the STS-3 launch at NASA's Kennedy Space Center (KSC). The main purpose of the experiment was to observe and compare the flight responses of the three species of insects, which have somewhat different flight control mechanisms, under zero-g conditions.

  12. Orion Flight Performance Design Trades

    NASA Technical Reports Server (NTRS)

    Jackson, Mark C.; Straube, Timothy

    2010-01-01

    A significant portion of the Orion pre-PDR design effort has focused on balancing mass with performance. High level performance metrics include abort success rates, lunar surface coverage, landing accuracy and touchdown loads. These metrics may be converted to parameters that affect mass, such as ballast for stabilizing the abort vehicle, propellant to achieve increased lunar coverage or extended missions, or ballast to increase the lift-to-drag ratio to improve entry and landing performance. The Orion Flight Dynamics team was tasked to perform analyses to evaluate many of these trades. These analyses not only provide insight into the physics of each particular trade but, in aggregate, they illustrate the processes used by Orion to balance performance and mass margins, and thereby make design decisions. Lessons learned can be gleaned from a review of these studies which will be useful to other spacecraft system designers. These lessons fall into several categories, including: appropriate application of Monte Carlo analysis in design trades, managing margin in a highly mass-constrained environment, and the use of requirements to balance margin between subsystems and components. This paper provides a review of some of the trades and analyses conducted by the Flight Dynamics team, as well as systems engineering lessons learned.

  13. Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans.

    PubMed

    Teulier, Loïc; Weber, Jean-Michel; Crevier, Julie; Darveau, Charles-A

    2016-07-13

    Bees are thought to be strict users of carbohydrates as metabolic fuel for flight. Many insects, however, have the ability to oxidize the amino acid proline at a high rate, which is a unique feature of this group of animals. The presence of proline in the haemolymph of bees and in the nectar of plants led to the hypothesis that plants may produce proline as a metabolic reward for pollinators. We investigated flight muscle metabolism of hymenopteran species using high-resolution respirometry performed on permeabilized muscle fibres. The muscle fibres of the honeybee, Apis mellifera, do not have a detectable capacity to oxidize proline, as those from the migratory locust, Locusta migratoria, used here as an outgroup representative. The closely related bumblebee, Bombus impatiens, can oxidize proline alone and more than doubles its respiratory capacity when proline is combined with carbohydrate-derived substrates. A distant wasp species, Vespula vulgaris, exhibits the same metabolic phenotype as the bumblebee, suggesting that proline oxidation is common in hymenopterans. Using a combination of mitochondrial substrates and inhibitors, we further show that in B. impatiens, proline oxidation provides reducing equivalents and electrons directly to the electron transport system. Together, these findings demonstrate that some bee and wasp species can greatly enhance the oxidation of carbohydrates using proline as fuel for flight. PMID:27412285

  14. Flightlessness in mayflies and its relevance to hypotheses on the origin of insect flight

    PubMed Central

    Ruffieux, L.; Elouard, J.-M.; Sartori, M.

    1998-01-01

    Until now, only fully winged mayflies have been known. It has been proposed recently that brachyptery could be a missing link in the development of insect flight, via sailing or skimming aquatic insects. To our knowledge, we report here the first documented case of brachyptery in mayflies. The flightless genus Cheirogenesia is endemic to Madagascar, and the adults skim the water surface. This loss of the flight function has induced important physiological changes, such as a shift from lipids to carbohydrates in the energy reserves used during their adult life. Comparison of wing area of living mayflies with fossil species indicates that brachyptery could have already occurred in early flying insects (in the Permian). We argue that flight loss in Cheirogenesia has been made possible by the lack of fish predation in its natural habitats.

  15. Untethered hovering flapping flight of a 3D-printed mechanical insect.

    PubMed

    Richter, Charles; Lipson, Hod

    2011-01-01

    This project focuses on developing a flapping-wing hovering insect using 3D-printed wings and mechanical parts. The use of 3D printing technology has greatly expanded the possibilities for wing design, allowing wing shapes to replicate those of real insects or virtually any other shape. It has also reduced the time of a wing design cycle to a matter of minutes. An ornithopter with a mass of 3.89 g has been constructed using the 3D printing technique and has demonstrated an 85-s passively stable untethered hovering flight. This flight exhibits the functional utility of printed materials for flapping-wing experimentation and ornithopter construction and for understanding the mechanical principles underlying insect flight and control. PMID:21370958

  16. Enhanced vision: flight test and performance measurement

    NASA Astrophysics Data System (ADS)

    Balon, Kevin G.; Connor, Sidney A.

    1997-06-01

    This paper presents a flight test methodology and performance measurement system for evaluation of enhanced vision systems (EVS). The architecture for the performance measurements system used on a low operating cost Cessna 402 EVS flight test aircraft and on the DARPA Autonomous Landing Guidance Boeing 727 flight test aircraft is described. The data collection and analysis system is presented in the context of civil aviation requirements. A summary of the flight test accomplishments with the performance measurements system to data is also presented.

  17. Predicting fruit fly’s sensing rate with insect flight simulations

    PubMed Central

    Chang, Song; Wang, Z. Jane

    2014-01-01

    Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies’ reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly’s haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers. PMID:25049376

  18. Flight orientation behaviors promote optimal migration trajectories in high-flying insects.

    PubMed

    Chapman, Jason W; Nesbit, Rebecca L; Burgin, Laura E; Reynolds, Don R; Smith, Alan D; Middleton, Douglas R; Hill, Jane K

    2010-02-01

    Many insects undertake long-range seasonal migrations to exploit temporary breeding sites hundreds or thousands of kilometers apart, but the behavioral adaptations that facilitate these movements remain largely unknown. Using entomological radar, we showed that the ability to select seasonally favorable, high-altitude winds is widespread in large day- and night-flying migrants and that insects adopt optimal flight headings that partially correct for crosswind drift, thus maximizing distances traveled. Trajectory analyses show that these behaviors increase migration distances by 40% and decrease the degree of drift from seasonally optimal directions. These flight behaviors match the sophistication of those seen in migrant birds and help explain how high-flying insects migrate successfully between seasonal habitats. PMID:20133570

  19. 75 FR 47592 - Final Test Guideline; Product Performance of Skin-applied Insect Repellents of Insect and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ..., 2007 (72 FR 32647) (FRL-8135-9), of national experts in which the revisions made in June 2006, were... AGENCY Final Test Guideline; Product Performance of Skin-applied Insect Repellents of Insect and Other... Product Performance of Skin-applied Insect Repellents of Insect and Other Arthropods Test...

  20. The proteins in the Z line of insect flight muscle.

    PubMed Central

    Bullard, B; Sainsbury, G M

    1977-01-01

    Z discs were isolated from Lethocerus flight muscle by removing the contractile proteins from myofibrils with a solution of high ionic strength. The protein composition of the Z discs was analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis; the major proteins were alpha-actinin, actin and tropomyosin. Z lines were selectively removed from intact myofibrils by digestion with crude lipase and chymotrypsin, but not by purified lipase. Images PLATE 1 PLATE 2 PMID:849268

  1. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    PubMed

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  2. Diel flight pattern and flight performance of Cactoblastis cactorum (Lepidoptera: Pyralidae) measured on a flight mill: influence of age, gender, mating status, and body size.

    PubMed

    Sarvary, Mark A; Bloem, Kenneth A; Bloem, Stephanie; Carpenter, James E; Hight, Stephen D; Dorn, Silvia

    2008-04-01

    Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) is an invasive herbivore that poses a serious risk to Opuntia cacti in North America. Knowledge of the flight behavior of the cactus moth is crucial for a better understanding of natural dispersal, and for both monitoring and control. We used computer-linked flight mills to investigate diel flight activity and flight performance in relation to gender, age, mating status, and body size. Maximal flight activity for both mated and unmated moths occurred during twilight, whereas flight activity was low during photophase. The total distance flown and the number of initiated flights within a diel cycle were higher in both unmated and mated females than in males, but the longest single flight was similar in both genders. These findings suggest that pheromone trap captures of males likely indicate the simultaneous presence of females and that mated females might even be in areas where males are not detected yet. Flight performance heterogeneity was large, with a small portion of the population (both males and females) performing long unbroken flights, whereas the majority made short flights. Females had higher pupal and adult body size and shorter longevity than males. A few individuals, particularly young mated females, flying long distances may be important for active spread of a population and the colonization of new habitats. Implications of this study in the control of the cactus moth by using the sterile insect technique are discussed. PMID:18459394

  3. Flight performance of Galileo and Ulysses RTGs

    NASA Astrophysics Data System (ADS)

    Hemler, Richard J.; Kelly, Charles E.

    1993-01-01

    Flight performance data of the GPHS-RTGs (General Purpose Heat Source—Radioisotope Thermoelectric Generators) on the Galileo and Ulysses spacecraft are reported. Comparison of the flight data with analytical predictions is preformed. Differences between actual flight telemetry data and analytical predictions are addressed including the degree of uncertainty associated with the telemetry data. End of mission power level predictions are included for both missions with an overall assessment of RTG mission performances.

  4. Flight performance of Galileo and Ulysses RTGs

    SciTech Connect

    Hemler, R.J.; Kelly, C.E. )

    1993-01-10

    Flight performance data of the GPHS-RTGs (General Purpose Heat Source---Radioisotope Thermoelectric Generators) on the Galileo and Ulysses spacecraft are reported. Comparison of the flight data with analytical predictions is preformed. Differences between actual flight telemetry data and analytical predictions are addressed including the degree of uncertainty associated with the telemetry data. End of mission power level predictions are included for both missions with an overall assessment of RTG mission performances.

  5. Insect gravitational biology: ground-based and shuttle flight experiments using the beetle Tribolium castaneum

    NASA Technical Reports Server (NTRS)

    Bennett, R. L.; Abbott, M. K.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Many of the traditional experimental advantages of insects recommend their use in studies of gravitational and space biology. The fruit fly, Drosophila melanogaster, is an obvious choice for studies of the developmental significance of gravity vectors because of the unparalleled description of regulatory mechanisms controlling oogenesis and embryogenesis. However, we demonstrate that Drosophila could not survive the conditions mandated for particular flight opportunities on the Space Shuttle. With the exception of Drosophila, the red flour beetle, Tribolium castaneum, is the insect best characterized with respect to molecular embryology and most frequently utilized for past space flights. We show that Tribolium is dramatically more resistant to confinement in small sealed volumes. In preparation for flight experiments we characterize the course and timing of the onset of oogenesis in newly eclosed adult females. Finally, we present results from two shuttle flights which indicate that a number of aspects of the development and function of the female reproductive system are not demonstrably sensitive to microgravity. Available information supports the utility of this insect for future studies of gravitational biology.

  6. Optimal strategies for insects migrating in the flight boundary layer: mechanisms and consequences.

    PubMed

    Srygley, Robert B; Dudley, Robert

    2008-07-01

    Directed aerial displacement requires that a volant organism's airspeed exceeds ambient wind speed. For biologically relevant altitudes, wind speed increases exponentially with increased height above the ground. Thus, dispersal of most insects is influenced by atmospheric conditions. However, insects that fly close to the Earth's surface displace within the flight boundary layer where insect airspeeds are relatively high. Over the past 17 years, we have studied boundary-layer insects by following individuals as they migrate across the Caribbean Sea and the Panama Canal. Although most migrants evade either drought or cold, nymphalid and pierid butterflies migrate across Panama near the onset of the rainy season. Dragonflies of the genus Pantala migrate in October concurrently with frontal weather systems. Migrating the furthest and thereby being the most difficult to study, the diurnal moth Urania fulgens migrates between Central and South America. Migratory butterflies and dragonflies are capable of directed movement towards a preferred compass direction in variable winds, whereas the moths drift with winds over water. Butterflies orient using both global and local cues. Consistent with optimal migration theory, butterflies and dragonflies adjust their flight speeds in ways that maximize migratory distance traveled per unit fuel, whereas the moths do not. Moreover, only butterflies adjust their flight speed in relation to endogenous fat reserves. It is likely that these insects use optic flow to gauge their speed and drift, and thus must migrate where sufficient detail in the Earth's surface is visible to them. The abilities of butterflies and dragonflies to adjust their airspeed over water indicate sophisticated control and guidance systems pertaining to migration. PMID:21669778

  7. Crepuscular Flight Activity of an Invasive Insect Governed by Interacting Abiotic Factors

    PubMed Central

    Chen, Yigen; Seybold, Steven J.

    2014-01-01

    Seasonal and diurnal flight patterns of the invasive walnut twig beetle, Pityophthorus juglandis, were assessed between 2011 and 2014 in northern California, USA in the context of the effects of ambient temperature, light intensity, wind speed, and barometric pressure. Pityophthorus juglandis generally initiated flight in late January and continued until late November. This seasonal flight could be divided approximately into three phases (emergence: January–March; primary flight: May–July; and secondary flight: September–October). The seasonal flight response to the male-produced aggregation pheromone was consistently female-biased (mean of 58.9% females). Diurnal flight followed a bimodal pattern with a minor peak in mid-morning and a major peak at dusk (76.4% caught between 1800 and 2200 h). The primarily crepuscular flight activity had a Gaussian relationship with ambient temperature and barometric pressure but a negative exponential relationship with increasing light intensity and wind speed. A model selection procedure indicated that the four abiotic factors collectively and interactively governed P. juglandis diurnal flight. For both sexes, flight peaked under the following second-order interactions among the factors when: 1) temperature between was 25 and 30°C and light intensity was less than 2000 lux; 2) temperature was between 25 and 35°C and barometric pressure was between 752 and 762 mba (and declined otherwise); 3) barometric pressure was between 755 and 761 mba and light intensity was less than 2000 lux (and declined otherwise); and 4) temperature was ca. 30°C and wind speed was ca. 2 km/h. Thus, crepuscular flight activity of this insect can be best explained by the coincidence of moderately high temperature, low light intensity, moderate wind speed, and low to moderate barometric pressure. The new knowledge provides physical and temporal guidelines for the application of semiochemical-based control techniques as part of an IPM program for

  8. Crepuscular flight activity of an invasive insect governed by interacting abiotic factors.

    PubMed

    Chen, Yigen; Seybold, Steven J

    2014-01-01

    Seasonal and diurnal flight patterns of the invasive walnut twig beetle, Pityophthorus juglandis, were assessed between 2011 and 2014 in northern California, USA in the context of the effects of ambient temperature, light intensity, wind speed, and barometric pressure. Pityophthorus juglandis generally initiated flight in late January and continued until late November. This seasonal flight could be divided approximately into three phases (emergence: January-March; primary flight: May-July; and secondary flight: September-October). The seasonal flight response to the male-produced aggregation pheromone was consistently female-biased (mean of 58.9% females). Diurnal flight followed a bimodal pattern with a minor peak in mid-morning and a major peak at dusk (76.4% caught between 1800 and 2200 h). The primarily crepuscular flight activity had a Gaussian relationship with ambient temperature and barometric pressure but a negative exponential relationship with increasing light intensity and wind speed. A model selection procedure indicated that the four abiotic factors collectively and interactively governed P. juglandis diurnal flight. For both sexes, flight peaked under the following second-order interactions among the factors when: 1) temperature between was 25 and 30 °C and light intensity was less than 2000 lux; 2) temperature was between 25 and 35 °C and barometric pressure was between 752 and 762 mba (and declined otherwise); 3) barometric pressure was between 755 and 761 mba and light intensity was less than 2000 lux (and declined otherwise); and 4) temperature was ca. 30 °C and wind speed was ca. 2 km/h. Thus, crepuscular flight activity of this insect can be best explained by the coincidence of moderately high temperature, low light intensity, moderate wind speed, and low to moderate barometric pressure. The new knowledge provides physical and temporal guidelines for the application of semiochemical-based control techniques as part of an IPM program for this

  9. Fine-tuned echolocation and capture-flight of Myotis capaccinii when facing different-sized insect and fish prey.

    PubMed

    Aizpurua, Ostaizka; Aihartza, Joxerra; Alberdi, Antton; Baagøe, Hans J; Garin, Inazio

    2014-09-15

    Formerly thought to be a strictly insectivorous trawling bat, recent studies have shown that Myotis capaccinii also preys on fish. To determine whether differences exist in bat flight behaviour, prey handling and echolocation characteristics when catching fish and insects of different size, we conducted a field experiment focused on the last stage of prey capture. We used synchronized video and ultrasound recordings to measure several flight and dip features as well as echolocation characteristics, focusing on terminal buzz phase I, characterized by a call rate exceeding 100 Hz, and buzz phase II, characterized by a drop in the fundamental well below 20 kHz and a repetition rate exceeding 150 Hz. When capturing insects, bats used both parts of the terminal phase to the same extent, and performed short and superficial drags on the water surface. In contrast, when preying on fish, buzz I was longer and buzz II shorter, and the bats made longer and deeper dips. These variations suggest that lengthening buzz I and shortening buzz II when fishing is beneficial, probably because buzz I gives better discrimination ability and the broader sonar beam provided by buzz II is useless when no evasive flight of the prey is expected. Additionally, bats continued emitting calls beyond the theoretical signal-overlap zone, suggesting that they might obtain information even when they have surpassed that threshold, at least initially. This study shows that M. capaccinii can regulate the temporal components of its feeding buzzes and modify prey capture technique according to the target. PMID:25013107

  10. Aerodynamics, sensing and control of insect-scale flapping-wing flight

    PubMed Central

    Shyy, Wei; Kang, Chang-kwon; Chirarattananon, Pakpong; Ravi, Sridhar; Liu, Hao

    2016-01-01

    There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted. PMID:27118897

  11. Bumblebee flight performance in cluttered environments: effects of obstacle orientation, body size and acceleration.

    PubMed

    Crall, James D; Ravi, Sridhar; Mountcastle, Andrew M; Combes, Stacey A

    2015-09-01

    Locomotion through structurally complex environments is fundamental to the life history of most flying animals, and the costs associated with movement through clutter have important consequences for the ecology and evolution of volant taxa. However, few studies have directly investigated how flying animals navigate through cluttered environments, or examined which aspects of flight performance are most critical for this challenging task. Here, we examined how body size, acceleration and obstacle orientation affect the flight of bumblebees in an artificial, cluttered environment. Non-steady flight performance is often predicted to decrease with body size, as a result of a presumed reduction in acceleration capacity, but few empirical tests of this hypothesis have been performed in flying animals. We found that increased body size is associated with impaired flight performance (specifically transit time) in cluttered environments, but not with decreased peak accelerations. In addition, previous studies have shown that flying insects can produce higher accelerations along the lateral body axis, suggesting that if maneuvering is constrained by acceleration capacity, insects should perform better when maneuvering around objects laterally rather than vertically. Our data show that bumblebees do generate higher accelerations in the lateral direction, but we found no difference in their ability to pass through obstacle courses requiring lateral versus vertical maneuvering. In sum, our results suggest that acceleration capacity is not a primary determinant of flight performance in clutter, as is often assumed. Rather than being driven by the scaling of acceleration, we show that the reduced flight performance of larger bees in cluttered environments is driven by the allometry of both path sinuosity and mean flight speed. Specifically, differences in collision-avoidance behavior underlie much of the variation in flight performance across body size, with larger bees

  12. Insect cyborgs: a new frontier in flight control systems

    NASA Astrophysics Data System (ADS)

    Reissman, Timothy; Crawford, Jackie H.; Garcia, Ephrahim

    2007-04-01

    The development of a micro-UAV via a cybernetic organism, primarily the Manduca sexta moth, is presented. An observer to gather output data of the system response of the moth is given by means of an image following system. The visual tracking was implemented to gather the required information about the time history of the moth's six degrees of freedom. This was performed with three cameras tracking a white line as a marker on the moth's thorax to maximize contrast between the moth and the marker. Evaluation of the implemented six degree of freedom visual tracking system finds precision greater than 0.1 mm within three standard deviations and accuracy on the order of 1 mm. Acoustic and visual response systems are presented to lay the groundwork for creating a stochastic response catalog of the organisms to varied stimuli.

  13. Centripetal Acceleration Reaction: An Effective and Robust Mechanism for Flapping Flight in Insects

    PubMed Central

    Zhang, Chao; Hedrick, Tyson L.; Mittal, Rajat

    2015-01-01

    Despite intense study by physicists and biologists, we do not fully understand the unsteady aerodynamics that relate insect wing morphology and kinematics to lift generation. Here, we formulate a force partitioning method (FPM) and implement it within a computational fluid dynamic model to provide an unambiguous and physically insightful division of aerodynamic force into components associated with wing kinematics, vorticity, and viscosity. Application of the FPM to hawkmoth and fruit fly flight shows that the leading-edge vortex is the dominant mechanism for lift generation for both these insects and contributes between 72–85% of the net lift. However, there is another, previously unidentified mechanism, the centripetal acceleration reaction, which generates up to 17% of the net lift. The centripetal acceleration reaction is similar to the classical inviscid added-mass in that it depends only on the kinematics (i.e. accelerations) of the body, but is different in that it requires the satisfaction of the no-slip condition, and a combination of tangential motion and rotation of the wing surface. Furthermore, the classical added-mass force is identically zero for cyclic motion but this is not true of the centripetal acceleration reaction. Furthermore, unlike the lift due to vorticity, centripetal acceleration reaction lift is insensitive to Reynolds number and to environmental flow perturbations, making it an important contributor to insect flight stability and miniaturization. This force mechanism also has broad implications for flow-induced deformation and vibration, underwater locomotion and flows involving bubbles and droplets. PMID:26252016

  14. Centripetal Acceleration Reaction: An Effective and Robust Mechanism for Flapping Flight in Insects.

    PubMed

    Zhang, Chao; Hedrick, Tyson L; Mittal, Rajat

    2015-01-01

    Despite intense study by physicists and biologists, we do not fully understand the unsteady aerodynamics that relate insect wing morphology and kinematics to lift generation. Here, we formulate a force partitioning method (FPM) and implement it within a computational fluid dynamic model to provide an unambiguous and physically insightful division of aerodynamic force into components associated with wing kinematics, vorticity, and viscosity. Application of the FPM to hawkmoth and fruit fly flight shows that the leading-edge vortex is the dominant mechanism for lift generation for both these insects and contributes between 72-85% of the net lift. However, there is another, previously unidentified mechanism, the centripetal acceleration reaction, which generates up to 17% of the net lift. The centripetal acceleration reaction is similar to the classical inviscid added-mass in that it depends only on the kinematics (i.e. accelerations) of the body, but is different in that it requires the satisfaction of the no-slip condition, and a combination of tangential motion and rotation of the wing surface. Furthermore, the classical added-mass force is identically zero for cyclic motion but this is not true of the centripetal acceleration reaction. Furthermore, unlike the lift due to vorticity, centripetal acceleration reaction lift is insensitive to Reynolds number and to environmental flow perturbations, making it an important contributor to insect flight stability and miniaturization. This force mechanism also has broad implications for flow-induced deformation and vibration, underwater locomotion and flows involving bubbles and droplets. PMID:26252016

  15. Flight Services and Aircraft Access: Active Flow Control Vertical Tail and Insect Accretion and Mitigation Flight Test

    NASA Technical Reports Server (NTRS)

    Whalen, Edward A.

    2016-01-01

    This document serves as the final report for the Flight Services and Aircraft Access task order NNL14AA57T as part of NASA Environmentally Responsible Aviation (ERA) Project ITD12A+. It includes descriptions of flight test preparations and execution for the Active Flow Control (AFC) Vertical Tail and Insect Accretion and Mitigation (IAM) experiments conducted on the 757 ecoDemonstrator. For the AFC Vertical Tail, this is the culmination of efforts under two task orders. The task order was managed by Boeing Research & Technology and executed by an enterprise-wide Boeing team that included Boeing Research & Technology, Boeing Commercial Airplanes, Boeing Defense and Space and Boeing Test and Evaluation. Boeing BR&T in St. Louis was responsible for overall Boeing project management and coordination with NASA. The 757 flight test asset was provided and managed by the BCA ecoDemonstrator Program, in partnership with Stifel Aircraft Leasing and the TUI Group. With this report, all of the required deliverables related to management of this task order have been met and delivered to NASA as summarized in Table 1. In addition, this task order is part of a broader collaboration between NASA and Boeing.

  16. Comprehensive analysis of transport aircraft flight performance

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2008-04-01

    This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance

  17. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli.

    PubMed

    Fuller, Sawyer B; Karpelson, Michael; Censi, Andrea; Ma, Kevin Y; Wood, Robert J

    2014-08-01

    Scaling a flying robot down to the size of a fly or bee requires advances in manufacturing, sensing and control, and will provide insights into mechanisms used by their biological counterparts. Controlled flight at this scale has previously required external cameras to provide the feedback to regulate the continuous corrective manoeuvres necessary to keep the unstable robot from tumbling. One stabilization mechanism used by flying insects may be to sense the horizon or Sun using the ocelli, a set of three light sensors distinct from the compound eyes. Here, we present an ocelli-inspired visual sensor and use it to stabilize a fly-sized robot. We propose a feedback controller that applies torque in proportion to the angular velocity of the source of light estimated by the ocelli. We demonstrate theoretically and empirically that this is sufficient to stabilize the robot's upright orientation. This constitutes the first known use of onboard sensors at this scale. Dipteran flies use halteres to provide gyroscopic velocity feedback, but it is unknown how other insects such as honeybees stabilize flight without these sensory organs. Our results, using a vehicle of similar size and dynamics to the honeybee, suggest how the ocelli could serve this role. PMID:24942846

  18. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli

    PubMed Central

    Fuller, Sawyer B.; Karpelson, Michael; Censi, Andrea; Ma, Kevin Y.; Wood, Robert J.

    2014-01-01

    Scaling a flying robot down to the size of a fly or bee requires advances in manufacturing, sensing and control, and will provide insights into mechanisms used by their biological counterparts. Controlled flight at this scale has previously required external cameras to provide the feedback to regulate the continuous corrective manoeuvres necessary to keep the unstable robot from tumbling. One stabilization mechanism used by flying insects may be to sense the horizon or Sun using the ocelli, a set of three light sensors distinct from the compound eyes. Here, we present an ocelli-inspired visual sensor and use it to stabilize a fly-sized robot. We propose a feedback controller that applies torque in proportion to the angular velocity of the source of light estimated by the ocelli. We demonstrate theoretically and empirically that this is sufficient to stabilize the robot's upright orientation. This constitutes the first known use of onboard sensors at this scale. Dipteran flies use halteres to provide gyroscopic velocity feedback, but it is unknown how other insects such as honeybees stabilize flight without these sensory organs. Our results, using a vehicle of similar size and dynamics to the honeybee, suggest how the ocelli could serve this role. PMID:24942846

  19. Small, sleek, and in control: The body plan, sensory-neural control, and flight stability of insects

    NASA Astrophysics Data System (ADS)

    Ristroph, Leif; Bergou, Attila; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2010-11-01

    Flying insects have evolved sophisticated sensory-neural systems, and here we argue that the fast reaction times of these systems reflect the need to overcome an intrinsic flight instability. We formulate a theory that shows how the body plan and flapping-wing aerodynamics determine the instability growth rate, which in turn dictates the response time needed to suppress it. We experimentally validate this theory by manipulating the flight, sensors, and body plan of fruit flies. The theory is general enough to describe a broad class of flying insects and also furnishes stability criteria for flapping-wing robots. Plausible body plans for the first flyers are determined by conjecturing that these insects were intrinsically stable and only later evolved fast-acting controls for the added benefit of flight agility.

  20. A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight

    PubMed Central

    Nabawy, Mostafa R. A.; Crowthe, William J.

    2015-01-01

    A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of insect-like wings in hovering flight. The approach allows accurate estimation of aerodynamic forces from geometry and kinematic information alone and provides for the first time quantitative information on the relative contribution of induced and profile drag associated with lift production for insect-like wings in hover. The main adaptation to the existing lifting line theory is the use of an equivalent angle of attack, which enables capture of the steady non-linear aerodynamics at high angles of attack. A simple methodology to include non-ideal induced effects due to wake periodicity and effective actuator disc area within the lifting line theory is included in the model. Low Reynolds number effects as well as the edge velocity correction required to account for different wing planform shapes are incorporated through appropriate modification of the wing section lift curve slope. The model has been successfully validated against measurements from revolving wing experiments and high order computational fluid dynamics simulations. Model predicted mean lift to weight ratio results have an average error of 4% compared to values from computational fluid dynamics for eight different insect cases. Application of an unmodified linear lifting line approach leads on average to a 60% overestimation in the mean lift force required for weight support, with most of the discrepancy due to use of linear aerodynamics. It is shown that on average for the eight insects considered, the induced drag contributes 22% of the total drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke values. PMID:26252657

  1. A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight.

    PubMed

    Nabawy, Mostafa R A; Crowthe, William J

    2015-01-01

    A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of insect-like wings in hovering flight. The approach allows accurate estimation of aerodynamic forces from geometry and kinematic information alone and provides for the first time quantitative information on the relative contribution of induced and profile drag associated with lift production for insect-like wings in hover. The main adaptation to the existing lifting line theory is the use of an equivalent angle of attack, which enables capture of the steady non-linear aerodynamics at high angles of attack. A simple methodology to include non-ideal induced effects due to wake periodicity and effective actuator disc area within the lifting line theory is included in the model. Low Reynolds number effects as well as the edge velocity correction required to account for different wing planform shapes are incorporated through appropriate modification of the wing section lift curve slope. The model has been successfully validated against measurements from revolving wing experiments and high order computational fluid dynamics simulations. Model predicted mean lift to weight ratio results have an average error of 4% compared to values from computational fluid dynamics for eight different insect cases. Application of an unmodified linear lifting line approach leads on average to a 60% overestimation in the mean lift force required for weight support, with most of the discrepancy due to use of linear aerodynamics. It is shown that on average for the eight insects considered, the induced drag contributes 22% of the total drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke values. PMID:26252657

  2. Orion Entry Flight Control Stability and Performance

    NASA Technical Reports Server (NTRS)

    Strahan, Alan L.; Loe, Greg R.; Seiler, Pete

    2007-01-01

    The Orion Spacecraft will be required to perform entry and landing functions for both Low Earth Orbit (LEO) and Lunar return missions, utilizing only the Command Module (CM) with its unique systems and GN&C design. This paper presents the current CM Flight Control System (FCS) design to support entry and landing, with a focus on analyses that have supported its development to date. The CM FCS will have to provide for spacecraft stability and control while following guidance or manual commands during exo-atmospheric flight, after Service Module separation, translational powered flight required of the CM, atmospheric flight supporting both direct entry and skip trajectories down to drogue chute deploy, and during roll attitude reorientation just prior to touchdown. Various studies and analyses have been performed or are on-going supporting an overall FCS design with reasonably sized Reaction Control System (RCS) jets, that minimizes fuel usage, that provides appropriate command following but with reasonable stability and control margin. Results from these efforts to date are included, with particular attention on design issues that have emerged, such as the struggle to accommodate sub-sonic pitch and yaw control without using excessively large jets that could have a detrimental impact on vehicle weight. Apollo, with a similar shape, struggled with this issue as well. Outstanding CM FCS related design and analysis issues, planned for future effort, are also briefly be discussed.

  3. Paradoxical acclimation responses in the thermal performance of insect immunity.

    PubMed

    Ferguson, Laura V; Heinrichs, David E; Sinclair, Brent J

    2016-05-01

    Winter is accompanied by multiple stressors, and the interactions between cold and pathogen stress potentially determine the overwintering success of insects. Thus, it is necessary to explore the thermal performance of the insect immune system. We cold-acclimated spring field crickets, Gryllus veletis, to 6 °C for 7 days and measured the thermal performance of potential (lysozyme and phenoloxidase activity) and realised (bacterial clearance and melanisation) immune responses. Cold acclimation decreased the critical thermal minimum from -0.5 ± 0.25 to -2.1 ± 0.18 °C, and chill coma recovery time after 72 h at -2 °C from 16.8 ± 4.9 to 5.2 ± 2.0 min. Measures of both potential and realised immunity followed a typical thermal performance curve, decreasing with decreasing temperature. However, cold acclimation further decreased realised immunity at low, but not high, temperatures; effectively, immune activity became paradoxically specialised to higher temperatures. Thus, cold acclimation induced mismatched thermal responses between locomotor and immune systems, as well as within the immune system itself. We conclude that cold acclimation in insects appears to preferentially improve cold tolerance over whole-animal immune performance at low temperatures, and that the differential thermal performance of physiological responses to multiple pressures must be considered when predicting ectotherms' response to climate change. PMID:26846428

  4. Oxygen and energy availability interact to determine flight performance in the Glanville fritillary butterfly.

    PubMed

    Fountain, Toby; Melvin, Richard G; Ikonen, Suvi; Ruokolainen, Annukka; Woestmann, Luisa; Hietakangas, Ville; Hanski, Ilkka

    2016-05-15

    Flying insects have the highest known mass-specific demand for oxygen, which makes it likely that reduced availability of oxygen might limit sustained flight, either instead of or in addition to the limitation due to metabolite resources. The Glanville fritillary butterfly (Melitaea cinxia) occurs as a large metapopulation in which adult butterflies frequently disperse between small local populations. Here, we examine how the interaction between oxygen availability and fuel use affects flight performance in the Glanville fritillary. Individuals were flown under either normoxic (21 kPa O2) or hypoxic (10 kPa O2) conditions and their flight metabolism was measured. To determine resource use, levels of circulating glucose, trehalose and whole-body triglyceride were recorded after flight. Flight performance was significantly reduced in hypoxic conditions. When flown under normoxic conditions, we observed a positive correlation among individuals between post-flight circulating trehalose levels and flight metabolic rate, suggesting that low levels of circulating trehalose constrains flight metabolism. To test this hypothesis experimentally, we measured the flight metabolic rate of individuals injected with a trehalase inhibitor. In support of the hypothesis, experimental butterflies showed significantly reduced flight metabolic rate, but not resting metabolic rate, in comparison to control individuals. By contrast, under hypoxia there was no relationship between trehalose and flight metabolic rate. Additionally, in this case, flight metabolic rate was reduced in spite of circulating trehalose levels that were high enough to support high flight metabolic rate under normoxic conditions. These results demonstrate a significant interaction between oxygen and energy availability for the control of flight performance. PMID:26944488

  5. Group interaction and flight crew performance

    NASA Technical Reports Server (NTRS)

    Foushee, H. Clayton; Helmreich, Robert L.

    1988-01-01

    The application of human-factors analysis to the performance of aircraft-operation tasks by the crew as a group is discussed in an introductory review and illustrated with anecdotal material. Topics addressed include the function of a group in the operational environment, the classification of group performance factors (input, process, and output parameters), input variables and the flight crew process, and the effect of process variables on performance. Consideration is given to aviation safety issues, techniques for altering group norms, ways of increasing crew effort and coordination, and the optimization of group composition.

  6. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1992-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flown. The objective of the TCSE on the LDEF was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post-flight analyses of thermal control surfaces to determine the effects of exposure to the low Earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in the lab. The performance of the TCSE flight system on the LDEF was excellent.

  7. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1992-01-01

    Various engine related performance and health monitoring techniques developed in support of flight research are described. Techniques used during flight to enhance safety and to increase flight test productivity are summarized. A description of the NASA range facility is given along with a discussion of the flight data processing. Examples of data processed and the flight data displays are shown. A discussion of current trends and future capabilities is also included.

  8. The redder the better: wing color predicts flight performance in monarch butterflies.

    PubMed

    Davis, Andrew K; Chi, Jean; Bradley, Catherine; Altizer, Sonia

    2012-01-01

    The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color. PMID:22848463

  9. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization.

    PubMed

    Boda, Pál; Horváth, Gábor; Kriska, György; Blahó, Miklós; Csabai, Zoltán

    2014-05-01

    Based on an earlier observation in the field, we hypothesized that light intensity and horizontally polarized reflected light may strongly influence the flight behaviour of night-active aquatic insects. We assumed that phototaxis and polarotaxis together have a more harmful effect on the dispersal flight of these insects than they would have separately. We tested this hypothesis in a multiple-choice field experiment using horizontal test surfaces laid on the ground. We offered simultaneously the following visual stimuli for aerial aquatic insects: (1) lamplit matte black canvas inducing phototaxis alone, (2) unlit shiny black plastic sheet eliciting polarotaxis alone, (3) lamplit shiny black plastic sheet inducing simultaneously phototaxis and polarotaxis, and (4) unlit matte black canvas as a visually unattractive control. The unlit matte black canvas trapped only a negligible number (13) of water insects. The sum (16,432) of the total numbers of water beetles and bugs captured on the lamplit matte black canvas (7,922) and the unlit shiny black plastic sheet (8,510) was much smaller than the total catch (29,682) caught on the lamplit shiny black plastic sheet. This provides experimental evidence for the synergistic interaction of phototaxis (elicited by the unpolarized direct lamplight) and polarotaxis (induced by the strongly and horizontally polarized plastic-reflected light) in the investigated aquatic insects. Thus, horizontally polarizing artificial lamplit surfaces can function as an effective ecological trap due to this synergism of optical cues, especially in the urban environment. PMID:24671223

  10. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization

    NASA Astrophysics Data System (ADS)

    Boda, Pál; Horváth, Gábor; Kriska, György; Blahó, Miklós; Csabai, Zoltán

    2014-05-01

    Based on an earlier observation in the field, we hypothesized that light intensity and horizontally polarized reflected light may strongly influence the flight behaviour of night-active aquatic insects. We assumed that phototaxis and polarotaxis together have a more harmful effect on the dispersal flight of these insects than they would have separately. We tested this hypothesis in a multiple-choice field experiment using horizontal test surfaces laid on the ground. We offered simultaneously the following visual stimuli for aerial aquatic insects: (1) lamplit matte black canvas inducing phototaxis alone, (2) unlit shiny black plastic sheet eliciting polarotaxis alone, (3) lamplit shiny black plastic sheet inducing simultaneously phototaxis and polarotaxis, and (4) unlit matte black canvas as a visually unattractive control. The unlit matte black canvas trapped only a negligible number (13) of water insects. The sum (16,432) of the total numbers of water beetles and bugs captured on the lamplit matte black canvas (7,922) and the unlit shiny black plastic sheet (8,510) was much smaller than the total catch (29,682) caught on the lamplit shiny black plastic sheet. This provides experimental evidence for the synergistic interaction of phototaxis (elicited by the unpolarized direct lamplight) and polarotaxis (induced by the strongly and horizontally polarized plastic-reflected light) in the investigated aquatic insects. Thus, horizontally polarizing artificial lamplit surfaces can function as an effective ecological trap due to this synergism of optical cues, especially in the urban environment.

  11. Flight test of takeoff performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B.; Srivatsan, Raghavachari; Person, Lee H., Jr.

    1994-01-01

    The Takeoff Performance Monitoring System (TOPMS) is a computer software and hardware graphics system that visually displays current runway position, acceleration performance, engine status, and other situation advisory information to aid pilots in their decision to continue or to abort a takeoff. The system was developed at the Langley Research Center using the fixed-base Transport Systems Research Vehicle (TSRV) simulator. (The TSRV is a highly modified Boeing 737-100 research airplane.) Several versions of the TOPMS displays were evaluated on the TSRV B-737 simulator by more than 40 research, United States Air Force, airline and industry and pilots who rated the system satisfactory and recommended further development and testing. In this study, the TOPMS was flight tested on the TSRV. A total of 55 takeoff and 30 abort situations were investigated at 5 airfields. TOPMS displays were observed on the navigation display screen in the TSRV research flight deck during various nominal and off-nominal situations, including normal takeoffs; reduced-throttle takeoffs; induced-acceleration deficiencies; simulated-engine failures; and several gross-weight, runway-geometry, runway-surface, and ambient conditions. All tests were performed on dry runways. The TOPMS software executed accurately during the flight tests and the displays correctly depicted the various test conditions. Evaluation pilots found the displays easy to monitor and understand. The algorithm provides pretakeoff predictions of the nominal distances that are needed to accelerate the airplane to takeoff speed and to brake it to a stop; these predictions agreed reasonably well with corresponding values measured during several fully executed and aborted takeoffs. The TOPMS is operational and has been retained on the TSRV for general use and demonstration.

  12. Abi Cooler System Flight Module Performance

    NASA Astrophysics Data System (ADS)

    Colbert, R.; Pruitt, G.; Nguyen, T.; Raab, J.

    2010-04-01

    Northrop Grumman provides a long-life, low mass, efficient two-stage pulse tube cooler for the Advanced Baseline Imager (ABI) to be flown on NOAA's GOES R spacecraft. This two-stage cooler design is one of a family of one and multi-stage pulse tube cooler products developed by Northrop Grumman that provides two separate cryogenic interface temperatures with an integral HEC pulse tube cooler and a remote coaxial cold head. The two-stage cold head for ABI was designed to provide simultaneous large cooling power at 53 K and 183 K. This paper summarizes the data collected on the Flight Module (FM) coolers during acceptance testing. Tests conducted on the FM coolers included applied vibration, survival at non-operational temperature extremes, thermal performance measurements over a range of operational temperatures, as well as temperature stability tests. Designed for a 10-year life, the ABI coolers have the capability to provide 1.9-2.3 W of cooling at 53 K, and between 5.1 W and 8.0 W of cooling at 183 K; while rejecting to 300 K with less than 186 W of input power to the cooler control electronics. The ABI Flight Module coolers, on average, met the cooling capability at 53 K and 183 K with average input power levels of 169 W, a performance margin of roughly 9%. All coolers demonstrated short term stability of less than 73 mKp-p and long term temperature stability of less than 83 mKp-p. These Flight Module coolers represent the full complement of coolers delivered to the ABI Program. All critical FM cooler delivery milestones were met over the course of this program.

  13. An improved method for accurate and rapid measurement of flight performance in Drosophila.

    PubMed

    Babcock, Daniel T; Ganetzky, Barry

    2014-01-01

    Drosophila has proven to be a useful model system for analysis of behavior, including flight. The initial flight tester involved dropping flies into an oil-coated graduated cylinder; landing height provided a measure of flight performance by assessing how far flies will fall before producing enough thrust to make contact with the wall of the cylinder. Here we describe an updated version of the flight tester with four major improvements. First, we added a "drop tube" to ensure that all flies enter the flight cylinder at a similar velocity between trials, eliminating variability between users. Second, we replaced the oil coating with removable plastic sheets coated in Tangle-Trap, an adhesive designed to capture live insects. Third, we use a longer cylinder to enable more accurate discrimination of flight ability. Fourth we use a digital camera and imaging software to automate the scoring of flight performance. These improvements allow for the rapid, quantitative assessment of flight behavior, useful for large datasets and large-scale genetic screens. PMID:24561810

  14. Optimal strategies for insects migrating in the flight boundary layer: Mechanisms and consequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Directed aerial displacement requires that an organism’s airspeed exceeds ambient wind speed. For biologically relevant altitudes, wind speed increases exponentially with increased height above the ground. Most insects thus disperse according to atmospheric conditions. However, those insects flying...

  15. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  16. Molecular modeling of averaged rigor crossbridges from tomograms of insect flight muscle.

    PubMed

    Chen, Li Fan; Winkler, Hanspeter; Reedy, Michael K; Reedy, Mary C; Taylor, Kenneth A

    2002-01-01

    Electron tomography, correspondence analysis, molecular model building, and real-space refinement provide detailed 3-D structures for in situ myosin crossbridges in the nucleotide-free state (rigor), thought to represent the end of the power stroke. Unaveraged tomograms from a 25-nm longitudinal section of insect flight muscle preserved native structural variation. Recurring crossbridge motifs that repeat every 38.7 nm along the actin filament were extracted from the tomogram and classified by correspondence analysis into 25 class averages, which improved the signal to noise ratio. Models based on the atomic structures of actin and of myosin subfragment 1 were rebuilt to fit 11 class averages. A real-space refinement procedure was applied to quantitatively fit the reconstructions and to minimize steric clashes between domains introduced during the fitting. These combined procedures show that no single myosin head structure can fit all the in situ crossbridges. The validity of the approach is supported by agreement of these atomic models with fluorescent probe data from vertebrate muscle as well as with data from regulatory light chain crosslinking between heads of smooth muscle heavy meromyosin when bound to actin. PMID:12160705

  17. The Apparent Rates of Crossbridge Attachment and Detachment Estimated from Atpase Activity in Insect Flight Muscle

    PubMed Central

    Güth, K.; Poole, K. J. V.; Maughan, D.; Kuhn, H. J.

    1987-01-01

    The ATPase activity of single fibers of small fiber bundles (one to three fibers) of insect flight muscle was measured when fibers were repetitively released and restretched by 1.5% of their initial length. The ATPase activity increased with increasing duration of release-restretch pulses applied at a constant repetition frequency, reaching a maximum at a duration of ∼20 ms. For a given duration, the average ATPase activity also increased with increasing frequency of applied length changes and reached a maximum (200% of the isometric ATPase) at a frequency of ∼50 Hz. The data could be fitted to a two-state model in which the apparent rate of crossbridge detachment is enhanced when the crossbridges are mechanically released. Estimates of the apparent rates of attachment and detachment in the isometrically contracting state and of the enhanced detachment rate of unloaded crossbridges were derived from fits to the two-state model. After short pulses of releasing and restretching the fiber the force was low and increased after the restretch in a roughly exponential manner to the initial level. The rate at which force increased after a release-restretch pulse was similar to the sum of the apparent attachment and detachment rates for the isometrically contracting muscle derived from the ATPase activity measurements. PMID:19431712

  18. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1991-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system, other than the LDEF, retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flow by NASA and the DoD including SDI. The objective of TCSE was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post flight analyses of thermal control surfaces to determine the effects of exposure to the low earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in a lab. The performance of the TCSE confirms that low cost, complex experiment packages can be developed that perform well in space.

  19. Fast Direct Injection Mass-Spectrometric Characterization of Stimuli for Insect Electrophysiology by Proton Transfer Reaction-Time of Flight Mass-Spectrometry (PTR-ToF-MS)

    PubMed Central

    Tasin, Marco; Cappellin, Luca; Biasioli, Franco

    2012-01-01

    Electrophysiological techniques are used in insect neuroscience to measure the response of olfactory neurons to volatile odour stimuli. Widely used systems to deliver an olfactory stimulus to a test insect include airstream guided flow through glass cartridges loaded with a given volatile compound on a sorbent support. Precise measurement of the quantity of compound reaching the sensory organ of the test organism is an urgent task in insect electrophysiology. In this study we evaluated the performances of the recent realised proton transfer reaction-time of flight mass-spectrometry (PTR-ToF-MS) as a fast and selective gas sensor. In particular, we characterised the gas emission from cartridges loaded with a set of volatile compounds belonging to different chemical classes and commonly used in electrophysiological experiments. PTR-ToF-MS allowed a fast monitoring of all investigated compounds with sufficient sensitivity and time resolution. The detection and the quantification of air contaminants and solvent or synthetic standards impurities allowed a precise quantification of the stimulus exiting the cartridge. The outcome of this study was twofold: on one hand we showed that PTR-ToF-MS allows monitoring fast processes with high sensitivity by real time detection of a broad number of compounds; on the other hand we provided a tool to solve an important issue in insect electrophysiology. PMID:22666020

  20. The design of a low-speed wind tunnel for studying the flow field of insects' flight

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-yan; Zhang, Peng-fei; Ma, Yun; Ning, Jian-guo

    2015-03-01

    In this paper, low-speed smoke wind tunnel has been designed and fabricated for the insects' flow field visualization. The test section and the contraction section of the tunnel are optimized and determined as to size by the method of computational fluid dynamics. And fairing devices are equipped in different sections to reduce the turbulence intensity and increase the flow uniformity in the experimental sections. For the smoke visualization of small insects, the smokeemitting equipment has been specially designed and carefully debugged. Composed of wind tunnel, light source and high-speed camera, experimental platform for visualization and filming of insect flight flow field has been established. Besides, the feasible and stable method for insect fixing has been designed. With the smoke wind tunnel, flow filed visualization experiment for the honeybee's flapping was conducted and smoke flow filed in the experiment was recorded and analyzed. Near-filed and far-filed vortex structure when the honeybee fly can be recorded clearly. The experimental results indicate that the experimental platform is appropriate for flow filed study on insects flapping.

  1. Poor flight performance in deep-diving cormorants.

    PubMed

    Watanabe, Yuuki Y; Takahashi, Akinori; Sato, Katsufumi; Viviant, Morgane; Bost, Charles-André

    2011-02-01

    Aerial flight and breath-hold diving present conflicting morphological and physiological demands, and hence diving seabirds capable of flight are expected to face evolutionary trade-offs regarding locomotory performances. We tested whether Kerguelen shags Phalacrocorax verrucosus, which are remarkable divers, have poor flight capability using newly developed tags that recorded their flight air speed (the first direct measurement for wild birds) with propeller sensors, flight duration, GPS position and depth during foraging trips. Flight air speed (mean 12.7 m s(-1)) was close to the speed that minimizes power requirement, rather than energy expenditure per distance, when existing aerodynamic models were applied. Flights were short (mean 92 s), with a mean summed duration of only 24 min day(-1). Shags sometimes stayed at the sea surface without diving between flights, even on the way back to the colony, and surface durations increased with the preceding flight durations; these observations suggest that shags rested after flights. Our results indicate that their flight performance is physiologically limited, presumably compromised by their great diving capability (max. depth 94 m, duration 306 s) through their morphological adaptations for diving, including large body mass (enabling a large oxygen store), small flight muscles (to allow for large leg muscles for underwater propulsion) and short wings (to decrease air volume in the feathers and hence buoyancy). The compromise between flight and diving, as well as the local bathymetry, shape the three-dimensional foraging range (<26 km horizontally, <94 m vertically) in this bottom-feeding cormorant. PMID:21228200

  2. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    PubMed Central

    Wu, Shenping; Liu, Jun; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-01-01

    Background Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. Methodology We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the “target zone”, situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. Conclusion We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force

  3. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    SciTech Connect

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-10-22

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77{sup o}/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127{sup o} range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  4. Apollo 14 flight support and system performance

    NASA Technical Reports Server (NTRS)

    Rice, R. R.

    1971-01-01

    The Apollo 13 incident and subsequent oxygen tank redesign for Apollo 14 placed unique requirements on the flight support activity. A major part of this activity was the integration of the various analytical efforts into a single team function. Additionally, the first flight of the redesigned system without an orbital test required an extensive analytical base. The support team philosophy, objectives, and organization are presented. Various analytical tools that were used during the flight are discussed. Investigations made during the postflight period are considered and their impact upon subsequent flights shown.

  5. WFC3: In-Flight Performance Highlights

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.

    2010-01-01

    Wide Field Camera 3 (WFC3), a powerful new imager for the Hubble Space Telescope (HST), was successfully installed in the telescope in May 2009 during the first dramatic spacewalk of space shuttle flight STS-125, also known as HST Servicing Mission 4. This new camera offers unique observing capabilities in two channels spanning a broad wavelength range from the near ultraviolet to the near infrared (200-1000nm in the UV/Visible [UVIS] channel; 850-1700nm in the IR channel). After an initial outgassing period, WFC3 was cooled to its observing configuration in June. In the following months, a highly successful Servicing Mission Observatory Verification (SMOV4) program was executed, which has confirmed the exciting scientific potential of the instrument. Detailed performance results from the SMOV 4 program are presented in a number of papers in this session. In this paper, we highlight some top-level performance assessments (throughput, limiting magnitudes, survey speeds) for WFC3, which is now actively engaged in the execution of forefront astronomical observing programs.

  6. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes.

    PubMed

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2016-05-11

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species. PMID:27147100

  7. Post-Flight Analysis of GPSR Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barker, Lee; Mamich, Harvey; McGregor, John

    2016-01-01

    On 5 December 2014, the first test flight of the Orion Multi-Purpose Crew Vehicle executed a unique and challenging flight profile including an elevated re-entry velocity and steeper flight path angle to envelope lunar re-entry conditions. A new navigation system including a single frequency (L1) GPS receiver was evaluated for use as part of the redundant navigation system required for human space flight. The single frequency receiver was challenged by a highly dynamic flight environment including flight above low Earth orbit, as well as single frequency operation with ionospheric delay present. This paper presents a brief description of the GPS navigation system, an independent analysis of flight telemetry data, and evaluation of the GPSR performance, including evaluation of the ionospheric model employed to supplement the single frequency receiver. Lessons learned and potential improvements will be discussed.

  8. Calculating Launch Vehicle Flight Performance Reserve

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Pinson, Robin M.; Beard, Bernard B.

    2011-01-01

    This paper addresses different methods for determining the amount of extra propellant (flight performance reserve or FPR) that is necessary to reach orbit with a high probability of success. One approach involves assuming that the various influential parameters are independent and that the result behaves as a Gaussian. Alternatively, probabilistic models may be used to determine the vehicle and environmental models that will be available (estimated) for a launch day go/no go decision. High-fidelity closed-loop Monte Carlo simulation determines the amount of propellant used with each random combination of parameters that are still unknown at the time of launch. Using the results of the Monte Carlo simulation, several methods were used to calculate the FPR. The final chosen solution involves determining distributions for the pertinent outputs and running a separate Monte Carlo simulation to obtain a best estimate of the required FPR. This result differs from the result obtained using the other methods sufficiently that the higher fidelity is warranted.

