Science.gov

Sample records for insect leptinotarsa decemlineata

  1. Attacks by a piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis

    PubMed Central

    Gosset, Virginie; Harmel, Nicolas; Göbel, Cornelia; Francis, Frédéric; Haubruge, Eric; Wathelet, Jean-Paul; du Jardin, Patrick; Feussner, Ivo; Fauconnier, Marie-Laure

    2009-01-01

    Plant defensive strategies bring into play blends of compounds dependent on the type of attacker and coming from different synthesis pathways. Interest in the field is mainly focused on volatile organic compounds (VOCs) and jasmonic acid (JA). By contrast, little is known about the oxidized polyunsaturated fatty acids (PUFAs), such as PUFA-hydroperoxides, PUFA-hydroxides, or PUFA-ketones. PUFA-hydroperoxides and their derivatives might be involved in stress response and show antimicrobial activities. Hydroperoxides are also precursors of JA and some volatile compounds. In this paper, the differential biochemical response of a plant against insects with distinct feeding behaviours is characterized not only in terms of VOC signature and JA profile but also in terms of their precursors synthesized through the lipoxygenase (LOX)-pathway at the early stage of the plant response. For this purpose, two leading pests of potato with distinct feeding behaviours were used: the Colorado Potato Beetle (Leptinotarsa decemlineata Say), a chewing herbivore, and the Green Peach Aphid (Myzus persicae Sulzer), a piercing-sucking insect. The volatile signatures identified clearly differ in function with the feeding behaviour of the attacker and the aphid, which causes the smaller damages, triggers the emission of a higher number of volatiles. In addition, 9-LOX products, which are usually associated with defence against pathogens, were exclusively activated by aphid attack. Furthermore, a correlation between volatiles and JA accumulation and the evolution of their precursors was determined. Finally, the role of the insect itself on the plant response after insect infestation was highlighted. PMID:19221142

  2. Sequencing, De Novo Assembly and Annotation of the Colorado Potato Beetle, Leptinotarsa decemlineata, Transcriptome

    PubMed Central

    Kumar, Abhishek; Congiu, Leonardo; Lindström, Leena; Piiroinen, Saija; Vidotto, Michele; Grapputo, Alessandro

    2014-01-01

    Background The Colorado potato beetle (Leptinotarsa decemlineata) is a major pest and a serious threat to potato cultivation throughout the northern hemisphere. Despite its high importance for invasion biology, phenology and pest management, little is known about L. decemlineata from a genomic perspective. We subjected European L. decemlineata adult and larval transcriptome samples to 454-FLX massively-parallel DNA sequencing to characterize a basal set of genes from this species. We created a combined assembly of the adult and larval datasets including the publicly available midgut larval Roche 454 reads and provided basic annotation. We were particularly interested in diapause-specific genes and genes involved in pesticide and Bacillus thuringiensis (Bt) resistance. Results Using 454-FLX pyrosequencing, we obtained a total of 898,048 reads which, together with the publicly available 804,056 midgut larval reads, were assembled into 121,912 contigs. We established a repository of genes of interest, with 101 out of the 108 diapause-specific genes described in Drosophila montana; and 621 contigs involved in insecticide resistance, including 221 CYP450, 45 GSTs, 13 catalases, 15 superoxide dismutases, 22 glutathione peroxidases, 194 esterases, 3 ADAM metalloproteases, 10 cadherins and 98 calmodulins. We found 460 putative miRNAs and we predicted a significant number of single nucleotide polymorphisms (29,205) and microsatellite loci (17,284). Conclusions This report of the assembly and annotation of the transcriptome of L. decemlineata offers new insights into diapause-associated and insecticide-resistance-associated genes in this species and provides a foundation for comparative studies with other species of insects. The data will also open new avenues for researchers using L. decemlineata as a model species, and for pest management research. Our results provide the basis for performing future gene expression and functional analysis in L. decemlineata and improve our

  3. Syspastospora parasitica, a mycoparasite of the fungus Beauveria bassiana attacking the Colorado potato beetle Leptinotarsa decemlineata: A tritrophic association.

    PubMed Central

    Posada, Francisco; Vega, Fernando E.; Rehner, Stephen A.; Blackwell, Meredith; Weber, Donald; Suh, Sung-Oui; Humber, Richard A.

    2004-01-01

    A tritrophic association is reported, involving a Colorado potato beetle (Leptinotarsa decemlineata) infected with Beauveria bassiana, which in turn was infected with Syspastospora parasitica. PMID:15861239

  4. Prevalence of Endosymbionts in Polish Populations of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae).

    PubMed

    Krawczyk, Krzysztof; Szymańczyk, Mateusz; Obrępalska-Stęplowska, Aleksandra

    2015-01-01

    Colorado potato beetle (CPB, Leptinotarsa decemlineata Say) (Coleoptera: Chrysomelidae) is one of the most serious insect pest feeding on wild and cultivated Solanaceae plants. This pest poses a significant threat to potato crops. CPB originated from North America but has become widespread and has adapted in new localizations. Currently, it is reported in many countries worldwide. Endosymbiotic bacteria might have an influence on insect adaptation to new conditions. They are known to play a role in invasiveness of insect hosts and to facilitate colonization of new niches; however, information on endosymbionts of the CPB is very limited. In this study, we screened CPB populations collected from 20 evenly distributed locations in Poland for the presence of Arsenophonus, Cardinium, Wolbachia, and Flavobacterium. We found the presence of Flavobacterium in the studied insects. Little is known about CPB-endosymbionts interactions, thus this study may provide a reference for future studies in this subject. PMID:26206894

  5. Prevalence of Endosymbionts in Polish Populations of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)

    PubMed Central

    Krawczyk, Krzysztof; Szymańczyk, Mateusz; Obrępalska-Stęplowska, Aleksandra

    2015-01-01

    Colorado potato beetle (CPB, Leptinotarsa decemlineata Say) (Coleoptera: Chrysomelidae) is one of the most serious insect pest feeding on wild and cultivated Solanaceae plants. This pest poses a significant threat to potato crops. CPB originated from North America but has become widespread and has adapted in new localizations. Currently, it is reported in many countries worldwide. Endosymbiotic bacteria might have an influence on insect adaptation to new conditions. They are known to play a role in invasiveness of insect hosts and to facilitate colonization of new niches; however, information on endosymbionts of the CPB is very limited. In this study, we screened CPB populations collected from 20 evenly distributed locations in Poland for the presence of Arsenophonus, Cardinium, Wolbachia, and Flavobacterium. We found the presence of Flavobacterium in the studied insects. Little is known about CPB–endosymbionts interactions, thus this study may provide a reference for future studies in this subject. PMID:26206894

  6. Spatial and Temporal Potato Intensification Drives Insecticide Resistance in the Specialist Herbivore, Leptinotarsa decemlineata.

    PubMed

    Huseth, Anders S; Petersen, Jessica D; Poveda, Katja; Szendrei, Zsofia; Nault, Brian A; Kennedy, George G; Groves, Russell L

    2015-01-01

    Landscape-scale intensification of individual crops and pesticide use that is associated with this intensification is an emerging, environmental problem that is expected to have unequal effects on pests with different lifecycles, host ranges, and dispersal abilities. We investigate if intensification of a single crop in an agroecosystem has a direct effect on insecticide resistance in a specialist insect herbivore. Using a major potato pest, Leptinotarsa decemlineata, we measured imidacloprid (neonicotinoid) resistance in populations across a spatiotemporal crop production gradient where potato production has increased in Michigan and Wisconsin, USA. We found that concurrent estimates of area and temporal frequency of potato production better described patterns of imidacloprid resistance among L. decemlineata populations than general measures of agricultural production (% cropland, landscape diversity). This study defines the effects individual crop rotation patterns can have on specialist herbivore insecticide resistance in an agroecosystem context, and how impacts of intensive production can be estimated with general estimates of insecticide use. Our results provide empirical evidence that variation in the intensity of neonicotinoid-treated potato in an agricultural landscape can have unequal impacts on L. decemlineata insecticide insensitivity, a process that can lead to resistance and locally intensive insecticide use. Our study provides a novel approach applicable in other agricultural systems to estimate impacts of crop rotation, increased pesticide dependence, insecticide resistance, and external costs of pest management practices on ecosystem health. PMID:26030877

  7. Spatial and Temporal Potato Intensification Drives Insecticide Resistance in the Specialist Herbivore, Leptinotarsa decemlineata

    PubMed Central

    Huseth, Anders S.; Petersen, Jessica D.; Poveda, Katja; Szendrei, Zsofia; Nault, Brian A.; Kennedy, George G.; Groves, Russell L.

    2015-01-01

    Landscape-scale intensification of individual crops and pesticide use that is associated with this intensification is an emerging, environmental problem that is expected to have unequal effects on pests with different lifecycles, host ranges, and dispersal abilities. We investigate if intensification of a single crop in an agroecosystem has a direct effect on insecticide resistance in a specialist insect herbivore. Using a major potato pest, Leptinotarsa decemlineata, we measured imidacloprid (neonicotinoid) resistance in populations across a spatiotemporal crop production gradient where potato production has increased in Michigan and Wisconsin, USA. We found that concurrent estimates of area and temporal frequency of potato production better described patterns of imidacloprid resistance among L. decemlineata populations than general measures of agricultural production (% cropland, landscape diversity). This study defines the effects individual crop rotation patterns can have on specialist herbivore insecticide resistance in an agroecosystem context, and how impacts of intensive production can be estimated with general estimates of insecticide use. Our results provide empirical evidence that variation in the intensity of neonicotinoid-treated potato in an agricultural landscape can have unequal impacts on L. decemlineata insecticide insensitivity, a process that can lead to resistance and locally intensive insecticide use. Our study provides a novel approach applicable in other agricultural systems to estimate impacts of crop rotation, increased pesticide dependence, insecticide resistance, and external costs of pest management practices on ecosystem health. PMID:26030877

  8. Photoperiodic effects on diapause-associated gene expression trajectories in European Leptinotarsa decemlineata populations.

    PubMed

    Lehmann, P; Piiroinen, S; Kankare, M; Lyytinen, A; Paljakka, M; Lindström, L

    2014-10-01

    Behavioural and physiological changes during diapause, an important strategy of insects for surviving harsh seasonal conditions, have been intensively studied. The genetic and molecular mechanisms underpinning diapause development are less well known. We took a candidate gene approach to study prediapause gene expression patterns in the Colorado potato beetle (Leptinotarsa decemlineata), an invasive insect that has rapidly spread northwards to high seasonality environments. Newly eclosed beetles originating from southern (Italy) and northern (Russia) Europe were reared under short- [12 h light (L):12 h dark (D)] and long-day (18L:6D) photoperiods for 10 days. This time period includes the sensitive period for the photoperiodic induction and initiation of diapause. Gene expression trajectories of 12 diapause-related genes (regulatory, metabolic and stress-resistance) were analysed from 0-, 5- and 10-day-old beetles. Gene expression differences increased with age, deviating significantly between populations and photoperiods in 10-day-old beetles. The gene expression profiles, particularly those related to energy metabolism and stress-resistance, indicate that beetles originating from Russia also prepare for diapause under the long-day photoperiod and show qualitative differences in the diapausing phenotype. Our study shows that population-dependent differences seen in behavioural and physiological traits connected with diapause in L. decemlineata are also evident in the expression trajectories of diapause-related genes. PMID:24924142

  9. Characterization of two unrelated satellite DNA families in the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera, Chrysomelidae).

    PubMed

    Lorite, Pedro; Torres, M Isabel; Palomeque, Teresa

    2013-10-01

    The Colorado potato beetle (Leptinotarsa decemlineata, family Chrysomelidae),a phytophagous insect, which feeds preferably on potatoes, constitutes a serious pest of this crop and causes extensive damage to tomatoes and egg plants. It has a remarkable ability to develop resistance quickly against insecticides and shows a diversified and flexible life history. Consequently, the control of this pest has become difficult, requiring the development of new alternative biotechnology-based strategies. Such strategies require a thorough knowledge of the beetle’s genome,including the repetitive DNA. Satellite DNA (stDNA), composed of long arrays of tandemly arranged repeat units, constitutes the major component of heterochromatin and is located mainly in centromeric and telomeric chromosomal regions. We have studied two different unrelated satellite-DNA families of which the consensus sequences were 295 and 109bp in length, named LEDE-I and LEDE-II, respectively.Both were AT-rich (70.8% and 71.6%, respectively). Predictive models of sequence-dependent DNA bending and the study of electrophoretic mobility on non-denaturing polyacrylamide gels have shown that the DNA was curved in both satellite-DNA families. Among other features, the chromosome localization of both stDNAs has been studied. In situ hybridization performed on meiotic and mitoticnuclei showed chromosomes, including the X chromosome, with zero, one, or two stDNAs. In recent years, it has been proposed that the repetitive DNA may play a key role in biological diversification processes. This is the first molecular and cytogenetic study conducted on L. decemlineata repetitive DNA and specifically on stDNA, which is one of the important constituents of eukaryotic genomes. PMID:23448367

  10. Effect on non-host plants on movements of Colorado potato beetle, Leptinotarsa decemlineata (Say)

    SciTech Connect

    Cort, R.P.

    1982-01-01

    Movements of Colorado potato beetles, Leptinotarsa decemlineata, (Say) (Coleoptera: Chrysomelidae) were studied in experimental plots of potatoes planted in monocultures and in polycultures with beans and/or marigolds. Rates of movement into and out of plots of varying plant composition were measured by mark-recapture of adult beetles. The amount of emigration was not affected by the presence of non-host plants. However, there were significantly more beetles moving into the pure stands of potatoes than into the plots containing non-host plants. This pattern is consistent with the idea that non-host plants act to mask host plants from potential herbivores, but do not affect the insect once it has located a host plant. It is thus unlikely that marigolds or beans repel Colorado potato beetles, since an increase in emigration would be expected if this were true. Beans are more effective than marigolds at deterring immigration, and both non-host plants together have an additive effect greater than one alone.

  11. Identification of cytochrome P450 monooxygenase genes and their expression profiles in cyhalothrin-treated Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Shi, Xiao-Qin; Kong, Ye; Zhou, Li-Tao; Guo, Wen-Chao; Ahmat, Tursun; Li, Guo-Qing

    2013-11-01

    Based on a Leptinotarsa decemlineata transcriptome dataset and the GenBank sequences, a total of 74 cytochrome P450 monooxygenase genes (Cyps) were identified. These genes fell into CYP2 clan, mitochondrial clan, CYP3 clan and CYP4 clan, and were classified into 19 families and 35 subfamilies according to standard nomenclature. Two new families were discovered in CYP4 clan, and were named CYP412 and CYP413 respectively. Four new families that were recently discovered in Tribolium castaneum, including mitochondrial family CYP353, CYP3 clan families CYP345 and CYP347, and CYP4 clan family CYP350, were also found in L. decemlineata. The phylogenetic trees of CYPs from L. decemlineata and other representative insect species were constructed, and these trees provided evolutionary insight for the genetic distance. Our results facilitate further researches to understand the functions and evolution of L. decemlineata Cyp genes. In order to find cyhalothrin-inducible Cyp genes, the expression levels of Cyps belonging to CYP12, CYP6, CYP9 and CYP4 families were determined by quantitative reverse transcriptase-PCR in cyhalothrin-treated and control fourth-instar larvae. Nine Cyp genes, i.e., Cyp12H2, Cyp6BH2, Cyp6BJ1, Cyp6BQ17, Cyp6EG1, Cyp6EH1, Cyp6EJ1 Cyp4BN13v1 and Cyp4BN15, were highly expressed in cyhalothrin-treated larvae. These CYPs are the candidates that are involved in cyhalothrin detoxification. PMID:24267698

  12. Involvement of FTZ-F1 in the regulation of pupation in Leptinotarsa decemlineata (Say).

    PubMed

    Liu, Xin-Ping; Fu, Kai-Yun; Lü, Feng-Gong; Meng, Qing-Wei; Guo, Wen-Chao; Li, Guo-Qing

    2014-11-01

    During the final instar larvae of holometabolous insects, a pulse of 20-hydroxyecdysone (20E) and a drop in juvenile hormone (JH) trigger larval-pupal metamorphosis. In this study, two LdFTZ-F1 cDNAs (LdFTZ-F1-1 and LdFTZ-F1-2) were cloned in Leptinotarsa decemlineata. Both LdFTZ-F1-1 and LdFTZ-F1-2 were highly expressed just before or right after each molt, similar to the expression pattern of an ecdysteroidogenesis gene LdSHD. Ingestion of an ecdysteroid agonist halofenozide (Hal) enhanced LdFTZ-F1-1 and LdFTZ-F1-2 expression in the final larval instar. Conversely, a decrease in 20E by feeding a double-stranded RNA (dsRNA) against LdSHD repressed the expression. Moreover, Hal rescued the expression levels in LdSHD-silenced larvae. Thus, 20E peaks seem to induce the transcription of LdFTZ-F1s. Furthermore, ingesting dsLdFTZ-F1 from a common fragment of LdFTZ-F1-1 and LdFTZ-F1-2 successfully knocked down both LdFTZ-F1s, and impaired pupation. Finally, knocking down LdFTZ-F1s significantly repressed the transcription of three ecdysteroidogenesis genes, lowered 20E titer, and reduced the expression of two 20E receptor genes. Silencing LdFTZ-F1s also induced the expression of a JH biosynthesis gene, increased JH titer, but decreased the mRNA level of a JH early-inducible gene. Thus, LdFTZ-F1s are involved in the regulation of pupation by modulating 20E and JH titers and mediating their signaling pathways. PMID:25446391

  13. EFFECTS OF SOME BIOINSECTICIDES AND ENTOMOPATHOGENIC FUNGI ON COLORADO POTATO BEETLE (LEPTINOTARSA DECEMLINEATA L.).

    PubMed

    Öztürk, H E; Güven, Ö; Karaca, I

    2015-01-01

    In this study, biological activity of entomopathogenic fungi (4 strains) isolated from the Colorado potato beetle and the commercial biopesticides containing entomopathogenic fungi; Priority® (Paecilomyces fumosoroseus), Nibortem® (Verticillium lecanii), Nostalgist® (Beauveria bassiana), Bio-Magic* (Metarhizium anisopliae), Bio-Nematon* (Paeciliomyces sp.) and plant extracts; Nimbedicine EC* (Azadiractin) were determined against Leptinotarsa decemlineata under laboratory conditions. An Imidacloprid active ingredient commercial insecticide was also used to compare the insecticidal activity and distilled water was used as control. The biological control agents were applied to 2nd-3rd larval instars, 4th larval instars and adults with spray and leaf dipping methods. Single concentration (10⁸ conidia/mL⁻¹) of entomopathogenic fungi and recommended dose of bioinsecticides were prepared for application. The number of dead insects were determined at 3, 5, and 7 days after applications. Experiments were conducted at 25 ±1° C and 60% ± 5 relative humidity with 16:8 h light: dark conditions. Entomopathogenic fungi and bioinsecticides were found to be more effective on larval stage than 4th larval instars and adults. In spray methods, Bio-Magic®, Nibortem®, and Nostalgist® caused 96.4%, 92.9% and 82.1% mortality on 2nd larval instars and 20%, 36.7% and 33.3% mortality on adults, respectively. All local fungal isolates (B. bassiana) applied on 2nd and 4th larval instars caused 100% mortality. Adults showed 58.6-86.2% mortality. PMID:27145587

  14. Chlorantraniliprole susceptibility in Leptinotarsa decemlineata in the north Xinjiang Uygur autonomous region in China.

    PubMed

    Jiang, Wei-Hua; Lu, Wei-Ping; Guo, Wen-Chao; Xia, Zhen-Han; Fu, Wen-Jun; Li, Guo-Qing

    2012-04-01

    The Colorado potato beetle (Leptinotarsa decemlineata (Say)) in the north Xinjiang Uygur autonomous region has evolved resistance to various types of insecticides. Chlorantraniliprole is a novel anthranilic diamide insecticide that binds and activates ryanodine receptors. It exhibited excellent efficacy against L. decemlineata in several field trails in Europe. In the present paper, the susceptibility of L. decemlineata fourth-instar larvae derived from six field populations and L. decemlineata adults derived from three field populations to chlorantraniliprole was determined by a topical application. The fourth-instar larvae were substantially more susceptible to chlorantraniliprole than adults, although the range of susceptibility was far greater among the fourth-instar larvae. Regarding stomach toxicities, adult beetles were less susceptible to chlorantraniliprole than larvae. Chlorantraniliprole was most toxic to second-instar larvae, followed by third- and fourth-instar larvae. These data suggested that the appropriate timing for chlorantraniliprole spraying is the early larval stage. Moreover, the synergistic activities of chlorantraniliprole in combination with triphenyl phosphate, diethyl maleate, or piperonyl butoxide against fourth-instar larvae from two field populations and adults from one field population were tested. Piperonyl butoxide had synergistic effects with chlorantraniliprole against fourth-instar larvae but not against adult beetles. Conversely, triphenyl phosphate and diethyl maleate exerted little synergistic effects. It appears that there is a potential risk of resistance against chlorantraniliprole resulting from cytochrome P450 monooxygenase activity. PMID:22606826

  15. Down Regulation of Gene Expression Between the Diapause Initiation and Maintenance Phases of the Colorado Potato Beetle, Leptinotarsa Decemlineata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diapause initiation and maintenance phases of the Colorado potato beetle, Leptinotarsa decemlineata were screened. Eight transcripts were found to be down regulated as the beetles enter the diapause maintenance phase of diapause development after day 15 postemergence. These transcripts were also...

  16. Characterization of gene expression patterns during the initiation and maintenance phases of diapause in the Colorado potato beetle, Leptinotarsa decemlineata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using differential display, 55 putative, diapause-regulated transcripts were isolated from the Colorado potato beetle, Leptinotarsa decemlineata (Say). The insert sizes of the clones ranged from 114 to 795 bp. Fourteen of the transcripts were confirmed by northern blot analysis to be diapause regula...

  17. A comparison of internal and external lipids of nondiapausing and diapause initiation phase adult Colorado potato beetles, Leptinotarsa decemlineata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Colorado potato beetle, Leptinotarsa decemlineata, reared under diapause inducing conditions will emerge from the soil as an adult and enter the diapause initiation phase, a period where metabolic reserves are stockpiled before the beetles enter the nonfeeding diapause maintenance phase. Interna...

  18. Molecular cloning and characterization of a putative proline dehydrogenase gene in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Lü, Dong; Guo, Wen-Chao; Ahmat, Tursun; Yang, Lu; Mu, Li-Li; Li, Guo-Qing

    2014-04-01

    Leptinotarsa decemlineata adults exhibit a season-dependent activity. In spring, post-diapause beetles often fly a long distance from overwintering sites to potato fields. In summer and autumn, the flight ability is sharply reduced. Proline is the main energy substrate of L. decemlineata during flight and proline dehydrogenase (ProDH) catalyzes the first step in proline catabolism. Here we identified a putative LdProDH gene; it had three cDNA isoforms which shared the same 5'UTR and coding region, but differed in the lengths of 3'UTRs (515, 1 092 and 1 242 bp for isoforms-1, -2 and -3, respectively). LdProDH encoded a 616 amino acid protein that showed high sequence similarity to ProDH-like proteins from other insect species. LdProDH was expressed in the third and fourth instars larvae and adults, but not in pupae. Dietary ingestion of bacterially expressed LdProDH-dsRNA by adults significantly decreased its messenger RNA (mRNA) level, and caused an elevation of free proline content in the hemolymph. Further observation revealed that three canonical polyadenylation signals (AATAAA) were tandemly located in the 3'UTR of isoform-3. The first, second and third polyadenylation sites gave rise to isoforms-1, -2 and -3, respectively. Analysis of the genomic DNA uncovered that the three isoforms resulted from alternative polyadenylation. The mRNA level of isoform-1, which expressed at low levels in pre-diapause adults, became abundant in post-diapause beetles. It is indicated that the LdProDH expression is fine-tuned through 3'UTR to control proline catabolism for the season-dependent activity of L. decemlineata adults. PMID:23956209

  19. Involvement of a putative allatostatin in regulation of juvenile hormone titer and the larval development in Leptinotarsa decemlineata (Say).

    PubMed

    Meng, Qing-Wei; Liu, Xin-Ping; Lü, Feng-Gong; Fu, Kai-Yun; Guo, Wen-Chao; Li, Guo-Qing

    2015-01-01

    Juvenile hormone III (JH III) plays primary roles in regulation of metamorphosis, reproduction and diapause in Leptinotarsa decemlineata, a notorious defoliator of potato. The neurosecretory cell-borne substance(s) negatively affects the final two steps in JH biosynthesis, catalyzed respectively by an epoxidase CYP15A1 and a juvenile hormone acid methyltransferase (JHAMT). In a few insect species other than L. decemlineata, the inhibitory substance is allatostatin (AS) neuropeptide. In this study, two putative AS genes encoding LdAS-C and LdAS-B precursors were cloned. Both LdAS-C and LdAS-B were expressed in the egg, larvae, pupae and adults, and highly expressed in the brain and the gut. Dietary introduction of double-stranded RNAs (dsRNAs) targeting LdAS-C and LdAS-B successfully knocked down respective target genes. Ingestion during 3 and 6 consecutive days of dsLdAS-C significantly increased the LdJHAMT mRNA levels by 3.8 and 9.9 fold respectively. In contrast, ingestion of dsLdAS-B only slightly increased the LdJHAMT expression level by 1.1 and 1.7 fold. Moreover, after one, two and three days' ingestion of dsLdAS-C, the relative JH levels in the hemolymph of treated larvae were 2.5, 4.2 and 1.9 fold higher than those in control beetles. Furthermore, ingestion of dsLdAS-C and dsLdAS-B significantly affected larval growth and delayed larval development. Thus, we provide a line of experimental evidence in L. decemlineata to support the concept that AS-C acts as an allatostatin and inhibit JH biosynthesis. PMID:25452193

  20. The P450 enzyme Shade mediates the hydroxylation of ecdysone to 20-hydroxyecdysone in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Kong, Y; Liu, X-P; Wan, P-J; Shi, X-Q; Guo, W-C; Li, G-Q

    2014-10-01

    Ecdysone 20-monooxygenase (E20MO), a cytochrome P450 monooxygenase (CYP314A1), catalyses the conversion of ecdysone (E) to 20-hydroxyecdysone (20E). We report here the cloning and characterization of the Halloween gene Shade (Shd) encoding E20MO in the Colorado potato beetle, Leptinotarsa decemlineata. LdSHD has five conserved motifs typical of insect P450s, ie the Helix-C, Helix-I, Helix-K, PxxFxPE/DRF (PERF) and heme-binding motifs. LdShd was expressed in developing eggs, the first to fourth instars, wandering larvae, pupae and adults, with statistically significant fluctuations. Its mRNA was ubiquitously distributed in the head, thorax and abdomen. The recombinant LdSHD protein expressed in Spodoptera frugiperda 9 (Sf9) cells catalysed the conversion of E to 20E. Dietary introduction of double-stranded RNA (dsRNA) of LdShd into the second instar larvae successfully knocked down the LdShd expression level, decreased the mRNA level of the ecdysone receptor (LdEcR) gene, caused larval lethality, delayed development and affected pupation. Moreover, ingestion of LdShd-dsRNA by the fourth instars also down-regulated LdShd and LdEcR expression, reduced the 20E titre, and negatively influenced pupation. Introduction of 20E and a nonsteroidal ecdysteroid agonist halofenozide into the LdShd-dsRNA-ingested second instars, and of halofenozide into the LdShd-dsRNA-ingested fourth instars almost completely relieved the negative effects on larval performance. Thus, LdSHD functions to regulate metamorphotic processes by converting E to 20E in a coleopteran insect species Le. decemlineata. PMID:24989229

  1. A putative Δ1-pyrroline-5-carboxylate synthetase involved in the biosynthesis of proline and arginine in Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Fu, Kai-Yun; Lü, Feng-Gong; Guo, Wen-Chao; Li, Guo-Qing

    2014-12-01

    Delta 1-pyrroline-5-carboxylate synthetase (P5CS) catalyzes the conversion of glutamate (Glu) to Glu semialdehyde (GSA). GSA spontaneously cyclizes to form P5C. P5C is then reduced to proline (Pro) or is converted to ornithine, the intermediate for arginine (Arg) biosynthesis. In the present study, a full-length Ldp5cs complementary DNA was cloned from the Colorado potato beetle Leptinotarsa decemlineata, a notorious insect defoliator of potato in most potato-growing regions of the world. Ldp5cs encodes a 792-amino-acid protein which shares high identity to homologues from other insect species. Quantitative reverse transcription polymerase chain reaction revealed that Ldp5cs was ubiquitously expressed in the eggs, first to fourth-instar larvae, wandering larvae, pupae and sexually mature adults. In the adults, Ldp5cs mRNA levels were higher in the fat body, foregut, midgut and hindgut, moderate in the ventral ganglion, lower in the thorax muscles, epidermis and Malpighian tubules. Two double-stranded RNAs (dsRNAs) (dsLdp5cs1 and dsLdp5cs2) targeting Ldp5cs were constructed and bacterially expressed. Ingestion during 3 consecutive days of dsLdp5cs1 or dsLdp5cs2 successfully silenced Ldp5cs, significantly reduced the contents of Pro and Arg in the hemolymph, decreased flight speed and shortened flight distance of the resulting adults. Furthermore, knocking down Ldp5cs significantly increased adult mortality. Thus, our results suggest that identified Ldp5cs encodes a functional P5CS enzyme that is involved in the biosynthesis of Pro and Arg in L. decemlineata. PMID:25450565

  2. Effects of Potato Cultivars on Some Physiological Processes of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae).

    PubMed

    Mardani-Talaee, Mozhgan; Zibaee, Arash; Nouri-Ganbalani, Gadir; Rahimi, Vahid; Tajmiri, Pejman

    2015-10-01

    Colorado potato beetle, Leptinotarsa decemlineata (Say), is an important pest of potato throughout the world. Here, the effects of six potato cultivars including 'Arinda,' 'Sprit,' 'Markiez,' 'Lotta,' 'Santae,' and 'Agria' were studied on nutritional indices, digestive enzymes, and some components involved in intermediary metabolism of L. decemlineata. Nutritional indices of the larvae and the adults were significantly different followed by feeding on various potato cultivars. The individuals fed on Agria showed the highest activity of digestive proteases although cathepsin B demonstrated same Activity on Santae and Lotta. The highest activity of α-amylase was found in the larvae fed on Arinda, but the adults demonstrated the highest amylolytic activities on Santae and Agria. Both larvae and adults of L. decemlineata fed on Santae revealed the highest α- and β-glucosidase activities. No significant differences were found in lipase activity of larvae, but the highest lipase activity was found in the adults fed on Santae. The highest activities of transaminases were found in the larvae and adults fed on the Agria except for γ-glutamyl transferase. In case of aldolase, the highest activities were observed in the larvae and adults fed on Santae and Sprit. The highest activities of lactate dehydrogenase were obtained in the larvae and adults fed on Santae. The highest amount of low-density lipophorin was measured in both individuals fed on Santae. There were no significant differences in high-density lipophorin amount of adults, but the highest value was found in the larvae fed on Agria. The lowest amounts of protein and triglyceride were observed in both individuals fed on Santae and Agria, respectively. These results revealed Santae is the most suitable cultivar for L. decemlineata based on digestion and intermediary metabolism findings, but Lotta is an unsuitable cultivar and could be considered for integrated pest management. PMID:26453726

  3. Growth and development of Colorado potato beetle larvae, Leptinotarsa decemlineata, on potato plants expressing the oryzacystatin II proteinase inhibitor.

    PubMed

    Cingel, Aleksandar; Savić, Jelena; Vinterhalter, Branka; Vinterhalter, Dragan; Kostić, Miroslav; Jovanović, Darka Šešlija; Smigocki, Ann; Ninković, Slavica

    2015-08-01

    Plant proteinase inhibitors (PIs) are attractive tools for crop improvement and their heterologous expression can enhance insect resistance in transgenic plants. PI oryzacystatin II (OCII), isolated from rice, showed potential in controlling pests that utilize cysteine proteinases for protein digestion. To evaluate the applicability of the OCII gene in enhancing plant defence, OCII-transformed potatoes were bioassayed for resistance to Colorado potato beetle (Leptinotarsa decemlineata Say). Feeding on transformed leaves of potato cultivars Desiree and Jelica significantly affected larval growth and development, but did not change mortality rates. During the L2 and L3 developmental stages larvae consumed the OCII-transformed foliage faster as compared to the nontransformed control. Also these larvae reached the prepupal stage (end of L4 stage) 2 days earlier than those fed on control leaves. However, the total amounts of consumed OCII-transformed leaves were up to 23% lower than of control, and the maximal weights of prepupal larvae were reduced by up to 18% as compared to larvae fed on nontransformed leaves. The reduction in insect fitness reported in this study in combination with other control measures, could lead to improved CPB resistance management in potato. PMID:25820664

  4. CHARACTERIZATION AND FUNCTIONAL STUDY OF A PUTATIVE JUVENILE HORMONE DIOL KINASE IN THE COLORADO POTATO BEETLE Leptinotarsa decemlineata (Say).

    PubMed

    Fu, Kai-Yun; Lü, Feng-Gong; Guo, Wen-Chao; Li, Guo-Qing

    2015-11-01

    Juvenile hormone diol kinase (JHDK) is an enzyme involved in JH degradation. In the present article, a putative JHDK cDNA (LdJHDK) was cloned from the Colorado potato beetle Leptinotarsa decemlineata. The cDNA consists of 814 bp, containing a 555 bp open reading frame encoding a 184 amino acid protein. LdJHDK reveals a high degree of identity to the previously reported insect JHDKs. It possesses three conserved purine nucleotide-binding elements, and contains three EF-hand motifs (helix-loop-helix structural domains). LdJHDK mRNA was mainly detected in hindgut and Malpighian tubules. Besides, a trace amount of LdJHDK mRNA was also found in thoracic muscles, brain-corpora cardiaca-corpora allata complex, foregut, midgut, ventral ganglia, fat body, epidermis, and hemocytes. Moreover, LdJHDK was expressed throughout all developmental stages. Within the first, second, and third larval instar, the expression levels of LdJHDK were higher just before and right after the molt, and were lower in the intermediate instar. In the fourth larval instar, the highest peak of LdJHDK occurred 56 h after ecdysis. Ingestion of double-stranded RNA (dsRNA) against LdJHDK successfully knocked down the target gene, increased JH titer, and significantly upregulated LdKr-h1 mRNA level. Knockdown of LdJHDK significantly impaired adult emergence. Thus, we provide a line of experimental evidence in L. decemlineata to support that LdJHDK encodes function protein involved in JH degradation. PMID:26280246

  5. Laboratory evaluation of five chitin synthesis inhibitors against the colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Karimzadeh, R; Hejazi, M J; Rahimzadeh Khoei, F; Moghaddam, M

    2007-01-01

    Results of laboratory experiments are reported that tested the effects of five chitin synthesis inhibitors, diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron. on second instars of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Crysomelidae), originally collected from potato fields of Bostanabaad, a town 66 km southeast of Tabriz, Iran. In bioassays, the larvae were fed potato leaves dipped in aqueous solutions containing chitin synthesis inhibitors. The mortalities and abnormalities of the treated larvae were recorded 72 hours after treatments. LC(50) values were 58.6, 69.6, 27.3, 0.79 and 81.4 mg ai/ L for diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron, respectively. Compared with phosalone, which is one of the common insecticides used for controlling this pest in Iran, lufenuron and hexaflumuron seem to be much more potent, and if they perform equally well in the field, they would be suitable candidates to be considered as reduced risk insecticides in management programs for L. decemlineata due to much wider margin of safety for mammals and considerably fewer undesirable environmental side effects. PMID:20345285

  6. Laboratory Evaluation of Five Chitin Synthesis Inhibitors Against the Colorado Potato Beetle, Leptinotarsa decemlineata

    PubMed Central

    Karimzadeh, R.; Hejazi, M. J.; Rahimzadeh Khoei, F.; Moghaddam, M.

    2007-01-01

    Results of laboratory experiments are reported that tested the effects of five chitin synthesis inhibitors, diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron. on second instars of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Crysomelidae), originally collected from potato fields of Bostanabaad, a town 66 km southeast of Tabriz, Iran. In bioassays, the larvae were fed potato leaves dipped in aqueous solutions containing chitin synthesis inhibitors. The mortalities and abnormalities of the treated larvae were recorded 72 hours after treatments. LC50 values were 58.6, 69.6, 27.3, 0.79 and 81.4 mg ai/ L for diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron, respectively. Compared with phosalone, which is one of the common insecticides used for controlling this pest in Iran, lufenuron and hexaflumuron seem to be much more potent, and if they perform equally well in the field, they would be suitable candidates to be considered as reduced risk insecticides in management programs for L. decemlineata due to much wider margin of safety for mammals and considerably fewer undesirable environmental side effects. PMID:20345285

  7. Dynamic spatial structure in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)

    NASA Astrophysics Data System (ADS)

    Blom, Paul Erik

    2001-07-01

    Integrating GPS with visual canopy surveys, a 1-m sampling support was used to explore within-field spatial organization of the Colorado potato beetle, Leptinotarsa decemlineata (Say), in potatoes (Solanum tuberosum (L.)). Georeferenced adult and large larvae counts were made in four ˜1.5 ha untreated potato fields during two seasons. Overwintered, immigrating adults established mean density trends, but spatial dependency (covariance structure) was not detected. Large larvae and F1 adults, in contrast, displayed covariance structure, accounting for up to ˜45% of the variation. Spatial patterns were related to population phenology, density, and mean density trends established during immigration. The stability of these patterns was tested in fields treated with a narrow perimeter (5.5 m) of systemic imidacloprid and in fields where all rows received the systemic. Perimeter treatment reduced mean densities with no effect on phenology. Immigrating adults established similar trends in both treatments, but F1 larval trends of the Perimeter treatments diverged from immigrant patterns. Immigrating adults had little to no spatial dependence (covariance structure), while covariance structure of F1 larval and F1 adult populations developed as density increased in both treatments. Yields increased at a proportion higher than the proportion of land area treated, but remained lower than the Whole-field treatment. Refinement of border width is discussed to optimize trade-offs between yield, quality, and long-term maintenance of susceptibility. To optimize perimeter width, locations of individual L. decemlineata overwintered adults were georeferenced within 24 hours of their immigration into a potato field in two field seasons. Distance was measured to the nearest field edge or to the field edge along a radial vector from the field center. The frequency of beetles captured within 1-m distance intervals was modeled as an exponential decay function of distance from the edge for

  8. Identification of carboxylesterase genes and their expression profiles in the Colorado potato beetle Leptinotarsa decemlineata treated with fipronil and cyhalothrin.

    PubMed

    Lü, Feng-Gong; Fu, Kai-Yun; Li, Qian; Guo, Wen-Chao; Ahmat, Tursun; Li, Guo-Qing

    2015-07-01

    Based on the Leptinotarsa decemlineata transcriptome dataset and the GenBank sequences, 70 novel carboxylesterases and 2 acetylcholinesterases were found. The 72 members belong to a multifunctional carboxylesterase/cholinesterase superfamily (CCE). A phylogenetic tree including the 72 LdCCEs and the CCEs from Tribolium castaneum, Drosophila melanogaster and Apis mellifera revealed that all CCEs fell into three main phylogenetic groups: dietary/detoxification, hormone/semiochemical processing, and neurodevelopmental classes. Numbers of L. decemlineata CCEs in the three classes were 52, 12 and 8, respectively. The dietary/detoxification class includes two clades: coleopteran xenobiotic metabolizing and α-esterase type CCEs. CCEs in the two clades have independently expanded in L. decemlineata. The hormone/semiochemical processing class has three clades: integument CCEs, β- and pheromone CCEs and juvenile hormone CCEs. Integument CCEs in L. decemlineata have also expanded. The neurodevelopmental CCEs are implicated the most ancient class, containing acetylcholinesterase, neuroligin, neurotactin, glutactin, gliotactin and others. Among the 70 novel CCE genes, KM220566, KM220530, KM220576, KM220527 and KM220541 were fipronil-inducible, and KM220578, KM220566, KM220542, KM220564, KM220561, KM220554, KM220527, KM220538 and KM220541 were cyhalothrin-inducible. They were the candidates involving in insecticide detoxification. Moreover, our results also provided a platform to understand the functions and evolution of L. decemlineata CCE genes. PMID:26071812

  9. [An increase in the immune system activity of the wax moth Galleria mellonella and of the Colorado potato beetle Leptinotarsa decemlineata under effect of organophosphorus insecticide].

    PubMed

    2013-01-01

    There has been performed evaluation of the effect of the organophosphorus insecticide (pirimifos-methyl) on some components of the insect immune response. The cellular (a change of the number of hemocytes and of intensity of incapsulation) and the humoral (a change of phenoloxidase activity) components of the immune response were studied in larvae of representatives of two orders--the Colorado potato beetle (Leptinotarsa decemlineata, Chrysomelidae, Coleoptera) and the wax moth (Galeriia mellonella, Pyralidae, Lepidoptera). The action of the insecticide has been found to lead to stimulation of immune reactions (an increase of phenoloxidase activities and of intensity of incapsulation, a rise of the number of hemocytes) at the contact treatment of both sublethal and the half-lethal doses of pirimifos-methyl. PMID:25509049

  10. [An increase in the immune system activity of the wax moth Galleria mellonella and of the Colorado potato beetle Leptinotarsa decemlineata under effect of organophosphorus insecticide].

    PubMed

    Dubovskiy, I M; Yaroslavtseva, O N; Kryukov, V Yu; Benkovskaya, G V; Glupov, V V

    2013-01-01

    There has been performed evaluation of the effect of the organophosphorus insecticide (pirimifos-methyl) on some components of the insect immune response. The cellular (a change of the number of hemocytes and of intensity of incapsulation) and the humoral (a change of phenoloxidase activity) components of the immune response were studied in larvae of representatives of two orders--the Colorado potato beetle (Leptinotarsa decemlineata, Chrysomelidae, Coleoptera) and the wax moth (Galeriia mellonella, Pyralidae, Lepidoptera). The action of the insecticide has been found to lead to stimulation of immune reactions (an increase of phenoloxidase activities and of intensity of incapsulation, a rise of the number of hemocytes) at the contact treatment of both sublethal and the half-lethal doses of pirimifos-methyl. PMID:25490848

  11. Insecticidal metabolites from the rhizomes of Veratrum album against adults of Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Aydin, Tuba; Cakir, Ahmet; Kazaz, Cavit; Bayrak, Neslihan; Bayir, Yasin; Taşkesenligil, Yavuz

    2014-08-01

    The dried rhizomes of Veratrum album were individually extracted with CHCl3 , acetone, and NH4 OH/benzene to test the toxic effects against the Colorado potato beetle, Leptinotarsa decemlineata, which is an important agricultural pest. Fifteen compounds in various amounts were isolated from the extracts using column and thin-layer chromatography. The chemical structures of 14 compounds were characterized as octacosan-1-ol (1), β-sitosterol (2), stearic acid (3), diosgenin (4), resveratrol (5), wittifuran X (6), oxyresveratrol (7), β-sitosterol 3-O-β-D-glucopyranoside (8), diosgenin 3-O-α-L-rhamnopyranosyl-(1 → 2)-β-D-glucopyronoside (9), oxyresveratrol 3-O-β-D-glucopyranoside (10), jervine (11), pseudojervine (13), 5,6-dihydro-1-hydroxyjervine (14), and saccharose (15) using UV, IR, MS, (1) H- and (13)C-NMR, and 2D-NMR spectroscopic methods. However, the chemical structure of 12, an oligosaccharide, has not fully been elucidated. Compounds 4, 6, 9, and 10 were isolated from V. album rhizomes for the first time in the current study. The toxic effects of three extracts (acetone, CHCl3 , and NH4 OH/benzene) and six metabolites, 2, 2+4, 5, 7, 8, and 11, were evaluated against the Colorado potato beetle. The assay revealed that all three extracts, and compounds 7, 8, and 11 exhibited potent toxic effects against this pest. This is the first report on the evaluation of the toxic effects of the extracts and secondary metabolites of V. album rhizomes against L. decemlineata. Based on these results, it can be concluded that the extracts can be used as natural insecticides. PMID:25146763

  12. IDENTIFICATION AND HORMONE INDUCTION OF PUTATIVE CHITIN SYNTHASE GENES AND SPLICE VARIANTS IN Leptinotarsa decemlineata (SAY).