  9. Dispersal propensity, but not flight performance, explains variation in dispersal ability.

    PubMed

    Steyn, Vernon M; Mitchell, Katherine A; Terblanche, John S

    2016-08-17

    Enhanced dispersal ability may lead to accelerated range expansion and increased rates of population establishment, thereby affecting population genetic structure and evolutionary potential. Morphological, behavioural and physiological traits that characterize dispersive individuals from residents are poorly understood for many invertebrate systems, especially in non-polymorphic pterygote species. Here we examined phenotypic differences between dispersal-prone and philopatric individuals from repeated mark-release-recapture (MRR) experiments using an invasive agricultural pest, Ceratitis capitata Comprehensive morphometric assessment and subsequent minimal adequate modelling using an information theoretic approach identified thorax mass : body mass ratio as a key predictor of disperser flies under semi-natural conditions. Performance differences in flight ability were then examined under controlled laboratory conditions to assess whether greater thorax mass : body mass ratio was associated with enhanced flight ability. The larger thorax : body mass ratio was associated with measurable differences in mean flight duration, most predominantly in males, and also by their willingness to disperse, scored as the number and duration of voluntary flights. No other measures of whole-animal flight performance (e.g. mean and peak vertical force, total or maximum flight duration) differed. Variation in voluntary behaviour may result in significant alterations of movement behaviour and realized dispersal in nature. This phenomenon may help explain intraspecific variation in the dispersal ability of insects. PMID:27488649

  10. Surpassing Mt. Everest: extreme flight performance of alpine bumble-bees.

    PubMed

    Dillon, Michael E; Dudley, Robert

    2014-02-01

    Animal flight at altitude involves substantial aerodynamic and physiological challenges. Hovering at high elevations is particularly demanding from the dual perspectives of lift and power output; nevertheless, some volant insects reside and fly at elevations in excess of 4000 m. Here, we demonstrate that alpine bumble-bees possess substantial aerodynamic reserves, and can sustain hovering flight under hypobaria at effective elevations in excess of 9000 m, i.e. higher than Mt. Everest. Modulation of stroke amplitude and not wingbeat frequency is the primary means of compensation for overcoming the aerodynamic challenge. The presence of such excess capacity in a high-altitude bumble-bee is surprising and suggests intermittent behavioural demands for extreme flight performance supplemental to routine foraging. PMID:24501268

  11. Enhanced flight performance by genetic manipulation of wing shape in Drosophila.

    PubMed

    Ray, Robert P; Nakata, Toshiyuki; Henningsson, Per; Bomphrey, Richard J

    2016-01-01

    Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals. PMID:26926954

  12. Enhanced flight performance by genetic manipulation of wing shape in Drosophila

    PubMed Central

    Ray, Robert P.; Nakata, Toshiyuki; Henningsson, Per; Bomphrey, Richard J.

    2016-01-01

    Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals. PMID:26926954

  13. Binding of myosin subfragment 1 to glycerinated insect flight muscle in the rigor state.

    PubMed Central

    Goody, R S; Reedy, M C; Hofmann, W; Holmes, K C; Reedy, M K

    1985-01-01

    The binding of rabbit muscle myosin subfragment 1 (S1) to glycerinated insect flight muscle fibers has been studied by low-angle x-ray diffraction, quantitative sodium dodecyl sulfate gel electrophoresis, quantitative interference microscopy, and electron microscopy. Changes induced in the rigor x-ray diffraction pattern are consistent with the idea that vacant myosin-binding sites on thin filaments are filled by exogenous S1. Electron microscopy indicates that S1 permeates and labels fibers and fibrils completely. Electron micrographs also show that cross-bridges are not displaced by exogenous S1 under the conditions used, and this is supported by the unchanged mechanical stiffness of the S1-labeled fibers. The amount of bound S1, as measured by gel electrophoresis and interference microscopy, together with the magnitude of the intensity changes in the x-ray diffraction pattern, is consistent with a thick filament structure that contains four molecules of endogenous myosin per 14.5 nm of its length, but does not agree well with earlier estimates of six myosins per crown. Lack of information on possible inhibition of S1-binding by factors other than the presence of cross-bridges, e.g., troponin, render uncertain calculations of the number of attached cross-bridges in the rigor state. However, it appears that at least 75% of the endogenous myosin heads are attached. Occupancy of binding sites on thin filaments after incubation with S1 is high, probably greater than 85%, so that x-ray scattering from those parts of the structure that adhere to the symmetry of the thin filaments can be treated as diffraction from S1-decorated thin filaments. In addition, we show in thin flared X cross sections that exo-S1 heads bind to actin with the geometry described in decorated actin by Taylor, K.A., and L.A. Amos. Images FIGURE 1 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 14 FIGURE 15 FIGURE 16 PMID:3978197

  14. Structural changes in isometrically contracting insect flight muscle trapped following a mechanical perturbation.

    PubMed

    Wu, Shenping; Liu, Jun; Reedy, Mary C; Perz-Edwards, Robert J; Tregear, Richard T; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E; Reedy, Michael K; Taylor, Kenneth A

    2012-01-01

    The application of rapidly applied length steps to actively contracting muscle is a classic method for synchronizing the response of myosin cross-bridges so that the average response of the ensemble can be measured. Alternatively, electron tomography (ET) is a technique that can report the structure of the individual members of the ensemble. We probed the structure of active myosin motors (cross-bridges) by applying 0.5% changes in length (either a stretch or a release) within 2 ms to isometrically contracting insect flight muscle (IFM) fibers followed after 5-6 ms by rapid freezing against a liquid helium cooled copper mirror. ET of freeze-substituted fibers, embedded and thin-sectioned, provides 3-D cross-bridge images, sorted by multivariate data analysis into ~40 classes, distinct in average structure, population size and lattice distribution. Individual actin subunits are resolved facilitating quasi-atomic modeling of each class average to determine its binding strength (weak or strong) to actin. ~98% of strong-binding acto-myosin attachments present after a length perturbation are confined to "target zones" of only two actin subunits located exactly midway between successive troponin complexes along each long-pitch helical repeat of actin. Significant changes in the types, distribution and structure of actin-myosin attachments occurred in a manner consistent with the mechanical transients. Most dramatic is near disappearance, after either length perturbation, of a class of weak-binding cross-bridges, attached within the target zone, that are highly likely to be precursors of strong-binding cross-bridges. These weak-binding cross-bridges were originally observed in isometrically contracting IFM. Their disappearance following a quick stretch or release can be explained by a recent kinetic model for muscle contraction, as behaviour consistent with their identification as precursors of strong-binding cross-bridges. The results provide a detailed model for

  15. Structural Changes in Isometrically Contracting Insect Flight Muscle Trapped following a Mechanical Perturbation

    PubMed Central

    Wu, Shenping; Liu, Jun; Perz-Edwards, Robert J.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2012-01-01

    The application of rapidly applied length steps to actively contracting muscle is a classic method for synchronizing the response of myosin cross-bridges so that the average response of the ensemble can be measured. Alternatively, electron tomography (ET) is a technique that can report the structure of the individual members of the ensemble. We probed the structure of active myosin motors (cross-bridges) by applying 0.5% changes in length (either a stretch or a release) within 2 ms to isometrically contracting insect flight muscle (IFM) fibers followed after 5–6 ms by rapid freezing against a liquid helium cooled copper mirror. ET of freeze-substituted fibers, embedded and thin-sectioned, provides 3-D cross-bridge images, sorted by multivariate data analysis into ∼40 classes, distinct in average structure, population size and lattice distribution. Individual actin subunits are resolved facilitating quasi-atomic modeling of each class average to determine its binding strength (weak or strong) to actin. ∼98% of strong-binding acto-myosin attachments present after a length perturbation are confined to “target zones” of only two actin subunits located exactly midway between successive troponin complexes along each long-pitch helical repeat of actin. Significant changes in the types, distribution and structure of actin-myosin attachments occurred in a manner consistent with the mechanical transients. Most dramatic is near disappearance, after either length perturbation, of a class of weak-binding cross-bridges, attached within the target zone, that are highly likely to be precursors of strong-binding cross-bridges. These weak-binding cross-bridges were originally observed in isometrically contracting IFM. Their disappearance following a quick stretch or release can be explained by a recent kinetic model for muscle contraction, as behaviour consistent with their identification as precursors of strong-binding cross-bridges. The results provide a detailed model

  16. Flight performance of bumble bee as a possible pollinator in space agriculture under partial gravity

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Mitsuhata, Masahiro; Sasaki, Masami; Space Agriculture Task Force, J.

    Space agriculture is an advanced life support concept for habitation on extraterrestrial bodies based on biological and ecological function. Flowering plant species are core member of space agriculture to produce food and revitalize air and water. Selection of crop plant species is made on the basis of nutritional requirements to maintain healthy life of space crew. Species selected for space agriculture have several mode of reproduction. For some of plant species, insect pollination is effective to increase yield and quality of food. In terrestrial agriculture, bee is widely introduced to pollinate flower. For pollinator insect on Mars, working environment is different from Earth. Magnitude of gravity is 0.38G on Mars surface. In order to confirm feasibility of insect pollination for space agriculture, capability of flying pollinator insect under such exotic condition should be examined. Even bee does not possess evident gravity sensory system, gravity dominates flying performance and behavior. During flight or hovering, lifting force produced by wing beat sustains body weight, which is the product of body mass and gravitational acceleration. Flying behavior of bumble bee, Bombus ignitus, was documented under partial or micro-gravity produced by parabolic flight of jet plane. Flying behavior at absence of gravity differed from that under normal gravity. Ability of bee to fly under partial gravity was examined at the level of Mars, Moon and the less, to determine the threshold level of gravity for bee flying maneuver. Adaptation process of bee flying under different gravity level was evaluated as well by successive documentation of parabolic flight experiment.

  17. PTS performance by flight- and control-group macaques

    NASA Technical Reports Server (NTRS)

    Washburn, D. A.; Rumbaugh, D. M.; Richardson, W. K.; Gulledge, J. P.; Shlyk, G. G.; Vasilieva, O. N.

    2000-01-01

    A total of 25 young monkeys (Macaca mulatta) were trained with the Psychomotor Test System, a package of software tasks and computer hardware developed for spaceflight research with nonhuman primates. Two flight monkeys and two control monkeys were selected from this pool and performed a psychomotor task before and after the Bion 11 flight or a ground-control period. Monkeys from both groups showed significant disruption in performance after the 14-day flight or simulation (plus one anesthetized day of biopsies and other tests), and this disruption appeared to be magnified for the flight animal.

  18. Control Design and Performance Analysis for Autonomous Formation Flight Experimentss

    NASA Astrophysics Data System (ADS)

    Rice, Caleb Michael

    Autonomous Formation Flight is a key approach for reducing greenhouse gas emissions and managing traffic in future high density airspace. Unmanned Aerial Vehicles (UAV's) have made it possible for the physical demonstration and validation of autonomous formation flight concepts inexpensively and eliminates the flight risk to human pilots. This thesis discusses the design, implementation, and flight testing of three different formation flight control methods, Proportional Integral and Derivative (PID); Fuzzy Logic (FL); and NonLinear Dynamic Inversion (NLDI), and their respective performance behavior. Experimental results show achievable autonomous formation flight and performance quality with a pair of low-cost unmanned research fixed wing aircraft and also with a solo vertical takeoff and landing (VTOL) quadrotor.

  19. In-flight disinsection as an efficacious procedure for preventing international transport of insects of public health importance.

    PubMed Central

    Russell, R. C.; Paton, R.

    1989-01-01

    Aircraft disinsection with aerosol insecticides during flight has generally been held to be inadvisable because it was assumed that the insecticides would be rapidly removed by the cabin air-conditioning system. We have developed protocols to deliver 2% d-phenothrin at a dose of 35 g per 100 m3 in various aircraft, and trials undertaken on Boeing 747 and 767 aircraft showed that their air-conditioning systems do not preclude effective disinsection. Mortality levels of 100% for Culex quinquefasciatus and Musca domestica test insects were recorded under normal operating conditions during routine scheduled passenger flights with disinsection procedures undertaken at "blocks-away" or at "top-of-descent". As a result, "top-of-descent" disinsection has been introduced as the recommended procedure for aircraft landing in Australia. PMID:2611975

  20. Flight performance of the largest volant bird

    PubMed Central

    Ksepka, Daniel T.

    2014-01-01

    Pelagornithidae is an extinct clade of birds characterized by bizarre tooth-like bony projections of the jaws. Here, the flight capabilities of pelagornithids are explored based on data from a species with the largest reported wingspan among birds. Pelagornis sandersi sp. nov. is represented by a skull and substantial postcranial material. Conservative wingspan estimates (∼6.4 m) exceed theoretical maximums based on extant soaring birds. Modeled flight properties indicate that lift:drag ratios and glide ratios for P. sandersi were near the upper limit observed in extant birds and suggest that pelagornithids were highly efficient gliders, exploiting a long-range soaring ecology. PMID:25002475

  1. Wing wear reduces bumblebee flight performance in a dynamic obstacle course.

    PubMed

    Mountcastle, Andrew M; Alexander, Teressa M; Switzer, Callin M; Combes, Stacey A

    2016-06-01

    Previous work has shown that wing wear increases mortality in bumblebees. Although a proximate mechanism for this phenomenon has remained elusive, a leading hypothesis is that wing wear increases predation risk by reducing flight manoeuvrability. We tested the effects of simulated wing wear on flight manoeuvrability in Bombus impatiens bumblebees using a dynamic obstacle course designed to push bees towards their performance limits. We found that removing 22% wing area from the tips of both forewings (symmetric wear) caused a 9% reduction in peak acceleration during manoeuvring flight, while performing the same manipulation on only one wing (asymmetric wear) did not significantly reduce maximum acceleration. The rate at which bees collided with obstacles was correlated with body length across all treatments, but wing wear did not increase collision rate, possibly because shorter wingspans allow more room for bees to manoeuvre. This study presents a novel method for exploring extreme flight manoeuvres in flying insects, eliciting peak accelerations that exceed those measured during flight through a stationary obstacle course. If escape from aerial predation is constrained by acceleration capacity, then our results offer a potential explanation for the observed increase in bumblebee mortality with wing wear. PMID:27303054

  2. An unstructured mesh arbitrary Lagrangian-Eulerian unsteady incompressible flow solver and its application to insect flight aerodynamics

    NASA Astrophysics Data System (ADS)

    Su, Xiaohui; Cao, Yuanwei; Zhao, Yong

    2016-06-01

    In this paper, an unstructured mesh Arbitrary Lagrangian-Eulerian (ALE) incompressible flow solver is developed to investigate the aerodynamics of insect hovering flight. The proposed finite-volume ALE Navier-Stokes solver is based on the artificial compressibility method (ACM) with a high-resolution method of characteristics-based scheme on unstructured grids. The present ALE model is validated and assessed through flow passing over an oscillating cylinder. Good agreements with experimental results and other numerical solutions are obtained, which demonstrates the accuracy and the capability of the present model. The lift generation mechanisms of 2D wing in hovering motion, including wake capture, delayed stall, rapid pitch, as well as clap and fling are then studied and illustrated using the current ALE model. Moreover, the optimized angular amplitude in symmetry model, 45°, is firstly reported in details using averaged lift and the energy power method. Besides, the lift generation of complete cyclic clap and fling motion, which is simulated by few researchers using the ALE method due to large deformation, is studied and clarified for the first time. The present ALE model is found to be a useful tool to investigate lift force generation mechanism for insect wing flight.

  3. Flight Test Techniques Used to Evaluate Performance Benefits During Formation Flight

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Cobleigh, Brent R.; Vachon, M. Jake; SaintJohn, Clinton

    2002-01-01

    The Autonomous Formation Flight research project has been implemented at the NASA Dryden Flight Research Center to demonstrate the benefits of formation flight and develop advanced technologies to facilitate exploiting these benefits. Two F/A-18 aircraft have been modified to precisely control and monitor relative position, and to determine performance of the trailing airplane. Flight test maneuvers and analysis techniques have been developed to determine the performance advantages, including drag and fuel flow reductions and improvements in range factor. By flying the trailing airplane through a matrix of lateral, longitudinal, and vertical offset positions, a detailed map of the performance benefits has been obtained at two flight conditions. Significant performance benefits have been obtained during this flight test phase. Drag reductions of more than 20 percent and fuel flow reductions of more than 18 percent have been measured at flight conditions of Mach 0.56 and an altitude of 25,000 ft. The results show favorable agreement with published theory and generic predictions. An F/A-18 long-range cruise mission at Mach 0.8 and an altitude of 40,000 ft has been simulated in the optimum formation position and has demonstrated a 14-percent fuel reduction when compared with a controlled chase airplane of similar configuration.

  4. Multi-factor climate change effects on insect herbivore performance

    PubMed Central

    Scherber, Christoph; Gladbach, David J; Stevnbak, Karen; Karsten, Rune Juelsborg; Schmidt, Inger Kappel; Michelsen, Anders; Albert, Kristian Rost; Larsen, Klaus Steenberg; Mikkelsen, Teis Nørgaard; Beier, Claus; Christensen, Søren

    2013-01-01

    The impact of climate change on herbivorous insects can have far-reaching consequences for ecosystem processes. However, experiments investigating the combined effects of multiple climate change drivers on herbivorous insects are scarce. We independently manipulated three climate change drivers (CO2, warming, drought) in a Danish heathland ecosystem. The experiment was established in 2005 as a full factorial split-plot with 6 blocks × 2 levels of CO2 × 2 levels of warming × 2 levels of drought = 48 plots. In 2008, we exposed 432 larvae (n = 9 per plot) of the heather beetle (Lochmaea suturalis Thomson), an important herbivore on heather, to ambient versus elevated drought, temperature, and CO2 (plus all combinations) for 5 weeks. Larval weight and survival were highest under ambient conditions and decreased significantly with the number of climate change drivers. Weight was lowest under the drought treatment, and there was a three-way interaction between time, CO2, and drought. Survival was lowest when drought, warming, and elevated CO2 were combined. Effects of climate change drivers depended on other co-acting factors and were mediated by changes in plant secondary compounds, nitrogen, and water content. Overall, drought was the most important factor for this insect herbivore. Our study shows that weight and survival of insect herbivores may decline under future climate. The complexity of insect herbivore responses increases with the number of combined climate change drivers. PMID:23789058

  5. Should I fight or should I flight? How studying insect aggression can help integrated pest management.

    PubMed

    Benelli, Giovanni

    2015-07-01

    Aggression plays a key role all across the animal kingdom, as it allows the acquisition and/or defence of limited resources (food, mates and territories) in a huge number of species. A large part of our knowledge on aggressive behaviour has been developed on insects of economic importance. How can this knowledge be exploited to enhance integrated pest management? Here, I highlight how knowledge on intraspecific aggression can help IPM both in terms of insect pests (with a focus on the enhancement of the sterile insect technique) and in terms of biological control agents (with a focus on mass-rearing optimisation). Then, I examine what implications for IPM can be outlined from knowledge about interspecific aggressive behaviour. Besides predator-pest aggressive interactions predicted by classic biological control, I focus on what IPM can learn from (i) interspecific aggression among pest species (with special reference to competitive displacement), (ii) defensive behaviour exhibited by prey against predaceous insects and (iii) conflicts among predaceous arthropods sharing the same trophic niche (with special reference to learning/sensitisation practices and artificial manipulation of chemically mediated interactions). PMID:25582991

  6. System identification and sensorimotor determinants of flight maneuvers in an insect

    NASA Astrophysics Data System (ADS)

    Sponberg, Simon; Hall, Robert; Roth, Eatai

    Locomotor maneuvers are inherently closed-loop processes. They are generally characterized by the integration of multiple sensory inputs and adaptation or learning over time. To probe sensorimotor processing we take a system identification approach treating the underlying physiological systems as dynamic processes and altering the feedback topology in experiment and analysis. As a model system, we use agile hawk moths (Manduca sexta), which feed from real and robotic flowers while hovering in mid air. Moths rely on vision and mechanosensation to track floral targets and can do so at exceptionally low luminance levels despite hovering being a mechanically unstable behavior that requires neural feedback to stabilize. By altering the sensory environment and placing mechanical and visual signals in conflict we show a surprisingly simple linear summation of visual and mechanosensation produces a generative prediction of behavior to novel stimuli. Tracking performance is also limited more by the mechanics of flight than the magnitude of the sensory cue. A feedback systems approach to locomotor control results in new insights into how behavior emerges from the interaction of nonlinear physiological systems.

  7. Characterization of in-flight performance of ion propulsion systems

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Rawlin, Vincent K.

    1993-01-01

    In-flight measurements of ion propulsion performance, ground test calibrations, and diagnostic performance measurements were reviewed. It was found that accelerometers provided the most accurate in-flight thrust measurements compared with four other methods that were surveyed. An experiment has also demonstrated that pre-flight alignment of the thrust vector was sufficiently accurate so that gimbal adjustments and use of attitude control thrusters were not required to counter disturbance torques caused by thrust vector misalignment. The effects of facility background pressure, facility enhanced charge-exchange reactions, and contamination on ground-based performance measurements are also discussed. Vacuum facility pressures for inert-gas ion thruster life tests and flight qualification tests will have to be less than 2 mPa to ensure accurate performance measurements.

  8. The Typical Flight Performance of Blowflies: Measuring the Normal Performance Envelope of Calliphora vicina Using a Novel Corner-Cube Arena

    PubMed Central

    Bomphrey, Richard J.; Walker, Simon M.; Taylor, Graham K.

    2009-01-01

    Despite a wealth of evidence demonstrating extraordinary maximal performance, little is known about the routine flight performance of insects. We present a set of techniques for benchmarking performance characteristics of insects in free flight, demonstrated using a model species, and comment on the significance of the performance observed. Free-flying blowflies (Calliphora vicina) were filmed inside a novel mirrored arena comprising a large (1.6 m1.6 m1.6 m) corner-cube reflector using a single high-speed digital video camera (250 or 500 fps). This arrangement permitted accurate reconstruction of the flies' 3-dimensional trajectories without the need for synchronisation hardware, by virtue of the multiple reflections of a subject within the arena. Image sequences were analysed using custom-written automated tracking software, and processed using a self-calibrating bundle adjustment procedure to determine the subject's instantaneous 3-dimensional position. We illustrate our method by using these trajectory data to benchmark the routine flight performance envelope of our flies. Flight speeds were most commonly observed between 1.2 ms−1 and 2.3 ms−1, with a maximum of 2.5 ms−1. Our flies tended to dive faster than they climbed, with a maximum descent rate (−2.4 ms−1) almost double the maximum climb rate (1.2 ms−1). Modal turn rate was around 240°s−1, with maximal rates in excess of 1700°s−1. We used the maximal flight performance we observed during normal flight to construct notional physical limits on the blowfly flight envelope, and used the distribution of observations within that notional envelope to postulate behavioural preferences or physiological and anatomical constraints. The flight trajectories we recorded were never steady: rather they were constantly accelerating or decelerating, with maximum tangential accelerations and maximum centripetal accelerations on the order of 3 g. PMID:19924228

  9. Cytokinin primes plant responses to wounding and reduces insect performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report a potential role of endogenous cytokinin supply in priming plant defense against herbivory. Cytokinin priming significantly reduced weight gain by insect larvae. Unlike previously described priming by volatile compounds, priming by cytokinin did not overcome vascular restrictions on system...

  10. Landsat-4 horizon scanner flight performance

    NASA Technical Reports Server (NTRS)

    Bilanow, S.; Chen, L. C.

    1984-01-01

    This paper presents an analysis of the flight data from a new design of horizon scanner flown on Landsat-4. The salient features in the data are described and demonstrated by data plots. High frequency noise must be filtered out to achieve good accuracy, but this is effectively done by 128-point averaging. Sun and moon interference effects are identified. The effects of earth oblateness and spacecraft altitude variations are modeled, and the residual systematic errors are analyzed. Most of the residual errors are apparently explained by the effects of earth radiance variation, with the winter polar regions showing the highest variability in the attitude measurements due to winter stratosphere temperature variations. In general, this sensor provides improved accuracy over those flown on previous missions.

  11. Space Shuttle propulsion performance reconstruction from flight data

    NASA Technical Reports Server (NTRS)

    Rogers, Robert M.

    1989-01-01

    The aplication of extended Kalman filtering to estimating Space Shuttle Solid Rocket Booster (SRB) performance, specific impulse, from flight data in a post-flight processing computer program. The flight data used includes inertial platform acceleration, SRB head pressure, and ground based radar tracking data. The key feature in this application is the model used for the SRBs, which represents a reference quasi-static internal ballistics model normalized to the propellant burn depth. Dynamic states of mass overboard and propellant burn depth are included in the filter model to account for real-time deviations from the reference model used. Aerodynamic, plume, wind and main engine uncertainties are included.

  12. Evolution of avian flight: muscles and constraints on performance.

    PubMed

    Tobalske, Bret W

    2016-09-26

    Competing hypotheses about evolutionary origins of flight are the 'fundamental wing-stroke' and 'directed aerial descent' hypotheses. Support for the fundamental wing-stroke hypothesis is that extant birds use flapping of their wings to climb even before they are able to fly; there are no reported examples of incrementally increasing use of wing movements in gliding transitioning to flapping. An open question is whether locomotor styles must evolve initially for efficiency or if they might instead arrive due to efficacy. The proximal muscles of the avian wing output work and power for flight, and new research is exploring functions of the distal muscles in relation to dynamic changes in wing shape. It will be useful to test the relative contributions of the muscles of the forearm compared with inertial and aerodynamic loading of the wing upon dynamic morphing. Body size has dramatic effects upon flight performance. New research has revealed that mass-specific muscle power declines with increasing body mass among species. This explains the constraints associated with being large. Hummingbirds are the only species that can sustain hovering. Their ability to generate force, work and power appears to be limited by time for activation and deactivation within their wingbeats of high frequency. Most small birds use flap-bounding flight, and this flight style may offer an energetic advantage over continuous flapping during fast flight or during flight into a headwind. The use of flap-bounding during slow flight remains enigmatic. Flap-bounding birds do not appear to be constrained to use their primary flight muscles in a fixed manner. To improve understanding of the functional significance of flap-bounding, the energetic costs and the relative use of alternative styles by a given species in nature merit study.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528773

  13. Expedition 16 Flight Engineer Tani Performs EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Astronaut Daniel Tani (top center), Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the 6-hour and 33-minute space walk, Tani and STS-120 mission specialist Scott Parazynski (out of frame), worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of 'shavings' he found under the joint's multilayer insulation covers. The space walkers also outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later. The moon is visible at lower center. The STS-120 mission launched from Kennedy Space Center's launch pad 39A at 11:38:19 a.m. (EDT) on October 23, 2007.

  14. Challenges in modeling the X-29 flight test performance

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Kania, Jan; Pearce, Robert; Mills, Glen

    1987-01-01

    Presented are methods, instrumentation, and difficulties associated with drag measurement of the X-29A aircraft. The initial performance objective of the X-29A program emphasized drag polar shapes rather than absolute drag levels. Priorities during the flight envelope expansion restricted the evaluation of aircraft performance. Changes in aircraft configuration, uncertainties in angle-of-attack calibration, and limitations in instrumentation complicated the analysis. Limited engine instrumentation with uncertainties in overall in-flight thrust accuracy made it difficult to obtain reliable values of coefficient of parasite drag. The aircraft was incapable of tracking the automatic camber control trim schedule for optimum wing flaperon deflection during typical dynamic performance maneuvers; this has also complicated the drag polar shape modeling. The X-29A was far enough off the schedule that the developed trim drag correction procedure has proven inadequate. However, good drag polar shapes have been developed throughout the flight envelope. Preliminary flight results have compared well with wind tunnel predictions. A more comprehensive analysis must be done to complete performance models. The detailed flight performance program with a calibrated engine will benefit from the experience gained during this preliminary performance phase.

  15. Challenges in modeling the X-29A flight test performance

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Kania, Jan; Pearce, Robert; Mills, Glen

    1987-01-01

    The paper presents the methods, instrumentation, and difficulties associated with drag measurement of the X-29A aircraft. The initial performance objective of the X-29A program emphasized drag polar shapes rather than absolute drag levels. Priorities during the flight envelope expansion restricted the evaluation of aircraft performance. Changes in aircraft configuration, uncertainties in angle-of-attack calibration, and limitations in instrumentation complicated the analysis. Limited engine instrumentation with uncertainties in overall in-flight thrust accuracy made it difficult to obtain reliable values of coefficient of parasite drag. The aircraft was incapable of tracking the automatic camber control trim schedule for optimum wing flaperon deflection during typical dynamic performance maneuvers; this has also complicated the drag polar shape modeling. The X-29A was far enough off the schedule that the developed trim drag correction procedure has proven inadequate. Despite these obstacles, good drag polar shapes have been developed throughout the flight envelope. Preliminary flight results have compared well with wind tunnel predictions. A more comprehensive analysis must be done to complete the performance models. The detailed flight performance program with a calibrated engine will benefit from the experience gained during this preliminary performance phase.

  16. Comparative study of solid and bristled wings in flapping flight of tiny insects

    NASA Astrophysics Data System (ADS)

    Terrill, Christopher; Santhanakrishnan, Arvind

    2015-11-01

    Small insects such as thrips that are less than 1 mm in size fly at Reynolds numbers (Re) on the order of 10 and use wing-wing interaction during flapping. In this interaction, referred to as `clap-and-fling', the wings come in close contact with each other at the end of upstroke and rotate about the trailing edge during start of downstroke. The wings of these tiny insects consist of an array of bristles as opposed to a solid membrane. The goal of this study is to examine the effects of bristled wings on aerodynamic force generation and flow structures compared to solid wings. We used an experimental model for the study in which two model wings were prescribed to move along a simplified 2D representation of clap-and-fling kinematics. Forces were measured through the use of strain gauges and 2D phase-locked particle image velocimetry (PIV) was used to visualize the flow generated from flapping. The PIV results show that circulation of the leading edge vortices (LEVs) is attenuated when bristled wings are used. However, improved drag reduction is observed in the bristled wings. Aerodynamic efficiency variation with Re will be discussed. This research was supported by the National Science Foundation (CBET 1512071).

  17. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight.

    PubMed

    Cheng, Xin; Sun, Mao

    2016-01-01

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a "clap and fling" motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial "clap and fling" motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1-1.2); that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so. PMID:27168523

  18. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight

    PubMed Central

    Cheng, Xin; Sun, Mao

    2016-01-01

    Wing-motion of hovering small fly Liriomyza sativae was measured using high-speed video and flows of the wings calculated numerically. The fly used high wingbeat frequency (≈265 Hz) and large stroke amplitude (≈182°); therefore, even if its wing-length (R) was small (R ≈ 1.4 mm), the mean velocity of wing reached ≈1.5 m/s, the same as that of an average-size insect (R ≈ 3 mm). But the Reynolds number (Re) of wing was still low (≈40), owing to the small wing-size. In increasing the stroke amplitude, the outer parts of the wings had a “clap and fling” motion. The mean-lift coefficient was high, ≈1.85, several times larger than that of a cruising airplane. The partial “clap and fling” motion increased the lift by ≈7%, compared with the case of no aerodynamic interaction between the wings. The fly mainly used the delayed stall mechanism to generate the high-lift. The lift-to-drag ratio is only 0.7 (for larger insects, Re being about 100 or higher, the ratio is 1–1.2); that is, although the small fly can produce enough lift to support its weight, it needs to overcome a larger drag to do so. PMID:27168523

  19. Forward flight of birds revisited. Part 1: aerodynamics and performance.

    PubMed

    Iosilevskii, G

    2014-10-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance-at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small. PMID:26064548

  20. Flight performance during hunting excursions in Eleonora's falcon Falco eleonorae.

    PubMed

    Hedenström, A; Rosén, M; Akesson, S; Spina, F

    1999-08-01

    Among birds, falcons are high-performance flyers, in many cases adapted for aerial hunting and hence suitable targets for investigating limits to flight performance. Using an optical range finder, we measured flight tracks of Eleonora's falcon (Falco eleonorae), a species breeding in the Mediterranean region and specialised for hunting autumn passage bird migrants, when commuting between their nesting colony and offshore hunting areas (straight transportation flight) and when searching for prey (transecting and searching flight). Airspeed during searching flight was significantly slower than during straight transportation and transecting flight, but there was no significant difference in airspeed between the latter two flight modes. Straight transportation flight was significantly faster than predicted minimum power speed. Also, during straight transportation flight, the falcons responded to head- and tailwinds by increasing their airspeed when flying into the wind. However, they did not show any significant airspeed adjustments with respect to the angle between the track and the heading, as would be expected in birds trying to maintain a constant track direction. Mean sustainable climb rate (during (greater than or equal to) 240 s) was 1.4+/-0.31 m s-1 (mean +/- s.d., N=13), which is rather a high rate for a bird the size of an Eleonora's falcon. The climb rate was used to calculate maximum load-carrying capacity and maximum sustained horizontal flapping flight speed. The mean wingbeat frequency during powered climbing flight was 4.68 Hz, which was used to estimate the mass-specific muscle work. When falcons were leaving the colony for offshore hunting, they gained altitude by slope-soaring when there was an onshore wind. We formulated a simple criterion for the required gliding-flight rate of climb during an initial slope-soaring episode when minimizing the energy cost of reaching a certain altitude far out over the sea (which is where the prey is to be found

  1. Preliminary supersonic flight test evaluation of performance seeking control

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1993-01-01

    Digital flight and engine control, powerful onboard computers, and sophisticated controls techniques may improve aircraft performance by maximizing fuel efficiency, maximizing thrust, and extending engine life. An adaptive performance seeking control system for optimizing the quasi-steady state performance of an F-15 aircraft was developed and flight tested. This system has three optimization modes: minimum fuel, maximum thrust, and minimum fan turbine inlet temperature. Tests of the minimum fuel and fan turbine inlet temperature modes were performed at a constant thrust. Supersonic single-engine flight tests of the three modes were conducted using varied after burning power settings. At supersonic conditions, the performance seeking control law optimizes the integrated airframe, inlet, and engine. At subsonic conditions, only the engine is optimized. Supersonic flight tests showed improvements in thrust of 9 percent, increases in fuel savings of 8 percent, and reductions of up to 85 deg R in turbine temperatures for all three modes. The supersonic performance seeking control structure is described and preliminary results of supersonic performance seeking control tests are given. These findings have implications for improving performance of civilian and military aircraft.

  2. Orion Launch Abort System Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly

  3. Forward flight of birds revisited. Part 1: aerodynamics and performance

    PubMed Central

    Iosilevskii, G.

    2014-01-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance—at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small. PMID:26064548

  4. Design and Performance of Insect-Scale Flapping-Wing Vehicles

    NASA Astrophysics Data System (ADS)

    Whitney, John Peter

    Micro-air vehicles (MAVs)---small versions of full-scale aircraft---are the product of a continued path of miniaturization which extends across many fields of engineering. Increasingly, MAVs approach the scale of small birds, and most recently, their sizes have dipped into the realm of hummingbirds and flying insects. However, these non-traditional biologically-inspired designs are without well-established design methods, and manufacturing complex devices at these tiny scales is not feasible using conventional manufacturing methods. This thesis presents a comprehensive investigation of new MAV design and manufacturing methods, as applicable to insect-scale hovering flight. New design methods combine an energy-based accounting of propulsion and aerodynamics with a one degree-of-freedom dynamic flapping model. Important results include analytical expressions for maximum flight endurance and range, and predictions for maximum feasible wing size and body mass. To meet manufacturing constraints, the use of passive wing dynamics to simplify vehicle design and control was investigated; supporting tests included the first synchronized measurements of real-time forces and three-dimensional kinematics generated by insect-scale flapping wings. These experimental methods were then expanded to study optimal wing shapes and high-efficiency flapping kinematics. To support the development of high-fidelity test devices and fully-functional flight hardware, a new class of manufacturing methods was developed, combining elements of rigid-flex printed circuit board fabrication with "pop-up book" folding mechanisms. In addition to their current and future support of insect-scale MAV development, these new manufacturing techniques are likely to prove an essential element to future advances in micro-optomechanics, micro-surgery, and many other fields.

  5. Orion Launch Abort System Performance on Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the

  6. Preliminary flight evaluation of an engine performance optimization algorithm

    NASA Technical Reports Server (NTRS)

    Lambert, H. H.; Gilyard, G. B.; Chisholm, J. D.; Kerr, L. J.

    1991-01-01

    A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft.

  7. Optimizing aircraft performance with adaptive, integrated flight/propulsion control

    NASA Technical Reports Server (NTRS)

    Smith, R. H.; Chisholm, J. D.; Stewart, J. F.

    1991-01-01

    The Performance-Seeking Control (PSC) integrated flight/propulsion adaptive control algorithm presented was developed in order to optimize total aircraft performance during steady-state engine operation. The PSC multimode algorithm minimizes fuel consumption at cruise conditions, while maximizing excess thrust during aircraft accelerations, climbs, and dashes, and simultaneously extending engine service life through reduction of fan-driving turbine inlet temperature upon engagement of the extended-life mode. The engine models incorporated by the PSC are continually upgraded, using a Kalman filter to detect anomalous operations. The PSC algorithm will be flight-demonstrated by an F-15 at NASA-Dryden.

  8. Into rude air: hummingbird flight performance in variable aerial environments.

    PubMed

    Ortega-Jimenez, V M; Badger, M; Wang, H; Dudley, R

    2016-09-26

    Hummingbirds are well known for their ability to sustain hovering flight, but many other remarkable features of manoeuvrability characterize the more than 330 species of trochilid. Most research on hummingbird flight has been focused on either forward flight or hovering in otherwise non-perturbed air. In nature, however, hummingbirds fly through and must compensate for substantial environmental perturbation, including heavy rain, unpredictable updraughts and turbulent eddies. Here, we review recent studies on hummingbirds flying within challenging aerial environments, and discuss both the direct and indirect effects of unsteady environmental flows such as rain and von Kármán vortex streets. Both perturbation intensity and the spatio-temporal scale of disturbance (expressed with respect to characteristic body size) will influence mechanical responses of volant taxa. Most features of hummingbird manoeuvrability remain undescribed, as do evolutionary patterns of flight-related adaptation within the lineage. Trochilid flight performance under natural conditions far exceeds that of microair vehicles at similar scales, and the group as a whole presents many research opportunities for understanding aerial manoeuvrability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528777

  9. Aging Enhances Indirect Flight Muscle Fiber Performance yet Decreases Flight Ability in Drosophila

    PubMed Central

    Miller, Mark S.; Lekkas, Panagiotis; Braddock, Joan M.; Farman, Gerrie P.; Ballif, Bryan A.; Irving, Thomas C.; Maughan, David W.; Vigoreaux, Jim O.

    2008-01-01

    We investigated the effects of aging on Drosophila melanogaster indirect flight muscle from the whole organism to the actomyosin cross-bridge. Median-aged (49-day-old) flies were flight impaired, had normal myofilament number and packing, barely longer sarcomeres, and slight mitochondrial deterioration compared with young (3-day-old) flies. Old (56-day-old) flies were unable to beat their wings, had deteriorated ultrastructure with severe mitochondrial damage, and their skinned fibers failed to activate with calcium. Small-amplitude sinusoidal length perturbation analysis showed median-aged indirect flight muscle fibers developed greater than twice the isometric force and power output of young fibers, yet cross-bridge kinetics were similar. Large increases in elastic and viscous moduli amplitude under active, passive, and rigor conditions suggest that median-aged fibers become stiffer longitudinally. Small-angle x-ray diffraction indicates that myosin heads move increasingly toward the thin filament with age, accounting for the increased transverse stiffness via cross-bridge formation. We propose that the observed protein composition changes in the connecting filaments, which anchor the thick filaments to the Z-disk, produce compensatory increases in longitudinal stiffness, isometric tension, power and actomyosin interaction in aging indirect flight muscle. We also speculate that a lack of MgATP due to damaged mitochondria accounts for the decreased flight performance. PMID:18515368

  10. Aging Enhances Indirect Flight Muscle Fiber Performance yet Decreases Flight Ability in Drosophila

    SciTech Connect

    Miller, Mark S.; Lekkas, Panagiotis; Braddock, Joan M.; Farman, Gerrie P.; Ballif, Bryan A.; Irving, Thomas C.; Maughan, David W.; Vigoreaux, Jim O.

    2008-10-02

    We investigated the effects of aging on Drosophila melanogaster indirect flight muscle from the whole organism to the actomyosin cross-bridge. Median-aged (49-day-old) flies were flight impaired, had normal myofilament number and packing, barely longer sarcomeres, and slight mitochondrial deterioration compared with young (3-day-old) flies. Old (56-day-old) flies were unable to beat their wings, had deteriorated ultrastructure with severe mitochondrial damage, and their skinned fibers failed to activate with calcium. Small-amplitude sinusoidal length perturbation analysis showed median-aged indirect flight muscle fibers developed greater than twice the isometric force and power output of young fibers, yet cross-bridge kinetics were similar. Large increases in elastic and viscous moduli amplitude under active, passive, and rigor conditions suggest that median-aged fibers become stiffer longitudinally. Small-angle x-ray diffraction indicates that myosin heads move increasingly toward the thin filament with age, accounting for the increased transverse stiffness via cross-bridge formation. We propose that the observed protein composition changes in the connecting filaments, which anchor the thick filaments to the Z-disk, produce compensatory increases in longitudinal stiffness, isometric tension, power and actomyosin interaction in aging indirect flight muscle. We also speculate that a lack of MgATP due to damaged mitochondria accounts for the decreased flight performance.

  11. Effects of wing deformation on aerodynamic performance of a revolving insect wing

    NASA Astrophysics Data System (ADS)

    Noda, Ryusuke; Nakata, Toshiyuki; Liu, Hao

    2014-12-01

    Flexible wings of insects and bio-inspired micro air vehicles generally deform remarkably during flapping flight owing to aerodynamic and inertial forces, which is of highly nonlinear fluid-structure interaction (FSI) problems. To elucidate the novel mechanisms associated with flexible wing aerodynamics in the low Reynolds number regime, we have built up a FSI model of a hawkmoth wing undergoing revolving and made an investigation on the effects of flexible wing deformation on aerodynamic performance of the revolving wing model. To take into account the characteristics of flapping wing kinematics we designed a kinematic model for the revolving wing in two-fold: acceleration and steady rotation, which are based on hovering wing kinematics of hawkmoth, Manduca sexta. Our results show that both aerodynamic and inertial forces demonstrate a pronounced increase during acceleration phase, which results in a significant wing deformation. While the aerodynamic force turns to reduce after the wing acceleration terminates due to the burst and detachment of leading-edge vortices (LEVs), the dynamic wing deformation seem to delay the burst of LEVs and hence to augment the aerodynamic force during and even after the acceleration. During the phase of steady rotation, the flexible wing model generates more vertical force at higher angles of attack (40°-60°) but less horizontal force than those of a rigid wing model. This is because the wing twist in spanwise owing to aerodynamic forces results in a reduction in the effective angle of attack at wing tip, which leads to enhancing the aerodynamics performance by increasing the vertical force while reducing the horizontal force. Moreover, our results point out the importance of the fluid-structure interaction in evaluating flexible wing aerodynamics: the wing deformation does play a significant role in enhancing the aerodynamic performances but works differently during acceleration and steady rotation, which is mainly induced by

  12. Thermal control surfaces experiment (SOO69) flight systems performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    The thermal control surfaces experiment (TCSE) was the most complex hardware system aboard the Long Duration Exposure Facility (LDEF). The TCSE system consists of a scanning spectroreflectometer that measured test samples mounted on a rotatable carousel assembly. A microprocessor based data system controlled all aspects of TCSE system operation. Power was provided by four primary batteries. Flight measurement and housekeeping data were stored on a tape recorder for postflight analysis. The TCSE is a microcosm of complex electro-optical payloads being developed by NASA, DoD, and the aerospace community. The TCSE provides valuable data on the performance of these systems in space. The TCSE flight system and its excellent performance on the LDEF mission are described. A few operational anomalies were encountered and are discussed. Initial post-flight tests show that the TCSE system remains functional although some degradation in the optical measurements were observed. The results of these tests are also presented.

  13. PHARAO laser source flight model: Design and performances

    NASA Astrophysics Data System (ADS)

    Lévèque, T.; Faure, B.; Esnault, F. X.; Delaroche, C.; Massonnet, D.; Grosjean, O.; Buffe, F.; Torresi, P.; Bomer, T.; Pichon, A.; Béraud, P.; Lelay, J. P.; Thomin, S.; Laurent, Ph.

    2015-03-01

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.

  14. Shuttle orbiter flash evaporator operational flight test performance

    NASA Technical Reports Server (NTRS)

    Nason, J. R.; Behrend, A. F., Jr.

    1982-01-01

    The Flash evaporator System (FES is part of the Shuttle Orbiter Active Thermal Control Subsystem. The FES provides total heat rejection for the vehicle Freon Coolant Loops during ascent and entry and supplementary heat rejection during orbital mission phases. This paper reviews the performance of the FES during the first two Shuttle orbital missions (STS-1 and STS-2). A comparison of actual mission performance against design requirements is presented. Mission profiles (including Freon inlet temperature and feedwater pressure transients), control temperature, and heat load variations are evaluated. Anomalies that occurred during STS-2 are discussed along with the procedures conducted, both in-flight and post-flight, to isolate the causes. Finally, the causes of the anomalies and resulting corrective action taken for STS-3 and subsequent flights are presented.

  15. PHARAO laser source flight model: Design and performances

    SciTech Connect

    Lévèque, T. Faure, B.; Esnault, F. X.; Delaroche, C.; Massonnet, D.; Grosjean, O.; Buffe, F.; Torresi, P.; Bomer, T.; Pichon, A.; Béraud, P.; Lelay, J. P.; Thomin, S.; Laurent, Ph.

    2015-03-15

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.

  16. Effects of alcohol on pilot performance in simulated flight

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Demosthenes, T.; White, T. R.; O'Hara, D. B.

    1991-01-01

    Ethyl alcohol's known ability to produce reliable decrements in pilot performance was used in a study designed to evaluate objective methods for assessing pilot performance. Four air carrier pilot volunteers were studied during eight simulated flights in a B727 simulator. Total errors increased linearly and significantly with increasing blood alcohol. Planning and performance errors, procedural errors and failures of vigilance each increased significantly in one or more pilots and in the group as a whole.

  17. Preservation of human performance capacity under prolonged space flight conditions

    NASA Technical Reports Server (NTRS)

    Yeremin, A. V.; Bogdashevskiy, R. M.; Baburin, Y. F.

    1975-01-01

    Prophylactic measures directed toward preservation of health and maintenance of the performance ability of a man during prolonged space flight stress center on the selection of optimum work and rest cycles, physical exercises, the use of pharmacological agents, conditioning of the cardiovascular apparatus, etc. A specially selected set of hormone and pharmacological preparations is recommended to stimulate hemopoiesis.

  18. Flight performance of a rocket-borne 3He refrigerator

    NASA Astrophysics Data System (ADS)

    Duband, L.; Alsop, D.; Lange, A.; Hayata, S.; Matsumoto, T.; Sato, S.

    A self-contained, recyclable 3He refrigerator suitable for use in zero-gravity has been developed. This refrigerator successfully flew on 5 September 1989, as part of an S-520 sounding rocket payload designed to measure the spectrum of the cosmic submillimetre background. This paper presents the cryogenic performance of the refrigerator during flight.

  19. Jump-Down Performance Alterations after Space Flight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements

  20. Mir Cooperative Solar Array Flight Performance Data and Computational Analysis

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Hoffman, David J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) was developed jointly by the United States (US) and Russia to provide approximately 6 kW of photovoltaic power to the Russian space station Mir. The MCSA was launched to Mir in November 1995 and installed on the Kvant-1 module in May 1996. Since the MCSA photovoltaic panel modules (PPMs) are nearly identical to those of the International Space Station (ISS) photovoltaic arrays, MCSA operation offered an opportunity to gather multi-year performance data on this technology prior to its implementation on ISS. Two specially designed test sequences were executed in June and December 1996 to measure MCSA performance. Each test period encompassed 3 orbital revolutions whereby the current produced by the MCSA channels was measured. The temperature of MCSA PPMs was also measured. To better interpret the MCSA flight data, a dedicated FORTRAN computer code was developed to predict the detailed thermal-electrical performance of the MCSA. Flight data compared very favorably with computational performance predictions. This indicated that the MCSA electrical performance was fully meeting pre-flight expectations. There were no measurable indications of unexpected or precipitous MCSA performance degradation due to contamination or other causes after 7 months of operation on orbit. Power delivered to the Mir bus was lower than desired as a consequence of the retrofitted power distribution cabling. The strong correlation of experimental and computational results further bolsters the confidence level of performance codes used in critical ISS electric power forecasting. In this paper, MCSA flight performance tests are described as well as the computational modeling behind the performance predictions.

  1. Mir Cooperative Solar Array flight performance data and computational analysis

    SciTech Connect

    Kerslake, T.W.; Hoffman, D.J.

    1997-12-31

    The Mir Cooperative Solar Array (MCSA) was developed jointly by the United States (US) and Russia to provide approximately 6 kW of photovoltaic power to the Russian space station Mir. The MCSA was launched to Mir in November 1995 and installed on the Kvant-1 module in May 1996. Since the MCSA photovoltaic panel modules (PPMs) are nearly identical to those of the International Space Station (ISS) photovoltaic arrays, MCSA operation offered an opportunity to gather multi-year performance data on this technology prior to its implementation on ISS. Two specially designed test sequences were executed in June and December 1996 to measure MCSA performance. Each test period encompassed 3 orbital revolutions whereby the current produced by the MCSA channels was measured. The temperature of MCSA PPMs was also measured. To better interpret the MCSA flight data, a dedicated FORTRAN computer code was developed to predict the detailed thermal-electrical performance of the MCSA. Flight data compared very favorably with computational performance predictions. This indicated that the MCSA electrical performance was fully meeting pre-flight expectations. There were no measurable indications of unexpected or precipitous MCSA performance degradation due to contamination or other causes after 7 months of operation on orbit. Power delivered to the Mir bus was lower than desired as a consequence of the retrofitted power distribution cabling. The strong correlation of experimental and computational results further bolsters the confidence level of performance codes used in critical ISS electric power forecasting. In this paper, MCSA flight performance tests are described as well as the computational modeling behind the performance predictions.

  2. Simulations on time-of-flight ERDA spectrometer performance.

    PubMed

    Julin, Jaakko; Arstila, Kai; Sajavaara, Timo

    2016-08-01

    The performance of a time-of-flight spectrometer consisting of two timing detectors and an ionization chamber energy detector has been studied using Monte Carlo simulations for the recoil creation and ion transport in the sample and detectors. The ionization chamber pulses have been calculated using Shockley-Ramo theorem and the pulse processing of a digitizing data acquisition setup has been modeled. Complete time-of-flight-energy histograms were simulated under realistic experimental conditions. The simulations were used to study instrumentation related effects in coincidence timing and position sensitivity, such as background in time-of-flight-energy histograms. Corresponding measurements were made and simulated results are compared with data collected using the digitizing setup. PMID:27587115

  3. Hawkmoth flight performance in tornado-like whirlwind vortices.

    PubMed

    Ortega-Jimenez, Victor Manuel; Mittal, Rajat; Hedrick, Tyson L

    2014-06-01

    Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s(-1), respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack. PMID:24855051

  4. Flight performance and competitive displacement of hummingbirds across elevational gradients.

    PubMed

    Altshuler, Douglas L

    2006-02-01

    Hummingbirds, with their impressive flight ability and competitive aerial contests, make ideal candidates for applying a mechanistic approach to studying community structure. Because flight costs are influenced by abiotic factors that change systematically with altitude, elevational gradients provide natural experiments for hummingbird flight ecology. Prior attempts relied on wing disc loading (WDL) as a morphological surrogate for flight performance, but recent analyses indicate this variable does not influence either territorial behavior or competitive ability. Aerodynamic power, by contrast, can be derived from direct measurements of performance and, like WDL, declines across elevations. Here, I demonstrate for a diverse community of Andean hummingbirds that burst aerodynamic power is associated with territorial behavior. Along a second elevational gradient in Colorado, I tested for correlated changes in aerodynamic power and competitive ability in two territorial hummingbirds. This behavioral analysis revealed that short-winged Selasphorus rufus males are dominant over long-winged Selasphorus platycercus males at low elevations but that the roles are reversed at higher elevations. Several lines of evidence support the hypothesis that the burst rather than sustained aerodynamic performance mediates competitive ability at high elevation. A minimum value for burst power may be required for successful competition, but other maneuverability features gain importance when all competitors have sufficient muscle power, as occurs at low elevations. PMID:16670982

  5. Performance of a blood chemistry analyzer during parabolic flight

    NASA Technical Reports Server (NTRS)

    Spooner, Brian S.; Claassen, Dale E.; Guikema, James A.