    PubMed

    Shi, Ji-Feng; Mu, Li-Li; Guo, Wen-Chao; Li, Guo-Qing

    2016-08-01

    Chitin synthase (ChS) plays a critical role in chitin synthesis and excretion. In this study, two ChS genes (LdChSA and LdChSB) were identified in Leptinotarsa decemlineata. LdChSA contains two splicing variants, LdChSAa and LdChSAb. Within the first, second, and third larval instars, the mRNA levels of LdChSAa, LdChSAb, and LdChSB coincide with the peaks of circulating 20-hydroxyecdysone (20E) and juvenile hormone (JH). In vitro culture of midguts and an in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide stimulated the expression of the three LdChSs. Conversely, a reduction of 20E by RNA interference (RNAi) of an ecdysteroidogenesis gene LdSHD repressed the expression of these LdChSs, and ingestion of halofenozide by LdSHD RNAi larvae rescued the repression. Moreover, disruption of 20E signaling by RNAi of LdEcR, LdE75, LdHR3, and LdFTZ-F1 reduced the expression levels of these genes. Similarly, in vitro culture and an in vivo bioassay showed that exogenous JH and a JH analog methoprene activated the expression of the three LdChSs, whereas a decrease in JH by RNAi of a JH biosynthesis gene LdJHAMT downregulated these LdChSs. It seems that JH upregulates LdChSs at the early stage of each instar, whereas a 20E pulse triggers the transcription of LdChSs during molting in L. decemlineata. PMID:27030662

  13. Behavioural response of Colorado potato beetle (Leptinotarsa decemlineata) larvae to selected plant extracts.

    PubMed

    Gökçe, Ayhan; Isaacs, Rufus; Whalon, Mark E

    2006-11-01

    Potato leaves were treated with 2, 20 or 200 g kg(-1) solutions of extracts of five plant species collected in Turkey, and then exposed to larvae of Colorado potato beetle, Leptinotarsa decemlineata (Say). During the first 24 h of exposure, leaf consumption was not affected by 2 g kg(-1) extracts, whereas significantly more leaf tissue remained on leaves treated with 20 g kg(-1) extracts of Arctium lappa L., Bifora radians M Bieb, Humulus lupulus L. or Xanthium strumarium L. than on untreated control leaves. Feeding was not affected by the 20 g kg(-1) extract of Verbascum songaricum Schrenk ex Fisch & Mey. Extracts of all species at 200 g kg(-1) reduced larval feeding, with H. lupulus and X. strumarium providing the greatest protection. Observations of larval behaviour over the first 15 min of exposure to these extracts revealed that the interaction of beetles with leaf tissue was significantly affected by plant extracts. Feeding frequency was not affected by 2 g kg(-1) extracts but was reduced by all higher concentrations. Feeding was inhibited completely by 20 g kg(-1) of H. lupulus extract and reduced significantly compared with the controls by all other extracts. Suppression of feeding was caused by all extracts at 200 g kg(-1), with V. songaricum providing 91% reduction in feeding duration. Rejection behaviour, in which larvae did not return to the leaf after their interaction with it, was rare on 2 g kg(-1) extracts but seen in over 60% of larvae on 20 g kg(-1) extracts and over 80% on 200 g kg(-1) extracts. The present results demonstrate that these extracts have significant ability to protect potato leaves for up to 24 h by prevention of feeding behaviour by L. decemlineata. Further studies are needed to determine the potential of these plant extracts, or their active components, for use in biologically based pest management strategies. PMID:16886174

  14. Studies of two naturally occurring compounds which effect release of acetylcholine from synaptosomes. [Leptinotarsa decemlineata

    SciTech Connect

    Koenig, M.L.

    1985-01-01

    Two naturally occurring compounds which effect the release of neurotransmitter from synaptosomes have been purified to apparent homogeneity. Iotrochotin (IOT) isolated from wound exudate of the Caribbean purple bleeder sponge promotes release in a manner that is independent of the extracellular Ca/sup 2 +/ ion concentration. Leptinotarsin (LPT-d), a protein taken from hemolymph of the Colorado potato beetle, Leptinotarsa decemlineata, stimulates Ca/sup 2 +/-dependent release. IOT is slightly acidic and has a molecular weight of approximately 18 kD. (/sup 3/H)acetylcholine which has been introduced into synaptosomes as (/sup 3/H)choline can be released by IOT. The toxin releasable pool of labelled neurotransmitter is not depleted by depolarization of the synaptosomes with high potassium, and therefore seems to be primarily extravesicular. LPT-d is a larger protein (molecular weight = 45 kD) than IOT, and seems to effect primarily vesicular release by opening at least one type of presynaptic Ca/sup 2 +/ channel. The facilitatory effects of the toxin on synaptosomal release can be inhibited by inorganic Ca/sup 2 +/ channel antagonists, but are not generally affected by organic antagonists.

  15. Effect of insecticide management history on emergence phenology and neonicotinoid resistance in Leptinotarsa decemlineata (Coleoptera: Chrysomelidae).

    PubMed

    Huseth, A S; Groves, R L

    2013-12-01

    Emergence phenology and fitness attributes of several Colorado potato beetle, Leptinotarsa decemlineata (Say), populations were measured under field and greenhouse conditions. Anecdotal observations by producers and pest managers in many locations of the upper Midwest increasingly suggested that select populations of Colorado potato beetle were emerging over a longer period in the spring and were less sensitive to systemic neonicotinoids in cultivated potato. These changes in emergence phenology may be related to changes in systemic insecticide concentration over time. Specifically, a prolonged period of adult emergence in the spring increases the potential of low-dose chronic exposure to systemic neonicotinoid insecticides in potato. In 2010 and 2011, our objectives were twofold: 1) establish a common garden experiment to compare the emergence phenology of Colorado potato beetle populations uniquely managed with variable insecticide inputs, and 2) measure postdormancy fitness of emerged adult beetles from among these selected populations. Cumulative adult emergence was modeled with logistic regression. Results from this study found no clear evidence for direct relationships between phenology and management history or resistance. Differences in reproductive capacity, sex ratio, and body size were apparent in some instances. However, these results did not uniformly correspond to one specific form of potato pest management tested here. In this study, long-term reliance on systemic insecticides for Colorado potato beetle control did not serve as a strong predictor for variable life history for selected populations in Wisconsin. PMID:24498751

  16. Genetic relationships of introduced Colorado potato beetle Leptinotarsa decemlineata populations in Xinjiang, China.

    PubMed

    Zhang, Jing-Jie; Yang, Juan; Li, Ying-Chao; Liu, Ning; Zhang, Run-Zhi

    2013-10-01

    The Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), is an infamous invasive species worldwide that aggressively attacks potato and other Solanaceae crops. CPB was first found in China in 1993 and has since spread across 2.77 × 10(5) km(2) in Xinjiang Uygur Autonomous Region. To better understand genetic variation and migration patterns, we used seven polymorphic microsatellite loci to elucidate the genetic relationships and gene flow among 10 CPB populations across Xinjiang. (i) Overall low levels of genetic diversity were detected on the entire population in Xinjiang but most of the diversity was retained among populations during invasion. (ii) The mean pairwise FST was low (0.071 ± 0.043) among populations. The genetic differentiation was little (pairwise FST 0.038 ± 0.016) between the five interior populations (Wusu, Urumqi, Jimsar, Qitai and Mulei) and Tacheng population. The six populations might come from the same genetic group via Bayesian clustering and were closely related on a neighbor-joining tree. Combining the history data, the five interior populations may have originated from Tacheng. (iii) Gene flow was frequent, especially among the five interior populations. Individuals from the interior populations could be assigned to Tacheng at higher probabilities (means 0.518 ± 0.127) than vice versa (means 0.328 ± 0.074), suggesting that the beetle population has spread from the border to the interior in Xinjiang. PMID:23955877

  17. RNA interference suppression of the receptor tyrosine kinase Torso gene impaired pupation and adult emergence in Leptinotarsa decemlineata.

    PubMed

    Zhu, Tao-Tao; Meng, Qing-Wei; Guo, Wen-Chao; Li, Guo-Qing

    2015-12-01

    In Drosophila melanogaster prothoracic gland (PG) cells, Torso mediates prothoracicotropic hormone (PTTH)-triggered mitogen activated protein kinase (MAPK) pathway (consisting of four core components Ras, Raf, MEK and ERK) to stimulate ecdysteroidogenesis. In this study, LdTorso, LdRas, LdRaf and LdERK were cloned in Leptinotarsa decemlineata. The four genes were highly or moderately expressed in the larval prothoracic glands. At the first- to third-instar stages, their expression levels were higher just before and right after the molt, and were lower in the mid instars. At the fourth-instar stage, their transcript levels were higher before prepupal stage. RNA interference-mediated knockdown of LdTorso delayed larval development, increased pupal weight, and impaired pupation and adult emergence. Moreover, knockdown of LdTorso decreased the mRNA levels of LdRas, LdRaf and LdERK, repressed the transcription of two ecdysteroidogenesis genes (LdPHM and LdDIB), lowered 20E titer, and downregulated the expression of several 20E-response genes (LdEcR, LdUSP, LdHR3 and LdFTZ-F1). Furthermore, silencing of LdTorso induced the expression of a JH biosynthesis gene LdJHAMT, increased JH titer, and activated the transcription of a JH early-inducible gene LdKr-h1. Thus, our results suggest that Torso transduces PTTH-triggered MAPK signal to regulate ecdysteroidogenesis in the PGs in a non-drosophiline insect. PMID:26518287

  18. Characterizing Molecular Mechanisms of Imidacloprid Resistance in Select Populations of Leptinotarsa decemlineata in the Central Sands Region of Wisconsin.

    PubMed

    Clements, Justin; Schoville, Sean; Peterson, Nathan; Lan, Que; Groves, Russell L

    2016-01-01

    The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a major agricultural pest in the Central Sands region of Wisconsin. Imidacloprid, a neonicotinoid insecticide, has commonly been used for control of L. decemlineata since its registration in 1995. In the last 10 years, many field populations of L. decemlineata have begun to show increasing imidacloprid resistance. We studied resistance phenotype as a phenomenon that reduces neonicotinoid efficacy and has practical consequences for potato pest management. Although we have not observed complete field failure following the use of these products, multiple studies have demonstrated that the lethal concentration to kill 50% of the test organisms (LC50) in different field populations of L. decemlineata varies greatly which may suggest that resistance of L. decemlineata is heritable and involves genetic changes. An important challenge in understanding resistance is assessing the genetic mechanisms associated with resistance and classifying up-regulated genes that may be involved in combating an insecticide insult. In this study we uncovered trends in imidacloprid phenotypic response that have developed in the region by estimating the LC50 values among different field populations against a range of imidacloprid doses. The LC50 values collected in 2008-2011, and more recently in 2013 and 2014, show that some field locations remain susceptible to imidacloprid, while nearby fields (<100km) have developed high levels of resistance. We also sought to uncover potential mechanisms of resistance at each field location. We compiled a transcriptome for populations, characterized as phenotypically 'susceptible' and 'resistant', by isolating mRNA from adult beetles and analyzing gene expression level differences. Strong differences were observed in constituently up and down-regulated genes among different field populations. Most significantly, the up-regulation of 3 cytochrome p450s and a glutathione synthetase related

  19. Characterizing Molecular Mechanisms of Imidacloprid Resistance in Select Populations of Leptinotarsa decemlineata in the Central Sands Region of Wisconsin

    PubMed Central

    Clements, Justin; Schoville, Sean; Peterson, Nathan; Lan, Que; Groves, Russell L.

    2016-01-01

    The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a major agricultural pest in the Central Sands region of Wisconsin. Imidacloprid, a neonicotinoid insecticide, has commonly been used for control of L. decemlineata since its registration in 1995. In the last 10 years, many field populations of L. decemlineata have begun to show increasing imidacloprid resistance. We studied resistance phenotype as a phenomenon that reduces neonicotinoid efficacy and has practical consequences for potato pest management. Although we have not observed complete field failure following the use of these products, multiple studies have demonstrated that the lethal concentration to kill 50% of the test organisms (LC50) in different field populations of L. decemlineata varies greatly which may suggest that resistance of L. decemlineata is heritable and involves genetic changes. An important challenge in understanding resistance is assessing the genetic mechanisms associated with resistance and classifying up-regulated genes that may be involved in combating an insecticide insult. In this study we uncovered trends in imidacloprid phenotypic response that have developed in the region by estimating the LC50 values among different field populations against a range of imidacloprid doses. The LC50 values collected in 2008–2011, and more recently in 2013 and 2014, show that some field locations remain susceptible to imidacloprid, while nearby fields (<100km) have developed high levels of resistance. We also sought to uncover potential mechanisms of resistance at each field location. We compiled a transcriptome for populations, characterized as phenotypically ‘susceptible’ and ‘resistant’, by isolating mRNA from adult beetles and analyzing gene expression level differences. Strong differences were observed in constituently up and down-regulated genes among different field populations. Most significantly, the up-regulation of 3 cytochrome p450s and a glutathione synthetase

  20. Interactions between Population Density of the Colorado Potato Beetle, Leptinotarsa decemlineata, and Herbicide Rate for Suppression of Solanaceous Weeds

    PubMed Central

    Metzger, Chase; Boydston, Rick; Ferguson, Holly; Williams, Martin M.; Zack, Richard; Walsh, Doug

    2008-01-01

    The presence of volunteer potato Solanum tuberosum L., cutleaf nightshade, S. triflorum N., and hairy nightshade, S. physalifolium Rusby (Solanales: Solanaceae), throughout potato crop rotations can diminish the effectiveness of crop rotations designed to control disease and pest problems associated with growing potatoes. In greenhouse bioassays, larvae of the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) were placed in population densities of 0, 5, 10, and 40 per potato (cv. Russet Burbank) plant and 0, 5, 10, and 15 per cutleaf nightshade and hairy nightshade plant. Plants were treated with different rates of herbicides including fluroxypyr, prometryn, and mesotrione rates, and the physiological response on the potato plants was assessed by weighing shoot biomass 14 days after treatment. Consistently, across all bioassays, rate response functions were shifted as L. decemlineata density increased, such that less herbicide was required to achieve control. For instance, the herbicide rate needed to achieve 90% reduction in potato biomass was reduced from 62 to 0 g fluroxypyr per hectare and 711 to 0 g prometryn per hectare as L. decemlineata density was increased to 40 larvae per plant. Herbivory at higher L. decemlineata population densities and herbicides above certain rates resulted in large reductions in cutleaf and hairy nightshade biomass. Differences in rate response functions among L. decemlineata population densities indicated that L. decemlineata contributed to weed suppression in combination with herbicides. These data suggest that integrated weed management systems targeting volunteer potato, cutleaf nightshade, and hairy nightshade can be more effective when herbicide applications are combined with herbivory by naturally occurring Colorado potato beetles. PMID:20298117

  1. Interactions between population density of the Colorado potato beetle, Leptinotarsa decemlineata, and herbicide rate for suppression of solanaceous weeds.

    PubMed

    Metzger, Chase; Boydston, Rick; Ferguson, Holly; Williams, Martin M; Zack, Richard; Walsh, Doug

    2008-01-01

    The presence of volunteer potato Solanum tuberosum L., cutleaf nightshade, S. triflorum N., and hairy nightshade, S. physalifolium Rusby (Solanales: Solanaceae), throughout potato crop rotations can diminish the effectiveness of crop rotations designed to control disease and pest problems associated with growing potatoes. In greenhouse bioassays, larvae of the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) were placed in population densities of 0, 5, 10, and 40 per potato (cv. Russet Burbank) plant and 0, 5, 10, and 15 per cutleaf nightshade and hairy nightshade plant. Plants were treated with different rates of herbicides including fluroxypyr, prometryn, and mesotrione rates, and the physiological response on the potato plants was assessed by weighing shoot biomass 14 days after treatment. Consistently, across all bioassays, rate response functions were shifted as L. decemlineata density increased, such that less herbicide was required to achieve control. For instance, the herbicide rate needed to achieve 90% reduction in potato biomass was reduced from 62 to 0 g fluroxypyr per hectare and 711 to 0 g prometryn per hectare as L. decemlineata density was increased to 40 larvae per plant. Herbivory at higher L. decemlineata population densities and herbicides above certain rates resulted in large reductions in cutleaf and hairy nightshade biomass. Differences in rate response functions among L. decemlineata population densities indicated that L. decemlineata contributed to weed suppression in combination with herbicides. These data suggest that integrated weed management systems targeting volunteer potato, cutleaf nightshade, and hairy nightshade can be more effective when herbicide applications are combined with herbivory by naturally occurring Colorado potato beetles. PMID:20298117

  2. Suppression of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera:Chrysomelidae), on solanaceous crops with a copper-based fungicide

    SciTech Connect

    Hare, J.D.

    1984-08-01

    Field experiments were carried out to determine if a copper-based fungicide known to deter feeding by the Colorado potato beetle, Leptinotarsa decemlineata (Say), in the laboratory, could suppress the growth of L. decemlineata populations in the field when used regularly for plant disease protection on tomatoes, potatoes, and eggplants. Larval densities on plants treated with a fungicide formulated with copper hydroxide (Cu(OH)/sub 2/) were between 44 and 100% lower than on untreated control plants or plants treated with a more commonly used fungicide, mancozeb. The greatest reductions occurred on tomatoes, the least suitable host of the three for L. decemlineata growth and survival.

  3. [Insecticidal and immunosuppressive effect of ascomycete Cordyceps militaris on the larvae of the Colorado potato beetle Leptinotarsa decemlineata].

    PubMed

    Kriukov, V Iu; Iaroslavtseva, O N; Dubovskiĭ, I M; Tiurin, M V; Kriukova, N A; Glupov, V V

    2014-01-01

    The immunosuppressive and insecticidal activity of cultures of the entomopathogenic fungus Cordyceps militaris on the larvae of the Colorado potato beetle Leptinotarsa decemlineata has been established for the first time. It was found that the peroral effect of the fungal culture resulted in dose-dependent decrease in survival, delayed in development time and molting, decreases in the total hemocyt counts, increased activity of phenoloxidases in the hemolymph, and reduced activity of the enzyme in the cuticle, as well as increased sensitivity of larvae to the fungus Beauveria bassiana at the level of the synergistic effect. PMID:25731041

  4. Long-term reduction of cold hardiness following ingestion of ice-nucleating bacteria in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Costanzo dagger, J P.; Humphreys double dagger, T L.; Lee, R E.; Moore dagger, J B.; Lee double dagger, M R.; Wyman, J A.

    1998-12-01

    We investigated the effect of ingestion of ice-nucleating bacteria on the supercooling capacity and cold hardiness of the Colorado potato beetle (Leptinotarsa decemlineata Say), a freeze-intolerant species that overwinters as adults in shallow, terrestrial burrows. Ingestion of ice-nucleating bacteria (Enterobacter agglomerans, Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas syringae), fed on slices of potato tuber, caused an abrupt decrease in supercooling capacity. No change occurred in the supercooling capacity of beetles fed Escherichia coli, as this species lacks ice-nucleating activity. Ingestion rates showed that tubers treated with different species were equally palatable. During diapause induction beetles evacuated food from their guts, but nevertheless retained sufficient ice-nucleating bacteria to diminish supercooling. Beetles fed P. fluorescens and P. putida exhibited reduced supercooling even after an 8-wk exposure to simulated winter conditions. Furthermore, P. fluorescens was isolated 10-wk post-ingestion from diapausing beetles. Our data suggest that ingested bacteria may be retained by insects during entry into diapause and that the cold hardiness of candidate crop pests, such as L. decemlineata, may be reduced by feeding them ice-nucleating bacteria prior to winter diapause. PMID:12770317

  5. Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (Leptinotarsa decemlineata).

    PubMed

    Kaya, Murat; Baran, Talat; Erdoğan, Sevil; Menteş, Ayfer; Özüsağlam, Meltem Aşan; Çakmak, Yavuz Selim

    2014-12-01

    Chitins and chitosans obtained from larva and adult Colorado potato beetles (Leptinotarsa decemlineata) were physico-chemically characterized and differences between adults and larvae were identified. The dry weight chitin contents of the adult Colorado potato beetles and larvae were determined as 20% and 7%, respectively. The chitin produced chitosan yields of 72% from the adult Colorado potato beetles and 67% from the larvae. FTIR analysis showed that the isolated chitins were in the alpha form. Crystalline index values, determined by XRD, were 72% for larvae and 76% for adults. The degradation temperatures of the isolated chitin structures were measured by TGA, and this showed that the chitin from adult Colorado potato beetles had a more stable structure than that from the larvae. The surface morphologies of the isolated chitin and chitosan structures were analysed with SEM and it was revealed that these structures consisted of nanofibres. According to elemental analysis, the purity of chitin and chitosan from adults was greater than that from the larvae. The results of molecular analysis showed that the chitosans from adults (2.722 kDa) and larvae (2.676 kDa) of the Colorado potato beetle have low molecular weights. Antimicrobial and antioxidant activities of both adult and larval chitosans were determined. The adult potato beetle is more appropriate than the larvae as an alternative chitin source because of the fact that its dry weight chitin content, chitosan yield and purity of chitin are higher than those from the larvae, and its antimicrobial and antioxidant activities are also higher than those from the larvae. PMID:25491803

  6. Response of digestive cysteine proteinases from the Colorado potato beetle (Leptinotarsa decemlineata) and the black vine weevil (Otiorynchus sulcatus) to a recombinant form of human stefin A.

    PubMed

    Michaud, D; Nguyen-Quoc, B; Vrain, T C; Fong, D; Yelle, S

    1996-01-01

    The effects of the cystatins, human stefin A (HSA) and oryzacystatin I (OCI) on digestive cysteine proteinases of the Colorado potato beetle (CPB), Leptinotarsa decemlineata, and the black vine weevil (BVW), Otiorynchus sulcatus, were assessed using complementary inhibition assays, cystatin-affinity chromatography, and recombinant forms of the two inhibitors. For both insects, either HSA and OCI used in excess (10 or 20 microM) caused partial and stable inhibition of total proteolytic (azocaseinase) activity, but unlike for OCI the HSA-mediated inhibitions were significantly increased when the inhibitor was used in large excess (100 microM). As demonstrated by complementary inhibition assays, this two-step inhibition of the insect proteases by HSA was due to the differential inactivation of two distinct cysteine proteinase populations in either insect extracts, the rapidly (strongly) inhibited population corresponding to the OCI-sensitive fraction. After removing the cystatin-sensitive proteinases from CPB and BVW midgut extracts using OCI- (or HSA-) affinity chromatography, the effects of the insect "non-target" proteases on the structural integrity of the two cystatins were assessed. While OCI remained essentially stable, HSA was subjected to hydrolysis without the accumulation of detectable stable intermediates, suggesting the presence of multiple exposed cleavage sites sensitive to the action of the insect proteases on this cystatin. This apparent susceptibility of HSA to proteolytic cleavage may partially explain its low efficiency to inactivate the insect OCI-insensitive cysteine proteinases when not used in large excess. It could also have major implications when planning the use of cystatin-expressing transgenic plants for the control of coleopteran pests. PMID:8920105

  7. Northward range expansion requires synchronization of both overwintering behaviour and physiology with photoperiod in the invasive Colorado potato beetle (Leptinotarsa decemlineata).

    PubMed

    Lehmann, Philipp; Lyytinen, Anne; Piiroinen, Saija; Lindström, Leena

    2014-09-01

    Photoperiodic phenological adaptations are prevalent in many organisms living in seasonal environments. As both photoperiod and growth season length change with latitude, species undergoing latitudinal range expansion often need to synchronize their life cycle with a changing photoperiod and growth season length. Since adaptive synchronization often involves a large number of time-consuming genetic changes, behavioural plasticity might be a faster way to adjust to novel conditions. We compared behavioural and physiological traits in overwintering (diapause) preparation in three latitudinally different European Colorado potato beetle (Leptinotarsa decemlineata) populations reared under two photoperiods. Our aim was to study whether behavioural plasticity could play a role in rapid range expansion into seasonal environments. Our results show that while burrowing into the soil occurred in the southernmost studied population also under a non-diapause-inducing long photoperiod, the storage lipid content of these beetles was very low compared to the northern populations. However, similar behavioural plasticity was not found in the northern populations. Furthermore, the strongest suppression of energy metabolism was seen in pre-diapause beetles from the northernmost population. These results could indicate accelerated diapause preparation and possibly energetic adjustments due to temporal constraints imposed by a shorter, northern, growth season. Our results indicate that behavioural plasticity in burrowing may have facilitated initial range expansion of L. decemlineata in Europe. However, long-term persistence at high latitudes has required synchronization of burrowing behaviour with physiological traits. The results underline that eco-physiological life-history traits of insects, such as diapause, should be included in studies on range expansion. PMID:25012598

  8. Knockdown of a putative alanine aminotransferase gene affects amino acid content and flight capacity in the Colorado potato beetle Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Fu, Kai-Yun; Lü, Feng-Gong; Guo, Wen-Chao; Li, Guo-Qing

    2015-07-01

    Alanine aminotransferase (ALT) plays important physiological and biochemical roles in insect. In this study, a full-length Ldalt cDNA was cloned from Leptinotarsa decemlineata. It was ubiquitously expressed in the eggs, larvae, pupae and adults. In the adults, Ldalt mRNA was widely distributed in thorax muscles, fat body, midgut, foregut, hindgut, Malpighian tubules, ventral ganglion and epidermis, with the expression levels from the highest to the lowest. Two double-stranded RNAs (dsRNAs) (dsLdalt1 and dsLdalt2) targeting Ldalt were constructed and bacterially expressed. After adults fed on dsLdalt1- and dsLdalt2-immersed foliage for 3 day, Ldalt mRNA abundance was significantly decreased by 79.5 and 71.1 %, and ALT activities were significantly reduced by 64.5 and 67.6 %, respectively. Moreover, silencing Ldalt affected free amino acid contents. Lysine was decreased by 100.0 and 100.0 %, and arginine was reduced by 87.5 and 89.4 %, respectively, in the hemolymph from dsLdalt1- and dsLdalt2-ingested beetles, compared with control ones. In contrast, proline was increased by 88.7 and 96.4 %. Furthermore, ingestion of dsLdalt1 and dsLdalt2 significantly decreased flight speed, shortened flight duration time and flight distance. In addition, knocking down Ldalt significantly increased adult mortality. These data imply that LdALT plays important roles in amino acid metabolism and in flight in L. decemlineata. PMID:25868655

  9. Nuclear receptor ecdysone-induced protein 75 is required for larval-pupal metamorphosis in the Colorado potato beetle Leptinotarsa decemlineata (Say).

    PubMed

    Guo, W-C; Liu, X-P; Fu, K-Y; Shi, J-F; Lü, F-G; Li, G-Q

    2016-02-01

    20-hydroxyecdysone (20E) and juvenile hormone (JH) are key regulators of insect development. In this study, three Leptinotarsa decemlineata Ecdysone-induced protein 75 (LdE75) cDNAs (LdE75A, B and C) were cloned from L. decemlineata. The three LdE75 isoforms were highly expressed just before or right after each moult. Within the fourth larval instar, they showed a small rise and a big peak 40 and 80 h after ecdysis. The expression peaks of the three LdE75s coincided with the peaks of circulating 20E levels. In vitro midgut culture and in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide (Hal) enhanced LdE75 expression in the day 1 final larval instars. Conversely, a decrease in 20E by feeding a double-stranded RNA (dsRNA) against an ecdysteroidogenesis gene, Shade (LdSHD), repressed the expression of LdE75. Moreover, Hal upregulated the expression of the three LdE75s in LdSHD-silenced larvae. Thus, 20E pulses activate the transcription of LdE75s. Furthermore, ingesting dsE75-1 and dsE75-2 from a common fragment of the three isoforms successfully knocked down these LdE75s, and caused developmental arrest. Finally, knocking down LdE75s significantly repressed the transcription of three ecdysteroidogenesis genes, lowered the 20E titre and affected the expression of two 20E-response genes. Silencing LdE75s also induced the expression of a JH biosynthesis gene, increased JH titre and activated the transcription of a JH early-inducible gene. Thus, Ld E75s are required for larval-pupal metamorphosis and act mainly by modulating 20E and JH titres and mediating their signalling pathways. PMID:26542892

  10. Identification of ten mevalonate enzyme-encoding genes and their expression in response to juvenile hormone levels in Leptinotarsa decemlineata (Say).

    PubMed

    Li, Qian; Meng, Qing-Wei; Lü, Feng-Gong; Guo, Wen-Chao; Li, Guo-Qing

    2016-06-15

    The mevalonate pathway is responsible for the biosynthesis of many essential molecules important in insect development, reproduction, chemical communication and defense. Based on Leptinotarsa decemlineata transcriptome and genome data, we identified ten genes that encoded acetoacetyl-CoA thiolase (LdAACT1 and LdAACT2), hydroxymethylglutaryl (HMA)-CoA synthase (LdHMGS), HMG-CoA reductase (LdHMGR1 and LdHMGR2), mevalonate kinase (LdMevK), phospho-mevalonate kinase (LdPMK), mevalonate diphosphate decarboxylase (LdMDD), isopentenyl-diphosphate isomerase (LdIDI) and farnesyl pyrophosphate synthetase (LdFPPS). Nine of these genes (except for LdAACT1) were mainly expressed in the larval brain-corpora cardiaca-corpora allata complex, and adult ovary and testis. The 9 genes were transcribed at high levels right after each ecdysis, and at low levels in the mid instar. Therefore, the 9 genes were indicated to be involved in JH biosynthesis. Moreover, knockdown of a JH biosynthesis gene LdJHAMT to lower JH titer significantly downregulated the transcription of the 9 genes. Ingestion of JH to activate JH signaling also significantly suppressed the expression of the 9 genes. It appears that the accumulation of JH precursors in LdJHAMT RNAi larvae and a high JH titer in JH-fed specimens may cause negative feedbacks to repress the expression of the 9 mevalonate enzyme-encoding genes (excluding LdAACT1) to balance the enzyme quantity in L. decemlineata. PMID:26899871

  11. Hemocyte Responses of the Colorado Potato Beetle, Leptinotarsa decemlineata, and the Greater Wax Moth, Galleria mellonella, to the Entomopathogenic Nematodes, Steinernema feltiae and Heterorhabditis bacteriophora

    PubMed Central

    Ebrahimi, L.; Niknam, G.; Dunphy, G. B.

    2011-01-01

    Hemocyte encapsulation reactions of infective juveniles of two Iranian isolates of the entomopathogenic nematodes, Heterorhabditis bacteriophora Poinar (Rhabditina: Heterorhabditidae) and Steinernema feltiae Filipjev (Tylenchina: Steinernematidae), were compared in the economic pest Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), and the greater wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae). The former was a more responsive host than the latter and the hemocyte responses occurred sooner and more extensively. Complete encapsulation of some of the nematodes occurred by 4 h post injection for H. bacteriophora in both L. decemlineata and G. mellonella, and by 2 h pi for S. feltiae in L. decemlineata. The percentage of encapsulation from 24 h to 72 h pi in L. decemlineata was 86.2% for S. feltiae and 39% for H. bacteriophora. In G. mellonella there were no encapsulation or melanization responses against S. feltiae, whereas when H. bacteriophora was encapsulated and melanized (16.7%) the encapsulation level was lower than in L. decemlineata. This study may contribute to effectively selecting entomopathogenic nematode species active against significant economic pests based on the latter's cellular immune response. PMID:21867441

  12. RNAi suppression of the ryanodine receptor gene results in decreased susceptibility to chlorantraniliprole in Colorado potato beetle Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Guo, Wei-Yan; Yang, Yao; Lü, Feng-Gong; Lu, Wei-Ping; Li, Guo-Qing

    2014-04-01

    Leptinotarsadecemlineata is the most important pest in potato and causes serious yield loss each year. Chlorantraniliprole acts on insect ryanodine receptors (RyRs) and is among the most active compounds against L. decemlineata. Here we cloned and characterized a 15,792-bp full-length LdRyR cDNA that encoded a 5128-amino acid protein. LdRyR shares 85-92% amino acid similarities with other insect RyR homologues, and 59-61% similarities with those from Caenorhabditis elegans and Homo sapiens. All hallmarks of the RyR proteins are conserved in LdRyR. LdRyR has a MIR domain, two RIH domains, three SPRY domains, four copies of RyR domain and a RIH-associated domain in the N-terminus, and it possesses two consensus calcium ion-binding EF-hand motifs and six predicted transmembrane helices in the C-terminus. Temporal, spatial and tissue-specific expression patterns of LdRyR were evaluated. LdRyR expression level was increased constantly from egg to wandering stages, dropped in pupal stage and was increased again in the adult stage. It was widely expressed in the head, thorax and abdomen of day 3 fourth-instar larvae. Moreover, it was ubiquitously expressed in all inspected tissues including epidermis, foregut, midgut, ileum, rectum, fat body, ventral ganglia and Malpighian tubules in day 3 fourth-instar larvae. Dietary introduction of double-stranded RNA of LdRyR significantly reduced the mRNA levels of the target gene in the larvae and adults, respectively, and significantly decreased chlorantraniliprole-induced mortalities. Thus, our results suggested that LdRyR encoded a functional ryanodine receptor in L. decemlineata. PMID:24607641

  13. The influence of potato endophytes on Leptinotarsa decemlineata endosymbionts promotes mortality of the pest.

    PubMed

    Sorokan, Antonina V; Ben'kovskaya, Galina V; Maksimov, Igor' V

    2016-05-01

    Plants are exposed to pervasive attack by diverse attackers, such as pathogens and pests. But plants have their own endophytic microflora as well as the attacking insects. These microbiomes contact face to face in the nature. It has been found that the endophytic strain Bacillus subtilis 26D increases mortality of Colorado potato beetles, disturbing the development of insect microsymbionts Enterobacter ssp. and Acinetobacter ssp. PMID:26968115

  14. Sexual contact influences orientation to plant attractant in Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical signals emitted by insects and their hosts are important for sexual communication and feeding. Plant volatiles facilitate the location of suitable hosts for feeding and oviposition, and may moderate responses to sex and aggregation pheromones. While mating has been shown to moderate behav...

  15. Characterization of cell lines developed from the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae).

    PubMed

    Charpentier, G; Tian, L; Cossette, J; Léry, X; Belloncik, S

    2002-02-01

    In order to isolate new pathogens (viruses, microsporidia, etc.) or to evaluate the efficiency of some pathogens (serovarieties and mutants of Bacillus thuringiensis, fungi, etc.) in the control of Colorado potato beetle, an economically important pest, we established four cell lines from tissues of this insect. One was initiated from embryonated egg fragments in the M3 medium supplemented with 20% fetal bovine serum (FBS) and then transferred after several passages to the Ex-Cell 400 medium with 20% FBS. Another was initiated from larval hemocytes in Ex-Cell 400 with 5% FBS. Finally, two other cell lines were initiated from adult hemocytes: one in the Ex-Cell 400 with 20% FBS and 1% of lipid mixture and the other in the Ex-Cell 400 with 5% FBS only. These cell lines have been characterized by their morphology with light and electron microscopy, their karyotypes, cell growth, and isozyme analysis. Each cell line differed in morphologic, karyologic, growth, and isozyme patterns. The cell line initiated from embryonated eggs was growing slower than the three initiated from hemocytes. The cytotoxicity of solubilized crystal delta-endotoxins from different B. thuringiensis formulations (M-One, Trident, MYX-1806, Teknar-HPD, and Thuricide) and of destruxins, mycotoxins from Metarhizium anisopliae, was tested on these cell lines. They are sensitive to the solubilized toxins of some strains of B. thuringiensis (serovar. San Diego and serovar. tenebrionis) and to destruxins, and they can be used for the bioassay and detection of toxins and for the study of the mechanism of their action on coleopteran cells. PMID:11928998

  16. Knockdown of a nutrient amino acid transporter gene LdNAT1 reduces free neutral amino acid contents and impairs Leptinotarsa decemlineata pupation

    PubMed Central

    Fu, Kai-Yun; Guo, Wen-Chao; Ahmat, Tursun; Li, Guo-Qing

    2015-01-01

    A Leptinotarsa decemlineata SLC6 NAT gene (LdNAT1) was cloned. LdNAT1 was highly expressed in the larval alimentary canal especially midgut. LdNAT1 mRNA levels were high right after the molt and low just before the molt. JH and a JH analog pyriproxyfen activated LdNAT1 expression. RNAi of an allatostatin gene LdAS-C increased JH and upregulated LdNAT1 transcription. Conversely, silencing of a JH biosynthesis gene LdJHAMT decreased JH and reduced LdNAT1 expression. Moreover, 20E and an ecdysteroid agonist halofenozide repressed LdNAT1 expression, whereas a decrease in 20E by RNAi of an ecdysteroidogenesis gene LdSHD and disruption of 20E signaling by knockdown of LdE75 and LdFTZ-F1 activated LdNAT1 expression. Thus, LdNAT1 responded to both 20E and JH. Moreover, knockdown of LdNAT1 reduced the contents of cysteine, histidine, isoleucine, leucine, methionine, phenylalanine and serine in the larval bodies and increased the contents of these amino acids in the larval feces. Furthermore, RNAi of LdNAT1 inhibited insulin/target of rapamycin pathway, lowered 20E and JH titers, reduced 20E and JH signaling, retarded larval growth and impaired pupation. These data showed that LdNAT1 was involved in the absorption of several neutral amino acids critical for larval growth and metamorphosis. PMID:26657797

  17. Knockdown of a putative insulin-like peptide gene LdILP2 in Leptinotarsa decemlineata by RNA interference impairs pupation and adult emergence.

    PubMed

    Fu, Kai-Yun; Zhu, Tao-Tao; Guo, Wen-Chao; Ahmat, Tursun; Li, Guo-Qing

    2016-05-01

    Five insulin-like peptide LdILP genes were identified in Leptinotarsa decemlineata. All of them contained three exons and two introns, with three genes tandemly arrayed and well separated from the other two. Phylogenetic analysis revealed that the three LdILPs from three tandemly-arrayed genes grouped with TcILP1, whereas the other two resembled with TcILP2 and TcILP4 from Tribolium castaneum. Thus, the five LdILP genes were provisionally named LdILP1a, LdILP1b, LdILP1c, LdILP2 and LdILP4. LdILP2 was widely expressed in several tissues such as the brain-corpora cardiaca-corpora allata (BR-CC-CA) complex, gut and fat body. In contrast, LdILP1a and LdILP1b were only transcribed in BR-CC-CA, LdILP4 was in ovaries, and LdILP1c was in both BR-CC-CA and ovaries. Ingestion of double-stranded RNAs (dsRNAs) targeting LdILP2 (dsLdILP2-1 and dsLdILP2-2) specifically knocked down LdILP2 and upregulated the transcription of both LdInR and Ld4EBP, indicating insulin/insulin-like growth factor signaling pathway (IIS) was inhibited. Approximately 50% of the LdILP2 RNAi larvae did not normally pupate and about 50% of the LdILP2 RNAi pupae did not emerge. Moreover, silencing LdILP2 reduced the expression of a juvenile hormone (JH) biosynthesis gene, lowered JH titer and disturbed JH signaling. Finally, knocking down LdILP2 inhibited an ecdysteroidogenesis gene, decreased 20-hydroxyecdysone (20E) titer, and repressed the expression of two 20E-response genes LdHR3 and LdFTZ-F1. Thus, the IIS pathway is involved in larval-pupal metamorphosis by modification of both JH and 20E signaling in L. decemlineata. PMID:26812356

  18. Functions of nuclear receptor HR3 during larval-pupal molting in Leptinotarsa decemlineata (Say) revealed by in vivo RNA interference.

    PubMed

    Guo, Wen-Chao; Liu, Xin-Ping; Fu, Kai-Yun; Shi, Ji-Feng; Lü, Feng-Gong; Li, Guo-Qing

    2015-08-01

    Our previous results revealed that RNA interference-aided knockdown of Leptinotarsa decemlineata FTZ-F1 (LdFTZ-F1) reduced 20E titer, and impaired pupation. In this study, we characterized a putative LdHR3 gene, an early-late 20E-response gene upstream of LdFTZ-F1. Within the first, second and third larval instars, three expression peaks of LdHR3 occurred just before the molt. In the fourth (final) larval instar 80 h after ecdysis and prepupal stage 3 days after burying into soil, two LdHR3 peaks occurred. The LdHR3 expression peaks coincide with the peaks of circulating 20E level. In vitro midgut culture and in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide (Hal) enhanced LdHR3 expression in the final larval instars. Conversely, a decrease in 20E by feeding a double-stranded RNA (dsRNA) against an ecdysteroidogenesis gene Ldshd repressed the expression. Moreover, Hal rescued the transcript levels in the Ldshd-silenced larvae. Thus, 20E peaks activate the expression of LdHR3. Furthermore, ingesting dsRNA against LdHR3 successfully knocked down the target gene, and impaired pupation. Finally, knockdown of LdHR3 upregulated the transcription of three ecdysteroidogenesis genes (Ldphm, Lddib and Ldshd), increased 20E titer, and activated the expression of two 20E-response genes (LdEcR and LdFTZ-F1). Thus, LdHR3 functions in regulation of pupation in the Colorado potato beetle. PMID:26005119

  19. Target site insensitivity mutations in the AChE enzyme confer resistance to organophosphorous insecticides in Leptinotarsa decemlineata (Say).

    PubMed

    Malekmohammadi, M; Galehdari, H

    2016-01-01

    In the present study, we demonstrated the use and optimization of the tetra-primer ARMS-PCR procedure to detect and analyze the frequency of the R30K and I392T mutations in resistant field populations of CPB. The R30K mutation was detected in 72%, 84%, 52% and 64% of Bahar, Dehpiaz, Aliabad and Yengijeh populations, respectively. Overall frequencies of the I392T mutation were 12%, 8% and 16% of Bahar, Aliabad and Yengijeh populations, respectively. No I392T point mutation was found among samples from Dehpiaz field population. Moreover, only 31% and 2% of samples from the resistant field populations were homozygous for R30K and I392T mutations, respectively. No individual simultaneously had both I392T and S291G/R30K point mutations. The incidence of individuals with both S291G and R30K point mutations in the samples from Bahar, Dehpiaz, Aliabad, and Yengijeh populations were 31.5%, 44.7%, 41.6%, and 27.3% respectively. Genotypes determined by the tetra-primer ARMS-PCR method were consistent with those determined by PCR sequencing. There was no significant correlation between the mutation frequencies and resistance levels in the resistant populations, indicating that other mutations may contribute to this variation. Polymorphism in the partial L. decemlineata cDNA AChE gene Ldace2 of four field populations was identified by direct sequencing of PCR-amplified fragments. Among 45 novel mutations detected in this study, T29P mutation was found across all four field populations that likely contribute to the AChE insensitivity. Site-directed mutagenesis and protein expression experiments are needed for a more complete evaluation. PMID:26778439

  20. DIFFERENTIAL GENE EXPRESSION AND RESPIRATION RATES DURING THE PREDIAPAUSE PHASE OF THE COLORADO POTATO BEETLE, LEPTINOTARSA DECEMLINEATA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For an insect species to survive in any given geographic location, its life cycle must be tightly synchronized to all biotic and abiotic factors required for development and reproduction. Insects must also be able to survive predictable recurring periods of environmental stress, such as winter for ...