    1990-01-01

    The performance of the Vision System Blood Analyzer during parabolic flight on a KC-135 aircraft (NASA 930) has been tested. This fully automated instrument performed flawlessly in these trials, demonstrating its potential for efficient, reliable use in a microgravity environment. In addition to instrument capability, it is demonstrated that investigators could readily fill specially modified test packs with fluid during zero gravity, and that filled test packs could be easily loaded into VISION during an episode of microgravity.

  6. In-Flight Performance of Wide Field Camera 3

    NASA Technical Reports Server (NTRS)

    Kimble, Randy

    2010-01-01

    Wide Field Camera 3 (WFC3), a powerful new UVNisible/IR imager, was installed into HST during Servicing Mission 4. After a successful commissioning in the Servicing Mission Orbital Verification program, WFC3 has been engaged in an exciting program of scientific observations. I review here the in-flight scientific performance of the instrument, addressing such topics as image quality, sensitivity, detector performance, and stability.

  7. Description and Flight Performance Results of the WASP Sounding Rocket

    NASA Technical Reports Server (NTRS)

    De Pauw, J. F.; Steffens, L. E.; Yuska, J. A.

    1968-01-01

    A general description of the design and construction of the WASP sounding rocket and of the performance of its first flight are presented. The purpose of the flight test was to place the 862-pound (391-kg) spacecraft above 250 000 feet (76.25 km) on free-fall trajectory for at least 6 minutes in order to study the effect of "weightlessness" on a slosh dynamics experiment. The WASP sounding rocket fulfilled its intended mission requirements. The sounding rocket approximately followed a nominal trajectory. The payload was in free fall above 250 000 feet (76.25 km) for 6.5 minutes and reached an apogee altitude of 134 nautical miles (248 km). Flight data including velocity, altitude, acceleration, roll rate, and angle of attack are discussed and compared to nominal performance calculations. The effect of residual burning of the second stage motor is analyzed. The flight vibration environment is presented and analyzed, including root mean square (RMS) and power spectral density analysis.

  8. Electrolysis Performance Improvement Concept Study (EPICS) Flight Experiment-Reflight

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.

    1997-01-01

    The Electrolysis Performance Improvement Concept Study (EPICS) is a flight experiment to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer (SFE) concept which was selected for the use aboard the International Space Station (ISS) for oxygen (O2) generation. It also is to investigate the impact of microgravity on electrochemical cell performance. Electrochemical cells are important to the space program because they provide an efficient means of generating O2 and hydrogen (H2) in space. Oxygen and H2 are essential not only for the survival of humans in space but also for the efficient and economical operation of various space systems. Electrochemical cells can reduce the mass, volume and logistical penalties associated with resupply and storage by generating and/or consuming these gases in space. An initial flight of the EPICS was conducted aboard STS-69 from September 7 to 8, 1995. A temperature sensor characteristics shift and a missing line of software code resulted in only partial success of this initial flight. Based on the review and recommendations of a National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) review team a reflight activity was initiated to obtain the remaining desired results, not achieved during the initial flight.

  9. The invertebrate myosin filament: subfilament arrangement of the solid filaments of insect flight muscles.

    PubMed Central

    Beinbrech, G; Ashton, F T; Pepe, F A

    1992-01-01

    Transverse sections (approximately 140 nm thick) of solid myosin filaments of the flight muscles of the fleshfly, Phormia terrae-novae, the honey bee, Apis mellifica, and the waterbug, Lethocerus uhleri, were photographed in a JEM model 200A electron microscope at 200 kV. The images were digitized and computer processed by rotational filtering. In each of these filaments it was found that the symmetry of the core and the wall was not the same. The power spectra of the images showed sixfold symmetry for the wall and threefold symmetry for the core of the filaments. The images of the filaments in each muscle were superimposed according to the sixfold center of the wall. These averaged images for all three muscles showed six pairs of subunits in the wall similar to those found in the wall of tubular filaments. From serial sections of the fleshfly filaments, we conclude that the subunits in the wall of the filaments represent subfilaments essentially parallel to the long axis of the filament. In each muscle there are additional subunits in the core, closely related to the subunits in the wall. Evaluation of serial sections through fleshfly filaments suggests that the relationship of the three subunits observed in the core to those in the wall varies along the length of the filaments. In waterbug filaments there are three dense and three less dense subunits for a total of six all closely related to the wall. Bee filaments have three subunits related to the wall and three subunits located eccentrically in the core of the filaments. The presence of core subunits can be related to the paramyosin content of the filaments. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 7 FIGURE 9 FIGURE 12 PMID:1617135

  10. Cassini Main Engine Assembly Cover Flight Management and Performance

    NASA Technical Reports Server (NTRS)

    Somawardhana, Ruwan P.; Millard, Jerry M.

    2010-01-01

    The Cassini spacecraft has performed its four year Prime Mission at Saturn and is currently in orbit at Saturn performing a two year extended mission. 12Its main engine nozzles are susceptible to impact damage from micrometeoroids and on-orbit dust. The spacecraft has an articulating device known as the Main Engine Assembly (MEA) cover which can close and shield the main engines from these threats. The cover opens to allow for main engine burns that are necessary to maintain the trajectory. Periodically updated analyses of potential on-orbit dust hazard threats have resulted in the need to continue to use the MEA cover beyond its intended use and beyond its design life. This paper provides a detailed Systems-level overview of the flight management of the MEA cover device and its flight performance to date.

  11. Flight Performance and Teneral Energy Reserves of Two Genetically-Modified and One Wild-Type Strain of the Yellow Fever Mosquito Aedes aegypti

    PubMed Central

    Kaufmann, Christian; Alphey, Luke; Reiter, Paul; Koella, Jacob

    2012-01-01

    Abstract The ability of sterile males to survive, disperse, find, and mate with wild females is key to the success of sterile insect technique (SIT). The Release of Insects carrying a Dominant Lethal (RIDL) system is a genetics-based SIT strategy for Aedes aegypti. We examine two aspects of insect performance, flight potential (dispersal ability) and teneral energy reserves, by comparing wild-type (WT) males with genetically-modified lines carrying the tetracycline-repressible constructs OX513A and OX3604C. Our results show significant differences in the flight capacity of the modified lines. OX513A males bred with tetracycline covered 38% less distance, while OX3604C males reared without tetracycline spent 21% less time in flight than their WT counterparts. Such differences in flight performance should be considered when designing release programs (e.g., by placing release sites sufficiently close together to achieve adequate coverage). All mosquito lines had similar teneral carbohydrate contents, though males of the OX3604C line contained more lipids. The addition of tetracycline to the larval diet did not influence the flight potential of the males; however, it did change the teneral sugar reserves of the WT and the lipid reserves of both the WT and the OX3604C lines. PMID:22835152

  12. Juveniles exposed to embryonic corticosterone have enhanced flight performance

    PubMed Central

    Chin, Eunice H.; Love, Oliver P.; Verspoor, Jan J.; Williams, Tony D.; Rowley, Kyle; Burness, Gary

    2008-01-01

    Exposure to maternally derived glucocorticoids during embryonic development impacts offspring phenotype. Although many of these effects appear to be transiently ‘negative’, embryonic exposure to maternally derived stress hormones is hypothesized to induce preparative responses that increase survival prospects for offspring in low-quality environments; however, little is known about how maternal stress influences longer-term survival-related performance traits in free-living individuals. Using an experimental elevation of yolk corticosterone (embryonic signal of low maternal quality), we examined potential impacts of embryonic exposure to maternally derived stress on flight performance, wing loading, muscle morphology and muscle physiology in juvenile European starlings (Sturnus vulgaris). Here we report that fledglings exposed to experimentally increased corticosterone in ovo performed better during flight performance trials than control fledglings. Consistent with differences in performance, individuals exposed to elevated embryonic corticosterone fledged with lower wing loading and had heavier and more functionally mature flight muscles compared with control fledglings. Our results indicate that the positive effects on a survival-related trait in response to embryonic exposure to maternally derived stress hormones may balance some of the associated negative developmental costs that have recently been reported. Moreover, if embryonic experience is a good predictor of the quality or risk of future environments, a preparative phenotype associated with exposure to apparently negative stimuli during development may be adaptive. PMID:18842541

  13. Responses of deciduous trees to elevated atmospheric CO[sub 2]: Productivity, phytochemistry, and insect performance

    SciTech Connect

    Lindroth, R.L.; Kinney, K.K.; Platz, C.L. )

    1993-04-01

    Rising levels of atmospheric carbon dioxide are expected to directly affect forest ecosystems. This research evaluated the effects of enriched CO[sub 2], on the productivity and phytochemistry of forest trees and performance of associated insects. Our experimental system consisted of three tree species (quaking aspen [Populus tremuloides], red oak [Quercus rubra], sugar maple [Acer saccharum]) and two species of leaf-feeding insects (gypsy moth [Lymantria dispar] and forest tent caterpillar [Malacosma disstria]). Three questions were evaluated: in response to enriched CO[sub 2]: (1) relative increases in tree growth rates (2) relative decreases in protein and increases in carbon-based compounds, and (3) relative reductions in insect performance. Aspen responded the most to enriched CO[sub 2], atmospheres whereas maple responded the least. Proportional growth increases, were highest for oak and least for maple. Effects of elevated CO[sub 2], on biomass allocation patterns differed among the three species. Enriched CO[sub 2], altered concentrations of primary and secondary metabolites in leaves, but the magnitude and direction of effects were species-specific. Consumption rates of insects fed high-CO[sub 2], aspen increased dramatically, but growth rates declined. Gypsy moths grew better on high-CO[sub 2], oak, whereas forest tent caterpillars were unaffected; tent caterpillars grew less on high-CO[sub 2], maple, while gypsy moths were unaffected. Changes in insect performance parameters were related to changes in foliar chemistry. This study illustrates that tree productivity and chemistry, and the performance of associated insects, will change under CO[sub 2], atmospheres predicted for the next century. Changes in higher level ecological processes, such as community structure and nutrient cycling, are also implicated. 61 refs., 3 figs., 2 tabs.

  14. APMS 3.0 Flight Analyst Guide: Aviation Performance Measuring System

    NASA Technical Reports Server (NTRS)

    Jay, Griff; Prothero, Gary; Romanowski, Timothy; Lynch, Robert; Lawrence, Robert; Rosenthal, Loren

    2004-01-01

    The Aviation Performance Measuring System (APMS) is a method-embodied in software-that uses mathematical algorithms and related procedures to analyze digital flight data extracted from aircraft flight data recorders. APMS consists of an integrated set of tools used to perform two primary functions: a) Flight Data Importation b) Flight Data Analysis.

  15. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1991-01-01

    Procedures for real time evaluation of the inflight health and performance of gas turbine engines and related systems were developed to enhance flight test safety and productivity. These techniques include the monitoring of the engine, the engine control system, thrust vectoring control system health, and the detection of engine stalls. Real time performance techniques were developed for the determination and display of inflight thrust and for aeroperformance drag polars. These new methods were successfully shown on various research aircraft at NASA-Dryden. The capability of NASA's Western Aeronautical Test Range and the advanced data acquisition systems were key factors for implementation and real time display of these methods.

  16. Post-Flight Analysis of the Guidance, Navigation, and Control Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barth, Andrew; Mamich, Harvey; Hoelscher, Brian

    2015-01-01

    The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.

  17. High performance real-time flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  18. X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle.

    PubMed

    Tregear, R T; Edwards, R J; Irving, T C; Poole, K J; Reedy, M C; Schmitz, H; Towns-Andrews, E; Reedy, M K

    1998-03-01

    We report the first time-resolved study of the two-dimensional x-ray diffraction pattern during active contraction in insect flight muscle (IFM). Activation of demembranated Lethocerus IFM was triggered by 1.5-2.5% step stretches (risetime 10 ms; held for 1.5 s) giving delayed active tension that peaked at 100-200 ms. Bundles of 8-12 fibers were stretch-activated on SRS synchrotron x-ray beamline 16.1, and time-resolved changes in diffraction were monitored with a SRS 2-D multiwire detector. As active tension rose, the 14.5- and 7.2-nm meridionals fell, the first row line dropped at the 38.7 nm layer line while gaining a new peak at 19.3 nm, and three outer peaks on the 38.7-nm layer line rose. The first row line changes suggest restricted binding of active myosin heads to the helically preferred region in each actin target zone, where, in rigor, two-headed lead bridges bind, midway between troponin bulges that repeat every 38.7 nm. Halving this troponin repeat by binding of single active heads explains the intensity rise at 19.3 nm being coupled to a loss at 38.7 nm. The meridional changes signal movement of at least 30% of all myosin heads away from their axially ordered positions on the myosin helix. The 38.7- and 19.3-nm layer line changes signal stereoselective attachment of 7-23% of the myosin heads to the actin helix, although with too little ordering at 6-nm resolution to affect the 5.9-nm actin layer line. We conclude that stretch-activated tension of IFM is produced by cross-bridges that bind to rigor's lead-bridge target zones, comprising < or = 1/3 of the 75-80% that attach in rigor. PMID:9512040

  19. Dual Dimensionality Reduction Reveals Independent Encoding of Motor Features in a Muscle Synergy for Insect Flight Control

    PubMed Central

    Sponberg, Simon; Daniel, Thomas L.; Fairhall, Adrienne L.

    2015-01-01

    What are the features of movement encoded by changing motor commands? Do motor commands encode movement independently or can they be represented in a reduced set of signals (i.e. synergies)? Motor encoding poses a computational and practical challenge because many muscles typically drive movement, and simultaneous electrophysiology recordings of all motor commands are typically not available. Moreover, during a single locomotor period (a stride or wingstroke) the variation in movement may have high dimensionality, even if only a few discrete signals activate the muscles. Here, we apply the method of partial least squares (PLS) to extract the encoded features of movement based on the cross-covariance of motor signals and movement. PLS simultaneously decomposes both datasets and identifies only the variation in movement that relates to the specific muscles of interest. We use this approach to explore how the main downstroke flight muscles of an insect, the hawkmoth Manduca sexta, encode torque during yaw turns. We simultaneously record muscle activity and turning torque in tethered flying moths experiencing wide-field visual stimuli. We ask whether this pair of muscles acts as a muscle synergy (a single linear combination of activity) consistent with their hypothesized function of producing a left-right power differential. Alternatively, each muscle might individually encode variation in movement. We show that PLS feature analysis produces an efficient reduction of dimensionality in torque variation within a wingstroke. At first, the two muscles appear to behave as a synergy when we consider only their wingstroke-averaged torque. However, when we consider the PLS features, the muscles reveal independent encoding of torque. Using these features we can predictably reconstruct the variation in torque corresponding to changes in muscle activation. PLS-based feature analysis provides a general two-sided dimensionality reduction that reveals encoding in high dimensional

  20. Integrated Flight Performance Analysis of a Launch Abort System Concept

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.

    2007-01-01

    This paper describes initial flight performance analyses conducted early in the Orion Project to support concept feasibility studies for the Crew Exploration Vehicle s Launch Abort System (LAS). Key performance requirements that significantly affect abort capability are presented. These requirements have implications on sizing the Abort Motor, tailoring its thrust profile to meet escape requirements for both launch pad and high drag/high dynamic pressure ascent aborts. Additional performance considerations are provided for the Attitude Control Motor, a key element of the Orion LAS design that eliminates the need for ballast and provides performance robustness over a passive control approach. Finally, performance of the LAS jettison function is discussed, along with implications on Jettison Motor sizing and the timing of the jettison event during a nominal mission. These studies provide an initial understanding of LAS performance that will continue to evolve as the Orion design is matured.

  1. S-NPP OMPS Nadir In-Flight Performance

    NASA Astrophysics Data System (ADS)

    Pan, S.; Flynn, L. E.; Niu, J.; Grotenhuis, M.; Beck, C. T.; Beach, E.; Zhang, Z.; Tolea, A.

    2014-12-01

    This presentation describes the results of in-flight characterization of the S-NPP Ozone Mapping Profiler Suite (OMPS) charge-coupled device (CCD) performance during the first nearly three years of the OMPS mission in orbit. Data from OMPS's three two-dimension CCD arrays have been collected to characterize in-flight detector behaviors. Our results show that offset, gain, and dark current rate trends remain within sensor requirement limits. System linearity performance trends are stable. The distribution of individual pixel dark rates is slowly growing as expected from pre-launch analyses. The current in-flight dark and linearity calibration corrections provide Sensor Data Records (SDRs) with insignificant error after correction of less than an average of ~0.1% in the Earth radiance retrieval. The instrument optics is less stable than predicted leading to intra-orbit wavelength scale variations as the temperature gradients vary across the instrument. Measurement-based estimates of these effects are as large a ±0.02 nm and are used to make corrections to within +-0.005 nm on a granule by granule basis. Examination of reflectivity, aerosol and ozone EDRs provide evidence of absolute calibration errors with a significant cross track variation. A soft calibration adjustment is under development to remove them.

  2. Space shuttle orbiter leading-edge flight performance compared to design goals

    NASA Technical Reports Server (NTRS)

    Curry, D. M.; Johnson, D. W.; Kelly, R. E.

    1983-01-01

    Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights.

  3. Flight Test Performance of a High Precision Navigation Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George

    2009-01-01

    A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.

  4. Orion Exploration Flight Test-1 (EFT-1) Absolute Navigation Performance

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2015-01-01

    The Orion vehicle, being design to take men back to the Moon and beyond, successfully completed its first flight test, EFT-1 (Exploration Flight Test-1), on December 5th, 2014. The main objective of the test was to demonstrate the capability of re-enter into the Earth's atmosphere and safely splash-down into the pacific ocean. This un-crewed mission completes two orbits around Earth, the second of which is highly elliptical with an apogee of approximately 5908 km, higher than any vehicle designed for humans has been since the Apollo program. The trajectory was designed in order to test a high-energy re-entry similar to those crews will undergo during lunar missions. The mission overview is shown in Figure 1. The objective of this paper is to document the performance of the absolute navigation system during EFT-1 and to present its design.

  5. Flight Performance of the Inflatable Reentry Vehicle Experiment 3

    NASA Technical Reports Server (NTRS)

    Dillman, Robert; DiNonno, John; Bodkin, Richard; Gsell, Valerie; Miller, Nathanael; Olds, Aaron; Bruce, Walter

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility (WFF) on a Black Brant XI suborbital sounding rocket and successfully performed its mission, demonstrating the survivability of a hypersonic inflatable aerodynamic decelerator (HIAD) in the reentry heating environment and also illustrating the effect of an offset center of gravity on the HIAD's lift-to-drag ratio. IRVE-3 was a follow-on to 2009's IRVE-II mission, which demonstrated exo-atmospheric inflation, reentry survivability - without significant heating - and the aerodynamic stability of a HIAD down to subsonic flight conditions. NASA Langley Research Center is leading the development of HIAD technology for use on future interplanetary and Earth reentry missions.

  6. Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Olson, Corwin; Wright, Cinnamon; Long, Anne

    2012-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.

  7. Performance parameters in the design of flight motion simulators

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert W.

    2012-06-01

    The desired test performance parameters influence the design of a Flight Motion Simulator (FMS) and affect its size, weight, power, electro-magnetic interference, noise, and vibration. A common desire is to specify requirements beyond the immediate need for future test programs. This may directly affect cost and schedule. Critical parameters that affect the FMS design are larger payload sizes, higher accuracies, and higher dynamic requirements. This paper provides a checklist of parameters and specification tradeoffs to be considered for the overall system performance requirements.

  8. In-flight performance of the Japanese Advanced Meteorological Imager

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffrey J.; Osgood, Roderic; Auchter, Joseph; Hurt, W. Todd; Hitomi, Miyamoto; Sasaki, Masayuki; Tahara, Yoshihiko; Tadros, Alfred; Faller, Ken; Mclaren, Mark; Sheffield, Jonathan; Gaiser, John; Kamel, Ahmed; Gunshor, Mathew

    2006-08-01

    The Japanese Advanced Meteorological Imager (JAMI) was developed by Raytheon and delivered to Space Systems/Loral as the Imager Subsystem for Japan's MTSAT-1R satellite. MTSAT-1R was launched from the Tanegashima Space Center on 2005 February 26 and became formally operational on 2005 June 28. This paper compares in-flight performance of JAMI with predictions made before launch. The performance areas discussed include radiometric sensitivity (NEDT and SNR) versus spectral channel, calibration accuracy versus spectral channel derived from comparisons of JAMI and AIRS measurements and image navigation and registration.

  9. SILEX final ground testing and in-flight performance assessment

    NASA Astrophysics Data System (ADS)

    Planche, Gilles; Laurent, Bernard; Guillen, Jean-Claude; Chorvalli, V.; Desplats, Eric

    1999-04-01

    SILEX (Semi-Conductor Inter-satellite Link EXperiment) consists of one optical terminal on-board the French LEO observation satellite SPOT 4, and another on-board the European GEO telecommunication satellite ARTEMIS. While the first part of the SILEX verification plan had been oriented towards verification at equipment and subsystem levels, the final stages have mainly been devoted to terminal and system (terminals coupling effects) verification. During this final stage, a thermal vacuum test was conducted in a class 100- cleanliness environment with optical ground support equipment of outstanding performances. The obtained tests results, used to determine software compensations and verify optical and static pointing performances, have been entered into overall system simulation models to finalize flight performances budgets. In addition, systems tests were performed on each terminal with respective partner simulator to validate system simulation models and assess link performances and robustness and to verify communication bit error rate.

  10. Perceptual and performance consequences of flight in virtual worlds

    NASA Technical Reports Server (NTRS)

    Bennett, C. Thomas; Schwirzke, Martin; Tittle, James S.

    1991-01-01

    There are two primary purposes for head-mounted systems in aeronautical settings. One is for helmet-mounted sights and teleoperated (head-slaved) weapons systems. Bennett, Johnson, Perrone, and Phatak (1988) evaluated head tracking performance during passive and controlled flight. In that study, comparisons were also made of head tracking performance in sterile and relatively complex virtual worlds. That study confirmed the robustness of head tracking performance across a wide variety of visual scenes. A second use of virtual world displays is for aircraft control. Aircraft controllability using head-mounted, panel-mounted, or simulated out-the-window scenes has been systematically examined. Those studies reported the range of rotorcraft flight tasks in which head-mounted virtual worlds provided some advantages. Two studies will be reported that examine the perceptual/performance effects of virtual worlds. The first examines head tracking performance with roll-stabilized versus non-roll stabilized virtual worlds. The purpose of the study was to (1) examine display strategies used in current display systems and (2) study the adaptability of observers to estimated glide slope angles using head-slaved versus head-stabilized imagery. The purpose of this study was to examine the usefulness of wide field-of-regards during final approaches to a runway.

  11. Flight controller alertness and performance during MOD shiftwork operations

    NASA Technical Reports Server (NTRS)

    Kelly, Sean M.; Rosekind, Mark R.; Dinges, David F.; Miller, Donna L.; Gillen, Kelly A.; Gregory, Kevin B.; Aguilar, Ronald D.; Smith, Roy M.

    1994-01-01

    Decreased alertness and performance associated with fatigue, sleep loss, and circadian disruption are issues faced by a diverse range of shiftwork operations. During STS operations, MOD personnel provide 24 hr. coverage of critical tasks. A joint JSC and ARC project was undertaken to examine these issues in flight controllers during MOD shiftwork operations. An initial operational test of procedures and measures was conducted during STS-53 in Dec. 1992. The study measures included a background questionnaire, a subjective daily logbook completed on a 24 hr. basis (to report sleep patterns, work periods, etc.), and an 8 minute performance and mood test battery administered at the beginning, middle, and end of each shift period. Seventeen Flight controllers representing the 3 Orbit shifts participated. The initial results clearly support further data collection during other STS missions to document baseline levels of alertness and performance during MOD shiftwork operations. These issues are especially pertinent for the night shift operations and the acute phase advance required for the transition of day shift personnel into the night for shuttle launch. Implementation and evaluation of the countermeasure strategies to maximize alertness and performance is planned. As STS missions extend to further extended duration orbiters, timelines and planning for 24 circadian disruption will remain highly relevant in the MOD environment.

  12. Mars Exploration Rover heat rejection system performance - comparison of ground and flight data

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani; Birur, Gajanana; Krylo, Robert; Tsuyuki, Glenn

    2004-01-01

    This paper will describe the various design modifications made on the MER HRS from that of Mars Pathfinder spacecraft. A description of the flight performance during the seven-month cruise of the spacecraft will be given. A comparison of the performance on the ground and the flight will be presented. Any significant deviation in the flight performance will be described.

  13. Orion Exploration Flight Test-1 Post-Flight Navigation Performance Assessment Relative to the Best Estimated Trajectory

    NASA Technical Reports Server (NTRS)

    Gay, Robert S.; Holt, Greg N.; Zanetti, Renato

    2016-01-01

    This paper details the post-flight navigation performance assessment of the Orion Exploration Flight Test-1 (EFT-1). Results of each flight phase are presented: Ground Align, Ascent, Orbit, and Entry Descent and Landing. This study examines the on-board Kalman Filter uncertainty along with state deviations relative to the Best Estimated Trajectory (BET). Overall the results show that the Orion Navigation System performed as well or better than expected. Specifically, the Global Positioning System (GPS) measurement availability was significantly better than anticipated at high altitudes. In addition, attitude estimation via processing GPS measurements along with Inertial Measurement Unit (IMU) data performed very well and maintained good attitude throughout the mission.

  14. Defining Exercise Performance Metrics for Flight Hardware Development

    NASA Technical Reports Server (NTRS)

    Beyene, Nahon M.

    2004-01-01

    The space industry has prevailed over numerous design challenges in the spirit of exploration. Manned space flight entails creating products for use by humans and the Johnson Space Center has pioneered this effort as NASA's center for manned space flight. NASA Astronauts use a suite of flight exercise hardware to maintain strength for extravehicular activities and to minimize losses in muscle mass and bone mineral density. With a cycle ergometer, treadmill, and the Resistive Exercise Device available on the International Space Station (ISS), the Space Medicine community aspires to reproduce physical loading schemes that match exercise performance in Earth s gravity. The resistive exercise device presents the greatest challenge with the duty of accommodating 20 different exercises and many variations on the core set of exercises. This paper presents a methodology for capturing engineering parameters that can quantify proper resistive exercise performance techniques. For each specified exercise, the method provides engineering parameters on hand spacing, foot spacing, and positions of the point of load application at the starting point, midpoint, and end point of the exercise. As humans vary in height and fitness levels, the methodology presents values as ranges. In addition, this method shows engineers the proper load application regions on the human body. The methodology applies to resistive exercise in general and is in use for the current development of a Resistive Exercise Device. Exercise hardware systems must remain available for use and conducive to proper exercise performance as a contributor to mission success. The astronauts depend on exercise hardware to support extended stays aboard the ISS. Future plans towards exploration of Mars and beyond acknowledge the necessity of exercise. Continuous improvement in technology and our understanding of human health maintenance in space will allow us to support the exploration of Mars and the future of space

  15. Habitability and Performance Issues for Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; McQuilkin, Meredith L.; Woolford, Barbara J.

    1997-01-01

    Advancing technology, coupled with the desire to explore space has resulted in increasingly longer manned space missions. Although the Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on human ability to function in extreme environments, findings indicate long duration missions take a toll on the individual, both physiologically and psychologically. These physiological and psychological issues manifest themselves in performance decrements; and could lead to serious errors endangering the mission, spacecraft and crew. The purpose of this paper is to document existing knowledge of the effects of LDSF on performance, habitability, and workload and to identify and assess potential tools designed to address these decrements as well as propose an implementation plan to address the habitability, performance and workload issues.

  16. Flight performance of BESS PolarII Aerogel Cherenkov Counter

    NASA Astrophysics Data System (ADS)

    Sakai, Kenichi

    The second scientific flight of the BESS-Polar experiment was performed in December 2007. The objective is understanding elementary particle phenomena in the early universe and propagation mechanism in the Galaxy through a search for antiparticles and antimatter in the cosmic radiation and mesurement of cosmic-ray nuclei. The BESS-Polar II scientific balloon was launched from Williams Field near the US McMurdo station in Antarctica and recorded more than 46x108 cosmic-ray events dualing a scientific balloon flight of 24.5 days. In addition to secondly production, there could be other, more exotic antiproton sources such as the evapolation of primordial black holes . Since the secondly antiproton spectrum has a sharp peak around 2 GeV, antiproton contributions well above or below this peak from other sources could cause an apparent flattening of the spectrum. For clear indentification of antiprotons against electron and muon background around the 0.2GeV 3.0GeV region, a threshold-type aerogel cherenkov counter(ACC) had been adopted. However, its performance was not high enough in the Polar I flight. The number of photoelectrons (N.pe.) was only 6 and the rejection power was 600 against more than 103 times electron and muon background. In BESS-Polar II which aims at precision measurement by vast statistics, the ACC was thoroughly redesigned to increase its rejection power while maintaining low systematic error. Improvements are described below. 1.Changing the aerogel refractive index(1.02 to 1.03): Because the focus of BESS-Polar II was on particle identification in lower energy region, the index was changed and this produced an improvement of 1.5 times N.pe. 2.Redesign of ACC Box Optimization of ACC optical geometry using Monte-Carlo simulation tuned with beam-test data gave 1.2 times N.pe. 3.Changing Aerogel block size (100x100x10mm3 to 190x280x20mm3 ) Larger aerogel blocks were adopted to reduce the inefficient area and N.pe. grew 1.1times. As a result of these

  17. Flight Performance Feasibility Studies for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Tarabini, Paul V.; Gilbert, Michael G.; Beaty, James R.

    2013-01-01

    In 2007, the NASA Engineering and Safety Center (NESC) initiated the Max Launch Abort System Project to explore crew escape system concepts designed to be fully encapsulated within an aerodynamic fairing and smoothly integrated onto a launch vehicle. One objective of this design was to develop a more compact launch escape vehicle that eliminated the need for an escape tower, as was used in the Mercury and Apollo escape systems and what is planned for the Orion Multi-Purpose Crew Vehicle (MPCV). The benefits for the launch vehicle of eliminating a tower from the escape vehicle design include lower structural weights, reduced bending moments during atmospheric flight, and a decrease in induced aero-acoustic loads. This paper discusses the development of encapsulated, towerless launch escape vehicle concepts, especially as it pertains to the flight performance and systems analysis trade studies conducted to establish mission feasibility and assess system-level performance. Two different towerless escape vehicle designs are discussed in depth: one with allpropulsive control using liquid attitude control thrusters, and a second employing deployable aft swept grid fins to provide passive stability during coast. Simulation results are presented for a range of nominal and off-nominal escape conditions.

  18. Perception and performance in flight simulators: The contribution of vestibular, visual, and auditory information

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The pilot's perception and performance in flight simulators is examined. The areas investigated include: vestibular stimulation, flight management and man cockpit information interfacing, and visual perception in flight simulation. The effects of higher levels of rotary acceleration on response time to constant acceleration, tracking performance, and thresholds for angular acceleration are examined. Areas of flight management examined are cockpit display of traffic information, work load, synthetic speech call outs during the landing phase of flight, perceptual factors in the use of a microwave landing system, automatic speech recognition, automation of aircraft operation, and total simulation of flight training.

  19. Performance of the relativity mission superfluid helium flight dewar

    NASA Astrophysics Data System (ADS)

    Parmley, R. T.; Bell, G. A.; Frank, D. J.; Murray, D. O.; Whelan, R. A.

    2003-10-01

    The world's largest capacity helium flight dewar has been assembled for use on the Relativity Mission, also known as Gravity Probe-B (GP-B). Acceptance tests performed include (1) weight, (2) proof pressure and leak checks, (3) vacuum bakeout, (4) main tank fill with He I, (5) parasitic heat rate tests, (6) well fill with He I from both the main tank and an external supply dewar, (7) well depletion, (8) conditioning the main tank to He II, (9) porous plug tests, (10) heat pulse meter tests, (11) transferring He II from the main tank to the well with a fountain-effect pump, (12) guard tank fill with He I with a nonvented He II main tank simulating launch pad hold, and (13) guard tank emptying. The measured performance is compared to the previously launched IRAS, COBE, and ISO cryostats. The Relativity Mission spacecraft will be launched in the time span 1999 to 2000.

  20. Flight Performance of Skylab Attitude and Pointing Control System

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.; Kennel, H. F.; Rupp, C. C.; Seltzer, S. M.

    1975-01-01

    In 1967 a paper at the AIAA Guidance, Control and Flight Dynamics Conference in Huntsville, Ala. presented for the first time the prot)osed SKYLAB Attitude and Pointing Control System (APCS) The system requirements, Apollo Telescope Mount (ATM) configuration, control philosophy, and operational modes were presented and the APCS described. The Initial mission and system design requirements changed during the period of time before the SKYLAB was launched. This paper will review the Initial and final APCS requirements and goals and their relationship. The actual flight mission (and Its alterations during the flight) and known achieved APCS performance will then be presented. SKYLAB was a tremendous success in furthering man's scientific knowledge; but perhaps SKYLAB will be remembered more for the anomalies and the efforts undertaken to solve them. On May 14, 1973, the unmanned SKYLAB Orbital Workshop (OWS) was launched from Cape Kennedy. Serious hardware failures began to occur during ascent through the atmosphere and their spectre continued to haunt both the astronauts and their ground based support team. Nor were these the only surprises affecting the design and operation of the APCS. Mission requirements for pointing to various stellar targets and to nadir for earth resources experiments were added after the hardware was designed. The chance appearance of comet Kohoutek during the SKYLAB operational life-time caused NASA to add comet observation to the mission requirements and to adjust the time when the third crew would man the SKYLAB. The development of new procedures and software for the opportunity to observe this visitor to our solar system is described.

  1. Flight Performance of UV Filters on the ALEXIS Satellite

    SciTech Connect

    Bloch, J.J.; Roussel-Dupre, D.; Starin, S.

    1999-07-08

    The ALEXIS (Array of Low-Energy X-ray Imaging Sensors) mission, serving as the first dedicated all-sky monitor in the extreme UV, has been collecting data since its launch in 1993. ALEXIS operates in a 70{degree} inclination orbit at an altitude of 800 km. The ALEXIS science mission is to observe the cosmic UV background and to study variability of EUV sources. The ALEXIS experiment is composed of six telescopes. Although the telescopes were only designed for a one-year technology verification mission, they are still functioning with much the same effectiveness as at the beginning of the mission. The telescopes comprise: (1) layered synthetic microstructure (LSM) spherical mirrors, (2) thin foil filters, and (3) microchannel plate (MCP) detectors, all enshrouded within the telescope body. The LSM mirrors select the bandpass for each telescope, while rejecting some of the HeII 304{angstrom} geocoronal radiation. The filters, constructed either from aluminum/carbon or Lexan/titanium/boron, serve to strongly reject the geocoronal radiation, as well as longer wavelength emission from bright OB stars. Each telescope detector consists of two plates, the outermost of which is curved to accurately match the spherical focal surface of the mirror. By reviewing the ground and flight histories, this paper analyzes the flight performance of the filters, including the effects of long term exposure and the formation of pinholes.

  2. Stability and Performance Metrics for Adaptive Flight Control

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan; VanEykeren, Luarens

    2009-01-01

    This paper addresses the problem of verifying adaptive control techniques for enabling safe flight in the presence of adverse conditions. Since the adaptive systems are non-linear by design, the existing control verification metrics are not applicable to adaptive controllers. Moreover, these systems are in general highly uncertain. Hence, the system's characteristics cannot be evaluated by relying on the available dynamical models. This necessitates the development of control verification metrics based on the system's input-output information. For this point of view, a set of metrics is introduced that compares the uncertain aircraft's input-output behavior under the action of an adaptive controller to that of a closed-loop linear reference model to be followed by the aircraft. This reference model is constructed for each specific maneuver using the exact aerodynamic and mass properties of the aircraft to meet the stability and performance requirements commonly accepted in flight control. The proposed metrics are unified in the sense that they are model independent and not restricted to any specific adaptive control methods. As an example, we present simulation results for a wing damaged generic transport aircraft with several existing adaptive controllers.

  3. In-flight performances of the PAMELA magnetic spectrometer

    NASA Astrophysics Data System (ADS)

    Vannuccini, Elena

    PAMELA cosmic-ray detector is orbiting around the Earth on board the Resurs DK1 satellite since June 2006. The experiment is designed to study charged particles in the cosmic radiation, being optimized in particular for antiprotons and positrons. The core of the detector is a spectrometer composed of six planes of silicon microstrip sensors, which are placed inside the cavity of a permanent magnet. The detector has been designed to determine precisely the rigidity (up to 1 TV) and the electric charge (up to berillium) of particles crossing the apparatus. The spectrometer plays a crucial role in the high-energy antiproton analysis, where the main source of background comes from protons which recostructed trajectories have a negative curvature due to the finite resolution of the tracking system ("spillover" background). In this work the in-flight performances of the spectrometer will be presented, with main focus on the momentum resolution of singly-charged particles. A key point of track reconstruction is the alignment of the tracking system, which is done with the help of the energy information provided by the calorimeter for electrons and positrons. The good quality of flight data and the agreement with simulation indicate that the instrument provides a reliable estimate of the particle rigidity over a wide energy range. Finally, the criteria applied to minimize the spillover background in the antiproton sample and extend the identification to high energy will be discussed.

  4. Flight Performance of the HEROES Solar Aspect System

    NASA Astrophysics Data System (ADS)

    Shih, Albert Y.; Christe, Steven; Rodriguez, Marcello; Gregory, Kyle; Cramer, Alexander; Edgerton, Melissa; Gaskin, Jessica; O'Connor, Brian; Sobey, Alexander

    2014-06-01

    Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Furthermore, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration in the non-flaring corona. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. The HEROES Solar Aspect System (SAS) was developed and built to provide pointing knowledge during solar observations to better than the ~20 arcsec FWHM angular resolution of the HXR instrument. The SAS consists of two separate systems: the Pitch-Yaw aspect System (PYAS) and the Roll Aspect System (RAS). The PYAS compares the position of an optical image of the Sun relative to precise fiducials to determine the pitch and yaw pointing offsets from the desired solar target. The RAS images the Earth's horizon in opposite directions simultaneously to determine the roll of the gondola. HEROES launched in September 2013 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the performance of the SAS for that flight.

  5. Performance optimization for rotors in hover and axial flight

    NASA Technical Reports Server (NTRS)

    Quackenbush, T. R.; Wachspress, D. A.; Kaufman, A. E.; Bliss, D. B.

    1989-01-01

    Performance optimization for rotors in hover and axial flight is a topic of continuing importance to rotorcraft designers. The aim of this Phase 1 effort has been to demonstrate that a linear optimization algorithm could be coupled to an existing influence coefficient hover performance code. This code, dubbed EHPIC (Evaluation of Hover Performance using Influence Coefficients), uses a quasi-linear wake relaxation to solve for the rotor performance. The coupling was accomplished by expanding of the matrix of linearized influence coefficients in EHPIC to accommodate design variables and deriving new coefficients for linearized equations governing perturbations in power and thrust. These coefficients formed the input to a linear optimization analysis, which used the flow tangency conditions on the blade and in the wake to impose equality constraints on the expanded system of equations; user-specified inequality contraints were also employed to bound the changes in the design. It was found that this locally linearized analysis could be invoked to predict a design change that would produce a reduction in the power required by the rotor at constant thrust. Thus, an efficient search for improved versions of the baseline design can be carried out while retaining the accuracy inherent in a free wake/lifting surface performance analysis.

  6. Insect contamination protection for laminar flow surfaces

    NASA Technical Reports Server (NTRS)

    Croom, Cynthia C.; Holmes, Bruce J.

    1986-01-01

    The ability of modern aircraft surfaces to achieve laminar flow was well-accepted in recent years. Obtaining the maximum benefit of laminar flow for aircraft drag reduction requires maintaining minimum leading-edge contamination. Previously proposed insect contamination prevention methods have proved impractical due to cost, weight, or inconvenience. Past work has shown that insects will not adhere to water-wetted surfaces, but the large volumes of water required for protection rendered such a system impractical. The results of a flight experiment conducted by NASA to evaluate the performance of a porous leading-edge fluid discharge ice protection system operated as an insect contamination protections system are presented. In addition, these flights explored the environmental and atmospheric conditions most suitable for insect accumulation.

  7. High performance target measurement flights from Vandenberg Air Force Base

    NASA Astrophysics Data System (ADS)

    Chalfant, C. P.; Rosen, H.; Jerger, J. H.

    A description is presented of a new launch facility which is being prepared for the High Performance Target Measurement (HPTEM) booster at Vandenberg Air Force Base (VAFB). A deactivated Atlas launch complex is currently being modified to allow the rocket to be launched from a semisilo. The underground launch operations building will contain a new control center and instrumentation room. Attention is given to the Multi-Spectral Measurement Program (MSMP), details concerning the launch facility, and a target and flight safety trajectory analysis. Construction and modification of the facility is scheduled to be completed in mid-1983. The first HPTEM launch is planned to occur in April 1984. The HPTEM launch facility can also be utilized to launch Aries I (single stage) and Aries II (two-stage) probes with minor modification.

  8. Performance of uncoated AFRSI blankets during multiple Space Shuttle flights

    NASA Astrophysics Data System (ADS)

    Sawko, Paul M.; Goldstein, Howard E.

    1992-04-01

    Uncoated Advanced Flexible Reusable Surface Insulation (AFRSI) blankets were successfully flown on seven consecutive flights of the Space Shuttle Orbiter OV-099 (Challenger). In six of the eight locations monitored (forward windshield, forward canopy, mid-fuselage, upper wing, rudder/speed brake, and vertical tail) the AFRSI blankets performed well during the ascent and reentry exposure to the thermal and aeroacoustic environments. Several of the uncoated AFRSI blankets that sustained minor damage, such as fraying or broken threads, could be repaired by sewing or by patching with a surface coating called C-9. The chief reasons for replacing or completely coating a blanket were fabric embrittlement and fabric abrasion caused by wind erosion. This occurred in the orbiter maneuvering system (OMS) pod sidewall and the forward mid-fuselage locations.

  9. Insect-Based Vision for Autonomous Vehicles: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Srinivasan, Mandyam V.

    1999-01-01

    The aims of the project were to use a high-speed digital video camera to pursue two questions: i) To explore the influence of temporal imaging constraints on the performance of vision systems for autonomous mobile robots; To study the fine structure of insect flight trajectories with in order to better understand the characteristics of flight control, orientation and navigation.

  10. Insect-Based Vision for Autonomous Vehicles: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Srinivasan, Mandyam V.

    1999-01-01

    The aims of the project were to use a high-speed digital video camera to pursue two questions: (1) To explore the influence of temporal imaging constraints on the performance of vision systems for autonomous mobile robots; (2) To study the fine structure of insect flight trajectories in order to better understand the characteristics of flight control, orientation and navigation.

  11. Flight performance using a hyperstereo helmet-mounted display: post-flight debriefing questionnaire

    NASA Astrophysics Data System (ADS)

    Kalich, Melvyn E.; Rash, Clarence E.; Harding, Thomas H.; Jennings, Sion; Craig, Gregory; Stuart, Geoffrey W.

    2009-05-01

    Helmet-mounted display (HMD) designs have faced persistent head-supported mass and center of mass (CM) problems, especially HMD designs like night vision goggles (NVG) that utilize image intensification (I2) sensors mounted forward in front of the user's eyes. Relocating I2 sensors from the front to the sides of the helmet, at or below the transverse plane through the user's head CM, can resolve most of the CM problems. However, the resulting increase in the separation between the two I2 channels effectively increases the user's interpupillary distance (IPD). This HMD design is referred to as a hyperstero design and introduces the phenomenon of hyperstereopsis, a type of visual distortion where stereoscopic depth perception is exaggerated, particularly at distances under 200 feet (~60 meters). The presence of hyperstereopsis has been a concern regarding implementation of hyperstereo HMDs for rotary-wing aircraft. To address this concern, a flight study was conducted to assess the impact of hyperstereopsis on aircraft handling proficiency and pilot acceptance. Three rated aviators with differing levels of I2 and hyperstereo HMD experience conducted a series of flights that concentrated on low-level maneuvers over a two-week period. Initial and final flights were flown with a standard issue I2 device and a production hyperstereo design HMD. Interim flights were flown only with the hyperstereo HMD. Two aviators accumulated 8 hours of flight time with the hyperstereo HMD, while the third accumulated 6.9 hours. This paper presents data collected via written questionnaires completed by the aviators during the post-flight debriefings. These data are compared to questionnaire data from a previous flight investigation in which aviators in a copilot capacity, hands not on the flight controls, accumulated 8 flight hours of flight time using a hyperstereo HMD.

  12. Effect of caffeine on simulator flight performance in sleep-deprived military pilot students.

    PubMed

    Lohi, Jouni J; Huttunen, Kerttu H; Lahtinen, Taija M M; Kilpeläinen, Airi A; Muhli, Arto A; Leino, Tuomo K

    2007-09-01

    Caffeine has been suggested to act as a countermeasure against fatigue in military operations. In this randomized, double-blind, placebo-controlled study, the effect of caffeine on simulator flight performance was examined in 13 military pilots during 37 hours of sleep deprivation. Each subject performed a flight mission in simulator four times. The subjects received either a placebo (six subjects) or 200 mg of caffeine (seven subjects) 1 hour before the simulated flights. A moderate 200 mg intake of caffeine was associated with higher axillary temperatures, but it did not affect subjectively assessed sleepiness. Flight performance was similar in both groups during the four rounds flown under sleep deprivation. However, subjective evaluation of overall flight performance in the caffeine group tended to be too optimistic, indicating a potential flight safety problem. Based on our results, we do not recommend using caffeine pills in military flight operations. PMID:17937364

  13. Flight test evaluation of a method to determine the level flight performance propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Cross, E. J., Jr.

    1976-01-01

    A procedure is developed for deriving the level flight drag and propulsive efficiency of propeller-driven aircraft. This is a method in which the overall drag of the aircraft is expressed in terms of the measured increment of power required to overcome a corresponding known increment of drag. The aircraft is flown in unaccelerated, straight and level flight, and thus includes the effects of the propeller drag and slipstream. Propeller efficiency and airplane drag are computed on the basis of data obtained during flight test and do not rely on the analytical calculations of inadequate theory.

  14. Performance of the Tachyon Time-of-Flight PET Camera

    PubMed Central

    Peng, Q.; Choong, W.-S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.

    2015-01-01

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon’s detector module is optimized for timing by coupling the 6.15 × 25 mm2 side of 6.15 × 6.15 × 25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/− ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3. PMID:26594057

  15. In-Flight Performance of the OCO-2 Cryocooler

    NASA Astrophysics Data System (ADS)

    Na-Nakornpanom, Arthur; Naylor, Bret J.; Lee, Richard A. M.

    2015-12-01

    The Orbiting Carbon Observatory-2 (OCO-2) will have completed its first year in space on July 2, 2015. The OCO-2 instrument incorporates three bore-sighted, high-resolution grating spectrometers, designed to measure the near-infrared absorption of reflected sunlight by carbon dioxide and molecular oxygen. The cryocooler system design is coupled with the instrument's thermal control design to maximize the instrument's performance. A single-stage NGAS pulse tube cryocooler provides refrigeration to three focal plane arrays to ∼120 K via a high conductance flexible thermal strap. A variable conductance heat pipe (VCHP) based heat rejection system (HRS) transports waste heat from the instrument located inside the spacecraft to the space-viewing radiators. The HRS provides tight temperature control of the optics to 267 K and maintains the cryocooler at 300 K. Soon after entering the A-Train on August 3, 2014, the optics and focal planes were cooled to their operating temperatures. This paper provides a general overview of the cryogenic system design and reviews the in-flight cryogenic performance during the Observatory's first year.

  16. Performance of the Tachyon Time-of-Flight PET Camera

    DOE PAGESBeta

    Peng, Q.; Choong, W. -S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.

    2015-01-23

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 ×25 mm2 side of 6.15 ×6.15 ×25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMAmore » NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. We find that the results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.« less

  17. Performance of the Tachyon Time-of-Flight PET Camera

    SciTech Connect

    Peng, Q.; Choong, W. -S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.

    2015-01-23

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 ×25 mm2 side of 6.15 ×6.15 ×25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. We find that the results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.

  18. Insect food for astronauts: gas exchange in silkworms fed on mulberry and lettuce and the nutritional value of these insects for human consumption during deep space flights.

    PubMed

    Tong, L; Yu, X; Liu, H

    2011-10-01

    In this study, silkworm moth (Bombyx mori L.) larvae were regarded as an animal protein source for astronauts in the bioregenerative life support system during long-term deep space exploration in the future. They were fed with mulberry and stem lettuce leaves during the first three instars and the last two instars, respectively. In addition, this kind of environmental approach, which utilised inedible biomass of plants to produce animal protein of high quality, can likewise be applied terrestrially to provide food for people living in extreme environments and/or impoverished agro-ecosystems, such as in polar regions, isolated military bases, ships, submarines, etc. Respiration characteristics of the larvae during development under two main physiological conditions, namely eating and not-eating of leaves, were studied. Nutrient compositions of silkworm powder (SP), ground and freeze-dried silkworms on the 3rd day of the 5th instar larvae, including protein, fat, vitamins, minerals and fatty acids, were measured using international standard methods. Silkworms' respiration rates, measured when larvae were eating mulberry leaves, were higher than those of similar larvae that hadn't eaten such leaves. There was a significant difference between silkworms fed on mulberry leaves and those fed on stem lettuce in the 4th and 5th instars (P<0.01). Amounts of CO2 exhaled by the silkworms under the two physiological regimes differed from each other (P<0.01). There was also a significant difference between the amount of O2 inhaled when the insects were under the two physiological statuses (P<0.01). Moreover, silkworms' respiration quotient under the eating regime was larger than when under the not-eating regime. The SP was found to be rich in protein and amino acids in total; 12 essential vitamins, nine minerals and twelve fatty acids were detected. Moreover, 359 kcal could be generated per 100 gram of SP (dry weight). PMID:21554801

  19. Development of flight performance in the brown booby.

    PubMed

    Yoda, Ken; Kohno, Hiroyoshi; Naito, Yasuhiko

    2004-05-01

    How do birds acquire flight skills after fledging? This issue is important, as it is closely related to variation in the duration of offspring care, the causes of which remain unknown. In this study, we raised hatchling brown boobies, Sula leucogaster, and attached an acceleration data logger to each bird at fledging to record its movements. This allowed us to quantify precisely the time spent flapping, gliding and resting. The duration of foraging trips and proportion of time spent gliding during flight increased with the number of days since fledging, whereas the proportion of time spent in flight decreased. This indicates that brown boobies gradually acquire efficient flight skills during the post-fledging period, which might be the proximate cause of the long postfledging care period in this species. To the authors' knowledge, this is the first study to record precisely the ontogeny of flight behaviour in birds. PMID:15252995

  20. Orion Launch Abort System Jettison Motor Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel J.; Davidson, John B.; Winski, Richard G.

    2015-01-01

    This paper presents an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System performing Orion nominal flight mission critical objectives. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Selected Launch Abort System flight test data is presented and discussed in the paper. Through flight test data, Launch Abort System performance trends have been derived that will prove valuable to future flights as well as the manned space program.

  1. NEP Early Flight program: System performance and development considerations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; George, Jeffrey A.

    1993-01-01

    A mission/system study of Nuclear Electric Propulsion (NEP) for early robotic planetary science mission applications has been conducted. Subject missions considered included a Mars orbiter with a Phobos and Deimos Rendezvous; a Comet Kopff Rendezvous; a Multiple Mainbelt Asteroid Rendezvous (MMBAR); an Asteroid (Vesta) Sample Return; a Trojan Asteroid (Odysseus) Rendezvous; and a Jupiter mini Grand Tour. The purpose of the study was to determine if 'near-term' NEP technology could be used on an early NEP flight to demonstrate the technologies while conducting a useful science mission. The analysis shows that, depending upon technology readiness date, the missions could be performed with low power NEP. The technology and system development costs associated with vehicle/stage development for a candidate mission are presented. The study assumed relatively mature space electric power and space electric propulsion technologies (more advanced technologies have been already shown by others to be enabling for many outer planetary missions). Thus, a very important first step in using NEP would be taken, which would contribute valuable solar system science, as well as reduce the risks associated with using NEP for more demanding outer planetary science mission applications.

  2. Mars Exploration Rover surface mission flight thermal performance

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Phillips, Charles J.; Sunada, Eric T.; Kinsella, Gary M.