  1. Independent action between DvSnf7 RNA and Cry3Bb1 protein in southern corn rootworm, Diabrotica undecimpunctata howardi and Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Levine, Steven L; Tan, Jianguo; Mueller, Geoffrey M; Bachman, Pamela M; Jensen, Peter D; Uffman, Joshua P

    2015-01-01

    In recent years, corn rootworm (CRW)-resistant maize events producing two or more CRW-active Bt proteins have been commercialized to enhance efficacy against the target pest(s) by providing multiple modes of action (MoA). The maize hybrid MON 87411 has been developed that produces the CRW-active Cry3Bb1 Bt protein (hereafter Cry3Bb1) and expresses a RNAi-mediated MoA that also targets CRW. As part of an environmental risk assessment for MON 87411, the potential for an interaction between the CRW-active DvSnf7 RNA (hereafter DvSnf7) and Cry3Bb1 was assessed in 12-day diet incorporation bioassays with the southern corn rootworm (SCR, Diabrotica undecimpunctata howardi). The potential for an interaction between DvSnf7 and Cry3Bb1 was evaluated with two established experimental approaches. The first approach evaluated each substance alone and in combination over three different response levels. For all three response levels, observed responses were shown to be additive and not significantly different from predicted responses under the assumption of independent action. The second approach evaluated the potential for a fixed sub-lethal concentration of Cry3Bb1 to decrease the median lethal concentration (LC50) of DvSnf7 and vice-versa. With this approach, the LC50 value of DvSnf7 was not altered by a sub-lethal concentration of Cry3Bb1 and vice-versa. In addition, the potential for an interaction between the Cry3Bb1 and DvSnf7 was tested with Colorado potato beetle (CPB, Leptinotarsa decemlineata), which is sensitive to Cry3Bb1 but not DvSnf7. CPB assays also demonstrated that DvSnf7 does not alter the activity of Cry3Bb1. The results from this study provide multiple lines of evidence that DvSnf7 and Cry3Bb1 produced in MON 87411 have independent action. PMID:25734482

  2. Independent Action between DvSnf7 RNA and Cry3Bb1 Protein in Southern Corn Rootworm, Diabrotica undecimpunctata howardi and Colorado Potato Beetle, Leptinotarsa decemlineata

    PubMed Central

    Levine, Steven L.; Tan, Jianguo; Mueller, Geoffrey M.; Bachman, Pamela M.; Jensen, Peter D.; Uffman, Joshua P.

    2015-01-01

    In recent years, corn rootworm (CRW)-resistant maize events producing two or more CRW-active Bt proteins have been commercialized to enhance efficacy against the target pest(s) by providing multiple modes of action (MoA). The maize hybrid MON 87411 has been developed that produces the CRW-active Cry3Bb1 Bt protein (hereafter Cry3Bb1) and expresses a RNAi-mediated MoA that also targets CRW. As part of an environmental risk assessment for MON 87411, the potential for an interaction between the CRW-active DvSnf7 RNA (hereafter DvSnf7) and Cry3Bb1 was assessed in 12-day diet incorporation bioassays with the southern corn rootworm (SCR, Diabrotica undecimpunctata howardi). The potential for an interaction between DvSnf7 and Cry3Bb1 was evaluated with two established experimental approaches. The first approach evaluated each substance alone and in combination over three different response levels. For all three response levels, observed responses were shown to be additive and not significantly different from predicted responses under the assumption of independent action. The second approach evaluated the potential for a fixed sub-lethal concentration of Cry3Bb1 to decrease the median lethal concentration (LC50) of DvSnf7 and vice-versa. With this approach, the LC50 value of DvSnf7 was not altered by a sub-lethal concentration of Cry3Bb1 and vice-versa. In addition, the potential for an interaction between the Cry3Bb1 and DvSnf7 was tested with Colorado potato beetle (CPB, Leptinotarsa decemlineata), which is sensitive to Cry3Bb1 but not DvSnf7. CPB assays also demonstrated that DvSnf7 does not alter the activity of Cry3Bb1. The results from this study provide multiple lines of evidence that DvSnf7 and Cry3Bb1 produced in MON 87411 have independent action. PMID:25734482

  3. Chemical ecology of the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), and emerging control methods using semiochemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Colorado potato beetle (CPB) has been a major insect pest of potatoes for over 150 years and various control methods have been established to reduce its impact on potato fields. Pesticide use is currently the most widely used approach, although alternative methods are being developed. Amongst ...

  4. Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata)

    PubMed Central

    Seidel, Robin; Bohn, Holger Florian; Speck, Thomas

    2012-01-01

    Summary Plant surfaces showing hierarchical structuring are frequently found in plant organs such as leaves, petals, fruits and stems. In our study we focus on the level of cell shape and on the level of superimposed microstructuring, leading to hierarchical surfaces if both levels are present. While it has been shown that epicuticular wax crystals and cuticular folds strongly reduce insect attachment, and that smooth papillate epidermal cells in petals improve the grip of pollinators, the impact of hierarchical surface structuring of plant surfaces possessing convex or papillate cells on insect attachment remains unclear. We performed traction experiments with male Colorado potato beetles on nine different plant surfaces with different structures. The selected plant surfaces showed epidermal cells with either tabular, convex or papillate cell shape, covered either with flat films of wax, epicuticular wax crystals or with cuticular folds. On surfaces possessing either superimposed wax crystals or cuticular folds we found traction forces to be almost one order of magnitude lower than on surfaces covered only with flat films of wax. Independent of superimposed microstructures we found that convex and papillate epidermal cell shapes slightly enhance the attachment ability of the beetles. Thus, in plant surfaces, cell shape and superimposed microstructuring yield contrary effects on the attachment of the Colorado potato beetle, with convex or papillate cells enhancing attachment and both wax crystals or cuticular folds reducing attachment. However, the overall magnitude of traction force mainly depends on the presence or absence of superimposed microstructuring. PMID:22428097

  5. Chemical Ecology of the Colorado Potato Beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), and Potential for Alternative Control Methods.

    PubMed

    Sablon, Ludovic; Dickens, Joseph C; Haubruge, Éric; Verheggen, François J

    2012-01-01

    The Colorado potato beetle (CPB) has been a major insect pest to potato farming for over 150 years and various control methods have been established to reduce its impact on potato fields. Crop rotation and pesticide use are currently the most widely used approaches, although alternative methods are being developed. Here we review the role of various volatile and nonvolatile chemicals involved in behavior changes of CPB that may have potential for their control. First, we describe all volatile and nonvolatile chemicals involved in host plant localization and acceptance by CPB beetles, including glycoalcaloids and host plant volatiles used as kairomones. In the second section, we present the chemical signals used by CPB in intraspecific communication, including sex and aggregation pheromones. Some of these chemicals are used by natural enemies of CPBs to locate their prey and are presented in the third section. The last section of this review is devoted a discussion of the potential of some natural chemicals in biological control of CPB and to approaches that already reached efficient field applications. PMID:26466794

  6. Chemical Ecology of the Colorado Potato Beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), and Potential for Alternative Control Methods

    PubMed Central

    Sablon, Ludovic; Dickens, Joseph C.; Haubruge, Éric; Verheggen, François J.

    2012-01-01

    The Colorado potato beetle (CPB) has been a major insect pest to potato farming for over 150 years and various control methods have been established to reduce its impact on potato fields. Crop rotation and pesticide use are currently the most widely used approaches, although alternative methods are being developed. Here we review the role of various volatile and nonvolatile chemicals involved in behavior changes of CPB that may have potential for their control. First, we describe all volatile and nonvolatile chemicals involved in host plant localization and acceptance by CPB beetles, including glycoalcaloids and host plant volatiles used as kairomones. In the second section, we present the chemical signals used by CPB in intraspecific communication, including sex and aggregation pheromones. Some of these chemicals are used by natural enemies of CPBs to locate their prey and are presented in the third section. The last section of this review is devoted a discussion of the potential of some natural chemicals in biological control of CPB and to approaches that already reached efficient field applications. PMID:26466794

  7. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects.

    PubMed

    Shukla, Jayendra Nath; Kalsi, Megha; Sethi, Amit; Narva, Kenneth E; Fishilevich, Elane; Singh, Satnam; Mogilicherla, Kanakachari; Palli, Subba Reddy

    2016-07-01

    RNA interference (RNAi) has become a widely used reverse genetic tool to study gene function in eukaryotic organisms and is being developed as a technology for insect pest management. The efficiency of RNAi varies among organisms. Insects from different orders also display differential efficiency of RNAi, ranging from highly efficient (coleopterans) to very low efficient (lepidopterans). We investigated the reasons for varying RNAi efficiency between lepidopteran and coleopteran cell lines and also between the Colorado potato beetle, Leptinotarsa decemlineata and tobacco budworm, Heliothis virescens. The dsRNA either injected or fed was degraded faster in H. virescens than in L. decemlineata. Both lepidopteran and coleopteran cell lines and tissues efficiently took up the dsRNA. Interestingly, the dsRNA administered to coleopteran cell lines and tissues was taken up and processed to siRNA whereas the dsRNA was taken up by lepidopteran cell lines and tissues but no siRNA was detected in the total RNA isolated from these cell lines and tissues. The data included in this paper showed that the degradation and intracellular transport of dsRNA are the major factors responsible for reduced RNAi efficiency in lepidopteran insects. PMID:27245473

  8. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects

    PubMed Central

    Shukla, Jayendra Nath; Kalsi, Megha; Sethi, Amit; Narva, Kenneth E.; Fishilevich, Elane; Singh, Satnam; Mogilicherla, Kanakachari; Palli, Subba Reddy

    2016-01-01

    ABSTRACT RNA interference (RNAi) has become a widely used reverse genetic tool to study gene function in eukaryotic organisms and is being developed as a technology for insect pest management. The efficiency of RNAi varies among organisms. Insects from different orders also display differential efficiency of RNAi, ranging from highly efficient (coleopterans) to very low efficient (lepidopterans). We investigated the reasons for varying RNAi efficiency between lepidopteran and coleopteran cell lines and also between the Colorado potato beetle, Leptinotarsa decemlineata and tobacco budworm, Heliothis virescens. The dsRNA either injected or fed was degraded faster in H. virescens than in L. decemlineata. Both lepidopteran and coleopteran cell lines and tissues efficiently took up the dsRNA. Interestingly, the dsRNA administered to coleopteran cell lines and tissues was taken up and processed to siRNA whereas the dsRNA was taken up by lepidopteran cell lines and tissues but no siRNA was detected in the total RNA isolated from these cell lines and tissues. The data included in this paper showed that the degradation and intracellular transport of dsRNA are the major factors responsible for reduced RNAi efficiency in lepidopteran insects. PMID:27245473

  9. Evaluation of tag entanglement as a factor in harmonic radar studies of insect dispersal.

    PubMed

    Boiteau, G; Vincent, C; Meloche, F; Leskey, T C; Colpitts, B G

    2011-02-01

    The observation of insects and other small organisms entangled in the habitat after the addition of vertical or trailing electronic tags to their body has generated concerns on the suitability of harmonic radars to track the dispersal of insects. This study compared the walking behavior of adult Colorado potato beetle (Leptinotarsa decemlineata (Say) Chrysomelidae), plum curculio (Conotrachelus nenuphar (Herbst) Curculionidae), and western corn rootworm (Diabrotica virgifera virgifera (LeConte) Chrysomelidae) with and without vertical and or trailing tags in field plots or arenas. The frequency of the larger Colorado potato beetles crossing bare ground or grassy plots was unaffected by the presence of an 8 cm trailing harmonic radar tag. However, plum curculios and western corn rootworms, were either unable to walk with a 4 cm trailing tag (plum curculio) or displayed a reduced ability to successfully cross a bare ground arena. Our results revealed the significant impact of vegetation on successful insect dispersal, whether tagged or not. The vertical movement of these insects on stems, stalks, and tubes was also unaffected by the presence of vertical tags. Trailing tags had a significant negative effect on the vertical movement of the western corn rootworm. Results show that harmonic radar technology is a suitable method for studying the walking paths of the three insects with appropriate tag type and size. The nuisance factor generated by appropriately sized tags was small relative to that of vegetation. PMID:22182617

  10. Effectiveness of glues used for harmonic radar tag attachment and impact on survival and behavior of three insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of three cyanoacrylate glues to ensure a durable bond between the Colorado potato beetle, Leptinotarsa decemlineata (Say), the plum curculio, Conotrachelus nenuphar (Herbst) or the Corn Rootworms, (Western Corn Rootworm, Diabrotica virgifera virgifera LeConte and Northern Corn Rootworm, ...

  11. Monitoring diapause development in the Colorado potato beetle, Leptinotarsa decemlineata, under field conditions using molecular biomarkers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multiplex PCR protocol was developed using five diapause-regulated genes to monitor diapause development of the Colorado potato beetle under field conditions. A total of 870 beetles from the Red River Valley of North Dakota and Minnesota, USA, were screened for three consecutive years. Out of the ...

  12. CLONING OF THREE DESICCATION REGULATED TRANSCRIPTS FROM DIAPAUSING COLORADO POTATO BEETLE, LEPTINOTARSA DECEMLINEATA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clones of three desiccation up-regulated transcripts (LdDes-1, -2 & -3) were isolated from diapausing Colorado potato beetle using suppression subtractive hybridization. Northern blot analysis demonstrated that LdDes-1, -2 & -3 are highly up-regulated in diapausing beetles and in desiccated nondiap...

  13. Examining the molecular interaction between potato (Solanum tuberosum) and Colorado potato beetle Leptinotarsa decemlineata (Say)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colorado potato beetle (CPB) is a leading pest of solanaceous plants; however, little is known about its molecular interaction with the potato plant. Using the 11,421 EST array solanaceae microarray profiling services at TIGR, we have identified genes that are differentially expressed in potato leav...

  14. Inhibition of insect glutathione S-transferase (GST) by conifer extracts.

    PubMed

    Wang, Zhiling; Zhao, Zhong; Abou-Zaid, Mamdouh M; Arnason, John T; Liu, Rui; Walshe-Roussel, Brendan; Waye, Andrew; Liu, Suqi; Saleem, Ammar; Cáceres, Luis A; Wei, Qin; Scott, Ian M

    2014-12-01

    Insecticide synergists biochemically inhibit insect metabolic enzyme activity and are used both to increase the effectiveness of insecticides and as a diagnostic tool for resistance mechanisms. Considerable attention has been focused on identifying new synergists from phytochemicals with recognized biological activities, specifically enzyme inhibition. Jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) BSP.), balsam fir (Abies balsamea (L.) Mill.), and tamarack larch (Larix laricina (Du Roi) Koch) have been used by native Canadians as traditional medicine, specifically for the anti-inflammatory and antioxidant properties based on enzyme inhibitory activity. To identify the potential allelochemicals with synergistic activity, ethanol crude extracts and methanol/water fractions were separated by Sephadex LH-20 chromatographic column and tested for in vitro glutathione S-transferase (GST) inhibition activity using insecticide-resistant Colorado potato beetle, Leptinotarsa decemlineata (Say) midgut and fat-body homogenate. The fractions showing similar activity were combined and analyzed by ultra pressure liquid chromatography-mass spectrometry. A lignan, (+)-lariciresinol 9'-p-coumarate, was identified from P. mariana cone extracts, and L. laricina and A. balsamea bark extracts. A flavonoid, taxifolin, was identified from P. mariana and P. banksiana cone extracts and L. laricina bark extracts. Both compounds inhibit GST activity with taxifolin showing greater activity compared to (+)-lariciresinol 9'-p-coumarate and the standard GST inhibitor, diethyl maleate. The results suggested that these compounds can be considered as potential new insecticide synergists. PMID:25270601

  15. Efficacy of Piper (Piperaceae) extracts for control of common home and garden insect pests.

    PubMed

    Scott, I M; Jensen, H; Nicol, R; Lesage, L; Bradbury, R; Sánchez-Vindas, P; Poveda, L; Arnason, J T; Philogène, B J R

    2004-08-01

    Extracts from three species of the plant family Piperaceae, Piper nigrum [L.], Piper guineense [Schum & Thonn, and Piper tuberculatum [Jacq.], were tested for efficacy against insects from five orders. All three species contain isobutyl amides, plant secondary compounds that act as neurotoxins in insects. These materials are considered safe to mammals because Piper spp. were used for centuries for spice and medicinal purposes. When 24-h P. nigrum LC50 values were compared between common insect pests from eastern Canada and the northeastern United States, the most sensitive species in order of increasing lethal concentration were eastern tent caterpillar, Malacosoma americanum (F.) < European pine sawfly larvae, Neodiprion sertifer (Geoffroy) < spindle ermine moth larvae, Yponomeuta cagnagella [Hübner] < viburnum leaf beetle larvae, Pyrrhalta viburni [Paykull] < stripped cucumber beetle adults, Acalymma vittatum (F.) < Colorado potato beetle adults, Leptinotarsa decemlineata (Say) < Japanese beetle adults, Popillia japonica [Newman] < hairy chinch bug, Blissus leucopterus hirtis [Montandon]. The life stage tested was the point at which each species causes the greatest amount of damage to the host plant and the point at which most gardeners would likely choose to treat with a conventional synthetic insecticide. Greenhouse trials revealed that the pepper formulations also had a repellent activity, thus protecting plant leaves from 1) herbivory (lily leaf beetle, Lilioceris lilii [Scopoli], adults and larvae and stripped cucumber beetle adults) and 2) oviposition [European corn borer, Ostrinia nubilalis (Hübner)]. Combinations with other botanical extracts were additive at best in toxicity and repellent trials. Nontarget toxicity to beneficial invertebrates is a possibility because the P. nigrum LC50 for beneficial ladybird beetles was 0.2%. P. nigrum extracts can provide a reasonable level of control against lepidopteran and European pine sawfly larvae and also will

  16. Prey perception of predation risk: volatile chemical cues mediate non-consumptive effects of a predator on a herbivorous insect.

    PubMed

    Hermann, Sara L; Thaler, Jennifer S

    2014-11-01

    Predators can affect prey in two ways-by reducing their density (consumptive effects) or by changing their behavior, physiology or other phenotypic traits (non-consumptive effects). Understanding the cues and sensory modalities prey use to detect predators is critical for predicting the strength of non-consumptive effects and the outcome of predator-prey encounters. While predator-associated cues have been well studied in aquatic systems, less is known about how terrestrial prey, particularly insect larvae, detect their predators. We evaluated how Colorado potato beetle, Leptinotarsa decemlineata, larvae perceive predation risk by isolating cues from its stink bug predator, the spined soldier bug, Podisus maculiventris. When exposed to male "risk" predators that were surgically manipulated so they could hunt but not kill, beetles reduced feeding 29% compared to controls. Exposure to risk females caused an intermediate response. Beetles ate 24% less on leaves pre-exposed to predators compared to leaves never exposed to predators, indicating that tactile and visual cues are not required for the prey's response. Volatile odor cues from predators reduced beetle feeding by 10% overall, although male predators caused a stronger reduction than females. Finally, visual cues from the predator had a weak effect on beetle feeding. Because multiple cues appear to be involved in prey perception of risk, and because male and female predators have differential effects, beetle larvae likely experience tremendous variation in the information about risk from their local environment. PMID:25234373

  17. Single substitutions to closely related amino acids contribute to the functional diversification of an insect-inducible, positively selected plant cystatin.

    PubMed

    Rasoolizadeh, Asieh; Goulet, Marie-Claire; Sainsbury, Frank; Cloutier, Conrad; Michaud, Dominique

    2016-04-01

    A causal link has been reported between positively selected amino acids in plant cystatins and the inhibitory range of these proteins against insect digestive cysteine (Cys) proteases. Here we assessed the impact of single substitutions to closely related amino acids on the contribution of positive selection to cystatin diversification. Cystatin sequence alignments, while confirming hypervariability, indicated a preference for related amino acids at positively selected sites. For example, the non-polar residues leucine (Leu), isoleucine (Ile) and valine (Val) were shown to predominate at positively selected site 2 in the N-terminal region, unlike selected sites 6 and 10, where polar residues are preferred. The model cystatin SlCYS8 and single variants with Leu, Ile or Val at position 2 were compared with regard to their ability to bind digestive proteases of the coleopteran pest Leptinotarsa decemlineata and to induce compensatory responses in this insect. A functional proteomics procedure to capture target Cys proteases in midgut extracts allowed confirmation of distinct binding profiles for the cystatin variants. A shotgun proteomics procedure to monitor whole Cys protease complements revealed protease family specific compensatory responses in the insect, dependent on the variant ingested. Our data confirm the contribution of closely related amino acids to the functional diversity of positively selected plant cystatins in a broader structure/function context imposing physicochemical constraints to primary structure alterations. They also underline the complexity of protease/inhibitor interactions in plant-insect systems, and the challenges still to be met in order to harness the full potential of ectopically expressed protease inhibitors in crop protection. PMID:26833679

  18. Two genes become one: the genes encoding heterochromatin protein Su(var)3-9 and translation initiation factor subunit eIF-2gamma are joined to a dicistronic unit in holometabolic insects.

    PubMed Central

    Krauss, V; Reuter, G

    2000-01-01

    The Drosophila suppressor of position-effect variegation Su(var)3-9 encodes a heterochromatin-associated protein that is evolutionarily conserved. In contrast to its yeast and mammalian orthologs, the Drosophila Su(var)3-9 gene is fused with the locus encoding the gamma subunit of translation initiation factor eIF2. Synthesis of the two unrelated proteins is resolved by alternative splicing. A similar dicistronic Su(var)3-9/eIF-2gamma transcription unit was found in Clytus arietis, Leptinotarsa decemlineata, and Scoliopterix libatrix, representing two different orders of holometabolic insects (Coleoptera and Lepidoptera). In all these species the N terminus of the eIF-2gamma, which is encoded by the first two exons, is fused to SU(VAR)3-9. In contrast to Drosophila melanogaster, RT-PCR analysis in the two coleopteran and the lepidopteran species demonstrated the usage of a nonconserved splice donor site located within the 3' end of the SU(VAR)3-9 ORF, resulting in removal of the Su(var)3-9-specific stop codon from the mRNA and complete in-frame fusion of the SU(VAR)3-9 and eIF-2gamma ORFs. In the centipede Lithobius forficatus eIF-2gamma and Su(var)3-9 are unconnected. Conservation of the dicistronic Su(var)3-9/eIF-2gamma transcription unit in the studied insects indicates its origin before radiation of holometabolic insects and represents a useful tool for molecular phylogenetic analysis in arthropods. PMID:11063691

  19. Interactions between population density of the Colorado potato beetle, Leptinotarsa decemlineata, and herbicide rate for suppression of solanaceous weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of volunteer potatoes Solanum tuberosum L., cutleaf nightshade, S. triflorum N., and hairy nightshade, S. physalifolium Rusby (Solanales: Solanceae), throughout potato crop rotations can diminish the effectiveness of crop rotations designed to control disease and pest problems associate...

  20. Comparative ecophysiology of cold-tolerance-related traits: assessing range expansion potential for an invasive insect at high latitude.

    PubMed

    Lehmann, Philipp; Kaunisto, Sirpa; Koštál, Vladimir; Margus, Aigi; Zahradníčková, Helena; Lindström, Leena

    2015-01-01

    Survival at high latitude requires the capability to cope with seasonally imposed stress, such as low winter temperatures or large temperature fluctuations. The Colorado potato beetle, Leptinotarsa decemlineata, is an invasive pest of potato that has rapidly spread from low latitudes to higher latitudes. During the last 30 years, a decrease in range expansion speed is apparent in Europe. We use a comparative approach to assess whether this could be due to an inability of L. decemlineata to cope with the harsher winters encountered at high latitude, when compared to two native northern chrysomelid beetles with similar overwintering ecology. We investigated several cold-tolerance-related physiological traits at different time points during winter. Cold tolerance followed a latitudinal pattern; the northern species were more tolerant to short-term subzero temperatures than the invasive L. decemlineata. The other northern species, the knotgrass leaf beetle, Chrysolina polita, was found to tolerate internal freezing. Interestingly, the pattern for overwinter survival at 5°C was the opposite and higher in L. decemlineata than the northern species and could be related to behavioral differences between species in overwintering location selection and a potential physiological trade-off between tolerance to cold shock and to chronic cold exposure. Furthermore, while the northern species accumulated large amounts of different sugars and polyols with probable cryoprotectant functions, none were detected in L. decemlineata at high concentrations. This lack of cryoprotectant accumulation could explain the difference in cold tolerance between the species and also suggests that a lack of physiological capacity to tolerate low temperatures could slow further latitudinal range expansion of L. decemlineata. PMID:25860825

  1. Harmonic radar: assessing the impact of tag weight on walking behavior of Colorado potato beetle, plum curculio and corn rootworm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of electronic dipole tags on the walking behavior of three insects was determined using video tracking software. Results varied within and between the three species studied. The mean horizontal speed of the Colorado potato beetle, Leptinotarsa decemlineata (Say), was reduced by 8 percen...

  2. Emissive color preferences and temporal alteration of walking performance by pulsing lights in colorado potato beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Colorado potato beetle (CPB) Leptinotarsa decemlineata (Say 1824) is a diurnal insect that strongly relies on vision to guide its walk. In the present study, we investigated the orientation behavior of nondiapausing walking CPB in response to emissive colors produced by light emitting diodes (L...

  3. Integrated use of Beauveria bassiana and Bacillus thuringiensis serovar. tenebrionis for microbial biocontrol of Colorado potato beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews the potential for using insect pathogens to control the Colorado potato beetle, Leptinotarsa decemlineata, and summarizes results from nearly 10 years of research by USDA-ARS-PPRU scientists aimed at developing methods and strategies for integrated use of Bacillus thuringiensis an...

  4. Potato defense against Colorado potato beetle Leptinotarsa decemlineata (Say): microarray gene expression profiling of potato (Solanum tuberosum) by Colorado potato beetle infestation and regurgitant treatment of

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colorado potato beetle is the leading pest of solanaceous plants, however little is known about the interaction of this beetle with the potato plant. Using the 11,421 EST solanaceae microarry profiling services at TIGR we have begun investigating the genes that are differentially expressed by infest...

  5. Insertion of miniature subterminal inverted repeat-like elements in diapause-regulated genes in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the genomic structure of diapause-associated transcripts (DAT) -2 and -3 led to the isolation of four novel miniature subterminal inverted repeat-like elements (MSITE): Mild-1, -2, -3 and -4. Mild-1a is inserted within the first intron of diapause protein-1. Mild-1a is 284 bp in length, ...

  6. Isolation and characterization of a novel family (Mild-4) of miniature subterminal inverted repeat transposable element from the Colorado potato beetle, Leptinotarsa decemlineata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the genomic structure of DAT-2 and -3 led to the isolation of four novel families of miniature subterminal inverted repeat transposable elements (MSITE): Mild-1, -2, -3 and -4. Mild-1a is inserted within the first intron of diapause protein-1. Mild-1a is 284 bp in length, has a 14 bp tar...

  7. Host plant preference in Colorado potato beetle (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field and laboratory-choice tests were conducted to better understand host plant preference by the Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), in Virginia. In laboratory olfactometer studies, L. decemlineata preferred potato over both tomato and eggplant foli...

  8. Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest insect.

    PubMed

    Piiroinen, Saija; Lyytinen, Anne; Lindström, Leena

    2013-02-01

    Adaptation to stressful environments is one important factor influencing species invasion success. Tolerance to one stress may be complicated by exposure to other stressors experienced by the preceding generations. We studied whether parental temperature stress affects tolerance to insecticide in the invasive Colorado potato beetle Leptinotarsa decemlineata. Field-collected pyrethroid-resistant beetles were reared under either stressful (17°C) or favourable (23°C) insecticide-free environments for three generations. Then, larvae were exposed to pyrethroid insecticides in common garden conditions (23°C). Beetles were in general tolerant to stress. The parental temperature stress alone affected beetles positively (increased adult weight) but it impaired their tolerance to insecticide exposure. In contrast, offspring from the favourable temperature regime showed compensatory weight gain in response to insecticide exposure. Our study emphasizes the potential of cross-generational effects modifying species stress tolerance. When resistant pest populations invade benign environments, a re-application of insecticides may enhance their performance via hormetic effects. In turn, opposite effects may arise if parental generations have been exposed to temperature stress. Thus, the outcome of management practices of invasive pest species is difficult to predict unless we also incorporate knowledge of the evolutionary and recent (preceding generations) stress history of the given populations into pest management. PMID:23467574

  9. Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest insect

    PubMed Central

    Piiroinen, Saija; Lyytinen, Anne; Lindström, Leena

    2013-01-01

    Adaptation to stressful environments is one important factor influencing species invasion success. Tolerance to one stress may be complicated by exposure to other stressors experienced by the preceding generations. We studied whether parental temperature stress affects tolerance to insecticide in the invasive Colorado potato beetle Leptinotarsa decemlineata. Field-collected pyrethroid-resistant beetles were reared under either stressful (17°C) or favourable (23°C) insecticide-free environments for three generations. Then, larvae were exposed to pyrethroid insecticides in common garden conditions (23°C). Beetles were in general tolerant to stress. The parental temperature stress alone affected beetles positively (increased adult weight) but it impaired their tolerance to insecticide exposure. In contrast, offspring from the favourable temperature regime showed compensatory weight gain in response to insecticide exposure. Our study emphasizes the potential of cross-generational effects modifying species stress tolerance. When resistant pest populations invade benign environments, a re-application of insecticides may enhance their performance via hormetic effects. In turn, opposite effects may arise if parental generations have been exposed to temperature stress. Thus, the outcome of management practices of invasive pest species is difficult to predict unless we also incorporate knowledge of the evolutionary and recent (preceding generations) stress history of the given populations into pest management. PMID:23467574

  10. Insect Allergy.

    PubMed

    Lee, Hobart; Halverson, Sara; Mackey, Regina

    2016-09-01

    Insect bites and stings are common. Risk factors are mostly associated with environmental exposure. Most insect bites and stings result in mild, local, allergic reactions. Large local reactions and systemic reactions like anaphylaxis are possible. Common insects that bite or sting include mosquitoes, ticks, flies, fleas, biting midges, bees, and wasps. The diagnosis is made clinically. Identification of the insect should occur when possible. Management is usually supportive. For anaphylaxis, patients should be given epinephrine and transported to the emergency department for further evaluation. Venom immunotherapy (VIT) has several different protocols. VIT is highly effective in reducing systemic reactions and anaphylaxis. PMID:27545732

  11. Insect Keepers

    ERIC Educational Resources Information Center

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  12. Incredible Insects.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1989-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. Contents are organized into the following sections: (1) "What Makes an Insect an Insect?," including…

  13. Insect Phylogenomics

    PubMed Central

    Behura, Susanta K.

    2015-01-01

    With the advent of next-generation sequencing methods, phylogenetics has taken a new turn in the recent years. Phylogenomics, the integration of phylogenetics with genome data, has emerged as a powerful approach to study systematics and evolution of species. Recently, breakthrough researches employing phylogenomic tools have provided better insights into the timing and pattern of insect evolution. The next-generation sequencing methods are now increasingly used by entomologists to generate genomic and transcript sequences of various insect species and strains. These data provide opportunities for comparative genomics and large-scale multigene phylogenies of diverse lineages of insects. Phylogenomic investigations help us better understand systematic and evolutionary relationships of insect species that play important roles as herbivores, predators, detritivores, pollinators, or disease vectors. It is important that we critically assess the prospects and limitations of phylogenomic methods. In this review, I describe the current status, outline the major challenges, and remark on potential future applications of phylogenomic tools in studying insect systematics and evolution. PMID:25963452

  14. Insects: A nutritional alternative

    NASA Technical Reports Server (NTRS)

    Dufour, P. A.

    1981-01-01

    Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed.

  15. Insect evolution.

    PubMed

    Engel, Michael S

    2015-10-01

    It goes without saying that insects epitomize diversity, and with over a million documented species they stand out as one of the most remarkable lineages in the 3.5-billion-year history of life on earth (Figure 1). This reality is passé to even the layperson and is taken for granted in the same way none of us think much of our breathing as we go about our day, and yet insects are just as vital to our existence. Insects are simultaneously familiar and foreign to us, and while a small fraction are beloved or reviled, most are simply ignored. These inexorable evolutionary overachievers outnumber us all, their segmented body plan is remarkably labile, they combine a capacity for high rates of speciation with low levels of natural extinction, and their history of successes eclipses those of the more familiar ages of dinosaurs and mammals alike. It is their evolution - persisting over vast expanses of geological time and inextricably implicated in the diversification of other lineages - that stands as one of the most expansive subjects in biology. PMID:26439349

  16. Insect abatement system

    NASA Technical Reports Server (NTRS)

    Spiro, Clifford Lawrence (Inventor); Burnell, Timothy Brydon (Inventor); Wengrovius, Jeffrey Hayward (Inventor)

    1997-01-01

    An insect abatement system prevents adhesion of insect debris to surfaces which must be kept substantially free of insect debris. An article is coated with an insect abatement coating comprising polyorganosiloxane with a Shore A hardness of less than 50 and a tensile strength of less than 4 MPa. A method for preventing the adhesion of insect debris to surfaces includes the step of applying an insect abatement coating to a surface which must be kept substantially free of insect debris.

  17. Allergies to Insect Venom

    MedlinePlus

    ... The smell of food attracts these insects.  Use insect repellents and keep insecticide available. Treatment tips:  Venom immunotherapy (allergy shots to insect venom(s) is highly effective in preventing subsequent sting ...

  18. Insect transgenesis and the sterile insect technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The establishment of broadly applicable insect transgenesis systems will enable the analyses of gene function in diverse insect species. This will greatly increase our understanding of diverse aspects of biology so far not functionally addressable. Moreover, insect transgenesis will provide novel st...

  19. What Makes an Insect an Insect?

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides background information on characteristics common to all insects, activities, and student materials (ready-to-copy games, puzzles, coloring pages, worksheets, and/or mazes) which describe: how insects are classified; how they are different from other animals; and the main insect characteristics. Activities include recommended age levels,…

  20. Book Review: Insect Virology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viruses that infect insects have long been of interest both as a means for controlling insect pest populations in an environmentally safe manner, and also as significant threats to beneficial insects of great value, such as honey bees and silkworms. Insect viruses also have been of intrinsic intere...

  1. Insect-ual Pursuits.

    ERIC Educational Resources Information Center

    Mallow, David

    1991-01-01

    Explains how insects can be used to stimulate student writing. Describes how students can create their own systems to classify and differentiate insects. Discusses insect morphology and includes three detailed diagrams. The author provides an extension activity where students hypothesize about the niche of an insect based on its anatomy. (PR)

  2. [Assortative mating and maintenance of intrapopulation polymorphism in wild populations and laboratory cultures of insects].

    PubMed

    Benkovskaya, G V; Nikonorov, Yu M

    2015-01-01

    Speciation as a micro-evolutionary process begins with emerging of intraspecies differentiation, which is associated with establishment of reproductive isolation. One of intrinsic isolation factors ensuring physiological isolation is assortative mating. In course of long-term field observations in the Southern Urals (Republic of Bashkortostan) and prolonged laboratory experiments, we have detected assortative mating in populations of potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Three morphotypes were singled out by the extent of integument melanization, namely achromists (A), melanists (M), and intermediate type (I), and frequency of occurrence of these morphotypes imago pairs significantly deviated from random distribution, thus manifesting the assortative mating. Under in copulo conditions, mating between achromist males (A) and melanist females (M) where active choice belonged to males was not registered. In.laboratory experiments, in the sample of 40 artificially formed pairs, there were detected significant differences in longevity and fecundity of different morphotype imagoes. Achromists and melanists had significantly (almost two times) higher longevity as compared with intermediate type. Females of intermediate type were significantly more fecund in homonomous crossings than achromists and melanists. It is shown that pairs offspring also differs significantly in viability, with highest viability being characteristic for offspring from females of A- and I-type. The differences revealed are indicative of different reproductive strategies that exist in populations. In laboratory line S of house fly Musca domestica L. (Diptera: Muscidae) the presence of individuals with different reproductive strategies related to longevity is detected. Maximum longevity in inbred lines Sh28 (short living) and L2 (long living), isolated from the line S, significantly differed almost twofold. In the line of short living flies, mass reproduction occurs

  3. Synthesis and Antifeedant Activity of Racemic and Optically Active Hydroxy Lactones with the p-Menthane System.

    PubMed

    Grudniewska, Aleksandra; Kłobucki, Marek; Dancewicz, Katarzyna; Szczepanik, Maryla; Gabryś, Beata; Wawrzeńczyk, Czesław

    2015-01-01

    Two racemic and two enantiomeric pairs of new δ-hydroxy-γ-lactones based on the p-menthane system were prepared from racemic and optically active cis- and trans-piperitols. The Johnson-Claisen rearrangement of the piperitols, epoxidation of the γδ-unsaturated esters, and acidic lactonization of the epoxy esters were described. The structures of the compounds were confirmed spectroscopically. The antifeedant activities of the hydroxy lactones and racemic piperitone were evaluated against three insect pests: lesser mealworm, Alphitobius diaperinus (Panzer); Colorado potato beetle, Leptinotarsa decemlineata (Say); and peach-potato aphid, Myzus persicae (Sulz.). The chemical transformation of piperitone by the introduction of a lactone moiety and a hydroxy group changed its antifeedant properties. Behavioral bioassays showed that the feeding deterrent activity depended on the insect species and the structure of the compounds. All hydroxy lactones deterred the settling of M. persicae. Among chewing insects, the highest sensitivity showed A. diaperinus adults. PMID:26132506

  4. Synthesis and Antifeedant Activity of Racemic and Optically Active Hydroxy Lactones with the p-Menthane System

    PubMed Central

    Grudniewska, Aleksandra; Kłobucki, Marek; Dancewicz, Katarzyna; Szczepanik, Maryla; Gabryś, Beata; Wawrzeńczyk, Czesław

    2015-01-01

    Two racemic and two enantiomeric pairs of new δ-hydroxy-γ-lactones based on the p-menthane system were prepared from racemic and optically active cis- and trans-piperitols. The Johnson-Claisen rearrangement of the piperitols, epoxidation of the γδ-unsaturated esters, and acidic lactonization of the epoxy esters were described. The structures of the compounds were confirmed spectroscopically. The antifeedant activities of the hydroxy lactones and racemic piperitone were evaluated against three insect pests: lesser mealworm, Alphitobius diaperinus (Panzer); Colorado potato beetle, Leptinotarsa decemlineata (Say); and peach-potato aphid, Myzus persicae (Sulz.). The chemical transformation of piperitone by the introduction of a lactone moiety and a hydroxy group changed its antifeedant properties. Behavioral bioassays showed that the feeding deterrent activity depended on the insect species and the structure of the compounds. All hydroxy lactones deterred the settling of M. persicae. Among chewing insects, the highest sensitivity showed A. diaperinus adults. PMID:26132506

  5. Insect Bites and Stings

    MedlinePlus

    Most insect bites are harmless, though they sometimes cause discomfort. Bee, wasp, and hornet stings and fire ant bites usually hurt. Mosquito and flea bites usually itch. Insects can also spread diseases. In the United States, ...

  6. Insects: An Interdisciplinary Unit

    ERIC Educational Resources Information Center

    Leger, Heather

    2007-01-01

    The author talks about an interdisciplinary unit on insects, and presents activities that can help students practice communication skills (interpersonal, interpretive, and presentational) and learn about insects with hands-on activities.

  7. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  8. Insects and Scorpions

    MedlinePlus

    ... gov . Workplace Safety and Health Topics Insects & Scorpions Bees, Wasps, and Hornets Fire Ants Scorpions Additional Resources ... to outdoor workers. Stinging or biting insects include bees, wasps, hornets, and fire ants. The health effects ...

  9. Ecophysiology and insect herbivory

    SciTech Connect

    Clancy, K.M.; Wagner, M.R.; Reich, P.B.

    1995-07-01

    The relationship of insect herbivory to conifer physiology is examined. Aspects of nutrient assimilation, nutrient distribution, water stress, and climatic change are correlated to defoliation by insects. Other factors examined include plant age, density, structure, soils, and plant genotype.

  10. Acoustic Monitoring of Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers, grain elevator managers, and food processors often sample grain for insect damaged kernels and numbers of live adult insects but these easily obtained measurements of insect levels do not provide reliable estimates of the typically much larger populations of internally feeding immature inse...

  11. Exploring Sound with Insects

    ERIC Educational Resources Information Center

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  12. Insects and Spiders.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of nine Audubon Nature Bulletins, providing teachers and students with informational reading on insects and spiders. The bulletins have these titles: What Good Are Insects, How Insects Benefit Man, Life of the Honey Bee, Ants and Their Fascinating Ways, Mosquitoes and Other Flies, Caterpillars, Spiders and Silk,…

  13. Insects and Others.

    ERIC Educational Resources Information Center

    Mills, Richard

    1984-01-01

    Several ideas for observing insects and soil animals in the classroom are provided. Also provided are: (1) procedures for making insect cages with milk cartons; (2) suggestions for collecting and feeding insects; and (3) techniques for collecting and identifying soil animals. (BC)

  14. Interdisciplinary Outdoor Education, Insects.

    ERIC Educational Resources Information Center

    Orsborn, Edward E.

    This manual is a teacher's resource and guide book describing activities for elementary students involving the collecting, killing, preserving, and identification of insects. Most activities relate to collecting and identifying, but activities involving terrariums and hatcheries, finding hidden insects, and insect trapping are also described.…

  15. Sunflower insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Like other annual crops, sunflowers are fed upon by a variety of insect pests capable of reducing yields. Though there are a few insects which are considered consistent or severe (e.g., sunflower moth, banded sunflower moth, red sunflower seed weevil), many more insects are capable of causing proble...