    2005-01-01

    NASA launched two rovers in June and July of 2003 as a part of the Mars Exploration Rover (MER) project. MER-A (Spirit) landed on Mars in Gusev Crater at 15 degrees South latitude and 175 degree East longitude on January 4, 2004 (Squyres, et al., Dec. 2004)). MER-B (Opportunity) landed on Mars in Terra Meridiani at 2 degrees South latitude and 354 degrees East longitude on January 25, 2004 (Squyres, et al., August 2004) Both rovers have well exceeded their design lifetime (90 Sols) by more than a factor of 4. Spirit and Opportunity are still healthy and continue to execute their roving science missions at the time of this writing. This paper discusses rover flight thermal performance during the surface missions of both vehicles, covering roughly the time from the MER-A landing in late Southern Summer (Ls = 328, Sol 1A) through the Southern Winter solstice (Ls = 90, Sol 255A) to nearly Southern Vernal equinox (Ls = 160 , Sol 398A).

  3. MAP Attitude Control System Design and Flight Performance

    NASA Technical Reports Server (NTRS)

    Andrews, S. F.; ODonnell, J. R.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used that will cover the entire celestial sphere in six months. The spin rate should be an order of magnitude higher than the precession rate, and each rate should be tightly controlled. The sunline angle should be 22.5 +/- 0.25 deg. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.3 arc-minutes RSS three axes. In addition, the spacecraft must be able to acquire and hold the sunline at initial acquisition, and in the event of a failure. Finally. the spacecraft must be able to slew to the proper burn orientations and to the proper off-sunline attitude to start the compound spin. The design and flight performance of the Attitude Control System on MAP that meets these requirements will be discussed.

  4. Performance of active vibration control technology: the ACTEX flight experiments

    NASA Astrophysics Data System (ADS)

    Nye, T. W.; Manning, R. A.; Qassim, K.

    1999-12-01

    This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed

  5. Enroute flight-path planning - Cooperative performance of flight crews and knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Galdes, Deb

    1989-01-01

    Interface design issues associated with the introduction of knowledge-based systems into the cockpit are discussed. Such issues include not only questions about display and control design, they also include deeper system design issues such as questions about the alternative roles and responsibilities of the flight crew and the computer system. In addition, the feasibility of using enroute flight path planning as a context for exploring such research questions is considered. In particular, the development of a prototyping shell that allows rapid design and study of alternative interfaces and system designs is discussed.

  6. Bumblebee flight performance in environments of different proximity.

    PubMed

    Linander, Nellie; Baird, Emily; Dacke, Marie

    2016-02-01

    Flying animals are capable of navigating through environments of different complexity with high precision. To control their flight when negotiating narrow tunnels, bees and birds use the magnitude of apparent image motion (known as optic flow) generated by the walls. In their natural habitat, however, these animals would encounter both cluttered and open environments. Here, we investigate how large changes in the proximity of nearby surfaces affect optic flow-based flight control strategies. We trained bumblebees to fly along a flight and recorded how the distance between the walls--from 60 cm to 240 cm--affected their flight control. Our results reveal that, as tunnel width increases, both lateral position and ground speed become increasingly variable. We also find that optic flow information from the ground has an increasing influence on flight control, suggesting that bumblebees measure optic flow flexibly over a large lateral and ventral field of view, depending on where the highest magnitude of optic flow occurs. A consequence of this strategy is that, when flying in narrow spaces, bumblebees use optic flow information from the nearby obstacles to control flight, while in more open spaces they rely primarily on optic flow cues from the ground. PMID:26614094

  7. Intraindividual Variability in Basic Reaction Time Predicts Middle-Aged and Older Pilots’ Flight Simulator Performance

    PubMed Central

    2013-01-01

    Objectives. Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Method. Two-hundred and thirty-six pilots (40–69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Results. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%–12% of the negative age effect on initial flight performance. Discussion. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance. PMID:23052365

  8. Instrumentation and Performance Analysis Plans for the HIFiRE Flight 2 Experiment

    NASA Technical Reports Server (NTRS)

    Gruber, Mark; Barhorst, Todd; Jackson, Kevin; Eklund, Dean; Hass, Neal; Storch, Andrea M.; Liu, Jiwen

    2009-01-01

    Supersonic combustion performance of a bi-component gaseous hydrocarbon fuel mixture is one of the primary aspects under investigation in the HIFiRE Flight 2 experiment. In-flight instrumentation and post-test analyses will be two key elements used to determine the combustion performance. Pre-flight computational fluid dynamics (CFD) analyses provide valuable information that can be used to optimize the placement of a constrained set of wall pressure instrumentation in the experiment. The simulations also allow pre-flight assessments of performance sensitivities leading to estimates of overall uncertainty in the determination of combustion efficiency. Based on the pre-flight CFD results, 128 wall pressure sensors have been located throughout the isolator/combustor flowpath to minimize the error in determining the wall pressure force at Mach 8 flight conditions. Also, sensitivity analyses show that mass capture and combustor exit stream thrust are the two primary contributors to uncertainty in combustion efficiency.

  9. Flight performance of Skylab attitude and pointing control system

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.; Kennel, H. F.; Rupp, C. C.; Seltzer, S. M.

    1975-01-01

    The Skylab attitude and pointing control system (APCS) requirements are briefly reviewed and the way in which they became altered during the prelaunch phase of development is noted. The actual flight mission (including mission alterations during flight) is described. The serious hardware failures that occurred, beginning during ascent through the atmosphere, also are described. The APCS's ability to overcome these failures and meet mission changes are presented. The large around-the-clock support effort on the ground is discussed. Salient design points and software flexibility that should afford pertinent experience for future spacecraft attitude and pointing control system designs are included.

  10. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization.

    PubMed

    Muijres, Florian T; Johansson, L Christoffer; Winter, York; Hedenström, Anders

    2011-10-01

    Bats are unique among extant actively flying animals in having very flexible wings, controlled by multi-jointed fingers. This gives the potential for fine-tuned active control to optimize aerodynamic performance throughout the wingbeat and thus a more efficient flight. But how bat wing performance scales with size, morphology and ecology is not yet known. Here, we present time-resolved fluid wake data of two species of bats flying freely across a range of flight speeds using stereoscopic digital particle image velocimetry in a wind tunnel. From these data, we construct an average wake for each bat species and speed combination, which is used to estimate the flight forces throughout the wingbeat and resulting flight performance properties such as lift-to-drag ratio (L/D). The results show that the wake dynamics and flight performance of both bat species are similar, as was expected since both species operate at similar Reynolds numbers (Re) and Strouhal numbers (St). However, maximum L/D is achieved at a significant higher flight speed for the larger, highly mobile and migratory bat species than for the smaller non-migratory species. Although the flight performance of these bats may depend on a range of morphological and ecological factors, the differences in optimal flight speeds between the species could at least partly be explained by differences in their movement ecology. PMID:21367776

  11. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization

    PubMed Central

    Muijres, Florian T.; Johansson, L. Christoffer; Winter, York; Hedenström, Anders

    2011-01-01

    Bats are unique among extant actively flying animals in having very flexible wings, controlled by multi-jointed fingers. This gives the potential for fine-tuned active control to optimize aerodynamic performance throughout the wingbeat and thus a more efficient flight. But how bat wing performance scales with size, morphology and ecology is not yet known. Here, we present time-resolved fluid wake data of two species of bats flying freely across a range of flight speeds using stereoscopic digital particle image velocimetry in a wind tunnel. From these data, we construct an average wake for each bat species and speed combination, which is used to estimate the flight forces throughout the wingbeat and resulting flight performance properties such as lift-to-drag ratio (L/D). The results show that the wake dynamics and flight performance of both bat species are similar, as was expected since both species operate at similar Reynolds numbers (Re) and Strouhal numbers (St). However, maximum L/D is achieved at a significant higher flight speed for the larger, highly mobile and migratory bat species than for the smaller non-migratory species. Although the flight performance of these bats may depend on a range of morphological and ecological factors, the differences in optimal flight speeds between the species could at least partly be explained by differences in their movement ecology. PMID:21367776

  12. A flight investigation of basic performance characteristics of a teetering-rotor attack helicopter

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.

    1979-01-01

    Flight data were obtained with an instrumented AH-16 helicopter having uninstrumented, standard main-rotor blades. The data are presented to facilitate the analysis of data taken when the same vehicle was flown with instrumented main-rotor blades built with new airfoils. Test results include data on performance, flight-state parameters, pitch-link loads and blade angles for level flight, descending turns and pull-ups. Flight test procedures and the effects of both trim variations and transient phenomena on the data are discussed.

  13. The CREAM Calorimeter: Performance In Tests And Flights

    SciTech Connect

    Lee, M. H.; Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lutz, L.; Malinine, A.; Sina, R.; Walpole, P.; Wu, J.; Zinn, S. Y.; Allison, P.; Beatty, J. J.; Brandt, T. J.; Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Zei, R.; Barbier, L.

    2006-10-27

    The Cosmic Ray Energetics And Mass (CREAM) balloon-borne experiment, designed to directly measure cosmic-ray particle energies from {approx}1011 to {approx}1015 eV, had two successful flights since December 2004, with a total duration of 70 days. The CREAM calorimeter is comprised of 20 layers of 1 radiation length (X0) tungsten interleaved with 20 active layers each made up of fifty 1 cm wide scintillating fiber ribbons. The scintillation signals are read out with multi pixel Hybrid Photo Diodes (HPDs), VA32-HDR2/TA32C ASICs and LTC1400 ADCs. During detector construction, various tests were carried out using radioactive sources, UV-LEDs, and particle beams. We will present results from these tests and show preliminary results from the two flights.

  14. NASA's Marshall Space Flight Center Improves Cooling System Performance

    SciTech Connect

    2011-02-22

    National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

  15. Early life disadvantage strengthens flight performance trade-offs in European starlings, Sturnus vulgaris

    PubMed Central

    O'Hagan, Daniel; Andrews, Clare P.; Bedford, Thomas; Bateson, Melissa; Nettle, Daniel

    2015-01-01

    Developmental stress has been shown to affect adult flight performance in birds, with both negative and positive effects reported in the literature. Previous studies have used developmental manipulations that had substantial effects on patterns of growth. They have also examined mean levels of flight performance per individual, rather than investigating how developmental stress might alter trade-offs between different components of flight performance. We recorded multiple components of escape flight performance in 20 adult European starlings previously subjected to a manipulation likely to have altered levels of developmental stress. Siblings had been cross-fostered to nests where they were either slightly larger (advantaged treatment) or slightly smaller (disadvantaged treatment) than their competitors. The manipulation had no detectable effect on growth. However, developmental treatment affected performance in escape flights a year later by strengthening the trade-offs between different flight parameters. Disadvantaged birds faced a steeper trade-off between take-off speed and take-off angle, and a steeper trade-off between take-off angle and total time in flight, than advantaged birds. The results suggest that even subtle early life adversity that has no obvious effect on growth or size can leave a lasting legacy in the form of constraints on locomotor performance later in life. PMID:25843958

  16. Ride qualities criteria validation/pilot performance study: Flight test results

    NASA Technical Reports Server (NTRS)

    Nardi, L. U.; Kawana, H. Y.; Greek, D. C.

    1979-01-01

    Pilot performance during a terrain following flight was studied for ride quality criteria validation. Data from manual and automatic terrain following operations conducted during low level penetrations were analyzed to determine the effect of ride qualities on crew performance. The conditions analyzed included varying levels of turbulence, terrain roughness, and mission duration with a ride smoothing system on and off. Limited validation of the B-1 ride quality criteria and some of the first order interactions between ride qualities and pilot/vehicle performance are highlighted. An earlier B-1 flight simulation program correlated well with the flight test results.

  17. Improving sterile male performance in support of programmes integrating the sterile insect technique against fruit flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Sterile Insect Technique (SIT) is being applied against fruit fly pests in many areas of the world. Currently, factories have the capacity to produce several billion sterile male insects per week and to make them available for, irradiatiation and shipment to their destinations, where the emergin...

  18. Atmospheric change alters foliar quality of host trees and performance of two outbreak insect species.

    PubMed

    Couture, John J; Meehan, Timothy D; Lindroth, Richard L

    2012-03-01

    This study examined the independent and interactive effects of elevated carbon dioxide (CO(2)) and ozone (O(3)) on the foliar quality of two deciduous trees species and the performance of two outbreak herbivore species. Trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) were grown at the Aspen FACE research site in northern Wisconsin, USA, under four combinations of ambient and elevated CO(2) and O(3). We measured the effects of elevated CO(2) and O(3) on aspen and birch phytochemistry and on gypsy moth (Lymantria dispar) and forest tent caterpillar (Malacosoma disstria) performance. Elevated CO(2) nominally affected foliar quality for both tree species. Elevated O(3) negatively affected aspen foliar quality, but only marginally influenced birch foliar quality. Elevated CO(2) slightly improved herbivore performance, while elevated O(3) decreased herbivore performance, and both responses were stronger on aspen than birch. Interestingly, elevated CO(2) largely offset decreased herbivore performance under elevated O(3). Nitrogen, lignin, and C:N were identified as having strong influences on herbivore performance when larvae were fed aspen, but no significant relationships were observed for insects fed birch. Our results support the notion that herbivore performance can be affected by atmospheric change through altered foliar quality, but how herbivores will respond will depend on interactions among CO(2), O(3), and tree species. An emergent finding from this study is that tree age and longevity of exposure to pollutants may influence the effects of elevated CO(2) and O(3) on plant-herbivore interactions, highlighting the need to continue long-term atmospheric change research. PMID:21971584

  19. Distributed power and control actuation in the thoracic mechanics of a robotic insect.

    PubMed

    Finio, Benjamin M; Wood, Robert J

    2010-12-01

    Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight performance. One of the key challenges is the development of an effective and efficient transmission mechanism to control wing motions. Here we present multiple insect-scale robotic thorax designs capable of producing asymmetric wing kinematics similar to those observed in nature and utilized by dipteran insects to maneuver. Inspired by the thoracic mechanics of dipteran insects, which entail a morphological separation of power and control muscles, these designs show that such distributed actuation can also modulate wing motion in a robotic design. PMID:21098956

  20. Verification and Validation Plan for Flight Performance Requirements on the CEV Parachute Assembly System

    NASA Technical Reports Server (NTRS)

    Morris, Aaron L.; Olson, Leah M.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is engaged in a multi-year design and test campaign aimed at qualifying a parachute recovery system for human use on the Orion Spacecraft. Orion has parachute flight performance requirements that will ultimately be verified through the use of Monte Carlo multi-degree of freedom flight simulations. These simulations will be anchored by real world flight test data and iteratively improved to provide a closer approximation to the real physics observed in the inherently chaotic inflation and steady state flight of the CPAS parachutes. This paper will examine the processes necessary to verify the flight performance requirements of the human rated spacecraft. The focus will be on the requirements verification and model validation planned on CPAS.

  1. Summary of shuttle data processing and aerodynamic performance comparisons for the first 11 flights

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Kelly, G. M.; Heck, M. L.; Mcconnell, J. G.

    1984-01-01

    NASA Space Shuttle aerodynamic and aerothermodynamic research is but one part of the most comprehensive end-to-end flight test program ever undertaken considering: the extensive pre-flight experimental data base development; the multitude of spacecraft and remote measurements taken during entry flight; the complexity of the Orbiter aerodynamic configuration; the variety of flight conditions available across the entire speed regime; and the efforts devoted to flight data reduction throughout the aerospace community. Shuttle entry flights provide a wealth of research quality data, in essence a veritable flying wind tunnel, for use by researchers to verify and improve the operational capability of the Orbiter and provide data for evaluations of experimental facilities as well as computational methods. This final report merely summarizes the major activities conducted by the AMA, Inc. under NASA Contract NAS1-16087 as part of that interesting research. Investigators desiring more detailed information can refer to the glossary of AMA publications attached herein as Appendix A. Section I provides background discussion of software and methodology development to enable Best Estimate Trajectory (BET) generation. Actual products generated are summarized in Section II as tables which completely describe the post-flight products available from the first three-year Shuttle flight history. Summary results are presented in Section III, with longitudinal performance comparisons included as Appendices for each of the flights.

  2. LPV Antiwindup Compensation for Enhanced Flight Control Performance

    NASA Technical Reports Server (NTRS)

    Lu, Bei; Wu, Fen; Kim, Sung-Wan

    2003-01-01

    In this paper, we propose a saturation control scheme for linear parameter-varying (LPV) systems from an antiwindup control perspective. The proposed control approach is advantageous because it can be thought of as an augmented control algorithm from the existing control system. Moreover, the synthesis condition for an antiwindup compensator is formulated as a linear matrix inequality (LMI) optimization problem and can be solved efficiently. We have applied the LPV antiwindup controller to an F-16 longitudinal autopilot control system design to enhance aircraft safety and improve flight quality in a high angle of attack region.

  3. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments.

    PubMed Central

    Granzier, H L; Wang, K

    1993-01-01

    Tension and dynamic stiffness of passive rabbit psoas, rabbit semitendinosus, and waterbug indirect flight muscles were investigated to study the contribution of weak-binding cross-bridges and elastic filaments (titin and minititin) to the passive mechanical behavior of these muscles. Experimentally, a functional dissection of the relative contribution of actomyosin cross-bridges and titin and minititin was achieved by 1) comparing mechanically skinned muscle fibers before and after selective removal of actin filaments with a noncalcium-requiring gelsolin fragment (FX-45), and 2) studying passive tension and stiffness as a function of sarcomere length, ionic strength, temperature, and the inhibitory effect of a carboxyl-terminal fragment of smooth muscle caldesmon. Our data show that weak bridges exist in both rabbit skeletal muscle and insect flight muscle at physiological ionic strength and room temperature. In rabbit psoas fibers, weak bridge stiffness appears to vary with both thin-thick filament overlap and with the magnitude of passive tension. Plots of passive tension versus passive stiffness are multiphasic and strikingly similar for these three muscles of distinct sarcomere proportions and elastic proteins. The tension-stiffness plot appears to be a powerful tool in discerning changes in the mechanical behavior of the elastic filaments. The stress-strain and stiffness-strain curves of all three muscles can be merged into one, by normalizing strain rate and strain amplitude of the extensible segment of titin and minititin, further supporting the segmental extension model of resting tension development. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:8298040

  4. Flight test evaluation of a method to determine the level flight performance of a propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Bridges, P. G.; Cross, E. J., Jr.; Boatwright, D. W.

    1977-01-01

    The overall drag of the aircraft is expressed in terms of the measured increment of power required to overcome a corresponding known increment of drag, which is generated by a towed drogue. The simplest form of the governing equations, D = delta D SHP/delta SHP, is such that all of the parameters on the right side of the equation can be measured in flight. An evaluation of the governing equations has been performed using data generated by flight test of a Beechcraft T-34B. The simplicity of this technique and its proven applicability to sailplanes and small aircraft is well known. However, the method fails to account for airframe-propulsion system.

  5. Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.

    2012-01-01

    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.

  6. Flight test report of the NASA icing research airplane: Performance, stability, and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Jordan, J. L.; Platz, S. J.; Schinstock, W. C.

    1986-01-01

    Flight test results are presented documenting the effect of airframe icing on performance and stability and control of a NASA DHC-6 icing research aircraft. Kohlman System Research, Inc., provided the data acquisition system and data analysis under contract to NASA. Performance modeling methods and MMLE techniques were used to determine the effects of natural ice on the aircraft. Results showed that ice had a significant effect on the drag coefficient of the aircraft and a modest effect on the MMLE derived longitudinal stability coefficients (code version MMLE). Data is also presented on asymmetric power sign slip maneuvers showing rudder floating characteristics with and without ice on the vertical stabilizer.

  7. Insect herbivores, density dependence, and the performance of the perennial herb Solanum carolinense.

    PubMed

    Underwood, Nora; Halpern, Stacey L

    2012-05-01

    How insect herbivores affect plant performance is of central importance to basic and applied ecology. A full understanding of herbivore effects on plant performance requires understanding interactions (if any) of herbivore effects with plant density and size because these interactions will be critical for determining how herbivores influence plant population size. However, few studies have considered these interactions, particularly over a wide enough range of densities to detect nonlinear effects. Here we ask whether plant density and herbivores influence plant performance linearly or nonlinearly, how plant density affects herbivore damage, and how herbivores alter density dependence in transitions between plant size classes. In a large field experiment, we manipulated the density of the herbaceous perennial plant Solanum carolinense and herbivore presence in a fully crossed design. We measured plant size, sexual reproduction, and damage to plants in two consecutive years, and asexual reproduction of new stems in the second year, allowing us to characterize both plant performance and rates of transition between plant size classes across years. We found nonlinear effects of plant density on damage. Damage by herbivores and plant density both influenced sexual and asexual reproduction of S. carolinense; these effects were mostly mediated via effects on plant size. Importantly, we found that herbivores altered the pattern of linear density dependence in some transition rates (including survival and asexual reproduction) between plant size classes. These results suggest that understanding the ecological or evolutionary effects of herbivores on plant populations requires consideration of plant density and plant size, because feedbacks between density, herbivores, and plant size may complicate longer-term dynamics. PMID:22764489

  8. Visual Earth observation performance in the space environment. Human performance measurement 4: Flight experiments

    NASA Technical Reports Server (NTRS)

    Huth, John F.; Whiteley, James D.; Hawker, John E.

    1993-01-01

    A wide variety of secondary payloads have flown on the Space Transportation System (STS) since its first flight in the 1980's. These experiments have typically addressed specific issues unique to the zero-gravity environment. Additionally, the experiments use the experience and skills of the mission and payload specialist crew members to facilitate data collection and ensure successful completion. This paper presents the results of the Terra Scout experiment, which flew aboard STS-44 in November 1991. This unique Earth Observation experiment specifically required a career imagery analyst to operate the Spaceborne Direct-View Optical System (SpaDVOS), a folded optical path telescope system designed to mount inside the shuttle on the overhead aft flight deck windows. Binoculars and a small telescope were used as backup optics. Using his imagery background, coupled with extensive target and equipment training, the payload specialist was tasked with documenting the following: (1) the utility of the equipment; (2) his ability to acquire and track ground targets; (3) the level of detail he could discern; (4) the atmospheric conditions; and (5) other in-situ elements which contributed to or detracted from his ability to analyze targets. Special emphasis was placed on the utility of a manned platform for research and development of future spaceborne sensors. The results and lessons learned from Terra Scout will be addressed including human performance and equipment design issues.

  9. The relationship between academic performanceand pilot performance in a collegiate flight training environment

    NASA Astrophysics Data System (ADS)

    Jones, Carolyn A.

    While flight time has commonly been used as a measure of a pilot's skill level, little research has been performed to determine what factors are linked to predicting a pilot's performance, particularly in a training environment. If a dependable link was found, prediction of how well an individual would do in flight training would be possible. Time, money and resources could be focused on individuals who are more likely to succeed in pilot training. Therefore, this study was designed to determine if a relationship between GPA and pilot performance exists, in order to determine if academic performance can serve as a predictor of pilot performance in a training environment. The use of historical records from Middle Tennessee State University's Aerospace Department, which included GPA information and flight training records information, was used evaluate this relationship. Results of the study indicate a statistically significant modest correlation between academic performance and pilot performance between some of the variable pairings.

  10. Regulation of carbohydrate metabolism and flight performance by a hypertrehalosaemic hormone in the mosquito Anopheles gambiae

    PubMed Central

    Kaufmann, Christian; Brown, Mark R.

    2008-01-01

    The role of adipokinetic hormones (AKHs) in the regulation of carbohydrate and lipid metabolism and flight performance was evaluated for females of the African malaria mosquito, Anopheles gambiae. Injection of various dosages of synthetic Anoga-AKH-I increased carbohydrate levels in the haemolymph and reduced glycogen reserves in sugar-fed females but did not affect lipid levels. Anoga-AKH-I enhanced the flight performance of both intact and decapitated sugar-fed females, during a 4 hour flight period. Anoga-AKH-II had no effect on carbohydrate or lipid levels or flight performance, thus its function remains unknown. Targeted RNA-interference lowered Anoga-AKH receptor expression in sugar-fed females, consequently injections of Anoga-AKH-I failed to mobilize glycogen reserves. Taken together, these results show that a primary role for the neurohormone, Anoga-AKH-I, is to elevate trehalose levels in the haemolymph of female mosquitoes. PMID:18062987

  11. Lockheed L-1011 Test Station installation in support of the Adaptive Performance Optimization flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Technicians John Huffman, Phil Gonia and Mike Kerner of NASA's Dryden Flight Research Center, Edwards, California, carefully insert a monitor into the Research Engineering Test Station during installation of equipment for the Adaptive Performance Optimization experiment aboard Orbital Sciences Corporation's Lockheed L-1011 in Bakersfield, California, May, 6, 1997. The Adaptive Performance Optimization project is designed to reduce the aerodynamic drag of large subsonic transport aircraft by varying the camber of the wing through real-time adjustment of flaps or ailerons in response to changing flight conditions. Reducing the drag will improve aircraft efficiency and performance, resulting in signifigant fuel savings for the nation's airlines worth hundreds of millions of dollars annually. Flights for the NASA experiment will occur periodically over the next couple of years on the modified wide-bodied jetliner, with all flights flown out of Bakersfield's Meadows Field. The experiment is part of Dryden's Advanced Subsonic Transport Aircraft Research program.

  12. Analysis of the pre-flight and post-flight calibration procedures performed on the Liulin space radiation dosimeter

    NASA Astrophysics Data System (ADS)

    Dachev, Ts.; Semkova, J.; Petrov, V.; Redko, V.; Bengin, V.; Kostereva, T.; Miller, J.; Heilbronn, L.; Zeitlin, C.

    Liulin, a dosimetry-radiometry system, was developed to satisfy the requirements for active flux and dose rate measurements for the flight of the second Bulgarian cosmonaut in 1988. The system consists of a compact battery-operated silicon solid state detector unit and a read/write microcomputer and telemetry unit. We describe the pre-flight calibrations with charged particles, using radioactive sources and accelerated 170 MeV/nucleon proton and alpha particles at the Dubna, Russia cyclotron. We discuss comparisons with data obtained on Mir with the French-built tissue equivalent LET spectrometer NAUSICAA. Lastly, we describe post-flight calibrations performed with 1 GeV/nucleon 56Fe ions at the Brookhaven National Laboratory AGS accelerator, where the instrument was mounted in tandem with several thin position-sensitive silicon detectors behind a stopping target The silicon detectors provided an energy spectrum for the surviving charged nuclear fragments for which the flux and absorbed dose were recorded by Liulin.

  13. Correlation of Space Shuttle Landing Performance with Post-Flight Cardiovascular Dysfunction

    NASA Technical Reports Server (NTRS)

    McCluskey, R.

    2004-01-01

    Introduction: Microgravity induces cardiovascular adaptations resulting in orthostatic intolerance on re-exposure to normal gravity. Orthostasis could interfere with performance of complex tasks during the re-entry phase of Shuttle landings. This study correlated measures of Shuttle landing performance with post-flight indicators of orthostatic intolerance. Methods: Relevant Shuttle landing performance parameters routinely recorded at touchdown by NASA included downrange and crossrange distances, airspeed, and vertical speed. Measures of cardiovascular changes were calculated from operational stand tests performed in the immediate post-flight period on mission commanders from STS-41 to STS-66. Stand test data analyzed included maximum standing heart rate, mean increase in maximum heart rate, minimum standing systolic blood pressure, and mean decrease in standing systolic blood pressure. Pearson correlation coefficients were calculated with the null hypothesis that there was no statistically significant linear correlation between stand test results and Shuttle landing performance. A correlation coefficient? 0.5 with a p<0.05 was considered significant. Results: There were no significant linear correlations between landing performance and measures of post-flight cardiovascular dysfunction. Discussion: There was no evidence that post-flight cardiovascular stand test data correlated with Shuttle landing performance. This implies that variations in landing performance were not due to space flight-induced orthostatic intolerance.

  14. SFDT-1 Camera Pointing and Sun-Exposure Analysis and Flight Performance

    NASA Technical Reports Server (NTRS)

    White, Joseph; Dutta, Soumyo; Striepe, Scott

    2015-01-01

    The Supersonic Flight Dynamics Test (SFDT) vehicle was developed to advance and test technologies of NASA's Low Density Supersonic Decelerator (LDSD) Technology Demonstration Mission. The first flight test (SFDT-1) occurred on June 28, 2014. In order to optimize the usefulness of the camera data, analysis was performed to optimize parachute visibility in the camera field of view during deployment and inflation and to determine the probability of sun-exposure issues with the cameras given the vehicle heading and launch time. This paper documents the analysis, results and comparison with flight video of SFDT-1.

  15. Performance assessment in a flight simulator test—Validation of a space psychology methodology

    NASA Astrophysics Data System (ADS)

    Johannes, B.; Salnitski, Vyacheslav; Soll, Henning; Rauch, Melina; Goeters, Klaus-Martin; Maschke, Peter; Stelling, Dirk; Eißfeldt, Hinnerk

    2007-02-01

    The objective assessment of operator performance in hand controlled docking of a spacecraft on a space station has 30 years of tradition and is well established. In the last years the performance assessment was successfully combined with a psycho-physiological approach for the objective assessment of the levels of physiological arousal and psychological load. These methods are based on statistical reference data. For the enhancement of the statistical power of the evaluation methods, both were actually implemented into a comparable terrestrial task: the flight simulator test of DLR in the selection procedure for ab initio pilot applicants for civil airlines. In the first evaluation study 134 male subjects were analysed. Subjects underwent a flight simulator test including three tasks, which were evaluated by instructors applying well-established and standardised rating scales. The principles of the performance algorithms of the docking training were adapted for the automated flight performance assessment. They are presented here. The increased human errors under instrument flight conditions without visual feedback required a manoeuvre recognition algorithm before calculating the deviation of the flown track from the given task elements. Each manoeuvre had to be evaluated independently of former failures. The expert rated performance showed a highly significant correlation with the automatically calculated performance for each of the three tasks: r=.883, r=.874, r=.872, respectively. An automated algorithm successfully assessed the flight performance. This new method will possibly provide a wide range of other future applications in aviation and space psychology.

  16. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  17. Shuttle entry performance and stability and control derivatives extraction from flight measurement data

    NASA Technical Reports Server (NTRS)

    Compton, H. R.; Scallion, W. I.; Schiess, J. R.; Suit, W. T.

    1982-01-01

    Flight data taken from three Shuttle Space Transportation System flights (STS-1, 2, and 3) during entry are analyzed to determine the shuttle performance and aerodynamic characteristics. Correlations of the performance coefficients and the stability and control derivatives with preflight predictions are presented over the hypersonic speed range from Mach 2 to 25. In addition, an evaluation of the effectiveness of the onboard Reaction Control System (RCS) is given and an effort is made to independently quantify the combined impingement and flow-field interaction effects on the spacecraft rolling moment. Comparisons of stability and control derivatives extracted for the same flight conditions, but using data from different onboard sensors are also made. Results obtained using the same flight data, but different computer software are also shown.

  18. Identification of factors influencing flight performance of field-collected and laboratory-reared, overwintered, and nonoverwintered cactus moths fed with field-collected host plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Environmental conditions during egg and larval development may influence the dispersal ability of insect pests, thus requiring seasonal adjustment of control strategies. We studied the longest single flight, total distance flown and the number of flights initiated by wild Cactoblastis cactorum (Berg...

  19. In-Flight performance of MESSENGER's Mercury dual imaging system

    USGS Publications Warehouse

    Hawkins, S.E.; Murchie, S.L.; Becker, K.J.; Selby, C.M.; Turner, F.S.; Noble, M.W.; Chabot, N.L.; Choo, T.H.; Darlington, E.H.; Denevi, B.W.; Domingue, D.L.; Ernst, C.M.; Holsclaw, G.M.; Laslo, N.R.; Mcclintock, W.E.; Prockter, L.M.; Robinson, M.S.; Solomon, S.C.; Sterner, R.E.

    2009-01-01

    The Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 and planned for insertion into orbit around Mercury in 2011, has already completed two flybys of the innermost planet. The Mercury Dual Imaging System (MDIS) acquired nearly 2500 images from the first two flybys and viewed portions of Mercury's surface not viewed by Mariner 10 in 1974-1975. Mercury's proximity to the Sun and its slow rotation present challenges to the thermal design for a camera on an orbital mission around Mercury. In addition, strict limitations on spacecraft pointing and the highly elliptical orbit create challenges in attaining coverage at desired geometries and relatively uniform spatial resolution. The instrument designed to meet these challenges consists of dual imagers, a monochrome narrow-angle camera (NAC) with a 1.5?? field of view (FOV) and a multispectral wide-angle camera (WAC) with a 10.5?? FOV, co-aligned on a pivoting platform. The focal-plane electronics of each camera are identical and use a 1024??1024 charge-coupled device detector. The cameras are passively cooled but use diode heat pipes and phase-change-material thermal reservoirs to maintain the thermal configuration during the hot portions of the orbit. Here we present an overview of the instrument design and how the design meets its technical challenges. We also review results from the first two flybys, discuss the quality of MDIS data from the initial periods of data acquisition and how that compares with requirements, and summarize how in-flight tests are being used to improve the quality of the instrument calibration. ?? 2009 SPIE.

  20. Thermal Performance of LANDSAT-7 ETM+ Instruments During First Year in Flight

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2000-01-01

    Landsat-7 was successfully launched into orbit on April 15, 1999. After devoting three months to the t bakeout and cool-down of the radiative cooler, and on- t orbit checkout, the Enhanced Thematic Mapper Plus (ETM+) began the normal imaging phase of the mission in mid-July 1999. This paper presents the thermal performance of the ETM+ from mid-July 1999 to mid-May 2000. The flight temperatures are compared to the yellow temperature limits, and worst cold case and worst hot case flight temperature predictions in the 15-orbit mission design profile. The flight temperature predictions were generated by a thermal model, which was correlated to the observatory thermal balance test data. The yellow temperature limits were derived from the flight temperature predictions, plus some margins. The yellow limits work well in flight, so that only several minor changes to them were needed. Overall, the flight temperatures and flight temperature predictions have good agreement. Based on the ETM+ thermal vacuum qualification test, new limits on the imaging time are proposed to increase the average duty cycle, and to resolve the problems experienced by the Mission Operation Team.

  1. The effect of leg length on jumping performance of short- and long-legged leafhopper insects.

    PubMed

    Burrows, M; Sutton, G P

    2008-04-01

    To assess the effect of leg length on jumping ability in small insects, the jumping movements and performance of a sub-family of leafhopper insects (Hemiptera, Auchenorrhyncha, Cicadellidae, Ulopinae) with short hind legs were analysed and compared with other long-legged cicadellids (Hemiptera, Auchenorrhyncha, Cicadellidae). Two species with the same jumping characteristics but distinctively different body shapes were analysed: Ulopa, which had an average body length of 3 mm and was squat, and Cephalelus, which had an average body length of 13 mm with an elongated body and head. In both, the hind legs were only 1.4 times longer than the front legs compared with 1.9-2.3 times in other cicadellid leafhoppers. When the length of the hind legs was normalised relative to the cube root of their body mass, their hind legs had a value of 1-1.1 compared with 1.6-2.3 in other cicadellids. The hind legs of Cephalelus were only 20% of the body length. The propulsion for a jump was delivered by rapid and synchronous rotation of the hind legs about their coxo-trochanteral joints in a three-phase movement, as revealed by high-speed sequences of images captured at rates of 5000 s(-1). The hind tarsi were initially placed outside the lateral margins of the body and not apposed to each other beneath the body as in long-legged leafhoppers. The hind legs were accelerated in 1.5 ms (Ulopa) and 2 ms (Cephalelus) and thus more quickly than in the long-legged cicadellids. In their best jumps these movements propelled Ulopa to a take-off velocity of 2.3 m s(-1) and Cephalelus to 2 m s(-1), which matches that of the long-legged cicadellids. Both short-legged species had the same mean take-off angle of 56 degrees but Cephalelus adopted a lower angle of the body relative to the ground (mean 15 degrees) than Ulopa (mean 56 degrees). Once airborne, Cephalelus pitched slowly and rolled quickly about its long axis and Ulopa rotated quickly about both axes. To achieve their best performances

  2. Performance analysis of mini-propellers based on FlightGear

    NASA Astrophysics Data System (ADS)

    Vogeltanz, Tomáš

    2016-06-01

    This paper presents a performance analysis of three mini-propellers based on the FlightGear flight simulator. Although a basic propeller analysis has to be performed before the use of FlightGear, for a complex and more practical performance analysis, it is advantageous to use a propeller model in cooperation with a particular aircraft model. This approach may determine whether the propeller has sufficient quality in respect of aircraft requirements. In the first section, the software used for the analysis is illustrated. Then, the parameters of the analyzed mini-propellers and the tested UAV are described. Finally, the main section shows and discusses the results of the performance analysis of the mini-propellers.

  3. In-flight sleep, pilot fatigue and Psychomotor Vigilance Task performance on ultra-long range versus long range flights.

    PubMed

    Gander, Philippa H; Signal, T Leigh; van den Berg, Margo J; Mulrine, Hannah M; Jay, Sarah M; Jim Mangie, Captain

    2013-12-01

    This study evaluated whether pilot fatigue was greater on ultra-long range (ULR) trips (flights >16 h on 10% of trips in a 90-day period) than on long range (LR) trips. The within-subjects design controlled for crew complement, pattern of in-flight breaks, flight direction and departure time. Thirty male Captains (mean age = 54.5 years) and 40 male First officers (mean age = 48.0 years) were monitored on commercial passenger flights (Boeing 777 aircraft). Sleep was monitored (actigraphy, duty/sleep diaries) from 3 days before the first study trip to 3 days after the second study trip. Karolinska Sleepiness Scale, Samn-Perelli fatigue ratings and a 5-min Psychomotor Vigilance Task were completed before, during and after every flight. Total sleep in the 24 h before outbound flights and before inbound flights after 2-day layovers was comparable for ULR and LR flights. All pilots slept on all flights. For each additional hour of flight time, they obtained an estimated additional 12.3 min of sleep. Estimated mean total sleep was longer on ULR flights (3 h 53 min) than LR flights (3 h 15 min; P(F) = 0.0004). Sleepiness ratings were lower and mean reaction speed was faster at the end of ULR flights. Findings suggest that additional in-flight sleep mitigated fatigue effectively on longer flights. Further research is needed to clarify the contributions to fatigue of in-flight sleep versus time awake at top of descent. The study design was limited to eastward outbound flights with two Captains and two First Officers. Caution must be exercised when extrapolating to different operations. PMID:23889686

  4. Static performance tests of a flight-type STOVL ejector

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.

    1991-01-01

    The design and development of thrust augmenting STOVL ejectors has typically been based on experimental iteration (i.e., trial and error). Static performance tests of a full scale vertical lift ejector were performed at primary flow temperatures up to 1560 R (1100 F). Flow visualization (smoke generators and yarn tufts) were used to view the inlet air flow, especially around the primary nozzle and end plates. Performance calculations are presented for ambient temperatures close to 480 R (20 F) and 535 R (75 F) which simulate seasonal aircraft operating conditions. Resulting thrust augmentation ratios are presented as functions of nozzle pressure ratio and temperature.

  5. Continuous performance measurement in flight systems. [sequential control model

    NASA Technical Reports Server (NTRS)

    Connelly, E. M.; Sloan, N. A.; Zeskind, R. M.

    1975-01-01

    The desired response of many man machine control systems can be formulated as a solution to an optimal control synthesis problem where the cost index is given and the resulting optimal trajectories correspond to the desired trajectories of the man machine system. Optimal control synthesis provides the reference criteria and the significance of error information required for performance measurement. The synthesis procedure described provides a continuous performance measure (CPM) which is independent of the mechanism generating the control action. Therefore, the technique provides a meaningful method for online evaluation of man's control capability in terms of total man machine performance.

  6. Fluid volume control during short-term space flight and implications for human performance.

    PubMed

    Watenpaugh, D E

    2001-09-01

    Space flight exerts substantial effects on fluid volume control in humans. Cardiac distension occurs during the first 1-2 days of space flight relative to supine and especially upright 1g conditions. Plasma volume contraction occurs quickly in microgravity, probably as a result of transcapillary fluid filtration into upper-body interstitial spaces. No natriuresis or diuresis has been observed in microgravity, such that diuresis cannot explain microgravity-induced hypovolemia. Reduction of fluid intake occurs irrespective of space motion sickness and leads to hypovolemia. The fourfold elevation of urinary antidiuretic hormone (ADH) levels on flight day 1 probably results from acceleration exposures and other stresses of launch. Nevertheless, it is fascinating that elevated ADH levels and reduced fluid intake occur simultaneously early in flight. Extracellular fluid volume decreases by 10-15% in microgravity, and intracellular fluid volume appears to increase. Total red blood cell mass decreases by approximately 10% within 1 week in space. Inflight Na(+) and volume excretory responses to saline infusion are approximately half those seen in pre-flight supine conditions. Fluid volume acclimation to microgravity sets the central circulation to homeostatic conditions similar to those found in an upright sitting posture on Earth. Fluid loss in space contributes to reduced exercise performance upon return to 1g, although not necessarily in flight. In-flight exercise training may help prevent microgravity-induced losses of fluid and, therefore, preserve the capacity for upright exercise post-flight. Protection of orthostatic tolerance during space flight probably requires stimulation of orthostatic blood pressure control systems in addition to fluid maintenance or replacement. PMID:11581336

  7. Hubble Space Telescope nickel-hydrogen batteries testing and flight performance

    NASA Astrophysics Data System (ADS)

    Brewer, Jeffrey C.; Whitt, Thomas H.; Lanier, J. R., Jr.

    The Marshall Space Flight Center (MSFC) has several ongoing tests relating to the Hubble Space Telescope (HST). A six-battery test has been running for over 2 years and is producing excellent data on the operation of a simulated HST electrical power system (EPS). A 22-cell 'flight spare' battery (FSB) has also been on test for almost 2 years. Since this battery is comprised of cells identical to those in orbit, it is the best ground-based simulation of the operation of a flight battery. The authors not only discuss the results of the HST Ni-H2 six-battery and FSB tests but also describe the operation of the HST EPS and give an overview of the flight batteries' performance.

  8. Hubble Space Telescope nickel-hydrogen batteries testing and flight performance

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C.; Whitt, Thomas H.; Lanier, J. R., Jr.

    1991-01-01

    The Marshall Space Flight Center (MSFC) has several ongoing tests relating to the Hubble Space Telescope (HST). A six-battery test has been running for over 2 years and is producing excellent data on the operation of a simulated HST electrical power system (EPS). A 22-cell 'flight spare' battery (FSB) has also been on test for almost 2 years. Since this battery is comprised of cells identical to those in orbit, it is the best ground-based simulation of the operation of a flight battery. The authors not only discuss the results of the HST Ni-H2 six-battery and FSB tests but also describe the operation of the HST EPS and give an overview of the flight batteries' performance.

  9. Effect of steady flight loads on JT9D-7 performance deterioration

    NASA Technical Reports Server (NTRS)

    Jay, A.; Todd, E. S.

    1978-01-01

    Short term engine deterioration occurs in less than 250 flights on a new engine and in the first flights following engine repair; while long term deterioration involves primarily hot section distress and compression system losses which occur at a somewhat slower rate. The causes for short-term deterioration are associated with clearance changes which occur in the flight environment. Analytical techniques utilized to examine the effects of flight loads and engine operating conditions on performance deterioration are presented. The role of gyroscopic, gravitational, and aerodynamic loads are discussed along with the effect of variations in engine build clearances. These analytical results are compared to engine test data along with the correlation between analytically predicted and measured clearances and rub patterns. Conclusions are drawn and important issues are discussed.

  10. Lockheed L-1011 TriStar first flight to support Adaptive Performance Optimization study

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Bearing the logos of the National Aeronautics and Space Administration and Orbital Sciences Corporation, Orbital's L-1011 Tristar lifts off the Meadows Field Runway at Bakersfield, California, on its first flight May 21, 1997, in NASA's Adaptive Performance Optimization project. Developed by engineers at NASA's Dryden Flight Research Center, Edwards, California, the experiment seeks to reduce fuel consumption of large jetliners by improving the aerodynamic efficency of their wings at cruise conditions. A research computer employing a sophisticated software program adapts to changing flight conditions by commanding small movements of the L-1011's outboard ailerons to give the wings the most efficient - or optimal - airfoil. Up to a dozen research flights will be flown in the current and follow-on phases of the project over the next couple years.

  11. The Effects of Ultra-Long-Range Flights on the Alertness and Performance of Aviators

    NASA Technical Reports Server (NTRS)

    Caldwell, John A.; Mallis, Melissa M.; Colletti, Laura M.; Oyung, Raymond L.; Brandt, Summer L.; Arsintescu, Lucia; DeRoshia, Charlie W.; Reduta-Rojas, Dinah D.; Chapman, Patrick M.

    2006-01-01

    This investigation assessed the impact of ultra-long-range (ULR) simulator flights, departing either in the morning or late evening, on the alertness and performance of 17 commercial aviators. Immediately prior to and throughout each flight, alertness and performance were assessed via a computerized test of sustained attention, subjective questionnaires, and "hand-flying" tasks. There were fatigue-related effects on the majority of assessments, and the nature of these effects was consistent across the vigilance and self-report measures. However, the operational "hand-flying" manuevers proved insensitive to the impact of fatigue probably due to procedural factors. Regardless, the results of the present study suggest that fatigue associated with prolonged wakefulness in ULR flight operations will interact with flight schedules due to circadian and homeostatic influences. In this study, the pilots departing at night were at a greater initial disadvantage (during cruise) than pilots who departed earlier in the day; whereas those who departed earlier tended to be most impaired towards the end of the flight prior to landing. In real-world operations, airlines should consider the ramifications of flight schedules and what is known about human sleep and circadian rhythms to optimize safety.

  12. Mariner 9 data storage subsystem flight performance summary

    NASA Technical Reports Server (NTRS)

    Thomas, N. E.; Larman, B. T.

    1973-01-01

    The performance is summarized of the Mariner 9 Data Storage Subsystem (DSS) throughout the primary and extended missions. Information presented is limited to reporting of anomalies which occurred during the playback sequences. Tables and figures describe the anomalies (dropouts, missing and added bits, in the imaging data) as a function of time (accumulated tape passes). The data results indicate that the performance of the DSS was satisfactory and within specification throughout the mission. The data presented is taken from the Spacecraft Team Incident/Surprise Anomaly Log recorded during the mission. Pertinent statistics concerning the tape transport performance are given. Also presented is a brief description of DSS operation, particularly that related to the recorded anomalies. This covers the video data encoding and how it is interpreted/decoded by ground data processing and the functional operation of the DSS in abnormal conditions such as loss of lock to the playback signal.

  13. Performance of transform against selected cotton insects in laboratory and field studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), has become a major pest of cotton, Gossypium hirsutum (L.), within the Mid-Southern United States over the last several years. Tarnished plant bug has become the target of more insecticide applications than any other insect pest of c...

  14. Influence of nicotine on simulator flight performance in non-smokers.

    PubMed

    Mumenthaler, M S; Taylor, J L; O'Hara, R; Yesavage, J A

    1998-11-01

    In a placebo-controlled study, we investigated the influence of nicotine on late-day aviation performance in 15 non-smoking subjects. In a within-subjects design, subjects were tested on 2 days, each lasting 8 h and consisting of three 75-min simulator flights (late-afternoon practice, evening test, night test). Prior to each test, subjects received either nicotine polacrilex 2 mg or placebo gum. As expected, overall performance was significantly better after nicotine, compared to placebo (P < 0.01). Post-hoc analysis of individual flight tasks showed that nicotine improved scores on approach to landing, a task which appears to require sustained attention. We conclude that nicotine may improve late-day flight performance in non-smoking aviators. PMID:9862400

  15. In-Flight Performance of the Cassini Hemispherical Quartz Resonator Gyro Inertial Reference Units

    NASA Technical Reports Server (NTRS)

    Brown, Todd S.

    2013-01-01

    The Cassini-Huygens mission is a flagship class NASA/ESA mission to the planet Saturn. Launched in 1997, Cassini is still successfully operating after 16 years of flight and the telemetry from the attitude control hardware on Cassini has produced an immense dataset that allows the Cassini operations team to report on the long-term performance of several commercially available GNC hardware components in the space environment. This investigation summarizes the in-flight performance of the two inertial reference units aboard Cassini. Each of the two Cassini inertial reference units contains four hemispherical quartz resonator gyros. The Cassini operations team previously reported on the performance of the inertial reference units in 2007, and this paper provides an update with an additional 6 years of flight experience at Saturn.

  16. Freedom Through Flight: Performing a Counter-Narrative of Disability

    ERIC Educational Resources Information Center

    Harter, Lynn M.; Scott, Jennifer A.; Novak, David R.; Leeman, Mark; Morris, Jerimiah F.

    2006-01-01

    This project explores how discourses of difference sustain the separation of people with disabilities from community life and highlights the efforts of one organization, Passion Works, as members perform a counter-narrative of disability. Passion Works is a non-profit organization housed within a sheltered workshop sponsored by its local county…

  17. 14 CFR Appendix E to Part 60 - Qualification Performance Standards for Quality Management Systems for Flight Simulation Training...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Quality Management Systems for Flight Simulation Training Devices E Appendix E to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION...—Qualification Performance Standards for Quality Management Systems for Flight Simulation Training Devices...

  18. 14 CFR Appendix E to Part 60 - Qualification Performance Standards for Quality Management Systems for Flight Simulation Training...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Quality Management Systems for Flight Simulation Training Devices E Appendix E to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION...—Qualification Performance Standards for Quality Management Systems for Flight Simulation Training Devices...

  19. 14 CFR Appendix E to Part 60 - Qualification Performance Standards for Quality Management Systems for Flight Simulation Training...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Quality Management Systems for Flight Simulation Training Devices E Appendix E to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION...—Qualification Performance Standards for Quality Management Systems for Flight Simulation Training Devices...

  20. Changes in Jump-Down Performance After Space Flight: Short- and Long-Term Adaptation

    NASA Technical Reports Server (NTRS)

    Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.

    2010-01-01

    INTRODUCTION Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares the jump strategies used by astronauts before and after flight, the changes to those strategies within a test session, and the recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS Six astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high. A force plate measured the ground reaction forces and center-of-pressure displacement from the landings. Muscle activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS AND CONCLUSION Many of the astronauts tested were unable to maintain balance on their first postflight jump landing but recovered by the third jump, showing a learning progression in which the performance improvement could be attributed to adjustments of strategy on takeoff, landing, or both. Takeoff strategy changes were evident in air time (time between takeoff and landing), which was significantly reduced after flight, and also in increased asymmetry in foot latencies on takeoff. Landing modifications were seen in changes in ground reaction force curves. The

  1. Evaluating Nextgen Closely Spaced Parallel Operations Concepts with Validated Human Performance Models: Flight Deck Guidelines

    NASA Technical Reports Server (NTRS)

    Hooey, Becky Lee; Gore, Brian Francis; Mahlstedt, Eric; Foyle, David C.

    2013-01-01

    The objectives of the current research were to develop valid human performance models (HPMs) of approach and land operations; use these models to evaluate the impact of NextGen Closely Spaced Parallel Operations (CSPO) on pilot performance; and draw conclusions regarding flight deck display design and pilot-ATC roles and responsibilities for NextGen CSPO concepts. This document presents guidelines and implications for flight deck display designs and candidate roles and responsibilities. A companion document (Gore, Hooey, Mahlstedt, & Foyle, 2013) provides complete scenario descriptions and results including predictions of pilot workload, visual attention and time to detect off-nominal events.

  2. Planck early results. III. First assessment of the Low Frequency Instrument in-flight performance

    NASA Astrophysics Data System (ADS)

    Mennella, A.; Bersanelli, M.; Butler, R. C.; Curto, A.; Cuttaia, F.; Davis, R. J.; Dick, J.; Frailis, M.; Galeotta, S.; Gregorio, A.; Kurki-Suonio, H.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Lowe, S.; Maino, D.; Mandolesi, N.; Maris, M.; Martínez-González, E.; Meinhold, P. R.; Morgante, G.; Pearson, D.; Perrotta, F.; Polenta, G.; Poutanen, T.; Sandri, M.; Seiffert, M. D.; Suur-Uski, A.-S.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Valiviita, J.; Villa, F.; Watson, R.; Wilkinson, A.; Zacchei, A.; Zonca, A.; Aja, B.; Artal, E.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaglia, P.; Bennett, K.; Bonaldi, A.; Bonavera, L.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Cabella, P.; Cappellini, B.; Chen, X.; Colombo, L.; Cruz, M.; Danese, L.; D'Arcangelo, O.; Davies, R. D.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falvella, M. C.; Finelli, F.; Foley, S.; Franceschet, C.; Franceschi, E.; Gaier, T. C.; Génova-Santos, R. T.; George, D.; Gómez, F.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Hansen, F. K.; Herranz, D.; Herreros, J. M.; Hoyland, R. J.; Hughes, N.; Jewell, J.; Jukkala, P.; Juvela, M.; Kangaslahti, P.; Keihänen, E.; Keskitalo, R.; Kilpia, V.-H.; Kisner, T. S.; Knoche, J.; Knox, L.; Laaninen, M.; Lähteenmäki, A.; Lamarre, J.-M.; Leonardi, R.; León-Tavares, J.; Leutenegger, P.; Lilje, P. B.; López-Caniego, M.; Lubin, P. M.; Malaspina, M.; Marinucci, D.; Massardi, M.; Matarrese, S.; Matthai, F.; Melchiorri, A.; Mendes, L.; Miccolis, M.; Migliaccio, M.; Mitra, S.; Moss, A.; Natoli, P.; Nesti, R.; Nørgaard-Nielsen, H. U.; Pagano, L.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Pettorino, V.; Pietrobon, D.; Pospieszalski, M.; Prézeau, G.; Prina, M.; Procopio, P.; Puget, J.-L.; Quercellini, C.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Ricciardi, S.; Robbers, G.; Rocha, G.; Roddis, N.; Rubino-Martín, J. A.; Savelainen, M.; Scott, D.; Silvestri, R.; Simonetto, A.; Sjoman, P.; Smoot, G. F.; Sozzi, C.; Stringhetti, L.; Tauber, J. A.; Tofani, G.; Toffolatti, L.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Varis, J.; Vielva, P.; Vittorio, N.; Wade, L. A.; Watson, C.; White, S. D. M.; Winder, F.