  16. InsectBase: a resource for insect genomes and transcriptomes.

    PubMed

    Yin, Chuanlin; Shen, Gengyu; Guo, Dianhao; Wang, Shuping; Ma, Xingzhou; Xiao, Huamei; Liu, Jinding; Zhang, Zan; Liu, Ying; Zhang, Yiqun; Yu, Kaixiang; Huang, Shuiqing; Li, Fei

    2016-01-01

    The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96,925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22,536 pathways of 78 insects, 678,881 untranslated regions (UTR) of 84 insects and 160,905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes. PMID:26578584

  17. InsectBase: a resource for insect genomes and transcriptomes

    PubMed Central

    Yin, Chuanlin; Shen, Gengyu; Guo, Dianhao; Wang, Shuping; Ma, Xingzhou; Xiao, Huamei; Liu, Jinding; Zhang, Zan; Liu, Ying; Zhang, Yiqun; Yu, Kaixiang; Huang, Shuiqing; Li, Fei

    2016-01-01

    The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96 925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22 536 pathways of 78 insects, 678 881 untranslated regions (UTR) of 84 insects and 160 905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes. PMID:26578584

  18. Insect Barcode Information System

    PubMed Central

    Pratheepa, Maria; Jalali, Sushil Kumar; Arokiaraj, Robinson Silvester; Venkatesan, Thiruvengadam; Nagesh, Mandadi; Panda, Madhusmita; Pattar, Sharath

    2014-01-01

    Insect Barcode Information System called as Insect Barcode Informática (IBIn) is an online database resource developed by the National Bureau of Agriculturally Important Insects, Bangalore. This database provides acquisition, storage, analysis and publication of DNA barcode records of agriculturally important insects, for researchers specifically in India and other countries. It bridges a gap in bioinformatics by integrating molecular, morphological and distribution details of agriculturally important insects. IBIn was developed using PHP/My SQL by using relational database management concept. This database is based on the client– server architecture, where many clients can access data simultaneously. IBIn is freely available on-line and is user-friendly. IBIn allows the registered users to input new information, search and view information related to DNA barcode of agriculturally important insects.This paper provides a current status of insect barcode in India and brief introduction about the database IBIn. Availability http://www.nabg-nbaii.res.in/barcode PMID:24616562

  19. Laboratory Evaluation of Isaria fumosorosea CCM 8367 and Steinernema feltiae Ustinov against Immature Stages of the Colorado Potato Beetle.

    PubMed

    Hussein, Hany M; Skoková Habuštová, Oxana; Půža, Vladimír; Zemek, Rostislav

    2016-01-01

    The Colorado potato beetle, Leptinotarsa decemlineata, has developed resistance to most registered pesticides and has become one of the most difficult insect pests to control. Development of new biopesticides targeting this pest might solve the resistance problem and contribute to sustainable crop production. Laboratory experiments were conducted to assess the efficacy of Isaria fumosorosea (syn. Paecilomyces fumosoroseus) strain CCM 8367 against L. decemlineata when applied alone or combined with the entomopathogenic nematode Steinernema feltiae. The last-instar larvae of the Colorado potato beetle showed the highest susceptibility to I. fumosorosea followed by pre-pupae and pupae. The median lethal concentration (LC50) was estimated to be 1.03×106 blastospores/ml. The strain CCM 8367 was more virulent, causing 92.6% mortality of larvae (LT50 = 5.0 days) compared to the reference strain Apopka 97, which caused 54.5% mortality (LT50 = 7.0 days). The combined application of the fungus with the nematodes increased the mortality up to 98.0%. The best results were obtained when S. feltiae was applied simultaneously with I. fumosorosea (LT50 = 2.0 days); later application negatively affected both the penetration rate and the development of the nematodes. We can conclude that the strain CCM 8367 of I. fumosorosea is a prospective biocontrol agent against immature stages of L. decemlineata. For higher efficacy, application together with an entomopathogenic nematode is recommended. PMID:27015633

  20. Genetic Nature, Stability, and Improved Virulence of Hybrids from Protoplast Fusion in Beauveria

    PubMed

    Couteaudier; Viaud; Riba

    1996-07-01

    Genetic improvement of two different strains of the entomopathogenic fungus Beauveria bassiana for more effective control of Ostrinia nubilalis and Leptinotarsa decemlineata was obtained by crosses with the insecticidal toxin-producing strain Beauveria sulfurescens. Protoplast fusion between diauxotrophic mutants resulted in the recovery of some stable prototrophic fusion products. The low levels of virulence of the wild type strain B. bassiana 28 isolated originally from L. decemlineata were enhanced both on L. decemlineata and O. nubilalis for one of the hybrids obtained (FP 8) from the cross B. bassiana 28xB. sulfurescens 2. Fusion product 25 obtained from the cross between B. sulfurescens and the highly pathogenic strain B. bassiana 147 showed a three-day reduction in the LT50 towards O. nubilalis. Southern blot hybridization with nine probe-enzyme combinations were conducted on genomic DNAs from the original wild strains, parental mutant strains, and fusion products. Additive banding patterns or unique banding pattern of either parental strain was observed in five hybrids, indicating their status as recombinant and/or partially diploid. Combination of RFLP markers indicative of both parental genomes was never observed with fusion product FP 25. The stability of the virulence following passage through insect-host and stability of molecular structure for the fusion products FP 8 and FP 25 suggest that asexual genetic recombination by protoplast fusion may provide an attractive method for the genetic improvement of biocontrol efficiency in entomopathogenic fungi. PMID:8661542

  1. Laboratory Evaluation of Isaria fumosorosea CCM 8367 and Steinernema feltiae Ustinov against Immature Stages of the Colorado Potato Beetle

    PubMed Central

    Hussein, Hany M.; Skoková Habuštová, Oxana; Půža, Vladimír; Zemek, Rostislav

    2016-01-01

    The Colorado potato beetle, Leptinotarsa decemlineata, has developed resistance to most registered pesticides and has become one of the most difficult insect pests to control. Development of new biopesticides targeting this pest might solve the resistance problem and contribute to sustainable crop production. Laboratory experiments were conducted to assess the efficacy of Isaria fumosorosea (syn. Paecilomyces fumosoroseus) strain CCM 8367 against L. decemlineata when applied alone or combined with the entomopathogenic nematode Steinernema feltiae. The last-instar larvae of the Colorado potato beetle showed the highest susceptibility to I. fumosorosea followed by pre-pupae and pupae. The median lethal concentration (LC50) was estimated to be 1.03×106 blastospores/ml. The strain CCM 8367 was more virulent, causing 92.6% mortality of larvae (LT50 = 5.0 days) compared to the reference strain Apopka 97, which caused 54.5% mortality (LT50 = 7.0 days). The combined application of the fungus with the nematodes increased the mortality up to 98.0%. The best results were obtained when S. feltiae was applied simultaneously with I. fumosorosea (LT50 = 2.0 days); later application negatively affected both the penetration rate and the development of the nematodes. We can conclude that the strain CCM 8367 of I. fumosorosea is a prospective biocontrol agent against immature stages of L. decemlineata. For higher efficacy, application together with an entomopathogenic nematode is recommended. PMID:27015633

  2. Sterile Insect Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter discusses the history of the development of quality control tchnology, the principles and philosophy of assessing insect quality, and the relative importance of the various parameters used to assess insect quality in the context of mass-rearing for the SIT. Quality control is most devel...

  3. Corazonin in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corazonin is a peptidergic neurohormone of insects which is expressed in neurosecretory neurons of the pars lateralis of the protocerebrum and transported via nervi corpus cardiaci in the storage lobes of the corpora cardiaca. This peptide occurs with a single isofomr in all insects studied so far,...

  4. Insects: Bugged Out!

    ERIC Educational Resources Information Center

    Piehl, Kathy

    2011-01-01

    Insects really need no introduction. They have lived on earth much longer than humans and vastly outnumber people and all other animal species combined. People encounter them daily in their houses and yards. Yet, when children want to investigate insects, books can help them start their explorations. "Paleo Bugs" carries readers back to the time…

  5. Insects and Bugs

    ERIC Educational Resources Information Center

    Sutherland, Karen

    2009-01-01

    They have been around for centuries. They sting, they bite. They cause intense itching or painful sores. They even cause allergic reactions and sometimes death. There are two types of insects that are pests to humans--those that sting and those that bite. The insects that bite do so with their mouths and include mosquitoes, chiggers, and ticks.…

  6. Sugarcane insect update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect are an important group of pests affecting sugarcane production. Agricultural consultants play an important role is assisting sugarcane farmers to choose the most appropriated means of managing damaging infestations of insects in their crop. In this presentation, information will be presented ...

  7. Effects on Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of controlled and modified atmospheres on insects is reviewed and summarized in this chapter. Traditionally, controlled and modified atmospheres are used to store and preserve fresh fruits and vegetables. The effects on insects and the potential of these treatments are secondary to the...

  8. Principal Areas of Insect Research

    ERIC Educational Resources Information Center

    Williams, Carroll M.

    1973-01-01

    Research for insect control has been quite complex. However, recent knowledge of using insect hormones against them has opened new vistas for producing insecticides which may be harmless to human population. Current areas of insect research are outlined. (PS)

  9. Mycetocyte symbiosis in insects.

    PubMed

    Douglas, A E

    1989-11-01

    1. Non-pathogenic microorganisms, known as mycetocyte symbionts, are located in specialized 'mycetocyte' cells of many insects that feed on nutritionally unbalanced or poor diets. The insects include cockroaches, Cimicidae and Lygaeidae (Heteroptera), the Homoptera, Anoplura, the Diptera Pupiparia, some formicine ants and many beetles. 2. Most mycetocyte symbionts are prokaryotes and a great diversity of forms has been described. None has been cultured in vitro and their taxonomic position is obscure. Yeasts have been reported in Cerambycidae and Anobiidae (Coleoptera) and a few planthoppers. They are culturable and those in anobiids have been assigned to the genus Torulopsis. 3. The mycetocyte cells may be associated with the gut, lie free in the abdominal haemocoel or be embedded in the fat body of the insect. The mycetocytes are large polyploid cells which rarely divide and the symbionts are restricted to their cytoplasm. 4. The mycetocyte symbionts are transmitted maternally from one insect generation to the next. In many beetles (Anobiidae, Cerambycidae, Chrysomelidae and cleonine Curculionidae), the microoganisms are smeared onto the eggs and consumed by the hatching larvae. In other insects, they are transferred from mycetocytes to oocytes in the ovary, a process known as transovarial transmission. The details of transmission in the different insect groups vary with the age of the mother (adult, larva or embryo) at which symbiont transfer to the ovary is initiated; whether isolated symbionts or intact mycetocytes are transferred; and the site of entry of symbionts to the egg (anterior, posterior or apolar). 5. Within an individual insect, the biomass of symbionts varies in a regular fashion with age, weight and sex of the insect. Suppression of symbiont growth rate and lysis of 'excess' microorganisms may contribute to the regulation of symbionts (including freshly-isolated preparations of unculturable forms) are used to investigate interactions between the

  10. Beneficial Insects and Insect Pollinators on Milkweed in South Georgia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pollinators are essential for the reproduction of more than two-thirds of the world’s crops, and beneficial insects play an important role in managing pest insects in agricultural farmscapes. These insects depend on nectar for their survival in these farmscapes. The flowers of tropical milkwe...

  11. Insects and climate change

    SciTech Connect

    Elias, S.A. )

    1991-09-01

    In this article the author describes some of the significant late glacial and Holocene changes that occurred in the Rocky Mountains, including the regional extirpation of certain beetle species. The fossil data presented here summarize what is known about regional insect responses to climate change in terms of species stability and geographic distribution. To minimize potential problems of species interactions (i.e., insect-host plant relationships, host-parasite relationships, and other interactions that tie a particular insect species' distribution to that of another organism), only predators and scavengers are discussed. These insects respond most rapidly to environmental changes, because for the most part they are not tied to any particular type of vegetation.

  12. Insect hemolymph clotting.

    PubMed

    Dushay, Mitchell S

    2009-08-01

    The clot's appearance in different large-bodied insects has been described, but until recently, little was known about any insect clot's molecular makeup, and few experiments could directly test its function. Techniques have been developed in Drosophila (fruit fly) larvae to identify clotting factors that can then be tested for effects on hemostasis, healing, and immunity. This has revealed unanticipated complexity in the hemostatic mechanisms in these larvae. While the clot's molecular structure is not yet fully understood, progress is being made, and the loss of clotting factors has been shown to cause subtle immune defects. The few similarities between coagulation in different insect species and life stages, and the current state of knowledge about coagulation in insects are discussed. PMID:19418022

  13. Feeding the insect industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article reports the use of insect colloidal artificial diets suitable for the rearing of economically important arthropods, such as Lygus lineolaris, Lygus hesperus, Coleomegilla maculata, and Phytoseiulus persimilis The different diets contain key nutrients such as proteins, carbohydrates, vit...

  14. Important Insect Pests of Fruit - Important Insect Pests of Nuts - Field Crop Insect Pests - Insect Pests of Vegetable Crops.

    ERIC Educational Resources Information Center

    Gesell, Stanley G.; And Others

    This document consists of four agriculture extension service publications from Pennsylvania State University. The titles are: (1) Important Insect Pests of Fruit; (2) Important Insect Pests of Nuts; (3) Field Crop Insect Pests; and (4) Insect Pests of Vegetable Crops. The first publication gives the hosts, injury, and description of 22 insect…

  15. Evolution of the Insects

    NASA Astrophysics Data System (ADS)

    Grimaldi, David; Engel, Michael S.

    2005-05-01

    This book chronicles the complete evolutionary history of insects--their living diversity and relationships as well as 400 million years of fossils. Introductory sections cover the living species diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections then explore the relationships and evolution of each order of hexapods. The volume also chronicles major episodes in the evolutionary history of insects from their modest beginnings in the Devonian and the origin of wings hundreds of millions of years before pterosaurs and birds to the impact of mass extinctions and the explosive radiation of angiosperms on insects, and how they evolved into the most complex societies in nature. Whereas other volumes focus on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Illustrated with 955 photo- and electron- micrographs, drawings, diagrams, and field photos, many in full color and virtually all of them original, this reference will appeal to anyone engaged with insect diversity--professional entomologists and students, insect and fossil collectors, and naturalists. David Grimaldi and Michael S. Engel have collectively published over 200 scientific articles and monographs on the relationships and fossil record of insects, including 10 articles in the journals Science, Nature, and Proceedings of the National Academy of Sciences. David Grimaldi is curator in the Division of Invertebrate Zoology, American Museum of Natural History and adjunct professor at Cornell University, Columbia University, and the City University of New York. David Grimaldi has traveled in 40 countries on 6 continents, collecting and studying recent species of insects and conducting fossil excavations. He is the author of Amber: Window to the Past (Abrams, 2003). Michael S. Engel is an assistant professor in the

  16. Exploring Insect Vision

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2005-01-01

    A fly is buzzing around in the kitchen. You sneak up on it with a flyswatter, but just as you get close to it, it flies away. What makes flies and other insects so good at escaping from danger? The fact that insects have eyesight that can easily detect moving objects is one of the things that help them survive. In this month's Science Shorts,…

  17. Insect--plant adaptations.

    PubMed

    Southwood, T R

    1984-01-01

    The adaptation of insects to plants probably commenced in the early Permian period, though most current associations will be more recent. A major burst of adaptation must have followed the rise of the Angiosperms in the Cretaceous period, though some particular associations are as recent as this century. Living plants form a large proportion of the potential food in most habitats, though insects have had to overcome certain general hurdles to live and feed on them. Insects affect the reproduction and survival of plants, and thus the diversity of plant secondary chemicals may have evolved as a response. Where an insect species has a significant effect on a plant species that is its only host, coevolution may be envisaged. A spectacular example is provided by Heliconius butterflies and passion flower vines, studied by L.E. Gilbert and others. But such cases may be likened to 'vortices in the evolutionary stream': most plant species are influenced by a range of phytophagous insects so that selection will be for general defences--a situation termed diffuse coevolution. Evidence is presented on recent host-plant shifts to illustrate both the restrictions and the flexibility in current insect-plant associations. PMID:6559112

  18. Insect immunology and hematopoiesis.

    PubMed

    Hillyer, Julián F

    2016-05-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology. PMID:26695127

  19. Insect bite reactions.

    PubMed

    Singh, Sanjay; Mann, Baldeep Kaur

    2013-01-01

    Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK) disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr) as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some serious adverse effects

  20. Enterococci in Insects

    PubMed Central

    Martin, Jonathan D.; Mundt, J. Orvin

    1972-01-01

    Enterococci were obtained from 213 of 403 insects cultured during a 14-month period, in numbers from 103 to 3 × 107/g of insect. Insects were taken only from nonurban, wild, and cultivated fields and woods. In species of insects carrying them, enterococci were not always present in every individual cultured, and often more than one species of enterococcus occurred within a species. Enterococci were obtained from certain insects taken in the field during the dormant season, suggesting their role as overwintering agents. They were generally present in species feeding on nectar, succulent plant parts, and on and ir forest litter, but not from insects feeding on less succulent leaves and stems. Streptococcus faecalis was recovered from 32%, Streptococcus faecium from 22.4%, and Streptococcus faecium var. casseliflavus from 43.5% of members of the 37 taxa of insects. S. faecalis and S. faecium var. casseliflavus exhibit a high percent of conformity to the properties published for them. The heterogeneity in properties of S. faecium is similar to that found for the species taken from plants. Many fail to grow in broth at 45 C or in broth containing 6.5% NaCl; 50% of the cultures ferment both melezitose and melibiose, and a few ferment neither sugar. The remainder ferment melibiose only. Failure to reduce methylene blue in milk by S. faecalis and S. faecium is correlated with the inability to ferment lactose. More than 93% of the cultures of S. faecalis digest casein in milk from the top downward, following the production of a soft, flowing curd. Because this property is not characteristic of S. faecalis taken from humans, the reaction in litmus milk is suggested as a means of differentiation between cultures of remote and innocent origin in nature and recent, human pollution. PMID:4628796

  1. Behavioral Immunity in Insects

    PubMed Central

    de Roode, Jacobus C.; Lefèvre, Thierry

    2012-01-01

    Parasites can dramatically reduce the fitness of their hosts, and natural selection should favor defense mechanisms that can protect hosts against disease. Much work has focused on understanding genetic and physiological immunity against parasites, but hosts can also use behaviors to avoid infection, reduce parasite growth or alleviate disease symptoms. It is increasingly recognized that such behaviors are common in insects, providing strong protection against parasites and parasitoids. We review the current evidence for behavioral immunity in insects, present a framework for investigating such behavior, and emphasize that behavioral immunity may act through indirect rather than direct fitness benefits. We also discuss the implications for host-parasite co-evolution, local adaptation, and the evolution of non-behavioral physiological immune systems. Finally, we argue that the study of behavioral immunity in insects has much to offer for investigations in vertebrates, in which this topic has traditionally been studied. PMID:26466629

  2. Insect Repellents: Protect Your Child from Insect Bites

    MedlinePlus

    ... Español Text Size Email Print Share Choosing an Insect Repellent for Your Child Page Content Article Body Mosquitoes , ... sunscreen needs to be reapplied often. Reactions to Insect Repellents If you suspect that your child is having ...

  3. Cognition in insects

    PubMed Central

    Webb, Barbara

    2012-01-01

    A traditional view of cognition is that it involves an internal process that represents, tracks or predicts an external process. This is not a general characteristic of all complex neural processing or feedback control, but rather implies specific forms of processing giving rise to specific behavioural capabilities. In this paper, I will review the evidence for such capabilities in insect navigation and learning. Do insects know where they are, or do they only know what to do? Do they learn what stimuli mean, or do they only learn how to behave? PMID:22927570

  4. Positive selection of digestive Cys proteases in herbivorous Coleoptera.

    PubMed

    Vorster, Juan; Rasoolizadeh, Asieh; Goulet, Marie-Claire; Cloutier, Conrad; Sainsbury, Frank; Michaud, Dominique

    2015-10-01

    Positive selection is thought to contribute to the functional diversification of insect-inducible protease inhibitors in plants in response to selective pressures exerted by the digestive proteases of their herbivorous enemies. Here we assessed whether a reciprocal evolutionary process takes place on the insect side, and whether ingestion of a positively selected plant inhibitor may translate into a measurable rebalancing of midgut proteases in vivo. Midgut Cys proteases of herbivorous Coleoptera, including the major pest Colorado potato beetle (Leptinotarsa decemlineata), were first compared using a codon-based evolutionary model to look for the occurrence of hypervariable, positively selected amino acid sites among the tested sequences. Hypervariable sites were found, distributed within -or close to- amino acid regions interacting with Cys-type inhibitors of the plant cystatin protein family. A close examination of L. decemlineata sequences indicated a link between their assignment to protease functional families and amino acid identity at positively selected sites. A function-diversifying role for positive selection was further suggested empirically by in vitro protease assays and a shotgun proteomic analysis of L. decemlineata Cys proteases showing a differential rebalancing of protease functional family complements in larvae fed single variants of a model cystatin mutated at positively selected amino acid sites. These data confirm overall the occurrence of hypervariable, positively selected amino acid sites in herbivorous Coleoptera digestive Cys proteases. They also support the idea of an adaptive role for positive selection, useful to generate functionally diverse proteases in insect herbivores ingesting functionally diverse, rapidly evolving dietary cystatins. PMID:26264818

  5. Protecting Yourself from Stinging Insects

    MedlinePlus

    ... at risk of being stung by flying insects (bees, wasps, and hornets) and fire ants. While most ... by several stinging insects, run to get away. (Bees release a chemical when they sting, which attracts ...

  6. Investigation--Insects!

    ERIC Educational Resources Information Center

    Fay, Janice

    2000-01-01

    Presents activities on insects for second grade students. In the first activity, students build a butterfly garden. In the second activity, students observe stimuli reactions with mealworms in the larval stage. Describes the assessment process and discusses the effects of pollution on living things. (YDS)

  7. Fluorescence in insects

    NASA Astrophysics Data System (ADS)

    Welch, Victoria L.; Van Hooijdonk, Eloise; Intrater, Nurit; Vigneron, Jean-Pol

    2012-10-01

    Fluorescent molecules are much in demand for biosensors, solar cells, LEDs and VCSEL diodes, therefore, considerable efforts have been expended in designing and tailoring fluorescence to specific technical applications. However, naturally occurring fluorescence of diverse types has been reported from a wide array of living organisms: most famously, the jellyfish Aequorea victoria, but also in over 100 species of coral and in the cuticle of scorpions, where it is the rule, rather than the exception. Despite the plethora of known insect species, comparatively few quantitative studies have been made of insect fluorescence. Because of the potential applications of natural fluorescence, studies in this field have relevance to both physics and biology. Therefore, in this paper, we review the literature on insect fluorescence, before documenting its occurrence in the longhorn beetles Sternotomis virescens, Sternotomis variabilis var. semi rufescens, Anoplophora elegans and Stellognatha maculata, the tiger beetles Cicindela maritima and Cicindela germanica and the weevil Pachyrrhynchus gemmatus purpureus. Optical features of insect fluorescence, including emitted wavelength, molecular ageing and naturally occurring combinations of fluorescence with bioluminescence and colour-producing structures are discussed.

  8. Insects. Thematic Unit.

    ERIC Educational Resources Information Center

    Gosnell, Kathee

    This book is a captivating whole-language thematic unit about the study of insects, relating it to our understanding of the past and our hopes for using our knowledge in the present to balance the ecosystem in the future. It contains a wide variety of lesson ideas and reproducible pages designed for use with intermediate students. At its core,…

  9. SOCIAL INSECT PHEROMONES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Social insects include the social Hymenoptera (Formicidae, ants; Apidae, bees; Vespidae, wasps) and Isoptera (Termitidae, termites). Social interactions are required for effective food retrieval, brood and queen care, regulation of caste (sexuals/workers), recognition and exclusion of non-nestmates,...

  10. People and Insects.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides: (1) background information on how insects affect human lives, both positively and negatively, and on integrated pest management strategies; (2) student activities; and (3) materials (ready-to-copy games, puzzles, coloring pages, worksheets, and/or mazes). Each activity includes an objective, recommended age level(s), subject area(s),…

  11. Insect mass production technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects provide a very promising alternative for the future production of animal protein. Their nutritional value in conjunction with their food conversion efficiency and low water requirements, make them a more sustainable choice for the production of food and animal origin. However, to realize the...

  12. Recycled Insect Models

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Meyer, Mary Ann

    2007-01-01

    This article presents an engaging activity in which high school students use a dichotomous key to guide the creation and classification of model insects from recycled plastic lids and containers. Besides teaching the use of a dichotomous key and the effect of evolutionary descent upon groupings of organisms, this activity focuses on an…

  13. Dispersal of forest insects

    NASA Technical Reports Server (NTRS)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  14. Irradiating insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a non-technical article focusing on phytosanitary uses of irradiation. In a series of interview questions, I present information on the scope of the invasive species problem and the contribution of international trade in agricultural products to the movement of invasive insects. This is foll...

  15. Corn Insect Pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, the major corn insect pests have been corn rootworms (northern and western), European corn borer, and black cutworm. Bt-corn hybrids are effective against most of these pests. However, Bt-corn hybrids are not effective against corn leaf aphid, corn root aphid, sap beetles, corn rootwor...

  16. Colour constancy in insects.

    PubMed

    Chittka, Lars; Faruq, Samia; Skorupski, Peter; Werner, Annette

    2014-06-01

    Colour constancy is the perceptual phenomenon that the colour of an object appears largely unchanged, even if the spectral composition of the illuminating light changes. Colour constancy has been found in all insect species so far tested. Especially the pollinating insects offer a remarkable opportunity to study the ecological significance of colour constancy since they spend much of their adult lives identifying and choosing between colour targets (flowers) under continuously changing ambient lighting conditions. In bees, whose colour vision is best studied among the insects, the compensation provided by colour constancy is only partial and its efficiency depends on the area of colour space. There is no evidence for complete 'discounting' of the illuminant in bees, and the spectral composition of the light can itself be used as adaptive information. In patchy illumination, bees adjust their spatial foraging to minimise transitions between variously illuminated zones. Modelling allows the quantification of the adaptive benefits of various colour constancy mechanisms in the economy of nature. We also discuss the neural mechanisms and cognitive operations that might underpin colour constancy in insects. PMID:24647930

  17. Radar cross section of insects

    NASA Astrophysics Data System (ADS)

    Riley, J. R.

    1985-02-01

    X-band measurements of radar cross section as a function of the angle between insect body axis and the plane of polarization are presented. A finding of particular interest is that in larger insects, maximum cross section occurs when the E-vector is perpendicular to the body axis. A new range of measurements on small insects (aphids, and planthoppers) is also described, and a comprehensive summary of insect cross-section data at X-band is given.

  18. Detection of insects in grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detecting insects hidden inside kernels of grain is important to grain buyers because internal infestations can result in insect fragments in products made from the grain, or, if the grain is stored before use, the insect population can increase and damage the grain further. In a study in the Unite...

  19. Insect Ferritins: typical or atypical?

    PubMed Central

    Pham, Daphne Q. D.; Winzerling, Joy J.

    2010-01-01

    Insects transmit millions of cases of disease each year, and cost millions of dollars in agricultural losses. The control of insect-borne diseases is vital for numerous developing countries, and the management of agricultural insect pests is a very serious business for developed countries. Control methods should target insect-specific traits in order to avoid non-target effects, especially in mammals. Since insect cells have had a billion years of evolutionary divergence from those of vertebrates, they differ in many ways that might be promising for the insect control field—especially, in iron metabolism because current studies have indicated that significant differences exist between insect and mammalian systems. Insect iron metabolism differs from that of vertebrates in the following respects. Insect ferritins have a heavier mass than mammalian ferritins. Unlike their mammalian counterparts, the insect ferritin subunits are often glycosylated and are synthesized with a signal peptide. The crystal structure of insect ferritin also shows a tetrahedral symmetry consisting of 12 heavy chain and 12 light chain subunits in contrast to that of mammalian ferritin that exhibits an octahedral symmetry made of 24 heavy chain and 24 light chain subunits. Insect ferritins associate primarily with the vacuolar system and serve as iron transporters—quite the opposite of the mammalian ferritins, which are mainly cytoplasmic and serve as iron storage proteins. This review will discuss these differences. PMID:20230873

  20. Insect maintenance and transmission.

    PubMed

    Kingdom, Heather

    2013-01-01

    Phytoplasmas are plant pathogens of huge economic importance due to responsibility for crop yield losses worldwide. Institutions around the world are trying to understand and control this yield loss at a time when food security is high on government agendas. In order to fully understand the mechanisms of phytoplasma infection and spread, more insect vector and phytoplasma colonies will need to be established for research worldwide. Rearing and study of these colonies is essential in the research and development of phytoplasma control measures. This chapter highlights general materials and methods for raising insect vector colonies and maintenance of phytoplasmas. Specific methods of rearing the maize leafhopper and maize bushy stunt phytoplasma and the aster leafhopper and aster yellows phytoplasma strain witches' broom are also included. PMID:22987405

  1. On quantifying insect movements

    SciTech Connect

    Wiens, J.A.; Crist, T.O. ); Milne, B.T. )

    1993-08-01

    We elaborate on methods described by Turchin, Odendaal Rausher for quantifying insect movement pathways. We note the need to scale measurement resolution to the study insects and the questions being asked, and we discuss the use of surveying instrumentation for recording sequential positions of individuals on pathways. We itemize several measures that may be used to characterize movement pathways and illustrate these by comparisons among several Eleodes beetles occurring in shortgrass steppe. The fractal dimension of pathways may provide insights not available from absolute measures of pathway configuration. Finally, we describe a renormalization procedure that may be used to remove sequential interdependence among locations of moving individuals while preserving the basic attributes of the pathway.

  2. Undergraduates' mental models about insect anatomy and insect life cycles

    NASA Astrophysics Data System (ADS)

    Diaz, Arlene Edith

    Educational studies focused on students' alternative conceptions have shown the importance of developing strategies to correct understanding. Identifying and comprehending student mental models are important since they may reflect alternate conceptions about scientific concepts. Mental models have been identified in various science education studies, but little is known about mental models undergraduates hold about insects. This research is significant because it identified mental models undergraduates have about insect anatomy and insect life cycles, exposed students to cognitive conflict by having them complete an online insect tutorial, and analyzed the effectiveness of this insect tutorial in correcting student understanding. An insect assessment was developed and administered pre- and post-instruction to probe students' mental models about insects. Different numbers of undergraduate students participated in different parts of the assessment; 276, 249, 166, and 58 students participated in the listing, drawing. definition, and life cycle parts of the assessment, respectively. The tutorial contained a variety of manipulated insect and non-insect images that challenged the students' understanding and generated cognitive conflict. This intervention guided students in replacing alternate conceptions with correct understanding. It was hypothesized that the tutorial would have a positive impact on student learning about insects. The results suggest that the tutorial had a positive impact on learning.

  3. [Protection against insects].

    PubMed

    Rudin, W

    2005-11-01

    Successful protection against haematophagous insects and ticks, especially in areas where transmission of diseases occurs, requires a consistent application of a combination of appropriate measures. However, this can never substitute a chemoprophylaxis. Which measures have to be used depends on the circumstances under which they have to work. Indoor, physical means such as mosquito-screens on doors and windows, air-conditioners, and bed nets can be used to keep the insects away. These measures can be supplemented or supported by insecticides used as knock-down sprays, by electrical evaporation or for the treatment of screens and bed nets. In the field, if it is not possible to avoid mosquito-areas during phases of activity, appropriate clothing and repellents must provide the protection. Bright, wide pants and shirts of dense weaving covering as much skin as bearable should be preferred. Repellents are sprays, lotions, milks or creams which are evenly applied to the skin to prevent insects from biting. They contain synthetic or natural active substances of substantially varying effectiveness. The gold standard since about 60 years is diethylbenzamine (DEET). There are a few other active substances with a lower risk of side effects, however, combined with a lower effectiveness mainly on people with a high attractiveness for mosquitoes. Products containing an extract of Eucalyptus citriodora provide the best protection amongst those with natural active substances. Wearing bracelets or necklaces treated with repellents, acoustic devices (buzzers), electrocuters, topical or systemic Vitamin B1 or eating garlic are useless measures to prevent insects from biting. PMID:16350532

  4. Interrogating an insect society

    PubMed Central

    Gadagkar, Raghavendra

    2009-01-01

    Insect societies such as those of ants, bees, and wasps consist of 1 or a small number of fertile queens and a large number of sterile or nearly sterile workers. While the queens engage in laying eggs, workers perform all other tasks such as nest building, acquisition and processing of food, and brood care. How do such societies function in a coordinated and efficient manner? What are the rules that individuals follow? How are these rules made and enforced? These questions are of obvious interest to us as fellow social animals but how do we interrogate an insect society and seek answers to these questions? In this article I will describe my research that was designed to seek answers from an insect society to a series of questions of obvious interest to us. I have chosen the Indian paper wasp Ropalidia marginata for this purpose, a species that is abundantly distributed in peninsular India and serves as an excellent model system. An important feature of this species is that queens and workers are morphologically identical and physiologically nearly so. How then does an individual become a queen? How does the queen suppress worker reproduction? How does the queen regulate the nonreproductive activities of the workers? What is the function of aggression shown by different individuals? How and when is the queen's heir decided? I will show how such questions can indeed be investigated and will emphasize the need for a whole range of different techniques of observation and experimentation. PMID:19487678

  5. Fatigue of insect cuticle.

    PubMed

    Dirks, Jan-Henning; Parle, Eoin; Taylor, David

    2013-05-15

    Many parts of the insect exoskeleton experience repeated cyclic loading. Although the cuticle of insects and other arthropods is the second most common natural composite material in the world, so far nothing is known about its fatigue properties, despite the fact that fatigue undoubtedly limits the durability of body parts in vivo. For the first time, we here present experimental fatigue data of insect cuticle. Using force-controlled cyclic loading, we determined the number of cycles to failure for hind legs (tibiae) and hind wings of the locust Schistocerca gregaria, as a function of the applied cyclic stress. Our results show that, although both are made from cuticle, these two body parts behave very differently. Wing samples showed a large fatigue range, failing after 100,000 cycles when we applied 46% of the stress needed for instantaneous failure [the ultimate tensile strength (UTS)]. Legs, in contrast, were able to sustain a stress of 76% of the UTS for the same number of cycles to failure. This can be explained by the difference in the composition and structure of the material, two factors that, amongst others, also affect the well-known behaviour of engineering composites. Final failure of the tibiae occurred via one of two different failure modes--propagation in tension or buckling in compression--indicating that the tibia is 'optimized' by evolution to resist both failure modes equally. These results are further discussed in relation to the evolution and normal use of these two body parts. PMID:23393276

  6. Escape behaviors in insects.

    PubMed

    Card, Gwyneth M

    2012-04-01

    Escape behaviors are, by necessity, fast and robust, making them excellent systems with which to study the neural basis of behavior. This is especially true in insects, which have comparatively tractable nervous systems and members who are amenable to manipulation with genetic tools. Recent technical developments in high-speed video reveal that, despite their short duration, insect escape behaviors are more complex than previously appreciated. For example, before initiating an escape jump, a fly performs sophisticated posture and stimulus-dependent preparatory leg movements that enable it to jump away from a looming threat. This newfound flexibility raises the question of how the nervous system generates a behavior that is both rapid and flexible. Recordings from the cricket nervous system suggest that synchrony between the activity of specific interneuron pairs may provide a rapid cue for the cricket to detect the direction of an approaching predator and thus which direction it should run. Technical advances make possible wireless recording from neurons while locusts escape from a looming threat, enabling, for the first time, a direct correlation between the activity of multiple neurons and the time-course of an insect escape behavior. PMID:22226514

  7. Edible insects are the future?

    PubMed

    van Huis, Arnold

    2016-08-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of low greenhouse gas emissions, high feed conversion efficiency, low land use, and their ability to transform low value organic side streams into high value protein products. More than 2000 insect species are eaten mainly in tropical regions. The role of edible insects in the livelihoods and nutrition of people in tropical countries is discussed, but this food source is threatened. In the Western world, there is an increasing interest in edible insects, and examples are given. Insects as feed, in particular as aquafeed, have a large potential. Edible insects have about the same protein content as conventional meat and more PUFA. They may also have some beneficial health effects. Edible insects need to be processed and turned into palatable dishes. Food safety may be affected by toxicity of insects, contamination with pathogens, spoilage during conservation and allergies. Consumer attitude is a major issue in the Western world and a number of strategies are proposed to encourage insect consumption. We discuss research pathways to make insects a viable sector in food and agriculture: an appropriate disciplinary focus, quantifying its importance, comparing its nutritional value to conventional protein sources, environmental benefits, safeguarding food safety, optimising farming, consumer acceptance and gastronomy. PMID:26908196

  8. Insect bite prevention.

    PubMed

    Moore, Sarah J; Mordue Luntz, Anne Jennifer; Logan, James G

    2012-09-01

    Protection from the bites of arthropod (insect and acarine) vectors of disease is the first line of defense against disease transmission and should be advised in all cases when traveling abroad. Details are described of the main approaches for the prevention of bites, including topical or skin repellents, impregnated clothing, bed nets, and spatial or aerial repellents and aerosols. The bionomics of the main arthropod vectors of disease are described along with photographic plates and tabulated advice to give the traveler. An in-depth treatment of the different protection methodologies provides an up-to-date overview of the technologies involved. PMID:22963776

  9. Aircraft anti-insect system

    NASA Technical Reports Server (NTRS)

    Spiro, Clifford Lawrence (Inventor); Fric, Thomas Frank (Inventor); Leon, Ross Michael (Inventor)

    1997-01-01

    Insect debris is removed from or prevented from adhering to insect impingement areas of an aircraft, particularly on an inlet cowl of an engine, by heating the area to 180.degree.-500.degree. C. An apparatus comprising a means to bring hot air from the aircraft engine to a plenum contiguous to the insect impingement area provides for the heating of the insect impingement areas to the required temperatures. The plenum can include at least one tube with a plurality of holes contained in a cavity within the inlet cowl. It can also include an envelope with a plurality of holes on its surface contained in a cavity within the inlet cowl.

  10. 1977 Kansas Field Crop Insect Control Recommendations.

    ERIC Educational Resources Information Center

    Brooks, Leroy; Gates, Dell E.

    This publication is prepared to aid producers in selecting methods of insect population management that have proved effective under Kansas conditions. Topics covered include insect control on alfalfa, soil insects attacking corn, insects attacking above-ground parts of corn, and sorghum, wheat, and soybean insect control. The insecticides…

  11. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture... Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence of insect feeding....

  12. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of insects is present on the portion of kernel....

  13. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture....2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of insect feeding. Metric Conversion Table...

  14. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of insects is present on the portion of kernel....

  15. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of insects is present on the portion of kernel....

  16. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture... Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence of insect feeding....

  17. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture....2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of insect feeding. Metric Conversion Table...

  18. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture... Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence of insect feeding....

  19. Hydrodynamics of insect spermatozoa

    NASA Astrophysics Data System (ADS)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  20. Environmental RNAi in herbivorous insects

    PubMed Central

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B. Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C.; Johnson, Steven; Meyer, Steve E.; Kerstetter, Randy A.; McNulty, Brian C.; Bolognesi, Renata; Heck, Gregory R.

    2015-01-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. PMID:25802407

  1. Plant Defense against Insect Herbivores

    PubMed Central

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010

  2. Polarization Imaging and Insect Vision

    ERIC Educational Resources Information Center

    Green, Adam S.; Ohmann, Paul R.; Leininger, Nick E.; Kavanaugh, James A.

    2010-01-01

    For several years we have included discussions about insect vision in the optics units of our introductory physics courses. This topic is a natural extension of demonstrations involving Brewster's reflection and Rayleigh scattering of polarized light because many insects heavily rely on optical polarization for navigation and communication.…

  3. Reader Survey for INSECT ALERTS.

    ERIC Educational Resources Information Center

    Miller, Mason E.; Sauer, Richard J.

    To determine what might be done to improve "Insect Alerts," which is a newsletter that carries "information on insect biology, abundance, activity and interpretation of control need," put out through the Michigan Cooperative Extension Service 26 weeks a year, a survey was conducted. A mail questionnaire was sent to all 120 county extension…

  4. RNAI: Future in insect management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA interference is a post-transcriptional, gene regulation mechanism found in virtually all plants and animals including insects. The demonstration of RNAi in insects and its successful use as a tool in the study of functional genomics opened the door to the development of a variety of novel, envir...

  5. Chickpea Ascochyta blight and insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early symptoms of Acochyta blight and insect damages were detected in the Paliuse region.This article informs chickpea scientists and growers about current disease and insect pest problems in the Palouse region. Ascochyta blight appeared in many chickpea fields and was severe in some fields. Insec...

  6. A Template for Insect Cryopreservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article is intended to update the reader on the progress made on insect embryo cryopreservation in the past 20 years and gives information for developing a protocol for cryopreserving insects by using a 2001 study as a template. The study used for the template is the cryopreservation of the Old...

  7. Eicosanoids mediate insect hemocyte migration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemocyte chemotaxis toward infection and wound sites is an essential component of insect defense reactions, although the biochemical signal mechanisms responsible for mediating chemotaxis in insect cells are not well understood. Here we report on the outcomes of experiments designed to test the hyp...

  8. Insect Immunity to Entomopathogenic Fungi.

    PubMed

    Lu, H-L; St Leger, R J

    2016-01-01

    The study of infection and immunity in insects has achieved considerable prominence with the appreciation that their host defense mechanisms share many fundamental characteristics with the innate immune system of vertebrates. Studies on the highly tractable model organism Drosophila in particular have led to a detailed understanding of conserved innate immunity networks, such as Toll. However, most of these studies have used opportunistic human pathogens and may not have revealed specialized immune strategies that have arisen through evolutionary arms races with natural insect pathogens. Fungi are the commonest natural insect pathogens, and in this review, we focus on studies using Metarhizium and Beauveria spp. that have addressed immune system function and pathogen virulence via behavioral avoidance, the use of physical barriers, and the activation of local and systemic immune responses. In particular, we highlight studies on the evolutionary genetics of insect immunity and discuss insect-pathogen coevolution. PMID:27131327

  9. Population fluctuation in phytophagous insects

    SciTech Connect

    Redfearn, A.; Pimm, S.L. )

    1994-06-01

    We examined how community interactions affect year-to-year population variability in three groups of phytophagous insects: British aphids and moths, and Canadian moths. We first examined how the number of host plant species on which a given phytophagous insect species feeds affects its population variability. Specialist insect species showed a weak tendency to be more variable than generalist species. We then examined how the number of species of parasitoids from which a given phytophagous insects species suffers affects its population variability. Species that are host to few parasitoid species showed a weak tendency to be more variable than species with many parsitoid species. These relationships also depend on other aspects of the life histories of the phytophagous insect species.

  10. The aerodynamics of insect flight.

    PubMed

    Sane, Sanjay P

    2003-12-01

    The flight of insects has fascinated physicists and biologists for more than a century. Yet, until recently, researchers were unable to rigorously quantify the complex wing motions of flapping insects or measure the forces and flows around their wings. However, recent developments in high-speed videography and tools for computational and mechanical modeling have allowed researchers to make rapid progress in advancing our understanding of insect flight. These mechanical and computational fluid dynamic models, combined with modern flow visualization techniques, have revealed that the fluid dynamic phenomena underlying flapping flight are different from those of non-flapping, 2-D wings on which most previous models were based. In particular, even at high angles of attack, a prominent leading edge vortex remains stably attached on the insect wing and does not shed into an unsteady wake, as would be expected from non-flapping 2-D wings. Its presence greatly enhances the forces generated by the wing, thus enabling insects to hover or maneuver. In addition, flight forces are further enhanced by other mechanisms acting during changes in angle of attack, especially at stroke reversal, the mutual interaction of the two wings at dorsal stroke reversal or wing-wake interactions following stroke reversal. This progress has enabled the development of simple analytical and empirical models that allow us to calculate the instantaneous forces on flapping insect wings more accurately than was previously possible. It also promises to foster new and exciting multi-disciplinary collaborations between physicists who seek to explain the phenomenology, biologists who seek to understand its relevance to insect physiology and evolution, and engineers who are inspired to build micro-robotic insects using these principles. This review covers the basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well

  11. Putative regulatory elements within the non-coding regions of Chrysomelidae Diapause Associated Transcript-1 (DAT-1) orthologs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop a more comprehensive understanding of diapause within Chrysomelidae, we are employing phylogenetic foot-printing to isolate and characterize the regulatory elements associated with the diapause-associated gene, DAT-1. Leptinotarsa decemlineata (Colorado potato beetle, CPB) DAT-1 has been ...