    2011-12-01

    The scientific performance of the Planck Low Frequency Instrument (LFI) after one year of in-orbit operation is presented. We describe the main optical parameters and discuss photometric calibration, white noise sensitivity, and noise properties. A preliminary evaluation of the impact of the main systematic effects is presented. For each of the performance parameters, we outline the methods used to obtain them from the flight data and provide a comparison with pre-launch ground assessments, which are essentially confirmed in flight. Corresponding author: A. Mennella, e-mail: aniello.mennella@fisica.unimi.it

  3. Cryogenic Optical Performance of the Cassini Composite InfraRed Spectrometer (CIRS) Flight Telescope

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Hagopian, John

    1998-01-01

    The CIRS half-meter diameter beryllium flight telescope's optical performance was tested at the instrument operating temperature of 170 Kelvin. The telescope components were designed at Goddard Space Flight Center (GSFC) but fabricated out of house and then assembled, aligned and tested upon receipt at GSFC. A 24 inch aperture cryogenic test facility utilizing a 1024 x 1024 CCD array was developed at GSFC specifically for this test. The telescope,s image quality (measured as encircled energy), boresight stability and focus stability were measured. The gold coated beryllium design exceeded the cold image performance requirement of 80% encircled energy within a 460 micron diameter circle.

  4. Cryogenic Optical Performance of the Cassini Composite Infrared Spectrometer (CIRS) Flight Telescope

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Hagopian, John

    1998-01-01

    The CIRS half-meter diameter beryllium flight telescope's optical performance was tested at the instrument operating temperature of 170 Kelvin. The telescope components were designed at Goddard Space Flight Center (GSFC) but fabricated out of house and then assembled, aligned and tested upon receipt at GSFC. A 24 inch aperture cryogenic test facility utilizing a 1024 x 1024 CCD array was developed at GSFC specifically for this test. The telescope's image quality (measured as encircled energy), boresight stability and focus stability were measured. The gold coated beryllium design exceeded the image performance requirement of 80% encircled energy within a 432 microns diameter circle.

  5. Combustor Operability and Performance Verification for HIFiRE Flight 2

    NASA Technical Reports Server (NTRS)

    Storch, Andrea M.; Bynum, Michael; Liu, Jiwen; Gruber, Mark

    2011-01-01

    As part of the Hypersonic International Flight Research Experimentation (HIFiRE) Direct-Connect Rig (HDCR) test and analysis activity, three-dimensional computational fluid dynamics (CFD) simulations were performed using two Reynolds-Averaged Navier Stokes solvers. Measurements obtained from ground testing in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) were used to specify inflow conditions for the simulations and combustor data from four representative tests were used as benchmarks. Test cases at simulated flight enthalpies of Mach 5.84, 6.5, 7.5, and 8.0 were analyzed. Modeling parameters (e.g., turbulent Schmidt number and compressibility treatment) were tuned such that the CFD results closely matched the experimental results. The tuned modeling parameters were used to establish a standard practice in HIFiRE combustor analysis. Combustor performance and operating mode were examined and were found to meet or exceed the objectives of the HIFiRE Flight 2 experiment. In addition, the calibrated CFD tools were then applied to make predictions of combustor operation and performance for the flight configuration and to aid in understanding the impacts of ground and flight uncertainties on combustor operation.

  6. Performance deterioration due to acceptance testing and flight loads; JT90 jet engine diagnostic program

    NASA Technical Reports Server (NTRS)

    Olsson, W. J.

    1982-01-01

    The results of a flight loads test of the JT9D-7 engine are presented. The goals of this test program were to: measure aerodynamic and inertia loads on the engine during flight, explore the effects of airplane gross weight and typical maneuvers on these flight loads, simultaneously measure the changes in engine running clearances and performance resulting from the maneuvers, make refinements of engine performance deterioration prediction models based on analytical results of the tests, and make recommendations to improve propulsion system performance retention. The test program included a typical production airplane acceptance test plus additional flights and maneuvers to encompass the range of flight loads in revenue service. The test results indicated that aerodynamic loads, primarily at take-off, were the major cause of rub-indicated that aerodynamic loads, primarily at take-off, were the major cause of rub-induced deterioration in the cold sectin of the engine. Differential thermal expansion between rotating and static parts plus aerodynamic loads combined to cause blade-to-seal rubs in the turbine.

  7. Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Luigi; Meixner, Hilda; Sancho, Francisco; Damiano, Antimo; Lazaro, David

    2007-01-01

    The 19th of October 2006 at 16:28 UTC the first MetOp satellite (MetOp A) was successfully launched from the Baykonur cosmodrome by a Soyuz/Fregat launcher. After only three days of LEOP operations, performed by ESOC, the satellite was handed over to EUMETSAT, who is since then taking care of all satellite operations. MetOp A is the first European operational satellite for meteorology flying in a Low Earth Orbit (LEO), all previous satellites operated by EUMETSAT, belonging to the METEOSAT family, being located in the Geo-stationary orbit. To ensure safe operations for a LEO satellite accurate and continuous commanding from ground of the on-board AOCS is required. That makes the operational transition at the end of the LEOP quite challenging, as the continuity of the Flight Dynamics operations is to be maintained. That means that the main functions of the Flight Dynamics have to be fully validated on-flight during the LEOP, before taking over the operational responsibility on the spacecraft, and continuously monitored during the entire mission. Due to the nature of a meteorological operational mission, very stringent requirements in terms of overall service availability (99 % of the collected data), timeliness of processing of the observation data (3 hours after sensing) and accuracy of the geo-location of the meteorological products (1 km) are to be fulfilled. That translates in tight requirements imposed to the Flight Dynamics facility (FDF) in terms of accuracy, timeliness and availability of the generated orbit and clock solutions; a detailed monitoring of the quality of these products is thus mandatory. Besides, being the accuracy of the image geo-location strongly related with the pointing performance of the platform and with the on-board timing stability, monitoring from ground of the behaviour of the on-board sensors and clock is needed. This paper presents an overview of the Flight Dynamics operations performed during the different phases of the MetOp A

  8. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  9. Closed-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.

    1997-01-01

    ABSTRACT Closed-loop HIRF experiments were performed on a fault tolerant flight control computer (FCC) at the NASA Langley Research Center. The FCC used in the experiments was a quad-redundant flight control computer executing B737 Autoland control laws. The FCC was placed in one of the mode-stirred reverberation chambers in the HIRF Laboratory and interfaced to a computer simulation of the B737 flight dynamics, engines, sensors, actuators, and atmosphere in the Closed-Loop Systems Laboratory. Disturbances to the aircraft associated with wind gusts and turbulence were simulated during tests. Electrical isolation between the FCC under test and the simulation computer was achieved via a fiber optic interface for the analog and discrete signals. Closed-loop operation of the FCC enabled flight dynamics and atmospheric disturbances affecting the aircraft to be represented during tests. Upset was induced in the FCC as a result of exposure to HIRF, and the effect of upset on the simulated flight of the aircraft was observed and recorded. This paper presents a description of these closed- loop HIRF experiments, upset data obtained from the FCC during these experiments, and closed-loop effects on the simulated flight of the aircraft.

  10. Effects of Modality on Interrupted Flight Deck Performance: Implications for Data Link

    NASA Technical Reports Server (NTRS)

    Latorella, Kara A.

    1997-01-01

    Externally-imposed tasks frequently interrupt ongoing task performance in the commercial flight deck. While normally managed without consequence, basic research as well as aviation accident and incident investigations show that interruptions can negatively affect performance and safety. This research investigates the influence of interruption and interrupted task modality on pilot performance in a simulated commercial flight deck. Fourteen current commercial airline pilots performed approach scenarios in a fixed-base flight simulator. Air traffic control instructions, conveyed either aurally or visually (via a data link system) interrupted a visual task (obtaining information from the Flight Management System) and an auditory task (listening to the automated terminal information service recording). Some results confirm the hypothesized performance advantage of cross-modality conditions, more compelling nature of auditory interruptions, and interruption-resistance of auditory ongoing tasks. However, taken together, results suggest the four interaction conditions had different effects on pilot performance. These results have implications for the design of data link systems, and for facilitating interruption management through interface design, aiding, and training programs.

  11. The flight performance of the Galileo orbiter USO

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Krisher, T. P.; Asmar, S. W.

    1993-01-01

    Results are presented from an analysis of radio metric data received by the DSN stations from the Galileo spacecraft using an Ultrastable Oscillator (USO) as a signal source. These results allow the health and performance of the Galileo USO to be evaluated, and are used to calibrate this Radio Science instrument and the data acquired for Radio Science experiments such as the Red-shift Observation, Solar Conjunction, and Jovian occultations. Estimates for the USO-referenced spacecraft-transmitted frequency and frequency stability were made for 82 data acquisition passes conducted between launch (October 1989) and November 1991. Analyses of the spacecraft-transmitted frequencies show that the USO is behaving as expected. The USO was powered off and then back on in August 1991 with no adverse effect on its performance. The frequency stabilities measured by Allan deviation are consistent with expected values due to thermal wideband noise and the USO itself at the appropriate time intervals. The Galileo USO appears to be healthy and functioning normally in a reasonable manner.

  12. The flight performance of the Galileo orbiter USO

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Krisher, T. P.; Asmar, S. W.

    1993-01-01

    Results are presented in this article from an analysis of radio metric data received by the DSN stations from the Galileo spacecraft using an Ultrastable Oscillator (USO) as a signal source. These results allow the health and performance of the Galileo USO to be evaluated, and are used to calibrate this Radio Science instrument and the data acquired for Radio Science experiments such as the Redshift Observation, Solar Conjunction, and Jovian occultations. Estimates for the USO-referenced, spacecraft-transmitted frequency and frequency stability were made for 82 data acquisition passes conducted between launch (Oct. 1989) and Nov. 1991. Analyses of the spacecraft-transmitted frequencies show that the USO is behaving as expected. The USO was powered off and then back on in Aug. 1991 with no adverse effect on its performance. The frequency stabilities measured by Allan deviation are consistent with expected values due to thermal wideband noise and the USO itself at the appropriate time intervals. The Galileo USO appears to be healthy and functioning normally in a reasonable manner.

  13. Control-oriented reduced order modeling of dipteran flapping flight

    NASA Astrophysics Data System (ADS)

    Faruque, Imraan

    Flying insects achieve flight stabilization and control in a manner that requires only small, specialized neural structures to perform the essential components of sensing and feedback, achieving unparalleled levels of robust aerobatic flight on limited computational resources. An engineering mechanism to replicate these control strategies could provide a dramatic increase in the mobility of small scale aerial robotics, but a formal investigation has not yet yielded tools that both quantitatively and intuitively explain flapping wing flight as an "input-output" relationship. This work uses experimental and simulated measurements of insect flight to create reduced order flight dynamics models. The framework presented here creates models that are relevant for the study of control properties. The work begins with automated measurement of insect wing motions in free flight, which are then used to calculate flight forces via an empirically-derived aerodynamics model. When paired with rigid body dynamics and experimentally measured state feedback, both the bare airframe and closed loop systems may be analyzed using frequency domain system identification. Flight dynamics models describing maneuvering about hover and cruise conditions are presented for example fruit flies (Drosophila melanogaster) and blowflies (Calliphorids). The results show that biologically measured feedback paths are appropriate for flight stabilization and sexual dimorphism is only a minor factor in flight dynamics. A method of ranking kinematic control inputs to maximize maneuverability is also presented, showing that the volume of reachable configurations in state space can be dramatically increased due to appropriate choice of kinematic inputs.

  14. Space-flight experience and life test performance of a synthetic hydrocarbon lubricant

    NASA Technical Reports Server (NTRS)

    Bialke, Bill

    1995-01-01

    An alternative wet lubricant known as Pennzane(TM) SHF X-2000 is recommended for some spaceflight bearing systems. The performance characteristics between Pennzane(TM) SHF X-2000 and Bray 815Z were compared. The life tests showed excellent performances with continuous operation approaching three years in conservative operating environments. Space flight performance data are provided for several of the tested mechanisms which are operating in-orbit since February 1994.

  15. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1999-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN, is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  16. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1998-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN', one is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  17. The calibration and flight test performance of the space shuttle orbiter air data system

    NASA Technical Reports Server (NTRS)

    Dean, A. S.; Mena, A. L.

    1983-01-01

    The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.

  18. In-flight adaptive performance optimization (APO) control using redundant control effectors of an aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B. (Inventor)

    1999-01-01

    Practical application of real-time (or near real-time) Adaptive Performance Optimization (APO) is provided for a transport aircraft in steady climb, cruise, turn descent or other flight conditions based on measurements and calculations of incremental drag from a forced response maneuver of one or more redundant control effectors defined as those in excess of the minimum set of control effectors required to maintain the steady flight condition in progress. The method comprises the steps of applying excitation in a raised-cosine form over an interval of from 100 to 500 sec. at the rate of 1 to 10 sets/sec of excitation, and data for analysis is gathered in sets of measurements made during the excitation to calculate lift and drag coefficients C.sub.L and C.sub.D from two equations, one for each coefficient. A third equation is an expansion of C.sub.D as a function of parasitic drag, induced drag, Mach and altitude drag effects, and control effector drag, and assumes a quadratic variation of drag with positions .delta..sub.i of redundant control effectors i=1 to n. The third equation is then solved for .delta..sub.iopt the optimal position of redundant control effector i, which is then used to set the control effector i for optimum performance during the remainder of said steady flight or until monitored flight conditions change by some predetermined amount as determined automatically or a predetermined minimum flight time has elapsed.

  19. Motion Perception and Manual Control Performance During Passive Tilt and Translation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Wood, Scott J.

    2010-01-01

    This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.

  20. Inoculation of tomato plants with rhizobacteria enhances the performance of the phloem-feeding insect Bemisia tabaci

    PubMed Central

    Shavit, Roee; Ofek-Lalzar, Maya; Burdman, Saul; Morin, Shai

    2013-01-01

    In their natural environment, plants experience multiple biotic interactions and respond to this complexity in an integrated manner. Therefore, plant responses to herbivory are flexible and depend on the context and complexity in which they occur. For example, plant growth promoting rhizobacteria (PGPR) can enhance plant growth and induce resistance against microbial pathogens and herbivorous insects by a phenomenon termed induced systemic resistance (ISR). In the present study, we investigated the effect of tomato (Solanum lycopersicum) pre-inoculation with the PGPR Pseudomonas fluorescens WCS417r, on the performance of the generalist phloem-feeding insect Bemisia tabaci. Based on the ability of P. fluorescens WCS417r to prime for ISR against generalists chewing insects and necrotrophic pathogens, we hypothesized that pre-inoculated plants will strongly resist B. tabaci infestation. In contrast, we discovered that the pre-inoculation treatment increased the tomato plant suitability for B. tabaci which was emphasized both by faster developmental rate and higher survivability of nymph stages on pre-inoculated plants. Our molecular and chemical analyses suggested that the phenomenon is likely to be related to: (I) the ability of the bacteria to reduce the activity of the plant induced defense systems; (II) a possible manipulation by P. fluorescens of the plant quality (in terms of suitability for B. tabaci) through an indirect effect on the rhizosphere bacterial community. The contribution of our study to the pattern proposed for other belowground rhizobacteria and mycorrhizal fungi and aboveground generalist phloem-feeders is discussed. PMID:23964283

  1. Dispersal of forest insects

    NASA Technical Reports Server (NTRS)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  2. Thermal biology of flight in a butterfly: genotype, flight metabolism, and environmental conditions.

    PubMed

    Mattila, Anniina L K

    2015-12-01

    Knowledge of the effects of thermal conditions on animal movement and dispersal is necessary for a mechanistic understanding of the consequences of climate change and habitat fragmentation. In particular, the flight of ectothermic insects such as small butterflies is greatly influenced by ambient temperature. Here, variation in body temperature during flight is investigated in an ecological model species, the Glanville fritillary butterfly (Melitaea cinxia). Attention is paid on the effects of flight metabolism, genotypes at candidate loci, and environmental conditions. Measurements were made under a natural range of conditions using infrared thermal imaging. Heating of flight muscles by flight metabolism has been presumed to be negligible in small butterflies. However, the results demonstrate that Glanville fritillary males with high flight metabolic rate maintain elevated body temperature better during flight than males with a low rate of flight metabolism. This effect is likely to have a significant influence on the dispersal performance and fitness of butterflies and demonstrates the possible importance of intraspecific physiological variation on dispersal in other similar ectothermic insects. The results also suggest that individuals having an advantage in low ambient temperatures can be susceptible to overheating at high temperatures. Further, tolerance of high temperatures may be important for flight performance, as indicated by an association of heat-shock protein (Hsp70) genotype with flight metabolic rate and body temperature at takeoff. The dynamics of body temperature at flight and factors affecting it also differed significantly between female and male butterflies, indicating that thermal dynamics are governed by different mechanisms in the two sexes. This study contributes to knowledge about factors affecting intraspecific variation in dispersal-related thermal performance in butterflies and other insects. Such information is needed for predictive

  3. Investigation of Flight Test Methods for measuring the performance of general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Bull, G.; Bridges, P.

    1981-01-01

    A theoretical and experimental investigation of methods for measuring the performance of general aviation airplanes was conducted using relatively simple instrumentation currently available and data extraction techniques established from efforts in other disciplines. The possibilities of improving flight test data by use of improved modern instrumentation and digital data recording and data analysis were considered.

  4. The measurement of aircraft performance and stability and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Ide, R. F.; Reehorst, A. L.; Jordan, J. L.; Schinstock, W. C.; Platz, S. J.

    1986-01-01

    The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degration in lift and drag.

  5. The measurement of aircraft performance and stability and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Ide, R. F.; Reehorst, A. L.

    1986-01-01

    The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degradation in lift and drag.

  6. Flight Performance of an Advanced Thermal Protection Material: Toughened Uni-Piece Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Gordon, Michael P.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The flight performance of a new class of low density, high temperature thermal protection materials (TPM) is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heat shield of Orbiter 105, Endeavour.

  7. Flight Performance of an Advanced Thermal Protection Material: Toughened Uni-Piece Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Gordon, Michael P.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The flight performance of a new class of low density, high temperature, thermal protection materials (TPM), is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heatshield of Orbiter 105, Endeavor.

  8. Design and Flight Performance of the Orion Pre-Launch Navigation System

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2016-01-01

    Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion vehicle's Exploration Flight Test-1 (EFT-1) successfully completed the objective to test the prelaunch and entry components of the system. Orion's pre-launch absolute navigation design is presented, together with its EFT-1 performance.

  9. Development and Evaluation of a Performance Modeling Flight Test Approach Based on Quasi Steady-State Maneuvers

    NASA Technical Reports Server (NTRS)

    Yechout, T. R.; Braman, K. B.

    1984-01-01

    The development, implementation and flight test evaluation of a performance modeling technique which required a limited amount of quasisteady state flight test data to predict the overall one g performance characteristics of an aircraft. The concept definition phase of the program include development of: (1) the relationship for defining aerodynamic characteristics from quasi steady state maneuvers; (2) a simplified in flight thrust and airflow prediction technique; (3) a flight test maneuvering sequence which efficiently provided definition of baseline aerodynamic and engine characteristics including power effects on lift and drag; and (4) the algorithms necessary for cruise and flight trajectory predictions. Implementation of the concept include design of the overall flight test data flow, definition of instrumentation system and ground test requirements, development and verification of all applicable software and consolidation of the overall requirements in a flight test plan.

  10. Markov Jump-Linear Performance Models for Recoverable Flight Control Computers

    NASA Technical Reports Server (NTRS)

    Zhang, Hong; Gray, W. Steven; Gonzalez, Oscar R.

    2004-01-01

    Single event upsets in digital flight control hardware induced by atmospheric neutrons can reduce system performance and possibly introduce a safety hazard. One method currently under investigation to help mitigate the effects of these upsets is NASA Langley s Recoverable Computer System. In this paper, a Markov jump-linear model is developed for a recoverable flight control system, which will be validated using data from future experiments with simulated and real neutron environments. The method of tracking error analysis and the plan for the experiments are also described.

  11. Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Lu, Xi-Yun

    2009-07-01

    Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight has been studied using a multiblock lattice Boltzmann method. We find that the interactions between forewing and hindwing effectively enhance the total lift force and reduce the drag force on the wings compared to two independent wings. The interaction mechanism may be associated with the triangular camber effect by modulating the relative arrangement of the forewing and hindwing. The results obtained in this Brief Report provide physical insight into the understanding of aerodynamic behaviors for gliding dragonfly flight.

  12. Effect of wing loading, aspect ratio, and span loading of flight performances

    NASA Technical Reports Server (NTRS)

    Gothert, B

    1940-01-01

    An investigation is made of the possible improvements in maximum, cruising, and climbing speeds attainable through increase in the wing loading. The decrease in wing area was considered for the two cases of constant aspect ratio and constant span loading. For a definite flight condition, an investigation is made to determine what loss in flight performance must be sustained if, for given reasons, certain wing loadings are not to be exceeded. With the aid of these general investigations, the trend with respect to wing loading is indicated and the requirements to be imposed on the landing aids are discussed

  13. In-Flight Thermal Performance of the Geoscience Laser Altimeter System (GLAS) Instrument

    NASA Technical Reports Server (NTRS)

    Grob, Eric; Baker, Charles; McCarthy, Tom

    2003-01-01

    The Geoscience Laser Altimeter System (GLAS) instrument is NASA Goddard Space Flight Center's first application of Loop Heat Pipe technology that provides selectable/stable temperature levels for the lasers and other electronics over a widely varying mission environment. GLAS was successfully launched as the sole science instrument aboard the Ice, Clouds, and Land Elevation Satellite (ICESat) from Vandenberg AFB at 4:45pm PST on January 12, 2003. After SC commissioning, the LHPs started easily and have provided selectable and stable temperatures for the lasers and other electronics. This paper discusses the thermal development background and testing, along with details of early flight thermal performance data.

  14. Ride qualities criteria validation/pilot performance study: Flight simulator results

    NASA Technical Reports Server (NTRS)

    Nardi, L. U.; Kawana, H. Y.; Borland, C. J.; Lefritz, N. M.

    1976-01-01

    Pilot performance was studied during simulated manual terrain following flight for ride quality criteria validation. An existing B-1 simulation program provided the data for these investigations. The B-1 simulation program included terrain following flights under varying controlled conditions of turbulence, terrain, mission length, and system dynamics. The flight simulator consisted of a moving base cockpit which reproduced motions due to turbulence and control inputs. The B-1 aircraft dynamics were programmed with six-degrees-of-freedom equations of motion with three symmetric and two antisymmetric structural degrees of freedom. The results provided preliminary validation of existing ride quality criteria and identified several ride quality/handling quality parameters which may be of value in future ride quality/criteria development.

  15. Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui

    PubMed Central

    Chatterjee, Sankar; Templin, R. Jack

    2007-01-01

    Microraptor gui, a four-winged dromaeosaur from the Early Cretaceous of China, provides strong evidence for an arboreal-gliding origin of avian flight. It possessed asymmetric flight feathers not only on the manus but also on the pes. A previously published reconstruction shows that the hindwing of Microraptor supported by a laterally extended leg would have formed a second pair of wings in tetrapteryx fashion. However, this wing design conflicts with known theropod limb joints that entail a parasagittal posture of the hindlimb. Here, we offer an alternative planform of the hindwing of Microraptor that is concordant with its feather orientation for producing lift and normal theropod hindlimb posture. In this reconstruction, the wings of Microraptor could have resembled a staggered biplane configuration during flight, where the forewing formed the dorsal wing and the metatarsal wing formed the ventral one. The contour feathers on the tibia were positioned posteriorly, oriented in a vertical plane for streamlining that would reduce the drag considerably. Leg feathers are present in many fossil dromaeosaurs, early birds, and living raptors, and they play an important role in flight during catching and carrying prey. A computer simulation of the flight performance of Microraptor suggests that its biplane wings were adapted for undulatory “phugoid” gliding between trees, where the horizontal feathered tail offered additional lift and stability and controlled pitch. Like the Wright 1903 Flyer, Microraptor, a gliding relative of early birds, took to the air with two sets of wings. PMID:17242354

  16. Assessing Impact of Dual Sensor Enhanced Flight Vision Systems on Departure Performance

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.

    2016-01-01

    Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS) may serve as game-changing technologies to meet the challenges of the Next Generation Air Transportation System and the envisioned Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety and operational tempos of current-day Visual Flight Rules operations irrespective of the weather and visibility conditions. One significant obstacle lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility and pilot workload of conducting departures and approaches on runways without centerline lighting in visibility as low as 300 feet runway visual range (RVR) by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance and workload was assessed. Using EFVS concepts during 300 RVR terminal operations on runways without centerline lighting appears feasible as all EFVS concepts had equivalent (or better) departure performance and landing rollout performance, without any workload penalty, than those flown with a conventional HUD to runways having centerline lighting. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.

  17. Development of Flight-Test Performance Estimation Techniques for Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    McCrink, Matthew Henry

    This dissertation provides a flight-testing framework for assessing the performance of fixed-wing, small-scale unmanned aerial systems (sUAS) by leveraging sub-system models of components unique to these vehicles. The development of the sub-system models, and their links to broader impacts on sUAS performance, is the key contribution of this work. The sub-system modeling and analysis focuses on the vehicle's propulsion, navigation and guidance, and airframe components. Quantification of the uncertainty in the vehicle's power available and control states is essential for assessing the validity of both the methods and results obtained from flight-tests. Therefore, detailed propulsion and navigation system analyses are presented to validate the flight testing methodology. Propulsion system analysis required the development of an analytic model of the propeller in order to predict the power available over a range of flight conditions. The model is based on the blade element momentum (BEM) method. Additional corrections are added to the basic model in order to capture the Reynolds-dependent scale effects unique to sUAS. The model was experimentally validated using a ground based testing apparatus. The BEM predictions and experimental analysis allow for a parameterized model relating the electrical power, measurable during flight, to the power available required for vehicle performance analysis. Navigation system details are presented with a specific focus on the sensors used for state estimation, and the resulting uncertainty in vehicle state. Uncertainty quantification is provided by detailed calibration techniques validated using quasi-static and hardware-in-the-loop (HIL) ground based testing. The HIL methods introduced use a soft real-time flight simulator to provide inertial quality data for assessing overall system performance. Using this tool, the uncertainty in vehicle state estimation based on a range of sensors, and vehicle operational environments is

  18. Body Unloading Associated with Space Flight and Bed-rest Impacts Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Ballard, K. L.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; Phillips, T.; Platts, S. H.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.; Stenger, M. B.; Taylor, L. C.; Wood, S. J.

    2014-01-01

    The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting studies on both ISS crewmembers and on subjects experiencing 70 days of 6 degrees head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading component on functional performance. In this on-going study both ISS crewmembers and bed-rest subjects were tested using an interdisciplinary protocol that evaluated functional performance and related physiological changes before and after 6 months in space and 70 days of 6? head-down bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Crewmembers were tested three times before flight, and on 1, 6 and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6 and 12 days after reambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with

  19. Effects of CO{sub 2} and NO{sub 3}{sup -} availability on deciduous trees: Phytochemistry and insect performance

    SciTech Connect

    Kinney, K.K.; Lindroth, R.L.; Jung, S.M.; Nordheim, E.V.

    1997-01-01

    Increasing concentrations of atmospheric CO{sub 2} will interact with other environmental factors to influence the physiology and ecology of trees. This research evaluated how plant phytochemical responses to enriched atmospheric CO{sub 2} are affected by the availability of soil nitrate (NO{sub 3}{sup -}) and how these chemical changes alter performance of a tree-feeding folivore. Seedlings of three deciduous tree species were grown in ambient or elevated CO{sub 2} in combination with low or high soil NO{sub 3}{sup -} availability. Lymantria dispar larvae were reared on foliage (aspen and maple). Concentrations of nitrogen and soluble protein decreased, whereas concentrations of starch, condensed tannins, and ellagitannins increased, in response to elevated CO{sub 2} and/or low NO{sub 3}{sup -}. Responses of simple carbohydrates and phenolic glycosides were variable absolute (net) changes in foliar C:N ratios were greatest for aspen and least for oak, whereas relative changes were greatest for maple and least for aspen. Elevated CO{sub 2} treatments had little effect on gypsy moth development time, growth rate, or larval mass. Larvae reared on aspen foliage grown under elevated CO{sub 2} exhibited increased consumption but decreased conversion efficiencies. Gypsy moth responses to NO{sub 3}{sup -} were strongly host specific. The magnitude of insect response elicited by resource-mediated shifts in host chemistry will depend on how levels of compounds with specific importance to insect fitness are affected. Relatively few true interactions occured between carbon and nitrogen availability and insect performance. Tree species frequently interacted with CO{sub 2} and/or NO{sub 3}{sup -} availability to affect both parameters. The effects of elevated atmospheric CO{sub 2} on terrestrial plant communities will depend on species composition and soil nutrient availability. 54 refs., 9 figs., 4 tabs.

  20. Powered Flight Design and Reconstructed Performance Summary for the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Sell, Steven; Chen, Allen; Davis, Jody; San Martin, Miguel; Serricchio, Frederick; Singh, Gurkirpal

    2013-01-01

    The Powered Flight segment of Mars Science Laboratory's (MSL) Entry, Descent, and Landing (EDL) system extends from backshell separation through landing. This segment is responsible for removing the final 0.1% of the kinetic energy dissipated during EDL and culminating with the successful touchdown of the rover on the surface of Mars. Many challenges exist in the Powered Flight segment: extraction of Powered Descent Vehicle from the backshell, performing a 300m divert maneuver to avoid the backshell and parachute, slowing the descent from 85 m/s to 0.75 m/s and successfully lowering the rover on a 7.5m bridle beneath the rocket-powered Descent Stage and gently placing it on the surface using the Sky Crane Maneuver. Finally, the nearly-spent Descent Stage must execute a Flyaway maneuver to ensure surface impact a safe distance from the Rover. This paper provides an overview of the powered flight design, key features, and event timeline. It also summarizes Curiosity's as flown performance on the night of August 5th as reconstructed by the flight team.

  1. Disrupting the myosin converter-relay interface impairs Drosophila indirect flight muscle performance.

    PubMed

    Ramanath, Seemanti; Wang, Qian; Bernstein, Sanford I; Swank, Douglas M

    2011-09-01

    Structural interactions between the myosin converter and relay domains have been proposed to be critical for the myosin power stroke and muscle power generation. We tested this hypothesis by mutating converter residue 759, which interacts with relay residues I508, N509, and D511, to glutamate (R759E) and determined the effect on Drosophila indirect flight muscle mechanical performance. Work loop analysis of mutant R759E indirect flight muscle fibers revealed a 58% and 31% reduction in maximum power generation (P(WL)) and the frequency at which maximum power (f(WL)) is generated, respectively, compared to control fibers at 15 °C. Small amplitude sinusoidal analysis revealed a 30%, 36%, and 32% reduction in mutant elastic modulus, viscous modulus, and mechanical rate constant 2πb, respectively. From these results, we infer that the mutation reduces rates of transitions through work-producing cross-bridge states and/or force generation during strongly bound states. The reductions in muscle power output, stiffness, and kinetics were physiologically relevant, as mutant wing beat frequency and flight index decreased about 10% and 45% compared to control flies at both 15 °C and 25 °C. Thus, interactions between the relay loop and converter domain are critical for lever-arm and catalytic domain coordination, high muscle power generation, and optimal Drosophila flight performance. PMID:21889448

  2. Design and flight performance of the cosmic ray detector BUGS-4

    NASA Astrophysics Data System (ADS)

    Smith, A. E.; Petruzzo, J. J., III; Gregory, J. C.; Thoburn, C.; Austin, R. W.; Derrickson, J. H.; Parnell, T. A.; Masheder, M. R. W.; Fowler, P. H.

    1998-02-01

    The design features and operational performance from the test flight of the fourth generation of spherical geometry cosmic ray detectors developed at Bristol University (Bristol University Gas Scintillator 4 - BUGS-4) are presented. The flight from Ft. Summer (NM) in September 1993 was the premier flight of a large (1 m radius) spherical drift chamber which also gave gas scintillation and Cherenkov signals. The combinations of this chamber with one gas and two solid Cherenkov radiators lead to a large aperture factor (4.5 m2 sr), but low (~3.5 g/cm2) instrument mass over the energy sensitive range 1 to several hundred GeV/a. Moreover, one simple timing measurement determined the impact parameter which provided a trajectory (path length) correction for all detector elements. This innovative and efficient design will be of interest to experimental groups engaged in studies of energetic charged particles. Although there were technical problems on the flight, which were compounded by the total destruction of BUGS-4 by fire whilst landing in Oklahoma, there was a period of stable operation during which the instrument was exposed at float altitude (~ 125 000 ft) to high-energy cosmic rays. We present the performance of the instrument as determined from the analysis of these data and an appraisal of its novel design features. Suggestions for design improvements in a future instrument are made.

  3. Comparisons of pilot performance in simulated and actual flight. [effects of ingested barbiturates

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Gerke, R. J.; Wick, R. L., Jr.

    1975-01-01

    Five highly experienced professional pilots performed instrument landing system approaches under simulated instrument flight conditions in a Cessna 172 airplane and in a Link-Singer GAT-1 simulator while under the influence of orally administered secobarbital (0, 100, and 200 mg). Tracking performance in two axes and airspeed control were evaluated continuously during each approach. Error and RMS variability were about half as large in the simulator as in the airplane. The observed data were more strongly associated with the drug level in the simulator than in the airplane. Further, the drug-related effects were more consistent in the simulator. Improvement in performance suggestive of learning effects were seen in the simulator, but not in actual flight.

  4. Optimization of an Active Twist Rotor Blade Planform for Improved Active Response and Forward Flight Performance

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K; Wilbur, Matthew L.

    2014-01-01

    A study was conducted to identify the optimum blade tip planform for a model-scale active twist rotor. The analysis identified blade tip design traits which simultaneously reduce rotor power of an unactuated rotor while leveraging aeromechanical couplings to tailor the active response of the blade. Optimizing the blade tip planform for minimum rotor power in forward flight provided a 5 percent improvement in performance compared to a rectangular blade tip, but reduced the vibration control authority of active twist actuation by 75 percent. Optimizing for maximum blade twist response increased the vibration control authority by 50 percent compared to the rectangular blade tip, with little effect on performance. Combined response and power optimization resulted in a blade tip design which provided similar vibration control authority to the rectangular blade tip, but with a 3.4 percent improvement in rotor performance in forward flight.

  5. Entry Atmospheric Flight Control Authority Impacts on GN and C and Trajectory Performance for Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McNamara, Luke W.

    2012-01-01

    One of the key design objectives of NASA's Orion Exploration Flight Test 1 (EFT-1) is to execute a guided entry trajectory demonstrating GN&C capability. The focus of this paper is the ight control authority of the vehicle throughout the atmospheric entry ight to the target landing site and its impacts on GN&C, parachute deployment, and integrated performance. The vehicle's attitude control authority is obtained from thrusting 12 Re- action Control System (RCS) engines, with four engines to control yaw, four engines to control pitch, and four engines to control roll. The static and dynamic stability derivatives of the vehicle are determined to assess the inherent aerodynamic stability. The aerodynamic moments at various locations in the entry trajectory are calculated and compared to the available torque provided by the RCS system. Interaction between the vehicle's RCS engine plumes and the aerodynamic conditions are considered to assess thruster effectiveness. This document presents an assessment of Orion's ight control authority and its effectiveness in controlling the vehicle during critical events in the atmospheric entry trajectory.

  6. F/A-18 Performance Benefits Measured During the Autonomous Formation Flight Project

    NASA Technical Reports Server (NTRS)

    Vachon, M. Jake; Ray, Ronald J.; Walsh, Kevin R.; Ennix, Kimberly

    2003-01-01

    The Autonomous Formation Flight (AFF) project at the NASA Dryden Flight Research Center (Edwards, California) investigated performance benefits resulting from formation flight, such as reduced aerodynamic drag and fuel consumption. To obtain data on performance benefits, a trailing F/A-18 airplane flew within the wing tip-shed vortex of a leading F/A-18 airplane. The pilot of the trail airplane used advanced station-keeping technology to aid in positioning the trail airplane at precise locations behind the lead airplane. The specially instrumented trail airplane was able to obtain accurate fuel flow measurements and to calculate engine thrust and vehicle drag. A maneuver technique developed for this test provided a direct comparison of performance values while flying in and out of the vortex. Based on performance within the vortex as a function of changes in vertical, lateral, and longitudinal positioning, these tests explored design-drivers for autonomous stationkeeping control systems. Observations showed significant performance improvements over a large range of trail positions tested. Calculations revealed maximum drag reductions of over 20 percent, and demonstrated maximum reductions in fuel flow of just over 18 percent.

  7. Astronaut Biography Project for Countermeasures of Human Behavior and Performance Risks in Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Banks, Akeem

    2012-01-01

    This final report will summarize research that relates to human behavioral health and performance of astronauts and flight controllers. Literature reviews, data archival analyses, and ground-based analog studies that center around the risk of human space flight are being used to help mitigate human behavior and performance risks from long duration space flights. A qualitative analysis of an astronaut autobiography was completed. An analysis was also conducted on exercise countermeasure publications to show the positive affects of exercise on the risks targeted in this study. The three main risks targeted in this study are risks of behavioral and psychiatric disorders, risks of performance errors due to poor team performance, cohesion, and composition, and risks of performance errors due to sleep deprivation, circadian rhythm. These three risks focus on psychological and physiological aspects of astronauts who venture out into space on long duration space missions. The purpose of this research is to target these risks in order to help quantify, identify, and mature countermeasures and technologies required in preventing or mitigating adverse outcomes from exposure to the spaceflight environment

  8. Effects of dietary sodium on performance, flight and compensation strategies in the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)

    PubMed Central

    2010-01-01

    Background Sodium is critical for many physiological functions in insects. Herbivorous insects should expend considerable energy to compensate for sodium deficiency due to low sodium concentration in most inland plants upon which they feed. However, sodium compensation behaviors such as mud-puddling have been observed in some species but not in others. We expect that there may be other sodium compensation strategies in insects. Here, we select a rarely mud-puddling insect species, the cotton boll worm, Helicoverpa armigera, and determine the effects of dietary sodium on performance and flight, and examine their means of sodium compensation. Results When freshly hatched H. armigera neonates were cultured on one of three diets differing in sodium contents (diet A, B and C with a high, middle and low sodium concentrations, respectively), the larvae on diet C grew larger, had a higher mortality rate and a shorter development period than those on diet A and B. The larvae previously fed from 1st to 3rd instar on diet C consumed more subsequent diet when they were transferred to diet A or C at 4th instar, comparing to those previously fed on diet A. Moreover, any 4th-instar larvae on diet C consumed a greater amount of food than those on diet A, no matter which diet the larvae had previously ingested from 1st to 3rd instar. Moths from diet A and B flew more rapidly than those from diet C, with similar sugar and lipid utilization rates among the three test groups. When a 5th-instar cannibal from diet A, B or C and a 5th-instar victim from diet A were housed together, many more cannibals from diet C ate their victims. When a victim from diet A, B or C was provided, a cannibal from diet C was more likely to eat the victim from diet A. When newly emerged moths had been exposed to 3% sodium chloride solution for all scotophase period, the average weight increase (proxy for sodium solution intake) for moths from diet A was lower than those from diet B or C. Conclusion Sodium

  9. Veins improve fracture toughness of insect wings.

    PubMed

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species. PMID:22927966

  10. AVIRIS performance during the 1987 flight season: An AVIRIS project assessment and summary of the NASA-sponsored performance evaluation

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Porter, Wallace M.; Reimer, John H.; Chrien, Thomas G.; Green, Robert O.

    1988-01-01

    Results are presented of the assessment of AVIRIS performance during the 1987 flight season by the AVIRIS project and the earth scientists who were chartered by NASA to conduct an independent data quality and sensor performance evaluation. The AVIRIS evaluation program began in late June 1987 with the sensor meeting most of its design requirements except for signal-to-noise ratio in the fourth spectrometer, which was about half of the required level. Several events related to parts failures and design flaws further reduced sensor performance over the flight season. Substantial agreement was found between the assessments by the project and the independent investigators of the effects of these various factors. A summary of the engineering work that is being done to raise AVIRIS performance to its required level is given. In spite of degrading data quality over the flight season, several exciting scientific results were obtained from the data. These include the mapping of the spatial variation of atmospheric precipitable water, detection of environmentally-induced shifts in the spectral red edge of stressed vegetation, detection of spectral features related to pigment, leaf water and ligno-cellulose absorptions in plants, and the identification of many diagnostic mineral absorption features in a variety of geological settings.

  11. Detrimental and neutral effects of a wild grass-fungal endophyte symbiotum on insect preference and performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of seed-borne Epichloë/Neotyphodium (Ascomycota: Clavicipitaceae) fungal endophytes in temperate grasses can influence the outcome of grass–insect interactions. For example, the expression of endophyte-mediated resistance to insects depends on the insect species involved. The behavior...

  12. Challenges and perspectives of transport cargo vehicles utilization for performing research in free flight

    NASA Astrophysics Data System (ADS)

    Matveeva, T. V.; Belyaev, M. Yu.; Tsvetkov, V. V.

    2014-01-01

    Russian Progress transport cargo vehicles have successfully been used in different space station programs since 1978. At present time, they play an important role in the International Space Station (ISS) project. Main tasks performed by the transport cargo vehicle (TCV) in the station program are the following: refueling of the station, delivery of consumables and equipment, waste removal, station attitude control and orbit correction maneuver execution. At the same time, the cargo vehicle basic systems still retain unused resources after the vehicle finishes its work with the station. It makes sense to use these resources to perform research in free flight of TCV after departure from the ISS when possible. The fields of research can be determined not only on the basis of the vehicle capabilities as a research platform but also taking into account needs of the research community. Possible fields could be the following: flight tests, validation and certification of various equipment, materials, systems in the interests of other spacecraft, Execution of experiments on the Earth or other objects remote sensing using additional equipment, Microgravity research aboard TCV, Launch of small satellites and probes after TCV undocking from the station and transfer to the specified orbit, etc. Solution of research tasks using the Progress TCV resources helps to increase efficiency of the ISS research program performance. The paper considers the TCV flight control features and the methods of the solution of the problems arising when various experiments are performed aboard the vehicle.

  13. Hover and forward flight acoustics and performance of a small-scale helicopter rotor system

    NASA Technical Reports Server (NTRS)

    Kitaplioglu, C.; Shinoda, P.

    1985-01-01

    A 2.1-m diam., 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80- Foot Wind Tunnel. Subsequently, it was tested in forward flight in the Ames 7- by 10-Foot Wind Tunnel. The primary objective of the tests was to obtain performance and noise data on a small-scale rotor at various thrust coefficients, tip Mach numbers, and, in the later case, various advance ratios, for comparisons with similar existing data on full-scale helicopter rotors. This comparison yielded a preliminary evaluation of the scaling of helicopter rotor performance and acoustic radiation in hover and in forward flight. Correlation between model-scale and full-scale performance and acoustics was quite good in hover. In forward flight, however, there were significant differences in both performance and acoustic characteristics. A secondary objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing.

  14. Performance Testing of the Astro-H Flight Model 3-Stage ADR

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark Oliver; DiPirro, Michael; Bialas, Tom G.

    2014-01-01

    The Soft X-ray Spectrometer (SXS) is one of four instruments that will be flown on the Japanese Astro-H satellite, planned for launch in late 2015early 2016. The SXS will perform imaging spectroscopy in the soft x-ray band using a 6x6 array of silicon micro calorimeters operated at 50 mK, cooled by an adiabatic demagnetization refrigerator (ADR). NASAGSFC is providing the detector array and ADR, and Sumitomo Heavy Industries, Inc. is providing the remainder of the cryogenic system (superfluid helium dewar (1.3 K), Stirling cryocoolers and a 4.5 K Joule-Thomson (JT) cryocooler). The ADR is unique in that it is designed to use both the liquid helium and the JT cryocooler as it heat sink. The flight detector and ADR assembly have successfully undergone vibration and performance testing at GSFC, and have now undergone initial performance testing with the flight dewar at Sumitomo Heavy Industries, Inc. in Japan. This presentation summarizes the performance of the flight ADR in both cryogen-based and cryogen-free operating modes.

  15. Performance Testing of the Astro-H Flight Model 3-stage ADR

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; DiPirro, Michael J.; Bialas, Thomas G.

    The Soft X-ray Spectrometer (SXS) is one of four instruments that will be flown on the Japanese Astro-H satellite, planned for launch in late 2015/early 2016. The SXS will perform imaging spectroscopy in the soft x-ray band using a 6x6 array of silicon microcalorimeters operated at 50 mK, cooled by an adiabatic demagnetization refrigerator (ADR). NASA/GSFC is providing the detector array and ADR, and Sumitomo Heavy Industries, Inc. is providing the remainder of the cryogenic system (superfluid helium dewar (<1.3 K), Stirling cryocoolers and a 4.5 K Joule-Thomson (JT) cryocooler). The ADR is unique in that it is designed to use both the liquid helium and the JT cryocooler as it heat sink. The flight detector and ADR assembly have successfully undergone vibration and performance testing at GSFC, and have now undergone initial performance testing with the flight dewar at Sumitomo Heavy Industries, Inc. in Japan. This paper summaries the performance of the flight ADR in both cryogen-based and cryogen-free operating modes.

  16. Pose Measurement Performance of the Argon Relative Navigation Sensor Suite in Simulated Flight Conditions

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Eepoel, John Van; Strube, Matt; Gill, Nat; Gonzalez, Marcelo; Hyslop, Andrew; Patrick, Bryan

    2012-01-01

    Argon is a flight-ready sensor suite with two visual cameras, a flash LIDAR, an on- board flight computer, and associated electronics. Argon was designed to provide sensing capabilities for relative navigation during proximity, rendezvous, and docking operations between spacecraft. A rigorous ground test campaign assessed the performance capability of the Argon navigation suite to measure the relative pose of high-fidelity satellite mock-ups during a variety of simulated rendezvous and proximity maneuvers facilitated by robot manipulators in a variety of lighting conditions representative of the orbital environment. A brief description of the Argon suite and test setup are given as well as an analysis of the performance of the system in simulated proximity and rendezvous operations.

  17. Comparative Flight Performance with an NACA Roots Supercharger and a Turbocentrifugal Supercharger

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1931-01-01

    This report presents the comparative flight results of a roots supercharger and a turbocentrifugal supercharger. The tests were conducted using a modified DH-4M2 airplane. The rate of climb and the high speed in level flight of the airplane were obtained for each supercharger from sea level to the ceiling. The unsupercharged performance with each supercharger mounted in place was also determined. The results of these tests show that the ceiling and rate of climb obtained were nearly the same for each supercharger, but that the high speed obtained with the turbocentrifugal was better than that obtained with the roots. The high-speed performance at 21,000 feet was 122 and 142 miles per hour for the roots and turbocentrifugal, respectively.

  18. Failure rate analysis of Goddard Space Flight Center spacecraft performance during orbital life

    NASA Technical Reports Server (NTRS)

    Norris, H. P.; Timmins, A. R.

    1976-01-01

    Space life performance data on 57 Goddard Space Flight Center spacecraft are analyzed from the standpoint of determining an appropriate reliability model and the associated reliability parameters. Data from published NASA reports, which cover the space performance of GSFC spacecraft launched in the 1960-1970 decade, form the basis of the analyses. The results of the analyses show that the time distribution of 449 malfunctions, of which 248 were classified as failures (not necessarily catastrophic), follow a reliability growth pattern that can be described with either the Duane model or a Weibull distribution. The advantages of both mathematical models are used in order to: identify space failure rates, observe chronological trends, and compare failure rates with those experienced during the prelaunch environmental tests of the flight model spacecraft.

  19. The LPSP instrument on OSO 8. II - In-flight performance and preliminary results

    NASA Technical Reports Server (NTRS)

    Bonnet, R. M.; Lemaire, P.; Vial, J. C.; Artzner, G.; Gouttebroze, P.; Jouchoux, A.; Vidal-Madjar, A.; Leibacher, J. W.; Skumanich, A.

    1978-01-01

    The paper describes the in-flight performance for the first 18 months of operation of the LPSP (Laboratoire de Physique Stellaire et Planetaire) instrument incorporated in the OSO 8 launched June 1975. By means of the instrument, an absolute pointing accuracy of nearly one second was achieved in orbit during real-time operations. The instrument uses a Cassegrain telescope and a spectrometer simultaneously observing six wavelengths. In-flight performance is discussed with attention to angular resolution, spectral resolution, dispersion and grating mechanism (spectral scanner) stability, scattered light background and dark current, photometric standardization, and absolute calibration. Real-time operation and problems are considered with reference to pointing system problems, target acquisition, and L-alpha modulation. Preliminary results involving the observational program, quiet sun and chromospheric studies, quiet chromospheric oscillation and transients, sunspots and active regions, prominences, and aeronomy investigations are reported.

  20. In-Flight Performance of the Water Vapor Monitor Onboard the Sofia Observatory

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.; Yuen, Lunming; Sisson, David; Hang, Richard

    2012-01-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) airborne observatory flies in a modified B747-SP aircraft in the lower stratosphere above more than 99.9% of the Earth's water vapor. As low as this residual water vapor is, it will still affect SOFIA's infrared and sub-millimeter astronomical observations. As a result, a heterodyne instrument has been developed to observe the strength and shape of the 1830Hz rotational line of water, allowing measurements of the integrated water vapor overburden in flight. In order to be useful in correcting the astronomical signals, the required measured precipitable water vapor accuracy must be 2 microns or better, 3 sigma, and measured at least once a minute. The Water Vapor Monitor has flown 22 times during the SOFIA Early Science shared-risk period. The instrument water vapor overburden data obtained were then compared with concurrent data from GOES-V satellites to perform a preliminary calibration of the measurements. This presentation will cover the.results of these flights. The final flight calibration necessary to reach the required accuracy will await subsequent flights following the SOFIA observatory upgrade that is taking place during the spring and summer of 2012.

  1. Propulsion system performance resulting from an integrated flight/propulsion control design

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Garg, Sanjay

    1992-01-01

    Propulsion-system-specific results are presented from the application of the integrated methodology for propulsion and airframe control (IMPAC) design approach to integrated flight/propulsion control design for a 'short takeoff and vertical landing' (STOVL) aircraft in transition flight. The IMPAC method is briefly discussed and the propulsion system specifications for the integrated control design are examined. The structure of a linear engine controller that results from partitioning a linear centralized controller is discussed. The details of a nonlinear propulsion control system are presented, including a scheme to protect the engine operational limits: the fan surge margin and the acceleration/deceleration schedule that limits the fuel flow. Also, a simple but effective multivariable integrator windup protection scheme is examined. Nonlinear closed-loop simulation results are presented for two typical pilot commands for transition flight: acceleration while maintaining flightpath angle and a change in flightpath angle while maintaining airspeed. The simulation nonlinearities include the airframe/engine coupling, the actuator and sensor dynamics and limits, the protection scheme for the engine operational limits, and the integrator windup protection. Satisfactory performance of the total airframe plus engine system for transition flight, as defined by the specifications, was maintained during the limit operation of the closed-loop engine subsystem.

  2. Use of high performance networks and supercomputers for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  3. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  4. What ASRS incident data tell about flight crew performance during aircraft malfunctions

    NASA Technical Reports Server (NTRS)

    Sumwalt, Robert L.; Watson, Alan W.

    1995-01-01

    This research examined 230 reports in NASA's Aviation Safety Reporting System's (ASRS) database to develop a better understanding of factors that can affect flight crew performance when crew are faced with inflight aircraft malfunctions. Each report was placed into one of two categories, based on severity of the malfunction. Report analysis was then conducted to extract information regarding crew procedural issues, crew communications and situational awareness. A comparison of these crew factors across malfunction type was then performed. This comparison revealed a significant difference in ways that crews dealt with serious malfunctions compared to less serious malfunctions. The authors offer recommendations toward improving crew performance when faced with inflight aircraft malfunctions.

  5. Development of low-shock pyrotechnic separation nuts. [design performance of flight type nuts

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Neubert, V. H.

    1973-01-01

    Performance demonstrations and comparisons were made on six flight type pyrotechnic separation nut designs, two of which are standard designs in current use, and four of which were designed to produce low shock on actuation. Although the shock performances of the four low shock designs are considerably lower than the standard designs, some penalties may be incurred in increased volume, weight, or complexity. These nuts, and how they are installed, can significantly influence the pyrotechnic shock created in spacecraft structures. A high response monitoring system has been developed and demonstrated to provide accurate performance comparisons for pyrotechnic separation nuts.

  6. The Primary Flight Display and Its Pathway Guidance: Workload, Performance, and Situation Awareness

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Alexander, Amy L.; Hardy, Thomas J.

    2003-01-01

    In two experiments carried out in a high fidelity general aviation flight simulator, 42 instrument rated pilots flew a pathway-in-the-sky (tunnel) display through a series of multi-leg curved stepdown approaches through mountainous terrain. Both experiments examined how properties of the tunnel influenced flight path tracking performance, traffic awareness, terrain awareness and workload (assessed both by subjective and secondary task performance measures). Experiment 1, flown in simulated VMC, compared high and low intensity tunnels, with a less cluttered follow-me-airplane (FMA). The results revealed that both tunnels supported better flight path tracking than the FMA, because of the availability of more preview information. Increasing tunnel intensity, while reducing subjective workload, had no benefit on tracking, and degraded traffic detection performance. In Experiment 2, flown mostly in IMC, the low intensity tunnel was flown with a large (10 inch x 8 inch) and small (8 inch x 6.5 inch) display, representing a geometric field of view (GFOV) of either 30 degrees or 60 degrees. Most measures of flight path tracking performance favored the smaller display, and particularly the 60 degree GFOV, which presented a smaller appearing tunnel, and a wider range of terrain depiction. The larger GFOV also supported better terrain awareness, and yielded a lower secondary task assessment of workload. In both experiments, the final landing approach was terminated by a runway obstruction, and the tunnel guided pilots on a missed approach. In nearly all cases, pilots failed to notice an air hazard that lay in the missed approach path, but was only depicted in the outside view.

  7. Mars Science Laboratory Entry, Descent and Landing System Development Challenges and Preliminary Flight Performance

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tommaso P.

    2013-01-01

    The Mars Science Laboratory project recently landed the Curiosity rover on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent, and landing capabilities has been extended over the previous state of the art. This paper will present an overview of the MSL entry, descent, and landing system, a discussion of a subset of its development challenges, and include a discussion of preliminary results of the flight reconstruction effort.

  8. The tracking performance of distributed recoverable flight control systems subject to high intensity radiated fields

    NASA Astrophysics Data System (ADS)

    Wang, Rui

    It is known that high intensity radiated fields (HIRF) can produce upsets in digital electronics, and thereby degrade the performance of digital flight control systems. Such upsets, either from natural or man-made sources, can change data values on digital buses and memory and affect CPU instruction execution. HIRF environments are also known to trigger common-mode faults, affecting nearly-simultaneously multiple fault containment regions, and hence reducing the benefits of n-modular redundancy and other fault-tolerant computing techniques. Thus, it is important to develop models which describe the integration of the embedded digital system, where the control law is implemented, as well as the dynamics of the closed-loop system. In this dissertation, theoretical tools are presented to analyze the relationship between the design choices for a class of distributed recoverable computing platforms and the tracking performance degradation of a digital flight control system implemented on such a platform while operating in a HIRF environment. Specifically, a tractable hybrid performance model is developed for a digital flight control system implemented on a computing platform inspired largely by the NASA family of fault-tolerant, reconfigurable computer architectures known as SPIDER (scalable processor-independent design for enhanced reliability). The focus will be on the SPIDER implementation, which uses the computer communication system known as ROBUS-2 (reliable optical bus). A physical HIRF experiment was conducted at the NASA Langley Research Center in order to validate the theoretical tracking performance degradation predictions for a distributed Boeing 747 flight control system subject to a HIRF environment. An extrapolation of these results for scenarios that could not be physically tested is also presented.

  9. Understanding Flight

    SciTech Connect

    Anderson, David

    2001-01-31

    Through the years the explanation of flight has become mired in misconceptions that have become dogma. Wolfgang Langewiesche, the author of 'Stick and Rudder' (1944) got it right when he wrote: 'Forget Bernoulli's Theorem'. A wing develops lift by diverting (from above) a lot of air. This is the same way that a propeller produces thrust and a helicopter produces lift. Newton's three laws and a phenomenon called the Coanda effect explain most of it. With an understanding of the real physics of flight, many things become clear. Inverted flight, symmetric wings, and the flight of insects are obvious. It is easy to understand the power curve, high-speed stalls, and the effect of load and altitude on the power requirements for lift. The contribution of wing aspect ratio on the efficiency of a wing, and the true explanation of ground effect will also be discussed.

  10. Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lee, M. G.

    1995-01-01

    The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.

  11. Treadmill Exercise with Increased Body Loading Enhances Post Flight Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; Phillips, T.; Platts, S. H.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.; Stenger, M. B.; Taylor, L. C.; Wood, S. J.

    2014-01-01

    The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. Given the importance of body-support loading we set out to determine if there is a relationship between the load experienced during inflight treadmill exercise (produced by a harness and bungee system) and postflight functional performance. ISS crewmembers (n=13) were tested using the FTT protocol before and after 6 months in space. Crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. To determine how differences in body

  12. Expanded study of feasibility of measuring in-flight 747/JT9D loads, performance, clearance, and thermal data

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.; Martin, R. L.

    1980-01-01

    The JT9D jet engine exhibits a TSFC loss of about 1 percent in the initial 50 flight cycles of a new engine. These early losses are caused by seal-wear induced opening of running clearances in the engine gas path. The causes of this seal wear have been identified as flight induced loads which deflect the engine cases and rotors, causing the rotating blades to rub against the seal surfaces, producing permanent clearance changes. The real level of flight loads encountered during airplane acceptance testing and revenue service and the engine's response in the dynamic flight environment were investigated. The feasibility of direct measurement of these flight loads and their effects by concurrent measurement of 747/JT9D propulsion system aerodynamic and inertia loads and the critical engine clearance and performance changes during 747 flight and ground operations was evaluated. A number of technical options were examined in relation to the total estimated program cost to facilitate selection of the most cost effective option. It is concluded that a flight test program meeting the overall objective of determining the levels of aerodynamic and inertia load levels to which the engine is exposed during the initial flight acceptance test and normal flight maneuvers is feasible and desirable. A specific recommended flight test program, based on the evaluation of cost effectiveness, is defined.

  13. Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    NASA Astrophysics Data System (ADS)

    Golub, R. A.; Preisser, J. S.

    1984-04-01

    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

  14. Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    NASA Technical Reports Server (NTRS)

    Golub, R. A.; Preisser, J. S.

    1984-01-01

    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

  15. Understanding the Effects of Long-duration Space Flight on Astronant Functional Task Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Batson, Crystal D.; Buxton, Roxanne E.; Feiveson, Al H.; Kofman, Igor S.; Lee, Stuart M. C.; Miller, Chris A.; Mulavara, Ajitkumar P.; Peters, Brian T.; Phillips, Tiffany; Platts, Steven H.; Ploutz-Snyder, Lori L.; Reschke, Millard F.; Ryder, Jeff W.; Stenger, Michael B.; Taylor, Laura C.

    2014-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These physiological changes cause balance, gait and visual disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. These changes may affect a crewmember's ability to perform critical mission tasks immediately after landing on a planetary surface. To understand how changes in physiological function affect functional performance, an interdisciplinary pre- and postflight testing regimen, Functional Task Test (FTT), was developed to systematically evaluate both astronaut functional performance and related physiological changes. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting the FTT study on International Space Station (ISS) crewmembers before and after 6-month expeditions. Additionally, in a corresponding study we are using the FTT protocol on subjects before and after 70 days of 6deg head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. Therefore, the bed rest analog allows us to investigate the impact of body unloading on both functional tasks and on the underlying physiological factors that lead to decrement in performance and then compare them with the results obtained in our space flight study. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures included assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, heart rate, blood pressure

  16. 14 CFR Appendix E to Part 60 - Qualification Performance Standards for Quality Management Systems for Flight Simulation Training...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Qualification Performance Standards for Quality Management Systems for Flight Simulation Training Devices E Appendix E to Part 60 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND...

  17. The influence of flight speed on the ranging performance of bats using frequency modulated echolocation pulses

    NASA Astrophysics Data System (ADS)

    Boonman, Arjan M.; Parsons, Stuart; Jones, Gareth

    2003-01-01

    Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range-Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range-Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range-Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.

  18. A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance.

    PubMed

    Han, Gang; Chiappe, Luis M; Ji, Shu-An; Habib, Michael; Turner, Alan H; Chinsamy, Anusuya; Liu, Xueling; Han, Lizhuo

    2014-01-01

    Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aerodynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new 'four-winged' microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, 'hindwings'). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. PMID:25025742

  19. Simulation, flight performance and control of Dynamics Explorers-A and -B spacecraft

    NASA Technical Reports Server (NTRS)

    Sellappan, R. G.; Sen, S.

    1982-01-01

    This paper presents the results obtained from a study conducted to evaluate the dynamic behavior of Dynamics Explorers-A and -B spacecraft. The effects of environmental torques on the spacecraft motion, momentum buildup due to these torques, and the long appendages on the main body motion are studied using numerical simulations. The numerical results are compared with flight data and are found to be in good agreement. A control philosophy for DE-B to minimize the pitch axis drift is developed. The performance of DE-B in inverted mode and during the inversion maneuver as well as in the normal mode are studied. The spin ripple effect on DE-A due to the long appendages is analyzed and the results are correlated with flight data.

  20. Open-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    NASA Technical Reports Server (NTRS)

    Koppen, Daniel M.

    1997-01-01

    During the third quarter of 1996, the Closed-Loop Systems Laboratory was established at the NASA Langley Research Center (LaRC) to study the effects of High Intensity Radiated Fields on complex avionic systems and control system components. This new facility provided a link and expanded upon the existing capabilities of the High Intensity Radiated Fields Laboratory at LaRC that were constructed and certified during 1995-96. The scope of the Closed-Loop Systems Laboratory is to place highly integrated avionics instrumentation into a high intensity radiated field environment, interface the avionics to a real-time flight simulation that incorporates aircraft dynamics, engines, sensors, actuators and atmospheric turbulence, and collect, analyze, and model aircraft performance. This paper describes the layout and functionality of the Closed-Loop Systems Laboratory, and the open-loop calibration experiments that led up to the commencement of closed-loop real-time flight experiments.

  1. Laboratory and balloon flight performance of the liquid xenon gamma ray imaging telescope

    NASA Astrophysics Data System (ADS)

    Curioni, Alessandro

    2004-10-01

    This thesis presents the laboratory calibration and in- flight performance of the liquid xenon γ-ray imaging telescope (LXeGRIT). LXeGRIT is the prototype of a novel concept of Compton telescope, based on a liquid xenon time projection chamber (LXeTPC), developed through several years by Prof. Aprile and collaborators at Columbia. When I joined the collaboration in Spring 1999, LXeGRIT was getting ready for a balloon borne experiment with the goal of performing the key measurement of the background at balloon altitude. After the 1999 balloon flight, a good deal of work was devoted to a thorough calibration of LXeGRIT, both through several tests in the laboratory and through improving the analysis software and developing Monte Carlo simulations. After substantial advancements in our understanding of the detector performance, LXeGRIT was improved and calibrated before a long duration balloon campaign in the Fall of 2000. Data gathered in this flight have allowed a detailed study of the background at balloon altitude and of the sensitivity to celestial γ-ray sources, the focus of the second part of my thesis. As this dissertation is intended to show, “the LXeGRIT phase”—defined as the prototype work, the experimental demonstration of the LXeTPC concept as a Compton telescope, the measurement of the background and of the detection sensitivity—has been now successfully completed. We are now ready for future implementations of the LXeTPC technology for astrophysics observations. The detailed calibration of LXeGRIT, both as an imaging calorimeter and as a Compton telescope is described in Chapters 2, 3 and 4. In Chapter 5 more details are given of LXeGRIT as a balloon borne instrument and its flight performance in year 2000. The measurement of the background at balloon altitude, based on the data collected in year 2000, is presented in Chapter 6 and the sensitivity of the instrument is derived in Chapter 7. An overview of future developments for the LXe

  2. Fighter pilots' heart rate, heart rate variation and performance during an instrument flight rules proficiency test.

    PubMed

    Mansikka, Heikki; Virtanen, Kai; Harris, Don; Simola, Petteri

    2016-09-01

    Increased task demand will increase the pilot mental workload (PMWL). When PMWL is increased, mental overload may occur resulting in degraded performance. During pilots' instrument flight rules (IFR) proficiency test, PMWL is typically not measured. Therefore, little is known about workload during the proficiency test and pilots' potential to cope with higher task demands than those experienced during the test. In this study, fighter pilots' performance and PMWL was measured during a real IFR proficiency test in an F/A-18 simulator. PMWL was measured using heart rate (HR) and heart rate variation (HRV). Performance was rated using Finnish Air Force's official rating scales. Results indicated that HR and HRV differentiate varying task demands in situations where variations in performance are insignificant. It was concluded that during a proficiency test, PMWL should be measured together with the task performance measurement. PMID:27109324

  3. Design and performance of a high spatial resolution, time-of-flight PET detector

    PubMed Central

    Krishnamoorthy, Srilalan; LeGeyt, Benjamin; Werner, Matthew E.; Kaul, Madhuri; Newcomer, F. M.; Karp, Joel S.; Surti, Suleman

    2014-01-01

    This paper describes the design and performance of a high spatial resolution PET detector with time-of-flight capabilities. With an emphasis on high spatial resolution and sensitivity, we initially evaluated the performance of several 1.5 × 1.5 and 2.0 × 2.0 mm2 and 12–15 mm long LYSO crystals read out by several appropriately sized PMTs. Experiments to evaluate the impact of reflector on detector performance were performed and the final detector consisted of a 32 × 32 array of 1.5 × 1.5 × 15 mm3 LYSO crystals packed with a diffuse reflector and read out by a single Hamamatsu 64 channel multi-anode PMT. Such a design made it compact, modular and offered a cost-effective solution to obtaining excellent energy and timing resolution. To minimize the number of readout signals, a compact front-end readout electronics that summed anode signals along each of the orthogonal directions was also developed. Experimental evaluation of detector performance demonstrates clear discrimination of the crystals within the detector. An average energy resolution (FWHM) of 12.7 ± 2.6% and average coincidence timing resolution (FWHM) of 348 ps was measured, demonstrating suitability for use in the development of a high spatial resolution time-of-flight scanner for dedicated breast PET imaging. PMID:25246711

  4. Diet flight pattern and flight performance of Cactoblastis cactorum (Lepidoptera: Pyralidae) measured on a flight mill: The influence of age, gender, mating status and body size

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) is an invasive herbivore that poses a serious risk to the rich diversity of Opuntia cacti in North America. Knowledge of the flight behavior of the cactus moth is crucial for a better understanding of natural dispersal, and for both monitoring an...

  5. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: Flight service and inspection

    NASA Technical Reports Server (NTRS)

    Kizer, J. A.

    1981-01-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.

  6. A Modified Lunar Reconnaissance Orbiter (LRO) High Gain Antenna (HGA) Controller Based on Flight Performance

    NASA Technical Reports Server (NTRS)

    Shah, Neerav

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Lunar Reconnaissance Orbiter (LRO) was launched on June 18, 2009 and is currently in a 50 km mean altitude polar orbit around the Moon. LRO was designed and built by the NASA Goddard Space Flight Center in Greenbelt, MD. The spacecraft is three-axis stabilized via the attitude control system (ACS), which is composed of various control modes using different sets of sensors and actuators. In addition to pointing the spacecraft, the ACS is responsible for pointing LRO s two appendages, the Solar Array (SA) and the High Gain Antenna (HGA). This study reviews LRO s HGA control system. Starting with an overview of the HGA system, the paper delves into the single input single output (SISO) linear analysis followed by the controller design. Based on flight results, an alternate control scheme is devised to address inherent features in the flight control system. The modified control scheme couples the HGA loop with the spacecraft pointing control loop, and through analysis is shown to be stable and improve transient performance. Although proposed, the LRO project decided against implementing this modification.

  7. Ball flight kinematics, release variability and in-season performance in elite baseball pitching.

    PubMed

    Whiteside, D; McGinnis, R S; Deneweth, J M; Zernicke, R F; Goulet, G C

    2016-03-01

    The purpose of this study was to quantify ball flight kinematics (ball speed, spin rate, spin axis orientation, seam orientation) and release location variability in the four most common pitch types in baseball and relate them to in-season pitching performance. Nine NCAA Division I pitchers threw four pitching variations (fastball, changeup, curveball, and slider) while a radar gun measured ball speed and a 600-Hz video camera recorded the ball trajectory. Marks on the ball were digitized to measure ball flight kinematics and release location. Ball speed was highest in the fastball, though spin rate was similar in the fastball and breaking pitches. Two distinct spin axis orientations were noted: one characterizing the fastball and changeup, and another, the curveball and slider. The horizontal release location was significantly more variable than the vertical release location. In-season pitching success was not correlated to any of the measured variables. These findings are instructive for inferring appropriate hand mechanics and spin types in each of the four pitches. Coaches should also be aware that ball flight kinematics might not directly relate to pitching success at the collegiate level. Therefore, talent identification and pitching evaluations should encompass other (e.g., cognitive, psychological, and physiological) factors. PMID:25809339

  8. Initial Flight Test Evaluation of the F-15 ACTIVE Axisymmetric Vectoring Nozzle Performance

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Hathaway, Ross; Ferguson, Michael D.

    1998-01-01

    A full envelope database of a thrust-vectoring axisymmetric nozzle performance for the Pratt & Whitney Pitch/Yaw Balance Beam Nozzle (P/YBBN) is being developed using the F-15 Advanced Control Technology for Integrated Vehicles (ACTIVE) aircraft. At this time, flight research has been completed for steady-state pitch vector angles up to 20' at an altitude of 30,000 ft from low power settings to maximum afterburner power. The nozzle performance database includes vector forces, internal nozzle pressures, and temperatures all of which can be used for regression analysis modeling. The database was used to substantiate a set of nozzle performance data from wind tunnel testing and computational fluid dynamic analyses. Findings from initial flight research at Mach 0.9 and 1.2 are presented in this paper. The results show that vector efficiency is strongly influenced by power setting. A significant discrepancy in nozzle performance has been discovered between predicted and measured results during vectoring.

  9. Heat Capacity Mapping Radiometer (HCMR) data processing algorithm, calibration, and flight performance evaluation

    NASA Technical Reports Server (NTRS)

    Bohse, J. R.; Bewtra, M.; Barnes, W. L.

    1979-01-01

    The rationale and procedures used in the radiometric calibration and correction of Heat Capacity Mapping Mission (HCMM) data are presented. Instrument-level testing and calibration of the Heat Capacity Mapping Radiometer (HCMR) were performed by the sensor contractor ITT Aerospace/Optical Division. The principal results are included. From the instrumental characteristics and calibration data obtained during ITT acceptance tests, an algorithm for post-launch processing was developed. Integrated spacecraft-level sensor calibration was performed at Goddard Space Flight Center (GSFC) approximately two months before launch. This calibration provided an opportunity to validate the data calibration algorithm. Instrumental parameters and results of the validation are presented and the performances of the instrument and the data system after launch are examined with respect to the radiometric results. Anomalies and their consequences are discussed. Flight data indicates a loss in sensor sensitivity with time. The loss was shown to be recoverable by an outgassing procedure performed approximately 65 days after the infrared channel was turned on. It is planned to repeat this procedure periodically.

  10. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1992-01-01

    The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.

  11. Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight

    NASA Technical Reports Server (NTRS)

    Ryder, Jeffrey W.; Wickwire, P. J.; Buxton, R. E.; Bloomberg, J. J.; Ploutz-Snyder, L.

    2011-01-01

    The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (p<0.05). Bench press total work was also significantly impaired, although maximal isometric force and power were not significantly affected. No changes were noted for measurements of central activation or force steadiness. Results for ISS crew were not analyzed due to the current small sample size. DISCUSSION: Significant reductions in lower body muscle performance metrics were observed in returning Shuttle crew and these adaptations are likely

  12. Flight-oogenesis syndrome in a blood-sucking bug: biochemical aspects of lipid metabolism.

    PubMed

    Oliveira, Giselle A; Baptista, Daniela L; Guimarães-Motta, Horacio; Almeida, Igor C; Masuda, Hatisaburo; Atella, Georgia C

    2006-08-01

    Lipophorin (Lp), either labeled in diacylglycerol moiety with [(3)H]-Palmitic acid or in phospholipid moiety with (32)Pi, was injected into Rhodnius prolixus females. Insects were induced to flight for different times. In just a few minutes of flight, the transfer of radioactivity to ovaries decreased, accompanied by its increase to flight muscles. After one hour of flight, Lp density was higher (1.132 g/mL) than before flight (1.116 g/mL). Lp purified from insects after flight was analyzed by gel filtration chromatography and a polyacrylamide gel pore limit electrophoresis. Both analyses demonstrated a decrease in Lp molecular mass after flight but no changes in apoLp-III amounts were observed. Time-course experiments showed that only 30 min of flight are required for the detection of changes in Lp density and molecular mass. About the same time of rest is necessary for Lp density and molecular mass to return to the baseline value. The lipid content from Lp particles, determined by high-performance thin-layer chromatography (HPTLC), showed a decrease in total lipids after flight. At the same time, an increase of many classes of lipids was observed in flight muscles except for triacylglycerol, which was reduced. The increase of flight muscle lipids was accompanied by a decrease of the ovaries lipid content. The insects subjected to daily exhaustive flight showed a significant decrease in total number of eggs produced. But insects subjected to a single exhaustive flight showed only a small reduction in total number of eggs. Lp density variation during the flight activity of Rhodnius prolixus females is discussed in association with physiological events such as oogenesis. PMID:16933278

  13. Wing motion transformation to evaluate aerodynamic coupling in flapping wing flight.

    PubMed

    Faruque, Imraan A; Humbert, J Sean

    2014-12-21

    Whether the remarkable flight performance of insects is because the animals leverage inherent physics at this scale or because they employ specialized neural feedback mechanisms is an active research question. In this study, an empirically derived aerodynamics model is used with a transformation involving a delay and a rotation to identify a class of kinematics that provide favorable roll-yaw coupling. The transformation is also used to transform both synthetic and experimentally measured wing motions onto the manifold representing proverse yaw and to quantify the degree to which freely flying insects make use of passive aerodynamic mechanisms to provide proverse roll-yaw turn coordination. The transformation indicates that recorded insect kinematics do act to provide proverse yaw for a variety of maneuvers. This finding suggests that passive aerodynamic mechanisms can act to reduce the neural feedback demands of an insect׳s flight control strategy. PMID:25128237

  14. Engineered Surfaces for Mitigation of Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie J.; Smith, Joseph G.; Wohl, Christopher J.; Gardner, J. M.; Penner, Ronald K.; Connell, John W.

    2013-01-01

    Maintenance of laminar flow under operational flight conditions is being investigated under NASA s Environmentally Responsible Aviation (ERA) Program. Among the challenges with natural laminar flow is the accretion of residues from insect impacts incurred during takeoff or landing. Depending on air speed, temperature, and wing structure, the critical residue height for laminar flow disruption can be as low as 4 microns near the leading edge. In this study, engineered surfaces designed to minimize insect residue adhesion were examined. The coatings studied included chemical compositions containing functional groups typically associated with abhesive (non-stick) surfaces. To reduce surface contact by liquids and enhance abhesion, the engineered surfaces consisted of these coatings doped with particulate additives to generate random surface topography, as well as coatings applied to laser ablated surfaces having precision patterned topographies. Performance evaluation of these surfaces included contact angle goniometry of pristine coatings and profilometry of surfaces after insect impacts were incurred in laboratory scale tests, wind tunnel tests and flight tests. The results illustrate the complexity of designing antifouling surfaces for effective insect contamination mitigation under dynamic conditions and suggest that superhydrophobic surfaces may not be the most effective solution for preventing insect contamination on aircraft wing leading edges.

  15. Flight Investigation of the Performance of a Two-stage Solid-propellant Nike-deacon (DAN) Meteorological Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Heitkotter, Robert H

    1956-01-01

    A flight investigation of two Nike-Deacon (DAN) two-stage solid-propellant rocket vehicles indicated satisfactory performance may be expected from the DAN meteorological sounding rocket. Peak altitudes of 356,000 and 350,000 feet, respectively, were recorded for the two flight tests when both vehicles were launched from sea level at an elevation angle of 75 degrees. Performance calculations based on flight-test results show that altitudes between 358,000 feet and 487,000 feet may be attained with payloads varying between 60 pounds and 10 pounds.

  16. Flight of the dragonflies and damselflies.

    PubMed

    Bomphrey, Richard J; Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti

    2016-09-26

    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528779

  17. Insect Allergy.

    PubMed

    Lee, Hobart; Halverson, Sara; Mackey, Regina

    2016-09-01

    Insect bites and stings are common. Risk factors are mostly associated with environmental exposure. Most insect bites and stings result in mild, local, allergic reactions. Large local reactions and systemic reactions like anaphylaxis are possible. Common insects that bite or sting include mosquitoes, ticks, flies, fleas, biting midges, bees, and wasps. The diagnosis is made clinically. Identification of the insect should occur when possible. Management is usually supportive. For anaphylaxis, patients should be given epinephrine and transported to the emergency department for further evaluation. Venom immunotherapy (VIT) has several different protocols. VIT is highly effective in reducing systemic reactions and anaphylaxis. PMID:27545732

  18. Evaluation of a recombinant insect-derived amylase performance in simultaneous saccharification and fermentation process with industrial yeasts.

    PubMed

    Celińska, Ewelina; Borkowska, Monika; Białas, Wojciech

    2016-03-01

    Starch is the dominant feedstock consumed for the bioethanol production, accounting for 60 % of its global production. Considering the significant contribution of bioethanol to the global fuel market, any improvement in its major operating technologies is economically very attractive. It was estimated that up to 40 % of the final ethanol unit price is derived from the energy input required for the substrate pre-treatment. Application of raw starch hydrolyzing enzymes (RSHE), combined with operation of the process according to a simultaneous saccharification and fermentation (SSF) strategy, constitutes the most promising solutions to the current technologies limitations. In this study, we expressed the novel RSHE derived from an insect in Saccharomyces cerevisiae strain dedicated for the protein overexpression. Afterwards, the enzyme performance was assessed in SSF process conducted by industrial ethanologenic or thermotolerant yeast species. Comparison of the insect-derived RSHE preparation with commercially available amylolytic RSH preparation was conducted. Our results demonstrate that the recombinant alpha-amylase from rice weevil can be efficiently expressed and secreted with its native signal peptide in S. cerevisiae INVSc-pYES2-Amy1 expression system (accounting for nearly 72 % of the strain's secretome). Application of the recombinant enzyme-based preparation in SSF process secured sufficient amylolytic activity for the yeast cell propagation and ethanol formation from raw starch. (Oligo)saccharide profiles generated by the compared preparations differed with respect to homogeneity of the sugar mixtures. Concomitantly, as demonstrated by a kinetic model developed in this study, the kinetic parameters describing activity of the compared preparations were different. PMID:26545757

  19. A Flight Prediction for Performance of the SWAS Solar Array Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Sneiderman, Gary; Daniel, Walter K.

    1999-01-01

    The focus of this paper is a comparison of ground-based solar array deployment tests with the on-orbit deployment. The discussion includes a summary of the mechanisms involved and the correlation of a dynamics model with ground based test results. Some of the unique characteristics of the mechanisms are explained through the analysis of force and angle data acquired from the test deployments. The correlated dynamics model is then used to predict the performance of the system in its flight application.

  20. Performance testing of thermoelectric generators including Voyager and LES 8/9 flight results

    NASA Technical Reports Server (NTRS)

    Garvey, L.; Stapfer, G.

    1979-01-01

    Several thermoelectric generators ranging in output power from 0.5 to 155 W have been completed or are undergoing testing at JPL. These generators represent a wide range of technologies, using Bi2Te3, PbTe and SiGe thermoelectric materials. Several of these generators are of a developmental type, such as HPG S/N2, and others are representative of Transit and Multi-Hundred Watt (MHW) Technology. Representative flight performance data of LES 8/9 and Voyager RTG's are presented and compared with the DEGRA computer program based on the data observed from tests of SiGe couples, modules and MHW generators.

  1. Effects of Ice Formations on Airplane Performance in Level Cruising Flight

    NASA Technical Reports Server (NTRS)

    Preston, G. Merritt; Blackman, Calvin C.

    1948-01-01

    A flight investigation in natural icing conditions was conducted by the NACA to determine the effect of ice accretion on airplane performance. The maximum loss in propeller efficiency encountered due to ice formation on the propeller blades was 19 percent. During 87 percent of the propeller icing encounters, losses of 10 percent or less were observed. Ice formations on all of the components of the airplane except the propellers during one icing encounter resulted in an increase in parasite drag of the airplane of 81 percent. The control response of the airplane in this condition was marginal.

  2. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights

    NASA Technical Reports Server (NTRS)

    Dijk, D. J.; Neri, D. F.; Wyatt, J. K.; Ronda, J. M.; Riel, E.; Ritz-De Cecco, A.; Hughes, R. J.; Elliott, A. R.; Prisk, G. K.; West, J. B.; Czeisler, C. A.

    2001-01-01

    Sleep, circadian rhythm, and neurobehavioral performance measures were obtained in five astronauts before, during, and after 16-day or 10-day space missions. In space, scheduled rest-activity cycles were 20-35 min shorter than 24 h. Light-dark cycles were highly variable on the flight deck, and daytime illuminances in other compartments of the spacecraft were very low (5.0-79.4 lx). In space, the amplitude of the body temperature rhythm was reduced and the circadian rhythm of urinary cortisol appeared misaligned relative to the imposed non-24-h sleep-wake schedule. Neurobehavioral performance decrements were observed. Sleep duration, assessed by questionnaires and actigraphy, was only approximately 6.5 h/day. Subjective sleep quality diminished. Polysomnography revealed more wakefulness and less slow-wave sleep during the final third of sleep episodes. Administration of melatonin (0.3 mg) on alternate nights did not improve sleep. After return to earth, rapid eye movement (REM) sleep was markedly increased. Crewmembers on these flights experienced circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and postflight changes in REM sleep.

  3. Medicago truncatula-derived calcium oxalate crystals have a negative impact on chewing insect performance via their physical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant structural traits often act as defenses against herbivorous insects, causing them to avoid feeding on a given plant or tissue. Mineral crystals of calcium oxalate in Medicago truncatula Gaertn. (Fabaceae) leaves have previously been shown to be effective deterrents of lepidopteran insect feedi...

  4. On the flight derived/aerodynamic data base performance comparisons for the NASA Space Shuttle entries during the hypersonic regime

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Compton, H. R.

    1983-01-01

    Aerodynamic performance data from the first four Shuttle reentry flights are compared with preflight predictions covering hypersonic longitudinal mode down to Mach 2. The extraction of the flight coefficients, as measured by the spacecraft angular rates and the linear accelerations, derived from the inertial measurement unit, the best estimate trajectory, and the remotely measured atmosphere are discussed. The ground predictions were developed from 30,000 hr of wind tunnel testing. Actual flight data are presented for 80-260 kft, from Mach 2-26, comprising the dynamic pressure, the vehicle air relative attitude angles, control surface deflections, reaction jet activity, and body axis rates and accelerations. The second and fourth flights gave results which deviated from predictions between 230-260 kft. The accuracy limits of the derived atmospheric densities are considered, together with potential data base updates in the light of limitations imposed on the corrections by available flight data.

  5. Performance and comfort of monocular head-mounted displays in flight simulators

    NASA Astrophysics Data System (ADS)

    Browne, Michael P.; Winterbottom, Marc; Patterson, Robert Earl

    2010-04-01

    One of our previous studies examining the integration of a head-mounted visual display with a faceted flight simulator display showed that a monocular condition was the most uncomfortable and it also resulted in poorer operator performance. In the present study, we investigated whether this reduction in performance was dependent on eye dominance and whether it could be reduced or eliminated through training. Our performance measure was the amount of time it took operators to make correct decisions on a simplified targeting task using a see-through monocular headmounted display and a large-screen display upon which was presented an out-the-window view of a desert scene. A binocular on-screen viewing condition served as baseline. The results revealed that response time significantly decreased with training but that eye dominance did not exert a significant effect. These results are interpreted within the context of training regimes for using HMDs with sparse symbology.

  6. Effect of In-Flight Ice Accretion on the Performance of a Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Khodadoust, Abdollah; Dominik, Chet; Shin, Jaiwon; Miller, Dean

    1995-01-01

    The effects of potential in-flight ice accretion on the aerodynamic performance of a multi-element high-lift airfoil have been investigated at moderate-to-high Reynolds numbers. The investigation was conducted in the Low Turbulence Pressure Tunnel (LTPT) at NASA Langley Research Center. Simulated ice shapes obtained from earlier testing in the Icing Research Tunnel (IRT) at NASA Lewis Research Center were used on all three elements of the multi-element configuration. Incremental performance effects due to the ice accretion are presented for both smooth and rough ice accretions. Reynolds number effects on the measured performance characteristics were also assessed. The present results confirm the importance of avoiding any ice accretions on the forward element of a lifting configuration.

  7. Performance of Swashplateless Ultralight Helicopter Rotor with Trailing-edge Flaps for Primary Flight Control

    NASA Technical Reports Server (NTRS)

    Shen, Jin-Wei; Chopra, Inderjit

    2003-01-01

    The objective of present study is to evaluate the rotor performance, trailing-edge deflections and actuation requirement of a helicopter rotor with trailing-edge flap system for primary flight control. The swashplateless design is implemented by modifying a two-bladed teetering rotor of an production ultralight helicopter through the use of plain flaps on the blades, and by replacing the pitch link to fixed system control system assembly with a root spring. A comprehensive rotorcraft analysis based on UMARC is carried out to obtain the results for both the swashplateless and a conventional baseline rotor configuration. The predictions show swashplateless configuration achieve superior performance than the conventional rotor attributed from reduction of parasite drag by eliminating swashplate mechanic system. It is indicated that optimal selection of blade pitch index angle, flap location, length, and chord ratio reduces flap deflections and actuation requirements, however, has virtually no effect on rotor performance.

  8. Performance of hybrids between weedy rice and insect-resistant transgenic rice under field experiments: implication for environmental biosafety assessment.

    PubMed

    Cao, Qian-Jin; Xia, Hui; Yang, Xiao; Lu, Bao-Rong

    2009-12-01

    Transgene escape from genetically modified (GM) rice into weedy rice via gene flow may cause undesired environmental consequences. Estimating the field performance of crop-weed hybrids will facilitate our understanding of potential introgression of crop genes (including transgenes) into weedy rice populations, allowing for effective biosafety assessment. Comparative studies of three weedy rice strains and their hybrids with two GM rice lines containing different insect-resistance transgenes (CpTI or Bt/CpTI) indicated an enhanced relative performance of the crop-weed hybrids, with taller plants, more tillers, panicles, and spikelets per plant, as well as higher 1 000-seed weight, compared with the weedy rice parents, although the hybrids produced less filled seeds per plant than their weedy parents. Seeds from the F(1) hybrids had higher germination rates and produced more seedlings than the weedy parents, which correlated positively with 1 000-seed weight. The crop-weed hybrids demonstrated a generally enhanced relative performance than their weedy rice parents in our field experiments. These findings indicate that transgenes from GM rice can persist to and introgress into weedy rice populations through recurrent crop-to-weed gene flow with the aid of slightly increased relative fitness in F(1) hybrids. PMID:20021561

  9. Biomimetic visual detection based on insect neurobiology

    NASA Astrophysics Data System (ADS)

    O'Carroll, David C.

    2001-11-01

    With a visual system that accounts for as much as 30% of the lifted mass, flying insects such as dragonflies and hoverflies invest more in vision than any other animal. Impressive visual performance is subserved by a surprisingly simple visual system. In a typical insect eye, between 2,000 and 30,000 pixels in the image are analyzed by fewer than 200,000 neurons in underlying neural circuits. The combination of sophisticated visual processing with an approachable level of complexity has made the insect visual system a leading model for biomimetic approaches to computer vision. Much neurobiological research has focused on neural circuits used for detection of moving patterns (e.g. optical flow during flight) and moving targets (e.g. prey). Research from several labs has led to great advances in our understanding of the neural mechanisms involved, and has spawned neuromorphic hardware based on key processes identified in neurobiological experiments. Despite its attractions, the highly non-linear nature of several key stages in insect visual processing presents a challenge to understanding. I will describe examples of adaptive elements of neural circuits in the fly visual system which analyze the direction and velocity of wide-field optical flow patterns and the result of experiments that suggest that these non-linearities may contribute to robust responses to natural image motion.

  10. Flight Performance Evaluation of Three GPS Receivers for Sounding Rocket Tracking

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Diehl, James; Montenbruck, Oliver; Markgraf, Markus; Bauer, Frank (Technical Monitor)

    2001-01-01

    In preparation for the European Space Agency Maxus-4 mission, a sounding rocket test flight was carried out at Esrange,, near Kiruna, Sweden on February 19, 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. The receivers included an Ashtech G12 HDMA receiver, a BAE (Canadian Marconi) Allstar receiver and a Mitel Orion receiver. All of them provide CIA code tracking on the L1 frequency to determine the user position and make use of Doppler measurements to derive the instantaneous velocity. Among the receivers, the G12 has been optimized for use under highly dynamic conditions and has earlier been flown successfully on NASA sounding rockets [Bull, ION-GPS-2000]. The Allstar is representative of common single frequency receivers for terrestrial applications and received no particular modification, except for the disabling of the common altitude and velocity constraints that would otherwise inhibit its use for space application. The Orion receiver, finally, employs the same Mitel chipset as the Allstar, but has received various firmware modifications by DLR to safeguard it against signal losses and improve its tracking performance [Montenbruck et al., ION-GPS-2000]. While the two NASA receivers were driven by a common wrap-around antenna, the DLR experiment made use of a switchable antenna system comprising a helical antenna in the tip of the rocket and two blade antennas attached to the body of the vehicle. During the boost a peak acceleration of roughly 17g's was achieved which resulted in a velocity of about 1100 m/s at the end of the burn. At apogee, the rocket reached a maximum altitude of over 80 km. A detailed analysis of the attained flight data will be given in the paper together with a evaluation of different receiver designs and antenna concepts.

  11. Linking biomechanics and ecology through predator-prey interactions: flight performance of dragonflies and their prey.

    PubMed

    Combes, S A; Rundle, D E; Iwasaki, J M; Crall, J D

    2012-03-15

    Aerial predation is a highly complex, three-dimensional flight behavior that affects the individual fitness and population dynamics of both predator and prey. Most studies of predation adopt either an ecological approach in which capture or survival rates are quantified, or a biomechanical approach in which the physical interaction is studied in detail. In the present study, we show that combining these two approaches provides insight into the interaction between hunting dragonflies (Libellula cyanea) and their prey (Drosophila melanogaster) that neither type of study can provide on its own. We performed >2500 predation trials on nine dragonflies housed in an outdoor artificial habitat to identify sources of variability in capture success, and analyzed simultaneous predator-prey flight kinematics from 50 high-speed videos. The ecological approach revealed that capture success is affected by light intensity in some individuals but that prey density explains most of the variability in success rate. The biomechanical approach revealed that fruit flies rarely respond to approaching dragonflies with evasive maneuvers, and are rarely successful when they do. However, flies perform random turns during flight, whose characteristics differ between individuals, and these routine, erratic turns are responsible for more failed predation attempts than evasive maneuvers. By combining the two approaches, we were able to determine that the flies pursued by dragonflies when prey density is low fly more erratically, and that dragonflies are less successful at capturing them. This highlights the importance of considering the behavior of both participants, as well as their biomechanics and ecology, in developing a more integrative understanding of organismal interactions. PMID:22357584

  12. Flight Performance Evaluation of Three GPS Receivers for Sounding Rocket Tracking

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Diehl, James; Montenbruck, Oliver; Markgraf, Markus; Bauer, Frank (Technical Monitor)

    2002-01-01

    In preparation for the European Space Agency Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, near Kiruna, Sweden on February 19, 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. The receivers included an Ashtech G12 HDMA receiver, a BAE (Canadian Marconi) Allstar receiver and a Mitel Orion receiver. All of them provide C/A code tracking on the L1 frequency to determine the user position and make use of Doppler measurements to derive the instantaneous velocity. Among the receivers, the G12 has been optimized for use under highly dynamic conditions and has earlier been flown successfully on NASA sounding rockets. The Allstar is representative of common single frequency receivers for terrestrial applications and received no particular modification, except for the disabling of the common altitude and velocity constraints that would otherwise inhibit its use for space application. The Orion receiver, finally, employs the same Mitel chipset as the Allstar, but has received various firmware modifications by DLR to safeguard it against signal losses and improve its tracking performance. While the two NASA receivers were driven by a common wrap-around antenna, the DLR experiment made use of a switchable antenna system comprising a helical antenna in the tip of the rocket and two blade antennas attached to the body of the vehicle. During the boost a peak acceleration of roughly l7g's was achieved which resulted in a velocity of about 1100 m/s at the end of the burn. At apogee, the rocket reached an altitude of over 80 km. A detailed analysis of the attained flight data is given together with a evaluation of different receiver designs and antenna concepts.

  13. Comparison of Controller and Flight Deck Algorithm Performance During Interval Management with Dynamic Arrival Trees (STARS)

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.

    2012-01-01

    Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.

  14. Use of Boundary Layer Transition Detection to Validate Full-Scale Flight Performance Predictions

    NASA Technical Reports Server (NTRS)

    Hamner, Marvine; Owens, L. R., Jr.; Wahls, R. A.; Yeh, David

    1999-01-01

    Full-scale flight performance predictions can be made using CFD or a combination of CFD and analytical skin-friction predictions. However, no matter what method is used to obtain full-scale flight performance predictions knowledge of the boundary layer state is critical. The implementation of CFD codes solving the Navier-Stokes equations to obtain these predictions is still a time consuming, expensive process. In addition, to ultimately obtain accurate performance predictions the transition location must be fixed in the CFD model. An example, using the M2.4-7A geometry, of the change in Navier-Stokes solution with changes in transition and in turbulence model will be shown. Oil flow visualization using the M2.4-7A 4.0% scale model in the 14'x22' wind tunnel shows that fixing transition at 10% x/c in the CFD model best captures the flow physics of the wing flow field. A less costly method of obtaining full-scale performance predictions is the use of non-linear Euler codes or linear CFD codes, such as panel methods, combined with analytical skin-friction predictions. Again, knowledge of the boundary layer state is critical to the accurate determination of full-scale flight performance. Boundary layer transition detection has been performed at 0.3 and 0.9 Mach numbers over an extensive Reynolds number range using the 2.2% scale Reference H model in the NTF. A temperature sensitive paint system was used to determine the boundary layer state for these conditions. Data was obtained for three configurations: the baseline, undeflected flaps configuration; the transonic cruise configuration; and, the high-lift configuration. It was determined that at low Reynolds number conditions, in the 8 to 10 million Reynolds number range, the baseline configuration has extensive regions of laminar flow, in fact significantly more than analytical skin-friction methods predict. This configuration is fully turbulent at about 30 million Reynolds number for both 0.3 and 0.9, Mach numbers

  15. Insect Keepers

    ERIC Educational Resources Information Center

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  16. Incredible Insects.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1989-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. Contents are organized into the following sections: (1) "What Makes an Insect an Insect?," including…

  17. On-Orbit Constraints Test - Performing Pre-Flight Tests with Flight Hardware, Astronauts and Ground Support Equipment to Assure On-Orbit Success

    NASA Technical Reports Server (NTRS)

    Haddad, Michael E.

    2008-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g and/or vacuum environment of space. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  18. Performance of light sources and radiation sensors under low gravity realized by parabolic airplane flights

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro

    A fundamental study was conducted to establish an experimental system for space farming. Since to ensure optimal light for plant cultivation in space is of grave importance, this study examined the performance of light sources and radiation sensors under microgravity conditions created during the parabolic airplane flight. Three kinds of light sources, a halogen bulb, a fluorescent tube, and blue and red LEDs, and ten models of radiation sensors available in the market were used for the experiment. Surface temperature of the light sources, output signals from the radiation sensors, spectroscopic characteristics were measured at the gravity levels of 0.01, 1.0 and 1.8 G for 20 seconds each during parabolic airplane flights. As a result, the performance of the halogen lamp was affected the most by the gravity level among the three light sources. Under the microgravity conditions which do not raise heat convection, the temperature of the halogen lamp rose and the output of the radiation sensors increased. Spectral distributions of the halogen lamp indicated that peak wavelength appeared the highest at the level of 0.01G, which contributed to the increase in light intensity. In the case of red and blue LEDs, which are promising light sources in space farming, the temperature of both LED chips rose but irradiance from red LED increased and that from blue LED decreased under microgravity conditions due to the different thermal characteristics.

  19. Effect of blade planform variation on the forward-flight performance of small-scale rotors

    NASA Technical Reports Server (NTRS)

    Noonan, Kevin W.; Althoff, Susan L.; Samak, Dhananjay K.; Green, Michael D.

    1992-01-01

    An investigation was conducted in the Glenn L. Martin Wind Tunnel to determine the effect of blade planform variation on the forward-flight performance of four small-scale rotors. The rotors were 5.417 ft in diameter and differed only in blade planform geometry. The four planforms were: (1) rectangular; (2) 3:1 linear taper starting at 94 percent radius; (3) 3:1 linear taper starting at 75 percent radius; and (4) 3:1 linear taper starting at 50 percent radius. Each planform had a thrust-weighted solidity of 0.098. The investigation included forward-flight simulation at advance ratios from 0.14 to 0.43 for a range of rotor lift and drag coefficients. Among the four rotors, the rectangular rotor required the highest torque for the entire range of rotor drag coefficients attained at advanced ratios greater than 0.14 for rotor lift coefficients C sub L from 0.004 to 0.007. Among the rotors with tapered blades and for C sub L = 0.004 to 0.007, either the 75 percent tapered rotor or the 50 percent tapered rotor required the least amount of torque for the full range of rotor drag coefficients attained at each advance ratio. The performance of the 94 percent tapered rotor was generally between that of the rectangular rotor and the 75 and 50 percent tapered rotors at each advance ratio for this range of rotor lift coefficients.

  20. Effects of helicopter noise and vibration on pilot performance (as measured in a fixed-base flight simulator)

    NASA Technical Reports Server (NTRS)

    Stave, A. M.

    1973-01-01

    The effects of noise and vibration on pilot performance are described. Pilot subjects were required to fly VTOL commercial IFR schedules using the computer simulation facilities. The routes flown simulated closely metropolitan routes flown currently by a helicopter airline. The duration of simulator flights ranged from 3 to 8 hours. Subjects were exposed to noise sound pressure levels ranging from 74dB (ambient) to 100dB and 17 Hz vibration stimuli ranging from .1 g to .3 g measured at the floor directly beneath the pilot's seat. Despite subject reports of extreme fatigue in these long flights, performance did not degrade. A curve of performance shows a slow improvement for the first three hours of exposure and a slight loss in performance during the remainder of the flight. As environmental stress conditions (noise, vibration, and time in the simulator) increased, subject performance improved. Within the limits of this study, the higher the stress the better the performance.

  1. Dietary mercury exposure causes decreased escape takeoff flight performance and increased molt rate in European starlings (Sturnus vulgaris).

    PubMed

    Carlson, Jenna R; Cristol, Daniel; Swaddle, John P

    2014-10-01

    Mercury is a widespread and persistent environmental contaminant that occurs in aquatic and terrestrial habitats. Recently, songbirds that forage from primarily terrestrial sources have shown evidence of bioaccumulation of mercury, but little research has assessed the effects of mercury on their health and fitness. There are many indications that mercury negatively affects neurological functioning, bioenergetics, and behavior through a variety of mechanisms and in a wide array of avian taxa. Effective flight is crucial to avian fitness and feather molt is an energetically expensive life history trait. Therefore, we investigated whether mercury exposure influenced flight performance and molt in a common songbird, the European starling (Sturnus vulgaris). Specifically, we dosed the diet of captive starlings with methylmercury cysteine at 0.0, 0.75, or 1.5 μg/g wet weight and recorded changes in flight performance after 1 year of dietary mercury exposure. We also recorded the annual molt of wing feathers. We found that individuals dosed with mercury exhibited decreased escape takeoff flight performance compared with controls and blood mercury was also correlated with an increased rate of molt, which can reduce flight performance and thermoregulatory ability. This study reveals two novel endpoints, flight performance and molt, that may be affected by dietary mercury exposure. These findings suggest a potential impact on wild songbirds exposed to mercury levels comparable to the high dosage levels in the present study. Any decrease in flight efficiency could reduce fitness due to a direct impact on survival during predation events or by decreased efficiency in other critical activities (such as foraging or migration) that require efficient flight. PMID:25030113

  2. In-Flight Performance of PARASOL Inside the Aqua-Train Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Fougnie, B.; Bracco, G.; Lafrance, B.; Ruffel, C.; Hagolle, O.

    2005-12-01

    PARASOL, Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar, launched the 18th December 2004, is a microsatellite developed by the Franch Space Agency (CNES) carrying a wide-field of view imaging radiometer called POLDER and designed in partnership with the Atmospheric Optics Laboratory (LOA). The PARASOL instrument analyses a threefold signature : polarization, for different viewing angles and for 9 spectral bands from visible to near-infrared. In addition, PARASOL scientific goals are to improve the characterization of microphysical properties of clouds and aerosols using the complementary data provided by sensors composing the Afternoon-train observatory (MODIS, CALIPSO, CLOUDSAT). During the image quality commissioning phase, ended in June 2005, activities were conducted to complete in-flight geometric and radiometric calibration and evaluate the system performance regarding to mission specifications and scientific goals. Massive correlations between various images were used to assessed the in-flight geometric calibration and registration performances between polarized, spectral, and multi-directional observations which were found to be compatible with specifications, i.e. better than 0.05, 0.10, and 0.10 pixel respectively. The absolute location accuracy was estimated at 2-3km (note that pixel of the level-1 data grid are 6.18km). The in-flight radiometric calibration activity includes various aspects : absolute, multi-temporal, multi-angular and in-polarization calibrations, dark current and non-linearity characterization, optimization of the dynamic range. Because of the absence of on-board calibration device, these characterizations were assessed through methods based on acquisitions over well-defined natural targets : i/ Rayleigh scattering over predefined oceanic sites, ii/ spectrally flat sunglint over ocean, iii/ bright, high and spectrally flat convective clouds, iv/ pre-defined and well

  3. Detector performances of the BESS-Polar II instrument during the second long-duration balloon flight over Antarctica.

    NASA Astrophysics Data System (ADS)

    Yoshimura, Koji; Sakai, Kenichi; Yamamoto, A.; Mitchell, J. W.; Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Lee, T. Kumazawa1, M. H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Matsumoto, K.; Moiseev, A. A.; Myers, Z.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J. F.; Sakai, K.; Sasaki, M.; Seo, E. S.; Shikaze, Y.; Shinoda, R.; Streitmatter, R. E.; Suzuki, J.; Takasugi, Y.; Takeuchi, K.; Tanaka, K.; Thakur, N.; Yamagami, T.; Yoshida, T.; Yoshimura, K.

    USA The new balloon-borne instrument was developed for the second long-duration balloon flight over Antarctica (BESS-Polar II) on the basis of the feed back from the results from the first flight in 2004 (BESS-Polar I). Most of the detector components had been redesigned and upgraded to improve their performances and to increase the data taking period and capacity. The BESS-Polar II flight was successfully carried out in December 2007-January 2008. We performed 24.5 days scientific observation just at the solar minimum and recorded about 4.7 billion cosmic-ray enents in the harddisk drives onboard. During the flight, the instrument worked well except for minor problems in some detector components. We have made careful post-flight calibration for all detectors by using cosmic-ray event and house-keeping data. Stable and better performance was obtained for the entire flight. In this presentatation, detector performances for the BESS-Polar II instrument will be presented.

  4. Influence of Age and Nutritional Status on Flight Performance of the Asian Tiger Mosquito Aedes albopictus (Diptera: Culicidae)

    PubMed Central

    Kaufmann, Christian; Collins, Lauren F.; Brown, Mark R.