  12. Delayed efficacy of Beauveria bassiana foliar spray applications against Colorado potato beetle: impacts of number and timing of applications on larval and next-generation adult populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray programs comprising multiple or single foliar applications of the fungal pathogen Beauveria bassiana strain GHA (Bb) made during morning (AM) vs. evening (PM) hours were tested against Colorado potato beetle Leptinotarsa decemlineata (CPB) in small research plots of potatoes over multiple fiel...

  13. Improving efficacy of Beauveria bassiana foliar treatments against Colorado potato beetle via manipulation of spray-application parameters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of hydraulic spray pressure and sprayer configuration on efficacy of foliar applications of B. bassiana against Leptinotarsa decemlineata larvae were evaluated during 4 field seasons. Treatments were applied to small plots using a tractor-mounted sprayer with nozzles mounted on swivels on sh...

  14. Integrated applications of Bacillus thuringiensis serovar. tenebrionis and Beauveria bassiana for biologically-based integrated pest management of Colorado potato beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research conducted over the past decade has indicated a low level of synergism and potentially high degree of complementarity between Bacillus thuringiensis (Bt)- and Beauveria bassiana (Bb)-based biopesticides applied for management of the Colorado potato beetle, Leptinotarsa decemlineata. In view...

  15. Isolation of diapause-regulated transcripts by differential display from the Colorado potato beetle, and their expression in prediapausing and nondiapausing adults. GenBank. Accessions: FG591137-FG591192

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using differential display, 56 putatively diapause regulated transcripts were isolated from the Colorado potato beetle, Leptinotarsa decemlineata. The clones insert sizes range from 114 to 795 bp with mean length of 392 ± SD of 191 bp. Fourteen of the transcripts were confirmed by northern blot anal...

  16. Impact of host plant connectivity, crop border and patch size on adult Colorado potato beetle retention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tagged Colorado potato beetles (CPB), Leptinotarsa decemlineata (Say), were released on potato plants, Solanum tuberosum L., and tracked using a portable harmonic radar system to determine the impact of host plant spatial distribution on the tendency of the pest to remain on the colonized host plant...

  17. Enteric bacteria of field-collected Colorado potato beetle larvae inhibit growth of the entomopathogens Photorhabdus temperata and Beauveria bassiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a prior study we provided evidence that the failure of the nematode Heterorhabditis marelatus Liu and Berry to reproduce in the Colorado potato beetle, Leptinotarsa decemlineata (Say), was due to interference from the enteric bacteria of the beetle. Specifically, the enteric bacteria inhibited th...

  18. Peripheral olfactory signaling in insects

    PubMed Central

    Suh, Eunho; Bohbot, Jonathan; Zwiebel, Laurence J.

    2014-01-01

    Olfactory signaling is a crucial component in the life history of insects. The development of precise and parallel mechanisms to analyze the tremendous amount of chemical information from the environment and other sources has been essential to their evolutionary success. Considerable progress has been made in the study of insect olfaction fueled by bioinformatics- based utilization of genomics along with rapid advances in functional analyses. Here we review recent progress in our rapidly emerging understanding of insect peripheral sensory reception and signal transduction. These studies reveal that the nearly unlimited chemical space insects encounter is covered by distinct chemosensory receptor repertoires that are generally derived by species-specific, rapid gene gain and loss, reflecting the evolutionary consequences of adaptation to meet their specific biological needs. While diverse molecular mechanisms have been put forth, often in the context of controversial models, the characterization of the ubiquitous, highly conserved and insect-specific Orco odorant receptor co-receptor has opened the door to the design and development of novel insect control methods to target agricultural pests, disease vectors and even nuisance insects. PMID:25584200

  19. Entomopathogenic nematodes and insect management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes (genera Heterorhabditis, Steinernema, and Neosteinernema) are used as bioinsecticides. The nematodes are ubiquitous and have been isolated in soil of every continent except Antarctica. The nematodes kill insects through a mutualism with a bacterium (Photorhabdus spp. or ...

  20. Insect symbionts in food webs

    PubMed Central

    Henry, Lee M.

    2016-01-01

    Recent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure. Many symbionts are now known to help their hosts escape or resist natural enemy attack, and others can allow their hosts to withstand abiotic stress or affect host plant use. In addition to the direct effect of symbionts on aphid phenotypes there may be indirect effects mediated through trophic and non-trophic community interactions. We believe that by using data from barcoding studies to identify bacterial symbionts, this extra, microbial dimension to insect food webs can be better elucidated. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481779

  1. Insect symbionts in food webs.

    PubMed

    McLean, Ailsa H C; Parker, Benjamin J; Hrček, Jan; Henry, Lee M; Godfray, H Charles J

    2016-09-01

    Recent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure. Many symbionts are now known to help their hosts escape or resist natural enemy attack, and others can allow their hosts to withstand abiotic stress or affect host plant use. In addition to the direct effect of symbionts on aphid phenotypes there may be indirect effects mediated through trophic and non-trophic community interactions. We believe that by using data from barcoding studies to identify bacterial symbionts, this extra, microbial dimension to insect food webs can be better elucidated.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481779

  2. Eicosanoid actions in insect immunology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this chapter we review eicosanoid actions in insect immunity. Eicosanoids are oxygenated metabolites of arachidonic acid (AA) and two other C20 polyunsaturated polyunsaturated fatty acids. Groups of eicosanoids include prostaglandins, lipoxygenase products and epoxyeicosatrienoic acids. These ...

  3. Radar Observation of Insects - Mosquitoes

    NASA Technical Reports Server (NTRS)

    Frost, E.; Downing, J.

    1979-01-01

    Tests were conducted at several sites over the coastal lowlands of New Jersey and over a region of high plains and low mountains in Oklahoma. In one area, a salt marsh in New Jersey, extensive ground tests were combined with laboratory data on expected insect backscatter to arrive at an extremely convincing model of the insect origin of most Dot Angels. A great deal of insight was studied from radar on the buildup and dispersal of insect swarms, since radar can follow where other means of trapping and observation cannot. Data on large-scale behavior as a function of wind and topography are presented. Displayed techniques which show individual or small swarm motion within some larger cloud or mass, or which can show the overall motion over great distances were developed. The influence of wind and terrain on insect motion and dispersal is determined from radar data.

  4. Freshwater Biodiversity and Insect Diversification

    PubMed Central

    Dijkstra, Klaas-Douwe B.; Monaghan, Michael T.; Pauls, Steffen U.

    2016-01-01

    Inland waters cover less than one percent of Earth’s surface, but harbor more than six percent of all insect species: nearly 100,000 species from 12 orders spend one or more life stages in freshwater. Little is known about how this remarkable diversity arose, although allopatric speciation and ecological adaptation are thought to be primary mechanisms. Freshwater habitats are exceptionally susceptible to environmental change, and exhibit marked ecological gradients. The amphibiotic lifestyles of aquatic insects result in complex contributions of extinction and allopatric and non-allopatric speciation in species diversification. In contrast to the lack of evolutionary studies, the ecology and habitat preferences of aquatic insects have been intensively studied, in part because of their widespread use as bio-indicators. The combination of phylogenetics with the extensive ecological data provides a promising avenue for future research, making aquatic insects highly suitable models for the study of ecological diversification. PMID:24160433

  5. Flight of the smallest insects

    NASA Astrophysics Data System (ADS)

    Miller, Laura; Santhanakrishnan, Arvind; Hedrick, Tyson; Robinson, Alice

    2009-11-01

    A vast body of research has described the complexity of flight in insects ranging from the fruit fly, Drosophila melanogaster, to the hawk moth, Manduca sexta. Over this range of scales, flight aerodynamics as well as the relative lift and drag forces generated are surprisingly similar. The smallest flying insects (Re˜10) have received far less attention, although previous work has shown that flight kinematics and aerodynamics can be significantly different. In this presentation, we have used a three-pronged approach that consists of measurements of flight kinematics in the tiny insect Thysanoptera (thrips), measurements of flow velocities using physical models, and direct numerical simulations to compute lift and drag forces. We find that drag forces can be an order of magnitude larger than lift forces, particularly during the clap and fling motion used by all tiny insects recorded to date.

  6. Insect bites and stings (image)

    MedlinePlus

    Even though some insect bites or stings can be extremely painful they usually do not require emergency medical care. Although the stung or bitten area should be carefully observed for signs of infection or reaction to venom.

  7. Preface: Insect Pathology, 2nd ed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pathology is an essential component of entomology and provides a non-chemical alternative for insect pest management. There are several groups of organisms that can infect and kill insects including viruses, fungi, microsporidia, bacteria, protists, and nematodes. The dilemma in insect patho...

  8. Pollen Recovery from Insects: Light Microscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous insect species feed on the pollen, nectar, and other plant exudates that are associated with flowers. As a result of this feeding activity, pollen becomes attached to the insects. Analysis of the pollen attached to these insects can reveal what insects eat, their dispersal patterns in and...

  9. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of...

  10. How Do Insects Help the Environment?

    ERIC Educational Resources Information Center

    Hevel, Gary

    2005-01-01

    There are some 5 to 30 million insect species estimated in the world--and the majority of these have yet to be collected or named by science! Of course, the most well known insects are those that cause disease or compete for human agricultural products, but these insects represent only a small fraction of the world's insect population. In reality,…

  11. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  12. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence...

  13. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence...

  14. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of...

  15. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  16. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of...

  17. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  18. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  19. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  20. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of...

  1. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of...

  2. Don't Let Insects Bug You!

    ERIC Educational Resources Information Center

    Abraham, Doc; Abraham, Katy

    1977-01-01

    Are you one of those people who feel that the only good insect is a dead one? Do you suffer from entomophobia--dread fear of insects? Such attitudes, fears, and prejudices stem from insect ignorance. Authors explain what insects are good for and give students a more realistic and fascinating view of their world. (Editor/RK)

  3. Multimodal stimulation of Colorado potato beetle reveals modulation of pheromone response by yellow light.

    PubMed

    Otálora-Luna, Fernando; Dickens, Joseph C

    2011-01-01

    Orientation of insects to host plants and conspecifics is the result of detection and integration of chemical and physical cues present in the environment. Sensory organs have evolved to be sensitive to important signals, providing neural input for higher order multimodal processing and behavioral output. Here we report experiments to determine decisions made by Colorado potato beetle (CPB), Leptinotarsa decemlineata, in response to isolated stimuli and multimodal combinations of signals on a locomotion compensator. Our results show that in complete darkness and in the absence of other stimuli, pheromonal stimulation increases attraction behavior of CPB as measured in oriented displacement and walking speed. However, orientation to the pheromone is abolished when presented with the alternative stimulation of a low intensity yellow light in a dark environment. The ability of the pheromone to stimulate these diurnal beetles in the dark in the absence of other stimuli is an unexpected but interesting observation. The predominance of the phototactic response over that to pheromone when low intensity lights were offered as choices seems to confirm the diurnal nature of the insect. The biological significance of the response to pheromone in the dark is unclear. The phototactic response will play a key role in elucidating multimodal stimulation in the host-finding process of CPB, and perhaps other insects. Such information might be exploited in the design of applications to attract and trap CPB for survey or control purposes and other insect pests using similar orientation mechanisms. PMID:21695167

  4. Improved Cultivation Systems for Isolation of the Colorado Potato Beetle Spiroplasma

    PubMed Central

    Konai, M.; Hackett, K. J.; Williamson, D. L.; Lipa, J. J.; Pollack, J. D.; Gasparich, G. E.; Clark, E. A.; Vacek, D. C.; Whitcomb, R. F.

    1996-01-01

    In North America, the Colorado potato beetle, Leptinotarsa decemlineata, is often infected with the host-specific, gut-inhabiting Colorado potato beetle spiroplasma (CPBS). CPBS is apparently a commensal, but it may be useful in biocontrol if it can be transformed to express an insect-lethal gene. Difficulty in cultivating the organism, however, has hindered the development of a suitable transformation system. In this study, we eliminated the need for coculturing CPBS with insect cells. CPBS was reliably isolated with the BBL Anaerobic GasPak Jar system (low redox, enhanced CO(inf2)), which was easier to use and less expensive than insect cell coculture methods. A further advantage is a reduction in contaminating insect cell components. Use of anaerobiosis should facilitate early-passage screening of isolates for extrachromosomal elements, for use in gene vector constructs. The unique spiral (decreasing amplitude of coils) morphology of CPBS was preserved by anaerobiosis. The use of low-pH (6.0 to 6.5) media allowed aerobic adaptation of CPBS to M1D and SP-4 broth media. These formulations permitted the first cultivation of CPBS on solid media, an accomplishment that will simplify the selection of molecular transformants. Potato beetles collected at four sites in Poland yielded CPBS strains similar to those previously obtained from populations in North America. PMID:16535407

  5. Discontinuous gas exchange in insects.

    PubMed

    Quinlan, Michael C; Gibbs, Allen G

    2006-11-01

    Insect respiratory physiology has been studied for many years, and interest in this area of insect biology has become revitalized recently for a number of reasons. Technical advances have greatly improved the precision, accuracy and ease with which gas exchange can be measured in insects. This has made it possible to go beyond classic models such as lepidopteran pupae and examine a far greater diversity of species. One striking result of recent work is the realization that insect gas exchange patterns are much more diverse than formerly recognized. Current work has also benefited from the inclusion of comparative methods that rigorously incorporate phylogenetic, ecological and life history information. We discuss these advances in the context of the classic respiratory pattern of insects, discontinuous gas exchange. This mode of gas exchange was exhaustively described in moth pupae in the 1950s and 1960s. Early workers concluded that discontinuous gas exchange was an adaptation to reduce respiratory water loss. This idea is no longer universally accepted, and several competing hypotheses have been proposed. We discuss the genesis of these alternative hypotheses, and we identify some of the predictions that might be used to test them. We are pleased to report that what was once a mature discipline, in which the broad parameters and adaptive significance of discontinuous gas exchange were thought to be well understood, is now a thriving and vigorous field of research. PMID:16870512

  6. Insects, infestations and nutrient fluxes

    NASA Astrophysics Data System (ADS)

    Michalzik, B.

    2012-04-01

    Forest ecosystems are characterized by a high temporal and spatial variability in the vertical transfer of energy and matter within the canopy and the soil compartment. The mechanisms and controlling factors behind canopy processes and system-internal transfer dynamics are imperfectly understood at the moment. Seasonal flux diversities and inhomogeneities in throughfall composition have been reported from coniferous and deciduous forests, and in most cases leaf leaching has been considered as principle driver for differences in the amount and quality of nutrients and organic compounds (Tukey and Morgan 1963). Since herbivorous insects and the processes they initiate received less attention in past times, ecologists now emphasize the need for linking biological processes occurring in different ecosystem strata to explain rates and variability of nutrient cycling (Bardgett et al. 1998, Wardle et al. 2004). Consequently, herbivore insects in the canopies of forests are increasingly identified to play an important role for the (re)cycling and availability of nutrients, or, more generally, for the functioning of ecosystems not only in outbreak situations but also at endemic (non-outbreak) density levels (Stadler et al. 2001, Hunter et al. 2003). Before, little attention was paid to insect herbivores when quantifying element and energy fluxes through ecosystems, although the numerous and different functions insects fulfill in ecosystems (e.g. as pollinators, herbivores or detritivores) were unanimously recognized (Schowalter 2000). Amongst the reasons for this restraint was the argument that the total biomass of insects tends to be relatively low compared to the biomass of trees or the pool of soil organic matter (Ohmart et al. 1983). A second argument which was put forward to justify the inferior role of insects in nutrient cycling were the supposed low defoliation losses between 5-10% of the annual leaf biomass, or net primary production, due to insect herbivory under

  7. Line following terrestrial insect biobots.

    PubMed

    Latif, Tahmid; Bozkurt, Alper

    2012-01-01

    The present day technology falls short in offering centimeter scale mobile robots that can function effectively under unknown and dynamic environmental conditions. Insects, on the other hand, exhibit an unmatched ability to navigate through a wide variety of environments and overcome perturbations by successfully maintaining control and stability. In this study, we use neural stimulation systems to wirelessly navigate cockroaches to follow lines to enable terrestrial insect biobots. We also propose a system-on-chip based ZigBee enabled wireless neurostimulation backpack system with on-board tissue-electrode bioelectrical coupling verification. Such a capability ensures an electrochemically safe stimulation and avoids irreversible damage to the interface which is often misinterpreted as habituation of the insect to the applied stimulation. PMID:23366056

  8. Neurosecretion: peptidergic systems in insects

    NASA Astrophysics Data System (ADS)

    Predel, R.; Eckert, Manfred

    Insect neuropeptides are produced in less than 1% of the cells of the central nervous system. Despite this, they are important messenger molecules which influence nearly all physiological processes, including behaviour. They can act as transmitters, modulators and classical hormones, and often exhibit pleiotropic functions when released into the haemolymph. The large number of neuropeptides that has been identified from some of the model organisms among insects underlines the complexity of the neurosecretory system; studies about the coordinated actions of these substances are in their preliminary stages. Recent advances in insect neuropeptide research will be reviewed here, concentrating on the distribution of multiple peptide forms in the central nervous system and adjacent neurohaemal organs, and the role of neuropeptides in eclosion behaviour.

  9. Rice Reoviruses in Insect Vectors.

    PubMed

    Wei, Taiyun; Li, Yi

    2016-08-01

    Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses. PMID:27296147

  10. Flower constancy in insect pollinators

    PubMed Central

    Ratnieks, Francis L.W.

    2011-01-01

    As first noted by Aristotle in honeybee workers, many insect pollinators show a preference to visit flowers of just one species during a foraging trip. This “flower constancy” probably benefits plants, because pollen is more likely to be deposited on conspecific stigmas. But it is less clear why insects should ignore rewarding alternative flowers. Many researchers have argued that flower constancy is caused by constraints imposed by insect nervous systems rather than because flower constancy is itself an efficient foraging method. We argue that this view is unsatisfactory because it both fails to explain why foragers flexibly adjust the degree of flower constancy and does not explain why foragers of closely related species show different degrees of constancy. While limitations of the nervous system exist and are likely to influence flower constancy to some degree, the observed behavioural flexibility suggests that flower constancy is a successful foraging strategy given the insect’s own information about different foraging options. PMID:22446521

  11. Insect growth regulators and insect control: a critical appraisal.

    PubMed Central

    Siddall, J B

    1976-01-01

    Insect growth regulators (IGRs) of the juvenile hormone type alter physiological processes essential to insect development and appear to act specifically on insects. Three natural juvenile hormones have been found in insects but not in other organisms. Future use of antagonists or inhibitors of hormone synthesis may be technically possible as an advantageous extension of pest control by IGRs. A documented survey of the properties, metabolism, toxicology, and uses of the most commercially advanced chemical, methoprene, shows it to be environmentally acceptable and toxicologically innocuous. Derivation of its current use patterns is discussed and limitations on these are noted. Residue levels and their measurement in the ppb region have allowed exemption from the requirement of tolerances in the EPA registered use of methoprene for mosquito control. Tolerances for foods accompany its fully approved use for control of manure breeding flies through a cattle feed supplement. The human health effects of using this chemical appear to be purely beneficial, but further advances through new IGR chemicals appear unlikely without major changes in regulatory and legislative policy. PMID:976222

  12. Insect Screening Results: Assessment of Corn Hybrids for Insect Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the growing season of 2006, the relatively dry environmental conditions in Tifton, Georgia were favorable for the rapid buildup of corn earworms, providing the potential for considerable damage to the corn crop. Six ear-feeding insects recorded in the order of infestation severity were: the...

  13. Insects as a Nitrogen Source for Plants

    PubMed Central

    Behie, Scott W.; Bidochka, Michael J.

    2013-01-01

    Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. PMID:26462427

  14. Insects as a Nitrogen Source for Plants.

    PubMed

    Behie, Scott W; Bidochka, Michael J

    2013-01-01

    Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. PMID:26462427

  15. Introducing Virological Concepts Using an Insect Virus.

    ERIC Educational Resources Information Center

    Sheppard, Roger F.

    1980-01-01

    A technique is presented which utilizes wax moth larvae in a laboratory investigation of an insect virus. Describes how an insect virus can be used to introduce undergraduate biology students to laboratory work on viruses and several virological concepts. (SA)

  16. First Aid: Insect Stings and Bites

    MedlinePlus

    ... Can I Protect My Family From Ticks? Are Insect Repellents With DEET Safe for Kids? Bug Bites and Stings Can I Use Bug Killers and Repellents During Pregnancy? Insect Sting Allergy How Do I Watch for Lyme ...

  17. Palaeontology: Chinese amber insects bridge the gap.

    PubMed

    Ross, Andrew

    2014-07-21

    n the study of fossil insects, Chinese amber from Fushun has been largely overlooked. A new study now reveals a highly diverse biota and provides a wealth of new information on the past Asian insect fauna. PMID:25050958

  18. Insects--How To Study Them

    ERIC Educational Resources Information Center

    Matthews, E. G.

    1975-01-01

    Describes an approach to the study of entomology directed at people with no special knowledge of insects. The aim of this approach is to reveal some biological principles by studying insects from an ecological point of view. (GS)

  19. The Curious Connection Between Insects and Dreams

    PubMed Central

    Klein, Barrett A.

    2011-01-01

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives. PMID:26467945

  20. The Curious Connection Between Insects and Dreams.

    PubMed

    Klein, Barrett A

    2011-01-01

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans' dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream's significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives. PMID:26467945

  1. The Seat of Insect Learning.

    ERIC Educational Resources Information Center

    Dyer, Fred C.

    1997-01-01

    Describes the role of mushroom bodies--cup-shaped structures perched atop the brain of an insect--in learning. Mushroom bodies may help fruit flies in learning meaningful odors, cockroaches in spatial learning, and honeybees both in locating pollen and nectar and in navigating back to the colony. (PVD)

  2. Evolution of insect olfactory receptors

    PubMed Central

    Missbach, Christine; Dweck, Hany KM; Vogel, Heiko; Vilcinskas, Andreas; Stensmyr, Marcus C; Hansson, Bill S; Grosse-Wilde, Ewald

    2014-01-01

    The olfactory sense detects a plethora of behaviorally relevant odor molecules; gene families involved in olfaction exhibit high diversity in different animal phyla. Insects detect volatile molecules using olfactory (OR) or ionotropic receptors (IR) and in some cases gustatory receptors (GRs). While IRs are expressed in olfactory organs across Protostomia, ORs have been hypothesized to be an adaptation to a terrestrial insect lifestyle. We investigated the olfactory system of the primary wingless bristletail Lepismachilis y-signata (Archaeognatha), the firebrat Thermobia domestica (Zygentoma) and the neopteran leaf insect Phyllium siccifolium (Phasmatodea). ORs and the olfactory coreceptor (Orco) are with very high probability lacking in Lepismachilis; in Thermobia we have identified three Orco candidates, and in Phyllium a fully developed OR/Orco-based system. We suggest that ORs did not arise as an adaptation to a terrestrial lifestyle, but evolved later in insect evolution, with Orco being present before the appearance of ORs. DOI: http://dx.doi.org/10.7554/eLife.02115.001 PMID:24670956

  3. The insect SNMP gene family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SNMPs are membrane proteins that have been shown to associate with chemosensory neurons in insects; in Drosophila melanogaster, SNMP1 has been shown to be essential for the detection of the pheromone cis vaccenyl acetate (Benton et al., 2001; Jin et al., 2008). To extend these observations to other ...

  4. Bug City: Aquatic Insects [Videotape].

    ERIC Educational Resources Information Center

    1998

    "Bug City" is a video series created to help children learn about insects and other small critters. All aspects of bug life are touched upon including body structure, food, habitat, life cycle, mating habits, camouflage, mutualism (symbiosis), adaptations, social behavior, and more. Each program features dramatic microscopic photography, fun…

  5. Making Connections with Insect Royalty.

    ERIC Educational Resources Information Center

    Hobbie, Ann

    2000-01-01

    Describes a one-month sixth grade class activity with monarch butterflies called Monarch in the Classroom. Students learn about insects, especially the class material butterflies, including their life cycle, eating habits, migration, and how they overwinter. The lesson plan covers sorting animals, focusing on features, analyzing the community for…

  6. Rearing insects on artificial diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects are reared in the laboratory for various purposes. They may be reared either on their natural food or artificial diets. Developing artificial diets may be difficult and time consuming but once optimized, artificial diets usually are simple to prepare and easy to use. Because they are process...

  7. Transposable elements for insect transformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The germ-line of more than 35 species from five orders of insects have been genetically transformed, using vectors derived from Class II transposable elements. Initially the P and hobo vector systems developed for D. melanogaster were not applicable to other species, but four transposons found in ot...

  8. Plant defense against insect herbivory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Damage to maize crops by insect herbivores such as beet and fall army worm causes significant impact in the Southern United States in terms of both yield loss and insecticide use. Enhanced understanding of how maize can defend itself against such attacks at a molecular level will enable development ...

  9. Exaggerated trait growth in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal structures occasionally attain extreme proportions, eclipsing in size other, surrounding body parts. We review insect examples of exaggerated traits, such as the mandibles of stag beetles, the claspers of praying mantises, the elongated hindlimbs of grasshoppers, and the giant heads of soldie...

  10. Insects Affecting Man. MP-21.

    ERIC Educational Resources Information Center

    Lawson, Fred A.; Spackman, Everett

    The insects discussed in this document are those which have a direct effect upon humans either through a permanent association, as with lice, or a temporary association in the case of flies, bees, wasps, and spiders. In each case, life cycles and identifying characteristics are presented with remarks about the specific effect incurred by man. (CS)

  11. Nontoxic Antifreeze for Insect Traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Propylene glycol in water is a safe and effective alternative to ethylene glycol as a capture liquid in insect traps (pitfalls, flight intercepts, pan traps). Propylene glycol formulations are readily available because it is the primary (95%) ingredient in certain automotive antifreeze formulations...

  12. Using new technology and insect behavior in novel terrestrial and flying insect traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect traps are commonly used for both population sampling and insect control, the former as part of an integrated pest management (IPM) program. We developed traps for two insects, one as part of a pesticide based IPM system and the other for population control. Our IPM trap is for crawling insect...

  13. Buckling failures in insect exoskeletons.

    PubMed

    Parle, Eoin; Herbaj, Simona; Sheils, Fiona; Larmon, Hannah; Taylor, David

    2016-02-01

    Thin walled tubes are often used for load-bearing structures, in nature and in engineering, because they offer good resistance to bending and torsion at relatively low weight. However, when loaded in bending they are prone to failure by buckling. It is difficult to predict the loading conditions which cause buckling, especially for tubes whose cross sections are not simple shapes. Insights into buckling prevention might be gained by studying this phenomenon in the exoskeletons of insects and other arthropods. We investigated the leg segments (tibiae) of five different insects: the locust (Schistocerca gergaria), American cockroach (Periplaneta americana), death's head cockroach (Blaberus discoidalis), stick insect (Parapachymorpha zomproi) and bumblebee (Bombus terrestris audax). These were tested to failure in cantilever bending and modelled using finite element analysis (FEA). The tibiae of the locust and the cockroaches were found to be approximately circular in shape. Their buckling loads were well predicted by linear elastic FEA, and also by one of the analytical solutions available in the literature for elastic buckling. The legs of the stick insect are also circular in cross section but have several prominent longitudinal ridges. We hypothesised that these ridges might protect the legs against buckling but we found that this was not the case: the loads necessary for elastic buckling were not reached in practice because yield occurred in the material, causing plastic buckling. The legs of bees have a non-circular cross section due to a pollen-carrying feature (the corbicula). We found that this did not significantly affect their resistance to buckling. Our results imply that buckling is the dominant failure mode in the tibia of insects; it likely to be a significant consideration for other arthropods and any organisms with stiff exoskeletons. The interactions displayed here between material properties and cross sectional geometry may provide insights for the

  14. The insect SNMP gene family.

    PubMed

    Vogt, Richard G; Miller, Natalie E; Litvack, Rachel; Fandino, Richard A; Sparks, Jackson; Staples, Jon; Friedman, Robert; Dickens, Joseph C

    2009-07-01

    SNMPs are membrane proteins observed to associate with chemosensory neurons in insects; in Drosophila melanogaster, SNMP1 has been shown to be essential for the detection of the pheromone cis-vaccenyl acetate (CVA). SNMPs are one of three insect gene clades related to the human fatty acid transporter CD36. We previously characterized the CD36 gene family in 4 insect Orders that effectively cover the Holometabola, or some 80% of known insect species and the 300 million years of evolution since this lineage emerged: Lepidoptera (e.g. Bombyx mori, Antheraea polyphemus, Manduca sexta, Heliothis virescens, Helicoverpa assulta, Helicoverpa armigera, Mamestra brassicae); Diptera (D. melanogaster, Drosophila pseudoobscura, Aedes aegypti, Anopheles gambiae, Culex pipiens quinquefasciatus); Hymenoptera (Apis mellifera); and Coleoptera (Tribolium castaneum). This previous study suggested a complex topography within the SNMP clade including a strongly supported SNMP1 sub-clade plus additional SNMP genes. To further resolve the SNMP clade here, we used cDNA sequences of SNMP1 and SNMP2 from various Lepidoptera species, D. melanogaster and Ae. aegypti, as well as BAC derived genomic sequences from Ae. aegypti as models for proposing corrected sequences of orthologues in the D. pseudoobscura and An. gambiae genomes, and for identifying orthologues in the B. mori and C. pipiens q. genomes. We then used these sequences to analyze the SNMP clade of the insect CD36 gene family, supporting the existence of two well supported sub-clades, SNMP1 and SNMP2, throughout the dipteran and lepidopteran lineages, and plausibly throughout the Holometabola and across a broad evolutionary time scale. We present indirect evidence based on evolutionary selection (dN/dS) that the dipteran SNMPs are expressed as functional proteins. We observed expansions of the SNMP1 sub-clade in C. pipiens q. and T. castaneum suggesting that the SNMP1s may have an expanded functional role in these species. PMID

  15. Applications of acoustics in insect pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic technology has been applied for many years in studies of insect communication and in the monitoring of calling-insect population levels, geographic distributions, and diversity, as well as in the detection of cryptic insects in soil, wood, container crops, and stored products. Acoustic devi...

  16. Insect Control (1): Use of Pheromones

    ERIC Educational Resources Information Center

    Marx, Jean L.

    1973-01-01

    Discusses current research relating to the use of pheromones as a means of controlling insect pests. These chemicals, which are secreted by insects to affect the behavior of other individuals of the same species, may be used to eliminate pests without destroying their predators and other beneficial insects. (JR)

  17. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  18. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  19. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  20. Radar, Insect Population Ecology, and Pest Management

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)

    1979-01-01

    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  1. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  2. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  3. Mechanisms by which pesticides affect insect immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The known effects of pesticides on insect immunity is reviewed here. A basic understanding of these interactions is needed for several reasons, including to improve methods for controlling pest insects in agricultural settings, for controlling insect vectors of human diseases, and for reducing morta...

  4. Insect diversity in the fossil record

    NASA Technical Reports Server (NTRS)

    Labandeira, C. C.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1993-01-01

    Insects possess a surprisingly extensive fossil record. Compilation of the geochronologic ranges of insect families demonstrates that their diversity exceeds that of preserved vertebrate tetrapods through 91 percent of their evolutionary history. The great diversity of insects was achieved not by high origination rates but rather by low extinction rates comparable to the low rates of slowly evolving marine invertebrate groups. The great radiation of modern insects began 245 million years ago and was not accelerated by the expansion of angiosperms during the Cretaceous period. The basic trophic machinery of insects was in place nearly 100 million years before angiosperms appeared in the fossil record.

  5. Fungal allelochemicals in insect pest management.

    PubMed

    Holighaus, Gerrit; Rohlfs, Marko

    2016-07-01

    Interactions between insects and fungi are widespread, and important mediators of these interactions are fungal chemicals that can therefore be considered as allelochemicals. Numerous studies suggest that fungal chemicals can affect insects in many different ways. Here, we apply the terminology established by insect-plant ecologists for categorizing the effect of fungal allelochemicals on insects and for evaluating the application potential of these chemicals in insect pest management. Our literature survey shows that fungal volatile and non-volatile chemicals have an enormous potential to influence insect behavior and fitness. Many of them still remain to be discovered, but some recent examples of repellents and toxins could open up new ways for developing safe insect control strategies. However, we also identified shortcomings in our understanding of the chemical ecology of insect-fungus interactions and the way they have been investigated. In particular, the mode-of-action of fungal allelochemicals has often not been appropriately designated or examined, and the way in which induction by insects affects fungal chemical diversity is poorly understood. This review should raise awareness that in-depth ecological studies of insect-fungus interactions can reveal novel allelochemicals of particular benefit for the development of innovative insect pest management strategies. PMID:27147531

  6. Insects as alternative hosts for phytopathogenic bacteria.

    PubMed

    Nadarasah, Geetanchaly; Stavrinides, John

    2011-05-01

    Phytopathogens have evolved specialized pathogenicity determinants that enable them to colonize their specific plant hosts and cause disease, but their intimate associations with plants also predispose them to frequent encounters with herbivorous insects, providing these phytopathogens with ample opportunity to colonize and eventually evolve alternative associations with insects. Decades of research have revealed that these associations have resulted in the formation of bacterial-vector relationships, in which the insect mediates dissemination of the plant pathogen. Emerging research, however, has highlighted the ability of plant pathogenic bacteria to use insects as alternative hosts, exploiting them as they would their primary plant host. The identification of specific bacterial genetic determinants that mediate the interaction between bacterium and insect suggests that these interactions are not incidental, but have likely arisen following the repeated association of microorganisms with particular insects over evolutionary time. This review will address the biology and ecology of phytopathogenic bacteria that interact with insects, including the traditional role of insects as vectors, as well as the newly emerging paradigm of insects serving as alternative primary hosts. Also discussed is one case where an insect serves as both host and vector, which may represent a transitionary stage in the evolution of insect-phytopathogen associations. PMID:21251027

  7. Insect sodium channels and insecticide resistance

    PubMed Central

    2011-01-01

    Voltage-gated sodium channels are essential for the generation and propagation of action potentials (i.e., electrical impulses) in excitable cells. Although most of our knowledge about sodium channels is derived from decades of studies of mammalian isoforms, research on insect sodium channels is revealing both common and unique aspects of sodium channel biology. In particular, our understanding of the molecular dynamics and pharmacology of insect sodium channels has advanced greatly in recent years, thanks to successful functional expression of insect sodium channels in Xenopus oocytes and intensive efforts to elucidate the molecular basis of insect resistance to insecticides that target sodium channels. In this review, I discuss recent literature on insect sodium channels with emphases on the prominent role of alternative splicing and RNA editing in the generation of functionally diverse sodium channels in insects and the current understanding of the interactions between insect sodium channels and insecticides. PMID:17206406

  8. Immunity in a Social Insect

    NASA Astrophysics Data System (ADS)

    Rosengaus, Rebeca B.; Traniello, James F. A.; Chen, Tammy; Brown, Julie J.; Karp, Richard D.

    Although pathogens appear to have exerted significant selective pressure on various aspects of sociality, mechanisms of disease resistance in the social insects are poorly understood. We report here on an immune response to infection by the dampwood termite, Zootermopsis angusticollis. Nymphs immunized with an injection of 7.6×107, 7.6×105, or 7.6×104 cells/ml glutaraldehyde-killed solution of the bacterium Pseudomonas aeruginosa had significantly higher survivorship than controls following a challenge with a lethal concentration of active bacteria. Similarly, nymphs exposed to a 9×10-1 spores/ml suspension of the fungus Metarhizium anisopliae had higher survivorship than controls after a challenge with a lethal concentration of spores. Prior exposure to a pathogen thus conferred upon termites a degree of protection during a subsequent encounter with the same pathogen. This represents the first demonstration of immune function in vivo in a social insect.

  9. Visual homing: an insect perspective.

    PubMed

    Zeil, Jochen

    2012-04-01

    The ability to learn the location of places in the world and to revisit them repeatedly is crucial for all aspects of animal life on earth. It underpins animal foraging, predator avoidance, territoriality, mating, nest construction and parental care. Much theoretical and experimental progress has recently been made in identifying the sensory cues and the computational mechanisms that allow insects (and robots) to find their way back to places, while the neurobiological mechanisms underlying navigational abilities are beginning to be unravelled in vertebrate and invertebrate models. Studying visual homing in insects is interesting, because they allow experimentation and view-reconstruction under natural conditions, because they are likely to have evolved parsimonious, yet robust solutions to the homing problem and because they force us to consider the viewpoint of navigating animals, including their sensory and computational capacities. PMID:22221863

  10. Corpse Management in Social Insects

    PubMed Central

    Sun, Qian; Zhou, Xuguo

    2013-01-01

    Undertaking behavior is an essential adaptation to social life that is critical for colony hygiene in enclosed nests. Social insects dispose of dead individuals in various fashions to prevent further contact between corpses and living members in a colony. Focusing on three groups of eusocial insects (bees, ants, and termites) in two phylogenetically distant orders (Hymenoptera and Isoptera), we review mechanisms of death recognition, convergent and divergent behavioral responses toward dead individuals, and undertaking task allocation from the perspective of division of labor. Distinctly different solutions (e.g., corpse removal, burial and cannibalism) have evolved, independently, in the holometabolous hymenopterans and hemimetabolous isopterans toward the same problem of corpse management. In addition, issues which can lead to a better understanding of the roles that undertaking behavior has played in the evolution of eusociality are discussed. PMID:23569436

  11. Visual Navigation in Nocturnal Insects.

    PubMed

    Warrant, Eric; Dacke, Marie

    2016-05-01

    Despite their tiny eyes and brains, nocturnal insects have evolved a remarkable capacity to visually navigate at night. Whereas some use moonlight or the stars as celestial compass cues to maintain a straight-line course, others use visual landmarks to navigate to and from their nest. These impressive abilities rely on highly sensitive compound eyes and specialized visual processing strategies in the brain. PMID:27053732

  12. Benzoquinolinediones: activity as insect teratogens

    SciTech Connect

    Walton, B.T.; Ho, C.H.; Ma, C.Y.; O'Neill, E.G.; Kao, G.L.

    1983-10-28

    Morphological abnormalities including extra compound eyes, extra heads, and distally duplicated legs were generated in cricket embryos by treating eggs with single doses of either benz(g)isoquinoline-5,10-dione or benzo(h)quinoline-5,6-dione. Slight structural modifications of the molecules resulted in a loss of teratogenic activity, although embryotoxicity occurred. These potent insect teratogens can be used for analysis of developmental events during embryogenesis. 13 references, 4 figures, 1 table.

  13. Gut immunity in Lepidopteran insects.

    PubMed

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. PMID:26872544

  14. Macroecology of local insect communities

    NASA Astrophysics Data System (ADS)

    Krüger, Oliver; McGavin, George C.

    2000-01-01

    The inter-relationships between animal body weight, range size, species richness and abundance are currently the basis of macroecology. Using 41 099 insects sampled from 31 Acacia tree canopies in north-east Tanzania, we first documented the basic macroecological patterns. The relationship between body weight and both species richness and abundance was polygonal with the highest insect species richness and abundance occurring at intermediate body weights. Across individual tree communities, the most statistically robust relationships were found between range size, abundance and species richness and they were all linear. In a second part, we focused on the positive abundance-range size relationship and we could test predictions of six of the eight proposed hypotheses to explain this widely documented pattern of community structure. The relationship is most likely explained by the metapopulation hypothesis stating that with more patches being occupied, local abundance in a given patch increases due to a higher rate of immigration from nearby patches. In addition, we found high slopes for the species-area relationship, typical of island systems and thus it seems reasonable to characterise Acacia trees in the savannah as habitat islands for insects.

  15. Herbivory increases diversification across insect clades

    PubMed Central

    Wiens, John J.; Lapoint, Richard T.; Whiteman, Noah K.

    2015-01-01

    Insects contain more than half of all living species, but the causes of their remarkable diversity remain poorly understood. Many authors have suggested that herbivory has accelerated diversification in many insect clades. However, others have questioned the role of herbivory in insect diversification. Here, we test the relationships between herbivory and insect diversification across multiple scales. We find a strong, positive relationship between herbivory and diversification among insect orders. However, herbivory explains less variation in diversification within some orders (Diptera, Hemiptera) or shows no significant relationship with diversification in others (Coleoptera, Hymenoptera, Orthoptera). Thus, we support the overall importance of herbivory for insect diversification, but also show that its impacts can vary across scales and clades. In summary, our results illuminate the causes of species richness patterns in a group containing most living species, and show the importance of ecological impacts on diversification in explaining the diversity of life. PMID:26399434

  16. Raindrops push and splash flying insects

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew K.; Shankles, Peter G.; Hu, David L.

    2014-02-01

    In their daily lives, flying insects face a gauntlet of environmental challenges, from wind gusts to raindrop impacts. In this combined experimental and theoretical study, we use high-speed videography to film raindrop collisions upon both flying insects and dynamically scaled spherical mimics. We identify three outcomes of the collision based upon the insect's mass and characteristic size: drops push the insect while remaining intact, coat the insect, and splash. We present a mathematical model that predicts impact force and outcome consistent with those found in experiments. Small insects such as gnats and flies are pushed by raindrops that remain intact upon impact; conversely, large flyers such as locusts and micro-aerial vehicles cause drops to splash. We identify a critical mass of 0.3 g for which flyers achieve both peak acceleration (100 g) and applied force (104 dyn) from incoming raindrops; designs of similarly massed flying robots should be avoided.

  17. Insect stereopsis demonstrated using a 3D insect cinema

    PubMed Central

    Nityananda, Vivek; Tarawneh, Ghaith; Rosner, Ronny; Nicolas, Judith; Crichton, Stuart; Read, Jenny

    2016-01-01

    Stereopsis - 3D vision – has become widely used as a model of perception. However, all our knowledge of possible underlying mechanisms comes almost exclusively from vertebrates. While stereopsis has been demonstrated for one invertebrate, the praying mantis, a lack of techniques to probe invertebrate stereopsis has prevented any further progress for three decades. We therefore developed a stereoscopic display system for insects, using miniature 3D glasses to present separate images to each eye, and tested our ability to deliver stereoscopic illusions to praying mantises. We find that while filtering by circular polarization failed due to excessive crosstalk, “anaglyph” filtering by spectral content clearly succeeded in giving the mantis the illusion of 3D depth. We thus definitively demonstrate stereopsis in mantises and also demonstrate that the anaglyph technique can be effectively used to deliver virtual 3D stimuli to insects. This method opens up broad avenues of research into the parallel evolution of stereoscopic computations and possible new algorithms for depth perception. PMID:26740144

  18. Insect stereopsis demonstrated using a 3D insect cinema.

    PubMed

    Nityananda, Vivek; Tarawneh, Ghaith; Rosner, Ronny; Nicolas, Judith; Crichton, Stuart; Read, Jenny

    2016-01-01

    Stereopsis - 3D vision - has become widely used as a model of perception. However, all our knowledge of possible underlying mechanisms comes almost exclusively from vertebrates. While stereopsis has been demonstrated for one invertebrate, the praying mantis, a lack of techniques to probe invertebrate stereopsis has prevented any further progress for three decades. We therefore developed a stereoscopic display system for insects, using miniature 3D glasses to present separate images to each eye, and tested our ability to deliver stereoscopic illusions to praying mantises. We find that while filtering by circular polarization failed due to excessive crosstalk, "anaglyph" filtering by spectral content clearly succeeded in giving the mantis the illusion of 3D depth. We thus definitively demonstrate stereopsis in mantises and also demonstrate that the anaglyph technique can be effectively used to deliver virtual 3D stimuli to insects. This method opens up broad avenues of research into the parallel evolution of stereoscopic computations and possible new algorithms for depth perception. PMID:26740144

  19. Delayed insect access alters carrion decomposition and necrophagous insect community assembly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vertebrate carrion in terrestrial ecosystems is an unpredictable, ephemeral resource pulse that contributes to local biodiversity and nutrient transformation dynamics. We hypothesized that delayed insect access to carrion would demonstrate marked shifts in necrophagous insect community structure, t...