    2013-01-01

    The Asian tiger mosquito, Aedes albopictus, is a competent vector for arboviruses and recently was implicated as the vector of the first autochthonous cases of dengue and chikungunya in southern Europe. The objective of this study was to analyze the flight performance of female Ae. albopictus of different ages that were starved, sugar-fed, or sugar-fed and blood-fed, using flight mills. After three days of starvation post emergence, females flew an average distance of 0.7 ± 0.5 km in 1.9 ± 1.5 h during a 16 h trial period, whereas sugar- or sugar- and blood-fed females of this age covered a significantly higher distance of around 3 km with a mean total flight time of around 6 h. The age of females (up to four weeks) had no effect on performance. The average of maximal continuous flight segments of sugar-fed (2.14 ± 0.69 h) and blood-fed (3.17 ± 0.82 h) females was distinctly higher than of starved females (0.38 ± 0.15 h) of which most flyers (83%) performed maximal flight segments that lasted no longer than 0.5 h. Overall, the results for the laboratory monitored flight performance of Ae. albopictus confirm their ability to disperse a few kilometres between breeding site and host. PMID:24404384

  5. Status and performance of the ALICE MRPC-based Time-Of-Flight detector

    NASA Astrophysics Data System (ADS)

    Alici, A.

    2012-10-01

    ALICE is the dedicated heavy-ion experiment at the CERN LHC. One of the main detectors devoted to charged hadron identification in the ALICE central barrel is a large Time-Of-Flight (TOF) array; it allows separation among pions, kaons and protons up to a few GeV/c, covering the full azimuthal angle and -0.9 < η < 0.9. The very good performance required for such a system has been achieved by means of the Multigap Resistive Plate Chamber (MRPC) whose intrinsic time resolution is better than 50 ps with an overall efficiency close to 100% and a large operational plateau; the full array consists of 1593 MRPCs covering a cylindrical surface of 141 m2. In this report, the status of the TOF detector and the performance achieved during the 2010 and 2011 data taking periods are reported together with selected physics results obtained with pp and Pb-Pb collisions.

  6. Time-resolved measurements of in-flight ablator performance using streaked x-ray radiography

    NASA Astrophysics Data System (ADS)

    Hicks, Damien; Spears, Brian; Sorce, Chuck; Celliers, Peter; Landen, Otto; Collins, Gilbert; Boehly, Thomas

    2007-11-01

    Determining ablator performance during an implosion is a critical part of the NIF tuning campaign. In particular, it is vital to have an accurate, in-flight measure of the velocity, areal density, and mass of the ablator. We present a new technique which achieves time-resolved measurements of all these parameters in a single, area-backlit, streaked radiograph. This is accomplished by tomographically inverting the radiograph to determine the radial density profile at each time step; scalar quantities such as the average position, thickness, areal density, and mass of the ablator can then be determined simply by taking moments of this density profile. Application of this technique is demonstrated on Cu-doped Be capsule implosions at Omega. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  7. Crew Alertness Management on the Flight Deck: Cognitive and Vigilance Performance

    NASA Technical Reports Server (NTRS)

    Dinges, David F.

    1998-01-01

    This project had three broad goals: (1) to identify environmental and organismic risks to performance of long-haul cockpit crews; (2) to assess how cognitive and psychomotor vigilance performance, and subjective measures of alertness, were affected by work-rest schedules typical of long-haul cockpit crews; and (3) to determine the alertness-promoting effectiveness of behavioral and technological countermeasures to fatigue on the flight deck. During the course of the research, a number of studies were completed in cooperation with the NASA Ames Fatigue Countermeasures Program. The publications emerging from this project are listed in a bibliography in the appendix. Progress toward these goals will be summarized below according to the period in which it was accomplished.

  8. Flight crew performance when pilot-flying and pilot-not-flying duties are exchanged

    NASA Technical Reports Server (NTRS)

    Orlady, H. W.

    1982-01-01

    This study compares reports from the ASRS database depicting operational anomalies related to flight crew performance when pilot-flying and pilot-not-flying duties were exchanged. A greater number of near midair collisions, takeoff anomalies, and crossing altitude deviations were reported when the Captain was flying. More altitude deviations, near midair collisions during approach, and landing incidents occurred when the First Officer was flying. There were differences in monitoring effectiveness and in the type and distribution of information transfer problems associated with the anomalies. In addition, a number of crew performance factors were noted that were not affected by the exchange of duties. Several of these were deemed important enough to be included as matter of general interest.

  9. Objective techniques for psychological assessment, phase 2. [techniques for measuring human performance during space flight stress

    NASA Technical Reports Server (NTRS)

    Wortz, E. C.; Saur, A. J.; Nowlis, D. P.; Kendall, M. P.

    1974-01-01

    Results are presented of an initial experiment in a research program designed to develop objective techniques for psychological assessment of individuals and groups participating in long-duration space flights. Specifically examined is the rationale for utilizing measures of attention as an objective assessment technique. Subjects participating in the experiment performed various tasks (eg, playing matrix games which appeared on a display screen along with auditory stimuli). The psychophysiological reactions of the subjects were measured and are given. Previous research of various performance and psychophysiological methods of measuring attention is also discussed. The experiment design (independent and dependent variables) and apparatus (computers and display devices) are described and shown. Conclusions and recommendations are presented.

  10. Flight operations and performance of Skylab life support and environmental control systems

    NASA Technical Reports Server (NTRS)

    Hopson, G. D.; Littles, J. W.; Patterson, W. C.

    1974-01-01

    The design and performance of the Skylab thermal and environmental control systems is considered. The Orbital Workshop had a combined active and passive thermal control system. The refrigeration system was designed to store food and biomedical samples and to cool drinking water. The atmosphere control system included active humidity control, molecular sieves and charcoal canisters to control carbon dioxide, odor, and contaminants, and the gas supply system. Mission support preparation, including instrumentation, ground data system, system troubleshooting, and training, is surveyed. Major in-flight anomalies occurred with the thermal control system when the meteoroid shield was lost during SL-1 ascent and when the Airlock Module coolant loop malfunctioned during SL-2 manned operations. The atmosphere control system performed without major anomaly throughout the manned missions.

  11. Performance Results from In-Flight Commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Greathouse, Thomas K.; Gladstone, G. R.; Davis, M. W.; Slater, D. C.; Versteeg, M. H.; Persson, K. B.; Winters, G. S.; Persyn, S. C.; Eterno, J. S.

    2012-10-01

    We present a description of the Juno ultraviolet spectrograph (Juno-UVS), results from the successful in-flight commissioning performed between December 5th and 13th 2011, and some predictions of future Jupiter observations. Juno-UVS is a modest power (9.0 W) ultraviolet spectrograph based on the Alice instruments now in flight aboard the European Space Agency’s Rosetta spacecraft, NASA’s New Horizons spacecraft, and the LAMP instrument aboard NASA’s Lunar Reconnaissance Orbiter. However, unlike the other Alice spectrographs, Juno-UVS sits aboard a rotationally stabilized spacecraft. The planned 2 rpm rotation rate for the primary mission results in integration times per spatial resolution element per spin of only 17 ms. Thus, data was retrieved from many spins and then remapped and co-added to build up integration times on bright stars to measure the effective area, spatial resolution, map out scan mirror pointing positions, etc. The Juno-UVS scan mirror allows for pointing of the slit approximately ±30° from the spacecraft spin plane. This ability gives Juno-UVS access to half the sky at any given spacecraft orientation. We will describe our process for solving for the pointing of the scan mirror relative to the Juno spacecraft and present our initial half sky survey of UV bright stars complete with constellation overlays. The primary job of Juno-UVS will be to characterize Jupiter’s UV auroral emissions and relate them to in situ particle measurements. The ability to point the slit will facilitate these measurements, allowing Juno-UVS to observe the surface positions of magnetic field lines Juno is flying through giving a direct connection between the particle measurements on the spacecraft to the observed reaction of Jupiter’s atmosphere to those particles. Finally, we will describe planned observations to be made during Earth flyby in October 2013 that will complete the in-flight characterization.

  12. X-ray and optical performance of the flight filters for the JET-X telescope

    NASA Astrophysics Data System (ADS)

    Castelli, Christian M.; Watson, D. J.; Wells, Alan A.; Kent, Barry J.; Barbera, Marco; Collura, Alfonso; Bavdaz, Marcos

    1997-10-01

    The optical filters on board the JET-X telescope comprise thin foils of aluminum coated Lexan. During ground calibration of the filters, narrow spectral regions of high UV leakage, with peak levels of up to a few percent, were observed in broad band optical measurements in the 1000 to 10,000 angstrom range. Furthermore, transmission values were typically up to two orders of magnitude higher than calculated for the aluminum thickness. Investigation showed that these effects were attributed to a combination of aluminum oxidation, which reduces the opacity, and the use of a double sided aluminum layer in the filter design which behaves as a Fabry-Perot interference filter. These effects were verified by a multi- layer model of the filter UV response. Recent redesign of the filters for the flight program eliminated the UV leakage by adopting a single aluminum layer configuration, thus eliminating interference effects, and increasing the thickness by 30% to compensate for oxidation levels. The integrated x- ray transmission below 1 keV was found to be only reduced by 3%. In parallel with the production of the new Lexan flight filters, a set of qualification model filters was produced by the Luxel Corporation in the USA. These filters use polyimide as a substrate material which has the advantage that it is optically opaque to wavelengths below 3000 angstroms, unlike Lexan which is transparent. These new filters were found to have superior mechanical strength, being able to survive extended qualification vibration without any visible degradation in performance, and had a higher cosmetic quality and attenuation levels. As a result, these filters have now been included in the JET-X flight program. We report on the optical tests results from both Lexan and polyimide filters along with high resolution x-ray transmission results carried out at the BESSY synchrotron facility in Germany. Results of the mapping of the filter edge structures, global transmission values and

  13. Flight performance using a hyperstereo helmet-mounted display: aircraft handling

    NASA Astrophysics Data System (ADS)

    Jennings, Sion A.; Craig, Gregory L.; Stuart, Geoffrey W.; Kalich, Melvyn E.; Rash, Clarence E.; Harding, Thomas H.

    2009-05-01

    A flight study was conducted to assess the impact of hyperstereopsis on helicopter handling proficiency, workload and pilot acceptance. Three pilots with varying levels of night vision goggle and hyperstereo helmet-mounted display experience participated in the test. The pilots carried out a series of flights consisting of low-level maneuvers over a period of two weeks. Four of the test maneuvers, The turn around the tail, the hard surface landing, the hover height estimation and the tree-line following were analysed in detail. At the end of the testing period, no significant difference was observed in the performance data, between maneuvers performed with the TopOwl helmet and maneuvers performed with the standard night vision goggle. This study addressed only the image intensification display aspects of the TopOwl helmet system. The tests did not assess the added benefits of overlaid symbology or head slaved infrared camera imagery. These capabilities need to be taken into account when assessing the overall usefulness of the TopOwl system. Even so, this test showed that pilots can utilize the image intensification imagery displayed on the TopOwl to perform benign night flying tasks to an equivalent level as pilots using ANVIS. The study should be extended to investigate more dynamic and aggressive low level flying, slope landings and ship deck landings. While there may be concerns regarding the effect of hyperstereopsis on piloting, this initial study suggests that pilots can either adapt or compensate for hyperstereo effects with sufficient exposure and training. Further analysis and testing is required to determine the extent of training required.

  14. In-flight star tracker SED 12 performances on-board the SIGMA experiment

    NASA Astrophysics Data System (ADS)

    Jouret, M.; Sebbag, I.; Vandermarcq, M. Q.; Krebs, J. P.; Le Goff, R.; Vilaire, D.; Tulet, M. M.

    The multimission SED 12 star tracker using a CCD matrix array has been designed by SODERN in cooperation with Matra-Marconi Space (F), respectively in charge of the optical head and software development for one and processing electronics and associated interfaces for the other. It has been selected for the French SIGMA experiment on board the Soviet GRANAT spacecraft which was launched on December 2, 1989. SIGMA is a French hard X-ray/medium energy gamma ray (30 keV-2 MeV) experiment aimed at imaging selected regions of the sky with a resolution of about one arc minute and has been developed and manufactured under the overall management of CNES (the French National Space Agency). The experiment package demands a pointing stability of a few arc-seconds over periods of several hours corresponding to the long exposure times required to build up images of the target gamma sources. As the GRANAT satellite is not able to maintain such high precision attitude stability, incorporated into the gamma telescope are two SED 12 sensors aligned together with the telescope. The development of this star tracker was started in 1985 under a CNES contract, the qualification was successfully performed in 1987 and the delivery of 2 flight models was completed in 1988. The expected life time of the experiment was 1.5 year and since the launch date the mission is still operating without any significant performance degradation of the star tracker. The purpose of this paper is, on the one hand to present the multimission tracker design trade-offs and the SED 12 device: description, main features, operating modes and performances, and on the other hand, to analyze the on ground and in-flight star tracker data. This analysis has been mainly led according to the following criteria: performance results in angular position and magnitude measurement, dark current evolution versus time and radiation dose, correlation between visual and instrumental magnitudes.

  15. Flapping wing aerodynamics: from insects to vertebrates.

    PubMed

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. PMID:27030773

  16. [Studies on the massive flights of chironomid midges (Diptera: Chironomidae) as nuisance insects and plans for their control in the Lake Suwa area, central Japan. 2. Quantitative evaluations of the nuisance of chironomid midges].

    PubMed

    Hirabayashi, K

    1991-06-01

    In order to make clear the present "nuisance" caused by chironomid midges around a eutrophic lake, a questionnaire survey of 249 leaders of the Hygiene Self-governing Association of the cities of Suwa and Okaya and the town of Shimosuwa near Lake Suwa was conducted. The results are as follows: 1. More than 90% of the respondents had specific knowledge about the chironomid midge, but 40% of them didn't know about its role as a purifier in the lake. 2. More than 10% of respondents answered that they were "can not able to stand any more" massive flights of chironomid midges, and about half of them lived within 500 m of the lake shore. The damages "nuisances" were "running laundry or defacing walls (67.1%) and "contamination of food (15.3%)", suggesting that chironomid midges influenced the daily life of the residents. 3. The selected causes of massive flights of chironomid midges were "pollution in Lake Suwa" and "decreases in the numbers of birds and dragonflies" as well as others. This means that the deterioration of the environmental situation around the lake may cause the "nuisance" of chironomid midges. 4. The respondents were more strongly interested in counterplans for the control of the chironomid midges made by administrative authorities than in plans made by each family. 5. "The distance from the lake shore" was the major factor contributing to the impression of chironomid damage. "The occupation of the respondent" was the second important factor. To redirect the insect flights away from the residential area, and to decrease the number of adult midges coming from the lake, are thought to be the most important measures for the resolution of this problem. PMID:1890774

  17. Design and early in flight performance of the Tropical Rainfall Measuring Mission (TRMM) power subsystem

    SciTech Connect

    Moran, V.E.; Flatley, T.P.; Shue, J.; Gaddy, E.M.; Manzer, D.; Hicks, E.

    1998-07-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint endeavor of the United States and Japan. The National Aeronautical and Space Administration (NASA)'s Goddard Space Flight Center (GSFC) in Greenbelt, Maryland built the spacecraft in-house with four US instruments and one Japanese instrument, the first space flown Precipitation Radar (PR). The TRMM Observatory was successfully launched from Tanegashima Space Center in Japan on an H-II Expendable Launch Vehicle on November 27, 1997. This paper presents an overview of the TRMM Power System including its design, testing, and in flight performance for the first 70 days. Finally, key lessons learned are presented. The TRMM power system consists of an 18.1 square meter deployed solar array fabricated by TRW with Tecstar GaAs/Ge cells, two (2) Hughes 50 Ampere-Hour (Ah) Super NiCd TM batteries, each with 22 Eagle-Picher cells, and three (3) electronics boxes designed to provide power regulation, battery charge control, and command and telemetry interface.

  18. The Lunar Crater Observation and Sensing Satellite (LCROSS) Payload Development and Performance in Flight

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly; Shirley, Mark; Colaprete, Anthony; Osetinsky, Leonid

    2012-05-01

    The primary objective of the Lunar Crater Observation and Sensing Satellite (LCROSS) was to confirm the presence or absence of water ice in a permanently shadowed region (PSR) at a lunar pole. LCROSS was classified as a NASA Class D mission. Its payload, the subject of this article, was designed, built, tested and operated to support a condensed schedule, risk tolerant mission approach, a new paradigm for NASA science missions. All nine science instruments, most of them ruggedized commercial-off-the-shelf (COTS), successfully collected data during all in-flight calibration campaigns, and most importantly, during the final descent to the lunar surface on October 9, 2009, after 112 days in space. LCROSS demonstrated that COTS instruments and designs with simple interfaces, can provide high-quality science at low-cost and in short development time frames. Building upfront into the payload design, flexibility, redundancy where possible even with the science measurement approach, and large margins, played important roles for this new type of payload. The environmental and calibration approach adopted by the LCROSS team, compared to existing standard programs, is discussed. The description, capabilities, calibration and in-flight performance of each instrument are summarized. Finally, this paper goes into depth about specific areas where the instruments worked differently than expected and how the flexibility of the payload team, the knowledge of instrument priority and science trades, and proactive margin maintenance, led to a successful science measurement by the LCROSS payload's instrument complement.

  19. Flight performance and first results from the sub-orbital local interstellar cloud experiment (SLICE)

    NASA Astrophysics Data System (ADS)

    France, Kevin; Nell, Nicholas; Hoadley, Keri; Kane, Robert; Burgh, Eric B.; Beasley, Matthew; Bushinksy, Rachel; Schultz, Ted B.; Kaiser, Michael; Moore, Christopher; Kulow, Jennifer; Green, James C.

    2013-09-01

    We present the flight performance and preliminary science results from the first flight of the Sub-orbital Local Interstellar Cloud Experiment (SLICE). SLICE is a rocket-borne far-ultraviolet instrument designed to study the diffuse interstellar medium. The SLICE payload comprises a Cassegrain telescope with LiF-coated aluminum optics feeding a Rowland Circle spectrograph operating at medium resolution (R ~ 5000) over the 102 - 107 nm bandpass. We present a novel method for cleaning LiF-overcoated Al optics and the instrumental wavelength calibration, while the details of the instrument design and assembly are presented in a companion proceeding (Kane et al. 2013). We focus primarily on first results from the spring 2013 launch of SLICE in this work. SLICE was launched aboard a Terrier-Black Brant IX sounding rocket from White Sands Missile Range to observe four hot stars sampling different interstellar sightlines. The instrument acquired approximately 240 seconds of on-target time for the science spectra. We observe atomic and molecular transitions (HI, OI, CII, OVI, H2) tracing a range of temperatures, ionization states, and molecular fractions in diffuse interstellar clouds. Initial spectral synthesis results and future plans are discussed.

  20. Mars Express and Venus Express Data Retention In-Flight Performance

    NASA Astrophysics Data System (ADS)

    Lebrédonchel, J.; Rombeck, F.-J.

    2007-08-01

    Venus, Mars and Earth, three out of the four inner or 'rocky' planets of the Solar System, have a lot in common: a solid surface you could walk on, a comparable surface composition, an atmosphere and a weather system. European Space Agency (ESA) Mars Express (MEx) and Venus Express (VEx) pioneer scientific missions aim at exploring these two neighbours of the Earth, in order to enrich our knowledge of our planet and of the Solar System. Both projects are based on the same spacecraft bus, and in particular on 'sister' Solid State Mass Memory (SSMM) units, in charge of the acquisition, storage and retrieval of all on board data, relevant both to the platform and to the instruments. This paper recalls the common SSMM design and the inner fault tolerant memory array module architecture based on Computer Off The Shelf (COTS) Samsung 64 Mbit Synchronous Dynamic Random Access Memory (SDRAM) chips, and presents the comparative in-flight data retention performance for both MEx and Vex units, since their respective June 2003 and November 2005 launches. Both units have shown to successfully withstand the radiative deep space environment, including during the outstanding October 2003 solar flare, and no uncorrectable data corruption was ever reported. Beyond this stable retention performance over time, the memory scrubbing correctable error accounting feedback allows evaluating the deep space Single Event Upset (SEU) rates, to be compared with the theoretical SSMM radiation assessment as well as with other previous missions in-flight qualitative reference performance records, and finally enables to derive a couple of recommendations from the lessons' learnt.

  1. Future Challenges in Managing Human Health and Performance Risks for Space Flight

    NASA Technical Reports Server (NTRS)

    Corbin, Barbara J.; Barratt, Michael

    2013-01-01

    The global economy forces many nations to consider their national investments and make difficult decisions regarding their investment in future exploration. To enable safe, reliable, and productive human space exploration, we must pool global resources to understand and mitigate human health & performance risks prior to embarking on human exploration of deep space destinations. Consensus on the largest risks to humans during exploration is required to develop an integrated approach to mitigating risks. International collaboration in human space flight research will focus research on characterizing the effects of spaceflight on humans and the development of countermeasures or systems. Sharing existing data internationally will facilitate high quality research and sufficient power to make sound recommendations. Efficient utilization of ISS and unique ground-based analog facilities allows greater progress. Finally, a means to share results of human research in time to influence decisions for follow-on research, system design, new countermeasures and medical practices should be developed. Although formidable barriers to overcome, International working groups are working to define the risks, establish international research opportunities, share data among partners, share flight hardware and unique analog facilities, and establish forums for timely exchange of results. Representatives from the ISS partnership research and medical communities developed a list of the top ten human health & performance risks and their impact on exploration missions. They also drafted a multilateral data sharing plan to establish guidelines and principles for sharing human spaceflight data. Other working groups are also developing methods to promote international research solicitations. Collaborative use of analog facilities and shared development of space flight research and medical hardware continues. Establishing a forum for exchange of results between researchers, aerospace physicians

  2. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight.

    PubMed

    Vargas, Abel; Mittal, Rajat; Dong, Haibo

    2008-06-01

    A comprehensive computational fluid-dynamics-based study of a pleated wing section based on the wing of Aeshna cyanea has been performed at ultra-low Reynolds numbers corresponding to the gliding flight of these dragonflies. In addition to the pleated wing, simulations have also been carried out for its smoothed counterpart (called the 'profiled' airfoil) and a flat plate in order to better understand the aerodynamic performance of the pleated wing. The simulations employ a sharp interface Cartesian-grid-based immersed boundary method, and a detailed critical assessment of the computed results was performed giving a high measure of confidence in the fidelity of the current simulations. The simulations demonstrate that the pleated airfoil produces comparable and at times higher lift than the profiled airfoil, with a drag comparable to that of its profiled counterpart. The higher lift and moderate drag associated with the pleated airfoil lead to an aerodynamic performance that is at least equivalent to and sometimes better than the profiled airfoil. The primary cause for the reduction in the overall drag of the pleated airfoil is the negative shear drag produced by the recirculation zones which form within the pleats. The current numerical simulations therefore clearly demonstrate that the pleated wing is an ingenious design of nature, which at times surpasses the aerodynamic performance of a more conventional smooth airfoil as well as that of a flat plate. For this reason, the pleated airfoil is an excellent candidate for a fixed wing micro-aerial vehicle design. PMID:18503106

  3. Application of a Navier-Stokes aeroelastic method to improve fighter wing performance at maneuver flight conditions

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    1993-01-01

    An aeroelastic analysis method, based on three-dimensional Navier-Stokes equation aerodynamics, has been applied to improve the performance of fighter wings operating at sustained maneuver flight conditions. The scheme reduces the trimmed pressure drag of wings performing high-g maneuvers through a simultaneous application of control surface deflection and aeroelastic twist. The aerodynamic and structural interactions are decoupled by assuming an aeroelastic twist mode shape and optimizing the aerodynamic performance based on this aeroelastic mode. The wing structural stiffness properties are then determined through an inverse scheme based on the aerodynamic loads and desired twist at the maneuver flight condition. The decoupled technique is verified by performing a fully coupled aeroelastic analysis using the maneuver flight conditions and the optimized structural stiffness distributions.

  4. The Performance of a Miniature Plant Cultivation System Designed for Space Flight Application

    NASA Technical Reports Server (NTRS)

    Heyenga, Gerard; Kliss, Mark; Blackford, Cameron

    2005-01-01

    Constraints in both launch opportunities and the availability of in-flight resources for Shuttle and Space Station life science habitat facilities has presented a compelling impetus to improve the operational flexibility, efficiency and miniaturization of many of these systems. Such advances would not only invigorate the level of research being conducted in low Earth orbit but also present the opportunity to expand life science studies to outer space and planetary bodies. Work has been directed towards the development of a miniature plant cultivation module (PCM) capable of supporting the automated and controlled growth and spectral monitoring of small plant species such as Arabidopsis thaliana. This paper will present data on the operational performance and efficiency of the cultivation module, and the extent to which such a system may be used to support plant growth studies in low Earth orbit and beyond.

  5. Design and Early In-flight Performance of the Tropical Rainfall Measuring Mission (TRMM) Power Subsystem

    NASA Technical Reports Server (NTRS)

    Moran, Vickie Eakin; Flatley, Thomas P.; Shue, John; Gaddy, Edward M.; Manzer, Dominic; Hicks, Edward

    1998-01-01

    Maryland built the spacecraft in-house with four U.S. instruments and one Japanese instrument, the first space flown Precipitation Radar (PR). The TRMM Observatory was successfully launched from Tanegashima Space Center in Japan on an H-2 Expendable Launch Vehicle on November 27, 1997. This paper presents an overview of the TRMM Power System including its design, testing, and in flight performance for the first 70 days. Finally, key lessons learned are presented. The TRMM power system consists of an 18.1 square meter deployed solar array fabricated by TRW with Tecstar GaAs/Ge cells, two (2) Hughes 50 Ampere-Hour (Ah) Super NiCd' batteries, each with 22 Eagle-Picher cells, and three (3) electronics boxes designed to provide power regulation, battery charge control, and command and telemetry interface.

  6. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1999-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares and mixed estimation methods. At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  7. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  8. Nontoxic Antifreeze for Insect Traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Propylene glycol in water is a safe and effective alternative to ethylene glycol as a capture liquid in insect traps (pitfalls, flight intercepts, pan traps). Propylene glycol formulations are readily available because it is the primary (95%) ingredient in certain automotive antifreeze formulations...

  9. Some Aspects of Psychophysiological Support of Crew Member's Performance Reliability in Space Flight

    NASA Astrophysics Data System (ADS)

    Nechaev, A. P.; Myasnikov, V. I.; Stepanova, S. I.; Isaev, G. F.; Bronnikov, S. V.

    The history of cosmonautics demonstrates many instances in which only crewmembers' intervention allowed critical situations to be resolved, or catastrophes to be prevented. However, during "crew-spacecraft" system operation human is exposed by influence of numerous flight factors, and beforehand it is very difficult to predict their effects on his functional state and work capacity. So, the incidents are known when unfavorable alterations of crewmember's psychophysiological state (PPS) provoked errors in task performance. The objective of the present investigation was to substantiate the methodological approach directed to increase reliability of a crewmember performance (human error prevention) by means of management of his/her PPS. The specific aims of the investigation were: 1) to evaluate the statistical significance of the interrelation between crew errors (CE) and crewmember's PPS, and 2) to develop the way of PPS management. At present, there is no conventional method to assess combined effect of flight conditions (microgravity, confinement, psychosocial factors, etc.) on crewmembers' PPS. For this purpose experts of the Medical Support Group (psychoneurologists and psychologists) at the Moscow Mission Control Center analyze information received during radio and TV contacts with crew. Peculiarities of behavior, motor activity, sleep, speech, mood, emotional reactions, well-being and sensory sphere, trend of dominant interests and volitional acts, signs of deprivation phenomena are considered as separate indicators of crewmember's PPS. The set of qualitative symptoms reflecting PPS alterations and corresponding to them ratings (in arbitrary units) was empirically stated for each indicator. It is important to emphasize that symptoms characterizing more powerful PPS alterations have higher ratings. Quantitative value of PPS integral parameter is calculating by adding up the ratings of all separate indicators over a day, a week, or other temporal interval (in

  10. The STEP model: Characterizing simultaneous time effects on practice for flight simulator performance among middle-aged and older pilots.

    PubMed

    Kennedy, Quinn; Taylor, Joy; Noda, Art; Yesavage, Jerome; Lazzeroni, Laura C

    2015-09-01

    Understanding the possible effects of the number of practice sessions (practice) and time between practice sessions (interval) among middle-aged and older adults in real-world tasks has important implications for skill maintenance. Prior training and cognitive ability may impact practice and interval effects on real-world tasks. In this study, we took advantage of existing practice data from 5 simulated flights among 263 middle-aged and older pilots with varying levels of flight expertise (defined by U.S. Federal Aviation Administration proficiency ratings). We developed a new Simultaneous Time Effects on Practice (STEP) model: (a) to model the simultaneous effects of practice and interval on performance of the 5 flights, and (b) to examine the effects of selected covariates (i.e., age, flight expertise, and 3 composite measures of cognitive ability). The STEP model demonstrated consistent positive practice effects, negative interval effects, and predicted covariate effects. Age negatively moderated the beneficial effects of practice. Additionally, cognitive processing speed and intraindividual variability (IIV) in processing speed moderated the benefits of practice and/or the negative influence of interval for particular flight performance measures. Expertise did not interact with practice or interval. Results indicated that practice and interval effects occur in simulated flight tasks. However, processing speed and IIV may influence these effects, even among high-functioning adults. Results have implications for the design and assessment of training interventions targeted at middle-aged and older adults for complex real-world tasks. PMID:26280383

  11. Improving target orientation discrimination performance in air-to-air flight simulation

    NASA Astrophysics Data System (ADS)

    Serfoss, Gary Lee

    Despite significant advances, state-of-the-art image projectors still lack the ability to display object detail equivalent to a 20/20 visual acuity capability. Unfortunately, for proper close-in air combat training in a flight simulator, this level of detail is necessary if a pilot is to accurately determine the orientation of another aircraft at realistic ranges. This investigation evaluates a possible interim solution to this problem that could be implemented until projectors are developed that can provide adequate resolution. The research methodology involves enlarging the "enemy" aircraft by various amounts as a function of distance-resulting in an aircraft that still always gets smaller as it moves farther away, but just not as quickly as a "non-enlarged" target. The results from 20 male F-16 pilots provided the distances where the orientation of aircraft in the simulator could be determined as well as similar aircraft under "real-world" conditions. By using these distances, it was possible to determine the amount of magnification needed to identify necessary details of the simulated aircraft at the same distances as they are under "real-world" conditions. The final product is a magnification curve that can be used to modify how the simulated target changes in size as a function of distance. Results seem to indicate that performance in the simulator might be enhanced to match real flying conditions without unacceptably (or perhaps even noticeably) altering the size of the target. These results should be applicable (with minor modification) to many other aircraft and perhaps ground targets as well. Furthermore, it is anticipated that application can be made beyond flight simulation to other types of simulation where performance is also currently inhibited due to lack of display resolution.

  12. Investigating systematic individual differences in sleep-deprived performance on a high-fidelity flight simulator.

    PubMed

    Van Dongen, Hans P A; Caldwell, John A; Caldwell, J Lynn

    2006-05-01

    Laboratory research has revealed considerable systematic variability in the degree to which individuals' alertness and performance are affected by sleep deprivation. However, little is known about whether or not different populations exhibit similar levels of individual variability. In the present study, we examined individual variability in performance impairment due to sleep loss in a highly select population of militaryjet pilots. Ten active-duty F-117 pilots were deprived of sleep for 38 h and studied repeatedly in a high-fidelity flight simulator. Data were analyzed with a mixed-model ANOVA to quantify individual variability. Statistically significant, systematic individual differences in the effects of sleep deprivation were observed, even when baseline differences were accounted for. The findings suggest that highly select populations may exhibit individual differences in vulnerability to performance impairment from sleep loss just as the general population does. Thus, the scientific and operational communities' reliance on group data as opposed to individual data may entail substantial misestimation of the impact of job-related stressors on safety and performance. PMID:16956110

  13. Determination of washout performance of various monochrome displays under simulated flight ambient and solar lighting conditions

    NASA Technical Reports Server (NTRS)

    Batson, Vernon M.; Robertson, James B.; Parrish, Russell V.

    1990-01-01

    The aircraft cockpit ambient lighting simulation system (ACALSS) has been developed to study display readability and associated pilot/vehicle performance effects in a part-task simulator cockpit. In the study reported here, the ACALSS was used to determine the illumination levels at which subjects lose the ability to maintain aircraft states when using three display technologies as display media for primary flight displays: a standard monochrome EL (electroluminescent) flat-panel, a laboratory-class monochrome CRT, and an enhanced-brightness EL flat-panel. The multivariate statistical technique of modified profile analysis was used to test for performance differences between display devices as functions of illumination levels. The standard monochrome EL flat-panel display began to washout after the 2500 foot-candle level of illumination. The monochrome CRT began to washout after the 5500 foot-candle level of illumination. No performance decrements by increased illumination up to the 12,000 foot-candle level were found for the enhanced-brightness EL flat-panel display. What was not anticipated was that half the subjects would subjectively prefer the CRT over the enhanced-brightness EL, even though their performance errors would have indicated the opposite.

  14. Description and expected performance of flight-model, 12-gigahertz, output stage tube for the communications technology satellite

    NASA Technical Reports Server (NTRS)

    Chomos, G. J.; Curren, A. N.

    1976-01-01

    The flight model output stage tube for the Communications Technology Satellite is described. The output stage tube is a 12-GHz, 200-W, coupled cavity traveling wave tube. The tube has a multistage depressed collector for efficiency enhancement. Collector cooling is accomplished by direct radiation to space. Expected rf performance and factors affecting on orbit performance and life are discussed.

  15. The evolutionary physiology of animal flight: paleobiological and present perspectives.

    PubMed

    Dudley, R

    2000-01-01

    Recent geophysical analyses suggest the presence of a late Paleozoic oxygen pulse beginning in the late Devonian and continuing through to the late Carboniferous. During this period, plant terrestrialization and global carbon deposition resulted in a dramatic increase in atmospheric oxygen levels, ultimately yielding concentrations potentially as high as 35% relative to the contemporary value of 21%. Such hyperoxia of the late Paleozoic atmosphere may have physiologically facilitated the initial evolution of insect flight metabolism. Widespread gigantism in late Paleozoic insects and other arthropods is also consistent with enhanced oxygen flux within diffusion-limited tracheal systems. Because total atmospheric pressure increases with increased oxygen partial pressure, concurrently hyperdense conditions would have augmented aerodynamic force production in early forms of flying insects. By the late Permian, evolution of decompositional microbial and fungal communities, together with disequilibrium in rates of carbon deposition, gradually reduced oxygen concentrations to values possibly as low as 15%. The disappearance of giant insects by the end of the Permian is consistent with extinction of these taxa for reasons of asphyxiation on a geological time scale. As with winged insects, the multiple historical origins of vertebrate flight in the late Jurassic and Cretaceous correlate temporally with periods of elevated atmospheric oxygen. Much discussion of flight performance in Archaeopteryx assumes a contemporary atmospheric composition. Elevated oxygen levels in the mid- to late Mesozoic would, however, have facilitated aerodynamic force production and enhanced muscle power output for ancestral birds, as well as for precursors to bats and pterosaurs. PMID:10845087

  16. Solutions Network Formulation Report. Using NASA Sensors to Perform Crop Type Assessment for Monitoring Insect Resistance in Corn

    NASA Technical Reports Server (NTRS)

    Lewis, David; Copenhaver, Ken; Anderson, Daniel; Hilbert, Kent

    2007-01-01

    The EPA (U.S. Environmental Protection Agency) is tasked to monitor for insect pest resistance to transgenic crops. Several models have been developed to understand the resistance properties of insects. The Population Genetics Simulator model is used in the EPA PIRDSS (Pest Infestation and Resistance Decision Support System). The EPA Office of Pesticide Programs uses the DSS to help understand the potential for insect pest resistance development and the likelihood that insect pest resistance will negatively affect transgenic corn. Once the DSS identifies areas of concern, crews are deployed to collect insect pest samples, which are tested to identify whether they have developed resistance to the toxins in transgenic corn pesticides. In this candidate solution, VIIRS (Visible/Infrared Imager/Radiometer Suite) vegetation index products will be used to build hypertemporal layerstacks for crop type and phenology assessment. The current phenology attribute is determined by using the current time of year to index the expected growth stage of the crop. VIIRS might provide more accurate crop type assessment and also might give a better estimate on the crop growth stage.

  17. Flight Stability and Control and Performance Results from the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Cobleigh, Brent R.; Cox, Timothy H.; Conners, Timothy R.; Iliff, Kenneth W.; Powers, Bruce G.

    1998-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) is presently being conducted to test a 20-percent-scale version of the Linear Aerospike rocket engine. This rocket engine has been chosen to power the X-33 Single Stage to Orbit Technology Demonstrator Vehicle. The rocket engine was integrated into a lifting body configuration and mounted to the upper surface of an SR-71 aircraft. This paper presents stability and control results and performance results from the envelope expansion flight tests of the LASRE configuration up to Mach 1.8 and compares the results with wind tunnel predictions. Longitudinal stability and elevator control effectiveness were well-predicted from wind tunnel tests. Zero-lift pitching moment was mispredicted transonically. Directional stability, dihedral stability, and rudder effectiveness were overpredicted. The SR-71 handling qualities were never significantly impacted as a result of the missed predictions. Performance results confirmed the large amount of wind-tunnel-predicted transonic drag for the LASRE configuration. This drag increase made the performance of the vehicle so poor that acceleration through transonic Mach numbers could not be achieved on a hot day without depleting the available fuel.

  18. Flight performance and feather quality: paying the price of overlapping moult and breeding in a tropical highland bird.

    PubMed

    Echeverry-Galvis, Maria Angela; Hau, Michaela

    2013-01-01

    A temporal separation of energetically costly life history events like reproduction and maintenance of the integumentary system is thought to be promoted by selection to avoid trade-offs and maximize fitness. It has therefore remained somewhat of a paradox that certain vertebrate species can undergo both events simultaneously. Identifying potential costs of overlapping two demanding life history stages will further our understanding of the selection pressures that shape the temporal regulation of life history events in vertebrates. We studied free-living tropical Slaty brush-finches (Atlapetes schistaceus), in which individuals spontaneously overlap reproduction and moult or undergo both events in separation. To assess possible costs of such an overlap we quantified feather quality and flight performance of individuals in different states. We determined individual's life history state by measuring gonad size and scoring moult stage, and collected a newly grown 7(th) primary wing feather for later analysis of feather quality. Finally, we quantified flight performance for each individual in the wild. Overlapping individuals produced lighter and shorter wing feathers than individuals just moulting, with females decreasing feather quality more strongly during the overlap than males. Moreover, overlapping individuals had a reduced flight speed during escape flights, while their foraging flight speed was unaffected. Despite overlappers being larger and having a smaller wing area, their lower body mass resulted in a similar wing load as in breeders or moulters. Individuals measured repeatedly in different states also showed significant decreases in feather quality and escape flight speed during the overlap. Reduced escape flight speed may represent a major consequence of the overlap by increasing predation risk. Our data document costs to undergoing two life history stages simultaneously, which likely arise from energetic trade-offs. Impairments in individual quality and

  19. Performance results from in-flight commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Greathouse, T. K.; Gladstone, G. R.; Davis, M. W.; Slater, D. C.; Versteeg, M. H.; Persson, K. B.; Walther, B. C.; Winters, G. S.; Persyn, S. C.; Eterno, J. S.

    2013-09-01

    We present a description of the Juno ultraviolet spectrograph (Juno-UVS) and results from its in-flight commissioning performed between December 5th and 13th 2011 and its first periodic maintenance between October 10th and 12th 2012. Juno-UVS is a modest power (9.0 W) ultraviolet spectrograph based on the Alice instruments now in flight aboard the European Space Agency's Rosetta spacecraft, NASA's New Horizons spacecraft, and the LAMP instrument aboard NASA's Lunar Reconnaissance Orbiter. However, unlike the other Alice spectrographs, Juno-UVS sits aboard a spin stabilized spacecraft. The Juno-UVS scan mirror allows for pointing of the slit approximately +/-30° from the spacecraft spin plane. This ability gives Juno-UVS access to half the sky at any given spacecraft orientation. The planned 2 rpm spin rate for the primary mission results in integration times per 0.2° spatial resolution element per spin of only ~17 ms. Thus, for calibration purposes, data were retrieved from many spins and then remapped and co-added to build up exposure times on bright stars to measure the effective area, spatial resolution, scan mirror pointing positions, etc. The primary job of Juno-UVS will be to characterize Jupiter's UV auroral emissions and relate them to in-situ particle measurements. The ability to point the slit will make operations more flexible, allowing Juno-UVS to observe the atmospheric footprints of magnetic field lines through which Juno flies, giving a direct connection between energetic particle measurements on the spacecraft and the far-ultraviolet emissions produced by Jupiter's atmosphere in response to those particles.

  20. A histochemical and X-ray microanalysis study of calcium changes in insect flight muscle degeneration in Solenopsis, the queen fire ant

    SciTech Connect

    Jones, R.G.; Davis, W.L.; Vinson, S.B.

    1982-04-01

    Potassium pyroantimonate histochemistry, coupled with ethyleneglycoltetraacetic acid (EGTA)-chelation and X-ray microprobe analysis, was employed to localize intracellular calcium binding sites in the normal and degenerating flight musculature in queens of Solenopsis, the fire ant. In normal animals, calcium distribution was light to moderate within myofibrils and mitochondria. In the early contracture stages of the insemination-induced degeneration, both myofilament and mitochondrial calcium loading was markedly increased. In the terminal stages of myofibril breakdown, only Z-lines (isolated or in clusters) with an associated filamentous residue persisted. These complexes were also intensely calcium positive. This study further documents the presence of increased sarcoplasmic calcium during muscle necrosis. Surface membrane defects, mitochondrial calcium overload, and calcium-activated proteases may all be involved in this ''normal'' breakdown process.

  1. Flight assessment of the onboard propulsion system model for the Performance Seeking Control algorithm on an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Schkolnik, Gerard S.

    1995-01-01

    Performance Seeking Control (PSC), an onboard, adaptive, real-time optimization algorithm, relies upon an onboard propulsion system model. Flight results illustrated propulsion system performance improvements as calculated by the model. These improvements were subject to uncertainty arising from modeling error. Thus to quantify uncertainty in the PSC performance improvements, modeling accuracy must be assessed. A flight test approach to verify PSC-predicted increases in thrust (FNP) and absolute levels of fan stall margin is developed and applied to flight test data. Application of the excess thrust technique shows that increases of FNP agree to within 3 percent of full-scale measurements for most conditions. Accuracy to these levels is significant because uncertainty bands may now be applied to the performance improvements provided by PSC. Assessment of PSC fan stall margin modeling accuracy was completed with analysis of in-flight stall tests. Results indicate that the model overestimates the stall margin by between 5 to 10 percent. Because PSC achieves performance gains by using available stall margin, this overestimation may represent performance improvements to be recovered with increased modeling accuracy. Assessment of thrust and stall margin modeling accuracy provides a critical piece for a comprehensive understanding of PSC's capabilities and limitations.

  2. Visual flight control in naturalistic and artificial environments.

    PubMed

    Baird, Emily; Dacke, Marie

    2012-12-01

    Although the visual flight control strategies of flying insects have evolved to cope with the complexity of the natural world, studies investigating this behaviour have typically been performed indoors using simplified two-dimensional artificial visual stimuli. How well do the results from these studies reflect the natural behaviour of flying insects considering the radical differences in contrast, spatial composition, colour and dimensionality between these visual environments? Here, we aim to answer this question by investigating the effect of three- and two-dimensional naturalistic and artificial scenes on bumblebee flight control in an outdoor setting and compare the results with those of similar experiments performed in an indoor setting. In particular, we focus on investigating the effect of axial (front-to-back) visual motion cues on ground speed and centring behaviour. Our results suggest that, in general, ground speed control and centring behaviour in bumblebees is not affected by whether the visual scene is two- or three dimensional, naturalistic or artificial, or whether the experiment is conducted indoors or outdoors. The only effect that we observe between naturalistic and artificial scenes on flight control is that when the visual scene is three-dimensional and the visual information on the floor is minimised, bumblebees fly further from the midline of the tunnel. The findings presented here have implications not only for understanding the mechanisms of visual flight control in bumblebees, but also for the results of past and future investigations into visually guided flight control in other insects. PMID:22983439

  3. High-performance electronics for time-of-flight PET systems.

    PubMed

    Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively. PMID:24575149

  4. High-performance electronics for time-of-flight PET systems

    PubMed Central

    Choong, W.-S.; Peng, Q.; Vu, C.Q.; Turko, B.T.; Moses, W.W.

    2014-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC’s CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC’s CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively. PMID:24575149

  5. Circadian Entrainment, Sleep-Wake Regulation and Neurobehavioral Performance During Extended Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Czeisler, Charles A.

    1999-01-01

    Long-duration manned space flight requires crew members to maintain a high level of cognitive performance and vigilance while operating and monitoring sophisticated instrumentation. However, the reduction in the strength of environmental synchronizers in the space environment leads to misalignment of circadian phase among crew members, coupled with restricted time available to sleep, results in sleep deprivation and consequent deterioration of neurobehavioral function. Crew members are provided, and presently use, long-acting benzodiazepine hypnotics on board the current, relatively brief space shuttle missions to counteract such sleep disruption, a situation that is only likely to worsen during extended duration missions. Given the known carry-over effects of such compounds on daytime performance, together with the reduction in emergency readiness associated with their use at night, NASA has recognized the need to develop effective but safe countermeasures to allow crew members to obtain an adequate amount of sleep. Over the past eight years, we have successfully implemented a new technology for shuttle crew members involving bright light exposure during the pre-launch period to facilitate adaptation of the circadian timing system to the inversions of the sleep-wake schedule often required during dual shift missions. However for long duration space station missions it will be necessary to develop effective and attainable countermeasures that can be used chronically to optimize circadian entrainment. Our current research effort is to study the effects of light-dark cycles with reduced zeitgeber strength, such as are anticipated during long-duration space flight, on the entrainment of the endogenous circadian timing system and to study the effects of a countermeasure that consists of scheduled brief exposures to bright light on the human circadian timing system. The proposed studies are designed to address the following Specific Aims: (1) test the hypothesis that

  6. Insect Phylogenomics

    PubMed Central

    Behura, Susanta K.

    2015-01-01

    With the advent of next-generation sequencing methods, phylogenetics has taken a new turn in the recent years. Phylogenomics, the integration of phylogenetics with genome data, has emerged as a powerful approach to study systematics and evolution of species. Recently, breakthrough researches employing phylogenomic tools have provided better insights into the timing and pattern of insect evolution. The next-generation sequencing methods are now increasingly used by entomologists to generate genomic and transcript sequences of various insect species and strains. These data provide opportunities for comparative genomics and large-scale multigene phylogenies of diverse lineages of insects. Phylogenomic investigations help us better understand systematic and evolutionary relationships of insect species that play important roles as herbivores, predators, detritivores, pollinators, or disease vectors. It is important that we critically assess the prospects and limitations of phylogenomic methods. In this review, I describe the current status, outline the major challenges, and remark on potential future applications of phylogenomic tools in studying insect systematics and evolution. PMID:25963452

  7. Combined dynamic inversion and QFT flight control of an unstable high performance aircraft

    NASA Astrophysics Data System (ADS)

    Stout, Perry Walter

    Quantitative Feedback Theory (QFT) is a control system synthesis, technique that directly considers system uncertainties and disturbance magnitudes when formulating closed-loop control algorithms. Dynamic Inversion is a nonlinear control system design technique that relies on accurate mathematical models to compute control inputs producing arbitrary system responses. Both techniques have been applied to unstable high performance aircraft flight control, and produced effective aircraft controllers. Both techniques have certain drawbacks: Nonlinear QFT controllers tend to be unnecessarily conservative (the computed controllers have excessive bandwidth) because known system properties are treated as "unknown" disturbances during loop synthesis. Meanwhile Dynamic Inversion control is sensitive to differences between assumed mathematical models and actual system dynamic properties. Combining the two control techniques provides the benefit of both while suffering the drawbacks of neither, as demonstrated by Single Input, Single Output (SISO) control of a constant airspeed, no roll, no yaw nonlinear model of the F-16 aircraft, and by Multi-Input, Multi-Output (MIMO) control of a full six-degree-of-freedom version. Design performance of the combined controllers is verified by reduced actuator efforts and by reduced sensor noise to actuator input (U( s)/n(s)) transfer function magnitudes compared to standard QFT versions.

  8. Molecular sieve generation of aviator's oxygen: Performance of a prototype system under simulated flight conditions.

    PubMed

    Miller, R L; Ikels, K G; Lamb, M J; Boscola, E J; Ferguson, R H

    1980-07-01

    The molecular sieve method of generating an enriched-oxygen breathing gas is one of several candidate onboard oxygen generation (OBOG) systems under joint Army-Navy-Air Force development for application in tactical aircraft. The performance of a nominal two-man-capacity molecular sieve oxygen generation system was characterized under simulated flight conditions. Data are given on the composition of the molecular sieve-generated breathing gas (oxygen, nitrogen, carbon dioxide, and argon) as a function of inlet air pressure, altitude, breathing gas flow rate, and ambient temperature. The maximum oxygen concentration observed was 95%, with the balance argon. At low demand flow rates and certain conditions of pressure and altitude, the argon enrichment factor exceeded that of oxygen giving a maximum argon concentration of 6.6% with the balance oxygen. The structural integrity of the unit was verified by vibration and centrifuge testing. The performance of the molecular sieve unit is discussed in the context of aircraft operating envelopes using both diluter-demand and 100% delivery subsystems. PMID:6774707

  9. On the thrust performance of a 2D flapping foil in a forward flight condition

    NASA Astrophysics Data System (ADS)

    Dash, Sunil Manohar; Lua, Kim Boon; Lim, Tee Tai

    2015-11-01

    Past studies have shown that the thrust performance of a 2D airfoil undergoing simple harmonic motion in both pitch and heave in a forward flight condition is dependent on maximum effective angle of attack (αo) and Strouhal number (ST) . For a given αo, it is found that the thrust coefficient (CT) increases with ST until it reaches a peak value at the critical Strouhal number (STc) ; beyond which CT deteriorates considerably. In order to extend STc and therefore increase the max.CT, the airfoil must oscillate at a higher αo. Further, it is found that, regardless of αo thrust degeneration is accompanied by cessation of the induced effective angle of attack profile (α(t)) to exhibit simple harmonic function of time. As to why non simple harmonic function of α(t) is detrimental to thrust generation is not fully understood. In an attempt to better understand this phenomenon, both numerical simulations and comparative experiments are performed on a 2D flapping elliptic foil at Re of 5000. Our results show that the proximity of the leading edge vortex from the previous stroke to the oscillating foil plays a crucial role in the thrust generation. Detailed results will be discussed in the presentation.

  10. The effects of moon illumination, moon angle, cloud cover, and sky glow on night vision goggle flight performance

    NASA Astrophysics Data System (ADS)

    Loro, Stephen Lee

    This study was designed to examine moon illumination, moon angle, cloud cover, sky glow, and Night Vision Goggle (NVG) flight performance to determine possible effects. The research was a causal-comparative design. The sample consisted of 194 Fort Rucker Initial Entry Rotary Wing NVG flight students being observed by 69 NVG Instructor Pilots. The students participated in NVG flight training from September 1992 through January 1993. Data were collected using a questionnaire. Observations were analyzed using a Kruskal-Wallis one-way analysis of variance and a Wilcox matched pairs signed-ranks test for difference. Correlations were analyzed using Pearson's r. The analyses results indicated that performance at high moon illumination levels is superior to zero moon illumination, and in most task maneuvers, superior to >0%--50% moon illumination. No differences were found in performance at moon illumination levels above 50%. Moon angle had no effect on night vision goggle flight performance. Cloud cover and sky glow have selective effects on different maneuvers. For most task maneuvers, cloud cover does not affect performance. Overcast cloud cover had a significant effect on seven of the 14 task maneuvers. Sky glow did not affect eight out of 14 task maneuvers at any level of sky glow.

  11. Lift vs. drag based mechanisms for vertical force production in the smallest flying insects.

    PubMed

    Jones, S K; Laurenza, R; Hedrick, T L; Griffith, B E; Miller, L A

    2015-11-01

    We used computational fluid dynamics to determine whether lift- or drag-based mechanisms generate the most vertical force in the flight of the smallest insects. These insects fly at Re on the order of 4-60 where viscous effects are significant. Detailed quantitative data on the wing kinematics of the smallest insects is not available, and as a result both drag- and lift-based strategies have been suggested as the mechanisms by which these insects stay aloft. We used the immersed boundary method to solve the fully-coupled fluid-structure interaction problem of a flexible wing immersed in a two-dimensional viscous fluid to compare three idealized hovering kinematics: a drag-based stroke in the vertical plane, a lift-based stroke in the horizontal plane, and a hybrid stroke on a tilted plane. Our results suggest that at higher Re, a lift-based strategy produces more vertical force than a drag-based strategy. At the Re pertinent to small insect hovering, however, there is little difference in performance between the two strategies. A drag-based mechanism of flight could produce more vertical force than a lift-based mechanism for insects at Re<5; however, we are unaware of active fliers at this scale. PMID:26300066

  12. Bumblebee calligraphy: the design and control of flight motifs in the learning and return flights of Bombus terrestris.

    PubMed

    Philippides, Andrew; de Ibarra, Natalie Hempel; Riabinina, Olena; Collett, Thomas S

    2013-03-15

    Many wasps and bees learn the position of their nest relative to nearby visual features during elaborate 'learning' flights that they perform on leaving the nest. Return flights to the nest are thought to be patterned so that insects can reach their nest by matching their current view to views of their surroundings stored during learning flights. To understand how ground-nesting bumblebees might implement such a matching process, we have video-recorded the bees' learning and return flights and analysed the similarities and differences between the principal motifs of their flights. Loops that take bees away from and bring them back towards the nest are common during learning flights and less so in return flights. Zigzags are more prominent on return flights. Both motifs tend to be nest based. Bees often both fly towards and face the nest in the middle of loops and at the turns of zigzags. Before and after flight direction and body orientation are aligned, the two diverge from each other so that the nest is held within the bees' fronto-lateral visual field while flight direction relative to the nest can fluctuate more widely. These and other parallels between loops and zigzags suggest that they are stable variations of an underlying pattern, which enable bees to store and reacquire similar nest-focused views during learning and return flights. PMID:23447668

  13. Uncontrolled Stability in Freely Flying Insects

    NASA Astrophysics Data System (ADS)

    Melfi, James, Jr.; Wang, Z. Jane

    2015-11-01

    One of the key flight modes of a flying insect is longitudinal flight, traveling along a localized two-dimensional plane from one location to another. Past work on this topic has shown that flying insects, unless stabilized by some external stimulus, are typically unstable to a well studied pitching instability. In our work, we examine this instability in a computational study to understand whether it is possible for either evolution or an aero-vehicle designer to stabilize longitudinal flight through changes to insect morphology, kinematics, or aerodynamic quantities. A quasi-steady wingbeat averaged flapping flight model is used to describe the insect. From this model, a number of non-dimensional parameters are identified. The effect of these parameters was then quantified using linear stability analysis, applied to various translational states of the insect. Based on our understanding of these parameters, we demonstrate how to find an intrinsically stable flapping flight sequence for a dragonfly-like flapping flier in an instantaneous flapping flight model.

  14. Effects of Fertilizer, Fungal Endophytes and Plant Cultivar on Performance of Insect Herbivores and Their Natural Enemies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. Endophytic fungi are associates of most species of plants and may modify insect community structures through the production of toxic alkaloids. Fertilization is known to increase food plant quality for herbivores, but it is also conceivable that additional nitrogen could increase the productio...

  15. Insect Wing Displacement Measurement Using Digital Holography

    SciTech Connect

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-04-15

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement.

  16. Avionics performance analysis: A historical review and a current assessment of flight instrumentation and control systems in civil aviation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The role of flight instrumentation and control systems in the advancement of civil aviation to the safest form of commercial transportation is discussed. Safety, cost reduction, and increased capabilities provided by recent developments are emphasized. Cost/performance considerations are considered in terms of determining the relative values of comparable systems or the absolute worth of a system.

  17. Flight performance of the TCV B-737 airplane at Jorge Newberry Airport, Buenos Aires, Argentina using TRSB/MLS guidance

    NASA Technical Reports Server (NTRS)

    White, W. F.; Clark, L.

    1980-01-01

    The flight performance of the Terminal Configured Vehicle airplane is summarized. Demonstration automatic approaches and landings utilizing time reference scanning beam microwave landing system (TRSB/MLS) guidance are presented. The TRSB/MLS was shown to provide the terminal area guidance necessary for flying curved automatic approaches with final legs as short as 2 km.

  18. Examining the Pilot and Controller Performance Data When in a Free Flight with Weather Phenomenon

    NASA Technical Reports Server (NTRS)

    Nituen, Celestine A.; Lozito, Sandra C. (Technical Monitor)

    2002-01-01

    The present study investigated effects of weather related factors on the performance of pilots under free flight. A weather scenario was defined by a combination of precipitation factors (light rain, moderate rain, and heavy rain or snow), visibility (1,4,8 miles), wind conditions (light, medium, or heavy), cloud ceiling (800ft. below, 1800ft above, and 4000ft horizontal). The performance of the aircraft self-separation was evaluated in terms of detection accuracy and detection times for student- and commercial (expert) pilots. Overall, the results obtained from a behavioral analysis showed that in general, the ability to recognize intruder aircraft conflict incidents, followed by the ability to acquire the spatial location of the intruder aircraft relative to ownership aircraft were judged to be the major cognitive tasks as perceived by the participants during self-separation. Further, the participants rarely used cockpit display of traffic information (CDTI) during conflict management related to aircraft separation, but used CDTI highly during decision-making tasks. In all weather scenarios, there were remarkable differences between expert and student pilots in detection times. In summary, weather scenarios were observed to affect intruder aircraft detection performance accuracies. There was interaction effects between weather Scenario-1 and Scenario-2 for climbing task data generated by both expert- and student- pilots at high traffic density. Scenario-3 weather condition provided an opportunity for poor detection accuracy as well as detection time increase. This may be attributed to low visibility. The intruder aircraft detection times were not affected by the weather conditions during climbing and descending tasks. The decision of pilots to fly into certain weather condition was dependent in part on the warning distance to the location of the weather. When pilots were warned of the weather conditions, they were more likely to fly their aircraft into it, but

  19. Post-Flight EDL Entry Guidance Performance of the 2011 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Mendeck, Gavin F.; McGrew, Lynn Craig

    2012-01-01

    The 2011 Mars Science Laboratory was the first successful Mars mission to attempt a guided entry which safely delivered the rover to a final position approximately 2 km from its target within a touchdown ellipse of 19.1 km x 6.9 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range error while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Key dispersions driving deploy ellipse and altitude performance are identified. Performance sensitivities including attitude initialization error and the velocity of transition from range control to heading alignment are presented. Just prior to the entry and landing of MSL in August 2012, the EDL team examined minute tuning of the reference trajectory for the selected landing site, analyzed whether adjustment of bank reversal deadbands were necessary, the heading alignment velocity trigger was in union with other parameters to balance the EDL risks, and the vertical L/D command limits. This paper details a preliminary postflight assessment of the telemetry and trajectory reconstruction that is being performed, and updates the information presented in the former paper Entry Guidance for the 2011 Mars Science Laboratory Mission (AIAA Atmospheric Flight Mechanics Conference; 8-11 Aug. 2011; Portland, OR; United States)

  20. Pre-Flight Testing and Performance of a Ka-Band Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Reinhart, Richard C.; Kacpura, Thomas

    2012-01-01

    National Aeronautics and Space Administration (NASA) has developed a space-qualified, reprogrammable, Ka-band Software Defined Radio (SDR) to be utilized as part of an on-orbit, reconfigurable testbed. The testbed will operate on the truss of the International Space Station beginning in late 2012. Three unique SDRs comprise the testbed, and each radio is compliant to the Space Telecommunications Radio System (STRS) Architecture Standard. The testbed provides NASA, industry, other Government agencies, and academic partners the opportunity to develop communications, navigation, and networking applications in the laboratory and space environment, while at the same time advancing SDR technology, reducing risk, and enabling future mission capability. Designed and built by Harris Corporation, the Ka-band SDR is NASA's first space-qualified Ka-band SDR transceiver. The Harris SDR will also mark the first NASA user of the Ka-band capabilities of the Tracking Data and Relay Satellite System (TDRSS) for on-orbit operations. This paper describes the testbed's Ka-band System, including the SDR, travelling wave tube amplifier (TWTA), and antenna system. The reconfigurable aspects of the system enabled by SDR technology are discussed and the Ka-band system performance is presented as measured during extensive pre-flight testing.

  1. The SWAP EUV Imaging Telescope. Part II: In-flight Performance and Calibration

    NASA Astrophysics Data System (ADS)

    Halain, J.-P.; Berghmans, D.; Seaton, D. B.; Nicula, B.; De Groof, A.; Mierla, M.; Mazzoli, A.; Defise, J.-M.; Rochus, P.

    2013-08-01

    The Sun Watcher with Active Pixel System detector and Image Processing (SWAP) telescope was launched on 2 November 2009 onboard the ESA PROBA2 technological mission and has acquired images of the solar corona every one to two minutes for more than two years. The most important technological developments included in SWAP are a radiation-resistant CMOS-APS detector and a novel onboard data-prioritization scheme. Although such detectors have been used previously in space, they have never been used for long-term scientific observations on orbit. Thus SWAP requires a careful calibration to guarantee the science return of the instrument. Since launch we have regularly monitored the evolution of SWAP's detector response in-flight to characterize both its performance and degradation over the course of the mission. These measurements are also used to reduce detector noise in calibrated images (by subtracting dark-current). Because accurate measurements of detector dark-current require large telescope off-points, we also monitored straylight levels in the instrument to ensure that these calibration measurements are not contaminated by residual signal from the Sun. Here we present the results of these tests and examine the variation of instrumental response and noise as a function of both time and temperature throughout the mission.

  2. Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas K.; Patterson, Michael D.; Viken, Jeffrey K.; Moore, Mark D.; Clarke, Sean; Redifer, Matthew E.; Christie, Robert J.; Stoll, Alex M.; Dubois, Arthur; Bevirt, JoeBen; Gibson, Andrew R.; Foster, Trevor J.; Osterkamp, Philip G.

    2016-01-01

    Distributed Electric Propulsion (DEP) technology uses multiple propulsors driven by electric motors distributed about the airframe to yield beneficial aerodynamic-propulsion interaction. The NASA SCEPTOR flight demonstration project will retrofit an existing internal combustion engine-powered light aircraft with two types of DEP: small "high-lift" propellers distributed along the leading edge of the wing which accelerate the flow over the wing at low speeds, and larger cruise propellers co-located with each wingtip for primary propulsive power. The updated high-lift system enables a 2.5x reduction in wing area as compared to the original aircraft, reducing drag at cruise and shifting the velocity for maximum lift-to-drag ratio to a higher speed, while maintaining low-speed performance. The wingtip-mounted cruise propellers interact with the wingtip vortex, enabling a further efficiency increase that can reduce propulsive power by 10%. A tradespace exploration approach is developed that enables rapid identification of salient trades, and subsequent creation of SCEPTOR demonstrator geometries. These candidates were scrutinized by subject matter experts to identify design preferences that were not modeled during configuration exploration. This exploration and design approach is used to create an aircraft that consumes an estimated 4.8x less energy at the selected cruise point when compared to the original aircraft.

  3. The Huygens surface science package (SSP): Flight performance review and lessons learned

    NASA Astrophysics Data System (ADS)

    Leese, M. R.; Lorenz, R. D.; Hathi, B.; Zarnecki, J. C.

    2012-09-01

    The Surface Science Package (SSP) was one of six instruments flown onboard the Huygens probe to Titan, the largest moon of Saturn, in the framework of the NASA/ESA/ASI Cassini-Huygens mission (Matson et al., 2002). The SSP operated throughout the probe's descent and after landing on Titan on 14th January 2005. This paper reviews scientific results from the Surface Science Package, and also reports previously unpublished flight data which illustrate the performance of the measurement systems in the Titan environment. This review provides some lessons learned that may be useful for further detailed analysis of the Huygens mission data, and for payloads for future missions to Titan, in which there has been recent interest (e.g., the Titan Saturn System Mission (TSSM) (Joint TSSM Science Definition Team, 2009), TANDEM (Coustenis et al., 2009) or the Titan Mare Explorer (TiME) Discovery-class proposal (Stofan et al., 2010)), as well as for planetary probe missions more generally.

  4. In-flight Far-Infrared Performance of the CIRS Instrument on Cassini

    NASA Technical Reports Server (NTRS)

    Nixon, Conor A.; Brasunas, John C.; Lakew, Brook; Fettig, Rainer; Jennings, Donald E.; Carlson, Ronald; Kunde, Virgil G.

    2004-01-01

    The Composite Infrared Spectrometer (CIRS) on-board Cassini consists of two interferometers: a conventional Michelson for the mid-infrared; and a Martin-Puplett type in the far-infrared employing wire grid polarizers to split, recombine and analyze the radiation. The far-IR focal plane (FP1) assembly uses two thermopile detectors to measure the final transmitted and reflected beams at the polarizer-analyzer: if one fails, the interferometer can still operate, albeit with a lower efficiency. The combined effect is for good response from 10 to 300/cm, and declining response to 600/cm. This paper will examine in-flight performance of the far-IR interferometer, including NESR and response. Regular noise spikes, resulting from pickup from other electrical sub-systems has been found on the CIRS interferograms, and the removal of these effects is discussed. The radiometric calibration is described, and then we show how the calibration was applied to science data taken during the Jupiter flyby of December 2000. Finally, we discuss signal-to-noise on the calibrated spectra, emphasizing limitations of the current instrument and the potential for improvement in future missions.

  5. DC-9 Flight Demonstration Program with Refanned JT8D Engines. Volume 3; Performance and Analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The JT8D-109 engine has a sea level static, standard day bare engine takeoff thrust of 73,840 N. At sea level standard day conditions the additional thrust of the JT8D-109 results in 2,040 kg additional takeoff gross weight capability for a given field length. Range loss of the DC-9 Refan airplane for long range cruise was determined. The Refan airplane demonstrated stall, static longitudinal stability, longitudinal control, longitudinal trim, minimum control speeds, and directional control characteristics similar to the DC-9-30 production airplane and complied with airworthiness requirements. Cruise, climb, and thrust reverser performance were evaluated. Structural and dynamic ground test, flight test and analytical results substantiate Refan Program requirements that the nacelle, thrust reverser hardware, and the airplane structural modifications are flightworthy and certifiable and that the airplane meets flutter speed margins. Estimated unit cost of a DC-9 Refan retrofit program is 1.338 million in mid-1975 dollars with about an equal split in cost between airframe and engine.

  6. Pre-Flight Calibration Results for the Space Telescope Imaging Spectrograph, III. Optical Performance

    NASA Astrophysics Data System (ADS)

    Bowers, C.; Gull, T.; Kimble, R.; Woodgate, B.; Kaiser, M.; Hartig, G.; Valenti, J.; Hood, D.; Sullivan, J.; Standley, C.; Beck, T.; Plait, P.; Sandoval, J.

    1996-12-01

    The Space Telescope Imaging Spectrograph (STIS) is a versatile, multi-purpose instrument which operates from the ultraviolet to near infrared (115-1000nm) aboard the Hubble Space Telescope (HST). An internal, two mirror relay system replaces COSTAR correcting the spherical aberration and astigmatism present at the STIS field position, about 6 arcminutes from the HST field center. The various STIS modes permit low and medium spectroscopy throughout the spectral range and over the 25 arc-second ultraviolet and 52 arcsecond visible fields. High resolution (30-100,000) echelle spectroscopy capability is provided in the ultraviolet (115-310nm). Broad band imaging is also possible over the complete spectral range and fields and a small selection of narrow and passband filters is available. A wide selection of slits and apertures permits various resolution and spatial scales to be selected in all modes. Coronagraphic stops are provided to permit observations in the visible (310 - 1000nm). On board calibration lamps permit wavelength calibration and flat fields to be obtained. Pre-flight calibration of STIS has been completed. We summarize the optical performance of STIS including measured resolution, scattering and encircled energy characterization in this paper.

  7. The Kaguya gamma-ray spectrometer: instrumentation and in-flight performances

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Hasebe, N.; Miyachi, T.; Fujii, M.; Shibamura, E.; Okudaira, O.; Karouji, Y.; Hareyama, M.; Takashima, T.; Kobayashi, S.; d'Uston, C.; Maurice, S.; Yamashita, N.; Reedy, Robert C.

    2013-04-01

    A Gamma-Ray Spectrometer (GRS) had been developed as a part of the science payload for the first Japanese lunar explorer, Kaguya. The Kaguya was successfully launched from Tanegashima Space Center on September 14, 2007 and was injected into an orbit around the Moon and the mission ended on June 11, 2009. The Kaguya GRS (hereafter KGRS) has a large-volume Ge semiconductor detector of 252 cc as the main detector and bismuth-germanate and plastic scintillators as an active shielding. The Ge detector achieved an energy resolution of 3.0 keV (FWHM) for 1332 keV gamma ray in ground test despite the use of a mechanical cryocooler and observed gamma rays in energies ranging 0.2 to 12 MeV in lunar orbit. It was the first use of a Ge detector for lunar exploration. During the mission, KGRS participated in geochemical survey and investigated the elemental compositions of subsurface materials of the Moon. In this paper, we summarize the overview of the KGRS describing the design and in-flight performance of the instrument. This paper provides basic information required for reading science articles regarding the KGRS's observation data.

  8. Operation and performance of the Ciba-Corning 512 coagulation monitor during parabolic flight

    NASA Technical Reports Server (NTRS)

    Gocke, Robyn; Lloyd, Charles W.; Greenthaner, Nancy K.

    1991-01-01

    The goal was to assess the functionality and evaluate the procedures and operations required to operate the Ciba-Corning 512 Coagulation Monitor during parabolic flight. This monitor determines the clotting characteristics of blood. The analyzer operates by laser detection of the cessation of blood flow in a capillary channel within a test cartridge. Test simulator results were excellent for both pre-and post-flight. In-flight results were not obtained due to the warm-up time required for the simulator. Since this is an electronic function only, the expected results on the simulator would be the same in zero-g.

  9. Flight Performance Handbook for Orbital Operations: Orbital Mechanics and Astrodynamics Formulae, Theorems, Techniques, and Applications

    NASA Technical Reports Server (NTRS)

    Ambrosio, Alphonso; Blitzer, Leon; Conte, S.D.; Cooper, Donald H.; Dergarabedian, P.; Dethlefsen, D.G.; Lunn, Richard L.; Ireland, Richard O.; Jensen, Arnold A.; Kang, Garfield; Levy, Ezra C.; Liu, Anthony; Marcus, Silvia R.; Mickelwait, A.B.; Moe, Kenneth; Moe, Mildred M.; Pitton, A.R.; Scheuer, Ernest M.; Tompkins, E.H.; Weiser, Peter B.; Whitford, R.K.; Wolverton, R.W.

    1961-01-01

    This handbook provides parametric data useful both to the space vehicle designer and mission analyst. It provides numerical and analytical relationships between missions and gross vehicle characteristics as a function of performance parameters. The effects of missile constraints and gross guidance limitations plus operational constraints such as launch site location, tracking net location, orbit visibility and mission on trajectory and orbit design parameters are exhibited. The influence of state-of- the-art applications of solar power as compared to future applications of nuclear power on orbit design parameters, such as eclipse time, are among the parameters included in the study. The principal aim, however, is in providing the analyst with useful parametric design information to cover the general area of earth satellite missions in the region of near-earth to cislunar space and beyond and from injection to atmospheric entry and controlled descent. The chapters are organized around the central idea of orbital operations in the 1961-1969 era with emphasis on parametric flight mechanics studies for ascent phase and parking orbits, transfer maneuvers, rendezvous maneuver, operational orbit considerations, and operational orbit control. The results are based almost entirely on the principles of flight and celestial mechanics. Numerous practical examples have been worked out in detail. This is especially important where it has been difficult or impossible to represent all possible variations of the parameters. The handbook contains analytical formulae and sufficient textual material to permit their proper use. The analytic methods consist of both exact and rapid, approximate methods. Scores of tables, working graphs and illustrations amplify the mathematical models which, together with important facts and data, cover the engineering and scientific applications of orbital mechanics. Each of the five major chapters are arranged to provide a rapid review of an entire

  10. Overview of crew member energy expenditure during Shuttle Flight 61-8 EASE/ACCESS task performance

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.; Waligora, J. W.; Stanford, J.; Edwards, B. F.

    1987-01-01

    The energy expenditure of the Shuttle Flight 61-B crewmembers during the extravehicular performance of Experimental Assembly of Structures in EVA (EASE) and Assembly Concept of Construction of Space Structures (ACCESS) construction system tasks are reported. These data consist of metabolic rate time profiles correlated with specific EASE and ACCESS tasks and crew comments. Average extravehicular activity metabolic rates are computed and compared with those reported from previous Apollo, Shylab, and Shuttle flights. These data reflect total energy expenditure and not that of individual muscle groups such as hand and forearm. When correlated with specific EVA tasks and subtasks, the metabolic profile data is expected to be useful in planning future EVA protocols. For example, after experiencing high work rates and apparent overheating during some Gemini EVAs, it was found useful to carefully monitor work rates in subsequent flights to assess the adequacy of cooling garments and as an aid to preplanning EVA procedures. This presentation is represented by graphs and charts.

  11. A flight investigation of performance and loads for a helicopter with 10-64C main rotor blade sections

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K.; Tomaine, R. L.; Stevens, D. D.

    1980-01-01

    A flight investigation produced data on performance and rotor loads for a teetering rotor, AH-1G helicopter flown with a main rotor that had the NLR-1T airfoil as the blade section contour. The test envelope included hover, forward flight speeds from 34 to 83 m/sec (65 to 162 knots), and collective fixed maneuvers at about 0.25 tip speed ratio. The data set for each test point describes vehicle flight state, control positions, rotor loads, power requirements, and blade motions. Rotor loads are reviewed primarily in terms of peak to peak and harmonic content. Lower frequency components predominated for most loads and generally increased with increased airspeed, but not necessarily with increased maneuver load factor. Detailed data for an advanced airfoil on an AH-1G are presented.

  12. Wind tunnel performance results of an aeroelastically scaled 2/9 model of the PTA flight test prop-fan

    NASA Technical Reports Server (NTRS)

    Stefko, George L.; Rose, Gayle E.; Podboy, Gary G.

    1987-01-01

    High speed wind tunnel aerodynamic performance tests of the SR-7A advanced prop-fan have been completed in support of the Prop-Fan Test Assessment (PTA) flight test program. The test showed that the SR-7A model performed aerodynamically very well. At the cruise design condition, the SR-7A prop fan had a high measured net efficiency of 79.3 percent.

  13. Flight performance, energetics and water turnover of tippler pigeons with a harness and dorsal load

    USGS Publications Warehouse

    Gessaman, J.A.; Workman, G.W.; Fuller, M.R.

    1991-01-01

    We measured carbon dioxide production and water efflux of 12 tippler pigeons (Columba spp.) during seven experimental flights using the doubly labeled water (DLW) method. Prior to the experiment birds were randomly assigned to one of two groups. One group flew as controls (no load or harness) on all seven flights. The other group wore a harness on two flights, a dorsal load/harness package (weighing about 5% of a bird's mass) on two flights, and they were without a load in three flights. Flight duration of pigeons with only a harness and with a dorsal load/harness package was 21 and 26% less, respectively, than the controls. Pigeons wearing a harness, or wearing a dorsal load/harness package lost water 50-90%, and 57-100% faster, respectively, than control pigeons. The mean CO2 production of pigeons wearing a harness or a load/harness package was not significantly different than pigeons without a harness or load. The small sample sizes and large variability in DLW measuremets precluded a good test of the energetic cost of flying with a harness and dorsal load.

  14. Insects: A nutritional alternative

    NASA Technical Reports Server (NTRS)

    Dufour, P. A.

    1981-01-01

    Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed.

  15. Team Performance and Error Management in Chinese and American Simulated Flight Crews: The Role of Cultural and Individual Differences

    NASA Technical Reports Server (NTRS)

    Davis, Donald D.; Bryant, Janet L.; Tedrow, Lara; Liu, Ying; Selgrade, Katherine A.; Downey, Heather J.

    2005-01-01

    This report describes results of a study conducted for NASA-Langley Research Center. This study is part of a program of research conducted for NASA-LARC that has focused on identifying the influence of national culture on the performance of flight crews. We first reviewed the literature devoted to models of teamwork and team performance, crew resource management, error management, and cross-cultural psychology. Davis (1999) reported the results of this review and presented a model that depicted how national culture could influence teamwork and performance in flight crews. The second study in this research program examined accident investigations of foreign airlines in the United States conducted by the National Transportation Safety Board (NTSB). The ability of cross-cultural values to explain national differences in flight outcomes was examined. Cultural values were found to covary in a predicted way with national differences, but the absence of necessary data in the NTSB reports and limitations in the research method that was used prevented a clear understanding of the causal impact of cultural values. Moreover, individual differences such as personality traits were not examined in this study. Davis and Kuang (2001) report results of this second study. The research summarized in the current report extends this previous research by directly assessing cultural and individual differences among students from the United States and China who were trained to fly in a flight simulator using desktop computer workstations. The research design used in this study allowed delineation of the impact of national origin, cultural values, personality traits, cognitive style, shared mental model, and task workload on teamwork, error management and flight outcomes. We briefly review the literature that documents the importance of teamwork and error management and its impact on flight crew performance. We next examine teamwork and crew resource management training designed to improve

  16. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  17. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight

    PubMed Central

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-01-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486

  18. The CoRoT satellite in flight: description and performance

    NASA Astrophysics Data System (ADS)

    Auvergne, M.; Bodin, P.; Boisnard, L.; Buey, J.-T.; Chaintreuil, S.; Epstein, G.; Jouret, M.; Lam-Trong, T.; Levacher, P.; Magnan, A.; Perez, R.; Plasson, P.; Plesseria, J.; Peter, G.; Steller, M.; Tiphène, D.; Baglin, A.; Agogué, P.; Appourchaux, T.; Barbet, D.; Beaufort, T.; Bellenger, R.; Berlin, R.; Bernardi, P.; Blouin, D.; Boumier, P.; Bonneau, F.; Briet, R.; Butler, B.; Cautain, R.; Chiavassa, F.; Costes, V.; Cuvilho, J.; Cunha-Parro, V.; de Oliveira Fialho, F.; Decaudin, M.; Defise, J.-M.; Djalal, S.; Docclo, A.; Drummond, R.; Dupuis, O.; Exil, G.; Fauré, C.; Gaboriaud, A.; Gamet, P.; Gavalda, P.; Grolleau, E.; Gueguen, L.; Guivarc'h, V.; Guterman, P.; Hasiba, J.; Huntzinger, G.; Hustaix, H.; Imbert, C.; Jeanville, G.; Johlander, B.; Jorda, L.; Journoud, P.; Karioty, F.; Kerjean, L.; Lafond, L.; Lapeyrere, V.; Landiech, P.; Larqué, T.; Laudet, P.; Le Merrer, J.; Leporati, L.; Leruyet, B.; Levieuge, B.; Llebaria, A.; Martin, L.; Mazy, E.; Mesnager, J.-M.; Michel, J.-P.; Moalic, J.-P.; Monjoin, W.; Naudet, D.; Neukirchner, S.; Nguyen-Kim, K.; Ollivier, M.; Orcesi, J.-L.; Ottacher, H.; Oulali, A.; Parisot, J.; Perruchot, S.; Piacentino, A.; Pinheiro da Silva, L.; Platzer, J.; Pontet, B.; Pradines, A.; Quentin, C.; Rohbeck, U.; Rolland, G.; Rollenhagen, F.; Romagnan, R.; Russ, N.; Samadi, R.; Schmidt, R.; Schwartz, N.; Sebbag, I.; Smit, H.; Sunter, W.; Tello, M.; Toulouse, P.; Ulmer, B.; Vandermarcq, O.; Vergnault, E.; Wallner, R.; Waultier, G.; Zanatta, P.

    2009-10-01

    Context: CoRoT is a space telescope dedicated to stellar seismology and the search for extrasolar planets. The mission is led by the CNES in association with French laboratories and has a large international participation. The European Space Agency (ESA), Austria, Belgium, and Germany contribute to the payload, and Spain and Brazil contribute to the ground segment. Development of the spacecraft, which is based on a PROTEUS low earth orbit (LEO) recurrent platform, commenced in October 2000, and the satellite was launched on December 27, 2006. Aims: The instrument and platform characteristics prior to launch have been described in ESA publication (SP-1306). In the present paper we explain the behaviour in flight, based on raw and corrected data. Methods: Five runs have been completed since January 2007. The data used here are essentially those acquired during the commissioning phase and from a long run that lasted 146 days. These enable us to give a complete overview of the instrument and platform behaviour for all environmental conditions. The ground based data processing is not described in detail because the most important method has been published elsewhere. Results: We show that the performance specifications are easily satisfied when the environmental conditions are favourable. Most of the perturbations, hence data corrections, are related to LEO perturbations: high energy particles inside the South Atlantic Anomaly (SAA), eclipses and temperature variations, and line of sight fluctuations due to the attitude control system. Straylight due to the reflected light from the earth, which is controlled by the telescope and baffle design, appears to be negligible. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with contributions from Austria, Belgium, Brazil, ESA, Germany and Spain. Four French laboratories associated with the CNRS (LESIA, LAM, IAS, OMP) collaborate with CNES on the satellite development. The

  19. Insect evolution.

    PubMed

    Engel, Michael S

    2015-10-01

    It goes without saying that insects epitomize diversity, and with over a million documented species they stand out as one of the most remarkable lineages in the 3.5-billion-year history of life on earth (Figure 1). This reality is passé to even the layperson and is taken for granted in the same way none of us think much of our breathing as we go about our day, and yet insects are just as vital to our existence. Insects are simultaneously familiar and foreign to us, and while a small fraction are beloved or reviled, most are simply ignored. These inexorable evolutionary overachievers outnumber us all, their segmented body plan is remarkably labile, they combine a capacity for high rates of speciation with low levels of natural extinction, and their history of successes eclipses those of the more familiar ages of dinosaurs and mammals alike. It is their evolution - persisting over vast expanses of geological time and inextricably implicated in the diversification of other lineages - that stands as one of the most expansive subjects in biology. PMID:26439349

  20. Flight performance energetics and water turnovers of Tippler Pigeons with a harness and doorsal load

    USGS Publications Warehouse

    Gessaman, James A.; Workman, Gar W.; Fuller, Mark R.

    1991-01-01

    We measured carbon dioxide production and water efflux of 12 tippler pigeons (Columba spp.) during seven experimental flights using the doubly labeled water (DLW) method. Prior to the experiment birds were randomly assigned to one of two groups. One group flew as controls (no load or harness) on all seven flights. The other group wore a harness on two flights, a dorsal load/harness package (weighing about 5% of a birda??s mass) on two flights, and they were without a load in three flights. Plight duration of pigeons with only a harness and with a dorsal load/harness package was 21 and 26% less, respectively, than the controls. Pigeons wearing a harness, or wearing a dorsal load/harness package lost water 50-90%, and 57-100% faster, respectively, than control pigeons. The mean CO, production of pigeons wearing a harness or a load/harness package was not significantly different than pigeons without a harness or load. The small sample sizes and large variability in DLW measurements precluded a good test of the energetic cost of flying with a harness and dorsal load.

  1. A Full Mission Simulator Study of Aircrew Performances: the Measurement of Crew Coordination and Decisionmaking Factors and Their Relationships to Flight Task Performances

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Tanner, T. A.; Frankel, R. M.; Goguen, J. A.; Linde, C.

    1984-01-01

    Sixteen three man crews flew a full mission scenario in an airline flight simulator. A high level of verbal interaction during instances of critical decision making was located. Each crew flew the scenario only once, without prior knowledge of the scenario problem. Following a simulator run and in accord with formal instructions, each of the three crew members independently viewed and commented on a videotape of their performance. Two check pilot observers rated pilot performance across all crews and, following each run, also commented on the video tape of the crew's performance. A linguistic analysis of voice transcript is made to provide assessment of crew coordination and decision making qualities. Measures of crew coordination and decision making factors are correlated with flight task performance measures.

  2. Do Offspring of Insects Feeding on Defoliation-Resistant Trees Have Better Biological Performance When Exposed to Nutritionally-Imbalanced Food?

    PubMed

    Quezada-Garcia, Roberto; Fuentealba, Alvaro; Nguyen, Ngoc; Bauce, Éric

    2015-01-01

    White spruce (Picea glauca (Moench) Voss) trees that are resistant or susceptible to spruce budworm (Choristoneura fumiferana (Clem.)) attack were identified in a southern Quebec plantation. Due to high mortality-induced selective pressures imposed by resistant trees on spruce budworm larvae, insects that survive on resistant trees exhibited greater biological performance than those on susceptible trees. We tested the hypothesis that this better biological performance is maintained across generations when progeny were subjected to nutritional stress. We collected pupae from resistant and susceptible trees (phenotype). Adults were reared under controlled laboratory conditions. Progeny were subsequently reared on two types of artificial diet (high vs. low quality). Low quality diet simulated food quality deterioration during outbreak conditions. Results confirmed that surviving insects collected from resistant trees have better performance than those from susceptible trees. Offspring performance (pupal mass, developmental time) was affected only by diet quality. These results suggest that adaptive advantages that would be acquired from parents fed on resistant trees are lost when progeny are exposed to nutritionally-imbalanced food, but the effects persist when larvae are fed a balanced diet. Offspring mortality, fecundity and fertility were positively influenced by parental origin (tree phenotype). PMID:26463069

  3. Flight Crew Workload, Acceptability, and Performance When Using Data Comm in a High-Density Terminal Area Simulation

    NASA Technical Reports Server (NTRS)

    Norman, R. Michael; Baxley, Brian T.; Adams, Cathy A.; Ellis, Kyle K. E.; Latorella, Kara A.; Comstock, James R., Jr.

    2013-01-01

    This document describes a collaborative FAA/NASA experiment using 22 commercial airline pilots to determine the effect of using Data Comm to issue messages during busy, terminal area operations. Four conditions were defined that span current day to future flight deck equipage: Voice communication only, Data Comm only, Data Comm with Moving Map Display, and Data Comm with Moving Map displaying taxi route. Each condition was used in an arrival and a departure scenario at Boston Logan Airport. Of particular interest was the flight crew response to D-TAXI, the use of Data Comm by Air Traffic Control (ATC) to send taxi instructions. Quantitative data was collected on subject reaction time, flight technical error, operational errors, and eye tracking information. Questionnaires collected subjective feedback on workload, situation awareness, and acceptability to the flight crew for using Data Comm in a busy terminal area. Results showed that 95% of the Data Comm messages were responded to by the flight crew within one minute and 97% of the messages within two minutes. However, post experiment debrief comments revealed almost unanimous consensus that two minutes was a reasonable expectation for crew response. Flight crews reported that Expected D-TAXI messages were useful, and employment of these messages acceptable at all altitude bands evaluated during arrival scenarios. Results also indicate that the use of Data Comm for all evaluated message types in the terminal area was acceptable during surface operations, and during arrivals at any altitude above the Final Approach Fix, in terms of response time, workload, situation awareness, and flight technical performance. The flight crew reported the use of Data Comm as implemented in this experiment as unacceptable in two instances: in clearances to cross an active runway, and D-TAXI messages between the Final Approach Fix and 80 knots during landing roll. Critical cockpit tasks and the urgency of out-the window scan made the

  4. Lockheed L-1011 Test Station on-board in support of the Adaptive Performance Optimization flight res

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This console and its compliment of computers, monitors and commmunications equipment make up the Research Engineering Test Station, the nerve center for a new aerodynamics experiment being conducted by NASA's Dryden Flight Research Center, Edwards, California. The equipment is installed on a modified Lockheed L-1011 Tristar jetliner operated by Orbital Sciences Corp., of Dulles, Va., for Dryden's Adaptive Performance Optimization project. The experiment seeks to improve the efficiency of long-range jetliners by using small movements of the ailerons to improve the aerodynamics of the wing at cruise conditions. About a dozen research flights in the Adaptive Performance Optimization project are planned over the next two to three years. Improving the aerodynamic efficiency should result in equivalent reductions in fuel usage and costs for airlines operating large, wide-bodied jetliners.

  5. Analytical investigation of ram-jet-engine performance in flight Mach number range from 3 to 7

    NASA Technical Reports Server (NTRS)

    Evans, Philip J , Jr

    1951-01-01

    An analytical investigation was made of the performance of isolated ram-jet engines in the flight Mach number range from 3 to 7 for two types of diffuser, a high-efficiency diffuser, and a normal-shock diffuser. The fuel was assumed to be a hydrocarbon similar to gasoline. The conclusions reached are: (1) a design altitude of about 100,000 feet is desirable for a high-efficiency high Mach number ram jet on the basis of engine construction and performance; and (2) although greater thrust could be obtained with other fuels, gasoline provides sufficient energy release for maximum engine efficiency in the flight Mach number range investigated. The maximum engine efficiency calculated was 0.47, which occurred at a Mach number of 5. At a Mach number of 7, the maximum propulsive-thrust coefficient was 0.57.

  6. Insect abatement system

    NASA Technical Reports Server (NTRS)

    Spiro, Clifford Lawrence (Inventor); Burnell, Timothy Brydon (Inventor); Wengrovius, Jeffrey Hayward (Inventor)

    1997-01-01

    An insect abatement system prevents adhesion of insect debris to surfaces which must be kept substantially free of insect debris. An article is coated with an insect abatement coating comprising polyorganosiloxane with a Shore A hardness of less than 50 and a tensile strength of less than 4 MPa. A method for preventing the adhesion of insect debris to surfaces includes the step of applying an insect abatement coating to a surface which must be kept substantially free of insect debris.

  7. Design and performance of an atmospheric pressure sampling interface for ion-trap/time-of-flight mass spectrometry

    SciTech Connect

    Setz, Patrick D.; Schmitz, Thomas A.; Zenobi, Renato

    2006-02-15

    An ion-trap/time-of-flight mass spectrometer in combination with an atmospheric pressure sampling interface was developed in order to simultaneously profit from the ease of sample handling at ambient pressure, from the storage and accumulation capabilities of an ion trap, and from the acquisition speed and sensitivity of a time-of-flight mass spectrometer. The sampling interface is an intermediate-pressure vacuum manifold that serves to enrich sampled analytes by jet separation with respect to the carrier gas (air) and simultaneously maintain vacuum conditions inside the ion-trap/time-of-flight instrument. Neutral analyte molecules are sampled and later ionized either by electron impact or chemical ionization. Ion accumulation is performed with a rf-only quadrupole ion trap with ground potential on the end caps during storage. For mass analysis, the trap's electrodes serve as a pulsed ion source for the attached linear time-of-flight mass spectrometer. In addition, laser desorbed molecules can also be sampled with this kind of instrument. Successful operation is shown by analyzing volatile substances (aniline, bromobenzene, styrene, and perfluorotributylamine), as well as laser-desorbed organic solids. Figures of merit include a sensitivity of 10 ppm, resolving power of 300 and demonstration of a mass spectrum of laser-desorbed anthracene with a signal-to-noise ratio of 270.

  8. Performance of the Components of the XJ34-WE-32 Turbojet Engine over a Range of Engine and Flight Conditions

    NASA Technical Reports Server (NTRS)

    Mcaulay, John E; Sobolewski, Adam E; Smith, Ivan D

    1952-01-01

    Performance of the compressor, combustor, and turbine operating as integral parts of the XJ34-WE-32 turbojet engine was determined in the Lewis altitude wind tunnel over a range of altitudes from 5000 to 55,000 feet and flight Mach numbers from 0.28 to 1.05. Data were obtained for each of four exhaust-nozzle areas and are presented in graphical and tabular form.

  9. Lessons from dragonfly flight

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane

    2005-11-01

    I will describe two lessons we learned from analyzing dragonfly flight using computers and table-top experiments. Part I: The role of drag in insect flight. Airplanes and helicopters are airborne via aerodynamic lift, not drag. However, it is not a priori clear that insects use only lift to fly. We find that dragonfly uses mainly drag to hover, which explains an anomalous factor of four in previous estimates of dragonfly lift coefficients, where drag was assumed to be negligible. Moreover, we show that the use of drag for flight is efficient at insect size. This suggests a re-consideration of the hovering efficiency of flapping flight, which is no longer described by the lift to drag ratio. Part II. Fore-hind wing interaction in dragonfly flight. A distinctive feature of dragonflies is their use of two pairs of wings which are driven by separate direct muscles. Dragonflies can actively modulate the phase delay between fore-hind wings during different maneuver. We compute the Navier-Stokes equation around two wings following the motion measured from our tethered dragonfly experiments, and find an explanation of the advantage of counter-stroking during hovering.

  10. Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles

    PubMed Central

    Ristroph, Leif; Bergou, Attila J.; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J.; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai

    2010-01-01

    Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial “stumble,” and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2° in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly’s ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances. PMID:20194789

  11. Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.

    PubMed

    Ristroph, Leif; Bergou, Attila J; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J; Guckenheimer, John; Wang, Z Jane; Cohen, Itai

    2010-03-16

    Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial "stumble," and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2 degrees in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly's ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances. PMID:20194789

  12. In-Flight Anomalies and Radiation Performance of NASA Missions - Selected Lessons Learned

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2008-01-01

    This presentation addresses in-flight electronic disturbances and radiation, specifically anomaly resolution. The process for anomaly review takes into account the environment, selected parts and design, existing and/or new radiation test data, risk probability and actions to be taken. Noise spikes and the meaning of upset in a fiber optic link are also discussed.

  13. A Fuzzy Technique for Performing Lateral-Axis Formation Flight Navigation Using Wingtip Vortices

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2003-01-01

    Close formation flight involving aerodynamic coupling through wingtip vortices shows significant promise to improve the efficiency of cooperative aircraft operations. Impediments to the application of this technology include internship communication required to establish precise relative positioning. This report proposes a method for estimating the lateral relative position between two aircraft in close formation flight through real-time estimates of the aerodynamic effects imparted by the leading airplane on the trailing airplane. A fuzzy algorithm is developed to map combinations of vortex-induced drag and roll effects to relative lateral spacing. The algorithm is refined using self-tuning techniques to provide lateral relative position estimates accurate to 14 in., well within the requirement to maintain significant levels of drag reduction. The fuzzy navigation algorithm is integrated with a leader-follower formation flight autopilot in a two-ship F/A-18 simulation with no intership communication modeled. It is shown that in the absence of measurements from the leading airplane the algorithm provides sufficient estimation of lateral formation spacing for the autopilot to maintain stable formation flight within the vortex. Formation autopilot trim commands are used to estimate vortex effects for the algorithm. The fuzzy algorithm is shown to operate satisfactorily with anticipated levels of input uncertainties.

  14. The physics of flight: III. Hovering

    NASA Astrophysics Data System (ADS)

    Linton, J. Oliver

    2007-09-01

    In 1934 the French etymologist August Magnan wrote in the introduction to his book Le Vol Des Insects that it was aerodynamically impossible for a honey bee to fly. In 1984 Ellington (1984 Phil. Trans. R. Soc. B 305 1 15) published a seminal series of articles which seemed to lend support to the idea that insects were performing aerodynamic feats which could not be easily explained, and this resulted in an explosion of interest in insect and bird flight which continues unabated to this day. Recent advances in experimental and computational techniques have enabled us to measure, visualize, and calculate the flow round an insect's wings in ever greater detail, and for a comprehensive summary of the present state of research into the area I would recommend a review paper by Sane (2003 J. Exp. Biol. 206 4191 208). He describes at least four effects which purport to increase the amount of lift that would be expected on the basis of conventional aerodynamics. But how bad was the old 'back of the envelope' calculation? Is it really necessary to invoke such complicated mechanisms to explain something which happens before our very eyes every day of the week? If the old calculations give an answer within an order of magnitude, I would be happy with that. If the old calculations are more than a factor of 10 out, no amount of tweaking with 'delayed stall' or 'wake capture' will make up the deficit, and we will have to conclude that the flight of insects and hummingbirds is literally a miracle. Hopefully it will not come to that. This article attempts to find out.

  15. The Herschel-SPIRE instrument and its in-flight performance

    NASA Astrophysics Data System (ADS)

    Griffin, M. J.; Abergel, A.; Abreu, A.; Ade, P. A. R.; André, P.; Augueres, J.-L.; Babbedge, T.; Bae, Y.; Baillie, T.; Baluteau, J.-P.; Barlow, M. J.; Bendo, G.; Benielli, D.; Bock, J. J.; Bonhomme, P.; Brisbin, D.; Brockley-Blatt, C.; Caldwell, M.; Cara, C.; Castro-Rodriguez, N.; Cerulli, R.; Chanial, P.; Chen, S.; Clark, E.; Clements, D. L.; Clerc, L.; Coker, J.; Communal, D.; Conversi, L.; Cox, P.; Crumb, D.; Cunningham, C.; Daly, F.; Davis, G. R.; de Antoni, P.; Delderfield, J.; Devin, N.; di Giorgio, A.; Didschuns, I.; Dohlen, K.; Donati, M.; Dowell, A.; Dowell, C. D.; Duband, L.; Dumaye, L.; Emery, R. J.; Ferlet, M.; Ferrand, D.; Fontignie, J.; Fox, M.; Franceschini, A.; Frerking, M.; Fulton, T.; Garcia, J.; Gastaud, R.; Gear, W. K.; Glenn, J.; Goizel, A.; Griffin, D. K.; Grundy, T.; Guest, S.; Guillemet, L.; Hargrave, P. C.; Harwit, M.; Hastings, P.; Hatziminaoglou, E.; Herman, M.; Hinde, B.; Hristov, V.; Huang, M.; Imhof, P.; Isaak, K. J.; Israelsson, U.; Ivison, R. J.; Jennings, D.; Kiernan, B.; King, K. J.; Lange, A. E.; Latter, W.; Laurent, G.; Laurent, P.; Leeks, S. J.; Lellouch, E.; Levenson, L.; Li, B.; Li, J.; Lilienthal, J.; Lim, T.; Liu, S. J.; Lu, N.; Madden, S.; Mainetti, G.; Marliani, P.; McKay, D.; Mercier, K.; Molinari, S.; Morris, H.; Moseley, H.; Mulder, J.; Mur, M.; Naylor, D. A.; Nguyen, H.; O'Halloran, B.; Oliver, S.; Olofsson, G.; Olofsson, H.-G.; Orfei, R.; Page, M. J.; Pain, I.; Panuzzo, P.; Papageorgiou, A.; Parks, G.; Parr-Burman, P.; Pearce, A.; Pearson, C.; Pérez-Fournon, I.; Pinsard, F.; Pisano, G.; Podosek, J.; Pohlen, M.; Polehampton, E. T.; Pouliquen, D.; Rigopoulou, D.; Rizzo, D.; Roseboom, I. G.; Roussel, H.; Rowan-Robinson, M.; Rownd, B.; Saraceno, P.; Sauvage, M.; Savage, R.; Savini, G.; Sawyer, E.; Scharmberg, C.; Schmitt, D.; Schneider, N.; Schulz, B.; Schwartz, A.; Shafer, R.; Shupe, D. L.; Sibthorpe, B.; Sidher, S.; Smith, A.; Smith, A. J.; Smith, D.; Spencer, L.; Stobie, B.; Sudiwala, R.; Sukhatme, K.; Surace, C.; Stevens, J. A.; Swinyard, B. M.; Trichas, M.; Tourette, T.; Triou, H.; Tseng, S.; Tucker, C.; Turner, A.; Vaccari, M.; Valtchanov, I.; Vigroux, L.; Virique, E.; Voellmer, G.; Walker, H.; Ward, R.; Waskett, T.; Weilert, M.; Wesson, R.; White, G. J.; Whitehouse, N.; Wilson, C. D.; Winter, B.; Woodcraft, A. L.; Wright, G. S.; Xu, C. K.; Zavagno, A.; Zemcov, M.; Zhang, L.; Zonca, E.

    2010-07-01

    The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 μm (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4´× 8´, observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6´. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2. Herschel is an ESA space observatory with science instruments provided by European-led Principal

  16. A flight-test and simulation evaluation of the longitudinal final approach and landing performance of an automatic system for a light wing loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Hardy, G. H.; Hindson, W. S.

    1983-01-01

    As part of a comprehensive flight-test program of STOL operating systems for the terminal area, an automatic landing system was developed and evaluated for a light wing loading turboprop aircraft. The aircraft utilized an onboard advanced digital avionics system. Flight tests were conducted at a facility that included a STOL runway site with a microwave landing system. Longitudinal flight-test results were presented and compared with available (basically CTOL) criteria. These comparisons were augmented by results from a comprehensive simulation of the controlled aircraft which included representations of navigation errors that were encountered in flight and atmospheric disturbances. Acceptable performance on final approach and at touchdown was achieved by the autoland (automatic landing) system for the moderate winds and turbulence conditions encountered in flight. However, some touchdown performance goals were marginally achieved, and simulation results suggested that difficulties could be encountered in the presence of more extreme atmospheric conditions. Suggestions were made for improving performance under those more extreme conditions.

  17. [Evaluation of condition and factors affecting activity effectiveness and visual performance of pilots who use night vision goggles during the helicopter flights].

    PubMed

    Aleksandrov, A S; Davydov, V V; Lapa, V V; Minakov, A A; Sukhanov, V V; Chistov, S D

    2014-07-01

    According to analysis of questionnaire authors revealed factors, which affect activity effectiveness, and visual performance of pilots who use night vision goggles during the helicopter flights. These are: difficulty of flight tasks, flying conditions, illusion of attitude. Authors gave possible ways to reduce an impact of these factors. PMID:25286586

  18. Visual Performance Challenges to Low-Frequency Perturbations After Long-Duration Space Flight, and Countermeasure Development

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Wood, Scott; Fiedler, Matthew; Kofman, Igor; Kulecz, Walter B.; Miller, Chris; Peters, Brian; Serrador, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2010-01-01

    Astronauts experience sensorimotor disturbances after long-duration space flight. After a water landing, crewmembers may need to egress the vehicle within a few minutes for safety and operational reasons in various sea state conditions. Exposure to even low-frequency motions induced by sea conditions surrounding a vessel can cause significant motor control problems affecting critical functions. The first objective of this study was to document human visual performance during simulated wave motion below 2.0 Hz. We examined the changes in accuracy and reaction time when subjects performed a visual target acquisition task in which the location of the target was offset vertically during horizontal rotation at an oscillating frequency of 0.8 Hz. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements occurring when vertical targets were acquired at perturbing frequencies of 0.8 Hz in the horizontal plane. A second objective was to develop a countermeasure, base d on stochastic resonance (SR), to enhance sensorimotor capabilities with the aim of facilitating rapid adaptation to gravitational transitions after long-duration space flight. SR is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Recent studies have shown that applying imperceptible stochastic electrical stimulation to the vestibular system (SVS) significantly improved balance and oculomotor responses. This study examined the effectiveness of SVS on improving balance performance. Subjects performed a standard balance task while bipolar SVS was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process. The main finding of this study was that balance performance with the application of SR showed significant improvement in the range of 10%-25%. Ultimately an SR-based countermeasure might be fielded either as preflight training

  19. Space Environment Factors Affecting the Performance of International Space Station Materials: The First Two Years of Flight Operations

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Peldey, Michael; Mayeaux, Brian; Milkatarian, Ronald R.; Golden, John; Boeder, paul; Kern, John; Barsamian, Hagop; Alred, John; Soares, Carlos; Christiansen, Eric; Schneider, Todd; Edwards, Dave

    2003-01-01

    In this paper, the natural and induced space environment factors affecting materials performance on ISS are described in some detail. The emphasis will be on ISS flight experience and the more significant design and development issues of the last two years. The intent is to identify and document the set of space environment factors, affecting materials, that are producing the largest impacts on the ISS flight hardware verification and acceptance process and on ISS flight operations. Orbital inclination (S1.6 ) and altitude (nominal3S0 km to 400 km altitude) determine the set of natural environment factors affecting the functional life of materials and subsystems on ISS. ISS operates in the F2 region of Earth's ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, and solar UV, VUV, and x-ray radiation, as well as galactic cosmic rays, trapped radiation, and solar cosmic rays (1,2). The high latitude orbital environment also exposes external surfaces to significantly less well-defined or predictable fluxes of higher energy trapped electrons and auroral electrons (3 ,4). The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. Environment factors induced by ISS flight operations include ram-wake effects, magnetic induction voltages arising from flight through Earth's magnetic field, hypergolic thruster plume impingement from proximity operations of visiting vehicles, materials outgassing, venting and dumping of fluids, ISS thruster operations, as well as specific electrical power system interactions with the ionospheric plasma (S-7). ISS must fly in a very limited number of approved flight attitudes leading to location specific environmental exposures and extreme local thermal environments (8). ISS is a large vehicle and produces a deep wake structure from which both ionospheric plasma and neutrals (atomic oxygen) are largely excluded (9-11). At high

  20. Miracle Flights

    MedlinePlus

    ... the perfect solution for your needs. Book A Flight Request a flight now Click on the link ... Now Make your donation today Saving Lives One Flight At A Time Miracle Flights provides free flights ...