  20. Ellipsometry of diffractive insect reflectors

    NASA Astrophysics Data System (ADS)

    Brink, D. J.; Lee, M. E.

    1996-04-01

    Scales on the wings of certain insects, such as Trichoplusia orichalcea, exhibit a surface microstructure resembling a fine diffraction grating. Diffraction of incident light by this structure is responsible for many of the optical properties of the wings of this moth, such as the metallic yellow color and the almost-specular reflection and polarization properties of the scattered radiation. It is shown that by the use of null ellipsometry the polarization characteristics can be used to obtain the optical constants of the scale material. Theoretical considerations and suitable experimental conditions are discussed and evaluated.

  1. Feeling what an insect feels.

    PubMed

    Mohand Ousaid, Abdenbi; Millet, Guillaume; Haliyo, Sinan; Régnier, Stéphane; Hayward, Vincent

    2014-01-01

    We describe a manually operated, bilateral mechanical scaling instrument that simultaneously magnifies microscopic forces and reduces displacements with quasi-perfect transparency. In contrast with existing micro-teleoperation designs, the system is unconditionally stable for any scaling gains and interaction curves. In the present realization, the work done by the hand is more than a million times that done by a microscopic probe so that one can feel complete interaction cycles with water and compare them to what is felt when an insect leg interacts with a wet surface. PMID:25271636

  2. Feeling What an Insect Feels

    PubMed Central

    Mohand Ousaid, Abdenbi; Millet, Guillaume; Haliyo, Sinan; Régnier, Stéphane; Hayward, Vincent

    2014-01-01

    We describe a manually operated, bilateral mechanical scaling instrument that simultaneously magnifies microscopic forces and reduces displacements with quasi-perfect transparency. In contrast with existing micro-teleoperation designs, the system is unconditionally stable for any scaling gains and interaction curves. In the present realization, the work done by the hand is more than a million times that done by a microscopic probe so that one can feel complete interaction cycles with water and compare them to what is felt when an insect leg interacts with a wet surface. PMID:25271636

  3. Insect hormones and their derivatives as insecticides

    PubMed Central

    Bowers, William S.

    1971-01-01

    The hormonal control of moulting, reproduction, and diapause in insects has little or no relationship to any similar phenomena in other animals, and the hormones involved in these processes are unlike any known hormones of vertebrates. The availability of pure chemicals with high biological activity has permitted an astonishing increase in research on insect hormones. At present, understanding of insect endocrinology is far too incomplete to justify much speculation about the possibility of using insect hormones as insecticides. However, the preliminary studies discussed in this paper give reason for hope, and the results justify further effort. PMID:4938025

  4. A magnetic fluid microdevice using insect wings

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Tsuyuki, K.; Yano, T.; Takagi, K.

    2008-05-01

    A magnetic fluid microdevice using Diptera insect wings is proposed and constructed. The magnetic fluid device is composed of insect wings, a small permanent magnet, coil, and kerosene-based magnetic fluid. First, the structural properties of insect wings are studied through measurements of certain morphological parameters. Secondly, the novel type of microwind energy converter is constructed. Thirdly, the power generation characteristics of the magnetic fluid microdevice using insect wings are examined. It is found that the output power is roughly proportional to the cube of the airflow velocity.

  5. Bacterial strategies to overcome insect defences.

    PubMed

    Vallet-Gely, Isabelle; Lemaitre, Bruno; Boccard, Frédéric

    2008-04-01

    Recent genetic and molecular analyses have revealed how several strategies enable bacteria to persist and overcome insect immune defences. Genetic and genomic tools that can be used with Drosophila melanogaster have enabled the characterization of the pathways that are used by insects to detect bacterial invaders and combat infection. Conservation of bacterial virulence factors and insect immune repertoires indicates that there are common strategies of host invasion and pathogen eradication. Long-term interactions of bacteria with insects might ensure efficient dissemination of pathogens to other hosts, including humans. PMID:18327270

  6. Insect Flight: Aerodynamics, Efficiency, and Evolution

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane

    2007-11-01

    Insects, like birds and fish, locomote via interactions between fluids and flapping wings. Their motion is governed by the Navier-Stokes equation coupled to moving boundaries. In this talk, I will first describe how dragonflies fly: their wing motions and the flows and forces they generate. I will then consider insects in several species and discuss three questions: 1) Is insect flight optimal? 2) How does the efficiency of flapping flight compare to classical fixed-wing flight? 3) How might aerodynamic effects have influenced the evolution of insect flight?

  7. Insect Seminal Fluid Proteins: Identification and Function

    PubMed Central

    Avila, Frank W.; Sirot, Laura K.; LaFlamme, Brooke A.; Rubinstein, C. Dustin; Wolfner, Mariana F.

    2014-01-01

    Seminal fluid proteins (SFPs) produced in reproductive tract tissues of male insects and transferred to females during mating induce numerous physiological and behavioral post-mating changes in females. These changes include decreasing receptivity to re-mating, affecting sperm storage parameters, increasing egg production, modulating sperm competition, feeding behaviors, and mating plug formation. In addition, SFPs also have anti-microbial functions and induce expression of anti-microbial peptides in at least some insects. Here, we review recent identification of insect SFPs and discuss the multiple roles these proteins play in the post-mating processes of female insects. PMID:20868282

  8. Herbivory responsive C2H2 zinc finger transcription factor protein StZFP2 from potato.

    PubMed

    Lawrence, Susan D; Novak, Nicole G; Jones, Richard W; Farrar, Robert R; Blackburn, Michael B

    2014-07-01

    While C2H2 zinc finger transcription factors (TF) are often regulated by abiotic stress, their role during insect infestation has been overlooked. This study demonstrates that the transcripts of the zinc finger transcription factors StZFP1 and StZFP2 are induced in potato (Solanum tuberosum L.) upon infestation by either the generalist tobacco hornworm (THW, Manduca sexta L.) or the specialist Colorado potato beetle (CPB, Leptinotarsa decemlineata Say). StZFP1 has been previously characterized as conferring salt tolerance to transgenic tobacco and its transcript is induced by Phytophthora infestans and several abiotic stresses. StZFP2 has not been characterized previously, but contains the hallmarks of a C2H2 zinc finger TF, with two conserved zinc finger domains and DLN motif, which encodes a transcriptional repressor domain. Expression studies demonstrate that StZFP2 transcript is also induced by tobacco hornworm and Colorado potato beetle. These observations expand the role of the C2H2 transcription factor in potato to include the response to chewing insect pests. PMID:24811678

  9. The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut.

    PubMed

    Cappelle, K; de Oliveira, C F R; Van Eynde, B; Christiaens, O; Smagghe, G

    2016-06-01

    RNA interference (RNAi) is a powerful tool in entomology and shows promise as a crop protection strategy, but variability in its efficiency across different insect species limits its applicability. For oral uptake of the double-stranded RNA (dsRNA), the RNAi trigger, two different mechanisms are known: systemic RNA interference deficient-1 (Sid-1) transmembrane channel-mediated uptake and clathrin-mediated endocytosis. So far, a wide range of experiments has been conducted, confirming the involvement of one of the pathways in dsRNA uptake, but never both pathways in the same species. We investigated the role of both pathways in dsRNA uptake in the Colorado potato beetle, Leptinotarsa decemlineata, known to have an efficient RNAi response. Through RNAi-of-RNAi experiments, we demonstrated the contribution of two different sid-1-like (sil) genes, silA and silC, and clathrin heavy chain and the 16kDa subunit of the vacuolar H(+) ATPase (vha16), elements of the endocytic pathway, to the RNAi response. Furthermore, the sid-1-like genes were examined through phylogenetic and hydrophobicity analysis. This article reports for the first time on the involvement of two pathways in dsRNA uptake in an insect species and stresses the importance of evaluating both pathways through a well-devised reporter system in any future experiments on cellular dsRNA uptake. PMID:26959524

  10. Herbivore exploits orally secreted bacteria to suppress plant defenses

    PubMed Central

    Chung, Seung Ho; Rosa, Cristina; Scully, Erin D.; Peiffer, Michelle; Tooker, John F.; Hoover, Kelli; Luthe, Dawn S.; Felton, Gary W.

    2013-01-01

    Induced plant defenses in response to herbivore attack are modulated by cross-talk between jasmonic acid (JA)- and salicylic acid (SA)-signaling pathways. Oral secretions from some insect herbivores contain effectors that overcome these antiherbivore defenses. Herbivores possess diverse microbes in their digestive systems and these microbial symbionts can modify plant–insect interactions; however, the specific role of herbivore-associated microbes in manipulating plant defenses remains unclear. Here, we demonstrate that Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum). We found that antibiotic-untreated larvae decreased production of JA and JA-responsive antiherbivore defenses, but increased SA accumulation and SA-responsive gene expression. Beetles benefit from down-regulating plant defenses by exhibiting enhanced larval growth. In SA-deficient plants, suppression was not observed, indicating that suppression of JA-regulated defenses depends on the SA-signaling pathway. Applying bacteria isolated from larval oral secretions to wounded plants confirmed that three microbial symbionts belonging to the genera Stenotrophomonas, Pseudomonas, and Enterobacter are responsible for defense suppression. Additionally, reinoculation of these bacteria to antibiotic-treated larvae restored their ability to suppress defenses. Flagellin isolated from Pseudomonas sp. was associated with defense suppression. Our findings show that the herbivore exploits symbiotic bacteria as a decoy to deceive plants into incorrectly perceiving the threat as microbial. By interfering with the normal perception of herbivory, beetles can evade antiherbivore defenses of its host. PMID:24019469

  11. Herbivore exploits orally secreted bacteria to suppress plant defenses.

    PubMed

    Chung, Seung Ho; Rosa, Cristina; Scully, Erin D; Peiffer, Michelle; Tooker, John F; Hoover, Kelli; Luthe, Dawn S; Felton, Gary W

    2013-09-24

    Induced plant defenses in response to herbivore attack are modulated by cross-talk between jasmonic acid (JA)- and salicylic acid (SA)-signaling pathways. Oral secretions from some insect herbivores contain effectors that overcome these antiherbivore defenses. Herbivores possess diverse microbes in their digestive systems and these microbial symbionts can modify plant-insect interactions; however, the specific role of herbivore-associated microbes in manipulating plant defenses remains unclear. Here, we demonstrate that Colorado potato beetle (Leptinotarsa decemlineata) larvae exploit bacteria in their oral secretions to suppress antiherbivore defenses in tomato (Solanum lycopersicum). We found that antibiotic-untreated larvae decreased production of JA and JA-responsive antiherbivore defenses, but increased SA accumulation and SA-responsive gene expression. Beetles benefit from down-regulating plant defenses by exhibiting enhanced larval growth. In SA-deficient plants, suppression was not observed, indicating that suppression of JA-regulated defenses depends on the SA-signaling pathway. Applying bacteria isolated from larval oral secretions to wounded plants confirmed that three microbial symbionts belonging to the genera Stenotrophomonas, Pseudomonas, and Enterobacter are responsible for defense suppression. Additionally, reinoculation of these bacteria to antibiotic-treated larvae restored their ability to suppress defenses. Flagellin isolated from Pseudomonas sp. was associated with defense suppression. Our findings show that the herbivore exploits symbiotic bacteria as a decoy to deceive plants into incorrectly perceiving the threat as microbial. By interfering with the normal perception of herbivory, beetles can evade antiherbivore defenses of its host. PMID:24019469

  12. Specificity of induced resistance in tomato against specialist lepidopteran and coleopteran species.

    PubMed

    Chung, Seung Ho; Felton, Gary W

    2011-04-01

    When challenged by herbivorous insects, plants produce a suite of antinutritive proteins that disrupt digestion and absorption of essential nutrients by the insects. We hypothesized that plants would induce distinct defense responses corresponding to the distinct midgut conditions of different herbivores. We investigated whether or not tomato responds specifically to two specialist herbivores: Colorado potato beetle (CPB; Leptinotarsa decemlineata; Coleoptera: Chrysomelidae) and tobacco hornworm (THW; Manduca sexta; Lepidoptera: Sphingidae), and we evaluated whether the induced defenses triggered by either species affect CPB growth. Tomato did not induce different defense genes in response to CPB or THW but accumulated more transcripts for some defense genes after damage by THW feeding compared to damage by CPB feeding. In addition, trypsin protease inhibitor activity and polyphenol oxidase activity were higher in plants damaged by THW than in plants damaged by CPB. Application of oral secretions from THW to wounded tomato plants increased transcripts compared to controls, but oral secretions from CPB decreased defense transcripts. CPB growth was compromised on plants damaged by either species, suggesting a low specificity of effect. Together, these data suggest distinct quantitative responses of tomato to two different specialist herbivores. Herbivore oral secretions might be responsible for these species-specific responses. PMID:21455676

  13. The use and manipulation of insect reproductive molecules for controlling insect populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use and manipulation of insect reproductive molecules, and the genes that encode them, provides a variety of methods to control insect fertility and thus a means of population control for insect pests. Towards this end, we first studied the yolk polypeptide gene from the caribfly, Anastrepha su...

  14. Laser- based Insect Tracker (LIT)

    NASA Astrophysics Data System (ADS)

    Mesquita, Leonardo; Sinha, Shiva; van Steveninck, Rob De Ruyter

    2011-03-01

    Insects are excellent model systems for studying learning and behavior, and the potential for genetic manipulation makes the fruitfly especially attractive. Many aspects of fruitfly behavior have been studied through video based tracking methods. However, to our knowledge no current system incorporates signals for behavioral conditioning in freely moving flies. We introduce a non-video based method that enables tracking of single insects over large volumes (> 8000cm3 at high spatial (<1mm) and temporal (<1ms) resolution for extended periods (>1 hour). The system uses a set of moveable mirrors that steer a tracking laser beam. Tracking is based on feedback from a four-quadrant sensor, sampling the beam after it bounces back from a retro reflector. Through the same mirrors we couple a high speed camera for flight dynamics analysis and an IR laser for aversive heat conditioning. Such heat shocks, combined with visual stimuli projected on a screen surrounding the flight arena, enable studies of learning and memory. By sampling the long term statistics of behavior, the system augments quantitative studies of behavioral phenotypes. Preliminary results of such studies will be presented.

  15. Smads and insect hemimetabolan metamorphosis.

    PubMed

    Santos, Carolina G; Fernandez-Nicolas, Ana; Belles, Xavier

    2016-09-01

    In contrast with Drosophila melanogaster, practically nothing is known about the involvement of the TGF-β signaling pathway in the metamorphosis of hemimetabolan insects. To partially fill this gap, we have studied the role of Smad factors in the metamorphosis of the German cockroach, Blattella germanica. In D. melanogaster, Mad is the canonical R-Smad of the BMP branch of the TGF-β signaling pathway, Smox is the canonical R-Smad of the TGF-β/Activin branch and Medea participates in both branches. In insects, metamorphosis is regulated by the MEKRE93 pathway, which starts with juvenile hormone (JH), whose signal is transduced by Methoprene-tolerant (Met), which stimulates the expression of Krüppel homolog 1 (Kr-h1) that acts to repress E93, the metamorphosis trigger. In B. germanica, metamorphosis is determined at the beginning of the sixth (final) nymphal instar (N6), when JH production ceases, the expression of Kr-h1 declines, and the transcription of E93 begins to increase. The RNAi of Mad, Smox and Medea in N6 of B. germanica reveals that the BMP branch of the TGF-β signaling pathway regulates adult ecdysis and wing extension, mainly through regulating the expression of bursicon, whereas the TGF-β/Activin branch contributes to increasing E93 and decreasing Kr-h1 at the beginning of N6, crucial for triggering adult morphogenesis, as well as to regulating the imaginal molt timing. PMID:27452629

  16. Diversity in Protein Glycosylation among Insect Species

    PubMed Central

    Vandenborre, Gianni; Smagghe, Guy; Ghesquière, Bart; Menschaert, Gerben; Nagender Rao, Rameshwaram; Gevaert, Kris; Van Damme, Els J. M.

    2011-01-01

    Background A very common protein modification in multicellular organisms is protein glycosylation or the addition of carbohydrate structures to the peptide backbone. Although the Class of the Insecta is the largest animal taxon on Earth, almost all information concerning glycosylation in insects is derived from studies with only one species, namely the fruit fly Drosophila melanogaster. Methodology/Principal Findings In this report, the differences in glycoproteomes between insects belonging to several economically important insect orders were studied. Using GNA (Galanthus nivalis agglutinin) affinity chromatography, different sets of glycoproteins with mannosyl-containing glycan structures were purified from the flour beetle (Tribolium castaneum), the silkworm (Bombyx mori), the honeybee (Apis mellifera), the fruit fly (D. melanogaster) and the pea aphid (Acyrthosiphon pisum). To identify and characterize the purified glycoproteins, LC-MS/MS analysis was performed. For all insect species, it was demonstrated that glycoproteins were related to a broad range of biological processes and molecular functions. Moreover, the majority of glycoproteins retained on the GNA column were unique to one particular insect species and only a few glycoproteins were present in the five different glycoprotein sets. Furthermore, these data support the hypothesis that insect glycoproteins can be decorated with mannosylated O-glycans. Conclusions/Significance The results presented here demonstrate that oligomannose N-glycosylation events are highly specific depending on the insect species. In addition, we also demonstrated that protein O-mannosylation in insect species may occur more frequently than currently believed. PMID:21373189

  17. Testing mechanistic models of growth in insects.

    PubMed

    Maino, James L; Kearney, Michael R

    2015-11-22

    Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. PMID:26609084

  18. Estimating Aquatic Insect Populations. Introduction to Sampling.

    ERIC Educational Resources Information Center

    Chihuahuan Desert Research Inst., Alpine, TX.

    This booklet introduces high school and junior high school students to the major groups of aquatic insects and to population sampling techniques. Chapter 1 consists of a short field guide which can be used to identify five separate orders of aquatic insects: odonata (dragonflies and damselflies); ephemeroptera (mayflies); diptera (true flies);…

  19. Applications of genome editing in insects.

    PubMed

    Reid, William; O'Brochta, David A

    2016-02-01

    Insect genome editing was first reported 1991 in Drosophila melanogaster but the technology used was not portable to other species. Not until the recent development of facile, engineered DNA endonuclease systems has gene editing become widely available to insect scientists. Most applications in insects to date have been technical in nature but this is rapidly changing. Functional genomics and genetics-based insect control efforts will be major beneficiaries of the application of contemporary gene editing technologies. Engineered endonucleases like Cas9 make it possible to create powerful and effective gene drive systems that could be used to reduce or even eradicate specific insect populations. 'Best practices' for using Cas9-based editing are beginning to emerge making it easier and more effective to design and use but gene editing technologies still require traditional means of delivery in order to introduce them into somatic and germ cells of insects-microinjection of developing embryos. This constrains the use of these technologies by insect scientists. Insects created using editing technologies challenge existing governmental regulatory structures designed to manage genetically modified organisms. PMID:27436552

  20. Potential applications of insect symbionts in biotechnology.

    PubMed

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value. PMID:26659224

  1. Towards the elements of successful insect RNAi

    PubMed Central

    Scott, Jeffrey G.; Michel, Kristin; Bartholomay, Lyric; Siegfried, Blair D.; Hunter, Wayne B.; Smagghe, Guy; Zhu, Kun Yan; Douglas, Angela E.

    2013-01-01

    RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases. PMID:24041495

  2. Applications of genome editing in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect genome editing was first reported 1991 in Drosophila melanogaster but the technology used was not portable to other species. Not until the recent development of facile, engineered DNA endonuclease systems has gene editing become widely available to insect scientists. Most applications in inse...

  3. What Do Elementary Students Know about Insects?

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.

    2002-01-01

    Presents an interview-based study of (n=56) elementary school students. Determines students' understanding about insect characteristics, life cycles, environmental conditions, and impact on humans. Suggests building units of instruction based on students' personal questions about insects. (Contains 16 references.) (Author/YDS)

  4. Eicosanoids: Progress Toward Manipulating Insect Immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect immunity is exclusively innate, lacking the antibody-based adaptive immunity of vertebrates. Innate immunity is a naturally occurring, non-specific system that does not require previous infectious experience. In this essay I describe insect immunity and review the roles of prostaglandins an...

  5. Permian insect wing from antarctic sentinel mountains.

    PubMed

    Tasch, P; Riek, E F

    1969-06-27

    A homopterous insect wing was found in micaceous graywacke from the Polarstar Formation, Sentinel Mountains. The unusual venation is reminiscent of family Stenoviciidae known from the Permian and Triassic of Eastern Australia and elsewhere. This first documented account of Paleozoic insects in Antarctica bears on drift questions. PMID:17748532

  6. Anti-viral Responses in Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the study of anti-viral responses in insects has lagged behind studies of responses to other types of pathogens, progress has begun to rapidly accelerate over the past few years. Insects are subject to infection by many different kinds of DNA and RNA viruses. These include viruses that ar...

  7. Polydnaviruses: Roles in insect pathology and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the more unusual groups of insect pathogens consists of members of the family Polydnaviridae, DNA insect viruses that live in mutual symbioses with their associated parasitoid wasp (Hymentoptera) carriers until they are injected into specific Lepidopteran hosts. Once inside this secondary hos...

  8. Insects and Spiders. Environmental Education Curriculum.

    ERIC Educational Resources Information Center

    Topeka Public Schools, KS.

    This unit is designed to provide information on insects and spiders that special education students are capable of understanding. The activities are aimed at level 2 and level 3 educable mentally retarded classes. There are four topics: (1) Characteristics and Life Cycles of Insects; (2) Characteristics of Spiders; (3) Habitats and Food Sources of…

  9. Eric Carle-Inspired Insect Collages.

    ERIC Educational Resources Information Center

    Palamountain, Eileen; Turner, Kim

    2000-01-01

    Describes a lesson in which students create collage insects inspired by the work of Eric Carle (The Very Hungry Caterpillar). Connects art, language arts, and science. Discusses how students make paper to use as the collage material and how students create the insects. (CMK)

  10. Genomics of Insect-Soybean Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dissection of plant-insect interactions has lagged behind that of interactions between plants and other types of pests. Insect pests interact with plants in a variety of ways, ranging from piercing and sucking of phloem to consumption of leaves and other tissues. Hence, a wide range of genetic m...

  11. Beneficial Insects and Spiders of Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of integrated pest management programs is dependent on the availability of biological information on beneficial insects and natural enemies of agricultural pests. This cooperative effort between ARS and UAF represents the first manual on beneficial insects and natural enemies of pest...

  12. Secondary succession: insect-plant relationships

    SciTech Connect

    Brown, V.K.

    1984-12-01

    Botanists have dominated the study of secondary succession, and as a result, models and theories have focused on plants. Recent work, however, has revealed several complex relationships between plants and insects during succession, including adaptations of life-cycle strategies. Furthermore, insect herbivores play a key role in the course and rate of plant succession.

  13. VIRAL DISEASES OF INVERTEBRATES OTHER THAN INSECTS

    EPA Science Inventory

    Thirteen examples of virus or viruslike related pathoses in non-insect invertebrates are described. From consideration of these examples, it becomes obvious that detailed descriptions of pathogenesis of virus diseases in non-insect invertebrates has not kept pace with the frequen...

  14. Perspectives on the state of insect transgenics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation is a critical component to the fundamental genetic analysis of insect species, and holds great promise for establishing strains that improve population control and behavior for practical application. This is especially so for insects that are disease vectors, many of which a...

  15. Scope and Basic Principles of Insect Pathology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects are the dominant animals in the world with more than one million described species. The vast majority of insects are innocuous or beneficial to humans, but a small percentage are pests that require a significant amount of our time, effort and funds to reduce their negative effects on food pr...

  16. CHARACTERIZATION OF MICROBIAL GUT FLORA OF HETEROPTEROUS INSECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many insects harbor a robust complement of prokaryotes in their alimentary canals. These microorganisms may facilitate nutrient availability and utilization, detoxification of environmental toxins, or play other important roles in the insect's life history. Understanding insect-microorganism inter...

  17. Multiorganismal Insects: Diversity and Function of Resident Microorganisms

    PubMed Central

    Douglas, Angela E.

    2015-01-01

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests. PMID:25341109

  18. Symbiont-mediated functions in insect hosts

    PubMed Central

    Su, Qi; Zhou, Xiaomao; Zhang, Youjun

    2013-01-01

    The bacterial endosymbionts occur in a diverse array of insect species and are usually rely within the vertical transmission from mothers to offspring. In addition to primary symbionts, plant sap-sucking insects may also harbor several diverse secondary symbionts. Bacterial symbionts play a prominent role in insect nutritional ecology by aiding in digestion of food or supplementing nutrients that insect hosts can’t obtain sufficient amounts from a restricted diet of plant phloem. Currently, several other ecologically relevant traits mediated by endosymbionts are being investigated, including defense toward pathogens and parasites, adaption to environment, influences on insect-plant interactions, and impact of population dynamics. Here, we review recent theoretical predictions and experimental observations of these traits mediated by endosymbionts and suggest that clarifying the roles of symbiotic microbes may be important to offer insights for ameliorating pest invasiveness or impact. PMID:23710278

  19. A call to insect scientists: Challenges and opportunities of managing insect communities under climate change

    USGS Publications Warehouse

    Hellmann, Jessica J.; Grundel, Ralph; Hoving, Chris; Schuurman, Gregor W.

    2016-01-01

    As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change.

  20. An Automated Flying-Insect-Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2005-01-01

    An automated flying-insect-detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect's wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing beat signatures are preprocessed (Fourier transformed) in real-time to display a periodic signal. These signals are sent to the end user where they are graphically displayed. All AFIDS data are pre-processed in the field with the use of a laptop computer equipped with LABVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation.

  1. Exaggerated trait growth in insects.

    PubMed

    Lavine, Laura; Gotoh, Hiroki; Brent, Colin S; Dworkin, Ian; Emlen, Douglas J

    2015-01-01

    Animal structures occasionally attain extreme proportions, eclipsing in size the surrounding body parts. We review insect examples of exaggerated traits, such as the mandibles of stag beetles (Lucanidae), the claspers of praying mantids (Mantidae), the elongated hindlimbs of grasshoppers (Orthoptera: Caelifera), and the giant heads of soldier ants (Formicidae) and termites (Isoptera). Developmentally, disproportionate growth can arise through trait-specific modifications to the activity of at least four pathways: the sex determination pathway, the appendage patterning pathway, the insulin/IGF signaling pathway, and the juvenile hormone/ecdysteroid pathway. Although most exaggerated traits have not been studied mechanistically, it is already apparent that distinct developmental mechanisms underlie the evolution of the different types of exaggerated traits. We suggest this reflects the nature of selection in each instance, revealing an exciting link between mechanism, form, and function. We use this information to make explicit predictions for the types of regulatory pathways likely to underlie each type of exaggerated trait. PMID:25341090

  2. The earliest known holometabolous insects.

    PubMed

    Nel, André; Roques, Patrick; Nel, Patricia; Prokin, Alexander A; Bourgoin, Thierry; Prokop, Jakub; Szwedo, Jacek; Azar, Dany; Desutter-Grandcolas, Laure; Wappler, Torsten; Garrouste, Romain; Coty, David; Huang, Diying; Engel, Michael S; Kirejtshuk, Alexander G

    2013-11-14

    The Eumetabola (Endopterygota (also known as Holometabola) plus Paraneoptera) have the highest number of species of any clade, and greatly contribute to animal species biodiversity. The palaeoecological circumstances that favoured their emergence and success remain an intriguing question. Recent molecular phylogenetic analyses have suggested a wide range of dates for the initial appearance of the Holometabola, from the Middle Devonian epoch (391 million years (Myr) ago) to the Late Pennsylvanian epoch (311 Myr ago), and Hemiptera (310 Myr ago). Palaeoenvironments greatly changed over these periods, with global cooling and increasing complexity of green forests. The Pennsylvanian-period crown-eumetabolan fossil record remains notably incomplete, particularly as several fossils have been erroneously considered to be stem Holometabola (Supplementary Information); the earliest definitive beetles are from the start of the Permian period. The emergence of the hymenopterids, sister group to other Holometabola, is dated between 350 and 309 Myr ago, incongruent with their current earliest record (Middle Triassic epoch). Here we describe five fossils--a Gzhelian-age stem coleopterid, a holometabolous larva of uncertain ordinal affinity, a stem hymenopterid, and early Hemiptera and Psocodea, all from the Moscovian age--and reveal a notable penecontemporaneous breadth of early eumetabolan insects. These discoveries are more congruent with current hypotheses of clade divergence. Eumetabola experienced episodes of diversification during the Bashkirian-Moscovian and the Kasimovian-Gzhelian ages. This cladogenetic activity is perhaps related to notable episodes of drying resulting from glaciations, leading to the eventual demise in Euramerica of coal-swamp ecosystems, evidenced by floral turnover during this interval. These ancient species were of very small size, living in the shadow of Palaeozoic-era 'giant' insects. Although these discoveries reveal unexpected Pennsylvanian

  3. Energy scavenging from insect flight

    NASA Astrophysics Data System (ADS)

    Erkan Aktakka, Ethem; Kim, Hanseup; Najafi, Khalil

    2011-09-01

    This paper reports the design, fabrication and testing of an energy scavenger that generates power from the wing motion of a Green June Beetle (Cotinis nitida) during its tethered flight. The generator utilizes non-resonant piezoelectric bimorphs operated in the d31 bending mode to convert mechanical vibrations of a beetle into electrical output. The available deflection, force, and power output from oscillatory movements at different locations on a beetle are measured with a meso-scale piezoelectric beam. This way, the optimum location to scavenge energy is determined, and up to ~115 µW total power is generated from body movements. Two initial generator prototypes were fabricated, mounted on a beetle, and harvested 11.5 and 7.5 µW in device volumes of 11.0 and 5.6 mm3, respectively, from 85 to 100 Hz wing strokes during the beetle's tethered flight. A spiral generator was designed to maximize the power output by employing a compliant structure in a limited area. The necessary technology needed to fabricate this prototype was developed, including a process to machine high-aspect ratio devices from bulk piezoelectric substrates with minimum damage to the material using a femto-second laser. The fabricated lightweight spiral generators produced 18.5-22.5 µW on a bench-top test setup mimicking beetles' wing strokes. Placing two generators (one on each wing) can result in more than 45 µW of power per insect. A direct connection between the generator and the flight muscles of the insect is expected to increase the final power output by one order of magnitude.

  4. Resilience in social insect infrastructure systems

    PubMed Central

    2016-01-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. PMID:26962030

  5. New light shed on the oldest insect.

    PubMed

    Engel, Michael S; Grimaldi, David A

    2004-02-12

    Insects are the most diverse lineage of all life in numbers of species, and ecologically they dominate terrestrial ecosystems. However, how and when this immense radiation of animals originated is unclear. Only a few fossils provide insight into the earliest stages of insect evolution, and among them are specimens in chert from Rhynie, Scotland's Old Red Sandstone (Pragian; about 396-407 million years ago), which is only slightly younger than formations harbouring the earliest terrestrial faunas. The most well-known animal from Rhynie is the springtail Rhyniella praecursor (Entognatha; Collembola), long considered to be the oldest hexapod. For true insects (Ectognatha), the oldest records are two apparent wingless insects from later in the Devonian period of North America. Here we show, however, that a fragmentary fossil from Rhynie, Rhyniognatha hirsti, is not only the earliest true insect but may be relatively derived within basal Ectognatha. In fact, Rhyniognatha has derived characters shared with winged insects, suggesting that the origin of wings may have been earlier than previously believed. Regardless, Rhyniognatha indicates that insects originated in the Silurian period and were members of some of the earliest terrestrial faunas. PMID:14961119

  6. Insect prophenoloxidase: the view beyond immunity

    PubMed Central

    Lu, Anrui; Zhang, Qiaoli; Zhang, Jie; Yang, Bing; Wu, Kai; Xie, Wei; Luan, Yun-Xia; Ling, Erjun

    2014-01-01

    Insect prophenoloxidase (PPO) is an important innate immunity protein due to its involvement in cellular and humoral defense. It belongs to a group of type-3 copper-containing proteins that occurs in almost all organisms. Insect PPO has been studied for over a century, and the PPO activation cascade is becoming clearer. The insect PPO activation pathway incorporates several important proteins, including pattern-recognition receptors (PGRP, β GRP, and C-type lectins), serine proteases, and serine protease inhibitors (serpins). Due to their complexity, PPO activation mechanisms vary among insect species. Activated phenoloxidase (PO) oxidizes phenolic molecules to produce melanin around invading pathogens and wounds. The crystal structure of Manduca sexta PPO shows that a conserved amino acid, phenylalanine (F), can block the active site pocket. During activation, this blocker must be dislodged or even cleaved at the N-terminal sequence to expose the active site pockets and allow substrates to enter. Thanks to the crystal structure of M. sexta PPO, some domains and specific amino acids that affect PPO activities have been identified. Further studies of the relationship between PPO structure and enzyme activities will provide an opportunity to examine other type-3 copper proteins, and trace when and why their various physiological functions evolved. Recent researches show that insect PPO has a relationship with neuron activity, longevity, feces melanization (phytophagous insects) and development, which suggests that it is time for us to look back on insect PPO beyond the view of immunity in this review. PMID:25071597

  7. Resilience in social insect infrastructure systems.

    PubMed

    Middleton, Eliza J T; Latty, Tanya

    2016-03-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. PMID:26962030

  8. Prostaglandins and Their Receptors in Insect Biology

    PubMed Central

    Stanley, David; Kim, Yonggyun

    2011-01-01

    We treat the biological significance of prostaglandins (PGs) and their known receptors in insect biology. PGs and related eicosanoids are oxygenated derivatives of arachidonic acid (AA) and two other C20 polyunsaturated fatty acids. PGs are mostly appreciated in the context of biomedicine, but a growing body of literature indicates the biological significance of these compounds extends throughout the animal kingdom, and possibly beyond. The actions of most PGs are mediated by specific receptors. Biomedical research has discovered a great deal of knowledge about PG receptors in mammals, including their structures, pharmacology, molecular biology and cellular locations. Studies of PG receptors in insects lag behind the biomedical background, however, recent results hold the promise of accelerated research in this area. A PG receptor has been identified in a class of lepidopteran hemocytes and experimentally linked to the release of prophenoloxidase. PGs act in several crucial areas of insect biology. In reproduction, a specific PG, PGE2, releases oviposition behavior in most crickets and a few other insect species; PGs also mediate events in egg development in some species, which may represent all insects. PGs play major roles in modulating fluid secretion in Malpighian tubules, rectum and salivary glands, although, again, this has been studied in only a few insect species that may represent the Class. Insect immunity is a very complex defense system. PGs and other eicosanoids mediate a large number of immune reactions to infection and invasion. We conclude that research into PGs and their receptors in insects will lead to important advances in our understanding of insect biology. PMID:22654840

  9. An Automated Flying-Insect Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2007-01-01

    An automated flying-insect detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland-security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect s wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing-beat signatures are preprocessed (Fourier transformed) in real time to display a periodic signal. These signals are sent to the end user where they are graphically. All AFIDS data are preprocessed in the field with the use of a laptop computer equipped with LabVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al-GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing-beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation. Preliminary data indicate that AFIDS has

  10. Microbiome influences on insect host vector competence

    PubMed Central

    Weiss, Brian

    2011-01-01

    Insect symbioses lack the complexity and diversity of those associated with higher eukaryotic hosts. Symbiotic microbiomes are beneficial to their insect hosts in many ways, including dietary supplementation, tolerance to environmental perturbations and maintenance and/or enhancement of host immune system homeostasis. Recent studies have also highlighted the importance of the microbiome in the context of host pathogen transmission processes. Here we provide an overview of the relationship between insect disease vectors, such as tsetse flies and mosquitoes, and their associated microbiome. Several mechanisms are discussed through which symbiotic microbes may influence their host’s ability to transmit pathogens, as well as potential disease control strategies that harness symbiotic microbes to reduce pathogen transmission through an insect vector. PMID:21697014

  11. Selectivity of odorant receptors in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect olfactory receptors (ORs) detect chemical signals, shape neuronal physiology and regulate behavior. Although ORs have been categorized as generalists and specialists based on their ligand spectrum, both electrophysiological studies and recent pharmacological investigations show that ORs spec...

  12. Insect food aiming at Mars emigration

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Yamashita, Masamichi; Hashimoto, Hirofumi; Nagasaka, Sanako; Kuwayama, Akemi; Sofue, Megumi

    2012-07-01

    We study insect food aiming at Mars emigration.In space agriculture, insect is the important creature which we cannot miss.It is necessary for the pollination of the plant, and it is rich to protein and lipid as food.I reported that silkworm is an insect necessary for astroponics in particular last time.We make clothes using silk thread, and the pupa becomes the food.In addition, the clothes can make food as protein when we need not to use it. The bee is a very important insect in the space agriculture,too.We examined nutrition of silkworm, bee, grasshopper, snail and the white ant which are necessary for Mars emigration.We will introduce of good balance space foods.We will report many meal menu for Mars emigration.

  13. Symbiont-mediated RNA interference in insects

    PubMed Central

    Whitten, Miranda M. A.; Facey, Paul D.; Del Sol, Ricardo; Fernández-Martínez, Lorena T.; Evans, Meirwyn C.; Mitchell, Jacob J.; Bodger, Owen G.

    2016-01-01

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects. PMID:26911963

  14. How to Find Insects Weathering the Winter.

    ERIC Educational Resources Information Center

    Brody, Jane

    1979-01-01

    Discusses how and where to find insects and other invertebrates in winter, as well as how to collect samples in order to watch those animals reappear in spring. Includes crickets, honey bees, mosquitoes, house flies, and butterflies and moths. (MA)

  15. FAQ: Insect Repellent Use and Safety

    MedlinePlus

    ... repellents? Always follow the recommendations appearing on the product label. EPA recommends the following when using insect repellents: ... skin and/or clothing (as directed on the product label). Do not apply repellents under your clothing. Never ...

  16. Insect contamination protection for laminar flow surfaces

    NASA Technical Reports Server (NTRS)

    Croom, Cynthia C.; Holmes, Bruce J.

    1986-01-01

    The ability of modern aircraft surfaces to achieve laminar flow was well-accepted in recent years. Obtaining the maximum benefit of laminar flow for aircraft drag reduction requires maintaining minimum leading-edge contamination. Previously proposed insect contamination prevention methods have proved impractical due to cost, weight, or inconvenience. Past work has shown that insects will not adhere to water-wetted surfaces, but the large volumes of water required for protection rendered such a system impractical. The results of a flight experiment conducted by NASA to evaluate the performance of a porous leading-edge fluid discharge ice protection system operated as an insect contamination protections system are presented. In addition, these flights explored the environmental and atmospheric conditions most suitable for insect accumulation.

  17. Symbiont-mediated RNA interference in insects.

    PubMed

    Whitten, Miranda M A; Facey, Paul D; Del Sol, Ricardo; Fernández-Martínez, Lorena T; Evans, Meirwyn C; Mitchell, Jacob J; Bodger, Owen G; Dyson, Paul J

    2016-02-24

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects. PMID:26911963

  18. PRACTICAL SYNTHESES OF SELECTED INSECT PHEROMONES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Practical examples of insect pheromone synthesis, from our laboratory will be presented. Examples of key reactions in synthetic pathways include: Regiospecific epoxidation (cereal leaf beetle), kinetic vs. thermodynamic control of cycloheptanone dimethylation (Aphthona flea beetles), in situ oxida...

  19. Odorant-binding proteins in insects.

    PubMed

    Zhou, Jing-Jiang

    2010-01-01

    Our understanding of the molecular and biochemical mechanisms that mediate chemoreception in insects has been greatly improved after the discovery of olfactory and taste receptor proteins. However, after 50 years of the discovery of first insect sex pheromone from the silkmoth Bombyx mori, it is still unclear how hydrophobic compounds reach the dendrites of sensory neurons in vivo across aqueous space and interact with the sensory receptors. The presence of soluble polypeptides in high concentration in the lymph of chemosensilla still poses unanswered questions. More than two decades after their discovery and despite the wealth of structural and biochemical information available, the physiological function of odorant-binding proteins (OBPs) is not well understood. Here, I review the structural properties of different subclasses of insect OBPs and their binding to pheromones and other small ligands. Finally, I discuss current ideas and models on the role of such proteins in insect chemoreception. PMID:20831949

  20. How-to-Do-It: Insect Singularis.

    ERIC Educational Resources Information Center

    Brett, William J.

    1989-01-01

    Presents an exercise which was designed to help students read material and follow directions more appropriately when performing laboratory activities. Provides a list of materials, instructions, comments, vocabulary words, and a diagrammatical sketch of an insect. (RT)

  1. A systematic nomenclature for the insect brain.

    PubMed

    Ito, Kei; Shinomiya, Kazunori; Ito, Masayoshi; Armstrong, J Douglas; Boyan, George; Hartenstein, Volker; Harzsch, Steffen; Heisenberg, Martin; Homberg, Uwe; Jenett, Arnim; Keshishian, Haig; Restifo, Linda L; Rössler, Wolfgang; Simpson, Julie H; Strausfeld, Nicholas J; Strauss, Roland; Vosshall, Leslie B

    2014-02-19

    Despite the importance of the insect nervous system for functional and developmental neuroscience, descriptions of insect brains have suffered from a lack of uniform nomenclature. Ambiguous definitions of brain regions and fiber bundles have contributed to the variation of names used to describe the same structure. The lack of clearly determined neuropil boundaries has made it difficult to document precise locations of neuronal projections for connectomics study. To address such issues, a consortium of neurobiologists studying arthropod brains, the Insect Brain Name Working Group, has established the present hierarchical nomenclature system, using the brain of Drosophila melanogaster as the reference framework, while taking the brains of other taxa into careful consideration for maximum consistency and expandability. The following summarizes the consortium's nomenclature system and highlights examples of existing ambiguities and remedies for them. This nomenclature is intended to serve as a standard of reference for the study of the brain of Drosophila and other insects. PMID:24559671

  2. Principles of Insect Identification. MP-20.

    ERIC Educational Resources Information Center

    Lawson, Fred A.; Burkhardt, Chris C.

    This document provides information for the complete classification of members of the phylum Arthropoda. Both major and minor insect orders are discussed relative to their anatomical characteristics and importance. (CS)

  3. Genetics and Biochemistry of Insect Resistance in Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects are a major concern for maize production worldwide. Host plant resistance to insects involves a number of chemical and biochemical factors that limit but rarely eliminate insect damage. Most chemical and many biochemical factors involved in resistance to insects are synthesized independent...

  4. Improving Cold Storage of Insects with Dietary Changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining healthy insect colonies is costly regardless of whether those insects are for research or commercial use. To reduce cost, it is highly desirable to preserve insects at reduced temperatures for short- and long-term periods with a minimal negative impact on insect quality. Recent investi...

  5. Insect cell culture and applications to research and pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Building on earlier research, insect cell culture began with the successful establishment of one cell line from pupal ovarian tissue. The field has grown to the extent that now over 500 insect cell lines have been established from many insect species representing numerous insect Orders and from seve...

  6. IMp: The customizable LEGO® Pinned Insect Manipulator

    PubMed Central

    Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir

    2015-01-01

    Abstract We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble. PMID:25685035

  7. Intraspecific body size frequency distributions of insects.

    PubMed

    Gouws, E Jeanne; Gaston, Kevin J; Chown, Steven L

    2011-01-01

    Although interspecific body size frequency distributions are well documented for many taxa, including the insects, intraspecific body size frequency distributions (IaBSFDs) are more poorly known, and their variation among mass-based and linear estimates of size has not been widely explored. Here we provide IaBSFDs for 16 species of insects based on both mass and linear estimates and large sample sizes (n ≥ 100). In addition, we review the published IaBSFDs for insects, though doing so is complicated by their under-emphasis in the literature. The form of IaBSFDs can differ substantially between mass-based and linear measures. Nonetheless, in non-social insects they tend to be normally distributed (18 of 27 species) or in fewer instances positively skewed. Negatively skewed distributions are infrequently reported and log transformation readily removes the positive skew. Sexual size dimorphism does not generally cause bimodality in IaBSFDs. The available information on IaBSFDs in the social insects suggests that these distributions are usually positively skewed or bimodal (24 of 30 species). However, only c. 15% of ant genera are polymorphic, suggesting that normal distributions are probably more common, but less frequently investigated. Although only 57 species, representing seven of the 29 orders of insects, have been considered here, it appears that whilst IaBSFDs are usually normal, other distribution shapes can be found in several species, though most notably among the social insects. By contrast, the interspecific body size frequency distribution is typically right-skewed in insects and in most other taxa. PMID:21479214

  8. Intraspecific Body Size Frequency Distributions of Insects

    PubMed Central

    Gouws, E. Jeanne; Gaston, Kevin J.; Chown, Steven L.

    2011-01-01

    Although interspecific body size frequency distributions are well documented for many taxa, including the insects, intraspecific body size frequency distributions (IaBSFDs) are more poorly known, and their variation among mass-based and linear estimates of size has not been widely explored. Here we provide IaBSFDs for 16 species of insects based on both mass and linear estimates and large sample sizes (n≥100). In addition, we review the published IaBSFDs for insects, though doing so is complicated by their under-emphasis in the literature. The form of IaBSFDs can differ substantially between mass-based and linear measures. Nonetheless, in non-social insects they tend to be normally distributed (18 of 27 species) or in fewer instances positively skewed. Negatively skewed distributions are infrequently reported and log transformation readily removes the positive skew. Sexual size dimorphism does not generally cause bimodality in IaBSFDs. The available information on IaBSFDs in the social insects suggests that these distributions are usually positively skewed or bimodal (24 of 30 species). However, only c. 15% of ant genera are polymorphic, suggesting that normal distributions are probably more common, but less frequently investigated. Although only 57 species, representing seven of the 29 orders of insects, have been considered here, it appears that whilst IaBSFDs are usually normal, other distribution shapes can be found in several species, though most notably among the social insects. By contrast, the interspecific body size frequency distribution is typically right-skewed in insects and in most other taxa. PMID:21479214

  9. Factors affecting the sticking of insects on modified aircraft wings

    NASA Technical Reports Server (NTRS)

    Yi, O.; Chan, R.; Eiss, N. S.; Pingali, U.; Wightman, J. P.

    1988-01-01

    The adhesion of insects to aircraft wings is studied. Insects were collected in road tests in past studies and a large experimental error was introduced caused by the variability of insect flux. The presence of such errors has been detected by studying the insect distribution across an aluminum-strip covered half-cylinder mounted on the top of a car. After a nonuniform insect distribution (insect flux) was found from three road tests, a new arrangement of samples was developed. The feasibility of coating aircraft wing surfaces with polymers to reduce the number of insects sticking onto the surfaces was studied using fluorocarbon elastomers, styrene butadiene rubbers, and Teflon.

  10. Tomographic reconstruction of neopterous carboniferous insect nymphs.

    PubMed

    Garwood, Russell; Ross, Andrew; Sotty, Daniel; Chabard, Dominique; Charbonnier, Sylvain; Sutton, Mark; Withers, Philip J

    2012-01-01

    Two new polyneopteran insect nymphs from the Montceau-les-Mines Lagerstätte of France are presented. Both are preserved in three dimensions, and are imaged with the aid of X-ray micro-tomography, allowing their morphology to be recovered in unprecedented detail. One-Anebos phrixos gen. et sp. nov.-is of uncertain affinities, and preserves portions of the antennae and eyes, coupled with a heavily spined habitus. The other is a roachoid with long antennae and chewing mouthparts very similar in form to the most generalized mandibulate mouthparts of extant orthopteroid insects. Computer reconstructions reveal limbs in both specimens, allowing identification of the segments and annulation in the tarsus, while poorly developed thoracic wing pads suggest both are young instars. This work describes the morphologically best-known Palaeozoic insect nymphs, allowing a better understanding of the juveniles' palaeobiology and palaeoecology. We also consider the validity of evidence from Palaeozoic juvenile insects in wing origin theories. The study of juvenile Palaeozoic insects is currently a neglected field, yet these fossils provide direct evidence on the evolution of insect development. It is hoped this study will stimulate a renewed interest in such work. PMID:23049858

  11. Tomographic Reconstruction of Neopterous Carboniferous Insect Nymphs

    PubMed Central

    Garwood, Russell; Ross, Andrew; Sotty, Daniel; Chabard, Dominique; Charbonnier, Sylvain; Sutton, Mark; Withers, Philip J.

    2012-01-01

    Two new polyneopteran insect nymphs from the Montceau-les-Mines Lagerstätte of France are presented. Both are preserved in three dimensions, and are imaged with the aid of X-ray micro-tomography, allowing their morphology to be recovered in unprecedented detail. One–Anebos phrixos gen. et sp. nov.–is of uncertain affinities, and preserves portions of the antennae and eyes, coupled with a heavily spined habitus. The other is a roachoid with long antennae and chewing mouthparts very similar in form to the most generalized mandibulate mouthparts of extant orthopteroid insects. Computer reconstructions reveal limbs in both specimens, allowing identification of the segments and annulation in the tarsus, while poorly developed thoracic wing pads suggest both are young instars. This work describes the morphologically best-known Palaeozoic insect nymphs, allowing a better understanding of the juveniles’ palaeobiology and palaeoecology. We also consider the validity of evidence from Palaeozoic juvenile insects in wing origin theories. The study of juvenile Palaeozoic insects is currently a neglected field, yet these fossils provide direct evidence on the evolution of insect development. It is hoped this study will stimulate a renewed interest in such work. PMID:23049858

  12. Insect Pathogenic Fungi as Endophytes.

    PubMed

    Moonjely, S; Barelli, L; Bidochka, M J

    2016-01-01

    In this chapter, we explore some of the evolutionary, ecological, molecular genetics, and applied aspects of a subset of insect pathogenic fungi that also have a lifestyle as endophytes and we term endophytic insect pathogenic fungi (EIPF). We focus particularly on Metarhizium spp. and Beauveria bassiana as EIPF. The discussion of the evolution of EIPF challenges a view that these fungi were first and foremost insect pathogens that eventually evolved to colonize plants. Phylogenetic evidence shows that the lineages of EIPF are most closely related to grass endophytes that diverged c. 100MYA. We discuss the relationship between genes involved in "insect pathogenesis" and those involved in "endophytism" and provide examples of genes with potential importance in lifestyle transitions toward insect pathogenicity. That is, some genes for insect pathogenesis may have been coopted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. The interactions of EIPF with their host plants are discussed in some detail. The genetic basis for rhizospheric competence, plant communication, and nutrient exchange is examined and we highlight, with examples, the benefits of EIPF to plants, and the potential reservoir of secondary metabolites hidden within these beneficial symbioses. PMID:27131324

  13. Linking energetics and overwintering in temperate insects.

    PubMed

    Sinclair, Brent J

    2015-12-01

    Overwintering insects cannot feed, and energy they take into winter must therefore fuel energy demands during autumn, overwintering, warm periods prior to resumption of development in spring, and subsequent activity. Insects primarily consume lipids during winter, but may also use carbohydrate and proteins as fuel. Because they are ectotherms, the metabolic rate of insects is temperature-dependent, and the curvilinear nature of the metabolic rate-temperature relationship means that warm temperatures are disproportionately important to overwinter energy use. This energy use may be reduced physiologically, by reducing the slope or elevation of the metabolic rate-temperature relationship, or because of threshold changes, such as metabolic suppression upon freezing. Insects may also choose microhabitats or life history stages that reduce the impact of overwinter energy drain. There is considerable capacity for overwinter energy drain to affect insect survival and performance both directly (via starvation) or indirectly (for example, through a trade-off with cryoprotection), but this has not been well-explored. Likewise, the impact of overwinter energy drain on growing-season performance is not well understood. I conclude that overwinter energetics provides a useful lens through which to link physiology and ecology and winter and summer in studies of insect responses to their environment. PMID:26615721

  14. 75 FR 47592 - Final Test Guideline; Product Performance of Skin-applied Insect Repellents of Insect and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ..., 2007 (72 FR 32647) (FRL-8135-9), of national experts in which the revisions made in June 2006, were... AGENCY Final Test Guideline; Product Performance of Skin-applied Insect Repellents of Insect and Other... Product Performance of Skin-applied Insect Repellents of Insect and Other Arthropods Test...

  15. Molecular cloning and functional characterization of an endogenous endoglucanase belonging to GHF45 from the western corn rootworm, Diabrotica virgifera virgifera.

    PubMed

    Valencia, Arnubio; Alves, Analiza P; Siegfried, Blair D

    2013-01-25

    A novel insect β-1,4-endoglucanase (DvvENGaseI) gene belonging to the glycoside hydrolase family (GHF) 45 was identified from the western corn rootworm, Diabrotica virgifera virgifera. The cDNA of the DvvENGaseI consisted of a 720 bp open reading frame encoding a 239 amino-acid protein. Analysis of the amino acid sequence revealed that DvvENGaseI exhibits 60% protein sequence identity when compared with an endoglucanase belonging to GHF45 from another beetle, Leptinotarsa decemlineata. Western blot analyses using a polyclonal antiserum developed from a partial peptide sequence revealed that DvvENGaseI expression coincided with body regions corresponding to the fore-, mid- and hindgut, although regions corresponding to the midgut and hindgut were the primary sites for DvvENGaseI expression. Functional analysis of the DvvENGaseI by RNA interference (RNAi) indicated that nearly complete knock-down of gene expression could be obtained by injection of dsRNA based on qRT-PCR and western blot analysis. However, suppression only resulted in slight developmental delays suggesting that this gene may be part of a larger system of cellulose degrading enzymes. PMID:23137634

  16. Tn5 as an insect gene vector.

    PubMed

    Rowan, Kathryn H; Orsetti, Jamison; Atkinson, Peter W; O'Brochta, David A

    2004-07-01

    The purpose of this study was to explore alternatives to insect-derived transposable elements as insect gene vectors with the intention of improving existing insect transgenesis methods. The mobility properties of the bacterial transposon, Tn5, were tested in mosquitoes using a transient transposable element mobility assay and by attempting to create transgenic insects. Tn5 synaptic complexes were assembled in vitro in the absence of Mg(2+) and co-injected with a target plasmid into developing yellow fever mosquito, Aedes aegypti, embryos. Target plasmids recovered from embryos a day later were screened for the presence of Tn5. Recombinants (transposition events) were found at a frequency of 1.2 x 10(-3). Some transposition events did not appear to be associated with canonical 9 bp direct duplications at the site of insertion and also were associated with either deletions or rearrangements. A Tn5 element containing the brain-specific transgene, 3 x P3DsRed, was assembled into synaptic complexes in vitro and injected into pre-blastoderm embryos of Ae. aegypti. Of the approximately 900 embryos surviving injection and developing into adults, two produced transgenic progeny. Both transgenic events involved the co-integrations of approximately five elements resulting in nested and tandem arrayed Tn5::3 x P3DsRed elements. This study extends the known host range of Tn5 to insects and makes available to insect biologists and others another eukaryotic genome-manipulation tool. The hyperactivity of synaptic complexes may be responsible for the unusual clustering of elements and managing this aspect of the element's behavior will be important in future applications of this technology to insects. PMID:15242711

  17. Quantifying the movement of multiple insects using an optical insect counter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An optical insect counter (OIC) was designed and tested. The new system integrated a line-scan camera and a vertical light sheet along with data collection and image processing software to count numbers of flying insects crossing a vertical plane defined by the light sheet. The system also allows ...

  18. Residual efficacy of the insect growth regulator pyriproxyfen for control of stored product insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The insect growth regulator pyriproxyfen is registered in the USA as an aerosol and as a surface treatment to control stored product insects. Field trials with the aerosol show that residues from an application of pyrethrin + pyriproxyfen gave residual control of the red flour beetle, Tribolium cast...

  19. Quantifying the movement of multiple insects using an optical insect counter.

    PubMed

    Hoffmann, Wesley C; Jank, Philip C; Klun, Jerome A; Fritz, Bradley K

    2010-06-01

    An optical insect counter (OIC) was designed and tested. The new system integrated a line-scan camera and a vertical light sheet along with data collection and image-processing software to count flying insects crossing a vertical plane defined by the light sheet. The system also discriminates each insect by its position along the horizontal length defined by the light sheet. The system was successfully tested with a preliminary experimental protocol for determining whether groups of flying mosquitoes preferred or avoided attractants and repellents in a flight tunnel. The OIC counted the number of mosquitoes that crossed the light sheet and recorded the horizontal position and time each insect passed through the light sheet. The system provides a straightforward and reliable method for measuring and recording spatial and temporal information for insects that pass through an established plane. PMID:20649126

  20. Naturally occurring insect growth regulators. II. Screening of insect and plant extracts as insect juvenile hormone mimics.

    PubMed

    Jacobson, M; Redfern, R E; Mills, G D

    1975-01-01

    Ethereal extracts prepared from the larvae, pupae, or eggs of 10 species of insects and from various parts of 343 species of higher plants were screened for juvenilizing effects against Tenebrio molitor and Oncopeltus fasciatus. Activity in both species was shown by an extract of the larvae of the stable fly, Stomoxys calcitrans, whereas an extract of the pupae was active in O. fasiatus only. Extracts of two plant species (Echinacea angustifolia roots and Chamaecyparis lawsoniana seeds) showed high juvenilizing activity in T. MOLITOR, AND EXtracts of five plant species (Clethra alnifolia stems, leaves, and fruits, Sassafras albidum roots and root bark, Eucalyptus camaldulensis stems and bark, Pinus rigida twigs and leaves, and Iris douglasiana roots, stems, and fruits) were highly active in O. fasciatus an extract of Tsuga canadensis leaves showed lower activity in this insect. Extracts of 16 species of plants showed high insecticidal activity (mortality) in O. fasciatus but lacked juvenilizing properties in both species of test insects. PMID:1221244

  1. Virus strains differentially induce plant susceptibility to aphid vectors and chewing herbivores.

    PubMed

    Kersch-Becker, Mônica F; Thaler, Jennifer S

    2014-03-01

    Plants are frequently attacked by both pathogens and insects, and an attack from one can induce plant responses that affect resistance to the other. However, we currently lack a predictive framework for understanding how pathogens, their vectors, and other herbivores interact. To address this gap, we have investigated the effects of a viral infection in the host plant on both its aphid vector and non-vector herbivores. We tested whether the infection by three different strains of Potato virus Y (PVY(NTN), PVY(NO) and PVY(O)) on tomato plants affected: (1) the induced plant defense pathways; (2) the abundance and fecundity of the aphid vector (Macrosiphum euphorbiae); and (3) the performance of two non-vector species: a caterpillar (Trichoplusia ni) and a beetle (Leptinotarsa decemlineata). While infection by all three strains of PVY induced the salicylate pathway, PVY(NTN) induced a stronger and longer response. Fecundity and density of aphids increased on all PVY-infected plants, suggesting that the aphid response is not negatively associated with salicylate induction. In contrast, the performance of non-vector herbivores positively correlated with the strength of salicylate induction. PVY(NTN) infection decreased plant resistance to both non-vector herbivores, increasing their growth rates. We also demonstrated that the impact of host plant viral infection on the caterpillar results from host plant responses and not the effects of aphid vector feeding. We propose that pathogens chemically mediate insect-plant interactions by activating the salicylate pathway and decreasing plant resistance to chewing insects, which has implications for both disease transmission and insect community structure. PMID:24178835

  2. Fungus-insect gall of Phlebopus portentosus.

    PubMed

    Zhang, Chun-Xia; He, Ming-Xia; Cao, Yang; Liu, Jing; Gao, Feng; Wang, Wen-Bing; Ji, Kai-Ping; Shao, Shi-Cheng; Wang, Yun

    2015-01-01

    Phlebopus portentosus is a popular edible wild mushroom found in the tropical Yunnan, China, and northern Thailand. In its natural habitats, a gall often has been found on some plant roots, around which fungal fruiting bodies are produced. The galls are different from common insect galls in that their cavity walls are not made from plant tissue but rather from the hyphae of P. portentosus. Therefore we have termed this phenomenon "fungus-insect gall". Thus far six root mealy bug species in the family Pseudococcidae that form fungus-insect galls with P. portentosus have been identified: Formicococcus polysperes, Geococcus satellitum, Planococcus minor, Pseudococcus cryptus, Paraputo banzigeri and Rastrococcus invadens. Fungus-insect galls were found on the roots of more than 21 plant species, including Delonix regia, Citrus maxima, Coffea arabica and Artocarpus heterophyllus. Greenhouse inoculation trials showed that fungus-insect galls were found on the roots of A. heterophyllus 1 mo after inoculation. The galls were subglobose to globose, fulvous when young and became dark brown at maturation. Each gall harbored one or more mealy bugs and had a chimney-like vent for ventilation and access to the gall. The cavity wall had three layers. Various shaped mealy bug wax deposits were found inside the wall. Fungal hyphae invaded the epidermis of plant roots and sometimes even the cortical cells during the late stage of gall development. The identity of the fungus inside the cavity was confirmed by molecular methods. PMID:25344264

  3. Gall insects and indirect plant defenses

    PubMed Central

    De Moraes, Consuelo M

    2008-01-01

    Many plants can defend themselves against insect herbivory by attracting natural enemies that kill feeding herbivores and limit the damage they inflict. Such “indirect defenses” can be induced by insects feeding on different plant tissues and using a variety of feeding styles. However, we have recently shown that gall-inducing insect species can avoid the indirect defenses of their host plant species and even alter volatile emissions following subsequent herbivory. One of the species we studied, Eurosta solidaginis, induces galls on goldenrod (Solidago altissima) and appears to exert a unique influence over the indirect defenses of its host plant that is not readily explained by levels of defense-related phytohormones, gall formation or resource depletion. Our evidence suggests that this gall-insect species may be able to manipulate its host plant species to avoid and/or modify its defensive responses. The results also provide insight into gall induction because the gall-insect species that we screened did not increase levels of jasmonic acid, which, in addition to triggering volatile emissions, is a powerful growth regulator that could prevent the cell growth and division that leads to gall formation. PMID:19704500

  4. Acoustic communication in insect disease vectors

    PubMed Central

    Vigoder, Felipe de Mello; Ritchie, Michael Gordon; Gibson, Gabriella; Peixoto, Alexandre Afranio

    2013-01-01

    Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects. PMID:24473800

  5. Uncontrolled Stability in Freely Flying Insects

    NASA Astrophysics Data System (ADS)

    Melfi, James, Jr.; Wang, Z. Jane

    2015-11-01

    One of the key flight modes of a flying insect is longitudinal flight, traveling along a localized two-dimensional plane from one location to another. Past work on this topic has shown that flying insects, unless stabilized by some external stimulus, are typically unstable to a well studied pitching instability. In our work, we examine this instability in a computational study to understand whether it is possible for either evolution or an aero-vehicle designer to stabilize longitudinal flight through changes to insect morphology, kinematics, or aerodynamic quantities. A quasi-steady wingbeat averaged flapping flight model is used to describe the insect. From this model, a number of non-dimensional parameters are identified. The effect of these parameters was then quantified using linear stability analysis, applied to various translational states of the insect. Based on our understanding of these parameters, we demonstrate how to find an intrinsically stable flapping flight sequence for a dragonfly-like flapping flier in an instantaneous flapping flight model.

  6. Insect pest management in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Dahlsten, Donald L.; Rowney, David L.

    1983-01-01

    Understanding the role of insects in forest ecosystems is vital to the development of environmentally and economically sound pest management strategies in forestry Most of the research on forest insects has been confined to phytophagous species associated with economically important tree species The roles of most other insects in forest environments have generally been ignored, including the natural enemies and associates of phytophagous species identified as being important In the past few years several investigations have begun to reevaluate the role of phytophagous species responsible for perturbation in forest ecosystems, and it appears that these species may be playing an important role in the primary productivity of those ecosystems Also, there is an increasing awareness that forest pest managers have been treating the symptoms and not the causes of the problems in the forest Many insect problems are associated with poor sites or sites where trees are growing poorly because of crowding As a result, there is considerable emphasis on the hazard rating of stands of trees for their susceptibility to various phytophagous insects The next step is to manipulate forest stands to make them less susceptible to forest pest complexes A thinning study in California is used as an example and shows that tree mortality in ponderosa pine ( Pinus ponderosa) attributable to the western pine beetle ( Dendroctonus brevicomis) can be reduced by commercial thinning to reduce stocking

  7. Flapping wing aerodynamics: from insects to vertebrates.

    PubMed

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. PMID:27030773

  8. Veins improve fracture toughness of insect wings.

    PubMed

    Dirks, Jan-Henning; Taylor, David

    2012-01-01

    During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species. PMID:22927966

  9. Magnetoreception in eusocial insects: an update

    PubMed Central

    Wajnberg, Eliane; Acosta-Avalos, Daniel; Alves, Odivaldo Cambraia; de Oliveira, Jandira Ferreira; Srygley, Robert B.; Esquivel, Darci M. S.

    2010-01-01

    Behavioural experiments for magnetoreception in eusocial insects in the last decade are reviewed. Ants and bees use the geomagnetic field to orient and navigate in areas around their nests and along migratory paths. Bees show sensitivity to small changes in magnetic fields in conditioning experiments and when exiting the hive. For the first time, the magnetic properties of the nanoparticles found in eusocial insects, obtained by magnetic techniques and electron microscopy, are reviewed. Different magnetic oxide nanoparticles, ranging from superparamagnetic to multi-domain particles, were observed in all body parts, but greater relative concentrations in the abdomens and antennae of honeybees and ants have focused attention on these segments. Theoretical models for how these specific magnetosensory apparatuses function have been proposed. Neuron-rich ant antennae may be the most amenable to discovering a magnetosensor that will greatly assist research into higher order processing of magnetic information. The ferromagnetic hypothesis is believed to apply to eusocial insects, but interest in a light-sensitive mechanism is growing. The diversity of compass mechanisms in animals suggests that multiple compasses may function in insect orientation and navigation. The search for magnetic compasses will continue even after a magnetosensor is discovered in eusocial insects. PMID:20106876

  10. Unraveling navigational strategies in migratory insects

    PubMed Central

    Merlin, Christine; Heinze, Stanley; Reppert, Steven M.

    2011-01-01

    Long-distance migration is a strategy some animals use to survive a seasonally changing environment. To reach favorable grounds, migratory animals have evolved sophisticated navigational mechanisms that rely on a map and compasses. In migratory insects, the existence of a map sense (sense of position) remains poorly understood, but recent work has provided new insights into the mechanisms some compasses use for maintaining a constant bearing during long-distance navigation. The best-studied directional strategy relies on a time-compensated sun compass, used by diurnal insects, for which neural circuits have begun to be delineated. Yet, a growing body of evidence suggests that migratory insects may also rely on other compasses that use night sky cues or the Earth's magnetic field. Those mechanisms are ripe for exploration. PMID:22154565

  11. Insect societies and the social brain.

    PubMed

    Farris, Sarah M

    2016-06-01

    The 'social brain hypothesis,' the relationship between social behavior and brain size, does not apply to insects. In social insects, especially those of the Order Hymenoptera (ants, bees and wasps), sociality has not always increased individual behavioral repertoires and is associated with only subtle variation in the size of a higher brain center, the mushroom bodies. Rather than sociality, selection for novel visual behavior, perhaps spatial learning, has led to the acquisition of novel visual inputs and profound increases in mushroom body size. This occurred in nonsocial ancestors suggesting that the sensory and cognitive advantages of large mushroom bodies may be preadaptations to sociality. Adaptations of the insect mushroom bodies are more reliably associated with sensory ecology than social behavior. PMID:27436726

  12. "Qupirruit": insects and worms in Inuit traditions.

    PubMed

    Laugrand, Frédéric; Oosten, Jarich

    2010-01-01

    Although small beings such as the "qupirruit" (insects and worms) appear in many different contexts in Inuit culture, they have not received much attention from scholars. In this paper we examine the symbolism associated with these small animals. We show that their small size makes them suitable to operate on the level of the "tarniq," a miniature image of a being. We discuss how insects often connect different scales and easily transform into other beings. We first deal with the perceptions of insects as they take shape in narratives and practices, and their roles in the manufacture and use of amulets. Then we move to a more specific analysis of the distinctive features of the various "qupirruit". PMID:20648981

  13. Freshwater biodiversity and aquatic insect diversification.

    PubMed

    Dijkstra, Klaas-Douwe B; Monaghan, Michael T; Pauls, Steffen U

    2014-01-01

    Inland waters cover less than 1% of Earth's surface but harbor more than 6% of all insect species: Nearly 100,000 species from 12 orders spend one or more life stages in freshwater. Little is known about how this remarkable diversity arose, although allopatric speciation and ecological adaptation are thought to be primary mechanisms. Freshwater habitats are highly susceptible to environmental change and exhibit marked ecological gradients. Standing waters appear to harbor more dispersive species than running waters, but there is little understanding of how this fundamental ecological difference has affected diversification. In contrast to the lack of evolutionary studies, the ecology and habitat preferences of aquatic insects have been intensively studied, in part because of their widespread use as bioindicators. The combination of phylogenetics with the extensive ecological data provides a promising avenue for future research, making aquatic insects highly suitable models for the study of ecological diversification. PMID:24160433

  14. Agricultural applications of insect ecological genomics.

    PubMed

    Poelchau, Monica F; Coates, Brad S; Childers, Christopher P; Peréz de León, Adalberto A; Evans, Jay D; Hackett, Kevin; Shoemaker, DeWayne

    2016-02-01

    Agricultural entomology is poised to benefit from the application of ecological genomics, particularly the fields of biofuels generation and pest control. Metagenomic methods can characterize microbial communities of termites, wood-boring beetles and livestock pests, and transcriptomic approaches reveal molecular bases behind wood-digesting capabilities of these insects, leading to potential mechanisms for biofuel generation. Genome sequences are being exploited to develop new pest control methods, identify candidate antigens to vaccinate livestock, and discover RNAi target sequences and potential non-target effects in other insects. Gene content analyses of pest genome sequences and their endosymbionts suggest metabolic interdependencies between organisms, exposing potential gene targets for insect control. Finally, genome-wide association studies and genotyping by high-throughput sequencing promise to improve management of pesticide resistance. PMID:27436554

  15. Damage signals in the insect immune response

    PubMed Central

    Krautz, Robert; Arefin, Badrul; Theopold, Ulrich

    2014-01-01

    Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes. PMID:25071815

  16. RNA interference: Applications and advances in insect toxicology and insect pest management.

    PubMed

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management. PMID:25987228

  17. Insect vision as model for machine vision

    NASA Astrophysics Data System (ADS)

    Osorio, D.; Sobey, Peter J.

    1992-11-01

    The neural architecture, neurophysiology and behavioral abilities of insect vision are described, and compared with that of mammals. Insects have a hardwired neural architecture of highly differentiated neurons, quite different from the cerebral cortex, yet their behavioral abilities are in important respects similar to those of mammals. These observations challenge the view that the key to the power of biological neural computation is distributed processing by a plastic, highly interconnected, network of individually undifferentiated and unreliable neurons that has been a dominant picture of biological computation since Pitts and McCulloch's seminal work in the 1940's.

  18. Remote detection of insect epidemics in conifers

    NASA Technical Reports Server (NTRS)

    Heller, R. C.

    1970-01-01

    With properly exposed color or infrared color film, discolored foliage caused by insect infestations in ponderosa pine is detectable on moderately small-scale photographs with acceptable accuracies. Black and white photographs which matched the wavebands of the ERTS multispectral scanner were combined into one additive color photo. This imagery was not as useful as photographs taken on color, color infrared, or color film with a minus blue filter. Based on the high-altitude color and color infrared photos obtained, it is concluded that only insect infestations larger than 100 meters in diameter are detectable on ERTS imagery.

  19. Two Dimensional Mechanism for Insect Hovering

    SciTech Connect

    Jane Wang, Z.

    2000-09-04

    Resolved computation of two dimensional insect hovering shows for the first time that a two dimensional hovering motion can generate enough lift to support a typical insect weight. The computation reveals a two dimensional mechanism of creating a downward dipole jet of counterrotating vortices, which are formed from leading and trailing edge vortices. The vortex dynamics further elucidates the role of the phase relation between the wing translation and rotation in lift generation and explains why the instantaneous forces can reach a periodic state after only a few strokes. The model predicts the lower limits in Reynolds number and amplitude above which the averaged forces are sufficient. (c) 2000 The American Physical Society.

  20. Selectivity of odorant receptors in insects

    PubMed Central

    Bohbot, Jonathan D.; Dickens, Joseph C.

    2012-01-01

    Insect olfactory receptors (ORs) detect chemicals, shape neuronal physiology, and regulate behavior. Although ORs have been categorized as “generalists” and “specialists” based on their ligand spectrum, both electrophysiological studies and recent pharmacological investigations show that ORs specifically recognize non-pheromonal compounds, and that our understanding of odorant-selectivity mirrors our knowledge of insect chemical ecology. As we are progressively becoming aware that ORs are activated through a variety of mechanisms, the molecular basis of odorant-selectivity and the corollary notion of broad-tuning need to be re-examined from a pharmacological and evolutionary perspective. PMID:22811659

  1. From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts.

    PubMed

    Nagler, Christina; Haug, Joachim T

    2015-01-01

    Within Metazoa, it has been proposed that as many as two-thirds of all species are parasitic. This propensity towards parasitism is also reflected within insects, where several lineages independently evolved a parasitic lifestyle. Parasitic behaviour ranges from parasitic habits in the strict sense, but also includes parasitoid, phoretic or kleptoparasitic behaviour. Numerous insects are also the host for other parasitic insects or metazoans. Insects can also serve as vectors for numerous metazoan, protistan, bacterial and viral diseases. The fossil record can report this behaviour with direct (parasite associated with its host) or indirect evidence (insect with parasitic larva, isolated parasitic insect, pathological changes of host). The high abundance of parasitism in the fossil record of insects can reveal important aspects of parasitic lifestyles in various evolutionary lineages. For a comprehensive view on fossil parasitic insects, we discuss here different aspects, including phylogenetic systematics, functional morphology and a direct comparison of fossil and extant species. PMID:26597067

  2. Hormones and pheromones in regulation of insect behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both pheromones and hormones are well recognized regulators of insect biology. However, the interactions between hormones and pheromones in coordinating insect biology are less well understood. We have studied the interactions between juvenile hormone, its precursor methyl farnesoate, and pheromon...

  3. Molecular mechanisms of phenotypic plasticity in social insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenism in insects, whereby a single genome expresses different phenotypes in response to environmental cues, is a fascinating biological phenomenon. Social insects are especially intriguing examples of phenotypic plasticity because division of labor results in the development of extreme morphol...

  4. Novel proteinase inhibitor promotes resistance to insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Beta vulgaris serine proteinase inhibitor gene (BvSTI) and its protein are identified in response to insect feeding on B. vulgaris seedlings. BvSTI is cloned into an expression vector with constitutive promoter and transformed into Nicotiana benthamiana plants to assess BvSTI’s ability to ...

  5. Eight Ways to Catch an Insect

    ERIC Educational Resources Information Center

    Gray, Alice

    1977-01-01

    The webs of eight North American spiders are illustrated and discussed. Using these webs, the spiders are able to catch insects for their meals. Each of the webs are unique and require a different approach to the problem of food getting. (MA)

  6. Measuring Asymmetry in Insect-Plant Networks

    NASA Astrophysics Data System (ADS)

    Cruz, Cláudia P. T.; de Almeida, Adriana M.; Corso, Gilberto

    2011-03-01

    In this work we focus on interaction networks between insects and plants and in the characterization of insect plant asymmetry, an important issue in coevolution and evolutionary biology. We analyze in particular the asymmetry in the interaction matrix of animals (herbivorous insects) and plants (food resource for the insects). Instead of driving our attention to the interaction matrix itself we derive two networks associated to the bipartite network: the animal network, D1, and the plant network, D2. These networks are constructed according to the following recipe: two animal species are linked once if they interact with the same plant. In a similar way, in the plant network, two plants are linked if they interact with the same animal. To explore the asymmetry between D2 and D1 we test for a set of 23 networks from the ecologic literature networks: the difference in size, ΔL, clustering coefficient difference, ΔC, and mean connectivity difference, Δ. We used a nonparametric statistical test to check the differences in ΔL, ΔC and Δ. Our results indicate that ΔL and Δ show a significative asymmetry.

  7. Prostaglandins and their receptors in insect biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We treat the biological significance of prostaglandins (PGs) and their known receptors in insect biology. PGs and related eicosanoids are oxygenated derivatives of arachidonic acid (AA) and two other C20 polyunsaturated fatty acids. PGs are mostly appreciated in the context of biomedicine, but a gr...

  8. Insect-Plant Relationships in Ecological Teaching.

    ERIC Educational Resources Information Center

    Fry, G. L. A.; Wratten, S. D.

    1979-01-01

    Discusses the current theories concerning the evolution of insect-plant relationships. Offers several experiments based on recent publications in this field, concerning relationships between herbivore number and plants' successional status, geographical range, geological history, and stage of growth, and also experiments on the chemical basis of…

  9. An insect pupal cell with antimicrobial properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-dwelling insects have developed various defense mechanisms to defend against pathogen infection. The pecan weevil, Curculio caryae, spends two to three years in the soil inside an earthen cell. We hypothesized that the cell may possess antimicrobial properties. In a laboratory study, we teste...

  10. Insect Biodiversity in the Palearctic Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect biodiversity in the Palearctic Region is described. Palearctic occupies cold, temperate, and subtropical regions of Eurasia and Africa north of the Sahara Desert together with islands of the Arctic, Atlantic and Pacific oceans. Based on currently available data, there are about 200,000 speci...

  11. Insect destroyers of Tamarisk in southeastern Kazakhstan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This monograph contains the results of research work on the insect herbivores of tamarisk in southeastern Kazakhstan, which were conducted annually for last 12 years (1994-2006), and also the information, obtained by one of the authors (Mityaev) in the mid-1950s. Studies were conducted within the f...

  12. Asymmetric radar echo patterns from insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radar echoes from insects, birds, and bats in the atmosphere exhibit both symmetry and asymmetry in polarimetric patterns. Symmetry refers to similar magnitudes of polarimetric variables at opposite azimuths, and asymmetry relegates to differences in these magnitudes. Asymmetry can be due to diffe...

  13. Acoustic Detection of Insects in Palm Trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial-crop and ornamental palm trees serve important functions in tropical and subtropical regions of the world, and considerable precautions are taken each year to identify and control infestations of a variety of different insect pests. Large weevils, including the red palm weevil and the co...

  14. Almond Production Manual Chapter: Insects and Mites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The navel orangeworm, Amyelois transitella (Walker), is the most important insect pest of almond in California and can cost as much as $500 dollars per acre to control when the costs of insecticides and sanitation are included. It is a native of the southwestern United States and Mexico and was firs...

  15. Magnetoreception in Eusocial Insects: An Update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Behavioral experiments for magnetoreception in eusocial insects in the last decade are reviewed. Ants and bees use the geomagnetic field to orient and navigate in areas around their nests and in migratory paths. Bees show sensitivity to small changes in magnetic fields in conditioning experiments a...

  16. Insects: Little Things That Run the World

    ERIC Educational Resources Information Center

    Tilley, Luke

    2014-01-01

    Insects are easily the most abundant and diverse group of animals, with over 24,000 species in the UK alone. They can be found in almost every habitat on Earth and are fundamentally important to ecology, conservation, food production, animal and human health, and biodiversity. They are a prominent feature of almost every food web in the UK and…

  17. Transgenic plants protected from insect attack

    NASA Astrophysics Data System (ADS)

    Vaeck, Mark; Reynaerts, Arlette; Höfte, Herman; Jansens, Stefan; de Beuckeleer, Marc; Dean, Caroline; Zabeau, Marc; Montagu, Marc Van; Leemans, Jan

    1987-07-01

    The Gram-positive bacterium Bacillus thuringiensis produces proteins which are specifically toxic to a variety of insect species. Modified genes have been derived from bt2, a toxin gene cloned from one Bacillus strain. Transgenic tobacco plants expressing these genes synthesize insecticidal proteins which protect them from feeding damage by larvae of the tobacco hornworm.

  18. Using entomopathogenic nematodes for crop insect control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this paper is to provide an overview on using entomopathogenic nematodes for insect pest control. Entomopathogenic nematodes (genera Steinernema and Heterorhabditis), are be used as natural biopesticides. Unlike plant parasitic nematodes, which can be serious crop pests, entomopat...

  19. Mode of action of insect repellents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mode of action of DEET and other insect repellents has been a topic of interest since the discovery of DEET in the mid twentieth century. Nearly 60 years have passed since DEET applied topically to the skin was shown to be effective in preventing mosquito bites. With the discovery and characte...

  20. Insect Control (II): Hormones and Viruses

    ERIC Educational Resources Information Center

    Marx, Jean L.

    1973-01-01

    Discusses research in the use of hormones and viruses to control insect populations. Although entomologists do not think that pheromones, hormones, and viruses will completely replace more conventional chemical insecticides, they will become increasingly important and will reduce our dependence on traditional insecticides. (JR)

  1. The insect microcosm of western juniper berries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expansion of western juniper (Juniperus occidentalis) has been a major concern of ranchers and managers working on rangelands within the geographical distribution of this tree. Establishment of new seedlings is the basis for juniper expansion. Yet, despite the fact that insects and mites associated ...

  2. Biomimetic visual detection based on insect neurobiology

    NASA Astrophysics Data System (ADS)

    O'Carroll, David C.

    2001-11-01

    With a visual system that accounts for as much as 30% of the lifted mass, flying insects such as dragonflies and hoverflies invest more in vision than any other animal. Impressive visual performance is subserved by a surprisingly simple visual system. In a typical insect eye, between 2,000 and 30,000 pixels in the image are analyzed by fewer than 200,000 neurons in underlying neural circuits. The combination of sophisticated visual processing with an approachable level of complexity has made the insect visual system a leading model for biomimetic approaches to computer vision. Much neurobiological research has focused on neural circuits used for detection of moving patterns (e.g. optical flow during flight) and moving targets (e.g. prey). Research from several labs has led to great advances in our understanding of the neural mechanisms involved, and has spawned neuromorphic hardware based on key processes identified in neurobiological experiments. Despite its attractions, the highly non-linear nature of several key stages in insect visual processing presents a challenge to understanding. I will describe examples of adaptive elements of neural circuits in the fly visual system which analyze the direction and velocity of wide-field optical flow patterns and the result of experiments that suggest that these non-linearities may contribute to robust responses to natural image motion.

  3. Insects of war, terror and torture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From plagues to malaria transmission, insects and other arthropods have been natural or intentional health and agricultural threats to military and civilian populations throughout human history. The success or failure of military operations frequently has been determined by correctly anticipating in...

  4. Quantitative Analysis of Radar Returns from Insects

    NASA Technical Reports Server (NTRS)

    Riley, J. R.

    1979-01-01

    When a number of flying insects is low enough to permit their resolution as individual radar targets, quantitative estimates of their aerial density are developed. Accurate measurements of heading distribution using a rotating polarization radar to enhance the wingbeat frequency method of identification are presented.

  5. Hunting for insect pathogens: A genomics approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerging methods within the field of genomics have increased the number of insect pathogens being discovered and characterized each year. These pathogens provide a rich resource for biological control agents, gene expression systems, and other molecular tools. Using Metagenomics, and gene expression...

  6. A Sequential Insect Dispenser for Behavioral Experiments

    ERIC Educational Resources Information Center

    Gans, Carl; Mix, Harold

    1974-01-01

    Describes the construction and operation of an automatic insect dispenser suitable for feeding small vertebrates that are being maintained for behavioral experiments. The food morsels are squirted from their chambers an an air jet, and may be directed at a particluar portion of the cage or distributed to different areas. (JR)

  7. TRANSFECTION OF INSECT CELL LINES USING POLYETHYLENIMINE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect cell lines have been widely used in recombinant baculovirus expression systems and transient gene expression studies. Critical to these applications have been the transfection of foreign DNA. This has been widely done using labor intensive and cytotoxic liposome-based transfection reagents....

  8. Coordination ability of insect kinin analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spectroscopic data, including electronic absorption, CD and EPR results, as well as theoretical calculations have shown that the insertion of 4-aminopyroglutamate, a novel cis-ppetide bond mimic, in the insect kinin peptide leads to an effective ligand towards Cu(II) ions at basic pH ranges. The 4-a...

  9. IRRADIATION FOR POSTHARVEST CONTROL OF QUARANTINE INSECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in the use of irradiation as a phytosanitary treatment for agricultural commodities is growing worldwide, particularly since international IPPC and CODEX standards now endorse and facilitate trade based on this disinfestation method. Irradiation is broadly effective against insects and mite...

  10. Insect pathogens: molecular approaches and techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book serves as a primer for molecular techniques in insect pathology and is tailored for a wide scientific audience. Contributing authors are internationally recognized experts. The book comprises four sections: 1) pathogen identification and diagnostics, 2) pathogen population genetics and p...

  11. MARKING INSECTS FOR STUDYING ECOLOGY AND ETHOLOGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different kinds of markers can be used for studying insect ecology and behavior, and each have special strengths, weaknesses, and applications. Various kinds of markers are described, including visual tags (e.g., paint, wires, dyes, pollen, and spores), rubidium, radiotracers, rare earth elements, ...

  12. Development of Baits for Insect Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article outlines the importance of baits. Baits are formulations that can be used to deliver a toxic chemical or a pathogen (active agent) via ingestion to an insect pest with the goal of killing it. A bait formulations consist of a bait matrix which is the carrier for an active agent. The bait...

  13. Insect Pests of Field Crops. MP-28.

    ERIC Educational Resources Information Center

    Burkhardt, Chris C.

    This document addresses the principles of field crop insect control through biological, mechanical, and chemical processes. Identification, life history, damage, pesticides, pesticide use and environmental considerations are presented for the major pests of corn, alfalfa, beans, small grains, sugar beets, and potatoes. Each section is accompanied…

  14. Insect Pests Models and Insecticide Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past, the dominant approach in theoretical pest management ecology has emphasized the use of simple analytical or mathematical models and the analysis of systems in equilibrium. Recent advancements in computer technology have provided the opportunity for ecological insect modelers to move aw...

  15. Plant defences against herbivore and insect attack

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants deploy a number of defences against attack by insects and other herbivores. Direct defence is conferred by plant products and structures that deter or kill the herbivores. Chemical toxins and deterrents vary widely among plant species, and some typical toxins include alkaloids, terpenoids, st...

  16. Numerical investigation of insect wing fracture behaviour.

    PubMed

    Rajabi, H; Darvizeh, A; Shafiei, A; Taylor, D; Dirks, J-H

    2015-01-01

    The wings of insects are extremely light-weight biological composites with exceptional biomechanical properties. In the recent years, numerical simulations have become a very powerful tool to answer experimentally inaccessible questions on the biomechanics of insect flight. However, many of the presented models require a sophisticated balance of biomechanical material parameters, many of which are not yet available. In this article we show the first numerical simulations of crack propagation in insect wings. We have used a combination of the maximum-principal stress theory, the traction separation law and basic biomechanical properties of cuticle to develop simple yet accurate finite element (FE) models of locust wings. The numerical results of simulated tensile tests on wing samples are in very good qualitative, and interestingly, also in excellent quantitative agreement with previously obtained experimental data. Our study further supports the idea that the cross-veins in insect wings act as barriers against crack propagation and consequently play a dominant role in toughening the whole wing structure. The use of numerical simulations also allowed us to combine experimental data with previously inaccessible data, such as the distribution of the first principal stress through the wing membrane and the veins. A closer look at the stress-distribution within the wings might help to better understand fracture-toughening mechanisms and also to design more durable biomimetic micro-air vehicles. PMID:25468669

  17. Sustainable Biocontrol of Apple Insect Pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biocontrol of insect pests is a cornerstone to sustainable production of apples and other crops. The ecology of orchards lends itself to the application of many management options which will enhance the sustainability of biocontrol. Orchards remain in place for decades, allowing for an evolution o...

  18. Bug City: House and Backyard Insects [Videotape].

    ERIC Educational Resources Information Center

    1998

    "Bug City" is a video series created to help children learn about insects and other small critters. All aspects of bug life are touched upon including body structure, food, habitat, life cycle, mating habits, camouflage, mutualism (symbiosis), adaptations, social behavior, and more. Each program features dramatic microscopic photography, fun…

  19. Recombinant Protein Production and Insect Cell Culture and Process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  20. Recombinant protein production and insect cell culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)

    1993-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.

  1. Insect overwintering in a changing climate.

    PubMed

    Bale, J S; Hayward, S A L

    2010-03-15

    Insects are highly successful animals inhabiting marine, freshwater and terrestrial habitats from the equator to the poles. As a group, insects have limited ability to regulate their body temperature and have thus required a range of strategies to support life in thermally stressful environments, including behavioural avoidance through migration and seasonal changes in cold tolerance. With respect to overwintering strategies, insects have traditionally been divided into two main groups: freeze tolerant and freeze avoiding, although this simple classification is underpinned by a complex of interacting processes, i.e. synthesis of ice nucleating agents, cryoprotectants, antifreeze proteins and changes in membrane lipid composition. Also, in temperate and colder climates, the overwintering ability of many species is closely linked to the diapause state, which often increases cold tolerance ahead of temperature-induced seasonal acclimatisation. Importantly, even though most species can invoke one or both of these responses, the majority of insects die from the effects of cold rather than freezing. Most studies on the effects of a changing climate on insects have focused on processes that occur predominantly in summer (development, reproduction) and on changes in distributions rather than winter survival per se. For species that routinely experience cold stress, a general hypothesis would be that predicted temperature increases of 1 degree C to 5 degrees C over the next 50-100 years would increase winter survival in some climatic zones. However, this is unlikely to be a universal effect. Negative impacts may occur if climate warming leads to a reduction or loss of winter snow cover in polar and sub-polar areas, resulting in exposure to more severe air temperatures, increasing frequency of freeze-thaw cycles and risks of ice encasement. Likewise, whilst the dominant diapause-inducing cue (photoperiod) will be unaffected by global climate change, higher temperatures may

  2. Similarities between decapod and insect neuropeptidomes

    PubMed Central

    2016-01-01

    Background. Neuropeptides are important regulators of physiological processes and behavior. Although they tend to be generally well conserved, recent results using trancriptome sequencing on decapod crustaceans give the impression of significant differences between species, raising the question whether such differences are real or artefacts. Methods. The BLAST+ program was used to find short reads coding neuropeptides and neurohormons in publicly available short read archives. Such reads were then used to find similar reads in the same archives, and the DNA assembly program Trinity was employed to construct contigs encoding the neuropeptide precursors as completely as possible. Results. The seven decapod species analyzed in this fashion, the crabs Eriocheir sinensis, Carcinus maenas and Scylla paramamosain, the shrimp Litopenaeus vannamei, the lobster Homarus americanus, the fresh water prawn Macrobrachium rosenbergii and the crayfish Procambarus clarkii had remarkably similar neuropeptidomes. Although some neuropeptide precursors could not be assembled, in many cases individual reads pertaining to the missing precursors show unambiguously that these neuropeptides are present in these species. In other cases, the tissues that express those neuropeptides were not used in the construction of the cDNA libraries. One novel neuropeptide was identified: elongated PDH (pigment dispersing hormone), a variation on PDH that has a two-amino-acid insertion in its core sequence. Hyrg is another peptide that is ubiquitously present in decapods and is likely a novel neuropeptide precursor. Discussion. Many insect species have lost one or more neuropeptide genes, but apart from elongated PDH and hyrg all other decapod neuropeptides are present in at least some insect species, and allatotropin is the only insect neuropeptide missing from decapods. This strong similarity between insect and decapod neuropeptidomes makes it possible to predict the receptors for decapod neuropeptides

  3. Similarities between decapod and insect neuropeptidomes.

    PubMed

    Veenstra, Jan A

    2016-01-01

    Background. Neuropeptides are important regulators of physiological processes and behavior. Although they tend to be generally well conserved, recent results using trancriptome sequencing on decapod crustaceans give the impression of significant differences between species, raising the question whether such differences are real or artefacts. Methods. The BLAST+ program was used to find short reads coding neuropeptides and neurohormons in publicly available short read archives. Such reads were then used to find similar reads in the same archives, and the DNA assembly program Trinity was employed to construct contigs encoding the neuropeptide precursors as completely as possible. Results. The seven decapod species analyzed in this fashion, the crabs Eriocheir sinensis, Carcinus maenas and Scylla paramamosain, the shrimp Litopenaeus vannamei, the lobster Homarus americanus, the fresh water prawn Macrobrachium rosenbergii and the crayfish Procambarus clarkii had remarkably similar neuropeptidomes. Although some neuropeptide precursors could not be assembled, in many cases individual reads pertaining to the missing precursors show unambiguously that these neuropeptides are present in these species. In other cases, the tissues that express those neuropeptides were not used in the construction of the cDNA libraries. One novel neuropeptide was identified: elongated PDH (pigment dispersing hormone), a variation on PDH that has a two-amino-acid insertion in its core sequence. Hyrg is another peptide that is ubiquitously present in decapods and is likely a novel neuropeptide precursor. Discussion. Many insect species have lost one or more neuropeptide genes, but apart from elongated PDH and hyrg all other decapod neuropeptides are present in at least some insect species, and allatotropin is the only insect neuropeptide missing from decapods. This strong similarity between insect and decapod neuropeptidomes makes it possible to predict the receptors for decapod neuropeptides

  4. Stored Grain Insect Area-wide Integrated Pest Management (IPM)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When wheat is mixed with wheat from other locations as it moves through the grain-marketing system, insect infestation can be spread to larger quantities of wheat, which increases the overall cost of insect pest management. In Kansas and Oklahoma, insect infestations currently are managed primarily...

  5. Automatic monitoring of insect pests in stored grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manual sampling of insects in stored grain is a laborious and time consuming process. Automation of grain sampling should help to increase the adoption of stored-grain integrated pest management. To make accurate insect management decisions, managers need to know both the insect species and numbers ...

  6. Expression of heat shock protein genes in insect stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heat shock proteins (HSPs) that are abundantly expressed in insects are important modulators of insect survival. Expression of HSP genes in insects is not only developmentally regulated, but also induced by various stressors in order to confer protection against such stressors. The expression o...

  7. Impact of distinct insect pollinators on gene flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vast majority of fruits and vegetables, together with some hay crops (alfalfa) and some oil-producing crops (canola) are pollinated by insects. However we have little information on how insect pollinators affect the movement of genes via pollen and even less on how distinct insect pollinators ma...

  8. 46 CFR 190.20-55 - Insect screens.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Insect screens. 190.20-55 Section 190.20-55 Shipping... ARRANGEMENT Accomodations for Officers, Crew, and Scientific Personnel § 190.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  9. 40 CFR 161.590 - Nontarget insect data requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Nontarget insect data requirements... § 161.590 Nontarget insect data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the nontarget insect data requirements and the substance to be...

  10. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  11. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  12. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  13. 46 CFR 72.20-55 - Insect screens.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Insect screens. 72.20-55 Section 72.20-55 Shipping COAST... Accommodations for Officers and Crew § 72.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  14. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  15. 40 CFR 161.590 - Nontarget insect data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Nontarget insect data requirements... § 161.590 Nontarget insect data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the nontarget insect data requirements and the substance to be...

  16. 46 CFR 190.20-55 - Insect screens.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Insect screens. 190.20-55 Section 190.20-55 Shipping... ARRANGEMENT Accomodations for Officers, Crew, and Scientific Personnel § 190.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  17. 25 CFR 163.31 - Insect and disease control.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Insect and disease control. 163.31 Section 163.31 Indians... Management and Operations § 163.31 Insect and disease control. (a) The Secretary is authorized to protect and preserve Indian forest land from disease or insects (Sept. 20, 1922, Ch. 349, 42 Stat. 857). The...

  18. 46 CFR 190.20-55 - Insect screens.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Insect screens. 190.20-55 Section 190.20-55 Shipping... ARRANGEMENT Accomodations for Officers, Crew, and Scientific Personnel § 190.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  19. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  20. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  1. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  2. 25 CFR 163.31 - Insect and disease control.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Insect and disease control. 163.31 Section 163.31 Indians... Management and Operations § 163.31 Insect and disease control. (a) The Secretary is authorized to protect and preserve Indian forest land from disease or insects (Sept. 20, 1922, Ch. 349, 42 Stat. 857). The...

  3. 46 CFR 72.20-55 - Insect screens.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Insect screens. 72.20-55 Section 72.20-55 Shipping COAST... Accommodations for Officers and Crew § 72.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  4. 46 CFR 72.20-55 - Insect screens.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Insect screens. 72.20-55 Section 72.20-55 Shipping COAST... Accommodations for Officers and Crew § 72.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  5. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  6. 46 CFR 92.20-55 - Insect screens.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Insect screens. 92.20-55 Section 92.20-55 Shipping COAST... ARRANGEMENT Accommodations for Officers and Crew § 92.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  7. 46 CFR 92.20-55 - Insect screens.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Insect screens. 92.20-55 Section 92.20-55 Shipping COAST... ARRANGEMENT Accommodations for Officers and Crew § 92.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  8. 46 CFR 92.20-55 - Insect screens.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Insect screens. 92.20-55 Section 92.20-55 Shipping COAST... ARRANGEMENT Accommodations for Officers and Crew § 92.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  9. 46 CFR 92.20-55 - Insect screens.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Insect screens. 92.20-55 Section 92.20-55 Shipping COAST... ARRANGEMENT Accommodations for Officers and Crew § 92.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  10. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  11. 46 CFR 190.20-55 - Insect screens.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Insect screens. 190.20-55 Section 190.20-55 Shipping... ARRANGEMENT Accomodations for Officers, Crew, and Scientific Personnel § 190.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  12. 40 CFR 161.590 - Nontarget insect data requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Nontarget insect data requirements... § 161.590 Nontarget insect data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the nontarget insect data requirements and the substance to be...

  13. 25 CFR 163.31 - Insect and disease control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Insect and disease control. 163.31 Section 163.31 Indians... Management and Operations § 163.31 Insect and disease control. (a) The Secretary is authorized to protect and preserve Indian forest land from disease or insects (Sept. 20, 1922, Ch. 349, 42 Stat. 857). The...

  14. 20 CFR 654.415 - Insect and rodent control.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Insect and rodent control. 654.415 Section 654.415 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR SPECIAL... Insect and rodent control. Housing and facilities shall be free of insects, rodents, and other vermin....

  15. 40 CFR 161.590 - Nontarget insect data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Nontarget insect data requirements... § 161.590 Nontarget insect data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the nontarget insect data requirements and the substance to be...

  16. 46 CFR 190.20-55 - Insect screens.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Insect screens. 190.20-55 Section 190.20-55 Shipping... ARRANGEMENT Accomodations for Officers, Crew, and Scientific Personnel § 190.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  17. 25 CFR 163.31 - Insect and disease control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Insect and disease control. 163.31 Section 163.31 Indians... Management and Operations § 163.31 Insect and disease control. (a) The Secretary is authorized to protect and preserve Indian forest land from disease or insects (Sept. 20, 1922, Ch. 349, 42 Stat. 857). The...

  18. 46 CFR 92.20-55 - Insect screens.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Insect screens. 92.20-55 Section 92.20-55 Shipping COAST... ARRANGEMENT Accommodations for Officers and Crew § 92.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  19. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  20. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  1. 7 CFR 58.247 - Insect and rodent control program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Insect and rodent control program. 58.247 Section 58... Service 1 Operations and Operating Procedures § 58.247 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control program...

  2. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  3. 7 CFR 58.147 - Insect and rodent control program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Insect and rodent control program. 58.147 Section 58... Service 1 Operations and Operating Procedures § 58.147 Insect and rodent control program. In addition to... made responsible for the performance of a regularly scheduled insect and rodent control...

  4. 46 CFR 72.20-55 - Insect screens.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Insect screens. 72.20-55 Section 72.20-55 Shipping COAST... Accommodations for Officers and Crew § 72.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  5. 46 CFR 72.20-55 - Insect screens.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Insect screens. 72.20-55 Section 72.20-55 Shipping COAST... Accommodations for Officers and Crew § 72.20-55 Insect screens. Provisions must be made to protect the crew quarters against the admission of insects....

  6. 25 CFR 163.31 - Insect and disease control.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Insect and disease control. 163.31 Section 163.31 Indians... Management and Operations § 163.31 Insect and disease control. (a) The Secretary is authorized to protect and preserve Indian forest land from disease or insects (Sept. 20, 1922, Ch. 349, 42 Stat. 857). The...

  7. Coconut leaf bioactivity toward generalist maize insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut (Cocos nucifera L.) has very few chewing leaf feeding insect pests and was tested against two omnivorous leaf feeding caterpillar species,...

  8. Grain sorghum hybrid resistance to insect and bird damage - 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 26 grain sorghum hybrids (24 commercial grain sorghum hybrids and a pair of sugarcane aphid resistant and susceptible controls) were evaluated for resistance to insect and bird damage in Tifton, Georgia. A total of 10 insect pests were observed. The insect pests in order of importance are...

  9. Bridging conventional and molecular genetics of sorghum insect resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable production of sorghum, Sorghum bicolor (L.) Moench, depends on effective control of insect pests as they continue to compete with humans for the sorghum crop. Insect pests are major constraint in sorghum production, and nearly 150 insect species are serious pests of this crop worldwide,...

  10. Job Grading Standard for Insects Production Worker WG-5031.

    ERIC Educational Resources Information Center

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard is for grading nonsupervisory jobs involved in reproducing, collecting, and caring for insect collections. The work requires practical knowledge of the characteristics of insects and their needs, and skill in observing and handling them. The levels of insects production worker WG-3, WG-4, and WG-5 are differentiated by describing the…

  11. Exploring the Insect World, An Outdoor Teaching Technique.

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    Information about the insect world and its advantages for the elementary classroom teacher is given in this paper, along with activities which can teach students about insects. The insect world tends to be noticed by the average person only when the small creatures become pests or inhabit man's abode. However, young students have a sharp sense of…

  12. Metabolomics reveals insect metabolic responses associated with fungal infection.

    PubMed

    Xu, Yong-Jiang; Luo, Feifei; Gao, Qiang; Shang, Yanfang; Wang, Chengshu

    2015-06-01

    The interactions between insects and pathogenic fungi are complex. We employed metabolomic techniques to profile insect metabolic dynamics upon infection by the pathogenic fungus Beauveria bassiana. Silkworm larvae were infected with fungal spores and microscopic observations demonstrated that the exhaustion of insect hemocytes was coupled with fungal propagation in the insect body cavity. Metabolomic analyses revealed that fungal infection could significantly alter insect energy and nutrient metabolisms as well as the immune defense responses, including the upregulation of carbohydrates, amino acids, fatty acids, and lipids, but the downregulation of eicosanoids and amines. The insect antifeedant effect of the fungal infection was evident with the reduced level of maclurin (a component of mulberry leaves) in infected insects but elevated accumulations in control insects. Insecticidal and cytotoxic mycotoxins like oosporein and beauveriolides were also detected in insects at the later stages of infection. Taken together, the metabolomics data suggest that insect immune responses are energy-cost reactions and the strategies of nutrient deprivation, inhibition of host immune responses, and toxin production would be jointly employed by the fungus to kill insects. The data obtained in this study will facilitate future functional studies of genes and pathways associated with insect-fungus interactions. PMID:25895944

  13. Grain sorghum hybrid resistance to insect and bird damage-2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty seven grain sorghum hybrids were evaluated for resistance to insect and bird damage in 2014 in Tifton, and a total of 10 insect pests were observed. While sorghum midge and bird damage was relatively low, sorghum webworm and aphid damage was high. Those insects in order of importance are: sug...

  14. Converting insect colony waste into a potting susbstrate.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rearing insect generates both a solid and semisolid waste that is generally discarded in landfills. A study was initiated to determine if the semi-solid insect colony waste product and vermiculite used in insect rearing could be combined and used as a growth substrate for plants. The semi-solid larv...

  15. Insect-attracting and antimicrobial properties of antifreeze for monitoring insect pests and natural enemies in stored corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect infestations in stored grain cause extensive damage worldwide. Storage insect pests including the Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), Sitophilus spp. (Coleoptera: Curculionidae) and their natural enemies [e.g., Cephalonomia tarsalis (Ashmead) (Hymenopter...

  16. Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte).

    PubMed

    Bachman, Pamela M; Bolognesi, Renata; Moar, William J; Mueller, Geoffrey M; Paradise, Mark S; Ramaseshadri, Parthasarathy; Tan, Jianguo; Uffman, Joshua P; Warren, Joanne; Wiggins, B Elizabeth; Levine, Steven L

    2013-12-01

    The sequence specificity of the endogenous RNA interference pathway allows targeted suppression of genes essential for insect survival and enables the development of durable and efficacious insecticidal products having a low likelihood to adversely impact non-target organisms. The spectrum of insecticidal activity of a 240 nucleotide (nt) dsRNA targeting the Snf7 ortholog in Western Corn Rootworm (WCR; Diabrotica virgifera virgifera) was characterized by selecting and testing insects based upon their phylogenetic relatedness to WCR. Insect species, representing 10 families and 4 Orders, were evaluated in subchronic or chronic diet bioassays that measured potential lethal and sublethal effects. When a specific species could not be tested in diet bioassays, the ortholog to the WCR Snf7 gene (DvSnf7) was cloned and corresponding dsRNAs were tested against WCR and Colorado potato beetle (Leptinotarsa decemlineata); model systems known to be sensitive to ingested dsRNA. Bioassay results demonstrate that the spectrum of activity for DvSnf7 is narrow and activity is only evident in a subset of beetles within the Galerucinae subfamily of Chrysomelidae (>90% identity with WCR Snf7 240 nt). This approach allowed for evaluating the relationship between minimum shared nt sequence length and activity. A shared sequence length of ≥ 21 nt was required for efficacy against WCR (containing 221 potential 21-nt matches) and all active orthologs contained at least three 21 nt matches. These results also suggest that WCR resistance to DvSnf7 dsRNA due to single nucleotide polymorphisms in the target sequence of 240 nt is highly unlikely. PMID:23748931

  17. Selectable markers with potential activity against insects, plus other insect-oriented strategies for mycotoxin reduction in Midwest corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduction of insect damage has the potential to greatly reduce the levels of mycotoxins in corn, as studies with Bt corn have shown. However, the large number of insect species involved necessitates the development of comprehensive insect control to most effectively utilize this strategy. One stra...

  18. External Insect Morphology: A Negative Factor in Attitudes toward Insects and Likelihood of Incorporation in Future Science Education Settings

    ERIC Educational Resources Information Center

    Wagler, Ron; Wagler, Amy

    2012-01-01

    This study investigated if the external morphology of an insect had a negative effect on United States (US) preservice elementary teacher's attitudes toward insects and beliefs concerning the likelihood of incorporating insects into future science education settings. 270 US kindergarten through sixth grade preservice elementary teachers…

  19. Flight investigation of insect contamination and its alleviation

    NASA Technical Reports Server (NTRS)

    Peterson, J. B., Jr.; Fisher, D. F.

    1978-01-01

    An investigation of leading edge contamination by insects was conducted with a JetStar airplane instrumented to detect transition on the outboard leading edge flap and equipped with a system to spray the leading edge in flight. The results of airline type flights with the JetStar indicated that insects can contaminate the leading edge during takeoff and climbout. The results also showed that the insects collected on the leading edges at 180 knots did not erode at cruise conditions for a laminar flow control airplane and caused premature transition of the laminar boundary layer. None of the superslick and hydrophobic surfaces tested showed any significant advantages in alleviating the insect contamination problem. While there may be other solutions to the insect contamination problem, the results of these tests with a spray system showed that a continouous water spray while encountering the insects is effective in preventing insect contamination of the leading edges.

  20. Emerging strategies for RNA interference (RNAi) applications in insects

    PubMed Central

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response. PMID:25424593

  1. Velocity correlations in laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Ni, R.; Ouellette, N. T.

    2015-12-01

    In contrast to animal groups such as bird flocks or migratory herds that display net, directed motion, insect swarms do not possess global order. Without such order, it is difficult to define and characterize the transition to collective behavior in swarms; nevertheless, visual observation of swarms strongly suggests that swarming insects do behave collectively. It has recently been suggested that correlation rather than order is the hallmark of emergent collective behavior. Here, we report measurements of spatial velocity correlation functions in laboratory mating swarms of the non-biting midge Chironomus riparius. Although we find some correlation at short distances, our swarms are in general only weakly correlated, in contrast to what has been observed in field studies. Our results hint at the potentially important role of environmental conditions on collective behavior, and suggest that general indicators of the collective nature of swarming are still needed.

  2. Insects and Spiders: Infestations and Bites

    PubMed Central

    Turgeon, E.W.T.

    1987-01-01

    Despite successful eradication techniques and specific effective therapies, insect bites and infestations remain a source of great human misery. The current scabies pandemic shows no signs of abating. Bed bugs, which through the ages have been second only to the malarial mosquito as an insect vector of fatal infection, have now been implicated in the transmission of Hepatitis B and possibly African acquired immune deficiency syndrome (AIDS). The incidence of head- and pubic lice is on the rise, the latter paralleling, and often co-existing with, other sexually transmitted diseases. Black widow spiders are native to many populous areas in southern Canada, and the brown recluse spider's range now encompasses Canada, thanks to moving vans and central heating. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:21263961

  3. Comparative magnetic measurements on social insects

    NASA Astrophysics Data System (ADS)

    Ferreira, Jandira; Cernicchiaro, Geraldo; Winklhofer, Michael; Dutra, Humberto; de Oliveira, Paulo S.; S. Esquivel, Darci M.; Wajnberg, Eliane

    2005-03-01

    Biogenic magnetite has been detected in several species of social insects and may well form the basis of a magnetic sensory system in these animals, although other physiological functions are possible, too. We report here on hysteresis measurements on honeybees ( Apis mellifera) and the termite Neocapritermes opacus. The ratio of saturation remanence to saturation magnetization, Jrs/ Js, was determined as 0.11 (0.15) in bees (termite), the coercive force Hc as 90 (50 Oe). The magnetic remanence is generally low (of the order of 10 -6 emu per individual). The values obtained are similar to the ones reported previously on a migratory ant species, which suggests that biomineralization of magnetic material in social insects may underlie a generic process.

  4. Managing social insects of urban importance.

    PubMed

    Rust, Michael K; Su, Nan-Yao

    2012-01-01

    Social insects have a tremendous economic and social impact on urban communities. The rapid urbanization of the world has dramatically increased the incidence of urban pests. Human commerce has resulted in the spread of urban invasive species worldwide such that various species are now common to many major urban centers. We aim to highlight those social behaviors that can be exploited to control these pests with the minimal use of pesticides. Their cryptic behavior often prohibits the direct treatment of colonies. However, foraging and recruitment are essential aspects of their social behavior and expose workers to traps, baits, and pesticide applications. The advent of new chemistries has revolutionized the pest management strategies used to control them. In recent years, there has been an increased environmental awareness, especially in the urban community. Advances in molecular and microbial agents promise additional tools in developing integrated pest management programs against social insects. PMID:21942844

  5. Vision and visual navigation in nocturnal insects.

    PubMed

    Warrant, Eric; Dacke, Marie

    2011-01-01

    With their highly sensitive visual systems, nocturnal insects have evolved a remarkable capacity to discriminate colors, orient themselves using faint celestial cues, fly unimpeded through a complicated habitat, and navigate to and from a nest using learned visual landmarks. Even though the compound eyes of nocturnal insects are significantly more sensitive to light than those of their closely related diurnal relatives, their photoreceptors absorb photons at very low rates in dim light, even during demanding nocturnal visual tasks. To explain this apparent paradox, it is hypothesized that the necessary bridge between retinal signaling and visual behavior is a neural strategy of spatial and temporal summation at a higher level in the visual system. Exactly where in the visual system this summation takes place, and the nature of the neural circuitry that is involved, is currently unknown but provides a promising avenue for future research. PMID:20822443

  6. Studying insect motion with piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Mika, Bartosz; Lee, Hyungoo; González, Jorge M.; Vinson, S. Bradleigh; Liang, Hong

    2007-04-01

    Piezoelectric materials have been widely used in applications such as transducers, acoustic components, as well as motion, pressure and airborne sensors. Because of the material's biocompatibility and flexibility, we have been able to apply small piezoelectric sensors, made of PVDF, to cockroaches. We built a laboratory test system to study the piezoelectric properties of a bending sensor. The tested motion was compared with that of the sensor attached to a cockroach. Surface characterization and finite element analysis revealed the effects of microstructure on piezoelectric response. The sensor attachment enables us to monitor the insects' locomotion and study their behaviors. The applications of engineering materials to insects opens the door to innovating approaches to integrating biological, mechanical and electrical systems.

  7. Remote Radio Control of Insect Flight

    PubMed Central

    Sato, Hirotaka; Berry, Christopher W.; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E.; Lavella, Gabriel; VandenBrooks, John M.; Harrison, Jon F.; Maharbiz, Michel M.

    2009-01-01

    We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses. PMID:20161808

  8. Mechanisms of tracheal filling in insects.

    PubMed

    Förster, Thomas D; Woods, H Arthur

    2013-02-01

    Insects exchange respiratory gases primarily using tracheal systems that are filled with gas. However, in different developmental and environmental circumstances, liquid can occupy the tracheal system, which can significantly impair its respiratory function. Insects therefore use a suite of mechanisms for tracheal filling, which is the process of replacing tracheal liquids with gas. We review these mechanisms for liquid removal and gas filling. By integrating recent molecular work with older physiological literature, we show that liquid removal likely involves active ion transport in the whole tracheal system. Gas filling reveals fascinating interactions between geometry, surface chemistry of the tracheal walls, the tracheal liquid, and dissolved gases. The temporal proximity to moulting allows for potentially complex interdependencies between gas filling, moult-associated hormone signaling, and cuticle sclerotization. We propose a mechanistic model for tracheal filling. However, because the composition of the liquid is unknown, it remains hypothetical. PMID:22616845

  9. Potent limonoid insect antifeedant from Melia azedarach.

    PubMed

    Carpinella, Cecilia; Ferrayoli, Carlos; Valladares, Graciela; Defago, Maria; Palacios, Sara

    2002-08-01

    Systematic fractionation of a fruit extract from Argentine Melia azedarach L., which was monitored by an insect antifeedant bioassay, led to the isolation of meliartenin, a limonoid antifeedant, which existed as a mixture of two interchangeable isomers. At 4 microg/cm2 and 1 microg/cm2, the isomeric mixture was as active as azadirachtin in strongly inhibiting the larval feeding of Epilachna paenulata Germ. (Coleoptera: Coccinellidae) and the polyphagous pest, Spodoptera eridania (Lepidoptera: Noctuidae), respectively. PMID:12353636

  10. Cultivating Insect Cells To Produce Recombinant Proteins

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  11. Dynamic flight stability of hovering insects

    NASA Astrophysics Data System (ADS)

    Sun, Mao; Wang, Jikang; Xiong, Yan

    2007-06-01

    The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the “rigid body” assumption. On the basis of the simplified equations of motion, the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight is studied (the mass of the insects ranging from 11 to 1,648 mg and wingbeat frequency from 26 to 157 Hz). The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are used to solve the equations of motion. The validity of the “rigid body” assumption is tested and how differences in size and wing kinematics influence the applicability of the “rigid body” assumption is investigated. The primary findings are: (1) For insects considered in the present study and those with relatively high wingbeat frequency (hoverfly, drone fly and bumblebee), the “rigid body” assumption is reasonable, and for those with relatively low wingbeat frequency (cranefly and howkmoth), the applicability of the “rigid body” assumption is questionable. (2) The same three natural modes of motion as those reported recently for a bumblebee are identified, i.e., one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. (3) Approximate analytical expressions of the eigenvalues, which give physical insight into the genesis of the natural modes of motion, are derived. The expressions identify the speed derivative M u (pitching moment produced by unit horizontal speed) as the primary source of the unstable oscillatory mode and the stable fast subsidence mode and Z w (vertical force produced by unit vertical speed) as the primary source of the stable slow subsidence mode.

  12. The visual system of male scale insects

    NASA Astrophysics Data System (ADS)

    Buschbeck, Elke K.; Hauser, Martin

    2009-03-01

    Animal eyes generally fall into two categories: (1) their photoreceptive array is convex, as is typical for camera eyes, including the human eye, or (2) their photoreceptive array is concave, as is typical for the compound eye of insects. There are a few rare examples of the latter eye type having secondarily evolved into the former one. When viewed in a phylogenetic framework, the head morphology of a variety of male scale insects suggests that this group could be one such example. In the Margarodidae (Hemiptera, Coccoidea), males have been described as having compound eyes, while males of some more derived groups only have two single-chamber eyes on each side of the head. Those eyes are situated in the place occupied by the compound eye of other insects. Since male scale insects tend to be rare, little is known about how their visual systems are organized, and what anatomical traits are associated with this evolutionary transition. In adult male Margarodidae, one single-chamber eye (stemmateran ocellus) is present in addition to a compound eye-like region. Our histological investigation reveals that the stemmateran ocellus has an extended retina which is formed by concrete clusters of receptor cells that connect to its own first-order neuropil. In addition, we find that the ommatidia of the compound eyes also share several anatomical characteristics with simple camera eyes. These include shallow units with extended retinas, each of which is connected by its own small nerve to the lamina. These anatomical changes suggest that the margarodid compound eye represents a transitional form to the giant unicornal eyes that have been described in more derived species.

  13. Oxygen Reperfusion Damage in an Insect

    PubMed Central

    Lighton, John R. B.; Schilman, Pablo E.

    2007-01-01

    The deleterious effects of anoxia followed by reperfusion with oxygen in higher animals including mammals are well known. A convenient and genetically well characterized small-animal model that exhibits reproducible, quantifiable oxygen reperfusion damage is currently lacking. Here we describe the dynamics of whole-organism metabolic recovery from anoxia in an insect, Drosophila melanogaster, and report that damage caused by oxygen reperfusion can be quantified in a novel but straightforward way. We monitored CO2 emission (an index of mitochondrial activity) and water vapor output (an index of neuromuscular control of the spiracles, which are valves between the outside air and the insect's tracheal system) during entry into, and recovery from, rapid-onset anoxia exposure with durations ranging from 7.5 to 120 minutes. Anoxia caused a brief peak of CO2 output followed by knock-out. Mitochondrial respiration ceased and the spiracle constrictor muscles relaxed, but then re-contracted, presumably powered by anaerobic processes. Reperfusion to sustained normoxia caused a bimodal re-activation of mitochondrial respiration, and in the case of the spiracle constrictor muscles, slow inactivation followed by re-activation. After long anoxia durations, both the bimodality of mitochondrial reactivation and the recovery of spiracular control were impaired. Repeated reperfusion followed by episodes of anoxia depressed mitochondrial respiratory flux rates and damaged the integrity of the spiracular control system in a dose-dependent fashion. This is the first time that physiological evidence of oxygen reperfusion damage has been described in an insect or any invertebrate. We suggest that some of the traditional approaches of insect respiratory biology, such as quantifying respiratory water loss, may facilitate using D. melanogaster as a convenient, well-characterized experimental model for studying the underlying biology and mechanisms of ischemia and reperfusion damage and its

  14. Unnecessary roughness? Testing the hypothesis that predators destined for molecular gut-content analysis must be hand-collected to avoid cross-contamination.

    PubMed

    Greenstone, Matthew H; Weber, Donald C; Coudron, Thomas C; Payton, Mark E

    2011-03-01

    Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Mass-collection methods, such as sweep-netting, vacuum sampling and foliage beating, could lead to regurgitation or rupturing of predators along with uneaten prey, thereby contaminating specimens and compromising resultant gut-content data. Proponents of this 'cross-contamination hypothesis' advocate hand-collection as the best way to avoid cross-contamination. However, hand-collection is inefficient when large samples are needed, as with most ecological research. We tested the cross-contamination hypothesis by setting out onto potato plants immature Coleomegilla maculata and Podisus maculiventris that had been fed larvae of either Leptinotarsa decemlineata or Leptinotarsa juncta, or unfed individuals of these predator species along with L. decemlineata larvae. The animals were then immediately re-collected, either by knocking them vigorously off the plants onto a beat cloth and capturing them en masse with an aspirator ('rough' treatment) or by hand-searching and collection with a brush ('best practice'). Collected predators were transferred in the field to individual vials of chilled ethanol and subsequently assayed by PCR for fragments of cytochrome oxidase I of L. decemlineata and L. juncta. Ten to 39 per cent of re-collected fed predators tested positive by PCR for DNA of both Leptinotarsa species, and 14-38% of re-collected unfed predators contained L. decemlineata DNA. Overall levels of cross-contamination in the rough (31%) and best-practice (11%) samples were statistically different and supported the cross-contamination hypothesis. A pilot study on eliminating external DNA contamination with bleach prior to DNA extraction and amplification gave promising results. PMID:21429135

  15. The ubiquity and ancestry of insect doublesex

    PubMed Central

    Price, Dana C.; Egizi, Andrea; Fonseca, Dina M.

    2015-01-01

    The doublesex (dsx) gene functions as a molecular switch at the base of the insect sex determination cascade, and triggers male or female somatic sexual differentiation in Drosophila. Having been reported from only seven current insect orders, the exact phylogenetic distribution of dsx within the largest Arthropod sub-phylum, the Hexapoda, is unknown. To understand the evolution of this integral gene relative to other arthropods, we tested for the presence of dsx within public EST and genome sequencing projects representative of all 32 hexapod orders. We find the dsx gene to be ubiquitous, with putative orthologs recovered from 30 orders. Additionally, we recovered both alternatively spliced and putative paralogous dsx transcripts from several orders of hexapods, including basal lineages, indicating the likely presence of these characteristics in the hexapod common ancestor. Of note, other arthropods such as chelicerates and crustaceans express two dsx genes, both of which are shown to lack alternative splicing. Furthermore, we discovered a large degree of length heterogeneity in the common region of dsx coding sequences within and among orders, possibly resulting from lineage-specific selective pressures inherent to each taxon. Our work serves as a valuable resource for understanding the evolution of sex determination in insects. PMID:26278009

  16. Regulating the contraction of insect flight muscle.

    PubMed

    Bullard, Belinda; Pastore, Annalisa

    2011-12-01

    The rapid movement of the wings in small insects is powered by the indirect flight muscles. These muscles are capable of contracting at up to 1,000 Hz because they are activated mechanically by stretching. The mechanism is so efficient that it is also used in larger insects like the waterbug, Lethocerus. The oscillatory activity of the muscles occurs a low concentration of Ca(2+), which stays constant as the muscles contract and relax. Activation by stretch requires particular isoforms of tropomyosin and the troponin complex on the thin filament. We compare the tropomyosin and troponin of Lethocerus and Drosophila with that of vertebrates. The characteristics of the flight muscle regulatory proteins suggest ways in which stretch-activation works. There is evidence for bridges between troponin on thin filaments and myosin crossbridges on the thick filaments. Recent X-ray fibre diffraction results suggest that a pull on the bridges activates the thin filament by shifting tropomyosin from a blocking position on actin. The troponin bridges are likely to contain extended sequences of tropomyosin or troponin I (TnI). Flight muscle has two isoforms of TnC with different Ca(2+)-binding properties: F1 TnC is needed for stretch-activation and F2 TnC for isometric contractions. In this review, we describe the structural changes in both isoforms on binding Ca(2+) and TnI, and discuss how the steric model of muscle regulation can apply to insect flight muscle. PMID:22105701

  17. Insect repellents: historical perspectives and new developments.

    PubMed

    Katz, Tracy M; Miller, Jason H; Hebert, Adelaide A

    2008-05-01

    Arthropod bites remain a major cause of patient morbidity. These bites can cause local or systemic effects that may be infectious or inflammatory in nature. Arthropods, notably insects and arachnids, are vectors of potentially serious ailments including malaria, West Nile virus, dengue, and Lyme disease. Measures to curtail the impact of insect bites are important in the worldwide public health effort to safely protect patients and prevent the spread of disease. The history of insect repellent (IR) lends insight into some of the current scientific strategies behind newer products. Active ingredients of currently available IRs include N,N-diethyl-3-methylbenzamide (DEET), botanicals, citronella, and, the newest agent, picaridin. Currently, the Environmental Protection Agency's registered IR ingredients approved for application to the skin include DEET, picaridin, MGK-326, MGK-264, IR3535, oil of citronella, and oil of lemon eucalyptus. DEET has reigned as the most efficacious and broadly used IR for the last 6 decades, with a strong safety record and excellent protection against ticks, mosquitoes, and other arthropods. Newer agents, like picaridin and natural products such as oil of lemon eucalyptus are becoming increasingly popular because of their low toxicity, comparable efficacy, and customer approval. Various characteristics and individual product advantages may lead physicians to recommend one agent over another. PMID:18272250

  18. The public world of insect vibrational communication.

    PubMed

    Cocroft, Reginald B

    2011-05-01

    Food webs involving plants, herbivorous insects and their predators account for 75% of terrestrial biodiversity (Price 2002). Within the abundant arthropod community on plants, myriad ecological and social interactions depend on the perception and production of plant-borne mechanical vibrations (Hill 2008). Study of ecological relationships has shown, for example, that termites monitor the vibrations produced by competing colonies in the same tree trunk (Evans et al. 2009), that stink bugs and spiders attend to the incidental vibrations produced by insects feeding or walking on plants (Pfannenstiel et al. 1995, Barth 1998) and that caterpillars can distinguish among the foraging-related vibrations produced by their invertebrate predators (Castellanos & Barbosa 2006). Study of social interactions has revealed that many insects and spiders have evolved the ability to generate intricate patterns of substrate vibration, allowing them to communicate with potential mates or members of their social group (Cokl & Virant-Doberlet 2003; Hill 2008). Surprisingly, research on the role of substrate vibrations in social and ecological interactions has for the most part proceeded independently, in spite of evidence from other communication modalities – acoustic, visual, chemical and electrical – that predators attend to the signals of their prey (Zuk & Kolluru 1998; Stoddard 1999). The study by Virant-Doberlet et al. (2011) in this issue of Molecular Ecology now helps bring these two areas of vibration research together, showing that the foraging behaviour of a spider is influenced by the vibrational mating signals of its leafhopper prey. PMID:21692234

  19. Insect gas exchange patterns: a phylogenetic perspective.

    PubMed

    Marais, Elrike; Klok, C Jaco; Terblanche, John S; Chown, Steven L

    2005-12-01

    Most investigations of insect gas exchange patterns and the hypotheses proposed to account for their evolution have been based either on small-scale, manipulative experiments, or comparisons of a few closely related species. Despite their potential utility, no explicit, phylogeny-based, broad-scale comparative studies of the evolution of gas exchange in insects have been undertaken. This may be due partly to the preponderance of information for the endopterygotes, and its scarcity for the apterygotes and exopterygotes. Here we undertake such a broad-scale study. Information on gas exchange patterns for the large majority of insects examined to date (eight orders, 99 species) is compiled, and new information on 19 exemplar species from a further ten orders, not previously represented in the literature (Archaeognatha, Zygentoma, Ephemeroptera, Odonata, Mantodea, Mantophasmatodea, Phasmatodea, Dermaptera, Neuroptera, Trichoptera), is provided. These data are then used in a formal, phylogeny-based parsimony analysis of the evolution of gas exchange patterns at the order level. Cyclic gas exchange is likely to be the ancestral gas exchange pattern at rest (recognizing that active individuals typically show continuous gas exchange), and discontinuous gas exchange probably originated independently a minimum of five times in the Insecta. PMID:16339869

  20. Optoelectronic determination of insect presence in fruit

    NASA Astrophysics Data System (ADS)

    Shrestha, Bim P.; Guyer, Daniel E.; Ariana, Diwan P.

    2004-03-01

    Opto-electronic methods represent a potential to identify the presence of insect activities on or within agricultural commodities. Such measurements may detect actual insect presence or indirect secondary changes in the product resulting from past or present insect activities. Preliminary imaging studies have demonstrated some unique spectral characteristics of insect larvae on cherries. A detailed study on spectral characteristics of healthy and infested tart cherry tissue with and without larvae (Plum Curculio) was conducted for reflectance, transmittance and interactance modes for each of UV and visible/NIR light sources. The intensity of transmitted UV signals through the tart cherry was found to be weak; however, the spectral properties of UV light in reflectance mode has revealed some typical characteristics of larvae on healthy and infested tissue. The larvae on tissue were found to exhibit UV induced fluorescence signals in the range of 400-700 nm. Multi spectral imaging of the halved tart cherry has also corroborated this particular behavior of plum curculio larvae. The gray scale subtraction between corresponding pixels in these multi-spectral images has helped to locate the larvae precisely on the tart cherry tissue background, which otherwise was inseparable. The spectral characteristics of visible/NIR energy in transmittance and reflectance mode are capable of estimating the secondary effect of infestation in tart cherry tissue. The study has shown the shifting in peaks of reflected and transmitted signals from healthy and infested tissues and coincides with the concept of browning of tissue at cell level as a process of infestation. Interactance study has been carried out to study the possibility of coupling opto-electronic devices with the existing pitting process. The shifting of peaks has been observed for the normalized intensity of healthy and infested tissues. The study has been able to establish the inherent spectral characteristic of these